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Abstract

Due to various reasons – like privacy or security concerns – it’s not always possible to work
directly with an original graph, such as bank transactions or social network interaction graph.
These graphs are necessary for ML projects such as bank security systems for the detection of
abnormal transactions, social network recommendation systems, and many other similar projects.
This thesis aims to investigate the current existing graph generation techniques and assess how
much synthetic graphs statistically correspond to the properties of the original ones. It also
evaluates the feasibility of using structural embedding models for classification problems using
synthetic graphs.

Keywords graph theory, machine learning, synthetic graphs, neural networks, synthetic data
generation, artificial neural networks

Abstrakt

Z r̊uzných d̊uvod̊u - např́ıklad z d̊uvodu ochrany soukromı́ nebo bezpečnosti - neńı vždy možné
pracovat př́ımo s p̊uvodńım grafem, např́ıklad s grafem bankovńıch transakćı nebo interakćı na
sociálńıch śıt́ıch. Tyto grafy jsou nezbytné pro ML projekty, jako jsou bankovńı bezpečnostńı
systémy pro detekci abnormálńıch transakćı, doporučovaćı systémy sociálńıch śıt́ı a mnoho daľśıch
podobných projekt̊u. Ćılem této práce je prozkoumat současné existuj́ıćı techniky generováńı
graf̊u a posoudit, nakolik syntetické grafy statisticky odpov́ıdaj́ı vlastnostem graf̊u p̊uvodńıch.
Posuzuje také možnost využit́ı strukturńıch embeddingových model̊u pro klasifikačńı problémy
s využit́ım syntetických graf̊u.

Kĺıčová slova teorie graf̊u, strojové učeńı, syntetické grafy, neuronové śıtě, generováńı syn-
tetických dat, umělé neuronové śıtě
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Introduction

Graphs are the way of representing data that is used extensively in the modern sciences, both
in the natural and social sciences. Graphs are most commonly used in computer science, where
they can be used to store and structure large amounts of data, such as the graph of people’s
interactions in a social network. But the use of this data is not always possible and there is a
need to create synthetic graphs that can be used as the real graphs.

In this thesis, I am going to focus on the problem of generating synthetic graphs that will
statistically match the properties of the original data.

In today’s world, it’s hard for us to imagine our lives without apps. Watching videos, ordering
food, communicating, finding new acquaintances, it’s all become an integral part of our lives.
Whether it’s a social network or an online shop, data needs to be structured to be moderated
and used, and graphs are the best way to do this.

Referral algorithms, banking security systems, and targeted advertising are all merits of
machine learning models, which require large amounts of data from user interactions to create.
But this data is not always available for legal or ethical reasons, such as violating the anonymity
of social media users or using the banking transaction history of bank customers.

To create a working machine learning model, whether it is a social network recommendation
system or a bank security system alerting a suspicious transaction, you need statistically correct
user data, but that data must not threaten user anonymity or security. The solution to this
problem is synthetic graphs of this data, which will preserve the statistical properties of the
original data.

In this thesis, I will focus on investigating already existing techniques for generating synthetic
graphs, and experiment on a few of them. The main goal of the experiments is to analyze how
well the synthetic graphs retain the properties of the original ones, and how suitable they are for
use in ML projects. I will also demonstrate how visually similar the generated graphs are to the
original ones and as side goals, I will consider the possibility of generating large graphs, as well
as the feasibility of using structural embeddings for graph’s node classification task.

1
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Chapter 1

Introduction to graph theory

In this chapter I will introduce the necessary basics of graph theory. More detailed information
on these definitions can be found in [1],[2].

1.1 Fundamentals

Graph is a pair G = (V,E) of sets such that E ⊆ [V ]2; thus, the elements of E are 2-element
subsets of V . The elements of V are the vertices (or nodes, or points) of the graph G, the
elements of E are it’s edges (or lines).

a

bc

Figure 1.1 A graph.

If V ′ ⊆ V and E′ ⊆ E, then G′ is a subgraph of G (and G a supergraph of G′), written as
G′ ⊆ G.

Directed graph is a pair (V,E) of disjoint sets (of vertices and edges) together with two
maps init: E → V and ter: E → V assigning to every edge e an initial vertex and terminal
vertex. The edge e is said to be directed from initial vertex to terminal vertex. Directed graphs
can be used to demonstrate the directionality of relations between objects.

a

bc

Figure 1.2 Directed graph, arrows are used to show the direction.

3



4 Introduction to graph theory

Path is a non-empty graph P = (V,E) of the form

V = {x0, x1, ..., xk} E = {x0x1, x1x2, ..., xk−1xk}

where the xi are all distinct. On the figure 1.2 the path from a to c is {(a, b), (b, c)}. The number
of edges in the path is it’s length.

Graphs can also be viewed in terms of connectivity. A non-empty graph G is called con-
nected (demonstrated on 1.3a) if any two of its vertices are linked by a path in G. If U ⊆ V (G)
and G[U ] is connected, U is also called itself connected (in G). If a graph is not connected, it is
called disconnected (demonstrated on 1.3b).

a b c

d

(a) Connected graph.

a b c

d

(b) Disonnected graph.

1

2

3

4

5

67

8

9

10

1112

(c) Graph with 5 components.

Figure 1.3 Graph connectivity

Let G = (V,E) be a graph. A maximal connected subgraph of G is called a component
(demonstrated on 1.3c) of G. Component, being connected, is always non-empty, therefore, if
the graph is empty, then it cannot have a component.

1.2 Graph measures
Now I move on to the metrics (properties) that allow us to compare graphs with each other.

The degree (or valency) dG(v) = d(v) of a vertex v is the number |E(v)| of edges at v. A
vertex of degree 0 is isolated. The number

d(G) := 1
|V |

∑
v∈V

d(v)

is the average degree of G [1].

1.2.1 Shortest-path distance
The distance dG(x, y) between two vertices x, y in G is the lenght of a shortest path between
these vertices in G, it’s also called geodesic distance or shortest-path distance.
dG(x, y) = 0 if x = y,
dG(x, y) =∞ if there is no path exists.
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a

b

c

d

e

f

g

h

Figure 1.4 Shortest path between a and e is {(a, b), (b, e)}, so the geodesic distance is 2.

1.2.2 Centralities
Centrality is the concept of measuring the importance of a graph node. Centrality measure can
be formulated as a function

c : G(n)→ Rn,

where ci(g) is the centrality of node i in graph g.
There are several types of centrality, each allows to assess the importance of a node in the

graph, depending on a certain criterion.
For this thesis I will introduce the definitions of the following:

Degree centrality

Harmonic centrality

Betweenness centrality

Degree centrality measures the number of edges of node i, di(g). It can also be normalized
by the maximal possible degree, n− 1, to obtain a number between 0 and 1:

cdegi (g) = di(g)
n− 1 .

Degree centrality is an obvious measure, which describes ‘popularity’ of the node i, but does not
give information about the other possibly informative aspects of the graph’s architecture and
node’s position in the graph.

Harmonic centrality is an alternative measure of closeness centrality, which is based on
the distance between a node and each other node in the graph. It extends degree centrality by
considering the neighborhoods of all radii. As an input closeness centrality takes list of distances
between node i and other nodes j in the graph, ρg(i, j). There are different variations of closeness
centrality based on the different functional forms. The measure proposed by [3] and [4], is based
on distances between node i and all other nodes,

∑
j ρg(i, j). The higher the score, the lower

the centrality is, so there is an inversion and the distance between nodes belong to two different
components becomes infinite. To solve this problem, another centrality measure was proposed
by [4], it also can be normilized so that the highest possible centrality measure is equal to 1, to
obtain the closeness centrality measure

cclsi (g) = n− 1∑
j ̸=i ρg(i, j)

.
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Harmonic centrality aggregates distances differently, it aggregates the sum of all inverses of
distances

∑
j

1
ρg(i,j) ([5], [6]). So this centrality measure solves the problem with infinite or large

distances between nodes. This measure also can be normalized:

ccli (g) = 1
n− 1

∑
j ̸=i

1
ρg(i, j)

.

Betweenness centrality describes the importance of a node in the graph, based on it’s oc-
curance in the connection of other nodes. From network’s perspective, it describes the agent’s
(node’s) role in the information transmissions between other agents (nodes) in the network
(graph). The betweenness centrality measure proposed by [7] is

cbeti (g) = 2
(n− 1)(n− 2)

∑
(j,k),j ̸=i,k ̸=i

vg(i : j, k)
vg(j, k) ,

where vg(j, k) is geodesic (shortest-path distance) between two nodes j, k and vg(i : j, k) is the
geodesic path between j,k passing through i.



