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Annotation 
 

The habilitation thesis presents author’s research results in the areas of process control design 

for time delay systems and in the similarity theory application in this design. The motivation 

and objectives of the habilitation thesis are presented in Chapter 1. The thesis is motivated by 

open problem - applicability of dominant pole placement method to the PID controller tuning 

for higher-order plants with delay. In Chapter 2 the time delay systems in control and 

estimation are surveyed and at the beginning of Chapter 3 the dimensional analysis 

application to control design is surveyed, too. In Chapter 4 the generalized dominant three-

pole placement as the design method is presented together with resulting PID controller 

setting common for a set of dynamically similar plants with delay. The same design method is 

applied in Chapter 4 to the PID controller tuning for a set of integrating plants with delay. At 

the end of Chapter 3 the third- and fourth-order plants are investigated as samples of higher-

order plants with delay. This thesis as the study on applicability of the dominant three-pole 

placement method to the PID controller tuning for higher-order plants with delay reveals that 

the PID controller is still tunable for the admissible third- and fourth-order plants while in 

case of the inadmissible third- and fourth-order plants the PID controller is not already 

tunable by this method as concluded in Chapter 4. This revelation is mainly enabled by the 

dimensional analysis application thoroughly in Chapter 3 which gives the control engineering 

design the capability of its versatility in the area of reasonably constrained (i.e. admissible) 

similarity numbers. The reasonable constraints are due to dynamic relevance and practical 

controllability of the considered higher-order systems with delay. Conclusions to Chapter 3 

summarize that the constrained similarity numbers are oscillability, retardedness, 

dampeningness and stiffness, in particular. Conclusions to Chapter 4 sum up that once the 

retardedness number is not negligible the PID controller provides admissible control solution 

to the plants of maximum order – four, including the integrating plants up to the fourth-order. 

Moreover the admissible third and fourth-order plants with delay allow assigning the natural 

frequency number greater than the ultimate frequency number without the loss of three-pole 

dominance while the inadmissible third and fourth-order plants do not. In fact the 

inadmissible fifth-order PID control loops with delay show that one is already behind the 

capability of the PID controller, independently of tuning method applied, to cope with higher-

order dynamics because the control loop responses are with extreme overshoot and take 

overlong. In Chapter 5 the thesis as a whole is concluded that the generalized dominant three-

pole placement technique provides the delayed fourth- and fifth-order PID control loop 

response with low overshoot in contrast to well-known PID tuning method based on ideal-

relay feedback test.  

 

 

 
 

 

 



 
 

Anotace 
 

Předkládaná habilitační práce sestává z pěti kapitol. V první kapitole jsou stanoveny cíle 

habilitační práce, které jsou motivovány neřešeným problémem ve výzkumu systémů se 

zpožděními – použitelností metody předepsání dominantních pólů k nastavení PID regulátoru 

pro systémy se zpožděním vyššího řádu než druhého. V následující druhé kapitole je proto 

provedena podrobná rešerše výsledků výzkumu v oblasti návrhu řízení a odhadu systémů se 

zpožděními. Kapitola třetí se zabývá aplikací dimenzionální analýzy a dosahuje se v ní 

prvního cíle stanoveného v habilitační práci, tj. bezrozměrného popisu regulačního obvodu se 

zpožděním pro systémy řádu vyššího než druhého. Nedílnou součástí třetí kapitoly je 

dimenzionální analýza regulovaných systémů se zpožděním a tedy i zavedení podobnostních 

čísel charakterizujících dynamiku těchto systémů. Úvod k dimenzionální analýze včetně 

rešerše k využití teorie podobnosti v návrhu řídicích systémů předchází aplikaci 

dimenzionální analýzy ve třetí kapitole. Ve čtvrté kapitole je nalezeno nastavení PID 

regulátoru metodou předepsání dominantních pólů bezrozměrnému regulačnímu obvodu se 

zpožděním. Nejdříve je toto nastavení odvozeno pro zpožděné regulované systémy třetího 

řádu a následně též pro systémy řádu čtvrtého. Výsledná nastavení PID regulátoru jsou shora 

ohraničena v důsledku omezení kladených na systémy vyššího řádu se zpožděním, jakými 

jsou dynamická relevantnost a praktická řiditelnost systému se zpožděním. Právě tato 

omezení se promítnou do podobnostních čísel, respektive jejich rozsahů uvažovaných při 

návrhu PID regulátoru. Těmito podobnostními čísly jsou především kmitavost, zpožděnost, 

tlumivost a tuhost systému vyššího řádu se zpožděním. Omezená nastavení PID regulátoru 

prostřednictvím předepsání dominantních pólů jsou taktéž získána pro astatické systémy 

vyššího řádu se zpožděním a astatismem prvního stupně. Metoda předepsání dominantních 

pólů dovoluje předepsat vlastní frekvenci regulačnímu obvodu větší než je kritická frekvence, 

aniž by předepisovaná trojice pólů ztratila její dominantní polohu v nekonečném spektru pólů 

regulačního obvodu. Závěr ke čtvrté kapitole zhodnocuje výsledky v ladění PID regulátoru 

pro systémy třetího a čtvrtého řádu se zpožděním. Jakmile je zpožděnost regulovaného 

systému nezanedbatelná, poté prakticky řiditelným systémem se zpožděním PID regulátorem 

je systém maximálně řádu čtvrtého a to včetně astatického systému se zpožděním. Tato 

řiditelnost systému je posuzována vzhledem k podobnostním číslům příslušně omezeným. 

Tedy zpožděné regulační obvody čtvrtého a pátého řádu charakterizované podobnostními 

čísly mimo přijatelný rozsah se ukazují jako neschopné dostatečně regulovat a kompenzovat 

dynamiku systému vyššího řádu. V případě pátého řádu regulačního obvodu tato neschopnost 

nastane bez ohledu na použitou metodu naladění PID regulátoru, tj. selhává samotné řízení 

PID regulátorem. V těchto regulačních obvodech vznikají velké překmity odezev regulačního 

obvodu a neúměrně se prodlužuje doba regulace. Nakonec v páté kapitole je shrnuta 

habilitační práce jako celek s výčtem dosažených výsledků pokrývajících cíle stanovené v 

první kapitole. Nejvýznamnější z výsledků je dán skutečností, že metoda předepsání 

dominantních pólů nastavuje parametry PID regulátoru takové, že ve zpožděném regulačním 

obvodu čtvrtého a pátého řádu je výrazně snížen překmit regulační odezvy na poruchu. Totéž 

snížení je široce rozšířenou metodou nastavení PID regulátoru, známou jako metoda ideálního 

relé ve zpětné vazbě, v regulačním obvodu nedosažitelné. 
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1. Introduction to the habilitation thesis 
 

The habilitation thesis presents author’s research results in the area of process control design 

for time delay systems and in the similarity theory application in this design. The presented 

design methods are aimed at generalized PID controller setting. The delayed PID control loop 

optimization according to various criteria is carried out on the framework of dimensionless 

models obtained by means of the dimensional analysis. As a result an optimum PID control 

loop with delay is achieved in dimensionless time and frequency variables. Also the limits to 

PID tuning for higher-order plants with delay are found out and subsequently 

recommendations for the dominant three-pole placement are given.  

Motivation and objectives 

The habilitation thesis is aimed at the field of time delay systems by open problem on 

dominant pole placement applicability to PID controller tuning for higher-order plants with 

delay constrained in parameters to unknown intervals. To cope with this issue the following 

objectives are stated: 

 

 To extend the already published, [123, 126], system dynamics descriptions as 

dimensionless time delay models to higher-order plants with delay. This is achieved 

by applying the dimensional analysis to time delay system descriptions as presented in 

Chapter 3. 

 To enlarge the already published, [124], pole dominance criterion for higher-order 

control loops of retarded type. The pole dominance checking is extended to 

dimensionless control loop description as presented in Chapter 4. 

 To extend the dominant pole placement method for PID tuning applicable to all 

dynamically similar plants of higher-order than two. The extension of this method is 

based on the dominant three-pole placement already published in [126] for the second-

order plants with delay. This extension is presented in Chapter 4.  

 

In the first objective the system model is transformed to the dimensionless model describing 

all dynamically similar plants following up the research in [123], [126]. Evident advantage of 

the dimensional analysis is reducing the number of dimensionless parameters necessary to 

describe the system dynamics. In the habilitation thesis this reduction originates in 

introducing similarity numbers as presented in Chapter 3. As regards the second objective the 

pole dominance checking presented in Chapter 4 is based on an extension of argument 

increment rule from [124] allowing a successful controller design and tuning for higher-order 

systems with delay. For the second-order systems with delay this rule application has been 

presented in [123] and [126]. In the third objective the dominant three-pole placement 

technique is introduced in order to tune the PID for controlling the plant with the natural 

frequency higher than the ultimate frequency, extending the results of [123] and [126] to the 

higher-order systems with delay. Thus for the second-order systems with delay the dominant 

three-pole placement has been already introduced in [123] and [126].  

 

In the habilitation thesis the dominant pole placement is considered as a preferred technique 

to adjust the PID controller, beside IAE optimization, [30], and magnitude optimum method, 

[32]. Hence beside the dimensional analysis application to system dynamics reduction also the 

advancements in the dominant pole placement are the key research achievements presented in 

the habilitation thesis. As a result of combining this reduction with these advancements the 
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PID tuning rules applicable to all dynamically similar plants of higher order than two are 

developed. 

 

The rest of the habilitation thesis is organized as follows. A survey of time delay systems in 

control and estimation is presented in Chapter 2. In Chapter 3 the delayed control loop 

description from the similarity point of view is developed for plants with delay, of orders up 

to four. The process control design from the similarity point of view and advancements in the 

dominant pole placement achieved are presented in Chapter 4. Finally, in Chapter 5 the 

habilitation thesis is concluded.  

 

Author’s publications cited in the habilitation thesis are specified in Author’s list of 

publications with citations in WoS/MathSci/Scopus. 
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2. Time delay systems in control and estimation 
 

The chapter overviews the key and recent advancements in the field of time delay systems 

with an emphasis on the control and observer synthesis.  

 

Time delay system represents a process with latencies and hereditary properties when in case 

of existing steady-state the process steady-state is reached after rendering transient response 

[25], [114]. Time delay systems are frequently identified in industry, e.g. mass or heat 

transport processes, but also chemical processes or processes in biotechnology. An example 

of biotechnological process is a process of cell population growth described by Volterra 

delayed equation containing distributed delays [28]. Time delay modelling is of two kinds 

leading to either finite- or infinite- dimensional model. The former is in fact originally 

infinite-dimensional model of time delay system which is described by means of 

commensurate time delays. Such time delay systems are referred to as n-D systems [79]. 

There is a lot of applications of these models to control analysis and synthesis, see at least the 

key works [15], [67], [94] and references therein. The infinite-dimensional model of time 

delay system is then composed of incommensurate and rationally independent time delays, 

see [37]. Thus the time delay system is constituted by general delays which are the parts of 

mathematical model defined by functional differential equations [43]. One of the earliest 

works dedicated to control analysis and synthesis is that in [72]. Particularly distributed time 

delays belong among the general time delays that can be successfully approximated by 

equally distributed or stepwise lumped delays [116]. These delay approximations have found 

applications in the field of vibration suppression, for instance [57], [96]. To make the control 

analysis possible and the control synthesis admissible for time delay systems with 

continuously distributed delays an anisochronic model was developed [113]. This model is 

advantageous due to preserving the linearity of model relations hence an integral transform 

application to both the control analysis and synthesis is obvious [130]. In addition despite 

distributed delays presence the anisochronic model can be parameterized in the way to apply 

this model to controller parameterization [128, 129]. 

 

Analogously to the delay-free systems the state feedback synthesis for the time delay systems 

necessitates the system state controllability, [72]. The time delay system is controllable if it is 

spectrally controllable [116]. Once the system states are delayed there is infinite spectrum of 

eigenvalues and no eigenvalue of the system matrix of dynamics is uncontrollable if the 

condition of spectral controllability is satisfied [40]. The case of spectrally uncontrollable 

system is known but no systematic control synthesis is provided yet. As in the delay-free 

system representing a finite-dimensional system also an infinite-dimensional system fed back 

by output controller originates in a feedback system with the characteristic function split into 

two chains of factors where one of them is composed of immovable spectrum of original 

system [106]. Once the infinite-dimensional system is related with time delay system both the 

coefficient state feedback and observer gain matrix can be assessed separately [63], [109]. 

The approaches to observer and controller design for time delay systems are outlined in [109]. 

Partial or full delay cancellations in the feedback system are achieved by functional state 

feedback [116]. Some applications of the functional state feedback are presented in [73], [92]. 

In [92] a delay cancellation arisen by the so-called delay decoupling while in [73] the 

functional state feedback is called non-rational state feedback. Advanced method of exact 

delay cancellation is recognized Finite Spectrum Assignment (FSA) [54]. This method is 

based on algebraic control synthesis that is extended to more complex systems with delays 
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[101]. Originally the problem of the FSA was formulated for systems with general delays by 

[59]. For a class of retarded systems the FSA property is enforced when the time delay system 

is described by a set of retarded quasi-polynomials [131] and in case of [128] the system is 

described by meromorphic functions. Previous algebraic control syntheses are preconditioned 

by the spectral observability of retarded systems [115], [129]. 

 

In a prevailing amount of control schemes dealing with time delay compensation the Smith 

predictor is applied [74], [80]. Originally Smith predictor was introduced by Smith [81] and 

was intended for systems with input transport delay and with either non-oscillatory or 

sufficiently damped oscillatory responses. Observer-based Smith predictor scheme for 

predictive control was applied to unstable systems [36]. Next considerably modified Smith 

predictor is applicable to delay compensation of unstable systems [26]. Later on unstable 

systems with delay are handled by generalized PID regulators in the framework of Smith-like 

scheme [35]. The input delay of unstable systems has been compensated by combining the 

Smith predictor with Model Predictive Control (MPC) method of controller design [112]. 

Predictive control applied to various industrial processes is surveyed in [47]. The Smith 

predictor application has been extended to anisochronic systems by [116]. Major applications 

of anisochronic models to control or observer design originated from heat and mass transfer 

control problems. In case of the anisochronic model formulated in state space the state vector 

is augmented by purely integrating state variable to track robustly the reference variable 

[130]. Already by [4] the Smith predictor extension to integrating plants with delay has been 

made.  

 

A required feature of the Smith predictor scheme is also the invariance under acting the 

disturbances [49], [66]. Measurable disturbance invariance cannot be achieved because of the 

control input delay being longer than the disturbance input delay. In case of multivariable 

control at least a disturbance quasi-invariance is reachable [85]. A methodology for invariant 

and autonomous control of multivariable systems with delays has been worked out by Bošek 

[12]. A well-known deficiency of the Smith predictor is poor robustness, for instance [69], 

hence the insensitivity to usually immeasurable disturbances is enhanced by a feedback filter, 

i.e. invariant feedback [44]. The invariant feedback is able to compensate limited parameter 

variance of process however it does not prevent from robustness loss due to incorporating the 

state observer into the Smith predictor scheme in case of unavailable state variables. In case 

of multivariable control the solution complexity to system delay compensation applying the 

Smith predictor grows with the number of tracked reference variables [1], [70]. Smith 

predictor scheme has been also applied to obtaining Finite Spectrum Assignment (FSA), see 

[47] and references therein.  

 

Other compensation schemes for time delay systems derived from Smith predictor scheme are 

the double controller scheme [90] and the two-degree-of-freedom Smith predictor [110]. The 

latter is a combination of Smith predictor and controller adapting control action by an error 

between the plant and its model. While the former is only with single feedback controller 

adapting the control action and the latter one is feedforward controller cancelling plant 

nominal dynamics. An advantage of the double controller scheme consists in both delay 

cancellation and robustness capabilities. In [29] the double controller scheme has been 

modified for anisochronic systems. Later on, the scheme in [110] is generalized by [38]. 

Analogously to separation principle of state feedback control and estimation also the synthesis 

of classical Smith predictor scheme and controller with non-parametric adaptation can be 

mutually separated. As mentioned above due to impossible feedforward disturbance 
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cancellation in classical Smith predictor scheme the feedback disturbance compensation is 

proposed instead [61].  

 

Popular control scheme for time delay systems is Internal Model Control (IMC) [68]. In [108] 

the IMC algorithm composed of multiple time delays minimizes the output variance. As well-

known the IMC is robust hence an anisochronic IMC has been designed [127]. Next the 

anisochronic IMC is extended by an antiwind-up compensation scheme in [117]. Another 

controller design for time delay systems based on the IMC is reached by algebraic control 

synthesis leading to Youla parameterization of the controller [39]. In case the 

parameterization evaluates all the stabilizing controllers that are at the same time the 

anisochronic controllers the Youla-like affine parameterization is obtained for retarded 

systems [128, 129], [130]. There are also other applications of the Youla parameterization to 

the controller synthesis, for instance [60], [76]. 

 

As soon as a delay appears in the control loop the number of system poles is infinite and due 

to the limited number of controller parameters only a limited number of these poles can be 

placed to desired positions. This disadvantage of time delay systems can be overcome by the 

aforementioned control and estimation algorithms, [36], [54], [108], [115, 116], [118], [127-

130]. Those algorithms provide somehow the FSA property. The computational aspect of 

infinite number of process spectrum poles is deeply studied and solved in [13], [97], and next 

the pole assignability problem due to the system infinite spectrum of poles is solved in [63-

65]. Solution to this problem originates from continuous pole placement working in root loci 

manner, [63], which is other technique than the FSA approach. In fact the dominant pole 

placement results instead of the FSA. To avoid the high sensitivity of the roots with respect to 

the adjusted parameter a continuation based approach to the root loci is used [41]. In [75] and 

[105] the dominant pole placement technique is supplemented by the root locus technique to 

tune the PID controller. There are many works dealing with the dominant pole placement 

where assigning complex conjugate pair of poles is supplemented with guaranteeing the gain 

or phase margin, at least a few of them are given [88], [104], [120]. In [27] a generalization of 

linear-quadratic (LQ) optimal control is achieved for linear time delay systems and in [93] 

this generalization gives rise to dominant pole placement. Subsequently the generalized LQ 

optimal control is applied to PID controller design in [83]. Work [2] is adjudged to be original 

in developing a dominant root locus that is later applied to observer based controller design 

for time delay systems [31]. However, equivalently in principle to [2] the dominant root locus 

was introduced earlier by Åström and Wittenmark in 1980, [5], who called this as dominant 

pole-zero placement for discrete system transfer function. Later on different terminology is 

used when system dominant poles are investigated as leading poles, [52]. Already very early 

Cohen and Coon in 1953, [22], proposed PID tuning rule leading to pole placement with 

specific relative damping and natural frequency. Once the PID controller tuning is aimed then 

placing just three poles corresponding to three parameters of PID this aim is met as reported 

in [24], [55], [78], [83]. Extensive study on PID control for time delay plants is given by [82] 

and enlarged survey of PI(D) tuning rules suitable for plants with delay can be found in [71]. 

Strikingly from historical perspective up to now the PID controllers still play key role in 

industrial applications because over 80 percent of all control loops are governed by the PID in 

practice [10]. Regarding the dominance guarantee of placed poles it can be achieved by using 

the generalization of the Hermite–Biehler theorem [58], [102, 103]. In other words the poles 

placed have to become the rightmost poles in the system spectrum which are separated from 

the rest of the infinite spectrum [20]. Alternatively to the dominant pole placement approach 

the parameter stabilizing set of the PID controller is mapped for admissible plants with delay 
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[46], [99]. In [122] the dominant pole placement is modified to varying time delay of the 

process. In case of multi-loop control systems the dominant pole placement is made in [111]. 

 

With regard to recent progress in the control and estimation of time delay systems the author’s 

research is focused on a generalization of time delay system description to obtain universally 

valid controller setting rules. The dominant pole placement is chosen for the controller setting. 

This method is extended to dimensionless form for the third and higher-order control loops 

with a delay.  
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3. Dimensional analysis and its application to 

dimensionless control loop description 

3.1 Introduction 

Problems from various areas of physics can be modelled by means of models based on 

physical similarity providing a more general insight into the considered problems of physics. 

In experimental investigations the dimensional analysis is applied to replacing the prototype 

by its scale model [56], [87]. The prototype and model are physically similar where the latter 

represents smaller or cheaper version of the former. This application can be found in airplane 

and ship building, or vehicle design, but also in mechanical vibration analysis [9], [84], 

building construction, river barrage construction, chemical engineering [132] etc. From the 

technical viewpoint the local or boundary conditions of a physical model lead to dimensional 

analysis application to physical modelling that is restricted only to these conditions [50], 

[133]. Lord Rayleigh in his works, [77], [86], used the dimensional analysis for the first time. 

But he preferred the term “principle of similitude”, [77], to “dimensional analysis”. In fact the 

principle of similitude yields the same results as those brought by the so-called Buckingham 

theorem, [18], but that theorem is mathematically more convenient to apply. Another work on 

the dimensional analysis relying on the Buckingham theorem was published by Bridgman 

[16]. The dimensional analysis is historically rooted in the field of the fluid mechanics. For 

instance, in the case of Navier-Stokes equations for incompressible flow, applying appropriate 

scaling factor for the length and velocity the Navier-Stokes equations become dimensionless. 

Thus the flow length, velocity and pressure are changed to dimensionless variables and only 

one dimensionless parameter, well-known as Reynolds number, is introduced. Then the 

Reynolds number only is needed to investigate the flow instead of original dimensional 

parameters, namely fluid density and kinematic viscosity. Analogously utilizing the 

dimensional analysis for the Boussinesq equation this equation is moved to dimensionless 

equation providing Rayleigh and Prandtl numbers, and after a finalization the Nusselt number 

is determined, for more details see [11]. 

 

In the dimensional analysis application the following initial consideration is accepted. From 

the basic dimensional SI units, namely time, mass, length, current, temperature one can be 

restricted only to time in the dimensional analysis application to process dynamics 

investigation. The reason why this restriction is acceptable is the fact that the process 

variables can be considered as quotients resulting from the ratios to the reference (maximum) 

values of the physical variables. Typically, for instance, the process input can be expressed as 

percentage of the control instrument’s range, thus as dimensionless variable. Then a result of 

the dimensional analysis application is a purely mathematical model of dimensionless 

variables and parameters. Regular assumption of the dimensional analysis application is that 

all the dimensional variables involved into the analysis are relevant variables to describe the 

problem by the pure mathematical model. To avoid the incomplete equations or dimensionally 

non-homogeneous functions the listing of the parameters is to consist of all decisive 

parameters necessary for describing the related problem [18]. To obtain the mathematical 

model composed of only dimensionless variables and parameters the Buckingham theorem is 

applied. In the control design or controller tuning the application of dimensional analysis 

mediates not only the above mentioned prototype-model relation but in fact the whole set of 

dimensionally similar control loop models [6]. For instance the scale model can save space, 

material and energy. As soon as the original problem of physics is reduced in the dimensions 
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to time only the dynamically similar systems are developed instead of the dimensionally 

similar systems. The largest pitfall of dynamic similarity modelling is the fact there is no 

universal method for testing the dynamics meaning of the developed dimensionless model. 

Frequently experiences or expertise in the considered problem are required to compose 

dynamically true dimensionless model. In principle the dimensional homogeneity is assumed 

by the Buckingham theorem and this homogeneity facilitates the dimensionless description of 

the considered problem with a lower number of dimensionless parameters than the original 

ones. The practical effect is that a substantially lower number of experiments is sufficient to 

investigate the problem. Moreover in constituting the dimensionless model there are so many 

scaling factors as many original parameters. However, only the favourably selected scaling 

factor can bring the dimensionless model describing universally the dynamic nature of the 

problem. Notice a contradictory statement can be found in [6]. On one hand Callender tuning 

method, [19], of the PID controller is considered as dimensionally inhomogeneous in [6] and 

on the other hand Ziegler-Nichols method is correctly claimed, [6], that it is dimensionally 

homogeneous. Naturally both the Callender tuning method and the Ziegler-Nichols method 

must satisfy the homogeneity condition hence the statement above is erroneous in [6]. Of 

course there are optimization techniques which are inhomogeneous, for instance the gradient 

based method in [30] and polynomial optimization method, [17]. However in the dimensional 

analysis the resulting controller gains are searched for the Buckingham theorem application 

and it does not matter according to which procedure these gains are computed.  

 

Frequently the Buckingham theorem is applied to obtain the dimensionless model of 

linearized version of original problem [6]. Due to main research results achieved very early 

there are only a few attempts to describe the linearized problem using the dimensional 

analysis within the last two decades [7], [14], [21], [42]. In [42] the dimensional analysis is 

utilized for obtaining linear vehicle bicycle model based on dimensionless ratios of vehicle 

parameters. In [21] the dimensional analysis is applied to stress-strain relations where the so-

called relaxation time is a delay used for dimensionless plant derivation. Concerning the 

dimensional analysis application to the control engineering there are several works, [7, 8], 

[14], [89]. In the field of the control engineering the dimensional analysis approach to the 

control loop design is an advanced method how to design a generic controller which is valid 

for a set of dynamically similar processes [6]. There are also studies [20], [23], [51] and [53] 

where the dimensional analysis approach to the control loop design for time delay systems is 

somewhat intuitively applied. 

 

Until 2013 there was no consistent and generalized survey how to apply the dimensional 

analysis approach to the control loop design for time delay systems. For the first time this 

survey is presented in [123] where the generalized PID control loop is designed for time delay 

systems. Later on the IAE optimum PID controller is tuned up, see [30], for the developed 

dimensionless plant model from [123]. Next the dimensionless PID control loop optimization, 

which is based on the magnitude optimum method extended to processes with delay, is 

performed in [32]. The optimization in [32] differs from the optimization in [23] since it is 

generalized to both the oscillatory and aperiodic plants. Subsequently the IAE optimization of 

the dimensionless parameterization of assigned poles to the delayed PID control loop is 

carried out in [125]. To the end in [126] the research results from [123] are significantly 

extended towards the disturbance rejection optimization achieved by the natural frequency 

option greater than the ultimate one with sufficiently high damping. Moreover the resulting 

dimensionless model is improved by introducing more suitable similarity numbers in [126] 

than those in [123]. Even robust control design in space of the similarity numbers from [126] 
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is carried out in [34] and with the help of the same similarity numbers a neutral PID control 

loop is investigated in [33].  

3.2 Dimensionless description of PID control loop with delay 

The goal of this section is to apply dimensional analysis to construct the dimensionless PID 

control loop model of (n+1)-th order in general. Consider the plant variables as quotients 

resulting from the ratios to the reference (maximum) values of the physical variables, i.e. the 

input and output variables, u and y, are dimensionless, and assume either stable time delay 

plant or time delay plant without steady-state characteristics as follows 

 
1 2 2

1 2 2 1 0 01 2 2

( ) ( ) ( ) ( ) ( )
... ( ) ( ),

n n n

n nn n n

d y t d y t d y t d y t dy t
a a a a a y t b u t

dt dt dt dt dt


 

  
         (3.1) 

 

where 0, 1,2,..., 1ia i n   , and 0 00, 0, 2a b n   . The time delay plant without steady-

state characteristics is referred to as integrating plant with delay while the stable time delay 

plant is called as proportional plant with delay. After performing Laplace transform (L-

transform) of (3.1) under zero initial conditions  

 
1

0

0

( ) ( )exp( )
n

n i

i

i

s a s Y s b U s s




 
   

 
  (3.2) 

 

the plant transfer function is obtained 

 

( ) ( )
( )

( ) ( )

Y s B s
G s

U s A s
  , (3.3) 

 

where 

 
1

0

( )
n

n i

i

i

A s s a s




  , 0( ) exp( )B s b s  . (3.4) 

 

For the purpose of the controller tuning the transfer function (3.3) describing the stable plant 

is expressed as follows 

 

( ) exp( )
( )

K
G s s

A s
   (3.5) 

 

where 

 

0
0

10 0 0 0

( ) 1
( ) 1 , , 1,2,..., 1, , , 0

n
i i

i i n

i

a bA s
A s a s a i n a K a

a a a a

         . (3.6) 

 

As the controller the ideal PID controller is considered 

 

     
 

2

2P D I

du t de t d e t
r r r e t

dt dt dt
    (3.7) 
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where e w y  , w is the reference variable and y is the output of plant (3.1). 

 

Linking the plant (3.1) with controller (3.7) in the closed loop the PID control loop with delay 

is obtained. Applying the dimensional analysis to this loop the dimensionless PID control 

loop of (n+1)-th order is built. Hence the well-known Buckingham   theorem [6] is applied 

to transforming the PID control loop with delay into the dimensionless form simplifying and 

making this description of the loop much more universal when describing the relation of the 

controller specific setting with corresponding set of dynamically similar plants.  

3.2.1 Dimensional analysis application: Option I 

To start the dimensional analysis, automatically, all the already dimensionless parameters or 

quantities of the PID control loop with delay can be excluded from dimensional investigation. 

Such a parameter is proportional loop gain, P PKr  , which is already dimensionless with 

respect to the dimensionless y and u. Thus the dimensional consideration for the PID control 

loop with delay concerns the following quantities  

 

       11 1 1 2

1 2 1 0s , s , s , s , s , , s , s , s , s
n n

D I n nKr Kr a a a a t 
     

 
                    

 (3.8) 

 

where the angular frequency   is considered with regard to specification of systems poles. 

The dimensions of all the quantities in (3.8) are powers of time only and the so-called 

dimensionless arguments constitute the following products of their powers 

 

       2 3 4 5 2 3 4 51

1 2 1 0, , 1,2,..., 3, 4n n n n

i D I n nKr Kr a a a a t i n n
            

      (3.9) 

 

where the exponents 1 2 4 5, ,..., ,n n      play a key role in constructing the similarity numbers. 

