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Abstract

Although quantum chromodynamics (QCD) in general allows us to calculate processes governed by
the strong interaction, the behaviour of objects as complex as hadrons is still beyond the reach of exact
perturbative calculations. Therefore, we have to invent QCD-based models in order to describe some
aspects of strong interaction at high energies. One of them is the dipole model which can be used to cal-
culate predictions for various QCD observables. A necessary ingredient of this model is the dipole-target
scattering amplitude, which can be obtained from several theory-inspired models or from numerical so-
lutions to the BK equation. Within this work, I studied both approaches and I start this collection of
my results by a project based on the first approach, in which I study fluctuations of the proton structure
(using the hot-spot model) and their influence on the saturation phenomena. Then I present an overview
of the current development of the solutions to the BK equation. Using the latest approach to solve the
Balitsky–Kovchegov (BK) equation for proton and nuclear targets including an explicit dependence on
the impact parameter, I present predictions for several QCD processes at low-x in the colour dipole pic-
ture which are of interest for current hadron-hadron and future electron-hadron colliders. In these results,
the influence from the di↵erent energy evolutions of the available approaches to the nuclear BK evolution
are studied in the following photo-nuclear processes: inclusive and di↵ractive deeply inelastic scattering,
coherent production of a J/psi meson in ultra-peripheral collisions, and deeply virtual Compton scatter-
ing. By comparison to the available data from HERA and the LHC and to the other models inspired by
the colour glass condensate framework, it is demonstrated that the future measurements will be useful to
discriminate amongst di↵erent approaches to saturation physics. These studies are therefore of interest
for future measurements at the currently planned electron-ion colliders, which can allow us to constrain
the description of QCD dynamics in high parton densities. Finally, following the recent development on
the QCD phenomenology towards the next-to-leading order precision, I developed an algorithm to obtain
the solutions to the BK equation at next-to-leading order including an explicit dependence on the impact
parameter and studied its properties.

Key words: quantum chromodynamics, deeply inelastic scattering, structure functions, parton saturation,
colour dipole model, vector mesons, hot-spot model, Balitsky–Kovchegov evolution equation
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Abstrakt

Přestože nám kvantová chromodynamika (QCD) umožňuje provádět analytické výpočty pro funda-
mentální procesy zprostředkované silnou interakcí, chování hadronů jako celku představuje příliš kom-
plexní problém, jenž zatím nelze přesně spočítat. K popisu chování hadronů při vysokých energiích tak
používáme modely inspirované QCD a v oblastech, kde nelze aplikovat poruchovou teorii, využíváme
vhodné aproximace. Jedním z takovýchto přístupů je tzv. model barevného dipólu. Nezbytnou ingre-
diencí pro výpočty v rámci dipólového modelu je amplituda rozptylu barevného dipólu na hadronovém
terči. Tuto amplitudu lze získat z evolučních rovnic pro změnu struktury hadronů s rostoucí energií,
příkladem takové rovnice je Balitsky-Kovchegovova (BK) rovnice. Další možností je využití různých
modelů popisujících interakci dipólu s hadronem na základě vhodných aproximací z teorie. V této práci
jsou aplikovány a srovnány oba zmíněné přístupy. První část je věnována studiu fluktuací ve struktuře
protonu pomocí tzv. hot-spot modelu a jejich vlivu na jev partonové saturace. Následuje přehled vývoje
a současného stavu poznání týkající se numerických řešení Balitsky-Kovchegovovy rovnice. Dále jsou
prezentovány předpovědi pro několik různých procesů v rámci QCD při nízkých hodnotách Bjorkenova
x, které jsem vypočítala v rámci modelu barevného dipólu s použitím nejnovějšího přístupu k řešení BK
rovnice pro protony a jádra zahrnujícího explicitní závislost dipólové amplitudy na srážkovém parametru.
V těchto výsledcích dále zkoumám vliv dvou různých přístupů k popisu rozptylu dipólu na jaderném terči
– výpočet založený na tzv. Glauber-Gribovově modelu vs evoluce počáteční podmínky popisující dané
jádro – pomocí předpovědí pro následující procesy: inkluzivní a difraktivní hluboce nepružný rozptyl,
koherentní produkce mezonu J/ v ultraperiferních srážkách a hluboce virtuální Comptonův rozptyl.
Srovnáním s dostupnými daty z experimentů na urychlovačích HERA a LHC a také porovnáním vůči
jiným modelům vycházejících z teorie tzv. color glass condensate ukazuji, že budoucí měření mohou
pomoci rozlišit různé přístupy k zahrnutí jevů partonové saturace. Studie předložená v této práci je tak
zajímavá z hlediska měření plánovaných na budoucích elektron-jaderných urychlovačích, u kterých se
očekává, že výrazně zlepší naše porozumění kvantové chromodynamice při vysokých energiích, kdy
struktuře hadronů dominují gluony. V závěru práce navazuji na nejnovější vývoj fenomenologie kvan-
tové chromodynamiky do vyšších řádů poruchové teorie a popisuji mnou vyvinutý algoritmus pro numer-
ické řešení Balitsky-Kovchegovovy rovnice ve formě vycházející z jejího vyjádření v 1. řádu poruchové
teorie a zahrnující explicitní závislost na srážkovém parametru, a studuji vlastnosti řešení této verze BK
rovnice.

Klíčová slova: kvantová chromodynamika, hluboce nepružný rozptyl, strukturní funkce, partonová sat-
urace, model barevného dipolu, vektorové mezony, hot-spot model, Balitsky–Kovchegovova evoluční
rovnice
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Introduction

Studying the nature of matter around us has been one of the main knowledge pursuits since the natural
philosophy of the ancient times, through the establishment of classical physics in the 17th - 19th centuries,
the birth of quantum mechanics at the beginning of the 20th century, and towards the present era of the
standard model of particle physics, which encompasses all current knowledge about elementary particles
and the fundamental forces governing their interaction (excluding gravity). One of these three forces
is the strong interaction between quarks and gluons, described by quantum chromodynamics (QCD).
Due to the non-Abelian nature of QCD, the strength of the interaction increases at large distances and
therefore, quarks and gluons are confined within the colour neutral hadrons such as protons or neutrons.
Furthermore, the strong interaction between the constituent quarks and gluons causes an attractive force
which binds nucleons within the nuclei.

Even though it is possible to perform exact calculations for a single interaction between the free
quarks or gluons, their confinement within hadrons and the related non-perturbative e↵ects make the task
almost impossible. Not only the hadrons such as protons are composed of valence quarks, as predicted
by the additive quark model by Gell-Mann and Zweig [1, 2], but also of an abundance of mediating
gluons and sea quarks emerging from the vacuum. All these constituents interact among themselves,
creating an object with rich inner dynamics. Although the outer quantum numbers of hadrons such as
its spin or mass can be measured precisely, the inner dynamics of its constituents and their individual
contribution to these overall quantities remain an untangled problem of QCD from both the theoretical
and experimental perspectives.

The structure of the proton has been extensively studied in deeply inelastic scattering (DIS) exper-
iments at HERA in interactions of electrons with protons via the exchange of a virtual photon. One of
the important results coming from these measurements is that the inner structure of the proton changes
with energy and it also depends on the scale at which it is measured. With an increasing scale of the
process, given by the virtuality Q2 of the photon, one observes not only valence quarks, but also an in-
creasing number of sea quarks (and indirectly also gluons) coming from the quantum fluctuations of the
proton structure. This can be interpreted such that with increasing resolution, the original constituents
split into smaller ones, allowing to observe the finer structure of the proton. This evolution of the proton
structure with increasing Q2 is described by the Dokshitser–Gribov–Lipatov–Altarelli–Parisi (DGLAP)
equations [3–5]. Moreover, quarks and gluons (collectively denoted as partons) are considered to carry a
fraction x of the proton’s longitudinal momentum within the so called infinite momentum frame, where
the associated momenta are considered to be large enough to neglect their transverse component. There-
fore, the structure of the proton may not only depend on the resolution of the photon probe, but also on
the change of the redistribution of the proton’s longitudinal momentum. At large values of x, valence
quarks are considered to dominate the structure of the proton, carrying most of its momentum. However,
when going towards very small values of Bjorken-x, gluons start to dominate as they emerge wildly
with increasing energy due to gluon splitting. The evolution of gluon densities with decreasing x for
a fixed Q2 is described by the Balitsky–Fadin–Kuraev–Lipatov (BFKL) evolution equation [6, 7]. This
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equation gives the linear evolution of gluon densities with increasing rapidity Y ⇠ ln
⇣

1
x

⌘
. Moreover, it

predicts an infinite growth of gluon densities with decreasing x, which contradicts the unitarity of the
cross section and therefore violates the Martin–Froissart bound [8, 9]. The growth of the gluon densities
is expected to be tamed by gluon recombination, which causes the evolution of gluon densities to be-
come nonlinear with decreasing x. This phenomenon is called parton saturation and it is connected to
the saturation scale Qs(x), at which the nonlinear e↵ects start to manifest themselves. Moreover, these
e↵ects are expected to be enhanced in nuclei, which is one of the motivations for the planned electron-ion
facilities [10, 11].

The non-linear evolution of parton densities including saturation is naturally incorporated within the
Balitsky–Kovchegov (BK) equation [12–14], which gives the evolution with rapidity Y of the colour
dipole scattering amplitude N. The colour dipole model [15–18] represents an approach to describe the
strong interaction within deeply inelastic scattering at low-x, where the virtual photon emitted by the
incoming lepton can be seen as fluctuating into a qq̄ pair. This colour dipole then interacts strongly with
the target hadron via gluon exchange and therefore serves as a probe of the hadronic structure. Within
a proper reference frame, the evolved dipole structure can be related to the wave function of the target
hadron. Dipole amplitudes can be therefore used to calculate structure functions and the cross section of
DIS at low-x. The colour dipole approach can also be extended to di↵ractive processes, characterised by
the exchange of quantum numbers of vacuum (which can also be viewed through the interaction of the
dipole with the hadron). Their advantage is a modified sensitivity to the gluon part of the target structure,
thus they can provide additional information on the QCD dynamics of the hadron structure, including
the saturation phenomenon. Moreover, the cross sections for the exclusive processes such as vector
meson production and deeply virtual Compton scattering are directly related to the generalised parton
distributions and therefore are sensitive to the transverse shape of hadrons and the spatial distribution of
gluons in the impact-parameter plane.

The BK equation is in general a four-dimensional integro-di↵erential equation which does not have
an analytical solution. The dipole amplitudes are therefore obtained from numerical solutions to the BK
equation. Due to the dimensionality of the problem and the related high demand on computing power,
some approximations are usually made to obtain the numerical results within a reasonable timescale.
The numerical solution to the BK equation at leading-order accuracy has been successfully obtained
by several groups, see e.g. Refs. [19–21]. Moreover, the BK equation has been recently extended into
the next-to-leading order (NLO) accuracy of the perturbative theory [22], and there have been several
attempts to include some of the NLO contributions into the LO calculation [23–25] and to obtain its full
numerical solutions [26, 27]. On the other hand, there has also been a development in the solutions of
the BK equation including the explicit impact-parameter dependence for proton [28,29] and nuclear [30]
targets and their subsequent applications to QCD phenomenology [29, 31–33].

There has also emerged an interest to study the fluctuations of the hadronic structure using the de-
scription of QCD processes within the dipole approach, see e.g. Refs. [34–38]. Proton structure fluc-
tuations have been shown to be useful to correctly describe the production of vector mesons in the
incoherent process, where the target hadron is dissociated as a result of the interaction. Such studies are
interesting due to the quantum nature of hadrons. We already know that their structure cannot be taken
as a simple static set of quarks and gluons, but more appropriately, they should be viewed as dynamical
objects whose number and distributions of partons change with energy. Models including partonic fluc-
tuations can be therefore used to describe the initial state of the proton or nuclei in the early stages of the
hadronic interactions and to study the e↵ects of the initial geometry on the final state observables such
as flow e↵ects in small systems – for a recent review see e.g. [39].

This thesis is organised as follows: In Chapter 1, I introduce deeply inelastic scattering as a tool to
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study the proton structure. Following the historical context, I describe the early interpretations of the
experimental observations and the subsequent theoretical development of our understanding of the pro-
ton structure. Subsequently, the evolution of parton densities with increasing energy and its saturation
in the low-x region are described. The regime of DIS at low-x and the necessity for the description
of the strong interaction within the photon-proton scattering brings us to the dipole model approach to
DIS and its extension to other QCD processes such as di↵ractive DIS and the production of exclusive
final states. Chapter 2 starts with introducing the approximations used in QCD phenomenology to cal-
culate the dipole-target cross section and describes how the fluctuations of the proton structure in the
transverse plane can be included into the calculation of QCD observables within the so called hot-spot
model. This chapter also presents my results from Ref. [37] on the exclusive and dissociative produc-
tion of vector mesons in photon-proton collisions and the implications of the dissociative cross section
behaviour for gluon saturation. Chapter 3 presents the Balitsky–Kovchegov equation as a general tool
to obtain the dipole scattering amplitude, starting from its simplest leading-order (LO) approximations,
introducing the incorporation of the next-to-leading order corrections and finalising the review with the
full next-to-leading order (NLO) version of the equation. The approach to solve the BK equation with
an explicit impact-parameter dependence is also introduced, including the recent development to solve
this equation for both protons and nuclei. Chapter 4 presents a summary of the results I published to-
gether with my colleagues in papers [29,31–33]. These publications provide predictions for several QCD
observables within the colour dipole approach using numerical solutions to the impact-parameter depen-
dent Balitsky–Kovchegov equation at leading-order accuracy. These predictions are also compared to
other dipole models used in QCD phenomenology and together, the results provide predictions to study
these processes in future measurements at the LHC and at the proposed electron-ion colliders. Finally,
Chapter 5 presents my work on the numerical solutions to the BK equation at the next-to-leading or-
der accuracy with an explicit dependence on the impact-parameter and summarises the obtained results
and their implications to further development in this direction. The thesis concludes with a summary,
followed by the list of conference proceedings and papers I have published with my collaborators in
peer-reviewed journals during my doctorate, and by the reproduction of the said papers.
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Chapter 1

The QCD structure of the proton

1.1 Deeply inelastic scattering

Before we immerse ourselves into the low-x phenomenology, let us first introduce the process through
which the journey of studying the proton structure began. Deeply inelastic scattering allows us to study
the hadronic structure using the interaction of a nucleon (or nucleus) with a high-energy lepton. It played
a key role in the development of QCD through the identification of the point-like constituents of the
proton from data measured in fixed-target experiments at SLAC [40,41] in the late sixties and seventies.
At the same period of time, the quark model [1,2] and the parton model [42,43] were developed provid-
ing, together with these experimental results, a new insight into the structure of hadrons. Later on, the
process was intensively studied in the H1 and ZEUS experiments at HERA where the proton structure
has been measured with great precision (see e.g. [44–49]) and its results initiated a large interest in QCD
phenomenology at low-x.

1.1.1 Kinematics and DIS cross section

Deeply inelastic scattering can be, in short, denoted by the following equation

l(k) + N(P)! l0(k0) + X (1.1)

and its graphical representation can be seen in Fig. 1.1. It shows that the incoming high-energy lepton
with four-momentum k emits a virtual photon with momentum q. The lepton’s four-momentum has
changed to k0 and the momentum carried by the photon can be estimated from the measurement of the
electron scattering angle. The photon interacts with the hadron (here we will consider a proton to be
more specific), which has a four-momentum P. As a result of this interaction, the proton is broken apart
and a final state hadronic system X is created with a mass MX , given by the centre-of-mass energy of the
photon-proton system as

W2
⌘ (P + q)2 = M2

X , (1.2)

where the natural system of units with c = 1 is used. The scale at which the target proton is probed is
called virtuality and it is defined as the negative square of the four-momentum q

Q2
⌘ �q2 = �(k � k0)2. (1.3)

7



CHAPTER 1. THE QCD STRUCTURE OF THE PROTON

The inelasticity of the collision is defined as

y ⌘
P · Q
P · k

, (1.4)

and represents the fraction of the electron energy transferred by the photon to the hadron in its rest frame.
These two variables are related to the centre-of-mass energy s ⌘ (P + k)2 of the DIS process as

xys = Q2, (1.5)

where the Bjorken-x variable is defined as

x ⌘
Q2

2P · q
. (1.6)

For the case of elastic scattering (Q2 = 0 and y = 0), the wavelength of the probing photon is large
and the proton is seen as a point-like particle of charge +e. If the momentum-transfer is increased, so is
the photon wavelength decreased and the proton interacts as an object of finite size ⇠ 1 fm. For a very
large momentum transfer, the photon wavelength is much smaller than the size of the probed object and
it is possible to "see" the inner structure of the target. Therefore, the virtuality sets the distance scale
probed in the process. Also, let us note that the DIS process could, in theory, be also mediated by the
electroweak bosons. However, these channels are suppressed due to the large mass of these bosons and
therefore, we will consider only the virtual photon as a mediator of the interaction in the rest of the text.

XN(P )

l0(k0)

l(k) �⇤(q)

Figure 1.1: A schematic diagram of electron-proton scattering. The incoming, resp. outgoing lepton
four-momentum is denoted by k, resp. k0, q denotes the virtual photon �⇤ four-momentum, P denotes the
incoming hadron four-momentum and X denotes the final state system. Figure adapted from the previous
work [50].
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CHAPTER 1. THE QCD STRUCTURE OF THE PROTON

As we described above, the DIS process can be divided into two parts. The emission of the pho-
ton from a lepton is a well understood process which can be computed from quantum electrodynamics
(QED). However, the proton structure is completely unknown at this stage and we cannot calculate the
photon-proton interaction part from perturbative QCD directly. Yet, it is possible to parametrise it by
introducing a general hadronic tensor. By accounting for the symmetry requirements, omitting the parity
violating terms and the terms which would result in zero when contracted with the leptonic part (for a
detailed derivation see e.g. [51, 52]), we can express the di↵erential cross section for the high-energy
deeply inelastic electron-proton scattering process as
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where ↵ = e2

4⇡✏0
⇡

1
137 is the electromagnetic coupling constant. The functions F1 and F2 include the

photon-proton interaction and therefore carry the information about the proton structure.
Experimental measurements of the structure functions are often expressed by the reduced cross sec-

tion

�r(y, x,Q2) = F2(x,Q2) �
y2

1 + (1 � y2)
FL(x,Q2), (1.8)

in order to eliminate the QED part of the interaction. Here the function FL is the longitudinal structure
function given by

FL = F2 � 2xF1. (1.9)

1.1.2 The parton model and the structure of the proton

Based on the above derivation, one can now ask: "What is the behaviour of structure functions
Fi(x,Q2) depending on x and Q2?". Based on observations from data, J. D. Bjorken suggested that the
structure functions depend only on the x variable and therefore, do not change with increasing Q2 – a
phenomenon called Bjorken scaling. In order to interpret the experimental results, R. Feynman proposed
a model in which the photon scatters o↵ elastically on one of a quasi-free point-like constituents of the
proton, as depicted in Fig. 1.2. The existence of such point-like constituents would be in accordance
with Bjorken scaling, as was indeed confirmed by the first measurements of F2 [52, 53]. However as
will be discussed later, it holds only in a limited region of (x,Q2) due to the complex dynamics of the
proton structure. Since the idea of the quark model [1, 2] was not yet generally accepted at that time,
the constituents were called partons (standing for "part of the proton") and within the infinite momentum
frame, they were supposed to be massless and each carries a fraction of the total proton longitudinal
momentum while their transverse momenta are supposed to be negligible. This momentum fraction
then corresponds to the variable x defined in Eq. (1.6) and one expects that the sum over all fractional
momenta xP should add up to the original proton momentum P.

Comparing the high-energy limit for the single electron-parton scattering [52]

d�
dQ2 =

4⇡↵2e2

Q4 (1.10)

with the high-energy limit of DIS cross section (1.7) and with the assumption that partons are spin- 1
2

particles, one can obtain the following expression for the F2 structure function

F2(x) = x
X

i

e2
i fi(x). (1.11)
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Figure 1.2: Sketch of the parton model interpretation of deeply inelastic scattering. Figure adapted from
the previous work [50].

At finite collisions energies, F1 may be rewritten equivalently as

F1(x) =
1
2

X

i

e2
i fi(x), (1.12)

where the sum runs over all parton flavours and ei is the e↵ective charge of the parton of flavour i.
The functions fi(x) are the parton distribution functions (PDFs) which give us the probability to find
the parton of type i with a momentum fraction x within the proton. These two formulas lead us to the
so-called Callan-Gross relation [54]

F2(x) = 2xF1(x). (1.13)

The experimental measurements at the time showed the validity of the Callan-Gross relation [55], which
confirmed the link between partons and the spin- 1

2 quarks of the additive quark model [1, 2].
The total momentum P of the proton should be reconstructed from the sum over the momenta of all

partons. Any deviance from the total sum being P (or 1 if we sum up the momentum fractions x) would
advocate for the presence of additional constituents within the proton. Due to the experimental results
of that time, these particles would have to occupy the yet unprobed low-x region of momentum fractions
and at the same time, they could not be fermions. Moreover, they would be electrically neutral as they
were not directly probed by the virtual photons.

Indeed if we perform this sum for the proton and neutron structure functions F2, we arrive to the
conclusion that up and down quarks carry approximately 36 % and 18 % of the total proton momentum,
respectively. Since the strange (sea) quarks carry even tinier portion of the momentum P, it is obvious
that ⇠ 50 % of the proton momentum was unaccounted for by the charged quarks and has to be carried by
those neutral partons, called gluons. This observation was also supported from the theoretical analysis
of the cross section measurements [43]. As we can see now, the longitudinal structure function FL
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(1.9) represents the measure of the violation of the Callan-Gross relation (1.13), as FL = 0 if the proton
consists of only spin- 1

2 fermions (i.e. quarks). The longitudinal structure function therefore gives a direct
measure of the gluonic contribution to the inner structure of the proton. The structure function FL was
indeed measured by later experiments at HERA [56, 57], however the precision of such measurement is
limited as can be seen from the plots in the said papers and even more strikingly from the recent proton
F2 results [48, 49].

1.1.3 The QCD-improved parton model

Although Bjorken scaling can be observed in the region of x ⇠ 10�1, it is clearly violated when one
observes the low-x region as can be seen from Fig. 1.3. It is therefore necessary to include corrections to
the quark distribution functions which involve the gluon contribution to the proton structure and would
explain the divergence from the naive quark parton model assumptions. We will start from the leading
order QCD correction ⇠ O(↵S ) in which the parton radiates a gluon before the interaction with the
probing photon. The correction to the structure function F p

2 is then [51, 52]

F�⇤q!qg
2

x
=

X

i

e2
i

Z 1

x

dy
y

fi(y)
"
↵S

2⇡
Pqq(z) ln

 
Q2

µ2

!#
, (1.14)

where µ is the infrared cut-o↵ to regularise soft gluon emission and Pqq is the quark splitting function
giving the probability that a quark with momentum fraction y emits a gluon, which results in the mo-
mentum fraction x of the "new" quark. The logarithmic term in (1.14) is responsible for the Bjorken
scaling violation as F2 is no longer function of the x alone, but of both variables (x,Q2) simultaneously.
This requires a redefinition of parton distribution functions for the case of interacting quarks as a sum of
the "bare" quark distribution q(x) and the QCD-correction term – resulting in so called "dressed" PDFs.
The change of the quark distribution function at the higher resolution caused by gluon radiation can be
expressed by the evolution equation

dq(x,Q2)
d ln Q2 =

↵S (Q2)
2⇡

Z 1

x

dy
y

Pqq

 
x
y

!
q(y,Q2), (1.15)

which is the so called Altarelli-Parisi evolution equation [4] for the dressed non-singlet1 quark distribu-
tion function q(x,Q2).

Gluon radiation from the quark is not the only possible scenario of QCD corrections. At the leading
order of the strong coupling ↵S , there are four possible splitting scenarios:

• Gluon emission from the quark, resulting in a quark with a new momentum fraction (the above
described case). Corresponds to the splitting function Pqq(z).

• Quark-antiquark recombination, resulting in a gluon with changed momentum fraction with re-
spect to the original quark. Corresponds to the splitting function Pgq(z).

• Emergence of a quark-antiquark pair from a gluon. Corresponds to the splitting function Pqg(z).

• A gluon emission from its parent gluon (represented by the triple-gluon vertex). Corresponds to
the splitting function Pgg(z).

1The non-singlet quark distribution function coincide with the valence quark distribution at the leading order.
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Figure 1.3: The compilation of the proton structure function F2 measurements from several DIS experi-
ments. Figure from Ref. [46].

The splitting functions are coupled to the quark and gluon distribution functions, forming the set of
DGLAP equations [3–5] for the evolution of (anti)quark and gluon distributions

d
d ln Q2

0
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q(x,Q2)
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q( x

z ,Q
2)

g( x
z ,Q

2)

1
CCCCCCCCA , (1.16)

where z = x/y represent the change of the momentum fraction due to the one of the above described
processes. These equations describe the change in the PDFs to leading-logarithmic accuracy. They also
allow for a new interpretation of Q2 as an upper bound for the transverse momentum kT of the emitted
partons – increasing Q2 provides more transverse phase space for new emissions. These transverse
momenta in turn restrict the phase space over which the partons are located in the transverse plane
rT ⇠ 1/Q2. Therefore, Q2 can also be interpreted as the resolution at which the proton structure is
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probed. With these additional emissions, the distribution functions are changed accordingly and the
resulting F2 grows with increasing resolution Q2.
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Figure 1.4: The evolution in Bjorken-x of the gluon, sea-quarks and valence-quarks distributions for
scale 10 GeV2 (left) and Q2 = 104 GeV2 (right) measured at HERA [48].

1.2 Parton saturation

With increasing resolution Q2 of the probing photon, the direction of the evolution of PDFs goes
towards increasing the transverse phase space for new emissions and hence towards the so called dilute
regime of the proton structure. Although the gluon distribution also obeys this evolution, we can observe
from Fig. 1.4 that it grows faster when x is substantially decreased. This is due to the fact that the
gluon splitting function entering Eq. (1.16) has a singularity at very small z and therefore, the gluon
distribution evolves much faster towards low-x compared to the quark PDF. It can be shown that gluons
are emitted even more often due to the large logarithms present in their emission probability coming
from the Bremsstrahlung law (see e.g. [58])

Pgluon emission ⇠ ↵S ln
Q2

Q2
0

ln
1
x
. (1.17)

If one or both of these two logarithms are large enough to compensate for the value of the strong coupling
constant at the given scale (which is small in the perturbative region), then the probability of gluon
emission grows (and can even diverge). The same conclusion can also be made based on the approximate
solution of the gluon DGLAP equation which involves powers of Eq. (1.17) as a resummation parameter
– the resummation of such terms containing two large logarithms is then called a double logarithmic
approximation (DLA)2. From that, it can be shown [59] that the growth of the gluon distribution is faster

2Since Q2 determines the resolution in the transverse size, the associated ln Q2 is often called the transverse logarithm
and vice versa, the ln(1/x) is called the longitudinal logarithm, since Bjorken-x determines the longitudinal lifetime of the
parton [59].
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than a power of ln(1/x), but it should be slower than a power of 1/x. The dominance of gluons in the
small-x region is therefore a direct implication coming from the DGLAP equations, although they fail to
describe its behaviour correctly in this regime.

1.2.1 Small-x evolution

The logarithm involving Q2 was taken care of by the resummations in the DGLAP equation. We
will now have a closer look at the behaviour with x ! 0 at a fixed scale 3 Q2 (corresponding to partons
having roughly the same transverse size), where a more appropriate equation is necessary to describe
such evolution where

↵S (Q2) ln
1
x
>> ↵S (Q2) ln

Q2

Q2
0
.

It is important to point out that the small-x regime corresponds to the high energy limit of QCD, as can
be seen from Eq. (1.5) – at a fixed scale Q2, a large CMS energy s results in a small Bjorken-x.

The equation which resums the large logarithms of order ↵S ln 1
x is called the BFKL equation [6,

7] and it describes the regime where with increasing energy, gluons are emitted in abundance. The
BFKL equation strongly orders the successive gluon emissions with respect to their decreasing momenta
fractions as

x0 >> x1 >> ... >> xi >> ...xn�1 >> xn

and "builds" so called gluon ladders from the proton towards the parton scattering. In the momentum
representation, its leading logarithmic approximation reads as [59, 60]
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, (1.18)

where f (x, k2
T ) represents the unintegrated gluon distribution which gives the number of partons at a

certain value of (x, k2
T ), where kT is their transverse momentum. It is related to the gluon PDF (which

counts all partons with k2
T  Q2) through the k2

T -integral as

xg(x,Q2) ⌘
Z Q2

0

dk2
T

k2
T

f (x, k2
T ). (1.19)

For an analytical solution of the BFKL equation at fixed ↵S , it can be shown [58, 59] that the gluon
distribution grows with decreasing x as

f (x, k2
T ) ⇠ x��; � =

↵S Nc

⇡
4 ln 2. (1.20)

It is straightforward to see from the above expression that the gluon density does not grow logarithmi-
cally with 1/x, but even more dramatically as a power of 1/x; meaning that the growth of the gluon
distribution at small-x given by the BFKL equation is much faster than the growth given by the DGLAP
equation. This results in regions of high partonic density in the hadron wave function and leads to the
very interesting problem of unitarity violation. The unitarity constraint known as the Froissart-Martin
bound [8, 9] gives a restriction on the total cross section growth with CMS energy s as

�(s)  C ln2(s), (1.21)
3We assume that the fixed scale is large enough to work in the perturbative regime where ↵S < 1.
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where C is a constant fitted from data. However, the growth of the gluon distribution from Eq. (1.20)
given by the BFKL equation implies

�(s) ⇠ s�, (1.22)

resulting in a power-like growth of the cross section and subsequent violation of the Froissart bound in
Eq (1.21).

1.2.2 Saturation at low-x

The divergence of the cross section represents a serious problem for our theory. It is therefore de-
sirable to introduce a mechanism which would restore the unitarity by taming the violent grow of gluon
densities at small-x. Let us imagine such situation with the help of Fig. 1.5, which schematically shows
the two directions of evolution using the transverse plane representation of the proton structure. When
the proton is subject to a probe with increasing virtuality, smaller transverse distances are probed and new
partons with smaller transverse size are seen by the probe, as a consequence of the DGLAP evolution.
On the other hand, for a fixed scale Q2, partons retain the same transverse size while new emissions with
decreasing x are generated. This behaviour is driven by the BFKL evolution equation. To a certain point,
the evolution of parton densities with ln(1/x) is linear, however when evolving further and reaching a
certain low value of x, the proton enters a state where it is filled with gluons, the so called dense regime.
When the resolution Q2 is again increased, so is the transverse size of partons decreased and the phase
space for new emissions is again available and the proton returns to the dilute regime. However if Q2 is
kept fixed, a critical density of gluons is reached, their wave functions start to overlap and an opposite
process to gluon branching, namely gluon recombination, starts to play a significant role. The growth of
the gluon density is tamed by their recombination and therefore, the parton density becomes saturated
and its subsequent evolution is non-linear. The recombination of gluons also vacates some phase space
for new emissions, generating a dynamical balance between the emergence of new fluctuations and their
recombination. Such balance is reached at some critical scale Qs(x) called the saturation scale, which
therefore determines the region where saturation becomes significant and separates the dilute and dense
regimes. Moreover it is expected that this scale is modified in nuclei as [61, 62]

Q2
s,A ⇠ A

1
3 Q2

s,p ⇠ A
1
3 x��, (1.23)

which means that the saturation regime is reached sooner in heavy nuclei as a result of the abundance of
gluons in the nuclear matter accelerated to high energies.

As suggested above, the gluon recombination process is not included in the BFKL evolution equation.
To describe such states where high densities of gluons are reached, the e↵ective field theory known as
Colour Glass Condensate (CGC) has been established. In its formalism, the incoming probe obtains
an internal structure which is perturbatively calculable within the light-cone QCD formalism, e.g. the
virtual photon can be seen as a qq̄ fluctuation with the quantum numbers of vacuum. It interacts with the
target hadron, which is seen as a set of strong colour fields emerging from the high density of gluons.
The evolution of the hadronic system with decreasing x is described by an infinite hierarchy of coupled
JIMWLK equations [63–69]. It works with two "types" of partons, where those with large x serve as
sources of strong colour fields which generate the small-x partons. With the decreasing-x, the originally
low-x partons become the further sources of colour fields and generate new emissions at even smaller x.
At the same time, the possibility for recombinations of low-x gluons is incorporated. The derivation and
further description of the JIMWLK equation and the CGC formalism is outside the scope of this work,
more details can be found e.g. in [59, 70–73].
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Figure 1.5: Diagram showing the QCD evolution of the partonic structure of the proton and the validity
range for the di↵erent evolution equations.

Due to the complexity of the JIMWLK evolution, there is no analytical solution to this equation and
it has to be calculated numerically. This is also true for a special case of the JIMWLK equation called
the Balitsky-Kovchegov equation [12–14], which represents the main topic of this thesis. The equation
can be obtained from the hierarchy of JIMWLK equations in the mean-field approximation and in the
limit of large Nc as a non-linear evolution equation for the scattering of a colour dipole o↵ the hadronic
target [13,14], or it can be equivalently obtained as a generalisation of the BFKL equation (which is also
a special case of the JIMWLK hierarchy) [12].

Although the concept of parton saturation seems compelling and straightforward, the main problem
is that there has never been its direct and unequivocal experimental observation. The precision of suit-
able measurements does not allow for conclusive statements about experimental signs of saturation and
even the measurements at HERA did not reach low-enough x where the saturation could manifest fully.
However, there are hints from di↵erent experimental observables where the signs of saturation could
manifest themselves and it is expected that saturation e↵ects will emerge even sooner in nuclear DIS
experiments to be performed at currently planned electron-ion colliders [10, 11]. Moreover, the CGC
framework can be used to describe the QCD evolution of the initial state and its study is therefore useful
for the description of the ultra-relativistic heavy-ion collisions.

This thesis is devoted to the description of such processes where saturation phenomena are expected
to emerge, using the phenomenological calculations based on the CGC theory. In order to present these
results, I shall first introduce an approach to describe deeply inelastic scattering at low-x — the colour
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dipole model — and how to extend this approach to the description of other QCD observables. In the
following chapter, I will use this approach and introduce the so called hot-spot model for the descrip-
tion of the proton structure at high gluon densities. The BK equation will also be properly introduced
within the colour dipole formalism and I will describe my work on its solutions and applications to QCD
phenomenology in the later chapters.

1.3 Colour dipole model of DIS

The strong interaction within DIS can be described using the colour dipole approach [15–18]. In
the high-energy limit, which corresponds to small-x, it is useful to move from the infinite momentum
frame to a frame where the hadron as a target particle is at rest. In such a reference frame, the interaction
between the virtual photon and the proton can be factorised out into two steps, as depicted in Fig. 1.6:

Figure 1.6: A schematic diagram for deeply inelastic scattering within the colour dipole approach.

1. Formation of the colour dipole

In the target-hadron rest frame, the photon can be seen as fluctuating into one of its Fock’s states. Any
such fluctuation has the quantum numbers of the original photon and at leading-order, it is represented
by a qq̄ pair. This results into the presence of colour-charge carriers in the interaction, however from
the external point of view, this state is colourless. The colour dipole model is thought to be valid for
x ⇠ 10�2 or less; under this conditions, the lifetime of the �⇤ ! qq̄ fluctuation is much longer than the
timescale of the interaction with the target.

The probability of the �⇤ ! qq̄ splitting can be calculated from light-cone perturbative theory. The
photon wave functions, squared and summed over the polarisations of the virtual photon and over the qq̄
helicities, can be written [59] as

| ⇤ |
f
T =

Nc↵

2⇡2 e2
f

h⇣
z2 + (1 � z)2

⌘
✏2K2

1(✏r) + m2
f K2

0(✏r)
i
, (1.24)

| ⇤ |
f
L =

Nc↵

2⇡2 e2
f

h
4Q2z2(1 � z)2K2

0(✏r)
i
, (1.25)

where T and L refer to transverse and longitudinal polarisation of the virtual photon, ↵ ⇡ 1
137 is the fine

structure constant, e f is the electric charge of the quark of flavour f in the units of elementary charge,
K0 and K1 are modified Bessel functions of the second kind, z is the momentum fraction of the original
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photon carried by the quark (the other carries a momentum fraction 1-z), r ⌘ |~r| is the transverse size of
the colour dipole and

✏2 = z(1 � z)Q2 + m2
f , (1.26)

where m f is an e↵ective mass of the quark with flavour f .

2. Interaction of the colour dipole with the target hadron

The interaction between the dipole and the hadron is mediated by a colourless state with the quantum
numbers of vacuum, called Pomeron. Although in theory, there are many possible structures of such
colourless object, the simplest approximation is that it can be seen as a pair of gluons. Here we again see
that although the interaction proceeds via colourless objects from an outer perspective, the possibility
of colour exchange and hence the strong interaction is internally present. The interaction of the colour
dipole with the target’s structure is incorporated within the dipole-proton cross section, which is related
via the optical theorem to the dipole scattering amplitude N(x,~r,~b ) as

d�qq̄

d~b
= 2N(x,~r,~b ), (1.27)

where ~b is the impact parameter between the dipole and the target. The dipole amplitude therefore con-
tains all the information about the strong interaction with the target proton structure (for both perturbative
and non-perturbative contributions) and therefore, it is directly linked to the gluonic structure of the target
at low-x. The perturbative contribution to N can be obtained from various CGC based models (described
in the following section) or directly from the CGC framework as a solution to the Balitsky-Kovchegov
equation (described in Chapter 3).

Using this two-step factorisation of the photon-proton interaction, the total �⇤p cross section of
deeply inelastic scattering can be written as

��
⇤p

T,L(x,Q2) =
X

f

Z
d~r

Z 1

0
dz| ⇤ | fT,L�qq̄(x̃,~r ), (1.28)

where the dipole cross section �qq̄ is integrated over the impact parameter ~b and it is evaluated at the
shifted value of x in order to safely approach the photoproduction limit [74] as

x̃ = x

0
BBBBBB@1 +

4m2
f

Q2

1
CCCCCCA , (1.29)

The structure function F2 can be then calculated within the dipole model framework using Eq. (1.28) as

F2(x,Q2) =
Q2

4⇡2↵

⇣
��
⇤p

T + ��
⇤p

L

⌘
, (1.30)

and the longitudinal structure function is given by

FL(x,Q2) =
Q2

4⇡2↵
��
⇤p

L . (1.31)
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1.3.1 Dipole models in QCD phenomenology

The first phenomenological dipole model to successfully describe the DIS data by incorporating
saturation e↵ects was the model by Golec-Biernat and Wustho↵ (denoted as GBW model) [74, 75]. It
parametrises the dipole-proton scattering cross section as

�GBW
qq̄ (x, r) = �0

"
1 � exp

 
�

r2Q2
s(x)

4

!#
; Q2

s(x) = Q2
0

✓ x0

x

◆�GBW
[GeV2], (1.32)

where �0 is a parameter obtained from a fit to DIS data and it is related to the proton size. Qs(x) denotes
the x-dependent saturation scale, which is closely related to the gluon density in the transverse plane. The
exponent �GBW determines the growth of the dipole cross section with decreasing x, and Q0, x0 are free
parameters. For large dipoles, the cross section given by Eq. (1.32) saturates and its value approaches the
constant �0. An interesting result connected to the GBW model is the presence of so called geometrical
scaling in DIS data. It was shown by Stasto et al. [76] that the total photon-proton cross section measured
at HERA at x < 0.01 approximately scales as a function of one dimensionless variable ⌧ = Q2R2

0(x),
where R0(x) is the saturation radius related to the saturation scale Q2

s(x) as R0 ⇠ 1/Qs. This result is
particularly interesting because the emergence of the scaling phenomenon can indicate the presence of
saturation e↵ects and it has been observed in both ep and eA inclusive DIS data [76, 77].

Although the GBW model successfully described the early HERA data such as [44, 45], and can
still find its use in some phenomenological studies due to its simplicity, it has been since superseded by
more sophisticated models, which incorporate a broader range of both perturbative and non-perturbative
behaviour of the proton structure, e.g. the DGLAP evolution with Q2 [78] or the b-dependence [79].
The recent years have also seen an emergence of the dipole amplitudes obtained directly from the CGC
framework as a solution to the BK or JIMWLK equations (see Chapter 3).

Because of their use in some of the results presented in this thesis, two of the those models deserve
to be briefly mentioned. The first model to incorporate the b-dependence was the the Impact Parameter
Saturation model (IP-Sat) [78, 79] which aimed to describe exclusive processes where (unlike in DIS)
the b-dependence is explicitly present. The model parametrises the proton in the impact-parameter plane
with a gaussian profile and couples it to the parametrised gluon distribution evolved by the DGLAP
equation. The model has been further improved [80, 81] by the fits to newer HERA data. The model
was also extended to a nuclear case and served as a basis for the IP-Glasma model [82, 83] of initial
conditions in heavy ion collisions. The IIM model by Iancu, Itakura, and Munier is based on the GBW
model, however it includes some of the features of the BK evolution to the dipole amplitude [84]. Its
updated version denoted as b-CGC [85, 86] also includes an impact-parameter dependence.

1.3.2 Vector meson production within the colour dipole model

The dipole model provides not only a description of DIS at small-x, but also a much broader approach
to naturally incorporate saturation phenomena into other QCD processes. These may provide additional
channels to study the proton structure and can be sensitive to some aspects of QCD dynamics which may
not be accessible in DIS. Measurements of exclusive processes where the interacting hadron remains
intact after the scattering and only one resulting particle is created, e.g. a vector meson, represent a useful
tool to access the hadronic structure and shape in the impact-parameter space due to the connection of
the exclusive scattering amplitude to the generalised parton distributions (GPDs), and especially to the
gluon PDF which is the special case of the gluon GPD at the forward limit. [87, 88].