Chapter 2

Machine Learning basics

The concept of machine learning is to create statistical models and algorithms that computer
systems can use to perform tasks without direct instructions, relying on patterns derived from
available data. In this chapter I will describe the basic concepts necessary to understand the
concept of machine learning. The basic concepts in this chapter are taken from[8].

2.1 Data
One of the most important parts of machine learning is data. Data is considered as a collection of
data points presented in a single format, where each data point has individual values describing
the properties of a particular object. Data points can represent a variety of types of objects,
depending on the application domain. Such a collection is commonly called a dataset, denoted by
D and data point is denodetd by z. We can represent dataset as D = {z(1), ...,z(m)}, where m is
the number of data points in dataset. The object properties described by data point are low-level
properties that can be easily calculated or measured, they are called features. Data points in
dataset can be described by their feature vectors x with the same number n of individual features

x = (x1, ..., xn)T .

In addition to features, data points may have other properties representing higher-level facts
related to the described object, called labels (or targer or output), usually are denoted by y or
y if it is a vector of different values.

Label spaces can be divided into several categories. Numeric label space Y contains all
possible y of data points. Categorical label space consists only of certain values, which are
called classes or categories. Ordinal label space just like categorical contains finite set of values,
but this set is ordered like a numeric.

Summing up, a data point can be represented as z = (x, y). Label space Y is the set of all
possible label values.

2.2 Model
The goal of ML model is to learn hypothesis map h : X → Y such that y ≈ h(x) for any data
point, each characterized by features x ∈ X and label y ∈ Y. h(x) commonly denoted by ŷ and
called as prediction. Hypothesis map h can also be called a predictor map since we use it to
compute the prediction ŷ of a (true) label y, or if a finite label space Y is used in the ML task
(e..g, Y = {−1, 1}), we refer to h also as a classifier.

7
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So, we can conclude that the purpose of the model is to predict the result ŷ based on the
features of input data point x using the hypothesis map h.

2.3 Training
As already described above, for the model to work, it needs the hypothesis map h, which is a
good predictor, i.e., predicted labels ŷ are close to the true labels y (with small error ŷ−y). The
process of finding the most accurate map is called training (or learning).

Based on how the models evaluate the quality of hypothesis maps, we can divide the learning
into several types:

Supervised learning.

Unsupervised learning.

Reinforcement learning.

Supervised and unsupervised learning differ in the presence of label (target) value in data
points. Supervised ML model use training dataset with labeled data points (for which we know
the correct label values). This model has a teacher (who labeled data points), therefore, during
training, the model will try to find a hypothesis that will imitate the human annotator.

Unsupervised models do not need teacher who provides correct labels for data points,
therefore, to find a good hypothesis map, they must rely only on the internal structure of data
points in training dataset.

The main idea of reinforcement learning is the influence of the predictions obtained by
the hypothesis on future data points generation. RL models involve data points that represents
state of programmable system at different time instants. Therefore, data points labels represent
an optimal action for the agent in a given state. As with unsupervised models, RL models are
trained without access to any labeled data points.

2.4 Loss function
To evaluate the quality of the selected hypothesis, and compare them with each other, there is
such a concept as loss function. Loss function is a map, which assigns a pair of a data point
((x), y) and a hypothesis h the non-negative real number

L : X × Y ×H → R+ : (((x), y), h) 7→ L(((x), y), h).

The loss value evaluates the divergence between the real (true) label value and the prediction.
Small loss indicates low divergence.

The main principle of ML models can be formulated as:
Find hypothesis h out of a given space H that brings a minimum loss L(((x), y), h) for any data
point.

For an objective assessment of the accuracy of a trained model, usually the existing dataset
is divided into training and test datasets, so a number of problems can be identified, such as an
overfitting.

2.5 Overfitting
Overfitting is a phenomenon, when model find (learn) the best hypothesis map h for training
dataset Dtraining, which perfectly (almost) predicts the labels y of data points, but such a map
might deliver much less accurate predictions ŷ outside Dtraining. This may be caused by too
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large hypothesis space H, because the model can easily find such a hypothesis that will predict
labels perfectly.

The main solution to this problem is to limit the hypothesis space H. There are several
methods we can use to avoid the overfitting.

2.6 Validation set

The basic idea is simple, first ML model learn the hypothesis h on training dataset Dtraining,
when we compute an average loss of h on data points outside the training dataset. We can
split our dataset D into Dtraining and Dval. Many extensions of this idea exist, one of the most
popular is k-fold cross validation.

k-fold CV’s main principle is to divide the entire dataset into k subsets (folds) repeatedly,
each iteration, one subset is used as Dval and the other k − 1 folds are used as Dtraining. Then
we average training error and average error obtained for each repetition.

2.7 Feature learning

One of the most important parts of model training is choosing the right features. Ideally, data
points should contain only the most representative features that carry the relevant information
needed to predict the label y of data point. The main problem is the right choice of such properties
among all the available ones. The solution to this problem are feature learning methods that allow
you to automate the selection or finding the required features. These methods find hypothesis
map that reads in representation of data point and transforms it to the set of features. There
are different methods of feature learning, some can help with reducing the number of features,
others can create more new ones, based on the existing.

2.8 Dimensionality reduction

Dimensionality reduction is a feature learning method that reduces the number of features
and thus helps to prevents overfitting. dimensionality reduction. The dimensionality reduc-
tion methods aims to find optimal mapping h(·) : Rn′ → Rn that transforms a long feature vector
z ∈ Rn′ to a short feature vector

x = (x1, ..., xn)T := h(z) (typically n≪ n′).

Feature learning can also be called representation learning, in the field of graphs, representa-
tion learning can be used to create properties based on the structure of graphs, on the basis of
which you can build a classification model.

2.9 RiWalk

RiWalk [9] is algorithm for networks (graphs) feature learning, which is based on structural
role identification of subgraphs. Let the G = (V,E) is undirected graph, V is the set of nodes
{v1, v2, ...v|V |}, where |V | is amount of nodes, and E ⊆ V × V is the set of |E| edges. The
main goal of algorithm is to learn a mapping function f : V → Rd, where d ≪ |V | is the
number of dimensions of new representation. In the new latent space, structural similiar nodes
are represented closely and nodes with different local structure are represented far apart.
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The algorithm can be described as follows:
Algorithm 1: RiWalk algorithm [9]

Input: Graph G = (V,E), neighborhood size k, dimensions d, walks per node γ, walk
length λ, window size ω

1 for i = 1, 2, ..., |V | do
2 G̃(Nki) = RoleIdentificationSubgraph(G(Nk

i ))
3 Wi = RandomWalkOnSubgraph(G̃(Nki), γ, λ)
4 Add Wi to W
5 end for
6 f = SkipGram(W,d, ω)
7 return the learned node representation (embeddings) f

RoleIdentificationSubgraph is function, which can be defined as:

ψi(vj) = h(δi)⊕ h(δj)⊕ sij ,

for each
vj ∈ Nk

i \ {vi},

where ⊕ is the concatenation operator. RandomWalkOnSubgraph is fixed length random walk
from the anchor node vi. Random walks can be performed in parallel. Then by merging all
random walks together as a corpus, the Skip-Gram model with negative sampling is trained on
it [10], [11].



Chapter 3

Artificial Neural Networks

In this chapter I will briefly explain what artificial neural networks are and present some of their
types. The material in this chapter was taken from [12].

3.1 Neuron
Artificial neural networks get their name from mammalian brain cells - neurons, connected to
each other. In artificial neural networks, each neuron (McCulloch-Pitts neuron)[13] is the com-
putational unit (binary threshold unit), which has two states (outputs): active and inactive.
For output computation, neuron sums the weighted inputs, and if the sum exceeds the given
threshold, then the neuron is active, otherwise inactive. The state of neuron j at time t can be
formulated as:

sj(t) =
{
−1 inactive,
1 active.

Figure 3.1 Schematic diagram of a McCulloh-Pitts neuron. i is the index of neuron, θi is the threshold
value for neuron i, wij the input weights (strength) of the connection from neuron j to neuron i. t are
the time sequence of computation steps, sgn(b) is the signum activation function [12].

For the given states sj(t), neuron with index i computes

si(t+ 1) = sgn(
N∑
j=1

wijsj(t)− θi) ≡ sgn[bi(t)],

11
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where sgn(b) is the signum function:

sgn(b) =
{
−1, b < 0,
+1, b ≥ 0.

