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Abstrakt / Abstract

Inspekce kvality je nedílnou součástí
výrobního procesu. Průmysl 4.0 přínáší
nové výzvy v oblasti monitoringu kva-
lity a jejího zlepšování. Vhodná formální
reprezentace výrobních znalostí umož-
ňuje zlepšení inspekce kvality, například
redukce nákladů na kvalitu nebo dia-
gnostika.

Představujeme ontologii pro repre-
zentaci výrobního a měřícího procesu.
Jako modelový příklad jsme vytvořili
znalostní bázi reprezentující znalosti
týkající se výroby a měření kvality
motorových hlav ve Škoda Auto. Im-
plementovali jsme rozhraní pro přístup
do naší báze znalostí, která mohou být
využita mnoha aplikacemi cílenými na
inspekci kvality a její kontrolu.

Klíčová slova: Reprezentace znalostí,
Ontologie, OWL, Výroba

Překlad titulu: Formální reprezentace
procesu kontroly kvality

Quality inspection is a necessary part
of the manufacturing process. Industry
4.0 brings new challenges when it comes
to quality monitoring and quality im-
provement. Having a proper formal rep-
resentation of manufacturing knowledge
enables improvements in quality inspec-
tion, such as reduction of quality costs
or diagnostics.

We present an ontology for the
representation of manufacturing and
measuring processes. As a use case,
we developed a knowledge base repre-
senting knowledge about manufacturing
and measuring processes of engine head
manufacturing in the Škoda Auto. We
implemented an interface for accessing
our knowledge base that can be uti-
lized by various applications regarding
quality inspection and control.

Keywords: Knowledge representa-
tion, Ontology, OWL, Manufacturing
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Chapter 1
Introduction

The expansion of the fourth industrial revolution in recent years brings new challenges
regarding artificial intelligence and automation. Besides the fields of the internet of
things, digital twins, augmented reality or blockchains, a proper representation of do-
main knowledge is required to enable interconnected data in manufacturing and quality
inspection.

This thesis focuses on the formal representation of quality inspection system. It
is a partial output of the National Competence Center — Cybernetics and Artificial
Intelligence1 (NCK KUI) project aiming at research in the field of Industry 4.0, smart
cities, intelligent transport systems and cybersecurity. NCK KUI is supported by the
Technology Agency of the Czech Republic.

1.1 Goals

The goal of the thesis is to study formal representation approaches and select the best
approach. The main goal is to design and implement a formal representation of the
quality control process. The designed representation will be tested and utilized by the
machining use case provided by Škoda Auto. The necessary part of the thesis is to
study the machining domain.

1.2 Motivation

The formal representation of process structure is a key method for representing and
working with process knowledge not only in automotive but everywhere in Industry
4.0. Semantic web principles and technologies can serve as semantic interoperability
providers [1–2].

The general concept that this work is part of is creating a “smart measure plan”
for manufacturing, i.e., exploiting artificial intelligence in quality inspection in terms of
measuring characteristics as the key quality index.

The main motivation behind building a formal representation of the process and mea-
surement is its possible utilization indeed. Moreover, if we know the usage it is easier
to design and test the formal representation. The utilization goes hand in hand with
cooperation with Škoda Auto — the use case provider, and Diribet — the supplier of
software for data analysis for Škoda Auto. A wide range of applications unveils, for illus-
tration, a comparison of different processes, general interoperability among processes,
or selection of control action. We present three significant proposals of utilization that
are subjects of further study.

1 https://starfos.tacr.cz/en/project/TN01000024
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1.3 Thesis structure
The thesis is divided into seven chapters. The first, current, chapter is a brief in-
troduction to the goals and motivation of this work. Chapter 2 presents the quality
control loop and describes the use-case domain. Chapter 3 is a brief introduction to
knowledge representation formalisms. A survey of formal representations in the manu-
facturing domain is made. Chapter 4 proposes an ontology representing the provided
use case. Chapter 5 presents technologies used for the proposed ontology and describes
the implementation of the ontology together with populating a knowledge base. Chap-
ter 6 demonstrates how to access the knowledge base knowledge. The last, chapter 7
concludes the thesis and suggests future work.
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Chapter 2
Quality inspection use case

In this chapter, we analyze the provided use case, describe the given domain and present
possible utilization. Section 2.1 presents a quality control loop which is a significant
part of quality management, describes its steps and briefly suggests possible utilization.
Section 2.2 presents the provided use case focusing on both the manufacturing and
quality inspection parts in detail.

2.1 Quality control loop
Before we describe the quality control loop, a quality inspection needs to be introduced.
Quality inspection can be characterized as a process of reviewing final product char-
acteristics and checking for conformance to required standards. In contrast to quality
control, quality control employs results obtained by quality inspection to find the cause
of problems.

The quality control loop (Fig. 2.1) captures the manufacturing process as a set of
inputs transformed into a set of outputs, along with quality inspection (measurement)
and process control. Quality inspection is carried out according to the sampling plan.
The sampling plan defines which and when characteristics should be acquired. The re-
sulting characteristics are then subjected to out-of-control state detection. The positive
detection triggers an assignable cause finding procedure (diagnostics) and selection of
an appropriate control action. The knowledge representation (KR) described in this
work directly covers the process (machining) and measure (quality inspection) activity
of a particular engine head type. The following subsections analyze each step of the
control loop [3].

Figure 2.1. Quality control loop with the intended application of KR, adopted from [3],
modified

3



2. Quality inspection use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
2.1.1 Process

Process, in the context of Škoda Auto use case, is machining, where a raw material is
cut into the desired shape, i.e., a machine tool processes a raw piece of engine head
by creating new objects on the engine head. The formal representation covers not
only individual steps of machining but also objects that are the results of machining
activities, tools, null points settings, machine tools, etc. Subsection 2.2.1 presents the
process representation in detail.

2.1.2 Measurement

In our use case, measurement is a quality inspection activity that collects data from a
machined product in the form of characteristics. The measurement itself is performed
via measuring systems — coordinate measuring machines (CMM) or handheld metrol-
ogy tools. The system can be based on computer vision techniques in other applications.
According to the measurement strategy [4], a CMM scans the engine head, constructs
abstract elements representing machined objects and computes the final characteristic
through elements. E.g., the CMM scans a circular path inside a machined hole then
the CMM constructs a circle from the scanned data and computes the diameter of the
circle. The diameter represents the diameter of the hole. Another example is two sur-
faces that make an angle. The CMM scans the surfaces, constructs two planes, and
computes an angle between them. Subsection 2.2.2 focuses on the measuring section of
the use case.

2.1.3 Out of control state detection

First, we clarify an out-of-control process concept. Montgomery [5] defines it as follows:
“A process that is operating in the presence of assignable causes is said to be an out-
of-control (OOC) process.” Although this could lead to out-of-control state detection
by finding the assignable cause, this is not our case. Montgomery describes tools for
OOC state detection involving measured characteristics as mentioned in the previous
subsection 2.1.2. Two sufficient methods are presented: the Shewhart control chart and
its multivariate extension - the Hotelling 𝑇 2 control chart.

A paper [3] applies One-Class Support Vector Machine (OSVM) [6] as a supervised
machine learning-based method for OOC state detection. A comparison of the She-
whart, Hotelling 𝑇 2, and OSVM was made and OSVM outperformed the other meth-
ods.

