
Bachelor’s Thesis

Czech
Technical
University
in Prague

F3 Faculty of Electrical Engineering
Department of Computer Science

System for Communication Between
Teachers and Students

Nikita Lepikhin

Supervisor: Ing. Božena Mannová, Ph.D.
Field of study: Open Informatics
Subfield: Software
January 2023

ii

ZADÁNÍ BAKALÁŘSKÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

491851 Osobní číslo:Nikita Jméno:Lepikhin Příjmení:

Fakulta elektrotechnická Fakulta/ústav:

Zadávající katedra/ústav: Katedra počítačů

Otevřená informatika Studijní program:

Software Specializace:

II. ÚDAJE K BAKALÁŘSKÉ PRÁCI

Název bakalářské práce:

Systém pro komunikaci mezi učiteli a studenty

Název bakalářské práce anglicky:

System for communication between teachers and students

Pokyny pro vypracování:
Analyzujte způsoby komunikace mezi studenty a učiteli. Vyberte některá aktuálně existující řešení a tato řešení analyzujte
a porovnejte. Vyhodnoťte i roli anonymity v takové komunikaci. Na základě provedené analýzy navrhněte vlastní řešení,
které by eliminovalo nevýhody posuzovaných aplikací a umožnilo anonymní komunikaci. Zvolte architekturu aplikace a
vyberte vhodné technologie pro implementaci. Implementujte navržené řešení a rozsáhle jej otestujte. Využijte vhodných
prostředků softwarového inženýrství.

Seznam doporučené literatury:
[1] Roger S. Pressmann Bruce Maxim: Software Engineering: A Practitioner's Approach ,
ISBN-10: 9780078022128
[2] https://blog.genial.ly/en/techniques-online-communication-students-and-teachers/

Jméno a pracoviště vedoucí(ho) bakalářské práce:

Ing. Božena Mannová, Ph.D. kabinet výuky informatiky FEL

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) bakalářské práce:

Termín odevzdání bakalářské práce: 10.01.2023 Datum zadání bakalářské práce: 11.02.2022

Platnost zadání bakalářské práce: 30.09.2023

prof. Mgr. Petr Páta, Ph.D.

podpis děkana(ky)
podpis vedoucí(ho) ústavu/katedryIng. Božena Mannová, Ph.D.

podpis vedoucí(ho) práce

III. PŘEVZETÍ ZADÁNÍ
Student bere na vědomí, že je povinen vypracovat bakalářskou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací.
Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v bakalářské práci.

.
Datum převzetí zadání Podpis studenta

© ČVUT v Praze, Design: ČVUT v Praze, VIC CVUT-CZ-ZBP-2015.1

iv

Acknowledgements
The completion of this thesis would not
have been possible without the guidance,
and invaluable feedback of Ing. Božena
Mannová, Ph.D., my advisor. I would also
like to extend my thanks to my family
for their encouragement and unwavering
support throughout my studies.

Declaration
I declare that this thesis has been
composed solely by myself and that it
has not been submitted, in whole or in
part, in any previous application for a
degree. Except where states otherwise by
reference or acknowledgment, the work
presented is entirely my own.

Prague, December 20, 2022

Prohlašuji, že jsem bakalářskou práci
na téma Systém pro komunikaci mezi
učiteli a studenty zpracoval sám. Veškeré
prameny a zdroje informací, které jsem
použil k sepsání této práce, byly citovány
a jsou uvedeny v seznamu použitých
pramenů a literatury.

V Praze, 20. prosince 2022

v

Abstract
This bachelor’s thesis focuses on the de-
velopment of a web application for anony-
mous communication between teachers
and students. The application allows
teachers and students to communicate via
posts and comments created in different
channels. The work begins by analyzing
the problem of such communication and
the existing solutions. The analysis later
serves as a foundation for system design.
Following is a thorough description of im-
plementation details. The end result is
a tested and deployed web application
for anonymous communication in the aca-
demic setting.

Keywords: web application, anonymous
communication, communication between
teachers and students, React, Single
Page App, REST, NestJS, Prisma

Supervisor: Ing. Božena Mannová,
Ph.D.
Kabinet výuky informatiky ČVUT FEL,
Praha, Resslova 9, E-430

Abstrakt
Tato bakalářská práce se zaměřuje na vý-
voj webové aplikace pro anonymní komu-
nikaci mezi učiteli a studenty. Aplikace
umožňuje učitelům a studentům komu-
nikovat prostřednictvím příspěvků a ko-
mentářů vytvořených v různých kanálech.
Práce začíná analýzou anonymní komuni-
kace a existujících řešení. Analýza později
slouží jako základ pro návrh systému. Ná-
sleduje podrobný popis implementačních
detailů. Výsledkem práce je otestovaná a
nasazená webová aplikace pro anonymní
komunikaci v akademickém prostředí.

Klíčová slova: webová aplikace,
anonymní komunikace, komunikace mezi
učiteli a studenty, React, jednostránková
webová aplikace, REST, NestJS, Prisma

Překlad názvu: Systém pro komunikaci
mezi učiteli a studenty

vi

Contents
1 Introduction 1
1.1 Motivation . 1
1.2 Goals . 1
2 Analysis 3
2.1 Problem Analysis 3
2.2 Analysis of Existing Solutions . . . 4
2.3 Requirements Specification 5

2.3.1 Domain Concept Model 5
2.3.2 Functional Requirements 7
2.3.3 Non-functional Requirements 10
2.3.4 Use Case Analysis 11

3 System Design 19
3.1 Application Architecture 19
3.2 Database Design 20
3.3 Back End Design 21

3.3.1 Back End Structure 21
3.3.2 REST API 21
3.3.3 Authentication 22
3.3.4 Authorization 26
3.3.5 Voting System 27
3.3.6 Anonymity 28

3.4 Front End Design 28
3.4.1 Wireframes 29

4 Implementation 33
4.1 TypeScript 33
4.2 Persistence 34

4.2.1 Database Engine 34
4.2.2 Object-Relational Mapping . . 34
4.2.3 Database Migrations 34
4.2.4 Prisma ORM 35
4.2.5 Custom Queries 35

4.3 Back End . 36
4.3.1 Back-End Framework 36
4.3.2 API Documentation 36
4.3.3 Using HTTPS in Development 37
4.3.4 Authentication 38
4.3.5 Authorization 40
4.3.6 Modular Structure 41

4.4 Front End 42
4.4.1 Front-End Library 42
4.4.2 Using HTTPS in Development 42
4.4.3 State Management and Data

Fetching . 42
4.4.4 Navigation 43
4.4.5 Handling Forms 43

4.4.6 UI Components 44
4.4.7 Switching Color Scheme 45

4.5 Deployment 45
5 Testing 47
5.1 Automatic Testing 47
5.2 User Testing 47

5.2.1 Student A. 48
5.2.2 Student B 48
5.2.3 Student C 49
5.2.4 Teacher A 49
5.2.5 Teacher B 50
5.2.6 Teacher C 50
5.2.7 Results of User Testing 51

6 Conclusion 53
A Database Structure 55
B Example of End-To-End Test 57
C User Test Scenarios 59
C.1 Teacher Test 59

C.1.1 Part 1. Signing up as a
teacher . 59

C.1.2 Part 2. Using the application
as a teacher 59

C.1.3 Part 3. Testing Feedback . . . 61
C.2 Student Test 61

C.2.1 Part 1. Signing up as a
student . 61

C.2.2 Part 2. Using the application
as a student 61

C.2.3 Part 3. Testing Feedback . . . 62
D Front End Wireframes 63
E Switching Color Scheme 69
F Application Demonstration 71
G Bibliography 77

vii

Figures
2.1 Domain Concept Model 6
2.2 Use Case Actors Diagram 11
2.3 System Management-Related Use

Cases . 12
2.4 Account-Related Use Cases 13
2.5 Channels-Related Use Cases . . . 15
2.6 Posts-Related Use Cases 16
2.7 Comments-Related Use Cases . . 17

3.1 Data Flow in an MVC-Based
Application . 19

3.2 Components Comprising the
Application . 20

3.3 Back End Layered Architecture . 21
3.4 Handling a JWT Token 25
3.5 Generic Authenticated Request

Sequence . 26
3.6 Authentication Flow Sequence . . 27
3.7 Refreshing the Access Token

Sequence . 28
3.8 Logging Out Sequence 28
3.9 Verification State 29
3.10 Vote State 30

A.1 Database Structure 56

D.1 Login Page Wireframe (top) -
Signup Page Wireframe (bottom) . 63

D.2 Schools Page Wireframe (top) -
Faculties Page Wireframe (bottom) 64

D.3 Requests Page Wireframe (top) -
Account Page Wireframe (bottom) 65

D.4 Feed Page Wireframe (top) -
Channel Page Wireframe (bottom) 66

D.5 Post Page Wireframe (top) -
Comments Page Wireframe
(bottom) . 67

E.1 Light Mode (top) - Dark Mode
(bottom) . 69

F.1 Login Page (top) - Signup Page
(bottom) . 71

F.2 Feed Page (top) - Channel Page
(bottom) . 72

F.3 Post Page (top) - Comment Page
(bottom) . 73

F.4 Requests Page (top) - Schools
Page (bottom) 74

F.5 Student Account Page (top) -
Teacher Public Profile Page
(bottom) . 75

viii

Chapter 1
Introduction

1.1 Motivation

Remote studying has increased in popularity over recent years. Since commu-
nication with teachers is a vital part of education, it is necessary to optimize it
so that students are more engaged in studying. This would help them achieve
higher results and get a deeper understanding of the material. It is believed
that anonymity in communication with teachers has a positive impact on
absorbing knowledge. I aim to create a modern and reliable solution that
would respect students’ anonymity when communicating with teachers.

1.2 Goals

Following are the goals of this bachelor thesis..Analyze the means of communication between students and teachers,
the role of anonymity in it, and the currently existing solutions for such
communication.. Conduct software analysis and design a new application that would
eliminate most downsides of the existing ones.. Implement the designed solution and test it.. Deploy the application.

1

2

Chapter 2
Analysis

2.1 Problem Analysis

The important role that teachers play in the educational process cannot be
underestimated. With the emerging need to perform the required activities in
an online space, students may find it difficult to communicate with teachers.
According to the examined research [1], the following issues arise.. Students may feel that they are being judged or unnecessarily assessed

by other participants. This puts extra pressure on them and mentally
restrains them.. Students may feel that they must perform at a certain level because of
their social status, academic achievements, or knowledge proficiency.. Students may be more reluctant to actively participate in class since
they are afraid to make mistakes that can be associated with them for
longer periods.

The following research [1][2] suggests that peer pressure may also be an
influential factor in students’ decreased will to participate. Most students
have reported the following things affecting them:. unwillingness to display the discrepancy gap in their knowledge and that

of their peers as that could harm their relationships. being concerned about hurting someone by making mistakes. feeling anxious from receiving potentially low evaluations from their
peers. being distracted and feeling less confident when their real name is on
display. condemning oneself for making mistakes publicly. refraining from accepting certain educational opportunities, depending
on the school culture.

