
Instructions

The main idea is that each student is assigned a card. Through this card, they will be able to mark their

attendance and use the bank in the application to manage their virtual currency.

The organization has a list of rules and incentives for the student in regards to the currency to increase

their attendance. The rules should be reflected in the application.

Follow these steps in the thesis:

1. Collect customer requirements for the system and formalize them.

2. Research and discuss existing solutions.

3. Using standard software engineering methods design your own solution.

4. Implement a functional prototype of the system using Django framework, test and document it.

5. Evaluate your solution.

Electronically approved by Ing. Michal Valenta, Ph.D. on 6 November 2020 in Prague.

Assignment of bachelor’s thesis

Title: Application for student account management in an organization.

Student: Mark Awad

Supervisor: Ing. Michal Valenta, Ph.D.

Study program: Informatics

Branch / specialization: Web and Software Engineering

Department: Department of Software Engineering

Validity: until the end of summer semester 2021/2022

Bachelor’s thesis

Application for student account
management in an organization

Mark Awad

Department of Software Engineering
Supervisor: Ing. Michal Valenta, Ph.D.

February 10, 2022

Acknowledgements

I would like to thank my thesis supervisor Ing. Michal Valenta, Ph.D. for his
consistent support throughout the writing of the research paper and for his
comments that allowed me to further improve the structure of the paper.

A special thanks goes to the St. Paul Sunday School of St. Mark Church
in Kuwait, for their constant support and for giving me the opportunity to
design for them the application and for having a real world scenario where
I took the lead on understanding the business requirements and finding a
suitable solution.

Finally, all of this would not have been possible without the support of my
parents and how they always motivated me to push myself forward and break
new limits, and for that I thank them.

Declaration

I hereby declare that the presented thesis is my own work and that I have
cited all sources of information in accordance with the Guideline for adhering
to ethical principles when elaborating an academic final thesis.

I acknowledge that my thesis is subject to the rights and obligations stip-
ulated by the Act No. 121/2000 Coll., the Copyright Act, as amended, in
particular that the Czech Technical University in Prague has the right to con-
clude a license agreement on the utilization of this thesis as a school work
under the provisions of Article 60 (1) of the Act.

In Prague on February 10, 2022

Czech Technical University in Prague
Faculty of Information Technology
© 2022 Mark Awad. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic.
It has been submitted at Czech Technical University in Prague, Faculty of
Information Technology. The thesis is protected by the Copyright Act and its
usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis
Awad, Mark. Application for student account management in an organiza-
tion. Bachelor’s thesis. Czech Technical University in Prague, Faculty of
Information Technology, 2022.

Abstrakt

Ćılem této práce je návrh a implementace webové aplikace pro malou or-
ganizaci spravuj́ıćı studentské účty podle svých požadavk̊u. Každý student
má unikátńı RFID kartu a prostřednictv́ım aplikace si může označit svou
docházku a vložit/vybrat virtuálńı měnu organizace. Pro motivaci student̊u
je za docházku každého studenta přidána pob́ıdka. Tato pob́ıdka přidává
na studentský účet nastavitelnou částku virtuálńı měny. Č́ım pravidelněǰśı
docházka, t́ım vyšš́ı motivace. Virtuálńı měnu lze použ́ıt při registraci na
akce, nákupu oběda nebo nákupu zbož́ı z obchodu organizace. Aplikace má
administrátorskou část, která umožńı správu student̊u v systému. Aplikace je
napsána v Pythonu pomoćı webového frameworku Django a je nasazena na
Google Cloud Platform pomoćı princip̊u DevOps.

Kĺıčová slova správa uživatel̊u, správa účt̊u, docházka, virtuálńı měna, py-
thon, django, testy ř́ızený vývoj

Abstract

The goal of this thesis is to provide a web application for a small organization
where they have to manage student accounts as per their requirements. Each
student has a unique RFID card and through the application, they can mark

vii

their attendance and deposit/withdraw the organization’s virtual currency.
To motivate the students, an incentive is added for each student’s attendance.
This incentive adds an adjustable amount of the virtual currency to the stu-
dent’s account. The more regular the attendance, the higher the incentive
becomes. The virtual currency can be used when registering for events, buy-
ing lunch or purchasing items from the organization’s store. The application
has a dashboard for admins to able to manage students in the system. The
application is written in Python using the Django web framework and is de-
ployed to Google Cloud Platform using DevOps principles.