The arguments in (3.9) are not ordered randomly but primarily the order of the arguments 

expresses their significance for the PID control loop description. Thus the most important 

parameter for the control loop design is the natural frequency while the delay,  , is chosen 

scaling factor. Following the Buckingham   theorem the dimensional matrix [6] is due to 

only one essential dimension considered, i.e. time, one row matrix 

 

 1 1 1 1 2 1 1 1n n         D  (3.10) 

 

Then the dimensionless arguments are solved by applying the augmented matrix equation 

 

 

1 1

2 2
4 4 1

1 2
4 4

5 0

n n

n n

n

D

 

 

 



  

 



   
   
    
    
     
   
     

I 0

D
 (3.11) 

 

where  1 2 2, 1D D D D . From (3.11) only one non-trivial solution results in linear 

equation as follows 

 

 1 2 3 4 5 2 3 4 52 1 0n n n nn n                       (3.12) 
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Simply (3.12) can be solved in the manner that one of the exponents, except the last exponent, 

is fixed to one and remaining 3n  exponents are zero-filled. The last exponent belongs to the 

scaling factor hence it cannot be the subject to the solution to (3.12). Thus in iterative manner 

4n  solutions to (3.12) are obtained when gradually one of 4n  exponents is fixed to one 

and the rest of exponents, except the last one, are set zero. After substituting these 4n  

solutions into (3.9) the dimensionless parameters , 1,2,..., 3, 4,i i n n     are derived. The 

order, n, cannot be arbitrarily high due to the limited capability of the PID controller to 

change the plant dynamics and to the involved relations for similarity numbers. For the 

exponents in (3.9) the following conditions result 

 

1. 1 2 3 4 5 2 3 41, 0n n n                  → 5 1n    → 1   

2. 2 1 3 4 5 2 3 41, 0n n n                  → 5 1n     → 2
DKr




  

3. 3 1 2 4 5 2 3 41, 0n n n                  → 5 1n    → 3 IKr   

4. 4 1 2 3 5 2 3 41, 0n n n                  → 5 1n    → 4 1na   

5. 5 1 2 3 4 2 3 41, 0n n n                  → 5 2n    → 2

5 2na   

1 

n+2. 2 1 2 3 4 5 3 41, 0n n n                  → 5 1n n     → 1

2 1

n

n a  

   

 

n+3. 3 1 2 3 4 5 2 41, 0n n n                  → 5n n    → 3 0

n

n a    

n+4. 4 1 2 3 4 5 2 31, 0n n n                  → 5 1n     → 4n

t



   

 

Evidently 1  and 4n   are dimensionless frequency and time variables, respectively, at 

which the control loop model is expressed. 2  and 3  are dimensionless derivative and 

integration loop gains, respectively. While 4 5 2 3, , , ,n n      are plant dimensionless 

parameters. If for modelling purposes    and t t   the plant model (3.1) with 0 0a  , 

0 0a b  is transformed by the dimensional analysis to the dimensionless form 

 
1 2 2

4 5 1 2 3 31 2 2

( ) ( ) ( ) ( ) ( )
... ( ) ( 1),

n n n

n n n nn n n

d y t d y t d y t d y t dy t
y t u t

dt dt dt dt dt
     

 

    
       

 (3.13) 

 

where 4 5 2 3, , , ,n n      are the plant similarity numbers. Due to the delay selected as 

the scaling factor instead of the delay is 1   . Because of 0 0a b  the dimensionless plant 

model (3.13) is developed with unit steady-state gain, i.e. 1K  . However, in case of non-unit 

K the arguments 2 , 3  are straightforwardly applied to the PID control tuning in 

dimensionless control loop with delay. Indeed in the control loop arrangement not only the 

proportional gain is merged with the plant steady state gain, i.e. P PKr  , but also the 

derivative and integration gains are transformed to dimensionless loop gains D DKr    and 

I IKr  , respectively.  
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Integrating plant. Once the controlled plant (3.1) is considered with 0 0a   and 0 0b   the 

integrating plant takes place. Then the argument 3n   disappears. Instead of 3n   other 

similarity number is introduced  

 

3 0

I n

n b   . (3.14) 

 

Thus the dimensionless integrating plant model results in the form 

 
1 2 2

4 5 1 2 31 2 2

( ) ( ) ( ) ( ) ( )
... ( 1),

n n n
I

n n nn n n

d y t d y t d y t d y t dy t
u t

dt dt dt dt dt
    

 

   
        (3.15) 

 

that is analogously to (3.13) in the number of parameters reduced by one delay parameter. 

Though the delay parameter is excluded from the dimensionless arguments the delay 

phenomenon itself is otherwise present in the dimensionless plant model (3.13) and (3.15) as 

fixed-value pure delay. 

 

Remark 1. Rightly, the higher the order of (3.13) the greater is the number of i  arguments. 

At the same time this number results less than the number of those parameters describing 

original plant (3.1). Despite the reduction of plant parameters, the order, n, cannot be 

arbitrarily high due to the aforementioned constraint on n restricted up to four. Additionally 

the plant (3.1) is considered stable. The order of the plant higher than four brings about the 

control loop dynamics of higher order than fifth which is scarcely changeable into desired 

behavior by only three loop gains setting.  

 

Due to the limited order n only the following cases of plants with delay are considered: 1n  , 

2n  , 3n   and 4n  . Also the integrating plants of corresponding order are included.  

 

Case 1. The dimensionless model of the first-order plant with delay, 1n  , is described by the 

following dimensionless parameters  

 

3 4 0n a     , 4 5n t     (3.16) 

 

including the dimensionless frequency variable, i.e. 1  . Be aware that 
3  and 

2n 
 

are not two different dimensionless parameters but the same similarity number, the integration 

loop gain. 2n   for 1n   does not take place in the model for the first-order plant with delay. 

The dimensionless parameters derived in (3.16) need not be final similarity numbers of the 

dimensionless model of the first-order plant with delay. When the reciprocal value of 4  is 

evaluated the new similarity number is introduced 

 

4 0

1 1

a


 
  . (3.17) 

 

This number expresses lagging properties of the first-order plant with delay. Different 

similarity number from   is attained when 4  and 3n   are got together as follows 
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4 4

3 4

1
n

 


 

   . (3.18) 

 

This number, however, degenerates to 1 in case of 1n  . The model (3.13) results for 1n   

with respect to (3.16) as follows 

 

4 4

( )
( ) ( 1)

dy t
y t u t

dt
     (3.19) 

 

and equivalently using number (3.17) 

 

( )
( ) ( 1)

dy t
y t u t

dt
    . (3.20) 

 

Integrating plant. The integrating plant of the first-order is characterized by the following 

similarity number 

 

3 4 0

I I

n b      (3.21) 

 

which is due to (3.14). Dimensionless integrating plant model (3.15) originates for 1n   in  

 

4

( )
( 1)Idy t

u t
dt

   (3.22) 

 

where no   is defined.  

 

Case 2. The dimensionless model of the second-order plant with delay of type (3.1) has been 

already developed for the case of 2n  , [123]. Here the sets of dynamically similar second-

order plants either aperiodic or oscillatory are achieved. The similarity numbers are specified 

as follows  

 

4 1a  , 2

5 0a  , 6 t   (3.23) 

 

which can be next finalized into the following similarity numbers 

 

 

2

5 0 0

22 2

4 11

a a

aa

 


 
    (3.24) 

 

and 

 

4 1a    . (3.25) 

 

Number (3.24) is called the swingability number while (3.25) is referred to as laggardness 

number. When the ratio of 2n   and 3n   is carried out the analogous similarity number to 

(3.17) is derived as follows 
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2 4 1

3 5 0

n

n

a

a

 


  




    (3.26) 

 

which is identical to another similarity number obtained as the ratio 

 

4 4 1

3 5 0n

a

a

 


  

   . (3.27) 

 

The dimensionless model of the second-order plant with delay results from (3.13) 

 
2

4 5 52

( ) ( )
( ) ( 1)

d y t dy t
y t u t

dt dt
       (3.28) 

 

and with respect to final similarity numbers (3.24) and (3.25) 

 
2

2 2

2

( ) ( )
( ) ( 1)

d y t dy t
y t u t

dt dt
      . (3.29) 

 

Model (3.29) in contrary to (3.28) permits evaluate both the swingability and laggardness of 

the plant. Naturally similarity numbers   and   given by (3.26) and (3.27), respectively, 

are redundant for the case of 2n  . 

 

Integrating plant. In case of integrating plant of the second-order the similarity number as 

follows 

 
2

3 5 0

I I

n b      (3.30) 

 

takes over a role of 5  and instead of (3.24) it results 

 

 

2

5 0 0

22 2

4 11

I

I

b b

aa

 


 
   . (3.31) 

 

I  is no more the swingability number. The dimensionless model of the integrating plant of 

the second-order is obtained  

 
2

4 52

( ) ( )
( 1)Id y t dy t

u t
dt dt

     (3.32) 

 

that is equivalently expressed in more convenient form 

 
2

2

2

( ) ( )
( 1)I

d y t dy t
u t

dt dt
    . (3.33) 

 

All the similarity numbers specified are summarized in Tab. 1 below. 
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Case 3. The dimensionless model of the third-order plant with delay, 3n  , is described by 

the following dimensionless parameters 

 

4 2a  , 2

5 1a  , 3

6 0a  , 7 t   (3.34) 

 

including the dimensionless frequency variable 1  . Both 4  and 5  describe 

dynamic properties of plant of type (3.1) and when these two numbers are fused as follows 

 

   

2

5 1 1

2 22

4 2 2

a a

a a

 


 
    (3.35) 

  

different similarity number,  , from both 4  and 5  is derived. This time the number   is 

plant oscillability number. Next when 2n   and 3n   are got into ratio for 3n   another 

similarity number is derived  

 
2

2 5 1 1

3

3 6 0 0

n

n

a a

a a

  


   




    . (3.36) 

 

Another fusion of dimensionless parameters is made as follows  

 

4 4 2 2

3 2

3 6 0 0n

a a

a a

  


   

    . (3.37) 

 

Both   and   are auxiliary similarity numbers. In the fusions (3.35) through (3.7) 4  

represents the similarity number as follows  

 

4 2a    . (3.38) 

  

This number analogously to (3.25) is called laggardness number. Next  3 6n   itself 

constitutes plant characteristics expressing dimensionless coefficient of zero derivative of 

differential equation (3.13)  

 
3

3 6 0n a      . (3.39) 

 

In other words number (3.39) is the absolute term in characteristic polynomial of (3.13). 

Utilizing the similarity numbers (3.34) the plant dimensionless form (3.13) is expressed for 

3n   

 
3 2

4 5 6 63 2

( ) ( ) ( )
( ) ( 1)

d y t d y t dy t
y t u t

dt dt dt
         (3.40) 

 

In summary applying the final similarity numbers, , ,  , together with originally derived  

 4   and  6   the form (3.40) is equivalently rewritten  
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3 2

3 2

( ) ( ) ( )
( ) ( 1)

d y t d y t dy t
y t u t

dt dt dt


  


     . (3.41) 

 

Compared to (3.1) both (3.40) and (3.41) reduce the number of plant parameters by one. 

However there is a square root in (3.41) hence to remove it the following equivalent similarity 

numbers are introduced 

 

4





 , 

2

5 2





 , 

6 2





 . (3.42) 

 

(3.40) is transformed as follows  

 
3 2 2

3 2 2 2 2

( ) ( ) ( )
( ) ( 1)

d y t d y t dy t
y t u t

dt dt dt

   

   
      (3.43) 

 

that is from the dynamic similarity point of view in the final form. To make decision which of 

the forms is most suitable for the control synthesis neither (3.40) nor (3.41) are appropriate 

deputies of plant of type (3.1) hence (3.43) should be utilized for the controller tuning with 

respect to variable  ,   and  . 

 

Integrating plant. The similarity number (3.14) for 3n   is specified as follows  

 
3

3 6 0

I I

I n b       (3.44) 

 

to build the third-order integrating plant model with delay. The number 
I  is simply the 

dimensionless coefficient of zero input derivative of differential equation (3.15). On contrary 

to (3.31) no number 
I  exist and (3.35) is applied instead. In other words in (3.35) there is 

not the term 
0a . The model (3.40) is overwritten as follows 

 
3 2

4 5 63 2

( ) ( ) ( )
( 1)Id y t d y t dy t

u t
dt dt dt

      . (3.45) 

 

where the role of 6  from (3.40) takes over 6

I  originating from (3.44). Together with 

(3.35), (3.38) and (3.44) the dimensionless form (3.45) is finalized as follows 

 
3 2

2

3 2

( ) ( ) ( )
( 1)I

d y t d y t dy t
u t

dt dt dt
      . (3.46) 

 

Beside I  the third-order integrating plant model with delay is described by the oscillability 

and laggardness numbers, i.e.   and  , respectively. Notice the similarity numbers,   and 

 , are not defined with respect to 
0 0a  . 

 

Case 4. The dimensionless model of the fourth-order plant with delay, 4n  , is described by 

the following dimensionless parameters 

 

4 3a  , 2

5 2a  , 3

6 1a  , 4

7 0a  , 8 t   (3.47) 
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including the dimensionless frequency variable 1  . Again from the ratio of 4  and 

5  it results 

 

   

2

5 2 2

2 22

4 3 3

a a

a a

 


 
   . (3.48) 

 

When 2n   and 3n   are in the ratio for 4n   the similarity number analogously to (3.36) is 

derived 

 
3

2 6 1 1

4

3 7 0 0

n

n

a a

a a

  


   




    . (3.49) 

 

Differently the number (3.37) is given as  

 

3 34 4

4 3

3 7 0 0n

a a

a a

 


   

    . (3.50) 

 

Again 4  represents the laggardness number as follows  

 

4 3a     (3.51) 

  

and the absolute term in characteristic polynomial results analogously to (3.38) 

 
4

3 7 0n a      . (3.52) 

 

Based on the similarity numbers (3.47) the plant dimensionless form (3.13) is expressed for 

4n   

 
4 3 2

4 5 6 7 74 3 2

( ) ( ) ( ) ( )
( ) ( 1)

d y t d y t d y t dy t
y t u t

dt dt dt dt
          . (3.53) 

 

Once the following arguments are expressed using (3.48) through (3.52) as follows 

 

4  , 2 2

5    , 
6   (3.54) 

 

the dimensionless model of the fourth-order plant with delay is equivalently expressed 

 
4 3 2

2 2

4 3 2

( ) ( ) ( ) ( )
( ) ( 1)

d y t d y t d y t dy t
y t u t

dt dt dt dt
           . (3.55) 

 

Since in (3.55)  ,  ,   and   are involved this model provides enough generalized 

description of plant of type (3.1) for 4n  .  

 

Integrating plant. To obtain the integrating plants of the fourth-order the similarity number 

(3.14) for 4n   is specified as follows  
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4

3 7 0

I I

I n b       (3.56) 

 

(3.55) is the dimensionless coefficient of zero input derivative of differential equation (3.15) 

in case of 4n   and (3.15) changes into the form 

 
4 3 2

4 5 6 74 3 2

( ) ( ) ( ) ( )
( 1)Id y t d y t d y t dy t

u t
dt dt dt dt

        . (3.57) 

 

(3.57) can be rewritten in the more convenient form from the dynamic similarity point of view 

 
4 3 2

2

64 3 2

( ) ( ) ( ) ( )
( 1)I

d y t d y t d y t dy t
u t

dt dt dt dt
        . (3.58) 

 

where the role of  7   from (3.55) takes over  7

I

I   originating from (3.56). Be aware 

6   cannot be substituted into (3.58) because   together with   are not defined for 

the integrating plants in general. 

 

Remark 2. The final similarity numbers provide much better insight into dynamic properties 

of plants of type (3.1). Simultaneously it can be concluded that the plant (3.1) is reduced in its 

number of parameters by one parameter, i.e. delay length  , which resulted in the fixed value 

by the application of dimensional analysis. Though the delay parameter is excluded from the 

dimensionless parameters the delay phenomenon itself is otherwise present in the 

dimensionless plant models (3.13) and (3.15) as unit pure delay. 

 

Let the notation introduced by the dimensional analysis application be summarized in the 

following table, Tab. 1.  

 

Tab. 1 Similarity numbers derived from i  arguments 

Order Similarity number Definition Description 

1 4  

1      frequency angle 

2 D   D DKr   dimensionless derivative loop gain 

3 I   I IKr   dimensionless integration loop gain 

2 4  4   
1na   plant laggardness number 

1 4  

3n    
0

na   absolute term in characteristic polynomial of 

(3.13) or coefficient of zero input derivative 

in (3.15) 3

I

n I    0

n

I b   

4n t    t t   dimensionless time 

1n   
4

1 1


 
   

0

1

a



  plant laggardness number 

4 4

3 4n

 


 

   1   relation (3.18) 

2n   
5

2

4





  0

2

1

a

a
   plant swingability number 
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2 4

3 3

n

n n

 
 

 


 

    1

1

0

n

n

a

a
 





   redundancy 

4   1a   plant laggardness number 

5

2

4

I

I





  

0

2

1

I

b

a
   integrating plant similarity number (3.31) 

3n   

5

2

4





  

 
1

2

2

a

a
   plant oscillability number 

5

6





  1

0

a

a



  

auxiliary similarity numbers 

4

6





  2

2

0

a

a



  

4





  

2a


 


   

plant laggardness number, see (3.38) 

2

5 2





  5 2a


  


   

6 2





  6 2a      

4n   

5

2

4





  

 
2

2

3

a

a
   plant oscillability number 

6

7





  1

0

a

a



  

auxiliary similarity numbers 

4

7





  3

3

0

a

a



  

4   
3a     

plant laggardness number, see (3.51) 

2 2

5     
5 3a      

6   
6 3a


  


   

 

For the purpose of plant pole spectrum investigation the corresponding characteristic 

polynomial is specified for the plant cases, namely 2n  , 3n   and 4n  . As regards the 

Case 1, 1n  , the first-order plant with delay is not considered for PID control synthesis 

because the dominant pole placement technique is generalized in Chapter 4 for the control 

loop systems of retarded type. To investigate the pole spectrum the dimensionless Laplace 

transform of corresponding plant models is made. Simultaneously with t t   and 

conformly with    the following dimensionless complex variable of Laplace transform 

results  

 

s s . (3.59) 

 

Case 2 (Characteristic polynomial). The dimensionless Laplace transform of (3.29) under 

zero initial conditions results in  
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2 2 2( ) exp( ) ( )s s Y s s U s         (3.60) 

 

from where 

 

 2 2s s M s     (3.61) 

 

is the characteristic polynomial. The second-order plant transfer function results in  

 
2

2 2

( )
( ) exp( )

( )

Y s
G s s

U s s s



 
  

 
 (3.62) 

 

where the steady-state gain is 1K  . For the integrating plant (3.33) the transfer function 

results 

 

 

2( )
( ) exp( )

( )

IY s
G s s

U s s s




  


 (3.63) 

 

where the denominator is the characteristic polynomial 

 

   M s s s   . (3.64) 

 

Case 3 (Characteristic polynomial). The dimensionless Laplace transform of (3.43) under 

zero initial conditions is given as 

 
2

3 2

2 2 2
( ) exp( ) ( )s s s Y s s U s

   

   

 
     

 
 (3.65) 

 

and from the left-hand side of (3.65) the following characteristic polynomial originates as 

follows 

 
2

3 2

2 2
( )M s s s s

  

  
    . (3.66) 

 

From variety of the similarity numbers the polynomial (3.66) can be equivalently expressed as 

follows   

 
3 2 2( )M s s s s      . (3.67) 

  

The third-order plant transfer function results in 

 

2

2
3 2

2 2

( )
( ) exp( )

( )

Y s
G s s

U s
s s s




  

  

  

  

 (3.68) 

 

or equivalently 
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3 2 2

( )
( ) exp( )

( )

Y s
G s s

U s s s s



  
  

  
 (3.69) 

 

where again the unit steady-state gain appears. For the integrating plant (3.46) the transfer 

function results 

 

3 2 2

( )
( ) exp( )

( )

IY s
G s s

U s s s s



 
  

 
. (3.70) 

 

and its denominator is the characteristic polynomial 

 

   2 2M s s s s    . (3.71) 

 

Case 4 (Characteristic polynomial). The dimensionless Laplace transform of (3.55) under 

zero initial conditions is obtained as follows 

 
4 3 2 2 2 ( ) exp( ) ( )s s s s Y s s U s             . (3.72) 

  

On the left-hand side the characteristic polynomial appears as follows 

 
4 3 2 2 2( )M s s s s s         . (3.73) 

 

From available similarity numbers the polynomial (3.73) can be equivalently expressed as 

follows 

 
4 3 2 2( )M s s s s s        . (3.74) 

 

The fourth-order plant transfer function originates in 

 

4 3 2 2 2

( )
( ) exp( )

( )

Y s
G s s

U s s s s s



    
  

   
 (3.75) 

 

or equivalently in 

 

4 3 2 2

( )
( ) exp( )

( )

Y s
G s s

U s s s s s



   
  

   
. (3.76) 

 

Both (3.75) and (3.76) are with the unit steady-state gain. For the integrating plant (3.46) the 

transfer function results as 

 

4 3 2 2

6

( )
( ) exp( )

( )

IY s
G s s

U s s s s s



  
  

  
 (3.77) 

 

and its denominator is the characteristic polynomial as follows 

 

   3 2 2

6M s s s s s      . (3.78) 
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Number 6  is used in (3.77) and (3.78) as it is because other similarity numbers do not 

enable to exchange it in case of the integrating plants. 

 

Subsequently the dimensionless PID control loop models with delay are obtained for 

considered plant cases to tune the PID controller by means of the dominant pole placement. 

Also to test resulting PID setting on disturbance rejection performance corresponding transfer 

function is computed with the notation in Tab. 1. Add disturbance variable z to the control 

input u on the right-hand side of (3.1) and link the PID controller (3.7) to the plant (3.1) with 

acting disturbance z on the plant input in the place of the control variable u. Resulting closed 

loop is described by the following retarded differential equation 

 

   
 

 
     

1 1

1 21 1

23 2

2 0 1 0 0 03 2 2

2

0 0 0 02

( ) ( ) ( )
...

( ) ( ) ( )

n n n

n nn n n

D P I

I P D

d y t d y t d y t
a a

dt dt dt

d y t dy td y t d y t dy t
a b r a b r a b r y t

dt dt dt dt dt

dw t d w t dz t
b r w t b r b r b

dt dt dt

 


  


 

  
  

 
       

  
   

 (3.79) 

 

By virtue of the dimensional analysis the dimensionless parameters , 1,2,..., 3, 4,i i n n     

are derived. The dimensionless PID control loop model is then described by retarded 

differential equation  

 

   
 

 
     

1 1 3

4 5 11 1 3

2 2

3 2 3 3 32 2

2

3 3 3 32

( ) ( ) ( ) ( )
...

1 1( ) ( )
1

1 1 1
1

n n n

nn n n

n D n n P n n I

n I n P n D n

d y t d y t d y t d y t

dt dt dt dt

d y t dy td y t dy t
y t

dt dt dt dt

dw t d w t dz t
w t

dt dt dt

  

       

      

 

 

    

   

    

 
     

  
    

 (3.80) 

 

Although (3.80) is obtained under assumptions 1K  , i.e. 0 0a b , this equation covers also 

unconstrained case in parameter values, except 0 0a  . The control loop models for 

integrating plants are supplied to considered plant cases as supplements. Providing the 

dimensionless Laplace transform of (3.80) under zero initial conditions  

 

     

1 1 3

4 5 1

2

2 3 3 3

...

1

n n n

n

s s s

n n D n P n I

s s s s

e s e s e Y s

  

      

 



  

   

     

    


 

   2

3 3

s s

n I P D ns s e W s e sZ s     

 
       (3.81) 

 

both reference and disturbance transfer functions are calculated 

 

 

 

Y s

W s
  
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 
   

2

3

1 1 3 2

4 5 1 2 3 3 3... 1

s

n I P D

n n n s s s

n n n D n P n I

s s e

s s s s e s e s e

   

         





    

    

 


        

 (3.82) 

 

and 

 

 

 

   
3

1 1 3 2

4 5 1 2 3 3 3... 1

s

n

n n n s s s

n n n D n P n I

Y s

Z s

se

s s s s e s e s e



         





    

    




        

 (3.83) 

 

Both as (3.82) as (3.83) contain the characteristic quasi-polynomial of the delayed control 

loop model 

 

 

   1 1 3 2

4 5 1 2 3 3

                                                                                                                                        

... 1n n n s s

n n n D n P n

Q s

s s s s e s e s           

   



          3

s

Ie 



 (3.84) 

 

which can be next modified after substituting (3.84) into the characteristic equation   0Q s   

as follows 

 

 

1 1 3 2

4 5 1 2 3

2

3

...

0.

n n n s

n n n

n P I D

s s s s s s e

s s M s

    

   

 

  



        

     

 (3.85) 

 

Characteristic roots of   0Q s   and   0M s   are the same and additionally (3.85) is more 

appropriate for the computation of control loop spectrum. Reference and disturbance transfer 

functions for integrating plants (3.15) are attained analogously to (3.82) and (3.83) as follows 

 

 

 

 
 

2

3

1 1 3 2

4 5 1 2 3 3 3...

I s

n I P D

n n n I s I s I s

n n n D n P n I

Y s

W s

s s e

s s s s e s e s e

   

         





    

    



 


       

(3.86) 

 

and 

 

 

 

 
3

1 1 3 2

4 5 1 2 3 3 3...

I s

n

n n n I s I s I s

n n n D n P n I

Y s

Z s

se

s s s s e s e s e



         





    

    




       

(3.87) 
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respectively. The characteristic quasi-polynomial differs from (3.84) instead of 3n   number 

3

I

n 
 is introduced by (3.14). Then analogously to (3.85) the modified characteristic equation 

results 

 

 
1 1 3 2 2

4 5 1 2 3... 0.n n n s I

n n n P I D

M s

s s s s s e s s        

  



               

 (3.88) 

 

Case 2 (Control loop). The dimensionless PID control loop with delay has been already 

developed for the case of 2n   [123]. Here the sets of dynamically similar second-order 

plants either aperiodic or oscillatory are controlled by the PID of which settings correspond to 

those sets. The PID controller settings are evaluated versus derived similarity numbers that 

are achieved in (3.24), (3.25) and (3.31). As regards the reference and disturbance transfer 

functions for both proportional and integrating plants they are achieved from (3.82), (3.83) 

and (3.86), (3.87) by substituting 2 for n 

 

 
 

 
   

2 2

3 2 2 21 1

s

I P D

s s s

D P I

s s eY s

W s s e s e s e

   

     



  

 


    
, (3.89) 

 

 

     

2

3 2 2 21 1

s

s s s

D P I

Y s se

Z s s e s e s e



     



  


    
 (3.90) 

 

and  

 

 
 

 
 

2 2

3 2 2 21

s

I I P D

s s s

I D I P I I

s s eY s

W s s e s e s e

   

     



  

 


   
, (3.91) 

 

 

   

2

3 2 2 21

s

I

s s s

I D I P I I

Y s se

Z s s e s e s e



     



  


   
, (3.92) 

 

respectively. Notice 
4  , 2

5   and 2

5

I

I   while 1 2 3, ,    do not belong to 

the plant similarity numbers. Lastly the characteristic quasi-polynomial of both delayed PID 

control loop models results from (3.89) and (3.91) 

 

     3 2 2 21 1s s s

D P IQ s s e s e s e             , (3.93) 

 

   3 2 2 21 s s s

I D I P I IQ s s e s e s e            , (3.94) 

 

and analogously to their modification according to (3.85) and (3.88) into the characteristic 

equation one gets 

 

 3 2 2 2 2 0s

P I Ds s s e s s M s                   (3.95) 
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and 

 

 3 2 2 2 0s

I P I Ds s e s s M s                , (3.96) 

 

respectively. Both characteristic equations have been subsequently applied to dominant-three 

pole placement in order to tune control loop gains. 

 

Case 3 (Control loop). The dimensionless PID control loop model with delay is found for the 

sets of dynamically similar third-order plants, aperiodic or oscillatory, characterized by 

similarity numbers (3.35), (3.38), (3.39) and (3.44). Corresponding reference and disturbance 

transfer functions are attained from (3.82), (3.83) and (3.86), (3.87) by substituting 3 for n 

 

 

 

 
   

2

4 3 2 2 1

s

I P D

s s s

D P I

s s eY s

W s s s e s e s e

   

     



  

 


     
, (3.97) 

 

 

     4 3 2 2 1

s

s s s

D P I

Y s se

Z s s s e s e s e



     



  


     
 (3.98) 

 

and 

 

 

 

 
 

2

4 3 2 2

s

I I P D

s s s

I D I P I I

s s eY s

W s s s e s e s e

   

       



  

 


    
, (3.99) 

 

 

   4 3 2 2

s

I

s s s

I D I P I I

Y s se

Z s s s e s e s e



       



  


    
, (3.100) 

 

respectively. Notice 4  , 2

5  , 6   and 6

I

I  . Finally the characteristic 

quasi-polynomial of both delayed PID control loop models results from (3.97) and (3.99) as 

follows 

 

     4 3 2 2 1s s s

D P IQ s s s e s e s e              , (3.101) 

 

   4 3 2 2s s s

I D I P I IQ s s s e s e s e               . (3.102) 

 

With respect to (3.85) and (3.88) the corresponding characteristic equations are achieved 

 

 4 3 2 2 2 0s

P I Ds s s s e s s M s                     (3.103) 

 

and 

 

 4 3 2 2 2 0s

I P I Ds s s e s s M s                  , (3.104) 

 

respectively. 
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Case 4 (Control loop). The dimensionless PID control loop model with delay is got for the 

sets of dynamically similar fourth-order plants with delay characterized by similarity numbers 

(3.48), (3.51), (3.52) and (3.56). Corresponding reference and disturbance transfer functions 

are attained from (3.82), (3.83) and (3.86), (3.87) by substituting 4 for n 

  

 

 

 
   

2

5 4 2 3 2 1

s

I P D

s s s

D P I

s s eY s

W s s s s e s e s e

   

       



  

 


      
, (3.105) 

 

 

     5 4 2 3 2 1

s

s s s

D P I

Y s se

Z s s s s e s e s e



       



  


      
 (3.106) 

 

and 

 

 

 

 
 

2

5 4 2 3 2

6

s

I I P D

s s s

I D I P I I

s s eY s

W s s s s e s e s e

   

        



  

 


     
, (3.107) 

 

 

   5 4 2 3 2

6

s

I

s s s

I D I P I I

Y s se

Z s s s s e s e s e



        



  


     
, (3.108) 

 

respectively. Notice 
4  , 2

5  , 
6  , 

7   and 7

I

I  . Be aware 

6   is not applicable for the fourth-order integrating plants with delay. Next the 

characteristic quasi-polynomial of both delayed PID control loop models is identified with the 

denominator of (3.105) and (3.107) as follows 

 

     5 4 2 3 2 1s s s

D P IQ s s s s e s e s e                 , (3.109) 

 

and 

 

   5 4 2 3 2

6

s s s

I D I P I IQ s s s s e s e s e                 , (3.110) 

 

respectively. Applying (3.85) and (3.88) to (3.101) and (3.102), respectively, the 

corresponding characteristic equations are achieved as follows 

 

 5 4 2 3 2 2 0s

P I Ds s s s s e s s M s                      , (3.111) 

 

 5 4 2 3 2 2

6 0s

I P I Ds s s s e s s M s                    . (3.112) 
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3.2.2 Dimensional analysis application: Option II 

To remedy the disadvantage of dimensionless forms (3.13) and (3.15) of plant model (3.1) 

consisting in the fixed delay parameter equal to one the appropriate reformulation of both 

model (3.1) and dimensional analysis procedure is made in the sequel. In contrast to (3.1) the 

following time delay plant model is identified 

 
1 2 2

1 2 2 11 2 2

( ) ( ) ( ) ( ) ( )
... ( ) ( ),

n n n

n n nn n n

d y t d y t d y t d y t dy t
a a a a a y t Ku t

dt dt dt dt dt


 

  
         (3.113) 

 

of which transfer function results in (3.5). However the model (3.113) covers proportional 

plants only, i.e. 0 0a  , hence the plant model (3.113) is completely reformulated as follows   

 
1 2 2

1 2 2 11 2 2

( ) ( ) ( ) ( ) ( )
... ( ) ( ),

n n n

n n nn n n

d y t d y t d y t d y t dy t
c c c c c y t Ku t

dt dt dt dt dt


 

  
         (3.114) 

 

with transfer function  

 

( ) exp( )
( )

K
G s s

A s
    (3.115) 

 

where 

 

1

( ) 1 , 0, 1,2,..., , 0, 2
n

i

i i

i

A s c s c i n K n


      . (3.116) 

 

Again the plant model (3.114) is stable because the plant model (3.1) is assumed stable too. In 

case of the integrating plants the unit from ( )A s  in (3.116) disappears and model (3.114) is 

modified to the form  

 
1 2 2

1 2 2 11 2 2

( ) ( ) ( ) ( ) ( )
... ( )

n n n

n n nn n n

d y t d y t d y t d y t dy t
c c c c c Ku t

dt dt dt dt dt


 

  
       . (3.117) 

 

Also for the case of plant models (3.114) and (3.117) the dimensionless description of PID 

control loop is obtained by means of the dimensional analysis. Analogously to (3.8) the 

following quantities of this control loop are considered for the dimensional analysis 

 

       1 1 1 2 2

1 2 2 1s , s , s , s , s , s , s , , s , s , s .n n n

D I n n nt Kr Kr c c c c c    

 
                        (3.118) 

 

Let be stressed that as in (3.8) product P PKr   is not considered again and the order of the 

quantities in (3.118) again obeys their significance for dimensionless control loop description. 

