
Insert here your thesis’ task.

Master’s thesis

Security Analysis of OnlyKey

Bc. Josef Hušek

Department of Information Security
Supervisor: Ing. Josef Kokeš

June 23, 2022

Acknowledgements

I would especially like to think my supervisor Ing. Josef Kokeš, for having
patience with me and for lending me the OnlyKey Original, so that I could
study it.

I would also like to thank my family, friends and also my fiancée, for
providing me with continued emotional support.

Lastly I would like to thank Tim Steiner and the full CryptoTrust team
for creating the OnlyKey, it is indeed an awesome device.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on June 23, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Josef Hušek. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis

Hušek, Josef. Security Analysis of OnlyKey. Master’s thesis. Czech Technical
University in Prague, Faculty of Information Technology, 2022.

Abstrakt

Tato práce se zabývá zař́ızeńım zvaným OnlyKey, které slouž́ı jako malý osobńı
autentifikačńı token. Jeho hlavńım účelem je fungovat jako dedikovaný hard-
warový správce hesel, včetně podpory pro dvoufázové ověřeńı uživatele. Nej-
prve se pod́ıváme jaký hardware toto zař́ızeńı použ́ıvá a rozebereme si nějaké
obecné informace o zař́ızeńı, včetně jeho inzerovaných schopnost́ı. Poté se
zaměř́ıme na několik open-source kód̊u, které společně tvoř́ı zázemı́ umožňuj́ıćı
zamýšlenou funkčnost zař́ızeńı a pronikneme do toho jak funguj́ı a jak spolu
spolupracuj́ı. V posledńı řadě budeme diskutovat zaj́ımavá fakta, která jsme
odhalili během studia tohoto zař́ızeńı, a to předevš́ım z pohledu bezpečnosti
uživatele.

Kĺıčová slova heslo, password manager, autentifikace, dvoufaktorová au-
tentifikace, dedikovaný hardware, OnlyKey, CryptoTrust, PIN, Teensy, cryp-
tography, bezpečnost, soukromı́

vii

Abstract

This thesis is about the OnlyKey device, which is a small personal authenti-
cation token. Its main function is acting as a dedicated hardware password
manager, including support for two-factor-authentication. We will first dis-
cuss a bit about what hardware it is based on and some general information
about the device including its advertised capabilities. After this we will shift
our attention to the several open-source software pieces, which make the de-
vice work as intended and delve into how they work and interact with each
other. Lastly we will discuss what interesting facts we found during the study
of this device, especially pertaining to user security.

Keywords password, password manager, authentication, two-factor authen-
tication, dedicated hardware, OnlyKey, CryptoTrust, PIN, Teensy, cryptog-
raphy, security, privacy

ix

Contents

Introduction 1

1 Hardware and general information 3
1.1 The Teensy . 3
1.2 The OnlyKey . 4

1.2.1 OnlyKey basic capabilities and usage 5
1.2.2 OnlyKey variants . 5
1.2.3 OnlyKey security features 9

1.3 OnlyKey alternatives . 12

2 OnlyKey Software 13
2.1 OnlyKey App . 13

2.1.1 OnlyKey first setup . 14
2.1.2 OnlyKey usage . 17

2.1.2.1 Slots . 18
2.1.2.2 Setup . 21
2.1.2.3 Keys . 21
2.1.2.4 Backup/Restore 22
2.1.2.5 Firmware . 22
2.1.2.6 Preferences . 23
2.1.2.7 Advanced . 26
2.1.2.8 Tools . 26

2.2 OnlyKey App alternatives and other software 27
2.3 OnlyKey Firmware and bootloader 28

2.3.1 Notable FW versions . 28
2.3.2 Bootloaders and hid devices 30
2.3.3 Building and debugging the FW 32

2.3.3.1 Cryptographic libraries 34
2.3.3.2 Crypto-related libraries 36

xi

2.3.3.3 Libraries that are not directly crypto-related . 37
2.3.3.4 Unused libraries 38

2.4 Used Cryptography . 39

3 What I found 41
3.1 Attack scenarios and problematic areas 41

3.1.1 The significance of two PINs 41
3.1.2 PD/STD profile interactions 43

3.2 Minor potentially problematic areas 44
3.3 Other interesting findings . 46
3.4 Documentation vs. function inconsistencies 48
3.5 Secure coding standards . 51

Conclusion 53

Future work 55

Bibliography 57

A Acronyms 63

B Contents of enclosed CD 65

xii

List of Figures

1.1 The Teensy 3.2 device front (downloaded from the PJRC website[6]) 4
1.2 The Teensy 3.2 device back (downloaded from the PJRC website[6]) 4
1.3 The OnlyKey Original from the front 6
1.4 The OnlyKey Original from the back 6
1.5 The contact points which are used to jump to bootloader 7
1.6 The OnlyKey Color with the supplied cover removed from the front 8
1.7 The OnlyKey Color with the supplied cover removed from the back 9
1.8 Official 3D render of the OnlyKey Duo available from the OnlyKey

product page [20] . 10

2.1 The OnlyKey App welcome screen 15
2.2 The dialog box informing about new update 16
2.3 User PIN requested . 17
2.4 Slots tab . 18
2.5 Slot configuration window . 19
2.6 Setup tab . 21
2.7 Keys tab . 22
2.8 Backup/Restore tab . 23
2.9 Firmware tab . 24
2.10 Preferences tab . 26
2.11 Advanced tab . 27
2.12 Tools tab . 28
2.13 Code that periodically checks whether we should jump back to the

BVL bootloader (from OnlyKey.ino) 31

3.1 The code the BVL bootloader uses to check the FW integrity . . . 46
3.2 The code that the password library uses to copy the password guess

into another buffer . 48
3.3 The code that the password library uses to compare two passwords

for match . 49

xiii

3.4 The code for setting up lock buttons 50

xiv

Introduction

In today’s internet-age society, there is a great need for authentication. All
around the Web - and other online services - communicating parties want to
make sure that they are actually talking with the intended partner and not
an impostor.

There are several ways to solve the authentication problem - the traditional
one is to use passwords. In this case the user remembers a password or a
passphrase which the other party can verify in some pre-determined way.

This becomes problematic when the user wants to use a lot of different
services - it is insecure in practice to use the same password across different
services, but at the same time it is infeasible for most people to remember a
lot of unique and strong passwords.

Therefore one of the solutions is to store all password somewhere, where
only the user can access it. Some people might solve this by writing their
passwords down on a piece of paper or in a personal notebook/diary, etc.
This solution can work well in theory, as long as the user can guarantee that
the list of passwords won’t be lost and nobody else will be able to access it
(these conditions are difficult to meet though). Even if these are satisfied -
it is definitely not a very comfortable solution. Each time the user wants to
login to one of their services, they will have to physically take their list, find
the correct password and then manually write it on their keyboard.

A more practical and modern approach would be using a special software
called a password manager. This is a computer program which stores all the
passwords on a hard drive or in the cloud in an encrypted form, requiring
another password to gain access and decrypt them. This reduces the amount
of passwords needed to remember down to one, while still using strong unique
passwords for all the different services. Another advantage can be that -
depending on the program used - the manager may allow the user to copy-paste
the requested password, or even type it in a selected text field automatically
on behalf of the user. A disadvantage of this system is that if a potential
attacker gains access to the encrypted database in any way, they will be able

1

Introduction

to steal all the passwords. This could happen either by cracking the main
password via brute-force or dictionary attacks, or by somehow gaining access
to the legitimate users PC (either remotely or locally) and installing some kind
of keylogger - a malicious piece of software that records keystrokes. Another
way might be bypassing the encryption altogether if, the chosen encryption
function is weak, or if there are problems with the implementation which
render its security useless.

The majority of these problems can be addressed by using a hardware
based password manager instead - a separate device dedicated for personal
authentication which preferably can’t connect to the Internet at all. This
device would then be physically carried by the user and when needed would
somehow transfer the needed password(s) to a target platform (PC, smart-
phone, . . .) where the user is trying to authenticate themselves.

Besides passwords and passphrases there are other methods of authen-
tication. These can either be used along with a password, to provide a
second/multi-factor authentication or without a password to provide a ”pass-
wordless” authentication experience[1]. Usually we talk about 3 categories
of authentication - ”what you have” (a specific HW device, a phone), ”what
you know” (a password, a sceurity question) and ”what you are” (fingerprints,
retina).

In this thesis I am mostly interested in the ”what you have” category,
since the main topic is a physical device which the user has and carries with
him. The device in question is called the OnlyKey and allows among other
things password management as well as the option to serve as a second factor
security key.

2

Chapter 1
Hardware and general

information

1.1 The Teensy

”The Teensy is a complete USB-based microcontroller development system,
in a very small footprint, capable of implementing many types of projects. All
programming is done via the USB port.”[2]

Teensy is an independent commercial project created and maintained by
Paul Stoffregen. He and his partner Robin Coon share a website1 that is used
to document and sell the various Teensy devices, as well as showcase differ-
ent projects using the device. The website also hosts among other things a
personal blog which is not of interest to us, however there is also a subdo-
main2 which contains the user forum and which is a great source of additional
information on the Teensy.

Specifically I am interested in Teensy 3.2 (pictured on 1.1 and 1.2), since
that is the version that OnlyKey is based on. It uses the ”MK20DX256VLH7”
32-bit chip by NXP semiconductors (formerly Freescale semiconductors)[3].
It provides the user with 3 types of memory - 64 kilobytes of RAM, 256
kilobytes of flash and 2 kilobytes of EEPROM. The EEPROM is actually
emulated in the last 22528 bytes of the flash memory and wear leveling is
performed automatically, to increase its lifespan [4][5]. The RAM serves its
traditional purpose of storing currently used data and variables, flash memory
is primarily meant to store the user program and the EEPROM should store
data that needs to persist between reboots and possible losses of power. The
chip provides a security feature designed to protect the memory from being
overwritten externally after the proper setup - this technology is called Kinetis
Security - its usage in the OnlyKey software will be discussed later.

1https://www.pjrc.com
2https://www.forum.pjrc.com

3

https://www.pjrc.com
https://www.forum.pjrc.com

1. Hardware and general information

Figure 1.1: The Teensy 3.2 device front (downloaded from the PJRC web-
site[6])

Figure 1.2: The Teensy 3.2 device back (downloaded from the PJRC web-
site[6])

The device also has a separate chip which houses the HalfKay bootloader.
This is a proprietary closed-source[7] bootloader which is used for loading the
main user program to the Teensy [8] via the USB port, using a small cross-
platform application called ”Teensy loader” [9]. The Teensy can communicates
with a PC (or another host device) using a ”Raw HID” protocol [10].

When it comes to software the Teensy is software-compatible with Ar-
duino. This means it primarily uses the Arduino IDE, libraries compatible
with Arduino boards and the coding style of Arduino. The usual workflow for
Teensy is to first download and install the classic Arduino IDE (which also
includes the basic libraries) and then install a special package called ”Teen-
syduino” [11] which among other things contains dependencies necessary for
compiling code for the Teensy device and also the Teensy loader application.

1.2 The OnlyKey

The OnlyKey is a personal authentication, encryption/decryption and mes-
sage signing device which is based on the Teensy. It is developed by Cryp-
toTrust[12] and currently manufactured by Black Vault Labs Llc[13].

The main author of the OnlyKey and its firmware and also the leader of
CryptoTrust is Tim Steiner[14]3.

The main websites pertaining to the OnlyKey device are4:

• https://onlykey.io/ - The OnlyKey homepage - serves as the product
store and houses basic user information as well as an FAQ, contacts,
etc.

3https://twitter.com/cr7pt0 - Tim Steiner at Twitter
4https://www.instagram.com/onlykey.io/ - OnlyKey even has an Instagram account

4

https://onlykey.io/
https://twitter.com/cr7pt0
https://www.instagram.com/onlykey.io/

1.2. The OnlyKey

• https://crp.to/ - the CryptoTrust homepage, we are especially interested
in the subdomain, which is the home of the full OnlyKey documentation.

• https://github.com/trustcrypto - CryptoTrust’s GitHub page, home of
the open-source OnlyKey code.

1.2.1 OnlyKey basic capabilities and usage

One of the two primary goals of the device is to serve as a hardware password
manager. When the OK is plugged into a USB port of a supported target
device it gets powered on and waits for the user to input their PIN on the
provided buttons numbered 1-6. After a successful PIN entry the device is
unlocked and can input usernames, passwords and more. This information is
stored in numbered ”slots” which are activated by pressing the corresponding
button of an unlocked OK. Every button actually represents two slots - one
gets activated by short press and the other by long press. This way up to 12
slots can be saved. Since Firmware version Beta 7, the user can set up two
separate profiles, each using a different access PIN and each being able to store
12 accounts so up to 24 accounts total. The OK actually mimics a Human
Interface Device (HID for short), specifically a USB keyboard[15] and types
out the password and other info in much the same manner, as a user with
a physical keyboard would. This has the advantage of being very platform
independent and not needing any special software for its use. The user can
also set up a third PIN which serves as a self-destruction PIN - after its entry
all user data get wiped from the device. The same thing also happens if the
user enters 10 incorrect PINs. Another important purpose of the device is to
serve as a universal second factor.

Other usages of the device include using the device to encrypt/decrypt
and/or sign messages and/or files using gpg format. It is also possible to
sign git commits and to set up passswordless SSH authentication using the
provided Agent apps.