Keywords user management system, accounts management, attendance,
virtual currency, python, django, test driven development

viii

Contents

1 Introduction 1

2 Aim of Bachelor Thesis 3

2.1 Available Solutions . 3
2.1.1 Microsoft Excel . 4
2.1.2 Microsoft Dynamics . 4

2.2 Results . 6

3 Analysis 7

3.1 Requirements . 7
3.1.1 Functional Requirements 7
3.1.2 Non-functional Requirements 9

3.2 Use Cases . 10
3.2.1 Actors . 10
3.2.2 Student Management 11

3.2.2.1 Select Student 11
3.2.2.2 Edit Details 12
3.2.2.3 Register Student 12
3.2.2.4 Assign Card 12

3.2.3 Attendance . 12
3.2.3.1 Add Attendance 13

3.2.4 Bank Management . 13
3.2.4.1 Student Profile 13
3.2.4.2 Deposit . 14
3.2.4.3 Withdraw . 14
3.2.4.4 Total money in the bank 14

4 System Architecture & Implementation 15

4.1 Structure . 16
4.1.1 Data Layer . 16

ix

4.1.2 Business Layer . 16
4.1.3 Presentation Layer . 16

4.2 Logical Architecture . 17
4.2.1 Data Layer . 17

4.2.1.1 Models . 17
4.2.2 Business Layer . 17

4.2.2.1 Services . 17
4.2.2.2 Selectors . 17

4.2.3 Presentation Layer . 17
4.2.3.1 Views . 17
4.2.3.2 Static . 17
4.2.3.3 Templates . 18

4.3 Database Model . 18

5 Testing & Documentation 21

5.1 Testing Scenarios . 21
5.1.1 Examples . 22

5.2 Unit Testing . 23
5.2.1 Framework . 23
5.2.2 Test Results . 23
5.2.3 Examples . 24

5.3 Continuous Integration . 27

6 Discussion 29

7 Conclusion 31

Bibliography 33

A Acronyms 35

B Application Snapshots 37

C Contents of enclosed CD 41

x

List of Figures

2.1 Example of UI in Microsoft Dynamics CRM 5

3.1 Actors involved in use cases. 10
3.2 Student Management . 11
3.3 Attendance . 12
3.4 Bank Management . 13

4.1 Application Structure . 16
4.2 Logical Architecture . 17
4.3 Database Model . 18

B.1 Admin dashboard where you can add or change any information in
the application. 37

B.2 By placing the card number of a student, the admin is able to view
their balance and deposit/withdraw virtual currency. 38

B.3 The admin is able to view the total money which all students have
combined. 38

B.4 Attendance available for Sunday School service where the admin
can add the student’s card number or name. 39

xi

Chapter 1
Introduction

Smaller Organisations have a di�culty managing their user accounts, espe-
cially when the needs of their organisation are constantly expanding. Using
tools such as Microsoft Excel could be su�cient in the short term. How-
ever, with an increasing number of users, complexity and demands, manual
maintenance almost always fails to keep up.

Finding the appropriate tools for organization is a di�cult task. Not all
organizations share the same needs and abstract solutions tend to be more
di�cult as they often require more training and a lot of customization. This
is exact problem faces my client, they o�er free classes to students of di�erent
age groups. They aim to manage their students’ accounts, provide them with
a banking feature that operates on a virtual currency. Having this type of
currency in place aims to motivate more students to attend the classes and
participate actively, in return, the students can purchase items from the orga-
nization’s store, buy snacks/meals and pay for future events all through this
virtual currency. The client would also like to keep track of the students that
are not attending so that they can inquire about them and encourage them
to join future classes/events that meet their needs.

The purpose of this project is to provide a fully automated and convenient
solution for the organization, this will be done through the following steps:

• Collecting customer requirements for the system and formalizing them.

• Researching existing solutions.

• Finding a solution based on the research.

1

Chapter 2
Aim of Bachelor Thesis

In order to provide the best solution to the client, a research of the available
products in the market were analysed. Most student management solutions
available focus on the payment aspect, whether it is allocated to the school or
as administrative fees or as instalment management features. However, for a
non-profit organization which does not depend or need student fees to operate,
this feature would not prove to be so useful.

The client needs three main system components in order to operate;

• Student account management

• Student attendance

• Integrated virtual currency

They would like to be able to keep track and manage current students and
graduates accounts. They would also like to have the possibility to add an
attendance record to any given service. A key point in the system is that it
should be able to have a virtual currency which students are able to obtain
through attendance or by depositing it into their personal bank account. The
more they attend the services consecutively and regularly, the more virtual
money they get.

2.1 Available Solutions
From the research identified, I was able to find two key applications that
could be regarded as competitors to my custom solution. These applications
are Microsoft Excel or a Customer Relationship Management (CRM) solution.
For the purpose of simplicity, I have looked into Microsoft Dynamics as it is
one of the leading CRM solutions.

I was also able to find other customized student management solutions that
already exist, o�ering management of student accounts and their attendance.