2.1.4 Assignable cause finding

Positive detection of the OOC state launches an assignable cause-finding procedure [3].
An objective is to find an underlying cause that raised an alarm. Currently, it is up
to a machine tool operator to analyze a product and carry out an assignable cause.
For automation of this procedure, a proper formal representation has to be available to
allow an automated potential cause finding. Further thoughts regarding this task are
presented in subsection 6.3.

2.1.5 Selection of control action

Selection of control action is a consecutive procedure that follows after the assignable
cause is found. Currently, a machine tool operator performs a corrective action manu-
ally, e.g., a visual inspection of a product.

4
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2.2 Engine head manufacturing and inspection
The following subsections describe machining and measuring parts of the production
process as applied in the provided Škoda Auto use case. Although the production
process is quite complex for a noninvolved person, we will try to describe it as close as it
happens in reality, although with some simplifications. There were several consultation
meetings between colleagues from the Škoda Auto Measurement Laboratories and us
to profoundly understand the manufacturing and measuring domain.

Every concept presented below might be a potential cause of out of control state
detection, therefore it is essential to have a formal representation of both machining
and measuring processes to detect a possible cause of defect, to have the ability to
perform a process simulation, or to minimize the costs of measurement.

Figure 2.2. 3D model of an engine head with manufactured holes and surfaces

2.2.1 Machining Part
At this time, the process handles the manufacturing of eleven engine head types. Fig.
2.2 shows one of the types of engine heads. A machine tool manufactures engine head
type according to a program. It follows that there are eleven programs.

A program is a setting of NPVs (NPV is described in the paragraph below) to a tool.
It is defined by a machine tool operator and executed by a machine tool. The actual
values of NPVs are determined by a ZOS (ZOS is described in the paragraph below)
that is used by the program. The program has set exactly one ZOS.

The provided use case focuses on one specific operation from a sequence of operations,
specifically operation 30. Previous operations may have prepared the manufactured
product in order to allow processing defined by the current operation. Following opera-
tions may need the current operation in favor to complete the product manufacturing.

5



2. Quality inspection use case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
The manufacturing of the whole engine head is a pipeline of production operations and
the quality control loop depicted in Fig. 2.1) covers the control of one specific operation.

Null Point Shift (abbreviated NPV, from german Nullpunktverschiebung) can be
seen, for simplification, as a coordinate in a rectangular cuboid defined by a machine
tool. In fact, it is a so-called g-function (from a g-code1) that sets a default position
of the NPV. Particular coordinates are bound by ZOS. coordinates. A machine tool
operator sets (via a program) one or more NPVs to any number of tools equipped on a
machine. It is necessary to move together all tools that are linked with the same NPV.
This situation typically occurs whenever an object is drilled at first, then milled and
finally ground; i.e. three different tools operate on this procedure.

A mapping table (abbreviated ZOS, from german Zuordnungstabelle) is a setting of
NPVs in a machine tool. Operation 30 makes use of four ZOS tables, each of ZOS used
by one or more programs.

A machine tool is a machine that transforms an input product into an output froduct
according to a program. Currently, five machine tools operate in a manufacturing
process. Each of the machine tools has two fixtures and spindles, we call a pair of
fixture and spindle a nest. Thus, a machine tool has two nests. Each nest has a
worktable and a set of tools to manufacture the input. One machine tool handles the
manufacturing of two engine heads and a whole workshop of ten engine heads at a time.

Tools are mounted to a machine tool nest and are necessary to complete the current
operation. There are several tool types. Tool quality is a key parameter to delivering
optimal quality of a manufactured product. Every tool gets worn over time and is
extremely important to monitor the tool’s state and replace it if needed.

Objects are entities that are created by a tool. Two types of objects are being created
— holes and surfaces (as visible in Fig. 2.2). An object is usually machined by multiple
tools. The quality of an object is measured in form of characteristics related to a given
object.

2.2.2 Measuring Part
A measuring of characteristics of manufactured engine head is accomplished by either
one of the commercial coordinate measure machines Zeiss Prismo2 or Zeiss DuraMax3,
or by handheld metrology tools.

Elements are abstract geometric entities that are computed by a coordinate mea-
suring machine (CMM) from the measured data. Those entities are cones, cylinders,
planes, circles, points, etc. The CMM measures an element with a certain sensor, ac-
cording to element type and its position. The CMM measures elements according to
a measurement plan, the element is measured only if it is needed for a characteris-
tics computation, i.e. no elements are measured twice. A measurement plan defines a
measurement strategy — parameters set by a CMM operator for optimal element mea-
surement. We call these parameters as measurement and construction settings. Last
but not least, some elements are essential to derive other elements (e.g., a point derived
from a plane), and some elements compose a reference (e.g., a reference plane composed
of several planes).

Measurement settings are sets of parameters determining the measurement strategy.
It represents parameters such as measurement method (scanning or tactile), path type
1 https://en.wikipedia.org/wiki/G-code
2 https://www.zeiss.com/metrology/products/systems/coordinate-measuring-machines/bridge-

type-cmms/prismo.html
3 https://www.zeiss.com/metrology/products/systems/coordinate-measuring-machines/producti

on-cmms/duramax.html
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(polyline, circular path, single points), speed and step (for polylines and circular paths),
desired point count, actual point count, and angle range (for circular paths). We can
easily compute a duration of measurement for an element component by multiplying
the actual point count by the step, divided by the speed.

Construction settings are sets of parameters determining filtering and construction
parameters for the measured data. It represents parameters such as filtering method,
filter type, filter kind, additional filter parameters, elimination of outliers condition,
and construction method.

Two types of sensor carriers can be mounted on the CMM. Type K130 has five
sensors, named by numbers from one to five. Type K60 has two sensors, named two
and four. Although K130 and K60 have sensors two and four labeled identically, they
are different physical objects.

References are of two subtypes, either a coordinate system or a group of elements
(even a single-element group). In most cases, the CMM computes characteristics by
referencing the standard coordinate system, in some cases, there can be a coordinate
system defined by one or two objects. An example of a reference consisting of elements
is a plane, constructed by other planes.

Characteristics are the key factors of quality. Characteristics are computed by access-
ing elements or by referring to a reference. A computation is up to the CMM and can
be influenced by adjusting a measurement strategy. Characteristics such as diameter,
position, angle, distance, concentricity, flatness, parallelism, or tilt are then subjected
to an out-of-control detector.

7



Chapter 3
Knowledge representation and reasoning

Knowledge representation and reasoning is a sub-field of Artificial Intelligence that
deals with representation and reasoning of the real world in a machine-interpretable
way. Knowledge-based systems keep an abstraction of the real-world domain of in-
terest in the form of a computational model. Real entities, such as physical objects,
events, relationships, etc., are substituted for symbols and can cover any part of the
real world or any hypothetical system. Besides this concept, known as knowledge base,
a knowledge-based system allows inferring new knowledge via reasoning [7].

In the following sections, we describe knowledge representation (section 3.1) and
reasoning (section 3.2), description logics as underlying theories of ontologies (section
3.3), ontology (section 3.4) as our selected formal representation. In section 3.5, we
conducted a survey of formal representations in the manufacturing domain.