It’s argument

bi(t) =
N∑
j=1

wijsj(t)− θi,

is called the local field, wij are called weights, indices i, j refer to the neuron that performs the
calculation and to the neuron that is connected to it. Weights can be positive or negative, and
when the wij = 0 there is no connection between these neurons. The threshold θi is also called
bias, which is defined as the negative of θi, then we can formulate the neuron output as:

si(t+ 1) = sgn(
N∑
j=1

wijsj(t) + bias)

3.2 Perceptron

Perceptrons are the layered feed-forward networks of McCulloch-Pitts neurons, suggested by [14].
The perceptron consists of several layers, each containing the McCulloch-Pitts neurons described
above. Each layer has its own task, the input layer, as the name implies, reads input and the
output layer consists of resulting neurons. The middle layer is called hidden, the state of it’s
neurons are not read out. This network is called feed-forward, because there are no connections
within the layers or connection to skip hidden layer, and there is no back connections. Neurons
are connected strictly from input layer to the output.

Figure 3.2 Feed-forward network with one hidden layer. xk are the input terminals, Vj are the hidden
neurons, Oj are the output neurons and wjk/Wi,j are the weights connecting to the hidden/output
neurons [12].

The input of perceptron can be denoted as

x(µ) =


x

(µ)
1
x

(µ)
2
...

x
(µ)
N

 ,
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where µ = 1, ..., p are te different input patterns. The hidden’s layer output is

Vj = g(bj) withbj =
∑
k

wjkxk − θj ,

where g(b) is an activation function. The output layer performs similar calculations

Oi = g(Bi) with Bi =
∑
j

WijVj − θi

For classification problem, the target vectors corresponding to the input patterns are

t(µ) =


t
(µ)
1
t
(µ)
2
...
t
(µ)
M

 ,
so the main idea is to find all weights and thresholds for the desired network’s output:

O
(µ)
i = t

(µ)
i for all i and µ.

Neurons with linear activation function are called linear unit, the formal solution for classifi-
cation problem for them can be formulated as:

wik = 1
N

∑
µv

t
(µ)
i (Q−1)µvx(v)

k .

To find the solution iteratively, non-negative energy function exists:

H = 1
2

∑
iµ

(t(µ)
i −O(µ)

i )2.

So now the goal is to find weights to minimize energy function H. To minimise H, the gradient
descent is used:

w′
mn = wmn + δwmn with weight increments δwmn = −η ∂H

∂wmn
,

with learning rate η > 0. The derivatives are evaluated with the chain rule, and the weight
increments are:

δwmn = η
∑
µ

(t(µ)
m −O(µ)

m )x(µ)
n .

The states of hidden layer’s neurons Vj do not depend on weights Wmn, so the increments
for these weights are:

δWmn = −η ∂H

∂Wmn
= η

p∑
µ=1

(t(µ)
m −O(µ)

m )g′(B(µ)
m )V (µ)

n ≡ η
p∑

µ=1
∆(µ)
m V (µ)

n .

The quantity
∆(µ)
m = (t(µ)

m −O(µ)
m )g′(B(µ)

m )

is called as weighted output error, which is vanishes when t
(µ)
m = O

(µ)
m .

Weights for the hidden layer’s neurons are adjusted by applying the chain rule 4 times, then
the weighted errors for the hidden layers are:

δ(µ)
m =

∑
i

∆(µ)
i Wimg

′(b(µ)),

where the δ(µ)
m vanishes when output errors ∆(µ)

i are zero. This is the main idea of backpropa-
gation, the neurons are updated forward, and the errors are updated backwards.
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3.3 Reccurent neural network
Reccurent neural networks are more general than perceptrons, they have feed-forward layout
with feedbacks. Such neural networks use different connections, both between and within layers.
In contrast to the perceptron, where the update rule for the i neuron from layer l may be
represented as:

V li = g(
∑
j

wlijV
l−1
j − θli),

the RNN is used as the dynamical network, where layer l is replaced by iteration step t:

Vi(t) = g(
∑
j

w(vv)ijVj(t− 1) +
∑
k

wvxik xk − θ
(v)
i ) for t = 1, 2, ...,

where wvvij are the weights between neurons in the hidden layer and the wvxik are the weights from
the input neuron xk to the neuron Vi.

Figure 3.3 An example of network with feedback connection [12].

RNN can be trained using the stochastic gradient descent, but this algorithm suffers because
of the vanishing-gradient problem, so usually in the hidden layer of RNN, neurons are not used,
instead they are replaced by composite units, trained to act as different connections or non-linear
units, that can learn correlations in the required form.

3.4 Autoencoder
Autoencoders are mainly used to eliminate noise in the data or to reduce the dimensionality of
the input data is unseupervised manner. Autoencoder consists of two main parts: encoder and
decoder. The encoder contains several fully connected layers, mapping the inputs to the smaller
latent layer (low-dimensional space), M ≪ N where M is the number of neurons in latent layer,
and N is the input dimension.

Encoder’s mapping to latent space is z = fe(x), and the decoder’s mapping from latent space
back to the input space (dimension) is x = fd(z), where x is the input, and z is the latent
variables. So the main goal of autoencoder is to learn approximation of the inputs as:

x = fd [fe(x)] .

The energy function for autoencoder can be defined as:

H = 1
2

∑
µ

|xµ − fd
[
fe(x(µ))

]
|2
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Figure 3.4 Autoencoder schematic struture [12].

3.5 Variational autoencoder
There are also generative autoencoder models, they are called variational [15], [16]. By manipu-
lating the latent layer, it is possible to create new outputs from input variables. The main idea
is to represent the data distribution in terms of a Gaussian distribution PL(z) of latent space
variables z. The training of VAE is also differs, the goal is to maximize log-likelihood:

logP (x(µ)) = log
∑

h1=±1,...,hM =±1
PB(v = x(µ),h),

for pattern xµ. For VAE it is defined as:

logP (x) = log
∫
dzP (x|z)PL(z),

where P (x|z) is the probability of generating x for given z.

3.6 Generative adversarial network
Generative adversarial network [17] is a generative model, which has similar to VAE structure,
instead of an encoder-decoder structure, GAN contains two multilayer perceptrons called a gen-
erator and a discriminator. As the name implies, the generator creates new output data from
the input data, while the discriminator’s task is to determine whether the data are real or fake.
Both networks are trained together, the main goal of generator is to adjust the weights so as to
maximize the classification error of the discriminator, while the discriminator adjusts the weights
so as to minimize it.
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Chapter 4

Graph generation techniques

In this chapter I will introduce the existing graph generation techniques and their types, some
of them will be used in experimental chapter. The presented techniques can mainly be divided
into several types:

Variational autoencoders

Generative adversarial networks

Auto-regressive models

Diffusion models

4.1 Variational autoencoder

4.1.1 GraphVAE
GraphVAE [18] uses the idea of a variational autoencoder in the field of graph generation. Learn-
ing to generate graph is more difficult problem for gradient optimization based methods, unlike
the text, graphs can have can have more random connectivity, and there is no best way exists,
how to linearize graphs construction sequentially. GraphVAE models probabilities of nodes and
edges existence as independent random variables.

The main idea of this method is to create probabilistic fully-connected graph, and then to
align it to the ground truth using standart graph matching algorithm. Let G = (A,E, F ) be
a graph with adjacency matrix A, edge attribute tensor E, and node attribute matrix F . The
goal is to learn encoder and decoder to map between the graph’s space G and graph’s continuous
latent representation z ∈ Rc. In the probabilistic setting of VAE, encoder is defined by variational
posterior qϕ(z|G) and the decoder by a generative distribution pθ(G|z), where θ and ϕ are the
learned parameters. The whole model is minimizing the upper bound on negative log-likelihood
logpθ(G) [15]:

L(ϕ, θ;G) = Eqϕ(z|G) [−logpθ(G|z)] + KL [qϕ(z|G)||p(z)] ,

where Eqϕ(z|G) [−logpθ(G|z)] is the reconstruction loss, which enforces high similarity of generated
graphs to the input graph G, and KL [qϕ(z|G)||p(z)] is th KL-divergence, which regularizes the
code space to allow z sampling directly from p(z). Regularization is independent on the input
space, but the reconstruction loss must be designed specifically:

−log p(G|z) = −λAlog p(A′|z)− λF log p(F |z)− λE log p(E|z).

17
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Figure 4.1 GraphVAE workflow schematic illustration. GraphVAE takes as an input discrete at-
tributed graph G = (A, E, F ) on n nodes, stochastic encoder qϕ(z|G) embeds graph into latent represen-
tation z, then probabilistic decoder pθ(G|z) outputs probabilistic fully-connected graph G̃ = (Ã, Ẽ, F̃ )
on predefined k ≥ n nodes, from which discrete samples may be drawn. The process can be conditioned
on label y for controlled sampling at the test time [18].