3

2. Aim of Bachelor Thesis

However, they lacked the option of a virtual currency solution as an incentive
for the students. For this reason, I have decided to disregard comparing these
solutions.

2.1.1 Microsoft Excel
One of the simplest ways to manage student accounts is to create a spreadsheet
with the students’ information. Another spreadsheet needs to be created for
attendance based on the preferred duration. And finally, one last spreadsheet
that would keep a record of the students balance of the virtual currency.

This was how the organization was managing its students’ information
for years. However, this method of storing and altering data was quite a
tedious and error prone process. Maintaining the information between all of
the spreadsheets can be quite cumbersome especially as the student count
increases. A lot of manual work is required and details can be missed quite
easily.

The data is also not relational, it would be quite di�cult to relate the data
between spreadsheets and gather useful statistics. For example; if the teacher
wanted to know how consistent a student is when it comes to their attendance,
they would have to check all of their previous attendance spreadsheets and
gather the information manually.

However, Microsoft Excel o�ers a few benefits though. The application
is quite easy to use and almost everyone in this day and age has basic to
intermediate experience with the tool. This eliminates the need for training
and would allow the administrators to get started right away and manage the
data.

The tool is also readily available and almost everyone has a subscription
to the entire Microsoft O�ce Suit, so no extra payment is needed.

2.1.2 Microsoft Dynamics
Microsoft Dynamics is the more complicated solution available. Microsoft
o�ers multiple dynamic solutions and for the purposes of this research, I will
specifically discuss Dynamics CRM which is a software as a service (SAAS),
managed and hosted by Microsoft in the cloud.

While Dynamics is a great solution for managing customer accounts (in
this case students), the learning curve is quite slow. For a person that has not
worked with any CRM solutions before, they would first need to understand
and learn the concepts and applications for such a solution and then learn
how to use the tool itself which can be quite di�cult and time consuming.

The user interface (UI) of the solution (see Figure 2.1) is quite superb in
terms of viewing the information, navigating through the platform and for
customization. You do not need to know how to code to be able to customize

4

2.1. Available Solutions

account forms for example as you can drag and drop buttons and fields. How-
ever, with more complex demands, coding knowledge is necessary.

Figure 2.1: Example of UI in Microsoft Dynamics CRM

A feature that could be quite useful for the organization, is that Dynamics
is able to send specific and/or personalized emails to customers or admins
with any information needed. This could be helpful for the organization if
they need to know for example how many people were absent, who was not
present for which duration of time, reminders to students of upcoming lessons
and much more.

With Dynamics, you also have the ability to limit privileges, which can help
the organization limit mistakes and errors. The client can have multiple roles
for admins, developers and teachers, each with their required permissions.

Dynamics does not have the ability for users to have an integrated at-
tendance system or the addition of a virtual currency. Adding these features
would be quite expensive as you would have to integrate it to the platform and
create your own customization. Testing these features would be quite di�cult
and time consuming as well but still possible.

That being said, Microsoft o�ers a great customer service experience where
the experts would be able to help and guide the user with any issues they might
be facing and while it might take more time to get a response, they would
provide you with exactly what is needed. The solution is also hosted on the
cloud, so there is no need to manage the infrastructure and you can go ahead
and start with the customization right away.

Because Dynamics is managed and hosted by Microsoft, the client will be
paying a hefty monthly fee to keep the solution running. And while exporting

5

2. Aim of Bachelor Thesis

of data is possible, it is not quite easy and requires the user to have the
knowledge and the appropriate to be able to do this without errors. This
makes moving to a di�erent solution when needed much more di�cult.

2.2 Results
While Microsoft Excel does not require training and is readily available, a lot
of manual work is needed to update and maintain the existing data which is
quite error prone and takes more time to achieve.

Microsoft Dynamics is managed and hosted on the cloud. However, the
learning curve can take some time to be able to modify the solution to the
client’s needs and is the more expensive solution.

The research of these products was quite useful as it allowed me to better
understand the requirements and needs for an organization. With my provided
solution, every task would be automated and it would be hosted on a small
compute in Google Cloud Platform (GCP) which has a small monthly cost
for the client. My solution does not focus much on the UI as it is not a major
requirement for the organization only being used by the admins and teachers.

6

Chapter 3
Analysis

To better understand the needs of the client, an analysis of their requirements
and use cases were conducted.

3.1 Requirements
The client would like a solution that fits their requirements precisely and
with little to no manual work. The requirements can be split into two parts,
functional and non-functional.

3.1.1 Functional Requirements
1. Add any given day to the attendance sheet.

a) Priority: High

b) The system should only add the days where the teachers will present
lectures. This could be weekly or bi-weekly.

c) There should exist an option for the admin to add a given day to
the attendance.