The most significant parameter for the control loop remains its natural frequency while for 

forming a scaling factor the coefficient nc  is used instead of the delay,  , see (3.8). This 

choice of the independent parameter removes the aforementioned disadvantage of the 

dimensional analysis procedure presented in section Option I. Continuing the dimensional 
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analysis procedure the dimensionless parameters searched are arguments of the following 

products 

 

       3 4 6 75 3 4 51 2

1 2 2 1, , , , 1,2,..., 3, 4n n n

i D I n n nt Kr Kr c c c c c i n n
            

      (3.119) 

 

Now analogously to (3.10) the one row dimensional matrix is obtained 

 

 1 1 1 1 1 1 2 2 1n n n    D  (3.120) 

 

The similarity numbers given by (3.119) originate from the augmented matrix equation given 

by (3.11) from where 

 

 1 1 1 1 1 1 1 2 2 1n n    D , 2D n . (3.121) 

 

So that it results a linear equation as follows 

 

   1 2 3 4 5 6 7 3 4 51 2 2 0n n nn n n                         (3.122) 

 

Again be aware the order, n, cannot be arbitrarily high due to the limited capability of the PID 

controller to change the plant dynamics and to the involved relations for similarity numbers. 

In analogous way to the exponents in (3.9) iteratively 4n  solutions to (3.122) are obtained 

and after their insertions into (3.119) the dimensionless parameters describing the delayed 

PID control loop models are derived as follows 

 

1. 1 2,3,4,5,6,7 2 3 41, 0n n n            → 
1

5n n 

   → 1
n

nc   

2. 2 1,3,4,5,6,7 2 3 41, 0n n n            → 
1

5n n 

    → 2
n

n

t

c
   

3. 3 1,2,4,5,6,7 2 3 41, 0n n n           → 
1

5n n 

    → 3
D

n
n

Kr

c
   

4. 4 1,2,3,5,6,7 2 3 41, 0n n n           → 
1

5n n 

   → 4
n

I nKr c   

5. 5 1,2,3,4,6,7 2 3 41, 0n n n            → 
1

5n n 

    → 5
n

nc


   

6. 6 1,2,3,4,5,7 2 3 41, 0n n n            → 5

1
n

n

n
 


   → 

 

1
6

1

n

n
n

n

c

c
 


  

7. 7 1,2,3,4,5,6 2 3 41, 0n n n            → 5

2
n

n

n
 


   → 

 

2
7

2

n

n
n

n

c

c
 


  

12 

n+3. 3 1,2,3,4,5,6,7 2 41, 0n n n          → 
1

5 2n n 

    → 2
3

2
n

n
n

c

c
    

n+4. 4 1,2,3,4,5,6,7 2 31, 0n n n          → 
1

5n n 

    → 1
4n

n
n

c

c
    
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Here 1  and 2  are dimensionless frequency and time variables, respectively, at which the 

control loop models are expressed. Another meaning of 1  is dimensionless natural frequency 

(or natural frequency angle) with the following notation 1  . 3  and 4  are the derivative 

and integration loop gains, respectively, which are defined with non-zero steady-state gain, 

0.K   Thus 3 D   and 4 I  . As regards 5  it is dimensionless time delay which is not 

fixed to one as in case of the dimensionless models described by (3.13). Naturally the higher 

5  the more delayed are the control loop responses. Regarding 6 7 3 4, , , ,n n      they are 

plant dimensionless parameters. Thus using 2
n

nt t c    the plant model (3.114) is 

transformed to the dimensionless form 

 
1 2 2

6 7 3 4 51 2 2

( ) ( ) ( ) ( ) ( )
... ( ) ( ),

n n n

n nn n n

d y t d y t d y t d y t dy t
y t Ku t

dt dt dt dt dt
    

 

  
         (3.123) 

 

which resulted analogously to (3.13) in the delayed model of order n restricted up to four. 

Model (3.123) provides reducing the number of plant parameters by one in comparison with 

original model identified as (3.114). Of course a particular selection of the similarity numbers 

has to be made for achieving this reduction for considered cases of plants below. The reduced 

and independent parameter from (3.114) is nc  used to form the scaling factor n
nc . 

 

Integrating plant. What is changed in the dimensional analysis in case the plant is the 

integrating plant (3.117)? As soon as 2n   in (3.117) all the results of the dimensional 

analysis beginning with (3.118) through (3.122) are applicable to plant (3.117) controlled by 

(3.7) without any change. The dimensionless form of model (3.117) is obtained by omitting 

the term ( )y t  in (3.123) as follows  

 
1 2 2

6 7 3 4 51 2 2

( ) ( ) ( ) ( ) ( )
... ( )

n n n

n nn n n

d y t d y t d y t d y t dy t
Ku t

dt dt dt dt dt
    

 

  
       . (3.124) 

 

Some alterations in deriving the similarity numbers take place depending on the plant order, 

n. In describing the integrating plant dynamics both oscillability and stiffness participate. 

Generally the stiff behaviour of servomechanisms was observed very early, [45], and this 

behaviour is modelled as a ratio of short and long impulse response time constant. 

 

Remark 3. In practice the order of (3.123) cannot be arbitrary due to the PID control 

application, see Remark 1. Since the PID controller applicability is further limited up to 4n   

the following assumptions on the plant (3.114) parameters are required. When 3n    

 

3 1 2c c c  (3.125) 

 

and when 4n   

 

2 3 1 4c c c c ,   2

3 1 2 3 1 4c c c c c c  . (3.126) 

 

Both (3.125) and (3.126) originate from Hurwitz criterion application and their fulfilment 

guarantees the plant stability. In this case the dimensionless form (3.123) is also stable.  
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Due to the limited order n only the following cases of plants (3.114) with delay are 

considered: 1n  , 2n  , 3n   and 4n  . Also the integrating plants (3.117) of 

corresponding order are included.  

 

Case 1. The dimensionless model of the first-order plant with delay, 1n  , is described by the 

following dimensionless parameters 

 

1 1c  , 2

1

t

c
  , 5

1c


  . (3.127) 

 

Be aware that from all the similarity numbers belonging to the plant parameters only 4n   for 

1n   exists 

 

1
4 1n

n
n

c

c
      (3.128) 

 

and gives the trivial solution. In fact instead of 4n   for 1n   the similarity number 5  

describes plant retardedness, i.e. retarded property, and is denoted as follows  

 

5  .  (3.129) 

 

In other words (3.129) indicates how far is the plant delayed or retarded. Be aware that also 

6 1   analogously to (3.128). The model (3.123) results for 1n   with respect to (3.127) and 

(3.129) as follows 

 

( )
( ) ( )

dy t
y t Ku t

dt
    (3.130) 

 

Integrating plant. The integrating plant of the first-order is simply obtained by omitting the 

term ( )y t  in (3.130) as follows 

 

( )
( )

dy t
Ku t

dt
   (3.131) 

 

where K is no more in the role of the steady-state gain. 

 

Case 2. The dimensional analysis has been presented for plants of type (3.114) and (3.117) 

when 2n   in [126]. For the case of aperiodic or oscillatory second-order plants with delay 

the dimensional analysis leads to deriving the following similarity number 

 

1 2c  , 2

2

t
t

c
   , 5

2c


  , 1

6

2

c

c
  . (3.132) 

 

Using (3.132) final similarity numbers are given as follows 
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2

6 1

1 c

c



   (3.133) 

 

and  

 

5

2c


   .  (3.134) 

 

  is called the swingability number while   is the so-called laggardness number [126]. The 

swingability number can be obtained from two different similarity numbers introduced as  

 

3 2

4 1

1n

n
n n

c

c c









   (3.135) 

 

and 

 

7 2

6 1

n n
n

n

c
c

c









   (3.136) 

 

when substituting 2n   into both (3.135) and (3.136). In (3.136) it results 0 1c  . For 2n   

  and   are the same and there is the redundancy. Next redundancy emerges between the 

following similarity numbers 

 

11
6

2

c

c
      (3.137) 

 

and 

 

1 2 1
3 4 3

2

n n
n

n

c c c

cc
         (3.138) 

 

that result the same for 2n  . In addition both   and   are reciprocal to  . With respect to 

the definition of both 3n   and 7  one can write for 2n     

 

7 6 1     , 3 1n   . (3.139) 

 

Let be remarked there is a collision between 5  and 3n   for 2n  . While 5  is   the 

number, 3n  , is other plant similarity number that disappears as apparent from (3.139). In 

fact this collision is resolved by introducing another similarity number 

 

25

6 1

nn
n

n

c
c

 








   (3.140) 
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which for 2n   results in 5 6 1c    where 
1 1

6 1 2c c       . Then, however, 

(3.140) is very similar to already introduced similarity number 5   hence (3.140) is the 

redundant similarity number, too. Due to aforementioned redundancies among the similarity 

numbers the plant stability is guaranteed if 0   in case of 2n  . The dimensionless model 

(3.123) for 2n   results with respect to (3.137) 

 
2

1

2

( ) ( )
( ) ( )

d y t dy t
y t Ku t

dt dt
      (3.141) 

 

which confirms the dimensionless model for both aperiodic and oscillatory plants in [126]. 

 

Integrating plant. The integrating plant of the second-order is formally obtained by omitting 

the term ( )y t  in (3.141) as follows 

 
2

1

2

( ) ( )
( )I

d y t dy t
Ku t

dt dt
     (3.142) 

 

where I  is in the same form as (3.135) and it is no more swingability number. This number 

is called inertiality number, [126]. 

 

Case 3. The dimensionless model (3.123) of the third-order plant with delay, 3n  , is 

described by the following dimensionless parameters 

 

3
1 3c  , 2

3
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t
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  . (3.143) 

 

Based on (3.143) final similarity numbers are obtained with respect to (3.135) and (3.136) as 

follows 

 

3 2 6 2
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4 1 7 1 3

1 1n

n
n n

c c

c cc c

 

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    , (3.144) 

 

and 

 

17 2 1 3
3

6 1 2

n n
n

n

c c
c c

c c


 







     (3.145) 

 

respectively. Apparently from (3.145) for 3n   between (3.144) and (3.145) there is the 

redundancy 1  . Hence one of  ,   is omitted in describing the dynamically similar 

plants (3.123) when 3n  . The number,  , is the oscillability number and expresses a 

tendency to oscillate. Next similarity numbers are simply due to (3.134) and (3.137) as 

follows 

 

5
3

3c


     (3.146) 
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and 

 

 

2
6 2

3
3

c

c
   , (3.147) 

 

respectively. The similarity number (3.140) for 3n   results in 

 

5 3
3

6 2

c
c

 



   (3.148) 

 

and using (3.146) the number   is expressed as follows  

 
1

6     . (3.149) 

 

The number,  , according to (3.148) is in the role of a supplementary similarity number. 

Significant similarity number from the stability point of view is according to (3.138) 

 

1 2
6 7

3

c c

c
    . (3.150) 

 

The stability condition (3.125) for 3n   is equivalent to the following condition   

 

1  . (3.151) 

 

Opposite to (3.139) 3n   for 3n   does not disappear and results with respect to (3.144) and 

(3.150) as follows 

 
2 2 2

3 6n        (3.152) 

 

In building the dimensionless forms of plant (3.114) the relation (3.152) can be also 

reformulated as follows  

 

1 1     . (3.153) 

 

The dimensionless model (3.123) for 3n   results with respect to (3.143) 

 
3 2

6 7 53 2

( ) ( ) ( )
( ) ( )

d y t d y t dy t
y t Ku t

dt dt dt
       . (3.154) 

 

Applying more convenient similarity numbers from dynamics description the form (3.154) is 

equivalently expressed as 

 
3 2

1

3 2

( ) ( ) ( )
( ) ( )

d y t d y t dy t
y t Ku t

dt dt dt
         (3.155) 
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by which the square root on the right-hand side of (3.153) is avoided. On contrary to model 

form (3.40) the third-order dimensionless model for plants of type (3.114) results more 

appropriate for the purpose of control loop optimization because the form (3.154) can 

originate in either (3.155) or such a form where   is present but   is missing. Both   and   

cannot be involved in order to keep the parameter number reduction and to avoid the 

parameter redundancy (3.145). The number,  , declines for more oscillatory plants, see 

Chapter 3.3. 

 

Integrating plant. The integrating plant of the third-order is got by omitting the term ( )y t  in 

(3.154) as follows 

 
3 2

6 7 53 2

( ) ( ) ( )
( )

d y t d y t dy t
Ku t

dt dt dt
      . (3.156) 

 

In contrast to (3.142) some alterations in deriving the final similarity numbers take place so 

that (3. 144) defines reciprocal value of the following similarity number  
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and (3.145) defines formally the same number  

 

  7 2 1 3
3

6 1 2

n n
I n

n

c c
c c

c c


 






    , (3.158) 

 

but denoted differently, i.e. I  is instead of  . One can see for 3n   the identity between 

(3.157) and (3.158), I I  . In applications number (3.158) is modified in such a way to be 

I  expressed as a function of this ratio which is afterwards used for the evaluation of the 

integrating plant stiffness, see Chapter 3.3. In view of (3.138) and (3.157) one can express 7  

as 

 

 
2 2

4 7n I       (3.159) 

 

and from (3.139) with respect to (3.158) results 

 

7 I   . (3.160) 

 

Again for the dimensionless plant description is more suitable to apply (3.160) than the square 

root resulting from (3.159) 

 

7 I   . (3.161) 

 

The dimensionless form (3.156) is equivalently exchanged by  
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because 
I I   and 

1

7I   . 

 

Case 4. The dimensionless model (3.123) of the fourth-order plant with delay, 4n  , is 

described by the following dimensionless parameters 
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Utilizing the similarity numbers (3.163) the final ones are as follows 
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
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c
   , (3.167) 

 

5
4

6 3

c
c

 



  . (3.168) 

 

Both   and   are the oscillability numbers and   is the retardedness number.   and   

play the role of supplementary similarity numbers. In case of 4n   number (3.138) results in 

 

1 2 1 2
3 4 7 83 34

4

n n
n

n

c c c c

c c
         . (3.169) 

 

By means of the final similarity numbers the numbers 6 , 7  and 8  in (3.163) are expressed 

 
1

6     , 7    , 
1 1

8       . (3.170) 

 

Be aware the number (3.152) is not the power of   in case of 4n   but 

 
2 2 2

3 7n       . (3.171) 

 

The dimensionless plant model of the fourth-order is obtained from (3.123) for 4n   
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d y t d y t d y t dy t
y t Ku t

dt dt dt dt
          (3.172) 
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and using (3.170) this model is modified to 

 
4 3 2

1
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( ) ( ) ( ) ( )
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d y t d y t d y t dy t
y t Ku t

dt dt dt dt
          . (3.173) 

 

Both (3.172) and (3.173) guarantee the original plant parameter reduction by one. Also 

another universal plant model beside both (3.172) and (3.173) is formulated  
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dt dt dt dt
             (3.174) 

 

since 1   . Analogously to the stability condition (3.151) in case of 3n  , the 

following condition  

 

1 2

34
4

1
c c

c
    (3.175) 

 

is a necessary condition of the plant stability. Condition (3.175) is proved from the conditions 

(3.126) and Stodola stability criterion. One gets the requirement, 
1 2 3 0c c c  , and expressing 

this requirement by means of the similarity numbers the following relation is obtained for the 

model (3.174)  

 
1 1 0        . (3.176) 

 

Because 1       and 1 1    one rewrites (3.176) as follows 

 

  . (3.177) 

 

Relation (3.177) is satisfied only when condition (3.175) is satisfied too. The reason why 
1 1    originates from the reasonable constraints to ,   shown in Chapter 3.3 where 

,   are close to one another and result greater than 1. Thus the necessary condition of the 

stability (3.175) is proved for all the dynamically similar plants of fourth-order. This 

condition is different from the Stodola criterion, in fact condition (3.175) supplements the 

Stodola criterion. Since number   given by both (3.150) and (3.169) somehow reflects the 

stability property this is called plant dampeningness number. To express the dimensionless 

model of the fourth-order plant with delay as simple as possible and to avoid any square root 

from the dimensionless model formulation the relations in (3.170) free of any square root are 

applied to model (3.172) as follows  
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dt dt dt dt
           (3.178) 

 

where both   and   are involved as in (3.174). Due to the parameter reduction four 

similarity numbers, namely  ,  ,   and  , cannot be applied to forming the dimensionless 

plant model. One of them has to be eliminated. As regards the numbers,   and  , they rise 

for the more oscillatory plants, see Chapter 3.3. 
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Integrating plant. The integrating plant of the fourth-order is attained by omitting the term 

( )y t  in (3.172) as follows 
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d y t d y t d y t dy t
Ku t

dt dt dt dt
         (3.179) 

 

Analogously to (3.157) and (3.158) the similarity numbers result 
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and  
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which are again the reciprocal value of (3.164) and number (3.165), respectively. For 

integrating plants the number   given by (3.169) is of negligible importance analogously to 

(3.159) as follows 
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4 8n I       (3.182) 

 

because the plant stability is not the case. In addition 
8  is expressed differently from (3.182) 

to avoid the square root in the dimensionless model (3.179). Using relations (3.170) adapted 

to the fourth-order integrating plant with delay  

 

6  , 
7 I   , 

8 7I    (3.183) 

 

the form (3.179) is changed to 
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From the dynamic similarity point of view the model (3.184) receives the final form 
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            (3.185) 

 

where I  and I  are two different similarity numbers. The former is the plant oscillability 

number while the latter is the plant stiffness number. Both (3.184) and (3.185) are with the 

least possible number of dimensionless parameters involving both I  and I . 
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Tab. 2 Similarity numbers derived from i  arguments  

Order Similarity number Definition Description 

1 4  

1   n
nc   dimensionless frequency 

2 t   n
nt t c  dimensionless time 

3 D   n
D D nKr c   dimensionless derivative loop gain 

4 I   n
I I nKr c   dimensionless integration loop gain 

5   n
nc   plant retardedness number 

2 4  6    
1

1

n
n

n nc c


  supplementary number  

1 4  1 5       natural frequency angle 

2 4   1    redundancy 

2n   
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1 2c c    
redundancy 

    
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 1    redundancy 
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
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
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3

2

c
c


   supplementary number according to (3.140) 

2

6   2   relation (3.152) 

6 7    
1 2

3

1
c c

c
    stability condition (3.125), plant dampeningness 
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
  2 4

4

3

c
c

c
   
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c
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
   supplementary number according to (3.140) 

 
1 1

4
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c
c

c
    

When this ratio is 1 then all the plant poles are 

complex and given with common factor 0  , 

see Chapter 3.3. 

7   
1    application of (3.171) 

7 8    
1 2

34
4

1
c c

c
    necessary condition of stability (3.175), plant 

dampeningness 

3n   
7

6

I I


 


   

1 3
3

2

I

c
c

c
   

integrating plant oscillability, redundancy 

I I   
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1 3

2

2

1

4

I c c

c




   integrating plant stiffness number 

4n   

8

7

I





  1 4

4

2

I

c
c

c
   integrating plant oscillability number 

7

6

I





  

2 4
4

3

I

c
c

c
   integrating plant stiffness number 

2
1

1 2

I
I

I







 


 stiffness number for 1n    where I  is 

dimensionless spectral abscissa, see (3.310)  

8 I    

2

1

4

I

c

c
    application of (3.182) 

8

6

I I


 


  

8I I     application of (3.183) 

 

For the purpose of plant pole spectrum investigation the corresponding characteristic 

polynomial is specified for the plant cases, namely 2n  , 3n   and 4n  . As regards the 

Case 1, 1n  , the first-order plant with delay is not considered for PID control synthesis 

because the dominant pole placement technique is generalized in Chapter 4 for control loop 

systems of retarded type. To investigate the pole spectrum the dimensionless Laplace 

transform of corresponding plant models is made. Simultaneously with n
nt t c  and 

conformly with n
nc   the following dimensionless complex variable of Laplace 

transform results  

 

n
ns s c . (3.186) 

 

Case 2 (Characteristic polynomial). The dimensionless Laplace transform of (3.141) under 

zero initial conditions results in 

   
2 1 1 ( ) exp( ) ( )s s Y s K s U s        (3.187) 

 

from where 

 

 2 1 1s s M s    (3.188) 

 

is the characteristic polynomial. The second-order plant transfer function results in  

 

2 1

( )
( ) exp( )

( ) 1

Y s K
G s s

U s s s



  

 
 (3.189) 

 

For the integrating plant (3.142) the transfer function results 

 

 1

( )
( ) exp( )

( )
I

Y s K
G s s

U s s s


 
  


 (3.190) 
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where the denominator is the characteristic polynomial 

 

   1

IM s s s   . (3.191) 

 

Case 3 (Characteristic polynomial). The dimensionless Laplace transform of (3.155) under 

zero initial conditions is given as 

 
3 2 1 1 ( ) exp( ) ( )s s s Y s K s U s           (3.192) 

 

and from the left-hand side of (3.192) the following characteristic polynomial originates as 

follows 

 

  3 2 1 1M s s s s       (3.193) 

 

The third-order plant transfer function results in 

 

3 2 1

( )
( ) exp( )

( ) 1

Y s K
G s s

U s s s s


  
  

  
 (3.194) 

 

For the integrating plants (3.162) the transfer function results 

 

3 2

( )
( ) exp( )

( ) I

Y s K
G s s

U s s s s


  
  

 
 (3.195) 

 

and its denominator is the characteristic polynomial 

 

   2

IM s s s s     . (3.196) 

 

Case 4 (Characteristic polynomial). The dimensionless Laplace transform of (3.178) under 

zero initial conditions is obtained as follows 

 
4 3 2 1 1 ( ) exp( ) ( )s s s s Y s K s U s             (3.197) 

 

On the left-hand side the characteristic polynomial appears as follows 

 

  4 3 2 1 1M s s s s s         (3.198) 

 

The fourth-order plant transfer function originates in 

 

4 3 2 1

( )
( ) exp( )

( ) 1

Y s K
G s s

U s s s s s


   
  

   
 (3.199) 

 

For the integrating plants (3.185) the transfer function results as 
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4 3 2

( )
( ) exp( )

( ) I I I

Y s K
G s s

U s s s s s


     
  

  
 (3.200) 

 

and its denominator is the characteristic polynomial as follows 

 

   3 2

I I IM s s s s s         . (3.201) 

 

Subsequently the dimensionless PID control loop models with delay are provided for 

considered plant cases to tune the PID controller by means of the dominant three-pole 

placement carried out in Chapter 4. Also to test resulting PID settings on disturbance rejection 

performance corresponding transfer function is computed with the notation in Tab. 1. Add 

disturbance variable z to the control input u on the right-hand side of (3.1) and link the PID 

controller (3.7) to the plant (3.1) with acting disturbance z on the plant input in the place of 

the control variable u. Resulting closed loop is described by the following retarded differential 

equation 

 

   
 

 
     

1 1

1 21 1

23 2

2 13 2 2

2

2

( ) ( ) ( )
...

( ) ( ) ( )

n n n

n n nn n n

D P I

I P D

d y t d y t d y t
c c c

dt dt dt

d y t dy td y t d y t dy t
c Kr c Kr Kr y t

dt dt dt dt dt

dw t d w t dz t
Kr w t Kr Kr K

dt dt dt

 


  


 

  
  

 
       

  
   

 (3.202) 

 

Applying the dimensional analysis to (3.202) based on the similarity numbers 

, 1,2,..., 3, 4,i i n n     the following differential equation expressing (3.202) in 

dimensionless parameters is achieved 

  

   
 

 
     

1 1 3

6 7 31 1 3

2 2
5 5

4 52 2

2

5 5 5

5 2

( ) ( ) ( ) ( )
...

( ) ( )

n n n

nn n n

D n P I

I P D

d y t d y t d y t d y t

dt dt dt dt

d y t dy td y t dy t
y t

dt dt dt dt

dw t d w t dz t
w t K

dt dt dt

  

 
    

  
   

 

 



    

 
     

  
   

 (3.203) 

 

After performing the Laplace transform of (3.203) under zero initial conditions  

 

     

   

1 1 3

6 7 3

2

4

2

...

1

n n n

n

s s s

n D P I

s s

I P D

s s s s

e s e s e Y s

s s e W s Ke sZ s

  

 

  

   

  

 



  



 

     

    


    

 (3.204) 

 

both reference and disturbance transfer functions result as follows 
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 

 

 
   

5

5 5 5

2

1 1 3 2

6 7 3 4... 1

s

I P D

s s sn n n

n n D P I

Y s

W s

s s e

s s s s e s e s e



  

  

      



   

 



 


        

 (3.205) 

 

and 

 

 

 

   

5

5 5 51 1 3 2

6 7 3 4

.
... 1

s

s s sn n n

n n D P I

Y s

Z s

K se

s s s s e s e s e



        



   

 




        

 (3.206) 

 

In the denominator of both transfer functions there is the characteristic quasi-polynomial of 

the dimensionless control loop with delay 

 

 

   5 5 51 1 3 2

6 7 3 4... 1
s s sn n n

n n D P I

Q s

s s s s e s e s e
           

 



         
 (3.207) 

 

that can be modified analogously to (3.85) as follows 

 

 

51 1 3 2

6 7 3 4

2

...

0.

sn n n

n n

D P I

s s s s s s e

s s M s

   

  

 

 
        

   
 (3.208) 

 

In case of integrating plants (3.124) the reference and disturbance transfer function differ 

from (3.205) and (3.206), respectively, in the denominator only, i.e. the characteristic quasi-

polynomial. It results as follows 

 

 

 5 5 51 1 3 2

6 7 3 4...
s s sn n n

n n D P I

Q s

s s s s e s e s e
           

 



        
 (3.209) 

 

and the characteristic equation as in (3.88) results 

 

 

51 1 3 2

6 7 3 4

2

...

0.

sn n n

n n

D P I

s s s s s e

s s M s

   

  

 

 
       

   
 (3.210) 

 

Be aware that 7 8 3 4, ,..., ,n n      in case of integrating plants differ from those in case of 

proportional plants, for more details see particular case of time delay plant above.  

 

Case 2 (Control loop). The dimensionless PID control loop model with delay has been 

already developed for the plant (3.114) with the case 2n  , [126]. Here the sets of 

dynamically similar second-order plants either aperiodic or oscillatory are controlled by the 

PID of which settings correspond to those sets. The PID controller settings are evaluated 
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versus derived similarity numbers that are achieved in (3.133) and (3.134). As regards the 

reference and disturbance transfer functions for both proportional and integrating plants they 

are achieved directly from (3.205) and (3.206) by substituting 2 for n 

 

 
 

 
   

2

3 1 2 1

s

I P D

s s s

D P I

s s eY s

W s s e s e s e



  

  

   



   

 


    
, (3.211) 

 

 

     3 1 2 1

s

s s s

D P I

Y s Kse

Z s s e s e s e



     



   


    
 (3.212) 

 

and for the second-order integrating plants with delay both transfer functions differ from 

(3.211) and (3.212) only in the denominator. In the denominator of both (3.211) and (3.212) 

there is the characteristic quasi-polynomial as follows  

 

     3 1 2 1s s s

D P IQ s s e s e s e               (3.213) 

 

and in the case of second-order integrating plants with delay this quasi-polynomial results 

 

   3 1 2s s s

I D P IQ s s e s e s e             . (3.214) 

 

The modification of both quasi-polynomials according to (3.208) and (3.210) into the 

characteristic equation results 

 

 3 1 2 2 0s

P I Ds s s e s s M s                 (3.215) 

 

and 

 

 3 1 2 2 0s

I P I Ds s e s s M s                (3.216) 

 

respectively. Notice 5  , 1

6    and in case of integrating plant 1

6I   . 

 

Case 3 (Control loop). The dimensionless PID control loop model with delay is found for the 

sets of dynamically similar third-order plants (3.155), aperiodic or oscillatory, characterized 

by similarity numbers (3.144), (3.146), (3.147), (3.157) and (3.158). Corresponding reference 

and disturbance transfer functions are attained from (3.205) and (3.206) by substituting 3 for n 

 

 
 

 
   

2

4 3 1 2 1

s

I P D

s s s

D P I

s s eY s

W s s s e s e s e



  

  

     



   

 


     
, (3.217) 

 

 

     4 3 1 2 1

s

s s s

D P I

Y s Kse

Z s s s e s e s e



       



   


     
 (3.218) 
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and for the third-order integrating plants with delay both transfer functions differ from (3.217) 

and (3.218) only in the denominator. In the denominator of both (3.217) and (3.218) the 

characteristic quasi-polynomial takes place as follows  

 

     4 3 1 2 1s s s

D P IQ s s s e s e s e                  (3.219) 

 

and in the case of third-order integrating plants with delay this quasi-polynomial results 

 

   4 3 2s s s

I D P IQ s s s e s e s e               . (3.220) 

 

The modification of both quasi-polynomials according to (3.208) and (3.210) into the 

characteristic equation results 

 

 4 3 1 2 2 0s

P I Ds s s s e s s M s                    (3.221) 

 

and 

 

 4 3 2 2 0s

I P I Ds s s e s s M s                   (3.222) 

 

respectively. Notice 5  , 6  , 1

7     and in case of integrating plant 7I   . 

 

Case 4 (Control loop). The dimensionless PID control loop model with delay is got for the 

sets of dynamically similar fourth-order plants with delay characterized by similarity number 

(3.164) through (3.167) and by the numbers (3.180) and (3.181). Corresponding reference and 

disturbance transfer functions are derived from (3.205) and (3.206) by substituting 4 for n 

 

 
 

 
   

2

5 4 3 1 2 1

s

I P D

s s s

D P I

s s eY s

W s s s s e s e s e



  

  

      



   

 


      
, (3.223) 

 

 

     5 4 3 1 2 1

s

s s s

D P I

Y s Kse

Z s s s s e s e s e



        



   


      
 (3.224) 

 

and for the fourth-order integrating plants with delay both transfer functions differ from 

(3.223) and (3.224) only in the denominator. In the denominator of both (3.223) and (3.224) 

the characteristic quasi-polynomial appears as follows  

 

     5 4 3 1 2 1s s s

D P IQ s s s s e s e s e                    (3.225) 

 

and in the case of fourth-order integrating plants with delay this quasi-polynomial results 

 

   5 4 3 2s s s

I I I D P IQ s s s s e s e s e                   . (3.226) 

 

The modification of both quasi-polynomials according to (3.208) and (3.210) into the 

characteristic equation results 
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 5 4 3 1 2 2 0s

P I Ds s s s s e s s M s                      (3.227) 

 

and 

 

 5 4 3 2 2 0s

I I I P I Ds s s s e s s M s                       (3.228) 

 

respectively. Notice 5  , 6  , 7  , 1

8     and in case of integrating plants 

7I   , 8I I    . 

