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Abstrakt
Tato diplomová práce se zabývá problematikou budování komunikační infrastruktury během

autonomní robotické průzkumné mise v podzemním prostředí. Na základě souvisejících prací a
v kontextu nedávné soutěže DARPA Subterranean Challenge je představena strategie automatic-
kého umist’ování retranslačních rádiových stanic, které rozšiřují komunikační dosah základnové
stanice. Cílem je tak udržet spojení robotu se základnovou stanicí při minimálním dopadu na
průběh průzkumné mise. Proto je na cestě k aktuálnímu průzkumnému cíli vybírán nejvzdále-
nější navigační bod s dostatečnou očekávanou kvalitou signálu, ke kterému je robot navigován.
Pokud takový navigační bod není nalezen, je položena retranslační stanice a mise pokračuje. Usi-
luje se tedy o udržení spojení mezi radiostanicemi při zachování nezměněné průzkumné cesty.
Za tímto účelem se k extrapolaci dostupnosti signálu používá model šíření signálu. Práce se
proto zaměřuje na vyhodnocení čtyř navržených modelů. Teorie vlnovodů je využita v práci
navrženém lineárním vlnovodném modelu, který kromě predikce kvality signálu umožňuje určit
některé charakteristiky prostředí z naměřených hodnot útlumu. Přístup je následně zobecněn ve
varianci-vzorkujícím modelu a polynomiálním modelu, které využívají linearitu šíření vlnovod-
ného signálu v kombinaci s technikami latentních prostorů. Poslední navržený model je založen
na přímé regresi ze vzorků s využitím Gaussovských procesů. Modely jsou vyhodnoceny na
vytvořeném souboru dat, který obsahuje přibližně 33 000 přesně lokalizovaných vzorků kva-
lity signálu v prostředí městských kolektorů. Na základě prezentovaného vyhodnocení dosahuje
nejlepších výsledků navržený varianci-vzorkující model, který za použití pouze šesti regresních
parametrů dosahuje v interpolačních i extrapolačních scénářích zanedbatelné průměrné chyby se
směrodatnou odchylkou okolo 10 dB. Závěr práce je věnován experimentálnímu ověření navr-
ženého konceptu budování komunikační infrastruktury během robotické mise v demonstrativním
reálném nasazení ve štole Halíře poblíž Jílového u Prahy.

Klíčová slova: predikce dostupnosti komunikačního signálu; mobilní robotický průzkum; pod-
zemní rádiová komunikace; strojové učení
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Abstract
This thesis addresses the problem of communication infrastructure building during an au-

tonomous robotic exploration mission in subterranean environments. A strategy for the auto-
matic placement of retranslating radio stations that extend the base station communication range
is presented based on related work and the context of the recent DARPA Subterranean Challenge.
We aim to maintain connectivity with the base station while incurring minimal overhead to the
exploration mission performance. The path to the current exploration goal is truncated to the far-
thest waypoint with sufficient expected signal, where the robot is navigated. If there are no farther
waypoints with the expected signal coverage observed upon arrival, the radio station is placed,
and the mission proceeds; thus, we aim to maintain the link between the radios while keeping the
exploration path unchanged. To this end, an onboard computational signal propagation model
is used to extrapolate signal availability. As signal propagation modeling in subterranean envi-
ronments is of prime importance, the thesis focuses on evaluating four proposed models. The
theory of oversized Waveguides is exploited in Waveguide Linear Model, providing a possibility
of physically relevant material properties inference along the signal quality predictions. The ap-
proaches are combined in the Variance Windowing Model and Generic Embedding Polynomial
Model, which take advantage of the linearity of the waveguide signal propagation combined with
latent space embedding techniques. Finally, the Evidence Regression Model aggregates data by
computing a low-dimensional description of space between radios, utilizing Gaussian Process as
the regression method. The models are evaluated on a dataset gathered during work on the thesis,
containing around 33 000 precisely localized signal quality samples from urban utility tunnels.
The models are able to predict the signal with accuracy close to the inherent noise level in the
dataset, with the Variance Windowing Model selected as the best-performing in extrapolation
and interpolation scenarios with negligible bias and prediction standard deviation around 10 dB
while requiring only six regression parameters. Finally, the presented concept of the communi-
cation infrastructure building in a robotic mission was demonstrated in a real-world deployment
in a mine adit near Jílové u Prahy.

Keywords: communication signal availability prediction; mobile robotic exploration; subter-
ranean radio communication; machine learning
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Chapter 1

Introduction

This thesis deals with communications in underground environments in the context of mobile
robotics. Robotics is principally concerned with a mechanical design of an artificial articulated struc-
ture and intelligence that drives the structure through an environment to fulfill the desired task [1, 2].
Mobile robots can operate in large environments according to their traversability limits [3], fulfilling
tasks such as exploration, search, inspection, or maintenance. Various locomotion principles can be
utilized for ground robots, including wheels [4, 5], tracks [6, 7] or legs [8, 9]. In robotic missions, the
robots need to decide where to navigate next using robot routing [10] to perform inspection [11, 12],
patrolling [13–16] or exploration tasks [17, 18].

In the robotic exploration, the robot makes its decisions according to the currently perceived envi-
ronments model [19] using robot localization that can be based on the Simultaneous Localization and
Mapping (SLAM) [20], where the built model (map) is utilized to provide an estimate on the robot
position. Robot navigation is a combination of localization, mapping, and path planning with path ex-
ecution that thus represents a relatively complex system also regarding needed software components.
Here, one can benefit from unified software models such as the ecosystem of the Robot Operating
System (ROS) [21], which is a middleware with a wide range of available computational modules.
Still, specific solutions are needed to implement new research ideas.

The herein-studied topic of communication infrastructure building is motivated by deployments of
the robots in communication-denied environments such as underground mining [22]. During mining,
a freshly excavated tunnel may collapse, or some mechanical failure may start a fire. Such disasters
leave wounded or stunned survivors scattered throughout the tunnels or some technology broken while
the mine may still be dangerous for human rescue parties. Hence, robotic Search-and-Rescue (SAR)
scenarios are among the main motivations in contemporary mobile robotic research [23–25]. In SAR
scenarios, a robot is supposed to be deployed in a disaster area or generally dangerous and unknown
environment that discourages exposing humans to the risk. The DARPA Subterranean Challenge [26]
(SubT), organized in 2018–2021, was an international robotic competition motivated by SAR deploy-
ments of mobile robots in underground, communication-denied environments. The competing teams
were tasked to design a human-supervised (semi)autonomous robotic system to search an a-priori un-
known underground environment for objects of interest under the given time limit. Tunnel, cave, and
urban environments have been considered as illustrated in Fig. 1.

(a) SubT NIOSH Tunnel. (b) SubT Urban. (c) SubT Utility Tunnel. (d) Bull Rock Cave [27].

Figure 1: Subterranean environments, courtesy of the CTU-CRAS-NORLAB team.

1



1. Introduction

SubT has been organized into three main events. First, SubT Integration Exercise (STIX) was
held in Edgar’s gold Mine, in Idaho Springs, Colorado [28] that contains a mixture of historical and
modern tunnel sections dug in proterozoic bedrock region [29]. The first scored run of SubT was
the Tunnel circuit that took place in the United States National Institute for Occupational Safety and
Health (NIOSH) experimental mine of the Pittsburgh Mining Research Division [30]. The site contains
horizontal tunnels inside a sedimental limestone-sandstone region [31]. The second scored run was
the Urban circuit round held in the unfinished Satsop Nuclear Power Plant [32] representing an urban
underground. The Cave circuit has been canceled due to the pandemic; however, the final round, the
SubT Finals, consists of all three environment types. The circuit has been built inside a limestone
room-and-pillar mine Mega Cavern [33], Louisville, Kentucky. Team solutions are summarized in
the special issue articles dedicated to the first two phases of SubT [34]. The main related part of the
existing solutions is making the robot reliably communicate with the human supervisor as the radio
signal underground attenuates non-trivially. Using pre-installed communication infrastructure was
disallowed, and robots had to build the communication infrastructure during the mission to facilitate
collaboration and make teleoperation possible.

The problem studied in this thesis is directly motivated by the participation of the CTU-CRAS-
NORLAB team in SubT [35], where a problem of communication infrastructure building during the
robotic exploration mission is declared. An onboard signal strength prediction model using only lim-
ited sensing and computational resources available on the robotic units is required. We1 primarily
target low-bandwidth communication channels using the so-called breadcrumbs as deployed retrans-
lation communication motes [35]. The used breadcrumbs technology limits the transmission of the
messages in the network to 1 Hz at maximum. Regarding the average speed of the robots, such fre-
quency is too sparse to use the Received Signal Strength Indicator (RSSI) for reliable indication of
signal availability in complex underground environments. Therefore, we study existing signal propa-
gation models suitable for field robotic hardware and conditions. Based on the existing work, we pro-
pose four new models called Waveguide Linear Model (WLM), Variance Windowing Model (VWM),
Generic Embedding Polynomial Model (GEPM), and Evidence Regression Model (ERM). Besides,
we examined two existing baseline methods, the Free Space Path Loss Model (FSPL) and its pa-
rameterization with attenuation coefficient denoted FSPL-β. On the way to success, we tackled the
subproblems of describing variable-length series in a fixed-size vector and separating measurements
with a suitable kernel to facilitate the regression task predicting the signal availability. The proposed
models have been evaluated using a new dataset gathered along the work on the thesis because, to the
best of our knowledge, there was no existing suitable dataset available. The evaluation was conducted
using the developed computational framework that supports deploying the prediction models in real-
time in autonomous robotic exploration missions. The developed solution deployment in building a
chain of radio re-translating stations is demonstrated in the gold mine adit near Jílové u Prahy.

The thesis is organized as follows. The next chapter reviews existing solutions to robotic ex-
ploration missions under communication-constrained conditions, including an overview of solutions
the teams used in the DARPA Subterranean Challenge. Chapter 3 formally defines the problem we
address, which is to support communication infrastructure building in robotic exploration missions.
Following the problem statement, we propose a strategy based on the communication signal propaga-
tion model in Chapter 4. An overview of existing solutions in Chapter 5 then supports our proposed
subterranean signal propagation models introduced in Chapter 6. Chapter 7 describes the dataset used
for model verification and evaluation together with implementation details. The evaluation results are
reported in Chapter 8 together with the showcase of the real deployment of the developed solution.
The thesis is summarized in the conclusion dedicated to Chapter 9.

1Following the custom with academic publications, I, the Author, have decided to use pluralis auctoris to refer to my
original work.
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Chapter 2

Communication Constrained Mobile Robot
Exploration

In this chapter, we provide an overview of the related work on mobile robot exploration and com-
munication methods. Exploration generally involves collecting data to create a model of phenomena
of interest. Concerning the motivational SubT scenario, we consider the exploration a problem of
building a spatial model of the environment suitable to reason about possible locations of artifacts to
be searched. A mobile robot exploration can be summarized as a repetitive assessment of the currently
valid environment model to determine locations where the robot can gain new information, enhancing
the model. Thus, an exploration strategy is responsible for determining a sequence of navigation way-
points, a path. The robot is then navigated toward the waypoints with the assumption that the area is
explored (covered) by the robot’s sensors once the robot follows the path. The expected result of the
exploration is a model of the environment created by the robot’s sensory system. With a single robot
exploration, the communication can support mission monitoring or eventual teleoperation. However,
in a multi-robot setup, the robots can exchange their positions and locally created models to improve
their decision-making [36]. In communication-denied environments, robots can build the communi-
cation infrastructure, serve as communication nodes, or address rendezvous as meeting points, where
data can be shared using local communication [37].

The rest of the chapter is structured into the following parts. First, a brief overview of the mobile
robot exploration is presented in Section 2.1. Existing communication systems in robot exploration
missions are described in Section 2.2. Finally, the context of the CTU-CRAS-NORLAB team solution
to the DARPA Subterranean Challenge is summarized in Section 2.3.

2.1 Mobile Robot Exploration
The fundamental work on mobile robot exploration is the frontier-based exploration [38] using

occupancy grid maps [39]. The frontier is a free space of the known part of the environment at the
boundary of the unknown part of the environment. The idea is that the robot would likely explore an
unseen part of the environment while navigating toward the frontiers. Originally, the nearest closed
grid cell is classified as the currently pursued frontier while the robot builds a map and localizes
itself during the navigation. The localization can be based on the Iterative Closest Point (ICP) algo-
rithm [40]; however, the localization and mapping are considered out of the thesis scope. Therefore,
the interested reader is referred to existing surveys such as [18, 20, 41–43] to list a few here.

Several follow-up methods have improved the former greedy approach [38]. The authors of [44]
compute an expected coverage at frontier grid cells in the Next-Best-View fashion [45]. Clustering a
set of frontier grid cells by K-means algorithm [46] showed to improve the performance [36] similarly
to the using non-myopic decision making based on multi-goal path planning [47]. In 3D environment
exploration, it is necessary to address the computational complexity of 3D path planning. For example,
the authors of [48] employ Rapidly-Exploring Random Tree [49] to facilitate real-time performance.

Besides frontier-based exploration, information-theoretic approaches have been proposed [50].
The determination of the next navigational waypoints can be based on Kriging such that the variance
of the built model is gradually diminished by collecting new measurements. The authors of [19] build
a model of the environment together with the traversability model using Kriging based on Gaussian

3



2.2 Existing Solutions to Communication in Exploration

Algorithm 1: Generic exploration procedure.

1 W ← (getRobotPosition()) // Initialize by non-empty tuple.

2 while W 6= ∅ do
3 PR ← getRobotPosition() // Current position by localization module.

4 Ê ← getBestEnvironmentModel() // Current model from mapping module.

5 W =
(
P 1

w, . . . , P
k
w
)
← getExplorationWaypoints(Ê ,PR) // Expl. strategy.

6 navigateTowardWaypoints(W) // Set waypoints for the path follower.

7 terminateMission() // End the exploration as no goals are left to be explored.

Process (GP) regression [51]. The exploration procedure can be summarized by Algorithm 1 derived
from [52], where the exploration strategy is to determine the navigation waypoints that are then fol-
lowed by the path following procedure. Note that the exploration procedure is one of the parallel
processes of the whole exploration framework. It runs at a lower frequency than processes for local-
ization, mapping, and path following.

In multi-robot exploration, it is necessary to determine which robot will follow which naviga-
tional waypoints that can be formulated as the task allocation problem [53]. Depending on commu-
nication availability, the multi-robot exploration strategy can be centralized, distributed, or uncoordi-
nated. In the centralized solutions, one entity is responsible for determining which robot shall pursue
which waypoint using task allocation methods [53] such as Hungarian algorithm [54] or non-myopic
planning using multi-robot, multi-goal planning with cluster-first, route-second heuristic [36]. Dis-
tributed exploration strategies can be based on distributed multi-robot task allocation methods [55]
using market-based methods with auctions algorithms [56–59].

The MinPos [60] decentralized task allocation for multi-robot exploration is based on the indi-
vidually computed ranks of the possible exploration goals. The rank is the number of robots closer
to the particular waypoint than the robot computing the rank. Each robot is navigated toward the ex-
ploration goal with the subjectively lowest rank making the decision completely decentralized. The
original rank determination [60] requires sharing the robot positions and individual maps of the robots
to compute the shortest paths. However, only robot positions showed to be sufficient using topomet-
ric mapping [61]. Hence, the method’s advantage is in modest requirements on the communication
bandwidth, thus making it suitable for scenarios in communication-denied environments using low-
bandwidth communication breadcrumbs.

2.2 Existing Solutions to Communication in Exploration
Communication between two entities can be facilitated by various means. Implicit communica-

tion may be used in robotics to infer immediate intentions, yet it is impractical for transmitting high
amounts of information [62]. A high-bandwidth tethered link may be used to teleoperate a single
robot; however, tethered communication is limited by the reach of the wire [63]. Moreover, when
used in the real world, the tether is prone to physical damage by tearing, shearing or breaking. Such
damage may occur when laid down, traversed by other robots, or damaged. Therefore, a wireless radio
communication medium is preferred.

Radio equipment can be lightweight, mechanically rugged, and versatile [35]. Multiple works
addressed robotic mission communication and cooperation [64]. For multi-robot teams with relatively
few robots regarding the size of the environment, the robots can deliberately leave communication
range and return to it once there is some important-enough information to be transmitted [65]. Thus,
as long as there is no reckon upon existing or created wireless infrastructure, robots might need to
predict mutual connectivity [17].
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2.2 Existing Solutions to Communication in Exploration

A straightforward idea for extending the communications reach is to use a static infrastructure for
relaying wireless messages. In urban overground, it can be successfully facilitated via modern cellu-
lar technologies [66–68]. However, such infrastructure is not available underground, and we cannot
rely on that, specifically in SAR missions. Therefore, the communication infrastructure needs to be
built during the mission. Several approaches to ad-hoc communication infrastructure building were
presented in DARPA Subterranean Challenge (SubT) that are summarized in the following paragraphs.

The winner team of the SubT Final Event, the Cerberus team [69], built their robotic coopera-
tion on standard Wireless Local Access Network (Wi-Fi) radio technology operating at 5.8 GHz. In
particular, the team used off-the-shelf technology based on Rajant BreadCrumb® [70]. Two network
devices were present: mesh-capable routers and client access points. Legged robots and operator’s
base station were equipped with the former, while the drones wielded the latter, less capable but
lighter devices. Further, each legged robot carried four deployable mesh-capable devices based on
Rajant BreadCrumb® DX2 radio module. The module is furnished with a battery for 2 h of uptime,
foldable antenna, water, shock and dust proof sealed casing, Besides, the module is equipped with a
magnetic power switch to prevent operation before deployment and mechanism, making the device
stand upright [71]. The authors noted that the resulting signal quality significantly deteriorated when
modules landed in a tilted orientation. The technology allowed throughput up to 300 Mb s−1, enabling
the robots to share odometry, topometry, compressed LiDAR (Light Detection And Ranging) data, and
artifact detections and telemetry.

It is intriguing to realize that despite the overall technological sophistication, the breadcrumb
deployment strategy was trivial. The Cerberus team resigned from automatic reasoning about when
to deploy communication modules and relied solely on the operator’s expert decision. In practice,
the operator placed the modules such that they formed a communication tree stemming from the base
station. During the mission, the robots were allowed to leave the network; when they later realized a
need to rejoin the network, they backtracked their recent route until they regained connection.

Similarly, the team CoSTAR [72] used retransmission radios installed in the environment during
the mission. However, the team used an unsupervised reactive strategy. A robot deployed a bread-
crumb once the signal-to-noise ratio dropped below a certain level, which was known to facilitate
good-enough communication quality such that the span of the network was maximized. The robot
relied on up-to-date and frequent signal power measurements sustained by heartbeat messages. Even
though the strategy leads practically to a tree-like deployed structure, in theory, different network
topologies might have been created. For example, an exploring robot can drop a communication node
while closing a loop in the environment. The team Explorer based their reactive criterion on a fixed
Euclidean distance threshold and a line-of-sight condition [73]. As far as we are concerned, the team
CSIRO Data61 [74] used operator expert knowledge.