Similarly to the DIS process, the di↵ractive production of a vector meson as a result of the interac-
tion of a virtual photon with the target hadron can be calculated within the colour dipole approach, the
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Figure 1.7: A schematic diagram for the exclusive (left) and dissociative (right) vector meson production
within the colour dipole approach. Figures from Ref. [37].

situation is depicted in Fig. 1.7 (left). In this formalism, the exclusive cross section to produce a vector
meson V in the interaction of transversely, resp. longitudinally, polarised virtual photons with the proton
target is given by [85]

d��⇤p!Vp

d|t|

�����
T,L
=

⇣
1 + �2

T,L

⌘ ⇣
RT,L
g

⌘2

16⇡
|AT,L|

2, (1.33)

where AT,L is the scattering amplitude. The term (1 + �2
T,L) accounts for the real part of the amplitude,

where � is the ratio of real to imaginary parts of the scattering amplitude. The other correction, denoted
as RT,L

g , takes into account that there are two values of x involved in the interaction of the dipole with the
hadron. For the calculation of the vector meson production, one should therefore use the o↵-diagonal
gluon distribution. This e↵ect can be accounted for by multiplying the scattering amplitude by the so
called skewedness correction [87]. The total exclusive cross section to produce a vector meson V is then
given by the sum of the transverse and the longitudinal contributions defined by Eq. (1.33), integrated
over |t|, which is the square of the four-momentum transfer at the proton vertex.

The scattering amplitude of the process is given by (for more details see e.g., [85, 89])

AT,L
⇣
x,Q2, ~�

⌘
= i

Z
d~r

1Z

0

dz
4⇡

Z
d~b| ⇤V �⇤ |T,L exp

h
�i

⇣
~b � (1 � z)~r

⌘
~�
i d�qq̄

d~b
, (1.34)

where  �⇤ is the wave function of a virtual photon which fluctuates into a dipole,  V represents the wave
function of the produced vector meson, and x is the Bjorken-x of the exchanged Pomeron, which under
the assumption of large energies W is given by

x =
Q2 + M2

V

Q2 +W2 , (1.35)

where MV is the mass of the produced vector meson. There has been a recent discussion regarding the
argument of the exponential term in Eq. (1.34). This factor arises as a result of the Fourier transform of
the amplitude from the momentum-space to the position space, modified to the non-forward case, and
was first introduced in [90] and implemented in phenomenology in [85]. The recent work [88] proposes
to use (1 � 2z)/2 instead of (1 � z), based on symmetry arguments. However, this change produces only
a marginal di↵erence in the resulting cross sections presented in this thesis, as discussed in [32], and
therefore for the vector meson results, we stick to the formalism of [85] in order to stay consistent with
the past results published by the group.
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The overlap of the photon-meson wave functions is given as [85]

| ⇤V �⇤ |T = ê f e
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⇡z(1 � z)

h
m2

f K0(✏r)�T (r, z) �
⇣
z2 + (1 � z)2

⌘
✏K1(✏r)@r�T (r, z)

i
, (1.36)

and

| ⇤V �⇤ |L = ê f e
Nc

⇡
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2
6666664MV�L(r, z) + �

m2
f � r

2
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z(1 � z)MV
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3
7777775 , (1.37)

where ê f is the e↵ective charge of the given vector meson, ✏ is defined in Eq. (1.26), and the parameter
� is a switch to include (� = 1) or exclude (� = 0) the non-local term in the longitudinal contribution.
The scalar part �T,L of the wave function is, in general, model dependent and it is one of the two main
sources of the model-related uncertainties in the description of the vector meson production within the
dipole model; for a recent study on wave function uncertainties in di↵erent models see e.g. [91, 92]. For
our studies, we use the boosted Gaussian model [93–95], in which the � parameter is fixed to one and the
functions �T,L for 1S states are expressed as

�T,L(r, z) = NT,Lz(1 � z) exp

0
BBBBBB@�

m2
f R

2

8z(1 � z)
�

2z(1 � z)r2

R2 +
m2

f R
2

2

1
CCCCCCA . (1.38)

The parameters NT,L and R2, are fixed using a normalisation condition and the measured electronic decay
width (see, e.g. [85]). The updated values of the parameters for the wave functions of all vector mesons
according to PDG2016 [96] were calculated in [37] and are used in the results presented in this thesis.

Dissociative production of vector mesons

Since the cross section for the exclusive process from Eq. (1.33) is given as the squared mean of the
related amplitude, we can use it to study the hadron structure in terms of its distribution functions, how-
ever we cannot access the event-by-event fluctuations using this process. For such studies, the production
of a vector meson accompanied by the dissociation of the target particle (see right plot of Fig. 1.7) repre-
sents a suitable tool, as it can be related to the fluctuations in the proton structure within the Good-Walker
approach [97, 98]. The fluctuations of the geometrical configurations in the impact-parameter plane de-
termine the di↵erent configurations of the partonic structure and the cross section for the production of a
vector meson where the proton dissociates into a system Y can be calculated as the variance over di↵erent
configurations

d��⇤p!VY

d|t|

�����
T,L
=

⇣
1 + �2

T,L

⌘ ⇣
RT,L
g

⌘2

16⇡

⇣
h|AT,L|

2
i � |hAT,Li|

2
⌘
. (1.39)

There has been an emergence of various models studying the fluctuations of the proton structure [34,
38, 99–101], their influence on the description of the vector meson production data from HERA, and the
use of such models for the heavy-ion initial state description [102]; for a recent review see e.g. [39]. In
this work, the original model by Cepila et al. [34] will be used to further extend these studies. Each
of these so called hot-spot models represents a di↵erent approach to the description of the fluctuating
structure of the proton. However, what is common to all of them is the conclusion, that the dissociative
|t|�distribution data cannot be described without taking these fluctuations into consideration.
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Chapter 2

The hot-spot model

2.1 The fluctuating structure of the proton

The full dipole scattering amplitude is a di�cult object to calculate and, therefore, several simplifica-
tions are taken within QCD phenomenology. For example, it is a common approach to approximate the
proton as a homogeneous object. The dipole amplitude then depends only on the magnitudes of the re-
lated vectors and can be then obtained either from models which include the b-dependence [78,79,85,86]
or from the solutions to the b-dependent BK equation [28, 29, 103, 104]. In order to study changes of
the proton structure in the impact-parameter plane, it can be useful to factorise out the impact-parameter
dependence into a separate function as

N
⇣
x,~r,~b

⌘
! �0N(x,~r )Tp(~b ), (2.1)

where �0 is a normalisation parameter. One more simplification can be made for the dipole amplitude
to depend only on the size of the dipole r ⌘ |~r|. Obtaining the impact-parameter independent amplitude
is then a much simpler task which can be done either from phenomenological models such as GBW (see
Section 1.3.1) or from the one-dimensional BK equation (see Chapter 3). Since the DIS cross section
given by Eq. (1.28) does not explicitly depend on the impact parameter, the calculation of the dipole
cross section in this case simplifies to

�qq̄(x, r) = �0

Z
d~bN(x, r)Tp(~b ) = �0N(x, r) (2.2)

where �0 is obtained either as a free parameter of the fit to DIS data, or using the radius of the proton in
the transverse plane [21].

Although the formula (2.1) represents a substantial simplification of the full kinematic richness of
the dipole amplitude, it allows us to independently study the proton structure in the transverse plane and
its evolution in a convenient way using the proton profile function Tp(~b ). This function parametrises the
transverse distribution of the proton and there are several choices one can make, depending on the level
of details to be included:

1. Step function: the simplest, yet unrealistic description of the proton shape.

2. Gaussian distribution (and its modifications like double Gaussian): provides a more realistic
description of the proton transverse profile. It has been used in several phenomenological studies
(see e.g. [85]).
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3. Set of random fluctuations: a set of partonic clusters (hot spots) whose number and positions
fluctuate event-by-event. Most common are two main branches of such models — three hot
spots [99, 100] which may be surrounded by a cloud of newly emerging gluons, or a set of Nhs
regions of high gluonic density [34]. However, these approaches can also be combined, see
e.g. [101].

In this work based on the model by Cepila et al. [34], the proton is seen as a set of Nhs regions of
high gluonic density, with the profile function defined as

Tp(~b ) =
1

Nhs

NhsX

j=1

Tg
⇣
~b � ~b j

⌘
, (2.3)

where each hot spot has a Gaussian distribution

Tg (b) =
1

2⇡Bhs
exp

 
�

b2

2Bhs

!
. (2.4)

The positions of the hot spots ~b j are obtained from a two-dimensional gaussian distribution with width
Bp, which is fixed by the average of the squared transverse radius of the proton (and which can be related
to the slope of the vector meson cross section t-distribution [105]). The parameter Bhs can be interpreted
as an average of the squared transverse radius of an individual hot spot.

The proton profile is made energy-dependent at a given scale Q2 by making the number of hot spots
grow with decreasing x, using a prescription inspired by parameterisations of the gluon PDF. The formula
for Nhs(x) in this case reads

Nhs(x) = p0xp1
⇣
1 + p2

p
x
⌘
, (2.5)

where p0, p1 and p2 are parameters to be fixed by data. Moreover, to generate configurations which
truly change from interaction to interaction, we take Nhs as a random number from a zero-truncated
Poisson distribution with the mean value given by Eq. (2.5). This ensures that each configuration di↵ers
in both number of fluctuations and their relative positions. An example of two such configurations for
two di↵erent energies is given in Fig. 2.1.

In order to make the model as simple as possible, the GBW model from Eq. (1.32) is used to obtain
the dipole scattering amplitude N(x, r) and the �0 parameter is calculated as �0 = 4⇡Bp. The parameters
entering the GBW model and the Tp(~b ) prescription from Eq. (2.3) were fixed in earlier studies [34–
36]. For completeness, they are listed, together with the updated parameters for the vector meson wave
functions from Eqs. (1.24) and (1.25), in the reported paper [37]. Also note that the above described
approach can be extended to the nuclear case, as was done in [35].

2.2 QCD observables with the hot-spot model

As the first part of my work on this model, I calculated structure functions F2(x,Q2) and the cross
section for the photoproduction1 of the J/ vector meson (for both exclusive and dissociative process)
and next, I extended the calculation to other types of vector mesons, namely J/ , ⇢0, and ⌥(1S ); the
results are in accordance with [34, 36]. Based on this progress, I extended the calculation to the case of

1The term photoproduction denotes situation where the intermediating photon has a very low virtuality Q2
! 0. On the

other hand, electroproduction denotes processes where Q2 >> 0.
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Figure 2.1: An example of the shape of the transverse profile of the proton generated from the hot-spot
model for x = 2 · 10�4 (left) and for x = 10�6 (right).

electroproduction of the said mesons and also to incorporate other vector mesons such as � and 2S states
of the heavy quarkonia.

These result were (for the first time) reported in the paper [37] and represent an extensive set of
predictions for the energy dependence of the exclusive and dissociative production of ⇢0, �, J/ ,  (2S ),⌥
and ⌥(2S ) vector mesons o↵ proton targets at di↵erent photon virtualities. The predictions are compared
with the experimental data from HERA and the LHC, where available. Two examples from all the results
of Ref. [37] are depicted in Figs. 2.2 and 2.3, which show the sets of predictions for ⇢0 and J/ mesons,
respectively. These two cases were chosen because they illustrate particularly well the main implications
of the hot-spot model and because there is enough data to benchmark our calculations and demonstrate
that they are able to describe the corresponding measurements.

The cross section energy W-dependence of the ⇢0 vector meson is compared with the H1 [106–108]
and ZEUS data [109,110] and also with the data from CMS [111] for photoproduction in p–Pb collisions
at the centre-of-mass energy

p
s = 5.02 TeV. The data for both exclusive and dissociative cross section

are well described by the model for a broad range of Q2 values of the exchanged photon. The predictions
for the exclusive and dissociative cross sections of the J/ vector meson also show a good agreement with
the photoproduction data from H1 [112] and ALICE p–Pb data [113,114], and with the electroproduction
data from H1 [115]. In overall, the conclusion is that the model is in a good agreement with the currently
existing experimental data for the exclusive and the dissociative photo- and electroproduction of ⇢0, �,
J/ , and ⌥ mesons. Moreover, Ref. [37] also includes predictions of the same quantities for  (2S ) and
⌥(2S ) mesons. Such measurements are expected to be performed, together with the measurements of
the dissociative process, at the planned future facilities.

A striking feature of this model is the behaviour of the dissociative cross section with increasing
energy W of the photon-target system, which was first noticed in [34] for the case of J/ photoproduction
and further confirmed in [36] for the ⇢0 and⌥ photoproduction. From low energies, the cross section rises
with the increasing W, as can be seen in Fig. 2.3. However, unlike in the exclusive case, the dissociative
cross section rises only up to a certain point where it reaches its maximal value and from that point
further, it starts to decrease with increasing energy. The same behaviour is observed for the dissociative
electroproduction and in all types of vector mesons. Comparing the J/ and ⇢ case in Figs. 2.3 and 2.2,
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Figure 2.2: Comparison of the model predictions (solid lines) with HERA [106–110] and CMS data [111]
for the W�p dependence of the exclusive (left) and dissociative (right) photo- and electroproduction cross
section of a ⇢0 meson. Figures from Ref. [37]. The new data [116] on the dissociative photoproduction
of ⇢0 (empty black boxes) were added to the right plot.
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Figure 2.3: Comparison of the model predictions (solid lines) with H1 [112, 115] and ALICE data [113,
114] for the W�p dependence of the exclusive (left) and dissociative (right) photo- and electroproduction
cross section of a J/ meson. Figures from Ref. [37].

respectively, it can be seen that the position of this cross section maximum strongly depends not only on
the Q2 of the exchanged photon, but also on the type of the vector meson, which di↵er in their masses.

The explanation of this behaviour can be made from the analysis of the form of the cross section in
Eq. (1.39). Since the dissociative cross section is given as a variance over the di↵erent configurations of
the proton structure, the result will be sensitive to such configurations which look alike. In our model,
the di↵erent configurations of the proton structure are given from the fluctuating number of hot spots and
their geometrical placement in the impact-parameter plane, with individual hot spots occupying the same
magnitude of the transverse area. With increasing energy, which corresponds to decreasing Bjorken-x,
the number of hot spots grows as can be seen from Fig. 2.1, and the proton area is gradually filled.
At some point, these hot spots start to overlap in a way similar to percolation [117], and fill all the
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available transverse space within the proton. As a result, di↵erent configurations start to look alike and
the variance, which measures the di↵erence among all configurations, starts to decrease. Sadly, there
are currently no data available which could directly describe this behaviour of the cross section in its
entirety; data from H1 [112] on the J/ production only confirm the initial rise of the cross section at
low energies. However, the behaviour of the ⇢0 dissociative photoproduction cross section in Fig. 2.2
(right) suggests that the maximum is reached at low energies, near the boundary of the applicability of
the model, or it has already been reached at even lower energies (higher x). As shown in Fig. 2.2 (right),
the observation is also supported by the recent (after the publication of [37]) H1 data [116], which is very
promising.

2.3 Geometrical saturation scale

Apart from the correct description of the available data and predictions for future measurements,
another interesting observation can be made based on Figs. 2.3 and 2.2 (and the rest of predictions
from [37]). It can be seen that the maximum of the dissociative cross section does not occur at the same
energy for every case, but at an energy which can be pinpointed using the virtuality of the exchanged
photon Q2 and the vector meson mass M; together they represent a measure of the scale of the process.
Since this behaviour results from the variance over di↵erent geometric configurations of the proton struc-
ture, we have named this point the geometric saturation scale (GSS) and in the following, some of its
properties I studied in [37] are summarised.

First of all, the energy WGSS at which the maximum occurs for each vector meson and Q2 was
determined. Due to the randomness of the process, the actual position of the maximum may fluctuate.
This is incorporated in the associated uncertainty which is taken as the region containing the 1% largest
values of the cross section around WGSS.

The left plot of Fig. 2.4 shows the position and the associated uncertainty of the extracted maxima as
a function of the scale of the process given by Q2 +M2. In order to confirm the observation on the linear
behaviour of the quantity, I performed a simple linear fit resulting in the �2 per degree-of-freedom being
0.41; this small value reflects the rather large uncertainties. Subsequently, WGSS values are transformed
into xGSS via Eq. (1.35) and the result can be seen in the right plot of Fig. 2.4. The observed linear
behaviour (in the logarithmic plane) strongly reminds of the saturation scale as described in Sec. 1.2.2
and depicted in Fig. 1.5.

The same plot shows the kinematic limit of several proposed electron-ion colliders obtained from
Eq. (1.5), with the inelasticity set to y = 1 and the beam energies for the calculation of s are taken from
Tab. I of [118]. From Fig. 2.4 (right), some conclusive observations can be made.

• The maxima for the light vector mesons ⇢0 and � could have been observed even at the now
decommissioned HERA accelerator. This is partially confirmed by the description of the data
presented in Fig. 2.2 (right) and the recently published H1 data [116]. Yet, it is not expected that
the remaining unpublished HERA data (which are still being analysed) will bring any revolutionary
conclusions in the future.

• Even for the colliders with the planned energy lower than that of HERA, the linear behaviour
of GSS could be measured using the ⇢0 and � electroproduction at moderately small Q2 (with
Q2 > 1 GeV2 in order to stay in the perturbative region). Of this two competitive projects for the
US-based electron-ion collider [10], the JLEIC project has been suspended and eRHIC has been
selected as a vital plan to be built at the Brookhaven National Laboratory [119], with its detectors
and their envisaged capabilities still being under development.
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• For the investigation of the positions of the maxima for the ⇢0 and � electroproduction at large Q2

and moreover for the J/ meson, the energies of the LHC and the LHeC [11,120,121] are needed.

• The positions of the maxima for the ⌥ meson and its higher mass states seem to be out of reach of
any past or currently planned facilities, even the LHeC.
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Figure 2.4: (Left): Maxima of the dissociative cross sections (markers) with the estimation of their
related uncertainty (bars) as a function of scale Q2 +M2. The full line is a linear fit to the maxima values
and the band represents the one sigma contour.
(Right): The same quantity as in the left plot, but expressed in xGSS corresponding to WGSS and shown in
logarithmic scale. The full red line is a linear fit (in the logarithmic plane). Kinematic reaches of some
of the (at that time) proposed electron-ion colliders are in full green lines. Figures from Ref. [37].
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Chapter 3

Balitsky–Kovchegov evolution equation

In Section 1.2.2, the concept of gluon saturation and its description using the Colour Glass Conden-
sate e↵ective theory has been introduced. This Chapter will describe the Balitsky–Kovchegov equation
and its properties in detail. The Balitsky–Kovchegov equation was independently derived by Balit-
sky [12] as a special case of the JIMWLK evolution equations, see Sec. 1.2.2 and references therein. In
the mean-field approximation and the large-number-of-colours limit, the first of JIMWLK equations de-
couples into a single integro-di↵erential equation which describes the evolution with rapidity Y ⇠ ln

⇣
1
x

⌘

of the scattering amplitude N(~x,~y ) of a qq̄ dipole o↵ a hadronic target (the dense CGC matter). It was
also independently derived by Kovchegov [13, 14] from the colour dipole model introduced in Sec. 1.3.

Figure 3.1: A diagram for the gluon emission during the colour dipole evolution (left) and its large-Nc
limit (right). Figure adapted from previous work [50].

The evolution starts with a qq̄ dipole with its end-points located at transverse positions ~x and ~y.
As a result of the evolution to higher energies (corresponding to a boost in rapidity Y ), the (anti)quark
wave function develops an extra gluon component which corresponds to a gluon emission at a transverse
position ~z. The new gluon can be, in the limit of large Nc, seen as a new quark-antiquark pair. Therefore,
the dipole can be seen as two new independent daughter dipoles instead of the original parent one, as
depicted in Fig. 3.1. In this way, adding energy into the system results in a dressing of the original bare
dipole with a cloud of gluons, viewed as additional daughter dipoles. This new partonic composition can
be then related to that of the target hadron, which makes the BK equation an e↵ective tool to study the
structure of hadrons at high energies. The general form of the BK equation at leading-order reads [28]

@N(~rxy,~bxy,Y )
@Y

=

Z
d~rxz K(~rxy,~rxz,~rzy)

h
N(~rxz,~bxz,Y ) + N(~rzy,~bzy,Y ) � N(~rxy,~bxy,Y )

�N(~rxz,~bxz,Y ) N(~rzy,~bzy,Y )
i
, (3.1)
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where the function K(~rxy,~rxz,~rzy) is the kernel of the integro-di↵erential equation which represents the
probability of a new gluon emission. At leading order, we consider only one emission, resulting in two
daughter dipoles. Eq. (3.1) therefore contains the terms corresponding to the parent and daughter dipole
scattering amplitudes and a non-linear term, which accounts for the recombination of these emissions
and prevents double-counting. It is this last term which is responsible for the unitarity restoration of the
divergent BFKL evolution. This work uses the equation formulated in the position-space representation
as shown above. In such case, the size of the parent dipole can be defined as a vector connecting its
end-points ~rxy = ~x � ~y and for the daughter dipoles as ~rxz = ~x �~z and ~rzy = ~z � ~y. The impact parameters
for the parent and daughter dipoles, which represent its distance from the centre of the target hadron,
can be expressed correspondingly as ~bxy =

~x+~y
2 , ~bxz =

~x+~z
2 , and ~bzy =

~z+~y
2 . The graphical representation

of such configuration of the parent and daughter dipoles and the corresponding vectors can be seen in
Fig. 3.2. The BK equation can also be written in the momentum-space representation, see e.g. [122].

x

y

z

xzy
β

xyr

xyb
xyθ

xzr

xzb

zyr

zyb

1
qb

2
qb

Figure 3.2: Schematic picture of the vectors ~r and ~b corresponding to the parent and daughter dipoles in
the Balitsky–Kovchegov equation.

The general behaviour of the dipole scattering amplitude is that it is small for the dilute target and
approaches unitarity ("black disk" limit) in the regime where the target is dense. This corresponds to
the growth of the gluon densities with decreasing x, which is subsequently tamed by saturation e↵ects.
The solution of the BK equation, at a given rapidity Y , depends on two 2-dimensional vectors ~r and
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~b, making it a four-dimensional problem; the amplitude depends on the sizes of the dipole size and its
impact parameter vectors, their respective angle, and the angle of the impact parameter with respect to
the origin of the coordinates. In order to simplify the problem, the dimensionality of the equation can
be reduced by considering some symmetry approximations. This can be desirable for some applications,
since the BK equation does not have any known analytical solution and one has to use computing-power
demanding numerical methods in order to obtain its solution. On the other hand, this approach reduces
the amount of information which is possible to obtain from the BK equation solutions and also limits the
rigorousness of the problem.

In our work, the evolution in rapidity from the given initial condition is performed using the Runge-
Kutta (RK) methods [123]. The numerical methods are summarised in my Master’s thesis [50], where
several numerical studies of the LO BK equation were performed, e.g. comparison of the di↵erent kernel
prescriptions, choice of the initial condition, and the influence of the order of Runge-Kutta method. Some
of these results are reproduced in the following section in order to illustrate the development of the BK
equation from its simplest approximation towards including higher-order corrections and restoring its
full dimensionality.

First, I will introduce the approach to the BK equation without the dependence on the impact-
parameter, starting from its simplest leading-order approximation, through introducing higher-order cor-
rections to the evolution kernel, and finalising with the next-to-leading order BK equation, which rep-
resents the most recent development in the field. The BK equation with an explicit dependence on the
impact-parameter between the dipole and the target hadron shall be discussed separately and my work
on the applications of these solutions into QCD phenomenology will be described in Chapter 4. As the
last part of this thesis, the project to generalise the b-dependent calculation to the next-to-leading order
accuracy will be described in Chapter 5.

3.1 Balitsky–Kovchegov equation at leading-order

In the approximation of an infinite homogeneous target, the dependence on the impact parameter ~bxy
and the dipole orientation in the transverse space can be neglected, which allows us to work with the
scattering amplitudes N depending only on the dipole sizes. The information about the b-dependence is
factorised out into a separate parameter or a function as in Eqs. (2.1) and (2.2). The impact-parameter
independent Balitsky–Kovchegov equation at leading order then reads [19]

@N(rxy,Y )
@Y

=

Z
d~rxz K(rxy, rxz, rzy)

h
N(rxz,Y ) + N(rzy,Y ) � N(rxy,Y ) � N(rxz,Y ) N(rzy,Y )

i
, (3.2)

where ri j are the magnitudes of dipole sizes ~ri j.

3.1.1 Initial conditions

In order to solve the integro-di↵erential equation, one of the basic ingredients is an appropriate
initial condition, which in this case describes the behaviour of the dipole scattering amplitude at the
initial rapidity Y = ln

⇣
x0
x

⌘
= 0, where x0 is an initial Bjorken-x obtained from a fit to data. One of the

prescriptions used in numerical studies is the GBW initial condition

N(rxy,Y = 0) = 1 � exp
2
666664�

(r2
xyQ2

s0
)�

4

3
777775 , (3.3)
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which is inspired by the phenomenological model by Golec-Biernat and Wustho↵ [74] introduced in
Sec. 1.3.1. Another widely used form of the initial dipole amplitude, denoted as the MV initial condition,
comes from the semiclassical calculation of multiple rescatterings of the dipole o↵ a nuclear target by
McLerran and Venugopalan [61, 62, 124] and has the following form

N(rxy,Y = 0) = 1 � exp
2
666664�

(r2
xyQ2

s0
)�

4
ln

 
1

rxy⇤
+ e

!3777775 . (3.4)

There are several parameters in the prescriptions given by Eqs. (3.3) and (3.4) which are usually obtained
from fits to data. The parameter Q2

s0
is the initial saturation scale at x = x0, i.e. at the largest value of x

considered in the calculation, and � is the anomalous dimension, a parameter which controls the steepness
of the fall of the dipole amplitude towards the small-r region. ⇤ corresponds to the infrared cut-o↵ of
the dipole-nucleon cross section and e is the Euler number.

It is also common in numerical studies like [20, 21] to use an arbitrary prescription with behaviour
similar to the ones introduced above and devoid of most of the parameters in order to study the large-Y
behaviour of the dipole amplitude and its generic properties. It has been shown in several works [19, 21,
125–127] that the asymptotic solutions of the impact-parameter independent BK equation are indepen-
dent of the initial conditions. Moreover, their behaviour no longer depends on the two variables (r, Y)
separately, but on their combination into a single dimensionless variable ⌧ = rQs(Y), which is related to
the already discussed phenomenon of geometric scaling.

3.1.2 Approach to the strong coupling constant

One of the ingredients for solving BK equation is the choice of the prescription for the running of the
strong coupling constant ↵S . The simplest approach is to take a fixed value of ↵S ⇠ 1. The inclusion of
the running of the coupling represents a first step towards higher order of accuracy in perturbative QCD
beyond leading-order. A proper treatment of ↵S is therefore one of the important issues addressed by
numerical studies of the BK equation. A standard choice for the running coupling evaluation is the one
loop expression of the perturbative series for ↵S in the form [21]

↵S (r) =
4⇡

�n f ln
 

4C2

r2⇤2
n f

! , (3.5)

where �n f = 11 � 2
3 n f , with n f being the number of quark flavours included in the calculation, and C is

a parameter which is fixed by comparing to data. The parameter ⇤n f is the QCD scaling parameter and
can be obtained either from a fit to data, or it can be calculated from the experimentally measured value
of ↵S at a given scale, e.g. the mass of the Z0 boson.

The most straightforward way to include running coupling into the LO BK equation is to evaluate the
expression in Eq. (3.5) at the parent dipole size rxy, as studied in e.g. [19]. A very popular prescription
in phenomenological applications is the prescription by Balitsky included in the kernel Krc given by
Eq. (3.12) which evaluates the running coupling not only at the parent dipole size, but also using daughter
dipole sizes rxz and rzy as relevant scales. In Ref. [23], the authors argue that the Balitsky’s prescription
may not be the best choice towards next-to-leading order accuracy since it leads to an unphysically small
coupling in a large region of phase space. Therefore, the authors propose as a proper way to treat ↵S the
so called smallest dipole prescription, which cancels large logarithms caused by terms proportional to
�n f in all kinematic regions and reads

↵̄S = ↵̄S (rmin); rmin = min
n
rxy, rxz, rzy

o
, (3.6)
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where ↵̄S =
↵S Nc
⇡ .

In order to determine the value of ⇤n f from the experimantally measured data of ↵S , the so called
variable number of flavours scheme [21] is used. It is a recurrent relation to determine ⇤n f , which allows
to include contributions from heavy quarks into the ↵S calculation. The relation reads

⇤n f�1 = m
1�

�n f
�n f �1

f ⇤

�n f
�n f �1
n f , (3.7)

where m f is the mass of the quark of the given flavour f . Values of ⇤n f are calculated starting from ⇤5
(dipoles associated with the top quark are not considered), which is determined from the experimentally
measured value of ↵S at the Z0 mass as

⇤5 = MZ exp
 
�

2⇡
�5 ↵S ,MZ

!
. (3.8)

The number of active flavours is set depending on the transverse size of the mother dipole as a relevant
scale according to the condition

r2 <
4C2

m2
f
, (3.9)

and the matching is done according to

↵S ,n f�1 (r2
⇤) = ↵S ,n f (r

2
⇤), (3.10)

with r2
⇤ equal to the expression in Eq. (3.9).

In order to regularise the infrared behaviour, ↵S is usually frozen to a fixed value ↵S ⇡ 1 at the
values of dipole sizes larger than the scale at which the running coupling constant reaches this given
fixed value. A comparison of ↵S (r) for the fixed vs the variable flavour scheme, and also its dependence
on the number of active flavours, can be seen in Fig. 3.3. It shows that for small dipoles, the value
of the strong coupling constant is small, allowing for perturbative calculations. The main di↵erence
amongst the given approaches arises above r ⇠ 10�1 GeV�1, meaning that the choice of the prescription
is important for the correct descriptions of scenarios where large dipoles give a significant contribution.

3.1.3 Overview of the kernel prescriptions

There are several prescriptions for the kernel K(rxy, rxz, rzy), which in general di↵er in the range of
e↵ects they take into account such as their approach to the strong coupling constant ↵S , or including
higher-order corrections to the kernel prescription itself.

At leading-order, the most basic kernel prescription is the so called BFKL kernel which reads

KBFKL(rxy, rxz, rzy) = ↵̄S
r2

xy

r2
xzr2

zy
, (3.11)

where the coupling constant is fixed to a constant value, with the usual choice ↵S ⇡ 1. The behaviour of
the solution to the BK equation with the BFKL kernel has been studied in Ref. [19]. Inspired by similar
studies with BFKL equation, the authors of Ref. [19] also introduced the running of the coupling into this
kernel, using di↵erent prescriptions for the scales at which the coupling is evaluated, in order to study
the sensitivity of the result to the coupling ↵̄S . The comparison between the fixed vs running coupling
cases can be seen in Fig. 3.4. It confirms the observation of Ref. [128] that the evolution is extremely
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Figure 3.3: Running coupling constant ↵S from Eq. (3.5) depending on the number of active flavours.
↵S is fixed to 0.7 in the large-r region. Figure adapted from previous work [50].
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Figure 3.4: The scattering amplitude in dependence on rxy as a solution to the b-independent LO BK
equation (3.2) using the BFKL kernel given by Eq. (3.11) and the GBW initial condition given by (3.3)
for the fixed vs. running coupling scenario. Figure adapted from previous work [50].

sensitive to the running vs fixed coupling approach, with the latter case showing much faster evolution.
Moreover, the solution is rather insensitive to the precise prescription with which the running coupling
e↵ects are implemented into the BFKL kernel.

Since the running of the coupling constant ↵̄S introduces a sizeable modification to the evolution
behaviour, it is important to treat its inclusion into the BK equation properly. The inclusion of the
running coupling into the LO BK equation (3.2) has been done by Balitsky [129] and the relevant kernel
reads

Krc(rxy, rxz, rzy) =
↵̄S (rxy)

2⇡

" r2
xy

r2
xzr2

zy
+

1
r2

xz

 
↵S (rxz)
↵S (rzy)

� 1
!
+

1
r2

zy

 
↵S (rzy)
↵S (rxz)

� 1
! #
. (3.12)
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The resulting equation is commonly called the "running coupling BK equation" (rcBK) in the literature.
It is an improved version of the LO BK equation which resums corrections associated with the running
coupling. Since these corrections are numerically large, their resummation within the BK equation sig-
nificantly slows down the growth of the dipole amplitude with increasing rapidity, as can be seen from
the left plot of Fig. 3.5. This feature of the rcBK equation is a key ingredient to the success of the BK
fits to HERA data such those from Refs. [20,21], providing a very good description of the recent HERA
data from the combined analysis by H1 and ZEUS collaborations in Ref. [47], an example can be seen
in Fig. 3.6.

7− 6− 5− 4− 3− 2− 1− 0 1 2
])-1 [GeV

xy
log(r

0

0.2

0.4

0.6

0.8

1,Y
)

xy
N

(r ,Y = 0)
xy

(rMVN

Y = 1

Y = 5

Y = 10

Y = 20

Y = 50

Y = 100

7− 6− 5− 4− 3− 2− 1− 0 1 2
])-1 [GeV

xy
log(r

0

0.2

0.4

0.6

0.8

1,Y
)

xy
N

(r ,Y = 0)
xy

(rci-MVN

Y = 5

Y = 10

Y = 20

Y = 50

Y = 100

Figure 3.5: (Left): The scattering amplitude in dependence on rxy as a solution to the b-independent
LO BK equation (3.2) with the Balitsky’s kernel given by Eq. (3.12). Figure adapted from previous
work [50].
(Right): Same calculation, but with the collinerly-improved kernel from Eq. (3.13) using the smallest
dipole prescription given by Eq. (3.6).
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Figure 3.6: Predictions (lines) for the structure function F2(x,Q2) calculated using the LO BK equation
(3.2) with the running coupling kernel given by Eq. (3.12), compared to HERA data [47].

The BK equation including some corrections from its full next-to-leading order prescription (which
will be described in detail in the following section) was introduced as the so called collinearly-improved
leading-order Balitsky–Kovchegov equation (ciBK) in [23,130]. In this approach, both the kernel and the
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initial condition at leading-order obtain corrections coming from the double and single collinear logarith-
mic contributions at NLO. The main implication is that the ciBK prescription imposes a time-ordering of
the dipole lifetimes. This suppresses emissions of very large daughter dipoles which would live longer
than the parent one, and it has further implications in the impact-parameter dependent calculation, which
will be discussed in Sec. 3.3. The collinearly-improved kernel reads

Kci =
↵̄S

2⇡
r2

xy

r2
xzr2

zy

2
6666664

r2
xy

min
n
r2

xz, r2
zy
o

3
7777775

±↵̄S A1

KDLA(⇢), (3.13)

where the single-transverse logarithms are treated by including the term A1 =
11
12 as an anomalous di-

mension, i.e. as an extra power-law suppression of the kernel. The positive sign in the exponent ±↵̄S A1
is taken when rxy < min

n
rxz, rzy

o
and the negative sign otherwise.

The "DLA kernel" [131] resums the double collinear logarithms to all orders

KDLA(⇢) =
J1

⇣
2
p
↵̄S ⇢2

⌘

p
↵̄S ⇢2

= 1 �
↵̄S ⇢2

2
+

(↵̄S ⇢2)2

12
+ . . . , (3.14)

where J1 is the Bessel function. In case the argument of the square root of KDLA is negative, the absolute
value is taken and the Bessel function J1 is exchanged by the modified Bessel function I1. The kernel is
evaluated at

⇢ =
q

LrxzrxyLrzyrxy ; Lrirxy = ln
0
BBBB@

r2
i

r2
xy

1
CCCCA . (3.15)

This collinearly-improved kernel has also been used in [23] to perform a fit to HERA data and to
successfully describe the proton structure functions measured in HERA experiments. From the dipole
amplitudes shown in Fig. 3.5 (right), it is observed that this type of the BK equation provides again a
slower evolution speed when compared to the previous results. This is mainly due to the resummation
of higher order corrections in the kernel Kci. It is important to point out, that although this version of
the equation was successfully used in fitting the description of DIS data [23], so far, there has been no
successful description of data on other QCD processes, e.g. production of vector mesons, using this set
of solutions to the b-independent LO BK equation.

Several general observations regarding the properties of the above presented solutions to the b-
independent LO BK equation can be summarised as follows:

• The dependence of N on the dipole size rxy: The amplitude is ⇠ 0 for very small dipole sizes; this
region is called the dilute regime and corresponds to colour transparency. At a certain dipole size,
the amplitude starts to grow exponentially and with increasing dipole size, the saturation e↵ects
start to manifest by changing the exponential behaviour. The system enters a so called dense
regime and the amplitude reaches its maximal value N = 1 for very large dipoles. When evolved
in rapidity, the amplitude starts to grow and saturates to 1 for smaller dipole sizes, corresponding to
a higher scattering probability of such dipoles at higher energies. This causes saturation to become
more apparent even for small dipoles.

• Geometric scaling: Another important observation is that the choice of the specific initial condi-
tion does not have an influence on the evolution to very high rapidities, as observed in [50]. In the
asymptotic limit of high rapidities, the solution to the BK evolution is no longer a function of the
two variables rxy and Y separately, but instead the solution depends on a single scaling variable,
denoted as ⌧ ⌘ rQs(Y). The saturation scale Qs(Y) determines a transverse momentum below
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which the unintegrated gluon distribution saturates and is obtained from the amplitude N(rxy,Y )
as N(rxy = 1/Qs(Y),Y ) = k, where the constant k . 1 is usually taken to be 0.5. The scaling
causes the solution N(rxy,Y ) to propagate independently on its original prescription at Y = 0. The
geometric scaling in the BK equation solutions has been studied in detail in [19,132–136] and it is
related to the geometric scaling of the inclusive DIS data introduced in Sec 1.3.1.

3.2 Balitsky–Kovchegov equation at next-to-leading order

The full Balitsky–Kovchegov equation at next-to-leading order accuracy (NLO BK) was introduced
in [137] within the framework of light-cone QCD. It is an equation for the trace of the product of two
Wilson lines, Tr{ÛxÛ†y }. The Wilson lines at transverse coordinates ~x and ~y represent the quark and the
anti-quark, respectively, forming a colour dipole as introduced above. The theoretical background behind
the light-cone QCD calculations using Wilson lines is beyond the scope of this work, more insight can be
found in books [59, 138]. The coordinates for the eikonal Wilson lines and their separations, which can
be related to transverse dipole sizes, can be seen in Fig. 3.7 and I follow this notation with slight changes
with respect to my own notation introduced in the preceding section. At the next-to-leading order, the
BK equation obtains several extra contributions from quark and gluon loops and from the three gluon
diagrams. Simply said, the equation describes the transition from the parent dipole to three daughters
(and their recombination) and includes corrections of higher orders in ↵S .

The original equation, with changes respecting our notation, is written as

d
dY

Tr{ÛxÛ†y } = (3.16)

=
↵S

2⇡2

Z
d2z

~r 2
xy

~r 2
xz~r 2

zy

(
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4⇡
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⇣
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+
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Figure 3.7: Coordinates for the eikonal Wilson lines and their separations, drawn according to Ref. [141].

where µ is the renormalisation scale. The quark part of the NLO BK equation, which is proportional
to n f , was derived in [129, 139], the terms with the cubic non-linearities were introduced in [140]. The
gluon part of the equation was introduced in [137], which also concluded the whole BK equation at
next-to-leading order and proposed the argument of ↵S to be determined by the size of the smallest
dipole.

Compared to the LO equation (3.2), we can observe several changes in the structure of the equation.
In the first part with single integration over transverse coordinate ~z, a correction of order ⇠ ↵2

S to the
kernel is present. Second, there are two new terms of order ⇠ ↵2

S with double integration over transverse
coordinates ~z and ~w which correspond to partonic fluctuations involving two additional partons at the
time of the scattering, besides the parent dipole. The term independent of n f represents the gluon part,
where both daughter partons are gluons. The sequence of emissions goes as follows: the parent dipole
~rxy emits a gluon at ~z, e↵ectively creating daughter dipoles ~rxz and ~rzy; then the dipole ~rzy emits a gluon
at ~w which again is approximated by a qq̄ pair. The resulting daughter dipoles are then ~rxz, ~rzw, and
~rwy. The cubic term gives the "real" contribution and describes the situation where all daughter dipoles
interact with the target, while the quadratic term represents the "virtual" contribution where the gluon
at ~w has been emitted and reabsorbed either before or after the interaction, and which also subtracts the
contribution from the situation where gluons are emitted at ~z = ~w. A similar situation applies for the part
proportional to n f , however instead of the gluons, the daughter partons at the time of the scattering are a
quark or an antiquark.

From Eq. (3.17), its mean-field approximation can be derived [26] and the NLO BK equation can be
rewritten in terms of scattering amplitudes N as

@Y N(rxy) =
Z

d2zKa
h
N(rxz) + N(rzy) � N(rxy) � N(rxz)N(rzy)

i

+

Z
d2z d2wKb

h
N(rwy) + N(rzw) � N(rzy) � N(rxz)N(rzw) � N(rxz)N(rwy) �

�N(rzw)N(rwy) + N(rxz)N(rzy) + N(rxz)N(rzw)N(rwy)
i

+

Z
d2z d2wKf

h
N(rxw) � N(rxz) � N(rzy)N(rxw) + N(rxz)N(rzy)

i
. (3.17)

The expression for the first kernel Ka according to Ref. [26] is

Ka = Krc +
↵2

S (rxy)N2
c

8⇡3

r2
xy

r2
xzr2

zy

2
666664
67
9
�
⇡2

3
�

10
9

n f

Nc
� 2 ln

r2
xz

r2
xy

ln
r2

zy

r2
xy

3
777775 . (3.18)
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From Eq. (3.17), it can be seen that the first part of the kernel in the first integral consists of the leading-
order BK kernel, which is given by Eq. (3.11), and an NLO correction ⇠ ↵2

S , where the part of the NLO
corrections including the term involving the renormalisation scale µ can be absorbed into the running
coupling; the exact approach depends on the scheme choice.