More particular:

log p(A′|z) = 1
k

∑
a

A′
a,a+(1−A′

a,a)log(1−A′
a,a)+ 1

k(k − 1)
∑
a ̸=b

(A′
a,b)log(A′

a,b)+(1−A′
a,b)log(1−A′

a,b)

for A′ = XAXT , and
log p(F |z) = 1

n

∑
i

logFTi,·F̃ ′
i,·,

log p(E|z) = 1
(||A||1 − n)

∑
i ̸=j

logETi,j,·Ẽ′
i,j,·,

where F̃ ′ = XT F̃ , Ẽ′·,·,l = XT Ẽ·,·,lX. X ∈ {0, 1}k×n is binary assignment matrix, where
Xa,i = 1 only if node a ∈ G̃ is assigned to i ∈ G, otherwise Xa,i = 0.

The graph matching is based on finding X ∈ {0, 1}k×n between nodes of graphs G and G̃ by
their node pairs similarity S : (i, j) × (a, b) → R+ for i, j ∈ G and a, b ∈ G̃. So the similarity
function is defined as:

S((i, j), (a, b)) = (ETi,j,·Ẽa,b,·Ai,jÃa,bÃa,aÃb,b) [i ̸= j ∧ a ̸= b] + (FTi,·F̃a,·)Ãa,a [i = j ∧ a = b] .

Encoder of graphVAE is a feed forward network with edge-conditioned graph convolutions
(ECC) [19], formulated as a probabilistic and enforces Gaussian distribution of qϕ(z|G) by the
outputs of last encoder layer, which are the mean and variance. This allows to sample zl ∼
N(µl(G), σl(G)) for l ∈ 1, ..., c using the reparameterization trick [15].

Decoder is simple multilayer perceptron with three outputs in the last layer. Decoder’s
output is probabilistic fully-connected graph G̃ = (Ã, Ẽ, F̃ ) on k nodes, where each tesor is a
probabilistic interpretation:

Ã ∈ [0, 1]k×k contains node probabilities Ãa,a and edge probabilities Ãa,b for nodes a ̸= b.

Ẽ ∈ Rk×k×de is an edge attribute tensor of class probabilities for edges, F̃ ∈ Rk×dn is the similar
tensor for nodes. To compute Ã, decoder uses sigmoid activation function, and to obtain Ẽ and
F̃ edge- and node-wise softmax is applied.

Proposed model is useful only for generating small graphs, when using a decoder on large
graphs, it has difficulty capturing complex properties (in this case chemical interactions), also this
model has limitations on graph’s size due to increasing complexity and memory requirements.
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4.2 Generative adversarial networks

4.2.1 MolGAN

MolGAN [20] is an implicit, likelihood-free generative model for small molecular graph. This
method adapts GANs to operate directly on graph-strutured data. The main purpose of this
model is to generate molecular graphs with desired requirements for their chemical properties.

Most works in the field of molecular generation use the so-called SMILES [21] representa-
tion of molecules, but proposed GAN model is the first to address the generation of graph-
structured data in molecular domain. MolGAN’s generative model predicts discrete graph stru-
ture in non-sequencial way (at once), but sequintial variants are also possible, the discriminator is
permutation-invariant and reward network (for RL-based optimization of desired chemical prop-
erties) based on graph convolution layers. The both discriminator and reward network operate
directly on graph-structured representation.

Figure 4.2 MolGAN’s shematic struture. A vector z is sampled from prior and then passed to the
generator, generator’s result is graph-structure representation of molecule. The discriminator determines
whether a given molecule is generated or not. Rewards network gives out a reward depending on the
chemical properties of the molecule, determined by an external software [20].
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MolGAN consists of three main components: a generator Gθ, a discriminator Dϕ, and a
reward network R̂ψ. The generator Gθ takes the sample from prior distribution and generates
an annotated graph G, where edges represent molecular bonds, and nodes represent atoms.
Discriminator Dϕ takes this sample and one sample from dataset, then it learns to distiguish
them. Gθ and Dϕ are trained using improved WGAN.

WGANs [22] minimize Earth Moved distance defined between two porbability distributions
p and q:

DW [p||q] = 1
K

sup
||f ||L<K

Ex∼p(x) [f(x)]− Ex∼q(x) [f(x)] ,

where p is empirical distribution and q is the generator distribution.
The generator Gϕ(z) takes D-dimensional vectors z ∈ RD sampled from standart distribution

z ∼ N(0, I) and generates graphs. For each z, Gθ outputs: X ∈ RN×T that defines atoms and
AN×N×Y that defines bonds type. Both A and X are interpreted as probabilistic, so to generate
molecule, sparse objects Ã, X̃ are obtained via categorical sampling from A and X.

The discriminator Dϕ is trained only using WGAN objective, but the generator Gθ uses linear
combination of the WGAN loss and the RL loss:

L(θ) = λLWGAN (θ) + (1− λ)LRL(θ),

where λ ∈ [0, 1] is a hyperparameter that regulates the tradeoff between these components.
The reward network R̂ψ approximates the reward function of a sample and optimizes molecule

generation metrics using reinforcement learning. R̂ψ learns to assign reward to molecule to match
the score provided by external software, when MolGAN’s output is not a valid molecule, it is not
possible to assign reward, because molecule is not even compund, so for such graphs zero reward
is assigned.

Both the Dϕ and R̂ψ recieve graph as input, and output the scalar value. There is the same
architecture for both networks RelationalGCN [23], but they do not share the weights between
each other. A series of convlutional layers convolve node signals X̃ from adjacency tensor Ã.

At every layer feature representation of nodes are propogated according to:

h′(l+1)
i = f (l)

s (h(l)
i , xi) +

N∑
j=1

Y∑
y=1

Ãijy

|Ni|
f (l)
y (h(l)

j , xj),

h(l+1)
i = tanh(h′(l+1)

i ),

where h(l)
i is the signal of node i at layer l and f (l)

s is a linear transformation function that acts as
self-connection between layers. Further an edge type-specific affine function f (l)

y is used for each
layer. The normalization factor 1

|Ni| ensures that activations are on a similiar scale irrespective
of the number of neighbors. After several propagations node embeddings are aggregated into a
graph level representation vector as

h′
G =

∑
v∈V

σ(i(h(L)
v , xv))⊙ tanh(j(h(L)

v , xv)),

hG = tanh(h′
G),

where σ(x) = 1
(1+exp(−x)) is the logistic sigmoid function, i and j are multilayer perceptrons

with linear output layer and ⊙ is an element-wise multiplication. hG is a graph’s vector repre-
sentation, which is further processed by multilayer perceptron to produce scalar outputs for the
discriminator and the reward network.

Compared to a recent SMILES-based sequential GAN model for molecular generation, Mol-
GAN can achieve higher chemical property scores, while allowing for at least ∼5x faster training
time. The central MolGAN’s limitation is it’s susceptibility to mode collapse, because both the
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GAN and the RL objective do not encourage generation of diverse, non-unique outputs. This
ultimately results in the generation of only a handful of different molecules if training is not
stopped early. Current MolGAN’s one-shot prediction of the adjacency tensor is feasible only
for graphs of small size.

4.3 Auto-regressive models

4.3.1 GraphRNN
GraphRNN is represented by the authors [24] as a scalable framework for learning generative
models of graphs, which models a graph in an autoregressive (or recurrent) manner. Generation
is presented in the form of sequential additions of new nodes and edges to capture the complex
joint probability of all nodes and edges in the graph.

This model, unlike other methods (such as VAE or GAN), represents graphs under different
node orderings as sequences, so it doesn’t suffer from serious drawback, and allows to generate
variable-sized graphs without requirement to train all possible node permutations or specifying
a cannonical permutaition, both of which require O(n!) time in general.

G is an undirecteed graph G = (V,E), V = {v1, ..., vn} and E = {(vi, vj)|vi, vj ∈ V )},
under a node ordering π, G can be represented by the adjacency matrix Aπ ∈ Rn×n, where
Aπi,j = 1[π(vi, π(vj)) ∈ E]. Adjacency matrix A requires a node ordering π that maps nodes to
rows/columns of A, precisely, π is a permutation function over V , and the set of all n! possible
node permutations is defined as Π. Note that elements in the set of adjacency matrices AΠ all
correspond to the same graph.

The goal is to learn distribution pmodel(G) over graphs, based on set of observed graphs
G = {G1, ..., Gs} sampled from data distribution p(G), where each Gi may have different number
of nodes and edges. The key idea of this approach is to represent graphs under different node
orderings as a sequences, and then to build autoregressive model on these sequences. fS is the
defined mapping from graphs to sequences, where for a graph G ∼ p(G) with n nodes under
node ordering π:

Sπ = fS(G, π) = (Sπ1 , ..., Sπn),

where each Sπi ∈ {0, 1}i−1, i ∈ {1, ..., n} is an adjacency vector representing the edges between
node π(vi) and the previous nodes π(vj), j ∈ {1, ..., i− 1} already in graph:

Sπi = (Aπ1,i, ..., Aπi−1,i)T ,∀i ∈ {2, ..., n}.