Besides the SubT effort, extensive research on robotic exploration in a straight uniform tunnel was
conducted and summarized by the authors of [75] in addition to surveys [76], and recent [77]. The
prime contribution of field deployment reported in [75] is in characterizing signal propagation in the
tunnel environment as an instance of an oversized waveguide in a manner useful for robotic missions.
Such an environment exhibits nontrivial signal propagation. Most importantly, a systematic damped
oscillation pattern can be observed when comparing the signal attenuation to the distance between
the transmitter and receiver. The authors conducted precise measurements of the radio operating
at 2.4 GHz with throughput of at most 6 Mb s−1. The probability of the message delivery as a function
of received signal power was empirically established. The knowledge combined with known spatial
attenuation pattern was exploited in [78] where the robots were spaced at a particular distance of
around 500 m; indeed, the robots were able to communicate according to assumptions. However,
therein presented solution relied on offline measurements and single case-fitted precomputed value of
the robot spacing. Nevertheless, the explicit signal propagation modeling approach is rare, and, to the
best of our knowledge, it is the first to such an extent.
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2.3 Communication Systems of the CTU-CRAS-NORLAB

A pair of robots autonomously measure signal quality in [79] exploring an underlying all-pose-
pairs space of possible radio configurations in the Kriging sense. Such a communication map can then
be utilized for determining the best locations to place communication nodes. However, it does not
support the online building of the communication infrastructure and provides only interpolation of the
signal availability, lacking useful predictions outside the traversed area.

2.3 Communication Systems of the CTU-CRAS-NORLAB
The thesis has been pursued within the Computational Robotics Laboratory (CRL) [80] that par-

ticipated in the CTU-CRAS-NORLAB SubT team [35]. Besides, the robotic platforms and sensors
available in the Center for Robotics and Autonomous Systems (CRAS) [81] have been utilized in the
data collection and deployment of the proposed solution. Therefore, a brief description of the team’s
technological solution to the communication and used platforms is presented.

Two ground robotic platforms have been utilized among the available robotic fleet depicted in
Fig. 2. The wheeled Husky A200 platform [4] with the nominal locomotion speed 1 m s−1 and possible
70 kg payload was selected for its ruggedness and tuned control. The quadruped robot Spot® [82] is,
however, able to traverse even rough terrain where Husky A200 would fail; its enhanced traversability
is payed off by reduced maximum payload of 14 kg with maximum locomotion speed of 1.6 m s−1.
The Intel® NUC class computer [83] facilitates computations necessary for exploration [35]. The
primary used exteroceptive sensor is Ouster OS0 LiDAR [84] with 35 m range, 128 row 90◦ vertical
field of view at up to 20 Hz readout frequency, with up to 5.2× 106 measured points per second.

Figure 2: Robotic fleet of the CTU-CRAS-NORLAB team. Courtesy of CTU-CRAS-NORLAB.

The CTU-CRAS-NORLAB team used three different wireless communication technologies [35].
The first is the UISP airMAX® Bullet™ AC Dual-Band Radio technology [85], used only for testing
and local short-range communication. The second is the Mobilicom MCU-30 Lite [86] proprietary
radio system operating at 2.4 GHz, which uses precise time division multiplexing to achieve meshing.
Thus, it requires a predefined configuration of the network units before the deployment.

Finally, the third type of radio communication technology represents deployable breadcrumbs that
are further referred to as motes. Each mote, see Fig. 3a, is based on the RFM69HCW transceiver [87]
with the output power of 100 mW operating configurably either at 868 MHz or 915 MHz ISM band.
The frequency has been selected because it exhibits better around-corner propagation than higher
frequencies [88]. The mote uses a quarter-wavelength whip antenna and frequency shift keying (FSK)
modulation schema. Direct measurement of the received power is provided via the internal module
circuitry but only after the successful reception of a whole message, which limits the precision of the
available RSSI. One lithium-ion type 18650 cell provides the mote with around 16 h of operation.

Two types of motes are distinguished. Motes intended to be deployed during the robotic mission
are sealed in a custom 3D-printed case with a mechanical attachment mechanism that releases it from
the holder on demand, see Fig. 3b. These motes are programmed to convey messages by the flood-fill
protocol forming an implicit ad-hoc network. Motes lacking the battery and cover serve as access
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2.3 Communication Systems of the CTU-CRAS-NORLAB

(a) Mote communication module (b) Deployer mechanism (c) Spot® and mote

Figure 3: Motes communication technology used by team CTU-CRAS-NORLAB.

points for robotic units implementing the USB serial communication stack [89] but not participating
in the message conveying.

The motes are configured to form an implicit ad-hoc network exploiting a flood fill protocol, where
every message is broadcasted with a possible particular intended recipient address. The retranslation
happens only once per each source node and each particular message to reduce the network load.
Hence, the longest possible round trip of a message in the network with n nodes is n, making the
message’s lifespan limited yet still keeping it possible to reach any destination in the network. The
device only needs to remember the last n messages per each possible network node identification that
is limited by the used RFM69HCW chip to 255. Each message can carry 60 B data payload encrypted
via default AES [90] cipher available on the RFM69HCW hardware to provide basic security.

In the CTU-CRAS-NORLAB team participation in SubT, the motes were intended to extend the
area where the robots could convey artifact detections and where they can be teleoperated. Each robot
has been equipped with the mote, and ground robots have been fitted with up to eight deployable
motes as illustrated in Fig. 3c. Like other SubT teams, it was intended to build an ad-hoc tree-like
communication structure as the robots reached an edge of communication.

Figure 4: Demonstrator communication infrastructure building mission result based on reactive 1 Hz
RSSI measurements. The background image source: Maps Data: Google ©2023 Landsat/Copernicus.

A snapshot from the motes demonstrator deployment is depicted in Fig. 4. The deployment was
reactive using a readout of the available RSSI based on frequent transmitting heartbeat messages from
the base station to the robot. Such a strategy would not work in practice because the update of the
RSSI is available only when a new message is received. The frequency of message exchange can be
up to 1 Hz, which is insufficient, specifically for the robots moving at more than 0.5 m s−1. Besides,
the RFM69HCW requires around 2 ms to switch between receiving and transmitting mode, which
makes it probable to miss messages in the switch time. Therefore, we asked ourselves for a solution
independent of the particular technology to predict signal availability based on the signal propagation
modeling and estimation of the expected RSSI and, thus, communication accessibility.
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Chapter 3

Problem Statement

The problem addressed in this thesis is to develop a solution to support building a communication
infrastructure with m available deployable motes during the exploration mission when the environ-
ment is initially unknown. The problem can be formalized as maximizing the covered area, and thus
finding the most suitable locations of the motes, C? = (P1, . . . , Pm), Pi ∈ R3 among all possible
configurations of motes C ∈ C, with regard to a given position of the mission operator base station
PBS. It can formulate as an optimization problem

C? = arg max
C∈C

V
(
S∪(C,PBS)

)
, (1)

where V denotes the volume of a set S∪(C,PBS), the result of objective signal coverage function S∪,
that contains all positions with connectivity to the base station

S∪(C,PBS) =
⋃

{Pi,Pi∈C,GC(Pi,PBS)}
S∗(Pi). (2)

The S∗ marks the one hop coverage function under the minimum required signal quality Omin ∈ R
that is considered to be given

S∗(P ) =
{
P ′ ∈ R3,S(P, P ′, E) ≥ Omin

}
(3)

with S being the signal quality function S : R3 × R3 × E → R depending on the particular environ-
ment E , yielding the true signal quality, which is a generalized signal availability measure. GC is the
connectivity relation defined on the connectivity graph G = (V,E) with vertices V and edges E such
that, with the abused notation of vertices being associated with the motes locations as V = C,

(Pi, Pj) ∈ E ⇐⇒ Pi ∈ S∗(Pj , Qmin) ∧ Pj ∈ S∗(Pi, Qmin);Pi, Pj ∈ C. (4)

Thus the relation GC(Pa, Pb) holds if and only if there is a path between the points in G.
The task would lead to continuous domain high-dimensional optimization in an off-line scenario

with known E and S. However, in the robotic exploration context, the problem has to be solved online,
in the way the robot can always communicate with the base station using only a limited number of
motes. Besides, a mote, once placed, its positions cannot be further changed. Thus, the problem is to
support (in theory any) an exploration strategy such that the robot places the mote when it is necessary
to keep the connectivity graph a single connected component. Hence, the problem turns out to develop
a signal availability prediction model to place the mote as far as possible from the previously placed
motes but still within the communication range.
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Chapter 4

Proposed Mote Placement Strategy

We propose the strategy to place the mote during the exploration mission so that the placed mote
is connected with the operator base station positioned at the location PBS either directly or via already
placed motes. Since we aim to enable mote placement with a generic exploration strategy, we assume
the exploration procedure summarized in Algorithm 1 to determine a sequence of waypoints W =(
P 1

w, . . . , P
k
w
)

toward which the robot is navigated. Besides, we use an environment model Ê built
during the exploration mission.

We assume the robot is initially placed within the communication range of the base station PBS
in the sense of the connectivity relation GC(PR, PBS). If the robot leaves the communication range, a
mote needs to be placed, extending the connectivity to the base station. To this end, the robot maintains
a set of so-far placed mote positions C = {PBS, P1, . . . , Pm} including also the base station position
PBS, which is initially the only element. The robot asks if there is a sufficient signal strength among
the waypoints W to any of such mote Pi ∈ C. Specifically, the robot chooses the farthest waypoint to
maximalize the resulting covered area.

In general, the signal availability depends on the environment and is determined by the true signal
quality function S(Ptx, Prx, E) with the minimum required signal quality Omin. However, the true
signal quality is unknown unless the robot travels to the position of interest and measures the signal;
we regard such action as infeasibly costly. That is why the robot uses the onboard signal availability
model Ŝ(Ptx, Prx, Ê) to predict the expected signal quality at any radio position pair, using the current
perception of the environment Ê .

We propose to adjust Algorithm 1 by selecting the farthest location P ∗w ∈W for which

Ŝ(P ∗w, P
i, Ê) > Omin ∧ Ŝ(P i, P ∗w, Ê) > Omin

holds with any known deployed radio P i ∈ C. The robot navigates towards P ∗w using precedent
waypoints, discarding the following. Upon arrival, new exploration waypoints are retrieved, and the
expected signal quality is determined. If no waypoint promises sufficient signal quality, the robot
places the mote at the current location and recomputes the signal quality. Then the exploration is re-
sumed, and the procedure repeats until the environment is explored. As long as the signal propagation
model Ŝ provides good predictions

∀Ptx ∈ R3, Prx ∈ R3 : Ŝ(Ptx, Prx, Ê) > Omin ⇐⇒ S(Ptx, Prx, Ê) > Omin,

the placed mote is connected to the base station PBS via C which follows from the induction rule. The
proposed mote placement strategy within the exploration procedure of Algorithm 1 is summarized in
Algorithm 2, where the main part of the mote placement is added as Lines 7–19.

Assuming a model of the signal availability is given, the proposed strategy provides an automated
placing of communication motes during the exploration mission without relying on insufficient real-
time signal quality data. However, if the model mispredicts the signal quality, the resulting true signal
quality deteriorates, possibly even to the loss of communication altogether, breaking the communi-
cation chain. The signal quality model Ŝ is thus of the utmost importance. Specifically, if Ŝ would
predict a higher signal quality than in reality, the mote would be placed without connectivity to the
base station. Therefore, we further focus on the problem of signal quality modeling and its predictions.
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4. Proposed Mote Placement Strategy

Algorithm 2: Proposed mote placement strategy.
Input: PBS - Position of the base station.
Parameter: m - Number of available motes.
Parameter: Omin - Desired minimum signal quality.

1 C ← {PBS} // The set of positions of known radios.

2 W ← (getRobotPosition()) // Initialize by non-empty tuple.

3 while W 6= ∅ do
4 PR ← getRobotPosition() // Current position by localization module.

5 Ê ← getBestEnvironmentModel() // Current model from mapping module.

6 W =
(
P 1

w, . . . , P
k
w
)
← getExplorationWaypoints(Ê ,PR) // Expl. strategy.

7 if |C| ≤ m then
8 P ∗w ← ∅ // Seek the farthest waypoint with the connectivity.

9 foreach i in 1 . . . k do
10 foreach P j in C do
11 if predictSignalQuality(P iw, P

j , Ê) ≥ Omin and
predictSignalQuality(P j , P iw, Ê) ≥ Omin then

12 P ∗w ← P iw // Update the farthest waypoint with connectivity.

13 break // Connectivity to any known radio suffices.

14 if P ∗w == ∅ then
15 placeMote(PR) // Place mote at PR.

16 C ← C ∪ {PR} // Update the set of deployed radios.

17 W ← (PR) // Request a new determination of the exploration waypoints.

18 else
19 W ← (P 1

w, . . . , P
∗
w) // Filter out waypoints without connectivity.

20 navigateTowardWaypoints(W) // Set waypoints for the path follower.

21 terminateMission() // End the exploration as no goals are left to be explored.

In a robotic mission, the concern of communication availability lies in the probability of successful
message delivery. We follow the work [78] that asserts a measurable and assessable relationship
between the packet delivery probability and the received signal power. The received signal power
measurement is a standard hardware feature of wireless systems, which we consider more suitable
than a packet loss rate. Measuring the message loss rate requires knowing the number of messages to
be received, which is tricky in a robotic mission. Therefore, we assume the probability is known and
focus on modeling the received signal power Qrx.

Now assume that we know the nominal transmitted signal power Qtx in advance, such as the
setup of the communication device. Then, we can model the signal gain G in the logarithmic units of
decibels dB as

G(Ptx, Prx, E) = Qtx −Qrx, (5)

given the radio positions Ptx and Prx in an environment E , where negative values of G denotes the
signal attenuation. We can further assume that the exploration framework provides a model of the
environment E . Hence, we may focus on the signal gain (attenuation) modeling instead of message
reception probability, as the former is supported by the rich electromagnetic field theory overviewed
in the following chapter.
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Chapter 5

Theory and Modeling of Radio Signal

A brief theoretical background to signal propagation is provided in this chapter to support the
selected solutions for signal availability prediction. The radio signal is a dynamic electromagnetic
field that conveys information encoded in amplitude, frequency, and phase of the underlying harmonic
field variations. Signal power and its ratio to the highest noise component are of particular interest
since they determine whether the signal can be correctly received and interpreted. The electromag-
netic fields that carry the signal can be characterized by Maxwell’s equations [91]; at any time, any
electromagnetic field can be described by a solution of these equations. Since the full general equa-
tions are too complex for many practical cases, researchers considered specific assumptions leading to
simplifications that sufficiently describe the signal propagation in the reduced domain [76]. One such
approach is based on the waveguide theory that matches our domain of propagation in underground
environments. We also provide an overview of existing statistical and data-driven signal propagation
models that disregard the physical nature but still provide useful predictions corresponding to real
observations and measurements.

5.1 Electromagnetic Field Theory and Simplified Models
Maxwell’s theory of electromagnetic field [91] describes principles of electric charges, magnetic

forces, and related phenomena. The theory may be formulated in several ways; as an illustration, we
provide a formulation using physical quantities of electric field E, volumetric electric charge den-
sity ρ, magnetic field B, and electric current density j. The quantities are related together with four
differential equations, namely Gauss law

∇ · E =
ρ

ε0εr
, (6)

Gauss law for magnetism
∇ ·B = 0, (7)

Faraday’s law of induction

∇× E =
−∂B
∂t

, (8)

and Ampère’s circuital law

∇×B = µ0µr

(
j + ε0εr

∂E

∂t

)
. (9)

The symbol ε0 denotes the permittivity of vacuum, εr is relative permittivity, µ0, and µr are respective
magnetic permeabilities, while t stands for time. The symbols ∇× and ∇· denote the operations of
rotation and divergence, respectively. Our robotic mission is concerned with a power received at a
distance from the source of the electromagnetic field in a volume with some distribution of εr and µr.
Poynting vector is a power spatial density measure that can be expressed using vector product × as

Q = E × 1

µ0
B, (10)

in the case of materials with no polarization or magnetization.
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5.1 Electromagnetic Field Theory and Simplified Models

Solving the equations can produce a specific distribution of all concerned quantities in time and
space. However, the analytic solution to the equations is not available. Furthermore, it is impossi-
ble to describe the particular environment in the robotic missions in terms of the equations’ param-
eters. Direct numerical solutions are also not straightforward. The wavelength of the electromag-
netic waves is about 34 cm for the communication frequency around 868 MHz. Following Shannon’s
sampling theorem [92], we would need a grid with a resolution of 17 cm or lower to represent the
modeled phenomena properly, which means the relative permittivity and respective permeabilities.
Furthermore, the environment might exhibit significant geometry features at a smaller scale, leading
to further necessary model refinement. For a possible spatial discretization of the mission area about
1000 m× 1000 m× 50 m large, the footprint is expected at least 2.5 GB, which would be too de-
manding to adequately identify all the parameters. Besides, the available exteroceptive sensors on the
robots perceive only transparent atmospheric volumes, such as LiDAR. Assessment of the material
properties is impossible using common exteroceptive sensors.

Handling the precise material properties is neglected by assumptions about the environment lead-
ing to specific signal propagation models. The elementary model uses the maximum radio range
method as in [93]. Such a model is suitable for simple laboratory scenarios such as Kilobots [94]
with the infrared ground-directed low-power communication channel. The model yields a prediction
of signal availability based on the distance between the transmitter and receiver. The line-of-sight
model [95] assumes that a radio link exists as long as the transmitter and receiver can be connected by
a line that does not intersect any obstacle. The fixed radius and line-of-sight are used for maintaining
the connectivity of aerial vehicles in exploration missions in [96].

In environments without obstacles, it can be assumed that the signal propagates evenly in all
directions. Then, the signal gain2 can be described by Friis’ formula [97]

Qrx −Qtx︸ ︷︷ ︸
gain G

= Gtx+ Grx︸ ︷︷ ︸
circuitry gain

+Dtx +Drx︸ ︷︷ ︸
alignment gain

+ 20β log10

(
λ

4πd

)
︸ ︷︷ ︸

environment gain

, (11)

where λ is the signal wavelength, d is the distance between the transmitter and receiver, and β ∈ (0, 1)
is the gain coefficient. Qrx and Qtx are the received and transmitted power, respectively, and their
difference is the total signal gain that is measured in the logarithmic units of decibels (dB). The gain
comes from three main sources. Internal circuitry and manufacturing imperfections may cause power
depletion even before the signal becomes airborne. Moreover, since antennas may transmit the signal
non-uniformly, the misalignment of the transmitter and the receiver results in additional power loss.
Finally, as the signal travels from its source, the surface of the wave sphere grows quadratically with
the distance d, resulting in an environment-induced gain.

