
Insert here your thesis’ task.

Master’s thesis

PUF Based IoT Device Over-the-air Update

Marek Kňazovický

Department of Information Security
Supervisor: Ing. Jiří Dostál, Ph.D.

June 23, 2022

Declaration

I hereby declare that the presented thesis is my own work and that I have cited all sources
of information in accordance with the Guideline for adhering to ethical principles when
elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stipulated by the
Act No. 121/2000 Coll., the Copyright Act, as amended, in particular that the Czech Tech-
nical University in Prague has the right to conclude a license agreement on the utilization
of this thesis as school work under the provisions of Article 60(1) of the Act.

In Prague on June 23, 2022 …………………

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Marek Kňazovický. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been
submitted at Czech Technical University in Prague, Faculty of Information Technology.
The thesis is protected by the Copyright Act and its usage without author’s permission
is prohibited (with exceptions defined by the Copyright Act).

Citation of this thesis
Kňazovický, Marek. PUF Based IoT Device Over-the-air Update. Master’s thesis. Czech
Technical University in Prague, Faculty of Information Technology, 2022.

Abstrakt

Práca sa zaoberá prieskumom a navrhnutím zabezpečeného OTA update procesu s využitím
SRAM PUF a nasadením na obecnom IoT zariadení. Je rozdelená na tri časti.

Prvá časť skúma štruktúru a fungovanie bezbežného OTA procesu a je ukončená
navrhnutím obecnej varianty vhodnej pre zdrojovo obmedzené zariadenia. Druhá časť
skúma možnosti využitia PUF v kryptografických technikách daného OTA procesu. A na
záver bola vyvinutá knižnica obecne užívajuca SRAM PUF, integrovaná a následne nasadená
do ESP32 proof of concept využitia, kde bol použitý v rámci diskutovaného návrh OTA
procesu.

Kľúčové slová OTA, SRAM, PUF, IoT, zdrojovo obmedzené zariadenie, kryptografické
techniky, ESP32, proof of concept

v

Abstract

The work deals with surveying and designing a secure OTA update process using an
SRAM-based PUF and a typical IoT device deployment. It consists of three parts.

The first part examines the structure and the functionalities of a common OTA process.
It is concluded with a proposal of a simple variant of the process suitable for resource-
constrained devices. The second part studies the possibilities of using a PUF within the
cryptographic techniques utilized by the proposed OTA process. And finally, a library for
general use of SRAM PUF was designed, integrated and deployed on an ESP32 proof of
concept demonstration, where it was used among the simplified OTA proposal.

Keywords OTA, SRAM, PUF, IoT, resource-constrained device, cryptographic tech-
niques, ESP32, proof of concept

vii

Contents

Introduction 1
Thesis goals . 2

1 Over the Air update analysis and model proposal 3
1.1 OTA update scheme . 4

1.1.1 Provisioning . 5
1.1.2 Second stage boot loader . 5
1.1.3 OTA update transfer, speed and compression 8
1.1.4 General challenges and requirements 9
1.1.5 OTA update security . 11

1.1.5.1 OTA security concerns, threats and risks 11
1.1.5.2 Security measure inquiry 13
1.1.5.3 Cryptographic techniques in OTA security measures 15

1.2 Resource-efficient OTA update model . 17
1.2.1 OTA architecture . 17
1.2.2 Requirements and implementaion strategies 18
1.2.3 Proposed OTA process . 19
1.2.4 Usage of a PUF and CTs in OTA . 23

1.2.4.1 Brief analysis and attacks on the CTs 23
1.2.4.2 Vulnerabilities to attacks 24
1.2.4.3 Viable CT to be replaced 24

1.2.5 Conclusion . 25

2 PUFs and IoT devices 27
2.1 PUF principles, properties and definitions 27
2.2 PUF threats and attack vectors . 29
2.3 Easily constructible PUFs on a common IoT device 30
2.4 SRAM-based PUF details . 31

2.4.1 SRAM PUF background . 32

ix

2.4.2 PUF response error rate improvement tools 33

3 SRAM PUF processing framework 35
3.1 Enrolment . 35

3.1.1 PUF library provisioning . 35
3.1.2 PUF mask and SRAM bits . 37
3.1.3 Von Neumann Corrector debiasing 37
3.1.4 Construction of a mask of stable bits 38
3.1.5 Helper data assembly . 38

3.2 Secret extraction . 41
3.3 SRAM PUF framework summary . 43

4 Proof of concept implementation 45
4.1 IoT hardware platform comparison . 45
4.2 Library implementation details on the ESP32 platform 46

4.2.1 ESP32 developement tools . 46
4.2.2 SRAM PUF library . 49

4.2.2.1 Development . 49
4.2.2.2 Getting SRAM uninitialized state 50
4.2.2.3 SRAM PUF library ESP32 integration 51
4.2.2.4 Usage of a DRAM block for PUF 52
4.2.2.5 Library PUF metrics module 55
4.2.2.6 Library integration and use on ESP32 57
4.2.2.7 Library integration testing on ESP32 58

4.2.3 PUF-based OTA update process . 63
4.2.3.1 OTA process on ESP32 . 64
4.2.3.2 SRAM PUF library integration into an OTA project 66

4.3 Integration conclusion . 68

Conclusion 69

References 71

A Acronyms 77

B Library usage 81
B.1 PufSymtesting project . 81

B.1.1 Prerequisites of the pufSym library 81
B.1.2 Use of pufSym library . 82

B.2 PufSym library testing project . 82
B.2.1 Requirements . 82
B.2.2 Deployment . 82
B.2.3 Usage . 83
B.2.4 Data collection . 83

B.3 Encrypted Binary OTA update with SRAM PUF usage 83

x

B.3.1 Requirements . 83
B.3.2 Usage . 84
B.3.3 Monitoring . 84
B.3.4 Glitch/bug notice . 84

C Contents of enclosed DVD 85

xi

List of Figures

1.1 General bootloader scheme . 7
1.2 LZ4 compression examples . 10
1.3 Common OTA security threats . 13
1.4 AES vs RSA encryption speed comparison . 21
1.5 AES vs RSA security strength . 22

2.1 PUF principle . 28
2.2 6T SRAM cell . 32
2.3 Enrolment procedure SRAM PUFs . 34

3.1 Dynamic wear levelling . 41

4.1 Illustration of an ESP32 architecture . 48
4.2 Esp_timer API/function name . 54
4.3 Snapshot saving pathname . 54
4.4 Partition table with addresses . 55
4.5 Image name . 55
4.6 Spiffs volume name . 55
4.7 FreeRTOS memory management . 56
4.8 Enrolment time consumption . 60
4.9 Extraction time consumption . 60
4.10 Reliability comparison . 62
4.11 Bit uniformity comparison . 62
4.12 Long reliability testing . 63
4.13 Long bit uniformity testing . 63
4.14 Basic OTA process . 65
4.15 ESP EIAL firmware format . 66

xiii

List of Tables

4.1 Example of SRAM address layout . 51
4.2 SRAM PUF library performance comparison on ESP32 61

xv

Introduction

As per the numerous forecasts predicting the enormous increase in the spending related
to IoT solutions, e.g. [1], the everpresent need to keep the IoT devices safe and secure
in a consistent, well administered, reliable and scalable manner grows even more, each
year. Thus, the Over the Air update comes into play - a process to push updates from
a centralised node remotely to possibly a large fleet of IoT devices while also, perhaps,
attending to specific device’ needs based on its specific state. However, these devices do not
always possess the means to perform the required cryptographic techniques, which would
make the process much safer. Thus a question arises of whether to somehow compromise
on the security while updating such constrained devices or look for more unorthodox OTA
process models and alternative means to acquire the required cryptographic assets.

1

Introduction

Thesis goals
One of the goals of this thesis is to unravel the Over the Air update process and its pitfalls,
more precisely which factors come into the play that make it as effective as a standard
OTA process is, while also maintaining a good level of security. Afterwards, the threats
and the types of attacks that commonly plague various aspects of the OTA process are ex-
amined, and typical security countermeasures to such concerns are brought up in contrast.
Furthermore, a proposal for an OTA process suited for a resource-constrained IoT device
is brought forward to summarise the first part of the work. Also, due to the constrained
resources, even some cryptographic assets that play an essential part during the previ-
ously described security countermeasures might be missing. Therefore, it is then discussed
which ones can be substituted with a PUF that does not impede the used cryptographic
techniques.

The second primary goal is to look at the state of the PUF sphere and to explore
how they could be implemented on a typical IoT device. The PUF variants that do not
require physical intervention are brought up in more detail, and their possible participation
during the proposed OTA process is discussed further. Afterwards, the one with the best
prospects, SRAM PUF, is further analysed, and a way to implement its use on a resource-
constrained device is outlined.

The last part of the thesis discusses the implementation details of the outlined general
library incorporating the SRAM PUF as an asset for performing the desired cryptographic
technique. The library’s functionality is further tested on an ESP32 device test project,
where the PUF properties, such as memory cell stability, reliability and bit uniformity,
are examined more closely. Afterwards, a simplified version of the initial OTA update
process proposal is applied to an ESP32 device. Finally, it is tested as a proof of concept
while replacing a cryptographic asset that some CT would be using.

2

Chapter 1
Over the Air update analysis and

model proposal

The need for secure, up-to-date software and thus safely operating hardware has been
increasingly important in recent years. On most platforms, this goal can be achieved with
a process called Over the Air (OTA) update. It can be a relatively straightforward proce-
dure due to entirely unconstrained system resources or preexisting, tried frameworks and
systems already in place, such as the ARM platform upon which the Android ecosystem
is built [2]. However, currently, the most significant portion of devices connected to the
internet is machine to machine, or more commonly, IoT - Internet of Things devices.
Moreover, if the circumstances do not change radically, the proportion of IoT devices on
the market will increase even more [3].

The massive number of these devices and its further increase also means that quite
a few will be parts of critical infrastructures, making them possible attack vectors into
large ecosystems or even targets themselves. Thus, keeping them exploit-free and safely
operating is a critical concern, so they need to be updated regularly. Until a few decades
ago, this was done manually on site almost exclusively. Nowadays, manual updates are
still done in specific or very critical cases, where the transfer of the updated software with
the help of network and automation is simply not acceptable due to numerous concerns,
such as [4]:

• incredibly small failure threshold of critical applications as a lot can go wrong
during an automated process such as an OTA update

• update scheduling - with either automated or massively done an update of an IoT
product, it might be impossible to find a time slot where it can go offline, requiring
it to be done manually

• potential problems induced by the update - simply updating the IoT device
might cause it to be inaccessible from the connected network, making further off-site
interaction impossible

3

1. Over the Air update analysis and model proposal

• scale - the amount of IoT devices might be an order of magnitude smaller than the
amount of effort required to implement OTA (no need to solve OTA security and
similar concerns)

However, despite these concerns the OTA brings, it might be a great idea to use it
as of the aforementioned increase in the IoT device amounts, during which the use of
OTA brings the most benefit [4]. However, the fact that most of these devices are heavily
resource-constrained poses a challenge in implementing this process safely and reliably.

1.1 OTA update scheme
Due to the nature of most IoT devices and their resource constraints, there might be
a particular OTA scheme in place. However, with the rise of cloud usage [5] the need
for at least partial uniformity of this mechanism becomes apparent. With this, there are
generally accepted steps that must be adhered to and implemented to have a flexible and
scalable IoT solution. To generalise the OTA update process - the IoT device, sometimes
referred to as an edge node, will be specified as a client, and the other participant, the
one identifying the client, choosing and administering the update, will be called the server
(represented mainly by a cloud-like platform).

In general, the OTA update primarily consists of:

• correct mutual identification and subsequent authentication between a client and
the server providing said update

• ascertain whether the client is eligible for the specific update

• fetching the updated binary

– the process, generally, should be device optimised, caching a few pages at a time
or even writing through in the worst-case scenario (in the case of a very small
RAM)

– the use of compression depends on the device’s resources and capabilities

• the downloaded app should be verified (correct CA signing, checksum valida-
tion/hash comparison, etc.)

• after the update is in accordance with all requirements, the SSBL should branch to
the new app on the next reset

• in case of unexpected failure, the old app should be designated as a fallback app,
so SSBL can branch to it instead if needed

4

1.1. OTA update scheme

1.1.1 Provisioning
Not really a part of the OTA process, but it is still needed to have a functional network
connection between the client and the server, which is achieved by provisioning. In most
cases, it consists of configuring the device to access the local network properly (e.g. setting
up WiFi credentials and certificates). For example, on the ESP32 platform, this is achieved
by Unified Provisioning [6](go to /api-reference/provisioning/provisioning.html), which
does the following:

1. User installs the configuration app, which connects to a target device in provisioning
mode, which has some form of beaconing

2. The target device either host a WiFi Access Point with a running HTTP server or
uses BLE to which the user can connect to

• in the case of an Access Point, there should be security measures, such as WPA2
secured WiFi with a passcode provided with the device, e.g. in the form of a QR
code on the device itself

– however, the level of security is flexible and not enforced by the ESP32
framework

• there might be additional configuration installed, or even certificates necessary
for the OTA

3. After a successful configuration, the device turns off the provisioning interface so it
can free resources (e.g. BLE can take up to a fifth of the ESP32’s of memory [6](go
to /api-reference/provisioning/provisioning.html)) and be more stable (running the
ESP32 in SoftAP+STA mode is costly in terms of power consumption and since both
use the same radio stack and antenna it makes the communication less reliable)

4. The device connects to the local network with the provided configuration

1.1.2 Second stage boot loader
Generally speaking, the booting architecture is mainly based on the two (or more) stage
bootloader. This originated on the PC platform, where by default, the first loaded sector
was limited to a 512-byte size, thus narrowing down what the bootloader could do, for
it must have been limited to this size. Thus naturally, a multi-stage bootloader was
implemented, where the only limitation was placed on the first stage bootloader (FSBL),
whose only job was to initialise necessary hardware and correctly load the second stage
boot loader (SSBL) and execute it correctly. SSBL has no size limitations, so its logic and
capabilities can be quite extensive.

On the IoT platforms and specifically the ESP32 platform, it might have been possible
only to include a single-stage bootloader. However, it was disadvantageous to do so mainly
as a result of FSBL residing in the read-only memory [7]:

5

1. Over the Air update analysis and model proposal

• in the case of including the OTA capabilities to FSBL, it would not be possible to
update them, thus limiting the lifespan of the device significantly

• if the OTA capabilities were to be granted to the user application, then that would
result in

– in the case of Real-Time Operating System, which ESP32 has, it would be
problematic to grant the SSBL obligations to the user application, for simply
branching to the reset handler of the new, updated application would induce
serious issues due to RTOS presence - e.g. other tasks might be running in the
background, etc.

– if the branching to the current version of the application were to be done by
the FSBL, it would solve the RTOS task issue, as it runs before the RTOS
is initiated, but it might become unstable because of the interrupt vector table
(IVT) which might be required to be relocated - if a power cycle occurs during
this process the device might become inoperable

Having an SSBL solves the abovementioned problems since it resides at a constant
address and always contains the current IVT table (an array of pointers to functions,
handling faults, system requests, interrupt requests etc.[8]), is not in read-only memory,
so that it can be patched later on. Since it is a non-RTOS “program”, it can safely branch
to whichever application is required [7]. Also, an SSBL that handles most of the OTA
functionality can reduce application size by a large margin because neither the new, the
fallback, nor any alternative version of the app are required to have the same duplicated
OTA and other related code. However, the ESP32 platform has a minimalistic SSBL
since the ESP32 OTA process cannot patch the SSBL directly. The reason behind this
restriction is that if done and a power failure occurs, it might cause the device to become
inoperable [7]. The SSBL patching can, therefore, be only done by uploading the new
firmware locally [9].

Concerning the SSBL, the OTA proceeds as follows (with the ESP32 specifics [6](go
to /api-reference/system/ota.html)):

1. OTA/user portion of the user application detects an available update on the server.

2. It gets a new application and places it into the appropriate OTA partition.

1. Establishes trust with the server (e.g. PKI usage)
2. Downloads the update
3. Verifies the update
4. Updates the ota_data (similar to the Table of Contents in the figure 1.1)
5. Grants control the SSBL by resetting the system.

3. After getting control from FSBL, the SSBL detects an updated application from the
ota_data and partition table and acts accordingly:

6

1.1. OTA update scheme

Figure 1.1: General bootloader scheme [7]

1. Initializes internal modules, among them, e.g. Flash encryption and Secure
Boot, if enabled

2. Selects the updated application based on the ota_data partition (in case of the
first boot of the new app, otherwise select the fallback app)

3. Relinquishes control to either the next stage bootloader or the applica-
tion/RTOS

To summarise, having a part of OTA logic present during the SSBL initialisation
operations can be exceedingly effective since it allows control over the selected application
to load and run, thus allowing additional logic to be executed to determine the best
course of action. Therefore, if the OTA logic running during the SSBL phase figures out
that either the new application either has some internal inconsistency, a wrong version of
a component or some other fatal problem, it could even suspend the loading of the said
new application and switch to a previous or even the factory version.

Also, suppose it was somehow communicated to the device that the new application
has some sort of dangerous behaviour, making it unsafe to use (unsafe operational logic,
introduction of a security concern or the developing team becoming aware of an exploit).
In that case, it can decide to use a fallback application too.

7

1. Over the Air update analysis and model proposal

1.1.3 OTA update transfer, speed and compression
Nowadays, an average application has numerous external dependencies, which are nor-
mally not in the developer’s control. All these dependencies pose a potential risk that
often becomes real and needs to be monitored and acted upon if necessary. Suppose this
is taken into account with the fact that a well-operating IoT service should also have
regular user code security fixes, feature improvements or even new features frequently.
In that case, all of this must be reflected in the frequency and volume of OTA updates.
However, if such a system is using the OTA update often and in a large enough volume,
then normal operation disruptions due to OTA updates must be taken into account and
addressed.

Numerous factors affect the transfer process of an OTA update, some of which is:

• speed of the storage medium, in the case it is a bottleneck

• type of interface that provides the network connectivity to the device

• reliability of the network connectivity

– wireless connectivity - the strength and quality of the signal
– wired connectivity - the amount of noise present in the environment

• limited ability to use the available network capacity due to

– device operations - e.g. critical action done by the device needing most resources
– limited network bandwidth of the device
– Limited amount of data available to transfer

• the size of the updated binary

These factors need to be considered, but most of them are out of scope during software
development. However, the size of the update binaries is inherently tied to the development
activity. Numerous factors do unnecessarily enlargen the application binary, which does,
logically, by the same amount, increase the volume of data the OTA process has to transfer.
Among these, the usual offenders are :

• the use of high-level constructs with needless overhead

• using a general solution for a problem instead of a minimal one

• forgetting to remove unused components and libraries

• inefficient choice of compiler and its configuration, etc.

8

1.1. OTA update scheme

However, these are still out of scope for the OTA mechanism to influence in any way.
So in the case of the OTA process on the update server getting a binary executable on
input, the most direct way for it to reduce the transmitted volume of data would be by
compressing it [10]. There are multiple ways of doing so, which involve many quite simple
and advanced algorithms. However, in the context of resource-constrained devices, the
focus will be on its low hardware footprint and good lossless compression ratios.

Numerous compression algorithms offer very favourable compression ratios; however,
the main concern in their case would be the system resource requirements and almost
gigantic RAM prerequisites for their normal operation [10]. That might not be a problem
automatically since lossless data compression is a two-way process, where decompressing
is typically quite fast, sometimes even almost 100x than the compression time [10]. Thus
even libraries with unacceptable compression times might be usable on such devices since
only decompression would be used, as it would receive already compressed binary data
from the OTA update server. Though this is a feedback loop - to decompress data pro-
duced by a complex algorithm, it might be required to have the whole compression library,
including the complicated compression methods, included on the device. Thus the library
would have to be also included in all binary files that would be received through OTA,
potentially negating some of the achieved size reduction.

