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January 3, 2023



Czech Technical University in Prague
Faculty of Information Technology
© 2023 Kostiantyn Romanov. All rights reserved.
This thesis is school work as defined by Copyright Act of the Czech Republic. It has been submitted at
Czech Technical University in Prague, Faculty of Information Technology. The thesis is protected by the
Copyright Act and its usage without author’s permission is prohibited (with exceptions defined by the
Copyright Act).

Citation of this thesis: Romanov Kostiantyn. Improving stock price prediction using media analysis.
Bachelor’s thesis. Czech Technical University in Prague, Faculty of Information Technology, 2023.



Contents

Acknowledgments vi

Declaration vii

Abstract viii

Abbreviations ix

Introduction 1
0.1 Goals of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
0.2 Structure of the thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1 Financial markets prediction: Background 3
1.1 Efficient Market Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Behavioral finance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.3 Adaptive Market Hypothesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Markets predictability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.5 Fundamental and technical analysis . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Investor sentiment 7
2.1 Investor sentiment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Approaches to sentiment measurement . . . . . . . . . . . . . . . . . . . . . . . . 7
2.3 Role of media in sentiment formation . . . . . . . . . . . . . . . . . . . . . . . . . 8

3 Sentiment analysis 9
3.1 Sentiment analysis tasks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
3.2 Traditional approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.3 Word embedding . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
3.4 Deep learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

4 Transformers 13
4.1 Encoder-Decoder architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.2 Attention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
4.3 Transformer architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.4 BERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
4.5 FinBERT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Time-series prediction 21
5.1 Statistical approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 Machine learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
5.3 Transformer-based approaches . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iii



iv Contents

6 The proposed model 23
6.1 Model’s input and data acquisition . . . . . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Task 1: sentiment extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
6.3 Task 2: time-series forecasting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
6.4 Implementation details . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

7 Experiments 35
7.1 Data analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
7.2 Hyperparameter tuning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Feature set analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

8 Conclusions 45
8.1 Achieved goals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
8.2 Suggestion for future research . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

A Usage instructions 47
A.1 Setting up the environment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.2 Running Scrapy spiders . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
A.3 Informer showcase . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

B Experiment results 49

Media contents 61



List of Figures

3.1 A simple RNN network unfolded through time . . . . . . . . . . . . . . . . . . . 11

4.1 An illustration of the self-attention process. Adapted from [47] . . . . . . . . . . 15
4.2 Query, key, value martices. Adapted from [47] . . . . . . . . . . . . . . . . . . . . 16
4.3 Typical transformer block. Adapted from [47] . . . . . . . . . . . . . . . . . . . . 17

6.1 The basics of the model architecture . . . . . . . . . . . . . . . . . . . . . . . . . 23
6.2 Process of sentiment scores calculation . . . . . . . . . . . . . . . . . . . . . . . . 27
6.3 Data split and moving window . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
6.4 Informer’s architecture and zero-mask . . . . . . . . . . . . . . . . . . . . . . . . 31

7.1 The development of the studied stock prices and a train/val/test split . . . . . . 36
7.2 Distribution of sentiment labels for general news and each ticker . . . . . . . . . 37

List of Tables

6.1 General market news: exemplar instances . . . . . . . . . . . . . . . . . . . . . . 24
6.2 Company-specific news: exemplar instances . . . . . . . . . . . . . . . . . . . . . 24
6.3 Company stock prices: exemplar instances . . . . . . . . . . . . . . . . . . . . . . 24
6.4 News headlines sentiment scores . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
6.5 An example of instances in the AAPL dataset . . . . . . . . . . . . . . . . . . . . 28
6.6 A list of produced features and their types . . . . . . . . . . . . . . . . . . . . . . 28
6.7 Informer’s parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

7.1 Number of gathered data instances per ticker before and after pre-processing . . 35
7.2 A list of hyperparameters used for model tuning and the best-performing combi-

nation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
7.3 Device specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
7.4 A list of tested feature sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
7.5 Feature set analysis, top-5 results for each prediction length . . . . . . . . . . . . 40
7.6 Top-5 best performing feature sets per ticker . . . . . . . . . . . . . . . . . . . . 43

B.1 Feature set analysis, prediction length 15 . . . . . . . . . . . . . . . . . . . . . . 50
B.2 Feature set analysis, prediction length 30 . . . . . . . . . . . . . . . . . . . . . . 51
B.3 Feature set analysis, prediction length 75 . . . . . . . . . . . . . . . . . . . . . . 52
B.4 Feature set analysis, average MSE values . . . . . . . . . . . . . . . . . . . . . . . 53

v



I express my gratitude to the supervisor of this thesis, Ing. Mgr.
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Abstract

Stock price prediction using media analysis has been an active area of research over the last
decades. Previous studies analyze the impact of media sentiment on a day-to-day scale, limited
by the problem of data availability. In this thesis, I opt to compile a dataset of stock prices and
news headlines to study the effect of news sentiment on an intraday scale, where it is hypothesized
to be most pronounced. I employ the recently emerged transformer architecture, showing great
potential for sequence processing tasks. The proposed model combines the FinBERT model for
sentiment classification with the Informer-based model for time-series prediction. This facilitates
the analysis of the predictive capabilities of the produced technical indicators and sentiment
features over various prediction windows. Although no significant impact of media sentiment
was found in a short-term prediction, supporting the claims of the effective market hypothesis,
a long-term prediction is shown to benefit from the addition of sentiment features.

Keywords natural language processing, news mining, sentiment analysis, stock price predic-
tion, time-series prediction, transformer

Abstrakt

Předpov́ıdáńı cen akcíı pomoćı mediálńı analýzy je v posledńıch desetilet́ıch aktivńı oblast́ı
výzkumu. Předchoźı studie analyzovaly vliv mediálńıho sentimentu v každodenńım měř́ıtku, byly
však omezeny problémem dostupnosti dat. V této práci jsem se rozhodl sestavit dataset o cenách
akcíı a novinových titulćıch, abych mohl studovat vliv zpravodajského sentimentu v mezidenńım
měř́ıtku, kde se podle předpokladu projevuje nejvýrazněji. Využ́ıvám nedávno vzniklou architek-
turu transformer̊u, která vykazuje velký potenciál pro úlohy zpracováńı sekvenćı. Navrhovaný
model kombinuje model FinBERT pro klasifikaci sentimentu s modelem založeným na Informeru
pro predikci časových řad. To usnadňuje analýzu predikčńıch schopnost́ı vytvořených tech-
nických indikátor̊u a př́ıznak̊u sentimentu v r̊uzných predikčńıch oknech. Ačkoli v krátkodobé
predikci nebyl zjǐstěn žádný významný vliv mediálńıho sentimentu, což podporuje tvrzeńı teorie
efektivńıch trh̊u, ukazuje se, že dlouhodobá predikce má z přidáńı př́ıznak̊u sentimentu prospěch.

Kĺıčová slova analýza sentimentu, dolováńı z novinek, predikce časových řad, předpověd’ ceny
akcíı, transformer, zpracováńı přirozeného jazyka
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Introduction

Never fall in love with a stock, because it will never love you back [1].

Stock price prediction has been an active topic in the scientific community for at least half a
century. Stock prices are often viewed as a leading indicator of economic conditions, so a better
understanding of the predictability of stock markets can help economists and policymakers make
more accurate predictions about the direction of the economy. Research on the predictability of
the stock market can help shed light on the efficiency of financial markets, which is the degree to
which prices reflect all available information. A more efficient market is less likely to be affected
by irrational behavior, which can lead to more stable prices and fewer opportunities for arbitrage.
Learning and modeling the complex processes that influence price formation can allow investors
to make more informed decisions and can potentially lead to better returns on their investments
and risk aversion.

The emergence and widespread popularity of the Internet since the mid-1990s has had a
major impact on financial markets and investment. The level of connectivity that the Internet
provided allowed investors to buy and sell securities easier, reducing the costs of trading and
increasing liquidity in the financial markets. The World Wide Web has made it much easier for
investors to access a wide range of information about potential investments, including financial
statements, news articles, and analysts’ reports. The widespread access to media allowed for
greater transparency and significantly increased the information flow actively influencing the
investor sentiment.

Studying media sentiment when predicting stock market movements can be useful because it
can help incorporate important external factors that can affect stock prices into the prediction
process. Research into the extent to which media sentiment can improve stock price prediction
has been lively in recent decades, with a myriad of methods for sentiment analysis developed.
Sentiment analysis deals with extracting and classifying sentiment from textual data, such as a
tweet or a news article, to quantify it and enable studying of its effects. As investors are prone
to biases and reactive behavior influenced by information they gather through the news, using
sentiment analysis for stock price prediction can be beneficial and deserves further analysis.

However, both sentiment analysis and time-series forecasting require the processing of inher-
ently sequential data, where past information has a profound impact on the current state, which
was found to be challenging to solve with existing methods. Additionally, the low availability
of publicly accessible data on financial media articles and stock prices on an intraday scale has
presented obstacles to research in the area.

In this paper, I attempt to address the mentioned problems and study the effect of media
sentiment on stock price predictability. My motivation is recent significant advances in the area
of natural language processing, namely the introduction of transformer architecture. It allows
for a much more sophisticated language representation and, therefore, a higher quality sentiment
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2 Introduction

extraction. It has also been successfully applied in time-series forecasting domain, showing a
great potential to move forward the research into the stock price prediction using sentiment
analysis.

0.1 Goals of the thesis
The aim of the thesis is to propose a model for stock price development prediction utilizing media
sentiment analysis and determine whether sentiment information improves prediction quality.
The goals can be listed as follows:

1. Describe the theoretical background for the stock market forecast. Characterize the issue
from the point of view of the effective market hypothesis and behavioral finance.

2. Explain how and why sentiment analysis can be beneficial for stock price prediction. Deter-
mine which media are relevant to investors. Provide a historical review of sentiment analysis
techniques and list previous research that has focused on the matter.

3. Provide a review of methods applied in stock price prediction.

4. Propose a model for the prediction of stock price development, incorporating media sentiment
analysis. Explore the possibility of using sentiment analysis in combination with technical
analysis to improve results.

5. Implement software tools that perform media scraping and analysis to predict stock price
developments based on the proposed model. Consider using media databases.

6. Based on the outcomes achieved, examine whether it is possible to use media information to
improve the quality of prediction of stock price development for selected companies.

0.2 Structure of the thesis
The thesis is structured as follows. Firstly, I lay out the theoretical foundation for financial
markets predictability in Chapter 1. I describe several approaches to explain market efficiency
and present methods for stock price development analysis. I define the concept of investor
sentiment, list approaches to its measurement, and the role of media its formation in Chapter
2. Then, I introduce the text classification pipeline and discuss the historical approaches to
sentiment extraction and their limitations in Chapter 3. I present the transformer architecture
and why it is suitable for sequence transduction tasks in Chapter 4. I give a brief overview of the
history of time-series forecasting in Chapter 5. Then, I propose a model for stock price prediction
on an intraday scale using media analysis based on the transformer architecture in Chapter 6.
I evaluate the model on the stock prices of selected companies in Chapter 7 and analyze the
benefits of using media sentiment for the stock price forecast. Finally, I conclude this paper in
Chapter 8, where I discuss the fulfilment of the goals of the thesis and propose areas for future
research.



Chapter 1

Financial markets prediction:
Background

Just because water likes to find its own level does not mean that the ocean is flat [2].

This paper attempts to answer the question of whether media information, available to investors,
can be used to improve the quality of stock market prediction through the application of modeling
methods and artificial intelligence. This is an interdisciplinary problem that connects the fields
of linguistics (extracting information from unstructured text sources), machine learning (pro-
viding computational methods for analysis and modeling), and behavioral finance (interpreting
information within economic theory). In this chapter, I will describe the economic background
for market prediction and theoretical approaches to tackle the problem.