In environments with obstacles, such as in urban scenarios, the state-of-the-art methods [98, 99]
attempt to explicitly describe electromagnetic phenomena such as signal scattering, reflections, multi-
path propagation, or shadowing. Existing models extend the concept of Friis’ formula (11) by adding
abstraction terms to characterize building surface distribution [100], Earth propagation loss, or tropo-
spheric refraction. Enumerating the signal propagation as a stochastic process is also possible using
Gilbert-Elliot packet loss model [101]. However, such methods are valid only in specific scenarios,
limited to terrestrial broadcasting.

The class of approaches based on the raytracing principle known from computer graphics relies on
a knowledge of the precise geometric environment models. A set of optical rays is simulated from a
signal source according to the radiation pattern; then, it is investigated how many rays reach a recipient
antenna [102]. However, with each ray’s collision with an uneven surface, a stochastic reflective ray
multiplication needs to be simulated, leading to an explosion of computational demands. On the other

2Note that, in our case, the signal gain negative as the signal attenuates.
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5.2 Waveguide Theory

hand, the multipath propagation phenomenon is implicitly included. Parabolic vector equations model
only a specific cone of radiation space under a paraxial approximation assumption [103] that is shown
to provide a trade-off between the verbosity of the raytracing method and succinctness of former
models. The method was used in urban [104] and subterranean [105, 106] scenarios, but it relies on
precise geometric and material descriptions of the environment, such as wall permittivity. The major
principal shortcoming of the raytracing methods is sensitivity to inaccurate or biased input data that
makes it unsuitable for mobile robots with limited onboard resources and limited sensing.

Regarding our mobile robotic setup, a precise model for the computation of anticipated signal
power suitable for onboard deployment is required. We reject the verbose raytracing models or direct
numerical simulations for two reasons. First, their inherent significant demands on calculations imply
that they cannot be supported on limited onboard computers. Second and more importantly, the models
require a precise notion of material properties, such as material permittivity or permeability which
cannot be directly provided online with contemporary onboard sensory. Following the work of [75]
and [88], the signal propagates underground nontrivially and non-monotonically with distance. We
need more informed models to exploit some systematic features of signal propagation than the basic
ones based on range and line-of-sight criteria. The model may be limited to the specific domain of
subterranean environments. We thus seek a set of assumptions that would make the free parameters
determinable and the model computable onboard.

5.2 Waveguide Theory
In rough underground environments, the signal scatters by reflections and refractions from uneven

surfaces. Besides, ambient humidity and soaked walls become partial conductors worth consider-
ing. Such a scenario is generally known as a waveguide, and it is elaborated upon in several works
overviewed in [107–109]. In general, waveguides satisfy Maxwell’s equations only in discrete solu-
tions known as waveguide modes; thus, an electromagnetic wave can propagate only via such modes.
Waveguide theory is widely applied in integrated circuit design or optic fibers. In our case, we are
interested in a category of oversized waveguides where the signal wavelength is significantly smaller
than the waveguide’s cross-sectional dimension.

The authors of [110] and [111] note that in tunnels, the signal may be considered as a wave
propagating predominantly in mode (1, 1). The tunnel is classified into two types of tunnel segments,
the uniform straight segments Ss and uniformly curved segments Sc. As long as radios are farther than
the first Fresnel zone limit q2/λ, where q is the distance to the nearest obstacle, the total environment-
induced gain along a complex path can be expressed as

G =
∑

i∈1...|Ss|
(Gsi ) +

∑
j∈1...|Sc|

(Gcj ), (12)

where Gsi is the gain for the i-th straight section and Gcj is the gain in the j-th curved section, both
terms in decibels dB. The gain along a straight line segment can be then expressed as

Gsi = li
ln 10

20

λ2

2

[
π2∆h2i
λ

(
1

w4
i

+
1

h4i

)
︸ ︷︷ ︸

roughness gain

+
π2θ2i
λ3︸ ︷︷ ︸

tilt gain

+

+


ε
(h)
r (m+1)2

w3
i

√
ε
(h)
r −1

+ (n+1)2

h3i

√
ε
(v)
r −1

, horizontal mode

(m+1)2

w3
i

√
ε
(h)
r −1

+ ε
(v)
r (n+1)2

h3i

√
ε
(v)
r −1

, vertical mode︸ ︷︷ ︸
modal gain

]
, (13)
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5.3 Data Driven Models

where li is the length of the segment with a uniform width wi and height hi, ε
(v)
r is the relative

permittivity of the side walls, ε(h)r is the relative permittivity of the ceiling and floor, λ is the signal
wavelength, ∆h is the wall roughness (computed as an average deviation from the local mean wall
level), θ is the tilt of the section (an average angular offset from the long-distance meandering tunnel
[rad]), and m and n are the indices of the dominant mode of propagation. The terms that depend on
∆h and θ approximate the loss induced by scattering the energy carried in the mode (m,n) = (1, 1)
to different modes and directions.

They propose a ray-based approach to determine gain induced by reflections and refractions if the
tunnel is bent. In the uniformly curved segments, the rays are assumed to enter the curve collimated
and parallel to the incident straight tunnel centerline. Hence, the number of reflections, together with
the induced partial loss, is estimated as

Gcj = lj
1

|Rj |
∑
x′∈Rj

20

2
√
r2j − (x′ − rj)2︸ ︷︷ ︸

# reflections

log10(γj exp(�)),

� =

−8π2∆h2j sin2

(
arctan

(√
r2j−(x′−rj)2
rj−x′

))
λ2︸ ︷︷ ︸

roughness by grazing angle

(14)

where γ is the standard reflectivity coefficient, and R is a set of distances between the edge and the
individual evenly spaced rays entering the bend. Besides, if a junction occurs along the path, all
outbound branches are ignored as if there was a solid wall.

The approach reduces the environment characterization to a handful of parameters as opposed to
original continuous distributions of εr and µr by assuming homogeneous material distribution and
rectangular tunnel cross-section profile along each tunnel segment length. We consider it advanta-
geous that the environmental parameters have a physically relevant interpretation. As the properties
w, h,∆h, θ are concerned with relatively simple geometrical features of the environment interior, an
automatic method of their determination from spatial exteroceptive sensors might be possible. Param-
eters ε(v)r and ε(h)r may be determined before the robotic mission as its value is considered constant
in the environment. The method provides a closed-form solution to signal gain modeling relying on
observable parameters, which we consider suitable for our robotic mission.

5.3 Data Driven Models
Data-driven methods simplify the underlying physics and exploit generalization and machine-

learning techniques to capture the nature of the electromagnetic fields implicitly. A thorough survey
can be found in [112], and thus we focus on approaches most relevant to robotic scenarios. The authors
of [113] characterize an environment by features such as line-of-sight visibility, obstacle obscuration,
and ground reflection, which are used in a neural network that achieves a gain prediction absolute
error of about 10 dB. Although possible, the approach cannot explain signal propagation in terms of
physical quantities and principles, relying solely on machine learning.

A purely probabilistic model for signal characteristics estimation is presented in [114]. The work
further provides mathematical reasoning about the predictability of the communication parameters.
However, since their model lacks an explicit environment model, it cannot infer the gain. Besides, it
always needs some prior measurements in the area of interest.

In [115], an evidence grid of the signal availability, called a communication map, is built. The
approach utilizes a spatial Gaussian Process (GP) [51] that interpolates samples of communication
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5.4 Discussion of Existing Signal Propagation Methods

link quality, yielding the most likely value together with its confidence. Consequently, the GP-based
model can be utilized in active perception tasks such as [116]. The environment may be thus captured
with arbitrary resolution as it is a matter of sampling inO

(
n4
)

to capture all pairs of radio locations in
a 2D area. Even though there are efforts to sample the whole space [115, 117], such a task is not only
practically demanding but also limited to interpolation only. Our former work on machine learning
approach to signal availability prediction is presented in [118], where we examine the generalization
of Friis’ formula to consider environment abstraction in a data-driven fashion by a feature vector
descriptions similar to [113]. Therein presented results support the feasibility of the approach while
providing better RSSI prediction in the extrapolation setup compared to [115].

The data-driven methods are a valid way of signal propagation modeling as they adjust to different
environments without any fixed assumptions making them possibly more generic. The models either
rely on some scheme of interpolating training data, which themselves serve as the model’s free param-
eters, or on some regression task that extracts anonymous latent parameters. The prediction accuracy
of the methods can be generally adjusted by setting the number of those latent parameters. However,
the lack of physical interpretation of the latent parameters does not contribute to model explainability.

5.4 Discussion of Existing Signal Propagation Methods
The addressed problem of signal coverage extension by mote placement during a mobile robot ex-

ploration mission was reduced to signal propagation modeling by fixing the mote placement strategy.
In the proposed strategy, the signal quality needs to be predicted in regions where the robot has not
been before, which follows from utilizing the waypoints toward the exploration goal provided by the
exploration oracle. That is why the signal propagation modeling needs to extrapolate the signal quality
in observed yet unvisited areas precisely.

Based on the review of the existing signal propagation modeling work, we propose combining
the benefits of the model-based and data-driven approaches. We consider the oversized waveguide
approach [110] to be the most promising among reviewed physically motivated methods with regard
to onboard computability. The model assumes that the environment may be sufficiently character-
ized by simple local geometrical features such as corridor width or height, which can be computed
from common onboard exteroceptive sensors. Hence, the challenging identification of the environ-
mental parameters is categorically facilitated as opposed to verbose approaches. The closed-form
solution makes the method computationally efficient. However, in practice, the model’s assumptions
are scarcely fulfilled as the tunnel cross-section is not always rectangular. That is why combining
generalized approaches with physically relevant features seems a good idea. We extend the idea of
the linear model to build an unconstrained polynomial descriptor of the tunnel geometry used in the
linear signal strength regression to address the drawback. Also, a regression approach based on [51]
is examined as it already exhibited supreme extrapolation capabilities.
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Chapter 6

Proposed Signal Propagation Models

Four proposed models of signal gain suited for subterranean environments are presented in this sec-
tion to support the robotic exploration strategy defined in Chapter 4. First, we focus on the waveguide
formulation [110] in the proposed Waveguide Linear Model (WLM). We show that the original work
can be reformulated to a linear equation in unknown environment properties, making the subsequent
computation efficient. Moreover, given samples of signal measurements, the proposed formulation
forms an overdetermined linear equation system that can be solved in the least squares sense, expos-
ing values of environment properties. In practice, however, the assumptions of the WLM are hardly
strictly followed. That is why we have sought to extend the approach. The proposed Variance Win-
dowing Model (VWM) exploits the intuition behind the linear gain model by assessing the elementary
gain contribution of equally spaced signal segments.

The Generic Embedding Polynomial Model (EGPM) abstracts the physical meaning by establish-
ing an anonymous latent space embedding between the input data and regression, yet still keeping the
efficient linearity. Finally, we generalized the data-driven processing proposed in [115] by abstracting
environment properties with two-dimensional explicit feature vectors to facilitate spatial extrapola-
tion [118]. The model is named Evidence Regression Model (ERM), and it improves the extrapolation
capabilities over the [115]. Still, because it is data-driven, it does not support physics-related rea-
soning about its performance. All presented models commonly use the shortest signal path distance
as a regression parameter either explicitly or implicitly, extending it with some added environment
characterization. Sections 6.2 to 6.5 describe the proposed models.

All the models follow the same key idea of [118] to describe the tunnel geometry by local geomet-
rical features such that the subsequent regression is performed over those features. The model’s input
query takes a form of a three-tuple (Ptx, Prx, Ê) of the transmitter position Ptx, receiver position Prx,
and the current model of the environment Ê . Models can use various methods of environment abstrac-
tion into a descriptive numerical representation. A particular interest is taken in the methods being
dependent only on local environment features, producing similar predictions in similarly perceived
parts of the environment regardless of the reference frame to support spatial extrapolation. Then,
the models use the environment abstractions for predicting the signal subsequently. The proposed
environment characterizations are detailed in Section 6.1.

The proposed models share the following assumptions. First, we assume that the radio device is
only described by its frequency and transmission power. Technical details like possible circuit-induced
power loss are disregarded as they can be enumerated independently in laboratory assessments. Sec-
ond, we assume that omnidirectional antennas are used, and they are always oriented vertically to
decrease the number of free parameters. Different antenna orientations would lead not only to mis-
alignment power loss but also possibly to anisotropic signal propagation in the environment, which we
chose to disregard for the purpose of the thesis. Therefore, only the antenna positions are of interest
to us. Further, we limit the models to a single frequency (heeding only the mote measurements at
868 MHz) such that we may disregard signal propagation dependence on frequency while still keep-
ing the predictions useful for the intended robotic mission. Besides, we assume that the environment
where the signal propagates is static up to the single robot and motes which traverse it. The mass of
the robot is assumed to have zero impact on the signal propagation by placing the antenna in a suitably
detached place on the robot.
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6.1 Environment Model and Geometric Features

6.1 Environment Model and Geometric Features
According to the literature review about the waveguide theory in Section 5.2, the environment ge-

ometry is the dominant regression parameter. An automatic method for extracting geometry properties
of an area between the investigated radio positions is necessary for model learning and regression to be
useful in a mobile robotic mission. We use the available exploration framework [61] with occupancy
grid map building [119] to provide us with the environment model Ê , which is a 3D grid map with a
resolution of 5 cm. Given two locations Ptx = (tx, ty, tz) and Prx(rx, ry, rz), we are interested in de-
scribing the space along the path connecting the locations with a geometry feature vector F . Multiple
variants of the feature vector are considered.

First, we use Euclidean distance between the locations

Fl = ‖Ptx − Prx‖2 (15)

as the basic relative measure. However, in subterranean environments, the signal propagation is con-
strained by abundant mass that directs the signal into sparse free space by the waveguide principle.
Therefore, we use Signal Shortest Path length feature Fs, computed as follows.3

The 3D grid map is segmented into walls and floor/ceiling using clustering with the assumption of
walls being aligned to the vertical axis and floor/ceiling to the horizontal axis. A distance transform
is generates a cost field that decreases proportionally with the distance from the walls (obstacle).
Based on the cost field, the shortest signal path between assigned radio positions is determined as a
sequence of waypoints (P 1

w, . . . , P
l
w) using the planning method [119]. The waypoints are aligned

with the underlying grid cell centers, resulting from planning on a planar grid with 8-neighborhood;
see examples depicted in Figs. 5a and 6. The length of such a signal path can then be expressed as

Fs =

l∑
i=2

‖P i−1w − P iw‖2, (16)

where P iw is the i-th waypoint location and l is the number of waypoints.
The 3D grid map is further utilized to sample local geometry properties along the signal path to

provide regression parameters for the proposed signal gain models. For each waypoint, its projections
to the closest floor and ceiling clusters are determined; the summed distances from the waypoint of the
two projections comprise the height P jh of the corridor. The width P jw is then based on the value of the
cost field. The Fig. 5a illustrates the described process. Further, the waveguide model in Section 5.2
relies on the knowledge of the tunnel’s curvature, which is determined as follows.

We furnish each waypoint with two measures of the local tunnel curvature determined as illustrated
in Fig. 5b. First, we measure an angle P jα at each waypoint as the smaller angle it forms with its two
neighboring waypoints. Second, we compute P jr as the radius of the smallest sphere that would pass
through the waypoint and its two neighboring waypoints using the cost field. All the measured features
are further smoothed by 1 m sliding average window. Each signal gain model query (Ptx, Prx, Ê) is
thus provided with P j{w,h,α,r} organized as the Geometry Describing Variable-Length feature vector

Fv =


P 1
w P 1

h P 1
r P 1

α

P 2
w P 2

h P 2
r P 2

α
...

P lw P lh P lr P lα

 . (17)

The feature vector size depends on size of the path l between the transmitter and receiver, which is
generally different with each model query. Therefore, we propose three methods to characterize the
variable-length geometry properties along the path to enable its usage in the regression methods.

3The implementation of operations over the 3D grid map was kindly provided by Jan Bayer.
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6.1 Environment Model and Geometric Features

(a) Render from the environment geometry sampling framework, cour-
tesy of Jan Bayer. The colored line depicts the local curvature com-
puted as radius r at each waypoint; width, height, and an angle α are
computed per each waypoint but not shown in this figure.

α

P1
P2

P3

r
r

r

(b) Relation of curvature metrics radius r de-
fined by a circle fitted through neighboring
points P1,2,3 and angle α held by the points.

Figure 5: Geometry features computation.
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Figure 6: Shortest signal path as computed in the environment occupancy grid. Environment char-
acterization along the signal path using the proposed segment-based characterization is depicted in
Fig. 7 and windowing-based characterization in Fig. 8.

The method described in Section 6.1.1 implements the idea presented in [110] that is based on
clustering the tunnel between investigated radio positions into segments of uniform geometries. A gen-
eralization of the method that considers overlapping equally-sized path segments called windows is
presented in Section 6.1.2. A method based on histogram encodes the variable-length feature vector
Fv into a fixed-size vector while preserving signal length information, briefly summarized in Sec-
tion 6.1.3. Further, the occupancy feature supporting the ERM is described in Section 6.1.4.
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6.1 Segment-based Characterization

6.1.1 Segment-based Characterization
The model based on waveguide theory (12) proposed in [110] includes environment geometry

characterization as a parameter that describes a connected portion of the tunnel where the geometry
fluctuation is small. The original work [110] does not provide an exact method of determination of
the segments; hence an interpretation was devised as follows.

We propose identifying parts (called segments) of the shortest signal path by automatically de-
tecting significant steady-state changes among values of the assignment’s feature vector Fv. The
steady-state value changes are determined separately for each f -th column of Fv denoted Ff as

F̌f = Ff −Ff , (18)

where Ff denotes the arithmetic mean of the values P if in the column Ff ,

Ff =
1

l

l∑
i=1

P if . (19)

F̌f is then normalized by the maximum absolute value of the column

F̂f =
F̌f

maxli=1 |P if |
, (20)

and convolved with a step vector V = (V1, . . . ,V2l−1), where

V i =

{
−0.5 if i ≤ l
+0.5 otherwise

, (21)

as
F̃f = F̂f ∗ V. (22)

A set of indices F̆f =
{
q1f , . . . , q

p
f

}
is determined such that

˜
P q

i

f ∈ F̃f is the topographic peak in

F̃f with 5 % prominence and at least 50 samples apart from another. Then, sorting the union of all l
indices among all Fv columns

Ḟv = (q̇1, . . . , q̇l), q̇i < q̇i+1, q̇i ∈ {0, l} ∪

 ⋃
f∈{w,h,r}

F̆f

 (23)

defines the resulting segment values as 4-tuple

T i =
(

med
(
Pwq̇i , . . . , P

w
q̇i+1

)
,med

(
P hq̇i , . . . , P

h
q̇i+1

)
,med

(
P rq̇i , . . . , P

r
q̇i+1

)
, T id
)
, (24)

where med is the median of a given sequence, T i is the i-th segment and T id is the segment length
computed as

T id = D(i+ 1)−D(i), D(j) =

j−1∑
i=1

‖P iw − P i+1
w ‖2 (25)

Note that we omit the curvature angle feature because it is not considered in the source work [110].
A Segmentation feature vector Fg is then constructed by stacking the segments into the matrix

Fg = (T 1ᵀ
d , . . . , T l+1ᵀ

d )ᵀ. (26)

The proposed segmentation method is illustrated in Fig. 7.
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6.1 Windowing-based Characterization.
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Figure 7: Segment-based characterization. Interleaving red and blue regions denote individual seg-
ments found on the given input feature vector Fv (thin lines) with the resulting segment mean values
denoted by thick horizontal lines. Dashed vertical line colors represent the Fv component that caused
the corresponding segment split. The illustrated Example for the same shortest signal path as visual-
ized in Fig. 8 with one 90◦ curve depicted in Fig. 6.