Nonetheless, plenty of compression libraries are designed for resource-constrained de-
vices that attain good performance during both compression and decompression while
having a limited memory footprint. One of such solutions is an open-source specified LZ4
compression algorithm. It is designed for very fast compression and decompression while
retaining low resource consumption and favourable compression ratios on binary applica-
tion data as high as 40% [10]. It might even be possible to store the application binary
compressed and only decompress it during SSBL loading the program from flash, thus
saving extra device flash memory aside from saving OTA update time. The algorithm’s
performance is visualised in 1.2.

There are, of course, other ways of reducing binary application size by the OTA process,
such as by not transferring the whole firmware at once. Such an example might be by
introducing binary difference data, that after applying to the old firmware would result
in a successful update, in place even, if the device is capable of it [11]. However, that
might make using the fallback feature harder to implement and also might involve a lot
of additional logic overhead which is never desirable.

So to summarise, depending on the exact hardware specification and the use case,
applying a compression function on the sent OTA update might be very interesting. It also
might be intriguing to evaluate the decompress costs, mainly time-wise, and potentially
save the compressed firmware directly to flash.

1.1.4 General challenges and requirements

For the OTA process not to be just a simple fetch and persist tool that focuses on delivering
the update as quickly as possible, it needs to conform to various functional expectations,
guidelines and conditions. After fulfilling such requirements, the process should result

9

1. Over the Air update analysis and model proposal

Figure 1.2: LZ4 compression examples [10]

in more predictable, robust and, most importantly, secure and deterministic behaviour.
Out of those, the most important ones should be named specifically as[12] [13]:

• A failsafe mechanism after a failed update

– frequent update deployment increases the likelihood of update failure
– actual conditions of the working environment might seriously impact the ability

to communicate with the server amidst an update

• A guarantee the device will receive the intended update

– if the same server is serving multiple IoT devices with differing firmware
branches of updates, it might result in the incorrect device receiving the in-
correct firmware. Even with a failsafe mechanism, this would still result in
a waste of device, server and network time. If not implemented, it might even
disrupt normal functionalities of the devices since they would be receiving bogus
updates not applicable to them

• An assurance that the update truly comes from the expected authority

– if the process is not using methods through which it is cryptographically veri-
fiable that the origin of the update is the intended authority, it could lead to
losing control over the whole deployed ecosystem

• A means of update delivery which does not expose its contents to third parties

10

1.1. OTA update scheme

– if the communication channel is unsecured, there is no guarantee that the con-
cerned data is kept only by the intended parties, which also means that even
if an initial connection might have been initiated with the trusted server, the
data have no certainty that they have not been tampered with

Most of these are related to cryptographically secure needs of conduct of the OTA
process. Therefore, that guarantees a more detailed look at the specific CTs involved
while staying aware of the attacks and vulnerabilities that come hand in hand.

1.1.5 OTA update security

For a well-designed OTA process to function properly and also to tackle the already de-
scribed elementary, functional and QoL requirements, it needs to take security seriously
and implement it in a well thought out and systematic manner. Depending on the perspec-
tive, an OTA process can be seen as a trust-based process [14] since most security actions
have a general purpose of trying to ascertain whether the party and the firmware are both
genuine and keeping a chain of trust during the whole process in a verifiable manner.
However, the OTA process, security-wise, should only be concerned with safeguarding
the update process itself and immediately relevant system aspects, not the other facets
of operations of either the server or the client[15], since it also needs to be as lightweight
as possible.

1.1.5.1 OTA security concerns, threats and risks

There are numerous concerns and risks if one considers the security of an OTA update net-
work, aside from more general security threats of a network-connected device. Therefore,
threats related to the process are [16]:

• OTA server-side, where

– the updates are stored and possibly also built, signed, encrypted and otherwise
prepared for distribution among the wider population of the IoT device line.

– various security details crucial to the device operations are being stored

– server’s private part of the PKI infrastructure used to verify itself and other
cryptographic assets used

• IoT device side, the party that

– normally is the one initiating the update process

– is the subject of the update

– the main subject running the OTA routines

11

1. Over the Air update analysis and model proposal

Therefore, in order to somehow gain access, to gain classified information or otherwise
damage the party operating the parties of whose the OTA process consists, the attacker
could target one of those attack surfaces or anything in between them. Thus, the common
attacks and threats are:

• MiTM attack - generally happens when an attacker either breaches the communi-
cation by attacking the protocol itself or using other exploits [17]. In other words,
a third party to a normally two-party communication (in the OTA context, the IoT
device and the server) inserts itself. The third party generally inserts itself into this
communication by either placing a node under their control between the commu-
nicating parties or by executing malicious code on one the hardware of one of the
parties [17]. The manner of malicious participation of such a third party differs
immensely on the objective of the attack, visualised in 1.3. The main ones in the
OTA context might be:

– impersonating either the server or the device, compromising the whole singular
OTA ecosystem

– eavesdropping and stealing the firmware
– modifying the firmware
– replacing the firmware with a preprepared binary created by the attacker

• Brute force attacks - If preferring the speed, resources or fast development over
security and using insufficient security measures, an attacker could try to break such
a measure with a brute force attack. E.g. an OTA process using keys that are either
too short or of a predictable type that in the end reduces their actual bits of security
to a too low amount, guessable by a brute force attack within manageable time.

• Denial of service - a classic attack that makes the network resource unavailable to
the intended group of users. It is normally achieved by flooding the resource with
many requests so the resource cannot properly be used by the legitimate group of
users[18]. In the context of an OTA update process, that would mean mimicking
the IoT devices and flooding the OTA server with superfluous requests.

• Side-channel attacks - harnesses various signal emissions and other possible in-
formation leakages that the device might possess. There are multiple attack models,
such as SPA, DPA, CPA and EM [19]; they normally require some knowledge of the
system and the platform by the attacker

– attacker must have access to the device
– possible to retrieve virtually any resource, maintaining security with which the

device works during runtime; requires a high degree of preparedness by the
attacker

12

1.1. OTA update scheme

Figure 1.3: Common OTA security threats [16]

1.1.5.2 Security measure inquiry

For the sake of counteracting the described attack vectors and reducing the possible at-
tack surfaces, there have been proposed and currently are in use numerous approaches,
techniques and even philosophies of conduct. Among those, the ones relevant for use on
the IoT device-side during the OTA process might be:

• Secure boot - In a well-protected IoT device, the user application code should be
routinely verified and authenticated whether it has not been modified or hijacked
by an attacker while stored in the flash memory. The best moment to do this would
be during the booting process. More specifically, the SSBL should have a routine
that does at least part of the process. This process is generally called Secure boot
[14] and, as such, is a good addition to an OTA process since it might counter some
threats and issues that come with using firmware from a remote source. In terms of
the attack surface, it protects the IoT device directly in the case the firmware was
somehow hijacked and redirects the attacker’s attention to the SSBL or some other
component doing the checks.

• Poor security policy - Using industry best practices for key lengths and employing
valid cryptographic technique selection is also paramount. Not exactly conforming
to the security standards and choosing an inadequate combination of cryptographic
assets or just cheapening out on the bits of provided security by the chosen keys just
to save some resources might [16] result in numerous vulnerabilities. To be specific,
e.g. choosing triple DES might be a poor decision since, according to NIST [20], it
is a deprecated standard with potential vulnerabilities to, among them, brute force
attacks in the near future, since it has a 112 bits long key with only 80 bits of actual
security due to its inadequacies. Therefore, giving up bits of security in favour of
some performance increase is inadvisable and should be avoided.

13

1. Over the Air update analysis and model proposal

• Authentication - The way of proving one’s own identity is a powerful tool and
quite necessary in the situation of deciding whether to trust the firmware provided
by another party or not. By authenticating, if done correctly, it is being crypto-
graphically proven that the party declaring itself in a certain role does, in reality,
have the necessary verifiable cryptographic identification. Demanding successful
server authentification as a prerequisite to subsequent firmware transfer during the
OTA update negates some attack vectors, mainly a few MiTM attacks. As per
authentication types, there are three main categories:

– Centralised three-way - administrator registers the IoT devices with the main
authority, assigning them valid certificates. After that, the authority facilitates
secure handshakes between the registered parties [21]. As a plus, the devices
do not have any certificates on them. Not relevant to most OTA processes.

– Distributed two-way - i.e. mutual authentication. The device and the OTA
server ought to have each other’s public certificate installed, with the update
commencing only when both the device and the server can authenticate each
other [21]. However, managing that many more certificates and overhead on
the device might not be feasible.

– Distributed one way - only one party to the communicating pair is being au-
thenticated; thus, in OTA, only the server has to prove to the device that it
really is the OTA server authority. Therefore, only the public certificate of the
OTA server needs to be distributed amongst the devices eligible for the updates
[21]. However, a case could arise that an uneligible device might take hold of
the certificate - in the case of unprotected firmware might mean a serious leak,
therefore requiring further measures.

• Securing of the firmware binary - on an otherwise maximally secured ecosystem,
where all parties are authenticated and communicate securely, the need for extra
security just for the binary would not be extra useful outside of redundancy purposes.
However, it is a powerful tool on, e.g. Distributed one-way authentication models,
where the device receiving the update would not be authenticated. In this case,
in order to not leak the firmware, it needs to be cryptographically ensured that
only the right party can use the firmware. Also, just signing the firmware instead
of doing full authentication of the server would not suffice since an attacker could
hijack or otherwise mimick the OTA server role and perform a retransmission attack.
Alternatively, even worse, send an older version of the firmware with a potentially
unfixed exploit for it to harness later on.

• Securing communication channel - after authenticating the parties securely,
the goal should be to agree on a session key in a similarly secure manner with
whose help will the device and the server push their update-related communication
through. A safely established, encrypted channel is paramount in keeping the up-
dated firmware safe from the eavesdropping of other malicious parties. In this case,
the TLS protocol is the main representation, which serves as a transparent layer

14

1.1. OTA update scheme

for other communication protocols [22]. DTLS can sometimes be found on really
constrained devices, trying to provide a similar level of security as TLS but with
a significantly lowered overhead.

• Side-channel attack - Another serious issue is the ability of an attacker to use a side
channel to gain normally secure information or even compromise the device. This
attack vector is a tough one to protect against since an IoT device is fundamentally
a relatively cheap platform, making the application of any more advanced measures
financially inadvisable for the solution to make sense still. However, there are still
actions that can be undertaken[19]:

– software side
∗ device operation, ideally, should be independent of data - number of clock

cycles randomised or uniform to not leak operation timings
∗ avoid reusing the keys
∗ power consumption not dependent on instructions executed

– hardware side
∗ use of Physical Unclonable Functions as CTs
∗ correct shielding to mitigate leaking data through electromagnetic radia-

tion

• Flash encryption - another way to counter various side-channel attacks is by safely
encrypting the persistent flash storage. In the context of an IoT device, the only
efficient way to do so is to use a symmetric key, and doing just that creates a problem
of where the key would be stored. One such way might be having a hardware
solution securely generating the said key and storing it in the form of an HSM,
e.g. inside a chip on eFuses that is inaccessible to the CPU. Only the hardware-
based encryption/decryption engine has the access, thus making the attacker have
to use a more drastic invasive type of side-channel attack to access the eFuses and
recover the key [23].

1.1.5.3 Cryptographic techniques in OTA security measures

When mentioning cryptography, nowadays, is commonly understood as a science centred
around studying various techniques and methods with whose help it is possible to secure
disparate types of data and communication. It is also closely related to cryptanalysis,
whose study of methods of obtaining the protected information without the proper means
of access, i.e. it is challenging the methods of cryptography. As for these cryptographic
techniques, they are well-defined, deterministic algorithms whose operations should take
adversarial behaviour into account, or their execution should be meant to counter it [24].
Ultimately, these CTs should have the pursuit of the following principles as their goal[24]:

• Confidentiality - only the authorised subjects should be able to view the protected
information

15

1. Over the Air update analysis and model proposal

• Integrity - the protected information should be either non-modifiable or easily
detectable, e.g. during transit, storage etc.

• Non-repudiation - that no communicating party should be able to deny that they
have sent or received the information in question

• Authentication - the identity of a communicating party can be confirmed

Therefore, these CTs use, in general, cryptographic methods/algorithms that in some
way or form use cyphers, which is an algorithm used for encrypting and decrypting data.
These techniques can be grouped into several categories:

• Symmetric cryptography - an encryption system whose purpose is to encrypt
and decrypt data. The system uses only one key, which is relatively fast, but both
parties need to have the knowledge of the said key in order for the system to work.
A typical representative nowadays in the IoT sphere is the AES, with key sizes of
128, 192 and 256 bits [24].

– commonly used as a session key of a TLS session - while solving the key ex-
change problem inherent to symmetric cryptography - more standardised way
of establishing a safe OTA update communication channel

– used as the main means of encryption in hybrid cryptography systems - there-
fore, OTA firmware encryption

– also utilised by most flash encryption approaches to further secure the OTA
update firmware

• Asymmetric cryptography - also an encryption system for data encryption pur-
poses. However, it is based on key pairs, typically of which one is private, and one
is public. Both can be used for encryption and decryption. It is quite slow but has
solved the key exchange problem [24].

– commonly used for safe establishing of a TLS session - solves the authentication
of the server or both communicating parties

– used as a basis of PKI cryptography, certificates and authentication techniques
- the chain of trust building

– use in hybrid cryptography, e.g. OTA firmware encryption
– used for firmware signing

• Cryptographic hash functions - in contrast to normal encryption algorithms,
proper hash functions should be a one-way function, where the original data should
not be recoverable.

– also utilises encryption, with the difference in not persisting the cypher texts
of each block but just using it as an IV during the next round, with the hash
output being the last cypher block

– firmware signing, device verification and identification

16

1.2. Resource-efficient OTA update model

1.2 Resource-efficient OTA update model
The chapter will describe the common feasible architectural approaches the OTA pro-
cess can take while opting for one of them, will list the relevant functional obligations
which a practical, robust, and secure OTA mechanism should strive to fulfil and also the
strategies describing how to get these obligations fulfilled and finally, a description of the
proposed OTA model in detail.

1.2.1 OTA architecture
There is no one size fits all type of OTA architecture, evermore due to the very different
capabilities and granularities distinct IoT architectures have in the field. For example, in
a use case where the amount of IoT devices per location is in the realm of tens or even
hundreds with possibly very low computing power and resources, maybe even combined
with a requirement for spending much time during deep sleep to conserve power, would
have to approach the OTA update problem in a very contrasting manner than a use case
with one deployed device per customer which is more autonomous resource-wise. Thus
these dissimilar dilemmas could be categorised into three main architectural update classes
[12] [25]:

1. Edge to cloud OTA - a single network-connected device with internet access that
is solely responsible for itself. Its capabilities include the ability to receive and apply
an update from a remote server by itself.

2. Gateway to cloud OTA - an internet-coupled gateway that manages a fleet of
local edge devices. Capable of receiving the update from a remote server, same
as the first architecture case. The update might be only intended for itself or the
hosting environment.

• Single point of failure in the gateway since the devices rely on the gateway
being up to date.

3. Edge to gateway to cloud OTA - an internet-coupled gateway that manages
a fleet of locally connected edge devices. Capable of receiving the update from
a remote server, same as the previous architecture cases. However, the update might
be either intended for itself, the hosting environment, the devices that are being
managed or some kind of a subset of these devices, basically capable of attending
to a heterogeneous group of devices and also acting as an update dispatcher for the
said fleet.

• Since the devices being managed are able to receive updates, having the gateway
fail might not mean update failure overall.

• Useful where the internet access is easier to set up for a single device, which
would manage it for the other minor ones. It might be very useful in conditions
where connecting the whole fleet directly to the internet would lead to a risk
of deteriorating the connection or security concerns.

17

1. Over the Air update analysis and model proposal

While each of these mentioned OTA update architectures has its uses, the proposed
model will be based on an Edge to Cloud OTA architecture since it allows more time
spent on the challenges of a specific device acquiring the update directly and its interac-
tions with the remote server, having to solve all the security-related tasks too.

1.2.2 Requirements and implementaion strategies
As per the past section describing requirements, there are numerous qualitative features
to an OTA update that need to be included in order to design a robust process.

Some sort of a Failsafe mechanism is practically a fundamental property since, over
the course of operation, the OTA process is bound to enter a state where the update either
cannot process or has been corrupted. Thus there needs to be a well-defined procedure de-
scribing how to approach such situations. Interestingly, OTA possessing a single attribute
changes that - transactionality.

If the OTA process is transactional in nature and thus supports something of a commit
and rollback operations, it:

• improves the update process reliability; the update is either “committed” as the
currently active version or rolled back to the last good known one in case of any
kind of an error

• rollback feature can also be used in other circumstances, i.e. in case of a new known
exploit introduced in a new update - in this case, the central node administering
the updates can mark the vulnerable version as faulty, and the devices will revert
to a safe older version if possible as a quick fix

– however, this might be a contested feature safety-wise - if an attacker finds
a way to exploit it, e.g. the old version contains unfixed security exploit, it
might lead to the device willingly setting up itself for a future attack

Henceforth, having the OTA process with these properties could be characterised
as having ACID attributes. As a result, it can be considered robust and capable of
enduring errors during multiple points of use while retaining the functioning state of the
application.

Versioning is a helpful, inexpensive tool that helps with achieving numerous aims.
Among them is:

• to be able to tell whether the device is up to date or runs an unsafe version - there
needs to be some way to keep track of versions

• also, the versions should be able to track other aspects as well, such as whether
or not the current version was successfully run, has a known exploit present, uses
outdated or unavailable resources or is outright obsolete and should not be used at
all

18

1.2. Resource-efficient OTA update model

By itself, it might not exactly fulfil any requirements, but it might come into effect,
e.g. during rollback operations while choosing the application with a version preference.

Due to OTA update being a resource and time-critical process, the inherent require-
ment is to use as little processing time as possible. Therefore, having the need to download
and process a full update might be, in some cases, detrimental. So differential update
approach might:

• save significant amounts of memory and reduce the time, power and bandwidth
to fetch the update - desirable in deployments with low-powered devices with bad
downlink connections.

• will require more system resources to maintain transactionality and keep versions
up to date

• if the updates are sufficiently different, it mostly degrades to a normal approach
while also retaining the differential overhead

Though using the differential approach implicitly might not be the way to go since
it heavily depends on the specific use case and update data nature, therefore having it
as a selectable feature would be preferred.

1.2.3 Proposed OTA process
After outlining the qualities a reliable and secure OTA update process should have in the
preceding sections, the moment has come to choose and narrow down which properties and
features should such a procedure, mainly focused on serving resource-constrained devices,
possess. Due to this constrained nature, the proposal will move incrementally, only adding
the essentials that will guarantee secure operations.

Therefore, the main execution steps, and the exact client obligations, of an Edge to
cloud-type OTA are

• connecting to an AP

• establishing communication with an OTA server

• downloading the new firmware

• applying the received OTA update

This very basic OTA process, however, does not contain any security features. Thus
firstly, both the two communicating parties and the firmware that is being transferred
are not guaranteed to really be the requested parties/resource. This process is vulnerable
to, amongst others, a MiTM attack due to a lack of server identity authentification and
unsecured channel communication due to unsafe HTTP usage.

Furthermore, secondly, in the case of a malicious device of a third party, which is not
the intended recipient of the update, it would be possible for an attacker to obtain the

19

1. Over the Air update analysis and model proposal

updated firmware itself, potentially undermining the whole subject deploying it. Thus by
neglecting the IoT device authentication, the OTA process becomes a potential victim of
a spoofing attack.