1.1 Efficient Market Hypothesis
The behavior of financial markets is commonly explained by the efficient market hypothesis.
Originally introduced by Farma [3], it states that a security’s price development can be charac-
terized as a random walk, meaning that an individual price change is independent and markets
are, therefore, completely random and unpredictable or information efficient. This means that
regular investments with a return rate exceeding that of a market average are impossible, making
the unsophisticated ”buy and hold” strategy the most viable. This would render any kind of
market analysis useless, as all information available at a given moment is reflected in the share
price and the past history of the price development cannot be used to forecast the future.

Empirical evidence, however, suggests that the theory does not always hold, as price changes
shall not be strictly independent. Recognizing this fact, Farma introduces various levels of
market efficiency in a later paper [4]. Depending on information availability, markets may be
more strongly or weakly efficient: lack of public access to relevant market information, as well as
insider trading, would reduce the efficiency. Therefore, the EMH is more applicable in markets
with free flow of information, which is not always achievable in practice.

1.2 Behavioral finance
The EMH is based on the notion of an effective arbitrage mechanism, which means that if a
security price fails to incorporate relevant information, a significant incentive is created to trade
on this information. A strong version of the EMH considers the market adjustment to be near

3



4 Financial markets prediction: Background

instantaneous. Studies on the matter, however, show this to be a continuous process of various
speed and accuracy [5].

Behavioral finance describes this phenomenon as a result of market agents not being fully
rational. Investors are susceptible to various forms of psychological biases, such as rationalization,
self-attribution, hindsight bias, confirmatory bias, etc. [6] The theory considers the price of the
security to be a purely perceived value, and as a result, price discovery is a never-ending process,
and the current price can be at best considered a flawed proxy for the intrinsic value of a security
[2]. This finding has put an end to the notion of an a priori efficient market.

The theory of investor sentiment establishes the link between investor attitude towards mar-
kets (optimistic or pessimistic) and their behavior. Taking into consideration the impact of
market agents’ irrationality on price formations, a greater role has been attributed to the media.
Actively effecting investors’ attitude, it not only reports, but also has a significant impact on
market dynamics.

1.3 Adaptive Market Hypothesis
The relevant critique of EMH by proponents of behavioral finance theory prompted a lively
discussion in the research community. Many articles have been dedicated to argue the extent
to which financial markets can be considered effective [7]. The introduction of the adaptive
market hypothesis managed to reconcile the community, leading to a compromise [8]. The theory
applies the principles of evolution, competition, and adaptation to financial markets, implying
that the degree of market efficiency is related to the number of competitors in the market, their
adaptability, and available opportunities for profit. Decision biases attributed by behaviorists
to irrationality are, in fact, consistent with an evolutionary model of individuals adapting to a
changing environment through basic heuristics [8]. Therefore, the AMH creates a theoretical
framework, where classical models of financial economics can co-exist with behavioral finance.

Urquhart and McGroarty [9] have conducted an extensive investigation of the Adaptive Mar-
ket Hypothesis. Their study examines the stock return predictability in the S&P500, FTSE100,
NIKKEI225 and EURO STOXX 50 and attempts to establish the relationship between the level
of returns predictability and market conditions. The results show that returns go through peri-
ods of dependence and independence, consistent with the AMH. Overall, it argues for adaptive
markets providing a more suitable description of stock returns behavior than the EMH.

1.4 Markets predictability
The most important implication of the points mentioned above is that the predictability of
financial markets is theoretically substantiated and practically evident in available research.
The degree to which financial markets are predictable generally depends on the efficiency of
information absorption. Emerging markets, such as those in Southeast Asia or Africa, have been
shown to express weak-form efficiency, in contrast to markets in developed economies [10, 11].
Studies also indicated that short-term variants of technical trading rules have better predictive
capacity than long-term variants [11].

1.5 Fundamental and technical analysis
Regardless of the degree to which one believes that financial markets can be predicted, it has
generally been established that market analysis can be beneficial to deepen the understanding
of various market dynamics and their causes. Broadly speaking, numerous approaches at at-
tempting to model market behavior can be generalized into two camps: those of technical and
fundamental analysis.



Fundamental and technical analysis 5

Technical analysis is the process of analyzing a security’s past prices in an attempt to deter-
mine its future value. The rationale for technical analysis lies in the belief that market movements
tend to repeat themselves, that the future can be found in the past [12]. Technical analysts dis-
cover visual patterns and repetitions of graph movements utilizing mathematical modeling and
numerous pattern recognition techniques. The uncovered regularities in market development are
typically named and serve as the foundation for technical predictive methodology.

Common techniques include the application of various graph overlays, such as moving average
rules, Bollinger bands, support and resistance price levels, etc. Analysts use relative strength
rules, filter rules, and trading range breakout rules [13]. In statistical analysis, a variety of
autoregressive modeling methods are employed [14]. Recent advances in artificial intelligence
have stimulated research on the application of machine learning-based models.

The simplicity and straightforwardness of this approach to market forecasting have ensured
its wide popularity among market participants. However, the research community has shown
more caution in recognizing its effectiveness. Numerous studies attempted to test the theory in
practice, reaching mixed results, putting the predictive power of such methods in question [11].
One of the main drawbacks of technical analysis is that it does not concern itself with uncovering
the root causes of the established patterns, stating nothing more than that the patterns exist.

While technical approaches are hardly capable of identifying the reasons behind market be-
havior, it is the primary task of their main alternative, fundamental analysis. Fundamentalists’
goal is to determine factors relevant to uncovering the intrinsic value of a given security. Trading
strategies are then developed depending on how the fundamental evaluation compares to the
market price.

The data considered to be required for the successful valuation of a security can be wide-
ranging. In evaluating a stock price, company-specific information such as changes in inventories,
gross margins, selling expenses, etc. might prove relevant [15]. Similarly, one could analyze
general economic performance, market indices, data concerning government activities, monetary
policy, effective tax rates, as well as labor force productivity, all of which might have an effect
on intrinsic value not yet incorporated into the market price [16].

Methods for fundamental analysis can be generalized into quantitative and qualitative. The
former focuses on analyzing the financial statements to make investment decisions. Such state-
ments include balance sheets, income statements, as well as cash flow statements. Qualitative
analysis tries to evaluate competitive advantage, management strategies, and business model, as
well as the prospects of relevant industries [17].

Some studies managed to form a portfolio based on fundamental factors, claiming to have
shown abnormal return rates [15]. The benefit of fundamental analysis has also been attributed
to the success of short-sellers [18]. Nevertheless, a significant problem of fundamental analysis is
that it is highly challenging to generalize the process of determining the factors relevant to the
specific security’s value. Hence, such methods were rarely successfully automated [16].

It has been common for market participants to resort to both technical and fundamental
approaches to market analysis. Multiple researchers have supported the idea that utilization of
both investment techniques would lead to more successful investing decisions for traders, proving
the complementary nature of fundamental and technical analysis [1]. Fundamental data, however,
is often relayed in an unstructured, textual form, remaining to be a challenge to make the best
use of it efficiently through computing. While mathematical and statistical methods are well
capable of modeling dependencies within numerical data, extracting meaning from unstructured
text is no trivial task.
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Chapter 2

Investor sentiment

Animal spirits [19].

The previous chapter laid out the theoretical foundation for financial markets prediction. Both
technical and fundamental analysts base their approaches on the irrational nature of investors’
decision-making. In this chapter, I will explore how researchers define this irrationality, what
are the approaches to its measurement, and what it is influenced by.

2.1 Investor sentiment
Investor sentiment can be described as one’s belief about future market developments, cash
flows, and investment risks, not necessarily backed by the facts at hand. The general attitude of
investors towards a particular market is referred to as market sentiment. It is commonly assumed
that rising prices indicate a ”bullish” investor sentiment, while falling prices, to the contrary, a
”bearish” one. Popular among average investors, this idea has not been consistently supported
by research on the matter, trying to uncover the complex relationship of investor opinion and
market behavior [16].

To explain the influence that investor sentiment has on stock market developments, re-
searchers turn to behavioral finance. Some have made an assumption that it is costly and
risky to bet against predominant sentimental investors. As a result, arbitrage forces generated
by rational investors are not as impactful in pushing prices to their fundamental values, as EMH
would suggest [20]. The assumption can be supported by events in recent stock market history,
such as the dot-com bubble in the late 1990s and the US housing bubble of 2007-2008.

2.2 Approaches to sentiment measurement
Having firmly established that investor sentiment has a measurable impact on the stock market,
it remains a challenge to accurately measure and quantify this effect. The widespread approach
is to compile investor sentiment indices through the use of sentiment proxies. Such proxies can
be divided into direct and indirect, depending on the calculation and data source.

Direct proxies include investor surveys and questioners. Multiple studies attempted to predict
the stock market based on investors’ own opinion, with mixed results [21]. Consumer Confidence
Index, even though not directly related to prices of securities, has shown some correlation with
small stock returns as well [22].

Indirect proxies use the corresponding objective data already available in the financial markets
and elsewhere. One such proxy is data on retail investor trades, as unprofessional and younger
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8 Investor sentiment

investors are more susceptible to be subject to sentiment [23]. Trading volume, or liquidity in
general, can also be viewed as a proxy. It has been shown that optimistic investors are more
likely to trade, thus adding liquidity [24]. Some papers have also attempted to connect stock
prices to changes in human emotions. For example, market returns have been shown to be lower
in the fall and winter, which has been attributed to the seasonal affective disorder [25]. Losses in
the international major football matches have also been associated with poor next-day returns
in the losing country [26].

None of the proxies are, however, without a flaw. Some of them contain idiosyncratic compo-
nents that have no relation to investor sentiment [20]. Some are additionally reflecting economic
fundamentals to a certain extent. Another significant drawback is data availability: much of
the data required to comprise a sentiment index is either lacking or not granular enough for
short-term forecast, where sentiment effect has been shown to be most pronounced 1.4.

2.3 Role of media in sentiment formation
The role of media in the process of market adjustment has always been undeniable: in the end,
the free flow of information is a requirement for market efficiency. However, the appearance and
accessibility of the Internet have arguably multiplied the impact of media on market behavior.
Investors are now able to receive the latest news about price developments almost instantly, they
share their sentiment on multiple social media platforms, they communicate freely, influencing
each other’s opinion. So, how does the media affect investor sentiment?

The impact of media on investors’ decision-making has been a hot topic among researchers for
at least the past two decades. Antweiler and Frank [27] classified chat room messages as ”buy”,
”hold”, or ”sell” signals. They indicated the existence of a relation between message activity and
return volatility, although no statistically significant effect on stock returns was found. Tetlock
[28] studied the interactions between the media and the stock market using a Wall Street Journal
column. He found that high media pessimism predicts a decrease in market prices with a later
reversion to fundamentals.

Financial news can potentially serve as a proxy for investor sentiment, as investors may react
to new information reported in the news. For example, if a company announces positive earnings
or a new product launch, investors may become more optimistic about the company’s prospects
and be more likely to buy its stock. On the other hand, if a company announces negative
earnings or is facing legal or regulatory issues, investors may become more cautious and less
likely to buy its stock. Multiple studies have looked at the impact of financial news on stock
prices with inconsistent results. Schumaker et al. [29] built a financial news article prediction
system that extracts the author’s tone from news articles. They discovered that market traders
tend to behave in a contrarian manner, e.g., see good news, sell; see bad news, buy. Khan et.
al. [30] used classification algorithms on social media and financial news data and discovered
their beneficial impact on stock price prediction accuracy. To the contrary, a study by Thomas
Renault [31] has concluded that while investor sentiment and stock returns are highly correlated,
investor sentiment derived from messages sent on social media was not found to help in predicting
large capitalization stocks return at a daily frequency.

Media information is typically available in the form of unstructured textual data, which is
notoriously difficult to analyze. However, recent advances in NLP caused a wave of research on
the impact of media on the stock market. In the next chapter, I will discuss the methods for
information extraction from textual sources and how they can be applied to the stock market.