The explicit expressions for the purely NLO kernels Kb and Kf in Eq. (3.17) are

Kb =
↵2

S N2
c

8⇡4

0
BBBBB@�

2
r4

zw
+

2
666664
r2

xzr2
wy + r2

xwr2
zy � 4r2r2

zw

r4
zw(r2

xzr2
wy � r2

xwr2
zy)

+
r4

xy

r2
xzr2
wy(r2

xzr2
wy � r2

xwr2
zy)
+

r2
xy

r2
xzr2
wyr2

zw

3
777775 ln

r2
xzr2
wy

r2
xwr2

zy

1
CCCCCA , (3.19)

Kf =
↵2

S n f N2
C

8⇡4

0
BBBBB@

2
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�

r2
xwr2

zy + r2
wyr2

xz � r2
xyr2

zw

r4
zw(r2

xzr2
wy � r2

xwr2
zy)

ln
r2

xzr2
wy

r2
xwr2

zy

1
CCCCCA . (3.20)

The first numerical study with the full NLO BK equation was performed in Ref. [26], where the au-
thors directly solved equation (3.17) in one-dimensional coordinate space (i.e. the resulting dipole ampli-
tudes depend only on the magnitude of the dipole size r) using the initial condition given by Eq. (3.4) and
studied the influence of NLO corrections and the choice of initial condition parameters on the behaviour
of the numerical solution. The authors showed that the evolution is unstable because NLO corrections
decrease the evolution speed and the scattering amplitude can even turn negative for small dipoles, which
is an unphysical behaviour. A reasonably stable solution was obtained only with unphysical values for
the initial condition parameters. The conclusion is that the problematic behaviour of the equation is
(partially) due to the large double-logarithmic correction in kernel Ka which is not taken into account
properly.

In order to prepare for the two-dimensional NLO calculation, I derived the Runge-Kutta methods
of the second and fourth order for the NLO BK equation and calculated the one-dimensional dipole
amplitudes, the result I obtained is in accordance with those of Ref. [26]. As can be seen from Fig. 3.8,
the calculation is stable for rather unphysical parameters; Qs,0/⇤QCD = 19 results in the initial saturation
scale Q2

s,0 ⇡ 21 GeV2 which is a much larger value than the usual choice Q2
s,0 . 1 GeV2. Moreover,

the � parameter is also much larger than the value � ⇡ 1 which is the usual value extracted from the
fits to DIS data. For lower values of the Q2

s,0 parameter, I observed the same instabilities as reported in
Ref. [26] which caused the amplitude to turn negative in the region of small rxy.

3.2.1 Resummations to the full NLO BK equation

As the first attempt to tame the problem of the unstable NLO BK numerical solution, the authors of
Ref. [130] proposed the collinearly-improved BK equation described in Sec. 3.1.3. The applied resum-
mation scheme deals with the corrections where each power of ↵S is accompanied by a double-transverse
logarithm. In the subsequent publication [23], the authors also performed a partial resummation of
collinear single-logarithmic terms coming from the purely NLO contributions from Eq. (3.17), which
play an important role in the weak scattering regime where all the dipoles are small. They showed that in
a strongly ordered regime where the daughter dipoles are larger than the parent one, apart from a dom-
inant double transverse logarithm in the single integration term, a single transverse logarithm emerges
from kernel Kb; hence both of them causing the NLO contributions to become comparable to, or even
larger than, the LO contribution, which in turn causes the instability of the NLO BK equation solution.

Following the work of Refs. [23, 130], the full NLO BK equation with resummations was studied
in Ref. [27]. The authors introduced a modification of the original kernel Ka to take into account single
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Figure 3.8: The scattering amplitude in dependence on rxy as a solution to the b-independent NLO BK
equation (3.17) (full lines) compared to the solution of the LO rcBK equation (dashed lines) using the
same setup for both calculations.

and double logarithmic resummations, while the other two kernels — Kb and Kf — were left unchanged.
The modified kernel Ka is denoted as K1 and reads

K1(rxy, rxz, rzy) = KrcKSTLKDLA � Ksub + Kfin, (3.21)

where Krc is defined by Eq. (3.12) and KDLA is defined by Eq. (3.14). The term KSTL is given by

KSTL = exp

2
6666664�↵̄S A1

������ ln

0
BBBBBB@

Csubrxy

min
n
rxz, rzy

o

1
CCCCCCA

������

3
7777775 , (3.22)

where the factor Csub is a constant which was not fixed in Ref. [23], however the authors of Ref. [27] set
it to 0.65 in order to accurately capture the full small-rxy limit of the single-transverse logarithm term.
In order to avoid double counting, the term Ksub takes into account the subtraction of the ↵2

S part of the
single transverse logarithm KSTL that is already included in Kb. This subtraction term is given as

Ksub =
↵̄S

2⇡

2
6666664�↵̄S A1

������ ln
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. (3.23)

The remaining NLO term from Ka, which is not included in resummation, is denoted by Kfin and reads

Kfin =
↵̄2

S

8⇡
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r2
xzr2

zy

"
67
9
�
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3
�

10
9
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Nc

#
. (3.24)

In Ref. [27], the authors numerically prove that the most important NLO corrections can be included
into the BK equation at large saturation scales and at small dipoles by the resummation of large transverse
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logarithms. They also show that the evolution of the resummed equation is stable and gives physically
reasonable results for the dipole scattering amplitude, as can be seen from my own calculation using the
one-dimensional resummed NLO BK equation depicted in Fig. 3.9. It can be seen that the stable solution
is now reached with the initial parameters � = 1 and Qs,0/⇤QCD = 2.
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Figure 3.9: The scattering amplitude in dependence on rxy as a solution to the b-independent NLO BK
equation (3.17) with the resummed kernel given by Eq. (3.21) and using the variable n f prescription for
the ↵S calculation.

The NLO corrections are numerically important for the phenomenological applications and therefore
its proper treatment is a key for future successful studies using the BK equation. Therefore, the first fit
to HERA structure function data using the NLO BK equation was performed in Ref. [25]. Moreover,
the authors of the ciBK equation calculated the resummation of the radiative corrections to NLO BK
enhanced by (anti)-collinear logarithms and proposed the NLO BK equation non-local in rapidity in
Ref. [24]. This new version of the collinearly-improved BK is solved in the target rapidity ⌘ = ln(1/x),
instead of the projectile dipole rapidity, which should be correctly defined as Y = (ln 1/x) + ln(Q2/Q2

s).
However, the authors of Ref. [25] conclude that at the NLO accuracy, the choice of the rapidity for the
evolution does not significantly influence the results and quality of the fits.

3.3 Balitsky–Kovchegov equation with an impact-parameter dependence

In the previous section, the dependence of the dipole scattering amplitude on the impact parameter
~b has been neglected under the presumption of an infinite homogeneous target. However, this in theory
justifiable approximation can appear to be unphysical when confronted to the experimental findings on
the finite size of hadrons. Moreover, the solution of the BK equation including the impact-parameter
dependence brings a more elegant input for phenomenological applications, in which the b-dependence
of the dipole-hadron cross section has to be modelled in other means, e.g. as described in Chapter 2.
Let us therefore move to the case of the finite target. This implies that the scattering amplitude depends
on the magnitude of b, but not on its orientation. Also, the angle between the vectors ~r and ~b is kept

41



CHAPTER 3. BALITSKY–KOVCHEGOV EVOLUTION EQUATION

fixed under the assumption that the dipole amplitude does not depend strongly on the mutual orientation
of the vectors, but predominantly on their magnitude. Under these assumptions, the impact-parameter
dependent leading-order BK equation (denoted as b-BK in the following text) reads

@N(rxy, bxy,Y )
@Y

=

Z
d~rxz K(rxy, rxz, rzy)

h
N(rxz, bxz,Y ) + N(rzy, bzy,Y ) � N(rxy, bxy,Y )

�N(rxz, bxz,Y ) N(rzy, bzy,Y )
i
. (3.25)

This equation has been solved for the first time in Refs. [103,142] using the running coupling kernel
in Eq. (3.12). It was found that the solution presents so-called Coulomb tails — a power-like tail at large
impact parameters causing the amplitude to grow too fast in this region when evolved to a higher rapidity
Y . This e↵ect destroys the predictive power of the BK equation for phenomenological applications be-
cause the resulting cross section violates the Froissart bound. In order to obtain a reasonable description
of the data, a cut-o↵ to the running coupling kernel in Eq. (3.12) was introduced in Ref. [104] in order
to suppress emissions of large daughter dipoles which cause the growth of the amplitude at large b. This
approach was able to describe HERA data on both structure functions [104] and vector meson production
in DIS [143], however an extra "soft" contribution had to be included in order to correctly describe F2.

A new way to solve the problem of Coulomb tails has been proposed in Ref. [28], where the
collinearly-improved kernel given by Eq. (3.13) was used in Eq. (3.25). The authors also provide a
new form of the b-dependent initial condition. It is inspired by the GBW model, Eq. (1.32), in order to
describe the behaviour in r and it is combined with a Gaussian distribution which reflects the profile of
the proton in the impact-parameter space, inspired by phenomenological models and their applications,
see e.g. Refs. [86, 144].

The prescription for the initial condition reads

N(rxy, bxy,Y = 0) = 1 � exp
2
666664�

1
2

Q2
s0

4
r2

xyT (bq1 , bq2 )
3
777775 , (3.26)

where

T (bq1 , bq2 ) =
2
666664exp

0
BBBBB@�

b2
q1

2BG

1
CCCCCA + exp

0
BBBBB@�

b2
q2

2BG

1
CCCCCA

3
777775 , (3.27)

and bqi are the impact parameters of the quark and anti-quark forming the dipole given as

b2
qi
=

✓rxy

2

◆2
+ b2

xy, (3.28)

The parameter BG has an interpretation as the variance of the Gaussian distribution of the target. The new
ingredient in this prescription with respect to previous works is the explicit separation of the contributions
from the individual quark and antiquark forming the parent dipole; the situation is depicted in Fig. 3.2.
Including the explicit angle dependence between the vectors and the angle of orientation of ~b would
allow for a more complex calculation and moreover, to include fluctuations of the proton structure and
calculate their evolution.

The authors of Ref. [28] showed that unlike the case with Kbdep
rc , the Coulomb tails are strongly sup-

pressed when Kci is used, giving this success partially to the form of the initial condition in Eq. (3.26) and
to the suppression of large daughter dipoles within the collinearly-improved kernel given by Eq. (3.13).
The power-like tails are still present, however their contribution is small, which allows for phenomeno-
logical applications without the need for any additional modifications of the evolution kernel or the dipole
amplitude, as can be seen in Fig. 3.10 for the inclusive DIS observables.
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Figure 3.10: (Left): Predictions (lines) for the structure function F2(x,Q2) calculated using the impact-
parameter dependent BK equation (3.25) with the collinearly-improved kernel, given by Eq. (3.13), com-
pared to HERA data [47]. (Right): The comparison of the predictions for the reduced cross section for
charm to data from HERA [47]. Figures from Ref. [29].
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Figure 3.11: The solution to the b-dependent BK equation (3.25) using the collinearly-improved kernel,
given by Eq. (3.13), and initial condition from Eq. (3.26):
(Left): dependence on rxy for bxy = 0.1 GeV�1; (Right): dependence on bxy for rxy = 1 GeV�1.

Since one of the aims of this work was to implement the approach to solve the b-dependent BK
equation into its next-to-leading order form and develop an impact-parameter dependent NLO BK calcu-
lation, I obtained the b-dependent dipole amplitudes for the proton target. In Fig. 3.11, the dipole-proton
scattering amplitude Np(r, b,Y ) is shown for two cases: the r-dependence at a fixed impact parame-
ter bxy = 0.1 GeV�1 in the left plot, and the b-dependence for a fixed dipole size rxy = 1 GeV�1 in
the right plot. As in the case of BK solutions without an impact-parameter dependence, the amplitude
decreases fast for small dipoles. On the other hand, large dipoles are suppressed in the initial condition
given by Eq. (3.26) and with increasing rapidity, this suppression is being lifted. The b-behaviour at a
fixed rxy shows a constant amplitude for small impact parameters and at some point, the solution starts
to decrease with increasing values of bxy. However at large bxy, the amplitude presents a change in its
behaviour and again starts to grow. This is due to the development of so called Coulomb tails, which
are however suppressed by the properties of the collinearly-improved kernel. I conclude that my results
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are both quantitatively and qualitatively in agreement with Ref. [28]. The detailed discussion on the
influence of the collinearly-improved kernel and its individual contributions to the development of the
Coulomb tails can be found in Refs. [28, 29].

3.3.1 Dipole-nucleus scattering amplitudes

The solution of the BK equation for nuclear targets including the impact-parameter dependence of
the dipole-nucleus scattering amplitude in the framework introduced above was developed in Ref. [30],
where two approaches are proposed. The first one, so called Glauber–Gribov (b-BK-GG) approach, relies
on the use of the solution of the BK equation (3.25) for the proton target from the initial condition given
by Eq. (3.26), which is then inserted into the Glauber–Gribov approach (used in several other studies,
e.g. [145–147]) to the dipole-nucleus amplitude

NA
GG(rxy, bxy,Y ) =

"
1 � exp

 
�

1
2

TA(bxy)�qq̄(Y, rxy)
!#
, (3.29)

where the dipole cross section is obtained from the dipole-proton amplitude as

�qq̄(Y, rxy) =
Z

d2b 2N p(rxy, bxy,Y ). (3.30)

The TA(bxy) is a nuclear thickness function which is obtained from the integral over the longitudinal
coordinate z,

TA(bxy) =
+1Z

�1

dz ⇢A(x, y, z), (3.31)

of a Woods–Saxon distribution for the density of nuclear matter

⇢A(x, y, z) =
⇢0

1 + exp
h

r�R
a

i , (3.32)

where r ⌘
p

x2 + y2 + z2,x and y are coordinates in the impact-parameter plane, and the values of the
parameters a and R are given by Table I in Ref. [30]. The thickness function is normalised according to

Z
d~bxy TA(bxy) = A,

where A is the mass number of the given nucleus.
The second approach, denoted as b-BK-A, proposes to directly solve the impact-parameter dependent

BK equation (3.25) with an initial condition representing a specific nucleus. The initial condition from
Eq. (3.26) is modified for a specific nucleus using the Woods–Saxon distribution instead of the Gaussian
(used in the proton case)

NA(rxy, bxy,Y = 0) = 1 � exp
2
666664�

1
2

Q2
s0

(A)
4

r2
xyTA

⇣
bq1 , bq2

⌘3777775 , (3.33)

with
TA

⇣
bq1 , bq2

⌘
= k

h
TA(bq1 ) + TA(bq2 )

i
, (3.34)

where k ensures that kTA(0) = 1. In order to obtain the initial nuclear saturation scale Q2
s0

(A), the
nuclear structure function is calculated at the initial condition and compared to the predictions of the
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EPPS16 [148] nuclear parton distributions. The dipole-nucleus amplitudes for these two approaches
have been used in Ref. [30] to calculate nuclear structure functions and the nuclear suppression factors,
which provide a measure of nuclear shadowing (for references on these observables see e.g. Ref. [10]).

The dipole-nucleus amplitudes NA(r, b,Y ) are shown in Fig. 3.12 for the dependence on rxy at a fixed
bxy (left panels) and for the dependence on bxy at a fixed rxy (right panels). The plots compare two ap-
proaches to obtain the dipole-nucleus amplitudes, denoted as b-BK-A (full lines) and b-BK-GG (dashed
lines), while depicting the amplitudes for calcium nucleus in the upper panels and for the lead nucleus in
lower panels. There is a clear di↵erence between the two models, especially for the r-behaviour where
the evolved amplitude for the b-BK-A case is suppressed to 0 for large dipole sizes, while the b-BK-GG
amplitude remains flat at value N = 1 in this region. It can also be observed from the plots showing
the b-behaviour, that the magnitude of the amplitude is much smaller in the b-BK-A approach. When
comparing the results for the two nuclei, it is apparent that both the initial and evolved amplitudes are
larger for the lead nucleus, i.e. the scattering probability is enhanced with higher A. The details on the
behaviour of dipole-nucleus amplitudes and the related conclusions are discussed in Ref. [30]. I used the
results of Refs. [28–30] to study the structure of hadrons by calculating the predictions for several QCD
observables within the colour dipole approach. These studies will be described in the following chapter.
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Figure 3.12: Dipole-nucleus scattering amplitudes as a solution to the b-dependent BK equation (3.25)
using the collinearly-improved kernel given by Eq. (3.13) and initial conditions from Eqs. (3.29) and
(3.33) for the b-BK-GG and b-BK-A approach, respectively. Upper plots depict the amplitudes for
calcium nucleus (A = 40), lower plots are for lead (A = 208). Figures drawn using the amplitudes from
Ref. [30].
(Left): Dependence on rxy for bxy = 0.1 GeV�1; (Right:) Dependence on bxy for rxy = 1 GeV�1.
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Chapter 4

Applications of the solutions of b-BK

equation to QCD phenomenology

In this chapter, I summarise the results of papers [29,31–33] I published together with my colleagues.
In these papers, we were interested in the study of the hadronic structure using di↵erent QCD observ-
ables. Each of these processes has a di↵erent sensitivity to the underlying QCD dynamics and therefore,
one can access di↵erent information about the hadronic structure through them. For example, one can
obtain the structure functions and consequently, the unpolarised parton distribution functions from DIS
and also the corresponding di↵ractive case, while it is possible to obtain the generalised parton distribu-
tions from the exclusive processes. Proposing realistic models which can correctly describe the current
data and provide predictions for future measurements across various processes is therefore a highly de-
sirable goal. Moreover, the correct description of some minimal set of data serves as a determination
for the parameters of the given model. Namely for the Balitsky–Kovchegov equation, the aim is to ob-
tain the simultaneous description of the inclusive DIS data and a correct description of one exclusive
observable, e.g. |t|-dependence of the J/ photoproduction cross section, in order to fix the parameters
of the initial condition. The obtained dipole scattering amplitudes evolved in rapidity can be then used
for the calculation of various QCD processes presented in the following sections. For these predictions, I
used the numerical solutions to the b-dependent BK equation described in Sec. 3.3, and I compare these
predictions with the available data and also with other CGC-inspired models.

4.1 Di↵ractive deeply inelastic scattering with protons and nuclei

4.1.1 Di↵ractive DIS formalism within the dipole model

Di↵ractive deeply inelastic scattering represents a process where a di↵ractive system X is created
while the target hadron remains intact in the final state and carries most of the beam momentum. More-
over, the hadronic system X and the final state hadron are separated by a large rapidity gap, which is a
region in rapidity where no particles are produced as a result of the �⇤h interaction being mediated by the
Pomeron exchange, and therefore we observe no activity in the detector in this (pseudo)rapidity region.
The size of the gap is �⌘ ⇠ 1/xP. The variable xP is a momentum fraction carried by the Pomeron. It
represents the fraction of the longitudinal momentum lost by the hadron in the interaction and is defined
as

xP =
Q2 + M2

X

Q2 +W2 . (4.1)
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Figure 4.1: A sketch of the di↵ractive deeply inelastic scattering process within the colour dipole ap-
proach, showing the contributions from qq̄ (left) and qq̄g (right) Fock states. Figures from Ref. [31].

We also define the variable � as

� =
Q2

Q2 + M2
X
, (4.2)

which is related to xP and to the Bjorken-x variable, defined by Eq. (1.6), as x = �xP. It has been observed
in ep collisions at HERA that di↵raction represents a substantial contribution (approx. 15 %) to the total
inelastic cross section and the process has also been observed in hadronic collisions at Tevatron and at
the LHC [149]. It is expected that in nuclear DIS, i.e. in eA collisions, the di↵ractive events have even a
larger contribution, predicted to be almost half of the total cross section in the asymptotic limit of very
high energies. Therefore, due to the enhancement of the saturation scale Q2

s in nuclei, which determines
the onset of nonlinear e↵ects, the di↵ractive nuclear DIS can serve as a good probe of saturation e↵ects
in hadrons and the underlying QCD dynamics. For a review see e.g. [10, 149–152].

The advantage of the colour dipole approach of DIS, introduced in Section 1.3, is that it can incor-
porate both the inclusive and the di↵ractive case into one theoretical framework. Fig. 4.1 shows the
two main contributions to di↵ractive DIS within the colour dipole approach. One of the very successful
frameworks to describe the di↵ractive contribution is the saturation approach [74,75,144]. In this picture,
the di↵ractive part of the total cross section from Eq. (1.7) is given as

�di↵(x,Q2) =
1
4

X

i=L,T

X

f

Z
d~r

Z
dz| ⇤ | fT,L

Z
d~b

 
d�

d~b

!2

, (4.3)

where the wave functions | ⇤ | fT,L are given by Eqs. (1.24) and (1.25), and the dipole-hadron cross
section is given by Eq. (1.27).

The di↵ractive DIS cross section is usually measured as a function of three variables — xP, �, and
the photon virtuality Q2 — and is given by

d�eh!eXh

d�dQ2dxP
=

4⇡↵2
em

�Q4

"
1 � y +

y2

2

#
�D(3)

r (xP, �,Q2), (4.4)

where �D(3)
r is the di↵ractive reduced cross section, given by the di↵ractive structure functions as

�D(3)
r (xP, �,Q2) = FD(3)

2 (xP, �,Q2) �
y2

1 + (1 � y)2 FD(3)
L (xP, �,Q2). (4.5)
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The di↵ractive structure function is a sum of the individual components contributing to the process

FD(3)
2 (Q2, �, xP) = FD

qq̄,L + FD
qq̄,T + FD

qq̄g,T , (4.6)

where FD
qq̄,L, FD

qq̄,T represent contribution from the longitudinal, resp. transverse polarisation of the
virtual photon which fluctuates into a qq̄ dipole (left panel of Fig. 4.1). The function FD

qq̄g,T represents
the contribution from the situation where the photon fluctuates into the qq̄g Fock state (right panel of
Fig. 4.1). The contribution from this fluctuation has only the transverse part, since the longitudinal part
has no leading logarithm in Q2. Detailed formulas for the individual contributions to the di↵ractive
structure function FD

2 used in this work are listed in the Ref. [31], which follows the computation by [74,
75, 144, 153] and adapts the notation of [153]. Recently, the full NLO qq̄g contribution to the di↵ractive
DIS has been calculated [154]1.

An important property of the di↵ractive DIS is its enhanced sensitivity to the dipole-target amplitude
(and especially to its gluon contribution) since the qq̄g-hadron cross section entering the FD

qq̄g,T formula
in Eq. (4.6) is given by

d�g
d~b
= 2

2
6666641 �

 
1 �

1
2

d�qq̄

d~b

!23777775 . (4.7)

In addition to the predictions that the di↵ractive events may contribute with up to half of the total cross
section in the asymptotic high-energy limit [153, 155, 156], this enhanced gluon contribution makes the
di↵ractive events strongly sensitive to the QCD dynamics of the hadron structure and a useful tool to
study the emergence of saturation e↵ects both in protons and nuclei.

4.1.2 Results

The di↵ractive events represent a substantial contribution to the total inelastic cross section and it is
expected that the contribution in nuclear interactions is even higher than in the proton case. Moreover,
as introduced in the theoretical overview in Sec. 4.1.1, the process has an enhanced sensitivity to the
gluon component of the hadronic structure. Therefore, the di↵ractive observables can serve as a comple-
mentary probe to the inclusive DIS. The presented results for di↵ractive DIS observables in protons and
nuclei form the selection of my results published in Ref. [31]. These predictions were obtained using
the dipole-hadron amplitudes N(x, r, b) as a solution to the impact-parameter dependent BK equation
(3.25) from Ref. [29] for the proton case and the nuclear amplitudes obtained in Ref. [30]. In these
two publications, the inclusive DIS observables were also studied, concluding that the b-BK numerical
solutions can provide a good description of the proton structure functions and reduced cross section data
from HERA. In Ref. [30], the extension of the b-BK calculation to the nuclear case was proposed and
the nuclear structure functions and suppression factors were studied, concluding that both approaches to
the nuclear b-BK provide a reasonable description of the available data and that in future measurements,
the approaches could be distinguished as the di↵erence of their predictions increases with decreasing x
and simultaneously with increasing Q2 and in heavier nuclei. Therefore, we have decided to study the
corresponding observables for the di↵ractive case in order to provide more information on this matter,
and to complement the previous studies [74, 75, 144, 146, 153, 155] by the BK-based results, and also to
provide predictions for future measurements such as those expected at the EIC [10, 119].

First, the predictions for the xP-dependence of the di↵ractive reduced cross section given by Eq. (4.5)
for the proton case are compared to data from H1 [157] in Fig. 4.2 for several combinations of the �

1This contribution is not incorporated into the results presented in this thesis, because the related paper [154] was made
available after our work [31] has been published.
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Figure 4.2: Predictions of the xP-dependence of the di↵ractive reduced cross section �D(3)
r (xP, �,Q2) at

several combinations of Q2 and � compared with H1 data [157]. Figures from Ref. [31].
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Figure 4.3: Predictions for the ratio �D(3)
r,A (xP, �,Q2)/A · �D(3)

r,p (xP, �,Q2) of the reduced di↵ractive cross
sections for A = 208 using the b-BK model and several CGC-inspired models. Figures from Ref. [31].
(Left): Q2-dependence for � = 0.8 and xP = 10�3; (Middle): xP-dependence for � = 0.8 and Q2 =

2 GeV2; (Right): �-dependence for xP = 10�3 and Q2 = 2 GeV2.

variable (more comparisons can be seen in Ref. [31]). The predictions using the b-BK equation are in a
good agreement with the data at small and medium values of �, however the predictions underestimate the
data in the large-� region. I also compare these predictions with the b-CGC [86] and IP-Sat [79] models
and conclude that these models give larger values than the b-BK approach. Since the non-linear e↵ects
are expected to be enhanced in nuclei, the predictions for the nuclear case are also studied. In Fig. 4.3,
the ratio of the di↵ractive reduced cross section to the proton case, rescaled by the atomic number A, is
presented for the lead (A = 208) nucleus. The predictions are obtained using two di↵erent approaches to
the nuclear b-BK evolution: the proton based coupled to a Glauber-Gribov prescription [145], denoted
as b-BK-GG, and evolution from an initial condition describing the specific nucleus, denoted as b-BK-A
(for details see Sec. 3.3.1). These predictions are compared to each other and to the other models for
the Q2-dependence, xP-dependence, and for the �-dependence of the di↵ractive to inclusive cross section
ratio. For the very low Q2 and large xP, the ratio is enhanced for the b-BK-A case when compared to
the b-BK-GG predictions. However with decreasing xP and increasing Q2, the behaviour changes with
b-BK-GG approach giving a larger contribution at low xP. The �-dependence for the reduced di↵ractive
cross section ratio is mostly flat, with b-BK-A giving larger values in the prediction for the calcium
nucleus. In overall, both b-BK predictions give larger ratios than the b-CGC and IP-Sat models.

I also investigated the ratio of di↵ractive and total cross sections R� = �di↵/�tot as this observable
is sensitive to the di↵erences in the energy-dependence between the di↵ractive and the inclusive cross
sections and also to the way di↵erent models include saturation e↵ects. This ratio is plotted in Fig. 4.4
for the proton (left panel) and lead nucleui (middle and right panels). From the comparison between
the proton and lead scenario at the same Q2, it can be seen that the di↵ractive processes are enhanced in
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Figure 4.4: Predictions for the x-dependence of the ratio of di↵ractive and total cross sections for protons
at Q2 = 2 GeV2 (left), and for lead nuclei at Q2 = 2 GeV2 (middle) and Q2 = 10 GeV2 (right),
considering di↵erent models for the dipole amplitude. Figures from Ref. [31].

heavy nuclei. Moreover, the ratio decreases with increasing Q2 in case of the lead nucleus,. The presented
models show a di↵erent x-behaviour which can be associated with the treatment of the transition from
the linear to nonlinear regime and also to the description of the impact-parameter dependence in these
models. In general, the proton and also nuclear BK evolution (the b-BK-A approach) predict a flat
behaviour of R� and smaller values in the low-x region compared to other models. Moreover, while
IP-Sat model shows a flat behaviour for protons and only very slow increase towards low-x for lead, the
b-CGC model predicts an increase of the ratio in both cases. This is due to the di↵erent treatment of the
b-behaviour in these models; for the b-BK evolution and the IP-Sat, the impact parameter dependence is
given by the hadronic profile, in the case of b-CGC, it is incorporated in the saturation scale. One can
also observe that the two approaches to the nuclear BK predict di↵erent x-behaviour, with the proton
solution coupled to the Glauber–Gribov prescription giving a grow of the ratio with decreasing x. This
is associated to the faster evolution for the intermediate dipole sizes r, as can be seen from Fig. 3.12.

Let us now investigate the proton and nuclear di↵ractive structure functions, given by Eq. (4.6). In
Fig. 4.5, the proton di↵ractive F2 and its individual components are compared for three di↵erent models.
It can be seen that the models give a similar behaviour of FD

2 and its components. This observation
is expected as their �-dependence is given mainly by the photon wave functions. However, the overall
normalisation is sensitive to the dipole amplitude coming from di↵erent models and it can be seen that the
b-BK approach (right panel) gives smaller values of FD

2 and its components, which is in agreement with
the observations from previous plots. Moreover, I show the xP-dependence at low and high � for FD

2 and
its components calculated using the b-BK approach in Fig. 4.6. It can be observed that in low-� region,
the dominant contribution comes from the qq̄g component while in the large-� region, the longitudinal
qq̄ component gives the largest contribution. The transverse qq̄ component has its maximal contribution
in the region of medium-�, where the longitudinal and the gluon components are of similar magnitude.
It can also be observed that at fixed �, the contributions do not change dramatically with decreasing xP.

Equivalently to the previous case, the ratios to the scaled proton case for the nuclear di↵ractive struc-
ture functions and its components are presented in Fig. 4.7 using the b-BK-A predictions for calcium
(upper panels) and lead (lower panels). In general, a nuclear enhancement of the individual components
is observed in most cases and their total sum is enhanced when compared to the proton FD

2 . It is also
observed that the ratio of the sum of the components is similar for both studied nuclei. This can be
associated to the suppression of the qq̄g component with increasing atomic number A, observed when
comparing predictions for calcium and lead nuclei, prominently visible in the left panels of Fig. 4.7.
Also, one specific observation can be made. The longitudinal contribution is suppressed for medium
� values in the case of b-BK-A approach, the suppression being larger for the calcium nucleus. This
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Figure 4.5: Predictions for the �-dependence of the individual components of the proton di↵ractive
structure function FD(3)

2 (Q2, �, xP) and their sum for Q2 = 2 GeV2 and xP = 10�3. Figures from Ref. [31].
(Left): the b-CGC model; (Middle): the IP-Sat model; (Right): b-BK model.
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Figure 4.6: Predictions for the individual components of the proton di↵ractive structure function
FD(3)

2 (Q2, �, xP) and their sum for Q2 = 2 GeV2 using the b-dependent BK equation (3.25). Figures
from Ref. [31].
(Left): xP-dependence for � = 0.08; (Middle): xP-dependence for � = 0.8; (Right): �-dependence for
xP = 10�3.

behaviour is in contradiction with the predictions using the Glauber-Gribov approach. Not only it is
opposite when compared to the b-BK-GG approach presented in Ref. [31], but also when compared to
previous results using the IP-Sat + GG model [153]; this specific work shows a large enhancement of
the longitudinal component in the medium-� region, especially in heavy nuclei. A more detailed com-
parison of the predictions using both nuclear b-BK approaches and the predictions obtained from other
phenomenological models, namely IP-Sat and b-CGC models coupled to the Glauber-Gribov approach,
is presented in Ref. [31].

To conclude, the predictions for the ratio of the di↵ractive to total cross section are in agreement with
previous results (see e.g. [153]), being of order 20% for electron-lead collisions. Moreover, these predic-
tions depend only negligibly on the specific model for the dipole amplitude. I have shown that the b-BK
predictions for the reduced cross section can satisfactorily describe available data from ep collisions at
HERA and are therefore suitable to provide predictions for future measurements. As the distinct models
predict di↵erent behaviour for the individual contributions to the nuclear di↵ractive structure functions
and also for the di↵ractive to inclusive cross section ratio R�, it is expected that future experimental
measurements will provide a better understanding of the underlying QCD dynamics.
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Figure 4.7: Predictions for the ratio FD(3)
2,A (Q2, �, xP)/A · FD(3)

2,p (Q2, �, xP) of the di↵ractive structure func-
tion FD

2 and its individual components at Q2 = 2 GeV2 for A = 40 (upper panels) and A = 208 (lower
panels), using the dipole-nucleus amplitudes from the b-BK-A model. Figures from Ref. [31].
(Left panels): xP-dependence for � = 0.8. (Right panels): �-dependence for xP = 10�3.

4.2 Deeply virtual Compton scattering

4.2.1 Colour dipole approach to DVCS

Similarly to the exclusive production of vector mesons, deeply virtual Compton scattering (DVCS)
represents a useful tool to investigate the tomography picture of hadrons, as the Fourier transform of
the cross section |t|-distribution can be used to obtain the distribution of gluons in the transverse space.
The DVCS process is depicted in Fig. 4.8 and can be described in the same manner as the vector meson
production (see Section 1.3.2), with the main di↵erence in the exclusive final state particle which is a
real photon in the case of DVCS.

The scattering amplitude takes the same form as in the vector meson case, see Eq. (1.34). However,
in order to be consistent with previous DVCS studies, the exponential term containing (1� z) is replaced
by (1 � 2z)/2, as discussed in Ref. [88]. The wave function for the production of a real photon has only
the transverse component and is given by

| ⇤�⇤ �|
f =

Nc↵

2⇡2 e2
f

h⇣
z2 + (1 � z)2

⌘
✏2

1 K1(✏1r)✏2K2(✏2r) + m2
f K0(✏1r)K0(✏2r)

i
. (4.8)
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Figure 4.8: A schematic diagram for the real photon production within the colour dipole approach to
DVCS. Figure from Ref. [33].

The advantage of DVCS process for phenomenological studies can be seen directly from the wave func-
tion prescription. Compared to the photon-meson wave functions given by Eqs. (1.24) and (1.25), respec-
tively, the photon-photon wave function is much simpler and contains less model-dependent parameters.
It is therefore less susceptible to the specific approach chosen to model the wave functions and the re-
lated theoretical uncertainties, and can serve as a direct probe of the QCD dynamics for the dipole-hadron
interaction.

A disadvantage to the DVCS process comes mainly from the experimental point of view due to the
small values of the cross section (compared to the DIS and vector meson production cases), together
with the presence of the competing Bethe–Heitler process. The Bethe–Heitler process represents the
elastic scattering of the electron o↵ the hadron, followed by the photon emission from the rescattered
electron. Therefore, it produces the same final state at the DVCS process, which has to be distinguished
and separated by appropriate kinematical constraints.

4.2.2 Results

To complement the studies of inclusive and di↵ractive deeply inelastic scattering using the impact-
parameter dependent BK equation, I also published, together with my colleagues, predictions for exclu-
sive processes, which can serve as a clean probe of the gluon component of the hadronic structure. First,
I will summarise the predictions for the deeply virtual Compton scattering published in Ref. [33] and
in the following section, the production of vector mesons in several types of colliding systems will be
discussed. DVCS is expected to be measured at future electron-ion colliders and from the theoretical
and phenomenology point of view, it presents some advantages, mainly coming from the form of the
wave function which can be calculated directly from QED and does not depend on additional modelling
(unlike the vector meson wave function).

The first set of results are the predictions obtained using the b-BK evolution and CGC-inspired mod-
els for the |t|-distribution and the energy dependence of the DVCS cross section, compared to the avail-
able data from HERA [158] in Figs. 4.9 and 4.10, respectively. The CGC-inspired models are the fol-
lowing: IP-Sat and IP-nonSat, where the later disregards saturation e↵ects, both are based on Ref. [81],
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Figure 4.9: Predictions for the |t|-distribution of the DVCS cross section in ep scattering for two values of
Q2 considering b-BK and CGC-inspired models. Predictions are compared to HERA data [158]. Figures
from Ref. [33].
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Figure 4.10: Predictions for the energy W�p dependence of the DVCS cross section in ep scattering
for two values of Q2 considering b-BK and CGC-inspired models. Predictions are compared to HERA
data [158]. Figures from Ref. [33].

and the b-CGC model, where I used the latest parameters from Ref. [159]. The conclusion from these
plots is that the b-BK model again provides lower overall predictions compared to the other models and
moreover, it predicts a milder |t|-behaviour. This observation may disfavour the b-BK calculation, es-
pecially towards large |t| and with increasing Q2 where the discrepancy with respect to the data and to
the other CGC-inspired models is quite large. This may be due to Q2 evolution e↵ects towards large
virtualities, which are not explicitly included in the BK evolution, yet the presented CGC-inspired mod-
els contain some form of the Q2 dependence. However, since the description of the total cross section
is reasonable and the b-BK model provides good description of other processes, it would be unwise to
swiftly disregard it based on this one observable. Moreover, future experiments may bring new results
to provide a more decisive picture. From Fig. 4.10, it can also be seen that both IP-Sat models predict a
steeper increase of the total cross section with energy compared to the b-BK and b-CGC models. Such
behaviour is expected as the impact of saturation e↵ects is expected to be larger at low x, a behaviour
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which can be useful to distinguish among di↵erent models.
Since it is expected that ep collisions at future colliders will measure the cross section |t|-distributions

towards larger momenta transfers compared to HERA, it is envisioned that the measurement of the
di↵ractive minima will be possible. A sample of my predictions for such measurements is presented
in Fig. 4.11 for the expected energies at the EIC (left panel) and at the LHeC (right panel). A strong
dependence of the result on the given model can be observed. The IP-nonSat model does not predict the
presence of the dips, while the other models which include saturation e↵ects do. The position of the dip
strongly depends on the model considered and with increasing energy, the dips occur at lower values of
|t|.
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Figure 4.11: Predictions for the |t|-distribution of the DVCS cross section in ep scattering at Q2 = 5 GeV2

considering b-BK and CGC-inspired models. Predictions are presented for the expected energies at the
EIC (left) and at the LHeC (right). Figures from Ref. [33].
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Figure 4.12: Predictions for the |t|-distribution of the DVCS cross section in ePb scattering at Q2 =

5 GeV2 considering b-BK and CGC-inspired models. Predictions are presented for the expected energies
at the EIC (left) and at the LHeC (right). Figures from Ref. [33].

I also studied the energy and |t|-dependence for eA collisions where the nonlinear e↵ects are expected
to be stronger. As an example, I show the predictions for the |t|-distribution of the ePb DVCS cross
section for two values of photon-target CMS energies expected at future colliders in Fig. 4.12. It can be
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again seen that the nuclear evolution of the dipole scattering amplitude (b-BK-A) predicts smaller values
of the cross section compared to other models, and also the dips are present at lower |t|, being distinctly
di↵erent from other models for the LHeC energies. This can be traced down to the di↵erent behaviour
in the large-b region2 for the models considered, where the b-BK-A amplitudes present larger tails (for
further discussion, see Fig. 3 in Ref. [33]).

The presented results therefore suggest, that a future measurements of the DVCS process will allow
to distinguish among di↵erent approaches to the inclusion of saturation phenomena and impact param-
eter distribution of hadrons in dipole-model based calculations and to improve our understanding of
the underlying QCD dynamics and non-perturbative e↵ects (which are related to large b) in the hadron
structure.

4.3 Exclusive production of vector mesons o↵ protons and nuclei

In the last part of this chapter, I summarise the results for the exclusive production of vector mesons in
interactions of photons with protons and lead nuclei using the b-dependent BK equation. Such processes
bring both advantages and disadvantages compared to other exclusive channels such as DVCS. The main
advantage from the experimental point of view is a larger cross section compared to DVCS. Moreover,
the exclusive photoproduction of J/ meson provides a very good probe for saturation e↵ects, as it
gives a clean signal in the detector where only the decay products of J/ should be present. The main
challenge is then to tag the outgoing hadron and distinguish the exclusive process from the situation
when the target hadron dissociates. Moreover, the high mass of its constituting charm quark provides
a large enough fixed scale for perturbative calculations, which at leading-order predict the charmonium
cross section to depend on the square of the target gluon density [160]. On the other hand, modelling
the vector meson production presents some challenges with respect to the uncertainties associated to the
photon-meson wave function. However, when the model is fixed using other observables and with the
same set-up applied further, its predictions are still trustworthy.

4.3.1 Results for vector meson production in ep and p–Pb collisions

In this section, a selection of my results from Ref. [29] for the exclusive production of vector mesons
in �p interactions is presented. The results are compared with data from HERA experiments, where
an electron is a source of (virtual) photons, and with data from several LHC experiments measured in
ultraperipheral p–Pb collisions, where a Pb nucleus serves as a source of photons. The results were
obtained using dipole amplitudes N(x, r, b) as a solution to the impact-parameter dependent BK equation
(3.25). Moreover, these results, specifically the |t|-distribution of the exclusive J/ photoproduction,
served as one of the two processes to constrain the initial condition for the b-BK evolution developed in
Ref. [28], and therefore these studies helped to improve the model in the subsequent publication [29].

In Fig. 4.13 (left), the predictions for the |t|-distribution of the cross section for the exclusive elec-
troproduction of the � meson at several values of centre-of-mass energy W�p are presented. The right
panel presents the results for the total cross section as a function of W�p for several values of Q2. All
predictions give a reasonable agreement with H1 [108] and ZEUS [161] data. The |t|-distribution of
the J/ meson photoproduction cross section is presented in Fig. 4.14 (left) and compared with data
from H1 [112, 115]. The predictions give a very good agreement with the data for photoproduction at
W�p = 55 GeV and W�p = 100 GeV, the result for W�p = 78 GeV slightly underestimates the data.
However, it is important to point our that the value of W�p is estimated as a mean value from the measured

2This is due to the fact that the squared four-momentum transfer |t| is a Fourier conjugate variable to the impact parameter.
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LHCb [164] and CMS [165]. Figures from Ref. [29].

energy range in experimental data. Therefore the results of the model can be considered satisfactory. In
the right plot of Fig. 4.14, the predictions for the energy W�p dependence of the total cross section are
compared with HERA data from H1 [112, 115] and LHC data from ALICE [113, 114] for photo- and
electroproduction at several values of Q2. The results for electroproduction give a very good agreement
with the data. The prediction for photoproduction gives a good description of the data at low W�p; at
high energies the result slightly underestimates the data. The production of other vector mesons such as
⌥(1S) and  (2S ) (where its ratio to the J/ production is studied) is also reasonably described by the
model, see additional plots in Ref. [29]. However, the large uncertainties in data prevent from any strong
conclusion regarding the agreement of these predictions with the data.
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4.3.2 Coherent production of J/ vector meson in �–Pb interactions

The emergence of new measurements of exclusive charmonium photoproduction in nuclear collisions
at the LHC sparked an interest in the question how the model stands against that data and if it can provide
some interesting predictions for future measurements. The results for the coherent production of a J/ 
meson in �–Pb interactions from the Ref. [32] are summarised in this section. The results were obtained
using the two versions of the dipole-nucleus scattering amplitudes described in Sec. 3.3.1.