For undirected graps, Sπ determines a unique graph G, so the mapping is denoted as fG(·) where
fG(Sπ) = G.

Summary, we can define p(G) as the marginal distribution of the joint distribution p(G,Sπ):

p(G) =
∑
Sπ

p(Sπ)1[fG(Sπ) = G],

where p(Sπ) is the distribution that we want to learn using model. Further we decompose p(Sπ)
as the product of conditional distributions over the elements:

p(Sπ) =
n+1∏
i=1

p(Sπ1 |Sπ1 , ...Sπi−1)︸ ︷︷ ︸
p(Sπ

i
|Sπ

<i
)

,

where Sπn+1 is the end of sequence token EOS, using to represent sequences with variable lengths.
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GraphRNN inference algorithm [24] can be described as follows:
Algorithm 2: GraphRNN inference algorithm

Input: RNN-based transition module ftrans, output module fout, probability
distribution Rθi

, parameterized by θi, start token SOS, end token EOS and
empty graph state h′

Output: Graph sequence Sπ Sπ1 = SOS, h1 = h′, i = 1
1 repeat
2 i = i+ 1
3 hi = ftrans(hi−1, S

π
i−1) ; // update graph state

4 θi = fout(hi)
5 Sπi ∼ Rθi

; // sample node i’s edge connections
6 until Sπi is EOS ;
7 return Sπ = (Sπ1 , ..., Sπi )

This RNN consists of a state-transition function and an output function:

hi = ftrans(hi−1, S
π
i−1), θi = fout(hi),

where hi ∈ Rd is a vector that encodes the state of the current generated graph, Sπi−1 is the
adjacency vector for the last generated node i − 1, and θi represents next node’s adjacency
vector distribution.

Depending on the assumption about p(Sπi |Sπ<i) there are different variants of GraphRNN.
Authors proposed two variants, both of them implement ftrans as a Gated Recurrent Unit
(GRU)[25], but differ in implementation of fout. In simplified version, authors implement fout
as single multi-layer percetron (MLP) with sigmoid activation function, which shares weights
across time steps. This version models p(Sπi |Sπ<i) as a multivariate Bernoulli distribution, pa-
rameterized by the θi ∈ Ri−1 vector which is output of fout. θi is a vector, it’s element θi[j]
represents a probability of edge (i, j). According to multivariate Bernoulli distribution, we can
independently sample edges in Sπi .

In the full version an another additional decomposition is used:

p(Sπi |Sπ<i) =
i−1∏
j=1

p(Sπi,j |Sπi,<j , Sπ<i),

where Sπi,j is a binary scalar denoting the junction of node π(vi+1) with node π(vj). There are
two RNNs in this variant:

Node sequence generator (graph-level RNN)

Edge per new node generator (edge-level RNN)

Graph-level RNN generates the nodes and maintains graph’s state, while the edge-level RNN
is a GRU model, which generates the edges for a given node, more precisely, it’s hidden state
is initialized via the graph-level RNN hiden state hi, and the output at each step is mapped
by MLP to a scalar that indicates the probability of the edge existence. Sπi,j is sampled from
distribution specified by the jth output of ith edge-level RNN, and then is fed into j+ 1th input
of the same RNN. All edge-level RNNs share the same parameters.
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Figure 4.3 GraphRNN at inference time. Green arrows denote the graph-level RNN that encodes
the “graph state” vector hi in its hidden state, updated by the predicted adjacency vector Sπ

i for node
π(vi). Blue arrows represent the edge-level RNN, whose hidden state is initialized by the graph-level
RNN, that is used to predict the adjacency vector Sπ

i for node π(vi) [24].

The key method presented by the authors is the use of the BFS algorithm for node orderings.
Formally:

Sπ = fS(G,BFS(G, π)),

where BFS(·) is deterministic BFS function. This method avoids learning to generate graphs
under all possible node permutation without a loss of generality, we only need to train on all
possible BFS orderings. According to the authors, this approach reduces the number of required
operations from O(n2) on worst-case to sub-quadratic complexity in many cases.

Authors proposed GraphRNN, an autoregressive generative model for graph-structured data,
along with a comprehensive evaluation suite for the graph generation problem, which is used to
show that GraphRNN achieves significantly better performance compared to previous state-of-
the-art models, while being scalable and robust to noise.

4.3.2 MolecularRNN
MolecularRNN [26] is graph reccurent model for direct generation of molecular graph structure
with high validity and novelty,this model extends GraphRNN with capability to hold graph’s
nodes and edges type. For molecule representation, atoms are mapped to nodes, and edges are
represent categorical bond types as: Sπi,j ∈ {0, 1, 2, 3} corresponding to no, single, double, and
triple. Also for each node there are categorical mappings: Cπi ∈ {1, 2, 3, ...,K}, representing
atoms. So for the MolecularRNN, likelihood from GraphRNN is rewritten as:

p(Sπ, Cπ) =
n+1∏
i=1

p(Cπi |Sπ<i, Cπ<i)p(Sπi |Cπi , Sπ<i, Cπ<i),

where p(Cn+1|S<n+1, C<n+1) ≡ 1 for terminal node n+ 1.
In this model, after the sub-graph on the first i− 1 nodes under permutation π is completed,

NodeRNN can instantly determine atom type of the following node i, as well the model switches
to EdgeRNN and links generated node to the set {1, ..., i−1}. Model’s structure can be formulated
as:

inputi−1 =
[
emb(Sπi−1), emb(Cπi−1)

]
hnode
i = NodeRNN(hnode

i−1 , inputi−1), hnode
0 = 0

ψi = NodeMLP(hnode
i )
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hedge
i,j = EdgeRNN(hedge

i,j−1, emb(S
π
i,j−1)), hedge

i,0 = hnode
i

ϕi,j = EdgeMLP(hedge
i,j ),

where emb is the embedding for categorical inputs, EdgeMLP and NodeMLP are two-layer
MLP with softmax activation on top of hidden states hnode and hedge for categorical predictions.

Figure 4.4 MolecularRNN model. NodeRNN unrolls across atoms and predicts type of the next atom.
EdgeRNN is initialized for every atom with NodeRNN hidden state, unrolls across preceding atoms for
bond types prediction [26].

MolecularRNN utilizes valency-based rejection sampling, so in each step can be ensured, that
the sum of sampled molecule’s bonds does not exceed allowed valency. This controlling process
is formulated as: ∑

j

Aπi,j + k ≤ valencyCπ
i

and
∑
i

Aπi,j + k ≤ valencyCπ
j
,

for bond of order k between i and j atoms. If the atoms are not filled up, their valences are
complemented with hydrogens.

For the molecule property optimization, MolecularRNN acts as a policy network and outputs
probability of the next action based on the current state. The set of states is defined as all
possible sub-graphs of graphs with fixed number of N nodes. In MolecularRNN BFS ordering,
initial state s0 is a graph with singe carbon atom (node). Final states are defined as all graphs
that correspond to a valid molecule with up no N heavy atoms. The training represents the
policy gradient optimization algorithm(CITE), so the loss function is formulated as:

L(θ) = −
N∑
i=1

r(sN ) · γi · log p(si|si−1; θ),

where r(sN ) is a reward for state sN .
MolecularRNN model for generating valid molecules with desired properties, which learns

diverse distribution through unsupervised pretraining and utilizes policy gradient optimization.

4.3.3 GraphGen
GraphGen [27] is a domain-agnostic scalable generative model with a graphRNN - like structure,
also using DFS code to transform graph to sequences, but it is capable to handle node and edge
lables.

Instead of using adjacency matrices, GraphGen uses graph canonization, and works with DFS
codes sequences, which results in faster and better modeling.

GraphGen utilizes custom LSTMs [28], because they have proven themselves well in the
problem of RNN training. This custom LSTM, proposed by authors, consists of a state transition
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function ftrans, embedding function femb and five separate output functions for each of the
components si = (tu, tv, Lu, Le, Lv):

hi = ftrans(hi−1, femb(si−1))

tu ∼Mθtu = ftu(hi)

tv ∼Mθtv = ftv (hi)

Lu ∼MθLu = fLu(hi)

Le ∼MθLe
= fLe

(hi)

Lv ∼MθLu
= fLv

(hi)

si = concat(tu, tv, Lu, Le, Lv)

Here ∼M represents sampling from multinomial distribution, si ∈ {0, 1}k is the concatenated
component wise one-hot encoding of the real edge, and hi ∈ Rd is LSTM hidden state vector,
which encodes the state of generated graph. Embedding function femb compresses sparse edge
representation (si) to a small vector of real numbers. Each function f represents the multinomial
distribution over possibilities of five components of new edge tuple, that after are concatenated
to from the final new edge.