Chapter 3

Sentiment analysis

You shall know a word by the company it keeps [32].

Natural language processing is an area of research that explores how computational power can be
utilized to understand and manipulate text and speech. NLP researchers attempt to gain insight
into how human beings understand and use language to develop methods that allow computer
systems to understand and manipulate natural language to perform various tasks. NLP has
its foundation in such disciplines as linguistics, psychology, mathematics, artificial intelligence,
etc. Its typical applications include machine translation, text processing and summarization,
cross-language information retrieval, speech recognition, etc. [33]

Another popular application of NLP is sentiment analysis, also sometimes referred to as
opinion mining. Sentiment analysis is the computational study of people’s opinions, emotions,
and attitudes towards a certain entity or topic preserved in text. Sentiment classification methods
typically label a document associated with an opinion as positive or negative.

In the last decades there has been a boom in the research into sentiment analysis techniques,
as huge amounts of textual data became more and more available thought social media and news
platforms. Large volumes of digitized opinionated data is shared online on the Internet in forms
of tweets, comments, reviews, discussions, blogs, news feeds, etc. The analysis of this data has
proved useful and spread from computer science to marketing, finance, political science, health,
and communications.

3.1 Sentiment analysis tasks
The common way to study sentiment analysis is on three levels of granularity: document, sen-
tence, and aspect level.

Document-level sentiment classification analyses and classifies a document imbued with an
opinion as overall positive or negative. Examples of such documents are product reviews, cus-
tomer complaints, or financial reports. This type of analysis considers the document as a whole
expressing an attitude towards a single known entity from a single opinion holder [34].

Sentence-level sentiment analysis categorizes individual sentences in a document. It is very
similar to document analysis, as a sentence can be considered a short document. Unlike a
document, thought, which is considered to express an opinion, not every sentence has to be
opinionated. Determining whether or not a sentence expresses an attitude is called subjectivity
classification. Then the resulting opinionated sentences are again categorized by sentiment po-
larity. Thus, sentence level analysis can by considered a three-class classification problem, with
negative, neutral, and positive classes [35].

9
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Compared with the previous two, aspect (or aspect-based) sentiment analysis is more fine-
grained. It attempts to extract and summarize individuals’ opinions on a certain entity and
aspects of such entity, also referred to as targets. For example, in a movie review, it aims to
gather positive and negative attitudes towards different features of the movie, although the over-
all sentiment could be positive or negative. Therefore, aspect level sentiment analysis could be
divided into subtasks such as aspect extraction, entity extraction, and aspect sentiment classifi-
cation [34].

Other sentiment analysis tasks include emotion analysis, where the focus is on extracting
expressed emotions, such as joy or anger, rather than positive or negative sentiment. Sarcasm
detection has also been an important but challenging aspect of sentiment analysis. Much research
has been aimed at multilingual sentiment analysis problems etc. [35]

In the next section, I will briefly describe the traditional approaches to sentiment analysis
and then go into more details on the latest developments in the field.

3.2 Traditional approaches
Sentiment analysis is a subtask of text classification, which can be defined as follows. The input
pipeline is comprised of some raw textual dataset, where each instance is a document, paragraph,
or sentence. Each instance is then processed by the selected algorithm and classified into one of
the sentiment classes studied. The typical text classification pipeline includes text preprocessing,
feature extraction, optional dimensionality reduction, classification, and evaluation.

The original form of natural language is not suitable for serving as input for computational
models. It contains many unnecessary words, misspellings, slang, etc. In most algorithms,
unnecessary features and noise can have a negative effect on performance. Therefore, a number
of text preprocessing methods are utilized to clean up text data sets, allowing for a more efficient
text featurization [36]. These methods include tokenization, stop words removal, capitalization
removal, spelling correction, stemming, and lemmatization, etc. It is worth noting that different
preprocessing steps are required by different algorithms and their use is not always beneficial.

Feature extraction is the process of transforming preprocessed textual data into numerical
features that can be processed by the algorithms. A number of feature extraction and repre-
sentation techniques were introduced in an attempt to preserve the document’s meaning and
focus. Most notable include n-gram modeling, bag-of-words document representation, and Term
Frequency-Inverse Document Frequency. BoW models in particular encode each word in a vo-
cabulary as a one-hot-encoded vector, and a document vector is then formed as a sum of word
vectors.

The created feature representations are then processed using classification algorithms. Naive
Bayes Classifier, K-Nearest Neighbors, Support Vector Machine are among the most popular in
the research community and have been widely applied to the problem of sentiment classification
[36].

The feature representations discussed inevitably lead to high-dimensional vector models with
an increase in vocabulary size. Sparse document representations are highly difficult to model with
increasing time complexity and memory consumption. It is also challenging for computational
models to extract meaningful dependencies from a large representational space.

3.3 Word embedding
The limitations of previous approaches to word representation motivated further research in
distributional semantics. Following the principle that linguistic items with similar distributions
tend to have similar meanings, Begio et al. [37] investigated the possibility of distributed rep-
resentation of words. Such representations, also called word embeddings, attempt to capture
the characteristics of the word’s immediate context. It commonly involves the transformation of
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words in a vocabulary to a vector of real numbers: the original high-dimensional vector space
(e.g., one-hot encoding) is embedded in a lower-dimensional dense vector space. Therefore, word
embedding is a vector of real numbers, where each dimension represents the latent feature of a
word.

A surprising characteristic of such word representations is the explicitly encoded patterns
and similarities in language, many of which can be expressed as linear translations [38]. As an
example, adding word vectors for “man” and “royal”, would result in a vector for a semantic
composite of the words – “king”.

Word embeddings are commonly learned using a shallow neural network, as in a word2vec
system, introduced by Mikolov et al. [38] They proposed Continuous Bag-of-Words and skip-gram
language models. The first one strives to predict a word based on the embedding of neighboring
words, while the other one predicts the surrounding context based on the embedding of the
current word. Global Vectors for Word Representation is another popular approach [39]. The
model utilizes global matrix factorization and local context window methods and is trained only
on nonzero elements in the word-word co-occurrence matrix.

Dimensionality reduction, as well as the aforementioned properties of word embeddings, pro-
pelled their popularity and caused the emergence of novel methods for sentiment analysis, in
particular using deep neural networks.

3.4 Deep learning

Basic deep neural networks are formed of multiple layers consisting of nodes (neurons) that every
single layer only receives information from the previous layer and provides it to the next one. The
input layer constructed by the feature extraction method connects the input feature space with
the first hidden layer. The number of nodes in the output layer is equal to the number of classes
in a multiclass classification and only one for binary classification. The neural network is trained
using a backpropagation algorithm, common choices of an activation function are sigmoid, ReLU,
and tanh. A Softmax function is used for the output layer in multiclass classification.

Deep learning has been widely used in various NLP applications. Most popular models include
Convolutional, Recursive, and Recurrent Neural Networks. I will focus on the latter one, as its
architecture is naturally suited for token-level sequential labeling tasks.

Figure 3.1 A simple RNN network unfolded through time
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3.4.1 RNN
The recurrent neural network models units in sequence, utilizing the memory of the previous
unit when moving to the next. This is especially useful in NLP applications, where units are
symbols, words, or whole sentences. Sequential processing of words in a sentence allows RNNs
to capture a wider range of semantic information, as previous words have an impact on the
meaning of the following (“dog” vs. “hot dog”). Such networks can take a variable-length input.
These characteristics make RNNs in combination with word embeddings a very powerful tool for
modeling complex language representations [40].

A basic RNN architecture is shown in Figure 3.1 unfolded through time to better illustrate
the process of “remembering”. In the figure, xt represents the input to the RNN at time step t
and ht is the hidden state at the same step. The number of steps is given by the input length.
ht is calculated as follows:

ht = f(Uxt + Wht−1) (3.1)

Therefore, ht incorporates information regarding the current input, as well as the hidden
state of the previous time step. The function f is an activation function and U , V , W account
for weights that are shared over time. The hidden state of the RNN accumulates the information
from previous states, serving as the network’s memory cell.

Theoretically, RNNs should be capable of taking input of unlimited length, in practice, how-
ever, such networks can only use information from a few time steps back. Otherwise, they are
susceptible to the problems of vanishing or exploding gradients [41].

3.4.2 LSTM
The long-short-term memory network is a type of RNN, which can learn long-term dependencies,
solving the problem of the vanishing gradient. LSTM employs additional gates: input, forget
and output gates, to regulate what information is allowed to pass into further states.

3.4.3 Bidirectional RNN
Traditional RNNs often face the problem of bias towards previous words, when in language later
words may be more influential. Addressing this problem is a bidirectional RNN, which looks at
both the left and right context [42]. Bidirectional RNN is comprised of two RNNs, stacked on
top of one another: the first is processing input in original order, the second in reverse order.
The calculation of output is performed on the basis of the hidden states of both RNNs.

3.4.4 Limitations
RNNs have achieved great success in sequential data processing. They are, however, held back
by several limitations. Although the problems of the vanishing and exploding gradient have been
mitigated by more complex models, other are inherently intertwined with the prime strengths
of the networks. Naturally suited for sequential processing, RNNs require the previous state to
compute the current one. This makes it impossible to parallelize the network training process,
making it computationally heavy, slow, and complex.

Word embeddings, commonly used as input to neural networks, are also bound by drawbacks.
The main one is their inability to represent multiple meanings of a single word, or properly
capture the context to represent multi-word phrases.

In the next section, I will discuss the Transformer model, which aims to solve these problems.



Chapter 4

Transformers

Attention is all you need [43].

The limitations of RNN apply generally to the sequence-to-sequence models and prompted further
research in the area. The recent transformer network, based on the encoder-decoder architecture,
drops the recurrence completely and instead relies entirely on the mechanism of attention. In
this chapter, I will discuss the concepts which led to appearance of transformers, explain the
architecture of the model, and how it can be applied to NLP tasks including sentiment analysis
in the financial domain.

4.1 Encoder-Decoder architecture
The encoder-decoder architecture lies at the core of all successful RNN models for sequence trans-
duction problems, particularly machine translation. The encoder processes the variable-length
input (source sentence) and constructs a fixed-length internal feature representation. Depending
on this representation, the decoder then generates a variable length output (target sentence) [44].

The encoder is an RNN that processes each symbol of the input sequence sequentially, up-
dating the hidden states with each new symbol read. After reading the end of the sequence, the
hidden state of the RNN is a representation of the whole input sequence.

The decoder is another RNN that is trained to generate the output sequence by predicting the
next symbol given the current hidden state. This hidden state is calculated based on the output
so far, previous hidden state of the decoder, and on the representation of the input sequence [45].

The encoder and the decoder are two separate units, which means that they could be trained
to best perform their respective task. This architecture with various improvements became a
popular approach to solving problems like automatic translation, text summarization, and speech
recognition. One possible way to improve the performance of the architecture is the introduction
of an attention mechanism.

4.2 Attention
One of the problems of the traditional encoder-decoder model is that the encoder treats every
piece of information equally, even though not all of it might be relevant to the task. This problem
is especially pronounced in the cases of long and information-rich input. An intuitive example
is the summarization problem. It is unrealistic to expect a fixed-size vector to preserve all the
information in a text input, which length is potentially very long [46].

13
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In most sequence-to-sequence tasks, a certain relation exists between the input sequence and
the output, meaning that each token generation step is in some way related to a particular part of
the input. This assumption is the motivation behind attention mechanism. Attention attempts
to resolve the problem by allowing the decoder to refer back to a specific part of the input text.
Specifically, during the decoding process, the decoder is conditioned on the last hidden state, the
output generated so far, and a ”context” vector dependent on the input hidden states.