In order to have a secure OTA process, it is vital to counter these risks. They can be
countered by

• introducing public key cryptography through certificates, so it is possible to authen-
ticate the server

– private certificate is known only to the server. With its help, the server au-
thenticates itself after a request

– public certificate is known to everyone and used by the device requesting the
download to prove the safety of using the offer by the said server

• establishing a secured connection with the authenticated server, e.g. through a trans-
parent TLS layer

– done only after the server had been authenticated

• encrypting the firmware sent by the server, if the OTA logic on the device is capable
of decryption, of course

The authentication that would be done according to the preceding points would be
only one way, that of the server to the device. Of course, the authentication of the IoT
device could be useful too and could be achieved through another pair of public and private
certificates, but that would introduce several problems such as

• having to store the private certificate on the device itself, either alongside or instead
of the firmware decryption key

• safely generating and deploying a considerable amount of private certificates while
storing the public certificates all on the server, which in a system where the amount
of IoT devices is an order of magnitude larger than the OTA server participating
hardware, could easily become unmanagable

• not necessarily replacing the guarantees provided by the firmware encryption

Therefore transferring the problem of authentication of the device out of the PKI
cryptography realm to a simple requirement of knowledge of a secret necessary for the use
of the firmware. This might probably be more resource-friendly as well, since the firmware
would have to, in the case of failure of other components, be somehow cryptographically
secured, either way, thus creating a kind of redundancy. Therefore writing off the PKI
authentication of the IoT device to the server would have a twofold effect:

• reduce the workload of the OTA server, which would not be obliged to review each
client’s authenticity against the specific public certificate of the said device

20

1.2. Resource-efficient OTA update model

Figure 1.4: AES vs RSA encryption speed comparison [26]

• increasing the overall OTA process speed, for not depending on an extra exchange
between the server and the device means that the update can be applied sooner

As for the mentioned encryption of the firmware, which is the subject of the
whole OTA process, it is crucial to have an efficient scheme in place. By default, the
simplest scheme would be to, once again, use public-private key pair, encrypting the
firmware on the server by the public key and decrypting it by the private key on the
device. However, asymmetric cryptography is terribly inefficient if working with any data
larger than session information or of similar small data volume, as presented in the figure
1.4, with demonstrated key length of 56 bits for AES and 1024+ for RSA [26].

Since the application binary is in the realm of hundreds of thousands of bytes, this
would practically make the whole OTA process unusable. Hence there are potentially two
solutions to this problem [27]:

• distribution and storage of a single symmetric key per device

– distribution is a nontrivial problem
– needs to be securely stored on both ends
– therefore, inherent problems with device scaling

• hybrid cryptography - both the symmetric and asymmetric keys used

– only the asymmetric key needs to be distributed directly, for which asymmetric
cryptography is designed

– only the private asymmetric key needs to be stored

Even though in terms of performance, the solution with the symmetric key would
have a slight edge since the hybrid solution ought to decrypt a small amount of data by
an asymmetric key first, other than that, the symmetric key solution would provide no

21

1. Over the Air update analysis and model proposal

Figure 1.5: AES vs RSA security strength[28]

real advantage, even to the contrary. Unless the device was using the same symmetric key
during its whole lifetime, it would need to perform a symmetric key distribution, which
by itself cannot be done and needs the help of asymmetrically based cryptography. Also,
the need to store a key on the server’s end might also prove fatal since the server would
have to keep large records of deployed devices with corresponding symmetric keys safely
stored in an HSM. Hybrid cryptography solution has none of those drawbacks.

Hybrid cryptography [27], where the practicality of an asymmetric key and the
speed of a symmetric key are both retained, is critical for resource-constrained platforms.
More specifically, the schema follows the model of public key cryptography, where the
encryption can be done by anyone possessing the public key, i.e. the authenticated OTA
server in this case, but the decryption can be only done by the party with the private
asymmetric key, which is only the trusted device with the said key. However, the main
difference if compared to a pure regular cryptographic model using public/private key
pairs is that the only asymmetrically encrypted information is the symmetric key. After
decrypting the symmetric key, the device is automatically authenticated and implicitly
authorised to use the decrypted symmetric key in order to obtain the plaintext [27], in
this case, the updated firmware.

However, to maintain security, the server needs to randomise the initialisation vector
of the symmetric key so that no two binaries will be of the same encrypted value, even if
they are equivalent in plaintext [27].

Finally, the question of secure storage of the private keys/secrets - in the current form,
the proposed OTA update model uses only one private key on the side of the IoT device,
and that is the asymmetric key used for retrieval of the symmetric key of the transferred
binary. Therefore, the IoT device has to have some kind of HSM capable of safely storing
the said asymmetric key. Also, according to NIST [28], the recommended RSA equivalent
in terms of current perceived security strength to a commonly used AES-128 is an RSA
of the length 3072 [28]. This is visualised in the table 1.5.

Storing such a key might be problematic for some IoT devices, so exploring alternative
options of safely retaining and extracting such a key, such as PUFs using from some

22

1.2. Resource-efficient OTA update model

unique device property, might be very convenient and useful. More specifically, the main
secrets that have to be securely stored on the device during the proposed OTA process
are the asymmetric key for firmware decryption and, in the case of mutual authentication,
also the device’s private certificate. If the device does not possess an HSM that could also
operate safely in tandem with the normal device operations (an external HSM module
might be unsafe for side-channel attacks), the SRAM PUF really might be the answer
since it is already integrated into the typical device and it also provides good statistical
properties to go ahead with either storing such a key or even deriving it. However, it
all depends on the specific device, the SRAM quality, the manner of use and such, thus
needing to be further investigated in such regard.

1.2.4 Usage of a PUF and CTs in OTA
As was already stated, there are numerous types of attacks against the cryptographic tech-
niques employed by an IoT device during the process of updating its firmware. So therefore,
in reference to the proposed OTA model, the following will be a listing of such CTs that
are paramount to the process:

• PKI certificates, or more specifically, asymmetric cryptography

• Firmware encryption, therefore, hybrid cryptography

The listed CTs are the two main pillars of the proposed OTA process security. The
first point guarantees the authentication of the OTA server and the subsequent creation
of a secure communication channel. The second one guarantees the confidentiality of the
subject of the communication, the OTA firmware. It also implicitly authenticates the
device if it is able to decrypt it and consecutively authorises it for its storage and use.

1.2.4.1 Brief analysis and attacks on the CTs

As hybrid cryptography has been already looked upon in the previous chapter, let us ex-
amine the PKI certificate.

Firstly, Public Key Infrastructure is a framework, a two-key asymmetric crypto-
graphic system, that does one main thing - it enables its users the use of secure information
exchange through its certificates [29]. The reasoning behind the choice of the keyword of
Infrastructure is mainly due to the fact that it encompasses all the numerous various fac-
tors that make this exchange possible. Among them, the following certainly belong to
[29]:

• hardware solutions designed to support cryptographic operations

• software solutions harnessing the said hardware securely

• policies that are in place that, e.g. dictate how the specific operations should unfold

• methods and entities needed to make the whole system work. Their responsibilities
might involve certificate

23

1. Over the Air update analysis and model proposal

– distribution
– verification
– revoking

The certificate is an asymmetric key bundled with other information related to the
subject so that the authentication process can take place. Also, the mentioned entities
certainly include[29]:

• Certification Authority - a trusted member of the PKI. It is the root of trust of
the specific certificate chain since it possesses the root certificate only for its use.
The main service it provides is authentication.

• Registration Authority - permitted by the main CA to perform some of its duties
to distribute the workload. Mainly issues specific certificates for specific groups.

• Certificate store and database - first used as a means to store certificates on
an end-user, e.g. an IoT device; the other is used to track details about the issued
certificates, also used for later certificate revoking.

1.2.4.2 Vulnerabilities to attacks

The main issues with the PKI are not related to the asymmetric cryptography directly
(though it might come into question in the future, with the emergence of systems trivi-
alising the underlying cryptographic algorithm) but more to the concept of the chain of
trust. Therefore, an attacker would certainly find more success targetting the weakest link
in this chain. After compromising the CA, every certificate issued by this CA becomes
unsafe and exploitable by the attacker, thus dooming the whole specific PKI-based system
[29]. So in the context of an OTA process, there is not much it can be done other than
choose the CA issuing the certificates used for authentication during the update carefully.
Moreover, again, in the IoT and the OTA context, using self-signed certificates might be
actually a completely fine idea.

As for the issues with the hybrid cryptography- in the case of correct usage, they all
depend on whether the asymmetric key used to encrypt the symmetric key has been kept
safe by the device. Therefore, this degrades to the already described issues with safely
storing a secret on a device, which might be a real problem if the device lacks an HSM or
any other tools to keep the stored private key securely stored.

1.2.4.3 Viable CT to be replaced

As per the already discussed threats, only the securing of the private asymmetric key
could be somewhat considered for replacement or implementation on devices without the
needed cryptographic infrastructure.

More broadly, constrained devices often have low overall capabilities and hardware
tools eligible for implementing such security measures, e.g. hardware support for AES
encryption, no HSM present and etc. Nevertheless, what they almost always do have

24

1.2. Resource-efficient OTA update model

is an SRAM - thus, one might be able to implement sufficient measures and CT with the
help of the SRAM-based unclonable function. More specifically, since a device often needs
to store an asymmetric private key, whether for authentication, data signing or firmware
encryption purposes, placing such a crucial secret in unprotected flash is unacceptable.
Thus having an SRAM-based PUF to either derive the key itself or enrol it after being
provided by the admin and store an auxiliary noncritical structure in flash memory that
only with it and the help of the PUF the key can be recovered. Therefore an SRAM might
be the way to go in the case of storing private keys critical to the OTA update process.

1.2.5 Conclusion
So to finalise - a draft of a lightweight OTA update process was proposed. It highlights
the necessary security features that such a process should harness, mechanisms like server
authentication, firmware encryption and etc. Due to its focus on constrained devices, the
process does not implement additional features discussed before, like compression, or it
does not mention the use of transactionality and other reliability features. However, this
is of little consequence since they could always be implemented afterwards, but to approach
security in this manner would be a whole another issue. Also, as of the constraints such
devices often have, usage of a PUF in some capacity as a CT might be very beneficial and
allow the device to be more secure with more resources to spare.

25

Chapter 2
PUFs and IoT devices

Even if an average IoT device wants to operate as securely as possible during all times, it
also has to maintain its operational requirements, thus, in most cases, sacrificing something
security-wise. Therefore, in the case of devices that already are very resource strained or
lack the assets to perform the needed cryptographic techniques, it might be very lucrative
and potentially groundbreaking to look at the options a PUF can provide.

2.1 PUF principles, properties and definitions
Every valid PUF needs to possess some quality that is unique and is a source of entropy
- no other device, even if being of the same manufacturing line or type, should have the
same manner of such quality - it should behave like a fingerprint [30]. At least during
normal circumstances, this quality should not be reproducible by any physical means, such
as deliberately constructing a device imitating such quality or by modelling the behaviour
artificially.

In order to somehow harness this quality, there ought to be some logic layer that,
based on input, produces some output based on the specific quality.

In other words, let challenge C be a sequence of bits that the PUF circuit accepts as an
input. The response R will be the output generated due to the underlying quality and
that of the challenge. Such a pair is thusly defined as CRP - Challenge Response Pair.
Also, even if two chips have similar PUF-like qualities and respond to the same challenge,
their PUF responses cannot be the same. Therefore, there should not exist a pair of such
devices where the response is equal, as it is visualised in the 2.1 figure [30] [31].

Thus, there are several properties a proper PUF has to possess, such as [31]:

• a CRP should be random, with no two differing challenges providing the same
response

• modelling from a set of CRPs should not be easily achievable

• low attack multiplicity - actually extracting a CRP by an attacker should be impos-
sible to repeat at more than one-time instance

27

2. PUFs and IoT devices

Figure 2.1: PUF principle [30]

• has to satisfy SAC - Strict Avalanche Condition - the probability of the output bit
being flipped should be 50% if the input bit has been flipped

If considering the amount and the manner of CRPs a PUF can actually provide, the
PUFs can be divided into three categories[30] [31]:

• weak PUF - linear increase in PUF circuit size results in a linear gain in the volume
of CRPs

• strong PUF - linear increase in PUF circuit size results in an exponential growth
of the CRP amount

• controlled PUF - is based on a strong PUF in the background, with a front end
consisting of control logic.

Due to the described nature of the PUFs, they are often used as authentication devices
and in other related roles during secure communications [30].

Having a PUF primitive might be especially advantageous on resource-constrained de-
vices, which might lead to an added ability to authenticate or securely communicate while
not having any other cryptographic assets capable of doing so. So to satisfy such devices,
there needs to be a specific authentication protocol based on the CRP phenomenon. Such
a universal protocol is composed of [30]:

• Enrolment phase

1. The server with a database is connected to the device with PUF through an
interface directly - might be before device deployment in a controlled environ-
ment; therefore possible to focus on speed

2. The server floods the device with all the possible challenge requests and records
the relevant responses

3. Finally, the database is populated by, ideally, all the CRPs the PUF potentially
can produce.

• Authentication phase

28

2.2. PUF threats and attack vectors

1. The enrolment is a prerequisite - the server has a table or a database populated
with all the CRPs.

2. To authenticate the device, the server sends a challenge for the device PUF.
3. If the response matches the specific one from the CRP pair in the DB, the

device can be deemed authenticated.

The described authentication protocol favours the strong PUFs very heavily since, with
their larger volume of CRPs, it does not matter whether a few are published publically or
not. Weak PUFs on the other hand, are a lot less suitable for this since they often have
only a few unique CRPs, sometimes even only one. They, however, might be a lot more
suited for replacing other cryptographic techniques, such as deriving keys [31].

2.2 PUF threats and attack vectors
Since an essential feature of an IoT device is being able to operate in various conditions, it
also means they have to be exposed to numerous threats too. Aside from direct physical
attacks to communication disruptions and other malicious manipulations of the device’s
operating conditions, the device can face direct threats to the security provided by the
PUF. Of course, a weak PUF faces quite different security threats than a strong PUF since
they are mostly implemented to provide for or even implement different cryptographic
techniques or assets. Thus in the context of strong PUFs, with CRPs being published
between the two communicants [30]:

• MiTM attack - no physical access

– malicious actor can hijack or otherwise get the knowledge of certain exchanged
CRPs. Afterwards, the attacker can either perform replay attacks if the im-
plementation is vulnerable or try to, piece by piece, reconstruct a model of the
PUF with, e.g. ML

• Side Channel attack - requires physical access

– Categorisation by the invasiveness
∗ invasive - damaging the device in order to access crucial components re-

quires precision and complex equipment - should result in PUF becoming
inoperable

∗ non-invasive - extract information by exploiting operational data of the
device

– Categorisation by type of activity
∗ passive - purely observatory in nature
∗ active - tampering with the device operations, e.g. supply voltage control

by the attacker

29

2. PUFs and IoT devices

To aggregate the most important PUF properties in regards to threat actors and the
attack models - a good PUF needs to be:

• Unique

– the main reason behind the good security properties and the validity of use
during or in place of various cryptographic techniques

– an ideal PUF should be physically reproducible by neither the manufacturer,
designer, nor the attacker

• Tamper-proof

– since the PUF employs the disorder introduced by a manufacturing process,
then any attempt to break the package or access the components with the
unique properties should result in a change, resulting in the PUF becoming
altered or even nonfunctional

– not all PUFs do possess a bulletproof resistance to tampering, but they are
more likely to be resistant than a regular flash or other such hardware

• Reliability

– for the authentication and other cryptographic techniques to work properly,
the CRP pairs must be produced consistently and reliably across time. If some
responses are to be found dependent on the conditions or other factors, they
need to be processed so that on the final output, the reliability is maintained

2.3 Easily constructible PUFs on a common IoT device
Numerous types of PUFs could be considered, such as arbiter PUF, Ring Oscillator PUF
etc.[30] However, most of these require the device to have some external or specially
manufactured module that would contain the said PUF circuitry. Therefore, exploring
PUF options that might be inherent to a device or its components and thus might be
harnessed without any additional physical intervention, purely through a dedicated library.
Since most IoT devices nowadays have some form of flash and also SRAM, the contenders
are:

• Flash-based PUFs

• SRAM-based PUFs

There are multiple papers on the viability of flash-based PUF [32] with differing
approaches and usefulness. However, for those that do satisfy the no modification required,
the only thing staying in their way of being used on an average device is their focus on
NAND type flash cells. In contrast, an average IoT device uses NOR-type flash cells, and

30

2.4. SRAM-based PUF details

thus its usability and viability on such flash type seems to be less known. As per [32],
the main sources of process variation in flash memories can be exposed through various
means; here listing some of those that can be used for a PUF construction[32]:

• Program Disturb - by erasing a single block and repeatedly reprogramming a page
in the block to affect nearby cell values. This disturbing process leads to unintended
programming of nearby flash cells, thus can be used as a source of entropy for PUF

• Program/Erase Interrupt - by issuing a program/erase action. Since it normally
takes more than one clock cycle, a reset signal can be sent between starting the
process and finishing. Thus this results in partially programmed/erased flash cells,
which can further be leveraged.

• Random Telegraph Noise - use of a type of noise found in semiconductors with
specific parameters.

On the other hand, there are PUFs using the very common element of most IoT devices
of the present use - the Static Random Access Memory. Unlike the flash memory type,
SRAM has very exploitable statistical characteristics that can be harnessed for its PUF
use with relative ease. The process that is being utilised by an SRAM PUF is [33]:

• Slight property differences in semiconductors

– caused by the manufacturing process, due to deep sub-micron variations

– outside of the control of the producer, unique to the built electronics

– the direct effect is that after the SRAM start, this randomness causes the
specific memory cells to initialise with a value influenced by these properties

∗ not foolproof, might result in unstable cells with unpredictable startup
values

∗ the instability may be heavily influenceable by the environment

To summarise, both PUFs based on either the flash or SRAM can be implemented
on most IoT devices without physical intervention. However, flash-based PUFs, maybe
because of their nature or specific use conditions, are a lot less used on a common device.
Thus from now on, this work will focus on the SRAM-based PUF.

2.4 SRAM-based PUF details
The basis of the SRAM-based PUF lies in harnessing the slight variations in the properties
of the semiconductor that the SRAM is composed of.

31

2. PUFs and IoT devices

Figure 2.2: 6T SRAM cell [34]

2.4.1 SRAM PUF background
More specifically, a traditional SRAM cell[34] is that of a 6-Transistor type, as the 2.2
figure shows. Due to the already mentioned inherent differences present in the semicon-
ductors, the cell, upon start, will, with a certain consistency, settle at either a logical 0
or 1 state. The exact cause of this behaviour is the mismatch in process variations in the
cell transistors [34].

Therefore, such consistency with yet, random settlement states allow, at least in prin-
ciple, to gather the initialisation states of these cells and use them for cryptographic
techniques and procedures. However, the startup noise and other environmental factors
will impact the exact settlement state of each of these cells. Thus, not all cells will be
consistent, and therefore they can be categorised [34]:

• low mismatch cells, being easily influenceable by the noise and surrounding ele-
ments

– these will be the bulk of cells highly inconsistent in assuming the same initial
state, thus making their use in a fingerprint type identification of the device
problematic

– however, depending on the consistency of assuming the inconsistent states, it
might be viable to consider these cells in the creation of PRNG or even a TRNG
number generator [35]

• high mismatch cells, which produce sufficient differential drive to overcome the
impact of noise

– the drive might be only up to a point where if the noise gets up to a certain
level, then some of these normally stable cells might start to behave unreliably

There are numerous happenings that might result in influence over some of these cells.
Among them, there surely belong the ones as[34]:

32

2.4. SRAM-based PUF details

• supply voltage levels

• long-term transistor change because of their ageing, or other parts of related
hardware

• ambient conditions and other sources of noise

– thermal noise
– power supply noise
– crosstalk
– shot noise
– telegraphic noise

Therefore, a PUF is considered unreliable if it produces different responses than the
ideal ones, or if the errors (bits that are a result of cells that have been influenced by noise)
are permitted during the operations, the ability to correct the errors has been neutered
due to their sheer volume or severity.