Figure 4.5 The GraphGen’s architecture. Red arrows represent data flow in the RNN with hidden
state hi, which captures the state of currently generated graph. Blue arrows indicate information flow
to generate edge tuple si.

The training goal is to learn functions ftu , ftv , fLu
, fLe

, fLv
from a set of training graphs.
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Algorithm 3: Graph modelling algorithm
Input: Graphs training dataset G = {G1, ..., Gn}
Output: Learned function ftu , ftv , fLu , fLe , fLv and embedding function femb

1 S = {S = F(G)|∀G ∈ G}
2 Initialize ftu , ftv , fLu

, fLe
, fLv

, femb
3 repeat
4 for ∀S = [s1, ..., sm] ∈ S do
5 s0 ← SOS; Initialize h0
6 loss← 0
7 for i from 1 to m+ 1 ; // sm+1 for EOS tokens
8 do
9 hi ← ftrans(hi−1, femb(si−1))

10 s̃i ← ϕ ; // s̃i will contain component-wise probability distribution
vectors of ŝi

11 for c ∈ {tu, tv, Lu, Le, Lv} do
12 θc ← fc(hi)
13 s̃i ← concat(s̃i, θc)
14 end for
15 loss← loss + BCE(s̃i, si)
16 end for
17 Back-propagate loss and update weights
18 end for
19 until stopping criteria ; // Typically when validation loss is minimized
20 ;

Accuracy of the model is optimized using binary cross-entropy loss function:

BCE(s̃i, si) = −
∑
c

(si [c]T logs̃i [c] + (1− si [c])T log(1− s̃i [c])),

where s [c] represents component c ∈ {tu, tv, Lu, Le, Lv}, and log is taken elementwise on
vector.

Algorithm 4: Graph generation algorithm
Input: LSTM based state transition function ftrans, embedding function femb, output

functions ftu , ftv , fLu
, fLe

, fLv
, empty graph state h0, SOS and EOS tokens

Output: Graph G
1 S ← ∅
2 ŝ0 ← SOS
3 i← 0
4 repeat
5 i← i+ 1
6 hi ← ftrans(hi−1,femb(ŝi−1))
7 ŝi ← ∅
8 for c ∈ {tu, tv, Lu, Le, Lv} do
9 θc ← fc(hi) ; // sample ci from multinomial distribution parameterized

by θc
10 ci ∼M θc
11 ŝi ← concat(ŝi, ci)
12 end for
13 S ← S||⟨ŝi⟩
14 until ∃ci, ci = EOS;
15 return F−1(S) ; // F−1 is mapping from minimum DFS code to graph
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GraphGen, using minimum DSF codes of graphs, provides more scalability within certain
limits and quality,but still as the size of the graphs increases, the quality also decreases, also the
DFS’s complexity is non-polynomial, which is a disadvantage of RNN family.

4.4 Diffusion models

4.4.1 Graph diffusion via the system of stochastic differ-
ential equations

Graph diffusion via the system of stochastic differential equations (GDSS) [29] as the name
implies, models the joint distribution of graph nodes and edges using the system of stochastic
differential equations (SDEs). The goal of the model is to generate graphs, that will closely
follow the distribution of training graphs, to avoid direct representation of the distribution,
there is a continuous-time score-based generative framework, which transforms graphs to toise,
while modelling dependencies between nodes and edges.

Let the G be a graph with N nodes, defined by node features X ∈ mathbbRN×F and weighted
adjacency matrix A ∈ RN×N , where F is the node features dimension. The diffusion process is
used to model dependency between X and A, by transforming both to a simple noise distribution.
It can be represented as a trajectory of random variables {Gt = (Xt, At)}t∈[0,T ] in a fixed time
horizon [0, T ]:

dGt = ft(Gt)dt+ gt(Gt)dw, G0 ∼ pdata,

where ft(·) : G → G is the linear drift coefficient, gt(·) : G → G × G is the diffusion coefficient
and w is the standard Wiener process. The reverse-time diffusion process proposed by authors
is novel and modeled by the following system of SDEs:{

dXt =
[
f1,t(Xt)− g2

1,t∇Xt log pt(Xt,At)
]
dt̄+ g1,tdw̄1

dAt =
[
f2,t(At)− g2

2,t∇At log pt(Xt,At)
]
dt̄+ g2,tdw̄2

,

where f1,t and f2,t are linear drift coefficients satisfying f(X,A) = (f1,t(X), f2,t(A)), g1,t
and g2,t are scalar diffusion coefficients, and w̄1, w̄2 are reverse-time standard Wiener processes.
These forward and reverse diffusions processes of graphs are the main idea of GDSS. The key
property of GDSS is that these diffusion processes are dependent on each other, related by the
joint log-density gradients ∇Xt

log pt(Xt,At) and ∇At
log pt(Xt,At), that are the partial score

functions. Using partial scores to model the dependency between components over time, GDSS
can represent the process of diffusion of the entire graph, consisting of nodes and edges.

Figure 4.6 (Left) Graph generation through the reverse-time diffusion process. Colored
trajectories denote different types of diffusion processes in the joint probability space of node features
X and adjacency A(Right) Score-based graph generation framework. GDSS generates X and A
simultaneously by modeling dependency through the time. [29]
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One of the variants of this method is the continuous-time version of EDP-GNN [30], by
ignoring the diffusion process of X with f1,t = g1,t = 0 and choosing prior distribution of X
as the data distribution, so the diffusion process of A generalizes discrete-step pertrubation
with a finite noise scales. Another proposed variant generates X and A sequentially. So by
neglecting part of the dependency by the assumptions ∇Xt

log pt(Xt,At) ≈ ∇Xt
log pt(Xt) and

∇At log pt(Xt,At) ≈ ∇At log pt(X0,At) SDEs for the diffusion process can be formulated as:{
dXt =

[
f1,t(Xt)− g2

1,t∇Xt
log pt(Xt)d

]
t̄+ g1,tdw̄1

dAt =
[
f2,t(At)− g2

2,t∇At log pt(X0,At)
]
dt̄+ g2,tdw̄2

,

that are sequential, because reverse function of A is determined by X0.
For the training score-based model should be trained to minimize the distance to the ground-

truth partial scores. Transition distribution p0t(Gt|G0) can be separated for Xt and At as:

p0t(Gt|G0) = p0t(Xt|X0)p0t(At|A0).

By leveraging the idea of denoising score matching to the partial scores and since the drift
coefficient of the forward diffusion process is linear and as p0t(Xt|X0) and p0t(At|A0) are Gaus-
sian distributions where mean and variance are determined by the coefficients of the forward
diffusion process [31], authors proposed new training objectives:{

minθ Et{λ1(t)EG0EGt|G0 ||sθ,t(Gt)−∇Xt log p0t(Xt|X0)||22}
minϕ Et{λ2(t)EG0EGt|G0 ||sϕ,t(Gt)−∇At

log p0t(At|A0)||22}

To estimate ∇Atlog pt(Xt,At) score-based model sϕ,t is presented as:

sϕ,t(Gt) = MLP(
[
{GMH(Hi,Ap

t )}
K,P
i=0,p=1

]
),

where Ap
t are the high-order adjacency matrices, Hi+1 = GNN(Hi,At) with given H0 = Xt, [·]

is the concatenation operation, and the GMH is graph multi-head attention block [32], K is the
number of GMH layers. Another score-based model with the same dimensionality as Xt uses
multiple layers of GNNs to learn partial scores from node representations:

sθ,t(Gt) = MLP(
[
{Hi}Li=0

]
),

where Hi+1 = GNN(Hi,At) with given H0 = Xt and L is the number of GNN layer.
To use the reverse-time diffusion process as a generative model, it’s needed to solve the system

of reverse-time SDEs, approximated using trained score-based models sθ,t and sϕ,t:{
dXt = f1,t(Xt)dt̄+ g1,tdw̄1 − g2

1,tsθ,t(Xt,At)dt̄
dAt = f2,t(At)dt̄+ g2,tdw̄2 − g2

2,tsϕ,t(Xt,At)dt̄

To solve these processes, authors proposed Symmetric Splitting for System of SDEs (S4) inspired
by SSCS [33] and Predictor-Corrector Samlper [32]. For each discretized time step t, S4 solver
first computes the estimation of partial scores using sθ,t and sϕ,t models, then it uses them
for correction and prediction. Correction step is performed by leveraging score-based MCMC
method [34] to obtain corrected G′

t from Gt. The prediction of the state at time t′ follows the
pt′ marginal distribution. The propogation of the corrected step G′

t from time t to t − δt can
be approximated as:

e
δt
2 L̂∗

F G = G̃ ∼ pt,t− δt
2

(G̃|G).