With an attention mechanism, the encoder no longer encodes the full input into a fixed-size
vector. Instead, the decoder is allowed to ”attend” to different parts of the source text at each
step of the output generation. Each decoder output word now depends on a weighted combination
of all the input hidden states, not just the last one. These weights are fully learned by the model
in the training process. Additionally, they are typically normalized to form a distribution over
the input states.

The attention mechanism proved to be a highly beneficial modification to existing models
across multiple domains. As researchers focused more on its applications, a new architecture was
introduced to maximize its benefits.

4.3 Transformer architecture
The transformer architecture was introduced in a paper by Vaswani et al. [43] The main con-
tribution of the paper is the decision to rid of recurrence units entirely, instead relying fully
on an attention mechanism to model dependencies between input and output. This allows for
parallelization of much of computation required to train the model, eliminating one of the most
significant drawbacks of RNNs. The transformer network introduced in the paper follows the
typical encoder-decoder structure. Both an encoder and a decoder contain a stack of two core
blocks: an attention block and a feed-forward network. I will first explain the details of an
attention mechanism.

4.3.1 Self-Attention
Self-attention is the fundamental operation of a transformer. It is a sequence-to-sequence opera-
tion: a sequence of vectors x1, x2, ..., xL is taken as input and a sequence of vectors y1, y2, ..., yL

is produced as output. All vectors have dimension d, which I will refer to as a model dimension.
To produce an output vector yi, the self-attention takes a weighted average over all input vectors,
the simplest option being a dot-product:

yt =
L∑

j=1
wijxj , (4.1)

where wij = exp(w′
ij)∑L

l=1 exp(w′
il)

= softmax(w′
ij), (4.2)

w′
ij = xix

T
j . (4.3)

This is the only operation in the transformer architecture that propagates information be-
tween input vectors.

The vector xi is a learned embedding vector for ith word in the input sequence. Since the
embeddings are learned, the relation between two given words is completely dependent on the
task. To provide a general example, the definite article the is not typically relevant to the
interpretation of words in a sentence, therefore its embedding is likely to have low or negative
dot product with other words. On the contrary, interpreting the meaning of the word come is
heavily dependent on the nouns in a sentence as well as the prepositions that potentially follow
it, so it is likely to have high dot-products with words like student or across.
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Figure 4.1 An illustration of the self-attention process. Adapted from [47]

4.3.1.1 Queries, Keys and Values
The mechanism of self-attention, as described above, is entirely parameterless (not considering
the embedding layer). To give the self-attention layer some controllable parameters, the concepts
of queries, keys and values are introduced. Each vector xi from the input sequence is used in
three different contexts:

1. It is a part of the computation for its own output yi

2. It is a part of the computation for the output of every jth output yj

3. It is a part of the weighted sum to compute yj once the weights have been established.

The roles xi plays in these contexts are referred to as query, key and value respectively. To
perform the roles, new vectors are derived from xi applying linear transformations, as follows:

qi = Wqxi, ki = Wkxi, vi = Wvxi (4.4)

w′
ij = qik

T
j , (4.5)

wij = softmax(w′
ij), (4.6)

yt =
L∑

j=1
wijvj , (4.7)

where Wq, Wk, Wv are d × d matrices of learned parameters. The transformations are
illustrated in Figure 4.2.

4.3.1.2 Dot product scaled
The average value of the dot product increases with the embedding dimension d. The softmax
function proved to be sensitive to large inputs, negatively impacting the learning process [43].
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Figure 4.2 Query, key, value martices. Adapted from [47]

To mitigate this effect, the dot product is scaled by the amount that the increase in dimension
increases the average length of vectors:

w′
ij =

qik
T
j√
d

(4.8)

Hence, the whole self-attention operation can be derived as follows:

A(Q, K, V ) = softmax(QKT

√
d

)V, (4.9)

where Q ∈ RLQ×d, K ∈ RLK×d, V ∈ RLV ×d are matrices of query, key and value vectors
respectively.

4.3.1.3 Multi-head attention
Up to this point the self-attention mechanism fails to account for the fact that a word might
have various meanings. To address this issue, several self-attention blocks can be combined, each
with different matrices W r

q , W r
k , W r

v . These blocks are referred to as attention heads.
Given an input xi each attention head computes a different vector yr

i . These are later con-
catenated and subjected to a linear transformation with learned weights to reduce the dimension
back to d.

4.3.2 Transformer block
The transformer networks typically consist of a number of the so-called transformer blocks stacked
together. A generic transformer block can be seen in Figure 4.3. It contains, in sequence, a self-
attention layer, layer normalization, a position-wise fully-connected feed-forward layer, meaning
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Figure 4.3 Typical transformer block. Adapted from [47]

that it is applied to each input vector separately and identically, and another layer normalization.
Residual connections are added around both layers before normalization. Performing normaliza-
tion and residual connections has been shown to significantly improve the accuracy of the model
[48].

4.3.2.1 Input
As I have mentioned above, the sequential inputs of the model first go through a learned em-
bedding layer. Word embeddings are used to represent the words. However, until now, the
whole network has been permutation-invariant, which is not an intuitive choice when dealing
with sequential information. Information about the position of words in a sentence needs to be
passed to the network. This is achieved by producing another vector that incorporates positional
information and adding it to the word embedding vector. There are commonly two approaches
to this:

The learned positional embeddings are an equivalent of word embeddings but trained to
represent position in a sentence. The main drawback of using positional embeddings is the
fact that sequences of all expected length must be seen during training, otherwise the relevant
embeddings simply do not get trained.

Positional encoding is a certain function that assigns positions to real number vectors used
instead of learned embeddings. The benefit of such approach is that the choice of a well-suited
function enables the networks to deal with sequences longer than those seen during training.
The choice of the function is a complicated hyperparameter.

4.3.2.2 Output: classification
Transformers are inherently sequence transduction models, which means that they output an-
other sequence. The common technique to perform classification with such models is applying
global average pooling to the output sequence. Then the produced vector is mapped to the class
vector and the softmax function is applied to get the probabilities.
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4.3.2.3 Output: auto-regression
Transformers may also be used as autoregressive models. I will consider a task of predicting
the next character at each point in a sequence as an example. The target output is the input
sequence shifted one symbol to the left. Given a transformer described above, the task is trivial:
as the output depends on the entire input sequence, predicting the next character requires simply
retrieving it from the input.

Using the self-attention mechanism as an autoregressive model requires preventing leftward
information flow up to and including current position. This can be achieved by applying a mask
to the matrix of dot products, before applying the softmax function. Illegal connections are thus
set to −∞.

4.4 BERT

BERT is one example of a contemporary model based on transformer architecture. Introduced
in [49], it stands for Bidirectional Encoder Representations from Transformers. It is a state-
of-the-art model for various language tasks such as question answering, language inference, and
sentiment classification.

The training process of BERT consists of two steps: pre-training and fine-tuning. During
pre-training, the model is trained on a large corpora of data over various pre-training tasks.
Fine-tuning is a process of retraining the model initialized with pre-trained parameters on a
set of labeled data dependent on the downstream task, thus fine-tuning the parameters. This
approach is highly common for NLP models. It utilizes transfer learning and makes the model
accessible, as the computational heavy process of learning language representations can only be
performed once during pre-training.

Learned commonly applicable representations of words have become an integral part of mod-
ern NLP models in the form of pre-trained word embeddings. BERT is a generalization of that
approach using a masked language model to enable pre-trained deep bidirectional representations.
The following sections provide more details.

4.4.1 Model architecture
BERT’s architecture is unified across different tasks with minimal differences between the pre-
trained and final downstream architecture. It is a multi-layer bidirectional transformer encoder.
The model parameters are the number of layers (or transformer blocks) L, the hidden size
H and the number of self-attention heads A. The original paper [49] describes two models
BERTbase(L=12, H=768, A=12: 110M parameters) and BERTlarge(L=24, H=1024, A=16:
340M parameters).

4.4.2 Input and Output Representations
To enable BERT to perform a variety of downstream tasks, model’s input representation is able
to represent both a single and a pair of sentences. Sentence in this context means a continuous
text span, not necessarily a linguistic sentence. A sequence refers to the input token sequence,
thus a single sentence or a pair of sentences packed together.

BERT employs WordPiece tokenization, which is a subword segmentation algorithm. It at-
tempts to solve the issues faced by the word-level and character-level tokenization, such as wast
vocabulary and different meaning of similar words, as well as large length of sequences and mean-
ingless individual tokens respectively. Its general approach is to split rarely occurring words into
meaningful sub-tokens. For example, a word car will not be split, while a word cars will be split
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into car and s. This enables the model to draw connections between similar words and reduces
the size of the vocabulary.

Every input sequence in BERT stats with a special classification token [CLS]. Classification
tasks use the final hidden state of this token as the aggregate sequence representation. Differen-
tiating between sentences in a sequence is achieved using a special [SEP ] token. Additionally, a
learned embedding is added to every token, indicating whether it belongs to the first or second
sentence.

Therefore, an input representation for a given token is constructed by adding the token,
segment, and position embeddings.

4.4.3 Pre-training tasks
The pre-training corpus is formed of the BookCorpus (800M words) and English Wikipedia
(2,500M words), not including markup. Two unsupervised tasks are used for BERT’s pre-
training:

Masked LM is BERT’s take on solving the problem of bidirectional conditioning typical for
transformer-based NLP models. It is a process of randomly masking some percentage of
the input tokens and then predicting them. The final hidden representations of the masked
tokens are fed into an output softmax layer over the vocabulary.

Next Sentence Prediction is performed with the objective of teaching the model to understand
the sentence relation. The dataset can be trivially assembled from the corpus itself by choosing
two sentences A and B, with sentence A actually following sentence B in 50% of cases,
otherwise being chosen randomly. As mentioned above, the [CLS] is used for next sentence
prediction.

The pre-training procedure requires a large amount of computational power. Training of
BERTbase was performed on 4 Cloud TPUs in Pod configuration (16 TPU chips total). Training
of BERTlarge was performed on 16 Cloud TPUs (64 TPU chips total). Each pre-training took 4
days to complete [49].

4.4.4 Fine-tuning
Fine-tuning can be easily achieved by replacing the inputs and outputs of the model with the
appropriate ones and fine-tuning the parameters end-to-end. At the input, the aforementioned
sentences A and B may represent:

sentence pairs in paraphrasing task,

hypothesis-premise pairs in language entailment,

question-passage pairs in question answering,

a text-∅ pair in text classification or sequence tagging.

At the output, the token representations are used for token-level tasks and the [CLS] token
- for classification.

Fine-tuning is a vastly less resource-heavy task when compared to pre-training. The original
paper states that all of the results can be replicated in at most 1 hour on a single Cloud TPU.

The effectiveness of BERT propelled it to the forefront of NLP research and led to a number
of BERT-like models, tailor made for specific domains. The next section describes such a model
for the financial domain.
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4.5 FinBERT
The need for financial domain-specific NLP models arises as general-purpose models have been
shown to lack the ability to properly process specialized language in a financial context. When
considering the financial sentiment analysis task, a severe shortage of labeled data is another
significant problem. Therefore, a transfer learning model like BERT seems to provide an elegant
solution, as it can be further pre-trained on domain-specific language and fine-tuned on a few
labeled examples.

Such a model was introduced in [50] and is referred to as FinBERT. It was shown to achieve
state-of-the-art results for two financial sentiment analysis datasets and outperform the general-
purpose model.

4.5.1 Further pre-training
FinBERT is further pre-trained on a financial corpus in an attempt to teach the model financial
context-specific representations. The paper uses a subset of Reuters’ TRC2 news article dataset,
which includes 46,143 documents with more than 29M words relevant to the financial domain.

4.5.2 Sentiment classification
The process of fine-tuning FinBERT for text classification is identical to the original model
described above. The classifier network is trained on the labeled sentiment dataset. The main
sentiment analysis dataset used in the paper is Financial PhraseBank [51]. It consists of 4845
English sentences randomly selected from financial news articles, annotated by 16 people with
background in finance and business. FiQA Sentiment [52] is another dataset used for the model’s
fine-tuning, consisting of 1,174 financial headlines, each assigned a sentiment score.