3

2. Analysis
To eliminate these issues, communication should become anonymous. The

following article [3] states that using anonymous electronic response systems
has proven to drastically increase students’ engagement and willingness to
participate in discussions. Masking the identities of students can be a means to
detach teachers from students’ profiles. Communication would then converge
to its primary purpose of teachers providing knowledge and students asking
questions.

Although anonymity may present itself as a way to solve all the issues
exhibited above, it is also necessary to mention the disadvantages of protecting
students’ identities [1][4].. It may reduce the sense of learning obligation and lower the responsibility

of students when interacting with others online.. It may have an inverse effect by discouraging students’ participation and
thus leading to unproductive learning outcomes.. Some students may exploit anonymity by acting disrespectfully towards
other people.

These risks of implementing anonymity in academic communication could
be mitigated by introducing content moderation and a system for reporting
offensive behavior.

2.2 Analysis of Existing Solutions

I have analyzed several communication tools and platforms that are nowadays
being actively used in the academic setting. Some services are built with
anonymity in mind, while others are mentioned for the mere reason of being
widespread and highly popular.

Microsoft Teams [5] is undoubtedly the communication platform in most
academic institutions around the globe. Although it does not offer a way to
stay anonymous and has some technical bugs, it still is a number one choice
for most people.

Zoom [6] which is a video-conferencing application is largely similar to
Teams. However, creating an account does not require users to state their
real name, nor does it associate them with their school. For these reasons,
Zoom can be used as an anonymous communication tool. Nevertheless, it is
a video and/or audio-focused app and therefore it still exposes some part of
users’ identities.

Discord [7] is a chat-based application that is extremely popular among
students. From personal experience, I can affirm that this app does not
prevent users from staying anonymous. On the contrary, most users do prefer
keeping their identity private. Discord even allows multiple accounts to have
the same username, however, it does differentiate such users with a number.

Slido [8] is an app that I have not personally used, however, I have heard a
lot of positive things regarding its use at schools. This application allows users
to interact anonymously during presentations, vote in polls, and solve quizzes.

4

.............................. 2.3. Requirements Specification

The main downside, in my opinion, is that all communication is centered
around presentations. Slido can be integrated with other communication
tools, such as Microsoft Teams, however, there are no discussion boards, nor
private chats available.

Mentimeter [9] is similar to the previous application. It shares a comparable
set of features by allowing users to connect to presentations using their phones.
Participants can then engage in polls with their responses anonymously
shared and visualized. However, it also does not offer forums nor chats for
communication.

Having analyzed multiple solutions, I have concluded that most students
would prefer staying anonymous and having a platform to communicate
freely without any restrictions imposed on them. Users do need to have
their questions separated by subjects and/or topics. Since there already
exist several applications for voting purposes, I have decided to implement
a forum-based website where participants would discuss education-related
subjects while having their identity protected at all times.

2.3 Requirements Specification

2.3.1 Domain Concept Model

Domain concept model (Fig. 2.1) is a high-level model that defines entities
and the relationships between them. I have identified the following entities.. User - a generic user entity that contains basic data associated with that

user. Each user is assigned a maximum of one role (Role enumeration).
User accounts can be active or deleted (Status enumeration)..Teacher - a user entity that holds data specific to all teachers. Each
teacher is connected to one instance of the user entity.. Representative - a user entity that holds data specific to all represen-
tatives. Each representative is connected to one instance of the user
entity.. School - an entity representing a school or university registered in the
system. All representatives are related to some school that they manage.
All teachers are also related to one school that they work at.. Faculty - an entity representing a faculty or some other unit of a school.
All schools have at least one faculty associated with them. Each teacher
works at some faculty.. Channel - an entity that represents a communication channel where users
would be able to create posts.. Post - an entity that represents a post created in a channel. Each post is
located in some channel and cannot exist by itself. In addition to being

5

2. Analysis

Figure 2.1: Domain Concept Model

linked to some users, post stores some user identifiers that are never
updated.. Comment - an entity that represents a comment created either in response
to a post or another comment. Comments cannot exist by themselves.
Similar to posts, comments store a user identifier that is never updated..Vote - an entity representing a user vote on a post or a comment. Votes
can be either positive or negative (VoteType enumeration).. Notification - an entity representing a notification sent to the author of
the post or comment (NotificationType enumeration) when their post
or comment receives a reply. Notification is linked to the author and
comment that has triggered it.

6

.............................. 2.3. Requirements Specification

2.3.2 Functional Requirements

According to the definition [10], functional requirements form the foundation
for tasks that have to be implemented to achieve the desired functionality.
Following is a list of such requirements divided by user types. The require-
ments will be specified for admins, representatives, teachers, students, and
guests. In addition to the user types listed in the domain concept model,
it is necessary to also consider guest users. Such users are unauthenticated
persons, or the ones who have never registered in the application.

Functional Requirements for Guests. FR001 Creating an account
As a guest, I need to be able to sign up, so that I can use the service.. FR002 Logging into the account
As a guest, I need to be able to log into my account created beforehand,
so that I can continue using the service.

Functional Requirement Common for Registered Users. FR003 Deleting an account
As a registered user, I need to be able to delete my account, so that my
information does not remain on the server.. FR004 Updating the email
As a registered user, I need to be able to update my email address, so
that I can log back in with the new email.. FR005 Changing the password
As a registered user, I need to be able to change my password, so that
my account data is secure.. FR006 Searching for channels
As a registered user, I need to be able to search for channels, so that I
can see which channels are available in the system.. FR007 Browsing channels
As a registered user, I need to be able to browse channels, so that I can
see the posts created in them.. FR008 Browsing posts
As a registered user, I need to be able to browse posts, so that I can see
what other users have shared.. FR009 Browsing comments
As a registered user, I need to be able to browse comments, so that I
can see what other users have said.

7

2. Analysis
Functional Requirements for Admins. FR010 Creating a school
As a an admin, I need to be able to create a new school, so that
representatives and teachers working there can register in the system.. FR011 Browsing schools
As an admin, I need to be able to browse the list of schools, so that I
can see which schools are available in the system.. FR012 Updating a school
As an admin, I need to be able to update a school, so that the information
about that schools remains up-to-date.. FR013 Deleting a school
As an admin, I need to be able to delete a school, so that there are no
unused school entries in the system.. FR014 Verifying representatives
As an admin, I need to be able to verify new accounts created by
representatives, so that they can start using the application.. FR015 Verifying teachers
As an admin, I need to be able to verify new accounts created by teachers,
so that they can start using the application.

Functional Requirements for Representatives. FR017 Verifying teachers from the same school
As a representative, I need to be able to verify new accounts created by
teachers from the school that I work at, so that they can start using the
application.. FR018 Changing the name
As a representative, I need to be able to change my profile name, so that
the information about me remains up-to-date.

Functional Requirements Common for Admins and Representatives. FR019 Creating a faculty
As an admin or a representative, I need to be able to create a new faculty
assigned to a school, so that teachers working there can register in the
system.. FR020 Browsing school faculties
As an admin or a representative, I need to be able to browse the list
of faculties assigned to a school, so that I can see which faculties are
available in the system.

8

.............................. 2.3. Requirements Specification

. FR021 Updating a faculty
As an admin or a representative, I need to be able to update a faculty,
so that the information about that faculty remains up-to-date.. FR022 Deleting a faculty
As an admin or a representative, I need to be able to delete a faculty, so
that there are no unused faculty entries in the system.

Functional Requirements for Teachers. FR023 Changing the bio
As a teacher, I need to be able to update my bio, so that the information
about me remains up-to-date.. FR024 Changing the name
As a teacher, I need to be able to update my name, so that the information
about me remains up-to-date.

Functional Requirements Common for Teachers and Students. FR025 Creating a channel
As a verified teacher or a student, I need to be able to create a new
channel so that other users have a place where to write posts.. FR026 Updating a channel
As a verified teacher or a student that owns a channel, I need to be able
to update its name, description and ID so that the information remains
up-to-date.. FR027 Deleting a channel
As a verified teacher or a student that owns a channel, I need to be able
to delete such channels so that the information does not remain on the
server.. FR028 Joining channels
As a verified teacher or a student, I need to be able to join channels so
that posts created in them are shown to me in the feed.. FR029 Sharing channels
As a teacher or a student, I need to be able to share channels so that
other users can quickly access them.. FR030 Creating a post
As a verified teacher or a student, I need to be able to create a post so
that I can share something with other users.. FR031 Updating a post
As a verified teacher or a student, I need to be able to update posts
created by me so that I do not have to create a new one in case of a
mistake.

9

2. Analysis
. FR032 Deleting a post

As a verified teacher or a student, I need to be able to delete posts
created by me so that the information does not remain on the server.. FR033 Voting on a post
As a verified teacher or a student, I need to be able to vote on a post so
that other users see how popular it is.. FR034 Sharing a post
As a teacher or a student, I need to be able to share posts so that other
users can quickly access them.. FR035 Creating a comment
As a verified teacher or a student, I need to be able to create comments
under a post, or to reply to other comments so that other users know
what I think.. FR036 Editing a comment
As a verified teacher or a student, I need to be able to edit comments
created by me so that I do not have to create a new one in case of a
mistake.. FR037 Deleting a comment
As a verified teacher or a student, I need to be able to delete comments
created by me so that the information does not remain on the server.. FR038 Voting on a comment
As a verified teacher or a student, I need to be able to vote on a comment
so that other users see how popular it is.. FR039 Sharing a comment
As a teacher or a student, I need to be able to share comments so that
other users can quickly access them.. FR040 Receiving notification about replies to my comments
As a verified teacher or a student, I need to be able to receive notifications
when other users reply to my comments so that I can react to them.. FR041 Receiving notification about comments left under posts
created by me
As a verified teacher or a student, I need to be able to receive notifications
when other users leave comments under posts created by me, so that I
can react to them.

2.3.3 Non-functional Requirements

The definition [10] states that non-functional requirements define a set of
attributes that an application should possess. After considering the charac-
teristics applicable to all modern apps, I have come up with the following
requirements.

10

.............................. 2.3. Requirements Specification

.The application must be secure enough, that user data is protected and
guarded against unauthorized access..The API should be logically structured and intuitive to use..The front end should have a modern, minimalist user interface, be
responsive and follow a mobile-friendly approach..Deployment should occur automatically and should not result in any
downtime for users.

2.3.4 Use Case Analysis

A use case is a written description of how users will perform tasks on the
website [11]. Before specifying the use cases, it is necessary to list the actors
performing them. The definition of user types in the domain concept modal
(Fig. 2.1) has led to the following actors being created (Fig. 2.2).

Figure 2.2: Use Case Actors Diagram

Based on the aforementioned list of functional requirements I have created
use case diagrams that showcase users’ interaction with the application. Use
cases are divided into multiple diagrams based on related functionality.