 

To summarize the application of dimensional analysis the dimensionless PID control loop 

models given by retarded differential equation (3.80) are surpassed in quality by the similar 

control loops described by (3.203). The control loop quality is measured from dynamic 

similarity and loop gain tuning points of view. The control loop given by (3.203) respects 

retardedness much more than the loop (3.80) by involving non-fixed dimensionless time 

delay and in addition due to the plant form (3.114) the loop gains arise straightforwardly from 

the dimensional analysis as the similarity numbers P , 3 D  , 4 I  . Additionally for 

assumed cases when 3,4n   particular selection of the similarity numbers has to be made for 

achieving the control loop parameter reduction. This reduction is already ensured by plant 

parameter reduction as shown in the considered plant cases above. In Chapter 4 a generalized 

dominant three-pole placement is developed for the similar control loops given by (3.203) that 

are already after particular parameter reduction. 

3.3 Plant dynamics investigation using the similarity numbers 

Based on the developed similarity numbers the dynamics of the third- and fourth-order plant 

are investigated with respect to the PID controller tuning made in Chapter 4. Particularly 

suitable plant parameterization in the framework of the dimensional analysis is found for the 

purpose of the plant pole spectrum analysis. Moreover only such plants which are safely 

stable are admissible for control design and considered in the habilitation thesis. 

3.3.1 The third-order plant  

The third-order plant (3.114) for 3n   is analysed in its dynamics. The following three cases 

of stable plant poles are assumed 

 

1. 
1 1s b  , 

2 2s b  , 
3 3s b  , 1,2,3 0b               (3.229) 

2.  1,2 ns j     , 
3s b  , 0b  , 0n  , 21   , 1  `         (3.230) 

3. 
1,2,3s b   , 0b                 (3.231) 

 

where 
n  is (undamped) natural frequency and   is the damping factor of complex 

conjugates 1,2s . b  is the absolute value of the third real pole 
3s  and 1,2,3b  are three distinct 

real poles. The case of double real pole and one single real pole occurs when 1  . The case 

of the triple real pole is in analogy to the case of three distinct real poles. In case of complex 

conjugate pair of poles and one real pole the plant characteristic equation results in 

 

      2 2 3 2 2 22 2 2 0n n n n n ns b s s s b s b s b               . (3.232) 
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Recall dimensionless variable (3.186) for 3n   as follows 

 

3
3 23

1

n

s s c s
b

   (3.233) 

 

and substituting (3.233) into (3.232) the following characteristic equation is obtained 

 

     
2

2 3 2 2 2 2 2332 2 0n n n n n n nbs b b s b bs b             (3.234) 

 

Making 3s  with unit coefficient as follows 

 

   
 

3 2 2

2 23 23

1 1
2 2 1 0n n n

n
n

s b s b s
b b

  
 

       (3.235) 

 

and applying the equality 
233

3 1 nc b  

 

   3 2 2 2 3 233
3 3 2 12 2 1 1 0n n ns b c s b c s s s s              . (3.236) 

 

The following dimensionless coefficients result 

 

 2 23
1 32n nb c     (3.237) 

 

  3
2 32 nb c   . (3.238) 

 

In case of three distinct real poles and triple real pole the equation (2.232) is changed to the 

forms  

 

       3 2

1 2 3 1 2 3 1 2 1 3 2 3 1 2 3 0s b s b s b s b b b s b b b b b b s b b b             (3.239) 

 

and 

 

 
3 3 2 2 33 3 0s b s bs b s b      , (3.240) 

 

respectively. The variable (3.233) is modified in case of three distinct poles as follows 

 

3
3

3
1 2 3

1
s s c s

b b b
   (3.241) 

 

while in case of the triple real pole 

 

3
3 33

1 1
s s c s s

bb
   . (3.242) 
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The characteristic equations (3.239) and (3.240) are transformed to the following forms 

 

     
23 23 3

1 2 3 1 2 3 1 2 3 1 2 1 3 2 3 1 2 3 1 2 3 0b b b s b b b b b b s b b b b b b b b b s b b b         (3.243) 

 

and 

 
3 3 2 2 2 33 3 0b s bb s b bs b    , (3.244) 

 

respectively. Dimensionless forms of (3.243) and (3.244) are obtained as follows 

 

   
 

3 2

1 2 3 1 2 1 3 2 3 23 3
1 2 3

1 2 3

1 1
1 0s b b b s b b b b b b s

b b b b b b
         (3.245) 

 

and 

 
3 23 3 1 0s s s    , (3.246) 

 

respectively. In the former case the equation is expressed in analogous way as (3.236) 

 

   3 2 2 3 233
1 2 3 3 1 2 1 3 2 3 3 2 11 1 0s b b b c s b b b b b b c s s s s              (3.247) 

 

where 

 

  23
1 1 2 1 3 2 3 3b b b b b b c     (3.248) 

 

  3
2 1 2 3 3b b b c    . (3.249) 

 

From (3.246) the triple real pole results 

 

1,2,3 1s   . (3.250) 

 

For mapping the similarity numbers   and   of the dimensionless model (3.155) the three 

cases given by (3.229) through (3.231) are considered and original characteristic equations 

resulted to dimensionless ones (3.236), (3.246) and (3.247). For the case of complex 

conjugate pair of poles and one real pole the form (3.236) equals the plant (3.155) 

characteristic equation with the left-hand side (3.193) as follows 

 
3 2 1 3 2

2 11 1 0s s s s s s            (3.251) 

 

and its roots are poles of the dimensionless model (3.155) of the third-order plant. In case of 

three distinct real poles the roots of (3.247) are the same as the zeros of (3.193) and the 

following equality has to be satisfied  

 
3 2 1 3 2

2 11 1 0s s s s s s           . (3.252) 
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The triple real pole configuration leads to the following equality 

 
3 2 1 3 21 3 3 1 0s s s s s s         . (3.253) 

 

from where 3   and 1  . To distinguish between the case of complex conjugate pair of 

poles with one real pole and the case of three distinct real poles the following discriminant is 

evaluated 

 

   
2 232 4 2 2 2

3 3

2

1
18 4 1 27 18 4 1 27D

     
 

      

    
              

     
 (3.254) 

 

where 2   is the ratio satisfying the condition of plant stability 

 
2

1



 . (3.255) 

 

Using this discriminant and the condition of stability (3.255) the three cases of poles are 

obtained 

 

1. 0D  , three distinct poles case (3.229)              (3.256) 

2. 0D  , case (3.230)                (3.257) 

3. 0D  , triple real pole case (3.250)             (3.258) 

 

For the case (3.256)   and   are expressed by relationships 

 

  3
2 1 2 3 3b b b c     , 2 1 2 3

3
1 1 2 1 3 2 3 3

1b b b

b b b b b b c






 
 

 
 (3.259) 

 

and for the case (3.257)  

 

  3
2 32 nb c     , 2

3
1 3

1 2 1

2

n

n n

b

b c

 


   


 


. (3.260) 

 

The case (3.258) is specified already with (3.253). Utilizing the equality  3 1 2 31c b b b  and 

2

3 1 nc b  the parameters 1b  and b , respectively, are eliminated from (3.259) and (3.260) as 

follows 

 

2 3
2 3 32

3 2 3 3

1
1

b
b c

c b b b
 

 
    

 
, 

2

2

3 2 3 32

3
1 2 3

2 2

3 3 2 3 2 3

1
1

1

1 1
1

b

c b b b

b c

c b b c b b






 

 

 

 (3.261) 

 

and 
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3
2 33

3

1
2 n

n

c
c

   


 
   

 
, 

3

32

3
1 3

3

3

1
2

1

2
1

n

n

n

c

c

c





 




 



, (3.262) 

 

respectively. Number   is decisive for the stability of plants (3.155) and also it is important 

for the achievement of stable control loop dynamics as shown by Admissibility analysis in 

Chapter 4.3. Since   is the oscillability number the opposite margins given by the choice of 

1   and 0   are to be investigated. The former choice finds all the dynamically similar 

plants (3.155) which are critically damped while the latter leads to all the dynamically similar 

plants (3.155) that are undamped in oscillation, i.e. unstable. The aperiodic third-order plant 

with all the three poles as negative real distinct poles is to be investigated by (3.261) where 

the ratios between real poles 
2 3b b , 2

3 2 3 2 1c b b b b  and 2

3 3 2 3 1c b b b b  are far away from zero 

and simultaneously these ratios are limited. Only such values of   and   are considered for 

the PID controller tuning which correspond to stable and non-stiff plant. Notice the third-

order plants with   values both lower and greater than 1 can result unstable depending on   

according to condition (3.255). Obviously there is equivalence between the condition (3.255) 

and 1  , where   is given by (3.150). To decide the third-order plant stability by either 

(3.255) or the relation for   it is shown in Example 1 below. 

 

Integrating plant. Let relations (3.259) and (3.260) be modified for integrating plants (3.162), 

i.e. to find mapping for 
I  and  . The case of three distinct real poles where one of them is 

the zero pole is obtained from (3.229) by 
3 0b   and the characteristic equation (3.239) is 

modified to the form  

 

     2

1 2 1 2 1 2 0s s b s b s s b b s b b       . (3.263) 

 

Recall dimensionless variable (3.186) for 3n   and (3.263) is changed to the following form 

 

 
2

1 2 1 2
23 33

3 33

0
s s s

b b b b
c cc

 
    
 
 

. (3.264) 

 

Multiplying the form (3.264) by 
233

3 3 3c c c  and comparing the result with the left-hand side 

(3.196) the following characteristic equation is achieved 

 

    2 2 233
1 2 3 1 2 3 0Is s s s s b b c s b b c        . (3.265) 

 

The relations in (3.259) are modified as follows 

 

  3
1 2 3b b c   , 1 2 3

3

1 2

I

b b
c

b b
 


 (3.266) 
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where I  is instead of 1  , cf. (3.157). In comparison to (3.247) the equation (3.265) has 

dimensionless real roots expressed as follows 

 

3
1 1 1 3s b b c    , 3

2 2 2 3s b b c    , 
3 0s   (3.267) 

 

and (3.265) can be expressed 

 

       2 2

1 2 1 2 1 2 0Is s s s s b b s bb s s b s b           . (3.268) 

 

The relations (3.266) are simplified as follows 

 

1 2b b   , 1 2

1 2

I

b b

b b
 


. (3.269) 

 

With respect to similarity numbers (3.269) the integrating plants (3.162) are aperiodic with 

three distinct real poles 1 1s b  , 2 2s b   and 
3 0s  . The case of complex conjugate pair of 

poles and one zero pole is obtained from (3.230) by 0b   and the characteristic equation 

(3.239) is modified to the form  

 

 2 2 3 2 22 2 0n n n ns s s s s s         . (3.270) 

 

Recalling the dimensionless variable (3.186) for 3n   and substituting it into (3.270) one gets  

 

2 3 2
2 2

2 23 3 33 3
33 3 33 3

2 2 0n n n n

s s s s s s

cc c cc c
   

 
      
 
 

. (3.271) 

 

Multiplying this by 3c  and comparing the result with the left-hand side (3.196) the following 

characteristic equation is achieved 

 

   2 2 2 2 233
3 32 0I n ns s s s s c s c         . (3.272) 

 

In confrontation with (3.236) the equation (3.272) has dimensionless complex conjugate pair 

of poles as follows 

 

  3
1,2 3,n n ns j c        , 3 0s   (3.273) 

 

and (3.272) is expressed in the following form 

 

   2 2 22 0I n ns s s s s s         . (3.274) 

 

Comparing the coefficients of expressions in brackets of (3.274) the relations for the 

similarity numbers are obtained 
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2 n  , 
2

n
I





 . (3.275) 

 

With respect to similarity numbers (3.275) the integrating plants (3.162) are oscillatory with 

complex conjugate pair of poles  1,2 ns j     . Beside this pair the integrating plant 

spectrum is supplemented by real pole 
3 0s  . In case 0   and 

I   the integrating plant 

(3.162) is with undamped oscillation in its impulse response. While 2 n   and 2I n   

the integrating plant is without any oscillation in its impulse response, i.e. it is aperiodic 

integrating plant with a double real pole. The aperiodic integrating plant with three distinct 

real poles is taken on when  

 

1 3

2

2

1

4

I
c c

c




  .  (3.276) 

 

It results from constraint on the discriminant of quadratic equation in (3.274), 2 4 0I     

where 0  . Satisfying (3.279) the stiffness property introduced with number (3.158) can 

also appear but only in case 
I   is much less than 1 4 . In fact the integrating plant becomes 

stiff for the case of real pole ratio 2 1b b  in (3.269) resulting either close to zero or too large. 

The  , 
I  mapping distinguishing between integrating plants (3.162) with the oscillatory and 

aperiodic impulse response is given by functions (3.269) and (3.275). Again only such 

integrating plants (3.162) that are with the damped impulse responses are considered for the 

PID control design in Chapter 4. 

 

In the rest of this section the Examples 1 and 2 demonstrate the dimensional analysis on 

identified third-order plants oscillatory and integrating. 

 

Example 1. Plant (3.114) of the third-order, i.e. 3n  , is considered for dynamics 

investigation using the similarity number relations (3.262) with the following coefficients 

 
3 2

3 2

( ) ( ) ( )
2 2 2.5 ( ) 2 ( 0.5)

d y t d y t dy t
y t u t

dt dt dt
     .  (3.277) 

 

From the dimensional analysis the scaling factor results in 

 
33

3 2c   (3.278) 

 

and the dimensionless form of (3.277) results as follows 

 
3 2

3

3 2

( ) ( ) ( )
2 1.984 ( ) 2 ( 0.397)

d y t d y t dy t
y t u t

dt dt dt
     . (3.279) 

 

From (3.144) through (3.150) the following values of the similarity numbers result  

 
3

3

2 2 1
0.635

1.984 2.5 2
    , 3 2  , 

2 2.5
2.5

2



  , 

3

0.5
0.397

2
   . (3.280) 
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and according to condition (3.255) as follows 

 
2 3 4

2.5 1
0.635





     (3.281) 

 

all the dynamically similar plants (3.279) are stable. Before the model (3.279) pole spectrum 

is evaluated computing the discriminant (3.254), i.e. 15 0D    , the plant poles are 

composed of complex conjugate pair of poles and one real pole. This fact is verified from the 

characteristic equation of plant (3.277) 

 

       3 2 21
2 2 2.5 1 0.5 0.5 1 0

2
M s s s s s s s          (3.282) 

 

from where 11n s   and 0.25   result. The similarity numbers  ,   of oscillatory third-

order plants are verified substituting 
n ,   and 3c  into (3.262)  

 

3 33
33

3

1 1 1
2 2 2 2

2 4
n

n

c
c

  


   
       

  
 (3.283) 

 

3 3
3

3 33
3

3

3

1
2

1 1 1 4 2 4
0.635

2 1 52 5 21 1
4

n

n

n

c

c

c





 




    

 

. (3.284) 

 

The dynamically similar plants must have the same all the similarity numbers, namely 

0.635  , 0.397  , 3 2  , and 2.5  , found out from (3.279). For instance another 

third-order plant (3.114) which is dynamically similar to plant (3.277) is as follows 

 
3 2

3 2

( ) ( ) ( )
3 2.62 2.8617 ( ) 2 ( 0.572)

d y t d y t dy t
y t u t

dt dt dt
     . (3.285) 

 

The scaling factor is changed to 33
3 3c   and substituting it together with 1 2.8617c s  and 

2

2 2.62c s  into (3.144) through (3.150) the same  ,  ,   and   are obtained 

 

3

2.62 1
0.635

3.276 3
   , 3

3 2

2.62
2

3
   , 

2.62 2.8617
2.5

3



  , 

3

0.572
0.397

3
   .  (3.286) 

 

The differences of (3.285) spectrum from the spectrum of (3.277) are different 
10.8735n s   and 

10.4368b s . After substituting 
n  and b  together with scaling and 

damping factors 3 3  and 1 4  into (3.260)   and   result according to (3.286) 

 

  333
3

1
2 0.4368 0.8735 3 1.2599 2

2
nb c 

 
      

 
 (3.287) 
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and 

 

3 33
3

1
0.4368 0.8735

21 1 1 1 12 0.635
12 0.8735 3 1.0919 30.8735 0.4368
2

n

n n

b

b c




  




   
 

, (3.288) 

 

respectively. Both dynamically similar plants are compared by their step responses in Fig. 1. 

 
Fig. 1. Step responses of dynamically similar plants belonging  

to oscillatory plants 

 

In Chapter 4 for all dynamically similar plants characterized by similarity numbers (3.280) the 

loop gains tuning is performed by means of dominant three-pole placement technique. 

 

Example 2 (Integrating plant). The usage of similarity numbers (3.275) describing the sets of 

dynamically similar integrating plants (3.162) is demonstrated on the following integrating 

plant (3.117) of the third-order 

 
3 2

3 2

( ) ( ) ( )
2 2 2.5 2 ( 0.5)

d y t d y t dy t
u t

dt dt dt
    . (3.289) 

 

The similarity numbers result the same as in (3.280) because only missing term ( )y t  in 

(3.289) does not take effect on the similarity numbers   and   computed for plant (3.277). 

However, the oscillability number for integrating plants (3.162) is introduced differently, see 

(3.157), 

 
1 1.5749I    (3.290) 

 

and 7 I    is given as follows 

 

1
7 33

3

2.5
1.9843

2

c

c
    . (3.291) 
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When according to (3.160) and (3.146) 7 1.9843I    , 1 3

7 2I      and 

5 0.397    these numbers are substituted for parameters into (3.162) and the following 

dimensionless model is obtained 

 
3 2

3

3 2

( ) ( ) ( )
2 1.984 2 ( 0.397)

d y t d y t dy t
u t

dt dt dt
    . (3.292) 

 

This model would be identical with (3.279) when term ( )y t  is not missing in (3.292). Of 

course the spectrum of (3.289) is already changed in comparison with the spectrum of (3.277) 

as the roots of the following equation 

 

   3 2 21 5
2 2 2.5 0

2 4
M s s s s s s s

 
       

 
. (3.293) 

 

The spectrum of plant (3.289) is parameterized as follows 

 
11.118n s  , 0.447  , 0b   (3.294) 

 

and applying the scaling factor 3 2  the dimensionless (undamped) natural frequency number  

results 1.4086n  . This is verified by the spectrum of the characteristic equation of (3.292) 

 

 3 2 23 32 1.984 2 1.984 0s s s s s s      (3.295) 

 

where 1.984 1.4086n    and 
3 2

0.447
2 1.4086

  


. Finally the integrating plants (3.292) 

are with oscillatory impulse response because with respect to (3.275) the following ratio 

results 

 

1 1
1.118 0.5

2 2 0.447

I

n



 
   


. (3.296) 

 

Thus this ratio exceeds threshold equal to 1/2. The more this ratio exceeds the threshold the 

more oscillatory are the integrating plants (3.162) in their impulse response. Analogously to 

comparing step responses of dynamically similar plants in Fig. 1 the comparison between two 

similar integrating plants is made, namely (3.289) and the plant derived from (3.285), by 

omitting the absolute term  y t , as follows  

 
3 2

3 2

( ) ( ) ( )
3 2.62 2.8617 2 ( 0.572)

d y t d y t dy t
u t

dt dt dt
    . (3.297) 

 

This comparison is shown in Fig. 2. 



56 
 

 
Fig. 2. Oscillatory impulse responses of dynamically similar integrating plants 

3.3.2 The fourth-order plant 

The fourth-order plant (3.114) for 4n   is analysed in its dynamics. The following cases of 

stable plant poles are investigated 

 

1. 
1 1s b  , 

2 2s b  , 
3 3s b  , 

4 4s b  , 1,2,3,4 0b             (3.298) 

2.  1,2 ns j     , 
3 3s b  , 

4 4s b  , 3,4 0b  , 0n  , 21   , 1            (3.299) 

3.  1,2 1 1 1ns j     ,  3,4 2 2 2ns j     , 
1 0n  , 

2 0n  , 2

1,2 1,21   , 
1,2 1   

                 (3.300) 

4. 
1,2,3,4s b  , 0b                 (3.301) 

 

where 1,2n  are (undamped) natural frequencies and 1,2  are the damping factors 

corresponding to 1,2n . b  is the absolute value of the real pole and 1,2,3,4b  are four distinct 

real poles. The case of one double real pole and two distinct real poles occurs when 1  . 

While 1,2 1   two double real poles are encountered. When only one of 1,2  is 1 then one 

double real pole and a complex conjugate pair of poles take place. The case when 1 2 1    

and 
1 2 0n n   , i.e. the case of double complex conjugate pair of poles, is not considered.  

The case of the quadruple real pole is in analogy to the case of four distinct real poles. This 

case is represented by the following characteristic equation 

 

    

   

 

1 2 3 4

4 3 2

1 2 3 4 1 2 1 3 2 3 1 4 2 4 3 4

1 2 3 1 2 4 2 3 4 1 3 4 1 2 3 4 0

s b s b s b s b

s b b b b s b b b b b b b b b b b b s

b b b b b b b b b b b b s b b b b

    

           

    

 (3.302) 

 

and in analogy to (3.302) the characteristic equation with quadruple real pole is attained 

 

 
4 4 3 2 2 3 44 6 4 0s b s bs b s b s b       . (3.303) 
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Recall dimensionless variable (3.186) for 4n   and analogously to (3.241) this variable 

results  

 

4
4

4
1 2 3 4

1
s s c s

b b b b
   (3.304) 

 

while in case of the quadruple real pole 

 

4
4

44

1 1
s s c s s

bb
   . (3.305) 

 

The characteristic equations (3.302) and (3.303) are transformed to the following forms 

 

   

 

 

34 34
1 2 3 4 1 2 3 4 1 2 3 4

2

1 2 1 3 2 3 1 4 2 4 3 4 1 2 3 4

4
1 2 3 1 2 4 2 3 4 1 3 4 1 2 3 4 1 2 3 4 0

b b b b s b b b b b b b b s

b b b b b b b b b b b b b b b b s

b b b b b b b b b b b b b b b b s b b b b

    

     

    

 (3.306) 

 

and 

 
4 4 3 3 2 2 2 3 44 6 4 0b s bb s b b s b bs b     , (3.307) 

 

respectively. Dimensionless forms of (3.306) and (3.307) are obtained as follows 

 

   

 
 

4 3 2

1 2 3 4 1 2 1 3 2 3 1 4 2 4 3 4
4

1 2 3 4 1 2 3 4

1 2 3 1 2 4 2 3 4 1 3 4
3

4
1 2 3 4

1 1

1
1 0

s b b b b s b b b b b b b b b b b b s
b b b b b b b b

b b b b b b b b b b b b s
b b b b

          

    

 (3.308) 

 

and 

 
4 3 24 6 4 1 0s s s s     , (3.309) 

 

respectively. In the former case the equation is expressed with respect to (3.304) 

 

   

 

4 3 24
1 2 3 4 4 1 2 1 3 2 3 1 4 2 4 3 4 4

3 4 3 24
1 2 3 1 2 4 2 3 4 1 3 4 4 3 2 11 1 0

s b b b b c s b b b b b b b b b b b b c s

b b b b b b b b b b b b c s s s s s  

          

         
 (3.310) 

 

from where the following dimensionless coefficients result 

 

  34
1 1 2 3 1 2 4 2 3 4 1 3 4 4b b b b b b b b b b b b c      (3.311) 

 

 2 1 2 1 3 2 3 1 4 2 4 3 4 4bb bb b b bb b b b b c        (3.312) 
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  4
3 1 2 3 4 4b b b b c     . (3.313) 

 

The latter case leads to the quadruple real pole as follows 

 

1,2,3,4 1s   . (3.314) 

 

In case of complex conjugate pair of poles and two distinct real poles (3.299) the plant 

characteristic equation results in 

 

     

    

  

2 2

3 4

4 3 2 2

3 4 3 4 3 4

2 2

3 4 3 4 3 4

2

2 2

2 0

n n

n n n

n n n

s b s b s s

s b b s b b b b s

b b b b s b b

 

  

  

    

        

   

. (3.315) 

 

The variable (3.304) is modified in this case 

 

4
4 24

3 4

1

n

s s c s
b b

   (3.316) 

 

and equation (3.315) is transformed using (3.316) as follows 

 

      

  

3
2 4 2 3 2 2 24

3 4 3 4 3 4 3 4 3 4 3 4

2 2 24
3 4 3 4 3 4 3 4

2 2

2 0

n n n n n n

n n n n

b b s b b b b s b b b b b b s

b b b b b b s b b

     

   

       

   

. (3.317) 

 

Cancelling both the coefficient of 4s  and the absolute term the equation (3.317) becomes 

dimensionless as follows 

 

    

  
 

4 3 2 2

3 4 3 4 3 42 24
3 4 3 4

2

3 4 3 4 3
24

3 4

1 1
2 2

1
2 1 0

n n n

n n

n n

n

s b b s b b b b s
b b b b

b b b b s

b b

  
 

 



       

   

. (3.318) 

 

Utilizing (3.316) the characteristic equation is expressed 

 

    

  

4 3 2 24
3 4 4 3 4 3 4 4

2 3 4 3 24
3 4 3 4 4 3 2 1

2 2

2 1 1 0

n n n

n n

s b b c s b b b b c s

b b b b c s s s s s

  

    

       

        
. (3.319) 

 

and the following dimensionless coefficients result 

 

  2 34
1 3 4 3 4 42 n nb b b b c      (3.320) 
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  2

2 3 4 3 4 42n nb b b b c       (3.321) 

 

  4
3 3 4 42 nb b c    . (3.322) 

 

The last case considered is the fourth-order plant (3.114) with two complex conjugate pairs of 

poles, eventually either two double real poles or one double real pole with complex conjugate 

pair of poles. The characteristic equation is of the following form 

 

  

     

2 2 2 2

1 1 1 2 2 2

4 3 2 2 2 2 2 2 2

1 1 2 2 1 2 1 2 1 2 1 1 2 2 2 1 1 2

2 2                                                                            (3.323)

2 4 2 0.

n n n n

n n n n n n n n n n n n

s s s s

s s s s

     

                 

    

         
 

 

The variable (3.316) is modified in this case  (3.323) 

 

4
4

2 24
1 2

1

n n

s s c s
 

   (3.324) 

 

and equation (3.323) is transformed using (3.324) as follows 

 

     

 

3
2 2 4 2 2 3 2 2 2 2 24
1 2 1 1 2 2 1 2 1 2 1 2 1 2 1 2

2 2 2 2 2 24
1 1 2 2 2 1 1 2 1 2

2 4

2 0

n n n n n n n n n n n n

n n n n n n n n

s s s

s

               

         

     

  

. (3.325) 

 

Again cancelling both the coefficient of 4s  and the absolute term the equation (3.325) 

becomes dimensionless as follows 

 

   

 
 

4 3 2 2 2

1 1 2 2 1 2 1 2 1 22 2 2 24
1 2 1 2

2 2

1 1 2 2 2 1 3
2 24
1 2

1 1
2 4

1
2 1 0

n n n n n n

n n n n

n n n n

n n

s s s

s

         
   

     

 

     

  

. (3.326) 

 

Applying (3.324) the characteristic equation is changed as follows 

 

   

 

4 3 2 2 24
1 1 2 2 4 1 2 1 2 1 2 4

2 2 3 4 3 24
1 1 2 2 2 1 4 3 2 1

2 4

2 1 1 0

n n n n n n

n n n n

s c s c s

c s s s s s

         

        

     

       
 (3.327) 

 

and the following dimensionless coefficients result 

 

 2 2 34
1 1 1 2 2 2 1 42 n n n n c         (3.328) 

 

 2 2

2 1 2 1 2 1 2 44 n n n n c          (3.329) 
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  4
3 1 1 2 2 42 n n c      . (3.330) 

 

For mapping the similarity numbers  ,   and   of the dimensionless model (3.178) the 

cases given by (3.298) through (3.301) are considered and original characteristic equations 

resulted to dimensionless ones (3.309), (3.310), (3.319) and (3.327). Since all these cases 

belong to the stable fourth-order plants the stability conditions (3.126) has to be satisfied. 

Based on the plant (3.178) characteristic equation the stability conditions are achieved as 

follows 

 
2 1   ,  1 2 2 2 2 2          . (3.331) 

 

Cancelling   and 2  in (3.331) these conditions are simplified  

 
1  , 1 2 2 21       . (3.332) 

 

For the case of four distinct real poles the form (3.310) equals the plant (3.178) characteristic 

equation with the left-hand side (3.198) as follows 

 
4 3 2 1 4 3 2

3 2 11 1 0s s s s s s s s                (3.333) 

 

and its roots are poles of the dimensionless model (3.178) of the fourth-order plant. The 

quadruple real pole configuration leads to the following equality 

 
4 3 2 1 4 3 21 4 6 4 1 0s s s s s s s s             (3.334) 

 

from where 4  , 1.5   and 1.5  . By inspection of conditions (3.332) the fourth-order 

plant is stable. The following relationships result for  ,   and   with respect to (3.311) 

through (3.313) 

 

  4
3 1 2 3 4 4b b b b c       (3.335) 

 

2 1 2 1 3 2 3 1 4 2 4 3 4

4
1 1 2 3 1 2 4 2 3 4 1 3 4 4

1b b b b b b b b b b b b

b b b b b b b b b b b b c






    
 

  
 (3.336) 

 

2 1 2 1 3 2 3 1 4 2 4 3 4 4
4

3 1 2 3 4

b b b b b b b b b b b b
c

b b b b






    
 

  
. (3.337) 

 

The similarity numbers   and   according to (3.336) and (3.337) result greater than 1.5. 

Keep in mind 1.5    when 1

1,2,3,4 1b s  and 4c  in (3.335) through (3.337) is function of 

1,2,3,4b , see (3.304). In case of complex conjugate pair of poles and two distinct real poles the 

roots of (3.319) are the same as the zeros of (3.198) and the following equality has to be 

satisfied  

 
4 3 2 1 4 3 2

3 2 11 1 0s s s s s s s s               . (3.338) 
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For  ,   and   with respect to (3.320) through (3.322) the following relationships are 

obtained from (3.338) 

 

  4
3 1 2 42 nb b c       (3.339) 

 

 

 

2

1 2 1 22

2
4

1 1 2 1 2 4

2 1

2

n n

n n

b b b b

b b b b c

 


  

  
 

 
 (3.340) 

 

 2

1 2 1 22 4
4

3 1 2

2

2

n n

n

b b b b
c

b b

 


 

  
 

 
. (3.341) 

 

Analogously to (3.336) and (3.337) when 1

1,2 1b s , 11n s   and 1   it results 

1.5   . Numbers   and   can result both lower and greater than 1.5, particularly in 

dependence on 1  . Be aware 4c  in (3.339) through (3.341) is function of 1,2b  and n , see 

(3.316). When two complex conjugate pairs of poles are the zeros of (3.198) then the plant 

characteristic equation is described by 

 
4 3 2 1 4 3 2

3 2 11 1 0s s s s s s s s               . (3.342) 

 

For  ,   and   with respect to (3.328) through (3.330) the following relationships are 

gained from (3.342) 

 

  4
3 1 1 2 2 42 n n c        (3.343) 

 

 

2 2

2 1 2 1 2 1 2

2 2 4
1 1 1 2 2 2 1 4

4 1

2

n n n n

n n n n c

      


      

 
 


 (3.344) 

 

 

2 2

2 1 2 1 2 1 2 4
4

3 1 1 2 2

4

2

n n n n

n n

c
      


    

 
 


. (3.345) 

 

Again for 1

1,2 1n s   and 1,2 1   the similarity numbers result 4   and 1.5   . Once 

1,2 1   but 1 2n n   two double real poles are in the plant model spectrum. The case when 

the plant step response oscillates only with one natural frequency 1n  or 
2n  occurs when 

the following is considered in (3.343) through (3.345)   

 

1 21, 1    or 
1 21, 1   . (3.346) 

 

Thus beside the one complex conjugate pair of poles either 1,2s  or 3,4s  there is double real pole 

either 3,4s  or 1,2s . Numbers   and   can result both lower and greater than 1.5, particularly in 

dependence on 1,2 1  . The undamped oscillation of plant step response takes place for 

1 0   or 2 0  . For 1,2 0   the numbers   and   result at infinity, i.e. ,   . But 

only fourth-order plants with damped step response are considered, i.e. 1,2 0  . Again be 
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aware that the factor 4c  in (3.343) through (3.345) is function of 1,2n , see (3.324).  For 

modelling the (3.178) plant dynamics it is important to keep a ratio between 
1n  and 

2n  in 

proper values as follows 

 

1

2

0.1 10n

n




   (3.347) 

 

guaranteeing that both pairs in (3.300) are of comparable significance for the plant dynamics. 