2. Students mark their attendance through their unique id.

a) Priority: High

b) The system should present an easy way of marking the student’s
attendance to avoid the manual work of actually typing the full
student’s name.

3. Admins have the ability to mark student’s attendance by name.

a) Priority: Medium

7

3. Analysis

b) The system should be flexible enough to allow the admin to add
student’s attendance if the students do not remember their unique
id.

4. Keep record of attendance table.

a) Priority: High
b) The system keeps track of each student’s attendance and admins

can view these records.

5. Keep records of students’ transactions; deposits and withdrawals of vir-
tual currency to the system.

a) Priority: High
b) The students are allowed to deposit or withdraw printed currency

to the system.

6. Keep record of students balance.

a) Priority: High
b) The admins are able to view each student’s balance.

7. Keep track of the total money in circulation in the system.

a) Priority: Medium
b) Admins are able to view how much of the virtual currency all of

the students have at the current time.

8. Admins can add/change/delete students from the system.

a) Priority: High
b) The system needs to have a simple interface for admins to on-board

new students, change or delete records completely.

9. Automatic addition of the virtual currency for each attendance entry.

a) Priority: High
b) The system needs to automatically add an adjustable amount of

currency each time they have marked their attendance.

10. Consecutive Attendance of students results in more added virtual cur-
rency.

a) Priority: High
b) The system checks for consecutive attendance and adds bonus based

on the amount of times they have attended class without skipping
attendance.

8

3.1. Requirements

c) There should be a weekly, monthly and quarterly attendance bonus.

11. Send a report after every attendance event.

a) Priority: High
b) The report should include the students who have not attended with

how many times they haven’t attended previously.

12. The system supports having di�erent types of bank cards.

a) Priority: Medium
b) The accepted cards are Basic, Gold and Platinum.
c) The bonus attendance amount of the currency is a�ected by a mul-

tiplier for di�erent card types.

13. The students get their grade automatically updated after every year.

a) Priority: Medium
b) The system updates the student’s grade based on the admin’s input

of the year ending and starting a new one.

14. Users who are no longer students can be saved on the system as Alumni.

a) Priority: Low
b) The students are moved to become alumni once they passed grade

13.
c) The admin is able to choose the students so that the system can

make them alumni.

3.1.2 Non-functional Requirements
1. Web Application:

a) The client side (hosts and users) will have a web application inter-
face accessible on a web browser.

b) The web application will be running on cloud.
c) The client side must be running on Chrome or Safari.

2. RFID card scanner:

a) The unique id of each card is to be represented as the student’s id.
b) Students can scan their cards to quickly add attendance or use

banking features.

3. Backup:

9

3. Analysis

a) A monthly backup of the data is stored on the system.

4. Server:

a) The backend of the web application will be stored on a compute
instance in GCP.

3.2 Use Cases
It is necessary to understand how the users of the organization will interact
with the system. Based on the analysis, the actors of the system and their
interactions were identified.

3.2.1 Actors

Figure 3.1: Actors involved in use cases.

1. Student

10

3.2. Use Cases

• Participates in Attendance

• Has unique RFID card.

2. Admin

• Manages the students in the system.

3. Guest

• Guest is a student with limited privileges to do higher level tasks
not accessible to other students in the system.

3.2.2 Student Management

Figure 3.2: Student Management

3.2.2.1 Select Student

Admin can select any student registered in the system and perform actions.

11

3. Analysis

3.2.2.2 Edit Details

Admin can edit student details including:

• Profile information.

• Assign/Change card.

• Change amount of virtual currency.

3.2.2.3 Register Student

Admin can register new students to the system.

3.2.2.4 Assign Card

With each new user a card must be assigned to them.

3.2.3 Attendance

Figure 3.3: Attendance

12

3.2. Use Cases

3.2.3.1 Add Attendance

For each attendance, the system has two options to mark students presence.

• By Card

Students are able to scan their card through the system to mark
their presence.

• By Name

The admin has the option to mark a student’s attendance by in-
serting their name in the system.

3.2.4 Bank Management

Figure 3.4: Bank Management

3.2.4.1 Student Profile

Both the admin and guest can view a student’s bank profile which displays
the amount of available currency in the bank and the list of total transactions.

13

3. Analysis

3.2.4.2 Deposit

Actors can deposit currency for a student.

3.2.4.3 Withdraw

Actors can withdraw currency for a student.

3.2.4.4 Total money in the bank

The actors can display the total money in circulation for all students.

14

Chapter 4
System Architecture &

Implementation

The application was built using Django’s Model-View-Template (MVT) ar-
chitecture. Where a model describes what a database table looks like with all
of its fields and constraints defined in a class. A Django view, takes in a web
request and returns a response. A template on the other hand is a way to
generate Hypertext Markup Language (HTML) dynamically. It contains the
desired parts of static HTML output, as well as some syntax to help insert
data dynamically.