System-Management Related Use Cases

Following is a list of use cases that are related to system management (Fig.
2.3)..UC001 Create a school

Admins create a school so that teachers and representatives working
there can register..UC002 View all schools
Admins view all schools so that they know which schools have already
been added.

11

2. Analysis

Figure 2.3: System Management-Related Use Cases

.UC003 Update a school
Admins or verified representatives working at a given school update that
school so that they do not have to create a new school entry in case of a
mistake..UC004 Delete a school
Admins delete a school so that there are no outdated entries in the
system..UC005 Create a faculty
Admins or verified representatives working at a given school create a
faculty for that school so that teachers working there can register..UC006 View faculties for a given school
Admins or representatives working at a given school view faculties at
that school so that they know which faculties have already been added..UC007 Update a faculty
Admins or verified representatives working at a given school update a

12

.............................. 2.3. Requirements Specification

faculty at that school so that they do not have to create a new faculty
entry in case of a mistake..UC008 Delete a faculty
Admin or verified representatives working at a given school delete a
faculty from that school so that there are no outdated entries in the
system..UC009 Verify representatives
Admins verify newly registered representatives so that their identity is
confirmed and they can start using the application..UC010 Verify teachers
Admins or verified representatives working at a given school newly regis-
tered teachers working at that school so that their identity is confirmed
and they can start using the application.

Account-Related Use Cases

Figure 2.4: Account-Related Use Cases

Following is a list of account-related use cases (Fig. 2.4)..UC011 Create an account
New users create an account so that their data and preferences are saved
and they can use the application..UC012 Delete the account
Users delete an account so that their information is not stored in the
system.

13

2. Analysis
.UC013 Log in / Log out

Users log in using their credentials so that they can access their data.
Users log out so that unauthorized access to their data is prevented..UC014 Update the email
Users update the email associated with their account so that they can
log in using a new email address..UC015 Change the password
Users change the password to their account so that their data is kept
secure..UC016 Change the name
Teachers or representatives change their profile name so that the infor-
mation is up-to-date..UC017 Change the bio
Teachers change the bio so that the information is up-to-date..UC018 Refresh the username
Students refresh their username so that their identity is hidden at all
times.

Channels-Related Use Cases

Following is a list of channels-related use cases (Fig. 2.5)..UC019 Search for channels
Users search for channels so that they can access the ones available in
the system..UC020 View channels
Users view channels so that they can see what posts have been created
in them..UC021 Create a channel
Verified teachers or students create a channel so that they can offer a
place for others to create posts on a specified topic..UC022 Update a channel
Verified teachers or students update the channel that they have created
so that the information is up-to-date..UC023 Delete a channel
Verified teachers or students delete the channel that they have created
so that other users are no longer able to access it..UC024 Join channels
Verified teachers or students join channels so that they can see the posts
from them in their feed.

14

.............................. 2.3. Requirements Specification

Figure 2.5: Channels-Related Use Cases

.UC025 Share channel link Students or teachers can share a link to a
channel so that it is easy for others to quickly access that channel.

Posts-Related Use Cases

Following is a list of posts-related use cases (Fig. 2.6)..UC026 View channel posts
Users view posts in a channel so that they can see what other users have
said..UC027 Create a post
Students or verified teachers create a post so that they can share infor-
mation with others..UC028 Update a post body
Students or verified teachers update the body of a post that they have
created so that they do not have to create a new one in case of a mistake.

15

2. Analysis

Figure 2.6: Posts-Related Use Cases

.UC029 Delete a post
Students or verified teachers delete a post that they have created so that
other users can no longer see it..UC030 Vote on a post
Students or verified teachers vote on a post so that other users know
how popular it is and are more likely to find it..UC031 Share a post
Students or teachers share a link to a post so that it is easy for other
users to quickly access that post.

Comments-Related Use Cases

Following is a list of comments-related use cases (Fig. 2.7).

.UC032 View post comments
Users view comments created under a post so that they can see the
opinion of other users on that topic.

16

.............................. 2.3. Requirements Specification

Figure 2.7: Comments-Related Use Cases

.UC033 Create a comment
Students or verified teachers create a comment under a post so that they
can let the post author know what they think..UC034 Delete a comment
Students or verified teachers delete a comment that they have created so
that it is no longer available for others to see..UC035 Reply to a comment
Students or verified teachers reply to comments left by other users so
that they can engage in a conversation with them..UC036 Edit a comment
Students or verified teachers update a comment that they have created
so that they do not have to create a new one in case of a mistake..UC037 Vote on a comment

17

2. Analysis
Students or verified teachers vote on a comment so that other users know
how popular it is and are more likely to see it..UC038 Share a comment
Students or teachers share a link to a comment so that it is easy for
other users to quickly access that comment..UC039 Receive comment reply notifications
Students or verified teachers are notified when someone replies to their
comment so that they can react to that comment..UC040 Receive post comment notifications
Students or verified teachers are notified when someone leaves a comment
under a post created by them so that they can reply.

18

Chapter 3
System Design

3.1 Application Architecture

Following the principle called "separation of concerns" is crucial for the app
to remain scalable and maintainable over time. Thus implementing some sort
of architectural pattern is necessary. I have decided to build the app using
the Model-View-Controller pattern (Fig. 3.1). This pattern has proven itself
to be a reliable way of organizing the app logic. The main idea is that the
app logic is split into three components, according to the name. The model
holds raw application data and defines the core modules of the app. The
view is responsible for rendering the application state. It visually reflects
the data that the model holds. By itself the view does not operate on data,
nor does it know anything about the underlying logic of the app. The view
communicates with the model via a controller. It is a middleman responsible
for defining the communication standard between the two and protecting the
underlying model from unwanted interaction.

Figure 3.1: Data Flow in an MVC-Based Application

Following these principles, the app is separated into three core components:
the front end (View), the back end (Controller), and the persistence layer,
or database (Model). The component diagram (Fig. 3.2) shows how the
components are organized and how they interact with each other..The database is responsible for persisting the application data and state..The back end is responsible for handling client requests, processing them,

and interacting with the database. Communication with the persistence

19

3. System Design

Figure 3.2: Components Comprising the Application

layer is done primarily, but not exclusively, with the help of an ORM
(Object-Relational Mapper). The back end exposes a REST API for
communication..The front end application acts as a presentation layer and allows users
to interact with the app. Although the API is accessible without the
front end, it contains some additional logic that helps users work with
the app more efficiently.

3.2 Database Design

The conceptual model mentioned in the previous chapter has laid the founda-
tion for the domain model of a relational database. The diagram (Fig. A.1)
shows the structure of such a database.

It is necessary to make some key remarks regarding the database structure..There are four roles (types of user accounts): admin, representative,
teacher, and student. Core data for each user is stored in the User table.
The admin and student roles are regarded as a “base user” and so the
data is only stored in the User table. The teacher and representative
roles are special in the sense that they have some additional fields. The
data for those fields are stored in two respective tables called Teacher
and Representative..The Authority table contains all permissions. Each permission has a
list of roles assigned to it. Permissions are required to perform some
operation or access a specific API resource..The RefreshToken table stores all refresh tokens that have been issued
so far. You can read how the tokens work further in this chapter.

20

...................................3.3. Back End Design

Implementation details will be provided in the next chapter..The UserPostVotes table contains votes that users leave on specific posts..The UserCommentVotes table contains votes that users leave on specific
comments.

The remaining tables follow the structure of the conceptual model, including
the relationships between the entities.

3.3 Back End Design

3.3.1 Back End Structure

The back end follows the same principle of "separation of concerns" and
therefore is implemented using the layered architecture (Fig. 3.3).

Figure 3.3: Back End Layered Architecture

When a request is received by a controller, it validates the received data.
If the data meets the required criteria, it is passed along to the respective
service. The service performs some operations on that data and interacts with
other services and the database. Then it returns the result to the controller.
The controller then sends a response to the client.

3.3.2 REST API

A REST API (also known as a RESTful API) is an application program-
ming interface (API or web API) that conforms to the constraints of REST
architectural style and allows for interaction with RESTful web services.

21

3. System Design
REST stands for representational state transfer and was created by computer
scientist Roy Fielding [12].

For an API to be considered RESTful it has to conform to several criteria.
The main ones are.The app must implement a client-server architecture over the HTTP

protocol.. Communication must be stateless. This means that GET requests are
independent of one another and are not connected. Client information is
not stored between the requests..A uniform communication interface must be established between the
client and the server.

The back end of my application exposes a RESTful API with 39 endpoints.
Some endpoints may accept multiple types of requests based on the HTTP
request method specified in the header. Depending on the endpoint, request
data may be transferred in a request body in JSON format, path parameters,
or query parameters.

3.3.3 Authentication

To begin with, let me define what a cookie is. A cookie is a key-value pair
that contains some data stored on the client side. The server sets a name for
a cookie (the key) and some value stored as a string. The server then attaches
the cookie to an HTTP response using the set-cookie header. Cookies issued
by a server are always sent back to that specific server in all outgoing HTTP
requests. Some cookies can also be sent to other servers as part of all outgoing
HTTP requests. This behavior, however, can be altered by setting some
options on the cookie.

There are multiple ways to protect an API from being accessed by unau-
thenticated users. One way is to use sessions. Sessions are cookies that
contain a session ID assigned to the client. Session objects are stored in the
database. The user only gets a cookie with the ID and so user credentials
never leave the server. However, this approach has two main downsides..The cookie is never secure on the client side. It can get stolen through

various types of attacks and misused by a third party..The server has to look the user up on every request. This reduces
performance and delays the response.

Another option is to issue access tokens that would store hashed user
credentials. This approach eliminates the need to look the user up on every
request. However, contrary to session cookies, access tokens cannot be
invalidated by the server. Once the token is issued, it will remain valid until
its expiration time which means that anyone who can obtain the token, can
use it to impersonate the original owner. Storing tokens in memory (as a

22

...................................3.3. Back End Design

variable) should be sufficient to prevent unwanted access. Making access
tokens expire swiftly after being issued (after only five minutes) would lower
the likelihood of their misuse.

To prevent users from having to log back in every time they get an unau-
thorized exception or open the app after a period of inactivity, we must
introduce refresh tokens. These tokens have a single purpose of validating
user credentials after an access token expires. Refresh tokens are only used
for issuing a new access token. It is important to stress that these tokens
cannot be used to access any endpoints. Rather than expiring quickly, refresh
tokens are long-lived (one week). They are stored in a secure, HTTP-only,
same-site authentication cookie and can be revoked at any time by the server.

The last issue with the approach introduced above is that storing refresh
tokens in a cookie poses the same risk as storing a session cookie. It is possible
that the cookie gets stolen and then exploited to generate an unlimited amount
of access tokens. This would lead to a stolen client identity and since access
tokens cannot be revoked, nor invalidated, this becomes a tremendous security
risk.