4.5.3 Model performance
FinBERT showed superior results when compared to other pre-trained language models achieving
state-of-the-art, even though its performance was only marginally better than that of general-
purpose BERT model. More importantly, the model, fine-tuned on from around 500 to 3000
labeled examples in different training configurations, managed to disprove the notion of NLP
models requiring a vast amount of data to be effective.
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Time-series prediction

Stock price prediction is at its core a time-series forecasting problem, as stock prices tend to
change over time in a systematic way. Time-series forecasting involves using historical data to
make predictions about future events. Various models have been introduced by machine learning
researches, with deep learning applications being the latest trend. In this chapter, I will give an
overview of ML and DL methods for time series prediction and their applications in the financial
domain.

5.1 Statistical approaches

Time-series forecasting and their application in finance have been studied extensively for years.
Before the rise of popularity of machine learning techniques, statistical methods were generally
applied to analyze and predict stocks. Typical methods of statistical analysis are Auto-Regressive
Moving Average (ARMA), the Auto-Regressive Integrated Moving Average (ARIMA) etc. [53]

Autoregressive moving average (ARMA) models and autoregressive integrated moving average
(ARIMA) models are statistical models that can be used to analyze and forecast time series data.

An ARMA model is a combination of an autoregressive (AR) model and a moving average
(MA) model. An AR model is a type of model that uses past values of a time series to predict
future values, while an MA model is a type of model that uses past errors in prediction to forecast
future values. The AR and MA components of an ARMA model can be combined in different
ways to form different models.

An ARIMA model is similar to an ARMA model, but it also includes differencing of the
data to make it stationary (i.e., to remove trend and seasonality). This is done by taking the
difference between consecutive observations in the time series, which can help to stabilize the
variance and remove any trends that may be present.

To use an ARMA or ARIMA model for stock price prediction, one would start by fitting the
model to historical stock price data. Once the model has been trained, you can use it to make
predictions about future stock prices. It is important to note that these models are based on
statistical assumptions, and their accuracy will depend on the underlying patterns in the data.

Ariyo et al.[54] presented an ARIMA-based stock price predictive model. Analyzing data
from the New York Stock Exchange (NYSE) and Nigeria Stock Exchange (NSE), they concluded
that the ARIMA model had a strong potential for short-term prediction. However, Rathnayaka
et al. [55] presented an empirical study of stock price prediction models that compared the
performance of ARIMA models with that of artificial neural networks. Their study showed that
the forecasting using the artificial neural networks method has higher accuracy value than the
results with the ARIMA method.

21
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5.2 Machine learning
Machine learning has been widely studied for its ability to predict the stock market. Time series
forecasting involves using historical data to make predictions about future events, and machine
learning algorithms are well-suited to this task as they can learn patterns and relationships in
data. Machine learning techniques usually require training an algorithm of choice to automati-
cally assign the input data to the given output data. Typical tasks are classification, in case of
stock trend prediction, and regression for stock price forecast. Several algorithms have been used
for these purposes. Ballings et al. [56] provided a comparison review of the most popular ones,
from Random Forest to Support Vector Machines, Logistic Regression, and Neural Networks.
For long-term stock forecast Random Forest was the best performing algorithm, as the study
concluded.

Throughout the literature, financial time series forecasting is mostly considered a regression
problem. However, there is also a significant number of studies, particularly on trend prediction,
that use classification models to tackle financial forecasting problems [57].

Different kinds of deep learning models were utilized for stock price prediction, such as Deep
Multilayer Perceptron (DMLP), RNN, LSTM, CNN, Restricted Boltzmann Machines (RBMs),
DBN, Autoencoder (AE), and DRL [58]. Selvin et. al [59] explores the use of LSTM, RNN
and CNN-sliding window models to predict future stock prices on a short-term basis. Similarly,
Nikou et. al. [60] proposed a DNN model based on LSTM for stock price forecasting, achieving
higher prediction accuracy than other machine learning methods.

5.3 Transformer-based approaches
The transformer architecture, which was originally developed for natural language processing
tasks, has demonstrated high potential for stock price prediction, as it is particularly well-suited
for processing sequential data, such as time series. This is achieved through the use of self-
attention mechanisms, which allow the model to selectively weight different input elements and
consider their dependencies with respect to one another. In contrast, many other deep learning
models, such as CNNs and RNNs, are limited in their ability to capture long-term dependencies
because they rely on fixed-size kernels to process the data. This can make it difficult for these
models to effectively capture complex dependencies in time-series data.

Using a transformer model for stock price prediction requires preparing the data in a way
that is compatible with the model’s input requirements. This typically involves converting stock
price data into a sequence of numerical values and possibly also incorporating additional features
(e.g., company financial statements, economic indicators) as input to the model [61]. During
training, the model will learn patterns and relationships in the data and can then be used to
make predictions about future stock prices. The accuracy of the predictions will depend on the
quality of the training data and the suitability of the model for the specific forecasting task.

The application of transformer architecture for stock price prediction is a relatively novel area
of study. Multiple models adapting the NLP transformers for time-series prediction were pro-
posed. Li et al. [62] introduced a transformer model, which compared favourably with the state-
of-the-art on both synthetic and real-world data. Zerveas et al. [63] introduced a transformer-
based framework for learning multivariate time-series representation, drawing inspiration from
the BERT model. Another transformer network was presented for dynamic spatiotemporal fore-
casting [64]. Recently, an Informer model was developed for long sequence time-series forecasting
[65]. Several transformer-based models have been applied to stock price prediction in recent years,
all demonstrating an increase in accuracy compared to other models [66, 67, 68].



Chapter 6

The proposed model

This section provides a description of the proposed model for stock price prediction using senti-
ment analysis of media articles. Having discussed the basic theory behind sentiment extraction
and time series forecasting, I will focus on the model’s architecture and implementation details.
The model analyses stock prices and financial news titles to predict future stock prices for a
given company. As such, it must be able to perform two tasks:

1. Extract and quantify general and company-specific market sentiment from financial news
articles.

2. Use the produced sentiment features, historical share prices and derivative technical indicators
in stock price forecasting for a given company.

Thus, the model consists of two steps: sentiment extraction and time-series forecasting. First
step is performed using a FinBERT model. Second step requires utilization of an Informer-based
transformer model [65]. The basics of the model architecture is illustrated in Figure 6.1 In the
sections below I discuss the model’s input and go into the details of model’s architecture.

Figure 6.1 The basics of the model architecture
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Table 6.1 General market news: exemplar instances

Date of issue Headline Company tickers
2022-10-29
12:47:11

Britain denies Russian claims that its navy
personnel blew up Nord Stream gas pipeline

2022-11-18
20:45:47

Vaccinating the unvaxxed is key to end pandemic:
Former FDA official

PFE, JNJ, MRNA,
NVAX, BNTX

2022-12-08
16:33:30

FOREX-Dollar eases against euro as
investors weigh rates outlook

EUR=X,
EURUSD=X

Table 6.2 Company-specific news: exemplar instances

Date of issue Headline Company tickers
2022-10-29
12:00:25

Meta’s Problems Can Be Fixed.
Don’t Get Your Hopes Up That They Will. META

2022-10-31
09:56:05

Apple’s China supply chain tested as Covid hits
iPhone assembler Foxconn AAPL

2022-12-08
16:33:30

Down 36% From Its High, Is Alphabet Stock
a Screaming Buy Right Now? GOOGL

6.1 Model’s input and data acquisition

To enable the model to accurately predict future stock price development for a selected company
incorporating sentiment analysis I provide it with relevant textual information and historical
data. This includes financial news and historical stock prices. Financial news are further divided
into two categories: general market news, thought to be relevant to the stock market at large, and
company-specific news, which are considered to only have impact on a given company. General
market news may include reactions to macroeconomic activity, analysis of financial crises, reports
on geopolitical developments, science and breaking news etc. Company-specific news, though,
are focused on the selected company’s performance, earning reports, public relation issues, top
management changes etc. The model is capable of extracting the relevant sentiment information
from the provided news articles and use it in the time-series prediction task.

With that said, I gather three datasets to serve as the model’s input: general market news
dataset, company-specific news dataset and company stock prices dataset. An instance of general
market news and company-specific news datasets represents a single news article. Its features
are a headline, date of issue and relation to a specific company - a ticker. I decide to use only
a headline as an article’s representation over a summary or a full content, as it is a standard
practice among researchers due to headlines generally conveying the sentiment of a whole article
[69]. In addition, a headline’s length is more suitable for FinBERT model, used for sentiment
extraction, as it is fine-tuned on a sentence-long textual data [50].

The features of a company stock prices dataset instance are a timestamp, a relevant company
ticker and a stock price at the respective timestamp.

The exemplar instances of each dataset are displayed in Tables 6.1, 6.2, 6.3.

Table 6.3 Company stock prices: exemplar instances

Timestamp Stock price Company ticker
2022-10-28 20:00:04 99.20 META
2022-11-01 13:59:34 294.81 NFLX
2022-12-16 21:12:05 3852.36 ˆGSPC



Task 1: sentiment extraction 25

The theory suggests that the impact of investor sentiment on stock prices is most pronounced
in a short window of opportunity after the news release and before the market has a change
to adjust to new information. To have a better chance at detecting this effect, I gather and
examine the data on the intraday scale, which introduced challenges to the data availability
and collection process. When tasked with gathering financial news data, there are two main
options for researchers: either using an existing dataset, or compiling a brand new one through
the web scrapping techniques. Financial news articles are often subject to copyright, therefore
the publicly-available ready-made datasets are sparse [70, 71]. One example of such a dataset
is Reuters-21578 text categorization collection data set [72], which is a collection of documents
that appeared on Reuters newswire in 1987. The documents were assembled and indexed with
categories including Business and Finance. This dataset is comprised of a large number of
instances and have the benefit of spanning longer time frames. However, the data it contains is
not dense enough to be useful in an intraday context. Similarly, the historical share prices are
commonly provided on a day-to-day basic with no intraday price development dataset publicly
available to my best knowledge. Therefore, a web scrapping technique had to be utilized to
facilitate the model with the data required.

All three datasets were gathered using web scrapping from Yahoo! Finance website from
October 28, 2022 till December 16, 2022 with a 15-minute interval. This follows the findings of
previous studies, which emphasised the importance of informational noise reduction over the size
of the news dataset [29, 73]. Therefore, a single news source or, in this case, an aggregator is
commonly preferred. General market news dataset was scrapped from the Latest Financial and
Business News page on the website, which provides such news categories as World, U.S., Politics,
Technology, Business, Sports, Entertainment, Science, etc. I consider the articles gathered from
this page to be a representation of the information flow an average investor is exposed to on a
daily basis, as the Yahoo! Finance website is an 8th most popular media publisher in the U.S.
with 245.3 million monthly visitors and Latest Financial and Business News page is among the
most commonly visited [74]. The gathered articles intentionally include topics outside of the
financial domain, as those were shown to influence investor sentiment as well, as described in
Section 2.2. Thus, I assume the general market news dataset to be an adequate proxy for general
market investor sentiment. Similarly, company-specific news articles as well as current stock
prices are gathered from the company page news tab on the Yahoo! Finance website. As these
news include information on the selected company developments, I consider them to serve as a
suitable company-related investor sentiment proxy.

I choose six tickers META, AAPL, AMZN, NFLX, also referred to as FAANG, and ˆGSPC
(S&P500) traded on NYSE as a case study in this paper. The FAANG companies are among
the largest traded on stock exchanges in the US and belong to the same industry. This allows to
test whether the finding of the paper are consistent across the big-tech industry. I additionally
conduct a comparative analysis with the market at large, represented by the S&P500 index. The
selection of the FAANG companies and NYSE allows for the abundance of media information
relevant to an individual company or the whole market at the desired granularity, enabling the
study of shorter time intervals. The potential drawback of selecting companies traded on NYSE
is a shorter window of opportunity to detect the media impact, due to a widely-reported higher
market efficiency in developed economies. I attempt to analyse this effect by considering various
prediction length, as described in Chapter 7.