3.1 Knowledge representation

A survey [8] collects statistics about papers citing knowledge representation (KR) in ma-
chining process planning. The survey includes predicate logic-base, rule-based, seman-
tic network-based, frame-based, script-based, Petri-net-based, object-oriented-based,
ontology-based, and neural network-based formalisms. The ontological approach ap-
pears as the most cited formalism with the ability to share and reuse, a wide range of
applications, and suitability for both easy and complex systems as advantages. How-
ever, ontologies are not suitable for their encoding complexity.

Due to the recent popularity of ontologies, we decided to use them as our formal
knowledge representation. Section 3.4 presents them in detail. Other formal represen-
tations related to ontologies are presented in the following subsections.

3.1.1 Semantic networks

Semantic networks can generally be viewed as some form of a graph where nodes rep-
resent concepts and edges represent relations between these concepts. An example of
semantic network is in Fig. 3.1. The binary relation employee that is employed at
a company represents two concepts, i.e., Employee and Company (denoted by a rect-
angle), participating in a relation isEmployedAt (denoted by an arrow). The general
concept Employee participates also in a relation isA MisterX, signifying that MisterX
is an “instance” of Employee. Other important relations are e.g. kindOf denoting
subsumption, or partOf denoting part-whole relationship [7].

The semantic network approach is beneficial for categorizing domain concepts into
taxonomies and capturing general statements about the domain. However, capturing
individuals and data values (numbers, strings) is problematic in semantic networks [7].

8
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Figure 3.1. Semantic network capturing B2B travelling use-case [7]

3.1.2 Rules
Another knowledge representation formalism known from logic programming1 are rules
forming if-then statements. An example of such rules illustrating the semantic network
in Fig. 3.1 is expressed as e.g. if some city is European then it is a city, or if a company
books a trip that starts and ends in the same city then the trip is by train. Such rules
are formalized in a machine-readable language written in the example 3.1 [7].
Example 3.1.

1. City(?c) :- EUCity(?c)
2. TrainRide(?t) :- Company(?x) ∧ books(?x, ?t) ∧ Trip(?t)

∧ starts(?t, ?c) ∧ ends(?t, ?c) ∧ City(?c)

The rule consists of two parts separated by the “:-” symbol. The first part is called
the head (the consequence in the if-then notation) and the second part is called the
body (the condition in the if-then notation). Note that the machine-readable formalism
has an inverse notation in opposite to the standard if-then [7].

Rules are suitable forms for reasoning about individuals. They are not suitable for
more complicated consequences [7].

3.1.3 Logic
Since previous formalisms do not allow a representation of some facts, logic formalism,
specifically first-order predicate calculus needs to be introduced. First-order logic (FOL)
comes with predicates, functions, variables, and logical connectives, all of them con-
structing formulas around objects [7]. For illustration, some relations from the semantic
network depicted in Fig. 3.1 are listed in examples 3.2, 3.3, and 3.4.
Example 3.2. kindOf is an implication in FOL:

∀x: (EUCity(x) → City(x))

Example 3.3. The first formula states that startsFrom is a relation between city and
trip respectively, while the second formula states that every trip must have a starting
city:
1 https://en.wikipedia.org/wiki/Logic_programming
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3. Knowledge representation and reasoning . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
1. ∀x, y: (startsFrom(x, y) → Trip(x) ∧ City(y))
2. ∀x: ∃y: (Trip(x) → City(y) ∧ startsFrom(x, y))

Example 3.4. The second logic rule from example 3.1 rewritten to FOL:

∀x, t, c: (Company(x) ∧ books(x, t) ∧ starts(t, c)
∧ ends(t, c) ∧ City(c) → TrainRide(t))

Semantic networks, rules, and logics play a huge role in many knowledge represen-
tation languages described in section 5.2. In the next section, we will briefly introduce
an application of FOL in the reasoning about knowledge.

3.2 Reasoning
The second major concept in knowledge representation is reasoning. To draw a paral-
lel, computer reasoning is a simulation of human thinking. Like human reasoning, a
computer deduces new conclusions from the existing knowledge base (KB)[9].

FOL enables asserting and inferring knowledge to/from the knowledge base using
tell and ask operations. The tell operation adds a new sentence to the knowledge base
by explicitly stating a new fact about the domain [10]. To illustrate that, let’s use
the semantic network (3.1) again. Example 3.5 asserts that MisterX is an Employee
employed at UbiqBiz, and Person differs from Company.
Example 3.5.

Tell(KB, Employee(MisterX))
Tell(KB, ∀x, y: (isEmployedAt(x, y) → Employee(x) ∧ Company(y)))
Tell(KB, isEmployedAt(MisterX, UbiqBiz))
Tell(KB, ∀x: (Person(x) → ¬Company(x)))

Now, we can ask the knowledge base whether UbiqBiz is a Company by query in
example 3.6. The answer should be true, as expected.
Example 3.6.

Ask(KB, Company(UbiqBiz))

An essential property of a knowledge base is satisfiability, i.e., the absence of contra-
dictory statements [7]. Example 3.7 shows adding an inconsistent fact that UbiqBiz is
a Person. Since the KB is now inconsistent, we should avoid these situations.
Example 3.7.

Tell(KB, Person(UbiqBiz))

The tell operation adds explicit knowledge, whereas a knowledge base derives implicit
knowledge from explicitly told statements. Statements are called entailed if they are
logical consequences of knowledge stored in the KB. An inference process that operates
over the KB should have two properties — soundness and completeness. Soundness
is ensured by deriving only entailed statements, while completeness is guaranteed by
deriving any entailed statements [7].

For now, first-order logic was the most powerful tool of the three presented however
its deduction system is semi-decidable meaning that the positive result of every entailed
statement terminates in a finite time, but the negative result of the non-entailed state-
ment may not be acquired in a finite time [10]. Nevertheless, there exist some logic
theories capable of decidability. The next section deals with such theories.
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3.3 Description logics
Description logics (DLs) are the following knowledge representation formalisms. Com-
pared to previous formalisms, DLs are capable of representing a specific domain of
interest with formal knowledge-based semantics focused on reasoning with full decid-
ability, although, some fragments of DLs are undecidable. The family of DLs includes
many variants, e.g. Attributive langue (𝒜ℒ), Frame-based description language (ℱℒ),
or Existential language (ℰℒ). Similar to Semantic networks as discussed in subsec-
tion 3.1.1, DLs capture the field of interest by distinguishing between concepts and
individuals. DLs split the representation into so-called TBox (terminology) and ABox
(assertion) as in Fig. 3.2. We describe these components below [11].

Figure 3.2. Knowledge representation system based on Description Logics [11]

3.3.1 TBox
The TBox defines a vocabulary of a selected domain by constituting concepts and roles
between them, even complex. Terminological axioms are statements relating concepts
and roles together. The basic and most important terminological axioms are inclusions
and equalities. Equalities can further extend the logic by making definitions [11].
Let’s show definitions and inclusions of some relation regarding the Semantic network
example 3.1 again.

Example 3.8. Definition of Employee: Person that works for at least one Company.

Employee ≡ Person ⊓ ≥1 isEmployedAt.Company

3.3.2 ABox
The ABox is a part of the knowledge base describing individuals and their properties.
One can assert any individual the concept or the role, the ABox is then a finite set
of such assertions. Individuals may also appear in the TBox in a set constructor as
nominals, i.e., classes of specific elements [11].