1.2.2 OnlyKey variants

As of the time of writing there are four main variants of the OnlyKey device -
the OnlyKey Original (OKO), the OnlyKey Color (OKC), the OnlyKey Color
developer edition and the OnlyKey Duo (OKD - formerly during development
also known as the OnlyKey Go). There are several substantial differences
between these versions:

The OnlyKey Original (for about two months after the first announcement
known as OpenKey[16]) (pictured on 1.3 and 1.4) was crowd-sourced on Kick-
starter and released in 2016[16]. This variant is discontinued and no longer
being sold. It is based on Teensy 3.2. It includes Teensy’s HalfKay bootloader
located on a separate chip[17]. With normal Teensy this bootloader gets trig-
gered by pressing the on-device button. On the OKO I can simulate the same

5

https://crp.to/
https://docs.crp.to/
https://github.com/trustcrypto

1. Hardware and general information

trigger by bridging the two small contact points in two corners of the device
using a small metal wire (1.5)[18]. It has a single-colored orange LED. The
latest officially supported OnlyKey Firmware is Beta 7[18], which is also the
first version of the OK firmware that was also released in a digitally signed
form. I had this device physically available to me during the work on this
thesis.

Figure 1.3: The OnlyKey Original from the front

Figure 1.4: The OnlyKey Original from the back

6

1.2. The OnlyKey

Figure 1.5: The contact points which are used to jump to bootloader

The OnlyKey Color (pictured on 1.6 and 1.7) was announced and released
in 2017[16]. This device is still currently being sold (at the time of writing).
It is also based on Teensy 3.2 and is visually very similar to the Original. The
most obvious difference and also the reason for its name is that the built-in
LED is now capable of emitting different colors and brightness levels.

However from a security standpoint a much more important difference is
the absence of the separate hardware HalfKay (HK) bootloader[17]. Instead
the device contains an open-source bootloader by Black Vault Labs Llc. (the
OnlyKey manufacturer). I will refer to this bootloader as the BVL bootloader
or BVLB, for short. The BVL bootloader, unlike its HalfKay counterpart, gets
executed on the main chip, just as the firmware does. The BVLB binary is
also stored in the same flash memory as well - it begins on program address
0 and therefore gets executed every time the device is powered on. It has
functionality designed to recognize installed OK FW, to which it jumps and
passes control, provided it passes an integrity check - discussed in more detail
in2.3.2. It is also capable of re-installing/updating the OK firmware, while
verifying it has a valid cryptographic signature by CryptoTrust - again will
be discussed in more detail in2.3.2.

There is also a special developer edition which isn’t sold through the Cryp-
toTrust website (anymore), but can apparently be acquired by communicat-
ing directly with the OnlyKey developers[17]. This version again features the
HalfKay bootloader and would therefore allow for the installation of unsigned
or custom firmware binaries (for example for testing purposes). There also
seems to be some indication that this was originally the device sold under the
OK Color moniker, before being replaced by the one without the HK boot-
loader - my reasoning behind this assumption is explained in 2.3.1. Unfortu-
nately I only had access to the commercially available OKC, but I partially

7

1. Hardware and general information

made up for this issue by simulating the OKC development version using the
OKO (more on this topic in 2.3.3.

Figure 1.6: The OnlyKey Color with the supplied cover removed from the
front

The OnlyKey Duo (picture on 1.8) was also crowd-sourced, both on Kick-
starter[19] and also on Indiegogo5. Shipping of the pre-ordered units started
in March 2022. I do not have access to this device and this thesis doesn’t
spend much time discussing it.

There are however several important differences of this modernized version.
The device only actually has two buttons instead of six. Button three is
emulated by pressing in the middle and therefore pressing both button one
and two at the same time. Numbers four through six are simulated by long-
pressing numbers one through three respectively. Since with older OK devices

5https://www.indiegogo.com/projects/onlykey-duo-the-best-protection-for-your-
devices/

8

https://www.indiegogo.com/projects/onlykey-duo-the-best-protection-for-your-devices/
https://www.indiegogo.com/projects/onlykey-duo-the-best-protection-for-your-devices/

1.2. The OnlyKey

Figure 1.7: The OnlyKey Color with the supplied cover removed from the
back

long presses were used for a second slot for each button it would seem now
I can only store 6 slots per profile. This is true, however to make up for it,
the device has 4 profiles instead of 2 and so the total number of slots remains
unchanged at 24. The way to access the separate profiles has changed however
- instead of using 4 different login PINs, the user only has one PIN and after
successfully entering it, can switch between different profiles by holding button
2 for 5+ seconds[19]. Also the device has a much smaller footprint and not
only features USB-A on board but also includes an USB-A to USB-C adapter
which at the same time serves as a plastic protective cover[19].

1.2.3 OnlyKey security features

The OnlyKey online documentation claims many security features and prop-
erties[21]. I will go through the claimed properties one by one and comment
on all of them, while analyzing some of them in detail. The paragraphs in
quotation marks are direct citations from the documentation[21].

First is the Security Features Overview:

9

1. Hardware and general information

Figure 1.8: Official 3D render of the OnlyKey Duo available from the OnlyKey
product page [20]

• ”Firmware verification - The bootloader verifies the firmware signature
on the OnlyKey. The firmware is only loaded onto the OnlyKey if the
firmware is correctly signed by CryptoTrust.” - This is done by the BVL
bootloader and only makes sense with OK types which do not feature the
Teensy HK bootloader. The HK bootloader is agnostic of any OK soft-
ware and so doesn’t perform any such signature verification - therefore
it can be used to load unsigned/custom firmware. The signature verifi-
cation takes place during FW installation/updating, not during device
bootup.

• ”Firmware integrity checking - The bootloader verifies the firmware hash
each time the device is used. The device only starts the firmware if
the firmware has not changed.” - This is also achieved using the BVL
bootloader - on each bootup, the BVL computes a sha256 hash of the
installed FW and compares it to a stored hash.

• ”Tamper resistant / chemical resistant hardware - The device is coated
with a chemical resistant coating that is resistant to chemical removal.

10

1.2. The OnlyKey

Visible damage is done to the device by attempting to access coated
electronics (Tamper evident).” - A simple visual inspection does confirm,
that there is some kind of coating on the device. It seems durable,
however any experiments attempting to test how resistant exactly it is,
will not be explored in this thesis.

• ”Protected key operations - Encryption / decryption operations are only
allowed after user authentication via PIN.” - This is true, I did confirm
it by studying the FW source code - will be discussed in more details
later.

• ”Read/write-protected secure flash - OnlyKey utilizes Kinetis flash se-
curity to securely lock all data residing on OnlyKey.” - This is a feature
supported by the main Kinetis chip. It uses different values which the
user program can set in the FSEC registr, and which then can allow or
forbid certain actions regarding the internal memories - like not allowing
them to be wiped, or read from[22].

• ”Offline secure processor - The data stored and processed on the On-
lyKey is completely isolated from the connected computer. Data can
only be written to the OnlyKey or wiped. Physical user touch is re-
quired to authorize authentication.” - This is true, I did confirm it by
studying the FW source code - at no point does the host device directly
read anything from the OK device. The device has to willingly send any
communication data. For sign-in credentials to be written out and/or
cryptographic operations to be performed, the user always has to at least
touch a button on the device.

• ”Secure encrypted backup and restore - Backups are securely encrypted
with a user’s passphrase (25+ characters) or a user’s PGP key.” - This
is true, I did confirm it by studying the FW source code - it is also
possible to choose a setting which disables future backup mode (PGP/-
passphrase) and value (the actual key/phrase) changing. The backup
function is discussed more in 2.1.2.4.

• ”True random number generation - To guarantee random keys the patent
pending method of random number generation utilizes a combination of
hardware entropy and user touch entropy. The user touch entropy is
completely unpredictable random data that is affected by many variables
such as the conductivity of the user’s skin, how long they press button,
how long they delay between button presses, temperature and humidity.”
- The source code does contain the described functionality. Whether the
RNG could truly be designated a True RNG should be explored using
both RNG statistical test suites and extensive testing - this is beyond the
scope of this thesis. Note that I do believe the RNG output is random

11

1. Hardware and general information

enough for what its purpose in the OK is - which is primarily generating
nonce numbers. More about the RNG generator can be read in the OK
docs[21].

After the overview the page talks about Hardware Security, which I did
not explore. It also links to several papers/studies in which other similar HW
solutions were broken with different HW based attacks.

1.3 OnlyKey alternatives

Other solutions using a hardware token include the YubiKey, SoloKeys, Google
Titan, etc. Most of them do not match the OK in the combined functionality
and security - it is usually not possible to enter a numerical PIN on them,
instead they often rely only a on a single physical touch. Other ones also
might not support all the features that OK does.

12

Chapter 2
OnlyKey Software

All the official OnlyKey software is open-source. The only exception is the
HalfKay bootloader in the OKO, however that is not provided by TrustCrypto,
but is present on the Teensy by default.

I will now establish several terms for the purposes of this thesis:

• A blank OK - is an OnlyKey device without any version of the OK
firmware installed.

• An uninitialized OK - is an OnlyKey device with a fresh installation of
any OK firmware version - no PINs or user credentials are set up.

• An initialized OK - is an OnlyKey device which has had its FW ”ini-
tialized” - this means, that at least one profile PIN has been created -
and the corresponding profile can therefore be logged into - but doesn’t
necessarily mean any user credentials or other data were saved on the
device.

2.1 OnlyKey App

The OnlyKey App (The App) is an open-source cross-platform javascript
based application, with the source code located on the Trustcrypto GitHub[23].
The already built application is also provided there to download from the Re-
leases page. For most people it is the most straight-forward way to setup and
use the OnlyKey device. It is capable of setting up a blank OnlyKey, a fresh
uninitialized OK and further configuring a previously initialized one, as well
as re-installing the device’s firmware. The app is not necessary for the actual
usage - meaning typing in saved credentials, etc. - of an already initialized
device.

When I started writing this thesis the most up-to-date version of the On-
lyKey app was 5.3.3, which is therefore the version I will be using for my

13

2. OnlyKey Software

testing purposes. Since then at least one newer version was released, version
changelog is also available on the GitHub releases page[24].

2.1.1 OnlyKey first setup

Before describing the OK setup and usage with the help of the OK App
we need a few more bits of information about the OK usage and firmware.
From the perspective of user login there are basically four main states of an
initialized OK:

• A locked OK waiting for PIN entry to perform normal user login

• An unlocked OK in normal usage mode

• A locked OK waiting for PIN entry to switch into ”config mode”

• An unlocked OK in config mode

Config mode exists since FW version Beta 4[25] and is provided as an extra
security measure. Config mode has to be enabled, for some features to become
usable - usually changing values of important preferences. For PIN checking,
it uses the same code as the normal login and so is equally as secure. The
added benefit lies in the situation of an attacker stumbling onto an unlocked
OK device, connected to a computer - they will of course be able to extract all
the credentials saved on the unlocked profile, however the features protected
by config mode will still be unavailable to them - since a PIN entry is required
again. If PD mode second profile is enabled and the user attempts to enter
config mode from the first STD profile, but when prompted enters the second
profile PIN, the device locks itself. If the user enters the SD PIN while being
prompted for a PIN to enter config mode, the device does still perform the
factory reset.

There are actually two different editions of the OK FW available, depend-
ing on the user’s needs. One is called the STD (Standard) edition (formerly
also the US edition) and the other one is the IN TRVL (in travel) edition.

The IN TRVL edition has limited capability[26]. Only one profile can be
used (allowing the storage of up to 12 user accounts) and most importantly,
the user data isn’t encrypted. The reason for its existence is that some legal
jurisdictions can limit or outright ban the usage of encryption and it might
therefore be illegal to use OK with the STD edition firmware within such
countries6 (hence the name of the IN TRVL edition). This limited edition
also doesn’t support a config mode and so quite a few other features become
inaccessible - I will always mention this, when I discuss the features in question.

6https://www.gp-digital.org/world-map-of-encryption/ - a world map showing some of
the cryptography-related jurisdictional facts.

14

https://www.gp-digital.org/world-map-of-encryption/

2.1. OnlyKey App

When the STD edition FW is used, all features are available. A second
profile is available to be used, and it is possible to choose between a ”standard”
(STD mode) profile, or a ”plausible deniability” (PD mode) profile or no
second profile at all. The PD mode makes it so that when the second profile
is logged-into, it behaves as if the IN TRVL edition firmware was installed. In
such a situation the first standard profile should be undetectable and the user
can therefore ”plausibly deny” the usage of a device featuring cryptography,
which might be restricted. Instead he can claim to be using the IN TRVL
edition.

We will now go through the OK setup using the newly installed OK app.
After running it, the App’s welcome screen is displayed as can be seen in figure
2.1. A dialog box indicating a newer version of the app can also appear (2.2),
since the app features the possibility of in-app auto-updating.

Figure 2.1: The OnlyKey App welcome screen

Take note of the lower left corner of the App window - it displays sys-
tem messages sent by the OnlyKey device using the ”Raw HID” communica-
tion[10]. The App sends requests to the device and then reacts to the receivd
reply.