Also the ratios between particular , 1,2,3,4ib i  , are to be considered far away from zero and 

limited in order to prevent the fourth-order plant from stiff dynamics. As regards   this 

number has to result at least 1   for admissible loop gains tuning as investigated in 

Admissibility analysis in Chapter 4.4. The plant itself can be investigated on the stability by 

means of conditions (3.332) or 1  , where   is due to (3.169), as shown in Example 3 

below. 

 

Integrating plant. Consider a modification of similarity numbers  , 
I  and I  for 

integrating plants (3.185), i.e. to find mapping for 
I  and I . The case of four distinct real 

poles where one of them is the zero pole is obtained from (3.298) by 
4 0b   and the 

characteristic equation (3.302) is modified to the form 

 

       4 3 2

1 2 3 1 2 3 1 2 1 3 2 3 1 2 3 0s s b s b s b s b b b s b b b b b b s b b b s             (3.348) 

 

Recall dimensionless variable (3.186) for 4n   and (3.348) is changed to the following form 

 

   
3 2

1 2 3 1 2 1 3 2 3 1 2 334 44
4 4 44

0
s s s s

b b b b b b b b b b b b
c c cc

 
        
 
 

. (3.349) 

 

Multiplying the form (3.349) by 
344

4 4 4c c c  and comparing the result with the left-hand side 

(3.201) the following characteristic equation is achieved 

 

 

    

3 2

3 2 344
1 2 3 4 1 2 1 3 2 3 4 1 2 3 4 0

I I Is s s s

s s b b b c s b b b b b b c s b b b c

       

       
. (3.350) 

 

The relations for the similarity numbers (3.335) through (3.337) are modified as follows 

 

  4
1 2 3 4b b b c     (3.351) 

 

1 2 3 4
4

1 2 1 3 2 3

I

b b b
c

b b b b b b
 

 
 (3.352) 

 

1 2 1 3 2 3 4
4

1 2 3

I

b b b b b b
c

b b b


 


 
 (3.353) 
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where I  and I  are instead of 1   and  , respectively, cf. (3.180) and (3.181). In 

comparison to (3.310) the equation (3.350) has dimensionless real roots expressed as follows 

 

4
1 1 1 4s b b c    , 4

2 2 2 4s b b c    , 4
3 3 3 4s b b c    , 

4 0s   (3.354) 

 

and (3.350) can be expressed 

 

      3 2 3 2

1 2 3 1 2 1 3 2 3 1 2 3 0I I Is s s s s s b b b s b b b b b b s b b b                . (3.355) 

 

The relation (3.351) through (3.353) are simplified as follows 

 

1 2 3b b b    , 1 2 3

1 2 3

I

b b b

b b b
 

 
, 1 2 1 3 2 3

1 2 3

I

b b b b b b

b b b


 


 
. (3.356) 

 

With respect to similarity numbers (3.356) the integrating plants (3.185) are aperiodic with 

four distinct real poles 1 1s b  , 2 2s b  , 3 3s b   and 
4 0s  . The case of complex conjugate 

pair of poles and two distinct real poles where one of them is the zero pole is obtained from 

(3.299) by 
4 0b   and the characteristic equation (3.315) is modified to the form 

 

      2 2 4 3 2 2 2

3 3 3 32 2 2 0n n n n n ns s b s s s b s b s b s               . (3.357) 

 

Using dimensionless variable (3.186) for 4n   (3.357) is changed to the following form 

 

   
3 2

2 2

3 3 334 44
4 4 44

2 2 0n n n n

s s s s
b b b

c c cc
   

 
      
 
 

. (3.358) 

 

Multiplying the form (3.358) by 
344

4 4 4c c c  and comparing the result with the left-hand side 

(3.201) the following characteristic equation is achieved 

 

 

    

3 2

3 2 2 2 344
3 4 3 4 3 42 2 0

I I I

n n n n

s s s s

s s b c s b c s b c

     

   

  

     
. (3.359) 

 

The relations for the similarity numbers (3.339) through (3.341) are modified as follows 

 

  4
3 42 nb c    (3.360) 

 
2

3 4
42

32

n
I

n n

b
c

b




 



 (3.361) 

 
2

3 4
4

3

2

2

n n
I

n

b
c

b

 








. (3.362) 
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In comparison to (3.319) the equation (3.359) has dimensionless roots expressed as follows 

 

  4
1,2 4,n n ns j c        , 4

3 3 3 4s b b c    , 
4 0s  . (3.363) 

 

Denoting 3b   the equation (3.359) is expressed in the following form 

 

      3 2 3 2 2 22 2 0I I I n n n ns s s s s s s s                     . (3.364) 

 

The relation (3.360) through (3.362) are simplified as follows 

 

 2 n    , 
2

n
I

n

 


 



, 

2
1 1 2 2

2

n n
I I n

n

  
   

 

  
 


. (3.365) 

 

With respect to similarity numbers (3.365) the integrating plants (3.185) are oscillatory with 

complex conjugate pair of poles  1,2 ns j     . The integrating plant spectrum also 

contains two distinct real poles 
3s    and 

4 0s  . For mapping purposes it is worth to make 

the following manipulations with I  and I  in (3.365)  

 

2

n

I

n



 
 






, 0 n


   , 0   (3.366) 

 

and 

 
2

2

1 2

n n

I

n

 


 





 
 

 



, 0 n


   , 0   (3.367) 

 

respectively. By the choice of 1   and 0   the region of integrating plants (3.185) with 

oscillatory impulse response is found out. This region including the region where the 

dynamically similar plants (3.185) are with aperiodic impulse response is drawn in Fig. 3. Let 

be remarked the plant (3.185) is integrating thus already on the stability margin. When 0   

it means the plant impulse response becomes undamped. In Fig. 3 the undamped cases ( 0  ) 

of ratios 
I   and I   are removed in order to tune the PID controller for integrating 

plants with damped impulse responses only. Notice the integrating plants (3.185) with more 

oscillatory impulse response give the greater value of 
I  . The undamped oscillation of 

plant (3.185) impulse response arises when 1I    while the damped oscillatory plants 

appear when 1I   , for more details see Fig. 3. The integrating plant is with damped 

impulse response when  

 
2 1I   .  (3.368) 
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Fig. 3. Similarity numbers mapping to distinguish between  

oscillatory and aperiodic cases of (3.185) 

 

It results from the stability condition (3.125). As regards integrating plant stiffness evaluation 

the following ratio is introduced  

 

n
I


 


 , 0 1  . (3.369) 

 

This ratio can be also understood as dimensionless spectral abscissa, thus very analogous to 

number (3.169), the dampeningness number. Only 
I  is used instead of  . Then relation 

(3.367) is altered as follows   

 
2

2

1 2

I
I

I

I






 

 
 

 


, 0 1  . (3.370) 

 

Taking into account the discussion below (3.158) and expressing from (3.369)  

 

I n 

 
  (3.371) 

 

(3.371) is changed into the following form 

  
22 2

1 2 1 2

I I
I

n I I

   


  

 
 

 
, 0 1  , 0n  . (3.372) 

 

Let the opposite behaviour be modelled, i.e. the integrating plants (3.185) are non-stiff. This 

case happens for 1I   and upper bound of (3.372) is expressed as the following ratio 

 

2
1

1 2

I

I









. (3.373) 
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In contrast to (3.373) all ratios    2 1 2I I    resulting either lower or greater than 1 

belong to stiff integrating plants (3.185) when either the lower bound or upper bound of this 

ratio is approaching. The lower bound of this ratio results in    2 1 2 1 2I I     when 

I   and the upper bound results in    2 1 2 2I I     when 0I  . Application of 

(3.372) assumes the integrating plant impulse response is damped hence undamped case is not 

considered for stiffness evaluation.   

 

Plant (3.114) of the fourth-order, i.e. 4n  , is considered for its dynamics investigation using 

the similarity numbers in examples. Most common cases of such plants in practice are the 

fourth-order aperiodic plants when all its poles are real poles or the plants with only one pair 

of complex conjugate poles. The case of the fourth-order oscillatory plants with two pairs of 

complex conjugate poles are not so much frequently identified in practice. But this case is 

from the point of view of the PID controller capability the worst case of the stable non-stiff 

fourth-order plants considered. In the rest of this section the Examples 3, 4, 5 and 6 

demonstrate the dimensional analysis on identified fourth-order plants aperiodic, oscillatory 

and integrating. 

 

Example 3. The fourth-order aperiodic plant when all its poles are distinct real poles is 

identified as follows 

 
4 3 2

4 3 2

( ) ( ) ( ) ( )
0.47 2.682 5.2 3.988 ( ) ( 0.25)

d y t d y t d y t dy t
y t u t

dt dt dt dt
       (3.374) 

 

from where the scaling factor originates in 

 
44

4 0.47c  . (3.375) 

 

Using (3.375) and similarity number (3.164) through (3.168) as follows 

 

4

5.2 1
1.574

3.988 0.47
   , 45.2

0.47 1.605
2.682

   , 
7

5.2
7.58

0.47
    , 

34

2.682
4.721

0.47
   , 

4

0.25
0.302

0.47
   , 1

8 4

3.988
4.815

0.47
       (3.376) 

 

the dimensionless form of (3.374) is obtained applying model (3.178) 

 
4 3 2

4 3 2

( ) ( ) ( ) ( )
4.721 7.58 4.815 ( ) ( 0.302)

d y t d y t d y t dy t
y t u t

dt dt dt dt
      . (3.377) 

 

One can see both   and   result greater than 1.5 as expected. On the right-hand side of 

(3.377) there is 1K  . For the stability assessment the number   is evaluated  

 

1 2

3 344
4

4.815 7.58
64.3 1

0.47

c c

c



     (3.378) 
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which expresses in value that the plants (3.377) satisfy the necessary condition of stability due 

to condition (3.175). The plant stability is confirmed by the conditions (3.332) 

 
14.721 0.635    , 1 2 2 21 6.726 1.04         . (3.379) 

 

From the characteristic equation of plant (3.374) 

 

   

       

4 3 21
0.47 2.682 5.2 3.988 1

0.47

0.5 1 1.7 2.5 0

M s s s s s

         s s s s

     

     

 (3.380) 

 
1

1 0.5b s , 1

2 1b s , 1

3 1.7b s  and 1

4 2.5b s . In the plant (3.374) spectrum the four 

distinct real poles are as follows 

 
1

1 1 0.5s b s    , 1

2 2 1s b s    , 1

3 3 1.7s b s    , 1

4 4 2.5s b s    . (3.381) 

 

Using relation (3.335) through (3.337) the similarity numbers  ,   and   are verified  

 

  40.5 1 1.7 2.5 0.47 4.721       (3.382) 

 

4

0.5 1 0.5 1.7 1 1.7 0.5 2.5 1 2.5 1.7 2.5 1
1.574

0.5 1 1.7 0.5 1 2.5 1 1.7 2.5 0.5 1.7 2.5 0.47


          
 

          
 (3.383) 

 

40.5 1 0.5 1.7 1 1.7 0.5 2.5 1 2.5 1.7 2.5
0.47 1.605

0.5 1 1.7 2.5


          
 

  
. (3.384) 

 

Model (3.377) describes all the dynamically similar plants with similarity numbers (3.376). 

For instance the following fourth-order plant  

 
4 3 2

4 3 2

( ) ( ) ( ) ( )
1.5 6.4 9.28 5.3275 ( ) ( 0.334)

d y t d y t d y t dy t
y t u t

dt dt dt dt
       (3.385) 

  

is dynamically similar to the plant (3.374) because the similarity numbers result the same with 

(3.376). To verify it the following evaluations are made 

 

4

9.28 1
1.574

5.3275 1.5
   , 49.28

1.5 1.605
6.4

   , 
7

9.28
7.58

1.5
    , 

34

6.4
4.721

1.5
   , 

4

0.334
0.302

1.5
   , 1

8 4

5.3275
4.815

1.5
      . (3.386) 

 

In comparison to (3.374) the (3.385) pole spectrum is already changed as follows 

 
1

1 1 0.374s b s    , 1

2 2 0.753s b s    , 1

3 3 1.256s b s    , 1

4 4 1.882s b s    .(3.387) 

 

In Fig. 4 step responses of dynamically similar plants (3.374) and (3.385) are compared. 
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Fig. 4. Step responses of dynamically similar plants belonging  

to aperiodic plants 

 

Example 4. As announced before Example 3 next sample of the fourth-order plant is the 

oscillatory plant such that the plant pole spectrum is composed of one pair of complex 

conjugate poles and two distinct real poles. Such a plant is identified as follows 

 
4 3 2

4 3 2

( ) ( ) ( ) ( )
0.2667 1.653 2.093 2.667 ( ) ( 0.2)

d y t d y t d y t dy t
y t u t

dt dt dt dt
       (3.388) 

 

from where the scaling factor is as follows  

 
44

4 0.2667 0.7186c   . (3.389) 

 

Based on (3.389) and similarity number (3.164) through (3.168) as follows 

 

4

2.093
1.0922

2.667 0.2667
  


, 42.093

0.2667 0.9098
1.653

   , 
7

2.093
4.0531

0.2667
    ,   

4.0531
4.4546

0.9098
   , 

4

0.2
0.2783

0.2667
   , 1

8 4

2.667
3.711

0.2667
        (3.390) 

 

where  
2

40.2667 0.2667  and the dimensionless form of (3.388) is obtained due to 

model (3.178) 

 
4 3 2

4 3 2

( ) ( ) ( ) ( )
4.4546 4.0531 3.711 ( ) ( 0.2783)

d y t d y t d y t dy t
y t u t

dt dt dt dt
      . (3.391) 

 

The right-hand side of (3.327) is with 1K  . To make the list of the similarity numbers in 

(3.390) complete the number (3.169) is evaluated 

 

34
1 2 4 34

2.667 2.093
15.04 1

0.2667
c c c


   . (3.392) 
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This number considerably exceeds the threshold and it means as in case of (3.378) the plant 

satisfies supplementary necessary condition of the stability. The plant stability is confirmed 

by the conditions (3.332) 

 
14.4546 0.915    , 1 2 2 21 2.376 0.694         . (3.393) 

 

Specifying the characteristic equation of plant (3.388) 

 

 

     4 3 2 2

1

0.2667

0.2667 1.653 2.093 2.667 1 0.5 5 0.7 1.5 0

M s

s s s s s s s s

 

         

 (3.394) 

 

one undamped natural frequency exist, 11.2247n s  , together with damping factor 

0.2857   and two real poles result as 1

3 0.5s s   and 1

4 5s s  . Using relation (3.339) 

through (3.341) the similarity numbers  ,   and   are verified 

 

  40.5 5 2 0.2857 1.2247 0.2667 4.454        (3.395) 

 

 

 

2

2 4

0.5 5 1.2247 2 0.2857 1.2247 0.5 5 1
1.092

2 0.2857 1.2247 0.5 5 1.2247 0.5 5 0.2667


     
 

     
 (3.396) 

 

 2

4
0.5 5 1.2247 2 0.2857 1.2247 0.5 5

0.2667 0.909
0.5 5 2 0.2857 1.2247


     

 
   

. (3.397) 

 

Model (3.391) describes all the dynamically similar plants with similarity numbers (3.390).  

 

Example 5. The fourth-order oscillatory plant of which poles are two pairs of complex 

conjugates is identified as follows 

 
4 3 2

4 3 2

( ) ( ) ( ) ( )
0.5 0.375 1.5625 0.625 ( ) ( 0.25)

d y t d y t d y t dy t
y t u t

dt dt dt dt
       (3.398) 

 

from where the scaling factor originates in  

 

4
4 4

1

2
c  . (3.399) 

 

Utilizing (3.399) and similarity number (3.164) through (3.168) as follows 

 

41.5625
2 2.973

0.625
   , 

4

1.5625 1
3.5037

0.375 2
   , 4

7 1.5625 4 2.2097     , 

40.375 8 0.6307    , 40.25 2 0.297    , 1 4
8 0.625 2 0.7432        (3.400) 

 

the dimensionless form of (3.398) is obtained with respect to model (3.178) 
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4 3 2

4 3 2

( ) ( ) ( ) ( )
0.6307 2.2097 0.7432 ( ) ( 0.297)

d y t d y t d y t dy t
y t u t

dt dt dt dt
      . (3.401) 

 

On the right-hand side of (3.401) there is 1K  . For the stability assessment the number   is 

evaluated  

 

1 2

3 344
4

0.625 1.5625
1.642 1

0.5

c c

c



     (3.402) 

 

which expresses in value that the plants (3.401) satisfy the necessary condition of stability due 

to condition (3.175). The plant stability is proved by the conditions (3.332) 

 
10.6307 0.336    , 1 2 2 21 1.604 1.388         . (3.403) 

 

From the characteristic equation of plant (3.398) 

 

      4 3 2 2 22 0.5 0.375 1.5625 0.625 1 0.25 2 0.5 1 0M s s s s s s s s s            (3.404) 

 

two undamped natural frequencies 
1n  and 

2n  result as 1

1 1.4142n s   and 1

2 1n s  . 

Corresponding damping factors are 
1 0.088   and 

2 0.25  . Using relation (3.343) through 

(3.345) the similarity numbers  ,   and   are verified 

 

 
4

1
2 0.088 1.4142 0.25 1 0.63

2
       (3.405) 

 

 

2 2

4

2 2

4 0.088 0.25 1.4142 1 1.4142 1
2 2.97

2 0.088 1.4142 1 0.25 1 1.4142


     
 

    
 (3.406) 

 

 

2 2

4

4 0.088 0.25 1.4142 1 1.4142 1 1
3.5

2 0.088 1.4142 0.25 1 2


     
 

  
. (3.407) 

 

Analogously to model (3.391) all dynamically similar plants to (3.398) have to be 

characterized with the same similarity numbers (3.400). For all these similar plants the loop 

gains setting is determined by dominant three-pole placement technique in Chapter 4.4.  

 

Example 6 (Integrating plant). The example of dynamically similar integrating plants (3.185) 

of the fourth-order is demonstrated on the identified integrating plant (3.117) for 4n   

 
4 3 2

4 3 2

( ) ( ) ( ) ( )
0.2667 1.52 1.333 2 ( 0.2)

d y t d y t d y t dy t
u t

dt dt dt dt
     . (3.408) 

 

Based on the scaling factor common with (3.388) and similarity numbers given by (3.166), 

(3.167) and (3.180), (3.181) as follows 
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42
0.2667 1.0779

1.333
I   , 41.333

0.2667 0.63036
1.52

I   ,   (3.409) 

8 4

2
2.782

0.2667
I I      , 

2.782
4.0961

1.0779 0.63036
  


, 40.2 0.2667 0.2782   .  

 

the dynamically similar integrating plants (3.185) where (3.408) is one of them result in 

 
4 3 2

4 3 2

( ) ( ) ( ) ( )
4.0961 2.582 2.782 ( 0.2782)

d y t d y t d y t dy t
u t

dt dt dt dt
     . (3.410) 

 

Utilizing the condition (3.368) the damped impulse responses of (3.410) are guaranteed 

because 

 
2 10.57 1I    .  (3.411) 

 

The dimensional analysis based on similarity numbers I , I ,   and   gives rise to the pole 

spectrum of (3.410) as the roots of the following equation 

 

  4 3 2 24.096 2.582 2.782 3.593 0.5029 0.7744 0s s s s s s s s       . (3.412) 

 

These roots can be also computed from the roots of the characteristic equation (3.364) of 

model (3.408) 

 

      4 3 2 21
0.2667 1.52 1.333 2 5 0.7 1.5 0

0.2667
M s s s s s s s s s          (3.413) 

 

as follows 

 
4 44

1,2 1,2 4 0.35 0.2667 1.1737 0.2667 0.25151 0.84341s s c j j         ,

44
3 3 4 5 0.2667 3.593s s c      , 44

4 4 4 0 0.2667 0s s c    . (3.414) 

 

Due to (3.363) it results from (3.414)  

 
44

4 1.2247 0.2667 0.88n n c     , 3.593   (3.415) 

 

and the damping factor of the integrating plant impulse response is 0.2857  . The relations 

for the similarity numbers  , I  and I  given by (3.360) through (3.362) are applied to 

verify (3.409) as follows 

 

  45 2 0.2857 1.2247 0.2667 4.096       (3.416) 

 
2

4

2

1.2247 5
0.2667 1.077

1.2247 2 0.2857 1.2247 5
I


 

   
 (3.417) 
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2

41.2247 2 0.2857 1.2247 5
0.2667 0.63

5 2 0.2857 1.2247
I

   
 

  
. (3.418) 

 

In Fig. 3 the similarity numbers (3.409) correspond to point 0.175I    and 0.3I    

which confirms the integrating plants (3.410) with oscillatory impulse response shown in Fig. 

5. As regards the integrating plant stiffness evaluating (3.369) 

 

0.88
0.2857 0.0699

3.593

n
I


 


    (3.419) 

 

and substituting it into the upper bound of (3.372) as follows 

 

 
Fig. 5. Oscillatory impulse response of integrating plants (3.410) 

 

2 0.0699 2
1.816

1 2 1 2 0.0699

I

I





 
 

  
, 0 0.3246

n




   . (3.420) 

 

One can conclude that the integrating plants (3.410) are stiff because    2 1 2 1I I     

and (3.420) approaches its upper limit given by 2. In Chapter 4.4 the loop gains tuning is 

provided for the integrating plants (3.410) by dominant three-pole placement method. 

3.4 Conclusions 

The application of dimensional analysis is presented to describe the higher-order plants by 

means of the dimensionless models providing deep analysis of the plants dynamics. In 

addition the dimensionless models provide reducing the number of original plants parameters 

and at the same time introduce the similarity numbers making possible to distinguish among 

the plants dynamics features. Namely plants oscillability, retardedness (laggardness), 

dampeningness (dimensionless spectral abscissa) and stiffness belong to these features. In 

summary two options of the dimensional analysis application are presented. The first option 

oversimplifies the resulting dimensionless model of the plant due to fixing the dimensionless 

delay to one. The second option removes this delay fixing and consequently introduces 

another similarity number much better accounting for the delay phenomenon. This number is 

called retardedness. Next based on corresponding similarity numbers the third- and fourth-

order plants are investigated in order to map the plant spectral properties. Mapping these 

properties the admissible ranges of the similarity numbers are found out within which the PID 

controller is capable to cope with the higher-order dynamics and the delay of plant. Not only 

the stability but also safe distance from the stability margin is assessed. This mapping 

concerns also the third- and fourth-order integrating plants. For the plants of the third- and 
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fourth-order selected in parameters admissible for the PID controller design the dimensionless 

control loop models with delay are developed which are subsequently in Chapter 4 optimized 

combining the generalized dominant three-pole placement with the IAE criterion. In other 

words the controller design for retarded systems benefits from the introduced similarity 

numbers because of allowing only for dynamically reasonable constraints (limited damping 

and speed of control response, limited level of controller gain magnitude etc.) in control 

synthesis. These constraints applied to the delayed control loop design simultaneously with 

the generalized dominant three-pole placement give off controller parameters enumeration 

that is acceptable in practice and leads to the pole dominance guarantee or at least safe 

distance from the stability margin (i.e. spectral abscissa exceeding 0.2) as presented in 

Chapter 4. 
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4. Generalized dominant three-pole placement  

4.1 Introduction 

The ultimate gain and the ultimate frequency are well-known quantities utilized in the PID 

controller tuning [3]. While the ultimate gain is dimensionless due to the ratio of variables u 

and y, the ultimate frequency becomes ultimate angle (or ultimate frequency number) [123], 

[125, 126], in dimensionless description of the control loop. 

 

As it results from the dimensional analysis in Chapter 3 the key parameter for the 

dimensionless control loop description is the natural frequency   and for PID controller 

tuning the most significant parameter is the ultimate frequency. Hence the following idea 

resulted that the natural frequency should be very close to or the same as the ultimate 

frequency when assigning the delayed control loop poles composed of pair of complex 

conjugates and one real pole [123], [126]. Beside the natural frequency optimization also the 

control loop damping is optimized by searching for a trade-off between the absolute error 

integral (IAE) optimum and the dominance degree of placed poles in delayed PID control 

loop [121], [124, 125]. This dominance can be evaluated by rightmost roots computation, e.g. 

[97], or argument increment rule application [95], [124].  

 

In this chapter the dominant three-pole placement for the second-order plant, [126], is 

extended to the third- and fourth-order plants. A trio of poles is assigned in the fourth- or 

fifth-order PID control loop with delay to obtain proportional, integration and derivative loop 

gains. Simultaneously the assigned trio of poles has to become dominant in infinite spectrum 

of control loop poles. In other words the three poles have to be the rightmost poles in the 

system spectrum which are separated from the rest of the infinite spectrum. Truly there is the 

technical note, [100], on a mapping all the stabilizing PID settings for the third-order 

aperiodic plants with delay. In this note the spectral abscissa is guaranteed predominantly not 

greater than 0.1. Hence one of the goals of this chapter is to achieve greater spectral abscissa 

in the fourth- or fifth-order control loops with delay. In fact in view of the exhaustive study on 

computing all the stabilizing PID controller settings for general retarded systems in [46] only 

a small portion, if any at all, of entire tuning set is applicable due to the requirement from 

industry on minimum spectral abscissa. Thus next aim of this chapter is to specify to which 

higher-order plants with delay and their parameter constraints the developed PID settings are 

applicable. In other words the PID tuning rules applicable to all dynamically similar plants of 

the third- and fourth-order are developed rather than all the stabilizing PID controller settings. 

Let be pointed out that in [103] the degradation-free PID tuning is made possible for higher-

order plants with delay by considering these plants models of maximum relative order equal 

to three. With respect to the pole dominance guarantee in the higher-order control loops the 

complex conjugate pair of poles is regularly assigned within the root locus technique as in 

[105]. However to guarantee this dominance the natural frequency is prescribed in examples 

of [105] three to ten times lower than the ultimate frequency. In [119] a universal map of 

three dominant pole assignment for PID controller tuning is achieved applying the 

dimensional analysis. Hence another goal of this chapter is to assign the natural frequency 

number as close as possible to the ultimate frequency number and simultaneously to guarantee 

this frequency number resulting as dominant. Obviously crucial for the PID controller tuning 

is to assess the ultimate frequency number. In Chapter 4.2 the case of 2n   is summed up. 

 



75 
 

The following classification of the PID control is expectable: 

 

1. 3PP admissibility: If the dominant three-pole placement (3PP) method is admissible 

then this method is capable to tune up the PID controller and vice versa. In case of the 

inadmissible 3PP method this method fails in the PID controller tuning but the PID 

controller tuned by another approach is applicable. 

2. PID admissibility: If the PID controller is admissible then it is applicable to 

controlling the delayed plant and vice versa. In case of the inadmissible PID this 

controller is not applicable and other than PID control has to be used. 

 

Both classes of the PID control are presented for 3n   and 4n   in Chapter 4.3 and 4.4, 

respectively. The examples are included. The first class of the PID control is shown in 

Examples 7 and 8 at the end of Chapter 4.3. Next two examples (Examples 11 and 12) are 

added to the end of Chapter 4.4. The case of the inadmissible 3PP method appears in 

Counterexamples 9 and 10, presented at the end of Chapter 4.3. The second class is shown in 

Counterexamples 13 and 14 at the end of Chapter 4.4. Surprisingly the 3PP method is unable 

to tune the PID controller while the other method, the Ziegler-Nichols (Z-N) method, is able 

to tune the PID as shown in Counterexamples 9 and 10. Notice the classification of the PID 

control for 2n   is not considered because the second-order dynamics of the plant is well 

tackled by the PID controller.  

4.2 Dominant three-pole placement for 2n   

The results of the dominant three-pole placement in the third-order PID control loop with 

delay described by model (3.203) for 2n   are presented as appeared in [123, 124] and 

[126]. Some discussions to these results are added to point out the merit of the dominant 

three-pole placement. Once a trio of poles is assigned in the third-order PID control loop with 

delay the proportional, integration and derivative loop gains are adjusted. Assume the 

following trio of poles, [123], [126],  

 

 1,2p j    , 3p   , 0  , 0  , 0   (4.1) 

 

is assigned where   is the relative damping and   is the natural frequency number already 

defined by 1  for 2n  , see Chapter 3.   is the root ratio given as follows   

 

 
3

1,2

0
Re

p

p
   . (4.2) 

 

In (4.1) the dimensionless natural frequency   is used instead of undamped frequency n  in 

(3.273) (Chapter 3.3). As regards the ultimate frequency assessment for the case 2n  , [126], 

the ultimate frequency number, K , results in simple relations for proportional and integrating 

plants given by (3.141) and (3.142), respectively, as follows  

 

 
 2 1

cot
K

K

K

 





  (4.3) 

 

and 
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 cot K I K   (4.4) 

 

respectively, where  , I  and   are the swingability, inertiality and laggardness numbers, 

for more details on them see Chapter 3 (Case 2). The solution to (4.3) is obtained with 

MATLAB in Chapter 4.5. In both [123] and [126] the natural frequency number is identified 

with the ultimate frequency number for the purpose of dominant three-pole placement. The 

ultimate frequency number K  in dependence on   and   is recorded in Fig. 6. From Fig. 6 

it is apparent that with growing swingability number decreases the ultimate frequency 

number. The same takes place with growing laggardness number. Admissibility ranges of 

both   and   are 0.25,2  and 0.25,1.5  for which the values of ultimate frequency 

number K  fall within 1,3.6K  . The second-order oscillatory plants appear for 0.5  . 

In case 0.2   the delay effect of second-order plant becomes negligible. For 2   and 

1.5   the PID controller settings drop in gain values below 0.5. 

