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■ Abstrakt
Interakce laseru s pevným terčem je složitý jev, který zahrnuje různé mechanismy trans-
portu energie. Numerické modelování transportních dějů v plazmatu typicky následuje
klasickou difúzní teorii. Existuje však rozpor mezi výsledky simulací a experimentálními
daty v případě intezivních laserových impulzů, jelikož energetické elektrony a fotony
pronikají hluboko do terče. Musí být proto modelována tato nelokalita transportu, což
má zásadní důležitost pro aplikace jako je inerciální fúze, předpulzy laserů o ultra-
vysoké intenzitě, magneticky držená fúze nebo studie teplé husté hmoty. Tato práce
shrnuje podkladovou teorii a příspěvky autora k výzkumu tohoto komplexního jevu.
Je následováno několik přístupů k modelování interakce laseru s terčem, jmenovitě ki-
netické simulace problému v rámci Vlasov–Fokker–Planck–Maxwell modelu. Zadruhé
je to magnetohydrodynamická Lagrangeovská tekutinová metoda opatřená doplňují-
cími modely pro absorpci laseru a difúzní nebo nelokální transport elektronového tepla
a radiace. Jsou vyvinuty vícedimenzionální numerické metody založené na konečných
prvcích vysokého řádu, které jsou ověřeny na relevantních testovacích problémech a
dalších realistických simulacích, které demonstrují jejich aplikovatelnost na simulace
interakce laseru s terčem.

■ Abstract
Interaction of a laser with a solid target is a complex phenomenon, involving various
energy transport mechanisms. Numerical modelling of these processes in laser plasma
follows the classical diffusion theory typically. However, a discrepancy between the
simulation results and the experimental measurements exists in the case of intense
laser pulses, since the energetic electrons and photons penetrate deep into the target.
Hence, non-locality of the transport must be modelled, which holds a significant impor-
tance for applications like inertial confinement fusion, prepulses of ultra-high intensity
lasers, magnetic confinement fusion or warm dense matter studies. This work summa-
rizes the background theory and author’s contributions to the research of this complex
phenomenon. Multiple approaches to modelling of the laser–target interaction are
followed, namely the kinetic treatment of the problem in terms of the Vlasov–Fokker–
Planck–Maxwell simulations. Secondly, it is the magneto-hydrodynamic Lagrangian
fluid method equipped with additional models for the laser absorption and the elec-
tron heat and radiation diffusive or non-local transport. Multi-dimensional numerical
methods based on high-order finite elements are developed, which are then validated
on relevant test problems and further realistic simulations, demonstrating their appli-
cability on the simulations of the laser–target interaction.
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Introduction
Plasma, the fourth state of matter, is the primordial origin of all matter, as the quark–
gluon plasma dominated the early stage of our universe, and maybe its ultimate end
at the same time, when trapped on the accretion disk of a black hole. Plasma also
accompanied our kind from its very beginning, as our civilization would not exist
probably, when fire, a form of plasma, was not discovered. And it may also shape
its future, as it provides a nearly unlimited source of energy thanks to the process of
thermonuclear fusion. Hence, its mysterious nature has attracted attention of scientists
for long time.

Unless being absolutely still and homogeneous, plasma exhibits transport pro-
cesses. Therefore, their understanding is a cardinal discipline of the plasma research
from its beginning. Actually, it can be tracked even before its foundation to the studies
about neutral gases. It was as early as 1905, when Lorentz described the transport
processes in metals in a simple collisional manner by what is hence known as the
Lorentz gas [1]. Another landmark is then the formulation of the theory of gases by
Chapman in 1916 [2]. However, plasma is not a neutral gas, even though it behaves
similarly in certain aspects. An important difference are the involved long range forces
in contrast to the close encounters in a gas. A fundamental, yet incomplete, description
was then given by Landau for the Coulombic interaction [3]. Later, the notion of dy-
namic friction, stemming from the astrophysical context originally, was formulated by
Chandrasekhar [4], but its statistical basis predetermined the model to be generalized
to other fields. However, the effect of electron–electron collisions was not clear and a
strong belief existed that the theory of gases should be simply extended to plasma, as
envisioned by Cowling [5]. The influential paper of Cohen, Spitzer and Routly then
described the collisions in a consistent manner as the dynamic friction and diffusion
[6]. The theory was then further refined in the work of Spitzer and Härm [7], which
defines what is known today as the classical diffusion theory of plasma. In the context
of magnetized plasmas, it was rather the work of Braginskii [8] based on the earlier
formulation of Landau, which presents the cornerstone of the description. However,
the models relied only on the small anisotropy approximations, limiting their physical
accuracy. A systematic formulation was later provided by Rosenbluth [9].

In parallel, the research of lasers started. However, it was recognized with their
increasing power [10] that the diffusion theory does not reflect the phenomenon of heat
flux saturation for steep gradients in plasma and the heat flux limiting technique was
proposed for the numerical modelling [11]. The physical findings were later confirmed
by dedicated experiments [12]. Also kinetic simulations suggested that there may exist
such a limitation [13, 14], but it was believed that the diffusion description can be
simply corrected. The flux limiting techniques could solve with a partial success the
problem of the excessive heat flow, but they could not describe the pre-heating effect
occurring in the downstream of the temperature gradient. Various empirical methods
were proposed [15, 16], delocalizing the electron heat flux and introducing the notion
of non-locality to the hydrodynamic simulations in a simplified manner. However, the
ground-shaking mathematical analysis of the problem showed such numerical treat-
ment may produce severe non-physical effects [17]. From that time, various models
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of non-local transport have been proposed [18, 19, 20], but all possessing their own
fundamental advantages and disadvantages.

This defines the starting point of our research, which focuses on the phenomenon
of non-local energy transport in plasma. The complex nature of the non-local energy
transport is given by the fact that it originates from the microscopic phenomena in
the plasma, but becomes manifested on the macroscopic level. Therefore, also the
numerical modelling must be reformed to reflect this multi-scale problem adequately.
This text addresses several aspects of the non-local transport in the context of laser–
target interaction, which cannot be attributed to the electrons solely as discussed so
far, but also to the radiative transfer, where energetic photons may penetrate deep
into the target. Moreover, the laser absorption methods are deeply connected to both
phenomena, when an intense laser beam irradiates a solid target and its power drives
both effects. Finally, it is the hydrodynamic modelling which provides the vessel for
integration of all mentioned methods together and simulation of plasma formation and
expansion, which must be also improved to accommodate the new models and follow
the shift of paradigm in the modelled detail.

The field computational fluid dynamics is dominated by the two major approaches,
cell-centered and staggered methods for Lagrangian hydrodynamics [21, 22]. While the
former collocates the discrete quantities, the latter separates the thermodynamic po-
tentials and kinematic vectors spatially. The compatible staggered approach has the
indisputable advantage of the local conservation property, meaning the local update of
internal energy is truly given by the work of the forces at the volume boundary [23, 24].
On the other hand, the evaluation of the Riemann invariants requires an additional
interpolation, in contrast to the cell-centered methods. In this work, we build on the
high-order curvilinear finite element hydrodynamics, which can be seen as a generaliza-
tion of the staggered method for high-order representation of the quantities [25]. Still,
the appealing properties of the approach are retained, like mass, momentum and total
energy (local) conservation [26]. On top of that, the high-order treatment provides an
unprecedented detail of the plasma profiles. The curvilinear shape of the elements then
perfectly matches the framework of Lagrangian hydrodynamics, where the computa-
tional mesh follows the flow of the fluid, which is advantageous for modelling of the
rapidly expanding laser plasma.

The topic of non-local energy transport has a great importance for multiple fields
of applications like the inertial confinement fusion (ICF) research [27], pre-pulse physics
of ultra-high intensity lasers [28], magnetic confinement fusion (MCF) [29] or warm
dense matter research [30]. In the context of ICF, the non-local species can penetrate
deeper to the target, preheating the non-compressed material. The compression ratio
for the shock wave is then decreased and the ignition conditions are jeopardised [31, 32].
On the other hand, more energy can be delivered to the shock wave, increasing the
efficient ablative pressure [33]. The non-locality can be important also for the pre-
pulse physics, where ultra-relativistic laser pulses have unavoidable intense pre-pulses
or pedestals, which are far beyond the plasma formation threshold and the produced
pre-plasma can filament the main pulse [34, 35]. The sensitivity of the process then
requires to take into account the non-local species. Significantly different physical
conditions appear in MCF, but the fundamental principle remains the same. The non-
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local or even run-away electrons non-classically contribute to the heat flux towards the
tokamak walls [29], hazarding stability of the plasma conditions and integrity of the
divertors. Finally, the warm dense matter research investigates behaviour of matter
under a strong compression and simultaneous heating, which is the case for laser-driven
shock waves. Exact measurements of the propagating shock then reveal contribution
from the non-local species [30] with implications for the aforementioned ICF research
or laboratory astrophysics [36].

The aim of this work is investigation of the models for description of the non-local
transport and development of numerical methods to increase the overall physical real-
ism of the laser plasma simulations and enable transition from the classical treatment
towards the high-order multi-scale modelling. The performance of the methods is to
be benchmarked on numerical tests and physically-relevant problems. Finally, conclu-
sions from the achieved results are to be drawn and the directions of the possible future
improvements outlined.

The text is organized to three main parts. The first part concentrates on the
physical theory. An introduction to the basic kinetic theory is given in chapter 1, which
is reduced to the hydrodynamic description in chapter 2. However, the hydrodynamic
model is incomplete as it misses exactly the transport processes we are mostly interested
in. This is addressed by chapter 3, which describes the phenomenon of heat transport,
followed by chapter 4 dedicated to the radiative transfer. Finally, a brief overview of
the methods for laser absorption is given in chapter 5.

The second part is dedicated to the numerical methods developed for modelling
of the physical phenomena. Since the finite element method is predominantly used,
chapter 6 presents an overview of its fundamentals. The rest of the outline follows the
first part, starting from the kinetic model of reduced Vlasov–Fokker–Planck–Maxwell in
chapter 7. However, the the most significant contribution is the multi-physics magneto-
hydrodynamic code, where its basis is described in chapter 8. The heat and radiation
closure models are approximated by the diffusion model, as summarized in chapter
9. Alternatively, the non-local electron heat or radiation closure models can be ap-
plied, which are subjects of chapter 10. Finally, the methods for tracking of the laser
propagation and absorption are described in chapter 11.

In the third part, simulations of laser–target interaction are performed. The
single-dimensional ones in chapter 12 concentrate on the comparison of the diffusive
and non-local transport within radiative transfer and thermal transport. Chapter 13
then extends the modelling to 2D, where the problems involving geometric effects
are investigated, like laser absorption and spontaneous magnetic field generation. A
demonstrative example of the capabilities in 3D is then presented in chapter 14.
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Physical models
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1 KINETIC THEORY

1 Kinetic theory
Kinetic description of plasma originates from the statistical picture, where the exact
population of species is replaced by the distribution function through the averaging
process. It is assumed that there exists sufficiently high number of species on every
observable scale, so the statistics of such ensemble converge to the average values and
the continuous description is valid in turn. The distribution function fα = fα(x⃗, v⃗, t)
is then function of the phase space coordinates and describes the number of particles
α in the differential volume dx⃗, dv⃗, where x⃗ is the spatial coordinate, v⃗ is the velocity
space coordinate and t is time. Following Liouville’s theorem, the total derivative dfα

dt
can be expanded to form the Boltzmann equation:

∂fα
∂t

+ v⃗ · ∇x⃗fα −
F⃗α
mα

· ∇v⃗fα =
(
∂fα
∂t

)
coll
. (1)

The symbol F⃗ = F (x⃗, v⃗, t) represents the generalized force exerted on the α species and
mα is their mass. The term on the right-hand-side represents the collision operator,
where it is assumed that the collisions involve only strongly localized transient fields.
Therefore, they can be separated in the averaging process and F⃗ does not include these
microscopic contributions.

In the context of plasma dynamics, the (free) electron distribution fe is of a
significant interest as it is responsible for the most transport phenomena described in
later chapters. Because its frequent occurrence in the text, the lower index is omitted
henceforth. The collective behaviour of the plasma is intermediated by the macroscopic
electric field E⃗ = E⃗(x⃗, t) and magnetic field B⃗ = B⃗(x⃗, t) acting on the electrons through
the Lorenz force. Inserting it to (1), the kinetic equation is obtained:

∂f

∂t
+ v⃗ · ∇x⃗f −

e

me

(E⃗ + v⃗ × B⃗) · ∇v⃗f =
(
∂f

∂t

)
coll
, (2)

where e is the elementary charge.
The description is complemented by the Maxwell’s equations for the macroscopic

fields, which are composed of Ampère’s law and Faraday’s law taking the following
forms respectively:

− 1
c2
∂E⃗

∂t
+∇× B⃗ = µ0j⃗, (3)

∂B⃗

∂t
+∇× E⃗ = 0. (4)

The quantity j⃗ = j⃗(x⃗, t) is the electric current and its relation to the distribution
function is defined in chapter 1.2. The symbol µ0 represents the vacuum permeability
and c is the speed of light in vacuum.

17



1.1 Collision operator 1 KINETIC THEORY

1.1 Collision operator
The kinetic description cannot be complete without a particular definition of the col-
lision operator operating on the right-hand-side of the kinetic equation (2). In the
simplest case, when the plasma is ideal in the sense that the collective phenomena
completely dominate over the close range interactions, it can be modelled as nearly
collision-less and the collision operator is set (∂f/∂)coll ≡ 0. This form of the equation
is known as the Vlasov equation.