To overcome it, it is essential to prevent refresh tokens from being reused.
To achieve this, refresh tokens are assigned a family ID and stored in a
database table. Once a refresh token is used, it would be marked as used and
a new refresh token with the same family ID would be issued. If a refresh
token is attempted to be reused, then this is immediately detected and the
whole family of tokens gets invalidated. This means that if a refresh token is
stolen, it can only be used once to generate a short-lived access token. Then
upon the real owner trying to use their refresh token, the theft is noticed and
access is denied for everyone. The user would then have to log in again.

This system appears to be secure enough for the following reasons.

.The access token has a very short lifespan of only five minutes and so
the likelihood of it being used for malicious intents is very low..The access token is stored in memory and cannot be stolen by a malicious
script..The cookie containing the refresh token is secure which means it can
only be used over HTTPS secure connections..The cookie containing the refresh token is HTTP-only which prevents it
from being accessed by client-side APIs. This eliminates the threat of
cookie theft via cross-site scripting (XSS)..The cookie containing the refresh token has the same-site attribute set
to strict which means it can only be sent to a target domain that is the
same as the origin domain.

Both types of tokens will follow the JSON Web Token standard.

23

3. System Design
JSON Web Tokens (JWTs)

JSON Web Tokens are an open, industry-standard RFC 7519 method for
representing claims securely between two parties [13]. JWT consists of three
distinct parts separated by a period:. Header: stores base64 encoded information about the algorithm used to

encode and decode the token.. Payload: information that is stored in the token. sub (subject): ID of the user being authenticated. iat (issued at): when the token was issued. exp (expiration): when the token expires. other fields unrelated to the token structure. Signature: used to verify that the token has not been tampered with
before being sent to the server.

Assuming the hashing function is called bcrypt and the secret is a 256-bit
secret, the signature is calculated using the following formula.

signature := bcrypt(base64(header) + ”.” + base64(payload), secret)

When the server receives a token (Fig. 3.4), its base64-encoded header and
payload are extracted. Then the two parts are combined using a period and
hashed together with a 256-bit secret using the algorithm specified in the
header. If the resulting signature matches the one in the received token and
the token has not expired yet, then the JWT is valid. If it does not or the
token is past the expiration date, it is invalid.

JWT Access Tokens

Access tokens store user credentials. When the request is made to the server,
the data is extracted from the token to verify that the user has the right
to access the resource (Fig. 3.5). To obtain an access token, the user must
first authenticate using an email and a password. The server then verifies
the credentials, and if successful, a JWT access token is issued. The token
contains:. user’s UUID. user’s role. user’s email. token expiration time. some extra data that is not relevant in this chapter

The access token is sent to the user in the HTTP response body.

24

...................................3.3. Back End Design

Figure 3.4: Handling a JWT Token

JWT Refresh Tokens

Refresh tokens store the same set of fields as access tokens and, in addition, a
token family UUID. Refresh tokens are issued together with access tokens but
they are stored in an authentication cookie to persist them on the client’s side
after the web page is closed. When the user logs out, the whole refresh token
family gets invalidated and the user receives a new authentication cookie with
zero lifetime to trigger the deletion of the cookie.

Authentication Flow

The authentication flow is depicted in the following sequence diagram (Fig.
3.6).

The user logs in using an email and a password. The server then looks the
user up in the database. After that password hash is verified, an access token
is generated, and a cookie with the newly issued refresh token is attached to
the HTTP response. The user then receives all the necessary data, the access
token, and the authentication cookie. If at any point the server encounters
an error, the server responds with an unauthorized exception.

Refreshing the Access Token

Once the front end encounters an unauthorized exception, a request is made
to refresh the access token (Fig. 3.7). The server uses the refresh token in
the authentication cookie to issue a new pair of tokens. The old refresh token

25

3. System Design

Figure 3.5: Generic Authenticated Request Sequence

is marked as used in the database. The following diagram shows the whole
procedure.

Logging Out

When the user sends a logout request, the server erases the family of refresh
tokens from the database and sends a zero lifetime authentication cookie to
trigger its deletion on the client’s side (Fig. 3.8).

3.3.4 Authorization

Role-Based Authorization

To prevent unauthorized access a system based on roles and authorities is
introduced. Following the analysis in chapter two, there are four types of
users: admins, representatives, teachers, and students (Fig. 2.2). Each user
type is mapped to a role in the system. Roles will have a list of authorities
assigned to them. Authorities are permissions that are required to access
specific resources. For instance, an admin user can only read posts in a
channel, but a teacher can also create posts. Authorities are stored in the
respective database table.

User Verification

According to the analysis, teachers, and representatives should maintain their
identity and not be able to act anonymously. Therefore, verifying users with

26

...................................3.3. Back End Design

Figure 3.6: Authentication Flow Sequence

these roles is required.
Upon the first login, teachers and representatives are prompted with a

notification asking them to wait for their account to be verified. In the
meantime, they are not able to perform any meaningful actions apart from
browsing the content or editing their profile. This restriction applies both to
the front end and the back end parts of the application.

The users can be verified, or their verification may be declined for some
reason. If the user is verified, their account is given full functionality within
the scope of available permissions for their role. If the user’s verification
is declined, they are prompted with the reason why that is the case. Once
the user is ready to request to be verified again, they can do so. The state
diagram (Fig. 3.9) shows the structure of the verification process.

3.3.5 Voting System

Users can vote on posts and comments to raise a post or comment in popularity.
They can either leave a positive vote (an upvote) or a negative vote (a
downvote). A positive vote increases the resulting vote, while a negative one
decreases it. Users can leave a maximum of one vote per post or comment.
The resulting vote is simply a difference between positive and negative votes.
The state diagram (Fig. 3.10) shows how the voting system works. The dir
parameter (stands for direction) indicates whether the user has upvoted or
downvoted the post, or has removed their vote completely.

27

3. System Design

Figure 3.7: Refreshing the Access Token Sequence

Figure 3.8: Logging Out Sequence

3.3.6 Anonymity

Anonymity lies in the foundation of the app. To implement the central
requirement of protecting students’ identity, they can request a new username
at any time. Once a student renews the username in their user profile, all
posts and comments created earlier maintain the old username. This is
accomplished by storing a copy of the username on the post or comment
entities.

3.4 Front End Design

The primary goal of the frontend application is to enable users to interact
with the API in an efficient and user-friendly manner. In addition, the front
end should be able to prevent users from performing unwanted actions. Such

28

.................................. 3.4. Front End Design

Figure 3.9: Verification State

actions may include accessing resources that are not meant to be accessed by
their specific user role (e.g. editing schools with a student role) or performing
actions that are not available to them at the given time (e.g. creating posts
before being verified).

3.4.1 Wireframes

Wireframes provide an overview of the UI structure, layout, and intended
user behaviors. As the wireframes are usually created to display future
functionality, they lack in design. Depending on the application, wireframes
may not reflect the whole UI structure, or all user flows [14][15]. Since this
project is a solo undertaking, I have decided to omit modal windows, some
navigation elements, and some conditionally displayed elements when creating
the wireframes. The ones I have created show the interface of the key pages.

Authentication Screen

Authentication screen (Fig. D.1) enables users to create an account or to
log in using their credentials. Upon opening this screen, users are prompted
with a login form. This ensures that existing users can instantly authenticate
without any additional steps. New users can create an account by toggling the
form to a signup mode. The form changes accordingly based on the desired
user role.

Managing Schools and Faculties

According to the use case diagram (Fig. 2.3), admin users should be able
to manage the list of available schools (Fig. D.2). The table shows the list
of schools available in the system. Users can edit schools, delete schools, or
navigate to the list of faculties for a given school.

29

3. System Design

Figure 3.10: Vote State

Managing faculties is performed on the faculties page (Fig. D.2). This
page should be accessible by admin users, and representatives. Here users
can edit faculties, or delete certain faculties. Representative users should only
have access to the list of faculties of the school that they are associated with.

User Verification

According to the use case diagram (Fig. 2.3), admin users should be able to
verify representatives and teachers. Representative users, however, should
only be able to verify teachers associated with the same school at which they
work. This is done on the requests page (Fig. D.3). The tab with requests
from representatives is only to be accessible by admins.

Channels

Channel page (Fig. D.4) should enable users to see posts created in a given
channel. Users should be able to sort posts based on the time they were
created, or on their popularity. Users should be able to join a channel so that
the posts from the channel appear in their feed (Fig. D.4). The owner of the
channel should be able to edit the channel ID, its name, or description, or
delete the channel with all its content entirely. In addition, the UI should
also clearly show the number of members, the creation date, and the owner
of the channel. Users should be able to create posts in channels regardless of
their membership.

30

.................................. 3.4. Front End Design

The Feed

The feed (Fig. D.4) shows user posts from the channels that they have
decided to join. The posts in this view should have a link to the channel they
originate from.

Posts

Posts in the feed (Fig. D.4) and on the channel page (Fig. D.4) only display
a limited amount of content. Post page (Fig. D.5) allows users to access the
whole post. Here users should be able to access comments under a given post
or leave their comments.

Comments

For the reason the horizontal space on the screen is limited, the post page
(Fig. D.5) only displays six nested levels of comments. To access comments
nested deeper in the comments tree users should be able to navigate to the
comments page (Fig. D.5). Each comment, regardless of the page, enables
users to read it, or reply to one. Comments that are created by a given user
can also be edited or deleted.

User Profile

User profile page (Fig. D.3) has four sections is available only for certain
users. Refreshing the username is only available to students. On the other
hand, editing the profile is only available to teachers and representatives.
Though representatives are only able to change their names. The remaining
two sections are available to all users.

31

32

Chapter 4
Implementation

In this chapter I will elaborate on implementation details of the application. I
will also cover the technological stack used, and briefly provide core concepts
for each technology. However, first I would like to mention the language in
which the application is written and the reasoning behind my choice.

4.1 TypeScript

The whole application is written in TypeScript.
TypeScript is a free and open-source programming language developed and

maintained by Microsoft. It is a strict syntactical superset of JavaScript and
adds optional static typing to the language [16]. Static type checking is the
process of analyzing the source code of the program. If a program passes the
type checking, it is guaranteed to satisfy some set of type safety properties
for all possible inputs [17].

TypeScript has a built-in compiler that is itself written in TypeScript. Code
written in TypeScript is transpiled into the specified version of JavaScript.
Before the code is transpiled into JavaScript, the compiler validates the
types used. This is the main benefit of using TypeScript since it helps
eliminate errors that would otherwise appear at runtime. Another substantial
advantage is that it speeds up the development process by giving autocomplete
suggestions based on the type of a variable. Although being a standard
feature in all strongly-typed languages, when programming in the JavaScript
ecosystem, this is only available for TypeScript-based development.

Now that I have provided a brief overview of TypeScript and how it works,
I would like to give the reasoning behind my choice:.TypeScript is the language I am very familiar with since for over a year

I have been using it for both personal and work-related development
projects..The front end of the web application can only be written in JavaScript
since that is the only language that browsers use to run client-side
code. To avoid switching contexts and have as pleasant of a developer
experience as possible, I have decided to write the whole application in
TypeScript.

33

4. Implementation....................................
.The language is modern and strongly typed which helps catch a lot of

bugs before runtime.