11
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3.4 Ontology
Ontology, in a philosophical meaning, is a branch studying existence, while in the field
of the Semantic web, Tom Gruber [12] defines the ontology as follows:

Definition 3.1. An ontology is a formal, explicit specification of a shared conceptual-
ization of a domain of interest.

Analyzing the definition, formal means machine-readable and explicit means explic-
itly defined for a machine. Further, conceptualization is an abstract, simplified view of
the world that we wish to represent for some purpose, being shared spreads the con-
ceptualization among users in a community, and finally, domain of interest is that part
of the world we want to cover.

The building blocks of ontology are concepts, relations, and instances, all of them
having equivalents in semantic networks, first-order logic, and description logics in the
form of nodes, edges, predicates, roles, etc. Ontology itself is then a set of such ax-
ioms in selected ontology language. The main power of ontologies is their ability to
machine interpretation and usage for the reasoning process. Ontology usually describes
the domain on the schema level. However, it often includes instance-level axioms, e.g.,
the set constructor as we mentioned in subsection 3.3.2. Ontology together with a set
of individuals composes the knowledge base. One can find various deployment levels,
namely knowledge connectivity, knowledge abstraction, or automation in a knowledge
processing level. Ontologies have a wide range of usage in the Artificial Intelligence
field, namely information integration and retrieval, semantically enhanced content man-
agement, knowledge management and community portals, or expert systems [7]. An
example of a geographic ontology is graphically represented in Fig. 3.3.

Figure 3.3. Geographical ontology, adopted from [7]

There are generally four types of ontologies depending on the level of generality
and reusability. Upper ontologies are the most general, describing abstract concepts
like continuants, processes, regions, etc. Significant representatives are Basic Formal

12
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Ontology2 or DOLCE3. Domain and task ontologies characterize a specific domain of
interest, varying from biomedicine, genetics, and geography to scientific domain and
clinical guidelines. Some examples are Gene Ontology4 or Ontology for Biomedical
Investigations5. The last type of ontology is application ontology describing a specific
task in an application domain. The last-mentioned ontologies are usually not suitable
for further reuse [7].

3.5 Knowledge representation for manufacturing
domain

One of the thesis objectives is to conduct a survey of formal representation. The
conducted survey includes seven papers referencing the manufacturing domain and
formal representation.

According to [13], a manufacturing system is a composition of three dependent con-
cepts, i.e., product, process, and resource. Figure 3.4 depicts a product, process, and
resource design with examples, as well as optimization objectives, input models, and
the desired output.

Figure 3.4. Product, process, and resource design, adopted from [13]

Paper [14] conducted a review of ontologies aiming at a representation of at least one
of the product, process, and resource concepts. A result is a collection of nine ontologies
with a covered scope and typical application.
2 https://basic-formal-ontology.org/
3 http://www.loa.istc.cnr.it/dolce/overview.html
4 http://geneontology.org/
5 http://obi-ontology.org/
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The following paragraphs briefly describe selected ontologies and representations

most relevant to the thesis goals and use case. First, we will describe selected ontologies
from the mentioned paper [14] including Product Ontology (PRONTO), Manufactur-
ing’s Semantics Ontology (MASON), and Adaptive holonic Control Architecture for
distributed manufacturing systems ontology (ADACOR). Other representations still
relevant to our work (Lightweight Ontology for Sensors, Observations, Samples, and
Actuators (SOSA); Design and Process Planning Integration (DPPI); Product, Pro-
cess, and Resource (PPR)) follows.

Article [15] proposes a Product Ontology (PRONTO) for product modeling.
PRONTO’s primary motivation is to offer shareability within a single company or
across different organizations. Its hierarchy manages the handling of product families,
composition and decomposition structures, and constraint specification. The described
case study related to the food industry demonstrates the representation of product
variants at different levels.

Manufacturing’s Semantics Ontology (MASON) [16] is a proposal for an upper on-
tology in a manufacturing domain as an answer to a demand for interconnected data
in intelligent manufacturing. MASON is modeled using the semantic web technologies
5.1. Core concepts forming the ontology consist of entities, operations, and resources.
Operations describe how the final product is being manufactured. It includes e.g. man-
ufacturing operations, logistic operations, human operations, or launching operations.
Resources cover all supporting elements in product manufacturing, e.g., machine tools,
human resources, and geographical resources (plants, workshops, etc.). The paper out-
lines two applications of MASON, one as a support for an expert system for cost estima-
tion during the design phase of manufacturing. The other is a knowledge representation
for multiagent systems where the ontology is mapped to the JADE framework.

Adaptive holonic Control Architecture for distributed manufacturing systems ontol-
ogy (ADACOR) [17] is formal architecture with it’s proprietary upper ontology modeled
in a frame-based language. ADACOR defines a taxonomy of classes and relations in-
cluding concepts such as product, raw material, process plan, operation resources, etc.,
along with predicate, namely, componentOf, hasTool, Precedence, etc.

Lightweight Ontology for Sensors, Observations, Samples, and Actuators (SOSA)
[18] is an ontology defining sensors and their observations, procedures used, observation
results and interests, and platforms hosting sensors. SOSA takes inspiration from W3C-
XG Semantic Sensor Network (SSN) [19] ontology and replaces its Stimulus Sensor
Observation core. It is a W3C recommendation.

Design and Process Planning Integration (DPPI) [20] is a manufacturing process
information model designed to overcome interoperability issues among the computer-
aided design. The DPPI itself is designed in an object-oriented paradigm using UML6.
The proposed object model enables estimating overall manufacturing cost and time by
taking into account individual elements from product design, process planning, and
manufacturing execution areas.

Paper [21] introduces an upper ontology Product, Process, and Resource (PPR)
ontology for manufacturing domain. The motivation for this ontology are needs of
Industry 4.0 together with interconnected information. The PPR ontology aims to
provide integration of various domains by using semantic web technologies (section
5.1). The three underlying concepts building the PPR are products, operations,
and workstations. The testing scenario of the PPR was run on the three-part truck
assembly by an industrial robot. The utilization of the ontology with data showed an

6 https://cs.wikipedia.org/wiki/Unified_Modeling_Language
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evaluation of the available resources for truck assembly by semantic matchmaking.

To conclude our survey, most of the cited works present a manufacturing domain
using at least one product, process, or resource. Moreover, the majority of conducted
representations use a concept of ontology implemented by semantic web technologies.
There are significant tendencies to use ontologies for data sharing in terms of industry
4.0. Finally, some formal representations show successful utilization in the industrial
domain.
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Chapter 4
Proposal of ontology

In this chapter, we propose SkodaOnto — ontology for manufacturing and measuring
processes in Škoda Auto. We used a guide [22] as a support material for the develop-
ment. The guide mentions three important notes:

. There is no one correct solution how to model an ontology.. Ontology development is an iterative process.. Concepts and relations in the ontology should be close to concepts and relations in
the domain.

The second point was proven by several meetings with both domain experts from Škoda
Auto Measurement Laboratories and Diribet. Every version of our ontology was dis-
cussed in order to meet the requirements and to be eligible for the utilization mentioned
in the chapter 6. The following section presents the design process.