However, the collisions cannot be neglected in the applications of the primary
interest here. In order to reduce complexity of the collision term, it is expanded to
the BBGKY hierarchy in the number of interacting particles [37, 38]. This expansion
is then truncated after the first term, i.e., the binary interaction between the species.
This approximation is related to the Debye-Hückel theory of shielding, where potential
of a single particle over the distances longer than the Debye length λDe is effectively
shielded and decays exponentially. Therefore, even in the case of long range inverse
square forces like the Coulomb interaction between the particles, only the close range
interaction on the distances < λDe must be modelled within the collision term and the
long range interaction is intermediated by the macroscopic fields. The collisions then
present local fluctuations and do not contribute to the mean values of the fields. This
kind of wavelength splitting is applicable only when the electrons are weakly coupled,
i.e. the kinetic energy of the species is significantly higher than the potential energy.

1.1.1 Fokker–Planck operator

In order to simplify the collision operator, several additional assumptions are made.
First, the observed time scales are relatively short compared to the collision time,
which can be defined as the time taken by an average particle to be deflected to the
perpendicular direction. However, the number of single events is high per that time
in collisionally-dominant plasma, implying that the deflection can be considered as a
series of small angle collisions. It is in an agreement with the fact the plasma parameter
ND = 4π

3 neλ
3
De ≫ 1, so there is a high number of particles in the Debye sphere and the

statistical treatment on this scale is meaningful. Moreover, the binary collisions are
also elastic, conserving the relative velocity during the encounter. Finally, they can be
superposed within the Debye sphere (i.e. distances ≤ λDe), as they are not correlated,
and form a Markovian chain, where the event can be modelled by the probability ψ.
In particular, the probability ψ = ψ(v⃗,∆v⃗) is introduced for the transition of the
distribution function from velocity v⃗ to v⃗+ ∆v⃗. The distribution function then can be
expressed as [39]:

f(x⃗, v⃗, t) =
∫
ψ(v⃗ −∆v⃗,∆v⃗)f(x⃗, v⃗ −∆v⃗, t−∆t) d∆v⃗. (5)

These considerations enable to expand the collision term to the Taylor series in
the velocity increments. When this procedure is ceased after the second term following
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1 KINETIC THEORY 1.1 Collision operator

the assumption on short time increment ∆t, the Fokker–Planck operator is obtained:
(
∂f

∂t

)
coll

= −∇v⃗ ·

f
〈

∆v⃗
∆t

〉+ 1
2∇v⃗∇v⃗ :

f
〈

∆v⃗∆v⃗
∆t

〉 . (6)

The physical meaning of the terms can be identified. The first term is known
as the dynamic friction and describes the process of slowing down, while the second
term of diffusion is responsible for spreading of the distribution function and increase
of entropy. The averaged collision coefficients appearing in (6) are defined as follows
[9]: 〈

∆v⃗
∆t

〉
= 1

∆t

∫
ψ(v⃗,∆v⃗)∆v⃗ dv⃗, (7)〈

∆v⃗∆v⃗
∆t

〉
= 1

∆t

∫
ψ(v⃗,∆v⃗)∆v⃗∆v⃗ d∆v. (8)

Then, transition to the center-of-mass system for the colliding particles α and β
is performed, where the relative velocity g⃗ = v⃗β − v⃗α is introduced (g = |⃗g|). For an
interaction with the differential cross-section σ, the probability is given by the volume
of the collision cylinder ψ d∆v⃗ = ∆tfβgσ dv⃗β. Substitution to (7–8) yields [40]:〈

∆v⃗
∆t

〉
=
∑
β

mβ

mα +mβ

∫
∆g⃗gfβσ dv⃗β, (9)

〈
∆v⃗∆v⃗

∆t

〉
=
∑
β

(
mβ

mα +mβ

)2 ∫
∆g⃗∆g⃗gfβσ dv⃗β. (10)

The derivation is continued by insertion of the Coulomb cross-section, which takes the
form [39]:

σ(χ, θ) = b2
0

4 sin4 χ
2
, b0 =

q2
αq

2
β

4πε0µαβg2 , µαβ = mαmβ

mα +mβ

, (11)

where χ is the deflection angle, θ azimuthal angle, ε0 vacuum permittivity, qα charge
of the α species and µαβ reduced mass in the center-of-mass system. The integration
is elaborated, while the divergence of the collision integral is overcome by limiting
the impact parameter of the collisions to only the Debye length λDα following the
aforementioned assumptions [41]. Finally, the form with the Rosenbluth potentials is
obtained after some manipulations:〈

∆v⃗
∆t

〉
=
∑
β

mβ

mα +mβ

Yαβ∇v⃗α ·Hαβ, (12)

〈
∆v⃗∆v⃗

∆t

〉
=
∑
β

(
mβ

mα +mβ

)2

Yαβ∇v⃗α∇v⃗α
: Gαβ, (13)
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1.1 Collision operator 1 KINETIC THEORY

where the potentials themselves are defined as:

Hαβ =
∫
fβ
∣∣∣v⃗α − v⃗β∣∣∣−1

dv⃗β, (14)

Gαβ =
∫
fβ
∣∣∣v⃗α − v⃗β∣∣∣ dv⃗β. (15)

The name potentials stems from the fact that they satisfy the Poisson equation in the
form:

∇2
v⃗Hαβ = −4πfβ, ∇2

v⃗Gαβ = 2Hαβ. (16)
In the previous, it is assumed that Yαβ is slowly spatially variable and is given

by:

Yαβ =
q2
αq

2
β

4πε2
0µ

2
αβ

ln Λαβ, Λαβ = λDα
b0

, (17)

The term ln Λαβ is known as the Coulomb logarithm. The relative velocity g in the
definition of the impact parameter b0 (11) is approximated by the thermal velocity
of the species usually. It is worth noting that Λαβ ∼ ND, so the Coulomb logarithm
attains high values in ideal plasma, where ND ≫ 1. This correlates again with the
fact that the small angle deflections are more frequent in the plasma, where it can be
shown that the ratio between the contribution from subsequent small deflections and
a single π/2 scattering is ∼ ln Λ [42].

The Coulomb logarithm can be interpreted as a ratio between the maximal impact
parameter bmax and "minimal" impact parameter bmin. The maximum cut-off is given
by the Debye length, conforming with the assumptions made. The "minimal" value is
given by b0, which can be interpreted as the impact parameter of the π/2 deflection.
However, this parameter does not present a true cut-off in the physical sense. It can be
viewed as a mere convenient approximation of a more exact treatment [43]. Moreover,
the definition is usually modified in the case of dense plasmas, where electrons undergo
partial degeneracy [44]. In the first approximation, the quantum treatment of highly
energetic encounters can be reduced to limiting the value by the reduced thermal de
Broglie wavelength λℏ [39]. The impact parameters are then defined as:

bmax = λDe =
√
ε0kBTe
nee2 , bmin = max(b0, λℏ), λℏ = ℏ√

mekBTe
, (18)

where kB is the Boltzmann constant, ℏ reduced Planck constant, ne electron density,
Te electron kinetic temperature.

In addition to the Rosenbluth formalism used here, there exists a different ap-
proach based on the work of Landau [3], which treats the collisions as an anisotropic
diffusion process in phase space. However, both formulations are equivalent and the
Landau form of the operator can be derived from (6) by application of the differential
identity ∇v⃗α∇v⃗αg = I/g − g⃗g⃗/g3, where I is the identity tensor. After some manipu-
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1 KINETIC THEORY 1.1 Collision operator

lations, the Landau form of the Fokker–Planck operator is obtained:(
∂fα
∂t

)
coll

=
∑
β

1
2Yαβ

µ2
αβ

mα

∇v⃗α ·
∫ g2I − g⃗g⃗

g3 ·
(
∇v⃗α

fα
mα

fβ − fα∇v⃗β

fβ
mβ

)
dv⃗β. (19)

The operator holds many convenient properties like full symmetry of the integral part
in the index of the species and other, which are further explored in the subsequent
chapters.

It is also of an interest to investigate the limit mα ≪ mβ, which will be the case
for the electron–ion scattering for example. Under these conditions, the second term
in the Fokker–Planck–Landau operator (19) can be neglected compared to the first
one. Furthermore, approximation of the relative velocities as g⃗ ≈ v⃗α for nearly static
scatterers yields the simplified form of the operator:(

∂fα
∂t

)
coll

=
∑
β

1
2Yαβ

µ2
αβ

m2
α

nβ∇v⃗α ·
(
v⃗2
αI − v⃗αv⃗α

v3
α

· ∇v⃗αfα

)
, (20)

where nβ =
∫
fβ dv⃗β is the density of the β species.

1.1.2 Albritton–Williams–Bernstein–Swartz operator

The Fokker-Planck operator presented in chapter 1.1.1 has inherently non-linear struc-
ture. Consequently, numerical solution of the collisional processes is computationally
demanding. However, when the physical system is close to the collisional equilib-
rium, even only a linearized form can be sufficient for the description of the relaxation
processes. In order to simplify its form even further, an additional assumption is
made that we are mostly interested in the behaviour of the high-velocity electrons
(ve ≫ vTe =

√
kBTe/me), which are responsible for most of the transport phenom-

ena. However, the high-velocity limit of the Landau operator (20) exhibits the rapid
∼ v−3

e decrease. Thus, even electrons with ve/vTe ≳ 3 have very low collision rate
and are governed by the limit behaviour approximately. Under these conditions, the
Fokker–Planck operator reduces to the form of the Fisch operator [45]:

(
∂f

∂t

)
coll

= ν̄eene

 1
v2

∂

∂v

(
v2
Te

v

∂f

∂v
+ f

)
+ 1− v2

Te/(2v2)
2v3

∂2

∂ ˆ⃗v2
f

 , (21)

where ν̄ee = 1/4Yee. In this notation, the vector velocity v⃗e is replaced by the scalar
velocity v = |ve| and the direction vector ˆ⃗v = v⃗e/v. The first term is then responsible
for frictional deceleration of the electrons and their equilibration, while the second
represents angular diffusion due to their scattering.

It can be noticed that the first term in (21) is proportional to (vTe/v)2, so it
can be neglected in the first approximation for the high-velocity species. However, its
importance is in equilibration of the distribution for the thermal species especially, so
it is desired to retain it in the formula. When we consider only the relaxation near the
equilibrium distribution fM , the distribution function can be replaced by fM in this
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1.1 Collision operator 1 KINETIC THEORY

term directly. Furthermore, the second part of the angular diffusion operator can be
omitted as it is of the second order as well. The formula (21) then reduces to the form
of the operator proposed by Albritton, Williams, Bernstein and Swartz (AWBS) [46]:(

∂f

∂t

)
coll

= ν̄eene

(
1
v2

∂

∂v
(f − fM) + 1

2v3
∂2

∂ ˆ⃗v2
f

)
. (22)

An apparent problem of this definition is the requirement on an a priori known equi-
librium distribution function, which is the Maxwell–Boltzmann distribution as long as
pure collisions are considered. Its form can be deduced from (21), where the first term
is zero for any f ∼ exp(−v2/(2v2

Te)) and the second for any isotropic function, but it is
derived more rigorously from the original Landau operator in the next chapter (1.1.3).
On the other hand, the operator still conserves the number of particles (second velocity
moment, see 1.3) and is derived from the first principles directly.

1.1.3 Bhatnagar–Gross–Krook operator

The AWBS operator presented in chapter 1.1.2 greatly simplified the Landau operator
(19). Though, derivatives in the velocity magnitudes and angles were still present,
which complicate its application. When only the phenomenology of the processes is of
an interest, the derivatives can be dropped all together. A linear operator of this kind
was constructed by Bhatnagar, Gross and Krook [47]. It can be written as:(

∂fα
∂t

)
coll

= −
∑
β

ναβ(fα − fβ0), (23)

where ναβ is the collision frequency between α and β species. This kind of operator is
called empirical, as the a priori known equilibrium distribution functions fβ0 appear in
the definition. In addition, an apparent drawback of this approach is violation of the
conservation laws. Unless the collision frequency is independent of velocity, it does not
conserve neither of mass, momentum nor energy [48]. On the other hand, convergence
to the equilibrium is guaranteed and the distribution function remains positive.

This can be compared to the Fokker–Planck operator from chapter 1.1.1, which
conserves all three mentioned collisional invariants as shown in chapter 1.2. Moreover,
it satisfies the H-theorem, so the entropy S = −

∫
f log f dv⃗ increases in time. In order

to prove this, (19) is simplified to the single specie case and rewritten as:(
∂fα
∂t

)
coll

∼ ∇ ·
∫ g2I − g⃗g⃗

g3 · ff ′
(
∇ log f −∇′ log f ′

)
dv⃗′, (24)

where f ′ = f(x⃗, v⃗′, t) and ∇′ is the velocity derivative with respect to v⃗′ analogously.
The Fokker–Planck–Landau operator in this form is multiplied by −(1 + log f) and
integrated to obtain:

∂S

∂t
∼
∫ ∫

ff ′ g
2I − g⃗g⃗
g3 :

(
∇ log f −∇′ log f ′

) (
∇ log f −∇′ log f ′

)
dv⃗ dv⃗′, (25)
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1 KINETIC THEORY 1.2 Velocity moments

where Green’s theorem was applied, assuming that f vanishes when |v⃗| → ∞, and
symmetry of the inner part of the operator was utilized. Due to symmetry and pos-
itivity of the expression for any f > 0, it can be concluded that ∂S/∂t ≥ 0 and a
unique maximum exists. The maximum of entropy is attained when the distribution
function reaches the Maxwell–Boltzmann distribution, which takes the following form
for electrons:

fM(x⃗, v⃗, t) = fM(ne, u⃗, Te, v⃗) = ne

(
me

2πkBTe

)3/2

exp
(
−me|v⃗ − u⃗|2

2kBTe

)
, (26)

where u⃗ is the mean velocity. This provides the sought equilibrium solution, as it also
zeros the collision operator itself. This function is then inserted to the Bhatnagar–
Gross–Krook (BGK) operator (23) usually [47].