4.2 Persistence

4.2.1 Database Engine

The application uses PostgreSQL as a database engine. The main reason is
that PostgreSQL is a relational database that I have experience working with.
The benefit to using a relational database is that it provides a strict structure
to the data being stored. Moreover, it is performant enough for the type of
application that I am building.

4.2.2 Object-Relational Mapping

Object-Relational Mapper (ORM) is a layer between the database and the
application code that simplifies interaction with the database. Instead of
having to write complex SQL queries and running them against a database
to verify their correctness, an ORM provides an API abstraction over the
underlying database. An ORM still uses SQL queries under the hood, however,
it enables developers to interact with the database using the same language
that their application is written in. This quickens the development process
and prevents developers from having to debug SQL code.

4.2.3 Database Migrations

Database migrations are version-controlled, incremental, and reversible sets
of changes to a database schema [18]. A migration tool is used to apply
migrations in the specified order to reach the desired state of a database.

Using database migrations brings the following advantages:. Database schema can be evolved as the application, or the requirements
change..The changes to the schema are version-controlled and therefore can be
reverted..The changes can be applied to multiple databases to keep their schemas
synchronized. For instance, this enables testing application code against
a separate database with a relevant schema.

The main disadvantage to using database migrations comes with the
complexity of migrating the actual data stored in the database. Some columns
in relational database tables can have constraints associated with them, and
thus migrations need to account for that. In addtition, migrations have to be
constructed in such a way as to avoid losing the stored data.

34

..................................... 4.2. Persistence

4.2.4 Prisma ORM

Choosing an ORM for this project has been a rather trivial task. I have
selected Prisma as an ORM for several reasons which I would discuss further
in this section. However, first, let me explain how Prisma works.

Prisma ORM consists of three parts:. Prisma Client - a type-safe database query builder. Prisma Migrate - a set of database migration tools. Prisma Studio - a database GUI inspector, which I have not used

In the beginning, a Prisma schema file is created using an intuitive, yet
proprietary data modeling language. This file defines the structure of a
database (the entity models and the relations between them) as well as a
database connection string (URL). Then you run a command to create a
migration file. The Prisma migration tool detects changes in the schema
and automatically generates the necessary migrations. The migrations are
then applied to the database. The schema file also specifies a generator that
generates the Prisma client. The Prisma client is a query builder - a set of
typed objects that are used to run database queries. The reasons for my
choice of Prisma have been the following:. Prisma is an ORM for TypeScript-based projects, therefore it offers code

autocompletion that simplifies the development process..The code that is generated to communicate with the database (Prisma
client) is type-safe and is automatically generated from the underlying
schema. It is tailored to the specific database structure and is updated
when the schema changes.. Prisma migrate automatically detects changes in the schema and gener-
ates appropriate migrations.. Prisma ORM also offers an option to run raw SQL queries if needed.. Prisma does not impose its principles on developers. Rather it allows
developers to intervene: it offers an option to alter the migrations before
applying them, or it provides an ability to run raw SQL queries if needed.

4.2.5 Custom Queries

Although Prisma allows running almost all types of queries, it still lacks a
few key components of the required functionality. The missing feature that I
encountered and had to substitute was the ability to run recursive queries.
PostgreSQL allows running recursive queries with the help of CTEs (common
table expressions). CTE is a temporary result set that can be referenced in
another SQL statement [19]. To create a recursive query one would simply
reference a given CTE from within this CTE. One caveat is that such a CTE
has to be marked with the recursive keyword.

35

4. Implementation....................................
Akin to recursive functions, a recursive CTE consists of three parts: a base

statement, a recursive call to the CTE, and a termination check that would
prevent infinite recursion. The results of the base query and all recursive calls
are combined using the UNION operator.

To replace the missing functionality I had to create empty migrations and
write custom queries wrapped in a function. Later these functions would
have to be invoked as a part of a raw SQL expression. I have created three
custom functions:. get_post_comments: this function returns an array of comment trees

for a particular post. get_comment_comments: this function returns the comment tree with
some comment as the root comment. get_root_comment: this function recursively traverses the comment tree
starting at some comment and returns the root comment in that tree -
the root comment being the comment without a parent comment

4.3 Back End

4.3.1 Back-End Framework

The back-end part of the application is written in NestJS (Nest). Nest
is a modern framework for building efficient, scalable Node.js server-side
applications [20]. The main reason behind my choice is that Nest uses
TypeScript. In addition, this framework is built on top of ExpressJS (a
Node.js web application framework) which I have experience working with.

4.3.2 API Documentation

Documenting an API is an integral part of building an application. The
OpenAPI Specification (OAS) defines a standard, language-agnostic interface
to RESTful APIs which allows both humans and computers to discover and
understand the capabilities of the service without access to source code or
documentation [21]. The specification enables developers to generate an
HTTP communication layer for both the front-end and the back-end parts
of the application. However, I have taken a different path by following the
backend-first approach. This means that instead of constructing an API and
then having the backend and the frontend conform to it, I have generated an
OpenAPI specification file from the controllers used on the backend. NestJS
provides a dedicated module that allows generating such a specification by
leveraging decorators. I have also used Swagger which is a tool that displays
the API definition in a user-friendly manner.

In the end, every modification made to the backend part of the application
results in the OpenAPI specification file being regenerated. This file is later
copied to the frontend part of the application where it is used to generate

36

...................................... 4.3. Back End

a communication layer. However, I will provide the details of this in the
following sections.

4.3.3 Using HTTPS in Development

When the app is deployed into a production environment, it will be served
using the encrypted HTTPS protocol. To simulate this behavior when
developing the application locally, it is necessary to generate a locally signed
SSL certificate.

An SSL certificate is a digital certificate that authenticates a website’s
identity and enables an encrypted connection. SSL stands for Secure Sockets
Layer, a security protocol that creates an encrypted link between a web
server and a web browser [22]. Using SSL certificates keeps the information
transferred between the server and the client private and encrypted.

First, the reader must assume the following three cryptographic concepts
hold..Asymmetric encryption (used in HTTPS communication) relies on two

keys: a public one, and a private one..A public key is used to encrypt messages, however, they can only be
decrypted using a private key. A public key is shared with other parties.
A private key, in line with the name, is always kept with the original
owner..A public key can be used to verify that a message has been encrypted
using the corresponding private key.

Second, I will summarize how communication over HTTPS works. Note
that this is a simplified version of the process and so it omits various other
requests that are made to establish a secure communication channel (e.g.
requests to DNS servers)..The browser (the client) sends a request to an SSL-protected web server

stating that it wants to access some resource..The web server responds with its SSL certificate containing its public
key signed by a certification authority (CA)..The browser then checks if it knows such a CA and whether it is trusted.
Since the browser has access to the CA’s public key, it is easy to verify
the validity of the certificate sent by the server.. If the certificate is valid, the browser then creates a secret, encrypts it
using the server’s public key, and sends it back to the server.. Since the server is the only party that can decrypt this secret, a secure,
symmetrically-encrypted communication channel using the generated
secret is now established.

37

4. Implementation....................................
Lastly, let me briefly explain what a certification authority is, and how an

SSL certificate gets signed..To participate in HTTPS-secured communication, the server generates a
public-private key pair..Then the server creates a certificate signing request (CSR) and sends it
to a known and trusted CA..The CA then signs this request (the certificate) using its private key
and sends it back to the server. Now the server has obtained an SSL
certificate signed by a trusted CA. This means that the server’s identity
is now verified.

Using an SSL certificate in the local development environment requires
creating a certificate and signing it. However, when running locally there is
no CA to sign such a certificate. Thus, creating a local CA is also required.
The local CA then signs the newly created certificate and therefore it is now
possible to access a locally running web service over HTTPS. To create a
certificate I have used the OpenSSL command-line tool. This certificate is
later marked as trusted in the system settings so that the browser does not
throw any security errors.

4.3.4 Authentication

Passport Strategies

Passport is the most popular Node.js authentication library. According to
the official documentation [23], Passport’s sole purpose is to authenticate
requests, which it does through a set of plugins called strategies. At a high
level, all passport strategies work similarly:. First, you configure the strategy by passing it some parameters and a

verification callback that states how Passport should interact with the
user store..Once Passport is given an incoming HTTP request, it verifies user
credentials according to the strategy.. Passport is capable of managing the authentication state. For instance,
by issuing an access token, or by creating a session object.. If verification is successful, Passport attaches the user object to the
HTTP request object.

Nest provides a Passport module that wraps the original library. I have
implemented two strategies for authenticating requests:. Local strategy - this strategy verifies a user by their username (in my

case, an email) and a password.

38

...................................... 4.3. Back End

. JWT strategy - this strategy verifies a user by decoding a JWT access
token received in the request header.. Basic strategy - this strategy verifies a user by their username and
password stored in the basic authorization header of the request object.

The local strategy works by looking up a user using their email in the
database. If successful, the password is compared. The user is then either
granted or denied access to the resource. I have used the local strategy when
authenticating login requests.

The basic strategy works by comparing the username and password trans-
ferred in the basic authorization header of the request:

Authorization : Basic < credentials > .

The credentials are a base64 encoded string in the form of username :
password. This authentication strategy is used to create admin users and is
only available through the API. It is not implemented in the front-end part
of the app.

The JWT strategy works by decoding a JWT authentication token stored
in the bearer authorization header of the request object:

Authorization : Bearer < token > .

The process of decoding a JWT token has been described in the previous
chapter. I have adopted this strategy to authenticate the remaining requests,
including requests to refresh an access token. However, in that case, the JWT
token is a refresh token stored in an authentication cookie.

Nest Guards

Nest uses guards in the form of an annotation to determine whether an
incoming request should be handled depending on certain conditions available
at runtime. Guards are used mainly for authentication and authorization
purposes. Contrary to middleware, guards are aware of what is going to
be executed next in the request-handling pipeline. Therefore they can stop
an incoming request at exactly the right moment. In essence, guards are
simply functions that return a boolean value indicating whether the request
should be handled by the controller. To protect a resource one would simply
annotate it with the required guard. For each Passport strategy used I have
implemented a corresponding guard:. Local authentication guard - for the local authentication strategy. JWT authentication guard - for the JWT authentication strategy. JWT refresh authentication guard - for the JWT authentication strategy

when refreshing an access token. Basic authentication guard - for the basic authentication strategy

39

4. Implementation....................................
Handling Passwords

Storing passwords in the database in plain text form poses an extreme security
risk. Therefore it is crucial to hash and salt passwords beforehand.

To begin with, it is important to use a non-reversible hashing function (e.g.
bcrypt). Otherwise, in case of a security breach, an attacker would be able
to compute the reverse hash and retrieve the original passwords. Rainbow
tables (lists of precalculated password hashes), or simple brute force may be
enough to achieve this.