Fig. 4.15 presents the results for the |t|-distribution (left plot) at W�Pb ⇡ 120 GeV and for the en-
ergy W�Pb dependence (right plot) of the J/ cross section. It can be observed that the two predictions
calculated using the distinct dipole-nucleus amplitudes give di↵erent results for both energy and |t| de-
pendence. Moreover, not only the values of the cross section at given |t| di↵er, but also the positions of
the di↵ractive minima are shifted with respect to each other. The di↵erence between the two predictions
for the total cross section increases with increasing W�Pb, starting from approx. 30 % at W�Pb = 35 GeV
and reaching a roughly factor of two at W�Pb ⇡ 1 TeV. Currently, there are no data available for com-
parison of the presented results. However, such observables as the two presented here are planned to
be measured in future electron-ion colliders [10, 11]. These future measurements cannot only enable
to distinguish between the models, but hopefully will provide an answer to several open questions in
QCD, such as the existence and nature of gluon saturation in hadrons. Especially the measurement of
the location of di↵ractive dips, shown in Fig. 4.15 (left), has been proposed as a signature of saturation
in �p [166] and �A [167] interactions.
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Figure 4.15: (Left): Predictions using nuclear b-BK amplitudes [30] for the di↵erential cross section for
the coherent photoproduction of a J/ vector meson o↵ a Pb target as a function of |t| at rapidity Y = 2.5,
which corresponds to a centre-of-mass energy W�Pb ⇡ 120 GeV. (Right): Energy W�Pb dependence for
the total cross section. Figures from Ref. [32].

I also compare the predictions for the rapidity dependence of the coherent J/ cross section in the
ultraperipheral Pb–Pb collisions using the two approaches to the nuclear dipole amplitude. In these
collisions, one of the lead nuclei serves as a source of the flux of photons which interact with the other
(target) nucleus. The cross section is then calculated combining the photon-target cross section with
the photon flux at given rapidity y [168]. The results are compared to experimental data from the LHC
measured in Run 1 at ALICE [169, 170] and CMS [171] experiments, and in Run 2 at ALICE [172] and
at LHCb [173]. The two approaches yield a similar result in the large |y| regions, where the contribution
from low W�Pb energies is dominant. In the central region, the two approaches di↵er significantly. Data
from Run 1 show a preference for the b-BK-A approach, while the data from Run 2 do not provide a
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clean message as their uncertainties are quite large. However, a more recent study of the coherent J/ 
|t|-distribution from ALICE [174] depicted in Fig. 4.17, shows a good description of the measurement
by the nuclear b-BK-A calculation; although a small discrepancy in the lowest |t| region can be observed
for both models incorporating e↵ects beyond the simple electromagnetic interaction of the photon and
the target nucleus.
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Figure 4.16: Predictions using nuclear b-BK amplitudes [30] for the cross section for the coherent pho-
toproduction of a J/ vector meson o↵ a Pb target as a function of rapidity y compared to Run 1 (left))
and Run 2 (right) data measured at the LHC [169–173]. Figures from Ref. [32].

Figure 4.17: The |t|-dependence of the coherent photonuclear J/ production o↵ Pb measured at ALICE
in Run 2 and compared to several model predictions (for further references see the original publication),
including the b-BK model from Ref. [32] discussed above. Figure taken from Ref. [174].
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Chapter 5

Next-to-leading order impact-parameter

dependent Balitsky–Kovchegov equation

As the next step of this work, I tried to take the impact-parameter dependent calculation towards the
next-to-leading order accuracy of the BK equation. Such calculations are desirable not only to follow
the success of the NLO BK fits performed in Ref. [25] for the impact-parameter independent BK, but
also to keep up with the newest development of the theoretical calculations within the dipole model
such as photon impact factors [175–179] leading to the DIS calculations at NLO [180–182], the qq̄g
component of the di↵ractive DIS cross section [154], and vector meson production [183]. Performing
these calculations at next-to-leading order accuracy and comparing the predictions for QCD observables
to data could bring new insights into our understanding of saturation e↵ects.

In this last chapter, I will present a more technical overview of my work on the connection of the NLO
calculation from Sec. 3.2 and the b-dependent approach to LO BK from Sec. 3.3. This calculation relies
on the approximation of a finite target (as in the LO b-BK calculation) in order to keep the computational
time reasonable. The NLO BK equation with b-dependence now reads as

@Y N(rxy, bxy) =
Z

d2z Ka
h
N(rxz, bxz) + N(rzy, bzy) � N(rxy, bxy) � N(rxz, bxz) N(rzy, bzy)

i

+

Z
d2z d2wKb

h
N(rwy, bwy) + N(rzw, bzw) � N(rzy, bzy) � N(rxz, bxz) N(rzw, bzw) �

�N(rxz, bxz) N(rwy, bwy) � N(rzw, bzw) N(rwy, bwy) + N(rxz, bxz) N(rzy, bzy) +

+N(rxz, bxz) N(rzw, bzw) N(rwy, bwy)
i

+

Z
d2z d2wKf

h
N(rxw, bxw) � N(rxz, bxz) � N(rzy, bzy) N(rxw, bxw) +

+N(rxz, bxz) N(rzy, bzy)
i
. (5.1)

First line of Eq. (5.1) is referred to as "LO-type integral" in the following text, since the term is integrated
only over the first emission, and the second and third integrals can be together denoted as purely NLO
contributions. The equation above brings several new vectors into the calculation, therefore I will start
by introducing the approach to calculate all the dipole sizes and impact parameters. Next, the calculation
itself will be described. This chapter will conclude with the discussion on the obtained numerical results.
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5.1 Input variables and set-up for the calculation

5.1.1 Geometry of the problem

Let us start with reminding the coordinates used to define the vectors~r and ~b. Vectors ~x and ~y connect
the origin of the impact parameter vector ~bxy with the parent dipole endpoints. These vectors correspond
to the distances bqi of the quark and antiquark from the centre of the target hadron, given by Eq. (3.28).
The vector ~z connects the origin of ~bxy with the daughter emission endpoint and the vector ~w connects
the origin of ~bxy with the second emission endpoint. Note that some works use the following notation
for the leading-order BK calculation: ~rxy ⌘ ~r, ~rxz ⌘ ~r1 and ~rzy ⌘ ~r2. However, due to the complexity of
the b-dependent calculation at NLO, it is reasonable to use a notation where all the variables are easily
distinguishable.

The parent dipole is defined by the vectors ~rxy = ~x�~y and ~bxy =
1
2
�
~x+~y

�
. The daughter dipole sizes

which enter the integral measure are defined as ~rxz = ~x � ~z and ~rxw = ~x � ~w. In this way, the integral
measures are changed as d2z! d~rxz and d2w! d~rxw. Using these coordinates, all other dipole sizes and
impact parameters can be computed. The remaining dipole sizes are:

~rzy = ~z � ~y = ~rxy � ~rxz,

~rwy = ~w � ~y = ~rxy � ~rxw,

~rzw = ~z � ~w = ~rxw � ~rxz, (5.2)

while the other impact parameters are given by

~bxz =
1
2
�
~x +~z

�
= ~bxy +

1
2
~rzy = ~bxy +

1
2
�
~rxy � ~rxz

�
,

~bzy =
1
2
�
~z + ~y

�
=

1
2

(~x + ~y) �
1
2

(~x �~z) = ~bxy �
1
2
~rxz,

~bxw =
1
2
�
~x + ~w

�
= ~bxy +

1
2
~rwy = ~bxy +

1
2
�
~rxy � ~rxw

�
,

~bwy =
1
2
�
~w + ~y

�
= ~bxy �

1
2
~rxw,

~bzw =
1
2
�
~z + ~w

�
= ~bxy +

1
2
�
~rxy � ~rxz � ~rxw

�
. (5.3)

One possible configuration of the vectors is shown in Fig. 5.1.
The next step is to chose a coordinate system to express the dipole sizes and their impact parameters.

• For~bxy, its magnitude bxy and its polar angle ' are used. Since a cylindrical symmetry is considered
in this calculation, the results do not depend on the polar angle. Therefore, ' is chosen to be zero,
as in previous works.

• For ~rxy, its magnitude rxy and the angle with respect to its own impact parameter ✓xy are used.

• The integral over ~rxz transforms to d~rxz ! rxzdrxzd�xzy, where �xzy is the angle between the parent
dipole ~rxy and the daughter dipole ~rxz.

• The integral over ~rxw transforms to d~rxw ! rxwdrxwd�xwy, where �xwy is the angle between the
parent dipole ~rxy and the daughter dipole ~rxw.

• The evaluation of N(~rxz,~bxz) is done in the magnitudes of its vectors rxz and bxz as follows
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Figure 5.1: A possible configuration of the dipoles. The vectors for the dipoles that appear at LO are
shown in blue and magenta. The two new dipoles appearing at NLO are shown in light blue and dark
red. The coordinate system has been chosen such that the vector ~bxy has polar angle zero.

– The value of rxz is given by the integral measure.

– The value of bxz can be computed using the first line in Eq. (5.3) as

(~bxz)2 =
⇣
~bxy +

1
2
�
~rxy � ~rxz

�⌘2
(5.4)

= b2
xy +

1
4

⇣
r2

xy + r2
xz � 2rxyrxz cos(�xzy)

⌘
+ bxyrxy cos(✓xy) � bxyrxz cos(✓xy + �xzy).

• The evaluation of N(~rzy,~bzy) is done in the magnitudes of its vectors rzy and bzy as follows
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– The value of rzy is given from the first line of Eq. (5.2) by

(~rzy)2 =
⇣
~rxy � ~rxz

⌘2
= r2

xy + r2
xz � 2rxyrxz cos(�xzy). (5.5)

– The value of bzy is given from the second line of Eq. (5.3) by

(~bzy)2 =
⇣
~bxy �

1
2
~rxz

⌘2
= b2

xy +
1
4

r2
xz � bxyrxz cos(✓xy + �xzy). (5.6)

• The evaluation of N(~rxw,~bxw) is done in the magnitudes of its vectors rxw and bxw as follows

– The value of rxw is given by the integral measure.

– The value of bxw can be computed using the third line in Eq. (5.3) as

(~bxw)2 =
⇣
~bxy +

1
2
�
~rxy � ~rxw

�⌘2
(5.7)

= b2
xy +

1
4

⇣
r2

xy + r2
xw � 2rxyrxw cos(�xwy)

⌘
+ bxyrxy cos(✓xy) � bxyrxw cos(✓xy � �xwy).

• The evaluation of N(~rwy,~bwy) is done in the magnitudes of its vectors rwy and bwy as

– The value of rwy is given from the second line of Eq. (5.2) by

(~rwy)2 =
⇣
~rxy � ~rxw

⌘2
= r2

xy + r2
xw � 2rxyrxw cos(�xwy). (5.8)

– The value of bwy is given from the fourth line of Eq. (5.3) by

(~bwy)2 =
⇣
~bxy �

1
2
~rxw

⌘2
= b2

xy +
1
4

r2
xw � bxyrxw cos(✓xy � �xwy). (5.9)

• The evaluation of N(~rzw,~bzw) is done in the magnitude of its vectors rzw and bzw as follows

– The value of rzw is given from the third line of Eq. (5.2) by

(~rzw)2 =
⇣
~rxw � ~rxz

⌘2
= r2

xw + r2
xz � 2rxwrxz cos(�xzy + �xwy). (5.10)

– The value of bzw is given from the last line of Eq. (5.3) as

(~bzw)2 =
⇣
~bxy +

1
2

(~rxy � ~rxz � ~rxw)
⌘2

= b2
xy +

1
4

⇣
r2

xy + r2
xz + r2

xw

⌘
(5.11)

�
1
2

rxyrxz cos(�xzy) �
1
2

rxyrxw cos(�xwy) +
1
2

rxzrxw cos(�xzy + �xwy)

+bxyrxy cos(✓xy) � bxyrxz cos(✓xy + �xzy) � bxyrxw cos(✓xy � �xwy).
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5.1.2 Numerical setup

I developed the numerical solutions for the b-dependent BK equation at next-to-leading order using
Eq. (5.1) and considering two cases:

1. Taking the non-resummed kernel Ka, given by Eq. (3.18), and following the first attempt to solve
the NLO BK equation independent on impact parameter [26].

2. Taking the resummed kernel K1, given by Eq. (3.21), into the LO-type integral. The rest of the
equation remains the same.

As an initial condition, I use the prescription with the exponential fall-o↵ for the dipole ends from
Eq. (3.26) with the parameters given by the previous works on the LO BK calculation including the
impact-parameter dependence in Refs. [28, 29].

The strong coupling constant ↵S is calculated from the variable flavour scheme described in Sec. 3.1.2
taking all five possible active flavours and with the rest of the parameters according to Ref. [29]. For the
two purely NLO kernels Kb and K f , ↵S is taken at the parent dipole rxy size according to Refs. [26, 27,
137].

All calculations were performed using the Runge-Kutta methods [123] to solve an integro-di↵erential
equation and using the Simpson’s rule to calculate the integrals. I derived a second order Runge-Kutta
method for the NLO b-BK equation, however after emergence of some serious problems which required
fast testing of the evolution behaviour, I decided to use the first order method in order to simplify the
numerical routine. The lower order method brings just a small di↵erence in the evolved amplitudes,
where the di↵erence is significant only at asymptotically large rapidities Y . The choice of an order of the
Runge-Kutta method does not influence the behaviour described in the following sections.

The calculation is local in rapidity, which is given as Y = ln(x0/x), where x0 = 0.008, and the step of
the numerical method is Y = 0.05. Arrays in the impact parameter b and the dipole size r are uniformly
logarithmically spaced from 10�6 to 102 GeV�1, angles between the parent and daughter dipoles are
evenly spaced from 0 to 2⇡, and the angle ✓xy is set to zero according to Ref. [29], although I also tested
some other choices.

5.2 Numerical results with the non-resummed NLO BK

Results for the numerical calculation of the b-dependent NLO BK equation (5.1) with the kernel
(3.18), given by Eq. Ka, evolved from the initial condition (3.26) up to rapidity Y = 10 are presented in
Figures 5.2 and 5.3 for the rxy-dependence at two values of bxy and for the bxy-dependence at two values
of rxy, respectively. The evolution is observed to be unstable, especially in the large bxy and rxy region,
where for the later case it is clearly visible from Fig. 5.2 that the amplitude turns negative after several
steps in rapidity and this behaviour gets even more pronounced with the evolution. It can be seen from
the left panel of Fig. 5.3 that in some regions, evolution causes the amplitude to decrease with respect
to the initial condition over the whole range of plotted values. Moreover, from the right panel of the
same figure, a growth of the amplitude at large impact parameters reminding of the Coulomb tails (see
Sec. 3.3) is observed, although the evolution starts from the initial condition where large rxy and bxy are
suppressed.

The instability of the calculation manifests immediately after the first step in rapidity at Y = 0.05
for the whole range of bxy. These negative values cover a wide range of values of order 10�30 to 10�3.
Therefore, they cannot be considered to be just a small numerical error of the calculation. They first
appear simultaneously for very small and large rxy near the borders of the array. Due to the evolution,
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Figure 5.2: Evolution of the full NLO b-BK with the non-resummed kernel Ka in Eq. (3.18) from the
exponential initial condition in Eq. (3.26) for fixed values of bxy and depending on rxy.
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Figure 5.3: Evolution of the full NLO b-BK with the non-resummed kernel Ka in EEq. (3.18) from the
exponential initial condition in Eq. (3.26) for fixed values of rxy and depending on bxy.

they gradually spread over the whole range of rxy for large values of impact parameters bxy and grow in
magnitude, with the largest observed negative values being N = �1.26 for bxy = rxy = 100 GeV�1 at
Y = 10.

In order to find the origin of this behaviour, I investigated the e↵ect of the NLO integrals containing
kernels Kb and Kf — equations (3.19) and (3.20), respectively — and the e↵ect of the b-dependence in
the initial condition. First, evolution of the NLO b-BK with only the LO-type integral, which corresponds
to the first line of Eq. (5.1), is presented in Figs. 5.4 and 5.5 for the rxy and bxy dependence, respectively.

As can be seen from Fig. 5.4, at the given bxy, the evolution increases the values in the originally
suppressed large-r region towards the N = 1 boundary and the wavefront slowly shifts towards lower rxy.
Fig. 5.5 shows that at a given rxy, evolution proceeds towards higher values of N for the whole range of
bxy. Large values of bxy remain suppressed and no Coulomb tails are present at large impact parameters.
However at rxy = 0.1 GeV�1, an unusual fluctuation is observed at rapidity Y = 10; first N dramatically
drops to negative numbers at bxy ⇡ 3 GeV�1 and then again increases for larger bxy.

In overall, the evolution seems to be stable at the first sight, however some very small negative values
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Figure 5.4: Evolution of the NLO b-BK from the exponential initial condition from Eq. (3.26) with only
LO-type integral with kernel Ka, given by Eq. (3.18), for fixed values of bxy and depending on rxy.
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Figure 5.5: Evolution of the NLO b-BK from the exponential initial condition from Eq. (3.26) with only
LO-type integral with kernel Ka, given by Eq. (3.18), for fixed values of rxy and depending on bxy.

still appear after few steps in rapidity. First, the negative values of the amplitude appear at large values
of bxy and for very small rxy at the border of the array and are of order 10�17 – 10�8. Gradually, negative
values propagate towards larger dipole sizes up to those of order rxy ⇠ 1 GeV�1, to all values of bxy, and
are amplified, reaching values of order 10�14 – 10�2 at rapidity Y = 10. The higher the value of rxy is,
the larger negative numbers appear. These negative numbers seem to originate from the configurations
where both daughter dipole amplitudes are zero and the parent dipole amplitude is a small positive
number. Then for Ka > 0, the product of the kernel and the given configuration of the dipoles in the first
line of (5.1) is negative. As I tested using the collinearly-improved kernel, this behaviour also appeared in
previous versions of the b-BK calculation, however it was compensated by the rest of the configurations
which yielded positive values entering the sum of the integral. It is also important to point out that the
value of the kernel itself can be negative, however this contribution to the integral is compensated by
the majority of positive values; the same also applied to the previous versions of LO BK described in
Sec. 3.1. When comparing bxy-dependent amplitudes in Fig. 5.5 (Ka-only) and Fig. 5.3 (full NLO), it is
evident that with the full equation, one gets consistently lower values of N. It can be therefore concluded,
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that the purely NLO integrals — second and third line in Eq. (5.1) — bring additional suppression of the
resulting amplitude.

Next, I studied the influence of the impact-parameter profile to the evolution. Figure 5.6 shows results
for the dipole amplitudes evolved using the LO-type integral from Eq. (5.1) and introducing a uniform
profile for the impact-parameter dependence in the initial condition from Eq. (3.26), thus e↵ectively
reducing it to the GBW-type initial condition. Its evolution therefore behaves exactly as the other b-
independent calculations; the amplitude shifts towards lower values of rxy with increasing rapidity, as
can be seen from the left panel of Fig. 5.6. The right panel shows the bxy-dependence of the resulting
amplitude which remains flat, exactly as expected. The only change is the magnitude of N which grows
towards N = 1 limit for a given rxy. At first sight, the evolution may seem stable, however some small
negative numbers of order 10�14 appear after few steps in rapidity at low values of rxy. These negative
numbers are again amplified through the evolution and shifted towards larger values of rxy and appear
for more of them than at the beginning of the evolution. At rapidity Y = 10, these negative numbers
reach values of order 10�4. The unstable behaviour is therefore less severe than with the initial condition
with exponential profile in b. The origin of the negative numbers was traced to the same point as in the
previous case.
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Figure 5.6: Dipole scattering amplitudes as a result of the evolution with the first line of Eq. (5.1) with
the non-resummed kernel Ka, given by Eq. (3.18), from an initial condition flat in b, showed for a fixed
value of bxy (left panel) and for a fixed value of rxy (right panel).

When performing the same test with the flat profile in b, but this time using the full NLO BK equation,
it can be seen from the plots in Fig. 5.7 that the evolution is significantly suppressed by the inclusion
of the two purely NLO integrals in Eq. (5.1), e.g. the right plot shows a suppression by approximately
30 % for rxy = 1 GeV�1 at rapidity Y = 10. A similar behaviour as in calculation with the flat profile
in bxy combined with the LO-type integral is observed, however the appearance of negative values and
their influence within the evolution is much more severe. Negative numbers of order 10�12 – 10�10

appear immediately after the first step in rapidity for all values of bxy and for small values of rxy. With
increasing Y , negative numbers spread to larger dipole sizes up to rxy = 0.1 GeV�1 and reach the order
10�3 at this value of dipole size.

To summarise, the evolution with the flat profile in bxy exhibits the same behaviour as the other
b-independent calculations. With increasing rapidity, the wave front shifts towards lower rxy, giving
small dipoles more probability to interact, and N ! 1 for large dipoles, see Figure 5.6. With the initial
condition which has an exponential profile in b and gives a suppression of dipoles with large rxy and bxy, it
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Figure 5.7: Dipole scattering amplitudes as a result of the full NLO b-BK evolution with the non-
resummed kernel Ka, given by Eq. (3.18), from an initial condition flat in b, showed for a fixed value of
bxy (left panel) and for a fixed value of rxy (right panel).

can be seen that the probability of interaction for large dipoles increases with rapidity when the evolution
is done using only the LO-type integral, and the wavefront at intermediate rxy moves towards lower rxy,
see Figure 5.4. However, the purely NLO integrals subtract a considerable part of the amplitude from
the LO-type part, which slows the shift of the wavefront at intermediate rxy, see Figure 5.2. Moreover,
they cause a sudden drop of N to negative values at large rxy and bxy due to the amplified propagation of
instabilities appearing at the beginning of the evolution.

5.3 Numerical results with the resummed NLO BK

Numerical solutions to the NLO BK equation (5.1) show instabilities due to the appearance of neg-
ative values at small rxy at the beginning of the evolution. For the solutions independent on the impact
parameter, it was proposed in Ref. [27] that resummations to the kernel Ka resulting in the form of ker-
nel given by Eq. (3.21) and denoted as K1 can cure the instability problem. Therefore, I decided to
investigate the e↵ect of the resummed kernel K1 on the numerical solution to the b-dependent NLO BK
equation (5.1) evolved from the initial condition in the form given by Eq. (3.26).

However, even initial steps of the evolution of the full NLO b-BK equation with the resummed kernel
K1 cast a warning that the problem of instability may not be solved in the b-dependent case. Although
the calculation gives suppression at large rxy and bxy inherited from the initial condition (as can be seen
from the left part of Tab. 5.1 for rapidity Y = 0.05) the amplitude is flipped to small negative values in
some configurations. After approximately 10 steps in rapidity, the amplitude attains values N > 1 and
after few additional steps, the whole calculation diverges, giving large positive and negative values of N,
see right part of Tab. 5.1 for several configurations at Y = 1. The calculation is therefore wildly unstable
and gives nonphysical values of N.

Using a flat profile in the impact parameter dependence of the initial condition (3.26) yields a result
similar to the corresponding case with the NLO b-BK equation without resummations to the kernel Ka,
as can be seen from Fig. 5.8. Evolution again seems to give reasonable results, however some small
negative values of the amplitude of order 10�13 – 10�10 appear for few points at small-rxy and for all bxy
at the same time. The propagation of negative values is less dramatic than in previous cases; the negative
values remain restricted to the low rxy region and reach the order 10�8 at Y = 10. No amplitudes with
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Y = 0.05 Y = 1

rxy = 10�6 rxy = 1 rxy = 100 rxy = 10�6 rxy = 1 rxy = 100

b = 10�6 3.2809e-09 0.11319 �1.9367e-07 �109.69 �3801.03 �4.5858e+11

b = 1 2.8940e-09 0.09777 �1.0667e-07 �109.69 �3865.78 �4.6134e+11

b = 100 3.0988e-31 �4.20098e-27 �1.7152e-08 �6188.17 �1.025e+07 �2.3952e+11

Table 5.1: Evolution to Y = 0.05 (left part) and to Y = 1 (right part) of the full NLO b-BK equation (5.1)
with the the kernel K1, given by Eq. (3.21), and using the b-dependent initial condition from Eq. (3.26).
The values of rxy and bxy are in [GeV�1].

2−10 1−10 1 10 210

]-1 [GeVxyr

0

0.2

0.4

0.6

0.8

1

,Y
)

-1
 =

 1
 G

e
V

xy
,b

xy
(r

p
N

Y = 0

Y = 1

Y = 5

Y = 10

6−10 5−10 4−10 3−10 2−10 1−10 1 10 210

]-1 [GeVxyb

5−10

4−10

3−10

2−10

1−10

1
,Y

)
xy

,b
-1

 =
 1

 G
e
V

xy
(r

p
N

Y = 0

Y = 1

Y = 5

Y = 10

Figure 5.8: Dipole scattering amplitudes as a result of the full NLO b-BK evolution with the resummed
kernel K1, given by Eq. (3.21), from an initial condition flat in b, showed for a fixed value of bxy (left
panel) and for a fixed value of rxy (right panel).

values N > 1 were observed with this setup. Even more appealing is the observation that when only the
LO-type integral with kernel K1 and a flat profile in bxy is used, not only the amplitude does not evolve
any N > 1, but also no negative values are present up to rapidity Y = 10 at all and the calculation seems
to be stable, in accordance with the conclusions of Ref. [27].

Moreover, it can be seen from the comparison of Figs. 5.7 and 5.8 that with the same set-up, the full
NLO equation with the resummed kernel K1 gives amplitudes by approx. 30 % larger than for the case
where kernel Ka without resummations is used. Which is an interesting observation when confronted
with the comparison between the running coupling and collinearly-improved BK equations, where a
slower evolution for the kernel containing resummations was observed, see Fig. 3.5 in this thesis for the
b-independent solutions and Fig. 1 in Ref. [28] for the b-dependent solutions.

Influence of the kernel K1 to the instability of the b-dependent calculation

By evolving only the first line of Eq. (5.1) with the kernel K1, the contribution from the purely NLO
integrals can be estimated. It can also be used to study the influence of individual parts of the kernel K1 on
the calculation with the exponential impact-parameter profile in the initial condition given by Eq. (3.26).
The left part of Tab. 5.2 again shows dipole amplitudes after the first step in rapidity at Y = 0.05 for
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Y = 0.05 Y = 1

rxy = 10�6 rxy = 1 rxy = 100 rxy = 10�6 rxy = 1 rxy = 100

b = 10�6 1.29438e-13 0.113503 0 2.68012e-13 0.134499 1.9412e+09

b = 1 1.10916e-13 0.098074 0 2.30354e-13 0.117322 17.8086

b = 100 0 0 0 �1.62449e-13 �0.533595 32314.3

Table 5.2: Evolution to Y = 0.05 (left part) and to Y = 1 (right part) of the first LO-type term from
Eq. (5.1) with the kernel K1, given by Eq. (3.21), and using the b-dependent initial condition from
Eq. (3.26). The values of rxy and bxy are in [GeV�1].

several combinations of rxy and bxy, this time for the evolution using the LO-type integral with kernel K1.
These results seem reasonable, no negative values are observed and the amplitude is suppressed for large
dipoles at large impact parameters. This again shows that the NLO integrals indeed subtract a substantial
part of the amplitude (compare to Tab. 5.1), which may send it to negative values. Moreover, it suggests
that for the NLO BK with the impact-parameter dependence, these resummations may not be a solution
for its instability. Substantial negative values suddenly appear after approximately 10 steps in rapidity in
the region of low bxy for large rxy, specifically for rxy = 100 GeV�1 which is at the border of the array.
These negative values emerge from a previously reasonable value of N ⇠ 10�1 and in the following step,
they cause N to be substantially larger than 1. Subsequently, negative values develop towards the whole
large-bxy region, where they start to occupy the whole range of rxy and cause the calculation to diverge for
rapidities Y > 1 in regions where the amplitudes were initially suppressed, see the right part of Tab. 5.2.
These negative values seem to originate in the combined region of small-bxy and large-rxy, where the
previously mentioned situation of the kernel reaching large positive values and a combination with the
dipole amplitudes being a small negative value occurs. A problem with the resummed kernel now is,
that its value in these cases is a very large number, which turns even a very small negative number into
a substantial negative contribution which propagates through the calculation. A typical configuration,
for which the above situation appears, is when either both daughter dipole amplitudes are zero, or Nzy is
much smaller than both Nxz and Nxy and at the same time, Nxy > Nxz.

Since the resummed kernel consists of several parts with di↵erent dependencies on the given dipole
sizes, I decided to investigate the influence of the parts of kernel K1 on the instability behaviour reported
above. An interesting point here is that when using the collinearly-improved kernel within the LO BK
equation with the b-dependence, given by Eq. (3.25), these instability problems were not observed. Since
the kernel K1 has partially similar structure to the collinearly-improved kernel, it is important to identify
the part which causes the unstable evolution. Here, an inspection of the values of Kci in Eq. (3.13) showed
that Kci = 0 at several places where problematic configurations appear and moreover, Kci gives smaller
values than K1 in other potentially problematic regions, see Fig. 5.9 for a situation where the product of
kernel with the combination of dipole amplitudes is less than zero.

Also, there is a significant di↵erence in the extent of instabilities between the non-resummed kernel
Ka (3.18) and the resummed one. In the first case, the negative values were small, with the most prob-
lematic values around ⇠ �10�2 at Y = 10. However with the resummed kernel, the calculation starts to
diverge at very small rapidities Y < 1. This can be again traced to the problematic configurations where
K1 reaches substantially larger values than Ka and causes a large (negative) weight being given to this
configuration. In Table 5.3, dipole amplitudes resulting from using di↵erent kernels in the first line of
equation (5.1) are compared for one of the problematic points: bxy = 10�6 GeV�1 and rxy = 100 GeV�1.
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Figure 5.9: Comparison between the collinearly-improved kernel (left plot) and the kernel K1 (right plot)
for a situation where the integrand of the first line of E. (5.1) is less than zero.

N(Kci) N(Ka) N(K1)

Y = 0.55 8.89368e-04 7.06418e-03 �0.838303

Table 5.3: Values of the dipole amplitude N(Y, rxy, bxy) resulting from using three di↵erent kernels in the
first line of Eq. (5.1) for configuration bxy = 10�6 GeV�1 and rxy = 100 GeV�1.

A substantial contribution to kernel K1 comes from the Ksub and Kfin parts, given by Eqs. (3.23) and
(3.24), respectively. Indeed if these two terms are excluded from the kernel K1 and the LO-type integral
from Eq. (5.1) is evolved using the exponential initial condition in b, given by Eq. (3.26), a reasonably
looking result is obtained. As can be seen from the values in Tab. 5.4, large bxy and rxy configurations are
suppressed both at the beginning and through the evolution. Although some small negative values still
appear for large bxy, in general, no divergent behaviour with N > 1 was observed up to rapidity Y = 10.

Y = 0.05 Y = 1

rxy = 10�6 rxy = 1 rxy = 100 rxy = 10�6 rxy = 1 rxy = 100

b = 10�6 1.25131e-13 0.113195 0 1.48481e-13 0.12778 2.4749e-04

b = 1 1.07206e-13 0.097787 0 1.27199e-13 0.11098 2.4228e-04

b = 100 0 0 0 1.36710e-24 �1.04512e-11 6.6048e-05

Table 5.4: Evolution to Y = 0.05 (left part) and to Y = 1 (right part) of the first (LO-type) term of
Eq. (5.1) with the first term of kernel K1 in Eq. (3.21), i.e. KrcKSTLKDLA, and using the b-dependent
initial condition from Eq. (3.26). The values of rxy and bxy are in [GeV�1].

Since the terms of the Kfin part are also present in the non-resummed kernel Ka (3.18), the problematic
case can be potentially narrowed to the term Ksub. Indeed when using the kernel K1 with the combined
first and third term, i.e. KrcKSTLKDLA + Kfin, no values of N > 1 appear up to rapidity Y = 10 and
moreover, no negative numbers emerge within the evolution up to this rapidity. A comparison of the
values of the dipole amplitude at two di↵erent rapidities is summarised in Tab. 5.5. It can be seen that
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large bxy and rxy configurations are suppressed, as expected. Moreover, the Kfin part gives a substantial
positive contribution to the kernel and consequently, the amplitudes are by two orders of magnitude
larger than in the previous case where only the term KrcKSTLKDLA was used.

Y = 0.05 Y = 1

rxy = 10�6 rxy = 1 rxy = 100 rxy = 10�6 rxy = 1 rxy = 100

b = 10�6 1.25306e-13 0.113301 0 1.52763e-13 0.130001 0.015672

b = 1 1.07357e-13 0.097883 0 1.30878e-13 0.113021 0.015479

b = 100 0 0 0 3.43794e-22 3.20996e-09 0.00330033

Table 5.5: Evolution to Y = 0.05 (left part) and to Y = 1 (right part) of the first (LO-type) term of Eq. (5.1)
with the first term of kernel K1 in Eq. (3.21), i.e. KrcKSTLKDLA + Kfin, and using the b-dependent initial
condition from Eq. (3.26). The values of rxy and bxy are in [GeV�1].

It is apparent from the comparison of Tabs. 5.2 and 5.5 that adding the Ksub term into the picture gives
additional contribution which causes the calculation to diverge. Even though this term has a negative sign
in the formula (3.21), as it should subtract some part of the kernel after the resummations to the whole
NLO BK equation (for details see Ref. [27]), the value of Eq. (3.23) is negative by itself. This means that
the contribution from Ksub to K1 is in overall a large positive number. Since this term was not present
in the collinearly-improved kernel given by Eq. (3.13), which was successfully combined with the initial
condition given by Eq. (3.26) in Ref. [28,29], it can be concluded that its contribution to the whole NLO
BK equation (5.1) is incompatible with the initial condition exponential in impact parameter in the form
of Eq. (3.26).

5.4 Summary

To conclude, the evolution using the non-resummed version of the NLO BK with impact-parameter
dependence shows an instability of the calculation. Tests with a uniform profile in b confirm the ob-
servation of Ref. [26] that small negative values of the dipole amplitude appear in the small-rxy region.
These negative values then propagate towards larger dipole sizes and moreover, the purely NLO integrals
provide further suppression of the evolution to the extent that they significantly amplify the evolution of
the instabilities. The origin of the negative values was traced to configurations where the kernel is a sig-
nificantly positive number and the combination of amplitudes on the r.h.s. gives small negative values.
Regions where the values of kernels are negative seem not to be the main source of the problem, however
they can further amplify the unstable behaviour.

Following the restoration of the evolution stability for the b-independent scenario reported in Ref. [27],
the evolution using the resummed version of the NLO BK equation with impact-parameter dependence
was studied. It was observed that both full and LO-type equations evolved from the initial condition
exponential in impact-parameter dependence develop substantial negative values of N. They then prop-
agate through the evolution and cause the calculation to diverge after few steps in rapidity. Tests with
the LO-type integral show that the term Ksub gives the decisive contribution to this behaviour. Without
this term in kernel K1, no divergence with N > 1 is present and moreover, using the combined terms
KrcKSTLKDLA + Kfin gives no negative values of amplitude at all. The calculation using a flat profile
in the impact parameter brings a stable evolution of the dipole amplitude, as no negative values are ob-
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served when using the LO-type integral and only negligible negative numbers appear when the purely
NLO contributions are added. This leads to the conclusion that an initial condition in the form given by
Eq. (3.26) is incompatible with the NLO BK equation in its current form Refs. [26,27], especially with its
resummed version. Including the angle between (bxy, rxy) explicitly into the definition of bqi (3.28) and
changing its value from 0 to ⇡/2 did not make any significant di↵erence, it just delayed the occurrence
of the problem by several steps in rapidity. Eventually, the same problems with the divergent behaviour
appeared. Using a di↵erent form of the initial condition which also contained an exponential fall-o↵ at
large-bxy, but with a di↵erent magnitude, gave the same outcome.

In agreement with the results of Refs. [26,27], a suppression of the speed of the evolution is observed
when the full NLO BK is used, compared to the evolution with only the LO-type integral. This was
observed among all studied cases. When using a flat profile in the impact parameter, the resummed
NLO BK equation gave dipole amplitudes larger by approx. 30 % compared to the equation without
resummations. Moreover, a shift of the wavefront towards small rxy is observed for the case of a uniform
profile in the impact parameter, just as in previous b-independent calculations.
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Conclusions

This work was devoted to studying the hadronic structure at low-x within the colour dipole formal-
ism, with emphasis on the Balitsky–Kovchegov equation as a tool to obtain the dipole-hadron scattering
amplitude. The structure of hadrons, of which the proton is the most prominent representative, has been
extensively studied in deeply inelastic scattering at HERA in the past, as described in Chapter 1. I pre-
sented an overview on the conclusions coming from the DIS measurements, the evolution of the proton
structure in the high-energy regime, and the dipole model as a tool to describe DIS and other QCD pro-
cesses at low-x. Thanks to the vast amount of DIS data spanning over several orders of magnitudes of
the photon virtuality Q2 and Bjorken-x [47–49], we have a good understanding of the evolution of parton
densities with increasing Q2 via the DGLAP evolution equations. However, the nature of the evolution
of parton densities at very low Bjorken-x, specifically that of the gluon distribution, still remains an open
question. It is expected that the gluon density grows with decreasing x as more gluons are being radi-
ated. However, at a fixed scale of the process, individual gluons span over the same transverse area in the
proton and therefore at some point, it is expected that they start to overlap and recombine together as a
result. This marks the onset of saturation e↵ects which result in a dynamical balance between the gluon
emission and recombination when the proton reaches the dense state. The Balitsky–Kovchegov equation
describes dressing of an initially bare qq̄ dipole with gluons and therefore, it gives the non-linear evolu-
tion of parton densities in the low-x regime. As a result of the interaction between the dressed dipole and
the hadron, the evolved structure of the dipole can be included into the wave function of the hadron, and
therefore, we can obtain information about the evolution of its gluonic structure in the transverse plane.

Since obtaining the full dipole scattering amplitude from the BK equation is an enormous task as
it has to be solved numerically, several approximations have been used in QCD phenomenology. First
successful numerical studies of inclusive observables [19, 20] have approximated the proton as an in-
finite homogeneous target, thus factorising out any impact-parameter dependence of the dipole-target
amplitude into a separate numerical parameter obtained from a fit to data. Another possible approach,
described in Chapter 2, is to include the dependence of the amplitude on the impact parameter into a func-
tion which describes the proton profile in the transverse plane. The dipole amplitude can be then obtained
as a solution to the one-dimensional BK equation (as described in Sec. 3.1) or from a phenomenological
model (see Sec. 1.3.1). This allows us to study the shape and distribution of partons in the transverse
plane. I studied the gluonic fluctuations of the transverse proton structure within the hot-spot model and
I presented my results for predictions of exclusive and dissociative production of vector mesons. It has
been shown in previous works that, within this formalism, one needs to include fluctuations in order to
correctly describe HERA data on the later case [99]. Since the dissociative cross section is given as the
variance over the di↵erent proton configurations within the Good-Walker approach [97,98], it was shown
in Ref. [34] that the resulting cross section as a function of energy presents a maximum after which it de-
creases as the hot spots overlap and the di↵erent configurations starts to look alike. This allows to study
the e↵ect we call geometrical saturation and I have presented predictions for its onset in the production
of various vector mesons and the possibility to measure this phenomenon at future electron-ion collid-
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ers [10, 11]. This extensive set of predictions was published in Ref. [37] and I presented an overview of
its main results and their interpretation in Chapter 2.

Chapter 3 was fully devoted to the BK equation and the choices one can make in order to calcu-
late the dipole scattering amplitude from its simplest approximation described above, towards including
more dimensions into the problem, and also extending the calculation to higher order accuracy. I pre-
sented a review of the numerical solutions to the BK equation from its LO version under the approxi-
mation of an infinite homogeneous target, through including higher-order corrections, and towards the
one-dimensional BK equation at next-to-leading accuracy. Moreover, I included a review of the recent
solutions of the leading-order BK equation with an explicit dependence on the impact parameter, which
generalises the dipole amplitude to the case of a finite target. In Ref. [28], it has been shown that the
collinearly-improved kernel (which imposes a life-time ordering of daughter dipole emissions) together
with a new form of the initial condition suppress the so-called Coulomb tails — an unphysical growth
of the scattering amplitude at large impact parameters. This new approach to solve the impact-parameter
dependent BK equation at leading order accuracy including some of the higher order contributions within
the collinearly-improved kernel allowed for a correct description of both inclusive and exclusive observ-
ables [29] without any additional parameters or modifications. This approach has also been extended
to the nuclear case [30], providing two approaches to obtain the dipole-nucleus scattering amplitude:
(i) coupling of the BK solution for the proton case to a Glauber-Gribov approach to model the nuclear
interactions, or (ii) to obtain the dipole-nucleus amplitude directly from the BK evolution from the initial
conditions which represents the specific nucleus.

Using these impact-parameter dependent dipole amplitudes, I was able to obtain a good description
of data for several QCD processes and also to provide predictions for future measurements expected at
LHC, EIC, and LHeC. These results were published in papers [29, 31–33] and I provided their sum-
mary in Chapter 4. As the case of the inclusive DIS with protons and nuclei was studied in previous
works [29, 30], I presented the results which are devoted to study the relevant di↵ractive processes.
It is shown that the b-BK model can correctly describe various sets of data coming from HERA and
LHC experiments for the three studied processes: di↵ractive DIS, deeply virtual Compton scattering,
and exclusive production of vector mesons. Also, it was confirmed that the predictions for the ratio of
di↵ractive events within the total cross section are in agreement with previous phenomenological calcu-
lations. I also summarised predictions for the proton and nuclear di↵ractive structure functions which
are expected to be measured at future electron-ion colliders. The comparison of the predictions using
the b-BK evolution to those obtained using other CGC-inspired models shows a di↵erent behaviour of
predictions for the individual contributions to the nuclear FD

2 . Moreover, the predictions show that its
gluon component is substantially suppressed with increasing atomic number A. For the DVCS process,
I summarised predictions for its cross section at energies expected to be measured at the EIC and at the
LHeC. It is expected that in the future experiments, the |t|-distribution of the DVCS cross section will
be measured to an yet unexplored area of large momenta transfers in the ep collisions and that it will
be measured in eA collisions for the first time. As various models predict di↵erent magnitudes of the
cross section and positions of di↵ractive minima, it is expected that such measurements could distinguish
among di↵erent approaches to modelling the proton and nuclear dipole amplitudes. Moreover, the exclu-
sive processes such as DVCS and production of vector mesons are expected to be directly sensitive to the
distribution of gluons. Constraining the description of exclusive processes by phenomenological models
could therefore allow us to directly access and study gluon distributions in the transverse plane. I con-
clude the summary of my results with the predictions for the production of vector mesons o↵ protons and
nuclei. The proton case shows a good description of available data on cross sections for production of
various mesons such as J/ , � or ⌥. For the nuclear case, a comparison to the LHC data on the coherent
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J/ photoproduction in ultraperipheral Pb–Pb collisions is presented. It can be observed that although
the comparison between the Run 1 and Run 2 data for the rapidity distribution of the J/ cross section
does not provide a clear preference for any of the two nuclear BK approaches, the latest data on the first
measurement of the coherent J/ |t|-distribution presents a nice agreement with the evolution from a
nuclear initial condition (b-BK-A approach). I also showed predictions for the energy and |t|-dependence
of the cross section which are expected to be measured in future experiments and it is concluded that the
two nuclear approaches yield significantly distinct results, which notably di↵er with increasing energy
of the process. It is therefore expected that future measurements of the discussed QCD observables will
provide better understanding of the underlying QCD dynamics of the proton and nuclear structure and
its description by various dipole models and as a result, it will allow us to study the nature of saturation
phenomena.