As a final remark, it should be noted that a conserving form of the BGK operator
exists, where the parameters of density and temperature are unknown functions [49].
In order to determine them, a system of coupled integral equation must be solved, so
the method its convenient tractability.

1.2 Velocity moments
The kinetic description of plasma presented so far used functions defined in the phase
space. However, macroscopic measurable quantities like electron density or electric
current appear in the configuration space only. The link between the two is provided
by the velocity moments of the distribution function.

Proceeding further, elastic binary collisions are considered, following chapter 1.1.
Under these conditions, mass, momentum and energy are conserved during the scatter-
ing event. In particular, they present special cases of summation invariants. In other
words, the sum of the quantities before and after (denoted by prime) the collision is
equal:

ϕα + ϕβ = ϕ′
α + ϕ′

β, (27)
where ϕα ∈ {mα,mαv⃗α,

1
2mα|v⃗α|2}.

The conservation properties for a continuous collision operator can be proved as
well. Restricting ourself to the single specie case again, the Fokker–Planck–Landau
operator in the form (24) is taken and multiplied by one of the summation invariants
ϕ, which we consider as functions of velocity now. Integration over the velocity space
is performed and the expression is rearranged in a similar manner to (25) to obtain:
∫
ϕ

(
∂fα
∂t

)
coll

dv⃗ ∼
∫ ∫ (

∇ϕ−∇′ϕ′
)
·
g2I − g⃗g⃗

g3 .ff ′
(
∇ log f −∇′ log f ′

)
dv⃗ dv⃗′. (28)

This formulation shows that mass, momentum and energy are collisional invariants of
the Fokker–Planck operator or any linear combination of 1, v⃗ and |v⃗|2 is conserved
more generally. Note that the property of the central tensor was used here, that its
product with a vector collinear with g⃗ is zero.

The governing equations for the velocity moments of the distribution function are
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1.2 Velocity moments 1 KINETIC THEORY

obtained using the mean value operator defined as follows for functions X = X(v⃗):

⟨X⟩α =
∫
X(v⃗α)fα(v⃗α) dv⃗α∫

fα(v⃗α) dv⃗α
. (29)

Multiplication of the kinetic equation (1) by ϕα and integration over the velocity
space yields the moment equation:

∂

∂t
⟨nαϕα⟩α +∇x⃗ · ⟨nαv⃗αϕα⟩α −

qα
mα

⟨nα(E⃗ + v⃗α × B⃗) · ∇v⃗ϕα⟩α =
∫
ϕα

∑
β ̸=α

(
∂fα

∂t

)β
coll

dv⃗α,

(30)
where the Lorenz force was inserted. The collision operator on the right-hand-side is
expanded to the contributions from different species, where the contribution from the
identical species α vanishes, since ϕα are collisional invariants. Due to the symmetry
of the Fokker–Planck operator (19), it can be recognized that the sum of the kinetic
equations gives on the right-hand-side:

∫ ∑
α

∑
β

ϕα

(
∂fα
∂t

)β
coll

dv⃗α = 0, (31)

so the total mass, momentum and energy are conserved by collisions.

1.2.1 Mass equation

The first invariant ϕα = mα represents the zeroth velocity moment of the kinetic
equation. Insertion of ϕα to the moment equation (30) yields:

∂

∂t
(mαnα) +∇ · (mαnαu⃗α) = 0, (32)

where we restricted ourselves only to the single specie case, so the collisional contribu-
tions to the equation are zero due to the collisional invariance. This simplification is
applied even for other velocity moments for brevity.

In the previous, the definitions of the integral and mean quantities of the particle
density and mean velocity were used respectively:

nα =
∫
fα dv⃗, u⃗α = ⟨v⃗α⟩α = 1

ne

∫
v⃗fα dv⃗. (33)

It can be recognized from the form of (32) that it represents the law of mass
conservation, since integration over the whole volume Ω of the configuration space
yields:

dMα

dt = −
∮

Γ
ραu⃗α · n⃗ dΓ, (34)

where ρα = mαnα is the mass density, Mα =
∫

Ω ρα dx⃗ the total mass and n⃗ the outer
unit normal defined on the boundary Γ = ∂Ω. Provided that the system is closed, i.e.
there is no exchange of particles over the boundaries, the total mass is conserved.
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A closely related phenomenon to the mass conservation is the law of charge con-
servation. Taking divergence of the Ampère’s law (3) and Faraday’s law (4) yields:

∂

∂t
∇ · E⃗ = − 1

ε0
∇ · j⃗α, (35)

∂

∂t
∇ · B⃗ = 0, (36)

where j⃗α = qαnαuα is the electric current. Assume that Gauss’s law for the electric
field and magnetic field holds at the beginning of the reference time in the form:

∇ · E⃗ = ρqα
ε0
, ∇ · B⃗ = 0, (37)

where the charge density is defined as ρqα = qαnα. Substitution back to (35) and (36)
yields the law of non-existence of magnetic monopoles (also known as magnetic Gauss’s
law) and the continuity equation for electric charge:

∂

∂t
ρqα +∇ · j⃗α = 0. (38)

Similarly to (34), the total charge Qα =
∫

Ω qαne dx⃗ is conserved when the electric
currents through boundaries are zero. Therefore, the electrodynamic theory behaves
consistently with the kinetic theory for the collisional invariant ϕα = qα.

1.2.2 Momentum equation

The first velocity moment of the kinetic equation (1) governs the momentum ραu⃗α. It
is obtained from (30) by choosing the invariant ϕα = mαv⃗α:

∂

∂t
(ραu⃗α) +∇ · (ραu⃗αu⃗α + ρα⟨w⃗αw⃗α⟩α) = ρqαE⃗ + j⃗α × B⃗, (39)

where w⃗α = v⃗α − u⃗α is the chaotic part of the velocity. The two components of the
stress tensor appearing in the divergence can be identified as the dynamic pressure and
kinetic/thermal pressure:

Dα = ραu⃗αu⃗α = mα

∫
u⃗αu⃗αfα dv⃗, (40)

Pα = ρα⟨w⃗αw⃗α⟩α = mα

∫
(v⃗ − u⃗α)(v⃗ − u⃗α)fα dv⃗, (41)

Similarly to the continuity equation (32), the integral over the domain gives rise
to the law of momentum conservation:

dP⃗α
dt = −

∮
Γ
(Dα + Pα) · n⃗ dΓ +

∫
Ω
ρqαE⃗ + j⃗α × B⃗ dx⃗, (42)

where the total momentum of α species is defined as P⃗α =
∫

Ω ραu⃗α dx⃗. The contribution
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to the boundary integral from Dα is zero, when the system is closed, since u⃗α · n⃗ = 0.
The pressure part can be interpreted as the macroscopic normal and tangential forces
acting at the boundary and becomes zero for an isolated system. However, the Lorenz
force action does not vanish in general, since the momentum is exchanged with the
fields as illustrated further.

The field counterpart of the momentum equation is obtained by vector multipli-
cation of (3) and (4) by B⃗ and E⃗ respectively:

∂E⃗

∂t
× B⃗ − c2(∇× B⃗)× B⃗ = − 1

ε0
j⃗ × B⃗, (43)

E⃗ × ∂B⃗

∂t
+ (∇× E⃗)× E⃗ = 0. (44)

The antisymmetric products are reduced to a symmetric tensor through the differential
identity:

(∇× A⃗)× A⃗ = (A⃗∇)A⃗− 1
2∇|A⃗|

2 = ∇ ·
(
A⃗A⃗− 1

2 |A⃗|
2I

)
− (∇ · A⃗)A⃗. (45)

When applied to the system (43–44) considering the Gauss’s law (37), the sum of the
equations results in the equation of electromagnetic momentum:

∂

∂t
γ⃗EM −∇ ·

(
TE + TB

)
= −ρqαE⃗ − j⃗α × B⃗, (46)

where γ⃗EM = ε0E⃗ × B⃗ is the electromagnetic momentum vector and TE,TB are the
electric and magnetic parts of the Maxwell’s stress tensor:

TE = ε0

(
E⃗E⃗ − 1

2 |E⃗|
2I

)
, TB = µ−1

0

(
B⃗B⃗ − 1

2 |B⃗|
2I

)
. (47)

Integration of (46) over the configuration space yields the law of electrodynamic
momentum conservation:

dP⃗EM
dt =

∮
Γ
(TE + TB) · n⃗ dΓ−

∫
Ω
ρqαE⃗ + j⃗α × B⃗ dx⃗. (48)

The boundary term is obviously zero for the normal components of the fields and
the second term is again the interaction part or the action of Lorentz force in other
words, which appeared in (42). Together, they form the sought law of total momentum
conservation for P⃗α + P⃗EM .

1.2.3 Energy equation

The last, but not least, collisional invariant is the kinetic energy ϕα = 1
2me|v⃗|2 and

the corresponding second velocity moment of the kinetic equation (1). Insertion to the
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moment equation (30) yields:

∂

∂t

(
1
2ραu

2
α + 1

2ρα⟨w
2
α⟩α

)
+∇ · ρα

(
1
2u

2
αu⃗α + 1

2⟨w
2
α⟩αu⃗α+

+⟨w⃗αw⃗α⟩α · u⃗α + 1
2⟨w

2
αw⃗α⟩α

)
= j⃗α · E⃗, (49)

where identification with the kinetic pressure tensor (41), kinetic energy density ϵkα =
1/2ραu2

α, internal energy density ϵiα and heat flux q⃗α can be made. The latter are
defined as:

ϵiα = 1
2ρα⟨w

2
α⟩α = 1

2mα

∫
|v⃗ − u⃗α|2 fα dv⃗, (50)

q⃗α = 1
2ρα⟨w

2
αw⃗α⟩α = 1

2mα

∫
|v⃗ − u⃗α|2 (v⃗ − u⃗α)fα dv⃗. (51)

After the substitution, the equation of energy reads:

∂

∂t

(
ϵkα + ϵiα

)
+∇ ·

(
ϵkαu⃗α + ϵiαu⃗α + Pα · u⃗α + q⃗α

)
= j⃗α · E⃗. (52)

Integration of (52) over space provides the law of energy conservation for the
total energy of α species Eα =

∫
Ω ϵ

k
α + ϵiα dx⃗, which takes the form:

dEα
dt = −

∮
Γ

(
(ϵiα + ϵkα)u⃗α · n⃗+ Pα : u⃗αn⃗+ q⃗α · n⃗

)
dΓ +

∫
Ω
j⃗α · E⃗ dx⃗. (53)

The first boundary term is convective and is zero when there is no mass flow over the
boundaries. The pressure part describes the action of the boundary forces and becomes
zero together with the normal heat flux for an isolated system. The last part describes
the total amount of Joule heating, which presents an interaction term between the α
particles and electromagnetic fields.

The field counterpart of the energy equation is obtained from (3) and (4) when
multiplied by E⃗ and B⃗ respectively. The system then takes the form:

1
2
∂

∂t
|E⃗|2 − c2∇× B⃗ · E⃗ = − 1

ε0
j⃗α · E⃗, (54)

1
2
∂

∂t
|B⃗|2 +∇× E⃗ · B⃗ = 0. (55)

A linear combination of the equation then gives the energy equation for electromagnetic
field after some manipulations:

∂

∂t
ϵEM +∇ · S⃗ = j⃗α · E⃗, (56)
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where the density of electromagnetic energy and Poynting vector are defined as follows:

ϵEM = 1
2ε0|E⃗|2 + 1

2µ
−1
0 |B⃗|2, S⃗ = µ−1

0 E⃗ × B⃗ = γ⃗EM
c2 . (57)

The law of electromagnetic energy conservation can be derived from (56) by
integration over space:

dEEM
dt = −

∮
Γ
S⃗ · n⃗ dΓ−

∫
Ω
j⃗α · E⃗ dx⃗. (58)

Provided that the Poynting vector S⃗ is zero at the boundary, the electromagnetic
energy is conserved except the action on particles through the Joule heating term
j⃗α · E⃗. However, comparison of (58) with (53) reveals that the total energy Eα +EEM
is conserved.

1.3 Cartesian tensor expansion
The kinetic theory described the distribution function f = f(x⃗, v⃗, t) in 7 dimensions
of the phase space essentially. Consequently, solution of the kinetic equation (1) is
cumbersome, when a non-linear collision operator like the one presented in chapter
1.1.1 is applied especially. For this reason, it is desirable to expand the distribution
function and solve only a finite set of equations in a lower number of dimensions.
Expansions in spherical harmonics or Cartesian tensors belong to the most frequently
used. The rationale of this choice can be seen in the fact that spherical harmonics
present eigenvectors of the diffusion operator, greatly simplifying the structure of the
Fokker–Planck collision operator. Moreover, the Maxwell–Boltzmann distribution (26)
is modelled by the zeroth mode already and higher modes present only anisotropic
corrections to it. Alternatively, an expansion in Cartesian tensors can be made, which
is also pursued here, but the two approaches are formally equivalent [50].

In the following, the distribution function f is expanded in Cartesian tensors as:

f(x⃗, v⃗, t) = f(x⃗, ˆ⃗v, v, t) = f0(x⃗, v, t) + f⃗1(x⃗, v, t) · ˆ⃗v + f2(x⃗, v, t) : ˆ⃗vˆ⃗v + . . . , (59)

where v = |v⃗| and ˆ⃗v = v⃗/v. The term f0 is the isotropic part of the distribution
function, f⃗1 the first order tensor (i.e. vector) anisotropic correction and f2 is the
second order tensor anisotropic correction, etc. Note that the series is infinite, but it is
truncated after several terms typically, as mainly electron–ion collisions isotropize the
electron distribution function due to the high mass ratio of the species, which leads
to a high momentum exchange during an encounter. However, the energy exchange is
significantly slower due to this ratio, so rather the direction of momentum is affected.
In a typical collisional plasma, the ordering f0 ≫ |f⃗1| ≫ |f⃗2| holds consequently.