6.2 Task 1: sentiment extraction

The gathered datasets serve as an input to the proposed model. In this section, I describe the
process of extracting sentiment labels from the scrapped news headlines, serving as a proxy for
investor opinion. These labels are then mapped to the company stock prices and aggregated to
form sentiment scores of the final dataset used in the time-series forecasting task.
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Table 6.4 News headlines sentiment scores

Title Sentiment label
Strong Dollar Seen Hurting US Outlook and Even Tilting Fed Path negative
China to speed up vaccinations, build more designated COVID hospitals positive
Canada mints special black-ringed ’toonie’ coin in memory of Queen Elizabeth neutral

6.2.1 Sentiment classification
Before performing sentiment analysis, gathered news headlines are properly pre-processed. The
following limitations are imposed:

News headlines must consist of more than 30 symbols.

News headlines must be unique, meaning that republishing of the same story is not allowed.
However, the same headline can be used in relation to different companies.

General market news headlines must not intersect with company-specific news headlines. If
a headline is present in both datasets, it is removed from the general market news dataset.
This results in a separate general market news dataset for each company.

Yahoo! Finance publishes news titles with special terms included, such as ”UPDATE 1-” etc.
Such terms are irrelevant to the content of a news article and should be removed from the
headline.

I decided to use the FinBERT model, described in Section4.5, for the purpose of analyzing
the sentiment expressed in the news headlines. With BERT-like models holding the state-of-
the-art in sentiment analysis tasks across their respective domains, the choice I faced was to
either use a model already suitable for the financial domain, like FinBERT, or opt for a vanilla
BERT model, which would need to be additionally fine-tuned. The latter option would require
the preparation of task-specific data, meaning assigning sentiment labels to at least some part
of the gathered financial news dataset. This was deemed not practical both due to the lack of
necessary expertise to assess the financial sentiment of an article and required time resources.
Some research was conducted in the area of automatic labelling techniques based on security’s
price development [75], but I determined it to by outside of the scope of this paper. Otherwise,
an already labeled dataset relevant to the financial domain could be used for fine-tuning. To
the best of my knowledge, the only publicly available labeled sentiment classification datasets
in the financial domain are the Financial PhraseBank and FiQA, which are already used for
the FinBERT pre-training. With this in mind, FinBERT model was selected for sentiment
classification.

WordPiece algorithm is applied to transform pre-processed headlines into tokens acceptable
by the FinBERT model. FinBERT processes the input tokens and classifies a given headline into
a negative, neutral or positive sentiment category. This category is used to form the sentiment
label feature for each news headline. An example of the sentiment labels produced can be seen
in Table 6.4.

6.2.2 Sentiment scores
Future stock price prediction is achieved by analysing a time-series of historical stock prices. To
study the effect of financial news sentiment, I formulate additional sentiment scores, repre-
senting the compound sentiment of the news articles in a given time interval. After assigning
each news headline a sentiment label, the headlines are placed on the same timeline as company’s
stock prices via the date of issue and are aggregated based on which 15 minute time interval they
fall into. The process is illustrated in Figure 6.2
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Figure 6.2 Process of sentiment scores calculation

News headlines with dates of issue falling in a 15 minute interval before current stock price timestamp
are aggregated and their sentiment labels are used to produce sentiment scores. Sentiment score is
calculated using a total count of negative, neutral, and positive sentiment labels, as shown in Equation
6.1. The same procedure is applied to each 15 minute interval in stock prices dataset.

Several strategies can be utilized to measure the aggregated headlines’ sentiment. Previous
research primarily focuses on building sentiment features based on the count of news falling in
each of the studied categories. The sentiment is commonly considered to be represented by the
category with highest number of news in it [76]. Otherwise, a proportion of news in each class
is thought to reflect sentiment [77, 78]. Similarly, I calculate sentiment score using the total
count of aggregated negative, neutral, and positive sentiment labels, as a difference between the
positive and negative news, divided by the total number of news, as shown below:

sentiment score = Poscount − Negcount
Poscount + Neucount + Negcount

(6.1)

The strategy is applied to general market and company-specific news separately, forming two
groups of sentiment scores. Additionally, to model the effect of continuous sentiment, I form
further sentiment features by applying a moving average filter over the sentiment scores with
periods 15 and 30. The periods were chosen to correspond with the prediction lengths, discussed
in Chapter 7. All produced features and their labels are listed in Table 6.6. An example of the
produced dataset’s instances is provided in Table 7.5.

In an attempt to further improve the predictive capabilities of the model, the feature set is
expanded to include technical indicators. Previous studies have demonstrated their beneficial
impact on stock price prediction [61]. As such, additional technical features are computed:
”returns”, ”moving average (period 15)” and ”moving average (period 30)”.

The analysis of the feature set and best features selection is discussed in Chapter 7.

6.3 Task 2: time-series forecasting
To perform the task of stock price prediction given the produced feature set, I utilize a transformer-
based model for multivariate time-series forecasting. The architecture is inspired by Informer,
which is a model adapting transformers for the time-series forecasting problem [65]. Below, I
describe a modified version of original Informer, but I will be referring to its by the same name.
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Table 6.5 An example of instances in the AAPL dataset

The illustrated dataset is used for stock price prediction in Task 2. To produce this dataset, data relevant
to AAPL ticker was extracted from the stock prices, general market news and company-specific news
dataset. Then the aggregation strategy was applied to the form sentiment scores.

date price return ma15 ma30 general
score

company
score

...

company
score
ma30

2022-11-01
14:45:00 152.99 -1.26 153.56 153.46 0 0 -0.14

2022-11-01
15:00:00 150.74 -2.25 153.36 153.29 0 0 -0.13

2022-11-01
15:15:00 150.75 0.01 153.15 153.20 -0.11 -1 -0.13

Table 6.6 A list of produced features and their types

Feature label Feature Feature type
timestamp timestamp date
price stock price

technicalreturn return
ma15 stock price ma period 15
ma30 stock price ma period 30
general score general-market sentiment score

sentimentcompany score company-specific sentiment score
general ma15 general-market sentiment score ma period 15
company ma30 company-specific sentiment score ma period 30
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6.3.1 Informer input
The feature set produced in the previous section can be viewed as a multivariate time-series.
The whole dataset is split into a training, validation and testing sets. The training set includes
first 60% of the data and is used to train the model’s parameters. Further 20% of the data is
used as a validation set to evaluate the model during hyperparameter tuning and to mitigate
over-fitting to the train data using an early stopping mechanism. Test set is comprised of the
last 20% of input time-series and is used to evaluate the model.

Informer takes Lseq consequent instances with Nftr number of features (date is not included)
from the training set and predicts Lpred stock prices directly following it. Utilizing the moving
window approach, the starting index of the input sequence is constantly incremented, until all
the training data was seen by the model. The validation and testing procedures are carried out
in the same way. The process is illustrated in Figure 6.3.

Figure 6.3 Data split and moving window

Provided a dataset of length 20 with Nftr = 4 (date not included), a 16/4/4 train/validation/test split
is performed. Setting Lseq = 3 and Lpred = 2 results in 8 train, 3 validation and 3 test samples.

A single instance consists of a timestamp (date) and Nftr number of features, including
price, which is considered to be a target variable. In order to be processable by the model,
the inputs are first standardized by removing the mean and are scaled to unit variance. Then,
inputs must be embedded into a vector space of dimension Dmodel. In a similar fashion to other
transformer-based models, this includes value and positional embeddings with an addition of
date-time embedding.

6.3.1.1 Value embedding
The value embedding is a single dimension convolution with kernel size 3 and leaky relu as
an activation function. The weights are initialized using a normal distribution in accordance
with Kaiming He initialization. [79] With input representation for i-th sequence sample X i ∈
R(Lseq+Lpred)×Nftr , value embedding is:
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val(X i) = conv1d(X i) (6.2)

6.3.1.2 Positional embedding
A simple positional learned embedding is used to represent the relative positions of data points
in a sequence. The use of positional embeddings in favor of positional encoding was made due
to their generally better performance, as well as a stable lengths of inputs given by parameters
Lseq and Lpred [43]. Therefore, it is guaranteed that the model has learned all possible positional
embeddings during the training phase, unlike NLP transformers, where input length is variable.

pos(X i) = embed(X i) (6.3)

6.3.1.3 Date-time embedding
Another piece of information which must be embedded into an input representation vector space
is the timestamp. Date-time embeddings face a highly similar problem to that of positional
embedding of variable length sequences, as the model will inevitably encounter the timestamps
outside of those in the training set. Taking that into consideration, the embedding must be
able to learn and recognise the periodical nature of date-time. While various methods of times-
tamp encoding has recently emerged, one of the most promising approaches is the Time2Vec
representation [80].

With the goals of achieving periodicity, invariance to time rescaling and model architecture
independence, Time2Vec embeds a given scalar notion of time t into a vector of size k + 1 as
follows:

t2v(t)[i] =
{

ωit + φi, if i = 0.

F(ωit + φi), if 1 ≤ i ≤ k,
(6.4)

where t2v(t)[i] is the ith element of t2v(t), F is a periodic activation function, ωi and φi are
learnable parameters. F is chosen to be the cosine function.

Time2Vec application implies the need to convert a timestamp into a Dtime-feature repre-
sentation. The model achieves this by decomposing date-time into 5 features: day of year, day
of month, day of week, hour of day and minute of hour. Each of the features are scaled for
their values to occupy a range from − 1

2 to 1
2 . To provide an example, day of month feature is

calculated as follows:

day of month (scaled) = day of month − 1
30 − 1

2 , (6.5)

with other features derived analogously. The collection of these features is then passed to the
t2v function and thus projected to the k + 1 = Dmodel dimension representation.

6.3.1.4 Input representation

Input representation for i-th sequence sample X i ∈ R(Lseq+Lpred)×Nftr and respective input times-
tamps X i

time ∈ R(Lseq+Lpred)×Dtime can be thus composed as a vector addition of value, positional
and timestamp embeddings:

X i
en = val(X i) + pos(X i) + t2v(X i

time), (6.6)

where X i
en ∈ R(Lseq+Lpred)×Dmodel . Based on the performance of the model it has been ob-

served that different types of embeddings appear not to significantly interfere with numerical in-
formation of each other, seemingly occupying different, roughly orthogonal, subspaces in RDmodel ,
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which is backed by other studies [63]. This condition is much easier to satisfy with higher model
dimension.

6.3.2 Informer architecture
The modified Informer model follows the basic principles of transformer architecture. It is
composed of Nlayer sequential encoder layers, which are in essence a typical transformer block
described in Section 4.3. Each encoder layer consists of a Nheads-head self-attention mechanism,
followed by residual connections, layer normalization, a position-wise feed-forward neural network
and another application of residual connections and layer normalization.

Original Informer [65] takes after the earliest introduced transformers [43] in incorporating
encoder-decoder architecture. In such configuration, encoder is tasked with with representing the
whole sequence while decoder unpacks it to the desired target sequence. Additionally, decoder
can access input sequence in an autoregressive manner, referred to as teacher forcing. Further
research into transformer architecture demonstrated that a simple stack of transformer blocks is
sufficient enough to achieve state-of-the-art in sequential tasks. BERT model described in Section
4.4 as well as the GPT-2 transformer model have entirely dispensed with the encoder-decoder
architecture [49, 81]. Similarly, the proposed model does not incorporate a decoder, which is
sometimes referred to as an encoder-only architecture.