 
Fig. 6. K  dependence on numbers   and  , [126] 

 

To assign (4.1) the three poles have to be the roots of (3.215) and in case of integrating plants 

the trio of poles (4.1) have to be roots of (3.216), see Case 2 in Chapter 3. Substituting each 

pole from (4.1) into (3.215) and starting with  1s p j      one gets 

 

 Bjjjj

jj IDP

~
))31(3()21(

1
)()]sin(

)cos([)exp()21()(

32322

22
















 (4.5) 

 

After substituting 3p    for s  in (3.215) the following equation is obtained 

 









 322 )()(

1
)exp()( 


 IDP . (4.6) 

 

To express the right-hand side of (4.5), B
~ , the following supplementary expressions are 

found out 
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232 )3()1(
1




 Rb , (4.7) 

22 )31(2
1

1 


Ib . (4.8) 

 

Then real and imaginary part of B
~  result in 

 

       Re exp cos sinR R IB B b b          , (4.9) 

 

       Im exp cos sinI I RB B b b          , (4.10) 

 

and from the right-hand side of (4.6) it stems  

  2 2 2

3

1
exp 1B       



 
     

. (4.11) 

 

The right-hand sides, namely (4.9) through (4.11), can be inserted into the following vector 

 

 3

T

R IB B B B  (4.12) 

 

and the left-hand sides of (4.5) and (4.6) constitute the following matrix 

 

 2 2

2

2 2 2

, 1 , 1

, 2 , 0

, , 1

  

 

   

  
 

  
 
 

A  (4.13) 

 

with respect to the vector composed of searched control loop gains as follows 

 

 
T

P D I  P . (4.14) 

 

Equations (4.5) and (4.6) can be rewritten into the matrix form using (4.12) through (4.14) 

 

AP B  (4.15) 

 

To solve (4.15) for P  the matrix A  has to be inverted thus  det 0A . Since 

    23 2det 1 1 0     A  for 0   Cramer’s rule is utilized for solution to (4.15). 

Thus 

 

 
 

 

det
,  1,2,3

det

i
i i 

A
P

A
 (4.16) 

 

where 

 



78 
 

 2 2

2

1

2 2 2

3

, 1 , 1

, 2 , 0

, , 1

R

I

B

B

B

 



  

 
 

  
 
 

A , 
2

3

, , 1

, , 0

, , 1

R

I

B

B

B







 
 
 
 

A , 

 2 2

2

3

2 2 2

3

, 1 ,

, 2 ,

, ,

R

I

B

B

B

  

 

   

  
 

  
 
 

A . (4.17) 

 

Particular control loop gains are found out as follows 

 

 1 PP ,  2 DP ,  3 IP . (4.18) 

 

Due to inner cancellation of powers of   this rule leads to the following solutions for 

, ,P D I   . Namely in ratio for P  and I  there is the cancellation of 
3 , and in ratio for 

D  it is cancelled 
2 . Hence (4.18) are rewritten into separate relations equivalent with (4.16) 

as follows 

 

 

2

22
2 2

3

, 1, 1
1

det , 2 , 0
1 1

, , 1

R

P I

B

B

B



 
   

 
  
  
  

, (4.19) 

 

  22

3

, , 1
1

det 1, , 0
1 1 , , 1

R

D I

B

B

B




   

 
 
    

, (4.20) 

 

 

2

22
2 2

3

, 1,

det 1, 2 ,
1 1

, ,

R

I I

B

B

B

 


 
    

  
  
  
  

 (4.21) 

 

where (4.9) through (4.11) are applied without factorized  . The proof of (4.19) through 

(4.21) is presented in [126]. Let be remarked the formulae (4.19), (4.20) and (4.21) are 

applicable to integrating plants (3.142), too. Only entries of B  appearing in these formulae 

have to be changed to  

 

   2 3 21
1 3Rb     


     (4.22) 

 

 2 21
2 1 3Ib   


    (4.23) 

 

  2 2 2

3

1
expB      



 
    

 
 (4.24) 

 

where in comparison to (4.7), (4.8) and (4.11)  , -1 and +1, respectively, disappear. 

 

The question what is proper selection of the pole coordinates, namely  ,   and  , is 

answered by the IAE optimization combined with the trio (4.1) dominance test. This test 

reveals whether any other pole than the placed trio of poles exists in the position more to the 

right from (4.1) in the complex plane of system poles or not. A sample of the IAE 
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optimization results within the pole placement procedure in case of dynamically similar plants 

characterized by 0.6   and 0.4   is shown in Fig. 7. For the purpose of the IAE 

evaluation the control loop gains are computed by (4.19) through (4.21). In Fig. 7 local IAE 

minima in the pole coordinate space are displayed where particular surfaces are for selected 

  values. The higher   the lower results the IAE. However for 1.5   the trio (4.1) 

dominance is not already achieved and 
opt   where 

opt  is the optimum natural frequency. 

This optimum frequency number results as a trade-off between the IAE optimization and the 

three-pole dominance. In other words at the optimum,    2.77 0.22 1.5    , 

resulting from Fig. 7 the lowest possible IAE is achieved when the three-pole dominance is 

not lost yet. Naturally this optimum is variable with respect to   and  . Nevertheless the 

optimum   does not exceed 1.5 and the optimum relative damping is close to 0.25 or higher 

for all admissible   and  . Only the natural frequency number   is in its optimum, 
opt , 

relatively variable with respect to variable K . This variability is shown as ratio 
opt K   for 

 

 
Fig. 7. 3D plot of IAE criterion dependence on the pole coordinates, [126] 

 

all admissible   and   in Fig. 8. For 
opt   from Fig. 8 the proportional loop gain given 

by (4.19) is recorded in Fig. 9 when 0.35   and 1  . This pole coordinate option 

guarantees the (4.1) dominance and results, 0.5P  , are omitted in Fig. 9. 

 
Fig. 8. Natural frequency ratio K   versus the plant (3.141) similarity numbers, [126] 
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Fig. 9. Proportional gain P  dependence on plant (3.141) similarity numbers, [126] 

 

Generally assigning the natural frequency   greater than the ultimate frequency K , 

particularly 
opt  , there is no guarantee the trio (4.1) becomes the dominant trio of poles. 

The other two pole placement coordinates,   and  , have to be appropriately selected. In 

[123] the option, K  , has been proved as acceptable from the three-pole dominance point 

of view if both   and   are within their admissible ranges. Once   exceeds K  the pole 

dominance test is necessary, as a rule. Recall the argument increment test, [124], where the 

dominance check for the following trio of poles 

 

1,2 3( ) ,p j j p                 (4.25) 

 

is performed. Trio (4.25) is specified by frequency   and dimensionless parameters (ratios) 

 

,
 

 
 

   (4.26) 

 

that are common with dimensionless trio of poles (4.1). Only between   and   with 

respect to 1   there is the following relation  

 

2c


   (4.27) 

 

where 2c  is the scaling factor resulting from the dimensional analysis carried out for n = 2 

in Chapter 3 (Case 2). As already presented in [120, 121] K   and instead of (4.27) it is 

obtained   

 

2

K
K

c


   (4.28) 

 

where K  is the ultimate frequency. Between (4.1) and (4.25) the following relation exist 
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1,2 1,2 2 2 3 3 2 2( ) ( ) ,p p c j c j p p c c                   . (4.29) 

 

Once the dominance of 
1,2,3p  is proved automatically the same is proved in case of 

1,2,3p ( 2c

only shifts whole pole spectrum) and vice versa. To perform the dominance check for (4.1) 

and in fact also for (4.25) the characteristic quasi-polynomial of the investigated PID control 

loop with delay is considered in the retarded form (if n ≥ 2) 

 

 1

0

( ) exp( ) , 2
n

n i

i i

i

M s s m d s s n



      (4.30) 

 

where 0 2I Id Kr c   , 1 P Pd Kr    and 2 2D Dd Kr c   . , 0,1,..., ,im i n  are 

coefficients originating from i  in dimensionless plant model (3.123). The dominance of 

1,2,3p  means that none of the poles is lying to the right from 1,2,3p . According to the general 

argument increment rule along the Jordan curve shown in Fig. 10 it is therefore necessary and 

sufficient for 1,2,3p  dominance that the argument increment of (4.30) satisfies the following 

condition 

 

limarg ( ) arg ( ) ( 5)
2ms j mM s M n 




 


     (4.31) 

 

with  

 

0m  . (4.32) 

 

The proof of (4.31) with (4.32) is presented in [124]. Let be remarked, practically, the 

dominance of 1,2,3p  is checked with the parameter m  set as 1.05m   where    or 

   for 1   and the argument increment of ( )mM j    is evaluated for   growing 

from zero to an upper boundary frequency 

 

,M M K     . (4.33) 

 

 
Fig. 10. The Jordan curve for the argument increment test, [126] 
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Additionally, for   growing from zero to infinity and for m      the following 

relation for the spectral abscissa results 

 

 max(Re( ( ))) 1
s C

M s    


   . (4.34) 

 

When relation (4.34) is nullified the spectral abscissa of the delayed PID control loop is equal 

to  , i.e. 1  . Then the disturbance rejection is free of negative overshoots and the 

equality between the integrals of idealized (delay cancelled) and real disturbance responses 

holds, for more details see [121], [124]. Since (4.31) together with (4.32) is a modification of 

Mikhaylov criterion the ( )M s  function is evaluated with respect to its argument increment 

limit. However to facilitate the argument increment evaluation instead of ( )M s  its Poincaré-

like mapping is used in (4.31). This mapping is a dimensionless extension of ( )M s  mapping 

from [98] as follows   

 

( )
( )

1 ( )

M s
M s

M s





, 1  . (4.35) 

 

For the three-pole dominance test the relation (4.30) through (4.33) are implemented in 

MATLAB in Chapter 4.5 by their extension to the dimensionless PID control loops with 

delay (3.203). In order to measure the degree of the three-pole dominance the so-called 

dominance index has been introduced by the author in [123]. This index is formulated, [123], 

either as 

 

 4

3

Re
1, 1

p
 when 

p
     (4.36) 

 

or  

 

 

 
4

1,2

Re
1, 1

Re

p
 when 

p
     (4.37) 

 

where 
4p  is the fourth pole from the control loop spectrum lying more to the left from 1,2,3p . 

The fourth pole and some further poles are computed by quasi-polynomial root finder, [97]. 

Analogously to (4.27) and (4.28) between the classical and dimensionless control loop 

response there is a relation concerning the IAE value as follows 

 

2

AE
AE

I
Q

c
  (4.38) 

 

where 

 

0
( )AEI e t dt



   (4.39) 

 

and 
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0
( )AEQ e t dt



  . (4.40) 

 

Relation (4.38) is the consequence of the dimensional analysis performed in [126] and in 

subsequent subchapters (4.38) is extended to the fourth- and fifth-order control loops with 

delay. 

 

Conclusions. From both IAE optimum and pole dominance points of view for the second-

order plant admissible ranges 

 

0.25,2 , 0.25,1.5  (4.41) 

 

the pole coordinates  ,   and   are constrained to the following intervals 

 

opt,K   , 0.22,0.35  , 0.9,1.3   (4.42) 

 

where opt K  , [126]. Dominance degree   resulted for admissible ranges (4.41) 

predominantly close to 2. In PID control loop optimization by magnitude optimum method, 

[32], the natural frequency opt   resulted less than K  and the relative damping resulted 

greater than 0.35, i.e. 0.4  . Reversely, in case of the IAE optimization, [30], the resulting 

opt   exceeds K  by more than 25% for all dynamically similar plants considered but 

optimum damping results extremely low, i.e. 0.17  . The constraints on pole placement 

coordinates (4.42) represent the trade-off between the more sluggish but sufficiently damped 

control response and the faster but poorly damped control response. The admissible gain P  

is displayed in Fig. 9 for admissible similarity numbers ,  . For other two gains, ,D I  , the 

admissible values are recorded in [126]. 

4.3 Dominant three-pole placement for 3n   

The difference between this case and the case of 2n   is that the PID controller gains do not 

reach all the coefficient terms of  
0 2, ,s s s  and 3s  in the characteristic equation (3.221) 

introduced in Chapter 3 (Case 3). The first three terms are influenced by the controller gains 

and the fourth term, at 3s , is not modifiable at all. In fact no one of the first three terms is 

corrected exactly by the PID due to the plant retardedness  . Therefore the admissible ranges 

of both the similarity numbers and the pole placement coordinates are tighter than the ranges 

resulting in case of 2n  . Even the PID controller is not tuneable by means of the dominant 

three-pole placement method for inadmissible stable third-order plants because the controller 

gains result in poor values, i.e. zeros in fact. The examples of unacceptable PID controller 

tuning by means of the dominant three-pole placement method is shown in Counterexamples 

9 and 10 at the end of Chapter 4.3. These counterexamples show that the goal of the dominant 

three-pole placement to change the stable third-order plant dynamics into desirable dynamics 

are not achieved for an area of plant similarity numbers. 

 

To find a proper trio of poles (4.1) analogously to case 2n   the ultimate frequency number 

is evaluated. Recall the third-order plant (3.114) (for 3n  ) linked with the PID controller. 

The resulting dimensionless control loop is described by the characteristic equation (3.221)  
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  4 3 1 2 2 0s

D P IM s s s s s e s s               . (4.43) 

  

Setting 0D I    in (4.33) and the result is next cancelled by s  after multiplying this 

result by se   and substituting s j  one has 

 

   
3 2 1

, 1j

P Ke j j j            
 

. (4.44) 

 

Dividing by ,P K  for real and imaginary parts of (4.34) the following equalities are obtained 

 

 

 

2

,

3 1

,

cos 1

sin .

P K

P K

  

    

 

  
 (4.45) 

 

From their ratio it follows 

 

 
2

1 2

1 1
cot

v




  


 


 (4.46) 

 

and the ultimate gain ,P K  is cancelled. In (4.36) K   and K  is the dimensionless ultimate 

frequency (or ultimate frequency number). Then K K     and K  is the ultimate angle. 

From physical point of view only the smallest positive solution of (4.46) with respect to   

can really mean K . Of course obeying the rule for 1
n

nc     and K K K      the 

dimensionless ultimate frequency is also defined as follows 

 

3
3K K c   (4.47) 

 

where K  is the ultimate frequency in case of plant (3.114) for 3n  . In Fig. 9 K  is drawn 

versus ,   for fixed value of  . The map in Fig. 9 is computed applying MATLAB solution 

to the ultimate frequency number evaluation from Chapter 4.5. 

 
Fig. 11. 3D plot of K  dependence on similarity numbers ,   with fixed 1.5   
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In fact ,   cannot be arbitrary and the admissible combinations are in Fig. 11 where K  is 

limited to interval 1,4 . Whether the third-order dynamically similar plants (3.155) are 

oscillatory or not it depends on the combination of   and   values, see Case 3 in Chapter 

3.3. The admissible ranges of   and   are found with respect to   by the following 

admissibility analysis. 

 

3PP admissibility analysis. Analogously to stability conditions (3.126) the fourth-order 

control loop with characteristic equation (4.43) is to be investigated on the admissibility of the 

similarity numbers   and  . Assume 0, 0, 0P D I      and the following conditions  

 
1 1D P          (4.48) 

    
211 1P D I P            

   (4.49) 

 

are to be satisfied. Numbers   and   which satisfy these conditions are the admissible 

similarity numbers. The admissible retardedness number   is shown in Fig. 11. This number 

is reflected in conditions (4.48) and (4.49) by high enough D  setting in (4.48) and (4.49). 

The greater D  the greater can be the number   which is limited to 0.5, as shown in Fig. 11. 

In case 0.3   the fourth-order control loop is considerably delayed for the PID controller 

tuning if the third-order dynamics of plant (3.155), see Chapter 3.2 (Case 3), is poorly 

damped or too lagged. The Counterexamples 9 and 10 demonstrate this plant property impact 

on the PID tuning by means of the inadmissible dominant three-pole placement. As regards   

its admissible values are in the neighbourhood of 1   as shown in Fig. 11. This fact results 

from the analysis of third-order plant dynamics in Chapter 3.3 (Case 3). For   admissibility 

analysis with respect to   the relation (4.48) is expressed as follows 

 
1 2 1D P       (4.50) 

 

where with respect to the worst case considered, i.e. 0D  , it results  

 

,0.5 P K P  . (4.51) 

 

In (4.51) the gain P  is free of any upper bound because for 0   the upper bound is at 

infinity as apparent from (4.50). If  

 
1 2 1      (4.52) 

 

and this product does not result high enough the numbers   and   cannot be considered as 

admissible ones. Thus the admissibility conditions (4.48) and (4.49) can be scarcely satisfied 

for tuned gains , ,P D I    in the way the left hand side of both (4.48) and (4.49) are greater 

than the corresponding right hand sides to an extent as shown below. The numbers  ,   

result in the admissible ones in case of the plant with non-stiff dynamics characterized by the 

triple real pole (3.250), specified by 3   and 1  . Then the product in (4.52) results in    
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1 2 9 1       (4.53) 

 

that exceeds the condition for the admissibility of both   and   nine times. The inequality 

(4.52) is the plant stability condition (3.255) in Chapter 3 (Case 3) where the number   is 

greater than one, see (3.151). If the product in (4.52) is close to one then the gain P  results 

in negligible value because of small ,P K . For lower and upper bounds 0.25   and 1.5  , 

respectively, in Fig. 11 the inequalities for   result from the admissibility condition (4.52) as 

follows 

 

1

2
   (4.54) 

 

and 

 

3

2
   (4.55) 

 

respectively. Again considering the best non-stiff dynamics of the plant, i.e. the plant with 

triple real pole (3.250) characterized by 3   and 1  , the specific range is derived from 

the admissibility condition (4.52) and (4.54) as follows 

 

1
,3

2
 . (4.56) 

 

The inequality (4.55) confirms (4.56) and for 1   the number   is greater than one. Again 

utilizing 0D   and with respect to (4.51), (4.56) from the condition (4.49) the following 

inequalities originate 

 

  1 11 0P I I          . (4.57) 

 

From inequality (4.57) the lower and upper bound for setting I  are specified. Substituting 

the lower and upper bounds of   into 

 
1

I   (4.58) 

 

the admissible I  setting is constrained to 

 

2
4

3
I  . (4.59) 

 

Analogously to the lower bound only in (4.51) also in (4.59) the lower bound only is 

considered as follows 
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2

3
I  (4.60) 

 

because for 0   the upper bound is at infinity. Analogously to P  if the product in (4.52) 

is close to one then the gain I  results in negligible value. The admissible range of I  is 

stricter than the admissible range of P . The derivative loop gain D  is in the role of free 

parameter by which setting the faster control loop response is achieved. With growing delay 

effect by means of   the settings for P  and I  approach the lower bounds of (4.51) and 

(4.60), respectively. For 0.3   all three loop gains , ,P D I    can result in negligible values, 

i.e. zeros in fact, depending on other two numbers ,  . In this case the dominant three-pole 

placement method is behind its applicability to the PID controller tuning for poorly damped or 

too lagged third-order plants. The Counterexample 9 demonstrates this case at the end of 

Chapter 4.3. With respect to (4.52) the specific ranges of ,    

 

0.5,3 , 0.25,1.5  (4.61) 

 

can be next analysed. Combinations 1   and 1   cannot meet the condition (4.52) 

because it results less than 1. In case of combinations 1   and 1  , the product in (4.52) 

results less than 4 within the ranges (4.61). But this is less than half of the product in (4.53). 

Only the case of 1   and 1   gives the products of high values that are greater than the 

products originating from the combinations 1   and 1  . The ranges (4.61) then result in 

true admissible ranges as follows 

 

1,3 , 0.25,1  (4.62) 

 

at which the product in (4.52) resulting in high value as in (4.53) corresponds to the 

admissible numbers   and  . As a rule, in case ,0.5P P K   or 2 3I  , eventually 1   

the trio of poles (4.1) cannot become dominant or even some of other loop poles lie in the 

right-hand part (RHP), i.e. the delayed control loop is unstable. In other words the delayed 

control loop is close to the stability margin or even unstable. Beside the reasonable constraints 

on   depicted in Fig. 11 the constraints on   and   are due to (4.62). The numbers ,   are 

admissible if the condition (4.52) is satisfied. Notice these numbers in their admissible ranges 

characterize the third-order plant dynamics that is not stiff in order to prevent from the model 

order reduction. The result of the loop gains tuning by means of the dominant three-pole 

placement has to be checked on the control loop stability even if all the similarity numbers 

fall within admissible ranges and the trio of poles (4.1) is properly selected. In fact the 

conditions (4.48) and (4.49) are the admissibility conditions for the dominant three-pole 

placement. To find the proper trio of poles (4.1) applying the inequality (4.51) a region of 

proper trio of poles (4.1) is found out by gain P  mapping versus prescribed  ,   and   in 

the dominant three-pole placement. In forthcoming examples this mapping is shown. 

 

PID admissibility analysis. Assume the third-order plant is stable thus the condition (4.52) is 

satisfied. From the characteristic equation (4.43) the term of 3s  is not modifiable at all and 

this corresponds to the similarity number  . Simultaneously the number   together with the 
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number   has to satisfy the condition (4.52). From the analysis leading to the admissible 

ranges (4.62) the PID admissibility is lost when  

 

1  , 1  . (4.63) 

 

But the combinations (4.63) correspond to the unstable third-order plants. Since the PID 

control design is limited to the stable plants only the potential loss of the PID admissibility 

can occur when  

 

1  , 1  . (4.64) 

 

From the original specific ranges in (4.61) the maximum of the product in (4.52) results with 

respect to combination (4.64) in 4. But the true loss of the PID admissibility is expectable 

when the product in (4.52) is close to one. This is obtained by the combination of lower 

bounds in (4.61) satisfying the inequalities (4.64) as follows  

 

0.5  , 0.25  . (4.65) 

 

The inequalities in (4.65) are rewritten into the following ranges 

 

0.3,0.5 , 0.09,0.25  (4.66) 

 

from which only such combinations of   and   are selected that satisfy the condition (4.52) 

and do not appear in the original ranges (4.61). Appearing   and   in the ranges (4.66) an 

inadmissible application of the PID controller becomes particularly with respect to the 

retardedness number  . The case of 0   is avoided due to the plant stability loss and the 

case of 0   is also avoided due to the limited value of the product in (4.52). Be aware that 

beyond the admissible ranges (4.62) satisfying the condition (4.52) some of the loop gains 

, ,P D I    can result negative. Nevertheless the delayed control loop is stabilized but the PID 

control is not already admissible. As a contradiction to ranges (4.66) the ranges of the PID 

admissibility are defined by (4.61). In fact the 3PP admissibility is a subset of the PID 

admissibility. 

 

Integrating plant. In case of integrating plants (3.162) the ultimate frequency is determined 

from the characteristic equation (3.222) in Chapter 3 (Case 3)  

 

  4 3 2 2 0s

I D P IM s s s s e s s              . (4.67) 

 

Suppose again, that 0D I    and then multiply (4.67) by se   and cancel the result by s . 

Utilizing s j  (4.63) is rewritten as follows 

 

   
3 2

,
Kj

P K K K I Ke j j j            
 

. (4.68) 

 

Separating (4.68) into real and imaginary parts and subsequently dividing them by each other 

the ultimate gain, ,P K , is cancelled as follows 
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 
2

cot K
K

I K




  



. (4.69) 

 

Only the smallest positive solution of (4.69) is K  in fact again. This solution is obtained with 

MATLAB in Chapter 4.5. Analogously the ultimate frequency number can be determined by 

(4.47). Notice 1   is replaced with I  in both conditions (4.48) and (4.49) for the integrating 

plants (3.162) and additionally in case of the condition (4.49) the unit, 1, disappears. 

 

Remark 4. The ultimate frequency numbers for the case of 2n  , given by solution of (4.3) 

and (4.4), result in simpler relations than both (4.46) and (4.69). With rising order n the 

complexity of control loop design is increasing but the approaches to this design are kept the 

same, particularly the dominant three-pole placement. 

 

Admissible dominant pole placement. The goal of this section is to achieve the dominant 

three-pole placement in the fourth-order PID control loop with delay where loop gains 

, ,P D I    result in admissible values. First the trio of poles to be assigned for determining 

the proportional, integration and derivative loop gains requires its proper selection. After 

finding a region of admissible P  setting by means of P  mapping versus prescribed  ,   

and   the admissible settings of  ,   and   are obtained. In case the trio of poles is selected 

within the admissible ranges of  ,   and   then assigning 
K   the three-pole dominance 

in infinite spectrum of the control loop poles is obtained as a rule. This dominance is proved 

by argument increment (4.31) evaluation for 3n   or alternatively the quasi-polynomial root 

finder from [97] is applied. The argument increment is evaluated with MATLAB in Chapter 

4.5. Strictly speaking the dominance of (4.1) needs not be achieved by assigning the natural 

frequency number greater than the ultimate frequency number. But the fourth pole, 4p , 

resulting close to 1,2,3p  does not make the transient dynamics more sluggish. The fourth pole 

is still spontaneously placed more to the left from the trio (4.1). In case the pole dominance 

index results at least 2, [123], the fourth pole is far away in the left from the trio of placed 

poles 1,2,3p  and this trio is dominant. To assign (4.1) the three poles have to be the roots of 

(4.43) and in case of integrating plants the trio of poles (4.1) have to be roots of (4.67). Hence 

substituting each pole from (4.1) into (4.43) and starting with  1s p j      one gets 

 

       

 

 

   

4 4 2 2 3 3 2 1 2 2

2 2

6 1 4 1 3 3 1 1 2

1 2 0.

j

D P I

M s

j j j
e

j

j j

 
            

 

       



 



            
 
   

       

 (4.70) 

After substituting 
3p    for s  in (4.43) the following equation is obtained 

 

     
4 3 1 2 2 2 2 2 2 0D P IM s e                        

 
. (4.71) 

 

After rearranging both real and imaginary parts of (4.70) and (4.71) in such a way to be 

expressions free of searched , ,P D I    on the right-hand side of the following equations 
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       

     
   

2 2

4 4 2 2 3 3 2

1 2 2

1 2 cos sin

6 1 4 1 3 3 1

1 2

D P Ij j e j

j j

j j

         

        

     





           

         
 
     
 

 (4.72) 

   
4 32 2 2 1 2 2 2

D P I e                       
 

 (4.73) 

 

these equations can be rewritten in matrix form (4.15). The solution to (4.15) is the same with  

(4.19) through (4.21) for the gains ,P D   and I , respectively. Only the elements of B  are 

then given as follows 

 

   cos sinR R IB e b b      , (4.74) 

   cos sinI I RB e b b      , (4.75) 

   
3 2 1

3 1B e             
 

, (4.76) 

 

where 

 

     3 4 2 2 3 1 26 1 3 1Rb                    
 

, (4.77) 

   3 2 2 2 14 1 1 3 2 1Ib               
 

. (4.78) 

 

In the same way as in (4.12) the factorized   is cancelled applying the Cramer’s rule (4.16) 

and relation (4.74) through (4.76) are changed to RB , IB  and 3B , respectively. Thus the right-

hand side of (4.76) through (4.78) is without the factorized   as follows 

 

   
3 2 1

3 1B e            
 

, (4.79) 

     3 4 2 2 3 1 26 1 3 1Rb                   , (4.80) 

   3 2 2 2 14 1 1 3 2 1Ib              . (4.81) 

 

In case of integrating plants (3.162) from Chapter 3 (Case 3) relation (4.79) through (4.81) are 

changed as follows 

 

   
2 2

3 IB e           
 

, (4.82) 

     2 4 2 3 26 1 3 1R Ib                  
 

, (4.83) 

   2 2 24 1 1 3 2I Ib              
 

 (4.84) 

 

because in (4.79) and (4.81) +1 and -1, respectively, disappear and in (4.80) the stand-alone 

  disappears, too. In addition I   takes over the role of 
1 

.  

 

Example 7. Consider the following third-order plant of type (3.114) 
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3 2

3 2

( ) ( ) ( )
2 3.8 3.4 ( ) ( 0.25)

d y t d y t dy t
y t u t

dt dt dt
     . (4.85) 

 

with 
11n s  , 0.7   and 

10.5b s , see (3.260) in Chapter 3.3. Utilizing the numbers 

(3.144) through (3.147) and (3.149) for the Case 3 in Chapter 3 the following similarity 

numbers result 

 

2.3938  , 0.887  , 0.1984  , 6.46   (4.86) 

 

where the scaling factor 3 2  is applied. Since the numbers (4.86) describe non-stiff dynamics 

and the condition (4.52) is satisfied with respect to (4.53) as 6.46 1    the similarity 

numbers are admissible. Based on these numbers overdamped oscillatory plants (3.155) are 

obtained as follows 

 
3 2

3 2

( ) ( ) ( )
2.3938 2.6986 ( ) ( 0.1984)

d y t d y t dy t
y t u t

dt dt dt
      (4.87) 

 

where 1K  . Before the dominant three-pole placement can be carried out the proper 

selection of the trio of poles (4.1) has to be made for the dimensionless PID control loop with 

overdamped oscillatory plants (4.87) characterized by the similarity numbers (4.86). This 

selection is based on mapping P  versus   and   under constant  , 1  , in Fig. 12. The 

resulting map is compared with zero and ,P K  level of P  according to (4.51). This map 

shows that assignable   is within  1,2.5v  to get ,0.5P P K   where , 3.8161P K  . The 

frequency number K  results in 1.3968 from (4.46) applying the MATLAB solution in 

Chapter 4.5. Since the map is nearly the same for 0.8 1.3   the only parameter for 

optimization remains  , which should result less than 0.35 with respect to the experience 

from [123], [126]. From Fig. 12 one can find out that 0.3   because P  higher than 1.9  is 

desired. For the dimensionless control loop with oscillatory plants (4.87) the loop gains 

, ,P D I    are computed by the formula (4.19) through (4.21) when the following trio of poles 

is assigned 

 

1,2 0.405 2.025p j   , 
3 0.405p   . (4.88) 

 

Then 2.025  , 0.2   and 1  . These values appear in the region of their assignability, 

see Fig. 12. Natural frequency number   is identified with 1.45 K . The ultimate frequency 

number can be equivalently obtained from ultimate frequency of dynamically similar plant 

(4.85) using (4.47) as follows 

 
33

3 1.1086 2 1.3968K K c      (4.89) 

 

The ultimate angle, K K   , results as follows  

 

1.1086 0.25 1.3968 0.1984 0.277K K        . (4.90) 
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Fig. 12. Map of P  for proper selection of the trio of poles (4.1) in case of plants (4.87) 

 

From Fig. 12 the proportional gain falls within the interval (4.51) with lower bound given by

1.9P  . Correspondingly 1.9D   to compensate the retardedness number 0.1984  . The 

loop gains result from (4.19) through (4.21) where (4.79) through (4.81) are used. Thus 

 

3.3, 3.442, 0.859P D I       . (4.91) 

 

As suggested the gain P  results in greater value than the half of ,P K , i.e. 1.9. To check the 

dominance of (4.88) the argument increment (4.31) is evaluated with MATLAB (see Chapter 

4.5). The resulting Poincaré-like mapping (4.35) is shown in Fig. 13 and its zooming at 0   

in Fig. 14. How the three poles as the rightmost poles in the complex plane are separated from 

the rest of the infinite spectrum presents Fig. 15 and in Fig. 16 the detail of  

 

 
Fig. 13. Argument increment test on trio of poles dominance resulting from (4.31) in   
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Fig. 14. Detail of Fig. 13 at 0   

 

Fig. 15 shows the four rightmost poles for determining the dominance index by (4.36). 

According to (4.31) with (4.32) given as 1.1 0.405 0.4455m     the argument increment 

results   as verified in Figs. 13 and 14. As shown in Fig. 15 the poles 1,2,3,4p  are separated 

enough from the rest of the infinite spectrum and the dominance index is determined as 

1.162 1   . Since this index does not result at least 2, [123], the trio of placed poles 1,2,3p  

cannot be considered as the dominant poles. Strictly speaking the dominance of (4.88) is lost 

but the fourth pole, 
4 0.465p  , is near to 1,2,3p  and does not change significantly the transient 

dynamics. In addition the spectral abscissa results in 0.4, i.e. four times greater than that in 

[100]. The rightmost spectrum is computed by the quasi-polynomial root finder from [97]. 