In the last chapter of this thesis, I presented my work on the numerical solution to the impact-
parameter Balitsky–Kovchegov equation at next-to-leading order accuracy. This project aimed to con-
nect the two directions of the numerical solutions to the BK equation: higher order accuracy and the
two-dimensional solutions. For this purpose, I derived the formulas for the impact-parameter dependent
geometry of the problem for the NLO dipole emissions. I calculated the impact-parameter independent
numerical solution of the NLO BK equation and conclude that the results presented in Sec. 3.2 are in
accordance with those in Refs. [26, 27]. Subsequently, I implemented the impact-parameter dependent
geometry into the calculation. I obtained the numerical solutions for the b-dependent mean-field approx-
imation of the NLO BK equation (5.1). First, I used the equation from Ref. [26], confirming that the
b-dependent calculation su↵ers from the numerical instabilities in a similar manner as the b-independent
calculation and that the NLO integrals provide a substantial subtraction from the dipole amplitude. Sub-
sequently, I implemented the resummed version of the NLO BK equation from Ref. [27]. The observation
from the b-dependent solutions of the resummed NLO BK is that the calculation diverges after several
steps in rapidity as a result of development of large negative values of the amplitude. Tests with the indi-
vidual contributions to the equation showed that the problematic contribution comes from the Ksub part
of the K1 kernel given by Eq. (3.21). From additional tests using the flat profile in impact parameter and
other modifications to the initial condition from Eq. (3.26), I conclude that the form of the initial con-
dition with the exponential profile in b seems to be incapable in providing physically reasonable results
from the numerical solutions to the full NLO BK equation in its current form.

77



78



Bibliography

[1] M. Gell-Mann, “A Schematic Model of Baryons and Mesons,” Phys. Lett., vol. 8, pp. 214–215,
1964.

[2] G. Zweig, An SU(3) model for strong interaction symmetry and its breaking. Version 2, pp. 22–
101. 2 1964.

[3] V. Gribov and L. Lipatov, “Deep inelastic e p scattering in perturbation theory,” Sov. J. Nucl. Phys.,
vol. 15, pp. 438–450, 1972.

[4] G. Altarelli and G. Parisi, “Asymptotic Freedom in Parton Language,” Nucl. Phys. B, vol. 126,
pp. 298–318, 1977.

[5] Y. L. Dokshitzer, “Calculation of the Structure Functions for Deep Inelastic Scattering and e+ e-
Annihilation by Perturbation Theory in Quantum Chromodynamics.,” Sov. Phys. JETP, vol. 46,
pp. 641–653, 1977.

[6] E. A. Kuraev, L. N. Lipatov, and V. S. Fadin, “The Pomeranchuk Singularity in Nonabelian Gauge
Theories,” Sov. Phys. JETP, vol. 45, pp. 199–204, 1977. [Zh. Eksp. Teor. Fiz.72,377(1977)].

[7] I. I. Balitsky and L. N. Lipatov, “The Pomeranchuk Singularity in Quantum Chromodynamics,”
Sov. J. Nucl. Phys., vol. 28, pp. 822–829, 1978. [Yad. Fiz.28,1597(1978)].

[8] M. Froissart, “Asymptotic behavior and subtractions in the Mandelstam representation,” Phys.
Rev., vol. 123, pp. 1053–1057, 1961.

[9] A. Martin, “Unitarity and high-energy behavior of scattering amplitudes,” Phys. Rev., vol. 129,
pp. 1432–1436, 1963.

[10] A. Accardi et al., “Electron Ion Collider: The Next QCD Frontier,” Eur. Phys. J., vol. A52, no. 9,
p. 268, 2016.

[11] J. Abelleira Fernandez et al., “A Large Hadron Electron Collider at CERN: Report on the Physics
and Design Concepts for Machine and Detector,” J.Phys., vol. G39, p. 075001, 2012.

[12] I. Balitsky, “Operator expansion for high-energy scattering,” Nucl. Phys., vol. B463, pp. 99–160,
1996.

[13] Y. V. Kovchegov, “Small x F(2) structure function of a nucleus including multiple pomeron ex-
changes,” Phys. Rev., vol. D60, p. 034008, 1999.

[14] Y. V. Kovchegov, “Unitarization of the BFKL pomeron on a nucleus,” Phys. Rev., vol. D61,
p. 074018, 2000.

79



[15] A. H. Mueller, “Small x Behavior and Parton Saturation: A QCD Model,” Nucl.Phys., vol. B335,
p. 115, 1990.

[16] A. H. Mueller, “Soft gluons in the infinite momentum wave function and the BFKL pomeron,”
Nucl. Phys., vol. B415, pp. 373–385, 1994.

[17] A. H. Mueller and B. Patel, “Single and double BFKL pomeron exchange and a dipole picture of
high-energy hard processes,” Nucl. Phys., vol. B425, pp. 471–488, 1994.

[18] N. N. Nikolaev and B. Zakharov, “Color transparency and scaling properties of nuclear shadowing
in deep inelastic scattering,” Z.Phys., vol. C49, pp. 607–618, 1991.

[19] J. L. Albacete, N. Armesto, J. G. Milhano, C. A. Salgado, and U. A. Wiedemann, “Numerical
analysis of the Balitsky-Kovchegov equation with running coupling: Dependence of the saturation
scale on nuclear size and rapidity,” Phys. Rev., vol. D71, p. 014003, 2005.

[20] J. L. Albacete, N. Armesto, J. G. Milhano, and C. A. Salgado, “Non-linear QCD meets data:
A Global analysis of lepton-proton scattering with running coupling BK evolution,” Phys. Rev.,
vol. D80, p. 034031, 2009.

[21] J. L. Albacete, N. Armesto, J. G. Milhano, P. Quiroga-Arias, and C. A. Salgado, “AAMQS: A
non-linear QCD analysis of new HERA data at small-x including heavy quarks,” Eur. Phys. J.,
vol. C71, p. 1705, 2011.

[22] I. Balitsky and G. A. Chirilli, “NLO evolution of color dipoles in N=4 SYM,” Nucl.Phys.,
vol. B822, pp. 45–87, 2009.

[23] E. Iancu, J. D. Madrigal, A. H. Mueller, G. Soyez, and D. N. Triantafyllopoulos, “Collinearly-
improved BK evolution meets the HERA data,” Phys. Lett., vol. B750, pp. 643–652, 2015.

[24] B. Ducloue, E. Iancu, A. H. Mueller, G. Soyez, and D. N. Triantafyllopoulos, “Non-linear evolu-
tion in QCD at high-energy beyond leading order,” JHEP, vol. 04, p. 081, 2019.

[25] G. Beuf, H. Hänninen, T. Lappi, and H. Mäntysaari, “Color Glass Condensate at next-to-leading
order meets HERA data,” Phys. Rev. D, vol. 102, p. 074028, 2020.

[26] T. Lappi and H. Mäntysaari, “Direct numerical solution of the coordinate space Balitsky-
Kovchegov equation at next to leading order,” Phys. Rev., vol. D91, no. 7, p. 074016, 2015.

[27] T. Lappi and H. Mantysaari, “Next-to-leading order Balitsky-Kovchegov equation with resumma-
tion,” Phys. Rev., vol. D93, no. 9, p. 094004, 2016.

[28] J. Cepila, J. G. Contreras, and M. Matas, “Collinearly improved kernel suppresses Coulomb tails
in the impact-parameter dependent Balitsky-Kovchegov evolution,” Phys. Rev., vol. D99, no. 5,
p. 051502, 2019.

[29] D. Bendova, J. Cepila, J. Contreras, and M. Matas, “Solution to the Balitsky-Kovchegov equa-
tion with the collinearly improved kernel including impact-parameter dependence,” Phys. Rev. D,
vol. 100, no. 5, p. 054015, 2019.

[30] J. Cepila, J. Contreras, and M. Matas, “Predictions for nuclear structure functions from the impact-
parameter dependent Balitsky-Kovchegov equation,” Phys. Rev. C, vol. 102, no. 4, p. 044318,
2020.

80



[31] D. Bendova, J. Cepila, J. G. Contreras, t. V. P. Gonçalves, and M. Matas, “Di↵ractive deeply
inelastic scattering in future electron-ion colliders,” Eur. Phys. J. C, vol. 81, no. 3, p. 211, 2021.

[32] D. Bendova, J. Cepila, J. G. Contreras, and M. Matas, “Photonuclear J/ production at the LHC:
Proton-based versus nuclear dipole scattering amplitudes,” Phys. Lett. B, vol. 817, p. 136306,
2021.

[33] D. Bendova, J. Cepila, V. P. Gonçalves, and C. R. Sena, “Deeply virtual Compton scattering at the
EIC and LHeC: a comparison among saturation approaches,” Eur. Phys. J. C, vol. 82, no. 2, p. 99,
2022.

[34] J. Cepila, J. G. Contreras, and J. D. Tapia Takaki, “Energy dependence of dissociative J/ pho-
toproduction as a signature of gluon saturation at the LHC,” Phys. Lett., vol. B766, pp. 186–191,
2017.

[35] J. Cepila, J. G. Contreras, and M. Krelina, “Coherent and incoherent J/ photonuclear production
in an energy-dependent hot-spot model,” Phys. Rev., vol. C97, no. 2, p. 024901, 2018.

[36] J. Cepila, J. Contreras, M. Krelina, and J. Tapia Takaki, “Mass dependence of vector meson pho-
toproduction o↵ protons and nuclei within the energy-dependent hot-spot model,” Nucl. Phys. B,
vol. 934, pp. 330–340, 2018.

[37] D. Bendova, J. Cepila, and J. G. Contreras, “Dissociative production of vector mesons at electron-
ion colliders,” Phys. Rev., vol. D99, no. 3, p. 034025, 2019.

[38] H. Mäntysaari and B. Schenke, “Revealing proton shape fluctuations with incoherent di↵raction
at high energy,” Phys. Rev. D, vol. 94, no. 3, p. 034042, 2016.

[39] H. Mäntysaari, “Review of proton and nuclear shape fluctuations at high energy,” Rept. Prog.
Phys., vol. 83, no. 8, p. 082201, 2020.

[40] E. D. Bloom et al., “High-Energy Inelastic e p Scattering at 6-Degrees and 10-Degrees,” Phys.
Rev. Lett., vol. 23, pp. 930–934, 1969.

[41] M. Breidenbach, J. I. Friedman, H. W. Kendall, E. D. Bloom, D. H. Coward, H. C. DeStaebler,
J. Drees, L. W. Mo, and R. E. Taylor, “Observed behavior of highly inelastic electron-proton
scattering,” Phys. Rev. Lett., vol. 23, pp. 935–939, 1969.

[42] R. P. Feynman, “Very high-energy collisions of hadrons,” Phys. Rev. Lett., vol. 23, pp. 1415–1417,
Dec 1969.

[43] J. D. Bjorken and E. A. Paschos, “Inelastic electron-proton and �-proton scattering and the struc-
ture of the nucleon,” Phys. Rev., vol. 185, pp. 1975–1982, Sep 1969.

[44] M. Derrick et al., “Measurement of the proton structure function F2 at low x and low q**2 at
HERA,” Z. Phys. C, vol. 69, pp. 607–620, 1996.

[45] S. Aid et al., “A Measurement and QCD analysis of the proton structure function f2 (x, q**2) at
HERA,” Nucl. Phys. B, vol. 470, pp. 3–40, 1996.

[46] S. Chekanov et al., “A ZEUS next-to-leading-order QCD analysis of data on deep inelastic scat-
tering,” Phys. Rev. D, vol. 67, p. 012007, 2003.

81



[47] F. D. Aaron et al., “Combined Measurement and QCD Analysis of the Inclusive e+- p Scattering
Cross Sections at HERA,” JHEP, vol. 01, p. 109, 2010.

[48] H. Abramowicz et al., “Combination of measurements of inclusive deep inelastic e±p scattering
cross sections and QCD analysis of HERA data,” Eur. Phys. J. C, vol. 75, no. 12, p. 580, 2015.

[49] H. Abramowicz et al., “Combination and QCD analysis of charm and beauty production cross-
section measurements in deep inelastic ep scattering at HERA,” Eur. Phys. J. C, vol. 78, no. 6,
p. 473, 2018.

[50] D. Bendova, “Study of hadron structure within quantum chromodynamics,” Master’s thesis, Czech
Technical University in Prague, 2018.

[51] F. Halzen and A. D. Martin, QUARKS AND LEPTONS: AN INTRODUCTORY COURSE IN MOD-
ERN PARTICLE PHYSICS. 1984.

[52] J. Chýla, Quarks, partons and Quantum Chromodynamics. textbook for lectures in Quantum
Chromodynamics, 2009.

[53] J. I. Friedman and H. W. Kendall, “Deep inelastic electron scattering,” Annual Review of Nuclear
Science, vol. 22, no. 1, pp. 203–254, 1972.

[54] C. G. Callan and D. J. Gross, “High-energy electroproduction and the constitution of the electric
current,” Phys. Rev. Lett., vol. 22, pp. 156–159, Jan 1969.

[55] A. Bodek, M. Breidenbach, D. L. Dubin, J. E. Elias, J. I. Friedman, H. W. Kendall, J. S. Poucher,
E. M. Riordan, M. R. Sogard, D. H. Coward, and D. J. Sherden, “Experimental studies of the
neutron and proton electromagnetic structure functions,” Phys. Rev. D, vol. 20, pp. 1471–1552,
Oct 1979.

[56] F. D. Aaron et al., “Measurement of the Proton Structure Function F(L)(x, Q**2) at Low x,” Phys.
Lett. B, vol. 665, pp. 139–146, 2008.

[57] S. Chekanov et al., “Measurement of the Longitudinal Proton Structure Function at HERA,” Phys.
Lett. B, vol. 682, pp. 8–22, 2009.

[58] P. Taels, Quantum chromodynamics at small Bjorken-x. PhD thesis, Antwerp U., Antwerp U.,
2017.

[59] Y. V. Kovchegov and E. Levin, Quantum chromodynamics at high energy, vol. 33. Cambridge
University Press, 8 2012.

[60] M. Kuhlen, “QCD at HERA: The hadronic final state in deep inelastic scattering,” Springer Tracts
Mod. Phys., vol. 150, pp. 1–172, 1999.

[61] L. D. McLerran and R. Venugopalan, “Computing quark and gluon distribution functions for very
large nuclei,” Phys. Rev. D, vol. 49, pp. 2233–2241, 1994.

[62] L. D. McLerran and R. Venugopalan, “Gluon distribution functions for very large nuclei at small
transverse momentum,” Phys. Rev. D, vol. 49, pp. 3352–3355, 1994.

[63] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, “The BFKL equation from the Wilson
renormalization group,” Nucl. Phys. B, vol. 504, pp. 415–431, 1997.

82



[64] J. Jalilian-Marian, A. Kovner, A. Leonidov, and H. Weigert, “The Wilson renormalization group
for low x physics: Towards the high density regime,” Phys. Rev., vol. D59, p. 014014, 1998.

[65] A. Kovner, J. Milhano, and H. Weigert, “Relating di↵erent approaches to nonlinear QCD evolution
at finite gluon density,” Phys. Rev. D, vol. 62, p. 114005, 2000.

[66] H. Weigert, “Unitarity at small Bjorken x,” Nucl. Phys., vol. A703, pp. 823–860, 2002.

[67] E. Iancu, A. Leonidov, and L. D. McLerran, “Nonlinear gluon evolution in the color glass con-
densate. I,” Nucl. Phys., vol. A692, pp. 583–645, 2001.

[68] E. Iancu, A. Leonidov, and L. D. McLerran, “The Renormalization group equation for the color
glass condensate,” Phys. Lett., vol. B510, pp. 133–144, 2001.

[69] E. Ferreiro, E. Iancu, A. Leonidov, and L. McLerran, “Nonlinear gluon evolution in the color glass
condensate. II,” Nucl. Phys., vol. A703, pp. 489–538, 2002.

[70] A. H. Mueller, “A Simple derivation of the JIMWLK equation,” Phys. Lett. B, vol. 523, pp. 243–
248, 2001.

[71] E. Iancu and R. Venugopalan, The Color glass condensate and high-energy scattering in QCD,
pp. 249–3363. 3 2003.

[72] F. Gelis, E. Iancu, J. Jalilian-Marian, and R. Venugopalan, “The Color Glass Condensate,” Ann.
Rev. Nucl. Part. Sci., vol. 60, pp. 463–489, 2010.

[73] J. L. Albacete and C. Marquet, “Gluon saturation and initial conditions for relativistic heavy ion
collisions,” Prog. Part. Nucl. Phys., vol. 76, pp. 1–42, 2014.

[74] K. J. Golec-Biernat and M. Wustho↵, “Saturation e↵ects in deep inelastic scattering at low Q**2
and its implications on di↵raction,” Phys. Rev., vol. D59, p. 014017, 1998.

[75] K. J. Golec-Biernat and M. Wustho↵, “Saturation in di↵ractive deep inelastic scattering,” Phys.
Rev., vol. D60, p. 114023, 1999.

[76] A. M. Stasto, K. J. Golec-Biernat, and J. Kwiecinski, “Geometric scaling for the total gamma* p
cross-section in the low x region,” Phys. Rev. Lett., vol. 86, pp. 596–599, 2001.

[77] A. Freund, K. Rummukainen, H. Weigert, and A. Schafer, “Geometric scaling in inclusive eA
reactions and nonlinear perturbative QCD,” Phys. Rev. Lett., vol. 90, p. 222002, 2003.

[78] J. Bartels, K. J. Golec-Biernat, and H. Kowalski, “A modification of the saturation model: DGLAP
evolution,” Phys. Rev. D, vol. 66, p. 014001, 2002.

[79] H. Kowalski and D. Teaney, “An Impact parameter dipole saturation model,” Phys. Rev., vol. D68,
p. 114005, 2003.

[80] A. H. Rezaeian, M. Siddikov, M. Van de Klundert, and R. Venugopalan, “Analysis of combined
HERA data in the Impact-Parameter dependent Saturation model,” Phys. Rev. D, vol. 87, no. 3,
p. 034002, 2013.

[81] H. Mantysaari and P. Zurita, “In depth analysis of the combined HERA data in the dipole models
with and without saturation,” Phys. Rev., vol. D98, p. 036002, 2018.

83



[82] B. Schenke, P. Tribedy, and R. Venugopalan, “Fluctuating Glasma initial conditions and flow in
heavy ion collisions,” Phys. Rev. Lett., vol. 108, p. 252301, 2012.

[83] B. Schenke, P. Tribedy, and R. Venugopalan, “Event-by-event gluon multiplicity, energy density,
and eccentricities in ultrarelativistic heavy-ion collisions,” Phys. Rev. C, vol. 86, p. 034908, 2012.

[84] E. Iancu, K. Itakura, and S. Munier, “Saturation and BFKL dynamics in the HERA data at small
x,” Phys. Lett., vol. B590, pp. 199–208, 2004.

[85] H. Kowalski, L. Motyka, and G. Watt, “Exclusive di↵ractive processes at HERA within the dipole
picture,” Phys. Rev., vol. D74, p. 074016, 2006.

[86] G. Watt and H. Kowalski, “Impact parameter dependent colour glass condensate dipole model,”
Phys. Rev., vol. D78, p. 014016, 2008.

[87] A. G. Shuvaev, K. J. Golec-Biernat, A. D. Martin, and M. G. Ryskin, “O↵ diagonal distributions
fixed by diagonal partons at small x and xi,” Phys. Rev., vol. D60, p. 014015, 1999.

[88] Y. Hatta, B.-W. Xiao, and F. Yuan, “Gluon Tomography from Deeply Virtual Compton Scattering
at Small-x,” Phys. Rev., vol. D95, no. 11, p. 114026, 2017.

[89] I. P. Ivanov, N. N. Nikolaev, and A. A. Savin, “Di↵ractive vector meson production at HERA:
From soft to hard QCD,” Phys. Part. Nucl., vol. 37, pp. 1–85, 2006.

[90] J. Bartels, K. J. Golec-Biernat, and K. Peters, “On the dipole picture in the nonforward direction,”
Acta Phys. Polon. B, vol. 34, pp. 3051–3068, 2003.

[91] J. Cepila, J. Nemchik, M. Krelina, and R. Pasechnik, “Theoretical uncertainties in exclusive elec-
troproduction of S-wave heavy quarkonia,” Eur. Phys. J. C, vol. 79, no. 6, p. 495, 2019.

[92] M. Krelina, J. Nemchik, R. Pasechnik, and J. Cepila, “Spin rotation e↵ects in di↵ractive electro-
production of heavy quarkonia,” Eur. Phys. J. C, vol. 79, no. 2, p. 154, 2019.

[93] J. Nemchik, N. N. Nikolaev, and B. G. Zakharov, “Scanning the BFKL pomeron in elastic pro-
duction of vector mesons at HERA,” Phys. Lett., vol. B341, pp. 228–237, 1994.

[94] J. Nemchik, N. N. Nikolaev, E. Predazzi, and B. G. Zakharov, “Color dipole phenomenology of
di↵ractive electroproduction of light vector mesons at HERA,” Z. Phys., vol. C75, pp. 71–87,
1997.

[95] J. R. Forshaw, R. Sandapen, and G. Shaw, “Color dipoles and rho, phi electroproduction,” Phys.
Rev., vol. D69, p. 094013, 2004.

[96] C. Patrignani et al., “Review of Particle Physics,” Chin. Phys., vol. C40, no. 10, p. 100001, 2016.

[97] M. L. Good and W. D. Walker, “Di↵raction disssociation of beam particles,” Phys. Rev., vol. 120,
pp. 1857–1860, 1960.

[98] H. I. Miettinen and J. Pumplin, “Di↵raction Scattering and the Parton Structure of Hadrons,” Phys.
Rev. D, vol. 18, p. 1696, 1978.

[99] H. Mantysaari and B. Schenke, “Evidence of strong proton shape fluctuations from incoherent
di↵raction,” Phys. Rev. Lett., vol. 117, no. 5, p. 052301, 2016.

84



[100] J. L. Albacete and A. Soto-Ontoso, “Hot spots and the hollowness of proton–proton interactions
at high energies,” Phys. Lett. B, vol. 770, pp. 149–153, 2017.

[101] A. Kumar and T. Toll, “Investigating the structure of gluon fluctuations in the proton with inco-
herent di↵raction at HERA,” Eur. Phys. J. C, vol. 82, no. 9, p. 837, 2022.

[102] H. Mäntysaari, B. Schenke, C. Shen, and P. Tribedy, “Imprints of fluctuating proton shapes on
flow in proton-lead collisions at the LHC,” Phys. Lett. B, vol. 772, pp. 681–686, 2017.

[103] J. Berger and A. Stasto, “Numerical solution of the nonlinear evolution equation at small x with
impact parameter and beyond the LL approximation,” Phys. Rev., vol. D83, p. 034015, 2011.

[104] J. Berger and A. M. Stasto, “Small x nonlinear evolution with impact parameter and the structure
function data,” Phys. Rev., vol. D84, p. 094022, 2011.

[105] F. D. Aaron et al., “Di↵ractive Electroproduction of rho and phi Mesons at HERA,” JHEP, vol. 05,
p. 032, 2010.

[106] S. Aid et al., “Elastic photoproduction of rho0 mesons at HERA,” Nucl. Phys. B, vol. 463, pp. 3–
32, 1996.

[107] C. Adlo↵ et al., “Proton dissociative ⇢ and elastic � electroproduction at HERA,” Z. Phys.,
vol. C75, pp. 607–618, 1997.

[108] F. D. Aaron et al., “Di↵ractive Electroproduction of rho and phi Mesons at HERA,” JHEP, vol. 05,
p. 032, 2010.

[109] J. Breitweg et al., “Elastic and proton dissociative ⇢0 photoproduction at HERA,” Eur. Phys. J. C,
vol. 2, pp. 247–267, 1998.

[110] S. Chekanov et al., “Exclusive rho0 production in deep inelastic scattering at HERA,” PMC Phys.,
vol. A1, p. 6, 2007.

[111] A. M. Sirunyan et al., “Measurement of exclusive ⇢(770)0 photoproduction in ultraperipheral pPb
collisions at

p
sNN = 5.02 TeV,” Eur. Phys. J. C, vol. 79, no. 8, p. 702, 2019.

[112] C. Alexa et al., “Elastic and Proton-Dissociative Photoproduction of J/psi Mesons at HERA,” Eur.
Phys. J., vol. C73, no. 6, p. 2466, 2013.

[113] B. B. Abelev et al., “Exclusive J/ photoproduction o↵ protons in ultra-peripheral p-Pb collisions
at
p

sNN = 5.02 TeV,” Phys. Rev. Lett., vol. 113, no. 23, p. 232504, 2014.

[114] S. Acharya et al., “Energy dependence of exclusive J/ photoproduction o↵ protons in ultra-
peripheral p?Pb collisions at

p
sNN = 5.02 TeV,” Eur. Phys. J., vol. C79, no. 5, p. 402, 2019.

[115] A. Aktas et al., “Elastic J/psi production at HERA,” Eur. Phys. J., vol. C46, pp. 585–603, 2006.

[116] V. Andreev et al., “Measurement of Exclusive ⇡+⇡� and ⇢0 Meson Photoproduction at HERA,”
Eur. Phys. J. C, vol. 80, no. 12, p. 1189, 2020.

[117] N. Armesto, M. A. Braun, E. G. Ferreiro, and C. Pajares, “Percolation approach to quark - gluon
plasma and J / psi suppression,” Phys. Rev. Lett., vol. 77, pp. 3736–3738, 1996.

85



[118] M. Lomnitz and S. Klein, “Exclusive vector meson production at an electron-ion collider,” Phys.
Rev. C, vol. 99, no. 1, p. 015203, 2019.

[119] R. Abdul Khalek et al., “Science Requirements and Detector Concepts for the Electron-Ion Col-
lider: EIC Yellow Report,” Nucl. Phys. A, vol. 1026, p. 122447, 2022.

[120] P. Agostini et al., “The Large Hadron–Electron Collider at the HL-LHC,” J. Phys. G, vol. 48,
no. 11, p. 110501, 2021.

[121] S. Klein et al., “New opportunities at the photon energy frontier,” 9 2020.

[122] C. Marquet and G. Soyez, “The Balitsky-Kovchegov equation in full momentum space,” Nucl.
Phys., vol. A760, pp. 208–222, 2005.

[123] A. Quarteroni, R. Sacco, and F. Saleri, Numerical Mathematics. Springer-Verlag New York, 2000.

[124] L. D. McLerran and R. Venugopalan, “Boost covariant gluon distributions in large nuclei,” Phys.
Lett., vol. B424, pp. 15–24, 1998.

[125] E. Iancu, K. Itakura, and L. McLerran, “Geometric scaling above the saturation scale,” Nucl. Phys.
A, vol. 708, pp. 327–352, 2002.

[126] A. Mueller and D. Triantafyllopoulos, “The Energy dependence of the saturation momentum,”
Nucl. Phys. B, vol. 640, pp. 331–350, 2002.

[127] J. L. Albacete and Y. V. Kovchegov, “Solving high energy evolution equation including running
coupling corrections,” Phys. Rev., vol. D75, p. 125021, 2007.

[128] K. J. Golec-Biernat, L. Motyka, and A. Stasto, “Di↵usion into infrared and unitarization of the
BFKL pomeron,” Phys. Rev. D, vol. 65, p. 074037, 2002.

[129] I. Balitsky, “Quark contribution to the small-x evolution of color dipole,” Phys. Rev., vol. D75,
p. 014001, 2007.

[130] E. Iancu, J. D. Madrigal, A. H. Mueller, G. Soyez, and D. N. Triantafyllopoulos, “Resumming
double logarithms in the QCD evolution of color dipoles,” Phys. Lett., vol. B744, pp. 293–302,
2015.

[131] A. Sabio Vera, “An ’All-poles’ approximation to collinear resummations in the Regge limit of
perturbative QCD,” Nucl. Phys. B, vol. 722, pp. 65–80, 2005.

[132] S. Munier and R. B. Peschanski, “Geometric scaling as traveling waves,” Phys. Rev. Lett., vol. 91,
p. 232001, 2003.

[133] S. Munier and R. B. Peschanski, “Traveling wave fronts and the transition to saturation,” Phys.
Rev. D, vol. 69, p. 034008, 2004.

[134] N. Armesto and M. Braun, “Parton densities and dipole cross-sections at small x in large nuclei,”
Eur. Phys. J. C, vol. 20, pp. 517–522, 2001.

[135] M. Lublinsky, “Scaling phenomena from nonlinear evolution in high-energy DIS,” Eur. Phys. J.
C, vol. 21, pp. 513–519, 2001.

86



[136] K. Rummukainen and H. Weigert, “Universal features of JIMWLK and BK evolution at small x,”
Nucl. Phys. A, vol. 739, pp. 183–226, 2004.

[137] I. Balitsky and G. A. Chirilli, “Next-to-leading order evolution of color dipoles,” Phys.Rev.,
vol. D77, p. 014019, 2008.

[138] I. O. Cherednikov, T. Mertens, and F. F. Van der Veken, Wilson lines in quantum field theory,
vol. 24. De Gruyter, 9 2014.

[139] Y. V. Kovchegov and H. Weigert, “Triumvirate of Running Couplings in Small-x Evolution,” Nucl.
Phys., vol. A784, pp. 188–226, 2007.

[140] I. Balitsky and A. V. Belitsky, “Nonlinear evolution in high density QCD,” Nucl. Phys. B, vol. 629,
pp. 290–322, 2002.

[141] T. Lappi and H. Mäntysaari, “Solving the NLO BK equation in coordinate space,” PoS,
vol. DIS2015, p. 080, 2015.

[142] K. J. Golec-Biernat and A. M. Stasto, “On solutions of the Balitsky-Kovchegov equation with
impact parameter,” Nucl. Phys., vol. B668, pp. 345–363, 2003.

[143] J. Berger and A. M. Stasto, “Exclusive vector meson production and small-x evolution,” JHEP,
vol. 1301, p. 001, 2013.

[144] C. Marquet, “A Unified description of di↵ractive deep inelastic scattering with saturation,” Phys.
Rev., vol. D76, p. 094017, 2007.

[145] N. Armesto, “A Simple model for nuclear structure functions at small x in the dipole picture,” Eur.
Phys. J., vol. C26, pp. 35–43, 2002.

[146] E. Cazaroto, F. Carvalho, V. Goncalves, and F. Navarra, “Could saturation e↵ects be visible in a
future electron-ion collider?,” Phys. Lett. B, vol. 671, pp. 233–239, 2009.

[147] C. Marquet, M. R. Moldes, and P. Zurita, “Unveiling saturation e↵ects from nuclear structure
function measurements at the EIC,” Phys. Lett. B, vol. 772, pp. 607–614, 2017.

[148] K. J. Eskola, P. Paakkinen, H. Paukkunen, and C. A. Salgado, “EPPS16: Nuclear parton distribu-
tions with LHC data,” Eur. Phys. J. C, vol. 77, no. 3, p. 163, 2017.

[149] M. Arneodo and M. Diehl, “Di↵raction for non-believers,” in HERA and the LHC: A Workshop
on the Implications of HERA and LHC Physics (Startup Meeting, CERN, 26-27 March 2004;
Midterm Meeting, CERN, 11-13 October 2004), pp. 425–446, 2005.

[150] A. Deshpande, R. Milner, R. Venugopalan, and W. Vogelsang, “Study of the fundamental structure
of matter with an electron-ion collider,” Ann. Rev. Nucl. Part. Sci., vol. 55, pp. 165–228, 2005.

[151] C. Royon and C. Baldenegro, “Di↵raction and photon exchange processes at the LHC and parton
saturation,” Int. J. Mod. Phys. A, vol. 35, no. 08, p. 2030004, 2020.

[152] H. Hänninen, Deep inelastic scattering in the dipole picture at next-to-leading order. PhD thesis,
Jyvaskyla U, Jyvaskyla U., 2021.

87



[153] H. Kowalski, T. Lappi, C. Marquet, and R. Venugopalan, “Nuclear enhancement and suppression
of di↵ractive structure functions at high energies,” Phys. Rev. C, vol. 78, p. 045201, 2008.

[154] G. Beuf, H. Hänninen, T. Lappi, Y. Mulian, and H. Mäntysaari, “Di↵ractive deep inelastic scatter-
ing at NLO in the dipole picture: The qqg contribution,” Phys. Rev. D, vol. 106, no. 9, p. 094014,
2022.

[155] M. S. Kugeratski, V. P. Goncalves, and F. S. Navarra, “Saturation in di↵ractive deep inelastic eA
scattering,” Eur. Phys. J. C, vol. 46, pp. 413–420, 2006.

[156] N. N. Nikolaev, W. Schafer, B. G. Zakharov, and V. R. Zoller, “Unitarity constraints for DIS o↵
nuclei: Predictions for electron-ion colliders,” JETP Lett., vol. 84, pp. 537–541, 2007.

[157] F. Aaron et al., “Inclusive Measurement of Di↵ractive Deep-Inelastic Scattering at HERA,” Eur.
Phys. J. C, vol. 72, p. 2074, 2012.

[158] F. D. Aaron et al., “Deeply Virtual Compton Scattering and its Beam Charge Asymmetry in e+-
Collisions at HERA,” Phys. Lett. B, vol. 681, pp. 391–399, 2009.

[159] A. H. Rezaeian and I. Schmidt, “Impact-parameter dependent Color Glass Condensate dipole
model and new combined HERA data,” Phys. Rev. D, vol. 88, p. 074016, 2013.

[160] M. G. Ryskin, “Di↵ractive J / psi electroproduction in LLA QCD,” Z. Phys., vol. C57, pp. 89–92,
1993.

[161] S. Chekanov et al., “Exclusive electroproduction of phi mesons at HERA,” Nucl. Phys., vol. B718,
pp. 3–31, 2005.

[162] C. Adlo↵ et al., “Elastic photoproduction of J / psi and Upsilon mesons at HERA,” Phys. Lett.,
vol. B483, pp. 23–35, 2000.

[163] S. Chekanov et al., “Exclusive photoproduction of upsilon mesons at HERA,” Phys. Lett.,
vol. B680, pp. 4–12, 2009.

[164] R. Aaij et al., “Measurement of the exclusive⌥ production cross-section in pp collisions at
p

s = 7
TeV and 8 TeV,” JHEP, vol. 09, p. 084, 2015.

[165] A. M. Sirunyan et al., “Measurement of exclusive ⌥ photoproduction from protons in pPb colli-
sions at

p
sNN = 5.02 TeV,” Eur. Phys. J., vol. C79, no. 3, p. 277, 2019.

[166] N. Armesto and A. H. Rezaeian, “Exclusive vector meson production at high energies and gluon
saturation,” Phys. Rev. D, vol. 90, no. 5, p. 054003, 2014.

[167] T. Toll and T. Ullrich, “Exclusive di↵ractive processes in electron-ion collisions,” Phys. Rev. C,
vol. 87, no. 2, p. 024913, 2013.

[168] J. G. Contreras, “Small x gluon shadowing from LHC data on coherent J/ photoproduction,”
Phys. Rev., vol. C96, no. 1, p. 015203, 2017.

[169] B. Abelev et al., “Coherent J/ photoproduction in ultra-peripheral Pb-Pb collisions at
p

sNN =

2.76 TeV,” Phys. Lett. B, vol. 718, pp. 1273–1283, 2013.

88



[170] E. Abbas et al., “Charmonium and e+e� pair photoproduction at mid-rapidity in ultra-peripheral
Pb-Pb collisions at

p
sNN=2.76 TeV,” Eur. Phys. J. C, vol. 73, no. 11, p. 2617, 2013.

[171] V. Khachatryan et al., “Coherent J/ photoproduction in ultra-peripheral PbPb collisions at
p

sNN = 2.76 TeV with the CMS experiment,” Phys. Lett. B, vol. 772, pp. 489–511, 2017.

[172] S. Acharya et al., “Coherent J/ photoproduction at forward rapidity in ultra-peripheral Pb-Pb
collisions at

p
sNN = 5.02 TeV,” Phys. Lett. B, vol. 798, p. 134926, 2019.

[173] A. Bursche, “Study of coherent J/ production in lead-lead collisions at
p

sNN = 5 TeV with the
LHCb experiment,” Nucl. Phys. A, vol. 982, pp. 247–250, 2019.

[174] S. Acharya et al., “First measurement of the |t|-dependence of coherent J/ photonuclear produc-
tion,” Phys. Lett. B, vol. 817, p. 136280, 2021.

[175] I. Balitsky and G. A. Chirilli, “Photon impact factor in the next-to-leading order,” Phys. Rev. D,
vol. 83, p. 031502, 2011.

[176] I. Balitsky and G. A. Chirilli, “Photon impact factor and kT -factorization for DIS in the next-to-
leading order,” Phys. Rev. D, vol. 87, no. 1, p. 014013, 2013.

[177] G. Beuf, “NLO corrections for the dipole factorization of DIS structure functions at low x,” Phys.
Rev. D, vol. 85, p. 034039, 2012.

[178] G. Beuf, “Dipole factorization for DIS at NLO: Loop correction to the �⇤T,L ! qq light-front wave
functions,” Phys. Rev. D, vol. 94, no. 5, p. 054016, 2016.

[179] G. Beuf, “Dipole factorization for DIS at NLO: Combining the qq̄ and qq̄g contributions,” Phys.
Rev., vol. D96, no. 7, p. 074033, 2017.

[180] H. Hanninen, T. Lappi, and R. Paatelainen, “One-loop corrections to light cone wave functions:
the dipole picture DIS cross section,” Annals Phys., vol. 393, pp. 358–412, 2018.

[181] B. Ducloue, H. Hanninen, T. Lappi, and Y. Zhu, “Deep inelastic scattering in the dipole picture at
next-to-leading order,” Phys. Rev., vol. D96, no. 9, p. 094017, 2017.

[182] G. Beuf, T. Lappi, and R. Paatelainen, “Massive Quarks at One Loop in the Dipole Picture of
Deep Inelastic Scattering,” Phys. Rev. Lett., vol. 129, no. 7, p. 072001, 2022.

[183] H. Mäntysaari and J. Penttala, “Complete calculation of exclusive heavy vector meson production
at next-to-leading order in the dipole picture,” JHEP, vol. 08, p. 247, 2022.

89



90



Appendix A

Selected publications

Papers

• D. Bendova, J. Cepila, and J. G. Contreras, “Dissociative production of vector mesons at electron-
ion colliders”, Phys. Rev., vol. D99, no. 3, p. 034025, 2019.
doi:10.1103/PhysRevD.99.034025; arxiv:1811.06479 [hep-ph]

• D. Bendova, J. Cepila, J. G. Contreras, and M. Matas, “Solution to the Balitsky-Kovchegov equa-
tion with the collinearly improved kernel including impact-parameter dependence”, Phys. Rev. D,
vol. 100, no. 5, p. 054015, 2019.
doi:10.1103/PhysRevD.100.054015; arXiv:1907.12123 [hep-ph]

• D. Bendova, J. Cepila, J. G. Contreras, V. Goncalves, and M. Matas, “Di↵ractive deeply inelastic
scattering in future electron-ion colliders”, Eur. Phys. J. C, vol. 81, no. 211, 2021.
doi:10.1140/epjc/s10052-021-09006-x; arXiv:2002.11056 [hep-ph]

• D. Bendova, J. Cepila, J. G. Contreras, and M. Matas, “Photonuclear J/ production at the LHC:
proton-based versus nuclear dipole scattering amplitudes”, Phys. Lett. B, vol. 817, p. 136306,
2021.
doi:10.1016/j.physletb.2021.136306; arXiv:2006.12980 [hep-ph]

• D. Bendova, J. Cepila, V. Goncalves, and C. R. Sena, "Deeply virtual Compton scattering at the
EIC and LHeC: a comparison among saturation approaches", Eur. Phys. J. C, vol. 82, no. 99,
2022.
doi:10.1140/epjc/s10052-022-10059-9; arXiv:2002.11056 [hep-ph]

Proceedings

• D. Bendova, J. Cepila, and J. G. Contreras, "Dissociative production of vector mesons within the
energy-dependent hot-spot model", PoS (EPS-HEP 2019) 472.

• D. Bendova, J. Cepila, and J. G. Contreras, "Dissociative production of vector mesons as a new
tool to study gluon saturation at electron-ion colliders", PoS (LC 2019) 025.

91



 

Dissociative production of vector mesons at electron-ion colliders

D. Bendova, J. Cepila, and J. G. Contreras
Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague,

Prague 11519, Czech Republic

(Received 4 December 2018; published 28 February 2019)

We present predictions for the exclusive and dissociative production of vector mesons off protons in an
electron-ion collider. The computation is based on the energy-dependent hot spot model that was shown to
successfully describe the available photoproduction data. We find that the model also describes correctly all
available electroproduction data. In addition, we find that the cross section for dissociative production as
a function of the center-of-mass energy of the photon-proton system has a maximum, whose position
depends on the virtuality of the photon and the mass of the vector meson. We use these maxima to define a
geometrical saturation scale and find that it grows linearly with energy as a function of the scale of the
process. This phenomenon can be studied at the proposed electron-ion colliders, JLEIC, eRHIC and LHeC.