4.1 Modeling the ontology

The guide [22] suggests enumerating all important terms in the given domain before
we start the designing phase. Table 4.1 summarizes all concepts and parameters from
the machining and measuring part as we presented in section 2.2. Concepts are gen-
eral entities, parameters are numeric values usually defining measure or construction
settings.

Machining Measuring

concepts object, npv, tool,
nest, machining tool

characteristic, element, reference,
measure machine, measure method,
measure strategy, filtering method,
filter type, filter subtype, construction
method, sensor, sensor carrier

parameters speed, step, desired point count, actual
point count, measure time, angle range,
filter parameter, eliminating outliers

Table 4.1. Enumeration of all important terms

The designing phase is divided into three consecutive stages that followed each other
in time. Each stage is extending the results of the previous stage. Naturally, we did
not manage to design the presented parts of the ontology on the first attempt; however,
we present only the last version.
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Figure 4.1. Core part of the machining process

4.1.1 First stage

The core part of the machining process is a ternary relationship object — tool —
NPV. [23] suggests introducing a new concept representing a relation itself. Figure 4.1
illustrates four concepts (Object, MachiningActivity, NPV, Tool) connected with three
object properties (isMachinedBy, hasNPV, hasTool).

An initial analysis of characteristics and elements revealed various specialized rela-
tions between (e.g. characteristic position is derived from a circle or a cone; in other
programs, it may be derived from other elements or references), therefore, we decided to
capture a general relations as shown in Fig. 4.2. There are four classes (Object, Char-
acteristics, Element, Reference) and four object properties (isDerivedFromReference,
isDerivedFromElement, consistsOfElement, hasElement).

Figure 4.2. Relation between characteristic, element, reference, and object

The proposed part in Figure 4.2 raises a question of whether the characteristic
shouldn’t have a data property capturing its value. After a debate with our colleagues,
we decided not to include it, since these values are already stored in Diribet’s statistical
software.

4.1.2 Second stage

The first stage (4.1.1) represents core structures for manufacturing and measuring pro-
cesses. In the second stage, we define additional concepts representing the measuring
process.

Figure 4.3 illustrates the fact that an element is measured and constructed with
some settings, both of them set in a measuring machine. Thus, we introduce three
new concepts (MeasureSettings, ConstructionSettings, MeasuringMachine) and five ob-
ject properties (hasMeasureSettings, hasConstructionSettings, usesDataFromMeasure-
Settings, isMeasuredBy, isConstructedBy).

Both of the settings have their additional parameters (Fig. 4.4). MeasureSettings
(Fig. 4.4a) is specified by two concepts (MeasureMethod, MeasureStrategy) and their ob-
ject properties (hasMeasureMethod, hasMeasureStrategy). The rest are data properties
(hasSpeed, hasStep, hasDesiredPointCount, hasActualPointCount, hasMeasureTime,
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Figure 4.3. Construction and measure settings with a measuring machine

hasAngleRange). ConstructionSettings (Fig. 4.4b) is specified by four concepts (Filter-
ingMethod, FilterType, FilterSubtype, ConstructionMethod) and their object properties
(hasFilteringMethod, hasFilterType, hasFilterSubtype, hasConstructionMethod). The
rest are data properties (hasParameter, isEliminatingOutliers).

a) b)
Figure 4.4. Parameters of measure and construction settings

4.1.3 Third stage
The last stage extends the Tool class with a machining tool together with a nest and
the MeasureSettings class with a sensor and its carrier.

Figure 4.5 depicts two new concepts (Nest, MachiningTool) and two new object
properties (isPartOfNest, isPartOfMachineTool).

Figure 4.5. Tool, nest, and machine tool

Similarly, MeasureSettings class is extended by two new concepts (Sensor, Sensor-
Carrier) and two new object properties (isMeasuredBySensor, hasSensorCarrier).

Figure 4.6. Sensor and sensor carrier

Finally, an overview of the entire ontology is illustrated in Fig. 4.7.
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Figure 4.7. Overview of the ontology
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Chapter 5
Implementation

This chapter presents an implementation stage of the work. We first introduce a Seman-
tic web in section 5.1, Semantic web technologies are presented in section 5.2, ontology
APIs used in the SkodaOnto are overviewed in section 5.3. Finally, section 5.4 presents
the architecture and implementation of the application.

5.1 Semantic web
First, we introduce the term Semantic web. The Semantic Web is an extension of
the World Wide Web made in a machine-readable way, i.e., with the ability to let
computers process the web’s semantics. Users interact with the web through agents
solving tasks for them. Languages for knowledge representation, such as eXtensible
Markup Language (XML) or Resource Description Framework (RDF) captures the
data and semantics. XML by adding the structure of the data, while RDF links things,
identified by Universal Resource Identifier (URI), together enabling searching for related
things. Ontologies, in the area of the Semantic Web, are collections of information
formally defining relations among terms. They involve taxonomies for class and relation
definition and inference rules for inferring implicit information. Therefore, an ontology
in the Semantic Web can be viewed as a vocabulary to let the computer “understand”
the web’s semantics. Digital signatures let agents verify trusted sources to deliver
reliable results [24].

Technologies and languages, such as XML or RDF, mentioned above are only sub-
sections building the Semantic Web. The following text presents the architecture of the
Semantic Web and introduces the essential components related to ontologies.

5.2 Semantic web stack
As illustrated in Fig. 5.1, a semantic web stack is an architecture depicting the hierarchy
of languages and concepts used in the Semantic Web. The model is built on layers where
each layer exploits the layers below. The layers from the bottom of the stack up to the
ontology layer are W3C1 standards and are most relevant to this work. The following
subsections present these layers.

5.2.1 RDF
The Resource Description Framework (RDF) is a W3C recommendation for represent-
ing information. The core structure of RDF is an RDF triple taking the form of subject
— predicate — object. A set of RDF triples forms an RDF graph. A graph parallel
to an RDF triple is a node — edge — node, where both subject and object are nodes,
and the predicate is a directed edge. The subject can be either an IRI (Internation-
alized Resource Identifier) or a blank node (anonymous). An object is one of an IRI,
1 https://www.w3.org/
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Figure 5.1. Architecture of semantic web, adopted from [25]

a blank node, or a literal. The predicate is the IRI which is a generalized version of
URI allowing usage of a broader range of Unicode2 characters. The blank node is a
local identifier missing the RDF syntax. The literal is a value for representing strings,
numbers, dates, etc [26].

5.2.2 RDFS
The RDF Schema (RDFS) is a semantic extension of RDF (5.2.1) recommended by
W3C. The semantics are added by grouping resources, defining relations, and inferenc-
ing the data. This class and property system is similar to object-oriented languages;
however, instead of defining properties as attributes (OOP way), RDFS defines prop-
erty as a relation between resources. RDFS groups resources into class constructs and
enables class inheritance. Properties link subject and object resources. The domain
and the range modifiers of the property specify the class of instance that participates
in a given property. The inheritance of properties is possible through the sub-property
construct [27].