The application was separated into three layers; the data, business and
presentation layers. This helped me design and write code more e�ectively as
the separation allowed me to simplify any problem and identify exactly which
layer needed modification. Connecting the di�erent layers in the end proved
to be an easy task.

One rule I had during development was that I made sure that in order
for the presentation layer to reach the data layer, it had to go through the
business layer. This allowed for a more consistent code flow.

15

4. System Architecture & Implementation

4.1 Structure

Figure 4.1: Application Structure

4.1.1 Data Layer
The data layer handles the classes and database models. This layer does not
include any logic, all it does is persist data or retrieve it from the database.

4.1.2 Business Layer
The business layer includes all of the logic involved with the application. It
can only access the data layer.

4.1.3 Presentation Layer
The presentation layer is the first interaction between the client and the server.
It is where the client requests a certain page and the server renders this page

16

4.2. Logical Architecture

with the necessary data. It can only access the business layer.

4.2 Logical Architecture

Figure 4.2: Logical Architecture

4.2.1 Data Layer
4.2.1.1 Models

The models are a class representation of database tables. A class mostly
includes defined fields as variables and may include some helper functions
with little to no logic.

4.2.2 Business Layer
4.2.2.1 Services

The services are classes that transform and send data to the data layer to be
persisted.

4.2.2.2 Selectors

The selectors are classes that retrieve data from the data layer. This data can
then be transformed if needed.

4.2.3 Presentation Layer
4.2.3.1 Views

It accepts web requests as a parameter and generates the needed response.

4.2.3.2 Static

Cascading Style Sheets (CSS) and JavaScript files.

17

4. System Architecture & Implementation

4.2.3.3 Templates

HTML files with specific Django template syntax.

4.3 Database Model

Figure 4.3: Database Model

The main table in the database model is the ’config student’, this is where
most of the student records would be added and maintained. Connected to
it is the table ’bank card’ where each bank card belongs to one student. The
bank card number would act as the student’s id. The reason for this is because
if a student had lost their card, the admin would be able to change the number
on the connected record while still maintaining the previous transactions per
user and without having unnecessary duplication.

The ’config student’ table has a many-to-many relation with the ’atten-
dance day’ through the ’attendance attendance’ table. This is where all of the

18

4.3. Database Model

attendance information is handled for the students. The ’attendance multiplier’
is a table which keeps records of the consecutive attendance per student for
each service.

The ’config servant’ table holds the teachers information and which teacher
is in charge of which student. While the ’config alumni’ table holds the infor-
mation of the graduated students from the organization.

The table ’config bonus’ holds just one record which is adjustable which
let’s the system know how much of the virtual currency should be given to each
student for each consecuitive attendance. The table ’attendnace startyear’
holds one record to help the system identify, which date was the beginning of
the organization’s calendar year.

19

Chapter 5
Testing & Documentation

With the significant advances in technology over the past decades, we can
safely say that we are dependent on software for our daily and professional
lives. The impact of a software failing can be catastrophic to a businesses or
even an individual. If a system is down, work cannot be achieved.

In a study quantifying the high economic impacts of an inadequate software
testing infrastructure [1], the e�ects noticed were failures in software due to
poor code quality, increased software development costs and increased time to
market.

Testing is the process of executing a program with the intent of finding
errors [2]. In this chapter we focus on the testing strategies used that increased
the code quality and the robustness of the application.

5.1 Testing Scenarios

Functional tests were created using both Django and Selenium frameworks
[3]. ’StaticLiveServerTestCase’ class was used as a base from the module
’django.contrib.staticfiles.testing’, this allows the class to launch a live HTTP
server in a separate thread, which allows for the integration with selenium to
test the website’s functionality.

21

5. Testing & Documentation

5.1.1 Examples

1 def t e s t u s e r s c a n l o g a t t e n d a n c e o n t h e g o (s e l f) :
2 # Al ice l o g s in to the web s i t e as admin
3 s e l f . browser . get (s e l f . l i v e s e r v e r u r l)
4
5 u s e r i nput : WebElement = s e l f . w a i t f o r (lambda : s e l f .

browser . f i n d e l e m e n t b y i d (’ id username ’))
6 pas s input : WebElement = s e l f . w a i t f o r (lambda : s e l f .

browser . f i n d e l e m e n t b y i d (’ id password ’))
7
8 u s e r i nput . send keys (’ admin ’)
9 pas s input . send keys (os . env i ron . get (’