As previously mentioned, with PUFs being divided mainly into strong and weak cate-
gories, the SRAM PUF is mostly classified as a weak PUF [34]. The main reason is that
a reliable SRAM PUF should give somewhat reliable and very similar responses, thus
limiting the amount of CRPs in the general PUF terminology. Also, in contrast to the
strong PUFs, where a few incorrect responses do not impede operations, if they are kept
under a certain amount, the weak PUFs are expected to provide extremely reliable and
error-free responses due to their amount scarcity, as they are mostly used for key gener-
ation and such. Therefore, with SRAM PUF being prone to relatively high error rates,
the raw value of the SRAM cells cannot be used directly and should be further processed.
Due to the volume of most SRAM memories, however, that should not pose a problem
since this can be counterbalanced simply by its size.

2.4.2 PUF response error rate improvement tools
In order to counter the said inherent problematic behaviour of the SRAM-based PUFs,
there ought to be some procedure to extract the wanted information despite having an
error-ridden PUF response. Thus, there have been brought up tools to achieve this pur-
pose, the fuzzy extractors and error-correcting codes.

Fuzzy extractors - addresses error tolerance and nonuniformity. Functions by ex-
tracting a uniformly random string from the input string in an error-tolerant way. Thus,
if the input had been changed, e.g. noise in an SRAM PUF response, but still stays other-
wise similar to its intended form, then the extracted response will not contain such errors
[36].

Error-correcting codes are algorithms that express, i.e. encode the input in such
a way that any errors that happen to such an encoded input while it is in such a form
will be correctable by the reverse operation, which, out of the encoded input, recreates
the original input, i.e. it decodes it. However, if the error frequency is a number that the

33

2. PUFs and IoT devices

Figure 2.3: Enrolment procedure SRAM PUFs [34]

EEC cannot fix, then the error propagates from the encoded word to the output, thus
losing the original input.

In the context of SRAM, PUFs fuzzy extractors and EECs are tools with whose help
the PUF response can be made usable and appropriate for cryptographic operations and
techniques as a representative of the weak PUF category [34]. With their help, a sort of
helper data is produced, which can simplify the more correct and reliable PUF operations
in security primitives. In principle, these tools utilise the fact that the length of the SRAM
is mostly longer than what is really needed as a PUF response, and thus the extra length
can be used as an overhead for these methods to perform their operations, e.g. the EECs
typically encode the input in a redundant fashion, thus needing a bigger chunk of memory
to store it. An exemplary figure 2.3 for this process [34]:

34

Chapter 3
SRAM PUF processing framework

Since the availability of hardware primitives that might possess some unique quality with
enough entropy and without additional physical intervention are pretty scarce, the main
point of dispute is - which one will the library be using. As it was already discussed,
PUFs using either flash or SRAM are both possible to be implemented on a typical IoT
device. However, aside from the increased complexity of a flash-based PUF, the thing
is - that IoT devices typically use the NOR flash memory cell type. Thus, as per the
preceding discussion, they are not compatible with some described concepts. In contrast,
the SRAM-based PUF is worth the consideration since practically all the IoT devices
use this resource. It might come to light that the amounts of the said SRAM will be
insufficient or the quality will be inadequate, but that remains to be seen. Therefore, the
PUF this library concept will be using is based on the static RAM. The process described
in this work uses concepts described and used by the paper [37].

3.1 Enrolment
Enrolment is the first major phase of this PUF secret storage operation. In its conclusion,
securely storing the secret, with the use of the SRAM PUF, is achieved and can be
recovered afterwards at any point during any operation. The last state the device is let
in after executing the enrolment is that a data structure is present in storage and with
whose help the secret can be reconstructed. Also, the initially transmitted key must be
securely removed. The whole enrolment process starts with:

3.1.1 PUF library provisioning
1. The secret is transmitted along with the firmware. It may or may not be in per-

manent or not secure storage at first, but after completing the secret enrolment, it
must not be recoverable.

2. After the first startup, the newly uploaded firmware must start the process of as-
sessing the SRAM.

35

3. SRAM PUF processing framework

In order to work correctly, the implementation needs to exclude nonsuitable or non-
reliable parts of the memory. After selecting the part of the memory with expectedly
good properties, there should be an obtaining of something like an initial snapshot of the
SRAM on these selected addresses. This image, which is an unprocessed and error-ridden
PUF response from the SRAM, will depict something of an “ideal”, upon which the other
mechanisms will be partially based and whose purpose is to improve the PUF response
quality during the later steps of the enrolment. It would be better to use a fresh PUF
response whenever needed in the future. However, this is where the notorious constrained
resources of a standard IoT device take a toll - to obtain a different PUF response every
time, where a snapshot would suffice, is simply not feasible since it would require:

• an additional SRAM reset, or in other words, the restoration of uninitialised
values of the SRAM that the PUF response is using

– depending on the type of SRAM the process is using for PUF generation, this
might not mean much since some IoT devices might have some sort of a backup
SRAM. For example, STM32F407 [38] has a backup SRAM that can be powered
on and of by will, making it very useful for PUF response generation since the
main SRAM can be used independently, and therefore, the program execution
does not have to be stopped. On the other side, the ESP32 does not have such
options, so resetting the memory will be very costly time-wise and resource-
wise.

• a means to save it to non-volatile storage since to get the suitable SRAM state,
it needs to be purged of everything, even the previous PUF response the process
is using

– this might be a moot point since the initial PUF response is being saved either
way. However, it should be noted that a replacement response would have to
be saved whenever requiring two PUF responses, in contrast to only one initial
saving in the case of the snapshot. So saving every time might be very wasteful,
depending on the type of the non-volatile memory used.

After having an initial PUF response saved, a mask should be constructed, with which
the same bits can be selected again. Initially having all bits included, it will have certain
bits omitted depending on numerous conditions. All these conditions should lead to the
processing the PUF response and whose output should be more reliable and cryptograph-
ically more secure than just the pure SRAM PUF response.

At this point, there are multiple routes the process could go. More specifically, there
needs to be done:

• a debiasing where a substantial amount of bits is excluded

• exclusion of unstable bits

36

3.1. Enrolment

Since the resources are assumed to be constrained, the choice of debiasing method
is almost set from the get-go - Von Neumann corrector (VNC) [39] is simple, fast and
seemingly effective. Moreover, if the input is deemed as biased, having independent bit
cells, the bits can be chained in pairs, rejecting any pairs with the same bit values for
both bits and only leaving the first bit from a nonequal pair.

The second goal is trickier - unstable bits can be determined only after extracting the
PUF response numerous times and comparing them to the initial image, which is resource
and time-consuming. So the choice to debias the bits chosen by the PUF mask is based
on:

• if the unstable bits were the priority, due to the VNC debiasing being fast and
excluding a large number of bits, it might exclude a lot of them painstakingly cal-
culated after numerous resets, wasting resources.

• the fact that initially, the mask is a string of solely ones, selecting a continuous
stream of uninitialised PUF bits. Debiasing here means taking into account their
physical placement on the chip, which might be a good idea.

• on the other hand, executing the debiasing after rejecting the unstable bits would
mean pairing unrelated bits.

3.1.2 PUF mask and SRAM bits
From now on, the PUF response will refer to a continuous stream of bits of a prede-
termined length. This bit stream will be derived from the uninitialised SRAM bits, upon
which a mask is applied. This mask also called the PUF mask, is a filtering tool whose
goal is to improve upon the raw, uninitialised properties of the SRAM cells. This mask
is of the same length as the whole region of the SRAM that is being processed, and its
final Hamming Weight is of significantly lower magnitude than its initial form, containing
every bit the targetted SRAM memory region contains. Thus the library needs to ensure
that applying the mask results in a correct stream of bits, not using the bits excluded
by the mask. Also, the mask has to be readily available after a shutdown of the device
in addition to resilience to the SRAM reset since the library will use it during its whole
operation.

3.1.3 Von Neumann Corrector debiasing
There are multiple routes describing how to retrieve a debiased response. If the SRAM
quality might seem inadequate or has other problems, one might use more robust counters,
such as the more advanced pair output Von Neumann (2O-VN) used in [37]. Currently,
though, the used technique will be VNC. Also, regardless of when the VNC debiasing
occurs, the implementation works as follows:

1. gets a new PUF response with the help of the mask. Considering no work has
been done on it up to this point, the VNC algorithm can safely operate upon the
initial SRAM image.

37

3. SRAM PUF processing framework

2. iterates over the whole mask where it:

1. selects a new bit pair of the mask - selecting criteria is that they are set to
one, and both are either consecutive or as close to each other as possible.

2. selects a pair of PUF response bits corresponding to these two mask bits.
3. if the response bits are the same, then both mask bits are discarded from the

mask. If they are not, then only the first bit is included in the processed
mask, the second one is still discarded.

3.1.4 Construction of a mask of stable bits
After having removed the potentially biased bits from the mask, there needs to be an
improvement in the reliability of the responses too. At this point, it is falsely assumed
that the initial SRAM snapshot will be consistent with all the responses the library will
be getting, which is not valid. Thus, the unstable SRAM bits must be excluded.

The curating of the mask is as follows:

1. The SRAM is restarted, and a new PUF response with the help of the PUF mask
is obtained.

2. An array of counters for the included PUF mask bits is constructed. This array
must be stored in non-volatile memory since it needs to be recoverable after getting
a new PUF response.

3. The initial snapshot is recovered, and the PUF mask is applied upon it, producing
a sort of second PUF response.

4. The bits of the recent PUF response and the snapshot PUF response are compared
one by one, and the ones that are not equal have their corresponding counter in the
counter array increased.

5. After executing steps 1 to 4 as many times as necessary, the mask is after that
brought up and cross-referenced with the counter array. Based on how many times
the cycle was executed, an upper bound is determined, and the PUF mask bits
whose counters do not fall into this approved range are removed from the mask.

After executing the aforementioned cycle, the current PUF mask is final and should
be stored permanently, at least in terms of the current enrolment.

3.1.5 Helper data assembly
Having got the PUF mask available - the process can move towards the storage of the
secret since, up until now, it was untouched in non-volatile memory. The goal now is to
build a seemingly random structure with whose and a PUF response’s help the secret can
be recovered, thus imitating the function of an HSM.

The process is as follows:

38

3.1. Enrolment

1. A new PUF response is obtained after restarting the SRAM.

2. The secret is loaded into the main memory.

a. The non-volatile storage where the secret was stored up until now has to be
guaranteed not to be able to reconstruct it afterwards in any way from now on.

b. In the case of using some kind of a file system

• simply removing the file most probably will not be enough, since virtually
always this means that the file is just no longer linked in the file system.
It might get overwritten in the future with its blocks now marked as free,
but that is of absolutely no guarantee that the file containing the secret
is no longer accessible or recoverable.

• overwriting the old file with zeros might not guarantee it has been written
over in reality. This might be the case at least on some filesystems, since
they might employ some kind of wear levelling, considering the flash
memory used has often a relatively low amount of program/erase cycles.
More specifically, the NOR flash memory, also used in, e.g. ESP32 [6](go to
/api-reference/storage/wear-levelling.html), usually a NOR cell has a life
expectancy of at most 100 000 [40], making the wear levelling still a bit
of a necessity if one wants to use such a memory actively. So ideally, the
whole NVS storage should be formatted securely, since there might be no
way of deleting the specific file or object containing the secret in a secure
manner.

• the aforementioned overwriting problem might not be present only at file
system scope, but at any NVS built on any flash type memory at all -
as per [41] as confirmed by two Espressif employees, even the NVS does,
in ESP-IDF at least, have some form of wear levelling in the background,
so it should be considered the same as the file system problem and over-
written with zeros securely in its entirety, not just the specific supposed
data placement.

3. The secret is encoded into an error-correcting code. The kind and manner of ideal
encoding depend heavily on the kind of SRAM we are working with. Moreover, the
PUF response should be equal in length to the encoded secret.

4. Perform a bit-by-bit logical exclusive or (XOR) operation between the acquired PUF
response and the secret. The output is the helper data string.

In regards to wear levelling - it is a technique used to extend the lifetime of flash
memory, be it a NAND, NOR, or any other type of memory with a limited amount of
program/erase cycles. It commonly operates on a page level, and it might operate in
several modes, such as[42], also displayed in the 3.1 figure:

39

3. SRAM PUF processing framework

• dynamic wear levelling - works on data block level and only during writing op-
erations. Flash controller keeps track of the writes each block has had. When the
controller is required to perform a write operation, it selects a free block which had
the least amount of recorded writes. This block is then linked in the place of the old
one, and it also marks the old data as invalid. After an indefinite amount of time,
every block marked as invalid is freed up by the garbage collector, as illustrated by
the image below. So in this manner, memory cells marked as invalid regarding dy-
namic wear levelling can still contain the secret for some time, even when it should
have been overwritten by zeros since only the new active block has the zeros in it
and not the invalid one which still has the old data.

• static wear levelling - also works on a data block level, but including also those
not being written to. It works the same as dynamic wear levelling, but all least used
data blocks are moved when certain conditions occur, so these blocks with lower
write counts can share the burden. This fixes the issue of dynamic wear levelling
where only the blocks currently processed participated, but the untouched blocks
tended to keep their low write counts, sometimes even indefinitely.

• global wear levelling - uses both dynamic and static wear levelling, but its scope
is all blocks on all chips governed by the flash controller. Thus if a particular chip
has its data blocks worn out stops being used, and another one with minor wear
takes its place.

In conclusion, towards wear levelling - all techniques practically never overwrite the
old, formerly valid data with new during normal operations, thus producing some kind
of invalid data constantly, which, unless overriding the wear levelling system, cannot be
securely erased on demand.

Finally, the helper data generation - the main point of failure is that too many bits
have been rejected from the mask, either by too much biased uninitialised SRAM data
or too many unstable bits. Due to these factors, the Hamming weight of the mask might
be smaller than what is needed to execute a bitwise XOR between the key and the PUF
response. Also, after it has been generated, all temporary structures must be securely
erased. Operations such as securely formatting the flash file system, overwriting the
whole NVS or erasing the whole EEPROM might be necessary in order to avoid some
kind of secret or related data leak. Among these temporary structures that have to be
securely disposed of certainly belong:

• the secret itself for obvious reasons

• the initial SRAM snapshot, with whose help the whole PUF could be circum-
vented since now the attacker would only need the helper structure, the PUF mask
and the initial SRAM snapshot. This would circumvent all the effort up until now
since the security would not depend on the SRAM PUF at all, so even temporarily
storing these three might be preferably avoidable.

40

3.2. Secret extraction

Figure 3.1: Dynamic wear levelling[42]

• the SRAM itself or any other working random access memory or cache which could
have at one point had the secret, the initial snapshot or any other PUF response
loaded

3.2 Secret extraction
The prerequisite for secret extraction to be possible is to have the program having un-
dergone the enrolment phase and have the helper structure and PUF mask saved in non-
volatile memory. Otherwise, it is just a reverse operation in regards to the helper structure
generation:

1. With the help of the mask, a PUF response from the reset SRAM has to be acquired.

2. The helper structure should be recovered out of the NVS or similar storage.

3. Perform a bitwise XOR with the PUF response and the helper structure. The
resulting bit string should be an encoded word in the error-correcting code.

4. Decode the error-correcting code, thus removing any bits that have been flipped.
The result should be the stored secret.

41

3. SRAM PUF processing framework

The point of failure of this process could be sixfold:

a. the enrolment did not have enough mask bits left and could not generate a proper
helper structure.

b. the chosen error-correcting code is unsatisfactory and under-dimensioned, thus
not managing to repair all the errors caused by the SRAM’s inherent properties.

c. not spending enough iterations of the unstable bit detection process during the
enrolment phase, which would also result in more errors than the correcting code
could handle.

d. the operational conditions in which the device itself finds itself operating in. It
could affect some somewhat unstable bits which, during the enrolment phase, were
included in the mask and thus the final PUF response.

e. catastrophic event which fundamentally changes the SRAM properties. It might
be caused by long-term use or a single severe enough event.

f. compromitation of one of the device’s memories, NVS storage, or other es-
sential component taking part in the process. It could be caused either locally or
remotely, depending on the attack vector.

A lot of these can be countered, sometimes even with the same tools:

1. lack of mask bits obtained during the enrolment phase

• decreasing the number of iterations and/or increasing the upper bound
of the counter limit during the stable bit finding process.

• increasing the volume of SRAM memory participating during the enrol-
ment - this might not always be possible.

2. error-correcting code insufficient

• increase the number of errors the code can correct or change the manner
the encoded information is stored - sometimes the errors happenings might be
somewhat systematic or localised, thus dispersing or otherwise changing the
manner in which the code is represented might help.

3. too many unstable bits in the PUF response, making it unreliable

• widening the amount of unstable bit search iterations is ideal.
• if further reducing the number of unstable bits is not possible, it might be

viable to increase the error count the correcting code can handle.

4. varied operational conditions affecting SRAM performance

42

3.3. SRAM PUF framework summary

• deepening the robustness of the PUF responses is the best way to counter
the unexpected behaviour of some bits.

– stepping up the volume of used SRAM in the enrolment phase.
– mounting the number of PUF responses which are taken into account during

the bit stability determining phase
– toughening the requirements on which bits are considered stable.
– building up the number of errors the correcting code can take care of
– using a more robust error-correcting code more suitable for such an appli-

cation

5. foundational changes to the manner the SRAM behaves

• the solution might be the same as the previous issue - increasing the ro-
bustness might be just enough to offset the damaging changes to the SRAM
properties if they are small and workable enough

• however, if they prove to be too severe and/or unmanageable, the only way to
proceed might be to abandon the current enrolment, cease the normal opera-
tions of the device and undergo a new enrolment, adapting to these SRAM
changes

6. compromised device flash, or other memory

• cannot be solved by this framework alone; it needs to be addressed with the de-
vice’s own tools. Instruments like flash encryption, flash download forbiddance
and others should prove helpful in the effort.

• with that being said, unless the attacker gains access either when the enrolment
is ongoing and crucial structures are still stored in unsecured memory or right
when the key extraction is occurring, the secret should remain safe since helper
data and mask are both essentially public data

So to conclude the secret extraction - in order for the SRAM PUF to take on the role
of an HSM, it needs to be reliable, robust and, most importantly, secure. These qualities
can be achieved by adhering to the principles designed to dissipate the given risks. Of
these risks, the PUF reliability and the prevention of the secret leakage into unsecured
memory should be given extreme attention and scrutiny.

3.3 SRAM PUF framework summary
In the previous chapters, the basis of a framework for an SRAM PUF-based secret storage,
suited for a resource-constrained IoT device, was laid. This framework describes

• how to go about the provisioning of the secret during deployment

43

3. SRAM PUF processing framework

• by what methods to undertake the refining of the PUF output of the device’s SRAM

• in what manner to process auxiliary data structures and what to expect and exploit
the given device’s memory and storage

• in what way to approach the disposal of the secret the device was provisioned with

• how to extract the secret with the help of the SRAM and the enrolment data struc-
tures stored in NVS

• whereby risks should be approached

44

Chapter 4
Proof of concept implementation

This chapter will provide the context as to how and in what form the implementation
details will be chosen. It will explain the choice of the IoT platform upon which the
SRAM PUF will be built or the type of PUF that will be chosen. After building the
general purpose library, the PUF will be integrated onto a common platform with sufficient
testing. Lastly, on this platform, a proof of concept OTA application will be demonstrated
using the said PUF during a critical process section.

4.1 IoT hardware platform comparison
In today’s market, there is an exorbitant amount of numerous IoT platforms, solutions and
frameworks. While choosing a physical platform might be straightforward purely based
on capabilities and specifications on paper, the development and further use rely more
heavily on the tools that the physical platform supports and delivers. Thus the choice of
a solution that builds on all the required capabilities and has, effectively, a self-sufficient
ecosystem or, in the case of open-source variants, an involved community.