The encoder’s input is a multivariate sequence of Linput = Lseq + Ltarget length, meaning
that encoder has access to the target sequence it is tasked to predict. The goal is to provide
the encoder with the target timestamps, but prevent it from attending to the target features.
To achieve this a zero-mask X0 ∈ RLpred×Nftr is applied over the target features, effectively
preventing the encoder from accessing them. In addition to rejecting the dynamic decoding of
the vanilla encoder-decoder architecture this allows the model to produce outputs in one forward
procedure, which is highly beneficial to the model’s performance [65].

The encoder’s output is a sequence of Ltarget predicted stock prices, which is compared
to the real values to evaluate the model. The evaluation metric MSE = 1

n

∑n
i=1(y − ŷ)2 is

used to evaluate the results, following the original Informer architecture [65]. Informer’s model
architecture is shown in Figure 6.4

Figure 6.4 Informer’s architecture and zero-mask
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Table 6.7 Informer’s parameters

Parameter’s name Description Default value
root path root path of the input dataset ./data/stock
data path input dataset filename AAPL.csv
features forecasting task, options: [M, S, MS] MS
ftr num number of features (not including timestamp) 10
d out dimensions of informer outputs 1
target target feature in S or MS task price
freq frequency for time features encoding 15t
seq len input sequence length 30
pred len prediction sequence length 15
itr number of iterations 10
train epochs number of train epochs 10
batch size batch size of train data 6
patience early stopping patience 5
learning rate starting optimizer learning rate 0.0001
loss loss function mse
lradj strategy of learning rate adjustment type1
inverse inverse output data false
d model hidden dimension of the model 256
n heads number of attention heads 4
e layers number of encoder layers 4
d ff dimension of fead-forward neural network 1024
embed time features embedding, options: [fixed, t2v] t2v
activation activation function relu
padding padding type 0
dropout dropout rate 0.05
output attention output attention in encoder false
predict whether to predict unseen future data false
num workers data loader num workers 0
use gpu whether to use gpu true
gpu gpu id 0
use multi gpu whether to use multiple gpus true
devices device ids of multiple gpus 0

6.3.3 Prediction

As Informer model requires target timestamps to be passed as part of the model’s inputs, pre-
dicting values outside of the available dataset implies the need for construction of a sequence of
target timestamps. Considering the intraday nature of the studied datasets with 15 minutes fre-
quency, this means correctly choosing the trading hours in the desired time interval. The model
utilizes the NYSE trading calendar as well as the US national holidays calendar to accurately
build the target timestamps. These timestamps with addition of zero-mask X0 are concatenated
to the provided sequence X i together forming the model’s input. The output prices are then
calculated with respect to the produced timestamps.
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6.4 Implementation details
To facilitate the construction of the input datasets through the web scrapping technique, an
open source Scrapy framework was used. Three Scrapy spiders were implemented to gather the
data that form general news, company news and company prices datasets. A Unix bash job was
scheduled to run on a created instance of Amazon Elastic Compute Cloud to scrap the data
from the Yahoo! Finance website with 15 minutes intervals. An Amazon Simple Storage Service
bucket was used to store the gathered data.

Python 3.9 and Jupyter Notebook were used to implement and present the model itself. The
FinBERT model for news headlines sentiment analysis was accessed via the HuggingFace provided
libraries, such as AutoModelForSequenceClassification, AutoTokenizer, AutoConfig, TextClassi-
ficationPipeline. The Informer model was implemented using the PyTorch library.
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Chapter 7

Experiments

This chapter presents the application of the model described above on the gathered financial news
and stock price data. I describe the datasets, explain the process of hyperparameter tuning and
the hardware setup used for the experiments. Finally, I test whether the addition of sentiment
features derived from the financial media improves the quality of the model’s predictions by
conducting a comparative analysis of various feature sets. The consistency of the findings is
tested for several big-tech stocks as well as the S&P500 index, serving as a proxy for stock
market in general.

7.1 Data analysis
As mentioned in Section 6.1, three datasets were gathered to facilitate the experiments: the
general-market news dataset, the company-specific news dataset as well as the historical stock
prices dataset. While the first one is a collection of financial news articles considered to have
an impact on the stock market at large, the latter two are company related. Overall, six tickers
were chosen: META, AAPL, GOOGL, NFLX, AMZN, ˆGSPC. The data was gathered in the
period from October 28, 2022 till December 16, 2022 with an interval of 15 minutes.

Table 7.1 shows the total number of instances in gathered datasets per ticker as well as the
number of instances after pre-processing steps.

The development of the analysed ticker stock prices and train/validation/test split is pre-
sented in Figure 7.1.

In the sentiment extraction process, described in 6.2, each news headline is assigned a classi-
fication label. The distribution of these labels for general news as well as company-specific news
is shown in Figure 7.2.

Table 7.1 Number of gathered data instances per ticker before and after pre-processing

General news Company news Stock Price

Ticker Total After
pre-processing Total After

pre-processing Total After
pre-processing

META 13418 10741 601 511 889 873
AAPL 13418 10642 1057 876 897 878

GOOGL 13418 10743 664 592 903 881
NFLX 13418 10780 348 304 892 876
AMZN 13418 10717 1053 945 900 884
ˆGSPC 13418 10201 3392 2471 964 937

35
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Figure 7.1 The development of the studied stock prices and a train/val/test split

Only business days and working hours are displayed to remove gaps in the plot

Table 7.2 A list of hyperparameters used for model tuning and the best-performing combination

Parameter Range of values Best value
batch size 6, 12, 24 6
d model 256, 512 256
n-heads 4, 6, 10 4
e layers 4, 6, 10 4

activation gelu, relu relu

7.2 Hyperparameter tuning

In order to tune the model’s parameters an exhaustive grid search was conducted over the
parameter combinations presented in Table 7.2. For this purpose, I compile a dataset, which
consists of the following features: date, price, ma15, general score ma15, company score ma15.
The validation split of the dataset is used to evaluate the model during hyperparameter tuning.
The model is optimized using the Adam algorithm. The starting learning rate is decaying two
times smaller after every epoch. The total number of epochs is set to 10 with an application of
early stopping with patience 5. The evaluation metric MSE = 1

n

∑n
i=1(y − ŷ)2 is used to evaluate

the results.
Best model parameters are listed in Table 7.2.
Device specifications used for the model’s training and all the experiments are listed in Table

7.3. The hyperparameter tuning procedure required around 4 hours to be completed.
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Figure 7.2 Distribution of sentiment labels for general news and each ticker

The size of the ticker-specific graphs is proportional to the number of news headlines.

Table 7.3 Device specifications

Parameter Value
Processor 11th Gen Intel(R) Core(TM) i7-11700F @ 2.50GHz 2.50 GHz
Installed RAM 16.0 GB (15.8 GB usable)
System type 64-bit operating system, x64-based processor
GPU 0 NVIDIA GeForce RTX 3060 Ti
DirectX version 12
GPU Memory 15.9 GB
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7.3 Feature set analysis
To determine whether information derived from media articles has an impact on the stock market
and whether it can be used to improve the stock price forecasting, I utilize the proposed model to
perform news headlines sentiment analysis. The produced sentiment and technical features, listed
in Table 6.6, are then grouped together to form different feature sets. These feature sets include
price, technical indicators, sentiment scores or a combination of those. Instead of studying all
possible feature sets that can be gathered via various combinations of available features, I select
only a fraction of those due to the limited computational resources. The feature sets are formed
in a way to allow for the study of media impact on stock price forecasting. This means that I
evaluate and conduct comparative analysis of the performance of the model, when future prices
are predicted based on:

the current price only,

the current price and technical indicators,

the current price and sentiment scores,

the current price and both technical and sentiment scores.

I will be referring to these features sets as technical-based, sentiment-based or combined. A
full list of tested feature sets is provided in Table 7.4. It includes a label, which I will be using
to identify the feature set, a list of features it consists of and a feature set type.

Additionally, I study the development of media impact in time by analysing 3 different pre-
diction lengths. Finally, I perform the process for all 6 tickers mentioned to determine whether
the findings are consistent among different companies in the same industry and with the market
in general.

The model was trained on the datasets containing selected features with Lseq = 30, which
roughly corresponds to stock price developments over a single day. This sequence length was
chosen to enable training with relatively high prediction length, without sacrificing model’s
performance due to the lack of available samples. Three prediction lengths Lpred = 15, Lpred = 30
and Lpred = 75 were analysed to provide insight into the impact of various features over variable
prediction lengths. The full results of the experiments are presented in Tables B.1, B.2, B.3,
where each row corresponds to the selected feature set. The MSE metric was used to evaluate
the model for each of the selected feature sets for each ticker. The Average column contains an
average of min-max normalised MSE values among FAANG companies for a given feature set.
The S&P500 was not included as the average MSE value is meant to represent the performance of
a given feature set across the big-tech industry. Min-max normalisation is performed due to the
fact that the MSE values for the different companies may be on different scales, and normalizing
the values will ensure that they are comparable. The rows are sorted based on the value of
Average column in ascending order. The Best column provides a number of FAANG companies
for which the selected feature set was best performing. The top-5 best-performing feature sets for
each prediction length are presented in Table 7.5. The total time required to train and evaluate
the model to conduct the experiments is about 12 hours.
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Table 7.4 A list of tested feature sets

Feature set label Features Feature set type
fs-price price

technical-basedfs-return price
fs-ma15 price, ma15
fs-ma30 price, ma30
fs-general-score price, general score

sentiment-based

fs-company-score price, company score

fs-general-company-score price, general score,
company score

fs-general-ma15 price, general score ma15
fs-company-ma15 price, company score ma15

fs-general-company-ma15 price, general score ma15,
company score ma15

fs-general-ma30 price, general score ma30
fs-company-ma30 price, company score ma30

fs-general-company-ma30 price, general score ma30,
company score ma30

fs-return-general-company-score price, return, general score,
company score combined

fs-ma15-general-company-ma15 price, ma15, general score ma15,
company score ma15

fs-ma30-general-company-ma30 price, ma30, general score ma30,
company score ma30
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The shortest prediction window Lpred = 15 is arguably the most interesting one, as the
impact of financial news sentiment is considered to be most prominent shortly after news release,
as explained in 1.4. With stock market taking some time to adjust to new information, the
addition of sentiment features is hypothesised to improve the prediction quality of the model.
The results, indeed, indicate some improvement in the model’s performance when sentiment
features are added. For example, fs-return-general-company-score feature set is found to be best
performing across FAANG companies with a lower average MSE score than fs-return, as shown
in 7.5. However, when comparing the error scores of feature sets based on ma15 and ma30
technical indicators, it becomes apparent that the addition of sentiment features worsens the
results. Overall, for Lpred = 1

2 Lseq it is evident that technical-based feature sets achieve a better
performance than sentiment-based ones, occupying the top-5 results in the table. Interestingly, fs-
price acquired the lowest MSE score among all technical-based feature sets, supporting the claims
of the EMH about highly efficient information absorption in the developed markets. Feature
sets including return indicator appear to possess higher prediction capabilities, which might
be explained by the repeating patterns in day-to-day return developments. Sentiment feature
sets based on company news seem to outperform the general news based ones, and feature
sets containing both seeing higher MSE values. Sentiment scores demonstrated comparable
performance with their smoothed counterparts, e.g. fs-company-score vs. fs-company-ma15.
Overall, incorporating media sentiment in predicting short-term price developments is found to
bring insignificant improvements to stock price forecasting if any at all. It is worth mentioning,
thought, that the difference in error scores for the best performing feature sets is too marginal
to be considered significant, preventing me from drawing definitive conclusions from the results.
I discuss the per-ticker results further below.

When considering a prediction window Lpred = Lseq = 30, the industry-average results are
similar, refer to Table 7.5. The top-6 is occupied by the same feature sets with fs-price being
best performing, with, again, minor differences in average MSE score. Sentiment-based feature
sets tend to be outperformed by the technical-based or combined.