Chapter 5

Experiments

5.1 Experiments design
The main objectives of the experimental part are to compare the statistical properties of synthetic
and original graphs, as well as to evaluate the possibility of using synthetic graphs to build a
classification model. Therefore, the experiment can be divided into two parts: statistical tests
and classification model tests.

Figure 5.1 Experiment design diagram

29
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First, the model is trained on dataset so that it can generate synthetic graphs. Then the
statistical tests follows.

The statistical test involves different measurements. To be objective and to test the consis-
tency of the graph generation model, graphs are re-generated 10 times and compared with the
original. Degree, harmonic and betweenness centralities were chosen for graphs comparison. For
each centrality histogram and boxplot are built. Each graph represents dataset, which contains
graphs as components.

To train the classification model, it is necessary to translate the graph into a suitable repre-
sentation, for this the RiWalk algorithm is used, which is a feature learning method, allowing to
build feature vectors based on the structural specificity of the graph.

Most of the currently existing techniques are narrowly focused on the generation of chemical
compounds, or structurally similar graphs without labeled nodes. The techniques presented
in this part allow generating graphs with node labels, which makes it possible to evaluate the
classification capabilities of models trained on the synthetic graphs, however, the structure of
graphs is not always directly related to labels of graph vertices, which is why it is not possible
to build the necessary dependence when training classification models. In this regard, with
imbalanced data in the dataset, the classifier will be trained so that in most cases it will predict
the value of the majority class, which makes it biased to use such a metric as accuracy score,
therefore, F1-score[35] is used for experiments with the classifier.

The weighted Random Forest [36] model is used as a classifier, since this model is one of the
most successful when training on imbalanced data.

In classification tests, graphs also are generated repeatedly. The main goal of this part is to
compare classification model’s F1-score trained on synthetic data with the same model trained
on the original data. Train data is divided into training and test datasets in the proportion of
75/25. Hyperparameters of the classifictaion model are selected at the first iteration, and then
used in further.

5.2 Labeled Graph RNN
Labeled Graph RNN is an extended version of GraphRNN, which uses the idea of MolecularRNN
and also capable of storing node labels and edge labels as well.

5.2.1 Datasets
Experiments for this technique were carried out with citation and yeast datasets. In citation
dataset, graph represents citation network, where each node’s label represents the topic of cited
work, and edges represent a citation. Yeast dataset consists of different yeast structures, where
each node represents atom and edges represent bonds.

5.2.2 Citation dataset statistics
The original graph is represented by a hundred combined randomly selected graphs from the
original dataset, synthetic graphs are generated by the trained model, each of them also repre-
sented by a hundred merged graphs. As a result, after 10 generations of graphs, the comparison
of their statistical indices was made.

Let’s start with the centrality measures. Degree centrality allows us to consider the impor-
tance of vertices in terms of the number of their neighbors. Consider the indicators of the original
graph, as we can see on 5.2, the degree centrality of the greatest number of nodes is at about
0.0003, then as the centrality measure increases, the number of nodes begins to decrease. This
indicates that most nodes in the graph are connected to few other nodes, in other words, they
have few neighbors.
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Figure 5.2 Graph Labeled RNN degree centrality histograms (citation dataset).

Now let’s pay attention to synthetic graphs, in comparison with each other, indicators have
insignificant differences, and have a general tendency, as in the original graph, most of the nodes
of graphs have a small degree centrality, with the increase of which the number of nodes decreases.
Hence, we can conclude that the generation model works consistently.

If we compare the values of synthetic and original graphs, we can see that they have a similar
distribution, the main difference being the number of nodes with minimal values, in the original
graph, most of the nodes have minimal values, and then their number decreases rapidly, while
in the synthetic, the number of these nodes is much smaller, and it decreases more slowly.

Figure 5.3 Graph Labeled RNN degree centrality boxplots (citation dataset).

We can see this if we look at the boxplots 5.3. The medians of the synthetic graphs are
slightly larger than those of the original graph, their values are closer to 0.0005 than 0.0003 of
the original graph. The number of vertices less than the median is greater in the original graph,
while in synthetic graphs significantly more vertices have values above the median.
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This is an evidence of slower decrease of the number of vertices depending on degree centrality.
Also we can observe the difference in extreme values, the minimum of some graphs reaches zero,
while the maximum value of most synthetic graphs is greater than that of the original. After
reviewing the degree centrality indicators, we can conclude that in synthetic graphs, nodes on
average have more neighbors than the nodes of the original graph.

Using harmonic centrality, we will be able to find out more detailed information about the
neighbors of nodes in graphs, how far are they from each other.

Figure 5.4 Graph Labeled RNN harmonic centrality histograms (citation dataset).

Here 5.4 we can observe a similar situation as with degree centrality, in synthetic graphs there
are more minimum values of harmonic centrality, as well as the decrease in indicators is slower
than in the original graph.

If we look at boxplot 5.5, we will see that, unlike degree centrality, the harmonic centrality
indicators of synthetic graphs are very similar to those of the original graph, but as already noted
above, synthetic graphs have a larger lower bound, which means a large number of nodes located
at a far distance from other nodes of the graph.
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Figure 5.5 Graph Labeled RNN harmonic centrality boxplots (citation dataset).

Betweenness centrality indicates how much a node is involved in the paths between all nodes
of the graph. Paying attention to the previous metrics, here 5.6 we also see the similarity be-
tween the indicators of synthetic and original graphs, the difference again is the rate of decrease
in betweenness centrality indicators, but in this case, we also observe that synthetic graphs have
a maximum value greater than the original graph.

Figure 5.6 Graph Labeled RNN betweenness centrality histograms (citation dataset).

The difference in medians and upper values is clearly visible on the boxplot 5.7, the indicators
of synthetic graphs are greater than those of the original graph.
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Figure 5.7 Graph Labeled RNN betweenness centrality boxplots (citation dataset).

Now let’s consider the sizes of the graphs, for this we just need to compare the sizes of their
components, since each graph is a disconnected graph of smaller graphs.

Figure 5.8 Graph Labeled RNN graph component sizes (citation dataset).

According to 5.8, synthetic graphs are more diverse in size, while the original graphs contain
from 30 to 80 nodes, synthetic graphs can be both very small and quite large, this explains the
difference in the indicators of previous measurements.

5.2.3 Citation dataset classification tests
In this part of the experiment were performed two repeated tests, in the first one the original data
was used, in the second one the synthetic data, and then the obtained results were compared.
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Figure 5.9 Graph Labeled RNN citation dataset, model trained on original training dataset.

As you can see, the model trained on the original graphs almost always has the same score,
which is a consequence of the problem of unbalanced data, and this affects synthetic data simi-
larly.

Figure 5.10 Graph Labeled RNN citation dataset, model trained on synthetic training dataset.

The classifier trained on the synthetic graphs shows the worse score, but we can also notice
that the score now varies more, and this affects the variability of the score on the original data
and the difference between datasets in both cases is proportional.
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5.2.4 Yeast dataset statistics

In this dataset, we can notice, that the degree centrality of synthetical graphs closer to the
original.There is still a tendency to increase the values, but the median is closer to the original
ones, this may be due to the nature of graphs, since the compounds of atoms have a more
systematic structure.

Figure 5.11 Graph Labeled RNN degree centrality boxplots (yeast dataset).

The same can be said about betweenness centrality indicators.

Figure 5.12 Graph Labeled RNN beetweeness centrality boxplots (yeast dataset).

The sizes of synthetic graphs vary quite a lot, but on average correspond to the sizes of the
original ones.

The other indicators remained about the same.
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Figure 5.13 Graph Labeled RNN graph component sizes (yeast dataset).

5.2.5 Yeast dataset classification tests

Figure 5.14 Graph Labeled RNN yeast
dataset, model trained on original training
dataset.

Figure 5.15 Graph Labeled RNN yeast
dataset, model trained on synthetic training
dataset.

Here it can be noted that in both cases, the score is low, which is again a consequence of the
nature of the graph, since organic compounds have frequently occurring atoms that are bound
to a small number of other atoms, which is the reason for the imbalance of classes in dataset.
The classifier trained on the original graphs shows the best result on test data, but on synthetic
data the score is almost zero.
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5.3 GDSS

5.3.1 Datasets

For this technique QM9 molecular dataset is used.

5.3.2 QM9 statistics

Degree centrality of synthetical graphs are similar to original, but maximal values are bigger.