6.1.2 Windowing-based Characterization.
A windowing scheme is proposed to expose local variations in the tunnel geometry granularly. Let

the i-th windowW i be defined for every shortest signal path waypoint as a subset of rows in Fv

W i =

P
max(0,i−c)
w P

max(0,i−c)
h P

max(0,i−c)
α

...
P

min(l,i+c)
w P

min(l,i+c)
h P

min(l,i+c)
α

 (27)

where c ∈ N is the window context width. The resulting Windowing feature vector Fw is constructed
from mean and variance among the windowed values as

Fw =

W
1
w W1

h W1
α varW1

w varW1
h varW1

α
...

W l
w W l

h W l
α varW l

w varW l
h varW l

α

 (28)

Note that the radius feature values Frv are omitted. It is because the preliminary results showed
that α facilitates better subsequent fits as it reflects the actual curvature linearly as opposed to the
radius, which goes to infinity for straight line segments. The windowing-based characterization for
the signal path in Fig. 6 is illustrated in Fig. 8.

6.1.3 Histogram-based Characterization
The Histogram feature vector is defined as Fh = (histb(Fwv )ᵀ,histb(Fhv )ᵀ, histb(Fαv )ᵀ), where

histb is normalized b-bin histogram of given feature vector column. We select b = 10. The method
is intended to characterize arbitrary signal path features by a fixed-size vector suitable for subsequent
standard regressions. It showed the best results in preliminary evaluations compared to other con-
sidered methods based on orthogonal polynomial systems, which are therefore not included in the
presentation of the examined environment characterization approaches.
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6.1 Line-of-sight Occupancy Characterization
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Figure 8: Windowing-based characterization. Color-coded areas show the variance, whereas raw
measurements are solid lines. The illustrated Example for the same shortest signal path as visualized
in Fig. 7 with one 90◦ curve depicted in Fig. 6. A single window W42 is depicted to illustrate the
context of signal variance and mean value computation.

6.1.4 Line-of-sight Occupancy Characterization
In our previous work [118], the line-of-sight occupancy ratio is utilized as the regression parameter

characterizing the environment geometry. A 2D occupancy grid is created by projecting the 3D grid
into the horizontal plane, proclaiming unknown grid cells as occupied. The grid cell is considered
occupied if it contains any projected point from the point cloud. Line-of-sight between the radio
locations Ptx and Prx is determined by Bressenham’s line algorithm B (Ptx, Prx) [120]. The line-of-
sight occupancy ratio [118] can be then expressed as

Fo = 1−
∑

Pi∈B(Ptx,Prx)
GPx

i ,P
y
i

|B (Ptx, Prx|)
, (29)

where GPx
i ,P

y
i

has the value 1 when occupied and 0 when free. The computation procedure is illus-
trated Fig. 9.
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Figure 9: Illustration of occupancy feature computation.
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6.2 Waveguide Linear Model (WLM)

6.2 Waveguide Linear Model (WLM)
The Waveguide Linear Model (WLM) exploits (13) and (14) to infer the material properties ε(v)r ,

ε
(h)
r , ∆h, θ, and γ that cannot be directly assessed in full detail because they depend on the non-

surface portions of the tunnel walls or details like roughness, which cannot be measured reliably
enough. However, we assume that local tunnel geometry properties, the corridor width, height, radius,
and segment length (wi, hi, ri, li) can be observed as rows of Fg, which is described in Section 6.1.1.
We show that the gain depends linearly on the unobserved parameters (or their transformations) with
the coefficients computed from the observed descriptors of the tunnel geometry.

Assuming a vertically oriented antenna, let the straight segment gain be fixed into the horizontal
mode. Hence, the i-th straight segment gain in (13) can be reformulated as

Gsi = aiε
(h)
∗ + biε

(v)
∗ + ci∆h

2 + diθ
2, (30)

ai =
li ln 10λ2(m+ 1)2

40w3
i

, bi =
li ln 10λ2(n+ 1)2

40h3i
,

ci =
li ln 10λπ2

40

(
1

w4
i

+
1

h4i

)
, di =

li ln 10π2

λ40

ε
(h)
∗ =

ε
(h)
r√

ε
(h)
r − 1

, ε
(v)
∗ =

1√
ε
(v)
r − 1

,

a linear equation with respect to (w.r.t.) the substitute variables ε(h)∗ , ε(v)∗ , ∆h2, and θ2, where the
descriptors ai, bi, ci, and di are computed directly from the uniform tunnel segment geometry.

In the j-th curved tunnel segment, the gain w.r.t. the roughness ∆h and reflectivity γ can be
reformulated by expanding the logarithm of the product in (14) into a sum of logarithms and then
changing the base of the second term to get

Gcj =
1

|Rj |
∑
x′∈Rj

ej(x
′)
(
log10(γ) + fj(x

′)∆h2
)
, (31)

where x′ and Rj have the same meaning as in (14) and

ej(x
′) =

20lj

2
√
r2j − (x′ − rj)2

(32)

and

fj(x
′) =

−8π2 sin2

(
arctan

(√
r2j−(x′−rj)2
rj−x′

))
ln 10λ2

, (33)

making the term linear w.r.t. log10 γ and ∆h2. We unify the two types of tunnel segments, the straight
and curved, based on a radius value threshold ř (we use ř = 15 m) as

BkWLM =

{
(ak, bk, ck, dk, 0) if r > ř(

0, 0, 1
|Rk|

∑
x′∈Rk

ek(x
′), 0, 1

|Rk|
∑

x′∈Rk
ek(x

′)fk(x′)
)

otherwise
, (34)

which makes it possible to define the WLM model by a latent parameter vector

XWLM = (ε
(v)
∗ , ε

(h)
∗ ,∆h2, θ2, log10 γ), (35)
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6.3 Variance Windowing Model (VWM)

such that a signal is predicted by the dot product as

G = XWLM ·
|Ḟv |∑
i=1

BiWLM = XWLM · BWLM (36)

where Ḟv is defined in (23) and i iterates over all detected uniform segments detected by the segment-
based characterization introduced in Section 6.1.1.

The learning step is performed in the least squares sense given a collection of N observations
BWLMi, Gi from an overdetermined linear equation systemBWLM1

...
BWLMN

×XWLM =

G1...
GN

 . (37)

In addition to the environment geometry, the waveguide model (13) also considers a measure of
the surface roughness ∆h, reflectivity γ, and tilt θ as the input parameters. Sadly, neither the original
paper [110] provides useful instructions on how these measures can be computed, nor were we able
to find a satisfactory surrogate method. That is why we opted to solve them via regression, which is
supported by the presented results.

6.3 Variance Windowing Model (VWM)
The Variance Windowing Model (VWM) combines two principles as seen from (13) and (14).

Firstly, the total logarithmic gain (units of dB) can be expressed as a sum of partial gains. Secondly,
abrupt local changes in the tunnel geometry influence the local gain factor. Imagine leaving a wide and
high cavern by a small tunnel. A proportion of the signal sent from the cavern to the tunnel deflects
from the tunnel’s portal as opposed to when the signal would be transmitted already in the tunnel, the
signal being directed as in waveguide.

The method aims to provide an automatic method that would reflect both phenomena. The input
geometry vector Fv is first transformed to Fw by the windowing-based environment characterization
described in Section 6.1.2, using the context width 3, leading to 7 samples wide windows. Larger
windows effectively averaged the values, thus losing information, which deteriorated the performance.
The shortest path distance is captured implicitly by the number of windows. The i-th row F iw of the
matrix Fw is called a spatial element that yields a local gain contribution Gi based on its values. For
VWM, we propose the relation between F iw and its gain element Gi is polynomial

Gi = XVWM · Pp(F iw), (38)

where Pp is the polynomial transform that turns a vector of the type (a, b, c, . . . ) to

(1, a, b, c, ab, a2, bc, b2, ca, c2, . . . , cp).

The approach is intended to provide more degrees of freedom to fit in, contrary to the WLM.
XVWM is the latent variable vector of the same size as Pn(F iw). Summing the partial gains yields the
total gain on a given query as dot product

G =

l∑
i=1

XVWM · Pn(F iw) = XVWM ·
l∑

i=1

Pn(F iw). (39)

Learning the model is possible in the least square sense by aggregating observations as in the WLM.
We use p = 2 and regard only the curvature, which performed the best according to the preliminary
Akaike model selection criterion [121]. Thus, the model is defined by just 6 parameters.
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6.4 Generic Embedding Polynomial Model (GEPM)

6.4 Generic Embedding Polynomial Model (GEPM)
The waveguide concept of signal propagation is extended in the proposed Generic Embedding

Polynomial Model (GEPM) by further abstracting the material properties. As the VWM, exploiting
the known linearity of signal propagation in the considered waveguide, failed to extrapolate well in
the preliminary tests, we formed a hypothesis about an ill-conditioned dataset where the distribution
of positive samples outweighed the model that predicts poorly in less populated regions, thus extrap-
olating poorly. The embedding technique UMAP [122] was used to remedy the issue by finding an
anonymous latent space by learning a complex kernel function. We propose to use the method with
histogram-based environment characterization Fh described in Section 6.1.3 transformed by UMAP
to one-dimensional latent feature space Fu. The feature space Fu is further concatenated with Fs,
and the resulting pair of values is used for linear regression similarly as for the VWM (described in
Section 6.3) as it showed promising preliminary results.

6.5 Evidence Regression Model (ERM)
The Evidence Regression Model (ERM) is based on describing a space amid queried radio loca-

tions by a low dimensional fixed-size feature vector. The shortest signal path length Fs and occupancy
ratio Fo are fed together with the measured signal gain to learn a regressor based on the Gaussian Pro-
cess (GP) [51]. The method has been presented in [118], and it is briefly summarized here to make
the thesis self-contained.

GP is a possibly infinite collection of random variables where every finite subset of the variables
follows the multivariate normal distribution. We use GP to aggregate observations x = (Fo,Fs), y = G
of the regressed signal propagation function Ŝ measured with the white noise ε

y = S(x) + ε, ε ∈ N (0, σ2). (40)

GP GP is a distribution over all possible functions [51] over the given domain

S(x) ∼ GP(m(x),K(x, x′)), (41)

where m(x) and K(x, x′) are the mean and covariance, respectively, defined as

m(x) = E [S(x)] , (42)

K(x, x′) = E
[
(S(x)−m(x))

(
S(x′)−m(x′)

)]
. (43)

The latent values S∗ of the testing data (Fo,Fs)∗ are computed given the training data as

µ((Fo,Fs)∗) = K((Fo,Fs), (Fo,Fs)∗)
[
K((Fo,Fs), (Fo,Fs)) + σ2I

]−1
y,

(σ((Fo,Fs)∗))2 = K((Fo,Fs)∗, (Fo,Fs)∗)−
−K((Fo,Fs),(Fo,Fs)∗)T

[
K((Fo,Fs), (Fo,Fs)) + σ2I

]−1
K((Fo,Fs), (Fo,Fs)∗),

(44)

where K((Fo,Fs), (Fo,Fs)′) is the covariance function. The squared exponential kernel is selected
as the covariance function

K(x, x′) = σ2 exp

(
−‖x− x

′‖22
2l2

)
, (45)

where σ2 and l are the method hyperparameters output variance and length scale, respectively, tuned
by automatic black-box optimization provided by the used GPy implementation [123].
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Chapter 7

Dataset and Evaluation Framework

The proposed solution to communication infrastructure building in robotic subterranean explo-
ration missions relies on a signal propagation model. Four models are proposed based on the related
work review, and the models need to be evaluated using representative scenarios. A part of the thesis
effort was creating a suitable dataset described in Section 7.1. Based on the dataset, the prelimi-
nary approaches and finally proposed methods have been evaluated within the developed framework
described in Section 7.2. The evaluation results are presented in Chapter 8, and a showcase of the
demonstrative field deployment is reported in Section 8.7.

7.1 Dataset
The signal propagation models have been evaluated on the real-world dataset to assess their perfor-

mance. Real signal propagation data have been collected in underground tunnel-like environments as
measurements of the real gain between the transmitter and receiver corresponding with the considered
robotic exploration scenario. Recalling the proposed mote placement strategy, we target predicting
the signal propagation in scenarios with long and curved corridors where waveguiding effect and
other nontrivial phenomena might occur. We tasked ourselves that the dataset should include as many
complex signal propagation examples as possible. Besides, the dataset needs to comprise numerous
samples to provide statistical significance. A suitable 3D map of the environment needs to be also in-
cluded as the proposed methods can benefit from the environment geometry characterization. Finally,
despite the signal modeling methods assumptions, we aimed to capture the dataset even richer so that
it may be useful for other future works, albeit its full processing would be out of the thesis scope.

7.1.1 Data Collection Equipment
Since we expect to gather large data collections to capture a significant portion of the selected un-

derground environments, we opt for an automated data collection system. The key desired property of
the collected measurements is a localization of the gain measurement within the 3D map of the envi-
ronment, which is necessary to evaluate the environment geometry impact on the signal propagation.
Therefore, we developed a sensor rig equipped with the Ouster OS0 LiDAR [84] and communication
devices that enable localization of a particular measurement using the laser scan, see Fig. 10a. In
particular, two sensor rigs have been constructed to collect data measurements of the transmitter and
receiver simultaneously. Besides, we opt for using the autonomous mobile robot to collect data in
confined spaces, where a human operator will block signal propagation as shown in Fig. 10b.

The developed sensor rig is made of 85 cm long wooden rod with the LiDAR at one end and
radio devices on the other. The LiDAR provides 128 row scans at 10 Hz stored on the Intel® NUC
class computer attached to the rig. Wood was selected as an electrical insulator, which should not
disrupt the electromagnetic field. Rod’s length was intended to keep radios approximately 0.5 m from
the operator such that the signal attenuation by the mass of the operator would be minimized while
keeping the rig compact enough.

The primary radio device selected is the RFM69HCW radio module used in the deployable motes
introduced in Section 2.3. The motes on the rig were paired, so an exclusive duplex channel at 868 MHz
was established between the two rigs with burst packets exchange at about 2 Hz in both directions. The
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7.1 Data Collection Venue

(a) Handheld sensor rig. Left to right, the peripheral with the Intel® NUC
class computer and the battery are connected to the LiDAR fixed on one side
of the wooden rod with a handle and radios placed on the opposite side.

(b) Husky A200 [4] mobile robot with the
radio measuring equipment. The Leica
TS-15 total station to the robot’s right es-
tablishes a coordinate frame and captures
ground truth positions.

Figure 10: Handheld sensor rig and autonomous robot used in data collection.

received signal power was measured directly via the internal circuitry of the mote. The motes have
been set to their maximum transmitting power of 100 mW. The antennas involved were oriented in
the vertical direction (parallel to the z-axis) with regard to the LiDAR reference frame.

Besides, each rig carried one Mobilicom MCU-30 Lite [86] unit operating at 2.4 GHz and broad-
cast either at −30 dB mW (1 µW) or 0 dB mW (1 mW). Mobilicom’s received power and signal-to-
noise ratio measurements are available at the firmware at 0.5 Hz. Further, several statically placed
and manually localized Mobilicom radios were present at various locations to increase the number of
measurements. Each Mobilicom device offers two antennas, each operating at a designated channel.
We oriented one antenna vertically and one horizontally. Different antenna orientations, power lev-
els, and frequencies are intended to introduce diversity into the dataset, making it usable for further
generalization and testing.

The time synchronization between the rigs was based on the ordinary Network Time Protocol
(NTP) [124] with the Wireless Local Access Network (WLAN) router as the time source. The rigs are
globally time-synchronized at the beginning of the data collection, assuming negligible drift during the
measurement. Apart from support electronics, an off-the-shelf replaceable rechargeable battery is on
the rig, allowing for around two hours of uninterrupted operation. The Husky A200 [4] autonomous
robot used for data collection was equipped with the same technology as the handheld rig.

7.1.2 Data Collection Venue
The utilized evaluation dataset was gathered in municipal utility tunnels4 [125]. Such facilities are

designed to provide infrastructure support for the distribution of electricity, gas, Internet, water supply,
and other utilities in the city’s central region. The selected area of the city underground comprises
corridors equipped with grounded iron racks that are approximately 1 m wide and 1 m apart. The
tunnels are cut into the sedimentary bedrock at a depth of about two to four meters with reinforced
concrete walls spanning an area of around 1 km2. A precise 3D map of the environment has been
captured by a globally referenced point cloud using the Leica BLK360 Imaging Laser Scanner; see
the example of the map depicted in Fig. 11. The map of the municipal tunnels contains roughly
317.5× 106 points that are filtered to at most 1× 104 points per square meter and cropped to contain
only the selected areas of interest, resulting in approx 1.6× 106 points.

4During the work on the thesis, more data collection campaigns have been performed. Due to the time constraints, we
decided to list here only one dataset as its postprocessing is time-demanding. Processing all the collected data is beyond the
thesis’s time frame. Summed up, it took one person about two weeks to post-process one dataset campaign.
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7.1 Data Collection Venue

Figure 11: A snapshot of the dataset venue map used for localization and environment geometry
characterization.

The gathering campaign lasted two workdays and resulted in around 8 h of LiDAR and radio
recordings captured by each of the handheld rigs, amounting to ca. 690 GB of raw data. Special
care was taken during the gathering to refrain from abrupt movements, mainly rotations, which could
introduce skew into the resulting point cloud collected by the LiDAR at the sensor rig. Further, as the
Mobilicom’s signal strength frequency was limited to 0.5 Hz, both operators moved about 2 km h−1

or slower. The operators were requested to roam the environment so they do not stay between the
radios while measuring.
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Figure 12: The annotated tunnel subsets of the evaluation dataset. Each subset is defined by two
polygonal areas where the receiver and transmitter are placed. Hence, the signal is propagated in each
subset through the tunnels between two particular areas.

The collected dataset is manually annotated into labeled subsets indicated in Fig. 12 and detailed
in Tab. 1. The annotation is designed so that some subsets contain “easy” portions of the tunnel, like
straight or singly-bent corridors, whereas others contain difficult paths with several curved sections.
We aim to evaluate the proposed methods for extrapolation and generalization capability. Further,
more labels of the same type are provided in different regions of the tunnels to enable cross-validation
over nearby and far parts.
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7.1 Post-processing

Table 1: Descriptions of the annotated subsets of the dataset.

Subset # Samples Description

all 33 134 All measured samples combined.