DJANGO SUPERUSER PASSWORD’ , ’ admin ’))
10 pas s input . send keys (Keys .ENTER)
11
12 # a s s e r t A l i ce i s l o g ged in as admin
13 time . s l e e p (2)
14 s e l f . a s s e r t I n (’ Log Out ’ , s e l f . browser . page source)
15
16 # She opens the at tendance f o r Sunday School s e r v i c e

to s t a r t l o g g i n g s tuden t s
17 s e l f . w a i t f o r (lambda : s e l f . browser .

f i n d e l e m e n t b y l i n k t e x t (’ Attendance ’)) . c l i c k ()
18 s e l f . w a i t f o r (lambda : s e l f . browser .

f i n d e l e m e n t b y i d (’ i d sunday schoo l ’)) . submit ()
19
20 # Mark comes in and p l a c e s h i s ID on the RFID card

reader and h i s at tendance h i s counted
21 card input : WebElement = s e l f . w a i t f o r (lambda : s e l f .

browser . f i n d e l e m e n t b y i d (’ card number ’))
22 card input . send keys (s e l f . mark . card . number)
23 card input . send keys (Keys .ENTER)
24
25 # a s s e r t Mark ’ s at tendance i s recorded
26 time . s l e e p (2)
27 s e l f . a s s e r t I n (’ Attendance Count : 1 ’ , s e l f . browser .

page source)

Listing 5.1: Functional test to check students attendance on the go.

22

5.2. Unit Testing

5.2 Unit Testing

The application was written using Test Driven Development (TDD) [3]. The
strategy used was the red-green-refactor cycle. Red refers to the first imple-
mentation of a failing test, green indicates the need to write code that would
successfully pass the test and refactor when needed. This cycle improves the
code quality and productivity [4].

In a Microsoft case study, TDD was found to double the code quality while
increasing the time of writing tests by 15% [5].

5.2.1 Framework

A feature with Django is that through ’django.test.TestCase’ class, the unit
tests were run in their own environment with a specific test database that
would be generated when tests run and be destroyed once that tests are com-
plete.

This feature ensures that any database records that would be created,
would not alter the current database environment while also aiding with the
process of running the tests repeatedly without expecting any database related
issues that may arise due to duplication of records.

5.2.2 Test Results

1 Creat ing test database for a l ias ’ d e f a u l t ’ . . .
2 System check i d e n t i f i e d no i s s u e s (0 s i l e n c e d) .
3 .
4 ≠≠
5 Ran 42 t e s t s in 15 .929 s
6
7 OK
8 Destroying test database for a l ias ’ d e f a u l t ’ . . .

Listing 5.2: Test Results run on the terminal.

In total, 41 unit tests were created for models, services and selectors and
1 functional test was created for having attendance. All of the tests were
successful.

23

5. Testing & Documentation

5.2.3 Examples

1 class AttendanceTestCase (BaseTestCase) :
2
3 def t e s t add ing same s tudent to a t t endance
4 r e t u r n s i n t e g r i t y e r r o r (s e l f) :
5 AttendanceServ ice () . add attendance by card (card=

s e l f . card1 , f o r s und a y s c ho o l=True)
6 with s e l f . a s s e r t R a i s e s (I n t e g r i t y E r r o r) :
7 AttendanceServ ice () . add attendance by card (

card=s e l f . card1 , f o r s und a y s c ho o l=True)
8
9 def t e s t a d d i n g a t t e n d a n c e f o r s t u d e n t

10 i n c r e a s e s t h e i r m u l t i p l i e r (s e l f) :
11 AttendanceServ ice () . add attendance by card (card=

s e l f . card1 , f o r s und a y s c ho o l=True)
12 AttendanceServ ice () . add attendance by card (card=

s e l f . card1 , f o r b i b l e s t u d y=True)
13 AttendanceServ ice () . add attendance by card (card=

s e l f . card1)
14
15 m u l t i p l i e r = M u l t i p l i e r S e l e c t o r () . g e t m u l t i p l i e r

(student=s e l f . card1 . ho lder)
16 s e l f . a s s e r tEqua l (m u l t i p l i e r . sunday school , 1)
17 s e l f . a s s e r tEqua l (m u l t i p l i e r . b ib l e s tudy , 1)
18 s e l f . a s s e r tEqua l (m u l t i p l i e r . summer club , 1)
19
20 def t e s t money i s added as bonus
21 f o r a t t e n d a n c e w i t h c a r d (s e l f) :
22 AttendanceServ ice () . add attendance by card (s e l f .

card1 , f o r s und a y s c ho o l=True)
23 bonus = BonusSe lector () . get week ly bonus ()
24 s e l f . a s s e r tEqua l (s e l f . card1 . balance , bonus)
25
26 def te s t no money i s added when student
27 has attendance by name (s e l f) :
28 AttendanceServ ice () . add attendance by student (

s e l f . card1 . holder , f o r s und a y s c ho o l=True)
29 s e l f . a s s e r tEqua l (s e l f . card1 . balance , 0)

Listing 5.3: Attendance service unit tests.