Interestingly, in case of a longer prediction window Lpred = 5
2 Lseq = 75, the prediction ability

of technical-based feature sets tends to fall behind sentiment-based ones, as shown in Table B.3.
For example, fs-ma15 has a higher average MSE score than fs-general-ma15, or fs-ma30 – higher
than fs-general-ma30 The fs-general-company-ma30 feature set is found to be best performing,
achieving best results for AAPL, GOOGL, and AMZN tickers. These results differ from the
findings for shorter prediction lengths and point to the model’s ability to extract market trends
from news sentiment, which can be beneficial for a longer-term prediction. It could also be
explained by the potential time-lag required for conscious investors to process the article, form
their sentiment, and act on it. Nevertheless, fs-price feature set still demonstrates one of the
lowest MSE scores.

I further analyse the performance of each feature set per specific company. The per-ticker
average MSE value is calculated by taking the average of the normalised error scores for each
prediction length. I list the top-5 best performing feature sets per each company with respective
error scores in Table 7.6. The complete per-ticker results are provided in Table B.4. Similarly
to per prediction length results, an Average column is added, which is calculated as an average
normalised MSE score of the FAANG tickers, representing the performance of a feature set over
all prediction lengths and big-tech tickers. The rows are sorted in ascending order based on this
value. Best column shows the number of FAANG ticker, for which selected feature set is the
best performing.

Generally, it is apparent there is little consistency among the produced results: for each
FAANG company, there is a different selection of best performing feature sets. One similarity
most of the FAANG tickers share: technical-based indicators, such as fs-price and fs-return, tend
to perform well, with the exception of AMZN, where combined and sentiment-based feature sets
occupy the top-5 spots. In particular, the fs-price and fs-return-general-company-score feature
sets are among the top-5 best performing for META, AAPL, GOOGL and NFLX. When it comes
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to sentiment-based feature sets, META is the only ticker demonstrating lower MSE scores for
company-specific news, when compared to general-market or a combination of both. For all
companies, other then NFLX, smoothing the sentiment scores with a moving average filter has
led to improved performance.

ˆGSPC ticker was chosen to serve as a baseline representing the stock market at large.
When comparing the FAANG companies’ results to the ones for the ˆGSPC, one thing becomes
evident. The sentiment-based feature sets demonstrate a higher average MSE score in predicting
ˆGSPC stock when compared to technical-based feature sets or combined. These results could
be explained by the investor sentiment impact being less pronounced when applied to indices
compared to individual companies. This outcome is also backed by the notion that developed
markets are generally more efficient in information absorption.

The performed experiments lead me to conclude the following:

Sentiment-based feature sets showed generally weaker performance than price or technical-
based feature sets for Lpred = 1

2 Lseq = 15 and Lpred = Lseq = 30 prediction lengths. When
considering a longer prediction window of Lpred = 5

2 Lseq = 75, sentiment-based features, to
the contrary, demonstrated better performance.

I explain higher average short-term predictive power of price only and technical-based feature
sets with widely reported high information efficiency of the developed stock markets.

I attribute lowest average MSE scores of sentiment-based feature sets for longer-term pre-
diction with the model’s ability to extract information about future stock price trends from
investor sentiment.

The results were found to be inconsistent across FAANG companies. The differences in error
scores among best performing feature sets are to marginal to be considered significant. Both
technical and sentiment-based feature sets are among top 5 for each of the FAANG companies.

The complementary nature of technical and sentiment-based indicators was not generally
established. While fs-return-general-company-score on average performs better than fs-return,
as can be seen in Table B.4, the same is not true for other combined feature sets.

Smoothing the sentiment scores with a moving average filter generally improved the results
for most of the FAANG companies. Judging from the average MSE scores for all prediction
lengths, presented in Table B.4, moving average sentiment scores with period 15 yielded
better results, supporting the claim made in Section 1.4

I did not manage to determine the complementary nature of company and general market
news sentiment, as evident from Tables 7.6, B.4, with both showing comparable predictive
power.

General market represented by the S&P500 index was shown to be highly information efficient
on average across all analysed prediction lengths.

Overall, though some feature sets that included financial news sentiment showed high predic-
tive power, especially over longer prediction window, I cannot definitively conclude that media
sentiment improves stock price prediction on the intraday scale. This outcome goes along with
the EMH stating that developed markets are efficient at absorbing information. A better perfor-
mance of sentiment analysis for long-term prediction demonstrates that financial news could be
considered a source of some fundamental information, the extraction of which has the potential to
improve long-term prediction. This contradicts the approach of technical analysis, relying solely
on information incorporated in past prices. This outcome is supported by other researches, who
studied investor sentiment derived from social media on a day-to-day basic and did not found
significant improvement in model’s predictive capabilities [31, 75]. However, the topic remains
actively studied and the research community has not yet reached a consensus, so future work is
advised.



Feature set analysis 43

Table 7.6 Top-5 best performing feature sets per ticker

Ticker Feature set MSE score

META

fs-return-general-company-score 0.048
fs-return 0.154
fs-company-ma30 0.201
fs-price 0.222
fs-company-ma15 0.279

AAPL

fs-general-ma15 0.051
fs-return-general-company-score 0.080
fs-return 0.117
fs-price 0.144
fs-general-ma30 0.158

GOOGL

fs-return-general-company-score 0.158
fs-price 0.222
fs-general-company-ma15 0.276
fs-ma30-general-company-ma30 0.320
fs-company-ma30 0.346

NFLX

fs-price 0.056
fs-general-score 0.090
fs-ma15 0.094
fs-return-general-company-score 0.115
fs-ma30 0.174

AMZN

fs-ma30-general-company-ma30 0.049
fs-general-ma30 0.098
fs-general-ma15 0.101
fs-general-company-ma15 0.101
fs-ma15-general-company-ma15 0.109

ˆGSPC

fs-return 0.162
fs-return-general-company-score 0.187
fs-price 0.204
fs-ma15 0.273
fs-ma30 0.303
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Chapter 8

Conclusions

In conclusion of this paper, I will review the goals and evaluate the degree of their fulfilment. I
will mention the results achieved in Chapter 7, list the major hurdles I faced in working on this
thesis, and suggest areas of future research.

8.1 Achieved goals

The main objective of the thesis was to propose a model for stock price development prediction
utilizing media sentiment analysis and to determine whether media information could be used
to improve the quality of the prediction. This objective was achieved successfully. I managed to
propose and implement a model that performs sentiment classification of financial news headlines
and uses it in stock price forecasts. The experiments I conducted were aimed at determining
whether the extracted sentiment information aided in achieving higher prediction quality with
various prediction lengths considered.

To facilitate the development of the model with the necessary theoretical background, various
views on market predictability were discussed. I defined the concept of investor sentiment, looked
into its potential proxies, and discussed the role of various media in its formation. I reviewed
the methods for sentiment analysis and time-series prediction with a focus on the transformer
architecture and described the studies utilizing these models in stock price prediction.

I faced challenges during the data acquisition process, as no publicly-available media and
stock prices database was deemed sufficient to enable the study of media effect on stock price
prediction on the intraday scale. Therefore, I implemented a software tool allowing for automatic
web scrapping of the data required by the model.

The outcome of the experiments demonstrate that while news media sentiment analysis shoes
better performance for long-term prediction across all FAANG tickers, incorporating it for a
short-term stock price forecast does not yield any improvement in the results.

8.2 Suggestion for future research

One of the biggest challenges of research in stock market predictability is the lack of publicly
available data, especially on the intraday scale. In this thesis I opted to gather the required
datasets using web scrapping over a relatively short time interval, which imposed limitations
on the length of studied sequences. I suggest the findings to be tested on a larger set of data,
allowing for a wider range of sequence/prediction lengths, aiding in determining the impact of
media sentiment more precisely. Additionally, it would be beneficial to analyse stock markets in
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developing economies, as media sentiment effect is commonly reported to be more pronounces
there.

The need to analyse a larger set of data inevitably leads to an increase in required computa-
tional resources. With transformer architecture this problem is most apparent, as the number of
computations required in standard dot-product attention growth exponentially with the increase
in processed sequences. Thus, to enable the analysis of longer prediction windows, an alternative
to the vanilla attention mechanism should be used. Most recent attempts at adapting trans-
formers for time-series forecasting propose such alternatives, drastically reducing the memory
and time complexity of the proposed models [65, 82]. This could be highly beneficial for detect-
ing the impact of investor sentiment on stock prices, as it would allow the study of continuous
prediction length intervals, potentially leading to discovering the precise time interval where the
sentiment effect is most prominent. Future studies could focus on applying and evaluating these
models in stock price prediction.

Lastly, a more fine-grained approach to sentiment extraction is advised. With most research
dedicated to document or sentence-level sentiment classification, analyzing media sentiment on
an aspect level is neglected. With recent advances in such areas of NLP as text summarization
and comprehension, brought by the transformer networks, I expect more complex approaches to
sentiment analysis to emerge.



Appendix A

Usage instructions

A.1 Setting up the environment
Before running the Scrapy spiders or Informer model, a proper conda environment must be
created. To set up the environment and activate, enter the src directory and run the following
commands:

conda env create -f environment.yml

conda activate bp

A.2 Running Scrapy spiders
To run a Scrapy spider, enter the src/bp-scrapper directory and run one of the following
commands:

scrapy crawl news sp
-o <path to output news.jl file>
-s JOBDIR=<path to job state directory>

scrapy crawl ticker news sp
-o <path to output ticker news.jl file>
-s JOBDIR=<path to job state directory>

scrapy crawl price sp
-o <path to output price.jl file>
-s JOBDIR=<path to job state directory>

Important: the spiders are set up to parse the US version of Yahoo! Finance website, so
ensure that you run them from the US IP address or using a VPN.

A.3 Informer showcase
The Informer model source code is located in the src/bp-informer directory. The proposed
model as described in Chapter 6, in particular data pre-processing, financial news headlines
sentiment analysis, sentiment score calculation, the composition of sentiment features and feature
sets, Informer hyperparameter tuning, and the conduction of the experiments are showcased in

47



48 Usage instructions

the data-processor.ipynb Jupyter notebook. You may also refer to it for an example of
Informer usage.

run informer.ipynb is a file providing an API for Informer’s training and testing. Run the
main function to train and test the model using the default args. For the description of the
arguments please refer to Table 6.7. To test the model with a different configuration consider
editing default args.

The results of the experiments described in this paper can be found in the bp-informer/results
directory containing the saved results of the experiments performed for 15, 30, and 75 prediction
lengths in CSV format.



Appendix B

Experiment results

Here I provide the full experiment results data. The following tables are listed:

Table B.1 showcases model results for Lseq = 30 and Lpred = 15

Table B.2 showcases model results for Lseq = 30 and Lpred = 30

Table B.3 showcases model results for Lseq = 30 and Lpred = 75

Table B.4 showcases model average model results across all tested prediction lengths.

Each row of the mentioned tables represents one of the tested feature sets. Further I provide
column description:

The Feature set column contains the label of the feature set.

Columns META, AAPL, GOOGL, NFLX, AMZN and ˆGSPC contain the MSE score of the
model for a given ticker. In case of Table B.4 the value represent an average of min-max
normalized values across all prediction lengths for a respective ticker.

The Average column is an average of the min-max normalized MSE scores across all FAANG
tickers. The ˆGSPC MSE score is not included in the calculation.

The Best column contains a number of tickers, for which the respective feature set had the
lowest MSE score.
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Media contents

readme.txt...................................................media contents description
src

environment.yml ............................................ conda environment file
bp-scrapper .......... directory containing Scrapy spiders used to gather the datasets
bp-scrapper-data

news.jsonl .......................................dataset of general market news
price.jsonl ...................................dataset of companies’ stock prices
ticker news.jsonl ..............................dataset of company-specific news

bp-informer ...........................directory containing the Informer source code
data-processor.ipynb ..................... notebook showcasing the experiments

text
thesis.pdf .........................................text of the thesis in PDF format
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