When an uninitialized OnlyKey is plugged in, the app guides the user
through the initialization process. On the first screen we can either choose to

15

2. OnlyKey Software

Figure 2.2: The dialog box informing about new update

re-install the OK FW, or to initialize the currently installed FW. Before ini-
tializing we can also tick a checkbox, which will trigger ”advanced setup”. On
the second screen we are informed about how to setup the first PIN - the user
has to tick a checkbox, declaring their understanding that user information
is not recoverable, if the PIN is lost. After ticking the checkbox, the desired
PIN is entered on the OK device’s keypad. Then we click next, enter the PIN
again (to prevent typos) and click next one more time.

After this we are presented with the option to setup the second PIN. The
process is nearly the same, with a few key differences. Unlike with the first
profile, we can choose to skip the step altogether, if we do not require a second
profile (it can be activated later). Secondly if we chose the option to use the
advanced setup, we have a choice between the already mentioned standard
(STD) second profile or plausible deniability mode (PD) second profile.

Note, that if the IN TRVL edition is used, a second profile isn’t available
- however the app doesn’t reflect this and acts as if the user can setup the
second profile normally. It doesn’t really matter whether we choose simple
setup, or advanced setup and click on STD/PD mode for the second profile
- if the user does attempt to setup the second profile the first PIN actually
just gets overwritten by the second one - however the app doesn’t provide any
indication of this happening.

After that the process repeats one more time and the user can setup (or
skip) the self-destruct PIN, which can be used to quickly delete all user data.

The second-to-last step is backup settings. From the users perspective, The
OK supports two methods of backup encryption - with a backup passphrase
and with a private OpenPGP key. If we chose the advanced setup, we can
now choose which of these methods to use and also whether we want to be
able to change the method/key/phrase later. If we use the simple setup, only
passphrase is available (however all these settings can still be changed later).

The last step is offering us to restore data from a previously made OnlyKey
secure backup. This option can be safely skipped, when setting up a new
device.

In the case of IN TRVL edition FW, the backup functionality is unavail-
able, because it requires cryptography - however the app once more doesn’t
reflect this. If we attempt to proceed with the backup-settings-setup the app
just stays on the same screen. If we chose advanced setup, the setting of the
(in)ability to change backup method later actually gets reported in the App
as successful, even though this is clearly not relevant in the IN TRVL edition.

16

2.1. OnlyKey App

The way to end the setup with the IN TRVL edition is therefore either to
click the ”exit” button, or to unplug and re-plug the OK[26].

It should be noted that only the first step - setting up the primary profile -
is mandatory, all the rest is optional, and also possible to setup later (with the
exception of the PD second profile - that feature is only available if activated
during setup). Also I want to emphasize, that if the IN TRVL edition is used,
the app doesn’t change in any way - the setup process looks identical, even
though some of the features can’t actually be activated - this doesn’t seem
very user-friendly. Also there is no difference between using the simple and
advanced setup in that case, since all the extra features provided by advanced
setup are cryptography dependent and unavailable (even though the App still
shows them).

2.1.2 OnlyKey usage

After the device has been initialized, the OK app prompts the user to enter
their PIN on the OK as seen in 2.3. At this point the user can enter any of
the set up PINs, including the self-destruct PIN.

Figure 2.3: User PIN requested

When one of the correct (non-self-destruct) PINs is entered the app first

17

2. OnlyKey Software

shows the ”Slots” tab.

2.1.2.1 Slots

The Slots tab can be seen in (2.4). It lists the ”Labels” assigned to each slot.
Labels are just user-provided names for the different saved account credentials.
A slot number indicates which button it corresponds to, and the letters ”a”
and ”b” differentiate between short-press and long-press respectively.

Figure 2.4: Slots tab

Clicking any of the slots brings up the slot configuration window (2.5),
allowing the user to assign the required values.

The available values are:

• Label - as was already mentioned, the labels don’t really serve any func-
tional purpose and are their for the user’s convenience. It is worth
noting that even in a STD profile, this value does not get encrypted and
therefore definitely shouldn’t contain sensitive information.

• URL - if the slot is used to save credentials for a specific website this
value can be used to also input the websites URL into the browser, so
the user doesn’t even have to navigate to the website manually (the enter

18

2.1. OnlyKey App

Figure 2.5: Slot configuration window

key is always automatically pressed by the app after typing out the URL
value).

• Delay - this value can provide a 0-9 second delay between typing out the
URL and the username value. This is almost always useful, since even
with really fast internet connection the loading of the website will not
be instantaneous.

• Before username character - after the delay either nothing or TAB can
be pressed - this is useful in cases where the web element of the target
webpage selected by default is not the username input field.

• Username value - self explanatory, contains the login username/e-mail
or any such user identification the target webpage uses.

• Before password character - after the username input the app can press
either nothing, the enter key or the TAB key to move to a password
input field.

• Delay 2 - again its possible to add a 0-9 second delay, before the password
is written out. This is useful for example if the webpage works the

19

2. OnlyKey Software

following way: the user provides their username, presses enter, and then
has to wait for additional content to be loaded before entering their
password.

• Password and re-enter password - traditionally, the password has to be
provided two times, so that the the user is protected against storing a
string containing a typo.

• After password character - we can choose to let the OK press enter to
confirm the login.

For the classic 1-factor password authentication the already listed options
are sufficient. The following options are available to enable the use of 2-factor
authentication, which supports several different protocols:

• TAB presses and delays can again be setup between password input and
the input of the second factor.

• Time-based one-time password (TOTP - sometimes referred to as Google’s
TOTP) - this is a time-based second factor which normally uses a smart-
phone application called Google Authenticator. In this case the OnlyKey
replaces this app and its functionality. An official Arduino library called
simply ”TOTP library” is used for this functionality[27]. In order to
use it the user needs to copy the secret code from their Google account
(or another account that supports this type of authentication) and enter
it in the app. The mechanism of generating the one time passwords
is hashing together a pre-shared secret value and a current timestamp.
Since the OK is a passive device, which needs to be powered by the
host device, it cannot hold its internal clock when not in use. This is
therefore one of the features that requires OK software to work properly
- either the OK App installed on the host machine, or the OK Webapp
(only needs a compatible web browser) have to be opened. They auto-
matically detect the connected unlocked OK device and notify it of the
current time. Until the OK is diconnected or locked it will be able to
generate the one time codes.

• YubiKey’s OTP - This is an OTP second factor authentication method
developed by Yubico, the company that makes the YubiKey[28].

• U2F/FIDO2 also known as universal second factor[29].

• After 2nd factor character - we can again choose to let the OK press
enter to confirm the login.

Except for Google’s TOTP the second factors do not work while using the
IN TRVL edition or PD mode.

20

2.1. OnlyKey App

2.1.2.2 Setup

The window can be seen in 2.6. From this screen we can change all the PINs
and also the backup passphrase - the process is always pretty much identical
to the first-time setup. All of these action require the switch to config mode,
which makes them inaccessible from both the IN TRVL edition and PD mode
second profile. If the IN TRVL edition is used, this implies that the SD
PIN has to be setup during the first-time setup, if the user wishes to use it,
otherwise it can’t be setup later. In such a situation if the user wants to
perform a factory reset, they will have to input a wrong PIN 10 times. The
IN TRVL edition however, also doesn’t support the secure backup function -
therefore before performing the reset, the user will have to manually let the
device type out all the credentials in clear text and back them up manually.

Figure 2.6: Setup tab

2.1.2.3 Keys

The window can be seen in 2.7. From this screen we can load RSA or ECC keys
onto the OK, to be used for message/file encryption/decryption/signing. We
can also wipe the already saved keys. The set as backup key will change the
secure backup mode from using a passphrase to using the provided OpenPGP

21

2. OnlyKey Software

key. All key loading/wiping requires config mode to be enabled first, and
therefore these options are unavailable in the IN TRVL edition and in PD
mode.

Figure 2.7: Keys tab

2.1.2.4 Backup/Restore

The window can be seen in 2.8. It has instructions on how to have the device
write out a backup - it is not necessary to use the supplied text field, any text
editor will do. It is also possible to restore a previously made backup here,
from a saved text file - for this the device has to be switched into config mode.
If IN TRVL edition or PD mode is used, none of the options work, since the
backup functionality isn’t available.

2.1.2.5 Firmware

The window can be seen in 2.9, it gives us the option to re-install or update
the OnlyKey FW. It works in conjunction with the BVL bootloader and will
only load a FW binary that has been digitally signed by CryptoTrust. Before
using this function the device has to be switched into config mode and therefore

22

2.1. OnlyKey App

Figure 2.8: Backup/Restore tab

this cannot be used with IN TRVL edition or PD mode. However, the config
mode is only necessary here to protect the OK from being re-installed by a
potentially unsafe PC. If the legitimate user has physical access though, it is
possible to bridge the two contacts in the corners of teh device for 3 seconds,
and the device will jump to BVL and wait for FW install instructions from
the App (the App reacts accordingly automatically). This can be done from
any screen, even with a locked OK, so PIN knowledge is unnecessary for it.

2.1.2.6 Preferences

The window can be seen in 2.10, and understandably it allows the user to
change different options. It is important to note, that the displayed settings
in the preferences tab do not actually reflect the preferences already setup on
the OK device, they only serve as a way to set the options authoritatively, not
to display their current value - in other words, the OK device never actually
lets the App know what the option settings currently are, it just lets it change
them. Now let us look at each of these preferences:

• Keyboard Type Speed - allows the user to change the typing speed of
the OK. This can come in handy, since the default value of 4 is relatively

23

2. OnlyKey Software

Figure 2.9: Firmware tab

slow, but the higher values might cause problems on some platforms or
applications, which are not capable of interpreting keystrokes so fast.
Especially when letting the device typeout a backup, it can be useful to
set it to a higher speed, since the text is relatively long. Doesn’t require
config mode.

• Keyboard Layout - this needs to be set to the layout which the PC/host
device uses, so that the OK can send the correct corresponding keystroke
codes. Doesn’t require config mode.

• Indicator Light (LED) Brightness - allows for changing the brightness
level of the colorful LED on the OK Color (doesn’t work with the
monochrome LED of the OK Original). Doesn’t require config mode.

• Sysadmin Mode - if sysadmin is enabled the OK can be used to a much
greater effect through the slot values - it can press pretty much any
keyboard keys and their combinations, therefore allowing things like
launching scripts, etc., but as the documentation points out: ”Once you
enable this feature you will no longer be able to set slot values without
first putting OnlyKey into config mode. This adds an extra layer of

24

2.1. OnlyKey App

security for system administrators.”[30]. Actually not only slot setting
is affected, also all the other preferences settings, which previously didn’t
require config mode to be changed, now do require it. Requires config
mode to be turned on.

• HMAC User Input Mode - the OK documentation says: ”OnlyKey sup-
ports HMAC challenge-response. By default, user input (button press)
is required on OnlyKey to perform HMAC operation. For some use
cases such as full-disk encryption no button press may be preferred.
With “Button Press Not Required”, HMAC challenge-response opera-
tions may be performed without user interaction.”[30] - requires config
mode to be changed.

• Wipe Mode - if turned on then factory-resetting the device (either through
10 failed PINs or through the SD PIN) also wipes the installed OK FW,
not just the user data. Can only be turned on, and then cannot be
disabled. Requires config mode to be turned on.

• Inactivity Lockout Timer - the OK will lock itself automatically after
this time in minutes has elapsed without any user interaction. Seto to
0 to disable. Doesn’t require config mode.

• Lock Button - allows the user to designate one of the OK buttons as
a Lock button. When pressed the OK locks itself instantly and also
attempts to lock the host machine by sending keypresses corresponding
to the most common keyboard shortcuts used to lock different operating
systems. Doesn’t require config mode.

• Derived Key User Input Mode/Stored Key User Input Mode - these op-
tions are very similar. OnlyKey supports both automatic generation of
keys that may be used for SSH and PGP/GPG with the OnlyKey Agent
and import of existing OpenPGP keys using the OnlyKey app. The
documentation says ”The default setting is “Challenge Code Required”
which requires a 3 digit challenge code to be entered on OnlyKey to
perform SSH or PGP/GPG operation. This is great for security but for
some users a more convenient approach may be preferred. With “But-
ton Press Required”, a physical press on any key is all that is required
to perform the operation.”[30], which applies to both of these options.
Both options require config mode to be changed.

• Backup Key mode - similarly to Full wipe, once set this cannot be dis-
abled. It prevents the user from changing the backup key mode (PGP
vs passphrase) as well as the actual value. Requires config mode to be
turned on.

All the options that require config mode are only available in STD profiles,
except for Full Wipe, which can be enabled from an IN TRVL edition or PD

25

2. OnlyKey Software

mode profile, without the use of config mode. The reason behind this will be
discussed in 3.1.2.

Figure 2.10: Preferences tab

2.1.2.7 Advanced

The window can be seen in 2.11. It is basically an advanced version of the
Keys tab and also allows for key loading, however it provides more options to
choose from for the user. Private key loading requires config mode. Yubikey
Security info is a funtion provided for compatibility with the Yubikey device
and its loading does not require config mode - however neither of the options
are available in the IN TRVL edition and PD mode, since they do require
cryptography.

2.1.2.8 Tools

The window can be seen in 2.12. This tab actually doesn’t actively do anything
on its own, it just links to the OnlyKey WebApp, which allows for message and
file encryption as well as digital signing. It also links to the OK documentation
explaining how to use the OK GPG and SSH Agent. None of these functions
support IN TRVL edition and PD mode, since they require cryptography.