5.2.3 OWL
The Web Ontology Language (OWL) enriches the lower layers of the semantic web
stack with class and property extension, including class relations, cardinalities, equal-
ities, richer typing and characteristics of properties, and enumerated classes. OWL
brings three sub-languages, OWL Lite, OWL DL, and OWL Full. The OWL Lite of-
fers a classification hierarchy and simple constraints. The cardinality constraints are,
however, limited only for 0 or 1 values. The OWL DL provides maximum expressive-
ness while preserving computational completeness and decidability. The DL attribute
signifies the Description Logics introduced in section 3.3 acting as a building theory
for OWL. Finally, the OWL Full extends the Lite and the DL version for the price of
losing computational guarantees. Hence the reasoning may not be fully supported by
reasoning software [28].

5.2.4 SPARQL
SPARQL Protocol and RDF Query Language (recursive acronym SPARQL) is a W3C
recommendation for querying RDF data. As mentioned in subsection 5.2.1, RDF rep-
2 https://home.unicode.org/about-unicode/
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resents a directed labeled graph; thus, SPARQL searches for data via graph patterns.
A graph pattern is a set of triple patterns similar to RDF triples, except one of the
subject, predicate, or object may be a variable. SPARQL matches RDF subgraphs via
these patterns and results in a set or RDF subgraph. SPARQL offers four query forms,
particularly SELECT — returns a set of variables specified in a query, CONSTRUCT
— returns an RDF graph specified by a graph template, ASK — returns a boolean
value indicating whether a graph pattern matches or not, and DESCRIBE — returns
an RDF graph describing resources found. Moreover, a set results of the SELECT and
the ASK queries are serializable into one of JSON3, XML4, CSV5, or TSV6 format.
Additional query clauses like WHERE (specifies graph pattern), DISTINCT (filters du-
plicate solutions), PREFIX (specifies namespace), or FILTER (restricts the output of
the query) provides a further modification of queries [29].

The usage of SPARQL language together with the Owlready2 interface 5.3.2 is
demonstrated in the chapter 6.

5.3 Ontology APIs

When building an ontology, one can choose from several ontology editors (Protégé,
NeOn Toolkit, SWOOP, etc.) to assist the development process. Although these edi-
tors provide high-level user-friendly graphical interfaces, non-of them can convert data
provided in the Škoda Auto use-case. Therefore, the data must be processed and then
exposed for utilization programmatically. We decided to use two programming inter-
faces for reusability and further utilization of the SkodaOnto. The SkodaOnto TBox
(3.3.1) and ABox (3.3.2) implementation are achieved via the OWL API [30]. Querying
the data stored in the knowledge base is managed using the Owlready2 package [31].

5.3.1 OWL API

OWL API is a Java interface for creating and manipulating OWL ontologies. It is
accessible as an open-source project under an LGPL license with various applications,
including Protégé or Pellet reasoner. According to the number of downloads (over
34,000 in 2011), the popularity in the software community is remarkable. The design
of OWL API presumes ontology as a set of axioms and annotations. The interface
OWLOntologyManager is responsible for creating, loading, saving, changing, and saving
ontologies instantiated as the OWLOntology holding instances of OWLAxiom class.
Despite the lack of SPARQL querying, some essential query support is provided via
the OWLReasoner interface that further supports consistency checking, class/property
hierarchy computation, and entailment of axioms. The API supports serialization and
deserialization in the RDF/XML, Turtle, OWL/XML, OWL Functional Syntax, The
Manchester OWL Syntax, KRSS Syntax, and the OBO flat file format [30].

We chose OWL API because of its high level of abstraction, independence from
concrete serialization, reasoner support, and easy-to-use interface. Disadvantages of
using OWL API are its lack of SPARQL (5.2.4) support and its high verbosity. The
usage of OWL API is presented in section 5.4.

3 https://www.json.org/json-en.html
4 https://www.w3.org/standards/xml/core
5 https://en.wikipedia.org/wiki/Comma-separated_values
6 https://en.wikipedia.org/wiki/Tab-separated_values
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5.3.2 Owlready2

Owlready2 is a Python package providing ontology-oriented programming. In contrast
to OWL API, Owlready2 offers transparent access to OWL ontologies by treating OWL
classes as standard Python classes. Most of the OWL constructs, including classes, in-
dividuals, properties, datatypes, class expressions, etc., are expressible in Owlready2.
Since Python offers object-oriented programming, the dot notation has a wide range of
usage, namely, access to entities, access and modification of properties and annotations
of entities; access and modification of domain, range, and inverse of properties; and
for access and modification of role-fillers (constraints of properties including individ-
uals). Owlready2 provides a native SPARQL engine supporting sufficient constructs
for querying. Loading ontologies expects one of NTriples, RDF/XML, or OWL/XML
syntaxes. Exporting is available in NTriples and RDF/XML syntaxes. The reasoning
procedure is performed via the HermiT reasoner [31].

Advantages of choosing Owlready2 are: first, Owlready2 represents a simple and
easy-to-use interface; second, the required SPARQL support; and third, since numerical
simulation (6.2) is a Python module, Owlready2 overcomes language incompatibility.
Other utilizations using Owlready2 are presented in chapter 6.

5.4 Architecture of the application
Figure 5.2 illustrates the intended usage of our application (SkodaOnto). The applica-
tion loads the data (currently as a .xlsx table) and outputs the knowledge base. The
Python module loads the knowledge directly as a file or can be fetched remotely in
future versions.

Figure 5.3 captures the architecture of the SkodaOnto application. The application is
written in Java and is responsible for the creation of SkodaOnto ontology (SkodaOnto
class) and successive creation of individuals from the provided dataset (DataLoader
class). The application outputs two files — knowledge_base.owl and knowledge_base.ttl
representing our knowledge base.

Figure 5.2. Class diagram

5.4.1 Defining the ontology

The SkodaOnto class defines the TBox and provides methods for ABox assertions. The
class composes an AbstractXlsxLoader, which is responsible for the reading of the data
and the TBox assertions calls. The following paragraphs briefly summarize the features
of SkodaOnto class.

The base IRI of the SkodaOnto is “https://skoda-onto.com”. Since the ontology
currently represents one type of engine head, it will be necessary to introduce new
namespaces for other engine head types such as “https://skoda-onto.com/type1”,
“https://skoda-onto.com/type2”, etc. in future versions.

Manager, ontology and df references OWL API objects. The manager creates and
saves ontology that holds all owl axioms. The df (data factory) creates OWL API
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Figure 5.3. Class diagram
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objects in a defineClasses(), defineObjectProperties() and defineDataProperties() meth-
ods.

Instead of having these objects as class attributes, we decided to use three hash
maps (classes, objectProperties and dataProperties) for storing all the class and property
objects created by the df. Storing objects in hash maps improves the code readability
and transparency for the price of a slightly longer access time of objects. Objects can
be retrieved by the same identifier as they are defined in the SkodaOnto.

Class and property identifiers are defined in the ID inner class. This class holds
string identifiers used in the ontology and for retrieving objects from the hash maps.

Besides that, SkodaOnto class exposes methods for individual assertions. These
methods and their helper methods are not shown in the class diagram due to their
amount.