The velocity moments of the distribution function, which were defined in chapter
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1.2, then take the form:

ne = 4π
∫ +∞

0
f0v

2 dv, u⃗e = 1
ne

4π
3

∫ +∞

0
f⃗1v

3 dv, (60)

ϵTe = 1
2me4π

∫ +∞

0
f0v

4 dv, q⃗Te = 1
2me

4π
3

∫ +∞

0
f⃗1v

5 dv, (61)

while the pressure tensors are obtained in the form:

De + P e = 4π
3 me

(∫ +∞

0
f0v

4 dv
)
I + 8π

15me

∫ +∞

0
f2v

4 dv. (62)

It must be noted that ϵTe and q⃗Te are rather the total quantities related to (50), (51) by
the following relations:

ϵTe = ϵke + ϵie, q⃗Te = q⃗e + ϵTe u⃗e + P e · u⃗e. (63)

It is enlightening and also serves for the purposes of later reference to derive the splitting
of the pressure tensor P e = peI + Π to the scalar pressure pe and the anisotropic part
Π responsible for viscous effects:

pe = 4π
3 me

(∫ +∞

0
f0v

4 dv
)
− 1

3ρeu
2
e, Πe = 8π

15me

∫ +∞

0
f2v

4 dv + 1
3ρeu

2
e − ρeu⃗eu⃗e.

(64)
From the given expression, it is clear that f0 contributes to the scalar pressure and f2

to the anisotropic part only.
To proceed further, the expansion (59) is inserted to the kinetic equation (2),

where the equations for the first two contributions parts of the distribution function
give:

∂f0

∂t
+ v

3∇ · f⃗1 −
e

me

1
3v2

∂

∂v

(
v2E⃗ · f⃗1

)
= C0, (65)

∂f⃗1

∂t
+ v∇f0 −

e

me

∂f0

∂v
E⃗ − e

me

B⃗ × f⃗1+

+ 2
5v∇ · f2 −

2e
5mev3

∂

∂v

(
v3E⃗ · f2

)
= C1. (66)

The equations for higher anisotropic corrections can be found in the literature and are
not detailed here [50]. The tensor f2 is assumed to be given by a closure relation,
which is a function of f0 and f⃗1. When f2 is the zero tensor, the classical P1 model is
obtained. Other choices are discussed in chapter 3.2.

The symbols C0 and C1 represent the tensor expansion of the collision operator on
the right-hand-side. Their complete prescription for the Fokker–Planck operator can
be found in the literature [39]. However, we are particularly interested in a simplified
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form of the collision operator for a two-specie plasma:
(
∂f

∂t

)
coll

= Cee + Cei = Cee + νei
2

∂2

∂ ˆ⃗v2
f =

= Cee + νei
2

 1
sinφ

∂

∂φ

(
sinφ ∂

∂φ
f

)
+ 1

sin2 φ

∂2

∂θ2 f

 , (67)

where ϕ is the polar angle and θ the azimuthal angle of the velocity vector in spheri-
cal coordinates. The symbol Cee represents the Fokker–Planck operator for electron–
electron collisions following the definition (6) and Cei is the electron–ion collision op-
erator in the approximation (20). The simplification made here is that electron–ion
collisions lead to pure scattering of the electrons on a static background of ions. This
procedure assumes that the thermal velocities of ions are significantly lower than that
of electrons, i.e. vT i ≪ vTe (v2

Tα = kBTα/mα). Moreover, the system is observed for
notably shorter times than the thermal relaxation time 1/νϵei ∼ mi/(meνei). Due to the
high mass ratio between the ions and electrons typically, the approximation is justified.
The collisional terms C0 and C1 then take the form:

C0 = ν̄ee
v2

∂

∂v

(
C(f0)f0 +D(f0)

∂f0

∂v

)
+ C11(f⃗1, f⃗1), (68)

C1 = −νeif⃗1 + C01(f0, f⃗1), (69)

where the Rosenbluth potentials of friction C and diffusion D are defined as:

C(f0) = 4π
∫ v

0
f0(v′)v′2dv′, (70)

D(f0) = 4π
v

∫ v

0
v′2
∫ +∞

v′
f0(v′′)v′′dv′′dv′. (71)

It is evident from the form of (68–69) that the tensor expansion separates the maxwelliza-
tion process mediated by C0 and isotropization process mediated by C1. The angular
diffusion operator (also known as Laplace–Beltrami) from (67) simplifies substantially,
manifesting the convenient construction of the expansion basis, where spherical har-
monics are eigenvectors of this operator. It can be immediately recognized that the
basis function cosφ coincides with the scalar product of ˆ⃗v. The collision term C01
is responsible for the electron–electron scattering and holds main importance for low-
Z plasmas, otherwise electron–ion collisions dominate due to favourable charge and
mass ratio. In the Lorentz approximation (for Z → ∞), this term is neglected com-
pletely. Finally, the term C11 describes growth of f0 due to electron–electron scattering,
but it presents a second-order effect ∼ |f⃗1|2 and can be neglected usually (assuming
|f⃗1| ≪ f0). Definitions of both can be found in the literature and it is not detailed due
to their complex formulation [39].
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For completeness, the formulae for the collision frequencies read:

νee(v) = ν̄eenev
−3 = nee

4

4πε2
0m

2
e

v−3 log Λee, (72)

νei(v) = Z2nie
4

4πε2
0m

2
e

v−3 log Λei, (73)

where Z is the mean ionization. The expressions can be derived from the Fokker–
Planck operator (6) after substitution of the Maxwell–Boltzmann distribution (26) as
the target distribution fβ, which linearises the operator effectively. It can be shown
that a solution exists in the form of Chandrasekhar function [51], which behaves as
∼ v−3 in the high velocity limit and yields the sought formulae when the approximation
me/mi ≈ 0 is made.
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2 Magnetohydrodynamics
The fluid model describes plasma as a continuum governed by the equations for macro-
scopic quantities. The single-specie model was derived in chapter 1.2 from the kinetic
theory through velocity moments of the kinetic equation (1). In particular, it is com-
prised of the mass equation (32), momentum equation (39) and energy equation (52).
These macroscopic quantities then parametrize the shifted Maxwell–Boltzmann distri-
bution (26), which presents the assumed solution of the kinetic problem within the
fluid description. Only infinitesimal perturbations are considered classically, in order
to model the transport processes as described in chapter 3. This procedure is valid
only for well thermalized plasma (t ≫ ν−1

αα), isotropized (t ≫ ν−1
α ), where να is the

total scattering frequency and dominated by kinetic phenomena (ϵiα ≫ ϵEM). Under
these conditions, the solution attains the near (collisional) equilibrium limit.

2.1 Multi-specie fluid model
The single-specie model derived in chapter 1.2 can be then extended to the multi-specie
case by adding the inter-specie interaction according to (30):

∂ρα
∂t

+∇ · (ραu⃗α) = 0, (74)
∂ραu⃗α
∂t

+∇ · (ραu⃗αu⃗α) = −∇ · Pα + ρqαE⃗ + j⃗α × B⃗ + g⃗αβ, (75)

∂ραε
T
α

∂t
+∇ ·

(
ραε

T
α u⃗α

)
= −∇ · (Pα · u⃗α)−∇ · q⃗α + j⃗α · E⃗ + gαβ, (76)

where εTα = ϵTα/ρα is the total specific energy of α species. The collisional coupling
between the species is mediated by the exchange terms:

g⃗αβ =
∫
mαv⃗α

∑
β ̸=α

(
∂fα
∂t

)β
coll

dv⃗α, (77)

gαβ =
∫ 1

2mα|v⃗α|2
∑
β ̸=α

(
∂fα
∂t

)β
coll

dv⃗α. (78)

The multi-specie model (74–76) considers only momentum and energy transfers
between the species based on the form of the collision operator (19), where contribution
to the zeroth velocity moment is always zero. In other words, the processes resulting
in exchange of particles like ionization or recombination are not modelled dynamically,
but left for the stationary closure model described later in chapter 2.4.

2.2 One-fluid magneto-hydrodynamic model
The multi-specie model of chapter 2.1 offers a complete fluid description of the plasma
when the self-consistent fields are obtained from the electromagnetic closure, i.e. the
Maxwell’s equations (3–4). However, the model represents a non-linear problem, ex-
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pensive to solve on long time scales. Therefore, the model is reduced to the one-fluid
description, provided that a quasi-static electric field develops between the species and
couples them together effectively (t ≫ ω−1

pα ). Hence, the electrically charged particles
of different species are separated only on distances of the Debye length λDα and the
plasma can be considered quasi-neutral (∑α ρ

q
α ≈ 0). The flows of the particles do not

need to be modelled separately as their profiles are inter-dependent. Consequently, the
plasma is described with the one-fluid quantities like the mass density ρ, center of mass
velocity u⃗ and specific internal energy ε:

ρ =
∑
α

∫
mαfα dv⃗α, (79)

u⃗ =
∑
α

∫
mαv⃗αfα dv⃗α∑

α

∫
mαfα dv⃗α

, (80)

ε =
∑
α

∫ 1
2mα|v⃗α − u⃗α|2fα dv⃗α∑
α

∫
mαfα dv⃗α

. (81)

In particular, the velocities are u⃗ ≈ u⃗e ≈ u⃗i and densities are ne = Zni for
electron–ion plasma, where Z is the mean ionization. Finally, the one-fluid model is
obtained by summing over the α index the system (74–76):

∂

∂t
ρ+∇ · (ρu⃗) = 0, (82)

∂

∂t
(ρu⃗) +∇ · (ρu⃗u⃗) = −∇ · P −∇ · PB, (83)

∂

∂t
(ρ(1

2u
2 + ε)) +∇ · (ρ(1

2u
2 + ε)u⃗) = −∇ · (P · u⃗)−∇ · q⃗ + j⃗ · E⃗, (84)

where j⃗ = ∑
α j⃗α is the electric current, q⃗ = ∑

α q⃗α heat flux, P = ∑
α Pα

and
PB = −TB is the magnetic pressure tensor. The contributions from the collisional
momentum and energy exchange terms cancel out according to (31) and the Lorenz
force densities vanish due to the quasineutrality condition. However, solenoidal cur-
rents can exist even under the quasi-neutrality requirement, because the continuity
equation (38) only restricts the potential (or divergent) part. In magnetohydrodynam-
ics, where the interplay with a magnetic field is modelled, the solenoidal currents are
given by the electrostatic Ampère’s law j⃗ = µ−1

0 ∇ × B⃗. Their substitution to the
Hall term j⃗ × B⃗ yields the magnetic pressure term −∇ · PB. Although, the term is
proportional to the magnetic energy 1/(2µ0)|B⃗|2 according to the definition (47) and
the kinetic pressure tensor P to the internal energy ρε, so it can be neglected in ideal
hydrodynamics, where the assumption ϵEM ≪ ρε is enforced strictly.

The expression for the electric field can be obtained from the momentum equa-
tions (75) when multiplied by ρ/ρα and summed over the α index, while the velocities
are considered equal already. This procedure can be seen as relative temporal varia-
tions of the contributions to the total momentum and the electric field is constructed
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in such way to zero them all. Finally, the expression for the electric field is obtained:

E⃗ = −u⃗× B⃗ + σ−1j⃗ +
(∑

α

qα
mα

)−1∑
α

1
ρα
∇ · Pα, (85)

where σ is the total electric conductivity originating from the collisional terms g⃗αβ,
where a collisional friction between the species exists. A more detailed analysis of the
collisional effects yields (115) presented in chapter 3.1.1. In the case of electron–ion
plasma, the situation simplifies notably, because the mass and charge ratio favours the
electron pressure contribution −∇ · P e/(ene) in the last part.

The procedure leading to the one-fluid model (82–84) assumed that there exists
a single equilibrium distribution for all species. However, the electron–ion energy
exchange time is related to the electron–electron thermalization time as (νϵei)−1 ∼
mi/meZ

−2ν−1
ee , so the condition t≫ ν−1

ee can be satisfied securely, but t≫ (νϵei)−1 may
not. In other words, the thermal equilibrium is reached significantly earlier for electrons
separately than the common equilibrium between the species. It is then possible to
retain the separate energy equations for electrons and ions instead of the common one
(84). This approach is known as the two-temperature one-fluid model. The energy
equations then read:

∂

∂t
(ρe(1

2u
2 + εe)) +∇ · (ρe(1

2u
2 + εe)u⃗) = −∇ · (P e · u⃗)−∇ · q⃗e + j⃗e · E⃗+

+Gei(Ti − Te), (86)
∂

∂t
(ρi(1

2u
2 + εi)) +∇ · (ρi(1

2u
2 + εi)u⃗) = −∇ · (P i · u⃗)−∇ · q⃗i + j⃗i · E⃗+

+Gie(Te − Ti), (87)

where most of the terms cancel out as in (84), because the quasi-neutrality still holds,
but Gei, Gie are the heat exchange coefficients for the linearized heat transfer approx-
imating gei, gie terms respectively. It is applicable only for gentle deviations from the
common equilibrium, i.e. Gei|Te−Ti|∆t≪ 1 holds ideally (∆t is a typical resolved time
scale). Moreover, the symmetry Gei = Gie is required to satisfy energy conservation.

2.3 Lagrangian magnetohydrodynamics
The fluid model presented in chapter 2.2 used the Eulerian description, where the
reference frame is fixed (the laboratory frame typically). However, ablative processes
during laser–target interaction lead to enormous expansion of the matter, where the
Lagrangian description is preferable.