Secondly, a password must be salted. Salt is a relatively long and random
string of data that is stored together with the password and used to pollute
it before hashing. It proves to be sufficient at securing the passwords for the
following reasons:. the salt always changes, thus two identical passwords would never produce

the same hash. it offers protection against usage of rainbow tables

I have used the bcrypt hashing function and the corresponding Node.js
library to generate a salt and hash all passwords. It is also necessary to
mention how the process of preparing a password before storing works:. First, a random salt is generated and attached to the password as a suffix

resulting in a so-called salted input..Then the salted input is hashed using the bcrypt function, potentially
multiple times. The resulting hash is later prepended with the salt string
and stored in the database.

4.3.5 Authorization

In order to protect the API from unauthorized access, I have employed the
same concept of Nest guards that I have described in the previous section.
There are two types of guards used for authorization purposes:. Permissions guard.Two verification guards

The permissions guard is used for looking up the list of permissions (author-
ities) based on the user’s role. Similar to authentication guards, controller
routes are annotated with the list of permissions required to access a given
resource. If the user’s role does not have the necessary permissions, the access
is denied.

Verification guards prevent access for verified or unverified users based
on each route. The guard extracts the isV erified flag from the user object
(obtained by decoding a JWT access token) and either allows or denies access.
Each controller route, where such protection is required, is annotated with
the corresponding guard.

40

...................................... 4.3. Back End

4.3.6 Modular Structure

The back-end part of the application consists of separate modules. The
modules are responsible for handling a certain part of the functionality. I
have divided the app into the following modules:.Authentication - logging in, logging out, creating users, refreshing access

tokens, modifying user profile data Authorities - getting authorities. Channels - channels CRUD, toggling channel membership, looking up
channel ID availability. Comments - comments CRUD, voting on comments. Cookies - generating authentication cookies. Faculties - faculties CRUD. Feed - getting posts for the feed view. Notifications - getting user notifications and dismissing them. Posts - posts CRUD and voting on posts. Prisma - interacting with the database through an ORM. Refresh Tokens - handling refresh tokens. Representatives - getting representatives’ requests. Schools - schools CRUD.Teachers - getting teachers’ requests. Users - verifying users and getting user profiles

In general, modules are based on the corresponding entity in the database.
Each module consists of a controller, a service, and a set of request parameter
objects. A controller is responsible for handling client HTTP requests. A
service is in charge of the core application logic: working with DTOs (data
transfer objects) and communicating with the database.

Request Parameters

The data contained in HTTP requests can be stored in the request body (in
JSON format), in path parameters, or query parameters. Path parameters
are a part of the endpoint route and are always required. Query parameters
are optional and are found in the query string that starts with a question
mark, at the end of a URL. Usage of all types of parameters can be found in
the application.

41

4. Implementation....................................
Validating Request Parameters

To prevent unexpected behavior and runtime errors, all API parameters are
validated before they reach the controller route. For these purposes, a class-
validator [24] package is used. Nest provides a convenient way to perform
format validation using annotation-based constraints. It works the same way
as the guards do by denying requests whose payload does not satisfy the
enforced validation rules. Having request parameters validated ensures that
users are not able to bypass validation by sending requests directly to the
API.

4.4 Front End

4.4.1 Front-End Library

The front-end part of the application is a single-page application (SPA) and is
written in React. React is a declarative, component-based library for building
user interfaces [25]. It was created by Meta (formerly Facebook) in 2013. At
a high level React works by maintaining its own copy of the DOM (document
object model) called the virtual DOM. It then renders the current state of
the virtual DOM onto the web page. Whenever the state of some component
changes, the virtual DOM is updated. Lastly, the algorithm detects changes
in the virtual DOM and rerenders only the part of the HTML document that
corresponds to the updated component.

4.4.2 Using HTTPS in Development

For the front end to communicate with the back end and avoid getting
CORS errors, the front end must also be served over HTTPS. The process of
enabling HTTPS in the local development environment is analogous to the
one described in the previous part.

4.4.3 State Management and Data Fetching

As the application grows in size and complexity, it progressively becomes more
difficult to organize and handle data spread across multiple components. To
solve this issue, I have opted to use a library called Redux. Officially, Redux
is a predictable state container that acts as a single source of truth for the
entire application [26]. The main idea behind Redux is that all data is stored
in a single place called the store. Then in order to access a piece of data
you use a selector function, and to update some data you use a dispatcher
function. Dispatcher function is a function that receives the current state of
the store and the modified data. What makes Redux predictable is the fact
that the state is immutable. This means that to update the state, Redux
creates a new copy of the state containing the modified data and then replaces
the store with the new value.

42

...................................... 4.4. Front End

To be more precise, I have used Redux Toolkit which is an opinionated
toolset for Redux development [27]. Redux toolkit allows you to create so-
called “slices” of data and define dispatcher functions that would be used to
modify the store. Usually a slice is defined for each separate domain of data
used in the application. I have followed this approach and divided the store
into the following slices:.Authentication slice. Comments slice. Feed slice. Posts slice
The authentication slice holds user credentials and some additional user
specific data. The latter three slices only serve a complementary function.
The reason for this is that I have also decided to use another tool called RTK
Query (Redux Toolkit Query). RTK Query creates a separate API slice for
all the data that it manages.

RTK Query is an optional addon in the Redux Toolkit package and it
serves as a data fetching and caching tool [28]. RTK Query makes use of
the OpenAPI specification, that is generated on the back end, by defining
endpoints and exporting functions that encapsulate data loading. In addition,
it creates a caching layer that holds the data obtained from HTTP responses.
Whenever the application sends a request, RTK Query first checks if there
is already some data in the store. If the data exists and is not stale, no
request is made and the response is created from the data found in the cache.
Otherwise, a request is made and the response is cached for some time. In
order to avoid receiving outdated cached data, RTK Query introduces a tag
based system. Endpoints that send GET requests (queries) provide a list of
tags. On the other hand, endpoints that send other types of HTTP requests
(mutations) invalidate a list of tags. Whenever a mutation is called, data
with the corresponding provided tag is immediately invalidated and later
refetched.

4.4.4 Navigation

I have chosen to implement client side navigation using the React Router
library [29]. The idea behind this concept is that initially the whole application
bundle is sent to the user. The router library then observes the history stack
and renders required content based on the URL. React Router is also capable
of rendering nested layouts, where parts of the page switch dynamically based
on path parameters present in the URL. For instance, such layouts form the
channels, posts, or comments pages.

4.4.5 Handling Forms

Single-page applications introduce a problem with handling forms. Managing
the form state, keeping track of values and errors, validating fields, and

43

4. Implementation....................................
submitting the form becomes a non-trivial task. I have used a library called
Formik [30] that solves all the aforementioned issues. Since the form state
is rather ephemeral and the form data is usually accessed from a single
component only, Formik stores the state of the form using built-in storage.
The whole form is wrapped in a single Formik component that provides field
values, errors, and a submission callback. On top of that, Formik also allows
fields to be validated whenever the value changes or the field loses focus.
Validation is done using a library called Yup. Yup offers a way to define a
schema and then validate objects against it. Finally, Formik prevents form
submission before all form fields are considered valid.

4.4.6 UI Components

The main reason I have decided to create my own UI components is that most
component libraries force you to adopt predefined styles. However, I have
opted to have an application with a unique look. Moreover, this decision has
been influenced by the effort to satisfy one of the non-functional requirements
which states that the application UI has to dynamically adapt to all screen
sizes. It is known that writing pure CSS can be rather cumbersome. Therefore,
for styling purposes, I have chosen Tailwind CSS. Tailwind is a CSS framework
that offers hundreds of utility CSS classes. These classes are applied inline,
directly on every HTML element. The advantage of using a styling framework
rather than creating the styles by hand is that such frameworks offer a system
of constraints that make it easy to maintain consistency with colors, spacing,
etc. I have created most components used in the app completely from scratch:. two types of modal windows. four types of alerts. badge. five types of buttons. icon button. input textbox. styled link. loading spinner. radio group. selector. table. text area

44

..................................... 4.5. Deployment

However, several components require implementing rather complex logic
associated with them. Headless UI is a library from the makers of Tailwind
that offers unstyled components. The following components have been adopted
from the library, styled, and integrated:. popover. dropdown. autocomplete. tabs

Popover component adds a button that upon clicking shows some content
stacked on top of the page UI. Dropdown enables building menus that are
revealed when clicking on a button. Autocomplete is a textbox augmented
by a dynamically formed list of options. Tabs offer a way to switch between
multiple views by clicking on the corresponding tab button.

4.4.7 Switching Color Scheme

The dark mode feature enables users to switch the color scheme of the UI to
a dark variant. I have implemented three modes (Fig. E.1): a light mode,
a dark mode, and a system mode. System mode is enabled by default, and
it matches the prefers − color − scheme media query. This media query
updates whenever the system preference changes. The light mode allows
users to permanently keep the light variant of the UI. The dark mode does
the same, but for the dark variant of the UI. If the user selects either of the
non-default modes (light or dark), their preference is saved in the browser’s
local storage. If the user switches to the system mode, their preference is
erased and the system-defined value is applied.

4.5 Deployment

The application is deployed onto Digital Ocean App Platform [31]. The app
platform is an all-in-one PaaS (platform as a service) solution for deploying
applications without having to configure the environment. I have created
an app and attached a database to it. Prisma ORM allows me to deploy
migrations directly to the production database using a URL. The front-end
part is deployed to a CDN within that app. The back end is deployed as a
constantly running web service.

Another useful feature of the app platform is that it allows triggering
automatic redeploys when a certain Git branch is updated. Therefore I have
connected my GitHub and Digital Ocean accounts and have configured the
master branch as the target branch for automatic deployment jobs. The
production version of the application is available at

https : //comm − app − 2gvj8.ondigitalocean.app.

45

https://comm-app-2gvj8.ondigitalocean.app

46

Chapter 5
Testing

5.1 Automatic Testing

As part of application development, I have written several suites of automatic
tests. Specifically, I have opted to write end-to-end (integration) tests. Such
tests check how different app components integrate. Moreover, integration
tests are designed to follow various interaction scenarios and thus resemble
actual users’ behavior. I have set up an isolated testing environment with its
own environment variables and a separate database. Before each test suite
is run, the database is reset and the migrations are applied for the tests to
yield consistent results.

Nest provides a set of preconfigured tools for all types of testing. It uses a
framework called Jest to run tests and assert the correctness of tested data.
Another library called Supertest helps emulate HTTP requests being sent to
controllers. All tests that I have created follow the AAA principle: arrange-
act-assert. First, I arrange something before the test runs. For instance, I
could send a request to log in and obtain the access token. Second, I act,
meaning the actual test is run. Finally, the results of the test are asserted to
be correct against expected values.

An example of an end-to-end test (Appx. B) imitates a user creating a
post and the post data is later asserted.

5.2 User Testing

After deploying the application, I set up two testing scenarios: one for teachers,
and one for students (Appx. C). Each testing scenario consists of three parts.
In the first part, users are asked to create an account and log in using their
credentials. In the second part, users are asked to perform some actions by
interacting with the application. Some of the actions are: creating a channel,
joining a channel, creating a post, leaving a comment, etc. The last part of
the scenarios asks users the following three questions.. Please specify if you have encountered any errors. Did you see any error

alerts? If so, where?