Some of the more popular but also mature and common platforms might be done by:

• Arduino - Firstly, a well-known company in the field, offering solutions in multiple
fields, ranging from IDE tools and libraries, and open-source development boards to
a multitude of sensors. Also, the category relevant to this work - the range of IoT
development products, is very different in terms of capabilities; the most reasonably
priced boards mostly do not even offer full IoT connectivity or capabilities by default
[43]. Most notably, their MKR family boards possess WiFi connectivity while also
delivering a small form factor and low power consumption [43]

• Espressif - An established semiconductor company that is developing its own in-
house IoT hardware solutions with various wireless connectivities. Like Arduino,
their whole ecosystem comes with its development frameworks, easing the develop-
ment cost[43].

45

4. Proof of concept implementation

• Raspberry - The most capable but also, generally, the most complex and expensive
solution. More similar to a computer, Raspberry Pi products stand above others in
computing capacity[43].

The platforms themselves are quite different; thus, to compare them for easy usage in
the IoT sector depends on:

• open source system

• budget price

• availability

• development tools

Both Arduino and Espressif provide open-source software solutions, while Rasberry
Pi does not. Regarding pricing, the highest amount of capabilities provides Espressif’s
ESP32, while Arduino MKR has a higher price tag and would mostly struggle to execute
things as smoothly. Regarding the Raspberry - since it uses a fully-fledged OS, unlike the
Arduino, which only has a simple main loop and Espressif, which uses FreeRTOS - it does
provide a lot more, but at an incomparable price difference with also possibly being harder
to use since the regular OS shields the hardware capabilities. Therefore, an open-source
platform is financially accessible and provides community support and good development
tools with access to low-level hardware features is exclusively the Espressif’s ESP32.

4.2 Library implementation details on the ESP32 platform
There are several requirements placed on the development tools from the get-go. First
would be the potential interoperability with numerous other platforms other than ESP32.
Thus, this requires the library to be able to run independently of the chosen ESP32 toolkit.
However, this is still very closely tied to the ESP platform itself since it is the platform of
choice, and it needs to be able to run the library efficiently and seamlessly. So there must
be a compromise between a high-level language, a platform suited for developing a library
more rapidly with less time spent on low-level technical aspects and the fact that it needs
to run on a resource-constrained system where such a choice could be impassable.

4.2.1 ESP32 developement tools
Currently, various development frameworks and platforms are built upon each other in
varying states of upkeep, developer community engagement and maturity. Almost too
many to count for this work, the most notable and prolific ones would probably be :

• MicroPython, a lightweight Python port for embedded devices

• Arduino framework, a higher level abstraction framework based on C++

46

4.2. Library implementation details on the ESP32 platform

• ESP-IDF, the Espressif’s official framework based on C/C++

There are others, such as, e.g. TinyGo. However, they are mostly unusable for this
project since they lack basic features like WiFi support [44], or Espruino, which seems
pretty ambitious but lacks OTA support [45]. Alternatively, in turn, they are practically
just proof of concept-like projects, comparable to various Rust use efforts [46], that en-
deavour needing users to, essentially, port their solutions from the official framework by
themselves if they want to use something ESP32 resource-specific in the language that
they are porting to.

Before the comparison starts, there need to be laid down some basic requirements
placed on the tools:

• Direct access to the SRAM memory and the capability to use it as soon as pos-
sible since the bootup

• WiFi capability

• NVS or similar storage capabilities

• some means of an OTA update process

Firstly, the embedded Python port that is the most well is the MicroPython. Using
a language implementing the key features of Python 3 brings the biggest blessing and
the biggest curse into the fold, a dynamically typed, garbage collecting language on an
embedded device.

The main feature of the MicroPython is the REPL [47], which stands for Read Eval-
uate Print Loop. This tool allows programmers to develop and improve software rapidly
since all it takes is to upload the updated script file without requiring lengthy compilation
since it is an interpreted language. Also, this way, the firmware does not get replaced
along with the user code since the only thing transferred is the user script. Though it also
allows the modification of the underlying C/C++ functions, since it is still built upon the
ESP-IDF and FreeRTOS, at least the variant operable on the ESP platform [48].

Outside of the quick development cycle, it also features easier development because it
has garbage collection and is dynamically typed. This comes with apparent costs since
both are normally quite expensive, at least resource-wise - the MicroPython has at least
taken the path of compromises, using less resource-demanding means to achieve these [49].
Also, due to it having taken over the role of managing memory, the developer has a lot
more limited direct access to memory[47].

Furthermore, all these features have a high cost. The ESP platform might have enough
resources to support running the REPL loop, the interpreter and other essential MicroPy-
thon components effectively; however, doing so impedes direct memory access, and the
memory management of the MicroPython might seriously disrupt the functionalities of
this library.

Arduino is an abstraction-level framework that allows users to reuse their codebase
between numerous IoT platforms, regardless of their actual capabilities. It uses C++

47

4. Proof of concept implementation

Figure 4.1: Illustration of an ESP32 architecture[51]

as the language of choice with numerous tools allowing rather effortless use of system
resources and easier time during development. It exposes one unified Arduino API, where
the specific platform that wishes to make use of it has to have its implementation fulfilling
this API, the so-called Arduino core.

In the case of ESP32-specific Arduino core, this approach also has some negatives.
Considering the ESP32 has a lot of configurable customisable settings and approaches
to development, it has a tool called menuconfig within its ESP-IDF toolkit. This tool
is a front end for the unified configuration system, which greatly affects how the compi-
lation proceeds, what Espressif components are involved, and what form and mode. It
is a powerful tool. However, the Arduino framework does not allow its use since it uses
precompiled binaries of the ESP-IDF framework [50], thus limiting the development and
use of the Arduino framework greatly. Theoretically, the binaries can be recompiled by
the user on their own and replaced, but this approach is not organic and does not guaran-
tee that something will not break. Also, since this framework depends on the precompiled
versions of the ESP-IDF of a certain version and is also maintained by a separate team of
people, it might lag behind the cutting edge branch, but also the organic releases of the
ESP-IDF framework, practically locking out people out of features or potential security
fixes for quite some time.

ESP-IDF is the official ESP32 development framework. It is a low-level framework,
directly interacting with the hardware and thus is practically in its entirety written in
plain C, with some exceptions. As per the 4.1 figure, it provides a hardware abstraction
layer and thus, unless one wants to reimplement this, the FreeRTOS and other integration,
then every tool will have to use ESP IDF in some form, as all the preceding solutions did
as well.

48

4.2. Library implementation details on the ESP32 platform

Since it is the official solution, it has the largest community and support, with actual
Espressif employees and developers present on their official forums, giving it an edge in
this regard. And most of all, if the ESP32 has a capability, then ESP-IDF can provide
the framework for using it. Also, if a new feature is implemented, one can simply clone
the official main branch, which is supposed to be stable, and use it immediately and not
wait for an official release that often has long-term support. The other two tools might
take months to make the features accessible in their frameworks.

It has some cons; being written in plain C poses some developmental challenges to
most long-term projects, but for this work, it provides almost hardware-level access with
all the other required features, thus making it a bit of a non-choice.

4.2.2 SRAM PUF library
Due to the ESP32 framework choice of ESP-IDF, the library will have to call plain C
functions at least in some form and use C-like interfaces. Also, since the library is intended
for use on IoT devices which are very often heavily resource-constrained, it needs to use
less resource-intensive primitives and tools more friendly toward such devices. Thus the
library will be written in a hybrid C/C++ style, where some concepts like namespaces
and classes for faster and more convenient use will be applied, but most primitives and
concepts will be C-like, such as

• use of pointers instead of references

• adoption of plain arrays and not containers

• strict use of C libraries only, etc.

It is this way because, if necessary, the library could be switched to plain C rapidly,
saving up much-needed resources that the application would need to have allocated else-
where.

4.2.2.1 Development

As for the work on the library, the first step in the making of the library was to make
a helper ESP32 application and use it to retrieve an SRAM snapshot image, hopefully
getting some amount of uninitialised memory after isolating favourable chunk that seemed
to behave, so it was decided that to simulate subsequent resets it was more cost and time
effective to just simulate them by our own. This was done with a Python script with
a user inputted amount of bits flipped in a block, not exactly emulating the real SRAM
but being satisfactory enough for these purposes.

After analysing the obtained static memory and using its permutations during the
process, it was also necessary to ensure that the processed PUF response would not obtain
any kind of bias or patterns due to potential information leakage. Alas, during the first
stages of the project, it was an inherent issue to produce a processed response without
a bias. More specifically, the output was composed practically only of hexadecimal values

49

4. Proof of concept implementation

of 4,5,9 and a. This happened due to a faulty implementation of the Von Neumann
corrector, where the issue was of the input passed; specifically, if the input bits were not
the same, instead of only using one of them, the output did not do that, but it did use
both of them. Thus, this had resulted in output only possessing data of permutations of
bit pairs 01 and 10, thus the aforementioned hexadecimal values.

Another problem was to set a unit of access of the SRAM since some memory
might be restricted to a specific bit length. And indeed, according to [6](go to /api-
reference/system/mem_alloc.html), the IRAM is only 32-bit addressable; thus, setting
a global bit length of the main word with which it is being worked would be the only
means of directly accessing the uninitialised SRAM by the library.

Afterwards, the issue was more of determining the ideal form of error-correcting
code, the manner of information storage and the technical parameters, like the number
of iterations for the search of stable bits, the volume of initial memory considered to
be needed to derive the needed helper structure that would help restore the secret etc.
Most of these, though, would be questions for the next stage, where the library would get
deployed and tested on actual hardware.

4.2.2.2 Getting SRAM uninitialized state

To even get the chance to perform any action, the library needs to somehow force the
SRAM into its uninitialised state where the PUF properties observations can be done.
Thus actually cutting the power to the SRAM would be the required operation. On some
platforms, this line of action might be not exactly straightforward since a simple software
solution might not do the trick, for after cutting the power, the device needs to restore
it in a short interval and retain some sort of state to continue the process that had been
ongoing (enrolment or execution). Thankfully, the ESPs support many sleep modes which
might be able to fulfil these requirements. The supported modes are [52]:

• Modem sleep - only WiFi, Bluetooth and radio are cut from the power supply,
with limited wakeups to maintain connections. No power supply changes to SRAM.

• Light-sleep mode - the peripherals, CPU, and most of the RAM are clock gated -
the flip flops (of which the SRAM is also composed) do not switch states since that
is the main power consumer. Thus the flip flop states are maintained.

• Deep sleep - only modules that retain power and operate normally are the RTC
controller and its peripherals, the ULP co-processor and the RTC memories. Thus
the SRAM, no longer maintained with a power supply, loses its state.

• Hibernation mode - ULP, RTC memory and everything else outside of one RTC
timer and RTC GPIOs are inactive. SRAM gets into the uninitialised state.

Of these modes, only two perform the SRAM uninitialization, the Deep sleep and Hi-
bernation modes. However, the Hibernation mode does not maintain any kind of memory
that would be readily available on wakeup. This might be circumvented by persisting the

50

4.2. Library implementation details on the ESP32 platform

application state into the flash that does not need any kind of power to maintain informa-
tion. Nevertheless, since the Deep sleep mode does maintain RTC memories on entering
the sleep [52] and is accessible in the same state on wakeup, choosing the Hibernation
mode does not make much sense in the context of the PUF library.

4.2.2.3 SRAM PUF library ESP32 integration

Before even adopting the library, the main point of interest was to determine the starting
address of the SRAM that would be used in this project. After enabling system logging at
the info level, the bootloader starts to provide numerous additional clues, such as SRAM
addresses. After that, the average addresses of the SRAM used to look like this (note -
actually used device was the ESP32 WROWER B):

Table 4.1: Example of SRAM address layout

Type Address Length Size
DRAM 0x3FFAE6E0 0x00001920 6 KiB
DRAM 0x3FFB8578 0x00027A88 158 KiB
D/IRAM 0x3FFE0440 0x00003AE0 14 KiB
D/IRAM 0x3FFE4350 0x0001BCB0 111 KiB
IRAM 0x4009997C 0x00006684 25 KiB

However, using the biggest block or even chaining them up together and somehow
making use of them in that manner was not the way to go since the objective was to
use uninitialised SRAM data. Thus, the purpose has become twofold - to find the best
moment to access the SRAM while it is in its uninitialised state or one that is as close
as possible to it and the other to determine which SRAM type was the best to use.

Finding the ideal place to access the SRAM as PUF was not exactly straightforward.
On paper, the best way to do so would be to utilise the bootloader. Since the ESP32 has
the first stage bootloader ROM-based [6](go to /api-guides/bootloader.html), the next best
chance would be the second stage bootloader. Furthermore, on the ESP32 platform, the
SSBL is located in the flash on a predetermined address and is user-modifiable, at least
in the form of hooks. These hooks are of two kinds, one launched before the bootloader
itself and the other right after. The first kind would be ideal since it allows the user
to access practically unaltered uninitialised memory, only touched by FSBL. The main
point of the FSBL is to load the SSBL into memory, and because the SSBL is located at
a given address with a well-known and modifiable size, the effects of the FSBL are very
predictable. Even more so, since the default maximum SSBL size is 0x8000 bytes[6](go to
/api-guides/bootloader.html). Furthermore, the Secure Boot V2 feature limits the size at
absolute 0xC000 bytes, narrowing the unpredictability of safe applications.

However, using SSBL to capture the SRAM PUF response is not exactly viable for
many reasons. Firstly, the init hook is executed before all the module and system resources
have been loaded properly, limiting the features greatly. Thus, if the library were to be
executed fully in the init SSBL hook, it would not be able to store the helper and mask

51

4. Proof of concept implementation

structures since no NVS has been initialised. Even in the case of somehow getting the flash
initialised before the SSBL runs - it might be possible to write at an address directly, but
that would complicate any manipulation with such data afterwards and also bypass wear
levelling that would normally be present on a file system or a configuration type NVS.
Another option might be the SRAM itself, but this approach would be highly unsafe
and potentially not even feasible: There is no user-friendly way, or as far as is known,
no way how to pass a properly allocated main SRAM data from the bootloader to the
main application. Writing the data into unallocated regions would probably result in
an application crash, thus making such an application unusable even due to this mere
possibility. Using the post SSBL hook does not make much sense since after the SSBL
executes its purpose, which is to initialise and load the main application, it grants control
to the main app, at any rate, thus making it more convenient to avoid the SSBL hooks
altogether.

4.2.2.4 Usage of a DRAM block for PUF

With the SSBL out of the picture, the question now is - how much of the SRAM is still
uninitialised? Surprisingly, depending on the kind of program, it might be quite a lot. If we
look at SRAM types specifically, even though their size and designation vary quite a bit, it
still designates most of them to the second DRAM block. The amounts and addresses vary
from time to time, but it mainly depends on either the ESP-IDF version, the application
size/layout, selected flash size or other build factors. For example, sometimes, the second
DRAM block would get even as much as 180 KiB, but it never got less than 158 KiB.
Also, the latter SRAM blocks with the IRAM designation would, which is evident by their
name, contain loaded instructions; thus, even accessing such memory for reading purposes
sometimes leads to failure. In all this, the most stable and suitable one would be the
158KiB block.

The largest DRAM block would practically never be at an address different than the
one mentioned. However, it might still vary, but it was never far off during countless
attempts to access the said memory. The current range of assignment was determined to
be from 0x3FFB2C88 to 0x3FFB8578, thus making a safe offset of around 0x6200 of the
lowest recorded address to be the best course of action to use as a starting point.

On the matter of using the said block during the PUF response extraction process -
there are some caveats. Namely:

• it needs to be guaranteed that no action by the library would result in modifying
the to-be-processed DRAM region of the SRAM

• that no action before or during the moment when the library gains control would
result in similar modifying action

To counter the reliance on chance - the best bet would be to exclude the said
memory region from being a part of the DRAM, which sadly is impossible. Nonetheless,
this need could be reduced to just being protected from getting used by the system malloc
function or, in other words, redirect dynamic memory allocation elsewhere. The simplest

52

4.2. Library implementation details on the ESP32 platform

solution would surely be to just use static allocation to avoid using the DRAM if possible.
However, the sizes needed for such arrays would go far beyond what the ESP-IDF can
allow and would probably result in a non-compiling program or a stack smashing runtime
error. So the next best thing would be not to use the SRAM at all if possible and use
another RAM if possible, which it is. Thus, using flash as an SPI-connected RAM for all
dynamic memory allocations done by the library and other runtime purposes could be the
most sensible solution in this scenario. It could be even possible to embed some sections of
the binary that would normally be loaded into the main memory, such as the .bss or .noinit
segments [6](go to /api-guides/external-ram.html). This does not come without a cost,
though, since the SPI interface is shared between other modules, and allocating memory
blocks there dynamically might make it inaccessible during some situations, resulting in
failure [6](go to /api-guides/external-ram.html).

As for the issue of persistence and data storage of the initial snapshot and the helping
structure, there is practically only one built-in solution that allows allocating enough space
to hold large enough structures - the flash. And again, the simplest and probably the most
secure solution - to write at a static flash address and null it after the validity of the data
has expired - is not possible due to the innate limited flash characteristics, requiring wear
levelling. There are multiple solutions to this, as there is the ESP32 support for both the
FATFS and SPIFFS, and also the NVS might be acceptable. However, the last-mentioned
has a fatal drawback - it is designed to store key-value pairs, which is not inherently bad,
but seriously limits the general implementation that the library is focused on and the fact
that it already uses file API, and this would require a connector style interface built upon
the NVS to circumvent the storage difference.

Otherwise, the two main embedded filesystem implementations available to be used
on flash with the ESP32 officially are quite different. The main differences between the
FATFS and SPIFFS file systems are [53]:

• SPIFFS

– light weight
– reliable, e.g. safe failure on power loss
– designed with wear levelling in mind
– no encryption support
– no true folder support. Everything in root folder / as per official ESP docu-

mentation.

• FATFS

– not designed with flash in mind, not reliably safe during a power loss
– ad hoc wear levelling, just in the layer between the FAT library and the flash

itself
– flash encryption support

53

4. Proof of concept implementation

Figure 4.2: Esp_timer API/function name

Figure 4.3: Snapshot saving pathname

– true folder support, since it is a FAT implementation

Overall, the SPIFFS seems like a better-suited file system since it is designed for flash-
based storage. The encryption support might be significant, but considering the SPIFFS
has a lower memory footprint compared to FATFS, which is probably due to more complex
implementation because of the folder support, it might be better to use the SPIFFS. Even
more so because the folder support is not needed at all, the reliability issues and finally,
the bottom line is that the main need is for the PUF library to have access to as much
unaltered SRAM as possible, and the lower memory footprint makes it more appealing.

And lastly, regarding snapshotted SRAM state of the said DRAM region, it depends
on what kind of code was executed before. With actually limiting what could have been
run to a bare minimum before taking a snapshot of the SRAM, it can be reduced to a few
items, like the SPIFFS initialisation, a few function calls with integer-sized arguments,
using minimal dynamic allocation on SRAM and mainly on SPIRAM pretty favourable
results can be achieved. More specifically, after analysing several snapshots in differing
configurations, it seems that at most around 0x5000 bytes but no more than 0x6000 bytes
from the targetted DRAM block starting address are used for stack or similar memory
allocation purposes by the program.

This is reinforced by the fact that after analysing the SRAM snapshots, whose similar
state that is being dissected here would be used for the PUF response construction, they
do contain things like

• function/API names like esp_timer 4.2 (possibly somehow used internally by ei-
ther esp_sleep_get_wakeup_cause)

• the presence of strings used by the SPIFFS library like pathname of the saved
snapshot, snapshot name itself and the spiffs volume name. Displayed by figures
4.3, 4.6 and 4.5

• partition table labels with addresses 4.4

The specific snapshot described here and in these images is saved and located in
attachments/measured_data/memImg1.img.