5.4.2 Defining individuals
Before we describe the process of asserting individuals, it is appropriate to introduce
the provided data by Škoda Auto. The data form a table (XLSX format7) constructed
by joining several other tables and resources. For illustration, one of the resources
is a TSV8 file exported from a Zeiss Calypso9 metrology software. These tables and
resources were manually processed by a colleague from Škoda Auto. If we take into
account the time needed for constructing the final table multiplied by the number of
engine head types, a huge effort needs to be made to cover the whole operation 30
(2.2.1). Thus, future versions of SkodaOnto will load individuals using a standard data
exchange format JSON, as was promised by Škoda Auto. Figure 5.4 shows a simplified
version of the final table. Unfortunately, real values are anonymized due to Škoda
Auto’s policy for internal data sharing. Figure 5.4 outlines the header of the table and
the structure of NPV, Tool, and Object columns. The full table is attached as the
data.xlsx file.

Figure 5.4. Simplified structure of the table

Assertions of individuals are managed by DataLoader class. The class extends Ab-
stractXlsxLoader class that acts as a base class for loading data in XLSX format. Ab-
stract class contains a mechanism for loading a spreadsheet file and interacting with it,
7 https://en.wikipedia.org/wiki/Office_Open_XML
8 https://en.wikipedia.org/wiki/Tab-separated_values
9 https://www.zeiss.com/metrology/products/software/calypso-overview/calypso.html
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such as getting merged cells in a given column or indexing a column by its name. It
also declares abstract methods that should be implemented in a specific loader. Apache
POI10 API manages manipulation of the XLSX file.

The most interesting part of the loader is asserting the ternary relationship npv —
tool — object (the ternary relationship is described in subsection 4.1.1). Figure 5.4
depicts relations between these concepts as orange arrows. For example, npv2 is set to
these tools: tool1, tool3, and tool4; tool1 machines objects obj3, obj4, obj5, and obj1;
however obj1 is machined only when npv1 is set and objects 3, 4, and 5 are machined
when npv2 and npv3 are set. There are three characteristics measured on obj1, namely
position_obj1, straightness_obj1, and angle_obj1. Characteristic angle_obj1 is derived
from elements plane_obj1 and plane_obj2 and from reference std_coord_system. If we
imagine relations between NPVs, tools and objects as tree structures (orange arrows),
each unique path from the root to the leaf forms the ternary relationship. This as-
sertion is achieved via recursive method initializeNPVToolObject implemented in the
DataLoader class.

10 https://poi.apache.org/
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Chapter 6
Usage and results

This chapter presents the utilization of developed ontology. We present three areas
(reduction of quality costs, numerical simulation, and diagnostics), where our ontology
plays a crucial role. We developed only an interface between the ontology and the target
application. The applications are subject to future work or in the case of numerical
simulation, developed by Mr. Jaroslav Staněk from Diribet.

We use SPARQL queries (5.2.4) and OwlReady2 (5.3.2) to retrieve all necessary
information from our knowledge base. Queries and functions are presented in the
following code listings. All SPARQL queries presented in the following text use these
prefixes:

PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#>
PREFIX owl: <http://www.w3.org/2002/07/owl#>
PREFIX rdfs: <http://www.w3.org/2000/01/rdf-schema#>
PREFIX xsd: <http://www.w3.org/2001/XMLSchema#>
PREFIX : <https://skoda-onto.com#>

6.1 Reduction of quality costs
Currently, the sampling plan mentioned in chapter 2 is very static. A constant set of
more than 700 quality characteristics is prescribed to be measured on one part sampled
in constant intervals (e.g., every day). Since many of those quality characteristics
never exceeded tolerance or control limits, one can expect that their acquisition can
be less frequent, which would reduce measurement costs without any increase in risk
of an undetected problem. On the other hand, some quality characteristics are very
risky and often get close to the limits or exceed them. It is reasonable to increase the
frequency of their acquisition since it could reduce the risk of an undetected problem.
The set of acquired quality characteristics can be optimized with respect to the current
situation, which would lead to an adaptive sampling plan.

More specifically, Feigenbaum [32] defines two types of quality costs: costs of con-
formance and costs of non-conformance. The costs of conformance are e.g., costs
of inspection, testing, quality planning etc. The costs of non-conformance are e.g.,
costs of scrap or rework. Very generally, the total quality cost can be defined as:
𝑐𝑜𝑠𝑡𝑡𝑜𝑡𝑎𝑙 = 𝑐𝑜𝑠𝑡𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒 + 𝑐𝑜𝑠𝑡𝑛𝑜𝑛−𝑐𝑜𝑛𝑓𝑜𝑟𝑚𝑎𝑛𝑐𝑒.

Thus, the general problem of quality control optimization is a minimization of the
total quality cost. Although many parameters and settings of the whole quality con-
trol loop can influence the total quality costs, one can focus on the optimization of
the set of quality characteristics to be acquired. However, the optimization can be
advantageously defined as a search for an optimal subset of elements to be measured.
This reduces the search space because the number of characteristics is greater than the
number of elements. This is due to the fact that multiple quality characteristics are
mostly computed from one measured element (e.g., hole diameter, roundness, x and y
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position is computed from one circle measured on a hole). If an element is measured,
it makes sense to compute all its quality characteristics, since (1) it does not influence
conformance cost (cost for computation of characteristics are neglectable compared to
costs for measurement of the element) (2) it can reduce the non-conformance costs.

When the optimal subset of elements is found, which minimizes the total quality
cost, the optimal subset of quality characteristics is defined as the set of all quality
characteristics that are computed from those optimal elements. This set can be obtained
by querying our ontology.

The following query returns all elements:

SELECT DISTINCT ?element
WHERE {

?element rdf:type :Element
}

These elements can be processed by the next query. The el is substituted by the
given element. The query returns all characteristics which are derived from the given
element.

SELECT DISTINCT ?characteristic
WHERE {

:characteristic :isDerivedFromElement :el
}

Previous queries are encapsulated by the following functions located in the optimiza-
tion.py module:

def getAllElements() -> list
def getCharacteristics(element: str) -> set

Example of the function call for element circle2_obj3:

getCharacteristics("circle2_obj3") -> {'diameter2_obj3',
'concentricity_obj3'}

Moreover, it should be noted that this describes the potential application of our
ontology. The full proposal of sampling plan optimization and adaptation would include
also the way of estimation of the costs or the optimization procedure. This is out of
the scope of this thesis. Finally, in addition to the optimization of the set of measured
elements, the optimization of the sampling interval could be also performed, which
would lead to fully adaptively changing prescriptions of which elements to measure and
when to measure them.

6.2 Numerical simulation
The numerical simulation is developed by Diribet mainly as a proof of concept for the
OOC detector. The testing environment also helps to optimize measurement strategies
and estimate the risk. To implement the numerical simulation, a need for process
structure emerges.

The numerical simulation simulates operation 30 as mentioned in subsection 2.2.1.
The operation converts inputs to outputs, thus the operation is represented by operation
matrices. The simulation is a linear transformation — projection of process parame-
ters (including tools and NPVs) to measured characteristics. The Metropolis-Hastings
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algorithm generates process parameters of the first matrix. The rest of the first matrix
is an adjacency submatrix representing relations between tools and elements and NPVs
and elements. The second matrix is an adjacency matrix representing relations between
elements and characteristics.

The numerical simulation requires the construction of three adjacency matrices. The
element of the matrix indicates whether pairs of individuals are related or not. I.e.,
the element 𝑏𝑖,𝑗 (𝑖 ∈ 𝐼, 𝑗 ∈ 𝐽; 𝐽, 𝐼 sets of individuals) of the matrix 𝐵 equals one if
individuals 𝑖 and 𝑗 are related and zero otherwise. The three matrices are relations
between elements — tools, elements — NPVs, and features — elements.