The hydrodynamics is modelled within the reference frame co-moving with the
fluid. Only the Galilean transformations of the coordinate system are used, respecting
the assumption of non-relativistic motion of the fluid. It is convenient to define the
differential operator of substantial (or material) derivative:

Dh⃗
Dt = ∂h⃗

∂t
+ (u⃗∇)⃗h, (88)
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for a vector function h⃗ (or for a scalar function analogously).
Equipped with the substantial derivative, the one-fluid model (82–84) can be

rewritten as:

D
Dtρ = −ρ∇ · u⃗, (89)

ρ
D
Dt u⃗ = −∇ · P −∇ · PB, (90)

ρ
D
Dtε = −P : ∇u⃗−∇ · q⃗ + j⃗ · E⃗, (91)

where the lower velocity moment equations were substituted to simplify the formula-
tion.

The next step is transformation of the coordinate system itself. The hydrody-
namic equations (82–84) are primarily hyperbolic, so the quantities ρ, ρu⃗, 1/2ρu2 + ρε

are advected along the characteristics. Therefore, the time-dependent flux ψ⃗t : X⃗ → x⃗
of the equations can be defined, which assigns the coordinate of an infinitesimal volume
of the solution at time t to its initial (or material) coordinate X, so it ideally holds
ρ(ψ⃗t(X), t) = ρ(X, 0), etc. Provided that this assignment is bijective and difeomor-
phic, so the characteristics do not intersect and no singularities exist, a well-defined
invertible transformation of the coordinates (X⃗, t) → (x⃗, t) can be defined. The pair
of the space-time coordinates (X⃗, t) is called the Lagrangian coordinates. A function
h̃ = h̃(X⃗, t), defined in the Lagrangian coordinates and corresponding to the function
h = h(x⃗, t) in the Eulerian coordinates, is then differentiated as follows:

∂h̃

∂t

∣∣∣∣
X⃗,t

= ∂h

∂t

∣∣∣∣
ψ⃗t(X⃗),t

= ∂h

∂t

∣∣∣∣
ψ⃗t(X⃗),t

+ ∂ψ⃗t
∂t
· ∂h
∂x⃗

∣∣∣∣
ψ⃗t(X⃗),t

= Dh
Dt

∣∣∣∣
ψ⃗t(X⃗),t

, (92)

where the fact was utilized that the slope of the characteristics ∂ψ⃗t/∂t is equal to the
velocity of the convection u⃗.

In addition to the time derivative, the divergence operator is needed. It can be
transformed as follows:

∇X⃗ · h̃|X⃗,t =
∣∣∣∣∣∣dψ⃗tdX⃗

∣∣∣∣∣∣
X⃗

∇x⃗ · h|ψ⃗t(X⃗),t = ρ0(X⃗)
ρ(ψ⃗t, t)

∇x⃗ · h|ψ⃗t(X⃗),t , (93)

where ρ0(x⃗) = ρ(x⃗, 0) is the initial density. This fact already reflects that ρ|J | is an
invariant of the flow, i.e. Dρ|J |/Dt = 0, where J = dψ⃗t/dX⃗ is the Jacoby matrix. This
can be seen as a consequence of the mass conservation law (89), provided the relation
D|J |/Dt = ∇ · u⃗|J | holds, as can be verified from the definition [52]. The continuity
equation then gives:

0 = Dρ
Dt + ρ∇ · u⃗ = Dρ

Dt + ρ|J |−1 D|J |
Dt = |J |−1 Dρ|J |

Dt (94)

Following these considerations, the system (90–91) can be transformed to the
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following form:

ρ0
∂

∂t
˜⃗u = −∇X⃗ · P̃ −∇X⃗ · P̃

B
, (95)

ρ0
∂

∂t
ε̃ = −P̃ : ∇X⃗

˜⃗u−∇X⃗ · ˜⃗q + ρ0

ρ̃
˜⃗
j · ˜⃗
E. (96)

where the functions in the Lagrangian coordinates are denoted by the upper tilde.
Finally, it must be explained how the Maxwell’s equations (3–4) are transformed.

The procedure is not as straightforward as in the case of the hydrodynamic part.
The fields must be transferred to the Lagrangian frame by the proper Lorentz trans-
formations in the low velocity limit. In the simplest case of Lagrangian magneto-
hydrodynamics, the local electric force can be identified with the classical local Lorentz
force, giving the expression for the electric field [53]:

˜⃗
E(ψ⃗−1

t (x⃗), t) = E⃗(x⃗, t) + u⃗(x⃗, t)× B⃗(x⃗, t). (97)

This transformation can be absorbed in the definition of the substantial derivative for
(partially) solenoidal fields, which becomes [54]:

Dh⃗
Dt = ∂h⃗

∂t
+ (∇ · h⃗)u⃗+∇× (⃗h× u⃗). (98)

Note that no distinction from the (88) is made in the notation, because the meaning
is given from the context. The Faraday’s law (4) can be then rewritten as:

DB⃗
Dt = −∇× E⃗ ′, (99)

where E⃗ ′ is the fluid-frame electric field (E⃗ ′(ψ⃗t(X⃗), t) = ˜⃗
E(X⃗, t)).

Proceeding to the Lagrangian coordinates, the Faraday’s law (4) maintains its
form even in the moving frame and becomes:

∂

∂t
˜⃗
B = −∇× ˜⃗

E, (100)

where the differential operator in Eulerian coordinates is retained, because the formula
(93) cannot be applied here and the final expression is more complex. It should be
noted that (100) together with the definition of the electric field (97) and (85) can be
interpreted in such way that the convection of the magnetic field was eliminated by
the change of the reference frames similarly to the rest of the quantities.

2.4 Equation of state
The (magneto-)hydrodynamic equations (89–91) together with the equations for the
electric field (85) and magnetic field (4) eventually still do not pose a closed system
of differential equations. The prescriptions of the pressure tensor and heat flux are
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missing in the hydrodynamic picture. The reason is that both are given by higher
velocity moments than those appearing in the hydrodynamic system, as in the case of
the heat flux according to the definition (51), or multi-directional correlations rather
than the scalar in the case of the pressure (41). Discussion of the former is left for the
dedicated chapter about the heat transport processes 3, while the latter is the subject
of this chapter.

2.4.1 Ideal gas

Based on the kinetic theory, it was recognized after the Cartesian tensor expansion
(64) (and also the definition (41)) that the higher order tensors contribute to the
anisotropic part of the tensor only. The scalar part was obtained directly from the
isotropic part of the distribution function. Considering the equilibrium distribution
(26) used throughout the macroscopic model, the scalar pressure (64) can be related
to the internal energy of the plasma:

p = (γ − 1)ρε. (101)

This can be recognized as the ideal gas equation of state, where γ is the Poisson
constant. As the degrees-of-freedom of the species motion were not restrained anyhow,
the constant attains the adiabatic value γ = 5/3 in the kinetic model of chapter 1.
Because the reduced hydrodynamic description does not self-consistently provide this
value, it can be varied depending on the given physical problem, so the value γ = 7/5
can be used for simple diatomic molecules for example. The ionization is not provided
by the model and is assumed constant for the ideal gas.

2.4.2 Quotidian Equation of State

The Quotidian Equation of State (QEOS) [55] is one of the most popular models in
hydrodynamic simulations of plasma. It provides the analytic formulae for a wide range
of temperatures and densities in the one-temperature or even two-temperature model.
Conceptually, it is based on the formulation in terms of the Helmholtz free energy:

Ftot(ρ, Te, Ti) = Fi(ρ, Ti) + Fe(ρ, Te) + Fb(ρ, Te), (102)

where Fi is the ion contribution, Fe electron contribution and Fb bounding correction.
The ion part is approximated by the solid and liquid scaling laws and by the Cowan
model [56]. The term Fb supplements the model by semi-empirical bonding corrections,
which serve to decrease the total pressure for solid material and give correct bulk
modulus [57]. The bulk modulus of solid and solid density are externally entered
parameters in this model. Finally, the electron term is based on the Thomas–Fermi
theory [58].

The basic assumptions behind the Thomas–Fermi theory are such that electrons
move in the electrostatic field of a point-like ion. As the model originates from the sta-
tistical description in the continuum limit, there should be statistically representative
number of electrons at any distance from the nucleus, so the model is fully valid only

38



2 MAGNETOHYDRODYNAMICS 2.4 Equation of state

for infinitely ionized atoms strictly speaking. In essence, the total energy of electrons
is given by:

ETF = Ckin
TF

∫
n5/3(x⃗) dx⃗−

∫
n(x⃗)Ze

2

|x⃗|
dx⃗+ 1

2e
2
∫ ∫ n(x⃗)n(x⃗′)

|x⃗− x⃗′|
dx⃗ dx⃗′, (103)

the symbol Ckin
TF is a positive constant. The first term is the kinetic energy of the

electrons distributed to Fermi spheres in the phase space, i.e. the volume of phase
space occupied by fermionic matter in ground state. The second term is the potential
in the field of the ion, which is calculated from the classical solution of the Poisson
equation in an agreement with the assumptions already stated. The last term is the
expulsion potential of point-like electrons. This energy is then minimized through
variations of the density profile for the given total number of electrons. From the form
of the equation, it is clear that the resulting solution is only function of the radius,
so no higher spherical modes are present and no notion of electron orbitals exists,
except the spherically symmetric ones, but no quantization exists either. On the other
hand, the solution scales with the ionization Z, so it can be precomputed once and
applied on all ions. Another drawback of the theory is the absence of a proper electron
energy exchange term, which would respect Pauli exclusion principle. An answer to
this deficiency is given by the Thomas–Fermi–Dirac theory, but the model shares the
other inaccuracies and the solution cannot be scaled directly, which presents a notable
practical inconvenience. Therefore, the classical Thomas–Fermi approach is applied
usually.

The convenient simplicity and versatility of the QEOS model stemmed develop-
ment of many equations of state originating from it. The model was later adopted in
the library MPQeos [59] and further extended in FEOS package. It provides in addi-
tion to the basic QEOS model proper treatment of mixtures, where the properties of
the modelled atoms do not need to be averaged a priori. There are also improvements
of the cold curve and the region of liquid–vapour coexistence is treated rigorously [60].

2.4.3 Other equations of state

The Thomas–Fermi model used in the plain QEOS disregarded shell structure of the
atoms, making the model applicable only for high-Z materials approximately. This
crude simplification of the atomic description was addressed by many other authors.
One of the more advanced models is the BADGER library [61]. The ion model is
essentially the same as in the one used in QEOS. However, the correction for the
atomic bounds do not use the empirical parameters, but a model based on scaled
binding energies (SBE) instead. The ionization model is then separated from the
electron equation of state and can be switched independently. The model based on
the Thomas–Fermi model described in the previous chapter is one of the options, but
the continuum treatment predetermines it only for high-Z materials as already stated.
On the other hand, the screened hydrogenic model with l-splitting (SHM) can be used
instead, where the notion of the atomic structure in the approximation of the principal
and azimuthal quantum numbers is present. Another option is the individual electron
accounting model (IEM) model, where the electrons in the approximation of discrete
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particles are part of the quantum system of the ion. Finally, the electron equation
of state models not only the free electrons, but also the bound electrons, which were
disregarded in the QEOS(-like) models, using the already mentioned SHM model. All
species then interact through the Coulombic forces and partial charge screening is also
present between them.

In addition to the analytic models presented so far, there is another wide group
of empirical models. One of the major members of the family is the SESAME library
[62, 63, 64]. The experimentally measured values of quantities like pressure or ionization
are tabulated for various temperatures and densities. Interpolation of the data is then
necessary between the discrete point of the thermodynamic space.

2.4.4 Interpolation of equations of state

The interpolation routines are part of HerEOS (Hermite-interpolated Equation of
State) [65, 66]. The library provides thermodynamically consistent interpolation of the
quantities rather than direct interpolation between the given values of pressure and
other measured quantities. In particular, all thermodynamic potentials are calculated
from the Helmholtz free energy F = F (ρ, T ), where the temperature is the common
one for one-temperature models, electron or ion, depending on the given equation of
state. For example, the specific internal energy and pressure are calculated as follows:

ε(ρ, T ) = F − T
(
∂f

∂T

)
ρ

, p(ρ, T ) = ρ2
(
∂F

∂ρ

)
T

, (104)

where the thermodynamic notation of derivatives is used, so the lower index denotes
the quantity constant during the process. This approach guarantees that the derived
quantities are true potentials as in the theory of thermodynamics. The potentiality
is not self-provided for interpolated functions as inconsistencies arise between the dis-
cretely approximated quantities, which may lead to violation of the thermodynamic
laws. In contrast, the calculation from F gives fully consistent results provided that
the interpolated function F is smooth enough. This is achieved by high-order Hermite
polynomials used for the interpolation.

Another merit of the interpolation in general is the acceleration of the compu-
tation, where the analytic model does not need to be evaluated at the points of the
thermodynamic space repeatedly during the numerical simulation.
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3 Heat transport
The term heat refers to the energy confined in the chaotic motion of the plasma species.
Collisional processes thermalize the plasma and lead to establishing of the collisional
equilibrium as explained in chapter 1. However, the physical system rarely attains
the full global thermal equilibrium (TE). Due to the presence of strong energy sources
like an impinging laser beam (see chapter 5), the physical system is deviated from the
global equilibrium and only local thermal equilibrium (LTE) is attained. The heat
transport process then emerge, equalizing the thermodynamic conditions.