26

2.2. OnlyKey App alternatives and other software

Figure 2.11: Advanced tab

2.2 OnlyKey App alternatives and other software

Apart from using the OnlyKey App there is also the possibility of using a
”Quick setup”, which doesn’t require any specialize software, only a generic
text input field, such as a text editor. However this way of setting up the device
is very limited. The way to use it is described in the OK docs, but it is rec-
ommended to use the App[30]. Another option is to use the OnlyKey Python
command line interface, which is also hosted on the CryptoTrust GitHub[31]
and allows for setting up the OK.

Other official OK software includes the OK WebApp, which can be used
for PGP-like message/file encryption and signing - it is available under this
webaddress - https://apps.crp.to/.

Lastly there is the OK SSH/GPG agent, also available from the official
GitHub page[32]. The documentation says: ”OnlyKey Agent is a hardware-
based SSH and GPG agent that allows offline cold storage of your SSH and
OpenPGP keys. Instead of keeping keys on a computer, OnlyKey generates
and securely stores your keys off of the computer and you can still easily use
SSH and GPG”[33]. Unfortunately this app doesn’t work very well with the
Windows OS yet. It works well on Ubuntu and I would presume also on other

27

https://apps.crp.to/

2. OnlyKey Software

Figure 2.12: Tools tab

Linux distributions and Unix-like systems.

2.3 OnlyKey Firmware and bootloader

In this section we will discuss the OnlyKey Firmware in detail, together with
the BVL bootloader, which is nowdays pretty much always paired with it.

2.3.1 Notable FW versions

• OnlyKey Firmware 2.1.1 - this is the firmware version this thesis is most
focused on, since it has been the latest released version at the time I
started writing it. Since then at least one newer version was released.

• OnlyKey Firmware Beta 3 - in this version the ”full wipe” was intro-
duced. The corresponding changelog has a very relevant description, of
why this is useful in case of using the seoncd profile in plausible denia-
bility mode: ”If you are using the plausible deniability feature there is
one scenario where an adversary may be able to determine that you were
using the plausible deniability feature. This is possible if the adversary

28

2.3. OnlyKey Firmware and bootloader

enters 10 incorrect PINs causing your OnlyKey to wipe all data and then
they go to reconfigure the PINs and see that they can set both a regular
PIN and a PD PIN. Since only the U.S. version firmware allows setting
both PINs the adversary would know that your OnlyKey is running the
U.S. version firmware. At this point the device is wiped the adversary
would not have access to any sensitive information but the adversary
would know that your device is capable of encryption which in some ar-
eas may be undesirable. To address this issue you can now set the wipe
mode of your OnlyKey to Full Wipe. Given the same scenario with Full
Wipe set when 10 incorrect PINs are entered the device will completely
wipe all information including the firmware from your OnlyKey. No
useful information would be available to an adversary concerning what
firmware you were running and in order to use the device new firmware
must be loaded.”[25]

• OnlyKey Firmware Beta 4 - is the first version which has a release di-
rected towards the OK Color - however its not until Beta 7 that we
get our first digitally signed release[25]. Together these two pieces of
information imply, that originally, the OK Color also sold with the HK
bootloader included (which would probably now be the development
edition).

• OnlyKey Firmware Beta 7 - this is the oldest digitally signed version -
this means, that it is the lowest version to which a device without the HK
bootloader can be downgraded[25]. It is worth noting that Cryptotrust
is now preparing versions of the FW - or rather of the BVL bootloader
- which will feature downgrade prevention[34]. Since FW reinstallation
done through the OK App doesn’t erase the user data, this expands the
potential attack surface - if there are any vulnerabilities in the Beta 7
version (or indeed any version released in between the Beta 7 and 2.1.1),
they could be misused, even if they were fixed in the later versions.
Also when using this version, I always needed to run the OK App with
administrator rights in the Windows OS, for the App to recognize that
the device is connected. I am not sure what causes this, but it is not a
problem in newer versions - which is definitely good, as any application
running with unnecessary rights poses a potential threat.

• OnlyKey Firmware Beta 8 - this version brings the ability to change
the user PINs[25]. Closely coupled with this, is also a change in how
the encryption scheme works - since the encryption scheme of this (and
newer) version is not compatible with the older one, the recommended
approach for update is as such: use the secure backup function on an OK
running the older FW, erase the OK, update the FW and lastly restore
the backup. The backup functionality is prepared in such a manner,
that this change doesn’t affect it.

29

2. OnlyKey Software

2.3.2 Bootloaders and hid devices

As was already alluded to, there are two bootloaders which we need to know
about. The closed-source HalfKay (HK) bootloader, which the OKO and
development OKC editions use, and the open source Black Vault Labs (BVL)
bootloader, which the newer devices (OKC and OKD) use.

The HK is provided by the Teensy authors and sits on a separate chip,
stored in a separate memory. It gets triggered by putting the device into
programming mode - bridging the two small contacts in the corners of the
device, as was discussed in 1.2.2. When this bootloader is used, without using
the BVL, the OK Firmware starts on address 0 of the main flash memory
and therefore (if it is installed) is the first thing that gets executed, when
the device is plugged in. If we want to re-install, or update the OK FW,
we have to use an application called ”Teensy Loader”[9]. This is a simple
graphical utility provided by the Teensy authors. An unsigned, compiled
FW can be loaded in this application, and after booting the OK into the HK
bootloader it can install the new FW. It is important to note, that this process
overwrites the whole flash and even though normally it shouldn’t overwrite
the (simulated) EEPROM[35] - which includes all the user data - in out case it
does. This is done on purpose by the OK FW - it changes the FSEC value of
the processor (part of the flash kinetis functionality) in such a way, that every
upload will overwrite the EEPROM as well[36]. This is important, because
otherwise somebody could create a custom firmware, which would printout
the full EEPROM, without needing to enter the PIN - and even if that data
would be encrypted, we do not want a potential attacker to be able to do that.
Therefore, it is necessary to use the backup function, so that the data can be
restored after the update.

When using the BVL, it is located in the same flash memory as the OK FW
- this time the bootloader sits on address 0 and executed on every power-on.
However, if a signed OK FW has been previously installed, the BVL will check
its integrity, using a sha256 hashing function, and if it passes, will transfer
the control to it using the jumpToApplicationAt0x6060 function (everything
that is the responsibility of the BVL bootloader is coded within its single
source file - BVL Bootloader.ino). If we want to re-install, or update the
OK FW, we should use the official OnlyKey App, as was described in 2.1.2.
There are actually three situations where the BVL triggers. One is - no FW
is installed. Second one - if the user puts the OK into config mode and then
uses the Firmware tab from the OK App. And lastly - if the same contacts
in the corners of the device, which were used to trigger the HK, are bridged.
However this time they have to be held bridged for 3 seconds, before the jump
occurs. This is visible in the source code 2.13.

When updating an older OK device with a HK bootloader to newer FW
versions, it is necessary to go through the unsigned Beta 7 version - this version
actually contains the compiled BVL bootloader within - this can be easily

30

2.3. OnlyKey Firmware and bootloader

Figure 2.13: Code that periodically checks whether we should jump back to
the BVL bootloader (from OnlyKey.ino)

//Check f o r boot loader t r i g g e r
// Tr igger boot loader to load f irmware by PTA4 low f o r 3 sec
i f (! d i g i t a lRead (33)) {
e l a p s e d M i l l i s wa i t ing ;
i n t jumptoboot loader = 0 ;
whi l e (wa i t ing < 3000) {

delay (1 0 0) ;
jumptoboot loader = jumptoboot loader + d ig i ta lRead (3 3) ;

}
i f (jumptoboot loader == 0) {
eeprom wri te byte (0 x00 , 1) ; //Go to boot loader
//Firmware ready to load
eeprom wri te byte ((unsigned char ∗)0 x01 , 1) ;
CPU RESTART() ; //Reboot

}
}

confirmed with a hexeditor or even with a text editor, since the bootloader’s
version messages are visible in the binary. After it is installed it is possible to
use the OK App to update to newer versions. This process is also desribed by
the OK documentation[18].

The BVL bootloader is open-source as well and the source can be found
on the OnlyKey GitHub[34].

The BVL contains a startup late hook which is a special function that
gets called even sooner than the setup function[37]. It is from this function
that the FW integrity check is called and if it succeeds the control is passed
to the FW.

The GitHub releases page also offers a binary of a BVL Bootloader v2
(version 2), which should provide downgrade prevention[34]. However the
commit with which the release is associated doesn’t contain the corresponding
source code - it still has v1 source code without the downgrade protection and
with the v1 version output. The source code for the v2 version seems to be
therefore unavailable (so far).

When exploring the different modes/bootloaders/etc, that the OK devices
can use, I used a small Python script that I named monitor hid devices.py -
it is available on the attached CD. It monitors all HID devices for new connec-
tions and disconnections and shows their vid number, pid number, manufac-
turer string, product string and interface number - this helped me familiarize
myself with how the OK operates, as I could compare the values to ones found
on the Teensy website[9] and within the OK App source code - the collection

31

2. OnlyKey Software

called SUPPORTED DEVICES from the file OnlyKeyComm.js.

2.3.3 Building and debugging the FW

The OnlyKey firmware is written in both pure C and C++ and is actually a
Teensy program, which uses the programming style of Arduino sketches. This
means the programmer doesn’t actually provide a classic main function and
instead a setup and loop functions should be written. The setup function
is automatically called once, every time the device is started. After that the
loop function is called periodically in a loop by the device.

The OK authors decided to code the FW in a task-based programming
style. This means that the top-level functions (meaning the ones programmed
by OnlyKey creators, not the Arduino-supplied functions) are represented
as tasks which are assigned to a task pool as necessary and some executor
periodically goes through the pool and executes them. Specifically an Arduino
library called Softtimer is used[38]. The library implements the Arduino loop
function and inside it takes care of the user-supplied tasks. Therefore the user
only creates the Arduino setup function and within it supplies at least one
task for the library to execute from the loop function. Additional tasks can
be added as well as removed on demand.

The complete firmware source code is made up of two parts, which are both
available from Trustcrypto’s GitHub. The first repository is called ”OnlyKey-
Firmware”[25] and the second one is ”libraries”[39]. In the ”OnlyKey-Firmware”
repository we can also find the version changelog, available on the releases
page.

The main repository - OnlyKey-Firmware - contains a directory called
OnlyKey, which houses the main OnlyKey.ino file - the .ino extension indicates
this is the file representing the ”arduino sketch”. Other files in this repository
but outside the OnlyKey directory are responsible for keymapping for different
keyboard layouts, usb constant definitions, etc., these should be placed in the
Arduino installation subfolder hardware/teensy/avr/cores/teensy3, where
they replace a few original Teensy files.

The second important repository making up the complete OK FW is the
libraries repository. It contains libraries necessary for the FW compilation
and function. There are both external resources and libraries made by the
author of the OK.

No official instructions are given as to how the firmware should be built,
but there are several helpful posts and discussions between users and the
developers about this topic [40][17]. For my own convenience regarding the
building and debugging of the FW I devised a way of building it, which may
not be the same as the official one - and indeed it likely isn’t. Several pre-
processor macros (such as DEBUG) seem to be definable separately for the two
parts (FW/libraries) - once in the OnlyKey.ino file and once in the onlykey.h
file. Therefore the official way likely compiles the two parts separately, and

32

2.3. OnlyKey Firmware and bootloader

allows linking them with i.e. different build options using these macros. Since
I didn’t see much use in this for my work, I decided to simplify the process - I
created my own directory called ”husek dip” within the ”libraries” directory
which would house both my additional debugging/helper code as well as these
optional macros, removing them from their original places and removing their
duplicity in the process. I can then build the whole firmware, including the
libraries at once. My directory contains four files:

• husek serial.h and husek serial.cpp - these files contain function-
ality related to serial port emulation - see below.

• husek declarations.h - this file contains forward declarations, to fix
building errors.

• husek flags.h - this file contains four preprocessor macros, which can
be (un)defined to modify the FW functionality. The first macro is
called DEBUG OK and determines whether debug messages are printed
through the (simulated) serial port. Originally the macro was called
DEBUG, but I renamed it, because it collided with a macro in one of the
libraries. The second macro is STD VERSION. If it is defined, then the
STD edition is built, if not the IN TRVL edition is built instead. The
third macro is OK Color which is supposed to indicate, whether we want
to compile for OKC or OKO. It still exists in the newer FW versions,
even though the OKO isn’t supported by them - I keep it defined even
for my OKO testing unit. The fourth and last macro is FACTORYKEYS,
which isn’t actually used in our FW version yet - as is indicated by a
comment in OnlyKey.ino. In the same file another comment regard-
ing this macro says ”// Attestation key and other keys encrypted using
CHIP ID and RNG for unique per device”.

I build the FW binary using arduino-builder.exe, a utility provided
with the Arduino IDE. My building batch file (build.bat) is supplied on the
attached CD, together with the modified version of the OK FW 2.1.1, which
I have been using for most of my debugging - all edits I made inside the OK
FW source code are marked with a comment saying HUSEK EDIT.