DOI: 10.1103/PhysRevD.99.034025

I. INTRODUCTION

Within perturbative quantum chromodynamics (pQCD),
the structure of hadrons in terms of its constituent partons
evolves with energy or, equivalently, with Bjorken-x. Very
precise measurements of the F2ðx;Q2Þ structure function
of the proton performed at HERAwith photons of virtuality
Q2 indicate that the gluon density grows steeply for
decreasing x [1]. According to pQCD, this behavior
changes at some point where nonlinear effects start to be
important and the proton structure enters a regime known as
saturation; see, e.g., [2] and references therein.
Exclusive vector meson production in electron-hadron

colliders, depicted in Fig. 1(a), has been advocated as a tool
to study the saturation phenomenon in the facilities that are
under design now, like the EIC or the LHeC [3,4]. In this
process, the incoming electron emits a photon which
interacts with the proton to produce a vector meson. The
photon can be quasireal (γ) or have a large virtuality (γ#);
these cases are known as photo- or electroproduction,
respectively. Here, Wγp is the center-of-mass energy of
the photon-proton system and −t is the square of the
momentum transferred in the proton vertex. This process
has been extensively investigated at HERA and at the LHC.
(For recent reviews see [5,6], respectively.) These mea-
surements have been successfully described by a variety of
models including saturation effects; e.g., [7–9]. A recent

study addresses in detail the corresponding measurements
at future electron-ion colliders [10].
A related process, shown schematically in Fig. 1(b), that

has recently attracted renewed attention, is the production
of a vector meson accompanied by the dissociation of the
scattered proton. In a Good-Walker approach [11,12] this
process can be related to fluctuations of the partonic
structure of the proton [13,14]. Specifically, it is related
to the variance over the different configurations of the
partonic structure, and the main contribution to the variance
is given by fluctuations in the geometrical configurations in
the impact-parameter plane. Using a model with three so-
called hot spots, regions of high gluonic density, the authors
of [13] showed that the measurement of the cross section
for the dissociative photoproduction of J=ψ as a function of
jtj, at a fixed Wγp, could be successfully described.
These ideas were extended in [15] by the inclusion of an

energy dependence on the number of hot spots, which
grows with decreasing x, mimicking the expectations of
pQCD. This model successfully describes all available data
on the energy dependence of both exclusive and dissocia-
tive photoproduction of J=ψ off protons. Furthermore, it
predicts that the dissociative cross section grows with
energy up to a maximum value and then decreases steeply.
These investigations were continued in [16,17] to describe
the production off nuclear targets and of different vector
mesons, respectively. In [17], it was observed that the
position of the maximum of the dissociative cross section
depends on the mass of the vector meson in photopro-
duction processes.
In this article, we apply our model to the case of the

dissociative electroproduction of vector mesons. We find
that this cross section has a maximum, whose position
depends on the virtuality of the photon and the mass of the
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vector meson. We use these maxima to define a geometrical
saturation scale and find that it grows linearly with energy
as a function of the scale of the process, as reported in
Fig 8. The rest of this contribution is organized as follows.
A brief description of the formalism is presented in Sec. II.
The model predictions are presented and compared to
the available data in Sec. III. Section IV introduces the
geometrical saturation scale. We close with a brief sum-
mary and outlook in Sec. V.

II. DESCRIPTION OF THE FORMALISM

A. The photon-proton scattering amplitude

The diffractive production of a vector meson when a
virtual photon interacts with a proton can be well described
within the color dipole picture [18,19]. In this case, the
scattering amplitude takes the following form (for a
detailed derivation see e.g., [7]),

AT;Lðx;Q2; Δ⃗Þ ¼ i
Z

dr⃗
Z1

0

dz
4π

Z
db⃗jΨ#

VΨγ# jT;L

× exp ½−iðb⃗ − ð1 − zÞr⃗ÞΔ⃗&
dσqq̄
db⃗

; ð1Þ

where the subscripts T and L denote the contribution
from the transversally, respectively longitudinally,
polarized virtual photon. ΨV is the wave function of
the vector meson, Ψγ# is the wave function of a virtual
photon, which fluctuates into a quark-antiquark dipole,
r⃗ is the transverse size of the color dipole, z is the
fraction of the photon longitudinal momentum carried
by the quark, b⃗ is the impact parameter and Δ⃗2 ≡ −t.
The Bjorken-x of the exchanged pomeron is, under the
assumption of large Wγp, given by

x ¼ Q2 þM2

W2
γp þQ2

; ð2Þ

withM being the invariant mass of the given vector meson.
Finally, dσqq̄=db⃗ is the cross section for the interaction of
the color dipole and the target.
In this formalism, the exclusive cross section to produce

the vector meson V is given by

dσγ
#p→Vp

djtj

!!!!
T;L

¼ ðRT;L
g Þ2

16π
jhAT;Lij2; ð3Þ

while the cross section where the proton dissociates into a
system Y is

dσγ
#p→VY

djtj

!!!!
T;L

¼ ðRT;L
g Þ2

16π
ðhjAT;Lj2i − jhAT;Lij2Þ: ð4Þ

In both cases, the total cross section is given by the sum
of the transverse and the longitudinal contributions. The
factor RT;L

g is called the skewedness correction [20] and
takes into account that there are two values of x involved in
the interaction but only one appears in Eq. (1).
There are two ingredients of Eq. (1) that need to be

modeled: the wave function to create a vector meson out
of the quark-antiquark dipole and the cross section for the
interaction of the color dipole and the target. They are
discussed in the following.

B. Wave functions of vector meson

The wave functions of vector mesons are modeled
assuming that the vector meson is predominantly a qq̄
pair with the same polarization structure as the photon. The
overlap of the photon-meson wave functions in Eq. (1) is
given as

jΨ#
VΨγ# jT ¼ êfe

NC

πzð1 − zÞ
½m2

fK0ðϵrÞϕTðr; zÞ − ðz2 þ ð1 − zÞ2ÞϵK1ðϵrÞ∂rϕTðr; zÞ&; ð5Þ

and

(a)

t

e e

p p

 (*)γ Vector meson

pγW

(b)

t

pγW

e e

p Y

 (*)γ Vector meson

FIG. 1. Diagrams for exclusive (a) and dissociative (b) production of vector mesons in an electron-ion collider. See text for details.
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jΨ#
VΨγ# jL ¼ êfe

NC

π
2Qzð1 − zÞK0ðϵrÞ

"
MϕLðr; zÞ þ δ

m2
f −∇2

r

Mzð1 − zÞ
ϕLðr; zÞ

#
; ð6Þ

where r≡ jr⃗j, NC is the number of colors, the (effective) mass of the given flavor is mf, and an effective charge is denoted
by êf. The parameter δ is a switch to include or not the corresponding term; we set it equal to one, which corresponds to the
boosted Gaussian model [21–23]. Ki are Bessel functions and

ϵ ¼ zð1 − zÞQ2 þm2
f: ð7Þ

The scalar part ϕT;L of the wave function is, in general, model dependent. In the boosted Gaussian model the scalar part is
described by the Gaussian distribution

ϕT;Lðr; zÞ ¼ NT;Lzð1 − zÞ exp
$
−

m2
fR

2

8zð1 − zÞ
−
2zð1 − zÞr2

R2
þ
m2

fR
2

2

%
: ð8Þ

The parameters of the model are fixed using a normalization condition and the measured electronic decay width (see,
e.g., [7]). For the first excited state 2S, the scalar wave function has the form

ϕ2S
T;Lðr; zÞ ¼ ΦT;Lðr; zÞ

$
1þ α2S

$
2þ

m2
fR

2

4zð1 − zÞ
−
4zð1 − zÞr2

R2
−m2

fR
2

%%
: ð9Þ

The condition that the 1S and 2S states are orthogonal, fixes the extra parameter α2S.

We have recomputed the values of the parameters for
the wave functions of all vector mesons discussed in the
following to match them to the measurements gathered in
the PDG of 2016 [24]. The parameter values are reported
in Table I.

C. Dipole-target cross section

The cross section for the interaction between the color
dipole with the proton target is related, via the optical
theorem, to the imaginary part of the dipole-proton ampli-
tude Nðx; r⃗; b⃗Þ:

dσqq̄
db⃗

¼ 2Nðx; r⃗; b⃗Þ: ð10Þ

In order to separate the effects of fluctuations of the
proton structure in the transverse plane from the energy
dependence of the cross section we proposed in [15] to use
the factorized form

dσqq̄
db⃗

¼ σ0Nðx; rÞTpðb⃗Þ; ð11Þ

where Tpðb⃗Þ decribes the proton profile in the impact-
parameter plane and σ0 is a normalization parameter,
which we fixed to σ0 ¼ 4πBp. The interpretation of Bp
is discussed below.
The dipole amplitude Nðx; rÞ can be obtained from

various parameterizations (for an overview see e.g., [7])
or as the solution of the Balitsky-Kovchegov evolution
equation [25,26]. To keep the model as simple as possible,
we have chosen the form of the dipole amplitude Nðx; rÞ
given by the Golec-Biernat and Wusthoff model [27,28],

Nðx; rÞ ¼
"
1 − exp

$
−
r2Q2

sðxÞ
4

%#
; ð12Þ

where QsðxÞ is the so-called saturation scale, which in this
model is given by

TABLE I. Parameters for vector meson (V) wave functions: mass of the vector meson M, effective mass of the
given flavormf, effective charge êf , scalar part parameters NT , NL, R2 and α2S, fixed with the values reported in the
2016 PDG [24].

V M½GeV& mf½GeV& êf½−& NT ½−& NL½−& R2½GeV−2& α2S½−&

ρ0 0.775 260 0.14 1=
ffiffiffi
2

p
0.909 0.853 12.95 ( ( (

ϕ 1.019 461 0.14 1=3 0.918 0.823 11.3 ( ( (
J=ψ 3.096 90 1.4 2=3 0.582 0.578 2.24 ( ( (
ψð2SÞ 3.686 097 1.4 2=3 0.666 0.658 3.705 −0.6225
ϒð1SÞ 9.460 30 4.2 1=3 0.478 0.478 0.585 ( ( (
ϒð2SÞ 10.023 26 4.2 1=3 0.614 0.610 0.831 −0.568

DISSOCIATIVE PRODUCTION OF VECTOR MESONS AT … PHYS. REV. D 99, 034025 (2019)

034025-3

94



Q2
sðxÞ ¼ Q2

0

$
x0
x

%
λ
: ð13Þ

Since the proton is a quantum object, its structure
changes from interaction to interaction. To incorporate this
effect we use a model of the proton as constituted by hot
spots (hs), which represent regions of high gluon density.
The positions of these hot spots in the transverse plane
fluctuate event-by-event and are described by the proton
profile function Tpðb⃗Þ, which is defined as

Tpðb⃗Þ ¼
1

Nhs

XNhs

i¼1

Thsðb⃗ − b⃗iÞ; ð14Þ

where each hot spot is defined as

Thsðb⃗ − b⃗iÞ ¼
1

2πBhs
exp

$
−
ðb⃗ − b⃗iÞ

2

2Bhs

%
: ð15Þ

Each vector b⃗i is obtained from a two-dimensional
Gaussian distribution with width Bp and centered at
(0,0). Thus, the parameters Bp and Bhs can be interpreted
as half of the average of the squared radius of the proton
and of the hot spot, respectively. In this sense σ0 ¼ 4πBp is
a measure of the overall transverse area of the proton.
The key feature of our model is the evolution of the

number of hot spots with energy. Nhs is a random number
drawn from a zero-truncated Poisson distribution, where
the Poisson distribution has a mean value,

hNhsðxÞi ¼ p0xp1ð1þ p2

ffiffiffi
x

p
Þ; ð16Þ

where p0, p1 and p2 are parameters.
The values of all parameters of our model were fixed

in earlier publications [15–17] using J=ψ data from
photoproduction at HERA. The values are listed here for

completeness:Bp¼4.7GeV−2,Bhs¼0.8GeV−2,p0¼0.011,
p1 ¼ −0.58, p2 ¼ 300, λ ¼ 0.21, x0 ¼ 2 × 10−4 and
Q0 ¼ 1 GeV. In order to describe the normalization of the
photoproduction of ρ and ofϕwe setBp ¼ 8 GeV−2 as done
in [17] and consistent with the observations of the H1
Collaboration [29]. For the case of electroproduction dis-
cussed below, we setBp ¼ 4.7 GeV−2 for all vector mesons.

III. PREDICTIONS AND COMPARISON
WITH EXPERIMENTAL DATA

Using the model described above we predict the energy
dependence of the exclusive and dissociative production of
vector mesons off a proton target for ρ0, ϕ, J=ψ , ψð2SÞ,
ϒð1SÞ and ϒð2SÞ at different virtualities of the exchanged
photon. We compare our predictions with data when
available. For completeness, we also show the predictions
for photoproduction that were presented in [17].
The predictions for the Wγp dependence of the exclusive

and dissociative cross section of the ρ0 vector meson
are presented in Fig. 2. Predictions are compared with
H1 [29–31] and ZEUS data [32,33] for several values ofQ2

and also to the preliminary CMS data [34] for photo-
production in p–Pb collisions at the center-of-mass energyffiffiffi
s

p
¼ 5.02 TeV. The predictions for electroproduction,

both exclusive and dissociative, give a very good descrip-
tion of the available data covering virtualities from 2.4 to
35.6 GeV2. Recently, the H1 Collaboration released pre-
liminary data (not shown in the figure) on the energy
dependence of ρ0 dissociative photoproduction. The pre-
dictions of our model are consistent with these preliminary
data, although a definitive comparison can only be done
after the measurement is published in its final form.
The predictions for the energy dependence of the

exclusive and dissociative photo- and electroproduction
cross sections of the ϕ vector meson are compared with H1
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FIG. 2. Comparison of the model predictions (solid lines) with HERA [29–33] and CMS data [34] for the Wγp dependence of the
exclusive (left) and dissociative (right) photo- and electroproduction cross section of a ρ0 meson.
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[29,31] and ZEUS data [35] in Fig. 3. The description of the
electroproduction data is satisfactory; however, it is not as
good as for the case of the ρ0 meson.
The photoproduction of J=ψ has already been studied in

[15,17]. Here we show the same comparison of H1 [36] and
ALICE p–Pb data [37] with the model predictions in Fig. 4.
Additionally, recent ALICE data [38] are included. These
new photoproduction measurements are also correctly
described by the predictions. Electroproduction data from
H1 [39] are also shown in the figure. The predictions for the
exclusive and dissociative cross sections show a good
agreement with all these data.
The comparison between the predictions for the exclu-

sive and dissociative photoproduction cross section for the
ϒð1SÞ vector meson and data has been presented in [17].
We present it here again in Fig. 5 to provide a comparison
with the electroproduction predictions which are the main

topic of this work. The exclusive photoproduction cross
section is compared with H1 [40] and ZEUS [41] data from
HERA. It is also compared with LHCb data taken in
proton-proton collisions at

ffiffiffi
s

p
¼ 7 TeV and

ffiffiffi
s

p
¼ 8 TeV

at the LHC [42]. The last set of data we compare our
predictions with was measured by CMS in p–Pb collisions
at

ffiffiffi
s

p
¼ 5.02 TeV [43]. The data are correctly described

by the predictions, although the current uncertainty of the
measurement does not allow us to extract strong conclu-
sions regarding the agreement between data and the model.
Currently, to our knowledge, there are no electroproduction
data for the exclusive or the dissociative process. We expect
these measurements to be performed at future electron-ion
colliders.
To complete the set of our predictions we present

predictions for the excited states ψð2SÞ and ϒð2SÞ in
Figs. 6 and 7. Currently, there are no direct data for these

210 310
 [GeV]pγW

1

10

210

310

410

510

 [n
b]

pφ 
→

p γσ

ZEUS (2005)
ZEUS (2005)
ZEUS (2005), H1 (2010)

2 = 0.05 GeV2Model, Q
2 = 2.4 GeV2Model, Q
2 = 3.8 GeV2Model, Q
2 = 6.6 GeV2Model, Q

ZEUS (2005)
H1 (2010)

2 = 13 GeV2Model, Q
2 = 15.8 GeV2Model, Q

210 310
 [GeV]pγW

1

10

210

310

410

 [n
b]

Yφ 
→

p γσ

  
2 = 5.0 GeV2H1 (2010), Q

2 = 5.0 GeV2Model, Q

  
2 = 0.05 GeV2Model, Q

2 = 2.4 GeV2Model, Q
2 = 3.8 GeV2Model, Q
2 = 6.6 GeV2Model, Q

2 = 13 GeV2Model, Q
2 = 15.8 GeV2Model, Q

FIG. 3. Comparison of the model predictions (solid lines) with HERA data from H1 [29,31] and ZEUS [35] for theWγp dependence of
the exclusive (left) and dissociative (right) photo- and electroproduction cross section of a ϕ meson.
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dependence of the exclusive (left) and dissociative (right) photo- and electroproduction cross section of a ϒð1SÞ meson.
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D. BENDOVA, J. CEPILA, and J. G. CONTRERAS PHYS. REV. D 99, 034025 (2019)

034025-6

97



particles, but there are photoproduction data from H1 [44]
and electroproduction data at Q2 ¼ 16 GeV2 from ZEUS
[45] for the ratio of the exclusive production of ψð2SÞ to that
of J=ψ . Our predictions describe correctly the measured
ratios, although, as in the case of the ϒð1SÞ, the current
uncertainty of the measurement does not allow us to extract
strong conclusions regarding the agreement between data
and the model.
In summary, there is a good agreement between all

existing data for the exclusive and the dissociative photo-
and electoproduction of vector mesons and the predictions
of our model.

IV. GEOMETRIC SATURATION SCALE

A. Introduction of the geometric saturation scale

As already noticed in [15] for the case of J=ψ photo-
production and confirmed in [17] for the photoproduction
of ρ0 and ϒð1SÞ, the behavior of the dissociative cross
section as a function of the photon-proton center-of-mass
energy is quite striking. At low energies, the cross section
rises withWγp to reach a maximum, after which it decreases
steeply. The same behavior is observed for the dissociative
electroproduction of vector mesons. Interestingly, the posi-
tion of the maximum depends not only on the mass of the
vector meson, but also on the virtuality of the exchanged
photon.
The interpretation of this behavior is given by the form

of the cross section shown in Eq. (4). The dissociative
production measures the variance over the different con-
figurations into which the structure of the proton can
fluctuate. In our model, this is given by the different
geometrical placements of the hot spots in the impact-
parameter plane. As the energyWγp increases, so it does the

number of hot spots inside the proton as shown in Eq. (16).
As the hot spots have all the same transversal area, the more
hot spots there are, the more the proton area is filled. At
some point, all the possible configurations start to look
alike, because all of them start filling all the available area
in the proton and overlap in a process reminiscent of
percolation [46]. From this energy onwards the variance
over configurations steeply decreases. The maximum of the
dissociative cross section defines a well defined energy at a
well defined scale. We call this point the geometric
saturation scale (GSS) and in the following study some
of its properties.

B. Energy dependence of the geometric saturation scale

For each of the vector mesons and for each of the
virtualities we determine the energy WGSS at which the
maximum is found. As the predictions are based on a
random process, the value at the maximum may fluctuate a
bit, so we chose a region containing the 1% largest values
of the cross section to determine the position of the
maximum along with an estimation of the associated
uncertainty.
Figure 8 shows in the left panel the position of the

maximum as a function of Q2 þM2, which is a measure of
the scale of the process. The behavior seems to be linear, so
we fitted the extracted maxima to the functional form

WGSS ¼ a0 þ a1ðQ2 þM2Þ: ð17Þ

For the fit we considered only points with Q2 þM2 larger
than 2 GeV2. The fit is good. The χ2 per degree-of-freedom
is 0.41, the small value reflecting the large assigned
uncertainty on the position of the maxima. The parameter
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FIG. 8. (Left) Position of the maxima of the dissociative cross sections (markers) and an estimation of the related uncertainty (bars) as
a function of Q2 þM2. The line is a fit to the line defined in Eq. (17) and the band represents the one sigma contour. (Right) the same
data as in the left panel, but translatingWGSS into xGSS and plotting them in logarithmic variables. The red line is the fit to Eq. (18) The
diagonal lines represent the kinematic reach of some of the proposed future electron-ion colliders. See text for details.
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values are a0 ¼ −21) 11 GeV and the slope that is
obtained is a1 ¼ 41.5) 1.8 GeV−1.
Using Eq. (2) we can translateWGSS into xGSS. The result

is shown in the right panel of Fig. 8. The behavior is also
linear in the logarithmic variables so we have fit the
predictions to

lnð1=xGSSÞ ¼ c0 þ c1 lnððQ2 þM2Þ=GeV2Þ: ð18Þ

We found c0 ¼ 7.2) 0.2 and c1 ¼ 1.04) 0.06. The same
figure shows the kinematic limit of some of the proposed
future electron-ion colliders. This limit is obtained from

xys ¼ Q2; ð19Þ

where the inelasticity of the collision is set to y ¼ 1 and the
center-of-mass energies

ffiffiffi
s

p
of the accelerators are obtained

from the energies of the proton, Ep, and electron, Ee, beams
taken from Table I of [10]: Ee ¼ 10 GeV, Ep ¼ 100 GeV
for JLEIC; Ee ¼ 18 GeV, Ep ¼ 275 GeV for eRHIC;
Ee ¼ 27.5 GeV, Ep ¼ 920 GeV for HERA; and Ee ¼
60 GeV, Ep ¼ 7 TeV for LHeC.
It is interesting to notice that even for the collider with

the lower energy, one could measure this linear behavior
using electroproduction of ρ0 and of ϕ vector mesons at
relatively small virtualities, but in all cases at scales Q2 þ
M2 above 1 GeV2. The detectors at the JLEIC and eRHIC
are still under development, but the envisaged capabilities
would allow the measurement of ρ0 and ϕ as discussed in
detail in [10]. To investigate the positions of the maxima for
J=ψ one needs the LHC and the LHeC for photo- and
electroproduction cases, respectively. The positions of the
maxima for the Upsilon states seems to be out of reach even
for the LHeC.

V. SUMMARY AND OUTLOOK

Using the energy-dependent hot spot model, we have
presented predictions for the exclusive and dissociative
electroproduction of vector mesons off proton targets.
We studied the production of ρ0, ϕ, J=ψ , ψð2SÞ, ϒð1SÞ
and ϒð2SÞ states. We found that the dissociative cross
section as a function of Wγp presents a maximum and
have used this maximum to define a geometrical
saturation scale. We found that the energy evolution
of this scale is linear in Q2 þM2 and that this behavior
can be studied at the planned JLEIC, eRHIC and LHeC
electron-ion colliders.
To be able to perform such measurements, the detectors

would have to be instrumented in the forward rapidity
regions in order to tag the presence of the products from the
dissociative state. Such a technique has been used at HERA
in the past; it is also used nowadays at the LHC to reject
the dissociative events when measuring the exclusive
production channel, so it seems to be feasible if planned
in advance.
Mapping the energy evolution of the geometric satu-

ration scale provides an extra handle to investigate quanti-
tatively the high-energy limit of QCD and to study the
phenomenon of gluon saturation in the proton.
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The solution to the impact-parameter dependent Balitsky-Kovchegov equation with the collinearly
improved kernel is studied in detail. The solution does not present the phenomenon of Coulomb tails at
large impact parameters that have affected previous studies. The origin of this behavior is explored
numerically. It is found to be linked to the fact that this kernel suppresses large daughter dipoles. Solutions
based on a physics motivated form of the initial condition are used to compute predictions for structure
functions of the proton and the exclusive photoproduction and electroproduction of vector mesons.
A reasonable agreement is found when comparing to HERA and LHC data.

DOI: 10.1103/PhysRevD.100.054015

I. INTRODUCTION

Evolution equations are powerful tools to study the high-
energy, equivalently, small-x limit of quantum chromody-
namics (QCD) [1–3]. The availability of quality data from
HERA [4] and the LHC [5] as well as the need for reliable
phenomenology for the proposal of new electron-ion
facilities [6,7] have given an extra impulse to the develop-
ment of these tools.
In this work, the emphasis is placed on the Balitsky-

Kovchegov (BK) evolution equation derived independently
in the operator-product-expansion formalism by Balitsky [8],
and by Kovchegov [9,10] within the color dipole approach
[11–13]. It corresponds to the large-number-of-colors limit
of the Jalilian-Marian-Iancu-McLerran-Weigert-Leonidov-
Kovner (JIMWLK) evolution equations [14–19]. The BK
equation describes the evolution with rapidity, Y, of the
dipole-target scattering amplitude, Nðr⃗; b⃗; YÞ, where r⃗ is the
transverse size of the dipole and b⃗ the impact parameter of
the interaction.
Soon after its introduction, the kernel of the leading order

BK equation was modified to include corrections that take
into account the running of the coupling constant [20–23].
The resulting equation, referred to as rcBK below, when
combined with appropriate initial conditions—embodying
nonperturbative properties of the hadronic targets—and
disregarding the impact-parameter dependence, produces

solutions that have been successfully used to describe a
wide variety of phenomena. In particular, the structure
function data of the proton as measured at HERA was
successfully described [24–27]. A few other applications of
these solutions are, for example, gluon production in
heavy-ion collisions [28], single particle [29] and J=ψ
production in pp and pA collisions [30], dihadron corre-
lations in p-Pb interactions [31] and even the flux of
atmospheric neutrinos [32,33].
As already mentioned, these comparisons of rcBK-based

predictions to data disregarded the impact-parameter
dependence of the dipole amplitude. The reason is that
earlier studies of solutions including the impact parameter
found that the amplitude developed a powerlike depend-
ence on b≡ jb⃗j, the so-called Coulomb tails, which
generate an unphysical growth of the cross section [34].
Nonetheless attempts were made to modify the kernel to
solve this problem, for example, by adding an ad hoc cutoff
for large sizes of the daughter dipoles [35]. The solutions
found had no more Coulomb tails, but needed an extra, so-
called soft, contribution to be able to describe HERA data
on structure functions [36]. (A similar conclusion also
holds for the solutions of the impact-parameter dependent
JIMWLK equation [37].) Nonetheless, this approach did a
good job when confronted with HERA data on exclusive
vector meson production [38].
Recently, the kernel of the leading order equation has

been improved by including the resummation of all double
collinear logarithms [39] as well as two classes of single
logarithmic corrections [40]. (See also early work on this
direction in the context of the Balitsky-Fadin-Kuraev-
Lipatov (BFKL) equation in [41].) Using this kernel and
disregarding the dependence on the impact parameter, it
was also possible to obtain a good description of HERA

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 100, 054015 (2019)

2470-0010=2019=100(5)=054015(15) 054015-1 Published by the American Physical Society

101



data on the structure function of the proton. Finally, in the
rapid communication [42], we have demonstrated that
solutions of the BK equation with the collinearly improved
kernel and an appropriate initial condition describe cor-
rectly the HERA data on structure functions and the t
dependence of the exclusive photoproduction of J=ψ at one
energy without the need of any additional ad hoc parameter
or correction.
In this contribution the studies reported in [42] are

extended to discuss in depth the behavior of the collinearly
improved kernel and of the solutions of the corresponding
BK equation, comparing them to the rcBK case. In
addition, more details on the comparison to HERA struc-
ture function data are presented, and comparison of our
predictions to relevant HERA and LHC data on exclusive
vector meson photoproduction and electroproduction is
provided. In all cases, the agreement between model and
measurements is satisfactory.
The rest of this contribution is organized as follows: In

Sec. II the formalism used throughout this work is reviewed.
In Sec. III the technical details to solve the collinearly
improved impact-parameter dependent BK equation are
addressed. In Sec. IV the origin of the suppression at large
impact parameters is discussed, the behavior of the solution
is contrasted with solutions of the rcBK case, and the shape
of the amplitude is shown at different values of rapidity,
dipole size and impact parameter. In Secs. V and VI our
predictions are confronted with structure function data
measured at HERA, and to data for cross sections of
exclusive photoproduction and electroproduction of ϕ,
J=ψ , ψð2SÞ, and ϒð1SÞ vector mesons measured both at
HERA and at the LHC, respectively. Section VII contains a
brief summary of our findings and presents our conclusions.

II. REVIEW OF THE FORMALISM

A. The Balitsky-Kovchegov equation

The BK evolution equation reads [21,22]

∂Nðr⃗; b⃗; YÞ
∂Y ¼

Z
dr⃗1Kðr; r1; r2ÞðNðr⃗1; b⃗1; YÞ

þ Nðr⃗2; b⃗2; YÞ − Nðr⃗; b⃗; YÞ

− Nðr⃗1; b⃗1; YÞNðr⃗2; b⃗2; YÞÞ; ð1Þ

where r≡ jr⃗j, r1 ≡ jr⃗1j, and r2 ≡ jr⃗2j≡ jr⃗ − r⃗1j are the
sizes of the original dipole and of the two daughter dipoles,
respectively. Note that these are two-dimensional vectors
in the same plane as the impact parameter. The magnitudes
of the corresponding impact parameters are b≡ jb⃗j,
b1 ≡ jb⃗1j, b2 ≡ jb⃗2j. The kernel Kðr; r1; r2Þ is dis-
cussed below.
In this work, the solution to the BK equation is obtained

under the assumption that the scattering amplitude

Nðr⃗; b⃗; YÞ depends solely on the sizes of the dipoles and
of the impact parameter vectors. In practice, this means to
solve the equation

∂Nðr; b; YÞ
∂Y ¼

Z
dr⃗1Kðr; r1; r2ÞðNðr1; b1; YÞ

þ Nðr2; b2YÞ − Nðr; b; YÞ
− Nðr1; b1; YÞNðr2; b2; YÞÞ; ð2Þ

subjected to the condition that the angle between r⃗ and b⃗ is
fixed. We chose to fix this angle at zero, meaning that these
vectors are parallel.

B. Kernels of the Balitsky-Kovchegov equation

Several functional forms for the kernel of the BK
equation have been proposed. The ones that are mentioned
in this work are presented in the following.
The leading order kernel is given by

KLOðr; r1; r2Þ ¼
αnrs
2π

r2

r21r
2
2

; ð3Þ

where the nonrunning coupling, αnrs , is fixed to a con-
stant value.
The running coupling kernel Krcðr; r1; r2Þ reads [21]

Krcðr; r1; r2Þ ¼
Ncαsðr2Þ

2π2

!
r2

r21r
2
2

þ 1

r21

!
αsðr21Þ
αsðr22Þ

− 1

"

þ 1

r22

!
αsðr22Þ
αsðr21Þ

− 1

""
; ð4Þ

where Nc is the number of colors and αs is the running
coupling, which is further discussed in Sec. II C.
The running coupling kernel with a cutoff to tame the

Coulomb tails generated by the evolution in the impact
parameter is given by [36]

Kbdep
rc ðr; r1; r2Þ ¼ Krcðr; r1; r2ÞΘ

!
1

m2
− r21

"
Θ
!

1

m2
− r22

"
;

ð5Þ

where Θ is the Heaviside function and m a parameter to
limit the size of daughter dipoles.
Finally, the collinearly improved kernel is [40]

Kciðr; r1; r2Þ

¼ ᾱs
2π

r2

r21r
2
2

#
r2

minðr21; r22Þ

$%ᾱsA1

KDLAð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr1rLr2r

p
Þ; ð6Þ

where [41]
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KDLAðρÞ ¼
J1ð2

ffiffiffiffiffiffiffiffiffi
ᾱsρ2

p
Þffiffiffiffiffiffiffi

ᾱsρ
p ; ð7Þ

J1 is the Bessel function (the inclusion of the Bessel
function into the BK kernel has been previously discussed
in [43]), the anomalous dimension is A1 ¼ 11=12, and

Lrir ¼ ln
!
r2i
r2

"
: ð8Þ

The sign factor in the exponent %ᾱsA1 takes the value of
the plus sign when r2 < minðr21; r22Þ and the negative sign
otherwise. For the running coupling

ᾱs ¼ αs
Nc

π
; ð9Þ

the smallest dipole prescription is used throughout the
computation according to

αs ¼ αsðrminÞ; ð10Þ

where rmin ¼ minðr1; r2; rÞ. This prescription was com-
pared to other prescriptions in [40], where it was found to
work adequately in this context. This prescription has also
been suggested as the natural option for the BK equation at
next-to-leading order (NLO) [44].

C. Treatment of the coupling constant

In this work the running coupling is computed in the
variable-number-of-flavors scheme, implemented accord-
ing to

αs;nfðr
2Þ ¼ 4π

β0;nf lnð
4C2

r2Λ2
nf
Þ
; ð11Þ

where nf corresponds to the number of flavors that are
active, C2 is an infrared regulator that takes into account the
approximations made for the computation of the Fourier
transform into the position space and is usually fit to data
[25]. The variable β0;nf is the leading order coefficient of
the QCD beta series and is given by relation

β0;nf ¼ 11 −
2

3
nf: ð12Þ

The value of the QCD scale parameter Λ2
nf depends on the

number of active flavors. When heavier quarks are active
(charm and beauty quarks), its value is obtained from the
relation [26]

Λnf−1 ¼ ðmfÞ
1−

β0;nf
β0;nf−1ðΛnfÞ

β0;nf
β0;nf−1 : ð13Þ

This recursive relation needs to be fixed at one point and for
this the usual choice is to take the value of the running
coupling at the scale of the mass of the Z0 boson. In this
way, Λ5 is set with the use of the experimentally measured
value of αsðMZÞ ¼ 0.1196% 0.0017, where the Z0 mass is
MZ ¼ 91.18 GeV=c2 [45]. The number of active flavors is
set depending on the transverse size of the mother dipole.
The condition that governs this relates the mass of the
heaviest quark considered to the values of the dipole size r.
This condition can be expressed as

r2 <
4C2

m2
f
: ð14Þ

Since all dipole sizes are accounted for in the BK evolution
equation, there is a need to freeze the coupling at a set value
after a certain dipole size is reached [25]. In this work, the
coupling is frozen at αsats ¼ 1 as in [39].
The value of the parameter C affects the description of

data by modifying the speed of the evolution and effec-
tively changes the slope of the structure function. The
higher value of this parameter the more the running of
the coupling is suppressed and, consequently, the slope in
the structure function F2 is less steep. Figure 1 compares
the running of αs for two values of C: the one used here,
C ¼ 9, and the one used in [39], C ¼ 2.586. The value
C ¼ 9 was set heuristically and since the solutions repro-
duce correctly the data, as shown below, it has not been
further optimized.

III. IMPACT-PARAMETER SOLUTION TO THE
BALITSKY-KOVCHEGOV EQUATION

A. Initial condition

The initial condition, already introduced in [42], depends
on the impact parameter; it is suppressed in the regions

FIG. 1. Comparison between the behavior of ᾱs computed from
Eqs. (9) and (11) with C ¼ 2.586 (red) and C ¼ 9 (blue).
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where r or b reaches large values, in order to respect the
geometric nature of the dipole-proton interaction. The shape
of its functional form is a combination of the expected
behavior in r, which is obtained from the Golec-Biernat
Wüsthoff (GBW) model [46], and the impact-parameter
dependence, which uses a Gaussian distribution to reflect the
expected profile of the proton. Such an approach has been
used in similar forms in the past; e.g., in [47–51]. The main
new ingredient with respect to the initial condition used in
the previous studies [20,35,36,38] is the explicit separation
of the contribution from the individual quark and antiquark
forming the dipole. The initial condition is given by

Nðr; b; Y ¼ 0Þ ¼ 1 − exp
!
−
1

2

Q2
s

4
r2Tðbq1 ; bq2Þ

"
; ð15Þ

where bqi are the impact parameters of the quark and
antiquark forming the dipole and

Tðbq1 ; bq2Þ ¼
#
exp

!
−

b2q1
2BG

"
þ exp

!
−

b2q2
2BG

"$
: ð16Þ

As a first attempt, the angle between r⃗ and b⃗ was fixed as
shown schematically in Fig. 2. As the results obtained with
this initial condition are satisfactory, no further optimization
has been considered.
The parameters appearing in this initial condition, Q2

s
and BG, have a clear physical interpretation as the satu-
ration scale and as the variance of the Gaussian distribution
of the target in impact parameter, respectively. The value of
theQ2

s parameter is chosen to be 0.496 GeV2, such that the
F2ðx;Q2Þ data are correctly described at the rapidity of the
initial condition. The relation between x and rapidity is
Y ¼ lnðx0=xÞ, where x0 ¼ 0.008. The parameter BG is set

to 3.2258 GeV−2 in order to describe the data for exclusive
photoproduction of J=ψ off protons at a photon–proton
center-of-mass energy hWγpi ¼ 100 GeV, where as cus-
tomary x ¼ ðM2 þQ2Þ=ðW2

γp þQ2Þ is used; here, M
represents the mass of the vector meson.

B. Setup for the numerical solution to the equation

The BK evolution equation does not have an analytic
solution and therefore has to be solved numerically. The
procedure used by us in [27,52] was extended to the case of
the impact-parameter dependent BK equation [42] and the
solution is evolved in rapidity with a step of ΔY ¼ 0.01.
Fixed grids are used for r and b. They are logarithmic

grids of base 10 with 25 evenly spaced points per order of
magnitude, spanning the range from 10−7 to 104 GeV−1 for
both the r and b variables. The integration over r⃗1 is
performed in polar coordinates, where r1 is evaluated in the
same grid as r and the polar angle, denoted by θrr1, is
evaluated in a fixed grid with 21 points separated by a
constant step. The numerical integrations are performed
applying Simpson’s method.
Since the transverse dipole vectors are related as

r⃗ ¼ r⃗1 þ r⃗2, by fixing the values of r and r1 to the
predefined grid, the values of r2 are in general off
the grid. Whenever this happens, linear interpolation in
the log10 space is used to get the desired value of
Nðr2; b2; YÞ. A similar approach is used for obtaining
the value of the scattering amplitude whenever the value
of b1 or b2 is off the grid.
The values of b1 and b2 are then computed from the

relations b⃗1 ¼ b⃗þ r⃗2=2 and b⃗2 ¼ b⃗ − r⃗1=2 assuming a
fixed angle between r⃗ and b⃗. As mentioned above, this
angle is set to zero for the results presented below.
The solution to the BK equation has been implemented

independently using C++ and the Intel Fortran Compiler.
Both implementations have similar performance, with the
Fortran version being slightly faster. In a standard
personal computer, the program performs the evolution
of the dipole amplitude in one unit of rapidity, that is 100
steps for the settings described above, in a bit less than
one hour for one set of parameters.
To test the numerical stability of the selection of the

grid, the setup was modified and the scattering amplitude
was compared at Y ¼ 3, r ¼ 1=GeV and all values of b.
We have changed the step in rapidity from 0.01 to 0.02,
the number of steps in r and b per order of magnitude
from 25 to 15 and the size of the grid in the polar angle
from 21 to 16 and 31 points. Except for the change to 16
points in the grid for polar angles, all other changes
produced a difference below the per-mil level. The use of
the spare grid in polar angle produced changes almost at
one percent level. In summary, with the chosen settings a
numerical precision at the percent level, or even below it,
is expected.

FIG. 2. Schematic picture of the variables that enter the initial
condition presented in Eq. (15).
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IV. THE SOLUTION TO THE BK EQUATION

A. Behavior of the collinearly improved kernel

As was shown in [42], the solutions to the BK equation
do not exhibit Coulomb tails when using the collinearly
improved kernel. This behavior is related to the suppression
of this kernel for large values of the size of the daughter
dipoles. As an illustration, Fig. 3 shows the ratio of the
collinearly improved kernel, see Eq. (4), to the running-
coupling kernel, see Eq. (6). (The parameter C for the
running coupling in this kernel was chosen to be C ¼ 9 just
as in the collinearly improved kernel for the sake of a valid
comparison.) The ratio is computed at r ¼ 1 GeV−1 and
θrr1 ¼ π=2. Other values produce a similar picture. The
figure shows that for large sizes of the daughter dipole the
collinearly improved kernel is orders of magnitude smaller
than the running-coupling one.
To follow up in more detail the origin of this behavior the

kernels are divided into three parts. For the collinearly
improved kernel, they are

K1
ci ¼

ᾱs
2π

r2

r21r
2
2

; ð17Þ

K2
ci ¼

#
r2

minðr21; r22Þ

$%ᾱsA1

; ð18Þ

K3
ci ¼ KDLAð

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Lr1rLr2r

p
Þ: ð19Þ

The first term, K1
ci, is present already at the leading order if

one considers a fixed value of the running coupling, K2
ci

takes into account the contribution from the single collinear
logarithms, and K3

ci resums double collinear logarithms to

all orders. The entire collinearly improved kernel is then
given by the multiplication of all these factors as

Kci ¼ K1
ciK

2
ciK

3
ci: ð20Þ

For the running coupling BK kernel, the separation in
three parts is as follows:

K1
rc ¼

Ncαsðr2Þ
2π2

r2

r21r
2
2

; ð21Þ

K2
rc ¼

Ncαsðr2Þ
2π2

1

r21

!
αsðr21Þ
αsðr22Þ

− 1

"
; ð22Þ

K3
rc ¼

Ncαsðr2Þ
2π2

1

r22

!
αsðr22Þ
αsðr21Þ

− 1

"
; ð23Þ

whereas the running coupling kernel is then given by the
addition of these constituent terms as

Krc ¼ K1
rc þ K2

rc þ K3
rc: ð24Þ

The contribution of the three terms is shown in Fig. 4 at
r ¼ 1 GeV−1 and θrr1 ¼ π=2 for each of the two kernels.
The fact that the three terms are added inKrc, but multiplied
in Kci explains numerically the suppression. Even though
the first term is essentially the same for both kernels, the
additive character of Krc makes it deviate from the
collinearly improved kernel at large r1 values as shown
in Fig. 4. There, we can see that even though the kernels are
comparable in the low-r1 region, at large r1 values, the K2

rc
and K3

rc terms become dominant, whereas in the collinearly
improved kernel, the K1

ci term suppresses the total value.
The physical reason of this suppression can be traced

back to the fact that large daughter dipoles do not follow
the time-ordering prescription (that is, they would live
longer than the parent dipole) built in when setting up
the resummation that leads to the collinearly improved
kernel [40,53].

B. Contribution of the kernel terms to the evolution

The suppression for large sizes of the daughter dipole in
the kernel is translated as a suppression of the amplitude
at large b in the evolution. In this region only large r1;2
contribute to the total integral in Eq. (2). This is true
because a large impact parameter means that the probing
dipole is far away from the target proton and the amplitude
is therefore (at the initial condition) exponentially sup-
pressed. Only dipoles with r1 (r2) ∼2b can be oriented so
that their impact parameters b1 (b2) are small, such that
they contribute to the evolution. But, since Kci is sup-
pressed in this region, the integral will be suppressed as
well and the scattering amplitude will not grow fast at
large b.