24

5.2. Unit Testing

1 class CardTestCase (BaseTestCase) :
2
3 def t e s t c a r d n u m b e r i s n o t d u p l i c a t e i n d b (s e l f) :
4 CardService . c r e a t e c a r d (ho lder=s e l f . student ,

number=1234)
5 with s e l f . a s s e r t R a i s e s (I n t e g r i t y E r r o r) :
6 CardService . c r e a t e c a r d (ho lder=s e l f . student2

, number=1234)
7
8 def t e s t depos i t money works (s e l f) :
9 card = CardService () . c r e a t e c a r d (ho lder=s e l f .

student , number=1234)
10 CardService () . add money (card=card , amount=50)
11 s e l f . a s s e r tEqua l (card . balance , 50)
12
13 CardService () . add money (card=card , amount=50)
14 s e l f . a s s e r tEqua l (card . balance , 100)
15
16 def test withdraw money works (s e l f) :
17 card = CardService () . c r e a t e c a r d (ho lder=s e l f .

student , number=1234)
18 CardService () . add money (card=card , amount=50)
19 CardService () . take money (card=card , amount=20)
20
21 s e l f . a s s e r tEqua l (card . balance , 30)
22
23 def t e s t c a n n o t d e p o s i t i n d e c i m a l s (s e l f) :
24 card = CardService () . c r e a t e c a r d (ho lder=s e l f .

student , number=1234)
25 with s e l f . a s s e r tRa i s e sMessage (ValueError , ’

Cannot depo s i t in dec imals . ’) :
26 CardService () . deposit money (card=card ,

amount=9.7)
27
28 def t e s t c a n n o t d e p o s i t n e g a t i v e v a l u e s (s e l f) :
29 card = CardService () . c r e a t e c a r d (ho lder=s e l f .

student , number=1234)
30 with s e l f . a s s e r tRa i s e sMessage (Val idat ionError , ’

Negative va lue s are not accepted . ’) :
31 CardService () . deposit money (card=card ,

amount=≠20)

Listing 5.4: Card service unit tests.

25

5. Testing & Documentation

1 class BonusTestCase (BaseTestCase) :
2
3 def t e s t b o n u s i s c r e a t e d (s e l f) :
4 s e l f . a s se r tTrue (not BonusService () . r e c o r d e x i s t s

())
5 BonusService () . add bonus va lues (week=5, month

=10, quarte r =50)
6 s e l f . a s se r tTrue (BonusService () . r e c o r d e x i s t s ())
7
8 def t e s t b o n u s i s u p d a t e d (s e l f) :
9 BonusService () . add bonus va lues (week=5, month

=10, quarte r =50)
10 BonusService () . add bonus va lues (week=10, month

=20, quarte r =50)
11 weekly bonus = BonusSe lector () . get week ly bonus

()
12 s e l f . a s s e r tEqua l (weekly bonus , 10)
13
14 def

t e s t i n i t i a l b o n u s g e t s a d d e d i f n o r e c o r d e x i s t s
(s e l f) :

15 BonusService () . a d d b o n u s v a l u e s i f n o t e x i s t s (
week=5, month=10, quarte r =50)

16 weekly bonus = BonusSe lector () . get week ly bonus
()

17 s e l f . a s s e r tEqua l (weekly bonus , 5)
18
19 def t e s t i n i t i a l v a l u e s d o n o t c h a n g e e x i s t i n g o n e s (

s e l f) :
20 BonusService () . add bonus va lues (week=5, month

=10, quarte r =50)
21 BonusService () . a d d b o n u s v a l u e s i f n o t e x i s t s (

week=10, month=25, quarte r =50)
22 bonus = BonusSe lector () . g e t bonus va lue s ()
23 s e l f . a s se r tTrue (bonus .WEEK == 5 and bonus .MONTH

== 10 and bonus .QUARTER == 50)

Listing 5.5: Bonus service unit tests.

26

5.3. Continuous Integration

5.3 Continuous Integration
The application is run through docker. When running the docker-compose file
1 and building the application image, in the Dockerfile, python will run the
unit & functional tests after installing all dependencies. If any of the tests
fail, the application will not start.

FROM python :3.8 ≠ s l im

ARG APP

RUN mkdir ≠p $APP
WORKDIR $APP

ENV PYTHONDONTWRITEBYTECODE 1
ENV PYTHONUNBUFFERED 1

COPY . $APP
RUN pip3 i n s t a l l ≠r requi rements . txt && \

python3 manage . py c o l l e c t s t a t i c ≠≠noinput && \
python3 manage . py t e s t

EXPOSE 80
ENTRYPOINT \

[” / app/ deploy / docker /app/ docker≠ent rypo int . sh ”]

Listing 5.6: Dockerfile for building the application.