The kinetic theory provided a description of the heat transfer implicitly together
with the rest of the velocity moments of the distribution function (see chapter 1.2).
However, the reduction of the kinetic model to the fluid description of chapter 2 trun-
cated the velocity moments expansion yet after the energy moment. Principally, the
expansion can be extended further, but higher velocity moments are not invariants of
the collision operator according to chapter 1.2. Consequently, they are not governed by
conservation laws resembling those of the lower ones. Therefore, heat flux correspond-
ing to the third velocity moment is not provided by the classical fluid model and must
be supplied externally. This is circumvented by construction of a closure model for the
heat flux, relying on the lower moments only. Various approaches to this problem are
subjects of this chapter.

3.1 Diffusion transport
The diffusion treatment of the heat transport is the most frequently adopted one due to
its simplicity. Moreover, it is also positivity of the diffusion operator, which guarantees
monotonous increase of the entropy in an agreement with the Onsager relations of
irreversible processes. Fundamentally, it is based on the linear perturbation theory, so
its predictions are valid only for small deviations from the equilibrium. In particular, it
will be shown that the perturbation of the Maxwell–Boltzmann distribution (26) scales
with mean free path of the electrons λe. Therefore, the assumption λe ≪ L is made,
where L is the characteristic length scale of the plasma profile (it is LT = Te/|∇Te| for
the temperature and Ln = ne/|∇ne| for the density approximately).

Under the conditions stated above, the distribution function f can be formally
expanded using the Hilbert expansion in a small parameter λ combined with the ex-
pansion in Legendre polynomials in the directional cosine µ = cosφ of the polar angle
φ [67]:

f =
∞∑
i=0

λi
∞∑
j=0

fijPj(µ) = f00 + f01µ+ f10λ+ f11λµ+O(λ2, µ2). (105)

The Chapman–Enskog approach then defines the methodology how to successively solve
such a parametric expansion, where the procedure should start with the unperturbed
coefficients neglecting the corrections [2, 68, 69]. However, it is clear from chapter 1.1
that the solution is the Maxwell–Boltzmann distribution (26) for collisionally dominant
plasma so it can be identified that f00 = fM and f01 = 0, as it is isotropic. Then, the
first order correction are sought, but f10 correction can be neglected compared to fM
for the linear theory, so only f11 remains to be solved. When the higher order terms
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are neglected, this truncated expansion exactly coincides with the Cartesian tensor
expansion in chapter 1.3. For convenience and brevity, the equations are not derived
again for the expansion (110), but the discussion continues with the the equivalent
tensor formulation (59).

The solution of the kinetic problem has an analytic formulation only for the
Lorentz approximation [1]. In this limit, the electron–electron collisions are neglected
compared to the electron–ion ones. Moreover, the sought solution should be stationary
to depend only on the thermodynamic potentials, so the transient term is ∂f⃗1/∂t ≈ 0.
Finally, we restrict ourselves to the case without a magnetic field for the moment. The
equation for f⃗1 (66) gives the solution:

f⃗1 = −λei
(
∇fM −

e

mev

∂f0

∂v
E⃗

)
, (106)

where λei = v/νei is the electron–ion scattering mean free path. Using only the defini-
tion of the equilibrium distribution (26), the gradient term can be evaluated as:

∇fM =
∇ne
ne

+
(
mev

2

2kBTe
− 3

2

)
∇Te
Te

 fM . (107)

The expression for the stationary self-consistent electric field can be directly de-
rived under the condition of quasi-neutrality. Essentially, it implies, based on the
continuity equation (38), that the electric current must be zero for a single-directional
perturbation of the distribution function, so the definition (60) gives the condition:∫ +∞

0
f⃗1v

3 dv = 0. (108)

Inserting the solution of f⃗1 (106) to (108), the diffusion electric fields is obtained:

E⃗ = −kBTe
e

(
∇ne
ne

+ ξ1∇Te
Te

)
, (109)

where the factor ξ1 = 5/2 for the Lorentz gas.
Finally, the electric field (109) is inserted to the f⃗1 formula (106) and the full

distribution function is constructed from the expanded form (59) yielding:

f = ne

(
me

2πkBTe

)3/2

exp
(
− mev

2

2kBTe

)1−D
(
mev

2

2kBTe
, Ω⃗
) , (110)

where D is the transport function taking the form:

D(ζ, Ω⃗) = ξ0λei(ζ − 4)Ω⃗ · ∇Te
Te

, (111)

The notation with the transport function D follows the work of Spitzer and Härm [6, 7]

42



3 HEAT TRANSPORT 3.1 Diffusion transport

and agrees with the classical results for the Lorentz gas [1]. Considering also electron–
electron collisions throughout the derivation is non-trivial and the system must be
solved numerically. The results obtained with an expansion in Legendre polynomials
were tabulated in the influential paper [7]. The findings were later fitted by analytic
formulae giving the correction factors [70]:

ξ0(Z) = Z + 0.24
Z + 4.2 , ξ1(Z) = 1 + 3

2
Z + 0.477
Z + 2.15 . (112)

Finally, the diffusion heat flux reads according to the definition (61):

q⃗SH = 4π
3

∫ +∞

0

1
2mev

5f⃗1 dv = −128
3π ξ

0λSHvTenekB∇Te, (113)

where the Spitzer–Härm mean free path is defined as:

λSH = vTe
νSH

= 3v4
Teme

4
√

2πZe4 ln Λei

. (114)

To conclude, the diffusion approximation for a small perturbation of the equilib-
rium distribution resulted in the Fourier’s law for heat diffusion q⃗SH = −κSH∇Te. The
electric field had a significant role in eliminating the dependency on the density gradi-
ent, which is only true if both gradients are aligned as was tactfully assumed. In the
opposite case the solution is more complex and kinetic simulations are needed [71]. The
electric field also reduced the heat flux significantly as the electrons cannot free stream
in a single direction, but a return current balancing the flow is formed when the quasi-
neutrality condition is enforced. Actually, the main contribution to the heat flux is not
provided by the electrons with the thermal velocity vTe, but super-thermal species with
velocities about v ≈ 3.7vTe, since heat flux is a higher velocity moment than electric
current and is dominated by higher velocity species in turn [72]. The spectral distribu-
tions of the fluxes are shown in Figure 1. These high-velocity species are significantly
less collisional (due to ∼ v−3 dependency of the collision frequency (73)), which leads
to violation of the criterion on the mean free path (λe ≪ L). This point leads to con-
struction the flux-limiting techniques (chapter 3.1.2) and non-local transport models
described in subsequent chapters. Lastly, the dependency on the electron–electron col-
lisions manifests that the electron–electron collisions make the transport less efficient,
but the densities are lower for low-Z plasmas typically, outweighing the effect by the
value of the mean free path.

3.1.1 Diffusion transport in magnetic field

The diffusion model presented in this chapter did not assume presence of a magnetic
field. The theory considering also this effect was summarized by Braginskii [8]. Instead

43



3.1 Diffusion transport 3 HEAT TRANSPORT

0 1 2 3 4 5 6
v/vTe

0.6

0.4

0.2

0.0

0.2

0.4

0.6

0.8

1.0

1.2

flu
x 

(n
or

m
al

ize
d)

je
qe

Figure 1: Spectral distributions of the electron electric current (⃗je) and heat flux (q⃗e) in
the diffusion approximation. The values are normalized and the quantities are functions
of the velocity v normalized to the thermal velocity vTe.

of the simple Fourier’s law, the following expressions are given:

E⃗ = −∇pe
nee

+ j⃗ × B⃗
nee

+ α · j⃗ − β · ∇Te, (115)

q⃗ = −κ · ∇Te − Teβ · j⃗, (116)

where α is the resistivity coefficient, β thermoelectric coefficient, κ heat conductivity
coefficient. All coefficients are tensors depending on the magnetization of the plasma.
In essence, their structure is following when applied on a vector r⃗:

A · r⃗ = A∥(⃗b · r⃗)⃗b+ A⊥b⃗× (r⃗ × b⃗)± A∧⃗b× r⃗, (117)

where b⃗ = B⃗/|B⃗| is the unit vector in the direction of the magnetic field and A∥, A⊥, A∧
are transport coefficients parallel, perpendicular and cross-component contributions
respectively (the minus sign appears only for α). The parallel terms are not affected
by the magnetic field classically and the values are identical with the findings of Spitzer
and Härm [7]. However, the perpendicular coefficients are strongly dependent on the
magnetization and the heat flow is limited across the field lines, while the resistivity
grows. The most interesting term is the one proportional to the temperature gradient,
which is responsible for the Nernst effect in the case of the thermoelectric term β ·∇Te
and Righi–Leduc effect in the case of the anisotropic heat conduction term κ · ∇Te.
It means that an electric field and heat flux perpendicular to the both gradients, of
the temperature and magnetic field, is generated. These terms then become non-local
when the Knudsen number of electrons Kne = λe/L grows [73].
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Also the first term in (115) is worth a note, it generates a magnetic field through
Faraday’s law (4), unlike the mostly gradient Nernst term β · ∇Te. The resulting
magnetic field is proportional to ∇ lnne×∇Te, appearing whenever the gradients of the
density and temperature are crossed. It shows that a magnetic field can be generated
even in a quasi-neutral plasma without significant electric currents. This is effect is
known as the Biermann battery was originally studied in the context of proto-stellar
seed fields [74] or proto-galactic formation processes [75], but it can generate strong
magnetic fields in the cases of laser–target interaction [76] or ICF [77], affecting the
thermal transport in turn [78].
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Figure 2: The transport coefficients in a magnetic field (with magnetization χ): a) the
Hall coefficients δ⊥, δ∧, b) Nernst coefficients γ⊥, γ∧, c) heat conductivities κ⊥, κ∧, d)
thermoelectric coefficients β⊥, β∧. The values are normalized according to [79]. The
mean ionization is Z = 13.

Yet another formulation of the anisotropic current transport can be derived ac-
cording to [80], giving a better insight to the processes. The vector identity j⃗ =
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(⃗j · b⃗)⃗b+ b⃗× (⃗j × b⃗) is applied. The electric field then reads:

E⃗ = −u⃗B × B⃗ + α∥j⃗ −
∇pe
nee
− β∥∇Te, (118)

u⃗B = u⃗− (1 + δ⊥)⃗j + δ∧j⃗ × b⃗− γ⊥∇Te + γ∧∇Te × b⃗. (119)

It can be observed that the the anisotropic transport can be interpreted as mere convec-
tion with the velocity u⃗B and the classical isotropic contribution. The newly appearing
transport coefficients are defined as δ⊥ = α∧/|B⃗|, δ∧ = (α⊥ − α∥)/|B⃗|, γ⊥ = β∧/|B⃗|
and γ∧ = (β∥ − β⊥)/|B⃗|. This reformulation reveals that the original coefficients are
not important by themselves, but rather their differences. Therefore, the coefficients
should not be interpolated in their original form [81], but in this symmetrical one [79].

The transport coefficients are plotted as functions of the magnetization χ =
e|B⃗|/(meνSH) in Figure 2. The overall decreasing trend of the transport across the field
lines is apparent. Note the transport along the field lines is unaffected and coincides
with the transversal coefficients in absence of magnetic field, e.g. κ∥ = κ⊥(χ = 0).
In contrast, the exchange between the transversal components is strongest for χ ∼ 1.
This can be explained in simple terms by matching mean free path of the electrons
and their Larmor radius under these conditions. For low ionizations, there exists the
additional effect of electron–electron collision with scaling ∼ 1/

√
Z.

3.1.2 Heat flux limiting

The heat diffusion model is widely used for plasma simulations for the reasons already
mentioned in the introduction of this chapter about the diffusion transport. However,
it was recognized based on experimental data that the predictions of the diffusion
theory significantly overestimate the heat flux in the upstream of a steep front and
underestimate in the downstream [11]. It was proposed to use the heat flux limiting
techniques to cure this problem crudely. The heat flux is limited to a fraction of the
free streaming value qfs = nemev

3
Te, which is the absolutely highest value the heat flux

can attain when all electrons propagate in a single direction. The heat flux is then
limited by one of the formulae typically [82]:

q⃗ = min(1, f limqfs/|q⃗SH |)q⃗SH , or q⃗ = q⃗SH
1 + |q⃗SH |/(f limqfs)

, (120)

where f lim is a factor between 0.02 and 0.15 based on experimental data and Fokker–
Planck simulations [83, 84]. However, the redefinition of the flux using the local values
of the temperature changes the structure of the diffusion equation, which becomes
hyperbolic instead of parabolic locally. This can have unforeseen consequences as the
entropy may not increase and non-physical artifacts may appear in the simulations [82].
Therefore, limitation of the conductivity is preferred, which does not guarantee that
the flux is lower than the given value, but maintains the parabolic structure of the
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equation, so the behaviour remains purely diffusive. They are defined as follows:

κ = min(1, f limqfs/|q⃗SH |)κSH , or κ = κSH
1 + |q⃗SH |/(f limqfs)

. (121)

Apparently, the limiting processes would have to be repeated multiple times until con-
vergence is reached. Unfortunately, the iterations involve computation of the heat
fluxes, which makes the process expensive. Therefore, only a single iteration is per-
formed typically.

The main problem associated with the flux limiting techniques is given by the
fact that the value qfs depends on the local temperature and density without any
notion of the actually transported species. Consequently, the limiter fraction f lim is
temporally, spatially and physical problem dependent factor, which can be accurately
estimated only on the basis of fully kinetic simulations [85, 86, 87]. This problem led
to the development of semi-empirical methods, designed to feasibly cure this loss of
predictive capabilities of the hydrodynamic simulations.