The code contains a lot of built in debug messages, which when the DEBUG
macro is defined are supposed to be printed over the serial port using the
Arduino functions Serial.print and Serial.println. However the Teensy
actually doesn’t natively act as a serial device [41]. Instead it uses HID pro-
tocol. This can be used to emulate the serial communication of the debug
messages. At first I didn’t realize that one device can have several different
”streams” through which it sends data, and therefore it is possible to differ-
entiate between system messages intended for communication with the OK
App (or other OK software), and the debug messages. This system is used in
the ”windows-serial” utility, which is contained in a GitHub repository called

33

2. OnlyKey Software

”node-onlykey-fido2”, made and owned by Bradley Matusiak, an advanced
OnlyKey user, which maintains several external OnlyKey projects [42]. This
utility can be used to detect the connection and disconnection of the OK de-
vices and to print out the HID communication. Before I found out about this,
I created my own similar solution - it uses the hidprint function from the
okcore.cpp file to send both the OK supplied and my own debug messages
through the same channel as the messages intended for the App. To filter them
from the App, the messages have a predetermined structure. I have slightly
modified the OK App file OnlyKeyComm.js to ignore messages from OK which
begin with the substring ”SRL” - those are the ones produced by my serial
emulation code. This ensures that the App ignores the debug messages and
functions as normally. In turn I have created another small Python script
which allows me to listen to the debug messages, while ignoring the system
messages and also limiting some specific often-repeating messages so they do
not overwhelm the output too much. I called it my serial monitor.py and
it is available on the attached CD. The script uses a bit of code from the
OnlyKey command line Python app - it is highlighted by a comment inside
the script.

Since for testing with a modified FW I had to use the OKO, which isn’t
officially supported, I have made several changes to the FW to replace the
missing OKC functionality. Code which would light up OKC’s colorful LED
has been replaced with the classic OKO monochrome LED plus a debug output
informing me which color was supposed to light up.

I have sorted the OK libraries into several categories, according to their
relationship to cryptography use, and we will go through them one by one.
Some of them will be discussed in more detail than others, depending on their
relevancy to my thesis.

2.3.3.1 Cryptographic libraries

These libraries contain cryptographic primitives, hashing functions and other
related functionality.

• Crypto

– This library contains both symmetric and asymmetric cryptogra-
phy, as well as several hashing functions and MAC funtionality.

– Is used in both the STD edition and the IN TRVL edition - however
the IN TRVL edition uses fewer files.

– The OnlyKey uses its Curve25519 cryptography and also its AES-
GCM implementation.

– Made by southern storm software, Pty Ltd.[43].

• mbedtls-2.4.0

34

2.3. OnlyKey Firmware and bootloader

– This library also contains both symmetric and asymmetric cryptog-
raphy, as well as several hashing functions and MAC funtionality.

– It is used only in the STD edition.
– The OnlyKey uses it for its RSA functionality.

• sha256

– This library contains an implementation of the sha256 hashing
function.

– It is used in both the STD and the IN TRVL editions.
– The OnlyKey uses is for the hashing functionality, when making

keys out of PINs.
– Made by Brad Conte[44]

• sha1

– This library contains an implementation of the sha256 hashing
function.

– It is used in both the STD and the IN TRVL editions.
– According to the licenses.md from the libraries directory, this

library is supposed to be the sha1 implementation by Brad Conte
just as the sha256 library, but actually it is not. Instead it is made
by Peter ”Cathedrow” Knight[45].

• tweetnacl

– This is a self-contained public-domain cryptography C library, a
”tweetable” (compact) version of the NaCl crypto library[46].

– It is used in the STD edition and also in the BVL bootloader.
– The BVL uses it for the sha512 hashing function to perform the

FW integrity check and also its ”Curve25519” asymmetric cryp-
tography for FW signature verification. The onlykey can use its
”crypto box keypair” to generate a random ECC keypair.

• uECC

– MicroECC - contains a compact and fast implementation of ECDH
and ECDSA cryptography[47].

– It is used only in the STD edition, in conjuction with the fido2
library.

– Made by Ken MacKay[47].

35

2. OnlyKey Software

2.3.3.2 Crypto-related libraries

These libraries are used in conjunction with the cryptographic libraries, to
built upon their functionality.

• fido2

– This library provides the functionality necessary for the device to
act as ”universal second factor” within the u2f/fido2 schemes.

– It is used only in the STD edition.
– fido2/u2f - developed by Solokeys[48].

• flashkinetis

– Used to interact with the Flash kinetis functionality provided by
the chipset - to lock the flash memory after installing a fresh FW.

– It is used in both the STD and IN TRVL editions.
– The file licenses.md from the libraries repo mentions the orig-

inal can be found at https://github.com/FrankBoesing/Arduino-
Teensy3-Flash/ but that website doesn’t seem to exist anymore -
it gives the 404 error.

• onlykey

– This library is made by the OK authors themselves, and even
though some of the other ones have been modified by them, this
one definitely contains most of the OK specific code. It takes care
of the normal functioning of the OK device - indeed the distinc-
tion between what will be placed in files within this directory and
what stayed in the OnlyKey.ino file seems a bit arbitrary in certain
cases.

– It is of course used in both the STD and IN TRVL edition.

• password

– A generic library used for working with a user login password - in
our case its used for handling the PINs.

– It is used in both the STD and IN TRVL editions.
– Made by Alexander Brevig - credited within the main head file

password.h.

• totp

– We already mentioned this library in 2.1.2.1, is used to handle the
Google TOTP second factor scheme.

36

https://github.com/FrankBoesing/Arduino-Teensy3-Flash/
https://github.com/FrankBoesing/Arduino-Teensy3-Flash/

2.3. OnlyKey Firmware and bootloader

– It is used in both the STD and IN TRVL editions.
– Made by Luca Dentella, officially supported by Aruduino[27].

• ykcore and yksim

– These are open-source libraries providing some of the YubiKey
functionality that the OK is compatible with. Specificely this is
an adaption of ”libyubikey” for Arduino 1.0.x and for for Teensy
3.X.

– They are used only in the STD edition.
– Made by Simon Josefsson for Yubico[49].

2.3.3.3 Libraries that are not directly crypto-related

These are all the remaining libraries which are used in the compiled FW, but
aren’t very important from a security viewpoint.

• husek dip

– This directory has already been explained, it contains additional
files made by me to help me with the OK study and exploration.
Naturally it doesn’t exist in the original repository, only in my local
debugging copy.

– It is used in both the STD and IN TRVL editions.

• T3Mac

– This library is used to get HW specific values like a MAC address.
In our case it is used to get a ”chip ID”, which is then used to
improve cryptography and RNG.

– It is used in both the STD and IN TRVL editions.

• tinycbor

– Used for transforming data into the CBOR binary data represen-
tation.

– It is used only in the STD edition, in conjuction with the fido2
library.

• Adafruit NeoPixel

– This library is used to control the colorful LED of the OKO.
– It is used in both the STD and IN TRVL editions.

37

2. OnlyKey Software

– ”This library is written by Phil ’Paint Your Dragon’ Burgess for
Adafruit Industries, with contributions by PJRC, Michael Miller
and other members of the open source community.” - quote from
the librarie’s GitHub page[50].

• base64

– This library provides simple base64 encoding and decoding capa-
bility.

– It is used in both the STD and IN TRVL editions.
– Made by Brad Conte, just like the sha256 library[44].

• SoftTimer

– Is used in both STD and IN TRVL edition.
– This library is made by Balazs Kelemen[38].
– As was already explained the purpose of this library is supporting

a task based programming style.
– SoftTimer.h says: ”SoftTimer library is a lightweight but effective

event based timeshare solution for Arduino.”

2.3.3.4 Unused libraries

These are the libraries which are included in the libraries repository, but do
not appear to be used anywhere (their header files are not included anywhere
and during the building process there don’t seem to be any object files created
from the respective cpp files). It is possible they are used during the debugging
process, or that the authors may have planned on using them but later decided
against it.

• WS2812Serial

– This is a non-blocking WS2812 LED Display library.
– Made by Paul Stoffregen, creator of the Teensy.
– https://github.com/PaulStoffregen/WS2812Serial

• justhashtweetnacl

– This is actually the same tweetnacl library that was already dis-
cussed, but everything except hash functions is commented out.

– Originally I thought it might be used in the ITE, but it is not. My
second idea was that it might be used in the BVL bootloader, for
performing the FW integrity check, but BVL also requires primi-
tives for signature verification, so it cannot be used there either -
actually it doesn’t seem to be used anywhere.

38

2.4. Used Cryptography

• InternalTemperature

– It was probably supposed to be used to read temperature data from
the internal Kinetis Cortex sensor.

– Originally I thought it might be used for RNG, but it doesn’t seem
to be used anywhere.

• randombytes

– Contains random number generation code. It is not used anywhere.

The distinction made between STD and IN TRVL libraries was made
mostly by inspecting ”include trees” generated from the source code using
GCC and the arduino-builder output, which shows which compiled object files
are being linked into the final binary. These files are available for inspection
on the attached CD.

2.4 Used Cryptography

There is a lot of cryptography used in the OnlyKey. Currently there is a func-
tion called okcrypto split sundae which is used for user data encryption. A
fitting comment in the source code (file okcrypto.cpp) says this: ”Just like
an ice cream sundae, this function mixes the best crypto algorithms, together
with multiple keys in order to mitigate side channel attacks against, a single
algorithm or key. State is split so that each crypto function only, has access
to part of the state.”

I will not go into detail about how every kind of data is encrypted and
which way PINs are hashed and verified - it is unnecessary, because the OK
documentation already goes into great lengths to describe all these processes
very well - especially the Advanced paragraph[21]. I have gone through the
source code and can verify the claims made on this page within the ”About
OnlyKey PIN, profiles, key derivation, and encryption” subparagraph and the
”How does OnlyKey encrypt backup data” subparagraph.

39

Chapter 3
What I found

In this chapter we will discuss my findings and observations. These could
either be vulnerabilites, documentation/function inconsistencies or other un-
documented information that I found, and considered to be interesting for the
purposes of this thesis.

CryptoTrust also has an official OnlyKey bug bounty program[51], however
none of my findings satisfy the criteria of fitting into one of their thread models.
This is good news - it means I haven’t been able to find any catastrophically
serious vulnerabilities.

Mostly everything described in this chapter that has a practical effect
(some of the paragraphs contain observations which might not have any ob-
servable effects) has been tested by me on the physical OK device and is
repeatable and demonstrable. Especially the two findings from the first and
most important section and which follows immediately.

3.1 Attack scenarios and problematic areas

This section describes what I consider to be the most impactful findings, when
it comes to security.

3.1.1 The significance of two PINs

The OK should definitely be more clear, about the usage of two profiles with
two different PINs. Since the OK Duo came out, where all the 24 slots are
available by using only one PIN, it seems the usecase of having each profile
contain credentials of different importance/secrecy was not intended to be
viable. This is never explicitly stated, and I assumed it would be a viable
use case. For example, I could use one of the STD profiles to store logins for
all services which have access to money spending and the second STD profile
for all the rest - social media, e-mail, etc. This seems like a pretty reasonable
situation to me. However, as the OnlyKey stands now, if this STD/STD setup

41

3. What I found

is used, it is enough to know one of the PINs and we can access all the data.
There are actually several ways to achieve this:

• Login to the profile for which we know the PIN, then enter into config
mode and change the second PIN to a new one.

• Login to the profile for which we know the PIN, then enter into config
mode and change the passphrase to a new one. After this we can have
the OK write out the backup, then setup a new OK with the same chosen
passphrase and perform a restore. Since the backups do not use any of
the PIN information in their encryption, we will have gained access to
data from both profiles.

• Brute-force the second PIN by trying all possible combinations. To
bypass the limit of 10 tries, simply try 8-9 times, then login with the
PIN we know and repeat. It is of course possible that we hit the SD
PIN first and this will ruin our attack. As it is now the SD PIN can also
be changed through config mode with the knowledge of only one of the
PINs - this gets rid of this problem.

The main problem seems to me to be, that config mode is generic for both
profiles at once, however it can be entered using any of the two PINs. This is
actually contrary to what the App says on the Setup tab - ”...Re-enter your
current primary PIN to enter config mode...” 2.6, but it doesn’t have to be the
primary PIN.

Note that none of these are possible when PD mode is used. This is
mainly because the PD mode profile cannot be used to enter config mode.
Whats more, there is special functionality implemented to stop even the brute-
forcing problem, when PD mode is used. It works by counting all failed login
attempts in another counter called
textttsincelastregularlogin, which doesn’t reset when the PD profile is logged
into. If we fail to login 20 times, without logging into the primary profile
(it doesn’t matter how many times the PD profile was used in between), the
primary profile gets silently destroyed, by having its hash wiped - therefore it
will become impossible to login to it. Note that the successful logins into the
PD profile do not reset this counter, however they also do not increase it.

If the PINs being on the same level and interchangeable is a feature and
not considered a problem, I think it should be very clearly communicated to
the users. If not, I think there are possible solutions, for example: before
changing a profile PIN, always require that the original PIN of that profile is
entered first, so that it can’t be changed with just the knowledge of the second
one. Before changing the passphrase, require either - the original passphrase,
both PINs, or at least the PIN, which wasn’t used to login for the current
session - that way the user can show they know both PINs. Before changing

42

3.1. Attack scenarios and problematic areas

the SD PIN, again, require the original SD PIN, both PINs, or the PIN, which
wasn’t used to login for the current session.