The application is then uploaded and installed on a remote server in GCP
using docker commands.

1I prepared this docker-compose file and is included in the discovery.

27

Chapter 6
Discussion

The application is currently deployed and running in production since early
October of 2021. There are 89 students enrolled to the system with over 500
attendance records by the time of writing this paper.

The feedback I received has been extremely positive and both the client
as well as the students are enjoying the interaction with the system. I have
managed to fulfil almost every requirement.

For future work, I plan on completing the missing requirements which are:

• Send a report after every attendance event.

• The system supports having di�erent types of bank cards.

• The students get their grade automatically updated after every year.

• Users who are no longer students can be saved on the system as Alumni.

I also plan on enhancing the UI to make it more interactive and user friendly.
The installation of the application in the server is a semi-automated step. I
plan on adding ansible playbooks that would automate for me the deploy-
ment aspect of the application and would automatically ship the code to my
compute instance in GCP and start the application.

29

Chapter 7
Conclusion

The aim of the thesis has been fulfilled successfully. I conducted a research
of the available competitors on the market. I analysed the requirements and
use cases for the system which helped me gain a deeper understanding of the
client’s needs.

I was able to build the system using a three layered architecture and have
a consistent coding style throughout the application. The application was
thoroughly tested using TDD principals and is deployed and running on a
compute instance in GCP.

The client has received the application and it is currently being used by
the organization where they have over 89 students enrolled.

31

Bibliography

[1] Planning, S. The economic impacts of inadequate infrastructure for soft-
ware testing. National Institute of Standards and Technology, 2002.

[2] Myers, G. J.; Sandler, C.; et al. The art of software testing. John Wiley &
Sons, 2011.

[3] Percival, H. Test-driven development with Python: obey the testing goat:
using Django, Selenium, and JavaScript. ”O’Reilly Media, Inc.”, 2014.

[4] Kumar, P. R.; Raju, G.; et al. An External Quality Supporting Test-
Driven Development of Web Service Choreographies. International Journal
of Computer Applications, volume 975, 2014: p. 8887.

[5] Bhat, T.; Nagappan, N. Evaluating the e�cacy of test-driven development:
industrial case studies. In Proceedings of the 2006 ACM/IEEE interna-
tional symposium on Empirical software engineering, 2006, pp. 356–363.

33

Appendix A
Acronyms

CRM Customer Relationship Management

SAAS Software as a service

UI User Interface

GCP Google Cloud Platform

TDD Test Driven Development

MVT Model-View-Template

HTML Hypertext Markup Language

CSS Cascading Style Sheets

35

Appendix B
Application Snapshots

Figure B.1: Admin dashboard where you can add or change any information
in the application.

37

B. Application Snapshots

Figure B.2: By placing the card number of a student, the admin is able to
view their balance and deposit/withdraw virtual currency.

Figure B.3: The admin is able to view the total money which all students
have combined.

38

Figure B.4: Attendance available for Sunday School service where the admin
can add the student’s card number or name.

39

Appendix C
Contents of enclosed CD

README.md..........................the file with application description
config.............................the config sub-application directory
deploy...............the directory with all deployment related material
requirements.txt.................file with all of python3 dependencies
yg system......................the yg system sub-application directory

settings.py..................... the settings file for the application
attendance....................the attendance sub-application directory
functional tests.......................directory with functional tests
scripts directory which includes all scripts used for the application
bank................................the bank sub-application directory
manage.py.......................................django executable file
static......................directory with all of the static files present
thesis-master................................the thesis text directory

thesis.pdf............................the thesis text in pdf format
latex-source-code.....................the thesis latex source code

41

	Introduction
	Aim of Bachelor Thesis
	Available Solutions
	Microsoft Excel
	Microsoft Dynamics

	Results

	Analysis
	Requirements
	Functional Requirements
	Non-functional Requirements

	Use Cases
	Actors
	Student Management
	Select Student
	Edit Details
	Register Student
	Assign Card

	Attendance
	Add Attendance

	Bank Management
	Student Profile
	Deposit
	Withdraw
	Total money in the bank

	System Architecture & Implementation
	Structure
	Data Layer
	Business Layer
	Presentation Layer

	Logical Architecture
	Data Layer
	Models

	Business Layer
	Services
	Selectors

	Presentation Layer
	Views
	Static
	Templates

	Database Model

	Testing & Documentation
	Testing Scenarios
	Examples

	Unit Testing
	Framework
	Test Results
	Examples

	Continuous Integration

	Discussion
	Conclusion
	Bibliography
	Acronyms
	Application Snapshots
	Contents of enclosed CD