3.1.3 Convolution extension

One of the major representatives of the semi-empirical methods is the method of Luc-
ciani, Mora and Virmont (LMV) [15]. The idea was to propose a convolution of the
classical diffusion results to take into account the emerging non-locality. The heat flux
is then calculated as:

q⃗ =
∫

Ω
K(x⃗, x⃗′)q⃗SH dx⃗′, (122)

where K is the convolution kernel defined in 1D as follows:

K(x, x′) = 1
2λLMV (x′) exp

−
∣∣∣∣∣∣
∫ x′

x ne(x′′) dx′′

λLMV (x′)ne(x′)

∣∣∣∣∣∣
 , (123)

where λLMV is a function defined in the reference [15]. The convolution introduces the
notion of non-locality, where the flux is dislocated on the length scale comparable with
λLMV . However, a shortcoming of the theory is the asymmetric convolution kernel,
where only an ad hoc density correction is present in the form of a path integral. The
kernel functions were improved based on a simplified kinetic equation in the model of
Albritton, Williams, Bernstein and Swartz [46]. In any case, it was revealed later in an
influential paper that negative entropy is generated and non-physical instabilities may
arise for any simple convolutional model [17, 88].

A multi-dimensional extension of the method based on less empirical foundation
was proposed by Schurtz, Nicolaï and Busquet (SNB) [18], which remains the most
widely used non-local transport model probably and has been implemented in large
ICF codes [89, 27]. The generalization is made by reformulation of the problem in
multiple dimensions in terms of the equivalent linear stationary transport equation:

Ω⃗ · ∇q⃗ = 1
λSNB

(
3

4π Ω⃗ · q⃗SH − q⃗
)
. (124)
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It can be recognized that the integral solution of the linear transport equation (124)
in 1D is the Fredholm equation of the second kind, which nearly coincides with (122),
but the kernel is symmetric. The transport equation can be solved by the discrete or-
dinates method or by angular moments as in the case of radiation transport described
in chapter 4. The authors also propose a multi-group extension of the method, so
non-locality of the species varying with their velocity can be taken into account ap-
proximately. However, one of the most cumbersome simplifications of the model is the
non-existence of a self-consistent electric field. Instead, the mean free path is merely
limited by the local value of the Spitzer-Härm electric field (109) based on the work of
Bendib, Luciani and Matte (BLM) [16]:

1
λSNB

= 1
aλSH

+ |eE⃗SH |
kBTe

, (125)

where a is a problem-dependent positive constant. It is apparent that the configuration
of the electric field and non-local fluxes can significantly more complicated in multiple
dimensions unlike the 1D case considered by BLM and the local diffusion field is not
representative of the actual non-local transport conditions. An effort was then made
to reformulate the method with self-consistent electric and magnetic fields [90]. Also
the electron–electron collision operator used for theoretical foundation of the model,
which was originally approximated by the BGK operator of chapter 1.1.3, was replaced
by the more accurate AWBS operator from chapter 1.1.2.

3.2 P1/M1 model of non-local transport
The chapter about the diffusion transport 3.1 revealed that the problem of heat trans-
port becomes non-trivial when steep gradients of the length scale L comparable or
smaller than the mean free path of the species λ are present in the plasma. In particu-
lar, the condition was specified to λei/L≪ 0.06/

√
Z for electrons [91]. This shows that

the non-locality emerge very early and a discrepancy between the diffusion predictions
and more accurate kinetic simulations arise [85]. The extensions of the diffusion model
in chapter 3.1.3 approached the problem empirically or semi-empirically, but did not
possess a solid theoretical foundation and empirical factors had to be adjusted for the
given physical scenario, limiting the predictive capabilities of the models. However,
solution of the full kinetic problem was and still is prohibitively computationally ex-
pensive on the hydrodynamic scales. Therefore, simplified non-local transport models
were proposed.

A simplified model directly originating from the kinetic theory is the P1 and
M1 method using the terminology of radiation transport (see chapter 4.2). They are
based on the angular moments technique, formally equivalent to the Cartesian tensor
expansion of chapter 1.3, which is truncated after the first term. The collision operators
on the right-hand-side of the system (65–66) do not involve the full non-linear collision
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operator, but they are simplified in the work of Del Sorbo et al. as follows [19, 92]:

C0 = νeev
∂

∂v
(f0 − fM), (126)

C1 = νeev
∂

∂v
f⃗1 − (νee + νei)f⃗1. (127)

The Fokker–Planck operator for electron–electron collisions uses the linear AWBS ap-
proximation from chapter 1.1.2, which is valid for high-velocity species near the equi-
librium. However, it has an apparent advantage over the BGK operator described
in chapter 1.1.3 in the aspect of conserving mass, but it is still rather an empirical
operator as the equilibrium distribution function must be entered explicitly.

The P1 and M1 models then differ in the definition of the closure relation replacing
the f2 contributions to the system of equations (65–66). Setting f2 = 0 yields the
P1 model, which is applicable only for very small anisotropy |f⃗1| ≪ f0. It must be
noted that form of the closure appearing in the reference is different. The reason is
that formally equivalent technique of angular moments is followed there instead of the
tensor expansion (59).

In contrast to the P1 model, M1 method is designed to approximately treat
strongly anisotropic media. The idea is that f2 should maximize the entropy as random
scatterings do in long term. The procedure is not detailed here as it is essentially
identical with the one performed in the case of radiative transport in chapter 4.2. The
system is solved in the stationary limit, i.e. ∂f0/∂t = 0, ∂f⃗1/∂t = 0. The electric field
is also calculated as stationary, where the solution can be derived immediately from
(66) in the Lorenz limit for the zero current condition (108) in the form:

E⃗ = −me

6e

∫ +∞

0
∇f0v

7 dv∫ +∞

0
f0v

5 dv
. (128)

This formula gives the Spitzer–Härm electric field (109) for the Maxwell–Boltzmann dis-
tribution (26). The electron–electron collisions in (127) are taken into account through
a correction factor. The whole procedure of solution is performed iteratively until
quasi-neutrality is achieved [19].

3.3 BGK model of non-local transport
A problem of the P1/M1 methods is given by their originally kinetic nature, which
requires to solve the global system of equations for tens or hundreds of velocity bins
as in the case of VFP codes, making it expensive to compute. The reason can be
seen in the fact that the equilibrium distribution function is described as any other
distribution function, without recognizing its privileged role in the macroscopic heat
transfer. Secondly, the anisotropy of the distribution function is strongly limited by
the truncated Cartesian expansion. It was assumed that |f⃗1| ≪ f0 and when this
condition is not fulfilled, a strong flux of electrons in one direction causes negativity
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of the distribution function in the opposite direction as both directions are artificially
connected though the f⃗1 vector. In addition, the entropy maximizing closure leads to
an excessively diffusive system even for nearly coherent electron fluxes [93].

These drawbacks led us to construction of a model based on the first-principles,
similar by its nature to the discrete ordinates method used in radiative transport of
chapter 4.3. The primary quantity in the description is the electron specific heat
flux intensity Ive = Ive (x⃗, Ω⃗, v, t) [20, 94, 82]. Essentially, it determines the differential
amount of energy dEe transported by the electrons with velocities in the interval (v, v+
dv) along the unit vector Ω⃗ in time dt across an infinitesimal oriented surface dS⃗ into
the solid angle dΩ⃗:

dEe = Ive (x⃗, Ω⃗, v, t)Ω⃗ · dS⃗ dΩ⃗ dv dt. (129)
Taking the phase space volume expressed in the spherical coordinates similarly to
chapter 1.3, the intensity is defined as follows:

Ive (x⃗, Ω⃗, v, t) dx⃗ dΩ⃗ dv = 1
2me|v⃗|3fe(x⃗, x⃗, t) dx⃗ dv⃗ = 1

2mev
5fe(x⃗, Ω⃗, v, t) dx⃗ dΩ⃗ dv.

(130)
The connection to the definition of the heat flux (61) is immediate and the heat flux
becomes then:

q⃗Te =
∫ +∞

0

∫
4π
Ive Ω⃗ dΩ⃗ dv =

∫
4π
IeΩ⃗ dΩ⃗. (131)

This expression also defines the total electron intensity Ie, which is the velocity integral
of Ive .

The BGK non-local electron heat transport model is based on the kinetic equation
(2) in the stationary limit (considering long times compared to the collision time ν−1

e )
equipped with the BGK operator (23):

Ω⃗ · ∇f − e

mev

∂f

∂v
Ω⃗ · E⃗ = −νe

v
(f − fM), (132)

where presence of a magnetic field is not considered. Next, the averaging operator is
defined for a function of velocity h as follows:

⟨h⟩I =
∫ +∞

0

1
2mev

5h dv. (133)

Application of this operator on the kinetic equation (132) yields:

Ω⃗ · ∇Ie + 4e
me

〈
f

v2

〉I
Ω⃗ · E⃗ =

〈
fM
λe

〉I
−
〈
f

λe

〉I
, (134)

where λe = v/νe is the electron mean free path. Approximating the unknown distri-
bution function by a Maxwellian, the averaging can be performed to obtain:

Ω⃗ · ∇Ie = − e

kBTe
IeΩ⃗ · E⃗ + 1

αλSH

 √2
π3/2nev

3
Te − Ie

 . (135)
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Following this approach, a problem arises in the case of the electric field term, where the
zero current condition (108) is related to a different velocity moment of the distribution
function. Approximation of the third velocity moment of the angular distribution func-
tion by the fifth, i.e. by the intensity, would only non-physically shift the equilibrium
intensity and the mean free path. Therefore, the electric field is approximated only by
the corrective factor α of the mean free path, which is adjusted to give an agreement
of the method with the diffusion heat flux (113) in that limit. The calculation shows
that it has the value [20]:

α(Z) = 64
3
√

2π
ξ0(Z) .= 8.51ξ0(Z). (136)

The main benefits of the method can be seen in an arbitrary anisotropy of the
transport, which depends only on the numerical quadrature used for the solution of the
steady state transport (135). It is also the tractable formulation making the calcula-
tion inexpensive and solvable by various numerical methods, while the intensity-based
formulation guarantees that the method is always conservative. It can be also extended
to an arbitrary number of velocity groups by performing only partial integration in the
averaging operator (133). However, the main drawback of the method is the absence
of a self-consistent non-local electric field. It is this field that limits the heat transport
in the non-local limit and couples the energy groups together, which makes it difficult
to stabilize the transport in the non-local limit without it. Still, the method provides
good results when the mean free path is known experimentally, as for example in [30].
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Figure 3: Dependency of the heat conductivity (normalized to the Spitzer–Härm con-
ductivity) on the Knudsen number. The legend designates the non-local transport
models: Fokker–Planck simulations without/with the modification of the distribution
due to the inverse Bremsstrahlung (FP/FP IB), AWBS model, LMV model, and the
BGK model (PETE (NTH)). Adopted from [95] with the underlying data from [70].
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Different models on the non-local electron heat transport are compared in Fig-
ure 3. The heat flux for infinitesimal harmonic perturbations of the temperature with
the wave number k is evaluated and compared to the diffusive heat flux. This ratio
is proportional to the hypothetical non-local heat conductivity κ normalized to the
Spitzer–Härm conductivity κSH . Variation of the wave number changes then the non-
locality of the transport with the Knudsen number Kne ∼ kλ̄e. This kind of test is
known as the Short–Epperlein problem [70, 96]. The details about the setting of the
test can be found in [20]. The results show the heat flux inhibition in the non-local
regime for all models. Though, no non-local transport model is able to recover the
dependency ∼ Kn−1

e of the Fokker–Planck simulations. All models based on a linear
transport equation exhibit the wrong dependency ∼ Kn−2

e in the non-local limit, as
can be proved by a Fourier analysis [70]. A slightly better curve corresponds to the
AWBS model with the more complex propagators [46], but the desired shape is still
not attained. Although the non-local limit dependency is wrong, it might not have
severe implications for real simulations of laser plasma, since most of the interaction
occurs under the mildly non-local conditions [20]. The classical Fokker–Planck sim-
ulations show a very early onset of the flux inhibition, but their correction with the
modification of the distribution function due to the action of the laser shows already
comparable values to the other models.
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4 Radiation transport
The description of the transport processes in plasma in chapters 2, 3 was limited to
only convection, i.e. transport by means of an ordered motion, or conduction, i.e. by
a chaotic motion, of massive particles. However, strong changes of momenta of the
charged particles lead to emission of the thermal radiation, which presents the third
mean of energy transport. There exist two fundamental approaches to derivation of
the equation of radiative transport similarly to the light itself possessing the wave and
particle descriptions.

Considering its wave nature, it can be modelled as an electromagnetic wave prop-
agating through space following the Maxwell’s equations (3–4). This methodology is
applied in chapter 5 for description of the coherent radiation of a laser, but it is not
feasible for the thermal radiation having a broad frequency spectrum. However, the
short wavelengths allow to treat the radiation as an energy continuum described by
the radiometric quantities, where the final model coincides with the particle approach
followed here.

The particle description is chosen to support the analogy between the radiative
and heat transport of chapter 3, which is most pronounced in the case of the non-local
transport and led us to formulation of the model of chapter 3.3. Within the framework
of the particle theory, the radiation can be seen as an ensemble of photons, quanta
of electromagnetic force. Similarly to chapter 1, they can be described by the photon
distribution function fR = fR(x⃗, Ω⃗, ν, t) [97]. It determines the number of photons with
frequencies in the interval (ν, ν+dν) in the volume dx⃗ propagating along the unit vector
Ω⃗ at position x⃗ and time t. The distinction of the formalism is given by the presence
of the frequency ν instead of the velocity, which was related to the non-relativistic
kinetic energy of the species, but becomes meaningless for the massless particles. The
correspondence can be recovered through the relation p⃗ν = (hν/c)Ω⃗ for the momentum
of a photon.