Figure 5.16 GDSS degree centrality histogram.

This can be seen especially on boxplot, the median of synthetic graphs is close to the original
ones, but it can be noticed that the upper bound of synthetic graphs is higher, it is also noticeable
that in half of the cases the lower bound is also significantly higher than that of the original
graphs.
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Figure 5.17 GDSS degree centrality boxplot.

Harmonic centrality is quite close to the original, but the values of synthetic graphs are higher,
both in maximum values and in median.

Figure 5.18 GDSS harmonic centrality boxplot.

At the same time, the betweenness centrality of synthetic graphs is very close to the original
ones, which may be the result of the fact that the sizes of the molecules are quite small and all
atoms are strongly connected in the graphs.
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Figure 5.19 GDSS betweeness centrality histogram.

Figure 5.20 GDSS betweeness centrality boxplot.
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As expected, the graph sizes are quite small, but the model generates slightly more diverse
graphs, although most graphs still have a size of 8-9 nodes.

Figure 5.21 GDSS component sizes histogram.

5.3.3 QM9 classification tests
In the classification part we can notice, that in both cases, score difference is proportional,
classificator trained on the original data has better score and score distribution, then the model
trained on synthetic dataset, which in some cases shows a 7 % drop in the score.

Figure 5.22 GDSS model trained on original
training dataset.

Figure 5.23 GDSS model trained on synthetic
training dataset.
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5.4 GraphGen

5.4.1 Datasets
For this model there are CiteSeer and ENZYMES datasets. CiteSeer dataset consists of papers
with one of the following classes:

Agents

AI

DB

IR

ML

HCI

And the ENZYMES dataset represents enzymes molecular dataset. For an additional task, there
is Cora dataset, which was used to create bigger training graphs by RandomWalk algorithm.
There are 7 classes in this dataset:

Case Based

Genetic Algorithms

Neural Networks

Probabilistic Methods

Reinforcement Learning

Rule Learning

Theory

5.4.2 CiteSeer statistic tests
For this dataset, to see the impact of training, this model was tested in two types, trained on
1000 epochs and on 20. The graphs in current original dataset were created by random walk
procedure, from one CiteSeer graph.
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Figure 5.24 Graphgen high-trained degree centrality boxplots.

Figure 5.25 Graphgen low-trained degree centrality boxplots.

These boxplots show that a high-trained model generates graphs much closer in values to
original graphs, while synthetic graphs of a low-trained model have indicators with a much
larger spread and with large values.

Let’s see if this trend will continue for the rest of the metrics.

Figure 5.26 Graphgen high-trained harmonic centrality boxplots.

For the harmonic centrality measure there is the same situation, after training the indicators
have become 5 units closer to the indicators of the original graphs. The synthetic graphs them-
selves, in any case, have lower indices, which indicates that there are fewer nodes in them that
have a large number of neighbors.
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Figure 5.27 Graphgen low-trained harmonic centrality boxplots.

And if we look at betweenness centrality, there is no much difference between models.

Figure 5.28 Graphgen high-trained betweenness centrality boxplots.

Figure 5.29 Graphgen low-trained betweenness centrality boxplots.



GraphGen 45

Finally, let’s consider how much the sizes of synthetic graphs vary.

Figure 5.30 Graphgen high-trained component sizes hists.

Figure 5.31 Graphgen low-trained component sizes hists.

Here we can see, that low-trained model generates more diverse graphs, while a high-trained
model has a large number of medium-sized graphs, and interestingly, the sizes of these graphs
do not exceed 50 nodes, what is the result of the conditions of the technique that allows you to
limit the number of nodes and edges of synthetic graphs.
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5.4.3 CiteSeer classification tests

Figure 5.32 Graphgen high-trained model,
classificator trained on original training dataset.

Figure 5.33 Graphgen high-trained model,
classificator trained on synthetic training dataset.

Figure 5.34 Graphgen hlow-trained model,
classificator trained on original training dataset.

Figure 5.35 Graphgen low-trained model, clas-
sificator trained on synthetic training dataset.

In the classification task, we can notice that since embedding has a direct impact on the
training of the classifier, a lot depends on what kind of structure the graph has and how it is
related to node labels. That is why we can notice that when training the classifier on the original
graphs, the result is different, while when training on synthetic data, the result remains the same,
which indicates that in synthetic graphs, the graph structure cannot be linked by the embedding
model with node labels.
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5.4.4 ENZYMES dataset

Statistically, the tests on this dataset did not differ in anything special, so I will describe only
the classification part.

Figure 5.36 Graphgen enzymes dataset model,
classificator trained on original training dataset.

Figure 5.37 Graphgen enzymes dataset model,
classificator trained on synthetic training dataset.

In this classification task, you can see that in both cases the score is about the same, for a
model trained on synthetic graphs it is lower by about 7 %, it is also clear that in the case of this
dataset, embedding copes better, and the relationship between the structure and node labels of
the graph is more explicit.
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5.4.5 Cora large graphs dataset

For this task for each test, datasets consist of 50 graphs instead of 100.
Degree histograms shows, that synthetic graphs has bigger degree than original, but have the

similiar indicator distribution.

Figure 5.38 Graphgen cora big graphs dataset degree centrality histograms.

Harmonic centrality of synthetic graphs has lower values on average than that of the original
graphs.

Figure 5.39 Graphgen cora big graphs dataset harmonic centrality boxplots.

At the same time betweenness centrality differs slightly.
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Figure 5.40 Graphgen cora big graphs dataset beetweeness centrality histograms.

Most synthetic graphs have size equal to the minimum or maximum possible, because they
cannot exceed the size of the graphs on which the model was trained.

Figure 5.41 Graphgen cora big graphs dataset component sizes histograms.
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5.4.6 Summary
Statistically, synthetic graphs are close to the properties of the original ones, using the GraphGen
technique as an example, the influence of learning on the generative model was demonstrated, and
the influence of the size of the original graphs on the statistical properties of synthetic ones was
also demonstrated. Unfortunately, these techniques do not able to generate graph features and
are limited only by the generation of node labels, but the graph structure does not always have
a direct relationship with node labels, what complicates the task of training the classifier. Some
of the non-received materials can be found in the appendix. Implementation of the experiments
can be found on github https://github.com/kirking/fit_ctu_thesis/tree/main

https://github.com/kirking/fit_ctu_thesis/tree/main


Chapter 6

Conclusion

In this thesis, I have considered several representative techniques in the field of synthetic graph
generation. I have conducted statistical tests to assess how well synthetic graphs preserve the
properties of graphs on which the generative model was developed. Experiments were also
conducted with the possibility of using classification models in conjunction with structural em-
bedding models.

The choice of techniques was based on the ability of the model to generate graphs with
labeled nodes, in order to test how possible it is to use the classifier on synthetic graphs. Since
most of the currently existing models are aimed at generating small graphs, such as molecular
structures, the choice of techniques that could generate large graphs and at the same time be
able to generate their node labels is quite modest. The biggest problem in the task of evaluating
the capabilities of classifiers trained on synthetic graphs is the weak dependence of the values
of node labels on the graph structure, which affects the ability of the classifier to learn. This
problem does not allow using such methods of dealing with data imbalance as SMOTE [37], since
features obtained using embedding models cannot sufficiently represent node labels. Also the
possibilities of models to preserve the statistical properties of the original graphs were evaluated.
The used models, as experiments show, cope with this task quite well, although they are still
relatively far from ideal.

This thesis can serve as a basic introduction to the problems of generating synthetic graphs
through artificial neural networks, as well as an experiment in using structural embedding models
for classification problems with graphs.

In the future, this work can be expanded by using other metrics for evaluating statistical
properties of graphs, as well as using other techniques and evaluating classifiers, the main purpose
of which is to determine the graph label based on it’s structure.
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Appendix A

Graph statistics

Figure A.1 Labeled RNN yeast dataset degree centrality histograms.
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Figure A.2 Labeled RNN yeast dataset harmonic centrality histograms.

Figure A.3 Labeled RNN yeast dataset harmonic centrality boxplot.
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Figure A.4 low-trained graphgen citation dataset harmonic centrality histograms.

Figure A.5 high-trained graphgen citation dataset harmonic centrality histograms.
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Figure A.6 low-trained graphgen citation dataset degree centrality histograms.

Figure A.7 high-trained graphgen citation dataset degree centrality histograms.
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Figure A.8 GDSS harmonic centrality histograms.

Figure A.9 Graphgen enzymes dataset harmonic centrality histograms.
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Figure A.10 Graphgen enzymes dataset harmonic centrality boxplots.
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src

impl.....................................................zdrojové kódy implementace
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