A1 1 017 Around-corner through ca. 90◦ r = 2 m curve.
A 3 683 A1 with extended straight-passage; all samples went through the curve.
B 2 028 Straight passage.
C 11 851 Straight passage with slight curves of r > 15 m.
D 147 Complex signal path through 4 curves.
East 8 081 Combined samples in eastern† portion of the tunnels.
E 58 Complex signal path through 2–3 curves.
F 587 Around-corner, 90◦ r = 2 m curve with long straight segments.
G 183 Around-corner, 100◦ r = 3 m curve, fireproof door in northern part.
H2 340 A.-corner, 90◦ r = 2 m curve, “straight” segment bent, fireproof door.
West 23 151 Combined samples in western† portion of the tunnels.

† East and West corresponds to the image’s reference frame as shown in Fig. 12, not to the geographic directions.

7.1.3 Post-processing
After collecting data in the physical gathering campaign, the local LiDAR scans have been reg-

istered in the global environment map using the Iterative Closest Point (ICP) [40] implementation
“libpointmatcher” [126]. The algorithm repeatedly solves the ordinary least squares equation for an
unknown homogeneous transformation, each time with target points assigned as the nearest neighbor.
We use the point-to-plane criterion of the equation.

Figure 13: Automatic computation of the rig trajectory (green line) using sequential registration of
subsequent local LiDAR scans (red) into a cropped portion (blue) of the global 3D map (black). Note
the increased density of the local red scan, remedied by a density filter (not shown).

The ICP is used to sequentially register individual gathered local scans into the global map by
using the previous registration result to initialize alignment of the next scan as illustrated in Fig. 13.
The first scan is pre-aligned manually; see Fig. 14. Hence, a time-stamped trajectory of the measuring
rig is obtained. The data postprocessing was semi-supervised because the ICP was prone to failure
either by diverging completely or finding the wrong local minima, especially in long repetitive sections
of the tunnels. Therefore, the shape of the sensor rig path has been manually verified. When in doubt,
the corresponding scan was reprojected to the global map to validate whether the localization worked
well. In the case of an error, the path was cropped, and a new initialization was created after the ICP’s
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7.1 Post-processing

point of failure.

Figure 14: Manual alignment of the local scanned point cloud (red) into coarse global 3D point cloud
(black) using an interactive graphical element (grey box with arrows and discs in the middle) defining
a transform in 6 degrees of freedom.

Systematic failures were caused due to the LiDAR rays projecting with increased density for closer
surfaces as illustrated in Fig. 13. In our experience, such dense areas outweigh farther points that
capture a large-scale geometry crucial for a correct registration. That is why we employ a density filter
to reduce such near-and-dense regions. The achieved localization precision is in units of centimeters,
smaller than the used wavelength. Thus, we consider the localization sufficient.
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Figure 15: Resulting localized measurements of mote signal.
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7.2 Evaluation Framework

Static coordinate transformation, known by the design of the sensor rigs, was applied to obtain
the positions of the antenna bases in six degrees of freedom. The rig localization was selected in the
trajectory computed by the ICP by matching time stamps. Further, each measurement was labeled with
the used frequency, nominal transmitter power, antenna type, and communication technology. After
the postprocessing, the dataset comprises about 8.6× 104 localized signal measurements, visualized
in Fig. 15, of which 3.3× 104 is measured by the motes, the rest by the Mobilicom. The detailed 3D
environment model is a part of the dataset.

Note that the dataset contains only positive samples that are measured when the signal was suc-
cessfully received, albeit the localization is available even for cases the signal was lost. However,
we found it questionable how to represent negative samples in the dataset; therefore, we leave it for
future work. The measured gains also include the power loss induced by the circuitry imprecision that
was prospected to compensate for. Similarly to [110], we assumed that the signal propagates in free
space as long as the transmitter and receiver are inside the first Fresnel zone and antennas are aligned.
Hence, comparing measurements of the signal taken in the zone, we can enumerate the power loss
induced by both the receiving and transmitting devices as Grx + Gtx in (11). However, we did not
succeed in performing the method reliably. Therefore, we model the total attenuation that involves
possible device-specific elements.

7.2 Evaluation Framework
The developed evaluation framework, called zoulamar_dp, has been designed to implement the

proposed methods and error-proof evaluation of the volume of data gathered from the campaigns. The
implementation systematically separates computational stages, keeping their results as reusable unique
data units. Besides, care was taken to develop the implementation system so that it can be seamlessly
deployed on a robotic unit, safely using all pre-computed data like the learned model parameters.

Listing 3: Example of the evaluation framework computational stage.

PipelineRootCommsRosified/.../Umap/ Computation stage as of Section 6.4.
config.yaml Target file recognized by this module with no dependencies.
KolKNall.umap UMAP fitted to subset “all”, source for KolKNall.npz
KolKNall.npz Transformed measurements in subset “all”, listed in module’s registry.
KolKNall.pdf UMAP module also provides visualization target shown in Fig. 19.
... Each subset has its .npz, .umap and .pdf files
Poly.2x/ Subdirectory maps stage Poly with label 2x separated by dot.

config.yaml
KolKNall.yaml Learned polynomial, depends on parent’s KolKNall.npz.
L_KolKNall_E_KolKNE.pred.npz Prediction results on “E”, learned on “all”.

The structure of the intermediate data processing steps steers us to develop an evaluation frame-
work to organize data in a hierarchical structure similar to the file system directory tree. The com-
putation scheme is mapped so that each file system directory represents one computational stage that
collects related implemented methods. The intermediate results are unambiguously saved as files in
the corresponding directory, making it possible to reuse them in subsequent stages. A computation
stage may be present multiple times when used by different parent stages or distinguished by a label
separated by a dot in the path’s name component. An example of a computation stage with its created
targets is visualized in Listing 3. An example of the computational tree is illustrated in Listing 4.
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7.2 Evaluation Framework

Listing 4: The directory tree supporting the developed zoulamar_dp.

PipelineRootCommsRosified/ Root module containing source data.
Filter.motes/ Allows only samples annotated as motes.

Augment.histogram/ Section 6.1.3
Forge/ Splits the dataset to training and testing subsets.

Umap/ Section 6.4
Poly.2x/ Section 6.4

Report/ Chapter 8
#Poly.crop2x/ Labels allow experimenting with different parameters.

Augment.occupancy/ Section 6.1.4
Forge/

GP.mesas/ Section 6.5
Report/

#Umap/ Subtrees may be disabled by prefix octothorpe.
GP/

Report/
Augment.segmentation/ Section 6.1.1

Forge/
Bedford/ Section 6.2

Report/
Augment.windowing/ Section 6.1.2

Forge.rad_only/
PolyForWindowing/ Section 6.3

Report/
Forge.fspl/ Chapter 8

FSPL/
Report/

FSPL.beta/
Report/

Interpolator.halire/ Section 8.7
StaticError/ Section 8.1
#Augment.chebyshev/ Disabled part of zoulamar_dp which was not reported.

Forge/
Umap/

Poly.2x/
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7.2 Evaluation Framework

The evaluation framework is implemented in Python3 language [127]. Its usage can be consid-
ered similar to program make [128]; however, it works on targets that are Python objects that store
intermediate computational data. A target is always associated with a unique file system path to store
the data persistently and unambiguously; corresponding Python callable objects are linked to the target
object at the discretion of the computational stage. Each target can have other targets referenced as its
source data with optional parametrization; thus, the chain of targets forms the data processing pipeline.
The final implementation adheres to the “Don’t Repeat Yourself” principle by exploiting Python’s
module import system such that a name-matched Python module drives a computational stage. The
code is documented by Python’s docstring; see the attached source files for details. The core im-
plementation is made of 4328 lines of source code in 19 files, which drive the computation of around
1500 individual targets organized in 58 computations stages. The computational modules rely on 3rd

party software, most notably the NumPY [129], SciPy [130], umap-learn [122] and GPy [123].

Listing 5: Example of using the developed framework’s command line frontend.
# Show particular module’s declared targets and state
./ctl.py show Pip.../Augment.histogram/Forge/Umap

# Make one of a particular module’s declared targets
./ctl.py make Pip.../Augment.histogram/Forge/Umap -t KolKNall.pdf

# Generate a script launching computation for whole pipeline sub-tree
./ctl.py scan Pip.../Augment.histogram/Forge/Umap -r -o do_it.sh

# Script invokes equivalents to line 4 harnessed by GNU Parallel
./do_it.sh

A command line utility was developed to manage the system of modules and targets interactively
and consistently, as demonstrated in Listing 5. A basic diagnostic routine and inspection command
are provided. Besides, miscellaneous utility is developed to generate a shell script that invokes in-
termediate computations using GNU Parallel [131], allowing exploitation of parallel computational
environments. The generated script is constructed respecting target precedence and up-to-date data.
Thus, its single invocation performs minimal computation to achieve the desired state.

A ROS [21] node is implemented to expose the system’s consistency to usage in real-world de-
ployment by selecting the particular methods and creating the processing pipeline. The node is given
a particular computation module with a selected output and input target. The node inserts incom-
ing compatible ROS messages as the input target value of a single specific target, launches the final
target computation, and publishes the result. The pre-computed results, like the learned regression
parameters, are automatically loaded from the file system hierarchy of the stored data.

Off-line experiments relied on measurement localization as described in Section 7.1.3 was im-
plemented separately as a simple ROS package wrapping the libpointmatcher library [126].
Geometrical features are extracted from the environment model by the exploration framework [119],
which also provides localization during real experiments. The environment geometry characteriza-
tions described in Sections 6.1.1 to 6.1.4 and the proposed signal propagation models in Sections 6.2
to 6.5, together with the ROS node, are part of the evaluation framework zoulamar_dp that is at-
tached to the thesis on the optical Disc. However, the dataset was decided not for publication as it
contains sensitive data related to critical infrastructure.
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Chapter 8

Results

This chapter presents the results regarding the proposed methods’ quality and feasibility. The
proposed signal prediction methods (Sections 6.2 to 6.5) are examined together with two baseline
approaches: (i) the uninformed Free Space Path Loss Model (FSPL); and (ii) its variant with the
attenuation coefficient β, see (11), denoted FSPL-β. However, we first assess the systematic mea-
surement error that is inherently present in the captured dataset in Section 8.1. In Section 8.2, we
separately examine and discuss the performance of individual methods by testing their extrapolation
capability in a cross-validation scheme. Section 8.3 briefly summarizes the computational and mem-
ory demands of the examined models. Then, the methods are compared relative to each other using the
Wilcoxon matched sample signed-rank test [132], which investigates the median of prediction mean
errors among the examined cross-validation cases in Section 8.4. We examine material properties
inferred by the proposed WLM in Section 8.5. A detailed discussion of the achieved signal propa-
gation modeling results is presented in Section 8.6. Despite several specific cases where individual
approaches fail, the overall feasibility of the proposed approach is supported by the presented results.
Deployment of the presented work in a field exploration mission is summarized in Section 8.7.

8.1 Systematic Measurement Error in the Dataset
The dataset of signal propagation in urban municipal tunnels introduced in Section 7.1 exhibits

a level of measurement error as illustrated in Fig. 16a. We aggregated the samples into spatially
determined groups to quantify the error. A group contains samples with the same position of the
receiver and transmitter under discretized grid map with the grid cell size of 0.5 m. As the measured
gain distribution is exhibited as the normal distribution, the standard deviation is used to characterize
the gain fluctuation within a group. The dataset is structured into about 2348 groups with the average
size 7.84 samples per group. A statistic of standard deviations among groups is depicted in Fig. 16.
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Figure 16: Systematic measurement error analysis.
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8.2 Cross-validation of Individual Models

We can see that around 50 % of the measurements share a variance of under 3 dB, whereas 90 %
of the examined groups fluctuate under 7.5 dB, for the selected spatial resolution 0.5 m. We argue that
the systematic measurement error comes from three different sources.

1. The manufacturing imperfections have been estimated to cause transmission loss difference
between different device pairs about ±4 dB based on laboratory measurements.

2. The accuracy of the ICP-based localization (see Section 7.1.3) is considered to be in units of
centimeters, which is estimated to yield an error of approximately±3 dB. Such systematic error
is in line with the results reported in [75].

3. Finally, the environment itself might be dynamic contrary to the assumptions as, for example,
a tramway track leads above certain portions of the environment.

Improving the assessment of the systematic measurement would entail effort outside the scope of this
thesis. Hence, we use the presented statistic as an expected lower bound on the predictive performance
of individual models. We do not expect that the models’ prediction error would be lower than 7.5 dB
standard deviation in 90 % of cases; thus, predictions around that value are considered satisfiable.

8.2 Cross-validation of Individual Models
An extended cross-validation scheme was used to investigate the models’ ability to learn from

examples and extrapolate the knowledge to spatially uncorrelated queries. Each model was first trained
on each of the labeled areas (see subsets defined in Fig. 12) with the 85:15 train-test ratio. Thus, each
model has been trained with 85 % measurements from the particular subset selected randomly with
uniform distribution. Then, predictions for each subset were computed for every such trained model
instance using the remaining 15 % measurements from the subset as the ground truth.
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Figure 17: Legend of the proposed cross-validation visualization. The triangle’s vertices represent
values on two axes. The vertical axis denotes the prediction mean error, spanning the interval from
−50 dB to +50 dB. The left part of the horizontal axis represents the root-mean-square-error (RMSE),
while its right part shows the standard deviation, both half-axes with range 0 dB (in the center) to
+50 dB. If the portrayed sample exceeds these limits, the triangle is cropped. Triangle color maps to
the proportion of the pessimistic predictions, i.e., the cases where the signal was predicted with worse
quality than in reality. The visualized example shows a cross-validation case with the mean error
−50 dB, RMSE 75 dB (hence the cropped triangle), standard deviation 10 dB, and 80 % pessimism.
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8.2 Cross-validation of Individual Models

We consider the method’s prediction bias important with regard to building the communication
infrastructure. The value of the predicted signal gain below the ground truth is considered pessimistic
as the model believes the signal between the queried radio positions is of poor quality, whereas in
reality, the signal is better. In the context of communication availability, such a prediction would be
caused by placing the communication mote (breadcrumb) earlier than necessary but still with sufficient
signal for reliable communication. On the other hand, optimistic predictions where the predicted value
exceeds the real measured signal gain might result in communication quality degradation or even
complete loss of the signal. Therefore, we prefer pessimistic predictions over-optimistic predictions
for robotic exploration scenarios.

The model predictions in the cross-validation evaluation are visualized for each particular learn-
test case using colored triangles explained in Fig. 17. The vertices of the triangle map three statistical
quantities: (i) the mean prediction error (the method’s prediction bias) on the vertical axis, (ii) the
root-mean-square-error (RMSE) on the left of the horizontal axis; and (iii) the standard deviation of
prediction errors on the right of the horizontal axis. Hence, the narrower the triangle is, the more
precise the predictions; the taller the triangle, the bigger bias was in the model’s predictions. Further,
the triangle color correlates to the proportion of predictions that overestimated the signal attenuation.
Note that the color correlates with the triangle’s orientation but is not necessarily the same. In the
rest of this section, we comment results of the cross-validation evaluation for each particular model
visualized in Fig. 18 using the visualization scheme described in Fig. 17.

Waveguide Linear Model (WLM), defined in Section 6.2, cross-validation results in Fig. 18a
show poor performance, specifically in the dataset areas D and H2. Area D was intentionally designed
to contain around-corner measurements, and the WLM overfits curved sections by lacking straight-
line segment examples. The area H2 contains a long, slightly curved tunnel with a radius over the
curved-section threshold. That is why the model misclassified the bend by the straight section and
thus predicted it poorly. Generally, the assumptions of the WLM are not fulfilled with the particular
municipal utility tunnel, which led to poor performance. The original method [110] assumes a coal
mine with rectangular cross-section tunnels as opposed to the arched shape present. Nevertheless, the
proposed model can be useful for inferring material properties, which is detailed in Section 8.5.

Variance Windowing Model (VWM), see Section 6.3, results depicted in Fig. 18b indicate that
training on dataset areas A to C yields extrapolation performance in other areas significantly better
than the WLM. However, that model cannot learn well in the difficult areas D, E, G, and H2. It is
because the polynomial parameters cannot generalize beyond the presented samples.

Generic Embedding Polynomial Model (GEPM) from Section 6.4 fails to extrapolate the knowl-
edge provided by the subset area E as shown in Fig. 18c. It is unsurprising because the dataset area E
has only 58 samples, leading to uninformative anonymous UMAP embedding. For the other case, with
enough samples, UMAP is able to find an anonymous latent space that is further illustrated in Fig. 19.
The latent space allows the polynomial regressor to fit the samples well, leading to the prediction er-
ror means and variances both around 10 dB. Regarding the estimated systematic error, these results
support the usage of the GEPM in the robotic mission. Interestingly, the method can extrapolate the
learned model from area D significantly better than WLM and VWM methods, which both fail.

Evidence Regression Model (ERM) defined in Section 6.5 provides the best predictions among
the proposed models, as can be seen in Fig. 18d. The ERM can learn from all areas with satisfactory
extrapolation predictions in other areas. The results are achieved despite the limited input feature vec-
tor consisting of the occupancy ratio (depicted in Fig. 9) and distance as opposed to other proposed
methods. Figure 20a depicts the model’s predictions against input space to illustrate the model. The
isolines of the prediction values illustrate that the ERM can implicitly reflect advanced signal propaga-
tion phenomena like the signal spatial oscillations discussed in [75]. We notice that the latent variables
tightly correlate together; we argue that such a representation might be less informative than an or-
thogonal set of feature vectors, which would span the whole domain. The method can also be used
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(d) ERM. Grey circles denote failed tests.
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(e) FSPL. Irrelevant cases as grey circles.
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(f) FSPL-β.

Figure 18: Cross-validation performance visualizations. See Fig. 17 for the visualizations legend.
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8.2 Cross-validation of Individual Models

for active learning in the sense of Kriging using the posterior confidence interval, which is illustrated
as useful with the ERM in Fig. 20b where a slice of the input space with the occupancy ratio fixed
to 0.25 is portrayed. A possible drawback is that the method tends to be rather optimistic in extrap-
olation when learned only from the dataset areas G and H2. However, the overall cross-validation
performance in Fig. 18d is satisfiable with low-dimensional geometry-based feature vectors.
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Figure 19: GEPM anonymous latent embedding space.
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Figure 20: Plot of ERM predictions against input space.

Free Space Path Loss (FSPL) baseline model and its variant FSPL-β are summarized in Figs. 18e
and 18f, respectively. The plain FSPL predictions overestimate the attenuation showing that the sig-
nal in the free space propagates worse than in underground. We explain the behavior by the strong
waveguide effect happening underground, which focuses the signal energy to the tunnel rather than
all directions of the dipole antenna radiation pattern as supported by [76]. Numerically, the prediction
mean errors are between 50 dB and 70 dB. The accuracy of the FSPL is beyond usefulness, yet the er-
ror standard deviation occurs between 9 dB and 19 dB, meaning that the method is relatively precise.
The attenuation predictions are surpassed by the FSPL-β model with the single parameter β learned
by the least squares method. Although the error distribution’s standard deviation is unchanged, the
accuracy is improved. Besides, we do not see any signs of overfitting on any dataset areas.
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8.3 Memory and Computational Demands of the Models

The individual cross-validation results showed that the prediction of the signal availability in mu-
nicipal utility tunnels is possible considering the systematic error discussed in Section 8.1. Among the
considered models, the baseline FSPL-β provides a great prediction capability with only a single aver-
age attenuation coefficient β. The proposed data-driven methods ERM and GEPM provide even better
predictions than the FSPL-β when learned on well-conditioned dataset areas. However, the physics-
based WLM performs poorly because of too strong assumptions that are not satisfied for the evaluation
environment of municipal utility tunnels. We provide detailed numeric results in Appendix A.