FIG. 3. Absolute value of the ratio Kci=Krc at a fixed dipole size
r ¼ 1 GeV−1 and orientation with respect to the daughter dipole
θrr1 ¼ π=2 as a function of the daughter dipole size.
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This can be numerically studied by computing the
contribution to the evolution of the three terms in the
collinearly improved kernel. Figure 5 shows the scattering
amplitude after evolution to Y ¼ 3 using each time a kernel
formed with different constituents. It is clearly seen that
the impact parameter profile is mostly influenced by the
inclusion of the K3

ci term with the Bessel functions. This
term originates from resumming double collinear loga-
rithms. Note that also the term K2

ci, resumming single
collinear logarithms, suppresses the large b region.

C. Behavior of the solution to the BK equation

The evolution of the scattering amplitude as a function of
r for different fixed values of b is shown in the upper panels

of Fig. 6, while the lower panels of the same figure show
the evolution as a function of b for two fixed values of r.
A two-dimensional view of the amplitude at two stages of
the evolution is shown in Fig. 7. The amplitude decreases
fast for small dipole sizes as expected. The suppression of
large dipole sizes imposed in the initial condition is lifted
with evolution. Similar behavior was observed in previous
studies, e.g., [35]. Nonetheless, in the case of the collin-
early improved kernel the growth at the largest dipole sizes
is not as fast and a shoulder appears, after which the
amplitude is again suppressed. The behavior as a function
of impact parameter has been discussed above; the profile
impact parameter grows, but the development of Coulomb
tails is suppressed. Recently, a similar finding has been
reported for the case of NLO BFKL equations at large
impact parameters [54].
Finally, Fig. 8 shows Nðr; YÞ, defined as

Nðr; YÞ ¼
Z

d2b⃗Nðr; b; YÞ; ð25Þ

for different dipole sizes and for two kernels, the running
coupling and the collinearly improved. For small dipoles
the difference is larger and it grows with rapidity. At larger
dipole sizes the difference between both kernels is smaller.
Note that for the comparisons to data discussed below, the
main numerical contribution comes from the region of
relatively large dipoles. For the case of the structure
function the main contribution for virtualities between 1
and 10 GeV2 comes from dipoles of sizes on the range
around 0.1=GeV to 10=GeV, see e.g., the lower panel of
Fig. 4 in [27].
Another interesting observation is that Nðr; YÞ is related

to the σ0 parameter introduced in studies based on the rcBK
equation without impact-parameter dependence. Basically,
σ0 corresponds to the scale of Nðr; YÞ. Standard values

FIG. 5. The scattering amplitude evolved to Y ¼ 3 with
various kernels illustrates the effect of the different terms in
the evolution and demonstrates that the computation based on
the Kci kernel does not develop the Coulomb tails seen when
the Krc kernel is used.

FIG. 4. The three constituent terms of the BK kernel for the running coupling (left) and collinearly improved cases (right) at a fixed
dipole size r ¼ 1 GeV−1 and orientation with respect to the daughter dipole θrr1 ¼ π=2.
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FIG. 7. Evolution of the scattering amplitude from the initial condition at Y ¼ 0 (left) to Y ¼ 10 (right).

FIG. 6. The scattering amplitude as a solution to the BK equation with the collinearly improved kernel as a function of r for
b ¼ 10−6 GeV−1 (upper left) and b ¼ 4 GeV−1 (upper right), and as a function of b at r ¼ 0.1 GeV−1 (lower left) and at r ¼ 1 GeV−1

(lower right).
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found for this parameter are a few tens of mb, see e.g.,
Table I in [26]. Figure 8 justifies the order of magnitude of
these values from the perspective of an impact-parameter
dependent computation.

V. DEEP INELASTIC SCATTERING

A. Structure function and reduced cross section

Due to the fact that the dipole lives much longer than the
typical interaction time, the computation of the total deep-
inelastic scattering (DIS) cross section can be written as the
convolution of separate terms. One of them is the wave
function representing the probability of a virtual photon
splitting into a quark-antiquark dipole. Here formulas and
notation of [46] are used:

jΨi
Tðz; r⃗; Q2Þj2 ¼ 3αem

2π2
e2qiððz

2 þ ð1 − zÞ2Þϵ2K2
1ðϵrÞ

þm2
qiK

2
0ðϵrÞÞ; ð26Þ

and

jΨi
Lðz; r⃗; Q2Þj2 ¼ 3αem

2π2
e2qið4Q

2z2ð1 − zÞ2K2
0ðϵrÞÞ ð27Þ

for the transverse and longitudinal polarization of the
incoming photon, respectively, where z is the fraction of
the total longitudinal momentum of the photon carried by
the quark, K0 and K1 are the MacDonald functions, Q2 is
the virtuality of the probing photon, eqi is the fractional
charge (in units of elementary charge) of quark i, αem ¼
1=137 and

ϵ2 ¼ zð1 − zÞQ2 þm2
qi ; ð28Þ

where mqi is the mass of the considered quark, which is set
to 100 MeV=c2 for light quarks and 1.3 GeV=c2 for charm
quark and 4.5 GeV=c2 for bottom quark. Note that the
computed structure function does not depend strongly
on the value of the mass of the light quarks (as was
reported in [40]); this has been checked by also using
mu;d;s ¼ 10 MeV=c2, which did not influence the descrip-
tion of data. The total wave function then is

jΨi
T;Lðz; r⃗Þj2 ¼ jΨi

Tðz; r⃗Þj2 þ jΨi
Lðz; r⃗Þj2: ð29Þ

According to the optical theorem, one can link the
dipole-target cross section to the scattering amplitude by

dσqq̄ðr⃗; xÞ
db⃗

¼ 2Nðr⃗; b⃗; xÞ: ð30Þ

Furthermore, it is usual to shift the value of the x at
which the structure function and reduced cross section
are computed according to the photoproduction kinematic
shift [46],

x̃ ¼ x
!
1þ

4m2
qi

Q2

"
: ð31Þ

Using these ingredients, the relation for the computation
of the structure function in the dipole model framework is

F2ðx;Q2Þ ¼ Q2

4π2αem

Z X

i

dr⃗db⃗dzjΨi
T;Lðz; r⃗Þj2

dσqq̄ðr⃗; x̃Þ
db⃗

;

ð32Þ

and the reduced cross section is computed as

σredðy; x;Q2Þ ¼ F2ðx;Q2Þ − y2

1þ ð1 − yÞ2
FLðx;Q2Þ;

ð33Þ

where y ¼ Q2=ðsxÞ is the inelasticity of the process, s is the
squared of the center-of-mass energy of the collision and
FLðx;Q2Þ is given by the relation

FLðx;Q2Þ ¼ Q2

4π2αem

Z X

i

dr⃗db⃗dzjΨi
Lðz; r⃗Þj2

dσqq̄ðr⃗; x̃Þ
db⃗

:

ð34Þ

B. Comparison to HERA data

The predictive power of this model is evaluated by
confronting it with data from HERA on the F2ðx;Q2Þ
structure function [55] in Fig. 9. A closer look is given in
Fig. 10 for two values of the photon virtuality. To quantify
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FIG. 8. Growth of the dipole-target amplitude integrated over
impact parameter as a function of rapidity for solutions of the BK
equations with the running coupling and the collinearly improved
kernel.
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the level of agreement between data and model, Fig. 11
presents the percentage pulls associated with the structure
function, which are given by

d% ¼ 100
FBK
2 ðx;Q2Þ − FHERA

2 ðx;Q2Þ
FHERA
2 ðx;Q2Þ

ð35Þ

and byD%, which denotes the average of the corresponding
values of d%. Finally, for completeness Fig. 12 shows the
comparison of the model and data for the charm component
of the proton structure function measured at HERA [55].
Overall, the agreement between prediction and data is

within a few percent over most of the phase space. For
our purposes this level of agreements is satisfactory.
First, the equation we are using does not include the full
angular dependence. Second, we have not needed to add
any ad hoc component to describe data and the values of the

parameters are reasonable from the point of view of the
physics that is being probed. Furthermore, note that the BK
equation that we are using is definitely not the last word on
the subject. The full equation at NLO has already been
computed [44], and a large effort is being done to use it for
phenomenology [53,56–59]. There are also recent develop-
ments regarding the most adequate variable to evolve the
scattering amplitude [60].

VI. PRODUCTION OF VECTOR MESONS

A. Exclusive cross section in the color-dipole approach

Similarly to the DIS process described in the previous
section, the diffractive production of a vector meson as a
result of the interaction of a virtual photon with the proton
can be treated within the color-dipole approach. In this
formalism, the exclusive cross section to produce a vector
meson V is given by

dσγ
&p→Vp

djtj

&&&&
T;L

¼ ð1þ β2ÞðRT;L
g Þ2

16π
jAT;Lj2; ð36Þ

where AT;L is the scattering amplitude of the process. It is
given as a convolution of the overlap of photon-meson
wave functions with the dipole cross section given in
Eq. (30) (for a detailed derivation see e.g., [61,62]) and
takes the following form:

AT;Lðx;Q2; Δ⃗Þ ¼ i
Z

dr⃗
Z1

0

dz
4π

Z
db⃗jΨ&

VΨγ& jT;L

× exp ½−iðb⃗ − ð1 − zÞr⃗ÞΔ⃗( dσ
qq̄

db⃗
; ð37Þ

where the subscripts T, L denote the contribution from the
virtual photon with transverse, respectively longitudinal,
polarization, Ψγ& is the wave function of a virtual photon

FIG. 10. Close-up comparison of the structure function data from HERA [55] (blue points) to the b-dependent prediction (red line) for
Q2 ¼ 8.5 GeV2 (left) and Q2 ¼ 12 GeV2 (right).

FIG. 9. Comparison of the structure function data from
HERA [55] (solid circles) to the prediction of the impact-
parameter dependent BK equation with the collinearly im-
proved kernel (lines).
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which fluctuates into a dipole, ΨV represents the wave
function of the vector meson, and Δ⃗2 ≡ −t, the square of
the four momentum transferred in the proton vertex. Under
the assumption of large photon-proton center-of-mass
energies Wγp,

x ¼ Q2 þM2

W2
γp þQ2

; ð38Þ

where M is the mass of the given vector meson.
The wave functions of a vector meson are modeled under

the assumption that the vector meson is predominantly a qq̄
pair with the same polarization and the spin structure as the
original photon. The overlap of the photon-meson wave
functions in Eq. (37) is given as

jΨ&
VΨγ& jT ¼ êfe

NC

πzð1 − zÞ
½m2

fK0ðϵrÞϕTðr; zÞ

− ðz2 þ ð1 − zÞ2ÞϵK1ðϵrÞ∂rϕTðr; zÞ(; ð39Þ

and

jΨ&
VΨγ& jL ¼ êfe

NC

π
2Qzð1 − zÞK0ðϵrÞ

#
MϕLðr; zÞ

þ δ
m2

f −∇2
r

Mzð1 − zÞ
ϕLðr; zÞ

$
; ð40Þ

with êf being the effective charge of the given vector
meson, ϵ defined by Eq. (28), and the parameter δ is a

FIG. 12. The comparison of the prediction for the reduced cross
section for charm to data from HERA [55].

FIG. 11. The percentage pulls for various values of Q2 and their average value.
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switch to include (δ ¼ 1) or exclude (δ ¼ 0) the nonlocal
term in the longitudinal contribution. The scalar part ϕT;L
of the wave function is, in general, model dependent. For
our studies, we use the boosted Gaussian model [63–65] in
which the δ parameter is fixed to one. The values of the
parameters for the wave functions of all vector mesons are
fixed according to Table I in [66].
The total exclusive cross section to produce a vector

meson is given by the sum of the transverse and the
longitudinal contributions defined by Eq. (36). Moreover
two important corrections have to be applied. The deriva-
tion of the formula for the exclusive vector meson cross
section is performed under the assumption that the scatter-
ing amplitude AT;Lðx;Q2; Δ⃗Þ is purely imaginary. The real
part of the amplitude can be accounted for by the extra term
(1þ β2) in Eq. (37), where β is the ratio of real to imaginary
parts of the scattering amplitude, for details see [61]. The
other correction takes into account that there are two values
of x involved in the interaction of the dipole with the proton

and one should therefore use the off-diagonal gluon
distribution for vector meson production. This effect can
be accounted for by multiplying the scattering amplitude by
a factor RT;L

g , called the skewedness correction [67].

B. Comparison to data

Using the model described in this paper, the cross
sections for exclusive photoproduction and electropro-
duction of ϕ, J=ψ , ψð2SÞ, and ϒð1SÞ vector mesons are
presented at different virtualities of the exchanged photon
and they are compared to available experimental data. The
presented results are calculated at the scales which allow
perturbative treatment of the specific parts of the model.
In Fig. 13 a comparison of our predictions for the jtj

distributions and the total cross sections with HERA H1
[68] and ZEUS [69] data for the exclusive electroproduc-
tion of the ϕ meson for several values of Q2 is shown. The
predictions give a very good description of the available
data, especially at low photon virtualities.
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The predictions for the exclusive production of the J=ψ
meson are compared with the experimental data from H1
[70,71] and ALICE [72,73] experiments in Figs. 14–16, for
several different measurements of kinematic observables.
In the left panel of Fig. 14, the comparison of the jtj
distribution of the photoproduction cross section is pre-
sented. The predictions give very good agreement with the
data at energies Wγp ¼ 55 GeV and Wγp ¼ 100 GeV. The
result for Wγp ¼ 78 GeV is slightly underestimated at low
values of jtj, however one can notice the very small
difference in the measured data with respect to the result
for Wγp ¼ 100 GeV. Since the value of Wγp from the
experimental data is a mean value estimated from a
measured energy range, the result of the model can be
considered satisfactory. The same comparison for the
electroproduction at three different values of Q2 can be

seen in the right panel of the same figure. Although our
predictions do not describe all the data points, we conclude
the agreement between the data and the model to be
qualitatively good. The same conclusion applies to the
comparison of the model predictions with the measured
Wγp dependence of the exclusive differential photoproduc-
tion and electroproduction cross sections at several fixed
values of jtj presented in Fig. 15. The agreement of the
predictions with the data is very good at low values ofWγp,
however at larger values (∼102 GeV), the predictions are
underestimated when compared to experimental photo-
production data. We have also obtained total cross section
for the J=ψ production which is presented in the left panel
of Fig. 16. The predictions for the electroproduction at
three different values of Q2 give a very good description of
the available data. The result for photoproduction gives a
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good agreement with the data at low values of Wγp,
however at high energies the result is again underestimated
when compared to data.
Also, the exclusive cross section of the ψð2SÞmeson was

calculated within the model. The experimental data are not
available for the total cross sections, but only for a ratio of
the ψð2SÞ to J=ψ cross sections, the predictions for these
ratios for photoproduction and electroproduction at Q2 ¼
16 GeV2 are calculated and compared to data from H1
[74], and ZEUS [75], respectively, in the right panel of
Fig. 16. The description of the data is not very good, yet the
large uncertainties of the experimental data do not allow us
to make any final conclusions in this case.
To complete the set of the predictions based on the BK

equation, the exclusive photoproduction of the ϒð1SÞ
meson is presented in Fig. 17. The prediction is compared
with experimental data obtained at HERA by H1 [76]
and ZEUS [77] experiments. It is also compared with the
two latest measurements—in proton-proton collisions atffiffiffi
s

p
¼ 7 TeV and

ffiffiffi
s

p
¼ 8 TeV by LHCb [78], and in

proton-lead collisions at
ffiffiffi
s

p
¼ 5.02 TeV by the CMS

experiment [79]. The description of the data is good,

although the large uncertainties prevent us from making
any strong conclusions regarding the agreement of the
predictions with the data.

VII. CONCLUSIONS

The solution of the Balitsky-Kovchegov equation with
the collinearly improved kernel and including the impact-
parameter dependence has been obtained numerically. This
solution does not show the so-called Coulomb tails that
have appeared in previous attempts to include the impact-
parameter dependence. We have shown that the suppres-
sion at large values of the impact parameter is due to the
suppression of contributions from daughter dipoles of large
sizes in the terms of the collinearly improved kernel that
deal with the resummation of double and single collinear
logarithms.
The solutions based on a physics-inspired initial condition

have been confronted with HERA and LHC data of the
structure function of the proton measured in deep-inelastic
scattering and of exclusive vector meson photoproduction
and electroproduction. The predictions described data over a
large kinematic range in scale and in energy.
The dipole scattering amplitudes computed in this work

are publicly available on the website [80] along with
instructions on how to use them.
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Abstract The impact of nonlinear effects in the diffrac-
tive observables that will be measured in future electron-
ion collisions is investigated. We present, for the first time,
the predictions for the diffractive structure function and
reduced cross sections derived using the solution to the
Balitsky–Kovchegov equation with the collinearly-improved
kernel and including the impact-parameter dependence. We
demonstrate that the contribution of the diffractive events is
enhanced in nuclear collisions and that the study of the ratio
between the nuclear and proton predictions will be useful
to discriminate among different models of the dipole-target
scattering amplitude and, consequently, will allow us to con-
strain the description of QCD dynamics in parton densities.

1 Introduction

The understanding of the high-energy (small-x) regime of
quantum chromodynamics (QCD) is one of the main chal-
lenges of this theory [1–3]. Experimentally, this regime was
intensely investigated in ep collisions at HERA (DESY) and
has been studied in pp, pA, and AA collisions at RHIC
(BNL) and at the LHC (CERN). These experiments indicate
that gluons play a dominant role in the structure of hadrons,
with the gluon density rapidly increasing at smaller values
of x . Theoretically, the growth of the gluon distribution is
expected to saturate, with the system forming a Color Glass
Condensate (CGC), whose evolution with energy is described
by an infinite hierarchy of coupled equations for the corre-
lators of Wilson lines [4–14]. In the mean-field approxima-

a e-mail: Dagmar.Bendova@fjfi.cvut.cz
b e-mail: jan.cepila@fjfi.cvut.cz
c e-mail: jesus.guillermo.contreras.nuno@cern.ch
d e-mail: barros@ufpel.edu.br (corresponding author)
e e-mail: matas.marek1@gmail.com

tion, the first equation of this hierarchy decouples and boils
down to a single non-linear integro-differential equation: the
Balitsky–Kovchegov (BK) equation [12–16]. Such equation
determines, in the large-Nc limit, where Nc is the number of
colors, the evolution of the two-point correlation function,
which corresponds to the scattering amplitude N (x, r, bt ) of
a dipole off the CGC, where r = |r| is the transverse dipole
size and bt the impact parameter. This quantity encodes the
information about the hadronic scattering as well as the non-
linear and quantum effects in the hadron wave function. For
recent reviews, see e.g. [1–3].

During recent years, the CGC formalism has been devel-
oped at higher accuracy and successfully applied to describe
a large set of observables in ep, pp, pA, and AA collisions.
Although these results are very promising, there is no clear
consensus on whether the onset of the nonlinear regime has
been reached. The search for these nonlinear effects is one
of the major motivations for the construction of the Electron-
Ion Collider (EIC) in the US [17–19], recently approved, as
well as for the proposal of future electron-hadron colliders
at CERN [20,21]. These colliders are expected to allow for
the investigation of the hadronic structure with an unprece-
dented precision in inclusive and diffractive observables. In
particular, electron-nucleus collisions are considered ideal to
probe the nonlinear regime [22]. The larger parton densities
in the nuclear case, with respect to the proton case, enhance
by a factor ∝ A1/3 the nuclear saturation scale, Q2

s,A, which
determines the onset of nonlinear effects in QCD dynam-
ics. Such expectations have motivated an intense interest in
phenomenology regarding the implications of gluon satu-
ration effects in QCD observables [17–21]. These studies
demonstrated that the analysis of diffractive events can be
considered a smoking gun of gluon saturation effects in eA
collisions [23–42]. In particular, diffractive events are pre-
dicted to contribute with half of the total cross section in the
asymptotic limit of very high energies, with the other half
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being formed by all inelastic processes [43–46]. In addition,
the associated observables depend on the square of the scat-
tering amplitude, which makes them strongly sensitive to the
underlying QCD dynamics. These results strongly motivate
the study of diffraction in eA collisions using as input in the
calculations a realistic model for the scattering amplitude.

In this paper, we investigate the impact of nonlinear
effects on diffractive observables that can be measured in
future electron-hadron colliders. In particular, we predict
the diffractive cross section and diffractive structure func-
tions using the color-dipole formalism and different mod-
els for the dipole-hadron scattering amplitude considering
ep and eA collisions. Our goal is to improve the stud-
ies performed in Refs. [23,24,44,46–50] in the following
aspects: (i) unlike Refs. [44,47,48,50], we do not assume
that the impact-parameter dependence of N can be factor-
ized as N (x, r, bt ) = N (x, r)S(bt ), where S(bt ) is the tar-
get profile function; (i i) the impact-parameter dependence of
N (x, r, bt ) is derived using the BK equation and taking into
account the collinear corrections to the kernel of the evolution
equation, following the approach proposed in Refs. [51,52]
(in Refs. [46,49] the b dependence of N is an assumption of
the phenomenological models considered); (i i i) the predic-
tions for eA collisions are derived using the solution of the
BK equation for nuclear targets obtained in Ref. [53], which
takes into account the collinear corrections and the impact-
parameter dependence, instead of the Glauber–Gribov (GG)
approach [54–57] used in Refs. [23,24,46]. For completeness
of our study, we compare our predictions with those derived
using the IP-Sat and b-CGC models [58,59] for the dipole-
proton scattering amplitude, generalized for the nuclear case
using the GG approach.

The paper is organized as follows. In the next section,
we present a brief overview of the color dipole formalism
for the description of diffractive deeply inelastic scattering
in ep and eA collisions. The impact-parameter dependent
BK equation is presented and its solutions for the cases of a
proton and a nucleus are discussed. In Sect. 3, we present our
predictions for the ratio between the diffractive and the total
cross sections as well as for the diffractive structure functions.
A comparison to HERA data is presented and the nuclear
dependence of the individual components of the diffractive
structure functions is discussed in detail. Finally, in Sect. 4
we summarize our main conclusions.

2 Formalism

Diffractive electron-hadron scattering, eh → eXh, is repre-
sented in Fig. 1, where the hadron in the final state carries
most of the beam momentum and X represents all the other
final state particles. The basic idea is that in the γ ∗h inter-
action, the hadron remains intact and a hadronic system X

Fig. 1 Diffractive deeply inelastic scattering in electron-hadron colli-
sions, where the hadron can be in particular a proton or a nucleus

with mass MX is produced with a rapidity gap between them.
The fractional longitudinal momentum loss of the hadron is
denoted as xIP and is related to the photon virtuality Q2 and
M2

X as

xIP = Q2 + M2
X

Q2 +W 2 , (1)

where W is the photon-hadron center-of-mass energy. In
addition, we can define the variable β given by

β = Q2

Q2 + M2
X

, (2)

which is related to the Bjorken variable x = Q2/(Q2 +W 2)

and xIP by x = βxIP . The measured diffractive cross section
can be expressed as

dσ eh→eXh

dβdQ2dxIP
= 4πα2

em

βQ4

[
1 − y + y2

2

]
σ D(3)
r (xIP ,β, Q2) ,

(3)

where y is the fractional energy loss of the electron in the
hadron rest frame and the reduced cross section is related to
the diffractive structure functions as

σ D(3)
r (xIP ,β, Q2) = FD(3)

2 (xIP ,β, Q2)

− y2

1+(1−y)2 F
D(3)
L (xIP ,β, Q2). (4)

Experimentally, diffractive eh scattering is characterized by
the presence of a leading hadron at beam rapidities in the final
state, and by a rapidity gap in between this hadron and the
produced system X . The size of the rapidity gap is ln(1/xIP ).

Currently, there have been many attempts to describe the
diffractive part of the deeply inelastic cross section within
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(a) (b)

Fig. 2 Diffractive deeply inelastic electron-hadron scattering in the
color-dipole formalism, which assumes that the virtual photon fluctu-
ates into a colorless parton Fock state, which interacts elastically with

the proton or nucleus. The contributions of qq̄ and qq̄g parton Fock
states are presented in the left and right panels, respectively

the pQCD, see e.g. Refs. [47,48,60–64]. One of the most
successful approaches is the saturation one [47–49] based on
the dipole picture of DIS [65–68]. It naturally incorporates
the description of both inclusive and diffractive events in
a common theoretical framework, as the same dipole-target
scattering amplitude enters in the formulation of the inclusive
and diffractive cross sections. In this formalism, the total and
diffractive cross sections are given by

σtot(x, Q2) =
∑

i=L , T

∫
dz d2r |&γ ∗

i (z, r)|2
∫

d2bt
dσ

d2bt
,

(5)

σdiff(x, Q2) = 1
4

∑

i=L , T

∫
dz d2r |&γ ∗

i (z, r)|2

×
∫

d2bt

(
dσ

d2bt

)2

, (6)

where the functions |&γ ∗
T,L(r, z)|2 represent the probability of

the photon with transverse (T) or longitudinal (L) polariza-
tion to split into a qq̄ pair; these functions can be calculated
perturbatively and are expressed by

|&γ ∗
T (z, r)|2 = 6αem

(2π)2

∑

f

e2
f

{[
z2 + (1 − z)2

]

×ε2K 2
1 (εr)+ m2

f K
2
0 (εr)

}
, (7)

|&γ ∗
L (z, r)|2 = 6αem

(2π)2

∑

f

4e2
f Q

2z2(1 − z)2K 2
0 (εr), (8)

where r is the size of the qq̄ , z and (1− z) are the momentum
fractions of the original photon momentum carried by the
quark and anti-quark, respectively, and m f and e f are the

mass and the charge of a quark with flavor f . Moreover,
dσ/d2bt denotes the dipole cross section for its scattering
off the target at an impact parameter bt ; this cross section is
related to the dipole-target scattering amplitude N (x, r, bt )
by

dσ

d2bt
= 2 N (x, r, bt ). (9)

In addition, it is possible to extend the color-dipole formal-
ism to estimate the diffractive structure functions. For that,
one needs to compute the reduced diffractive cross section
σ
D(3)
r (xIP ,β, Q2). In Refs. [47,48], the authors have derived

expressions for FD(3)
2 directly in the transverse momentum

space and then transformed them to impact-parameter space
where the dipole approach can be applied. Following Refs.
[46–49], we assume that the virtual photon fluctuates into a
colorless parton Fock state, which interacts elastically with
the proton or the nucleus. We include the contributions of
qq̄ and qq̄g states, with the associated diffractive processes
being represented in Fig. 2. Both processes are characterized
by the presence of a rapidity gap in the final state due to
the color singlet exchange. As a consequence, the diffractive
structure function can be expressed by

FD(3)
2

(
Q2,β, xIP

)
= FD

qq̄,L + FD
qq̄,T + FD

qq̄g,T , (10)

where T and L refer to the polarization of the virtual photon.
For the qq̄g contribution, only the transverse polarization is
considered, since the longitudinal counterpart has no leading
logarithm in Q2. The computation of the different contribu-
tions was done in Refs. [46–49] and here we only quote the
final results. The transverse component of the qq̄ contribu-
tion is given by
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xIP FD
qq̄,T (xIP ,β, Q

2) = NcQ4

16π3β

∑

f

e2
f

∫ 1/2

z0

dzz(1 − z)

×
{
ε2

[
z2+(1−z)2

]
(1+m2

f (0

}
,

(11)

while the longitudinal contribution is

xIP FD
qq̄,L(xIP ,β, Q

2)

= NcQ6

4π3β

∑

f

e2
f

∫ 1/2

z0

dzz3(1 − z)3(0, (12)

where ε2 = z(1 − z)Q2 +m2
f and the variable z0 is defined

by

z0 = 1
2



1 −

√√√√1 −
4m2

f

M2
X



 . (13)

Moreover, the auxiliary functions (0,1 are expressed as fol-
lows

(0,1=
∫

d2bt

[∫ ∞

0
drr K0,1(εr)J0,1(kr)

dσ

d2bt
(bt , r, xIP )

]2
,

(14)

with k2 = z(1 − z)M2
X − m2

f .
Finally, the transverse qq̄g component is given by

xIP FD
qq̄g,T (xIP ,β, Q

2)

= αsβ

8π4

∑

f

e2
f

∫
d2bt

∫ Q2

0
dκ2

∫ 1

β
dz

{
κ4 ln

Q2

κ2

×
[(

1 − β

z

)2

+
(

β

z

)2]

×
[ ∫ ∞

0
drr

dσg

d2bt
K2

(√
zκr

)
J2

(√
1 − zκr

) ]2
}

,

(15)

where

dσg

d2bt
= 2

[

1 −
(

1 − 1
2

dσ

d2bt

)2
]

. (16)

As pointed out in Ref. [49], at small β and low Q2, the
leading ln(1/β) terms should be resumed and the above
expression should be modified. However, as a description
with the same quality using Eq. (15) is possible by adjusting
the coupling [49] and our focus will be in the predictions
for medium values of β, in what follows we will use this
expression for our studies.

In the color-dipole formalism, the energy, photon virtual-
ity and atomic number dependencies of diffractive observ-
ables are fully determined by the evolution of N and, conse-
quently, strongly dependent on the description of the QCD

dynamics at small-x and large-A. As discussed in the intro-
duction, the Balitsky–Kovchegov (BK) equation is a nonlin-
ear evolution equation in rapidity Y for the dipole-hadron
scattering amplitude and is given by [12–16]

∂N (r, bt , Y )
∂Y

=
∫

dr1 K (r, r1, r2)[N (r1, b1, Y )+ N (r2, b2, Y )

−N (r, bt , Y ) − N (r1, b1, Y )N (r2, b2, Y )]. (17)

In the following, r ≡ |r|, r1 ≡ |r1| and r2 ≡ |r2| are
the transverse sizes of the original dipole and of the two
daughter dipoles, respectively, and the bi ≡ bi are the cor-
responding impact-parameter vectors. During the last years,
different functional forms have been proposed for the kernel
K (r, r1, r2) of the BK equation, considering e.g., the cor-
rections that take into account the running of the coupling
constant as well as the resummation of collinear logarithms.
The studies performed in Refs. [69–71], which disregarded
the dependence on the impact parameter, demonstrated that
it is possible to obtain a good description of the inclusive
HERA data by taking into account these corrections to the
kernel. However, in order to describe in detail exclusive pro-
cesses, it is fundamental to take into account also the impact-
parameter dependence of the dipole-target scattering ampli-
tude. In Refs. [51,52], the BK equation was solved for a
proton target including the dependence on impact parameter
and using the collinearly-improved kernel. The authors have
demonstrated that the contribution coming from the large
impact parameters is strongly suppressed by the collinear cor-
rections and that the HERA data for the F2 structure function
and for the exclusive vector meson production are reasonably
well described. More recently, this approach was extended
for nuclear targets in Refs. [53,72]. In what follows, we dis-
cuss the main characteristics of these solutions, which are
used as input in the calculation of the diffractive observables.

In Fig. 3, we present the solutions of the impact-parameter
dependent BK equation with the collinearly-improved ker-
nel for a proton target, denoted as b-dep ciBK hereafter, for
a fixed value of b and two values of x . As in Refs. [51,52],
the initial condition is given by a combination of the GBW
model [47,48] for the dependence on the dipole size r and a
Gaussian distribution for the impact-parameter dependence.
The parameters have been fixed using HERA data for F2 and
for the |t |-distribution of the J/& photoproduction. For com-
parison, we also present the predictions from the IP-Sat and
b-CGC models (see e.g. Refs. [58,73,74]), which are phe-
nomenological models based on the CGC physics and that are
also able to describe HERA data. Although the predictions
give similar results for small dipoles, they strongly differ at
large-r . Such difference is smaller for smaller values of the
Bjorken-x , with the onset of saturation being slower in the
b-dep ciBK case. This result indicates that observables sen-
sitive to large dipole sizes will be sensitive to the modeling
of N .
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Fig. 3 Dipole-proton scattering
amplitude for a fixed impact
parameter (b = 0.1 GeV−1) and
two values of x

In Fig. 4, the BK solution for a nuclear target, denoted
b-dep ciBK-A hereafter, is presented for a fixed value of b
and two values of x . As in Ref. [53], the initial condition is
given by

NA(r, bA,Y = 0)

= 1 − exp

[

−1
2
Q2

s0(A)
4

r2TA(bq1, bq2)

]

, (18)

where bA is the dipole-nucleus impact parameter, Y =
ln(x0/x)with x0 = 0.008, bqi are the impact parameters with
respect to the dipole constituents, and Q2

s0 is a free parameter
determined for each value of A by the comparison between
the dipole predictions for F A

2 and those obtained using the
collinear formalism and the EPPS16 parametrization [75] for
Y = 0. The nuclear profile TA(bq1, bq2) is given by

TA(bq1, bq2) = k
[
TA(bq1)+ TA(bq2)

]
, (19)

where the individual profiles TA(bqi ) are described by a
Woods-Saxon distribution and k is the factor which ensures
kTA(0) = 1. For comparison, we also present the predictions
for NA derived using the Glauber–Gribov (GG) formalism
[54–57,76], which implies that NA(r, bA, Y ) is given by

NA(r, bA,Y ) = 1 − exp
[
−1

2
σdp(Y, r2) TA(bA)

]
, (20)

where σdp is the dipole-proton cross section, which is
expressed in terms of the dipole-proton scattering amplitude
as follows

σdp(Y, r2) = 2
∫

d2bp Np(r, bp, Y ), (21)

where bp is the impact parameter for the dipole-proton inter-
action. In order to estimate the dependence of our predictions
on the treatment of the nonlinear effects, we compare the
solution of the BK equation for the nuclear case with those
derived using the BK solution for the proton as the input in
Eq. (20), the said predictions being denoted as b-dep ciBK +
GG in what follows. In addition, we also present the predic-
tions obtained using the IP-Sat and b-CGC models as input
in the GG formula, which are denoted as IP-Sat + GG and
b-CGC + GG, respectively. The results presented in Fig. 4

for A = 40 (upper panels) and A = 208 (lower panels)
indicate that the onset of the nonlinear (saturation) effects
(N ≈ 1) occurs at smaller values of r for heavier nuclei and
for smaller values of x . Such result is indeed not surpris-
ing, since the nuclear saturation scale is expected to increase
with the atomic number of the nucleus and with the increas-
ing rapidity Y . The BK equation for the nuclear case predicts
a faster onset of total saturation for x = 10−3 than the pre-
dictions derived using the GG formula. On the other hand,
for x = 10−6, the b-dep ciBK + GG prediction saturates
at smaller values of r , with the transition between the lin-
ear (small-r ) and nonlinear (large-r ) regimes being strongly
model dependent. Such result motivates the analysis of the
impact of these distinct descriptions for the nonlinear effects
on the diffractive observables that can be measured in future
eA collisions.

3 Results

Initially, let’s investigate the impact of the nonlinear effects
on the ratio between the diffractive and total cross sections,
defined by Rσ = σdiff/σtot, which allows us to analyze if the
diffractive and inclusive processes have a similar energy-
, x-, Q2- and A-dependencies. The experimental results
from HERA indicate a very similar energy-dependence of
the diffractive and the total cross section. It is important to
emphasize that saturation physics provides a simple expla-
nation for this finding. As shown e.g. in Refs. [44,47,48], the
saturation effects suppress the contribution of the large-size
dipoles, associated to nonperturbative physics, and implies
that the energy dependence is similar for inclusive and
diffractive processes. In contrast, to explain this aspect of data
using a description based on the collinear factorization is non-
trivial. In this case the energy dependence of the inclusive and
diffractive cross sections is controlled by the x-dependence
of the ordinary and the diffractive parton densities, which
is not predicted by the theory. Another important aspect is
that in the black-disc limit, where d2σ

d2b → 2, we have that
Rσ → 1/2. Therefore, this observable can be considered
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Fig. 4 Dipole-nucleus
scattering amplitude for a fixed
impact parameter b = 0.1
GeV−1 and two values of x .
Predictions for A = 40 (208)
are presented in the upper
(lower) panels

as a measure of how close to the black-disc limit we are.
Previous calculations have demonstrated that Rσ increases
with the atomic number A [43–46]. The results presented in
Fig. 5 agree with these expectations, with the distinct mod-
els predicting that ≈ 20% of the events will be diffractive
in ePb collisions. We have verified that this value decreases
with the increase of the photon virtuality. Regarding to the x
- dependence, we have for A = 1 (left panel) that the IP-SAT
and b-dep ciBK models predict a flat behaviour while the
b-CGC one predicts a mild increasing for smaller values of
x , in agreement with the results obtained in Ref. [24]. The
b-dep ciBK model predicts the smaller amount of diffractive
events. The different behaviours for the x - dependence are
associated to the distinct transitions between the linear and
nonlinear regimes predicted by these models (see Fig. 3) and
the distinct impact parameter dependencies. While in the b-
CGC model, the impact parameter dependence is present in
the saturation scale, in the other models it is determined by
the nucleon profile. As the inclusive and diffractive cross sec-
tions are dominated by distinct ranges of impact parameter,
with the diffractive one being dominated by larger values of
b, one has that the ratio between these cross section is sen-
sitive to these differences. For the nuclear case (middle and
right panels), one has that the IP-SAT + GG and b-CGC +
GG predictions have a x - dependence similar to that verified
for the proton, with the main difference being the higher nor-
malization. In contrast, the b-dep ciBK-A and b-dep ciBK +
GG results differ in their predictions for the x-dependence
of the ratio, with the b-dep ciBK-A one being almost flat,
while the b-dep ciBK + GG model predicts that Rσ increases

at smaller values of x . One has verified that this difference
arises from the different evolution of the amplitudes in the
intermediate - r region, shown in Fig. 4, which is faster in the
b-dep ciBK + GG model.

The diffractive cross section ep → eXY has been mea-
sured by the H1 and ZEUS experiments at HERA by tagging
the proton in the final state (Y = p) or by selecting events
with a large rapidity gap between the systems X and Y . In
our study, we will focus on the case where the proton or
the nucleus remains intact in the final state. Moreover, our
analysis will focus on the kinematic range of small Q2 and
xIP ≤ 10−2, which is the range expected to be probed in the
future EICs and where the nonlinear effects are predicted to
significantly contribute. In Fig. 6, we present our predictions
for the β dependence of the diffractive structure function
FD(3)

2 at fixed Q2 and xIP , considering different models for
the dipole-proton scattering amplitude. Although the gen-
eral structure of the β-spectrum for the distinct components
is determined by the photon wave function, we have that the
normalization of these distinct terms depends on the model-
ing of the dipole-proton interaction, with the b-dep ciBK pre-
diction being smaller than the other two phenomenological
models. Moreover, this model predicts a smaller contribution
of the qq̄g component at small-β.

In Fig. 7, we present the predictions for the xIP -dependence
of the reduced diffractive cross section σ

D(3)
r (xIP ,β, Q2) at

different combinations of the photon virtuality and values of
β, considering the b-CGC, IP-Sat, and b-dep ciBK models
for the dipole-proton scattering amplitude. The data from H1
are presented for comparison [77]. The xIP -dependencies of
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(a) (b) (c)

Fig. 5 Predictions for the x dependence of the ratio Rσ = σdiff/σtot for a A = 1, b A = 40 and c A = 208, considering distinct models for the
dipole-target scattering amplitude and a fixed photon virtuality (Q2 = 2 GeV2)

Fig. 6 Predictions for the β dependence of the different components of FD(3)
2 considering distinct models for the dipole-proton scattering amplitude

Fig. 7 Predictions for the xIP -dependence of the reduced diffractive cross section σ
D(3)
r (xIP ,β, Q2) at different combinations of the photon

virtuality and β, considering the b-CGC, IP-Sat, and b-dep ciBK models for the dipole-proton scattering amplitude. Data from H1 are presented
for comparison [77]
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the predictions are similar. However, one has that the nor-
malization of the b-dep ciBK prediction is smaller than the
b-CGC and IP-Sat one, in agreement with the results derived
for the diffractive structure function. We observe that the data
for medium and small β is better described by the b-dep ciBK
model, but this model underestimates the data at large β val-
ues. The opposite situation occurs for the other two models.
Unfortunately, due to the scarcity of data, a more definitive
conclusion is not possible. However, our results indicate that
a future analysis of this observable, to be performed in the
EIC and LHeC, will be very useful to constrain the underly-
ing assumptions about the QCD dynamics.

As discussed in previous sections, the impact of nonlin-
ear effects is expected to be enhanced in eA collisions and,
as demonstrated in Fig. 5, the contribution from diffractive
events is larger in the nuclear case. Such results motivate
the study of the diffractive structure functions FD(3)

2 and the
reduced diffractive cross sections σ

D(3)
r (xIP ,β, Q2) for dif-

ferent nuclei. In our analysis, we estimate the behavior of the
ratio between these quantities for nuclei and the associated
predictions for ep collisions re-scaled by the atomic num-
ber A. If the nuclear effects are negligible, such ratios are
equal to unity. Therefore, the study of these ratios for dif-
ferent nuclei allows us to investigate the impact of nonlinear
corrections in the kinematic range that will be probed in the
future electron-ion colliders.

Initially, in Fig. 8, we present our predictions for the
β (upper panels), xIP (middle panels) and Q2 (lower
panels) dependencies of the ratio σ

D(3),A
r (xIP ,β, Q2)/A ·

σ
D(3),p
r (xIP ,β, Q2) for A = 40 (left panels) and A = 208

(right panels), considering the different models for the dipole-
nucleus scattering amplitude. Our results indicate that a
future experimental analysis of this observable for two dis-
tinct nuclei will be very useful, since the normalization
and dependencies on β, xIP and Q2 are strongly depen-
dent on the description of the QCD dynamics. In particu-
lar, one can observe that the predictions derived using the
impact-parameter dependent BK equation are larger than
those obtained using the phenomenological models.