47

5. Testing
. Did you find any task complicated, confusing, or unintuitive to complete?.Do you have any suggestions on how the user experience could be

improved?

I have asked three students and three teachers to test the production
version of the application. Following is their feedback.

5.2.1 Student A

Student A has said that they liked the overall feel of the application. They
have mentioned that they had tried to hack the security and get access to
parts of the application to which they should not have access but to no avail.
Regarding the questions, they provided the following answers...1. Please specify if you have encountered any errors. Did you see

any error alerts? If so, where?.The search was not able to find the ID of my channel. I had to
refresh the page...2. Did you find any task complicated, confusing, or unintuitive to

complete?.At first, I did not know how to change the color scheme. I was
confused as the button for doing so had an icon with a computer
monitor.. I thought that the channel ID should be a number and was perplexed
why it could not be generated automatically. It turned out that the
channel ID is similar to usernames, but for channels..The button for creating a channel should not have been placed in
the profile menu. It has nothing to do with the user profile.. It would be great to see a popup saying "The link has been copied"
when the share button is clicked.. I was also not sure why teachers should have random usernames
assigned to them if they are not anonymized...3. Do you have any suggestions on how the user experience could

be improved?. I would prefer to see a filter for channels. Also it is not possible to
access a list of created channels.

5.2.2 Student B

Student B has provided the following answers...1. Please specify if you have encountered any errors. Did you see
any error alerts? If so, where?

48

.....................................5.2. User Testing

. I have not found any errors...2. Did you find any task complicated, confusing, or unintuitive to
complete?.When creating a channel I was confused by error messages in the

channel ID field. Upon entering only one symbol, the error said,
"Must only contain numbers and letters." It should have said, "Must
be between 2 and 20 characters."..3. Do you have any suggestions on how the user experience could

be improved?. It would be helpful to access the list of created channels and also
the list of channels that I have joined.

5.2.3 Student C

Student C has complimented the design and has praised the mobile-friendly
UI. They have sent the following answers...1. Please specify if you have encountered any errors. Did you see

any error alerts? If so, where?. I have not encountered any errors...2. Did you find any task complicated, confusing, or unintuitive to
complete?.The channel ID field said the input must only contain numbers and

letters. It turned out that no capital letters are allowed. I would
suggest switching the error text to a more comprehensive one..When creating a channel, the field "Name" should be instead labeled
"Channel Name". I was confused about which name I was supposed
to enter..The button for creating a channel should be placed elsewhere. It
does not relate to the user profile section...3. Do you have any suggestions on how the user experience could

be improved?. I would suggest adding an option to make the channels private so
that the content is only available to some users.

5.2.4 Teacher A

Teacher A has said that they use similar applications (Reddit, Discord, Slack)
on a regular basis and so the UI seemed very intuitive to use. They have
provided the following feedback.

49

5. Testing ...1. Please specify if you have encountered any errors. Did you see
any error alerts? If so, where?. I have had an error when creating a channel. Specifically I was not

able to use letters in the channel ID, even though the input error
said "Must only contain letters and numbers"...2. Did you find any task complicated, confusing, or unintuitive to

complete?.The only thing I have found difficult is choosing the ID for my
channel...3. Do you have any suggestions on how the user experience could

be improved?. I do not have any suggestions.

5.2.5 Teacher B

Teacher B has sent the following answers...1. Please specify if you have encountered any errors. Did you see
any error alerts? If so, where?. I have had issues creating a channel. I could not overcome the

channel ID input error that said "Must only contain numbers and
letters"..The search bar did not work as expected. Sometimes no results
were shown with identical input...2. Did you find any task complicated, confusing, or unintuitive to

complete?. Upon signing up I entered the school name and then did not choose
any of the suggested results. I was confused as to why the input
field became blank...3. Do you have any suggestions on how the user experience could

be improved?. I would suggest adding tooltips that are shown when hovering over
buttons.

5.2.6 Teacher C

Teacher C has provided the following feedback...1. Please specify if you have encountered any errors. Did you see
any error alerts? If so, where?

50

.....................................5.2. User Testing

. I have not found any errors...2. Did you find any task complicated, confusing, or unintuitive to
complete?. I was slightly confused why the names of schools were listed in

Czech but the form was in English.. I could not find the button for creating a channel. I believe that it
should not have been placed in the profile menu.. I did not understand the purpose of the "Join / Leave" button...3. Do you have any suggestions on how the user experience could

be improved?. I do not have any suggestions.

5.2.7 Results of User Testing

After receiving the feedback I implemented a fix for the search bar. I could
not reproduce the channel ID input error that most people had seen. It
seemed as they had been trying to use capital letters and so the validation
error was not clear. I changed the error to "Must only contain small letters
and numbers".

51

52

Chapter 6
Conclusion

All goals stated in the beginning of the thesis have been realized.
First, I analyzed online communication between teachers and students and

studied the existing solutions. I identified the advantages and disadvantages
of those solutions and introduced a list of functional and non-functional
requirements for the application.

Second, I designed the application with the specified requirements in mind.
I chose a stack of technologies and implemented the application.

In the last part of the thesis, I conducted automatic end-to-end tests, and
later asked a group of teachers and students to test the application. End-to-
end tests allowed me to maintain the app functionality after code changes.
User tests have provided me with feedback and insights on how to improve
the application.

In addition to suggestions received from people who have tested the app, I
would like to point out further improvements that I have come up with after
finishing the development.. Upgrade posts to a rich-text format for improved readability..Add an ability to upload images and attach other documents to posts.. Introduce private one-on-one chats with teachers..Make posts searchable.

My work has resulted in the creation of a tested and deployed web applica-
tion. Throughout this project, I have studied and practically applied several
new technologies, for instance, RTK Query on the front end, and NestJS
and Prisma on the back end. The invaluable feedback I have received from
users has provided me with the direction for future development. Neverthe-
less, the application is already a fully-functioning product, and people from
educational institutions around the globe can benefit from it today.

53

54

Appendix A
Database Structure

The domain model (Fig. A.1) is shown on the following page.

55

A. Database Structure..................................

Figure A.1: Database Structure

56

Appendix B
Example of End-To-End Test

describe("Posts Module Tests", () => {
let app: INestApplication;
let accessToken = "";

// 1. arrange
beforeAll(async () => {

// initializing the application
app = await TestUtils.initApp();
await app.init();

// logging in and obtaining the access token
const payload: LogInUserRequestDto = {

email: "student@email.com",
password: "pass123"

};
await request(app.getHttpServer())

.post("/auth/login")

.send(payload)

.expect((res) => {
accessToken = res.body.accessToken;

});
});

it("should create a post in the demo channel", async () => {
// 2. act
const payload: CreatePostRequestDto = {

channelUuid: "ff5958fb-d1be-426b-ab5b-a3302ec803f0",
title: "post title",
body: "post body",

};
const response = await request(app.getHttpServer())

.post("/posts")

.set("Authorization", TestUtils.bearer(accessToken))

.send(payload)

.expect(201);

continue on the following page ...

57

B. Example of End-To-End Test..............................
// 3. assert
expect(response.body.uuid).toBeDefined();
expect(response.body.uuid).not.toEqual("");

});

// other tests of the posts module
})

58

Appendix C
User Test Scenarios

C.1 Teacher Test

Thank you for agreeing to test my application. This is an application used
for anonymous communication between teachers and students. Only students
get to communicate anonymously. The application allows creating channels,
creating posts in them, and commenting under posts.

Please test the application using the instructions below.

C.1.1 Part 1. Signing up as a teacher..1. Open the application at https://comm-app-2gvj8.ondigitalocean.app...2. Sign up as a teacher:..3. For the school choose any school from the following (because only these
three have been registered in the system so far):. České vysoké učení technické v Praze.Vysoká škola ekonomická v Praze. Univerzita Karlova..4. For the faculty choose any faculty from the list of available ones. Try
searching for the faculty by typing “fakulta”...5. After signing up successfully, log in using your credentials...6. Make sure that you see a notification at the top of the page saying that
your account needs to be verified first.

C.1.2 Part 2. Using the application as a teacher..1. Since the account you just created must be verified first, please use the
following credentials in this part of the test.. Email: teachertest@gmail.com. Password: teacher2022

59

https://comm-app-2gvj8.ondigitalocean.app

C. User Test Scenarios....................................2. Change the color scheme, if you prefer. By default, the system mode
will follow your system preferences. Alternatively, you can set the light,
or the dark mode permanently...3. Create a channel using a button in the navigation bar at the top of the
page...4. Navigate to the newly created channel using one of the following ways:. after creating a channel you should be redirected to it automatically. search for it by typing the name or the channel ID in the search

bar at the top of the page. go to the URL directly:
https://comm-app-2gvj8.ondigitalocean.app/channels/<your chan-
nel ID>..5. Join your channel...6. Create a post in your channel...7. Leave a comment under this post...8. Vote on your post and your comment...9. Edit your channel name and/or channel ID and/or description....10. Edit your comment....11. Delete your comment....12. Delete your post....13. Join some more channels. The following channels are available:. demo. forstudents. test. or feel free to create more channels yourself and join them...14. Return to the home view (the feed)....15. Make sure you can see the posts from the channels that you have joined....16. Navigate to your profile....17. Change your name and bio....18. Log out.

60

.................................... C.2. Student Test

C.1.3 Part 3. Testing Feedback..1. Please specify if you have encountered any errors. Did you see any error
alerts? If so, where?..2. Did you find any task complicated, confusing, or unintuitive to complete?..3. Do you have any suggestions on how the user experience could be
improved?

This is the end of the test.
Thank you for helping me test the application!
If you have any more suggestions, I will be glad to hear them.

C.2 Student Test

Thank you for agreeing to test my application. This is an application used
for anonymous communication between teachers and students. Only students
get to communicate anonymously. The application allows creating channels,
creating posts in them, and commenting under posts.

Please test the application using the instructions below.

C.2.1 Part 1. Signing up as a student..1. Open the application at https://comm-app-2gvj8.ondigitalocean.app...2. Sign up as a student...3. After signing up successfully, log in using your credentials.

C.2.2 Part 2. Using the application as a student..1. Make sure you are still logged in after finishing the first part of the test...2. Change the color scheme, if you prefer. By default, the system mode
will follow your system preferences. Alternatively, you can set the light,
or the dark mode permanently...3. Create a channel using a button in the navigation bar at the top of the
page...4. Navigate to the newly created channel using one of the following ways:. after creating a channel you should be redirected to it automatically. search for it by typing the name or the channel ID in the search

bar at the top of the page. go to the URL directly:
https://comm-app-2gvj8.ondigitalocean.app/channels/<your chan-
nel ID>

61

https://comm-app-2gvj8.ondigitalocean.app

C. User Test Scenarios....................................5. Join your channel...6. Create a post in your channel...7. Leave a comment under this post...8. Vote on your post and your comment...9. Edit your channel name and/or channel ID and/or description....10. Edit your comment....11. Delete your comment....12. Delete your post....13. Join some more channels. The following channels are available:. demo. forstudents. test. or feel free to create more channels yourself and join them...14. Return to the home view (the feed)....15. Make sure you can see the posts from the channels that you have joined....16. Navigate to your profile....17. Refresh the username. Make sure you see the prompt with your new
username....18. Change the email....19. Change the password....20. Log out....21. Log back in using your new credentials....22. Log out again.