8.3 Memory and Computational Demands of the Models
We provide an insight into the computational and memory requirements as these properties vary

significantly with the evaluated methods. Information about the approximate time-per-query of each
investigated model is presented. The time is computed by observing the total inference time neces-
sary for processing queries in a given dataset subset divided by the number of queries, taking into
account the number of computation threads possibly used. Reported times include overheads incurred
by our dataset processing framework, which are, however, constant among the investigated models.
The memory requirements were measured offline when the learned models were stored on a disk.
The computational environment consists of the HP® Z2 Tower Workstation with the Intel® Core™

i7-10700 CPU with 2.90 GHz base frequency and 64 GB RAM.

Table 2: Performance summary and computational requirements of the evaluated models.
Model WLM VWM GEPL ERM FSPL-β

Representative Mean Error† [dB] −8.7 2.3 1.0 0.6 0.8

Representative Std. Deviation† [dB] 36.7 11.6 10.8 9.9 11.4

Approximate Inference Time [ms] 3 50‡ 3 5 < 1

Memory Requirements 4×8 B 6×8 B >500 MB >1 GB 1×8 B

Wilcoxon Tournament Rank 5 4 3 2 1
W. Tournament Rank, Interpolation 5 2 3 1 4

†Models learned on subset W and tested on subset all selected as representative.
‡ Experimental implementation with huge optimization potential.

Starting from the simplest, the evaluation of FSPL and FSPL-β models is trivial as they compute
the value by a closed-form formula based on a single logarithmic expression. Further, they depend
respectively on zero or single real-numbered parameter, which can be encoded as 64 b IEEE 754
floating point number [133]. The proposed WLM depends on four such parameters, which are also
processed by a set of closed-form formulas once the shortest signal path is processed into the segments
by the method described in Section 6.1.1. The segmentation is the most demanding part, as it relies on
frequent dynamic memory allocations for vectors of varying lengths. Observing the implementation,
around 5 ms are required per query for a full signal quality inference.

The VWM depends on six real-valued parameters similar to the WLM, and its total computational
time is also determined by the shortest signal path processing method. Using our experimental single-
threaded Python implementation utilizing NumPy [129] library, a single inference took around 60 ms
of which 98 % was consumed by computing variances and means at each window. No effort has been
made for optimization so far; significantly faster times can likely be achieved.

The data-driven approaches ERM and GEPM depend on large data representations that exceeded
500 MB with presented training sets. The high memory footprint is caused by keeping original training
samples, GPs in the ERM, and transformed UMAP in the GEPM. For the ERM, the training data size
directly relates to the performance, as each training sample in the used GP contributes to the final
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8.4 Relative Comparison of the Models

predicted value at every query. When both learned and tested on the dataset subset C, the inference
took about 200 ms on average for the ERM, mostly due to the GP. The occupancy processing took, on
average, around 1.5 ms. Finally, the GEPM performed well with 6 ms total inference time of which
UMAP consumed 4 ms.

The presented computational data, summarized in Tab. 2, are illustrative to provide a readable
overview of the expected computational requirements. The requirements are expected to be decreased
by more efficient implementations such as using [134].

8.4 Relative Comparison of the Models
The Wilcoxon matched sample signed-rank test [132] is used to pairwise compare the examined-

signal prediction methods by comparing their distributions of mean absolute errors (MAEs) among
all cross-validation cases. The test is based on the statistically significant evaluation of differences
between distributions’ samples matched by the cross-validation scenario, indicating that the model
with less median MAE is better than the other model. The MAEs over all the learn-test cross-validation
cases form a population of 144 samples per each examined method pair. The results of the pairwise
model tests are visualized in Fig. 21, showing that one model is better than the other model with the
probability of the assessment indicated by the color.
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Figure 21: Wilcoxon signed-rank test using all test cases.

Based on the presented results, complex models failed to provide good predictions due to the
higher error rates in difficult dataset subsets. Hence, the overall median prediction MAE renders
worse than the FSPL-β. Compared to the FSPL-β performance, the high extrapolation error rates
might be caused by overfitting the proposed models, as can be noticed for the WLM learned on the
dataset area D. However, for the interpolation scenarios where the predictions are evaluated for the
measurements from the same dataset areas as the models were learned, the data-driven methods are
close to the systematic errors. For example, when the GEPM is learned and tested on the dataset
area A, the mean prediction error is only 0.4 dB with the standard deviation 8.3 dB. Since the model
provides good performance in extrapolation results as shown in Fig. 18, we reject the hypothesis about
the overfitting and assess the Wilcoxon pairwise signed-rank test for the interpolation scenarios only
(using the predictions from the diagonals of Fig. 18).

The pairwise comparison using only interpolation scenarios depicted in Fig. 22 suggests that the
ERM, VWM, and GEPM outclass the FSPL-β. Even more, the VWM interpolates better than the
GEPM, but the ERM provides superior results. Interpreting the evaluations Figs. 21 and 22 as tour-
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8.5 Learning Material Properties of the Environment
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Figure 22: Wilcoxon signed-rank test using interpolation test cases only.

nament results, ordering of the methods can be established, which is summarized in Tab. 2. In this
sense, the ERM is best in the interpolation, the VWM second; the FSPL-β is best-extrapolating with
the ERM second. Recalling that the GEPM and ERM require a huge memory footprint for the models,
the VWM is more suitable for deployment with limited computational resources as it requires only
48 B for storing six IEEE 754 floating point numbers [133].

8.5 Learning Material Properties of the Environment
The advantage of the proposed WLM is the option for inferring environment material properties

by linear regression. The surface roughness ∆h, the relative permittivities ε(h)r and ε(v)r , the surface
reflectivity γ, and the tilt θ can be expressed from the latent variables in (34) as

ε(v)r =
1 + ε

(v)
∗

2

ε
(v)
∗

2 , ε(h)r =
ε
(h)
∗

2
±
√
ε
(h)
∗

4
− 4ε

(h)
∗

2

2
, (46)

∆h =
√

∆h2, γ = 10log10 γ , θ =
√
θ2.

We determine the properties individually for each subset area as listed in Tab. 3. The permittivities
ε(v) and ε(h) were found to be very near to 1, which can be interpreted as the environment being made
of vacuum. The values are wrong yet physically feasible as they are always above 1. We estimated the
reference values of the properties from the engineering tabulations for common reinforced concrete in
Tab. 4. The particular environment of utility tunnels with iron racks stacked inside the tunnel’s profile
is not tabulated; however, the iron racks should force the overall permittivity towards 1.

The roughness value was imaginary (∆h2 was negative) in the dataset areas B, D, E, East E,
and F. We argue that areas D and E have the most challenging geometry, which causes the waveguide
model’s assumptions to be violated the most. The linear model is not informed about physically
relevant constraints in Tab. 4. Hence the squared terms converged to negative values. Regarding
the other areas, the learned value is reasonable. The original method in [110] provides a different
method for determining the roughness. The absolute value of the found roughness values adheres to
our intuition based on the knowledge that the iron racks were around 1 m long and the concrete wall
itself exhibited large-scale roughness of around 20 cm.
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8.6 Discussion

Table 3: Material properties inferred by the proposed WLM.

Area Subset ε
(v)
r [-] ε

(h)
r [-] ∆h [m] γ [-] θ [rad]

KolKN all 1.000009 1.000000 0.035020 0.897866 0.441363∗

KolKN A1 1.000022 1.000062 0.076419 1.029281 1.278110∗

KolKN A 1.000128 1.000006 0.079746 1.088225 0.693860
KolKN B 1.000525 1.000003 0.048345∗ 0.802923 1.532234∗

KolKN C 1.000000 1.000000 0.041845 0.925311 2.518387
KolKN D 1.000006 1.000000 0.055139∗ 0.625510 0.649083
KolKN East 1.000000 1.000000 0.015666∗ 0.856842 2.883446
KolKN E 1.000202 1.000003 0.021598∗ 0.859623 1.114838∗

KolKN F 1.000014 1.000001 0.077788∗ 0.668298 0.737028
KolKN G 1.000004 1.000000 0.034045 0.956478 0.754462∗

KolKN H2 1.000034 1.000000 0.092952 0.992130 2.894600
KolKN West 1.000015 1.000002 0.062626 0.984545 0.694892∗

∗The squared value ∆h2, θ2 was negative. Reported value was obtained as
√
|�|.

Table 4: Reference material properties based on engineering tabulations.

Parameter ε
(v)
r [-] ε

(h)
r [-] ∆h [m] γ [-] θ [rad]

Reference Value Interval 〈2, 12〉 〈2, 12〉 〈0, 1〉 〈0.4, 0.7〉 †
Physicaly Meaningful Interval 〈1,∞〉 〈1,∞〉 〈0, w〉 〈0, 1〉 〈−π, π〉
† This value cannot be assesed as there is no reference method of computation provided in [110].

Most likely because of local ambient material differences, the reflectivity γ in the areas A and
A1 resulted in values larger than 1. That would mean the surface boosts the signal by sole reflection,
violating the energy conservation law. We see another instance of ill-fulfilled assumptions about the
municipal utility tunnels being an instance of an ideal oversized waveguide. Nevertheless, other areas
exhibit the reflectivity learned as might be expected. The reflectivity might be estimated from the
LiDAR data; however, that would not be straightforward because of other influences from the surface
orientation, related refractive, and reflective optics.

Finally, the value of the environment tilt parameter θ is from the range 0.44 rad (25.21◦) to
2.89 rad (165.58◦) in absolute values. Since the reference methodology for its estimation is unavail-
able, we can only interpret the found angles as an average angle value determined by the perpendicular
iron racks stuck from the corridor wall.

8.6 Discussion
The presented signal propagation modeling is intended to predict the signal availability onboard

during the robotic mission in regions that were not yet traversed but observed using onboard extero-
ceptive sensors attached to a mobile robot. Based on the presented evaluation results, the FSPL-β
model provides the best performance in extrapolation scenarios as its simplicity made the predictions
conservative. The waveguide theory-based WLM showed to be limited by the too-strict assumptions
unsuitable for the examined underground environments. The proposed VWM exhibits better results
with consistently low error and no significant bias. The results improve with anonymous latent space
embedding of the proposed GEPM, and the model supports extrapolation. However, among the pro-
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8.7 Deployment

posed models, the ERM achieves the best results with close performance to the FSPL-β in extrapo-
lation but having supreme interpolation performance. The GEPM was shown as infeasible as better
models in all observed criteria exist.

The relatively poor extrapolation results of the proposed models compared to the FSPL-β moti-
vated us to hypothesize that the added regression parameters do not support the extrapolation of the
signal propagation. Three factors were contemplated to be the cause of the poor performance. First,
disastrous overfitting may render a model instance useless, as was the case of the GEPL model learned
on dataset area E. Even in some cases, once the training data is well-determined, like in the subsets
A, B, or C, the models do not suffer from overfitting, discarding the hypothesis. Second, the model’s
additional inputs might contain inherent uncorrelated noise preventing the model from achieving good
fits, which is supported by the ERM behavior that should essentially fit the FSPL-β; instead, the ex-
trapolation exhibits slightly worse qualities than the FSPL-β. We acknowledge that the environment
exhibited rather uniform widths and heights of the corridor; that is why these parameters were finally
omitted from the learning. The two used radius metrics correlate to the curvature and thus are useful,
as shown by the results of the GEPM, yet are limited by the underlying method of computation relying
on an 8-neighborhood grid, which embeds inherent quantization noise. That is where we see room
for improvement. Finally, the third possible cause might be the insufficient geometry characterization
along the signal path. As the proposed models systematically dominate the FSPL-β in interpolation
scenarios, we consider the representation sufficient. Nevertheless, the prediction errors in extrapola-
tion and interpolation scenarios are already close to the measured systematic error. That finally leads
us to the conclusion that although the models may use the environment characterization efficiently, the
inherent dataset noise is the limiting factor.

The used environment model, radio technology, and the dataset collection venue condition our
findings. The model based on a volumetric 3D grid with the resolution 5 cm reflects the environment
with sufficient detail compared to our expert knowledge. The widths and heights computed as the
environment features in the individual waypoints were correct to the error margin of around 10 cm.
The radio modules have been considered identical, albeit differences can be observed in the signal
strength. Therefore, a calibrated radio might improve the predictions. The municipal utility tunnel
venue contained iron racks and an arched cross-section profile that stood against the oversized waveg-
uide model assumptions. Moreover, two fire-proof door systems were present in the corridors, which
introduced another source of discrepancy. That definitely led to poor performance of the WLM, yet
we consider other linear models suitable for the studied purpose of a robotic mission.

Compared to the related work, similar prediction quality is achieved in [113], where the authors
declare the achieved mean absolute error of 10 dB, which is also the case of our models. The ad-
vantage of the proposed VWM is in using only 6 real-value parameters, while the VWM extrapolates
moderately and interpolates significantly better than the baseline FSPL-β. Analogous to our work, the
authors of [113] predicted the signal with similar errors as the baseline FSPL model.

8.7 Deployment
The technical feasibility of the proposed signal propagation models in the communication infras-

tructure building has been experimentally validated in a real-world exploration mission. Following the
field robotics methodology and practice, the system has been integrated and examined in simulation
first. Then, we deploy the system with the quadruped robot Spot® [82] in the abandoned gold mine adit
Halíře [135] near Jílové u Prahy town in the Central Bohemia region of Czechia. The system integra-
tion, together with the description of the used simulation environment, is presented in Section 8.7.1.
The report on the field deployment is dedicated to Section 8.7.2.
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8.7 System Integration in Simulation Environment

8.7.1 System Integration in Simulation Environment
The system integration has been done using the existing robotic exploration framework [119]

already utilized in several deployments [19,136]. The mapping component of the system is duplicated
to provide an independent full 3D volumetric model of the environment together with the environment
geometry sampling along a path that is used to determine the environment geometry characterizations.
The Robot Operating System (ROS) [21] middleware is used for interconnecting individual software
components. The learned signal prediction models and breadcrumbs deployment in the exploration are
implemented in a single ROS package zoulamar_dp that interfaces the presented signal evaluation
system and mission controller. The software architecture of the implemented packages, the used
interfaces, and ROS models are summarized in Fig. 23.
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Figure 23: Overview of the system architecture within ROS. The oval shape represents ROS nodes,
and the trapezoidal shape denotes individual components related to the proposed signal propagation
and deployment of the breadcrumbs. The green outline represents implemented nodes within this
thesis. The blue outline indicates components of the existing exploration framework [119], and the
yellow outline denotes the interface to the robot hardware.

The communication infrastructure building during the exploration mission directly implements
the algorithm presented in Chapter 4. Calling functions for shortest signal path computation and
geometry sampling along the path are implemented using request-reply schema with ROS messages.
Hence, the system inherently and systematically provides logging and recording. Due to a non-zero
time of the mote deployment action, the robot is halted by hijacking the velocity command issued by
the navigation subsystem so that the mote is safely deployed from a lower height while the robot sits.

The simulation environment is based on the Simple Two Dimensional Robot (S.T.D.R.) simu-
lator [137] that is augmented to provide 3D scan data. The navigation framework determines the
exploration goal based on frontiers inside the traversable area with its separate map. That is why the
geometry-sampling mapper had to be tweaked to extend its range beyond the navigation map such
that all queried shortest signal paths already have data in requested locations. At the beginning of the
mission, the robot is forced for the initial movement such that the map is built even underneath the
robot, and the signal propagation path can be determined. A snapshot from the visualized simulation
environment is depicted in Fig. 24. Note that the simulation does not provide any signal availability
data in the environment, and the simulation tested is only a technical implementation.

8.7.2 System Field Deployment
The real mission was run in the adit Halíře delved into metamorphic rock [135]. The mine consists

of around 250 m long central straight corridor with four shorter perpendicular branches. The corridors
are of uncommon diamond-shaped profile as illustrated by a LiDAR scan in Fig. 25a as opposed to the
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8.7 System Field Deployment

Figure 24: A snapshot from the simulated exploration mission. The colored tiles indicate the pre-
dicted signal strength along the current exploration path toward the current exploration goal, which
is depicted as a large green sphere. The blue sphere denotes the robot’s reckoning about the existing
deployed radio. An example of the signal shortest path is a grayscale curve, where black denotes the
curve’s sharpest part. The environment 3D model, which regards ceilings and walls, is depicted as
underlying but rendered from the same viewport.

municipal utility tunnel with the profile depicted in Fig. 25b. As the environment was categorically
different from the municipal utility tunnels and due to the limited field deployment time5 allowed
by the Regional Museum Jílové u Prahy [138], it was not feasible to quantify the proposed signal
prediction performance in the field.

(a) Profile of Halíře mine adit. (b) Profile of municipal utility tunnels

Figure 25: Tunnel profiles of the encountered environments.

5We are grateful to RNDr. Jan Váňa from Museum Jílové u Prahy, who supported the experiment even short before Christmas.
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8.7 System Field Deployment

Figure 26: Montage of the robot’s perceived model.

(a) Mission start. (b) First deployed mote.

(c) Second deployed mote. (d) Robot drops the mote while sitting.

Figure 27: Snaphosts from the real field deployment in Halíře mine adit.
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8.7 System Field Deployment

The system developed and integrated with the simulation has been ported to the real robotic system
with a minor technical hassle related to the operating system version used on the robot that requires
adjusting UMAP [139] and GPy [123] libraries. During the mission, the system provided frequent and
correct geometry assessments based on the 3D model, see Fig. 26, which were passed to the proposed
signal availability prediction system. We set the requested minimum signal strength to −60 dB mW,
which resulted in motes being spaced by approximately 10 m using the FSPL-β as the signal prediction
model. The robot started short into the corridor and followed the exploration strategy, deploying motes
when necessary as portrayed in Figs. 27a to 27d. The robot successfully placed motes such that a
communication chain of 8 motes was created, covering around 120 m long section of the corridor with
the signal as shown in Fig. 28. No significant message loss rate was apparent.