This hypothesis is also supported by the way the FreeRTOS works memory allocation-
wise and the way the ESP-IDF is used. Furthermore, in reality, FreeRTOS is pretty

54

4.2. Library implementation details on the ESP32 platform

Figure 4.4: Partition table with addresses

Figure 4.5: Image name

Figure 4.6: Spiffs volume name

much like most applications in managing their memory, with the stack having the highest
address, which decreases as it grows and the heap with a lower address with increasing
address as it grows, thus both growing against each other. However, since the FreeRTOS
is designed around tasks and is not a simple application, there are differences, such as that
each xTaskCreate() call allocates a memory block within the heap, even if the application
does not use any kind of multitasking or multithreading [54]. Also, this allocated task
space has its own stack, which is important. The whole mechanism is illustrated in 4.7.

So due to this task-related caveat, the observed artefacts in memory might not, in fact,
be related to the global stack but to a local, task-owned stack placed inside a Task Control
block, thus located on the global heap. This might be possible if the address location and
growth directions are reversed between the stack and the heap as described before, which
is plenty possible. Also, this consideration has taken into account only the largest DRAM
block; the situation in others would probably shed more light on the subject.

So, in summary, the selected DRAM block seems to be a safe pick for uninitialised
SRAM collection during the run of the main application. This is possible due to call
as little unnecessary unrelated code as possible, reducing the size of the dynamic memory
structure overlaying it and thus, by adding a simple offset, the nature of the uninitialised
SRAM cells selected by such an offset should be preserved. And just a note - there might
be ways actually to reserve the DRAM region of the SRAM, thus making sure the memory
stays uninitialised [6] (/api-guides/memory-types.html#noinit-dram).

4.2.2.5 Library PUF metrics module

In order to determine how much the proposed SRAM region selection and the PUF re-
sponse processing were effective, there needs to be some sort of a benchmark. Being a part

55

4. Proof of concept implementation

Figure 4.7: FreeRTOS memory management [54]

of the library, the tool should provide feedback on how the other tools have been effec-
tive and further determine the execution parameters and help with how to approach real
deployment.

Some multiple metrics and qualities might be very useful in determining the efficiency
of the SRAM PUF; among them, the noteworthy ones might be [55]:

• reliability

• PUF uniqueness across multiple devices

• bit uniformity across the response

• bit uniformity across multiple devices

Some of these will be quite impossible to use during the development, notably the
uniqueness and bit uniformity for a single cell across multiple SRAM PUFs - this would
require a lot more focus on this subject since it would involve acquiring multiple devices
with independent SRAM PUFs, preferable from both the similar batches and completely
unrelated ones to determine real-life usefulness. Thus this restricts us to the reliability of
the PUF response and bit uniformity.

Reliability is the prime metric of a PUF, regardless of whether it is based on PUF,
flash or another physical component. It mainly affects how useful it would be in real use
and how many resources it would require to adopt for secret storage, key generation and
other applications. The main goal of reliability testing is to determine how robust and

56

4.2. Library implementation details on the ESP32 platform

noise resistant the PUF really is. It is done by comparing the difference between two
responses divided by the replies’ bit length [55]. The formula specifically is

Rel(xi) = 1 − HD(xi, x0)
len

Where xi is the specific PUF response, x0 is the initial snapshot, len is the reply bit
length, and HD is the Hamming distance. Hamming distance is implemented as Hamming
weight of a bit string that was obtained by bitwise logical XOR between the xi and x0
PUF responses.

The output value of this function will be between 0 and 1, e.g. if the xi and x0 are
the same, they would have the HD of 0, and otherwise, if one response were a negation
of the other, then each bit would be different and this would result in a value of 1. Thus
division by len brings the value out of 1 to bit length into a ratio dimension 0 to 1.
Furthermore, since the most reliable PUF in this context would be the one giving out
as similar responses as possible, then subtracting the result from 1 gets a reliability ratio,
or multiplying by 100 a percentage. Getting the value as close to 100% should be the
library PUF response processing goal.

Bit uniformity is a second metric determining how suitable the PUF would be for
various cryptographic use cases. The reason is - if the distribution of ones and zeros in the
PUF response is not equal or uniform, it would mean there is a certain bias for ones or
zeros, which, depending on the amount of such a bias, could be exploited by an attacker.
It is calculated as the Hamming weight of a reply divided by the bit length [55]:

BU(xi) = HW (xi)
len

The formula basically counts the number of ones in a PUF response and divides it
by the bit len of the response. Thus, the output is between 0 and 1, where only if the
response is composed of only ones gets assigned one on output and vice versa with zeros.
Thus, for a good bit uniformity, the number of ones and zeros should be roughly of the
same order, thus having the output of 0.5, or 50% bit uniformity.

This testing, however, does not determine how well the bit ones and zeros are dispersed
in the reply, just their overall amount. Also, even though the reliability should be aimed
at as high as possible, getting the same response would take the unpredictability factor
out of the equation entirely, which might not be exactly wanted.

4.2.2.6 Library integration and use on ESP32

After solving all the preceding problems - which SRAM block to use as a source of PUF, at
what point during execution to start working with the SRAM data to avoid overwriting,
how to persist the library structures and how to determine whether the PUF responses
have appropriate qualities - it has come to incorporate them into a testing deployment,
where the specific PUF processing configurations could be fine-tuned while also receiving
feedback on its performance.

Thus, the main goal of this step was to produce a single entry point of the application,
where the action would be selected, such as:

57

4. Proof of concept implementation

• secret enrolment, where the algorithm would try to make do with the provided
SRAM range and, in the case it was not enough, would print how much more was
missing

• subsequent extraction with a form of feedback on whether the extracted key is cor-
rect and, in the case it is not printing the number of faulty bits

• a tool for creating snapshots of multiple uninitialised states of the SRAM
memory, which can, after its conclusion, be uploaded from the ESP32 for further
analysis

• a tool for analysing the effectiveness of the enrolment and for determining how
do the PUF responses improve after being processed with the library

• a tool for testing performing the quality testing metrics

The most straightforward implementation of securing these requirements is a single
prompt during the start after flashing the firmware. Hence the complete deployment
can be tested momentarily, with the secret enrolment procedure with the following key
extraction in tow. As a consequence, since the regular operation would be a one-time
upload of firmware and the secret, performing the enrolment and finally storing the helper
data with the finalisation being the secret removal, there does not need to be anything
well defined after executing the enrolment and a test extraction, since the key would have
to be reuploaded.

4.2.2.7 Library integration testing on ESP32

The library tests and discussion will focus on three main aspects - the optimal parameter
configuration, execution speed related to the secret being enrolled and the quality metrics.

Firstly, the parameter configuration. Outside of the choice of the used SRAM memory
region, the practically only other parameters directly influencing the type and effectiveness
of the library operations are macros.

• STB_BITS_SRAM_RESETS, defines the number of iterations of the SRAM memory
mask refining algorithm, where each cycle, the SRAM gets uninitialised and com-
pared to the initial snapshot, and any flipped bits are excluded. Very time expensive,
one SRAM reset with a flash write costs around 5 to 7 seconds, depending on the
type of ESP configuration and optimisation

• REP_CODE_MAGNITUDE, defines the order of the simple error-correcting code that
is used to encode the secret before bitwise XOR-ing it to the PUF response. The
code is REP_CODE_MAGNITUDE/2 error detecting and REP_CODE_MAGNITUDE/2 - 1(if
a rep is even), just a simple error-correcting code. It is very resource expensive,
mainly memory-wise, and significantly raises SRAM volume requirements.

58

4.2. Library implementation details on the ESP32 platform

• EXPECTED_SRAM_TO_PUF_BIT_INFFICIENCY, defines the expected amount of SRAM
bits to acquire one PUF output bit. This significant reduction results from the
unstable bit exclusion by the memory mask and the debiasing done by the VNC.

Out of these, the first two are the main culprits behind the library’s performance
and memory requirements - both flash and SRAM for PUF. However, it also directly
affects whether the secret will be able to be extracted with the PUF’s help. Thus there
needs to be some sort of a balance since reducing the process of unstable bit reduction
would mean that the ECC would need to be used in a higher order. Also, using a longer
ECC would mean larger secret extraction times. Furthermore, the reverse is true as well.
Suppose most of the enrolment time is invested into the search of the stable bits, and it
was compensated by a smaller required SRAM region due to the cutback to the order of
the ECC. In that case, it might still mean a failure if some localised errors in one code
word occur. Therefore, both these parameters need to be fine-tuned together.

As per memory requirements on the SRAM themself, they are defined as

SRAMReq = SecretSize ∗ ECCBits ∗ coeff

Where the SecretSize is the size of the stored secret in bytes, ECCBits
is the number of bits the code word needs to encode one bit, and the co-
eff is the EXPECTED_SRAM_TO_PUF_BIT_INFFICIENCY, directly affected by how many
STB_BITS_SRAM_RESETS have occurred. It is defined as a parameter due to the SRAM
unpredictability and might need the highest amount of fine-tuning if one wants to avoid
the state when the mask provides significantly more bits than the secret actually needs
to be encoded; therefore, unnecessarily wasting processing time.

The other issue at hand is the time complexity. There are numerous sources of drastic
time complexity hikes; the most notable of them might be

• the Deep sleep cycles

• SPIFFS initiation

• flash read and write operations

• malloc overriding, where the allocations occur on SPIRAM on flash

• long binary blob manipulation

Some of these have larger time complexity than constant, mainly all the binary blob
manipulations. However, they are limited by the size of the SRAM itself, or more
specifically, by the usable region selected. So, in the end, the highest time cost in-
curred is by the Deep sleep reset cycles, which take something in the realms of tens
of seconds. Moreover, as the experimental data suggests, further visualised in the fig-
ure 4.8, the resets really are the main offender. The used data is stored in attach-
ments/measured_data/execution_times.log

59

4. Proof of concept implementation

Figure 4.8: Enrolment time consumption

Figure 4.9: Extraction time consumption

As per the graph, while gradually doubling the secret length, the perceived time con-
sumed during enrolment rose pretty favourably. Mainly while considering the starting
point where the secret length was the length 4 B, the enrolment was done after 34 sec-
onds.

Without relying on Deep sleep restarts, the secret extraction time, visualised by the
figure 4.9, seems a lot more reasonable for normal usage as an HSM replacement. While
the code itself is of a proof-of-concept nature, it surely features numerous bottlenecks
where the time could be reduced further.

However, all these measurements had been done on an unoptimised code, without
various tweaks that might be possible, such as passing -O2 to the compiler for speed
optimisation, selecting Quad mode for flash operating mode and increasing the flash op-
erating frequency to 80 MHz, as per the [6] (/api-guides/performance/speed.html) ESP32
documentation. This has some quite tangible results as seen in:

60

4.2. Library implementation details on the ESP32 platform

Table 4.2: SRAM PUF library performance comparison on ESP32

Optimization type

Enroll
time
(s)

Extract
time
(s)

Secret
length
(B)

SRAM
used
(B)

Total
Resets

no optimization 82 3.36 2459 82136 13
-O2 77 2.84 2459 82136 13
-O2 + QIO flashmode 76 2.80 2459 82136 13
-O2 + QIO flashmode + 80 MHz 76 2.78 2459 82136 13

Thus if one has the choice, these optimisations should be applied since they have quite
an adverse effect on both the enrolment and extraction time. However, these optimisations
do induce some problems in some circumstances since the -O2 directive for the compiler
performs the optimisations with the end goal being the execution speed; thus, sometimes,
it might result in a larger binary, which, depending on the type of deployment, might
be unacceptable. Also, the other two settings are closely tied to the hardware, and not
always it might be possible to enable them.

And lastly, the quality testing. Again, the whole testing batch had been executed on
an ESP32 Wrover B board rev.1, and only the tests aimed at determining the quality
of a singular PUF have been deployed, the reliability and the bit uniformity tests.

First off, the concern of whether the library processing the SRAM PUF output is ef-
ficient at all needs to be looked at. Hence, the following testing was conducted with the
help of the implementation of the library-based metrics.

• Starting from a “cold” status, where the device was unpowered for at least an hour
before testing.

• Testing during stable conditions.

• Comparison of an unprocessed PUF response with library processed PUF response.

• Executed two days in a row, during similar times, within room temperatures and
with minimal environmental noises and influences.

• The whole testing took 1 hour and 40 minutes, with a measurement made every
circa 7 seconds.

After conducting the said test, with a visualisations 4.10 and 4.11, it can be safely
concluded that the library does have a nonnegligible effect on the SRAM states, improving
the quality of the SRAM PUF responses, at least reliability-wise. In the case of bit
uniformity, the case is less clear; the difference here is negligible. Thus, regarding the
PUF, it can probably be said that it by itself has a good inherent bit uniformity, at least
the specific one used. However, the reliability of the unprocessed SRAM PUF is not
acceptable, and it really needs a response processing library in order to use the responses

61

4. Proof of concept implementation

Figure 4.10: Reliability comparison

Figure 4.11: Bit uniformity comparison

further on. The measured data is stored in attachments/measured_data/pufSym_comp.log
and attachments/measured_data/pufSym_raw_comp.log.

After confirming the positive effects of the library on the PUF, the next interesting
question would be to determine how the library process the PUF responses during ex-
tended periods of time. Thus, the following testing was conducted in the same conditions
as the first one but with longer runtime. The test had a runtime of 3 hours and 15 minutes.
However, the test was conducted multiple times, and each time it was done, it resulted in
a similar pattern, as per the visualisations 4.12 and 4.13. The measured data is stored in
attachments/measured_data/pufSym_long.log

Being more specific regarding the reliability data, it can be observed that the reliability
during the first initial measurements was of the highest values coming close to the 99.3%
mark. Only afterwards did the average values gradually fall to around the 99.15% mark.
This can be attributed that the enrolment being executed right after the device was started

62

4.2. Library implementation details on the ESP32 platform

Figure 4.12: Long reliability testing

Figure 4.13: Long bit uniformity testing

up, thus not giving it the time to start operating in a normal operational state. However,
the difference is quite small and, in the case of it causing secret extraction failures, and
simply the ECC could be set up to a higher error correcting order.

4.2.3 PUF-based OTA update process

In general, an OTA update process needs to be robust but lightweight. The latter is even
more emphasised due to it not being a daily driver of most real-world applications, and
taking up a lot of already stretched system resources would only dissuade its secure use
or use at all.

The bare minimum an OTA update process should provide in terms of security is the
authentification of the server of the updated firmware to the client (in this case, the
IoT device) and a secure retrieval of the update binary file by an authorised client.

63

4. Proof of concept implementation

Authentification of the OTA server can be achieved through public key cryptography,
where the recipient of the OTA update has the public key. If the server can properly
respond to a request from a client encrypted with the help of the public key, it can be
assumed the server really is the trusted party since the knowledge of the private key to
decrypt the message is required. Furthermore, the public key infrastructure can be further
used to agree upon a common symmetric key with which the communication from then
on would be encrypted, thus speeding up the OTA transfer and further guaranteeing that
everything received from the server truly is from a trusted OTA server authority.

However, at this point, a simple sending of the raw binary would not be very wise since
anyone could obtain the public key used to establish the connection - the IoT device is still
unauthenticated at this point. So to achieve a secure retrieval of the updated firmware
by an authorised IoT client, it could be done analogously as the server authentification,
by the device proving the knowledge of a secret only a trusted party would know. Thus
it might be quite convenient to simply encrypt the target binary with another public
key the server knows (and now that it has been authenticated, it is now known that
even though others could have the key that this usage can be trusted by the device).
The device is implicitly authorised when it displays the knowledge of the secret, in this
case, the private key, by simply decrypting the binary. Otherwise, if the device were not
the trusted party, they would only receive some seemingly nonsensical string of bits, not
really learning anything of substance. Furthermore, this is the point where the developed
SRAM PUF library comes into place, as it can serve as an alternative to an HSM for
storing the secret used to decrypt the firmware.

4.2.3.1 OTA process on ESP32

After having tested the PUF library, the final step of this work is to integrate this PUF-
based secret storage and retrieval library into a functioning OTA update showcase, based
on the already described OTA update proposal.

The ESP-IDF toolkit does provide the basic tools necessary for the operation of an
OTA process [56]. The implementing modules of each step are, with the figure 4.14
showcasing it further:

• connecting to an AP - wireless networking implementation

• establishing communication with an HTTP server - TCP/IP stack and an HTTP
client

• downloading the new firmware

• applying the received OTA update - main OTA logic - mainly flash manipula-
tion and SSBL logic

While being able to perform the basic unsecured OTA process, the ESP-IDF also
supports implementing the described security features within their tools. The usage of
a certificate for server authentication is practically required to be used since the referential

64

4.2. Library implementation details on the ESP32 platform

Figure 4.14: Basic OTA process [6]

usage of the OTA process does implement them. Furthermore, removing them would
require a conscious effort. As for the matter of the firmware encryption, an ESP Encrypted
Image Abstraction Layer, or EIAL, is available [57].

The EIAL makes the use of encryption in a twofold manner.

• implements an asymmetric key that should be stored safely in an HSM module

• a symmetric key that is stored encrypted in the image header

This schema is a case of hybrid cryptography [58], already described during the pro-
posal, is a type of encryption where the practicality of an asymmetric key and the speed
of a symmetric key are both retained, which is critical for a platform like an ESP32.
Therefore, the ESP EIAL works with a 3072 RSA asymmetric key and an AES-GCM
key. Also, to save as many resources as possible only, the AES key is asymmetrically
encrypted, leaving the auxiliary data necessary for the symmetric encryption in plaintext
[57], as per the following image 4.15. This might cause some information leakage since
the initialisation vector is accessible. However, since the whole EIAL image should be

65

4. Proof of concept implementation

Figure 4.15: ESP EIAL firmware format [58]

transported over a secured channel, it should not matter much. A showcase of the EIAL
image format is displayed in figure 4.15.

Also, to maintain security, the project needs to randomise the initialisation vector of
the AES so that no two binaries will be of the same encrypted value, even if they are the
same in plaintext [58].

4.2.3.2 SRAM PUF library integration into an OTA project

In order to make use of the PUF library, the project needs to somehow employ it to store
an essential secret that will be getting used during the OTA update process. In this case,
that would either be a private certificate used for the device’s authentication or a private
key used for firmware decryption. In the ESP32’s case, the latter is the obvious use case
since it has a whole abstraction layer over an encrypted image format built.

The proof of concept project will employ the storage of the key in the following manner
- along with the initial local firmware deployment, the two main security elements are,
likewise, placed into an unencrypted memory. In the case of the server’s public key, it
does not matter; it is public information.

On the other hand, the case of the private RSA key used for firmware decryption
is different. After deployment, it needs to be stored safely as quickly as possible, so the
PUF library enrolment should begin right after the SSBL grants control to the main

66

4.2. Library implementation details on the ESP32 platform

program after the initial start. Here, the already described secret enrolment takes place.
However, in contrast to the regular testing deployment on the testing ESP32 project, all
the debugging and performance metric structures must strictly be erased. So due to wear
levelling already explained before, both the SPIFFS filesystem and all the unused flash
blocks should be safely erased. This is not done strictly in a correct manner in the actual
project since it would be resource and time-demanding for a showcase, but it needs to be
implemented in a release.

After successful enrolment, the key extraction takes place, which is provided to the
OTA process on the client.

Note - as the project is still not a release-worthy implementation but a proof of concept,
the implementation does conduct an enrolled key check against the plaintext key provided
by the deployment in order to determine the success or the number of bits that had been
falsely decoded. Also, it does not provide a probable use case presentation - after the
initial enrolment, the OTA update would typically occur quite sometime later, which was
not practical to be done in this project; hence it all is streamlined.