Sets 𝐼 and 𝐽 for one matrix are constructed by the following generic SPARQL query.
The word class is substituted by one of Tool, NullPoint, Element, or Characteristics.

SELECT DISTINCT ?individual
WHERE {

?individual rdf:type :class
}

This query searches for all relevant tools for the given element el.

SELECT DISTINCT ?tool
WHERE {

?object :hasElement :el .
?object :isMachinedBy ?machining .
?machining :hasTool ?tool

}

Following query searches for all relevant NPVs for a given element el.

SELECT DISTINCT ?npv
WHERE {

?object :hasElement :el .
?object :isMachinedBy ?machining .
?machining :hasNullPoint ?npv

}

Finally, the last query searches for all elements that construct a given characteristic
char.

SELECT DISTINCT ?element
WHERE {

:char :isDerivedFromElement ?element
}

Presented SPARQL queries are encapsulated and executed in the python module
simulation.py that can be directly imported by the numerical simulation application.
Function headers providing the interface are listed below. The *All*() functions return
a list of individuals, which corresponds to the first mentioned query. The rest of the
functions take a string argument parametrizing the the rest of queries respectively.

def getAllCharacteristics() -> list:
def getAllTools() -> list:
def getAllNPVs() -> list:
def getAllElements() -> list:
def getTools(element: str) -> set:
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def getNPVs(element: str) -> set:
def getElements(characteristic: str) -> set:

6.3 Diagnostics
Diagnostics is a process of identifying a potential cause of the OOC state. We thought
out several approaches to solve this problem, nevertheless not all are guaranteed to give
a correct solution.

The most simple would be a penalization of individuals that are related to a suspicious
characteristic. However, there are some individuals, such as sensors, that are often
related to a huge set of other individuals, therefore these individuals would be penalized
the most, even though they might not be the cause of the OOC state. Figure 6.1
illustrates the problem, suspicious characteristic “concentricity_obj4” is isolated and
its related individuals are penalized by one unit. One can see that sensor “K130-5”
together with its carrier “K130” and tool “t1” have already been penalized before.
Thus, the high penalization score of the sensor and the tool indicates that the sensor
and the tool are probably the cause of the suspicious characteristic. That doesn’t have
to be true.

Figure 6.1. Penalization of related individuals
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Bayesian networks would present another approach. However, there is not a direct
way how to asses the conditional probability distribution.

Finally, the cause-and-effect diagram [5] is a tool for finding a potential cause of the
defect. In our case, a suspicious characteristic (a characteristic that probably raised an
alarm) is isolated and the cause-and-effect diagram should help to identify the possible
cause.

The diagnostics.py module offers functions for retrieval sets of related individuals to
a given characteristic. The getAll(characteristic) returns a set of all related individuals
for the given characteristic (as if all functions for specified characteristic were called at
once).

def getObject(characteristic: str) -> set:
def getNPV(characteristic: str) -> set:
def getTool(characteristic: str) -> set:
def getReference(characteristic: str) -> set:
def getElement(characteristic: str) -> set:
def getSensor(characteristic: str) -> set:
def getSensorCarrier(characteristic: str) -> set:
def getAll(characteristic: str) -> set:

Assuming anonymized data from the table 5.4, calling the getAll() for the character-
istic “concentricity_obj4” returns following:

getAll("concentricity_obj4") -> {'t1', 'circle2_obj4', 'K130-5', 'K130',
't3', 'npv3', 'circle1_obj4', 'coord_system_obj2', 'obj4', 't4', 'npv2'}
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Chapter 7
Conclusion

To conclude, the main objective of the thesis was to formally represent the quality
control process in the machining domain. We studied and analyzed the provided use
case and proposed possible usage of the formal representation. Then, we conducted the
survey of knowledge representation and selected ontology as the best option for our use
case. We designed the ontology that fits the provided use case and implemented the
proposed ontology together with the assertion of use case data. Finally, we presented
the utilization of our ontology and implemented interfaces for accessing our knowledge
base.

The result of the work is the java application capable of reading use case data and
creating the knowledge base. The knowledge base is built by using semantic web tech-
nologies (Web Ontology Language and its underlying formalisms) and OWL API. The
application is designed to be easily modified to read data from different formats as
well as create only the ontology itself. The attached python scripts allow accessing
data from the knowledge base. Scripts use W3C’s recommendation SPARQL and Owl-
Ready2 python package.

The data retrieved by the numerical simulation script was successfully integrated
into the target simulation application. Unfortunately, we cannot show the results as
the simulation contains sensitive data.

7.1 Discussion

To compare with our survey, we stuck to the manufacturing system design and im-
plemented product, process, and resource concepts. We also selected the ontological
approach as the recent trend in formal representations as well as the use of semantic
web technologies.

The general concept of knowledge representation is not suitable only for the area
of Industry 4.0, but also for other fields such as healthcare or agriculture. Having a
knowledge representation allows us to represent complex real-world systems and let the
computer reason about the formal representation. We think this area will be highly
utilized in many domains requiring interconnected data.

One of the most challenging parts of this work was data processing. The provided
data were constructed from several sources and it was difficult to fully integrate them
into the knowledge base. Again, due to the sensitivity of the data, the data had
to be anonymized. The programmatical approach of the development taught us the
background structure of ontologies as well as SPARQL query processing.

Overall, the design and development of the formal representation required intensive
meetings and debates with our colleagues from Škoda Auto and Diribet. It was essential
to understand the manufacturing domain enough to create an ontology that is as close
as possible to the target domain.
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7.2 Future work
Future work will be focused on the diagnostics problem of quality control. The diag-
nostics will need the structure of both manufacturing and measuring processes, thus
the implemented knowledge representation will be utilized in some way. We think that
the reasoning feature of the knowledge representation systems would be beneficial to
draw inferences from the data. We plan to deploy rules to reason about the data. To
do that, we have to explore the manufacturing domain in depth. I.e., understanding
the causes and effects of out-of-control states.

The reduction of quality costs will also need to be further explored. We plan to
create different measurement plans that will be tested by the numerical simulation. To
create these plans, it may be necessary to create more complex structures of individuals
that are measured by the CMMs. E.g., adding hierarchical structures of objects and
elements.

Naturally, the implemented knowledge representation will be further developed to
adapt the utilization. The next major update of the knowledge representation will
involve the processing of the data from standard exchange format JSON and extending
the knowledge base by including the rest of the engine head types. We also plan to
modify relations to optimize the querying time complexity.
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Appendix A
Attached files

Main.java Class with the main method of the java project.
AbstractXlsxLoader.java Abstract class for reading .xlsx files.

DataLoader.java Class responsible for the assertion of individuals.
SkodaOnto.java Class representing the proposed ontology with assertion

methods for individuals.

data.xlsx File containing anonymized data of machining and mea-
suring process.

knowledge_base.owl,
knowledge_base.ttl Knowledge base files in OWL/XML and Turtle syntax.

simulation.py Python script for accessing knowledge base, specialized
for numerical simulation task.

diagnostics.py Python script for accessing knowledge base, specialized
for diagnostics task.

optimization.py Python script for accessing knowledge base, specialized
for optimization task.
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