The disturbance rejection with setting (4.91) is recorded in Fig.17. For comparison purposes 

the disturbance rejection with the PID controller tuned by the Z-N method is added to Fig. 17. 

This tuning is given for 1.3968K   and , 3.8161P K   as follows 

 

2.289, 1.287, 1.018P D I       . (4.92) 

 

 
Fig. 15. Rightmost poles of the fourth-order PID control loop with delay 

 



94 
 

 
Fig. 16. Four rightmost poles composed of assigned trio 1,2,3p  and the fourth 

4 0.465p    

 

 
Fig. 17. Disturbance rejection in case of overdamped oscillatory plants (4.87) 

 

Comparing the setting (4.91) with the setting (4.92) in the IAE the Z-N method gives 

moderately lower value applying (4.40) as follows 

 

1.005AEQ   (4.93) 

 

than the dominant three-pole placement method that results with the IAE as follows 

 

1.164AEQ  . (4.94) 

 

On the other hand the dominant three-pole placement method results with 32% lower 

overshoot than the Z-N method as apparent from Fig. 17. In case of the dominant three-pole 

placement method the PID controller setting results from (4.87) with respect to similarity 

numbers 3 , 4  introduced in Chapter 3 as follows 
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3.3Pr  ,   13

3
2 4.336 , 0.682

2

I
D D Ir  s  r  s


          (4.95) 

 

while in case of the Z-N method the PID controller setting is obtained 

 

2.289Pr  ,   13

3
2 1.621 , 0.808

2

I
D D Ir  s  r  s


         . (4.96) 

 

The IAE values corresponding to the settings (4.95) and (4.96) are obtained due to (4.38) as 

follows 

 

 3 2 1.266AE AEI Q s   . (4.97) 

 

and  

 

 3 2 1.466AE AEI Q s    (4.98) 

 

respectively.  

 

Example 8 (Integrating plant). Consider the following third-order integrating plant of type 

(3.117) 

 
3 2

3 2

( ) ( ) ( )
2 3.8 3.4 ( 0.25)

d y t d y t dy t
u t

dt dt dt
    . (4.99) 

 

with 
11.303n s   and 0.728  , see (3.273) in Chapter 3.3. Utilizing the numbers (3.146), 

(3.147), (3.157) and (3.158) for the Case 3 in Chapter 3 the following similarity numbers 

result 

 

2.3938  , 1.1273I I   , 0.1984   (4.100) 

 

where the scaling factor 3 2  is applied. Since the condition (4.52) is satisfied with respect to 

(4.53) as 
2 6.46 1I     the similarity numbers are admissible. Be aware that I  

corresponds to 
1 
 in (4.52), see (3.157) for Case 3 in Chapter 3. Based on these numbers the 

integrating plants (3.162) with overdamped impulse response ( 0.728  ) are obtained as 

follows 

 
3 2

3 2

( ) ( ) ( )
2.3938 2.6986 ( 0.1984)

d y t d y t dy t
u t

dt dt dt
     (4.101) 

 

where 1K  . For the dimensionless PID control loop with integrating plants (4.101) the 

following trio of poles is assigned 

 

1,2 0.421 1.684p j   , 3 0.505p    (4.102) 
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and then 1.684  , 0.25   and 1.2  . Natural frequency number   is identified with 

1.25 K  where K  is evaluated from (4.69). This evaluation is obtained with MATLAB in 

Chapter 4.5. The ultimate frequency number can be equivalently obtained from the ultimate 

frequency of dynamically similar plant (4.99) using (4.47) as follows  

 
33

3 1.069 2 1.347K K c     . (4.103) 

 

The ultimate angle, K K   , results as follows  

 

1.069 0.25 0.267K K      . (4.104) 

 

The loop gains , ,P D I    are computed by the formula (4.19) through (4.21) where (4.82) 

through (4.84) are utilized. Then the loop gains result as follows 

 

3.791, 2.4214, 0.894P D I       . (4.105) 

 

As suggested the gain P  results in greater value than the half of ,P K , i.e. 2.25. Again the 

trio of placed poles 1,2,3p  cannot be considered as the dominant poles because the fourth pole, 

4 0.56p   , is near to 1,2,3p  as apparent from Fig. 19. Nevertheless the fourth pole does not 

change significantly the transient dynamics. From Fig. 18 it is apparent the considerable 

separation of 1,2,3,4p  from the rest of the infinite spectrum. Additionally, the spectral abscissa 

results greater than 0.4, i.e. it is at least four times greater than that in [100]. The rightmost 

spectrum is computed by the quasi-polynomial root finder from [97]. In Fig. 20 the 

disturbance rejection with setting (4.105) is recorded together with the disturbance rejection 

obtained by the Z-N setting as follows 

 

2.703, 1.576, 1.159P D I       . (4.106) 

 

This setting is due to 1.347K   and , 4.505P K  . For the plants (4.101) the dominant three-

pole placement method gives moderately lower value of the IAE applying (4.40) as follows 

 
Fig. 18. Rightmost poles of the fourth-order PID control loop with delay 



97 
 

 
Fig. 19. Four rightmost poles composed of assigned trio 1,2,3p  and the fourth 

4 0.56p    

 

 
Fig. 20. Disturbance rejection in case of integrating plants (4.101)  

with overdamped impulse response 

 

1.1181AEQ   (4.107) 

 

than the Z-N method that results with the IAE as follows 

 

1.1873AEQ  . (4.108) 

 

In addition the dominant three-pole placement method results with 25% lower overshoot than 

the Z-N method as apparent from Fig. 20. In case of the dominant three-pole placement 

method the PID controller setting results from (4.105) with respect to similarity numbers 3 , 

4  introduced in Chapter 3 as follows 

 

3.791Pr  ,   13

3
2 3.05 , 0.709

2

I
D D Ir  s  r  s


          (4.109) 
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while in case of the Z-N method the PID controller setting is obtained 

 

2.703Pr  ,   13

3
2 1.985 , 0.92

2

I
D D Ir  s  r  s


         . (4.110) 

 

The IAE values corresponding to the settings (4.109) and (4.110) are obtained due to (4.38) as 

follows 

 

 3 2 1.266AE AEI Q s    (4.111) 

 

and  

 

 3 2 1.466AE AEI Q s    (4.112) 

 

respectively.  

 

Counterexample 9. Before the dominant three-pole placement method can be applied the 

proper selection of the trio of poles (4.1) has to be made for the dimensionless control loop 

with oscillatory plants (3.279) characterized by the similarity numbers 3 2  , 0.635  , 

0.397   and 2.5  , for more details see Example 1 in Chapter 3.3. The plants (3.279) are 

poorly damped with 0.25   and the retardedness number,  , is greater than 0.3. Applying 

the condition (4.52) together with (4.53) 1 2 2.5 1       but it does not satisfy the 

assumption that the product in (4.52) is high enough as in (4.53). Thus these similarity 

numbers are not admissible and the oscillatory plants (3.279) are inadmissible plants. The trio 

(4.1) selection is based on mapping P  versus   and   under constant  , 1  , in Fig. 21. 

The resulting map is compared with zero and ,P K  level of P  according to (4.51). This map 

shows that assignable   is very close to 1.25K   to get ,0.5P P K   where , 1.1035P K  . 

The frequency number K  results in 1.25 from (4.46) applying the MATLAB solution in 

Chapter 4.5 and it is in the middle of   interval. Since the map is nearly the same for 

0.8 1.3   the only parameter for optimization remains  , which should result less than 

0.35 with respect to the experience from [123], [126]. From Fig. 21 one can find out that

0.3  . For the dimensionless control loop with oscillatory plants (3.279) the loop gains are 

computed by the formula (4.19) through (4.21) when the following trio of poles is assigned 

 

1,2 0.291 1.165p j   , 
3 0.291p   . (4.113) 

 

Then 1.165  , 0.25   and 1  . These values appear in the region of their assignability, 

see Fig. 21. Natural frequency number   is identified with 0.93 K  where 1.25K  . The 

ultimate frequency number is obtained from the solution to (4.46) with MATLAB in Chapter 

4.5. The loop gains result from (4.19) through (4.21) as follows 

 
30.1185, 3.64 10 , 0.165P D I        . (4.114) 

 

Again strictly speaking the dominance of (4.113) is lost but the fourth pole, resulting in 
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Fig. 21. Map of P  for proper selection of the trio of poles (4.1) in case of plant (3.279) 

 

4 0.393p   , is near to 1,2,3p  and does not alter significantly the transient dynamics. As 

expected in case of the inadmissible plants with 0.397 0.3    and 0.25 0.3    the gain 

P  results in lower value than the half of ,P K , i.e. 0.55, and the other loop gains in setting 

(4.114) originate in poor values, too. This setting is not acceptable in practice. The dominant 

three-pole placement method lacks in case of the plants (3.279). On contrary using 1.25K   

and , 1.1035P K   the Z-N method still gives fair PID setting in comparison to (4.114) as 

follows  

 

0.662, 0.416, 0.263P D I       . (4.115) 

 

This setting overcomes the setting (4.114) and in P  this gain is increased nearly six times. If 

the natural frequency number,  , is prescribed equal to the ultimate frequency number, 
K , 

the dominance of three poles (4.113) is not achieved at all and the fourth pole 
4p  results close 

to the imaginary axis. Additionally any attempt of increasing the relative damping over 1 4  

results in the control loop instability.  

 

Counterexample 10 (Integrating plant). Consider the integrating plants (3.292), see Case 3 

in Chapter 3.3, with poorly damped impulse responses, characterized by the similarity 

numbers 3 2  , 1.5749I  , 0.397   and 2.5  , for more details see Example 2 in 

Chapter 3.3. The plants (3.292) are with damped impulse response ( 0.447  ) and the 

retardedness number,  , is greater than 0.3. Applying the condition (4.52) for the integrating 

plants (3.292) 2 2.5 1I     but it does not satisfy the product in (4.52) to be high enough 

with respect to (4.53). Then these similarity numbers are not admissible and the integrating 

plants (3.292) are inadmissible plants. Again the number I  corresponds to 
1 
 in (4.52), see 

(3.157) for Case 3 in Chapter 3. For the dimensionless control loop with integrating plants 

(3.292) the following trio of poles is assigned 
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1,2 0.284 1.136p j   , 
3 0.284p    (4.116) 

 

and then 1.136  , 0.25   and 1  . Natural frequency number   is identified with K  

that is evaluated from (4.69). This evaluation is obtained with MATLAB in Chapter 4.5. The 

loop gains , ,P D I    are computed by the formula (4.19) through (4.21) where (4.82) through 

(4.84) are utilized. Then the loop gains result as follows 

 

1.02, 0.275, 0.144P D I       . (4.117) 

 

Again strictly speaking the dominance of (4.116) is not achieved but the fourth pole, resulting 

in 
4 0.364p   , is near to 1,2,3p  and does not alter significantly the transient dynamics. As 

expected in case of the inadmissible integrating plants with 0.397 0.3    the loop gains 

(4.117) originate in poor values that are not acceptable in practice. The dominant three-pole 

placement method lacks in case of the integrating plants (3.292). On contrary using 

1.136K   and , 1.807P K   the Z-N method still gives satisfactory PID setting as follows  

 

1.084, 0.749, 0.392P D I       . (4.118) 

 

This setting overcomes the setting (4.117) and in ,D I   these gains are increased more than 

twice. In case the natural frequency number,  , is prescribed greater than the ultimate 

frequency number, 1.136K  , the fourth pole results more to the right from 1,2,3p . The 

relative damping greater than 1 4  brings about too sluggish control loop responses due to 

moving 
4p  close to the imaginary axis and if the relative damping is 0.35   then the 

control loop stability is already broken. 

 

Conclusions. The 3PP admissibility analysis provides the following results. From both the 

dominant three-pole placements and the IAE optimization points of view for the third-order 

plant it results the specific ranges 

 

1,3 , 0.25,1 , 0.1,0.3 . (4.119) 

 

The similarity numbers ,    from (4.119) are admissible due to satisfying the condition 

(4.52) with respect to (4.53). The pole coordinates  ,   and   are constrained to the 

following intervals 

 

opt,K   , 0.2,0.3  , 0.9,1.3  . (4.120) 

 

Notice the specific ranges (4.119) define non-stiff third-order plants to prevent from the 

model order reduction. If opt K    , then the plant retardedness   is to be less than 0.3 or 

the plant damping factor   is greater than 0.3. It results from Examples 7 and 8 confronted 

with Counterexamples 9 and 10, respectively. The frequency number opt  can exceed K  by 

50% in maximum and the spectral abscissa results at least 0.4 as shown in examples. The 

dominant three-pole placement method fails in prescribing greater natural frequency number 

than the ultimate one if the third-order plants are characterized with both 0.3   and 0.3  . 
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Then the loop gains , ,P D I    originate in poor values that are not acceptable in practice. Let 

be pointed out that in this case the PID control does not lack but only the PID tuning method 

fails. The admissible ranges of ,P I   results in (4.51) and (4.60) corresponding to specific 

ranges of the similarity numbers (4.61). As regards the derivative loop gain D  this gain 

increases the admissible retardedness number   with respect to conditions (4.48) and (4.49). 

The longer   is the greater can be considered D . In case of the PID admissibility the 

specific ranges (4.119) are enlarged to (4.61) as follows 

 

0.5,3 , 0.25,1.5 , 0.1,0.5  (4.121) 

 

within which the PID controller is still applicable. Beyond these intervals identified by (4.66) 

as follows  

 

0.3,0.5 , 0.1,0.25  (4.122) 

 

the PID controller is not already admissible for controlling the stable third-order plants. This 

admissibility loss takes place already for short retardedness number  , 0.15  . In (4.122) 

the cases, 0   and 0  , are missing due to the plant stability guarantee and due to the 

prevention from the plant stiff dynamics.  

4.4 Dominant three-pole placement for 4n   

As in the case 3n   the PID controller is limited again in its potential to change the fourth-

order plant dynamics. The PID controller gains do not reach all the coefficient terms of  
0 2 3, , ,s s s s  and 4s  in the characteristic equation (3.227) introduced in Chapter 3 (Case 4). 

Only the first three terms are modified by the controller gains and the terms of 3s  and 4s  are 

not influenced at all. Therefore the admissible ranges of both the similarity numbers and the 

pole placement coordinates are tighter than the ranges resulting in cases of 2n   and 3n  . 

As in the case 3n   the PID controller is not tuneable by means of the dominant three-pole 

placement method for inadmissible stable fourth-order plants because the controller gains 

result in zeros in fact. The examples of unacceptable PID controller tuning by means of the 

dominant three-pole placement method is shown in Counterexamples 13 and 14 at the end of 

Chapter 4.4. These counterexamples show that the goal of the dominant three-pole placement 

to change the stable fourth-order plant dynamics into desirable dynamics needs not be 

achieved. In fact Counterexamples 13 and 14 demonstrate the loss of the PID admissibility to 

controlling the delayed and poorly damped fourth-order plant.  

 

To find a proper trio of poles (4.1) analogously to case 3n   the ultimate frequency number 

is evaluated. Recall the fourth-order plant (3.114) (when 4n  ) linked with the PID 

controller. The resulting characteristic equation (3.227) for the dimensionless control loop is  

 

  5 4 3 1 2 2 0s

D P IM s s s s s s e s s                 . (4.123) 

 

Analogously to deriving (4.46) 0D I    in (4.123) and the result is cancelled by s . After 

multiplying this result by se   and substituting j  for s  the characteristic equation (4.123) is 

changed to 
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     
4 3 2 1

, 1j

P Ke j j j j               
 

. (4.124) 

 

Isolating real and imaginary parts from (4.124) as follows  

 

 

 

4 2

,

3 1

,

cos 1

sin

P K

P K

   

    

   

  
 (4.125) 

 

and dividing them each other the ultimate gain, ,P K , is cancelled as follows 

 

 
4 2

1 2

11
cot K K

K

K K

 


   

  



. (4.126) 

  

Again only the smallest positive solution of (4.126) is K  in fact. Equivalently the ultimate 

frequency number can be determined with respect to 1
n

nc     and K K K       by  

 

4
4K K c  . (4.127) 

 

3PP admissibility analysis. As regards the reasonable constraints to numbers , ,    and   

these constraints result differently from those in Chapter 3.2 where   is in the reciprocal 

relationship to   given by (3.145). On contrary, in case of the fourth-order plants the 

numbers   and   are in such a relation that ratio 1   can be different from one. 

Analogously to the admissibility conditions (4.48) and (4.49) the admissibility condition for 

4n   is found. Again assuming 0, 0, 0P D I      the following condition  

 

 1

D      (4.128) 

 

is to be satisfied. Since D  in (4.128) is unknown the greater all the numbers , ,    the more 

admissible are these numbers. Numbers , ,    are the admissible similarity numbers if the 

condition (4.128) is satisfied. The longer retardedness number   the greater can be gain D  

if the following two conditions  

 

1   (4.129) 

 

and 

 

1   (4.130) 

 

are satisfied together with the condition (4.128). Both conditions (4.129) and (4.130) are 

derived from (4.128) and the condition (4.129) is one of the stability conditions of the fourth-

order plants, see (3.332) in Chapter 3.3 (Case 4). Counterexamples 13 and 14 show the limit 

to admissible number   where this number is greater than 0.25. Again the admissible range 

of   depends on other three similarity numbers , ,   . For poorly damped or too lagged 

fourth-order plants the PID tuning via the dominant three-pole placement fails because loop 
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gains , ,P D I    result in practically zero values. Particularly this is the case of retarded PID 

control loop with significant number  . Looking for the best non-stiff fourth-order plant this 

plant is with quadruple real pole (3.314) from Chapter 3.3 (Case 4). The similarity numbers 

corresponding to this multiple pole are as follows 

 

4  , 1.5   and 1.5  . (4.131) 

 

For these numbers the conditions (4.129) and (4.130) result in 

 

6 1   , 6 1   . (4.132) 

 

Both products are six times greater than one. If the similarity numbers , ,    do not satisfy 

the condition (4.128) through (4.130) then these numbers cannot be considered as the 

admissible plant numbers. In Examples 11 and 12 the admissible fourth-order plants are 

controlled satisfying the condition (4.128) through (4.130) while in Counterexamples 13 and 

14 the inadmissible fourth-order plants are controlled. Be aware that the condition (4.128) 

through (4.130) have to be satisfied to an extent analogous to (4.132) for covering the impact 

of retardedness ( ) on specific ranges of , ,   . The numbers , ,    in their admissible 

ranges characterize the fourth-order plant dynamics that is not stiff in order to avoid the model 

order reduction. Analogously to rule (4.51) for 3n   the gain P  is mapped versus prescribed 

 ,   and   to obtain a region of proper trio of poles (4.1). In Example 11 and 

Counterexample 13 this mapping is shown. Again the resulting P  map is compared to ,P K . 

The result of the loop gains tuning by means of the dominant three-pole placement has to be 

checked on the control loop stability even if the condition (4.128) through (4.130) are 

satisfied by all the similarity numbers and the trio of poles (4.1) is properly selected. 

 

PID admissibility analysis. Assume the fourth-order plant is stable thus the conditions 

(3.332) in Chapter 3.3 (Case 4) are satisfied. From the characteristic equation (4.123) the term 

of 4s  is not modifiable at all and this term corresponds to the similarity number  . The same 

concerns the term of 3s , that is not influenced by the PID at all. Thus the number   together 

with the number   and   has to satisfy the condition (4.128) through (4.130). If these 

conditions are not satisfied in the manner as in (4.132) the PID admissibility is lost and vice 

versa. Once the dominant three-pole placement method fails in tuning the PID controller it 

becomes true for any tuning method. This means that the PID control fails. The immediate 

loss of the PID admissibility after the 3PP method fails is shown in Counterexamples 13 and 

14.  

  

Integrating plant. In case of integrating plant (3.185) the ultimate frequency number is 

determined from the characteristic equation (3.228) in Chapter 3 (Case 4)  

 

  5 4 3 2 2 0s

I I I D P IM s s s s s e s s                  . (4.133) 

 

Analogously to (4.61) when 0D I    in (4.133) and the result is cancelled by s  after 

multiplying this result by 
se 
 and substituting s j  the characteristic equation (4.133) is 

modified into 
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     
4 3 2

,

j

P K I I Ie j j j j                
 

. (4.134) 

 

After real and imaginary parts from (4.134) are isolated and subsequently divided each other 

the ultimate gain, ,P K , is cancelled as follows 

 

 
2

2
cot K I K

K

I I K

   


   





. (4.135) 

 

Only the smallest positive solution to (4.135) is K  in fact. The solution to (4.135) is 

computed with MATLAB in Chapter 4.5. Analogously the ultimate frequency number is 

given by (4.127). Be aware that 1   is replaced with I  and   is replaced with I  in the 

condition (4.128) for the integrating plants (3.185). 

 

Admissible dominant pole placement. The aim of this section is the dominant three-pole 

placement such that the trio of poles given by (4.1) is assigned in the fifth-order PID control 

loop with delay in case of aperiodic, oscillatory and integrating plants characterized by the 

similarity numbers , , , , ,I I       constrained to their admissible ranges. As a result of this 

placement are the loop gain settings admissible for the PID control. Again after finding a 

region of admissible P  setting by means of P  mapping versus prescribed  ,   and   the 

admissible settings of  ,   and   are obtained. In case the trio of poles is selected within the 

admissible ranges of  ,   and   then assigning 
K   the three-pole dominance in infinite 

spectrum of the control loop poles is obtained as a rule. This dominance is proved again by 

argument increment (4.31) evaluation for 4n   or alternatively the quasi-polynomial root 

finder from [97] is applied. The argument increment is evaluated with MATLAB in Chapter 

4.5. Even though the dominance of (4.1) is not achieved by assigning the natural frequency 

number greater than the ultimate frequency number in rigorous manner the fourth pole, 
4p , 

resulting in close position to 1,2,3p  does not make the transient dynamics more sluggish. In 

fact the fourth pole is spontaneously placed more to the left from the trio (4.1). In case the 

pole dominance index results at least 2, [123], the fourth pole is far away in the left from the 

trio of placed poles 1,2,3p  and this trio is dominant. To assign (4.1) the three poles has to be 

the roots of (4.123) or (4.133). Hence substituting each pole from (4.1) into (4.116) and 

starting with  1s p j      one attains 

 

       
       

       

5 5 3 2 4 2 2 2

4 4 2 2 3 3 2 1 2 2

2 2

6 4 1 6 1 4 1

6 1 4 1 3 3 1 1 2

1 2 0.
j

D P I

M s j

j j j

j e j j
 

         

            

         



 

           


           

         

(4.136) 

 

After substituting 3p    for s  in (4.123) the following equation is got 

 

       
5 4 3 1 2 2 2

2 2 2 0.D P I

M s e          

      

       
 

  

 (4.137) 
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After rearranging both real and imaginary parts of (4.136) and (4.137) in such a way to be 

expressions free of searched , ,P D I    on the right-hand side of the following equations 

(4.138) 

       

     
       

 

2 2

5 5 3 2 4 2 2 2

4 4 2 2 3 3 2 1 2 2

1 2 cos sin                      (4.138)

6 4 1 6 1 4 1

6 1 4 1 3 3 1 1 2

D P Ij j e j

j

j j j

j

         

         

            

 





           

           
 
            
 
  
  

     
5 4 32 2 2 1 2 2 2

D P I e                           
 

(4.139) 

these equations can be gained in the matrix form (4.15) where only the elements of matrix B  

undergo changes. Thus the matrix, A , is without any change. From the elements of B  only 

particular changes apply, i.e. (4.9) through (4.11) are extended to the fifth-order PID control 

loop with delay as follows 

     
4 3 2 1

3 1B e              
 

, (4.140) 

  

     

4 5 3 2

3 4 2 2 3 1 2

6 4 1

6 1 3 1

Rb

            

      

         

     


       


, (4.141) 

  

   

4 4 2 2 2

3 2 2 2 1

6 1 4 1

4 1 1 3 2 1 .

Ib

            

     

       

      


    


 (4.142) 

Again due to the cancellation of 3  in formulae for P , I , and 2  in the formula for D  

these formulae, given by (4.19) through (4.21), are applied to loop gains evaluation. Then the 

entries (4.140) through (4.142) are simplified in those formulae as follows 

     
4 3 2 1

3 1B e              
 

, (4.143) 

  
     

4 5 3 2

3 4 2 2 3 1 2

6 4 1

6 1 3 1

Rb

        

     

         

     

       
, (4.144) 

  
   

4 4 2 2 2

3 2 2 2 1

6 1 4 1

4 1 1 3 2 1.

Ib

       

    

       

      

    
 (4.145) 

In case of integrating plants (3.185) relations (4.143) through (4.145) are changed analogously 

into relation (4.82) through (4.84) as follows 

     
2 3 2

3 I I IB e               
 

, (4.146) 

  

     

3 5 3 2

2 4 2 3 2

6 4 1

6 1 3 1

R

I I I

b

           

      

          

     


      


, (4.147) 

      3 4 2 2 2 2 2 26 1 4 1 4 1 1 3 2I I I Ib                           
 

. (4.148) 
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Thus +1 and -1 disappear from (4.143) and (4.145), respectively, and stand-alone   

disappears from (4.144), too. At the same time 
I   is instead of   and I I    takes over 

the role of 
1 

.  

Example 11. Before the dominant three-pole placement method can be applied to the PID 

controller tuning the proper selection of the trio of poles (4.1) has to be made for the 

dimensionless PID control loop with aperiodic plants (3.377) characterized by the similarity 

numbers 4.721  , 1.574  , 1.605  , 0.302   and 64.3  , for more details see 

Example 3 in Chapter 3.3. The plants (3.377) are aperiodic with the spectrum of four distinct 

real poles where the ratio between the leftmost and rightmost pole is five and the retardedness 

number,  , is greater than 0.25. These similarity numbers characterize non-stiff plant 

dynamics. In view of (4.132) the numbers  ,   and   are admissible because 

 

7.44 1   , 7.58 1   . (4.149) 

 

Both products in (4.149) are more than seven times greater than one. The proper selection of 

the trio of poles (4.1) is based on mapping P  versus   and   under constant  , 1  , in 

Fig. 22. The resulting map is compared with zero and ,P K  level of P . This map shows that 

assignable   is within  0.5,1.25v  to get ,0.5P P K   where , 4.269P K  . The frequency 

number K  results in 0.8658 from (4.126) applying the MATLAB solution in Chapter 4.5. 

Since the map is nearly the same for 0.8 1.3   the only parameter for optimization 

remains  , which should result less than 0.35 with respect to the experience from [123], 

[126]. From Fig. 22 one  

 
Fig. 22. Map of P  for proper selection of the trio of poles (4.1) in case of plants (3.377) 

 

can find out that 0.15 0.35   because the gain P  is still high enough and simultaneously 

lower than ,P K . For the dimensionless PID control loop with aperiodic plants (3.377) the 

loop gains , ,P D I    are computed by the formula (4.19) through (4.21) when the following 

trio of poles is assigned 
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1,2 0.216 1.082p j   , 
3 0.26p   . (4.150) 

 

Then 1.082  , 0.2   and 1.2  . These values appear in the region of their assignability, 

see Fig. 22. Natural frequency number   is identified with 1.25 K . The ultimate frequency 

number can be equivalently obtained from ultimate frequencies of dynamically similar plants 

(3.374) and (3.385) using (4.127) as follows  

 
44

4 1.0457 0.47 0.8658K K c      (4.151) 

 

and 

 
44

4 0.7825 1.5 0.8658K K c     . (4.152) 

 

The ultimate angle, K K   , results as follows  

 

1.0457 0.25 0.7825 0.334 0.8658 0.302 0.261K K          . (4.153) 

 

From Fig. 22 the proportional gain falls within the interval  0,4.25P   in the space of 

0.375,1.3v , 0.15,0.35   and 0.9,1.3  . The gain P  margin specified by 

, 4.269P K   allows for the retardedness number 0.302  . The loop gains result from (4.19) 

through (4.21) where (4.143) through (4.145) are used. Thus 

 

3.723, 3.821, 0.753P D I       . (4.154) 

 

As suggested the gain P  results in greater value than the half of , 4.269P K   and also the 

condition (4.128) on the 3PP admissibility is verified as 

   1 11.605 4.721 4.721 1.574 31 3.821D           . Thus the left hand side of 

(4.128) exceeds the right hand side more than eight times. To check the dominance of (4.150) 

the argument increment (4.31) is evaluated with MATLAB (see Chapter 4.5). The resulting 

Poincaré-like mapping (4.35) is shown in Fig. 23.  

 
Fig. 23. Argument increment test on trio of poles dominance resulting from (4.31) in 2  
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Fig. 24. Rightmost poles of the fifth-order PID control loop with delay 

 

According to (4.31) with (4.32) given as 1.1 0.26 0.286m     the argument increment 

results 2  as verified in Fig. 23. How the three poles as the rightmost poles in the complex 

plane are separated from the rest of the infinite spectrum presents Fig. 24 and in Fig. 25 the 

four rightmost poles are shown for determining the dominance index by (4.36). The rightmost 

spectrum is computed by the quasi-polynomial root finder from [97]. As shown in Fig. 24 the 

poles 1,2,3,4p  are separated enough from the rest of the infinite spectrum and the dominance 

index is determined as 2.5 1   . This index results at least 2, [123], hence the trio of placed 

poles 1,2,3p  are the dominant poles. The spectral abscissa results in 0.2 only but it is still twice 

greater than that in [100] where the third-order plant is considered. The disturbance rejection 

with setting (4.154) is recorded in Fig. 26. For comparison purposes the disturbance rejection 

with the PID controller tuned by the Z-N method is added to Fig. 26. This tuning is given for 

0.8658K   and , 4.269P K   as follows 

 

2.561, 2.323, 0.706P D I       . (4.155) 

 

 
Fig. 25. Four rightmost poles composed of assigned trio 1,2,3p  and the fourth 

4 0.672p    
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Fig. 26. Disturbance rejection in case of aperiodic plants (3.377) 

 

Comparing the setting (4.154) to the setting (4.155) in the IAE the dominant three-pole 

placement method gives moderately lower value applying (4.40) as follows 

 

1.328AEQ   (4.156) 

 

than the Z-N method that results with the IAE as follows 

 

1.43AEQ  . (4.157) 

 

Moreover the dominant three-pole placement method results with 18% lower overshoot than 

the Z-N method as shown in Fig. 26. In case of the dominant three-pole placement method the 

PID controller setting for the dynamically similar plants (3.374) and (3.385) results from 

(4.154) with respect to similarity numbers 3 , 4  introduced in Chapter 3 as follows 

 

3.723Pr  ,   14

4
0.47 3.164 , 0.909

0.47

I
D D Ir  s  r  s


          (4.158) 

 

and 

 

3.723Pr  ,   14

4
1.5 4.228 , 0.68

0.47

I
D D Ir  s  r  s


         , (4.159) 

 

respectively. While in case of the Z-N method the PID controller setting is obtained for plant 

(3.374) 

 

2.561Pr  ,   14

4
0.47 1.923 , 0.853

0.47

I
D D Ir  s  r  s


          (4.160) 

 

and for plant (3.385) it is as follows 
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2.561Pr  ,   14

4
1.5 2.57 , 0.638

1.5

I
D D Ir  s  r  s


         . (4.161) 

 

The IAE values corresponding to the settings (4.158), (4.159) and (4.160), (4.161) are 

obtained due to (4.38) as follows 

 

 4 0.47 1.1AE AEI Q s   ,  4 1.5 1.47AE AEI Q s    (4.162) 

 

and  

 

 4 0.47 1.184AE AEI Q s   ,  4 1.5 1.58AE AEI Q s    (4.163) 

 

respectively.  