After obtaining the private RSA key through the PUF library, the OTA process itself
starts [56]:

1. The project uses the provided WiFi credentials from the menuconfig tool to connect
to an AP. In the case of an unstable connection, the amount of retries and reconnects
is not specified.

2. In the case of deployment on a local server (laptop with a hotspot type AP) and
device, the server’s address is entered into the menuconfig tool as the IP address of
the AP.

3. After establishing a connection, the device tries to start a TLS session with authen-
tication of the server through the public key in the flash. If the certificates match,
the HTTP over TLS connection is established.

4. Sends an HTTP request for the download to begin, which is specified in the menu-
config tool, specifically the filename of the encrypted binary

5. After receiving the firmware, it verifies the image magic and ensures that the binary’s
length is valid, along with other checks.

6. Uses the recovered asymmetric key through the PUF library extracted from an
SRAM PUF response done before.

7. In the case of successful decryption of the symmetric key, it should be possible to
decrypt the new firmware efficiently.

8. If the decrypted firmware is valid and passes the necessary checks, it is stored in the
OTA partition.

Also, the ESP-IDF implementation of the OTA process allows one to use a fallback
to the factory firmware, which, if enabled, allows a continuous operation. It even has

67

4. Proof of concept implementation

multiple fallback firmware versions [6](go to /api-reference/system/ota.html and /api-
guides/partition-tables.html), all stored in their own partitions. That is the reason for
having both the factory partition alongside the other OTA partitions, of whose there can
be multiple instances. Having such partitions might be costly in terms of flash capacity;
however, numerous ESP32s, like the Wrover B used in this work, provide 16 MB of flash,
which is more than enough in most cases.

The PUF library, while being quite reliable according to quality testing done, needs
to be configured for the most robust operation possible, with as much SRAM memory
available to it, since a single bit wrongly extracted from the helper function and the PUF
response means that the decryption of the symmetric key is impossible and the whole
process, all the way from enrolment, needs to be restarted.

4.3 Integration conclusion
To summarise - after implementing the SRAM PUF library based on the highlighted
principles, it was, if considering the reliability tests, able to work on real hardware, an
ESP32 Wrover B, while also improving the inherent SRAM PUF responses. Therefore
proving the SRAM of an ESP32 and its tools are viable enough to implement the storage
of a secret and use in various CTs. Afterwards, the tuned library was integrated into
a proof of concept OTA update project, where, as an example, the private key was securely
stored with the help of the PUF library and, afterwards, used to decrypt the retrieved
firmware update from an OTA server. As a finishing touch, the update is applied. After
resetting, the device can demonstrate that it has, indeed, been able to securely acquire
the updated firmware while replacing the HSM storage with a PUF SRAM.

68

Conclusion

The goal of the work was to propose an OTA update process suitable for constrained
IoT devices with the possibility of using a PUF to provide security, closing the work with
a proof of concept project.

The work has mainly dealt with listing the components of an OTA process, where its
bottlenecks lie, which aspects need to be especially secure and how to use the process in
a simple, device-to-server architecture. After analyzing the threat vectors and surfaces,
the needed CT techniques to ensure the protection is well in place, even in the face of
adversaries, were listed. To finalize this step, the whole set of information was brought
together, and a proposal for a simple and secure OTA process was brought up.

After identifying the possible CTs which could use the SRAM PUF, cursory research
was conducted into the PUF types and, most importantly, the possible applications on
a constrained IoT device.

In the face of scarce competition that would have been viable to implement relatively
simply, the SRAM PUF had been chosen to serve as the basis for the library. This library
was designed to use the PUF properties to store a secret in such a way that the only data
that was persisted into the flash would not have been of any use to any attacker. Unless,
of course, he would have somehow got his hands on a PUF response as well, which would
have been quite impossible since the uninitialized values of the SRAM last only so long.
Afterwards, by using this data, the device can extract the key with the help of the SRAM,
thus making the SRAM PUF serve as a limited HSM.

Lastly, the said library was integrated into two ESP32 projects. The first one had
served as a testing ground for assessing whether the SRAM PUF of the said platform
would be usable for further use. After it became apparent that it was valid, the library
was integrated into another project, this time a simplified OTA update process using some
of the described principles. After making sure that the device was able to decipher the
encrypted firmware provided by the OTA server after extracting the private key, with the
help of the SRAM PUF library successfully, the project was declared a success.

69

References

1. IoT market size worldwide 2017-2025 [online] [visited on 2022-06-19]. Available from:
https://www.statista.com/statistics/976313/global-iot-market-size/.

2. GOOGLE, LLC. OTA Updates | Android Open Source Project [online] [visited on
2022-06-19]. Available from: https://source.android.com/devices/tech/ota.

3. CISCO. Cisco Annual Internet Report - Cisco Annual Internet Report (2018–2023)
White Paper [online] [visited on 2022-06-19]. Available from: https://www.cisco.
com / c / en / us / solutions / collateral / executive - perspectives / annual -
internet-report/white-paper-c11-741490.html.

4. VERY. Manual vs. OTA Firmware Updates for IoT [online] [visited on 2022-06-19].
Available from: https://www.verypossible.com/insights/manual- vs- ota-
firmware-updates-for-iot.

5. TICLO, Isabel. 3 IaaS Cloud Computing Trends to Watch [online] [visited on 2022-06-
19]. Available from: https://www.insight.com/en_US/content-and-resources/
2017/02132017-3-iaas-cloud-computing-trends-to-watch.html.

6. ESPRESSIF SYSTEMS (Shanghai) Co., Ltd. ESP-IDF Programming Guide lat-
est documentation [online] [visited on 2022-06-19]. Available from: https://docs.
espressif.com/projects/esp-idf/en/latest/esp32.

7. BROWN, Benjamin Bucklin. Over-the-Air (OTA) Updates in Embedded Microcon-
troller Applications: Design Trade-Offs and Lessons Learned | Analog Devices [on-
line] [visited on 2022-06-19]. Available from: https : / / www . analog . com / en /
analog - dialogue / articles / over - the - air - ota - updates - in - embedded -
microcontroller-applications.html#.

8. CACAMERA, Daniele. 12ft | The interrupt vector table - Embedded Systems Ar-
chitecture [Book] [online] [visited on 2022-06-20]. Available from: https://www.
oreilly.com/library/view/embedded-systems-architecture/9781788832502/
2cfb60b5-d366-4fa0-a750-b942e022665d.xhtml.

71

https://www.statista.com/statistics/976313/global-iot-market-size/
https://source.android.com/devices/tech/ota
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.cisco.com/c/en/us/solutions/collateral/executive-perspectives/annual-internet-report/white-paper-c11-741490.html
https://www.verypossible.com/insights/manual-vs-ota-firmware-updates-for-iot
https://www.verypossible.com/insights/manual-vs-ota-firmware-updates-for-iot
https://www.insight.com/en_US/content-and-resources/2017/02132017-3-iaas-cloud-computing-trends-to-watch.html
https://www.insight.com/en_US/content-and-resources/2017/02132017-3-iaas-cloud-computing-trends-to-watch.html
https://docs.espressif.com/projects/esp-idf/en/latest/esp32
https://docs.espressif.com/projects/esp-idf/en/latest/esp32
https://www.analog.com/en/analog-dialogue/articles/over-the-air-ota-updates-in-embedded-microcontroller-applications.html#
https://www.analog.com/en/analog-dialogue/articles/over-the-air-ota-updates-in-embedded-microcontroller-applications.html#
https://www.analog.com/en/analog-dialogue/articles/over-the-air-ota-updates-in-embedded-microcontroller-applications.html#
https://www.oreilly.com/library/view/embedded-systems-architecture/9781788832502/2cfb60b5-d366-4fa0-a750-b942e022665d.xhtml
https://www.oreilly.com/library/view/embedded-systems-architecture/9781788832502/2cfb60b5-d366-4fa0-a750-b942e022665d.xhtml
https://www.oreilly.com/library/view/embedded-systems-architecture/9781788832502/2cfb60b5-d366-4fa0-a750-b942e022665d.xhtml

References

9. ESP_ANGUS, Espressif employee. [closed] updating the bootloader via OTA – is it
possible? - ESP32 Forum [online] [visited on 2022-06-19]. Available from: https:
//www.esp32.com/viewtopic.php?t=6080.

10. STAFF, Embedded. Speeding over-the-air latency for IoT applications with com-
pression [online]. 2017 [visited on 2022-06-19]. Available from: https : / / www .
embedded.com / speeding- over - the- air- latency- for- iot- applications-
with-compression/.

11. SUZUKI, Naoki; HAYASHI, Toshiki; KIYOHARA, Ryozo. Data Compression for
Software Updating of ECUs. In: 2019 IEEE 23rd International Symposium on Con-
sumer Technologies (ISCT). 2019, pp. 304–307. Available from DOI: 10.1109/ISCE.
2019.8901008. ISSN: 2159-1423.

12. TEMBOO. How to Approach OTA Updates for IoT [online]. 2019 [visited on 2022-
06-19]. Available from: https://medium.com/@temboo/how-to-approach-ota-
updates-for-iot-d088c217b31c.

13. RADOVICI, Alexandru; CULIC, Ioana; ROSNER, Daniel; OPREA, Flavia. A Model
for the Remote Deployment, Update, and Safe Recovery for Commercial Sensor-
Based IoT Systems. Sensors. 2020, vol. 20, pp. 4393. Available from DOI: 10.3390/
s20164393.

14. BOEHM, Ellen. What is Secure Boot? It’s Where IoT Security Starts [online] [visited
on 2022-06-19]. Available from: https://www.keyfactor.com/blog/what- is-
secure-boot-its-where-iot-security-starts/.

15. MOSELEY, Drew. Security considerations for OTA software updates for IoT
gateway devices [online]. 2020 [visited on 2022-06-19]. Available from: https : / /
stackoverflow . blog / 2020 / 12 / 14 / security - considerations - for - ota -
software-updates-for-iot-gateway-devices/.

16. SCHMIDT, Silvie. Secure Firmware Updates in the IoT [online] [visited on 2022-
06-19]. Available from: https://sec4dev.io/assets/uploads/slides/Secure-
Firmware-Updates-OTA-in-the-IoT_2.pdf.

17. SIVASANKARI, N.; KAMALAKKANNAN, S. Detection and prevention of man-in-
the-middle attack in iot network using regression modeling. Advances in Engineering
Software [online]. 2022, vol. 169, pp. 103126 [visited on 2022-06-19]. ISSN 0965-9978.
Available from DOI: 10.1016/j.advengsoft.2022.103126.

18. CISA. Understanding Denial-of-Service Attacks | CISA [online] [visited on 2022-06-
19]. Available from: https://www.cisa.gov/uscert/ncas/tips/ST04-015.

19. JHA, Asmita. Log4j-Vulnerability [online] [visited on 2022-06-19]. Available from:
https://payatu.com/blog/asmita-jha/side-channel-attack-basics.

20. BARKER, Elaine; MOUHA, Nicky. Recommendation for the Triple Data Encryption
Algorithm (TDEA) Block Cipher [online]. 2017 [visited on 2022-06-19]. Available from
DOI: 10.6028/NIST.SP.800-67r2. Technical report. National Institute of Standards
and Technology.

72

https://www.esp32.com/viewtopic.php?t=6080
https://www.esp32.com/viewtopic.php?t=6080
https://www.embedded.com/speeding-over-the-air-latency-for-iot-applications-with-compression/
https://www.embedded.com/speeding-over-the-air-latency-for-iot-applications-with-compression/
https://www.embedded.com/speeding-over-the-air-latency-for-iot-applications-with-compression/
http://dx.doi.org/10.1109/ISCE.2019.8901008
http://dx.doi.org/10.1109/ISCE.2019.8901008
https://medium.com/@temboo/how-to-approach-ota-updates-for-iot-d088c217b31c
https://medium.com/@temboo/how-to-approach-ota-updates-for-iot-d088c217b31c
http://dx.doi.org/10.3390/s20164393
http://dx.doi.org/10.3390/s20164393
https://www.keyfactor.com/blog/what-is-secure-boot-its-where-iot-security-starts/
https://www.keyfactor.com/blog/what-is-secure-boot-its-where-iot-security-starts/
https://stackoverflow.blog/2020/12/14/security-considerations-for-ota-software-updates-for-iot-gateway-devices/
https://stackoverflow.blog/2020/12/14/security-considerations-for-ota-software-updates-for-iot-gateway-devices/
https://stackoverflow.blog/2020/12/14/security-considerations-for-ota-software-updates-for-iot-gateway-devices/
https://sec4dev.io/assets/uploads/slides/Secure-Firmware-Updates-OTA-in-the-IoT_2.pdf
https://sec4dev.io/assets/uploads/slides/Secure-Firmware-Updates-OTA-in-the-IoT_2.pdf
http://dx.doi.org/10.1016/j.advengsoft.2022.103126
https://www.cisa.gov/uscert/ncas/tips/ST04-015
https://payatu.com/blog/asmita-jha/side-channel-attack-basics
http://dx.doi.org/10.6028/NIST.SP.800-67r2

References

21. BORGINI, Julia. How to use IoT authentication and authorization for security
[online] [visited on 2022-06-19]. Available from: https://www.techtarget.com/
iotagenda/feature/How- to- use- IoT- authentication- and- authorization-
for-security.

22. CLOUDFLARE. What is Transport Layer Security? | TLS protocol [online] [visited
on 2022-06-19]. Available from: https://www.cloudflare.com/learning/ssl/
transport-layer-security-tls/.

23. ESP_SPRITE, Espressif employee. How is the flash encryption key stored? - ESP32
Forum [online] [visited on 2022-06-19]. Available from: https://www.esp32.com/
viewtopic.php?t=16110.

24. RICHARDS, Kathleen. What is Cryptography? Definition from SearchSecurity [on-
line] [visited on 2022-06-19]. Available from: https : / / www . techtarget . com /
searchsecurity/definition/cryptography.

25. 3 OTA architectures for IoT devices [online] [visited on 2022-06-19]. Available from:
https://www.techtarget.com/iotagenda/feature/3-OTA-architectures-for-
IoT-devices.

26. PADMAVATHI, B; KUMARI, S Ranjitha. A Survey on Performance Analysis of
DES; AES and RSA Algorithm along with LSB Substitution Technique. 2013, vol. 2,
no. 4, pp. 5.

27. Hybrid encryption | Tink [online] [visited on 2022-06-19]. Available from: https:
//developers.google.com/tink/hybrid.

28. BARKER, Elaine. Recommendation for Key Management Part 1: General [online].
2016 [visited on 2022-06-19]. Available from DOI: 10.6028/NIST.SP.800-57pt1r4.
Technical report. National Institute of Standards and Technology.

29. TECHTARGET. What is PKI (public key infrastructure) [online] [visited on 2022-06-
20]. Available from: https://www.techtarget.com/searchsecurity/definition/
PKI.

30. BABAEI, Armin; SCHIELE, Gregor. Physical Unclonable Functions in the Internet
of Things: State of the Art and Open Challenges. Sensors [online]. 2019, vol. 19, no.
14, pp. 3208 [visited on 2022-06-19]. ISSN 1424-8220. Available from DOI: 10.3390/
s19143208.

31. JOSHI, Shital; MOHANTY, Saraju P.; KOUGIANOS, Elias. Everything You
Wanted to Know About PUFs. IEEE Potentials [online]. 2017, vol. 36, no. 6, pp.
38–46 [visited on 2022-06-18]. ISSN 0278-6648. Available from DOI: 10.1109/MPOT.
2015.2490261.

32. GORDON, Holden; EDMONDS, Jack; GHANDALI, Soroor; YAN, Wei; KARIM-
IAN, Nima; TEHRANIPOOR, Fatemeh. Flash-Based Security Primitives: Evolu-
tion, Challenges and Future Directions. Cryptography [online]. 2021, vol. 5, no. 1,
pp. 7 [visited on 2022-06-19]. ISSN 2410-387X. Available from DOI: 10 . 3390 /
cryptography5010007.

73

https://www.techtarget.com/iotagenda/feature/How-to-use-IoT-authentication-and-authorization-for-security
https://www.techtarget.com/iotagenda/feature/How-to-use-IoT-authentication-and-authorization-for-security
https://www.techtarget.com/iotagenda/feature/How-to-use-IoT-authentication-and-authorization-for-security
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://www.cloudflare.com/learning/ssl/transport-layer-security-tls/
https://www.esp32.com/viewtopic.php?t=16110
https://www.esp32.com/viewtopic.php?t=16110
https://www.techtarget.com/searchsecurity/definition/cryptography
https://www.techtarget.com/searchsecurity/definition/cryptography
https://www.techtarget.com/iotagenda/feature/3-OTA-architectures-for-IoT-devices
https://www.techtarget.com/iotagenda/feature/3-OTA-architectures-for-IoT-devices
https://developers.google.com/tink/hybrid
https://developers.google.com/tink/hybrid
http://dx.doi.org/10.6028/NIST.SP.800-57pt1r4
https://www.techtarget.com/searchsecurity/definition/PKI
https://www.techtarget.com/searchsecurity/definition/PKI
http://dx.doi.org/10.3390/s19143208
http://dx.doi.org/10.3390/s19143208
http://dx.doi.org/10.1109/MPOT.2015.2490261
http://dx.doi.org/10.1109/MPOT.2015.2490261
http://dx.doi.org/10.3390/cryptography5010007
http://dx.doi.org/10.3390/cryptography5010007

References

33. DAHAD, Nitin. Basics of SRAM PUF and how to deploy it for IoT security [online].
2021 [visited on 2022-06-19]. Available from: https://www.embedded.com/basics-
of-sram-puf-and-how-to-deploy-it-for-iot-security/.

34. VIJAYAKUMAR, Arunkumar; PATIL, Vinay; KUNDU, Sandip. On Improving Re-
liability of SRAM-Based Physically Unclonable Functions. Journal of Low Power
Electronics and Applications [online]. 2017, vol. 7, no. 1, pp. 2 [visited on 2022-06-
19]. ISSN 2079-9268. Available from DOI: 10.3390/jlpea7010002.

35. WANG, Wendong; GUIN, Ujjwal; SINGH, Adit. Aging-Resilient SRAM-based True
Random Number Generator for Lightweight Devices. Journal of Electronic Testing
[online]. 2020, vol. 36, no. 3, pp. 301–311 [visited on 2022-06-21]. ISSN 0923-8174,
1573-0727. ISSN 0923-8174, 1573-0727. Available from DOI: 10.1007/s10836-020-
05881-6.

36. DODIS, Yevgeniy; REYZIN, Leonid; SMITH, Adam. Fuzzy Extractors: How to Gen-
erate Strong Keys from Biometrics and Other Noisy Data. In: CACHIN, Christian;
CAMENISCH, Jan L. (eds.). Advances in Cryptology - EUROCRYPT 2004. Berlin,
Heidelberg: Springer, 2004, pp. 523–540. Lecture Notes in Computer Science. ISBN
978-3-540-24676-3. Available from DOI: 10.1007/978-3-540-24676-3_31.

37. ARJONA, Rosario; PRADA-DELGADO, Miguel; ARCENEGUI, Javier; BATUR-
ONE, I. Trusted Cameras on Mobile Devices Based on SRAM Physically Unclonable
Functions. Sensors. 2018, vol. 18, pp. 3352. Available from DOI: 10.3390/s18103352.

38. STMICROELECTRONICS. STM32 Reference manual [online] [visited on 2022-06-
19]. Available from: https://www.st.com/content/ccc/resource/technical/
document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/
files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf#%5B%
7B%22num%22%3A153%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%
2C124%2C762%2Cnull%5D.

39. ciphergoth.org: Generating random binary data from Geiger counters [online] [visited
on 2022-06-20]. Available from: http://www.ciphergoth.org/crypto/unbiasing/.