Stopping the brute-forcing problem totally (even with the SD PIN caveat
fixed) is more difficult and with the current model of usage probably impos-
sible. This is because when both profiles are STD, the OK device has no
way of knowing, which PIN the user is attempting to enter, if they fail - this
means we cannot have two separate counters. However a shared counter has
to be reset by every login, since we cannot just disable one of the profiles, if
it hasn’t been used for a long time. This is a big difference when compared to
the PD mode usecase, where one profile is clearly more valuable and where it
is anticipated that the user might be under pressure to give up their PIN and
so hiding the STD profile data is more important. An actual solution thus,
would require a change in the usage model - for example the user would have
to first specify to which profile they are attempting to login - for example by
touching the 1 or 2 button on the OK - and only then enter their PIN. This
would allow for the existance of two separate counters. However this might be
considered too much of a hindrance to a smooth user experience and therefore
might not be considered worth it.

3.1.2 PD/STD profile interactions

Since the point of the PD mode is to hide the existence of the main STD profile
and pretend, that the device is running the IN TRVL edition of the firmware,
we need to watch out for any ways that could differentiate between them.
The OK Docs cleverly notice[52] the fact, that if somebody really wanted to
know which FW we are using, they could just input 10 wrong PINs and then
go through setup and take note, whether the STD functionality is or is not
available. Therefore, to take full advantage of the PD mode, full wipe mode
should be enabled - if the attack is attempted then, the FW will be wiped and
there won’t be any way to know which edition it was. This is the reason why
the IN TRVL edition and PD mode both allow for the full wipe setting to be
selected even with their lack of config mode - this is necessary to maintain the
illusion that the FW was indeed IN TRVL, since when the FW gets wiped,
we have to know that that edition allows for that setting to be applied.

There is however another interesting fact - if you enable sysadmin mode
in the STD1 profile, it enables for the PD profile as well. This option of
course shouldn’t be available for IN TRVL edition and therefore gives away
the fact that we are using the PD profile - for example, since slot values have
to be set through config mode, when sysadmin mode is enabled, this makes
it impossible to change slot values in the PD profile. Similarly it will become
impossible to change any preferences, since they all also require config mode,
after the sysadmin mode is activated. This fact combined with the double PIN-
fail counters used with PD mode, can actually get the device into a peculiar
state. If the PD counter fills up and the STD profile gets disabled, while the

43

3. What I found

sysadmin mode was active, the PD mode becomes totally unchangeable, since
it cannot be used to disable the sysadmin mode itself.

The solution seems pretty simple - have the sysadmin mode be separate
for the two profiles - the PD profile cannot use it at all, and two STD profiles
can benefit by having more granular preferences control - it could be useful to
enable sysadmin mode on one of the profiles but not the other.

3.2 Minor potentially problematic areas

This section describes findings or observations which have something to do
with security, however I wouldn’t consider them particularly serious.

• When the BVL bootloader performs the FW integrity verification during
bootup it uses a function called fwintegritycheck as can be seen in 3.1.
The function returns a value of 1, indicating success, if the computed
hash and stored hash match. However, it also returns 1, if the stored
hash has all bytes set to 0xFF - this is a situation indicating that no
hash was written yet. However since it is the BVL bootloader itself
that writes the FW hash into EEPROM while installing it, I don’t see
any reason for this condition to be here. Indeed it only increases the
attack surface - if someone found a way to overwrite the FW hash to
this value, the integrity check would always pass. However on the whole
I do not consider this to be particularly serious. Especially since what
the integrity check is actually supposed to do, is prevent unauthorized
changes in the installed FW - but the FW is stored in the same flash
memory as the BVL bootloader is and considering the properties of the
chipset, the EEPROM is actually also part of the same flash memory. It
seems to me therefore that if an attacker were to find a way to overwrite
the FW, they could also overwrite its hash to the correct value, or for
that matter overwrite the bootloader as well and disable the integrity
check.

• In the Beta 7 version of the OK FW you can disable backup key val-
ue/mode changing through preferences in the PD mode profile, and it
also applies it for the primary STD profile. Since this is an irreversible
operation performed by a profile which doesn’t even support the backup
functionality, this is clearly wrong - however it was fixed in the later
versions. However until we use the BVL bootloader with downgrade
prevention, it is always possible to go down to Beta 7, exploit any po-
tential vulnerabilities and then optionally go back to the newer FW.

• We do know that the OK device has open-source software, however we
should note that it is not open-hardware. There are no Arduino or
other hardware sketches available to study. This might be problematic

44

3.2. Minor potentially problematic areas

for some users. Also the manufacturers website[13] does not contain
much information. Indeed it has been pretty difficult to find anything
about Black Vault Labs LLC. They might be the same people who are
behind the OK sotware, but we cannot be sure, until they confirm it.

• It is good to realize, that if the host machine is setup to continue sup-
plying power to the USB ports after it has been shut down, an unlocked
OnlyKey doesn’t have any way of knowing that the machine is no longer
running and stays unlocked. Of course with the timeout autolock func-
tion it will probably only stay unlocked for a short time, but it is worth
noting.

• It is nice for the legitimate user that the two STD profiles are differ-
entiated by a different colored LED light (green for STD1 and blue for
STD2), however this also means that if somebody sees your OK glow-
ing blue, it immediately tells them that you have two profiles set up.
This is probably not a huge problem, but for added convenience and an
even prettier user experience I would suggest to make the colors for both
profiles changeable through the preferences menu.

• I am a bit suspicious of the way the secure backup function works. It only
restores what was setup at the time it was backed up, and doesn’t wipe
the data that is currently setup - even within the same slot. Meaning
that if we have slot 1a initialized with a username and password and
restore from backup that only contains a password for that slot, only
the password will get overwritten, while the username will stay as it is.
While this is mentioned in the documentation[30], which means it is the
expected documented behavior, and even though I wasn’t able to come
up with a situation where it might be misused, it seems to me to be at
the very least a bit non-standard.

• When the PD mode special counter gets triggered only the STD1 PIN
hash gets overwritten, and not the actual user data stored in that profile.
This is a long shot and probably doesn’t matter at all, since if anybody
was able to read the data from the EEPROM, they could have done
it before attempting to brute-force the main PIN, etc. It is possible
that this decision was made to lower the probability of a successful side-
channel attack, which might be able to recognize that a failed login
attempt was suddenly different (took a longer time to complete, needed
more power, emitted differently in the EM spectrum,...) and therefore
reveal the PD mode scheme and the existance of the (now defunct) STD
profile.

• Since the OK acts as a physical keyboard, it is definitely possible to
eavesdrop on the keystrokes, using either a SW keylogger program, in-
stalled on the host machine or a HW keylogger installed inside it, sitting

45

3. What I found

between the outward facing USB hub and the motherboard. However
this problem is absolutely not OK specific and pertains to all keyboards.
And even if this attack is carried out, the OK has a good advantage over
SW password managers in that it only reveals the passwords it types,
not all the other ones.

Figure 3.1: The code the BVL bootloader uses to check the FW integrity

. . .
}

// read 64 byte hash from eeprom
f o r (i n t i = 0 ; i < crypto hash BYTES ; i++) {

// 0 used f o r boot loader jump f l ag , 1 used f o r fwload f l ag ,
// 2−65 used f o r fw i n t e g r i t y hash

temphash [i] = GET STORED HASH(i) ;
hashsum = hashsum + temphash [i] ;
}
i f (hashsum == 16320) {
// Al l FFs , d e f a u l t s ta te , no hash wr i t t en

return 1 ;
} //Check match
e l s e i f (c r y p t o v e r i f y 3 2 (temphash , hashptr) == 0 &&

c r y p t o v e r i f y 3 2 (temphash+32, hashptr +32) == 0) {
re turn 1 ;

}
re turn 0 ;

3.3 Other interesting findings

This section contains purely facts that have for some reason caught my atten-
tion and seemed to be interesting enough to be put in this thesis, however I
do not claim that they have any security implications at all.

• The Password::is(char* pass) function as seen here 3.2 from file
password.cpp from the password library has a mistake in it. The while
cycle will always perform all MAX PASSWORD LENGTH iterations, or none at
all. This is because the second part of the condition continually checks
the first character of a non-changing pointer for not being 0. Since it is
not changing during the cycle, it will either be a zero in all iterations or
something else in all iterations. This seems like it could be a pretty seri-
ous mistakes which in some cases might for example read out of bounds

46

3.3. Other interesting findings

of a supplied buffer - however not in this case, since the buffers that are
given here will always be sufficiently large.

• In the same file there is a function called Password::evaluate() as seen
here 3.3 - at first I thought this function might be vulnerable to a timing
sidechannel attack, since it returns false as soon as it finds mismatching
characters. However then I realized this function isn’t ever used to verify
anything as an authentication challenge, but only to verify that the user
didn’t make a typo while creating their OK PINs - the function compares
the result of the two times the user enters their desired PIN and checks
if they match. In this context this behavior is not problematic.

• When setting the LED brightness level, the OK App is the one sanitizing
the input - the OK device doesn’t really check it for boundaries, of course
the OK App can be modified to not check the input either. By studying
the source code I came to realize that what actually happens with the
received 8-bit value (lets call it N) is: ((N)*22 AND 255)+1 - where AND
is a bitwise ”and” operation. The result of this formula is the actual new
brightness level. We can check it for discrete extremes and we find that
the actual highest brightness setting achievable is not sending a ”10”
but sending either a ”93” or ”221”. The lowest brightness can be set
by sending either a ”35” or a ”163” - the difference vs a ”1” is actually
pretty clearly visible here. We can also send a ”0”, which turns the LED
off.

• The Beta 7 changelog claims - ”Better touch sense on OnlyKey but-
tons using automatic touch sense calibration”[25] - however I didn’t find
anything reflecting this change in the FW code. It is mentioned again
in the 2.1.2 FW changelog - ”Better touch sensitivity with touch sense
recalibration”[25]. It seems my version of OK App doesn’t support this
setting yet, however the FW might because there are corresponding
EEPROM getter and setter functions in the okeeprom.c file from the
onlykey library. The getter returns an incorrect macro as an indicator
of the values length - it returns EElen ledbrightness, which is sup-
posed to be used for the LED brightness setting, instead of returning
EElen touchoffset. It is a mistake, but it doesn’t really matter in this
case, because both macros evaluate to the same value, which is 1. Just
to be sure I went through all the other ”pos” and ”len” macros which
are used to store all the settings and user data in the EEPROM, sorted
one value after another in a predefined position. I didn’t find any other
irregularities.

• The OK allows for the lock button to be set differently for the two
profiles. However since the value checking is performed in the OK App,
where it can be disabled in code, and not on device, we can send any

47

3. What I found

number we want. This wouldn’t be very interesting, however thanks to
how the lock button setting code is written 3.4, it is actually possible
to change both lock buttons at the same time from the first profile’s
preferences. For example we can send a value of 50 (0011 0010 in binary)
and this will set the STD1 lock to button 2 and the STD2/PD profile lock
to button 3. This only works if there was not lock button set previously
(there was a value of zero), since the code adds the new values to the
old ones - so if a lock button was already set in the second profile - this
way we would increase it by the amount specified, instead of setting it
to that value. I found this to be quite interesting, but didn’t find any
way to actually misuse it.

• There is no way to attack the OK by cutting off power either after an
incorrect PIN has been entered or before reaching the maximum length
of 10 numerals - the failedlogins actually gets incremented and saved
right after pressing the first button, and only gets reset again, if the
login happens to be successful.

Figure 3.2: The code that the password library uses to copy the password
guess into another buffer

// eva luate a s t r i ng , i s i t equal to the password ?
bool Password : : i s (char ∗ pass){

byte i =0;
whi l e (∗ pass && i<MAX PASSWORD LENGTH){

guess [i] = pass [i] ;
i ++;

}
re turn eva luate () ;

}

3.4 Documentation vs. function inconsistencies

In this section I will highlight a few inconsistencies between what the online
documentation, the comments in the code or the instructions in the OK App
say and what the device actually does. Note that none of these necessarily
mean there is a potential security vulnerability, but it is definitely of interest
from the security point of view.

The official sources say:

• ”Keep in mind that switching from the Standard Edition to the Inter-
national Travel Edition will disable features not available such as the

48

3.4. Documentation vs. function inconsistencies

Figure 3.3: The code that the password library uses to compare two passwords
for match

// i s the cur rent guessed pass equal to the t a r g e t pass ?
bool Password : : eva luate (){

char pass = ta r g e t [0] ;
char guessed = guess [0] ;
f o r (byte i =1; i<MAX PASSWORD LENGTH; i ++){

// check i f guessed char i s equal to the password char
i f (pass==STRING TERMINATOR &&
guessed==STRING TERMINATOR){

// both s t r i n g s ended and a l l p rev ious ch a r a c t e r s are equal
re turn true ;

} e l s e i f (pass != guessed | |
pass==STRING TERMINATOR | |

guessed==STRING TERMINATOR){
// d i f f e r e n c e OR end o f s t r i n g has been reached

return f a l s e ;
}

// read next char
pass = t a r g e t [i] ;
guessed = guess [i] ;

}
re turn f a l s e ; //a ’ true ’ cond i t i on has not been met

}

second profile.”[26] - This is actually only partially true. Yes, a fresh
uninitialized installation of the IN TRVL edition will make it impossi-
ble to set up two profiles. However, if two profiles (either both STD
or STD1 + PD) were set up using the STD edition FW, and then we
re-install the IN TRVL FW, both accounts actually remain accessible,
under their respective PINs. Of course, since the IN TRVL edition pre-
sumes non-encrypted user data, it won’t be able to read user credentials
and other data from STD-set-up-profiles. When attempting to read
them, the OK produces seemingly random data with random delays,
because it is interpreting the data as if it was set up using the IN TRVL
edition. Note that data from a potential PD mode second profile will
work normally, since these are also unencrypted.