C.2.3 Part 3. Testing Feedback..1. Please specify if you have encountered any errors. Did you see any error
alerts? If so, where?..2. Did you find any task complicated, confusing, or unintuitive to complete?..3. Do you have any suggestions on how the user experience could be
improved?

This is the end of the test.
Thank you for helping me test the application!
If you have any more suggestions, I will be glad to hear them.

62

Appendix D
Front End Wireframes

Figure D.1: Login Page Wireframe (top) - Signup Page Wireframe (bottom)

63

D. Front End Wireframes.................................

Figure D.2: Schools Page Wireframe (top) - Faculties Page Wireframe (bottom)
64

................................. D. Front End Wireframes

Figure D.3: Requests Page Wireframe (top) - Account Page Wireframe (bottom)
65

D. Front End Wireframes.................................

Figure D.4: Feed Page Wireframe (top) - Channel Page Wireframe (bottom)
66

................................. D. Front End Wireframes

Figure D.5: Post Page Wireframe (top) - Comments Page Wireframe (bottom)
67

68

Appendix E
Switching Color Scheme

Figure E.1: Light Mode (top) - Dark Mode (bottom)

69

70

Appendix F
Application Demonstration

Figure F.1: Login Page (top) - Signup Page (bottom)

71

F. Application Demonstration...............................

Figure F.2: Feed Page (top) - Channel Page (bottom)
72

............................... F. Application Demonstration

Figure F.3: Post Page (top) - Comment Page (bottom)
73

F. Application Demonstration...............................

Figure F.4: Requests Page (top) - Schools Page (bottom)
74

............................... F. Application Demonstration

Figure F.5: Student Account Page (top) - Teacher Public Profile Page (bottom)
75

76

Appendix G
Bibliography

[1] Using Anonymity in Online Interactive EFL Learning: International
Students’ Perceptions and Practices, Chen Chen, The University of Sydney,
Australia, 2019. Accessed: 04.07.2022.
https://files.eric.ed.gov/fulltext/EJ1214276.pdf

[2] How Peer Pressure Can Lead Teens to Underachieve—Even in Schools
Where It’s “Cool to Be Smart”, Leonardo Bursztyn, Georgy Egorov,
Robert Jensen, 02.10.2018. Accessed: 04.07.2022.
https://insight.kellogg.northwestern.edu/article/peer-pressure-can-lead-
teens-underachieve-schools-cool-to-be-smart

[3] Anonymity and in Class Learning: The Case for Electronic Response
Systems, Mark Alistair Freeman, Paul Blayney, Paul Ginns, November
2006. Accessed: 04.07.2022.
https://www.researchgate.net/publication/259695045

[4] Online Teaching: Encouraging Collaboration Through Anonymity,
Andrea Chester, Gillian Gwynne, 26.06.2006. Accessed: 04.07.2022.
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1083-
6101.1998.tb00096.x

[5] Microsoft Teams - Video Conferencing, Meetings, Calling. Accessed:
15.11.2022.
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software

[6] Zoom - One Platform to Connect. Accessed: 15.11.2022.
https://zoom.us

[7] Discord - Your Place to Talk and Hang Out. Accessed: 15.11.2022.
https://discord.com

[8] Slido - Audience Interaction Made Easy. Accessed: 15.11.2022.
https://www.slido.com

[9] Mentimeter - Interactive Presentation Software. Accessed: 15.11.2022.
https://www.mentimeter.com

77

https://files.eric.ed.gov/fulltext/EJ1214276.pdf
https://insight.kellogg.northwestern.edu/article/peer-pressure-can-lead-teens-underachieve-schools-cool-to-be-smart
https://insight.kellogg.northwestern.edu/article/peer-pressure-can-lead-teens-underachieve-schools-cool-to-be-smart
https://www.researchgate.net/publication/259695045
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1083-6101.1998.tb00096.x
https://onlinelibrary.wiley.com/doi/full/10.1111/j.1083-6101.1998.tb00096.x
https://www.microsoft.com/en-us/microsoft-teams/group-chat-software
https://zoom.us
https://discord.com
https://www.slido.com/?experience_id=11-z
https://www.mentimeter.com

G. Bibliography.....................................
[10] Functional and Nonfunctional Requirements: Specification and Types,

23.07.2021. Accessed: 22.11.2022.
https://www.altexsoft.com/blog/business/functional-and-non-
functional-requirements-specification-and-types/

[11] Use Cases. Accessed: 22.11.2022.
https://www.usability.gov/how-to-and-tools/methods/use-cases.html

[12] What Is a REST API, 08.05.2020. Accessed: 24.11.2022.
https://www.redhat.com/en/topics/api/what-is-a-rest-api

[13] JSON Web Tokens. Accessed: 24.11.2022.
https://jwt.io/

[14] What Is a Wireframe? Accessed: 25.11.2022.
https://careerfoundry.com/en/blog/ux-design/what-is-a-wireframe-
guide/

[15] What Is Wireframing? Accessed: 25.11.2022.
https://www.experienceux.co.uk/faqs/what-is-wireframing/

[16] What Is Typescript? Javascript Typescript Brief History. Accessed:
26.11.2022.
https://www.typescriptlang.org/docs/handbook/typescript-from-
scratch.htmlwhat-is-javascript-a-brief-history

[17] Type Systems in Software Explained With Examples, 27.09.2020. Ac-
cessed: 26.11.2022.
https://thevaluable.dev/type-system-software-explained-example/

[18] What Are Database Migrations? Advantages and Disadvantages of
Migration Tools. Accessed: 26.11.2022.
https://www.prisma.io/dataguide/types/relational/what-are-database-
migrationswhat-are-database-migrations

[19] Common Table Expressions in PostgreSQL. Accessed: 25.07.2022.
https://www.postgresqltutorial.com/postgresql-tutorial/postgresql-cte/

[20] Nestjs: A Progressive node.JS Framework. Accessed: 01.08.2022.
https://docs.nestjs.com/

[21] Swagger OpenAPI Specification. Accessed: 27.11.2022.
https://swagger.io/specification/

[22] What Is an SSL Certificate – Definition and Explanation. Accessed
27.11.2022.
https://www.kaspersky.com/resource-center/definitions/what-is-a-ssl-
certificate

[23] Passport Concepts. Authentication. Accessed: 03.08.2022.
https://www.passportjs.org/concepts/authentication/

78

https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://www.altexsoft.com/blog/business/functional-and-non-functional-requirements-specification-and-types/
https://www.usability.gov/how-to-and-tools/methods/use-cases.html
https://www.redhat.com/en/topics/api/what-is-a-rest-api
https://jwt.io/
https://careerfoundry.com/en/blog/ux-design/what-is-a-wireframe-guide/
https://careerfoundry.com/en/blog/ux-design/what-is-a-wireframe-guide/
https://www.experienceux.co.uk/faqs/what-is-wireframing/
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html#what-is-javascript-a-brief-history
https://www.typescriptlang.org/docs/handbook/typescript-from-scratch.html#what-is-javascript-a-brief-history
https://thevaluable.dev/type-system-software-explained-example/
https://www.prisma.io/dataguide/types/relational/what-are-database-migrations#what-are-database-migrations
https://www.prisma.io/dataguide/types/relational/what-are-database-migrations#what-are-database-migrations
https://www.postgresqltutorial.com/postgresql-tutorial/postgresql-cte/
https://docs.nestjs.com/
https://swagger.io/specification/
https://www.kaspersky.com/resource-center/definitions/what-is-a-ssl-certificate
https://www.kaspersky.com/resource-center/definitions/what-is-a-ssl-certificate
https://www.passportjs.org/concepts/authentication/

..................................... G. Bibliography

[24] Class-Validator: Decorator-Based Validation. Accessed: 05.08.2022.
https://github.com/typestack/class-validatorclass-validator

[25] React: A Javascript Library for Building User Interfaces. Accessed:
23.11.2022.
https://reactjs.org

[26] Redux: A Predictable State Container for JS Apps. Accessed: 23.11.2022.
https://redux.js.org/

[27] Redux Toolkit: The Official, Opinionated, Batteries-Included Toolset
for Efficient Redux Development. Accessed: 23.11.2022.
https://redux-toolkit.js.org/

[28] Redux Toolkit Query Overview. Accessed: 10.08.2022.
https://redux-toolkit.js.org/rtk-query/overview

[29] React Router Overview. Accessed: 11.08.2022.
https://reactrouter.com/en/main/start/overview

[30] Formik: Build Forms in React, Without the Tears. Accessed: 11.08.2022.
https://formik.org

[31] Digital Ocean App Platform: Fully-Managed Infrastructure. Accessed:
15.11.2022.
https://www.digitalocean.com/products/app-platform

79

https://github.com/typestack/class-validator#class-validator
https://reactjs.org
https://redux.js.org/
https://redux-toolkit.js.org/
https://redux-toolkit.js.org/rtk-query/overview
https://reactrouter.com/en/main/start/overview
https://formik.org
https://www.digitalocean.com/products/app-platform

	Introduction
	Motivation
	Goals

	Analysis
	Problem Analysis
	Analysis of Existing Solutions
	Requirements Specification
	Domain Concept Model
	Functional Requirements
	Non-functional Requirements
	Use Case Analysis

	System Design
	Application Architecture
	Database Design
	Back End Design
	Back End Structure
	REST API
	Authentication
	Authorization
	Voting System
	Anonymity

	Front End Design
	Wireframes

	Implementation
	TypeScript
	Persistence
	Database Engine
	Object-Relational Mapping
	Database Migrations
	Prisma ORM
	Custom Queries

	Back End
	Back-End Framework
	API Documentation
	Using HTTPS in Development
	Authentication
	Authorization
	Modular Structure

	Front End
	Front-End Library
	Using HTTPS in Development
	State Management and Data Fetching
	Navigation
	Handling Forms
	UI Components
	Switching Color Scheme

	Deployment

	Testing
	Automatic Testing
	User Testing
	Student A
	Student B
	Student C
	Teacher A
	Teacher B
	Teacher C
	Results of User Testing

	Conclusion
	Database Structure
	Example of End-To-End Test
	User Test Scenarios
	Teacher Test
	Part 1. Signing up as a teacher
	Part 2. Using the application as a teacher
	Part 3. Testing Feedback

	Student Test
	Part 1. Signing up as a student
	Part 2. Using the application as a student
	Part 3. Testing Feedback

	Front End Wireframes
	Switching Color Scheme
	Application Demonstration
	Bibliography