40. MICRON TECHNOLOGY, Inc. TN-12-30: NOR Flash Cycling Endurance and Data
Retention. 2013, pp. 12. Available also from: https : / / media - www . micron .
com/ - /media / client / global / documents / products / technical - note / nor -
flash / tn1230 _ nor _ flash _ cycling _ endurance _ data _ retention . pdf ? rev =
e499d40bf03a4e18842e05890c18ee59.

41. ESP_SPRITE, Espressif employee. Simple Pre-Purchase Questions
(RTC/memory/flash/NVS) - ESP32 Forum [online] [visited on 2022-06-19].
Available from: https://www.esp32.com/viewtopic.php?p=29525#p29525.

42. LIMITED, Cactus Technologies. Wear Leveling - Static, Dynamic and Global [online]
[visited on 2022-06-19]. Available from: https : / / www . cactus - tech . com / wp -
content/uploads/2019/03/Wear-Leveling-Static-Dynamic-Global.pdf.

74

https://www.embedded.com/basics-of-sram-puf-and-how-to-deploy-it-for-iot-security/
https://www.embedded.com/basics-of-sram-puf-and-how-to-deploy-it-for-iot-security/
http://dx.doi.org/10.3390/jlpea7010002
http://dx.doi.org/10.1007/s10836-020-05881-6
http://dx.doi.org/10.1007/s10836-020-05881-6
http://dx.doi.org/10.1007/978-3-540-24676-3_31
http://dx.doi.org/10.3390/s18103352
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf#%5B%7B%22num%22%3A153%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C124%2C762%2Cnull%5D
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf#%5B%7B%22num%22%3A153%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C124%2C762%2Cnull%5D
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf#%5B%7B%22num%22%3A153%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C124%2C762%2Cnull%5D
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf#%5B%7B%22num%22%3A153%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C124%2C762%2Cnull%5D
https://www.st.com/content/ccc/resource/technical/document/reference_manual/3d/6d/5a/66/b4/99/40/d4/DM00031020.pdf/files/DM00031020.pdf/jcr:content/translations/en.DM00031020.pdf#%5B%7B%22num%22%3A153%2C%22gen%22%3A0%7D%2C%7B%22name%22%3A%22XYZ%22%7D%2C124%2C762%2Cnull%5D
http://www.ciphergoth.org/crypto/unbiasing/
https://media-www.micron.com/-/media/client/global/documents/products/technical-note/nor-flash/tn1230_nor_flash_cycling_endurance_data_retention.pdf?rev=e499d40bf03a4e18842e05890c18ee59
https://media-www.micron.com/-/media/client/global/documents/products/technical-note/nor-flash/tn1230_nor_flash_cycling_endurance_data_retention.pdf?rev=e499d40bf03a4e18842e05890c18ee59
https://media-www.micron.com/-/media/client/global/documents/products/technical-note/nor-flash/tn1230_nor_flash_cycling_endurance_data_retention.pdf?rev=e499d40bf03a4e18842e05890c18ee59
https://media-www.micron.com/-/media/client/global/documents/products/technical-note/nor-flash/tn1230_nor_flash_cycling_endurance_data_retention.pdf?rev=e499d40bf03a4e18842e05890c18ee59
https://www.esp32.com/viewtopic.php?p=29525#p29525
https://www.cactus-tech.com/wp-content/uploads/2019/03/Wear-Leveling-Static-Dynamic-Global.pdf
https://www.cactus-tech.com/wp-content/uploads/2019/03/Wear-Leveling-Static-Dynamic-Global.pdf

References

43. LEE, Jeffrey. The 6 Best IoT Hardware Platforms (2021 Update) [online]. 2021 [vis-
ited on 2022-06-20]. Available from: https://blog.particle.io/iot-hardware-
comparison-guide/.

44. AUTHORS, The TinyGo. ESP32 - mini32 [online] [visited on 2022-06-19]. Available
from: https://tinygo.org/docs/reference/microcontrollers/esp32-mini32/.
Section: docs.

45. LTD, Pur3. Espruino on ESP32 [online] [visited on 2022-06-19]. Available from:
https://www.espruino.com/ESP32.

46. Rust ESP32 Example [online]. Espressif, 2022 [visited on 2022-06-19]. Available from:
https://github.com/espressif/rust-esp32-example. original-date: 2021-06-
08T15:39:17Z.

47. TRANTER, Jeff. MicroPython Optimizes Python for Microcontrollers [online] [vis-
ited on 2022-06-19]. Available from: https://www.ics.com/blog/micropython-
optimizes-python-microcontrollers.

48. DAMIEN P. GEORGE, Paul Sokolovsky; CONTRIBUTORS. General information
about the ESP32 port — MicroPython 1.19.1 documentation [online] [visited on 2022-
06-19]. Available from: https : / / docs . micropython . org / en / latest / esp32 /
general.html#technical-specifications-and-soc-datasheets.

49. BOLTON, David. Exploring the Benefits of MicroPython [online]. 2017 [visited
on 2022-06-19]. Available from: https : / / insights . dice . com / 2017 / 08 / 03 /
exploring-benefits-micropython/.

50. KOLBAN, Neil. Menuconfig options for ESP32 Arduino - ESP32 Forum [online]
[visited on 2022-06-19]. Available from: https://esp32.com/viewtopic.php?t=
5225.

51. FOUNDATION, IOTA. IOTA ESP32 Wallet [online] [visited on 2022-06-19]. Avail-
able from: https://blog.iota.org/iota-esp32-wallet-1b12b45d8a5/.

52. ENGINEERS, Last Minute. Insight Into ESP32 Sleep Modes & Their Power
Consumption [online]. 2018 [visited on 2022-06-19]. Available from: https : / /
lastminuteengineers.com/esp32-sleep-modes-power-consumption/.

53. TARMO. Answer to ”in ESP32 / ESP-IDF - when to use EEPROM vs NVS
vs SPIFFS?” [online]. 2022 [visited on 2022-06-19]. Available from: https : / /
stackoverflow.com/a/70826781.

54. HYMEL, Shawn. Introduction to RTOS - Solution to Part 4 (Memory Management)
[online] [visited on 2022-06-19]. Available from: https://www.digikey.es/en/
maker/projects/6d4dfcaa1ff84f57a2098da8e6401d9c.

55. BARBARESCHI, Mario; BATTISTA, Ermanno; MAZZEO, Antonino; MAZ-
ZOCCA, Nicola. Testing 90 nm microcontroller SRAM PUF quality. In: 2015 10th
International Conference on Design & Technology of Integrated Systems in Nanoscale
Era (DTIS). 2015, pp. 1–6. Available from DOI: 10.1109/DTIS.2015.7127360.

75

https://blog.particle.io/iot-hardware-comparison-guide/
https://blog.particle.io/iot-hardware-comparison-guide/
https://tinygo.org/docs/reference/microcontrollers/esp32-mini32/
https://www.espruino.com/ESP32
https://github.com/espressif/rust-esp32-example
https://www.ics.com/blog/micropython-optimizes-python-microcontrollers
https://www.ics.com/blog/micropython-optimizes-python-microcontrollers
https://docs.micropython.org/en/latest/esp32/general.html#technical-specifications-and-soc-datasheets
https://docs.micropython.org/en/latest/esp32/general.html#technical-specifications-and-soc-datasheets
https://insights.dice.com/2017/08/03/exploring-benefits-micropython/
https://insights.dice.com/2017/08/03/exploring-benefits-micropython/
https://esp32.com/viewtopic.php?t=5225
https://esp32.com/viewtopic.php?t=5225
https://blog.iota.org/iota-esp32-wallet-1b12b45d8a5/
https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/
https://lastminuteengineers.com/esp32-sleep-modes-power-consumption/
https://stackoverflow.com/a/70826781
https://stackoverflow.com/a/70826781
https://www.digikey.es/en/maker/projects/6d4dfcaa1ff84f57a2098da8e6401d9c
https://www.digikey.es/en/maker/projects/6d4dfcaa1ff84f57a2098da8e6401d9c
http://dx.doi.org/10.1109/DTIS.2015.7127360

References

56. Espressif IoT Development Framework [online]. Espressif Systems, 2022 [visited on
2022-06-21]. Available from: https://github.com/espressif/esp-idf. original-
date: 2016-08-17T10:40:35Z.

57. ESPRESSIF. Espressif IDF Extra Components [online]. Espressif, 2022 [visited
on 2022-06-19]. Available from: https : / / github . com / espressif / idf -
extra - components / blob / 45d872e6a6e9954ad5a584a4881b139887eb5d91 / esp _
encrypted_img/README.md. original-date: 2021-11-16T17:59:26Z.

58. GOOGLE, LLC. Hybrid encryption | Tink [online] [visited on 2022-06-19]. Available
from: https://developers.google.com/tink/hybrid.

76

https://github.com/espressif/esp-idf
https://github.com/espressif/idf-extra-components/blob/45d872e6a6e9954ad5a584a4881b139887eb5d91/esp_encrypted_img/README.md
https://github.com/espressif/idf-extra-components/blob/45d872e6a6e9954ad5a584a4881b139887eb5d91/esp_encrypted_img/README.md
https://github.com/espressif/idf-extra-components/blob/45d872e6a6e9954ad5a584a4881b139887eb5d91/esp_encrypted_img/README.md
https://developers.google.com/tink/hybrid

Appendix A
Acronyms

PUF Physical Unclonable Function

OTA Over-the-Air

ROM Read Only Memory

SRAM Static Random-Access Memory

IRAM Instruction Random-Access Memory

DRAM Data Random-Access Memory

SPIRAM Serial Peripheral Interface Random-Access Memory

CT Cryptographic technique

REPL Read Evaluate Print Loop

SDK Software development kit

CA Certification Authority

HSM Hardware Security Module

ACID Atomicity, Consistency, Isolation, Durability

PKI Public Key Infrastructure

NVS Non-Volatile Storage

EEPROM Electrically Erasable Programmable Read-Only Memory

IVT Interrupt Vector Table

MiTM Man in the middle

77

A. Acronyms

SPA Simple Power Analysis

DPA Differential Power Analysis

CPA Correlation Power Analysis

EM Electromagnetic

CRP Challenge Response Pair

SAC Strict Avalanche Condition

ML Machine Learning

ECC Error Correcting Code

NIST National Institute of Standards and Technology

AES Advanced Encryption Standard

GCM Galois counter mode

DES Data Encryption Standard

RSA Rivest-Shamir-Adleman

IV Initialisation Vector

EIAL Encrypted Image Abstraction Layer

VNC Von Neumann Corrector

PRNG Pseudorandom Number Generator

TRNG True Random Number Generator

EEV Error Correcting Code

BLE Bluetooth Low Energy

AP Access point

STA Station

RTC Real Time Clock

OS Operating system

HW hardware

PC Personnal Computer

CPU Central Processing Unit

78

ULP Ultra Low Power

IoT Internet of Things

API Application programming interface

TCP Transmission Control Protocol

HTTP Hyper Text Transfer Protocol

HTTPS HTTP Secure

IP Internet Protocol

TLS Transport Layer Security

DTLS Datagram Transport Layer Security

RTOS Real-Time operating system

FSBL First Stage Bootloader

SSBL Second Stage Bootloader

GPIO General Purpose Input Output

SPI Serial Peripheral Interface

FATFS File Allocation Table File System

SPIFFS Serial Peripheral Interface Flash File System

79

Appendix B
Library usage

B.1 PufSymtesting project
The main point of this project was to analyze obtained SRAM PUF responses from an
ESP32, which can be done practically instantly if compared to the ESP itself. Thus the
main development was contained here, in the folder src/pufSymtesting.

B.1.1 Prerequisites of the pufSym library
In order to use the library in this form, there are several extra steps that need to be
followed.

1. Place the secret, currently named as ca_cert.pem, into the project’s root (just
an example, in reality, it would not make much sense to treat a public certificate
as a secret).

2. Provide the snapshots of the actual examined SRAM into the memImg folder, cur-
rently named memImgX.img, where X is an unsigned number.

3. Double check the macros in pufSym.h and make sure that they represent what has
been provided in previous steps, mainly the

• the key length KEY_BYTE_SIZE is the same or lower than the ca_cert.pem
• the expected length and offset of the snapshots are within the limits of the

provided memImg files
• the amount of SRAM resets is lower than the number of actual snapshots pro-

vided. Also, keep in mind that enrollment requires four additional snapshots.

4. Provide macro NOT_ESP32 to the compiler to exclude ESP32 exclusive functions;
otherwise, it cannot be compiled normally.

The project already contains 42 snapshots and several more of varying sizes in the
temp_bins_analysis folder.

81

B. Library usage

B.1.2 Use of pufSym library
In order to simulate a deployment on an ESP32, use:

cp ca_cert.pem memImg/ca_cert.pem && g++ -D "NOT_ESP32" -Wall -pedantic
-O -ggdb3 pufSym.cpp pufSym_testing.cpp && ./a.out

Depending on the provided macros, either DEBUG_MODE or DEBUG, there will
be more output and processed files and data that normally is not left behind. Accessible
in memImg folder.

In order to clean the project, use ./clean_project.sh.

B.2 PufSym library testing project
This ESP32 project serves as a testing base for the pufSym library on actual hardware in
the folder src/pufSym_device_test.

B.2.1 Requirements
1. Have the esp-idf toolchain installed and correctly configured. The version used

during the development was the master branch of the GitHub repository, more
specifically, this commit

2. Have the various supporting tools installed and used during the deployment, some
of which are required on the official website, at [6] (go to /get-started/linux-macos-
setup.html), some of which are used in this project, such as mkspiffs tool. Be
sure to use the esp-idf binary variant, the one used here was mkspiffs-0.2.3-esp-idf-
linux64.tar.gz; otherwise, it might not work.

3. Provide the directory ./spiffs_image with the secret, currently named
ca_cert.pem.

If the build folder was deleted, menuconfig needs to be run and reenable flash
usage as a SPIRAM and possibly other settings. Accessing menuconfig: idf.py -p
/dev/ttyUSB0 menuconfig.

The relevant settings are located at:

• menuconfig -> comp config -> HW settings -> support for external SPI RAM enable;

• menuconfig -> comp config -> HW settings -> SPI RAM config -> SPI RAM access
method

B.2.2 Deployment
In order to successfully compile and deploy, use the following command idf.py -p
/dev/ttyUSB0 build flash monitor.

The command compiles the application, flashes it into the memory and runs a serial
console which allows monitoring and interaction with the application.

82

https://github.com/espressif/esp-idf/commit/16a4ee7c36a848ca155791677ce011f3ca75c519
https://docs.espressif.com/projects/esp-idf/en/latest/esp32/get-started/linux-macos-setup.html

B.3. Encrypted Binary OTA update with SRAM PUF usage

If, for some reason, the flash has to be erased manually, do it with idf.py -p
/dev/ttyUSB0 erase_flash.

B.2.3 Usage
After flashing the application and using the idf monitor function, the application will be
waiting for input, where the user can choose whether to start.

0. (key extraction)

1. (PUF reliability test)

2. (SRAM bit stability test)

3. (SRAM image collection)

After selecting the relevant option, the system will ask the number of tests/images
that need to capture. Be careful not to go above the 2MB limit the SPIFFS currently
has in place if using the image collection. It could be enlargened through menufonfig if
the device supports more than 4 MB of SPIRAM. Also, if not resolved hardware-wise, the
FSBL will print an initialization message on each reset. Otherwise, the outputs in the
serial console are the same as in the pufSym standalone project in the ../pufSymtesting
folder.

B.2.4 Data collection
After running a successful testing session to get the data from the flash, one can run the
import_spiffs.sh, if one has not changed the partition table, of course. Otherwise, the
addresses and memory size must be updated. The command also unpacks the downloaded
flash image into a folder.

B.3 Encrypted Binary OTA update with SRAM PUF
usage

A demonstration of the use of the SRAM PUF library within an OTA process, constructed
as a part of this thesis in the folder src/ota_pufSym.

B.3.1 Requirements
1. All the requirements of the preceding project are included in this work.

2. Strict requirement for the 5.0 version of the esp-idf.

3. Generated RSA key pair that will be used for server authentication needs to have
the server address in the CN field during generation, as per the official example,
located in examples/system/ota at the official repository [56]. If operated locally, it

83

https://github.com/espressif/esp-idf/tree/master/examples/system/ota

B. Library usage

needs to be the IP address of the AP behind which the server operates. The pair
should be placed into the ota_server folder, and the public key should be placed
into the server_certs.

4. The Generated private RSA key used to decrypt the firmware binary should be
placed into the rsa_key folder.

5. Configured the correct wifi access details, the server IP and the encrypted file name
in the menuconfig tool

B.3.2 Usage
1. Run the HTTPS server with the run_https_server.sh script from the ota_server

folder while having AP or similar connectivity with the device.

2. Flash the firmware, the public and private key with the idf.py -p /dev/ttyUSB0 build
flash monitor command, where /dev/ttyUSB0 is the serial port.

B.3.3 Monitoring
The enrollment phase should take around 1 to 2 minutes, during which the system will
reboot multiple times. Afterwards, it will recover the key from SRAM, connect to the
wifi, establish an HTTPS connection with the server, obtain the firmware, decipher it and
apply the update. If the update was successful, the new firmware should be the Hello
World application from the esp-idf example applications [56].

B.3.4 Glitch/bug notice
After building the project and replacing a certificate/private key, the change might not
propagate, mainly observed in the current main branch as of 7.6.2022. The solution was
to complete a clean with idf.py fullclean or even delete the build folder. Note - deleting
the build folder results in a loss of menufoconfig settings, which must be redone.

Also, if the path of the current IDF project changes, it might be required to do fullclean
regardless.

84

Appendix C
Contents of enclosed DVD

readme.md...brief description of DVD contents
text..thesis text

thesis.pdf..thesis text in PDF format
attachments..folder containing attachments

measured_data........................measured and collected data used in thesis
src

ota_pufSym................sources of the SRAM PUF and OTA update showcase
pufSym_device_test........sources of the PufSym lib ESP32 integration project
pufSymtesting.......................sources of the PufSym development project

85

	Introduction
	Thesis goals

	Over the Air update analysis and model proposal
	OTA update scheme
	Provisioning
	Second stage boot loader
	OTA update transfer, speed and compression
	General challenges and requirements
	OTA update security
	OTA security concerns, threats and risks
	Security measure inquiry
	Cryptographic techniques in OTA security measures

	Resource-efficient OTA update model
	OTA architecture
	Requirements and implementaion strategies
	Proposed OTA process
	Usage of a PUF and CTs in OTA
	Brief analysis and attacks on the CTs
	Vulnerabilities to attacks
	Viable CT to be replaced

	Conclusion

	PUFs and IoT devices
	PUF principles, properties and definitions
	PUF threats and attack vectors
	Easily constructible PUFs on a common IoT device
	SRAM-based PUF details
	SRAM PUF background
	PUF response error rate improvement tools

	SRAM PUF processing framework
	Enrolment
	PUF library provisioning
	PUF mask and SRAM bits
	Von Neumann Corrector debiasing
	Construction of a mask of stable bits
	Helper data assembly

	Secret extraction
	SRAM PUF framework summary

	Proof of concept implementation
	IoT hardware platform comparison
	Library implementation details on the ESP32 platform
	ESP32 developement tools
	SRAM PUF library
	Development
	Getting SRAM uninitialized state
	SRAM PUF library ESP32 integration
	Usage of a DRAM block for PUF
	Library PUF metrics module
	Library integration and use on ESP32
	Library integration testing on ESP32

	PUF-based OTA update process
	OTA process on ESP32
	SRAM PUF library integration into an OTA project

	Integration conclusion

	Conclusion
	References
	Acronyms
	Library usage
	PufSymtesting project
	Prerequisites of the pufSym library
	Use of pufSym library

	PufSym library testing project
	Requirements
	Deployment
	Usage
	Data collection

	Encrypted Binary OTA update with SRAM PUF usage
	Requirements
	Usage
	Monitoring
	Glitch/bug notice

	Contents of enclosed DVD