• ”This [IN TRVL] version of OnlyKey firmware is designed to meet all
international requirements in regards to encryption. It does this by not
utilizing encryption at all. Because this version does not utilize encryp-
tion the device can be used in areas where encryption is forbidden and/or

49

3. What I found

Figure 3.4: The code for setting up lock buttons

okeep rom eege t au to l o ck s l o t (&temp) ;
i f (p ro f i l emode) {

temp &= 0x0F ;
temp += (b u f f e r [7] << 4) ;
ok e ep rom ee s e t au to l o ck s l o t (&temp) ;

} e l s e {
temp &= 0xF0 ;
temp += b u f f e r [7] ;
ok e ep rom ee s e t au to l o ck s l o t (&temp) ;

}

there are mandatory key disclosure requirements. This is particularly
useful for international travel where the traveler would like to have se-
cure portable access to accounts”[26] - it is clearly stated that there is
”no ecnryption at all”, however this is blatantly not true. First - the
BVL bootloader is still present, conatains the cryptogtaphic tweetnacl
librar, and performs both hashing operations - for FW integrity checking
- and digital signature verification - when re-installing FW. But even the
FW itself still contains cryptography - yes the user data is not encrypted
and the corresponding ”profilekey” not generated. However the public
keys for the PINs are still generated in the same way - which means us-
ing the sha256 hashing function (as was the case in the older versions as
well), and since the encryption change from Beta 8 FW there is also an
additional step which uses elliptic curve cryptography (”Curve25519”),
described in this section - 2.4. These are being used in the IN TRVL
edition as well, which means it does still contain some cryptography.

• ”Setting wipe mode to “Full Wipe” ensures that not only is your sensi-
tive data wiped when a factory default occurs but also the firmware is
wiped.”[30] - Actually, when full wipe is turned on and then a factory-
default function called, the FW doesn’t immediately get wiped. Instead
it wipes the FW hash from EEPROM with all zeroes, so that when the
device reboots, the BVL performs and fails the FW integrity check. The
BVL then performs the actual flash wipe to delete the FW. This makes
sense, because the it would likely be technically impossible for the FW
to delete itself, while running. It is worth noting that the full wipe be-
gins with wiping the userdata first, as if it wasn’t enabled. This is I
think a good design choice, since deleting the data is more important
and also if somebody were to perform some kind of side-channel analy-
sis, the differentiation would come only after the user data has already
been deleted.

50

3.5. Secure coding standards

• ”While unlocked after a successful PIN entry there is an integrity counter
used by the firmware running on OnlyKey. If instructions are skipped
over the integrity counter will become corrupt causing the device to
restart and lock.”[30] - This refers to two variables within the code called
integrityctr1 and integrityctr2 respectively. These counters are
periodically checked to make sure they contain the same value - the way
it works that before a sensitive transactional operation is performed the
first value gets incremented by one and after the operation is done, the
second one is incremented instead. This way in between operations these
two variables should always hold the same value. The documentation
claims that this process starts after a successful PIN entry - but in fact it
begins even before that, while the device is still locked. This is actually
probably preferable, it is just strange that the documentation would be
so specific in this respect, when its untrue.

• ”The data stored on OnlyKey is encrypted with the strongest encryp-
tion available (AES-256-GCM) and most importantly is PIN protected.
What this means is that if you lose your OnlyKey it is essentially use-
less without the PIN, nothing can be read from or written to it.”[53] -
however, as we know, not only AES-256-GCM is used, but also the salsa
cipher.

3.5 Secure coding standards

These are a few observations I have made about the secure coding style within
the open source OK software.

• OK has a big advantage in that it is not using much dynamic allocation.
This helps prevent buffer overflows, double free errors and use after
free errors. There is dynamic allocation within the libraries, but only
one within OK code large temp = (uint8 t *)malloc(17904); - it is
in the okcore.cpp file. Weirdly this single dynamic allocation doesnt
seem to ever be freed, however since its in the restore function, which
will unconditionally perform a restart after the restore is finished, it
probably doesnt matter - however it is definitely not recommended to
leave unfreed memory.

• A thing that has bothered me a little throughout my study of the FW
source code is there are definitely some stylistic programming problems:

– Relatively heavy use of magic numbers
– It is pretty common for some functions to be named in a misleading

way
– A lot of global variables

51

3. What I found

– A lot of repeating code - both small scale, and relatively sizable
code chunks

While these things don’t necessarily pose any danger by themselves, they
are something that should be avoided if possible, because they can bring
confusion into the codebase, both for the author and especially for any
potential readers.

• It is good that the authors didn’t attempt to implement their own
crypto-primitives and user ones from relatively well known libraries. The
use of the crypto seems to be very complex and it is obvious the authors
are very proficient in its use.

52

Conclusion

The OnlyKey device seems to be very well secured, I wasn’t able to find
and catastrophic vulnerabilities. There are however a few changes that I
would suggest, which I allude to when talking about areas that I considered
problematic in chapter 3.

Meanwhile I also have a few suggestions/observations for the users, so
that they can use their OK as securely as possible. At first it seemed user
un-friendly to me, that the App and device allow the user setup PINs that
overlap, therefore rendering some of them unusable. Then it occured to me,
that it could actually be used to the defenders advantage - for example set
the SD PIN to 5556665 and the STD1 PIN to 55566657. This way it is
impossible to login into the STD1 profile, because the SD PIN gets triggered
sooner and wipes the device. The legitimate user could then still login using
the second profile, change the SD PIN or the STD1 PIN (preferably with
the modifications I suggested in 3) and then use the STD1 profile as long as
needed, before hiding it again. Of course this would not be a very comfortable
way of using the device, but it would add another layer of security to one of
the profiles.

The lock button function can be used in principally a very similar way. We
can guess that a potential attacker that manages to find our device connected
and unlocked would first try and print out the 1a slot, tapping the 1 button
shortly - if we set this to be the lock button it will lock him out of the device.
Alternatively we could cover the ”most secret/important” credential with the
lock button. Then the slot becomes unusable again, since its button triggers
the lock function, however if we need to use it we could un-set the lock button,
use the slot and then re-set it again. Again - not a very comfortable way of
using the device, but it adds another layer of security to one of the slots.

If the user wants to take advantage of the PD mode I would definitely
listen to the OK documentation recommendation and turn on the full wipe
mode.

Also even though the OK does protect its users password very well, it

53

Conclusion

cannot protect the user from creating a weak password - therefore I would
recommend generating random long passwords - after all, with OK we do not
have to remember them.

54

Future work

There is still a lot of work that could be done to further study and investigate
the capabilities and properties of the OnlyKey. For example a rigorous testing
of the RNG mechanism is a whole topic on its own, and so is a security analysis
from a secure-hardware point of view - meaning side channel analysis, tamper
resistance analysis, fault injection, etc. Also since this thesis didn’t really
cover the newest addition to the OnlyKey ensemble - the OnlyKey Duo - that
is also left to further exploration.

55

Bibliography

1. BRASEN, Steve. Accelerating the Journey to Passwordless Authentica-
tion [online]. 2019. Tech. rep. Available also from: https://www.ibm.
com/downloads/cas/G9PM5PN4. Accessed on 05/9/2022.

2. STOFFREGEN, Paul. Teensy USB Development board [online]. [N.d.].
Available also from: https://www.pjrc.com/teensy/. Accessed on
02/24/2022.

3. STOFFREGEN, Paul. Teensy Technical Specs Comparision Table [on-
line]. [N.d.]. Available also from: https : / / www . pjrc . com / teensy /
techspecs.html. Accessed on 02/24/2022.

4. NXP SEMICONDUCTORS, INC. MK20DX256VLH7 Product Informa-
tion—NXP [online]. 2012. Available also from: https://www.nxp.com/
part/MK20DX256VLH7#/. Accessed on 02/9/2022.

5. NXP SEMICONDUCTORS, INC. Kinetis K20P64M72SF1 [online]. 2012.
Tech. rep. Available also from: https://www.nxp.com/docs/en/data-
sheet/K20P64M72SF1.pdf. Accessed on 02/9/2022.

6. STOFFREGEN, Paul. Teensy® 3.2 [online]. [N.d.]. Available also from:
https://www.pjrc.com/store/teensy32.html. Accessed on 02/20/2022.

7. ”FLIGEN”; STOFFREGEN, Paul. Is the Teensy boot loader source avail-
able? [Online]. 2017. Available also from: https://forum.pjrc.com/
threads/41751-Is-the-Teensy-boot-loader-source-available.
Accessed on 06/3/2022.

8. STOFFREGEN, Paul. Getting started with Teensy USB development
board [online]. [N.d.]. Available also from: https://www.pjrc.com/
teensy/first_use.html. Accessed on 06/3/2022.

9. STOFFREGEN, Paul. Checking HalfKay Is Running [online]. [N.d.].
Available also from: https://www.pjrc.com/teensy/check_halfkay.
html. Accessed on 06/3/2022.

57

https://www.ibm.com/downloads/cas/G9PM5PN4
https://www.ibm.com/downloads/cas/G9PM5PN4
https://www.pjrc.com/teensy/
https://www.pjrc.com/teensy/techspecs.html
https://www.pjrc.com/teensy/techspecs.html
https://www.nxp.com/part/MK20DX256VLH7#/
https://www.nxp.com/part/MK20DX256VLH7#/
https://www.nxp.com/docs/en/data-sheet/K20P64M72SF1.pdf
https://www.nxp.com/docs/en/data-sheet/K20P64M72SF1.pdf
https://www.pjrc.com/store/teensy32.html
https://forum.pjrc.com/threads/41751-Is-the-Teensy-boot-loader-source-available
https://forum.pjrc.com/threads/41751-Is-the-Teensy-boot-loader-source-available
https://www.pjrc.com/teensy/first_use.html
https://www.pjrc.com/teensy/first_use.html
https://www.pjrc.com/teensy/check_halfkay.html
https://www.pjrc.com/teensy/check_halfkay.html

Bibliography

10. STOFFREGEN, Paul. C code for Teensy: USB Raw HID - for building
custom USB devices [online]. [N.d.]. Available also from: https://www.
pjrc.com/teensy/rawhid.html. Accessed on 03/6/2022.

11. STOFFREGEN, Paul. Teensyduino - Add-on for Arduino IDE to use
Teensy USB development board [online]. [N.d.]. Available also from: https:
//www.pjrc.com/teensy/teensyduino.html. Accessed on 03/6/2022.

12. CRYPTOTRUST. Products - CryptoTrust [online]. [N.d.]. Available also
from: https://crp.to/p/. Accessed on 05/23/2022.

13. BLACK VAULT LABS LLC. Products [online]. 2022. Available also from:
https : / / www . blackvaultlabs . com / products . html. Accessed on
05/12/2022.

14. CRYPTOTRUST. Team - CryptoTrust [online]. [N.d.]. Available also
from: https://crp.to/t/. Accessed on 05/23/2022.

15. CRYPTOTRUST. OnlyKey Features — Docs [online]. 2022. Available
also from: https://docs.crp.to/features.html. Accessed on 05/26/2022.

16. STEINER, Tim. OnlyKey - The Two-factor Authentication and Pass-
word Solution by Tim Steiner — Kickstarter / Updates [online]. 2016.
Available also from: https://www.kickstarter.com/projects/timsteiner/
openkey- the- two- factor- authentication- and- password/posts.
Accessed on 05/28/2022.

17. DONÁT, Takács; STEINER, Tim. Cannot compile and install beta 7
[online]. 2019. Available also from: https://github.com/trustcrypto/
OnlyKey-Firmware/issues/89. Accessed on 06/14/2022.

18. CRYPTOTRUST. Upgrading Firmware From Beta6 to Beta7 — Docs
[online]. 2018. Available also from: https://docs.crp.to/legacyupgradeguide.
html. Accessed on 01/12/2022.

19. STEINER, Tim. OnlyKey DUO - Portable Protection For All of Your
Devices by Tim Steiner — Kickstarter [online]. 2021. Available also from:
https://www.kickstarter.com/projects/timsteiner/onlykey-
duo-portable-protection-for-all-of-your-devices. Accessed on
05/28/2022.

20. CRYPTOTRUST. OnlyKey DUO - Dual USB-C and USB-A Security
Key [online]. 2022. Available also from: https://onlykey.io/products/
onlykey-duo-dual-usb-c-and-usb-a-security-key. Accessed on
06/17/2022.

21. CRYPTOTRUST. About Security — Docs [online]. 2020. Available also
from: https://docs.crp.to/security.html. Accessed on 04/12/2022.

22. HUNTER, Melissa. Using the Kinetis Security and Flash Protection Fea-
tures [online]. 2012. Tech. rep. Available also from: https://www.nxp.
com/docs/en/application-note/AN4507.pdf. Accessed on 03/7/2022.