Figure 28: Final explored map with placed communication breadcrumbs depicted as blue disks.
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Chapter 9

Conclusion

A solution to low-bandwidth communication infrastructure building during a robotic exploration
mission motivated by a Search-and-Rescue mission was developed, tested, and deployed as described
in this thesis. The proposed strategy builds upon existing exploration schemes by truncating the ex-
ploration path to the farthest waypoint with a good enough predicted signal with regard to known
existing radios and the current environment model. An onboard signal propagation model suitable
for the intended subterranean robotic mission was sought in the thesis to support assessment in ob-
served yet so far untraversed areas. Based on the related theory review, four candidate models were
proposed. The oversized waveguide theory was exploited in the Waveguide Linear Model (WLM)
and generalized in the Variance Windowing Model (VWM). Further, two models fully abstracting the
underlying physics, the Generic Embedding Polynomial Model (GEPM) based on unsupervised latent
space embedding UMAP [122], and the Evidence Regression Model (ERM) utilizing the Gaussian
process regression [51] were formulated. We evaluated the models on a novel dataset gathered as a
part of the thesis, using the developed data evaluation framework, which also exposed the learned
models to real-world deployment.

The VWM performed the best among the proposed models, being able to extrapolate the signal
with around 11 dB standard deviation and no significant bias. The interpolation was slightly worse
than the ERM, using only six regression parameters as opposed to ERM’s up to 2 GB required mem-
ory footprint. Compared to the baseline Free Space Path Loss (FSPL) model with a single regression
parameter, the attenuation coefficient (FSPL-β), the proposed models exhibited statistically worse
extrapolation predictions. However, the differences are negligible compared to the systematic mea-
surement error inherent in the dataset. On the other hand, the proposed VWM, ERM, and GEPL
statistically overcome the FSPL-β in the interpolation scenarios. A follow-up method combining the
best of all approaches while following rather pessimistic bias should be investigated.

The models used various methods of describing environment geometry along a signal path encoded
in a variable-length vector. A slight limitation of the evaluation due to partially uniform model geom-
etry was noticed, but it was shown as insignificant while determining model prediction performance.
Besides the main evaluation, we also provided insight into the inference of physically meaningful
environment properties inference based on the theoretically motivated WLM. Although physically
feasible values were obtained, their correctness was limited to the environment violating the model’s
assumptions and, in some cases, lack of reference values and methods. Overall, the signal availability
processing using contemporary onboard exteroception was confirmed.

Finally, we demonstrate the proposed robotic mission in both simulated and real-world settings
in the Halíře adit near Jílové u Prahy. The deployment supports the technical feasibility of comput-
ing the environment geometry along the path near the edge of the known region and its subsequent
usage in signal prediction. A communication chain covering around 120 m long tunnel section was
created during the exploration mission. We understand the thesis as a gateway to a plethora of possible
subsequent works.
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Appendix A

Tabelated Crossvalidation Results

The appendix lists the results of all presented signal propagation models in the proposed extended
cross-validation scheme. The following tables present the cross-validation results for particular mod-
els as denoted in the caption, which also denotes the computation stage in the evaluation system
zoulamar_dp described in Section 7.2. Columns are annotated with the following abbreviations.
The training and testing subsets are marked as L or T, respectively. ME denotes the prediction mean
error achieved at the given case, SD is the prediction standard deviation, and RMSE is the prediction
root-mean-square-error. The statistic about method pessimism is denoted P and represents the ratio of
the predictions underestimating the signal gain with regard to the ground truth.

WLM (.../Augment.segmentation/Forge/Bedford)

L T ME SD RE P L T ME SD RE P

A A −3.04 17.25 17.51 0.39 Ea A −5.95 34.36 34.87 0.31

A A1 −12.65 13.73 18.67 0.17 Ea A1 −20.70 41.44 46.32 0.12

A B −24.74 26.79 36.47 0.19 Ea B −13.53 26.88 30.09 0.32

A C −36.64 26.46 45.20 0.08 Ea C −22.68 32.64 39.75 0.25

A D −29.66 24.97 38.77 0.22 Ea D −24.73 49.58 55.41 0.13

A E 36.74 21.59 42.61 0.89 Ea E 1.98 4.67 5.08 0.44

A Ea −5.31 45.72 46.02 0.47 Ea Ea −11.22 27.28 29.50 0.35

A F −75.40 20.18 78.05 0.00 Ea F −22.21 29.03 36.55 0.29

A G 59.72 30.65 67.13 0.96 Ea G 14.68 20.81 25.47 0.71

A H2 −59.16 10.73 60.13 0.00 Ea H2 −48.69 10.82 49.88 0.00

A We −31.05 25.79 40.36 0.11 Ea We −17.64 53.29 56.13 0.22

A al −24.31 34.08 41.86 0.20 Ea al −14.56 49.14 51.25 0.25

A1 A 17.37 22.36 28.31 0.77 F A −8.23 32.63 33.65 0.41

A1 A1 −2.77 14.74 15.00 0.51 F A1 −39.18 23.64 45.75 0.06

A1 B −7.16 33.17 33.94 0.34 F B 7.85 38.88 39.67 0.64

A1 C −18.32 36.42 40.77 0.32 F C −0.74 53.72 53.72 0.47

A1 D −18.93 25.70 31.92 0.26 F D −57.05 19.65 60.34 0.00

A1 E 60.09 20.64 63.54 1.00 F E −28.30 17.05 33.04 0.11

A1 Ea 15.62 51.43 53.75 0.57 F Ea −10.23 38.99 40.31 0.39

A1 F −55.36 21.99 59.57 0.03 F F −2.86 18.54 18.76 0.53

A1 G 87.02 35.11 93.83 0.96 F G 0.19 21.81 21.81 0.61

A1 H2 −45.54 10.33 46.69 0.00 F H2 −36.29 22.05 42.46 0.00

A1 We −15.53 34.91 38.21 0.35 F We −13.57 45.49 47.47 0.32

A1 al −7.54 41.77 42.45 0.40 F al −13.93 43.75 45.91 0.33

B A −16.47 25.11 30.03 0.29 G A −47.14 11.41 48.50 0.00

B A1 −39.71 16.64 43.05 0.00 G A1 −50.96 9.90 51.91 0.00

B B −8.91 28.33 29.70 0.38 G B −38.87 17.09 42.46 0.05

B C −19.71 34.33 39.59 0.31 G C −53.83 15.58 56.04 0.00

B D −50.03 22.12 54.70 0.09 G D −66.54 13.02 67.80 0.00

B E 3.76 7.01 7.96 0.67 G E −27.68 5.36 28.20 0.00

B Ea −8.09 31.45 32.47 0.36 G Ea −38.35 21.77 44.09 0.03

B F −10.74 26.09 28.21 0.39 G F −62.88 15.47 64.76 0.00

B G 11.24 20.88 23.71 0.61 G G −1.90 17.58 17.69 0.50

B H2 −41.85 17.87 45.50 0.00 G H2 −70.65 7.22 71.02 0.00
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WLM (.../Augment.segmentation/Forge/Bedford)

L T ME SD RE P L T ME SD RE P

B We −26.46 30.51 40.38 0.21 G We −56.89 18.97 59.97 0.00

B al −22.13 31.77 38.72 0.24 G al −52.94 23.04 57.74 0.01

C A 12.30 44.04 45.72 0.53 H2 A 119 54.97 131 0.99

C A1 −7.44 48.67 49.24 0.17 H2 A1 69.18 46.08 83.12 0.95

C B −7.22 32.69 33.48 0.36 H2 B 67.04 76.84 102 0.86

C C −16.68 33.38 37.32 0.35 H2 C 44.84 74.46 86.92 0.67

C D 2.21 71.49 71.53 0.35 H2 D 113 94.54 147 1.00

C E 57.55 8.44 58.17 1.00 H2 E 191 30.51 193 1.00

C Ea 15.69 43.79 46.51 0.59 H2 Ea 136 123 183 0.88

C F 6.64 52.32 52.74 0.56 H2 F 95.59 83.20 127 0.81

C G 49.62 27.93 56.94 0.96 H2 G 311 78.83 321 1.00

C H2 −35.61 25.33 43.69 0.18 H2 H2 −0.11 19.83 19.83 0.45

C We −6.65 59.27 59.64 0.33 H2 We 54.68 79.15 96.20 0.74

C al 1.91 59.71 59.74 0.41 H2 al 79.72 109 135 0.81

D A 83.17 55.70 100 0.92 We A 9.26 23.62 25.37 0.61

D A1 23.28 34.44 41.57 0.72 We A1 −10.62 17.34 20.34 0.22

D B 65.74 68.78 95.14 0.78 We B −9.22 31.42 32.75 0.34

D C 62.91 98.86 117 0.59 We C −20.52 32.73 38.63 0.30

D D −3.96 13.01 13.60 0.35 We D −17.93 27.45 32.79 0.35

D E 56.38 7.05 56.82 1.00 We E 55.05 14.51 56.93 1.00

D Ea 59.66 68.67 90.97 0.80 We Ea 12.85 44.02 45.86 0.59

D F 11.18 27.23 29.43 0.74 We F −31.89 30.44 44.09 0.16

D G 115 41.68 123 1.00 We G 68.60 31.22 75.37 0.96

D H2 0.40 42.08 42.08 0.45 We H2 −42.93 12.10 44.60 0.00

D We 50.10 82.64 96.64 0.66 We We −17.15 30.73 35.19 0.30

D al 51.19 77.92 93.23 0.70 We al −8.75 36.67 37.70 0.37

E A −19.07 19.22 27.07 0.17 al A −2.35 22.69 22.81 0.46

E A1 −36.86 12.51 38.92 0.00 al A1 −22.42 17.07 28.18 0.10

E B −15.96 25.16 29.79 0.28 al B −10.38 28.48 30.31 0.35

E C −27.22 30.31 40.74 0.21 al C −20.58 33.18 39.05 0.29

E D −51.66 13.90 53.50 0.00 al D −34.32 21.22 40.35 0.13

E E −1.15 3.94 4.10 0.33 al E 25.38 6.91 26.31 1.00

E Ea −14.70 26.44 30.25 0.26 al Ea −0.81 33.25 33.26 0.49

E F −34.71 18.07 39.14 0.01 al F −31.71 23.37 39.39 0.08

E G 14.54 20.69 25.29 0.68 al G 37.08 24.94 44.68 0.96

E H2 −50.28 10.36 51.33 0.00 al H2 −44.64 11.48 46.09 0.00

E We −31.78 26.31 41.26 0.14 al We −21.06 29.64 36.36 0.25

E al −27.95 27.06 38.90 0.16 al al −15.73 31.59 35.29 0.31

VWM (.../Augment.windowing/Forge.rad_only/PolyForWindowing)

L T ME SD RE P L T ME SD RE P

A A 0.52 8.63 8.64 0.48 Ea A −10.37 10.04 14.44 0.16

A A1 2.51 9.84 10.16 0.62 Ea A1 −5.54 9.22 10.76 0.29

A B 16.97 13.25 21.53 0.89 Ea B 5.48 9.18 10.69 0.74

A C −0.37 10.99 10.99 0.50 Ea C −9.53 9.35 13.36 0.15

A D −16.52 7.50 18.14 0.00 Ea D −26.67 8.62 28.02 0.00

A E 12.73 3.79 13.28 1.00 Ea E 2.67 3.62 4.50 0.67

A Ea 6.45 13.02 14.53 0.68 Ea Ea −0.13 10.27 10.27 0.48

A F 12.48 13.70 18.53 0.80 Ea F −6.01 11.29 12.79 0.18

A G 12.32 8.90 15.20 0.86 Ea G 10.61 11.90 15.94 0.79
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VWM (.../Augment.windowing/Forge.rad_only/PolyForWindowing)

L T ME SD RE P L T ME SD RE P

A H2 −7.98 8.15 11.40 0.24 Ea H2 −16.94 5.47 17.80 0.00

A We −1.63 10.35 10.48 0.43 Ea We −10.62 10.14 14.68 0.16

A al −0.14 11.75 11.75 0.47 Ea al −8.75 11.52 14.47 0.22

A1 A 2.05 10.74 10.93 0.61 F A −30.11 42.75 52.29 0.29

A1 A1 −0.24 8.62 8.62 0.54 F A1 17.85 16.84 24.54 0.86

A1 B 14.58 12.10 18.94 0.90 F B 8.19 26.56 27.80 0.66

A1 C −0.97 9.68 9.73 0.47 F C −19.46 56.54 59.80 0.49

A1 D −22.32 9.28 24.17 0.00 F D −2.43 11.46 11.72 0.52

A1 E 10.74 4.04 11.47 1.00 F E 9.38 2.77 9.78 1.00

A1 Ea 6.65 15.60 16.96 0.74 F Ea −21.57 63.05 66.64 0.52

A1 F −21.38 11.89 24.47 0.07 F F 1.17 9.79 9.86 0.52

A1 G 24.47 15.14 28.77 0.93 F G −70.73 46.64 84.72 0.07

A1 H2 −11.47 5.67 12.80 0.00 F H2 6.41 11.79 13.42 0.61

A1 We −2.68 10.99 11.31 0.44 F We −12.10 47.52 49.03 0.49

A1 al −1.23 13.65 13.70 0.48 F al −14.72 51.14 53.21 0.49

B A −20.86 11.82 23.97 0.06 G A −73.30 79.50 108 0.07

B A1 −10.98 10.51 15.20 0.12 G A1 −74.26 73.81 105 0.08

B B 0.57 8.38 8.40 0.55 G B −105 59.88 121 0.00

B C −12.01 9.99 15.62 0.12 G C −180 162 242 0.00

B D −30.10 8.65 31.32 0.00 G D −169 95.41 194 0.00

B E −8.74 3.52 9.42 0.00 G E 4.52 12.41 13.21 0.67

B Ea −13.26 17.35 21.83 0.28 G Ea −114 183 216 0.10

B F −3.10 13.16 13.52 0.42 G F −581 189 611 0.00

B G −19.32 9.65 21.60 0.04 G G −0.17 6.27 6.27 0.50

B H2 −20.08 5.57 20.84 0.00 G H2 −137 28.34 140 0.00

B We −14.80 11.49 18.74 0.11 G We −147 140 203 0.02

B al −15.29 13.34 20.29 0.14 G al −140 157 211 0.04

C A −2.19 9.68 9.92 0.44 H2 A 39.78 35.10 53.05 0.91

C A1 0.03 9.34 9.34 0.51 H2 A1 26.24 20.85 33.51 0.95

C B 13.72 9.92 16.93 0.92 H2 B 28.49 23.40 36.87 0.92

C C −0.46 8.43 8.44 0.51 H2 C 0.44 35.72 35.72 0.66

C D −18.24 8.75 20.23 0.00 H2 D −4.61 9.58 10.63 0.35

C E 7.15 3.68 8.04 1.00 H2 E 66.92 15.20 68.62 1.00

C Ea 8.61 11.33 14.23 0.79 H2 Ea 76.89 69.83 104 0.95

C F 10.52 12.70 16.49 0.81 H2 F 33.44 20.43 39.19 0.94

C G 20.41 14.33 24.94 0.86 H2 G 173 60.89 183 1.00

C H2 −9.33 5.56 10.86 0.08 H2 H2 0.32 5.88 5.89 0.49

C We −2.32 9.43 9.71 0.43 H2 We 9.94 34.47 35.88 0.70

C al −0.28 11.55 11.56 0.49 H2 al 27.03 53.29 59.75 0.77

D A 23.69 58.32 62.95 0.76 We A 0.24 9.16 9.16 0.49

D A1 38.77 38.39 54.56 0.86 We A1 3.07 9.72 10.19 0.61

D B 14.67 35.42 38.34 0.65 We B 16.93 10.46 19.90 0.93

D C −50.23 115 125 0.41 We C 1.41 8.71 8.82 0.58

D D −1.59 9.14 9.27 0.30 We D −13.92 8.87 16.51 0.00

D E 100 21.90 103 1.00 We E 10.48 3.67 11.11 1.00

D Ea 63.92 71.88 96.19 0.81 We Ea 11.27 12.13 16.56 0.84

D F 27.58 21.84 35.18 0.87 We F 22.34 14.97 26.89 0.92

D G 150 42.04 156 1.00 We G 20.77 12.88 24.44 0.89

D H2 −3.02 12.45 12.81 0.47 We H2 −5.94 6.10 8.52 0.16

D We −20.09 93.53 95.66 0.52 We We 0.03 9.06 9.06 0.51

D al 3.32 93.59 93.65 0.61 We al 2.30 11.60 11.82 0.57

E A −312 446 544 0.19 al A −1.04 9.18 9.24 0.44
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VWM (.../Augment.windowing/Forge.rad_only/PolyForWindowing)

L T ME SD RE P L T ME SD RE P

E A1 48.65 88.10 101 0.65 al A1 2.30 9.18 9.46 0.60

E B −181 341 386 0.36 al B 16.26 10.22 19.21 0.93

E C −588 1097 1244 0.40 al C 0.75 8.74 8.77 0.55

E D 196 69.81 208 0.96 al D −16.44 8.12 18.34 0.00

E E −0.70 3.25 3.32 0.44 al E 9.15 3.94 9.96 1.00

E Ea −95.41 317 331 0.40 al Ea 5.40 11.44 12.65 0.66

E F 177 255 310 0.78 al F 3.69 10.97 11.57 0.64

E G −129 105 167 0.21 al G 10.94 10.00 14.82 0.82

E H2 78.61 142 163 0.75 al H2 −7.05 5.81 9.13 0.14

E We −345 848 915 0.39 al We −0.99 9.25 9.30 0.47

E al −257 750 793 0.42 al al −0.11 10.61 10.61 0.48

GEPM (.../Augment.histogram/Forge/Umap/Poly.2x)