In order to understand the origin of these different
behaviours for the reduced cross section, which is the main
observable to probe the diffractive processes, in what fol-
lows we will investigate how the different components of the
diffractive structure function, given by Eq. (10), are impacted
by the description of the QCD dynamics. Our analysis is
motivated by the fact that, depending on the value of β,
FD(3)

2 is dominated by a different component (see Fig. 6)
and that the future EIC will mainly probe the kinematical
range of small inelasticity y, where σ

D(3)
r ≈ FD(3)

2 . The
predictions for the β, xIP and Q2 dependencies of the ratio
FD(3),A

2 /AFD(3),p
2 are presented in Fig. 9 considering the

IP-Sat + GG (left panels), b-dep ciBK + GG (middle pan-

els) and b-dep ciBK-A (right panels) models for the dipole-
nucleus scattering amplitude. In particular, in Fig. 9 (upper
panels) we present our predictions for the β-dependence of
the ratio FD(3),A

2 /AFD(3),p
2 for A = 208, Q2 = 2 GeV2 and

xIP = 10−3, which can be potentially studied in the future eA
colliders. Moreover, we present the predictions for the dif-
ferent components that contribute to the diffractive structure
function. Our results for the IP-Sat + GG model agree with
those presented in Ref. [46] using the same approach. How-
ever, we show that the predictions are strongly dependent
on the modeling of the dipole-target scattering amplitude. In
particular, b-dep ciBK models predict a nuclear enhancement
of all components that contribute to the diffractive structure
function, which is mainly associated with the smaller nor-
malization of the diffractive structure function of the proton
in comparison to the IP-Sat model. Such result explain the
enhancement observed in the upper panels of Fig. 8 for the
b-dep ciBK models. We have that the b-dep ciBK predictions
for the β dependence of the sum of the components (denoted
full in the figures) are similar, although they predict very dis-
tinct behaviours for the longitudinal contribution. However,
such difference occurs at small - β, where the contribution of
the longitudinal term for FD(3)

2 is negligible. It is important
to emphasize that we also have estimated the ratio for A = 40
and verified that the prediction for the qq̄g is larger than for
A = 208. Therefore, similarly to Ref. [46], we also predict
a strong suppression of the qq̄g component with increasing
atomic number A. The predictions for the xIP -dependence
of the ratio FD(3),A

2 /AFD(3),p
2 are presented in Fig. 9 (mid-

dle panels). The results were derived assuming A = 208,
Q2 = 2 GeV2 and β = 0.8. or this value of β, the diffrac-
tive structure is mostly dominated by the longitudinal and
transverse components. One has that the different models
predict distinct behaviours for the xIP -dependence of these
components, which implies that the full prediction becomes
dependent on the model used to describe the dipole-nucleus
interaction. The dependence on the photon virtuality of the
ratio FD(3),A

2 /AFD(3),p
2 is analyzed in Fig. 9 (lower panels)

for A = 208, xIP = 10−3 GeV2 and β = 0.8. We have
that the different models predict that the ratio will be almost
constant in the Q2 range considered, with the main differ-
ences being the normalization and the behavior at small -
Q2, which are dependent on the approach.

4 Summary

Future electron-ion collisions will allow us to study the high-
gluon density regime of QCD, where the contribution of
nonlinear (saturation) effects are expected to determine the
behavior of the inclusive, diffractive and exclusive observ-
ables. In this paper, we have investigated the impact of these
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Fig. 8 Predictions for the β (upper panels), xIP (middle panels) and Q2 (lower panels) dependencies of the ratio σ
D(3),A
r (xIP ,β, Q2)/A ·

σ
D(3),p
r (xIP ,β, Q2) for A = 40 (left panels) and A = 208 (right panels) considering the different models for the dipole-nucleus scattering

amplitude

effects on diffractive observables. In particular, we have pre-
sented, for the first time, the predictions for the diffractive
structure functions and reduced diffractive cross sections
derived using the solution of the impact-parameter dependent
Balitsky–Kovchegov equation for the dipole-target scatter-

ing amplitude. We have presented the predictions for ep and
eA collisions, considering the kinematic ranges that will be
probed by the EIC, LHeC and FCC-eh. It has been demon-
strated that the contribution of the diffractive events increases
with the atomic number, being of the order of 20% for ePb
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Fig. 9 Predictions for the β, xIP , and Q2 dependencies (from top to
bottom, respectively) of the ratio FD(3),A

2 /AFD(3),p
2 for A = 208 con-

sidering the IP-Sat + GG (left panels), b-dep ciBK + GG (middle panels)

and b-dep ciBK-A (right panels) models for the dipole-nucleus scatter-
ing amplitude. Predictions for the distinct components are presented
separately

collisions, with this prediction being almost independent on
the modeling of the dipole-nucleus interaction. Our results
for ep collisions indicate that the BK equation satisfactorily
describes the data and implies a smaller normalization for the
reduced cross section in comparison to the phenomenologi-
cal models based on the CGC physics. For eA collisions, we
have shown that a future experimental analysis of the diffrac-
tive observables will be useful to improve our understanding
of QCD dynamics at high parton densities.
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The coherent photonuclear production of a J/ψ vector meson at the LHC has been computed using two 
different sets of solutions of the impact-parameter dependent Balitsky-Kovchegov equation. The nuclear 
dipole scattering amplitudes are obtained either from (i) solutions for this process off proton targets 
coupled with a Glauber-Gribov prescription, or (ii) from solutions obtained with an initial condition 
representing the nucleus. These approaches predict different cross sections, which are compared with 
existing data from ultra-peripheral collisions at the LHC. The latter approach seems to better describe 
current measurements. Future LHC data should be precise enough to select one of the two approaches as 
the correct one.

 2021 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY license 
(http://creativecommons.org/licenses/by/4.0/). Funded by SCOAP3.

1. Introduction

The exclusive photoproduction of a J/ψ vector meson off a 
hadron has been recognised for many years as a very sensitive 
probe of the gluonic structure of hadrons in the perturbative 
regime of quantum chromodynamics (QCD) [1,2]; thus it has been 
extensively studied at HERA [3,4]. In recent years, this process has 
attracted renewed attention. On one hand, due to measurements 
at the LHC including production off protons and off Pb nuclei and 
reaching unprecedented energies [5–7]. On the other, because of 
studies related to the potential of electron-ion colliders [8,9].

As mentioned above, there is plenty of high-quality data from 
HERA on production off proton targets. Therefore, many computa-
tions predicting the behaviour of this process off nuclear targets 
start from a description of the process off nucleons, where the 
parameters of the given model are fixed by HERA data, and then 
apply some form of Glauber formalism to predict the cross sections 
for photonuclear production. Such an approach has been followed 
for example in [10–13].

The applicability of using a Glauber approach has been anal-
ysed since a long time, e.g. [14,15], but recent advances in the 
understanding of saturation through the solution of the Balitsky-
Kovchegov (BK) equation [16–18] allow for new insights into this 
question. In particular, the implementation of collinear corrections 
to the kernel [19,20] (see also [21]) together with a suitable initial 
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condition has been used to find impact-parameter dependent solu-
tions of the BK equation [22], which correctly describe HERA data 
on vector meson photo- and electroproduction off protons [23]. 
The use of the collinearly improved kernel allows for phenomeno-
logical applications of the BK equation including a dependence on 
the impact parameter, because it suppresses the so-called Coulomb 
tails [24]. But as pointed out in [25] this suppression is not valid 
in all the phase space and the problem of Coulomb tails is still 
present. Nonetheless, as shown in [22], the suppression in kine-
matic ranges of interest for current and planned facilities is strong 
enough to allow for phenomenological studies.

Recently, these advances have been extended to the case of nu-
clear targets [26] using two approaches: (i) coupling the solution 
of the BK equation for the case of proton targets to a Glauber-
Gribov prescription to obtain the solutions to the nuclear case, and 
(ii) solving directly the impact-parameter dependent BK equation 
with an initial condition representing a specific nucleus. In what 
follows, these two sets of solutions are denoted as b-BK-GG and 
b-BK-A, respectively.

In this Letter, both approaches are used to predict the cross 
section for coherent photoproduction of J/ψ vector mesons in Pb–
Pb ultra-peripheral collisions (UPC) at the LHC and compare the 
predictions with data available at different rapidities and at two 
centre-of-mass energies per nucleon pair, √

sNN = 2.76 TeV and √
sNN = 5.02 TeV, corresponding to measurements performed dur-

ing the LHC Run 1 and Run 2, respectively. It is found that Run 1 
measurements at midrapidity strongly disfavour the use of b-BK-
GG solutions, and that the expected precision of the measurements 
with Run 2 data may provide a definitive answer on the question 
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of which approach is the valid one. The rest of this Letter is organ-
ised as follows: the next section presents a brief overview of the 
formalism; Sec. 3 contains the main results, while in Sec. 4 our 
findings are discussed; the Letter concludes with a brief summary 
and outlook in Sec. 5.

2. Brief overview of the formalism

In this section a brief overview of the formalism is presented. 
For the full details see for example [23,26] and references therein.

The cross section for the coherent photoproduction of a J/ψ
vector meson, differential on the square of the momentum transfer 
t at the target vertex, is given by the sum of the contributions from 
transversely (T ) and longitudinally (L) polarised photons:

dσγ Pb

d|t|

∣∣∣∣
T ,L

=
(
1 + β2)

(
RT ,L

g

)2

16π
|AT ,L |2. (1)

The factor (1 + β2) accounts for contributions from the real part 
of the amplitude, where β is the ratio of real to imaginary parts of 
the scattering amplitude, while (RT ,L

g )2 corrects for the so-called 
skewedness effect [27]. The scattering amplitude of the process is 
given by

AT ,L(x, Q 2, #&) = i
∫

d#r
1∫

0

dz
4π

∫
d#b|'∗

V'γ ∗ |T ,L

× exp
[
−i

(
#b − (1 − z)#r

)
#&
] dσ qq̄

d#b
. (2)

Here, 'γ ∗ and 'V are the wave functions of a virtual photon fluc-
tuating into a colour dipole and of the dipole producing the vector 
meson. A detailed description of the wave functions together with 
the values of the corresponding parameters is outside the scope of 
this Letter, they can be found in a previous work [28]. The vector 
#r represents the dipole size and orientation, and #b represents the 
impact parameter between the dipole and the target. Q 2 denotes 
the virtuality of the photon and #&2 ≡ −t . The variable z corre-
sponds to the fraction of the energy of the quark-antiquark dipole 
carried by the quark, while

dσ qq̄

d#b
= 2N(#r, #b; x), (3)

where N(#r, #b; x) is the dipole scattering amplitude obtained as a 
solution of the BK equation at a rapidity Y = ln(x0/x); here x0 ≡
0.008 corresponds to the rapidity at the initial condition.

As mentioned before, two sets of dipole scattering amplitudes 
are used; both were obtained and studied in detail in our previ-
ous work [26].1 In the b-BK-GG approach, the impact-parameter 
dependent BK equation is solved with an initial condition repre-
senting a proton. The solutions at each rapidity are then converted 
into solutions for a nucleus using the Glauber-Gribov prescrip-
tion proposed in [29]. In the case of the b-BK-A approach, the 
initial condition represents the specific nucleus where the impact-
parameter part is described with the help of the corresponding 
Woods-Saxon distribution.

3. Results

The cross section for the coherent photoproduction of a J/ψ
vector meson off a Pb target as a function of |t| is shown in Fig. 1

1 The amplitudes are available online at https://hep .fjfi .cvut .cz /NuclearbdepBK .
php.

(left) at a centre-of-mass energy of the γ Pb system Wγ Pb = 121
GeV, where W 2

γ Pb = M2
J/ψ/x with MJ/ψ the mass of the J/ψ vector 

meson. Note that not only the absolute magnitude of the cross 
section is different in the b-BK-A and b-BK-GG approaches, but 
also that the positions of the diffractive minima are displaced. This 
particular value of Wγ Pb has been chosen, because it corresponds 
to production in UPC at midrapidity for LHC Run 2 √sNN energies, 
as explained below.

Fig. 1 (right) shows the energy dependence of the total γ Pb
cross section, that is integrated over |t|. The difference in the abso-
lute value of the cross section when using b-BK-A with respect to 
b-BK-GG solutions increases with energy from a 30% at Wγ Pb = 35
GeV to 54% at Wγ Pb = 121 GeV, reaching already a factor of two 
at Wγ Pb = 900 GeV.

The cross section dσ /dy for the coherent photoproduction of 
a J/ψ vector meson in Pb–Pb UPC is shown in Fig. 2 for the LHC 
energies corresponding to the Run 1 (left) and Run 2 (right). This 
cross section is given by

dσ

dy
= nγ (y)σγ Pb(y) + nγ (−y)σγ Pb(−y), (4)

where the rapidity y of the J/ψ at the LHC is related to Wγ Pb by

W 2
γ Pb = √

sNNMJ/ψe−y . (5)

The flux of photons from the Pb nucleus nγ (y) is computed fol-
lowing the description detailed in [30]. The figure also shows a 
comparison with existing measurements from the ALICE [31–33]
and CMS [34] collaborations as well as with preliminary results 
from the LHCb collaboration [35].

4. Discussion

Some comments are in order. First, those of technical nature 
are addressed, followed by those related to the physics insight pro-
vided by the results presented in the previous section.

There has been recent interest on the argument of the expo-
nential term in Eq. (2). This factor, introduced in [36], originates 
from a Fourier Transform term modified to take into account non-
forward amplitudes. In [36] the factor is written in a general form, 
but when used for phenomenology it has been commonly imple-
mented as in Eq. (2). A proposal put forward in [37] and based on 
symmetry arguments is that the term (1 − z) should be (1 − 2z)/2. 
Using the proposal from [37] produces a 3.5% larger cross section 
in both the b-BK-A and the b-BK-GG scenarios. This percentage 
is constant within the studied energy range. Therefore, this issue 
does not affect significantly the results presented in this Letter.

The corrections to take into account contributions from the real 
part of the amplitude and the skewedness effect are computed at 
fixed |t| = 0.0001. They depend on energy decreasing slowly with 
increasing Wγ Pb. The factor (1 + β2) is 1.07 (1.08) around 35 GeV 
and 1.04 (1.05) at 1 TeV, while (RT ,L

g )2 is 1.32 (1.34) around 35 GeV 
and 1.23 (1.27) at 1 TeV for the b-BK-A (b-BK-GG) case.

Recently, it was suggested to change the evolution variable in 
the BK equation [38]. The group behind this proposal has achieved 
a good description of HERA data using the rapidity of the dipole 
or that of the target for the evolution [20,39]. In [40] it was found 
that the new and the old approaches yield the same phenomenol-
ogy at NLO for the structure functions measured at HERA, so in 
this work we will use our previous approach and explore the new 
proposal elsewhere.

Another issue brought forward in the recent works [38–40] is 
that the identification of the rapidity Y with Bjorken-x is Y =
ln(1/x) + ln(Q 2/Q 2

0 ), where Q 2 is the hard scale of the interaction 
and Q 2

0 can be identified with the saturation scale in the nucleus, 
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Fig. 1. Left: Cross section for the coherent photoproduction of a J/ψ vector meson off a Pb target as a function of |t| at a centre-of-mass energy of the γ Pb system Wγ Pb = 121
GeV. Right: Energy dependence for the cross section integrated over |t|.

Fig. 2. Cross section for the coherent photoproduction of a J/ψ vector meson in ultra-peripheral Pb–Pb collisions at √sNN = 2.76 TeV (left) and √sNN = 5.02 TeV (right) 
corresponding to LHC energies during the Run 1 and Run 2 periods, respectively. The predictions are compared with data from the ALICE [31–33] and CMS [34] collaborations 
as well as with preliminary results from the LHCb collaboration [35].

which in our model is 0.609 GeV2 [26]. For the photoproduction of 
J/ψ , Q 2 can be identified with M2

J/ψ/4 (see e.g. [1]). This means 
that the ratio Q 2/Q 2

0 is in this case constant, which implies in our 
approach a reinterpretation of x0 → x′ Q 2/Q 2

0 with x′ a constant 
fixed by x0, MJ/ψ and Q 0.

The predictions shown in Fig. 2 cover a restricted range in ra-
pidity. The origin of this limitation is that the initial condition for 
the evolution of the dipole scattering amplitude in the BK equa-
tion corresponds to an initial value of x0 = 0.008. Inserting this 
into W 2

γ Pb = M2
J/ψ/x and using Eq. (5) produces a lower limit in y

for Eq. (4).
This type of computations involves a series of choices for 

which, at the moment, there is no definitive theoretical guidance. 
Nonetheless, once a choice is made to describe an observable, it 
should be kept fixed in order to have consistent predictions across 
observables. The approach followed here to compare the predic-
tions from the b-BK-A and b-BK-GG is consistent in the sense that 
the same wave functions and the same corrections are used.

Using a different prescription for the wave function has as the 
main effect the change of the normalisation of the cross sec-
tion, see e.g. [11]. The prescription we chose is, for consistency, 
the same as in our previous work [23] where we compared our 
approach to HERA data. Recent developments arguing for the in-
clusion of D-wave effects find that mainly the excited states are 
affected and the change in the 1S state is less important [41].

There are also several prescriptions for the argument of the 
running coupling constant. For consistency with our previous re-
sults, we use the smallest-dipole prescription, but note that other 
prescriptions have also been used to described data, e.g. [39].

The saturation scale in the initial condition of the b-BK-A model 
is fixed by the central value of the EPPS16 set [42] which embodies 
most of the knowledge, both at the experimental and the theo-
retical level, that we currently have about the structure of nuclei. 
The evolution of this saturation scale is completely determined by 
the BK equation. The internal parameters not directly related to 
the targets take the same values in both cases and the subjacent 
QCD input, namely the BK equation with the collinear corrections, 
is the same. Furthermore, this implementation of the BK equation 
and the corresponding solutions including the impact-parameter 
dependence avoids the introduction of ad hoc parameters or as-
sumptions to describe the distribution of matter in the plane trans-
verse to the γ A interaction. The solutions for the proton case used 
in the b-BK-GG approach described correctly photo and electropro-
duction data from HERA [23].

The cross sections shown in Fig. 1 (left) demonstrate the pres-
ence of diffractive dips. The location of the dips has been put for-
ward as a signature of saturation in γ p [43] and γ A collision [44]. 
The facts that the position of the dip changes according to whether 
a Glauber-Gribov prescription is used or not, and that the change 
is larger than that observed in [44] between the saturation and the 
no-saturation cases, casts a warning on the use of this observable.

3
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The flux entering Eq. (4) is fairly constant for lower Wγ Pb en-
ergies, but it shows a strong cut-off at large energies. As the γ A
cross section raises with energy as shown in Fig. 1 (right), the two 
terms in Eq. (4) have a different numerical value at large |y| with 
the low Wγ Pb contribution being dominant. In this region, the pre-
dictions for the b-BK-A and b-BK-GG prescriptions are the closest. 
At midrapidity, both contributions to Eq. (4) are the same and cor-
respond to Wγ Pb = 125 GeV. Here, the difference in the presented 
UPC cross sections is the largest as shown in Fig. 2. Comparison 
with data from the LHC Run 1 indicates a preference for the b-
BK-A approach and disagrees with b-BK-GG at a bit more than 
one-sigma for |y| = 2 and more than 3 sigmas for y = 0. The cur-
rently existing data from the LHC Run 2 does not provide such a 
clean message because of the large experimental uncertainties as 
well as the slight apparent discrepancy between ALICE and LHCb 
results. The data from LHC Run 2 at midrapidity are still being 
analysed; it is expected that the uncertainties will be smaller than 
those in the existing measurement. If so, then these new data may 
help to select one of the two prescriptions as the most adequate 
approach.

These results, specifically those shown in Fig. 1, are of interest 
for future electron-ion colliders [8,9] where such a process will be 
precisely measured for a variety of nuclei, allowing for the study 
not only of the energy, but also of the A dependence of the cross 
section for coherent J/ψ photo and electroproduction.

Our results not only highlight that the description of the nu-
clear shape in the impact-parameter plane is important but give a 
quantitative prediction of how the evolution of the Glauber-Gribov 
assumption differs from an evolution completely based on the BK 
equation. It is important to remark, that before the appearance 
of the collinearly improved kernel, phenomenologically success-
ful applications of the BK equation described hadrons as large and 
homogeneous in the transverse direction, while now we have the 
possibility of providing hadrons with a more detailed structure in 
the impact-parameter plane and of studying how this structure is 
reflected in measurements to be performed in current and future 
facilities.

5. Summary and outlook

The coherent photonuclear production off Pb nuclei in ultra-
peripheral collisions at the LHC has been studied using solutions 
of the impact-parameter dependent BK equation. Two approaches 
have been compared. Starting from solutions of the proton case 
coupled to a Glauber-Gribov formalism, or solving directly the 
impact-parameter dependent BK equation with an initial condition 
representing the nucleus. Data from the LHC favour the latter ap-
proach. Future data at midrapidity should be precise enough to set-
tle the question of the most valid approach in this context. These 
studies are of interest for the newly approved and planned future 
electron-ion colliders where this type of process can be studied 
with more precision and in a variety of ways.
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Abstract The impact of nonlinear effects in the deeply
virtual Compton scattering (DVCS) process that will be
measured in future electron-hadron collisions is investi-
gated. We present, for the first time, the predictions derived
using the solution to the Balitsky–Kovchegov equation with
the collinearly-improved kernel and including the impact-
parameter dependence. We estimate the total cross section
and t-distribution of the DVCS process in ep and eA col-
lisions and demonstrate that dσ/dt is strongly dependent
on the assumption for the impact-parameter dependence of
the dipole-hadron scattering amplitude. Our results indicate
that a future experimental analysis of this process will be
useful to discriminate among different models for the satu-
ration physics and, consequently, will allow us to constrain
the description of QCD dynamics in parton densities.

1 Introduction

One of the main goals of the future electron-ion colliders
at BNL (EIC) [1–3] and CERN (LHeC) [4,5] is to improve
our understanding about the quantum 3D imaging of the par-
tons inside the protons and nuclei by measuring the parton
position, momentum, and angular momentum with unprece-
dent precision. Theoretically, all quantum information of
how partons are distributed inside hadrons is encoded in the
quantum phase space Wigner distributions, which include
information on both generalized parton distributions (GPDs)
and transverse momentum parton distributions (TMDs), see
e.g. Refs. [6–13]. Experimentally, the tomography picture
from the hadrons can be revealed in deep inelastic electron-
hadron scattering by measurements of exclusive processes,

a e-mail: dagmar.bendova@fjfi.cvut.cz
b e-mail: jan.cepila@fjfi.cvut.cz
c e-mail: barros@ufpel.edu.br (corresponding author)

wherein the hadron remains intact after scattering of the lep-
ton probe. One has that the Fourier transform of the associ-
ated differential cross sections dσ/dt , where t is the squared
four-momentum transfer between the incoming and scattered
hadron, can be used to obtain the transverse spatial distribu-
tions of quarks and gluons in both protons and nuclei. In par-
ticular, the future experimental analysis of the diffractive dijet
production [14–19] and the deeply virtual Compton scatter-
ing (DVCS) [20–22] at the EIC and LHeC are expected to
directly probe the gluon GPD.

In this paper, we will focus on coherent DVCS processes
represented in the Fig. 1, i.e. production of a real photon with
the target hadron remaining intact.1 At large energies, this
process is driven by the gluon content of the target, with the
cross section being proportional to the square of the scat-
tering amplitude and, consequently, being strongly sensi-
tive to the underlying QCD dynamics. For previous studies,
see e.g. Refs. [23–28]. Moreover, the behaviour of dσ/dt
at small-x is determined by the impact-parameter depen-
dence of the scattering amplitude N (x, r, bt ) of a dipole
off the target, where r is the transverse dipole size and bt
the impact - parameter. The amplitude encodes the informa-
tion about the hadronic scattering as well as the nonlinear
and quantum effects in the hadron wave function [29–31].
In recent years, several groups have proposed different phe-
nomenological approaches to describe N (x, r, bt ), which
are based on the color glass condensate (CGC) formalism
[32–37] and successfully describe a large set of observables
in ep, pp, pA, and AA collisions. In particular, the IP-Sat
[25,38] and b-CGC [39,40] approaches are able to describe
the DVCS data obtained in the kinematical range covered

1 The same final state is also generated by the Bethe–Heitler (BH)
process, where the elastic electron-hadron scattering is followed by
photon emission off the electron. In our analysis, we will assume that
the DVCS contribution can be experimentally separated as was done
e.g. at HERA.
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Fig. 1 Deeply virtual Compton scattering in coherent diffractive pro-
cesses, where the hadron can be a proton or a nucleus

by the HERA experiment. A shortcoming of these models
is that the associated bt dependencies are not based on the
solutions of the Balitsky–Kovchegov (BK) equation [41–45],
which is the mean-field approximation of the infinite hierar-
chy of coupled equations for the correlators of Wilson lines
predicted by the CGC formalism [32–37,41–43]. Moreover,
these models have been proposed for a proton target and its
extension for a nuclear target is, in general, performed using
the Glauber–Gribov (GG) approach [46–49] (see e.g. Refs.
[51–53]). Recently, in Refs. [54–56], the impact-parameter
and energy dependencies of N (x, r, bt )have been derived by
solving the BK equation and taking into account the collinear
corrections [57–59] to the kernel of the evolution equation for
both proton and nuclear targets. One of the goals of this paper
is to estimate the DVCS cross sections using this approach
and present, for the first time, a comparison between its pre-
dictions and the HERA data. Another goal is to present an
extensive comparison between the predictions of the distinct
saturation approaches for the energy dependence of the total
cross section and for the t-distributions considering the kine-
matical range covered by the future electron-ion colliders.
Our main motivation is to verify if future experimental data
for the DVCS process could be used to discriminate between
these distinct treatments of the QCD dynamics at high ener-
gies.

The paper is organized as follows. In the next section,
we present a brief overview of the color dipole formalism
for the description of deeply virtual Compton scattering and
the distinct models for the dipole-target scattering amplitude
used in our analysis. In Sect. 3, we present our predictions
for the total cross section and the t-distribution considering
ep and eA collisions. Finally, in Sect. 4, we summarize our
main conclusions.

2 Formalism

Let us start presenting a brief review of the deeply virtual
Compton scattering (DVCS) in electron-hadron collisions,
represented in Fig. 1. This process is characterized by a real
photon and an intact hadron in the final state, with a rapidity
gap separating these systems. In the color dipole approach the
scattering amplitude for the exclusive real photon production
γ ∗h → γ h can be factorized in terms of the fluctuation of
the virtual photon into a qq̄ color dipole, the dipole-hadron
scattering by a color singlet exchange (IP) and the recombi-
nation into the exclusive final state γ . As demonstrated e.g.
in Refs. [21,22,25], the DVCS amplitude can be written as2

Aγ ∗h→γ h(x, r,#, Q2) =
∫

dbt (2πbt )
∫

dr(2πr)

×
∫

dz
∑

f

(%∗
γ ∗%γ )

f J0(bt#)J0([1 − 2z]r#/2)
dσqq̄

d2bt

(1)

where r is the size of the qq̄ dipole, bt is the impact - param-
eter, #2 = −t , and z and (1−z) are the momentum fractions
of the incoming photon carried by the quark and anti-quark,
respectively. Moreover, the overlap function (%∗

γ ∗%γ )
f is

given by

(%∗
γ ∗%γ )

f = Ncαem

2π2 e2
f

×{[z2 + (1 − z)2]ε1K1(ε1r)ε2K1(ε2r)

+m2
f K0(ε1r)K0(ε2r)}, (2)

where m f and e f are the mass and the charge of a quark with
flavor f . The cross section for the dipole scattering off the
target at an impact - parameter bt is denoted by dσqq̄/d2bt
and it is related to the dipole-target scattering amplitude
Nh(x, r, bt ) by

dσqq̄

d2bt
= 2 Nh(x̄, r, bt ), (3)

where x̄ = x(1 + 4m2
f /Q

2), with x being the Bjorken vari-
able. As a consequence, one has that the energy, photon virtu-
ality, transverse momentum, and atomic number dependen-
cies of DVCS cross section are determined by the evolution
of N and, consequently, they strongly depend on the descrip-
tion of the QCD dynamics. An important aspect, that must
be emphasized, is that although the DVCS cross section is
smaller than the vector meson one, it is not affected by the
theoretical uncertainties associated to the scarce knowledge

2 In our analysis we will disregard the correlations between r and bt in
the dipole-target scattering amplitude, which is a good approximation
for the calculation of the total cross section and the t-distribution. How-
ever, less inclusive observables, as e.g. the electron–photon azimuthal
angle correlation, are sensitive to nontrivial spatial correlations in the
gluon distribution of the target [22].
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Fig. 2 Predictions of the different nonlinear approaches for the impact – parameter dependence of the dipole-proton scattering amplitude considering
two distinct values of x (= 10−3 and 10−6) and a fixed dipole size (r = 5 GeV−1)

of the vector meson wave functions. Which implies that the
DVCS process can be considered a direct probe of the QCD
dynamics for the dipole-target interaction.

In the CGC formalism [32–37], the scattering amplitude
can be obtained by solving the BK equation, which is given
by [41–45]

∂N (r, bt ,Y )
∂Y

=
∫

dr1 K (r, r1, r2)[N (r1, b1,Y )

+N (r2, b2, Y ) − N (r, bt , Y )

−N (r1, b1, Y )N (r2, b2,Y )], (4)

where Y is the rapidity, r ≡ |r|, r1 ≡ |r1| and r2 ≡ |r2|
are the transverse sizes of the original dipole and of the two
daughter dipoles, respectively, and bi ≡ |bi | are the corre-
sponding impact parameters. The evolution runs in rapid-
ity Y = ln(x0/x), where x is the Bjorken variable and x0
gives the initial value of Bjorken variable for the evolu-
tion. The form of the kernel, K (r, r1, r2), depends on the
approximations assumed to treat the next-to-leading order
corrections associated e.g. to the running of the coupling
constant and collinear logarithms that arise in the pertur-
bative expansion. As pointed out in the Introduction, we
will focus in this study on the approach proposed in Refs.
[54–56], which is based on the solution of the Balitsky–
Kovchegov equation for the dipole-hadron scattering ampli-
tude including the dependence on impact-parameter and
using the collinearly-improved kernel proposed in Refs. [57–
59]. In such approach, the power-like (Coulomb) tail at large
impact parameters, found in the solution of the BK equation
at leading order in Ref. [60], is suppressed by higher-order
corrections that impose time-ordering of the gluon emis-
sions. In Refs. [54,55], the BK equation with the collinearly-
improved kernel was solved for a proton target assuming that
the initial condition is given by a combination of the GBW
model [63,64] for the dependence on the dipole size r and

of a Gaussian distribution for the impact-parameter depen-
dence. The parameters have been fixed using HERA data
for F2 and for the |t |-distribution of the J/% photoproduc-
tion. The resulting solutions will be denoted b-BK in what
follows. In Fig. 2, we present the impact-parameter depen-
dence of the b-BK solution for a proton target considering
two values of x and a fixed dipole size. Such predictions are
compared with the predictions from the IP-Sat and b-CGC
models (see e.g. Refs. [25,38,40]), which are phenomeno-
logical models based on the CGC physics that assume dis-
tinct ad hoc impact-parameter dependencies for the scatter-
ing amplitude. In addition, we also present the predictions of
the IP-nonSat model, which can be derived from the IP-Sat
model by disregarding the impact of the multiple scatter-
ing corrections that take into account of the nonlinear QCD
effects in this model. Therefore, the comparison between the
IP-nonSat predictions and those from the other models allow
us to estimate the impact of the saturation effects for a pro-
ton target. For x = 10−3 (left panel), one has that predictions
are similar for large impact - parameters. In contrast, the pre-
dictions for small-b are distinct, with the IP-nonSat model
violating the unitarity bound expressed by Np ≤ 1. Such vio-
lation is also observed for smaller values of x (right panel).
Moreover, the distributions predicted by the b-BK, IP-Sat
and b-CGC models become wider with the decreasing of x ,
where the behaviour of Np at large-b depends on the dipole
model considered. In particular, the b-BK solution predicts
a long tail, as already demonstrated in Refs. [54,55]. Such
results motivate the study of observables that are sensitive to
the impact-parameter dependence and, consequently, to the
modelling of N . The t-distributions represent a useful tool
here, since t and b are Fourier conjugated variables.

For the nuclear case, the DVCS amplitude can be esti-
mated assuming the Glauber–Gribov (GG) formalism [46–
50], as performed e.g. in Refs. [26,28]. In this approach, the
dipole-nucleus scattering amplitude NA(r, bA, Y ) is given
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different nonlinear approaches
for the impact-parameter
dependence of the
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by

NA(r, bA,Y ) = 1 − exp
[
−1

2
σdp(Y, r2) TA(bA)

]
, (5)

where bA is the dipole-nucleus impact-parameter and the
nuclear profile function TA(bA) is described by a Woods–
Saxon distribution. The dipole-proton cross section, denoted
as σdp, is expressed in terms of the dipole-proton scattering
amplitude as follows

σdp(Y, r2) = 2
∫

d2bp Np(r, bp, Y ), (6)

with bp being the impact-parameter for the dipole-proton
interaction. In this approach, the IP-Sat, IP-nonSat, b-CGC
and b-BK models for a proton target can be used as input to
estimate NA(r, bA,Y ). In what follows, the associated pre-
dictions will be denoted as IP-Sat + GG, IP-nonSat + GG,
b-CGC + GG and b-BK + GG, respectively. In contrast, NA
can be directly estimated by solving the BK equation for
the nuclear case, following the approach proposed in Refs.
[54,55]. In particular, in Ref. [56], the authors extended the
approach for a nuclear target assuming that the initial condi-
tion is given by

NA(r, bA, Y = 0)

= 1 − exp

[

−1
2
Q2

s0(A)
4

r2TA(bq1, bq2)

]

, (7)

where Y = ln(x0/x) with x0 = 0.008, bqi are the impact
- parameters with respect to the dipole constituents, and
Q2

s0 is a free parameter determined for each value of A by
the comparison between the dipole predictions for F A

2 and
those obtained using the collinear formalism and the EPPS16
parametrization [61] for Y = 0. Moreover, TA(bq1, bq2) is
the nuclear profile, which is assumed to be given by

TA(bq1, bq2) = k
[
TA(bq1)+ TA(bq2)

]
, (8)

where the individual profiles TA(bqi ) are described by a
Woods-Saxon distribution and k is the factor which ensures
kTA(0) = 1 and implies that Eq. (7) becomes the GBW for-
mula [63,64] for b = 0. The associated predictions will be

denoted as b-BK-A hereafter. In Fig. 3, we compare the pre-
dictions of the different approaches for the impact-parameter
dependence of NA considering two values of x , a fixed dipole
size, and A = Pb. One has that all models predict NA ≤ 1,
i.e., they all satisfy unitarity. However, the b-dependence is
strongly model dependent. In particular, the behaviours pre-
dicted by the b-BK + GG and b-BK-A models for small-x
and large-b are significantly distinct, with the b-BK-A pre-
dicting a longer tail. Such result motivates the analysis of the
impact of these distinct descriptions of the nonlinear effects
on the t-distributions of the nuclear DVCS process, which
could be measured in future eA colliders.

3 Results

In this section we will investigate the impact of the different
treatments of the nonlinear effects on the total cross sec-
tion and t-distributions considering the kinematical range
that will be covered by the future electron-ion colliders –
EIC and LHeC [1–5]. These two observables are directly
related, since the total cross section for the exclusive real
photon production is given by

σγ ∗h→γ h(W, Q2) =
∫ 0

−∞
dt

dσγ ∗h→γ h

dt

=
∫ 0

−∞
dt

1
16π

∣∣∣∣A
γ ∗h→γ h

(x, r,#, Q2)

∣∣∣∣
2

(9)

where W is the photon-hadron center-of-mass energy, Q2

is the virtuality of the incoming photon and the amplitude
is given by Eq. (1). As in Ref. [25], the differential cross
section for a proton target will be multiplied by the factor
R2
g(1+ β2) in order to take into account the skewness effect

(Rg) and the real part of the scattering amplitude (β). The
skewness correction is related to the fact that in the two-
gluon exchange limit, the gluons emitted from the quark and
antiquark into the dipole can carry different momentum frac-
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Fig. 4 Predictions for the energy dependence (upper panels) and t-distributions (lower panels) of the DVCS process in ep collisions at HERA
derived considering distinct models for the dipole-proton scattering amplitude and different values of the photon virtuality. Data from H1 [66]

tions. Such correction has been derived in the framework of
collinear factorization [65], and its application in the dipole
approach is still under debate. However, the comparison of
the dipole predictions with the HERA data indicate that the
skewness and real part corrections are needed to describe the
data. In our analysis, we will assume R2

g = 1.1 and β = 0.3
for all models considered, which is a good first approxima-
tion for the value calculated considering the distinct dipole
models. In contrast, for a nuclear target, we will disregard
these corrections, since the calculation of Rg and β for the
nuclear case is a subject of still ongoing discussions. The
IP-Sat and IP-nonSat predictions will be derived using the
parameters obtained in Ref. [62]. For the b-CGC model, we
consider the parameters adjusted to the latest HERA data in
Ref. [40].

Initially, in Fig. 4, we present the predictions for the energy
dependence of the total cross section (upper panels) and the
cross section |t |-distribution (lower panels) assuming dif-
ferent values for the photon virtuality and considering the
b-CGC, IP-Sat, IP-nonSat and b-BK models for the dipole-
proton scattering amplitude. The data from H1 are presented
for a comparison [66]. One has that the HERA data for the
energy dependence of the total cross section is well described
by all models, with the b-BK and b-CGC predictions being
similar. In contrast, the IP-sat and IP-nonSat predictions are
steeper in energy, with the IP-nonSat predictions being 20%
larger than the IP-Sat one for large energies. Our results indi-
cate that the difference between the predictions increase with
energy and with the decreasing of the photon virtuality. Such
results are expected, since the impact of the saturation effects

is larger for small values of x and/or Q2. In the lower panels
of Fig. 4, we present the results for dσ/dt , which indicate
that the large-t behaviour of the differential distribution is
sensitive to dipole model considered. In particular, the b-BK
model predicts a milder decrease with t in the kinematical
range probed by HERA. This result seems to disfavor the
b-BK model with respect to the other CGC-inspired models,
with the discrepancy growing with increasing Q2. This may
suggest that effects related to the Q2 evolution starts to play
a role and that the model based on the b-BK solutions doesn’t
include these effects to a necessary extent. However, since
the total cross section seems to be well described and the
model provided good description of other processes in pre-
vious studies (see e.g. [54,55,67]), we have decided not to
disregard this model in the subsequent predictions for future
experiments which may come with new results with respect
to the previous measurements.

Exclusive events characterized by larger values of |t | than
those observed at HERA are expected to be measured in
future ep colliders. That will allow us to probe the pres-
ence and position of dips predicted to occur in diffractive
processes when nonlinear effects are taken into account. In
Fig. 5, we present our predictions for the t-distribution of the
DVCS process in ep collisions at the EIC (upper panels) and
LHeC (lower panels) considering distinct models for Np.
The results indicate that the distribution strongly depends
on the model considered. In particular, the IP-nonSat model
does not predict the presence of a dip in the |t |-distribution.
In contrast, the models based on the CGC physics predict
dips at large values of |t |, with its positions being dependent
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distinct models for the dipole-nucleus scattering amplitude, A = Pb, and different values of the photon virtuality

on the model considered. One has that the first dip occurs
for smaller values of |t | when the center-of-mass energy is
increased and/or when a smaller value of the photon virtu-
ality is assumed. The large difference in the position of the
dips predicted by the distinct models implies that a future
measurement could be able to discriminate between these
different approaches for the QCD dynamics at high energies.

In what follows, we will consider the DVCS process in eA
collisions. Such analysis is motivated by the expectation that
nuclei are an efficient amplifier of nonlinear effects [29–31].
The predictions for the energy dependence of the total DVCS
cross section for a nuclear target (A = Pb) are presented in
Fig. 6. One has that they are similar for small W but can differ
by a factor � 2 at the LHeC energy scale. The IP-Sat + GG
and IP-nonSat + GG predictions appear to be almost identical
for the values of Q2 considered. We have verified that they
start to be different for smaller values of the photon virtuality,
where the impact of the nonlinear effects at the proton level
becomes more significant. Moreover, the b-CGC + GG and b-
BK + GG predictions are similar even with increasing energy,

while the b-BK-A one is the lowest of the presented models
for the magnitude of the total cross section.

In Fig. 7, we present the predictions for the t-distributions
of the nuclear DVCS process at the EIC (upper panels) and
LHeC (lower panels) for two values of photon virtuality and
A = Pb, derived considering distinct models for the dipole-
nucleus scattering amplitude. One has that the position of
the first two dips are similar for the predictions based on
Glauber–Gribov approach and become gradually distinct at
larger values of |t |. In other words, in order to discriminate the
treatment of the QCD dynamics at the proton level, we should
probe values of |t | � 0.1 GeV2. In contrast, future data for
smaller values of |t | can be useful to discriminate between
the GG and the b-BK-A approaches for the dipole-nucleus
scattering amplitude. Our results indicate that the difference
between the predictions increases with the center-of-mass
energy, becoming appreciable in the LHeC kinematic range.

A comment is order. One has verified that similar results
are obtained for A = 40, with the main differences being the
smaller normalizations, decrease of the difference between
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the predictions and the change in the position of the dips.
These results indicate that the study of eA collisions with
lighter nuclei can also be useful, in particular due to the dif-
ferent atomic number dependence of the saturation scale pre-
dicted by the nonlinear approaches considered in our analy-
sis.

4 Summary

The experimental analysis of the diffractive observables
in future electron-hadron collisions at EIC and LHeC is
expected to improve our understanding about the QCD
dynamics at high parton densities and the multi-dimensional
description of the partons within the hadrons. In particular,
the study of the deeply virtual Compton scattering is pre-
dicted to be a probe of the gluon Wigner distribution. In this
paper, we have investigated the impact of the distinct treat-
ments for the nonlinear (saturation) effects on the DVCS
process. We have presented, for the first time, the predictions
derived using the solution of the impact-parameter depen-
dent Balitsky–Kovchegov equation for the dipole-target scat-
tering amplitude. We have presented these predictions for
ep and eA collisions, considering the kinematic ranges
that will be probed by the future EIC and LHeC colliders.
A comprehensive comparison with the predictions derived
using alternative saturation approaches was performed. Our
results demonstrate that the cross section and t-distribution
are strongly dependent on the assumption for the impact-
parameter dependence of the dipole-target scattering ampli-
tude. As a consequence, we predict that the tomography pic-
ture of a hadron will be sensitive to the nonlinear effects.
Such results indicate that a future experimental analysis of
the DVCS process will be useful to improve our understand-
ing of QCD dynamics and hadronic structure.
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