58

https://www.pjrc.com/teensy/rawhid.html
https://www.pjrc.com/teensy/rawhid.html
https://www.pjrc.com/teensy/teensyduino.html
https://www.pjrc.com/teensy/teensyduino.html
https://crp.to/p/
https://www.blackvaultlabs.com/products.html
https://crp.to/t/
https://docs.crp.to/features.html
https://www.kickstarter.com/projects/timsteiner/openkey-the-two-factor-authentication-and-password/posts
https://www.kickstarter.com/projects/timsteiner/openkey-the-two-factor-authentication-and-password/posts
https://github.com/trustcrypto/OnlyKey-Firmware/issues/89
https://github.com/trustcrypto/OnlyKey-Firmware/issues/89
https://docs.crp.to/legacyupgradeguide.html
https://docs.crp.to/legacyupgradeguide.html
https://www.kickstarter.com/projects/timsteiner/onlykey-duo-portable-protection-for-all-of-your-devices
https://www.kickstarter.com/projects/timsteiner/onlykey-duo-portable-protection-for-all-of-your-devices
https://onlykey.io/products/onlykey-duo-dual-usb-c-and-usb-a-security-key
https://onlykey.io/products/onlykey-duo-dual-usb-c-and-usb-a-security-key
https://docs.crp.to/security.html
https://www.nxp.com/docs/en/application-note/AN4507.pdf
https://www.nxp.com/docs/en/application-note/AN4507.pdf

Bibliography

23. CRYPTOTRUST. GitHub - trustcrypto/OnlyKey-App [online]. 2022. Avail-
able also from: https : / / github . com / trustcrypto / OnlyKey - App.
Accessed on 06/16/2022.

24. CRYPTOTRUST. Releases - trustcrypto/OnlyKey-App [online]. 2022.
Available also from: https : / / github . com / trustcrypto / OnlyKey -
App/releases. Accessed on 06/16/2022.

25. CRYPTOTRUST. Releases - trustcrypto/OnlyKey-Firmware [online]. 2022.
Available also from: https : / / github . com / trustcrypto / OnlyKey -
Firmware/releases. Accessed on 06/15/2022.

26. CRYPTOTRUST. International Travel Edition Guide — Docs [online].
2018. Available also from: https://docs.crp.to/ite.html. Accessed
on 03/28/2022.

27. ARDUINO. TOTP library - Arduino Reference [online]. 2022. Available
also from: https://www.arduino.cc/reference/en/libraries/totp-
library/. Accessed on 02/15/2022.

28. YUBICO. Yubico OTP [online]. [N.d.]. Available also from: https://
developers.yubico.com/OTP/. Accessed on 02/11/2022.

29. FIDO ALLIANCE. FIDO2 - FIDO AllianceFIDO2 - FIDO Alliance [on-
line]. [N.d.]. Available also from: https://fidoalliance.org/fido2/.
Accessed on 05/30/2022.

30. CRYPTOTRUST. OnlyKey User’s Guide — Docs [online]. 2022. Avail-
able also from: https://docs.crp.to/usersguide.html. Accessed on
05/26/2022.

31. CRYPTOTRUST. GitHub - trustcrypto/python-onlykey [online]. 2022.
Available also from: https : / / github . com / trustcrypto / python -
onlykey. Accessed on 06/16/2022.

32. TRUSTCRYPTO. trustcrypto/onlykey-agent [online]. 2022. Available also
from: https://github.com/trustcrypto/onlykey-agent. Accessed on
06/1/2022.

33. CRYPTOTRUST. OnlyKey SSH/GPG agent [online]. 2021. Available
also from: https://docs.crp.to/onlykey-agent.html. Accessed on
05/22/2022.

34. BLACK VAULT LABS LLC. Releases - onlykey/BVL-Bootloader [on-
line]. 2021. Available also from: https://github.com/onlykey/BVL-
Bootloader/releases. Accessed on 06/12/2022.

35. ”BIGPILOT”; STOFFREGEN, Paul. How do I prevent EEPROM from
being overwritten bij Teensy Loader? [Online]. 2018. Available also from:
https://forum.pjrc.com/threads/54446- How- do- I- prevent-
EEPROM-from-being-overwritten-bij-Teensy-Loader. Accessed on
06/3/2022.

59

https://github.com/trustcrypto/OnlyKey-App
https://github.com/trustcrypto/OnlyKey-App/releases
https://github.com/trustcrypto/OnlyKey-App/releases
https://github.com/trustcrypto/OnlyKey-Firmware/releases
https://github.com/trustcrypto/OnlyKey-Firmware/releases
https://docs.crp.to/ite.html
https://www.arduino.cc/reference/en/libraries/totp-library/
https://www.arduino.cc/reference/en/libraries/totp-library/
https://developers.yubico.com/OTP/
https://developers.yubico.com/OTP/
https://fidoalliance.org/fido2/
https://docs.crp.to/usersguide.html
https://github.com/trustcrypto/python-onlykey
https://github.com/trustcrypto/python-onlykey
https://github.com/trustcrypto/onlykey-agent
https://docs.crp.to/onlykey-agent.html
https://github.com/onlykey/BVL-Bootloader/releases
https://github.com/onlykey/BVL-Bootloader/releases
https://forum.pjrc.com/threads/54446-How-do-I-prevent-EEPROM-from-being-overwritten-bij-Teensy-Loader
https://forum.pjrc.com/threads/54446-How-do-I-prevent-EEPROM-from-being-overwritten-bij-Teensy-Loader

Bibliography

36. ”CSTACK89”; STOFFREGEN, Paul; ”PICTOGRAPHER”; ”ROBSOLES”;
STEINER, Tim (”cr7pt0”); ” ”defragster. Upload Hex file from Teensy
3.1 [online]. 2015. Available also from: https : / / forum . pjrc . com /
threads/28783-Upload-Hex-file-from-Teensy-3-1. Accessed on
06/3/2022.

37. ”SIGI”; ”DEFRAGSTER”; ”TNI”; STOFFREGEN, Paul. Blocking AM2321
Library with Arduino 1.8.2 / Teensyduino 1.36 [online]. 2017. Available
also from: https : / / forum . pjrc . com / threads / 43080 - Blocking -
AM2321-Library-with-Arduino-1-8-2-Teensyduino-1-36. Accessed
on 04/6/2022.

38. ARDUINO. SoftTimer - Arduino Reference [online]. 2022. Available also
from: https://www.arduino.cc/reference/en/libraries/softtimer/.
Accessed on 02/15/2022.

39. CRYPTOTRUST. trustcrypto/libraries: Libraries for OnlyKey Firmware
[online]. 2022. Available also from: https://github.com/trustcrypto/
libraries. Accessed on 01/11/2022.

40. ”JPATHY”; MATUSIAK, Bradley. compiling the firmware [online]. 2017.
Available also from: https : / / github . com / trustcrypto / OnlyKey -
Firmware/issues/59. Accessed on 06/13/2022.

41. STOFFREGEN, Paul. Troubleshooting Common Problems [online]. [N.d.].
Available also from: https://www.pjrc.com/teensy/troubleshoot.
html. Accessed on 03/6/2022.

42. MATUSIAK, Bradley. bmatusiak/node-onlykey-fido2 [online]. 2020. Avail-
able also from: https : / / github . com / bmatusiak / node - onlykey -
fido2. Accessed on 06/4/2022.

43. SOUTHERN STORM. rweather/arduinolibs [online]. 2022. Available also
from: https://github.com/rweather/arduinolibs/tree/master/
libraries/Crypto. Accessed on 05/14/2022.

44. CONTE, Brad. B-Con/crypto-algorithms [online]. 2015. Available also
from: https://github.com/B-Con/crypto-algorithms. Accessed on
05/16/2022.

45. KNIGHT, Peter. Cathedrow/Cryptosuite [online]. 2010. Available also
from: https://github.com/Cathedrow/Cryptosuite/tree/master/
Sha. Accessed on 05/15/2022.

46. BERNSTEIN, Daniel J.; GASTEL, Bernard van; JANSSEN, Wesley;
LANGE, Tanja; SCHWABE, Peter; SMETSERS, Sjaak. TweetNaCl: In-
troduction [online]. 2013. Available also from: https://tweetnacl.cr.
yp.to/. Accessed on 04/14/2022.

47. MACKAY, Ken. kmackay/micro-ecc [online]. 2022. Available also from:
https://github.com/kmackay/micro-ecc. Accessed on 05/7/2022.

60

https://forum.pjrc.com/threads/28783-Upload-Hex-file-from-Teensy-3-1
https://forum.pjrc.com/threads/28783-Upload-Hex-file-from-Teensy-3-1
https://forum.pjrc.com/threads/43080-Blocking-AM2321-Library-with-Arduino-1-8-2-Teensyduino-1-36
https://forum.pjrc.com/threads/43080-Blocking-AM2321-Library-with-Arduino-1-8-2-Teensyduino-1-36
https://www.arduino.cc/reference/en/libraries/softtimer/
https://github.com/trustcrypto/libraries
https://github.com/trustcrypto/libraries
https://github.com/trustcrypto/OnlyKey-Firmware/issues/59
https://github.com/trustcrypto/OnlyKey-Firmware/issues/59
https://www.pjrc.com/teensy/troubleshoot.html
https://www.pjrc.com/teensy/troubleshoot.html
https://github.com/bmatusiak/node-onlykey-fido2
https://github.com/bmatusiak/node-onlykey-fido2
https://github.com/rweather/arduinolibs/tree/master/libraries/Crypto
https://github.com/rweather/arduinolibs/tree/master/libraries/Crypto
https://github.com/B-Con/crypto-algorithms
https://github.com/Cathedrow/Cryptosuite/tree/master/Sha
https://github.com/Cathedrow/Cryptosuite/tree/master/Sha
https://tweetnacl.cr.yp.to/
https://tweetnacl.cr.yp.to/
https://github.com/kmackay/micro-ecc

Bibliography

48. SOLOKEYS. solokeys/solo1 [online]. 2021. Available also from: https:
//github.com/solokeys/solo1/tree/master/fido2. Accessed on
05/3/2022.

49. YUBICO. Yubico/yubico-c [online]. 2022. Available also from: https:
//github.com/Yubico/yubico-c. Accessed on 06/19/2022.

50. ADAFRUIT INDUSTRIES. Adafruit/Adafruit-NeoPixel [online]. 2022.
Available also from: https://github.com/adafruit/Adafruit_NeoPixel.
Accessed on 06/14/2022.

51. CRYPTOTRUST. OnlyKey Bug Bounty Program [online]. 2022. Avail-
able also from: https://onlykey.io/pages/onlykey-bug-bounty-
program. Accessed on 06/15/2022.

52. CRYPTOTRUST. Plausible Deniability Setup Guide — Docs [online].
2020. Available also from: https://docs.crp.to/pdguide.html. Ac-
cessed on 05/24/2022.

53. CRYPTOTRUST. FAQ – OnlyKey [online]. 2022. Available also from:
https://onlykey.io/pages/faq. Accessed on 06/5/2022.

61

https://github.com/solokeys/solo1/tree/master/fido2
https://github.com/solokeys/solo1/tree/master/fido2
https://github.com/Yubico/yubico-c
https://github.com/Yubico/yubico-c
https://github.com/adafruit/Adafruit_NeoPixel
https://onlykey.io/pages/onlykey-bug-bounty-program
https://onlykey.io/pages/onlykey-bug-bounty-program
https://docs.crp.to/pdguide.html
https://onlykey.io/pages/faq

Appendix A
Acronyms

OK OnlyKey

OKO OnlyKey Original

OKC OnlyKey Color

OKD OnlyKey Duo

AES-GCM The Advanced Encryption Standard block cipher in galois-counter-
mode

BVL Black Vault Labs (Usually while referring to their OnlyKey bootloader)

SW Software

HW Hardware

FW Firmware

STD The standard edition of the OK FW, or a profile in such an edition,
which is not in PD mode - sometimes also explicitly marked as STD1 or
STD2.

PD Plausible deniability mode

IN TRVL / ITE The international edition of the OK FW

HK Teensy’s proprietary HalfKay bootloader

PIN Personal identification number - a numeric password

SD PIN Self-destruct PIN

RNG Random number generator/generation

63

Appendix B
Contents of enclosed CD

FW edition lib comparison - a directory containing files which
I generated and used to compare which libraries were included and linked
in the STD edition FW vs the IN TRVL edition FW

Installers . - a directory containing the installers necessary to get the
OK FW building up and running
src - a directory containing all the source code files

ok fw src ... - a directory which contains my modified version of the
OK FW source code files
python src - a directory which contains my small helper Python
scripts

Thesis - a directory containing everything necessary to generate a PDF
of this thesis

65

	Introduction
	Hardware and general information
	The Teensy
	The OnlyKey
	OnlyKey basic capabilities and usage
	OnlyKey variants
	OnlyKey security features

	OnlyKey alternatives

	OnlyKey Software
	OnlyKey App
	OnlyKey first setup
	OnlyKey usage
	Slots
	Setup
	Keys
	Backup/Restore
	Firmware
	Preferences
	Advanced
	Tools

	OnlyKey App alternatives and other software
	OnlyKey Firmware and bootloader
	Notable FW versions
	Bootloaders and hid devices
	Building and debugging the FW
	Cryptographic libraries
	Crypto-related libraries
	Libraries that are not directly crypto-related
	Unused libraries

	Used Cryptography

	What I found
	Attack scenarios and problematic areas
	The significance of two PINs
	PD/STD profile interactions

	Minor potentially problematic areas
	Other interesting findings
	Documentation vs. function inconsistencies
	Secure coding standards

	Conclusion
	Future work
	Bibliography
	Acronyms
	Contents of enclosed CD