 

Example 12 (Integrating plant). Consider the integrating fourth-order plant of type (3.117) as 

follows  

 
4 3 2

4 3 2

( ) ( ) ( ) ( )
0.5 2.6 4.225 2.125 ( 0.25)

d y t d y t d y t dy t
u t

dt dt dt dt
     . (4.164) 

 

with 
1

1 1b s , 
1

2 1.7b s , 
1

3 2.5b s  and 4 0b  , see (3.348) in Chapter 3.3 (Case 4). 

Utilizing the numbers (3.164) through (3.167) and (3.169) for the Case 4 in Chapter 3 the 

following similarity numbers result 

 

4.3727  , 0.423I  , 1.3665I  , 0.2973   (4.165) 

 

where the scaling factor 4 0.5  is applied. Due to (4.132) modified to the integrating plants 

(3.185) the numbers  , I  and I  are admissible because 

 
1 10.33 1I   , 5.975 1I    . (4.166) 

 

Both products in (4.166) are nearly six times greater than one. Based on these numbers the 

integrating plants (3.185) with aperiodic impulse response are obtained as follows 

 
4 3 2

4 3 2

( ) ( ) ( ) ( )
4.3727 5.975 2.527 ( 0.2973)

d y t d y t d y t dy t
u t

dt dt dt dt
      (4.167) 

 

where 1K  . For the dimensionless PID control loop with integrating plants (4.167) the 

following trio of poles is assigned 

 

1,2 0.1487 0.7435p j   , 3 0.1784p    (4.168) 

 

and then 0.7435  , 0.2   and 1.2  . Natural frequency number   is identified with 

1.15 K  where K  is evaluated from (4.135). This evaluation is obtained with MATLAB in 

Chapter 4.5. The ultimate frequency number can be equivalently obtained from the ultimate 

frequency of dynamically similar plant (4.164) using (4.127) as follows  
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43
3 0.7688 0.5 0.6465K K c     . (4.169) 

 

The ultimate angle, K K   , results as follows  

 

0.7688 0.25 0.1922K K      . (4.170) 

 

The loop gains , ,P D I    are computed by the formula (4.19) through (4.21) where (4.146) 

through (4.148) are utilized. Then the loop gains result as follows 

 

2.3315, 2.1467, 0.2995P D I       . (4.171) 

 

As suggested the gain P  is greater than the half of , 2.366P K   and also the condition 

(4.128) on the 3PP admissibility is verified as 

   1.366 4.372 4.372 0.423 23.5 2.146I I D           . Thus the left hand side of 

(4.128) exceeds the right hand side more than ten times. The separation of 1,2,3p  from the rest 

of the infinite spectrum is apparent from Fig. 27 where the rightmost poles are recorded. In 

Fig. 28 the trio of placed poles 1,2,3p  is with respect to the fourth pole 
4 0.963p    dominant 

because the dominance index according to (4.36) results in 5.4 2   . In addition the fifth 

pole 
5 3.07p    is remoted thrice more to the left from the fourth pole 

4 0.963p    as 

readable from Fig. 28. For the considerable 1,2,3p  dominance it is paid by poor spectral 

abscissa, 0.15. The rightmost spectrum is computed by the quasi-polynomial root finder from 

[97]. 

 
Fig. 27. Rightmost poles of the fifth-order PID control loop with delay 

 

In Fig. 29 the disturbance rejection with setting (4.171) is recorded together with the 

disturbance rejection obtained by the Z-N setting as follows 

 

1.42, 1.725, 0.292P D I       . (4.172) 
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Fig. 28. Five rightmost poles composed of assigned trio 1,2,3p , the fourth 

4 0.963p     

and the fifth 
5 3.07p     

 

This setting is due to 0.6465K   and , 2.366P K  . For the plants (4.167) the dominant 

three-pole placement method gives considerably lower value of the IAE applying (4.40) as 

follows 

 

3.368AEQ   (4.173) 

 

than the Z-N setting that results with the IAE as follows 

 

4.92AEQ  . (4.174) 

 

 
Fig. 29. Disturbance rejection in case of integrating plants (4.167) 

 

The dominant three-pole placement method results with 20% lower overshoot than the Z-N 

method as apparent from Fig. 29. In addition the Z-N setting leads to the disturbance rejection 

that oscillates with the natural frequency number 0.377  . This number is over 40% less 

than the ultimate frequency number 0.6465K  . In case of the dominant three-pole 
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placement method the PID controller setting results from (4.171) with respect to similarity 

numbers 3 , 4  introduced in Chapter 3 as follows 

 

2.3315Pr  ,   14

4
0.5 1.805 , 0.356

0.5

I
D D Ir  s  r  s


          (4.175) 

 

while in case of the Z-N method the PID controller setting is obtained 

 

1.42Pr  ,   14

4
0.5 1.45 , 0.347

0.5

I
D D Ir  s  r  s


         . (4.176) 

 

The IAE values corresponding to the settings (4.175) and (4.176) are obtained due to (4.38) as 

follows 

 

 4 0.5 2.832AE AEI Q s   . (4.177) 

 

and  

 

 4 0.5 4.137AE AEI Q s    (4.178) 

 

respectively. 

 

Counterexample 13. First the proper selection of the trio of poles (4.1) has to be made for the 

dimensionless PID control loop with double oscillatory plants (3.401). The plants (3.401) are 

characterized with similarity numbers 0.6307  , 2.973  , 3.5037   and 0.297  , for 

more details see Example 5 in Chapter 3.3. The plants (3.401) are double oscillatory and 

poorly damped with 
1 0.088   and 

2 0.25  . The retardedness number,  , is greater than 

0.25. In view of (4.132) the numbers  ,   and   are not admissible because 

 

1.875 1   , 2.21 1   . (4.179) 

 

Both products in (4.179) are not satisfied in the manner as in (4.132). Then these similarity 

numbers are not admissible and the oscillatory plants (3.401) are inadmissible plants. The trio 

of poles selection is based on mapping P  versus   and   under constant  , 1  , in Fig. 

30. The resulting map is compared with zero and ,P K  level of P . This map shows that 

assignable   is within 0.9,1.1v  to get ,0.5P P K   where , 0.23P K  . The number K  

results in 1.035 from (4.126) applying the MATLAB solution in Chapter 4.5. This number is 

in the middle of   interval. For the dimensionless PID control loop with double oscillatory 

plants (3.401) the loop gains , ,P D I    are computed by the formula (4.19) through (4.21) 

when the following trio of poles is assigned. Thus 

 

1,2 0.126 0.788p j   , 3 0.1136p    (4.180) 

 

and then 0.788  , 0.16   and 0.9  . Natural frequency number   is identified as

0.76 K . The loop gains result in the following setting 
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Fig. 30. Map of P  for proper selection of the trio of poles (4.1) where , 0.23P K   

 
3 28.2 10 , 3.02 10 , 0.104P D I          . (4.181) 

 

Again strictly speaking the dominance of (4.180) is lost but the fourth- and fifth pole, 

resulting in complex conjugate pair 4,5 0.133 1.191p j   , is near to 1,2,3p  and does not alter 

significantly the transient dynamics. As expected in case of the inadmissible plants with 

0.297 0.25    and 
1 0.088 0.3   , 

2 0.25 0.3    the gain P  results in much lower 

value than the half of , 0.23P K   and the remaining loop gains in (4.181) originate in poor 

values, too. The setting of these gains is not acceptable in practice. The dominant three-pole 

placement method lacks in case of the plants (3.401). Moreover not only this method but also 

the Z-N method fails in tuning the PID controller. The Z-N setting is obtained for 1.035K   

and , 0.23P K   as follows  

 
20.138, 0.105, 4.55 10P D I         . (4.182) 

 

Again the setting (4.182) is unacceptable adjustment of the PID leading to very poorly 

damped control response close to the stability margin. The tuning given by (4.181) leads to 

the natural frequency number as 76% of the ultimate one but the IAE optimum damping 

results in 1 6  only. Prescribing higher natural frequency number brings about approaching the 

stability margin and other from rightmost poles than the prescribed poles lie more to the right 

from the prescribed ones. The poor damping does not result randomly but it has been already 

revealed as a lower bound of the relative damping of the IAE optimum third-order PID 

control loop with delay, [30]. Notice an upper bound of the relative damping originated in 0.4 

for the magnitude optimum third-order PID control loop with delay, [32], where the natural 

frequency number fallen down below 80% of the ultimate frequency number. One can see the 

upper bound is not achievable at all in higher-order plants with delay. If 1 3   is assigned 

the fifth-order PID control loop with delay becomes already unstable. The poor damping is 

balanced by positioning the third real pole more to the right from 1,2p  by 0.9  . The lower 

value of   the higher is value of the IAE. Also the spectral abscissa becomes very low, not 

far away from 0.1 that corresponds to stabilizing PID controller tuning obtained in [100] but 

for the third-order plants with delay. This example of the fifth-order PID control loop with 

delay shows that one is already behind the capability of the PID controller to cope with 
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higher-order dynamics because the control loop response takes overlong and achieves extreme 

overshoot and also the relative damping significantly drops below 0.2. 

 

Counterexample 14 (Integrating plant). For the dimensionless PID control loop with fourth-

order integrating plants of form (3.185) the loop gains , ,P D I    are computed by means of 

the dominant three-pole placement. As the integrating plants of form (3.185) the plants 

(3.410) are considered, for more details see Example 6 in Chapter 3.3. These plants are 

characterized by the similarity numbers 4.0961  , 1.0779I  , 0.63036I   and 

0.2782  . The plants (3.410) are with underdamped impulse response ( 0.2857  ) and the 

retardedness number,  , is greater than 0.25. These similarity numbers characterize stiff plant 

dynamics because the position of real pole is shifted fifteen times more to the left from the 

complex conjugate pair of poles, see Example 6 in Chapter 3.3. Due to (4.132) modified to 

the integrating plants (3.185) the numbers  , I  and I  are not admissible because 

 
1 3.8 1I   , 2.58 1I    . (4.183) 

 

Both products in (4.183) are not satisfied in the manner as in (4.132). Then these similarity 

numbers are not admissible and the integrating plants (3.410) are inadmissible plants. The 

following trio of poles is selected 

 

1,2 0.124 0.773p j   , 
3 0.111p    (4.184) 

 

and then 0.773  , 0.16   and 0.9  . Natural frequency number   is identified with K  

where K  is evaluated from (4.135) applying MATLAB solution in Chapter 4.5. The loop 

gains are computed by the formula (4.19) through (4.21) where element (4.146) through 

(4.148) are utilized  

 
20.63, 0.17, 3.763 10P D I         . (4.185) 

 

Trio 1,2,3p  results in the rightmost position of the complex plane but another real pole 
4p  

spontaneously assumed a position close to 1,2,3.p Thus the dominance of (4.184) is lost but the 

fourth pole does not change significantly the transient dynamics. As expected in case of the 

inadmissible plants with 0.2782 0.25    and 0.2857 0.3    the loop gains (4.185) 

originate in poor values that are not acceptable in practice. The dominant three-pole 

placement method lacks in case of the plants (3.410) and also the Z-N method fails in tuning 

the PID controller in this case of plants. This tuning is obtained for 0.773K   and 

, 1.214P K   as follows 

 

0.728, 0.74, 0.179P D I       . (4.186) 

 

The setting (4.186) cannot be considered as satisfactory in industrial applications. Prescribing 

the natural frequency number greater than K  the control loop response becomes strikingly 

sluggish because the assigned trio of poles loses its dominance and the rightmost pole 

originates spontaneously in the close position to the imaginary axis. Again to obtain as low as 

possible value of the IAE the relative damping is selected close to 1 6  and to compensate 



116 
 

poorer loop damping the third real pole is placed more to the right from the pair 1,2p , i.e. 

0.9  . Hence very poor spectral abscissa is achieved near to 0.1 that also results from the 

stabilizing PID tuning in [100] but for the third-order plants with delay. The decision on the 

PID controller applicability to integrating plants (3.410) is to reject this control.  

 

Conclusions. It turned out both the 3PP admissibility and the PID admissibility analyses 

provide the same results on the admissible fourth-order plants. In fact the PID control also 

fails if the 3PP method fails in the PID controller tuning.  From both the IAE optimization and 

the pole dominance points of view the following plant retardedness range turned out to be 

admissible 

 

0.1,0.3 . (4.187) 

 

If the following relations hold among the similarity numbers ,   and   

 

5  , 5   (4.188) 

 

then these similarity numbers are admissible. The pole coordinates  ,   and   are then 

constrained to the following intervals 

 

opt,K   , 0.2,0.3  , 0.9,1.3   (4.189) 

 

where particularly the relative damping results in the tight interval. The number opt  surpasses 

K  by 30% in maximum. If opt K    , then the plant retardedness   is to be less than 0.25 

or the plant damping factor   is greater than 0.3. It results from Examples 11 and 12 

confronted with Counterexamples 13 and 14, respectively. The dominant three-pole 

placement method fails in prescribing the natural frequency number greater than the ultimate 

one if the fourth-order plants are characterized with both 0.25   and 
1 0.3   (eventually 

2 0.3  ). Then the loop gains , ,P D I    originate in poor values that are not acceptable in 

practice. Beside the dominant three-pole placement method also the Z-N method fails in the 

PID tuning for the fourth-order plants with these characteristics. In fact in this case of plants, 

called stringent plants in control engineering, the PID fails in controlling the inadmissible 

plants and other controller or control scheme need be used. 

4.5 Solving dominant pole placement problem with MATLAB 

All the MATLAB
®

 solutions to the dominant three-pole placement problem in the third-, 

fourth- and fifth-order PID control loops with delay are provided, namely ultimate frequency 

assessment, loop gains tuning and three-pole dominance test. As mentioned in Introduction to 

Chapter 4 the crucial knowledge for the PID control loop design and optimization is the 

ultimate frequency. To provide the ultimate frequency number assessment, the relation (4.3) is 

extended by  

 
2

K





 
 
 

 (4.190) 
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in both the numerator and denominator where K K   and K  is referred to as the ultimate 

angle (cf. Tab. 2 in Chapter 3). Then the relation (4.3) is equivalently expressed as follows 

   

 
2

cot 1K
K

K

 
 

 

  
   
   

 (4.191) 

 

of which solution is K  only when this solution is the smallest positive root of the following 

equation 

 

 
2

cot 1 0K
K

K


 

 

  
       

. (4.192) 

 

Relation (4.192) is achieved when the right-hand side of (4.191) is backwardly multiplied 

both in the numerator and denominator as follows 

 

 

2
2

2

2

1

1 cot

K

K
K

K

KK

K

 
 

 
  
 

  
               
         
 
 

 (4.193) 

 

and subsequently (4.193) takes on negative sign due to (4.192). After that the ultimate 

frequency number is calculated as follows 

 

K
K





  (4.194) 

 

and the (dimensional) ultimate frequency is obtained by (4.28). Be aware that the scaling 

factor is fixed in (4.28) while the laggardness number   in (4.194) is variable. For the 

purpose of ultimate frequency number evaluation in case of 3n   the relation (4.46) is 

modified using (4.190) and (4.194) as follows 

 

 

2

2

1

1

cot




 


 
 





 
 

 
 

  
 

 (4.195) 

 

where   . Since K   K K   and K K   . Thus K , the ultimate angle, is the 

smallest positive solution of (4.195) and K  given by ratio K   is the same as the smallest 

positive solution of (4.46). The ultimate frequency number for the third-order integrating 

plants (3.162) is computed by the function (4.69) altered using (4.190) and (4.194) as follows 
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  2
cot K

K

K
I

 


 
 




 

  
 

 (4.196) 

 

where K  as the smallest positive solution of (4.196) determines K  as ratio K  . To 

facilitate the solution of (4.126) for the case of 4n   this is made by the multiplication of 

both the numerator and denominator with  
4

K   as follows 

 

 

4 2

2

1

1

cot

1

K KK
K

K

 


 

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 





   
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   


 
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 

 (4.197) 

 

and subsequently backwardly the relation (4.197) multiplied by  
4

K   in both the 

numerator and denominator results in  

 

 

2 4

2

1

1
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K K

K

K K
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. (4.198) 

 

In (4.197) and (4.198) the angle K  as the smallest positive solution determines K  as ratio 

K  . The ultimate frequency number in case of integrating plants (3.185) in Chapter 3 (Case 

4) is evaluated by modifying (4.135) as follows 
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 (4.199) 

 

and subsequently as to (4.197)  

 

 

2

2
cot

K
I

K
K

K
I I


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 

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. (4.200) 

 

Again from all the solutions to (4.200) only the smallest positive solution is found out and 

determines K  as ratio K  . Making use of the MATLAB
®
 environment the root 

computation of (4.192) together with (4.194) is implemented as follows 
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% U(k) theta  

% V(i) lambda  
init_value_fi 

tol = 1e-8; 

options = optimset('Algorithm','Levenberg-Marquardt','MaxFunEvals',1000, 

'TolFun',tol,'TolX',tol); 

fi = fsolve(@(fi) tan(fi) + (1/U(k))*fi/(1-(1/(U(k)^2))*fi^2)/V(i),fi0, 

options); 

nu(k) = fi/U(k) % Ultimate frequency number 

 

In the analogous way the other relations for the ultimate frequency number computation are 

implemented using fsolve in MATLAB
®

. MATLAB
®
 solution also concerns proportional, 

derivative and integration loop gain setting according to (4.19) through (4.21) which makes 

the placement of trio of poles (4.1). Formally (4.19) through (4.21) are applicable to arbitrary 

plant order n but the relations for RB , IB  and 3B  have to be appropriately modified to orders 

2n  , 3n   and 4n  . For 2n   these relations are given in Chapter 4.2 and their 

modifications for 3n   and 4n   are achieved in Chapters 4.3 and 4.4, respectively. For 

2n   the formula (4.19) through (4.21) are implemented in MATLAB
®
 environment as 

follows 

 
% d delta  

% kapa kappa  

% rP roP, rD roD, rI roI 

b_R = d + (1/V(i))*(1-d^2)*nu(k) - (3*d-d^3)*nu(k)^2; 

b_I = -1 + (1/V(i))*2*d*nu(k) + (1-3*d^2)*nu(k)^2; 

B_1 = exp(-d*U(k)*nu(k))*(b_R*cos(U(k)*nu(k))-b_I*sin(U(k)*nu(k))); 

B_2 = exp(-d*U(k)*nu(k))*(b_R*sin(U(k)*nu(k))+b_I*cos(U(k)*nu(k))); 

B_3 = exp(-kapa*d*U(k)*nu(k))*(nu(k)^2*(kapa*d)^3-nu(k)*(1/V(i))* 

(kapa*d)^2+kapa*d); 

cramer_P = [B_1 -(1 - d^2) 1; B_2 -2*d 0; B_3 kapa^2*d^2 1]; 

cramer_I = [-d -(1 - d^2) B_1; 1 -2*d B_2; -kapa*d kapa^2*d^2 B_3]; 

cramer_D = [-d B_1 1; 1 B_2 0; -kapa*d B_3 1]; 

rP = (1/(1 + d^2*(kapa-1)^2))*det(cramer_P); 

rI = (nu(k)/(1 + d^2*(kapa-1)^2))*det(cramer_I); 

rD = (1/(nu(k)*(1 + d^2*(kapa-1)^2)))*det(cramer_D); 

 

The loop gains, , ,P D I   , place the trio of poles that the three poles are in the spectrum of 

delayed control loop but placing these poles themselves there is no guarantee of their 

dominance, i.e. these poles do not necessarily lie in the rightmost position in the system 

spectrum. Hence the so-called three-pole dominance test based on argument increment rule 

according to (4.31) and (4.32) is made. This increment rule together with Poincaré-like 

mapping (4.35) is implemented in MATLAB
®
 environment for dimensionless control loops 

with delay (3.203). The implementation is described for order 2n   step by step as follows 

 

 Declaration of the (4.31) parameters  , m , m  , K , M  and display parameters 

 
% DIMENSIONLESS CONTROL LOOP for n = 2 

% Checking for three-pole dominance 

nasob = 1.1;         % multiple of beta satisfying beta_m/beta = nasob > 

1.05 

rozsah = 0.32;          % axis range for M-function 

krok_w = 0.025;  % frequency step for drawing hodograph 

Wmax = 15*nu(k);  % upper boundary frequency  

W_M = 0:krok_w:Wmax; 

n = max(size(W_M)); 
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alfa = d*nu(k);         % alpha 

if kapa < 1 

    beta = alfa;  % real part of complex conjugate pair in (4.1)  

else 

    beta = kapa*alfa;   % third real pole in (4.1) 

end 

beta_m = nasob*beta; %  

 

 Computation of M-curve and its Poincaré-like mapping due to (4.35) where 1.1   
 

ReM = []; 

ImM = []; 

for l = 1:n 

    s = - beta_m + sqrt(-1)*W_M(l);    

    Mp = s^2 + (1/V(i))*s + 1; 

    M = s*Mp + exp(-U(k)*s)*(rD*s^2 + r0*s + rI); % M-function (4.30)  

    M = M/(1+(abs(M))^1.1); 

    ReM = [ReM real(M)]; 

    ImM = [ImM imag(M)]; 

End 

 

 Calculation of significant points on M-curve  
 

s = - beta_m + sqrt(-1)*nu(k); 

Mp = s^2 + (1/V(i))*s + 1; 

HM1 = s*Mp + exp(-U(k)*s)*(rD*s^2 + r0*s + rI); 

HM1 = HM1/(1+(abs(HM1))^1.1); 

s = - beta_m;        % beginning of M-curve 

Mp = s^2 + (1/V(i))*s + 1; 

HM0 = s*Mp + exp(-U(k)*s)*(rD*s^2 + r0*s + rI); 

HM0 = HM0/(1+(abs(HM0))^1.1); 

 

 Drawing the hodograph of M-function modified by Poincaré-like mapping  
 

figure(1) 

title('Argument increment test on trio poles dominance'); 

hold on 

plot(ReM(1,:),ImM(1,:),'k','linewidth',2); 

hold on 

plot(real(HM0),imag(HM0),'ko','linewidth',2); 

hold on 

plot(real(HM1),imag(HM1),'k+','linewidth',2); 

hold on 

plot([0 0]',rozsah*[-3 3]','k--','linewidth',1); 

hold on 

plot(rozsah*[-3 3]',[0 0]','k--','linewidth',1); 

 

In case of higher-order plants, namely the third- or fourth-order plants, 2n  , this program is 

appropriately modified in Mp which is of higher degree than 2. The above described program 

gives off the logical output whether the trio of poles is dominant in the control loop spectrum 

or not. In order to measure the degree of this dominance the following MATLAB
®
 function 

evaluates the dominance index, d_index, according to either (4.36) or (4.37). 

 
[roots_true, d_index] = 

spektrum_rightmost_index(a0,a1,b0,tau,fi,kor,beta_lambert,r0,rD,rI); 

 

where  
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v = V(i);    % swingability number, lambda   

u = U(k);        % laggardness number, theta   

w = nu(k);       % ultimate frequency number 

a0 = 1;              

a1 = 1/v;         % a1 = 1/lambda 

b0 = a0;          %  

kor = 3;          % correction parameter 

beta_lambert = kor*kapa*d*w;    % w > w_k 

 

Parameter beta_lambert delimits the region for searching the rightmost poles in the system 

spectrum. This parameter is next used in the MATLAB
®
 function 

spektrum_rightmost_index for the computation of the rightmost poles applying spectral 

method by [107]. This function implements both (4.36) and (4.37) as follows 

 
function [roots_true, d_index] = spektrum_rightmost_index(a0,a1,b0,tau,fi, 

kor,beta_lambert,r0,rD,rI) 

global v A Ad 

A = [0 0 0; 1 0 -a0; 0 1 -a1];         % coefficient matrix of the system 

Ad = [0 0 -b0*rI; 0 0 -b0*r0; 0 0 -b0*rD;]; % coefficient matrix of the    

% system 

h = [0 u]; 

% Recalling spectral method by WU Z. & MICHIELS W. 

% principal branch k = 0 - rightmost pole(s) 

tds = tds_create({A Ad},h); 

options = tdsrootsoptions; 

options.minimal_real_part = - kor*beta_lambert; 

[eigenvalues, N, size_eigenvalue_problem] = tds_charateristic_roots(tds, 

options); 

if v > 1/2     

    eigenplot1(eigenvalues); 

else 

    eigenplot(eigenvalues); 

end 

roots_true = eigenvalues.l1; 

if isempty(roots_true) == 1 

    display('V hledane oblasti zadne koreny nenalezeny') 

    kor = kor + 0.05; 

    return 

else 

    alfa = real(roots_true(1)); 

    w_1 = abs(imag(roots_true(1))); 

    d = - alfa/w_1;        % determination of relative damping 

    podil_w = w_1/w;    % ratio other than 1 if nu(k) is not prescribed 

end 

if max(size(roots_true)) < 4 

    beta = abs(alfa); 

    w_2 = 0.4*w_1; 

    kapa_ = - beta/alfa;   % third pole position characterized by multiple 

    kor = kor + 0.05; 

    d_index = kapa_;       % dominance index is not determined yet, i.e.  

       % d_index = 1  

    display('Je treba prodlouzit minimal_real_part') 

    return 

else 

    beta = abs(real(roots_true(4)));   % beta = - real(roots_true(4)); 

    w_2 = abs(imag(roots_true(4))); 

    % Computation of fourth pole position 

    if kapa < 1 

       d_index = - beta/alfa;     % relation (4.37) 

    else 
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       d_index = beta/(kapa*d*w_1);    % relation (4.36) 

    end 

    kor = 1.05; 

end 

display(roots_true) 

end 

 

In case of higher-order plants, namely the third- or fourth-order plants, 2n  , this function is 

appropriately modified in system matrices, A and Ad, which are in compatible dimensions 

3 3  or 4 4 . Alternatively the quasi-polynomial root finder in [97] can be applied instead of 

the spectral method by [107]. From essential optimization techniques, mostly used for the PID 

controller tuning, the IAE is applied. For fast computation of the IAE in MATLAB
®

 

environment function sae is used. 

 

All the programs presented are applicable to the design and optimization of the higher-order 

PID control loops with delay. The design of these loops is developed in case of controlling the 

third- and fourth-order plants both aperiodic and oscillatory, including the integrating plants 

of appropriate order. 

4.6 Conclusions 

The dominant three-pole placement method is generalized for the fourth- and fifth-order PID 

control loops with delay. In case the admissible third-order plants are controlled the natural 

frequency number is assigned greater than the ultimate frequency number and the disturbance 

rejection response results in the overshoot by about 30% lower than the overshoot achieved in 

the control loop tuned by the Z-N method. Simultaneously with respect to achieving the three-

pole dominance the relative damping needs be prescribed less than 0.3. Although this pole 

dominance is not achieved in the rigorous manner, thus one or pair of other rightmost poles 

assumes close position to the placed trio of poles, the other pole or pair of poles does not 

significantly alter the transient dynamics. On the other hand the spectral abscissa results at 

least 0.4. In case of the inadmissible third-order plants it is not possible to assign the natural 

frequency number the same with the ultimate frequency number because arising control loop 

gains spontaneously place the rightmost poles of the control loop in critical positions, i.e. 

close to imaginary axis or in RHP. Thus the three placed poles do not result as dominant ones 

at all and even the spontaneously placed poles can result as unstable. In fact the natural 

frequency number has to be prescribed lower than the ultimate one to achieve the three-pole 

dominance. As a consequence the PID setting results in poor gain values that are zeros in fact. 

In other words the dominant three-pole placement method fails in the PID tuning while on 

contrary the Z-N method for some of the inadmissible third-order plants is still able to provide 

a fair PID tuning. Even though the inadmissible third-order integrating plants allow assigning 

the natural frequency number identical with the ultimate one the resulting PID controller 

setting is not acceptable. 

 

Once the admissible fourth-order plants are to be controlled the natural frequency number is 

assigned greater than the ultimate frequency number and the disturbance rejection response 

results in the overshoot by about 20% lower than the overshoot achieved in the control loop 

tuned by the Z-N method. Simultaneously the PID tuning by means of the dominant three-

pole placement method surpasses the Z-N tuning in the value of the IAE and considerable 

three-pole dominance is achieved measured by the dominance degree greater than 2. The IAE 

dropping is achieved by the relative damping prescribed as 0.2 and for the high pole 

dominance degree it is paid by poor spectral abscissa about 0.2. In case of the inadmissible 

fourth-order plants the three placed poles do not result as dominant ones and even the 
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spontaneously placed poles can result as unstable. Then the natural frequency number has to 

be assigned lower than the ultimate one. Nevertheless the inadmissible fourth-order 

integrating plants allow assigning the natural frequency number identical with the ultimate 

one but the PID controller setting results in zero values in fact. Not only the dominant three-

pole placement method but also the Z-N method fails in the PID tuning for the inadmissible 

fourth-order plants, including the fourth-order integrating plants. It turned out the PID 

controller is not applicable to the inadmissible fourth-order plants with delay and other 

controller or control scheme is to be applied instead. 

 

All the results achieved are enabled by the dimensional analysis applied to obtaining the 

universal control loop model with delay. The similarity numbers are mapped in their 

reasonable constraints not only from the plant dynamics but also control design points of 

view. As a result the admissible third- and fourth-order plants are found out together with 

acceptable PID controller settings originating from the pole assignability regions mapped for 

both the fourth- and fifth-order PID control loops with delay. Thus not only the similarity 

numbers but also the pole assignment coordinates are constrained to tight intervals. On 

contrary the PID controller tuning lacks in case of inadmissible third- and fourth-order plants. 

For the third-order plants it becomes due to the deficiency of the dominant three-pole 

placement method while for the fourth-order plants this is the case because the PID controller 

fails as a whole.  
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 5. Conclusions to the habilitation thesis 
 

In the habilitation thesis author’s research results are presented in the area of process control 

design for time delay systems and in the similarity theory application in this design. The 

presented design method is the generalized dominant three-pole placement and is aimed at the 

universal PID controller setting common for a set of dynamically similar plants with delay. 

Moreover this thesis is the study on applicability of the dominant three-pole placement 

method to the PID controller tuning for higher-order plants with delay, namely the third- and 

fourth-order plants. This study reveals that the dominant three-pole placement method is still 

able to tune the PID controller for the admissible third- and fourth-order plants. In case of the 

inadmissible third- and fourth-order plants this method fails in tuning the PID controller. Thus 

the control loop gains result nearly zero, i.e. the PID controller is somewhat degraded. The 

admissible third- and fourth-order plants are mapped by means of the admissibility analysis 

resulting in the admissible similarity numbers. The disturbance rejection response is achieved 

in admissible dimensionless control loops with significantly lower overshoot than the 

overshoot obtained in those control loops tuned by ideal-relay feedback test. In case of the 

inadmissible fourth-order plants the PID controller is not tunable at all. Thus the PID control 

fails in case of any tuning method. To point out the significance of the dimensional analysis 

this analysis is performed because without the dimensionless control loop description the 

admissibility analyses and the PID control classification are barely possible.  
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