L T ME SD RE P L T ME SD RE P

A A 0.39 8.34 8.35 0.48 Ea A −5.84 9.76 11.37 0.29

A A1 3.03 9.33 9.81 0.65 Ea A1 −5.37 9.49 10.91 0.26

A B 19.70 9.80 22.00 0.96 Ea B 8.58 11.26 14.15 0.81

A C 0.44 12.74 12.75 0.49 Ea C −1.60 9.91 10.04 0.47

A D −13.67 15.57 20.72 0.09 Ea D −21.31 9.75 23.44 0.00

A E 13.47 4.07 14.07 1.00 Ea E 2.40 3.67 4.38 0.67

A Ea 10.39 13.83 17.30 0.77 Ea Ea −0.27 10.65 10.66 0.52

A F −6.81 10.64 12.64 0.09 Ea F −13.59 10.78 17.35 0.07

A G 14.56 8.47 16.84 0.93 Ea G 5.10 10.18 11.39 0.68

A H2 −7.59 8.04 11.06 0.24 Ea H2 −16.27 5.67 17.22 0.00

A We 7.98 22.69 24.06 0.59 Ea We −5.52 11.78 13.00 0.31

A al 6.33 21.64 22.55 0.58 Ea al −4.78 12.61 13.48 0.36

A1 A −17.52 16.15 23.83 0.18 F A 11.89 10.94 16.16 0.88

A1 A1 1.74 10.05 10.20 0.59 F A1 18.80 10.96 21.76 0.96

A1 B 12.54 19.07 22.82 0.87 F B 38.53 21.08 43.92 1.00

A1 C −15.42 17.98 23.69 0.15 F C 22.10 22.45 31.50 0.95

A1 D −33.84 12.83 36.19 0.00 F D 5.81 32.66 33.18 0.43

A1 E 7.85 5.14 9.38 1.00 F E 22.93 7.94 24.27 1.00

A1 Ea −4.21 24.82 25.18 0.47 F Ea 30.81 23.82 38.95 0.95

A1 F −22.58 13.05 26.07 0.06 F F 1.16 10.59 10.65 0.42

A1 G 3.35 7.84 8.53 0.71 F G 29.71 12.23 32.12 1.00

A1 H2 −8.47 8.34 11.89 0.12 F H2 10.65 7.00 12.75 0.92

A1 We −5.97 24.98 25.68 0.45 F We 36.49 51.88 63.43 0.88

A1 al −8.60 24.66 26.12 0.40 F al 30.88 45.77 55.22 0.85

B A −15.55 15.18 21.73 0.17 G A −29.19 14.95 32.80 0.03

B A1 −3.12 12.52 12.90 0.39 G A1 −21.11 24.36 32.23 0.20

B B 0.79 8.50 8.53 0.57 G B 1.69 60.70 60.72 0.86

B C −9.65 15.37 18.15 0.30 G C −47.54 38.70 61.30 0.08

B D −26.42 19.66 32.93 0.00 G D −80.41 28.96 85.47 0.00

B E −0.87 5.66 5.73 0.56 G E 1.84 7.95 8.16 0.44

B Ea −11.64 16.59 20.27 0.29 G Ea −19.54 33.94 39.16 0.33

B F −17.16 10.48 20.11 0.07 G F −41.86 22.76 47.65 0.00

B G −9.68 11.71 15.20 0.11 G G 0.03 7.24 7.24 0.50

B H2 −14.84 10.27 18.04 0.06 G H2 −33.31 28.10 43.58 0.08

B We −20.03 17.82 26.80 0.12 G We −17.65 27.32 32.53 0.25

B al −17.07 17.75 24.63 0.16 G al −25.99 34.99 43.59 0.22
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GEPM (.../Augment.histogram/Forge/Umap/Poly.2x)

L T ME SD RE P L T ME SD RE P

C A −3.28 9.66 10.21 0.35 H2 A 62.04 65.78 90.42 0.81

C A1 0.94 9.17 9.22 0.59 H2 A1 16.35 11.80 20.16 0.95

C B 13.10 9.45 16.16 0.94 H2 B 44.93 21.16 49.67 1.00

C C −0.51 8.81 8.83 0.51 H2 C 47.47 66.43 81.64 0.82

C D −20.13 8.83 21.98 0.00 H2 D 25.00 20.05 32.05 0.96

C E 8.66 3.67 9.41 1.00 H2 E 34.24 11.25 36.04 1.00

C Ea 2.30 11.44 11.67 0.55 H2 Ea 58.13 62.51 85.36 0.90

C F −9.78 10.18 14.12 0.07 H2 F 46.54 35.94 58.80 0.98

C G 8.32 9.47 12.61 0.82 H2 G 15.97 24.67 29.39 0.71

C H2 −10.24 5.55 11.65 0.00 H2 H2 0.49 5.97 5.99 0.47

C We −3.39 9.91 10.47 0.39 H2 We 75.60 91.23 118 0.90

C al −2.70 11.02 11.35 0.40 H2 al 63.22 85.63 106 0.87

D A 14.10 13.58 19.58 0.86 We A 1.80 9.71 9.87 0.59

D A1 14.96 15.85 21.79 0.82 We A1 4.47 9.03 10.07 0.69

D B 27.78 27.31 38.96 0.83 We B 16.59 10.17 19.46 0.95

D C −1.84 28.26 28.32 0.54 We C 1.82 9.82 9.99 0.59

D D −2.88 6.89 7.47 0.35 We D −14.80 8.76 17.20 0.09

D E 37.17 4.08 37.40 1.00 We E 13.77 3.94 14.32 1.00

D Ea 14.21 24.82 28.60 0.75 We Ea 6.43 11.30 13.00 0.73

D F 14.69 12.25 19.13 0.91 We F −3.57 10.49 11.08 0.18

D G 35.32 7.87 36.19 1.00 We G 11.27 9.20 14.55 0.82

D H2 1.61 18.59 18.66 0.49 We H2 −7.21 5.56 9.10 0.14

D We −5.40 36.84 37.23 0.60 We We 0.00 9.58 9.58 0.51

D al 1.55 32.92 32.96 0.65 We al 0.99 10.80 10.84 0.53

E A −466 493 678 0.01 al A 0.69 9.81 9.84 0.51

E A1 −263 290 391 0.00 al A1 3.68 9.06 9.78 0.68

E B −423 411 589 0.05 al B 15.63 10.02 18.57 0.94

E C −1015 1130 1519 0.01 al C 1.33 9.45 9.55 0.57

E D −175 105 204 0.00 al D −16.29 9.03 18.63 0.00

E E −0.48 4.03 4.06 0.44 al E 12.52 3.98 13.14 1.00

E Ea −492 552 739 0.05 al Ea 5.32 11.32 12.51 0.68

E F −82.11 92.96 124 0.06 al F −4.92 10.39 11.50 0.13

E G −554 372 668 0.00 al G 10.17 9.36 13.82 0.82

E H2 −353 305 467 0.00 al H2 −7.94 5.47 9.65 0.14

E We −742 933 1192 0.00 al We −0.90 9.62 9.66 0.48

E al −640 851 1065 0.02 al al 0.01 10.73 10.73 0.50

ERM (.../Augment.occupancy/Forge/GP.mesas)

L T ME SD RE P L T ME SD RE P

A A 0.42 8.01 8.02 0.53 E E −0.61 3.33 3.39 0.44

A A1 0.78 8.61 8.65 0.60 E Ea −6.87 16.24 17.63 0.36

A B −0.41 29.71 29.71 0.50 E F −19.08 10.35 21.70 0.07

A C −2.64 22.87 23.02 0.43 E G −8.37 9.92 12.98 0.11

A D −17.26 8.40 19.19 0.00 E H2 −13.26 8.81 15.92 0.08

A E 18.94 3.92 19.34 1.00 E We −10.12 16.11 19.03 0.29

A Ea 2.26 20.13 20.26 0.52 E al −10.30 16.10 19.12 0.28

A F −6.56 10.68 12.54 0.20 Ea A 1.51 11.29 11.39 0.58

A G 3.56 18.52 18.86 0.79 Ea A1 4.30 9.44 10.37 0.68

A H2 −13.92 19.54 23.99 0.12 Ea B 2.17 8.42 8.69 0.63

A We −3.27 18.85 19.13 0.39 Ea C −14.04 25.38 29.01 0.22
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ERM (.../Augment.occupancy/Forge/GP.mesas)

L T ME SD RE P L T ME SD RE P

A al −3.00 19.52 19.75 0.39 Ea D −17.61 9.32 19.92 0.00

A1 A −19.31 29.10 34.93 0.27 Ea E 12.02 3.56 12.53 1.00

A1 A1 0.17 8.69 8.70 0.55 Ea Ea −0.04 8.57 8.57 0.52

A1 B 4.83 19.60 20.19 0.69 Ea F −4.12 9.85 10.68 0.25

A1 C −26.53 39.50 47.58 0.25 Ea G 6.98 10.96 12.99 0.79

A1 D −21.30 8.39 22.89 0.00 Ea H2 −9.64 10.43 14.20 0.22

A1 E 8.18 4.09 9.14 1.00 Ea We −9.02 20.18 22.10 0.28

A1 Ea −13.06 33.39 35.85 0.47 Ea al −7.17 18.71 20.03 0.34

A1 F −8.30 10.39 13.29 0.10 F A 6.81 11.06 12.99 0.72

A1 G −22.12 25.27 33.59 0.29 F A1 14.57 10.07 17.71 0.93

A1 H2 −10.49 7.06 12.64 0.04 F B 24.97 8.47 26.37 0.99

A1 We −19.93 32.04 37.73 0.23 F C 11.72 9.93 15.36 0.88

A1 al −18.23 31.77 36.63 0.26 F D −7.35 9.53 12.03 0.22

B A −17.85 10.72 20.82 0.07 F E 19.65 3.50 19.96 1.00

B A1 −10.27 9.49 13.99 0.12 F Ea 13.90 12.74 18.86 0.85

B B 0.48 8.52 8.53 0.53 F F 1.15 10.06 10.12 0.44

B C −16.29 12.49 20.53 0.08 F G 16.78 9.41 19.23 1.00

B D −32.08 8.97 33.31 0.00 F H2 3.62 6.38 7.34 0.75

B E −3.64 3.57 5.10 0.22 F We 9.70 11.75 15.23 0.78

B Ea −11.21 12.99 17.15 0.24 F al 9.76 12.43 15.81 0.76

B F −22.37 10.11 24.55 0.07 G A −15.82 27.12 31.40 0.30

B G −7.82 8.88 11.83 0.14 G A1 −39.37 31.09 50.17 0.03

B H2 −21.34 5.76 22.11 0.00 G B −10.68 39.50 40.92 0.56

B We −16.69 12.34 20.76 0.09 G C −47.07 43.78 64.28 0.21

B al −16.20 12.92 20.72 0.12 G D −50.02 13.16 51.72 0.00

C C −0.41 8.53 8.54 0.51 G E −16.62 4.30 17.16 0.00

C Ea 3.89 11.44 12.08 0.65 G Ea −21.31 31.62 38.13 0.25

C G 12.75 13.48 18.56 0.79 G F −24.78 19.29 31.40 0.12

C al −1.35 11.68 11.76 0.48 G G 0.57 7.00 7.03 0.68

D A 21.06 9.86 23.25 0.97 G H2 −62.02 39.33 73.44 0.00

D A1 17.31 11.86 20.98 0.92 G We −40.11 38.82 55.82 0.18

D B 33.83 19.32 38.96 0.94 G al −35.22 37.15 51.19 0.19

D C 11.51 17.09 20.61 0.71 H2 A −28.03 46.09 53.95 0.40

D D −2.59 6.86 7.33 0.35 H2 A1 11.56 15.57 19.39 0.85

D E 35.51 4.15 35.75 1.00 H2 B −6.97 44.87 45.41 0.62

D Ea 22.59 15.03 27.13 0.94 H2 C −37.28 50.99 63.17 0.36

D F 15.73 12.06 19.82 0.92 H2 D −1.33 13.66 13.73 0.52

D G 35.61 8.58 36.62 1.00 H2 E 14.41 3.06 14.73 1.00

D H2 4.83 13.11 13.97 0.57 H2 Ea −18.70 49.74 53.14 0.54

D We 12.03 15.61 19.71 0.77 H2 F −0.06 11.83 11.83 0.47

D al 14.31 15.92 21.41 0.80 H2 G −44.71 46.48 64.49 0.29

E A −15.90 14.16 21.29 0.16 H2 H2 −0.16 4.99 4.99 0.51

E A1 −2.44 11.82 12.07 0.41 H2 We −31.19 49.99 58.92 0.38

E B 4.69 10.01 11.05 0.68 H2 al −25.82 49.01 55.40 0.43

E C −9.09 15.15 17.67 0.31 We G 11.13 9.91 14.90 0.86

E D −24.60 10.74 26.84 0.00 We al 0.65 9.94 9.96 0.52
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FSPL (.../Forge.fspl/FSPL)

L T ME SD RE P L T ME SD RE P

al A 63.45 9.15 64.11 1.00 al Ea 67.23 13.10 68.49 1.00

al A1 65.66 9.23 66.30 1.00 al F 57.38 10.36 58.31 1.00

al B 76.56 17.02 78.43 1.00 al G 75.68 9.30 76.25 1.00

al C 61.73 12.84 63.05 1.00 al H2 53.76 6.46 54.15 1.00

al D 45.45 8.06 46.16 1.00 al We 58.63 14.00 60.28 1.00

al E 76.31 3.67 76.40 1.00 al al 60.42 14.00 62.02 1.00

FSPL-β (.../Forge.fspl/FSPL.beta)

L T ME SD RE P L T ME SD RE P

A A 1.10 10.35 10.41 0.49 Ea A −5.91 10.57 12.11 0.29

A A1 7.74 9.29 12.09 0.82 Ea A1 1.22 9.38 9.46 0.58

A B 17.15 11.22 20.50 0.93 Ea B 10.47 10.72 14.98 0.90

A C 2.74 9.46 9.84 0.62 Ea C −3.90 9.44 10.22 0.35

A D −13.24 8.99 16.00 0.09 Ea D −19.84 9.11 21.83 0.00

A E 14.92 3.52 15.33 1.00 Ea E 8.01 3.51 8.75 1.00

A Ea 6.95 12.33 14.15 0.66 Ea Ea 0.17 12.43 12.43 0.48

A F −3.83 10.13 10.83 0.16 Ea F −10.72 10.12 14.74 0.07

A G 11.48 9.19 14.71 0.86 Ea G 4.26 9.21 10.14 0.64

A H2 −3.73 5.43 6.59 0.20 Ea H2 −10.20 5.50 11.59 0.06

A We 0.45 10.28 10.29 0.51 Ea We −6.09 10.24 11.92 0.29

A al 1.46 11.37 11.46 0.52 Ea al −5.17 11.36 12.48 0.32

A1 A −7.49 10.62 12.99 0.26 F A 6.10 10.21 11.89 0.72

A1 A1 −0.24 9.41 9.41 0.52 F A1 12.38 9.23 15.45 0.92

A1 B 8.97 10.61 13.89 0.88 F B 21.92 11.61 24.80 0.95

A1 C −5.39 9.45 10.88 0.29 F C 7.47 9.52 12.10 0.79

A1 D −21.32 9.13 23.19 0.00 F D −8.53 8.91 12.33 0.17

A1 E 6.46 3.50 7.35 1.00 F E 19.84 3.53 20.16 1.00

A1 Ea −1.35 12.45 12.53 0.45 F Ea 11.78 12.29 17.02 0.82

A1 F −12.26 10.12 15.90 0.07 F F 1.08 10.14 10.19 0.44

A1 G 2.64 9.21 9.58 0.57 F G 16.63 9.18 19.00 1.00

A1 H2 −11.65 5.52 12.89 0.02 F H2 0.88 5.40 5.47 0.57

A1 We −7.56 10.25 12.73 0.24 F We 5.12 10.36 11.56 0.68

A1 al −6.66 11.37 13.18 0.28 F al 6.19 11.41 12.98 0.70

B A −16.59 10.92 19.86 0.09 G A −9.49 10.68 14.29 0.20

B A1 −8.70 9.56 12.92 0.20 G A1 −2.10 9.44 9.67 0.42

B B 0.30 10.03 10.03 0.57 G B 7.06 10.47 12.63 0.84

B C −14.00 9.58 16.97 0.07 G C −7.28 9.47 11.95 0.21

B D −29.89 9.29 31.30 0.00 G D −23.20 9.17 24.95 0.00

B E −2.50 3.48 4.29 0.22 G E 4.49 3.50 5.69 0.89

B Ea −10.15 12.64 16.21 0.26 G Ea −3.29 12.49 12.91 0.41

B F −21.20 10.12 23.49 0.07 G F −14.23 10.12 17.46 0.07

B G −6.73 9.24 11.43 0.18 G G 0.58 9.22 9.23 0.54

B H2 −20.05 5.68 20.83 0.00 G H2 −13.50 5.55 14.60 0.00

B We −16.05 10.36 19.11 0.07 G We −9.43 10.26 13.93 0.18

B al −15.26 11.49 19.10 0.11 G al −8.55 11.39 14.24 0.23

C A −2.54 10.46 10.77 0.38 H2 A 6.62 10.20 12.16 0.75

C A1 4.36 9.34 10.30 0.68 H2 A1 12.87 9.23 15.83 0.92

C B 13.68 10.95 17.53 0.92 H2 B 22.42 11.65 25.26 0.96

C C −0.71 9.44 9.46 0.47 H2 C 7.96 9.53 12.42 0.80

C D −16.66 9.05 18.96 0.00 H2 D −8.04 8.90 11.99 0.17
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FSPL-β (.../Forge.fspl/FSPL.beta)

L T ME SD RE P L T ME SD RE P

C E 11.33 3.52 11.87 1.00 H2 E 20.36 3.54 20.66 1.00

C Ea 3.43 12.38 12.84 0.56 H2 Ea 12.29 12.28 17.37 0.84

C F −7.40 10.12 12.54 0.07 H2 F 1.59 10.14 10.26 0.48

C G 7.73 9.20 12.02 0.75 H2 G 17.17 9.18 19.47 1.00

C H2 −7.09 5.46 8.95 0.12 H2 H2 1.36 5.40 5.57 0.61

C We −2.95 10.25 10.66 0.39 H2 We 5.61 10.38 11.79 0.70

C al −1.98 11.36 11.53 0.41 H2 al 6.69 11.42 13.23 0.71

D A 13.26 10.02 16.62 0.90 We A 0.43 10.37 10.38 0.47

D A1 19.03 9.17 21.13 0.99 We A1 7.11 9.30 11.70 0.77

D B 28.74 12.20 31.22 0.96 We B 16.51 11.17 19.94 0.93

D C 14.24 9.69 17.23 0.93 We C 2.10 9.45 9.68 0.60

D D −1.79 8.79 8.97 0.52 We D −13.87 9.00 16.53 0.09

D E 26.89 3.55 27.13 1.00 We E 14.25 3.52 14.68 1.00

D Ea 18.71 12.26 22.36 0.95 We Ea 6.30 12.34 13.85 0.63

D F 8.11 10.15 12.99 0.87 We F −4.49 10.13 11.08 0.13

D G 24.00 9.17 25.70 1.00 We G 10.79 9.19 14.17 0.86

D H2 7.48 5.40 9.23 0.90 We H2 −4.36 5.43 6.96 0.20

D We 11.80 10.56 15.84 0.87 We We −0.18 10.27 10.28 0.49

D al 12.96 11.53 17.35 0.87 We al 0.83 11.36 11.39 0.50

E A −14.78 10.86 18.34 0.12 al A −0.63 10.41 10.42 0.44

E A1 −7.01 9.53 11.83 0.24 al A1 6.13 9.31 11.15 0.73

E B 2.02 10.14 10.34 0.65 al B 15.50 11.09 19.06 0.93

E C −12.29 9.55 15.56 0.10 al C 1.10 9.45 9.51 0.56

E D −28.18 9.26 29.66 0.00 al D −14.87 9.02 17.39 0.09

E E −0.72 3.49 3.56 0.44 al E 13.21 3.52 13.68 1.00

E Ea −8.40 12.60 15.14 0.31 al Ea 5.27 12.35 13.43 0.61

E F −19.42 10.12 21.90 0.07 al F −5.53 10.13 11.54 0.09

E G −4.87 9.24 10.44 0.21 al G 9.70 9.19 13.36 0.86

E H2 −18.38 5.64 19.22 0.00 al H2 −5.33 5.44 7.62 0.16

E We −14.36 10.33 17.69 0.09 al We −1.16 10.26 10.33 0.45

E al −13.55 11.45 17.74 0.13 al al −0.17 11.36 11.36 0.47
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