Considerations about the fundamental processes in the medium like absorption
and scattering lead to reformulation of the Boltzmann equation (1) for the photons
distribution [98]:

∂fR
∂t

+ cΩ⃗ · ∇fR = qν − ckνfR + c
∫ +∞

0

∫
4π
σνs (ν ′, ν, Ω⃗′ · Ω⃗)fR(ν ′, Ω⃗′)−

− σνs (ν, ν ′, Ω⃗ · Ω⃗′)fR(ν, Ω⃗) dΩ⃗′ dν ′. (137)

The isotropic emission is modelled through the emission function qν = qν(ν, x⃗, t) and
absorption by the absorption coefficient kν = kν(ν, x⃗, t). The scattering processes are
treated by the Bolzmann collision operator with the isotropic differential scattering
coefficient σνs (ν, ν ′, Ω⃗ · Ω⃗′) = σνs (ν, ν ′, Ω⃗ · Ω⃗′, x⃗, t), such that the the probability of scat-
tering from ν to ν ′ and from Ω⃗ to Ω⃗′ in time dt and spectral interval (ν, ν+dν) is given
by cσνs (ν, ν ′, Ω⃗ · Ω⃗′) dν dΩ⃗ dt.

Similarly to chapter 3.3, the specific radiation intensity IνR = IνR(x⃗, Ω⃗, ν, t) can
be defined, which describes the infinitesimal amount of energy dER transported by
radiation with the frequency in the interval (ν, ν + dν) along the unit vector Ω⃗ at
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position x⃗ and time t across an infinitesimal oriented surface dS⃗ in time dt and solid
angle dΩ⃗:

dER = IνR(x⃗, Ω⃗, ν, t)Ω⃗ · dS⃗ dΩ⃗ dν dt. (138)
The relation between the distribution function and the specific intensity can be found
by transforming the phase space volume to the spherical coordinates. Realizing also
that the energy of a photon is hν, the formula reads:

IνR(x⃗, Ω⃗, ν, t) dx⃗ dΩ⃗ dν = hνcfR(x⃗, p⃗ν , t) dx⃗ dp⃗ν = h4ν3

c2 fR(x⃗, Ω⃗, ν, t) dx⃗ dΩ⃗ dν. (139)

Equipped with these relations, the Boltzmann equation of radiation (137) can
be rewritten for the intensity. The Boltzmann integral is further simplified for nearly
isotropic media by approximation of the BGK operator of chapter 1.1.3, but the re-
laxation is made towards the implicitly defined angular mean of the intensity ĪνR =
1/(4π)

∫
4π I

ν
R dΩ⃗. This choice guarantees that the radiation energy is conserved as

shown later. The equation of radiation transfer then reads in the form most commonly
found in the literature [97]:

1
c

∂IνR
∂t

+ Ω⃗ · ∇IνR = jν − kνIνR + σν(ĪνR − IνR) = −χνIνR + jν + σν ĪνR, (140)

where jν = h4ν3/c3qν is the (spectral) emissivity, σν the scattering coefficient and
χν = kν + σν the total extinction coefficient.

Following this notation, the spectral radiation energy density ϵνR, radiation flux
q⃗νR and radiation pressure PR,ν present angular moments of the intensity:

ϵνR = 1
c

∫
4π
IνR dΩ⃗, q⃗νR =

∫
4π
IνRΩ⃗ dΩ⃗, PR,ν = 1

c

∫
4π
IνRΩ⃗Ω⃗ dΩ⃗. (141)

An analogy can be seen here with the velocity moments of the distribution function
elaborated in chapter 1.2. The difference is given by the fact that the velocity of prop-
agation is assumed to be constant. Practically, it can be reasoned that the refractive
index in the X-ray range, which is mostly spectrally occupied by the high-temperature
laser plasma [99], is close to the vacuum values in the coronal region. In contrast, the
transport is dominated by many subsequent absorptions and reemissions in the dense
regions rather than the behaviour of a single photon [100]. Therefore, the velocity of
photons and the related transient term in the radiation transfer equation (140) are of an
lesser importance here. Furthermore, the transition to the fluid reference frame is not
performed as the mean velocities in the hydrodynamics were assumed non-relativistic,
i.e. |u⃗| ≪ c.

Integration of (140) over all solid angles yields the zeroth angular moment equa-
tion for the radiation energy:

∂ϵνR
∂t

+∇ · q⃗νR = 4πjν − ckνϵνR = −gνR. (142)

Similarly to the energy conservation equation for massive particles (76), it has form of
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4 RADIATION TRANSPORT 4.1 Radiation diffusion

a conservation law, where an interaction term appears on the right hand side of the
equation. Consistently with other species, this term provides coupling with the elec-
tron distribution function, where the emission and absorption processes symmetrically
exchange the energy, so the total energy is conserved. Analogously, the first angular
moment of (140) provides the equation for the radiation flux in the form:

1
c2
∂q⃗νR
∂t

+∇ · PR,ν = −χ
c
q⃗νR = −g⃗νR, (143)

where the momentum exchange term appears on the right-hand-side for coupling with
the equation of electron momentum (75).

In order to simplify the equation of radiative transfer (140) even further, the
source spectrum is approximated by the gray body emission, i.e. the black body
emission reduced by the opacity of the medium. This is a great simplification, because
the matter is not in an equilibrium with the radiation in general and the source function
Sν = jν/kν is not known a priori [97]. However, following this approximation under
the assumption that the physical system is not far from the LTE regime, the gray body
radiative transfer equation for the total quantities becomes:

1
c

∂IR
∂t

+ Ω⃗ · ∇IR = ρκP

(
σSB
π
T 4
e − IR

)
+ σP

(
ĪR − IR

)
, (144)

where σSB is the Stefan–Boltzmann constant, IR =
∫+∞

0 IνR dν is the (total) radiation
intensity, κP the Planck specific opacity and σP the (total) scattering coefficient. Here,
the mean opacities were used, which are defined as follows:

ρκP = S−1
B

∫ +∞

0
kνSνB dν, σP = S−1

B

∫ +∞

0
σνSνB dν, (145)

where SνB = SνB(ν) represents the Planck’s law of radiation and SB = σSB/πT
4
e the

Stefan–Boltzmann law for the total emission.
As shown in the chapter dedicated to the radiation diffusion 4.1, the averaging

procedure (145) is not the only one. Essentially, it depends on the regime of transport
how the averaging should be performed. In the optically thin limit, kνL≪ 1 holds as it
takes a photon a long distance to get absorbed. The gradient term on the left hand side
of (140) dominates over the right hand side and the intensity is only weakly attenuated
like ∼ exp(−kνs), where s is the path integral. The Planck averaging is then justified.
However, the diffusion limit kνL≫ 1 leads to a strong coupling between the emission
and absorption and the Rosseland averaging of chapter 4.1 will be more appropriate.
This problem is tackled by splitting the transport to more energy groups, which is
known as the multi-group transport, or definition of an averaging process dependent
on the transport conditions [101].

4.1 Radiation diffusion
Similarly to the velocity moments of the electron distribution function, the system
(142–143) is not closed. There are still three unknowns ϵνR, q⃗νR and PR,ν for all spectral
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frequencies. It remains also here to define an appropriate closure relation. In the
diffusion limit kνL≫ 1, the photons perform only close random walks in the medium
and the radiation can be considered nearly isotropic. In an analogy to chapter 3.1, the
intensity is expanded in the Legendre polynomials and the small parameter (kν)−1 to
the first term:

IνR = Iν0 + µ(kν)−1Iν1 , (146)
where µ = cos(φ) is the directional cosine for the polar angle φ from the z axis.
The solution for Iν0 is found from the transport equation (140) immediately, since all
terms multiplied by the small parameter can be neglected and only the source function
remains [102]. Having the zeroth approximation, the first one is obtained when Iν0 is
inserted instead of the unknown intensity, so the solution reads:

Iν0 = Sν , Iν1 = − ∂

∂z
Sν . (147)

Substitution of the solution to the definitions of the angular moments (141) gives:

ϵνR = 4π
c
Sν , q⃗νR = − 4π

3χν∇S
ν , PR,ν = 4π

3c S
νI = 1

3ϵ
ν
RI. (148)

The procedure led to the Eddington’s approximation of the transport, where the radi-
ation pressure tensor is isotropic and given by the value of the energy density.

The equation of diffusion is obtained by insertion of the flux (148) to the energy
equation (142), which yields:

∂ϵνR
∂t
−∇ ·

(
f limR

c

3χν∇ϵR
)

= 4πjν − ckνϵνR. (149)

The factor f limR = f limR (KnR) is the flux limiter depending on the radiation Knudsen
number KnR = |∇ϵR|/(kνϵR) [95]. In the diffusion limit KnR → 0, it must converge to
the unity. However, it should attain values of 3/KnR in the free streaming limit, i.e.
KnR → +∞. The reason is that this value eliminates the gradient term in the diffusion
operator of (149) and changes the whole equation to a hyperbolic wave equation for
ϵνR. Conceptually, this is a similar approach to the flux limiting performed in chapter
3.1.2. There exist numerous formulae in the literature for the definition of the limiter.
As the most common can be considered the "sum" flux limiter, the limiter of Larsen
[103], Levermore and Pomraning [104] or Minerbo [105], which are defined as follows
respectively:

f sum
R = 1/(1 +KnR/3), fLarsen

R = (1 + (KnR/3)n)−1/n n ∈ R+, (150)

fLP
R = 2 +KnR

2 +KnR +Kn2
R/3

, fMinerbo
R =


2

1+
√

1+ 4
3Kn

2
R

KnR ≤ 3/2
3

1+KnR+
√

1+2KnR
KnR > 3/2

, (151)

All of them are based on different assumptions and their description is beyond the
scope of this text. A better insight is provided in chapter 4.2 by relating them to a
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4 RADIATION TRANSPORT 4.2 Angular moments method

different method, the variable Eddington factor. However, the variety of the formula-
tions already shows the inconsistency of the diffusion model, which cannot model the
non-local, optically thin regime correctly.

Finally, the diffusion equation (149) can be simplified to the gray body approxi-
mation by integration over the frequencies:

∂ϵR
∂t
−∇ ·

(
f limR

c

3ρκR
∇ϵR

)
= cρκP (aRT 4

e − ϵR), (152)

where aR = 4σSB/c presents the radiation constant. The scattering opacity can be
included in principle, but laser plasmas are typically dominated by the absorption
processes [106, 100]. The Rosseland opacity κR is calculated as:

(ρκR)−1 =
(
∂SB
∂Te

)−1 ∫ +∞

0
(kν)−1∂S

ν
B

∂Te
dν. (153)

This kind of averaging procedure originates from the equilibrium diffusion approxima-
tion, where the temperatures of the radiation and matter are approximately the same,
i.e. TR ≈ Te, where the radiation temperature is defined as ϵR = aRT

4
R. The diffusion

flux (148) is then given only by the gradient of the source, so the intensity reads [98]:

IνR = Sν − 1
χν

∂Sν

∂Te
Ω⃗ · ∇Te. (154)

The gray body approximation crudely simplifies the transport, but provides the
first quantitative estimate for many radiation-hydrodynamic codes [107] and solution of
the coupled non-linear radiation–diffusion problem (152),(76) is non-trivial numerically
[108, 95]. Radiative shocks may propagate in the medium and exactly the intermediate
regime of transport is attained [106].

4.2 Angular moments method
A problem of the diffusion treatment of the radiate transfer was inability to described
optically thin regime self-consistently, which led many authors to proposition of various
flux limiters to at least crudely approximate the non-locality of the transport. However,
the diffusion equations still possesses the infinite signal velocity of the radiation and
parabolic nature of the differential operators.

The basic improvement of the model is generalization of the derivation of the
diffusion theory performed in the previous chapter. The Legendre expansion method is
followed until the closure relation for the pressure tensor is obtained in (148). Rather
than taking the definition of the radiation flux directly, only the closure relation is
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inserted to the system (142–141), which yields:

∂ϵνR
∂t

+∇ · q⃗νR = ckν
(

4π
c
Sν − ϵνR

)
, (155)

1
c

∂q⃗νR
∂t

+ c∇(fEϵν) = −χq⃗νR, (156)

where fE = |PR,ν |/ϵν is the variable Eddington factor, which reflects anisotropy of the
transport. The formulation of the closure is identical with the formula (148) for the
value fE = 1/3 defining the method known as P1 approximation [103]. This provides
already the simplest non-local model of radiative transfer, as the system is hyperbolic
and combination of the equations gives a single wave equation for one of the quantities,
ignoring the right hand side for the moment. However, it is apparent that the velocity
of propagation is c/

√
3 .= 0.58c, which is far from the correct speed of light. A simple

improvement is scaling the velocity in the first term of (156) by one third as well, which
gives the correct velocity of the transport, but leads to excessive attenuation in the
optically thin limit [109]. In principle, the value of fE should be within the interval
(1/3, 1) and numerous interpolating formulas were proposed [103]. For example, a
simple yet popular expression is fE = 1/3 + 2/3(|q⃗R|/(cϵR))2 [110].

It cannot remain unnoticed that there exists a relation between the flux-limiters
and the variable Eddigton factor [111]. Based on fundamental properties of the pressure
tensor and existence of symmetries due to numerical construction of the schemes for
example, an improved prescription of the pressure tensor is given (for the total radiation
for simplicity):

PR =
(

1
2(1− fE)I + 1

2(3fE − 1)∇ϵR∇ϵR
|∇ϵR|2

)
ϵR. (157)

The flux limiter and the Eddington factor are related based on implicit constraints
between q⃗R and PR by:

fE = f limR
3 + (f limR )2

9 Kn2
R. (158)

A method of particular interest is the one proposed by Minerbo [105]. The idea
was that the ensemble is close to the Maxwell–Boltzmann distribution and entropy is
maximized. It must be noted that this concept is applicable on both, fermionic and
bosonic, species, which attain Maxwell–Boltzmann statistics in the high velocity limit,
so this method was also applied in the electron heat transport in chapter 3.2. The
Eddington factor then reads:

fMinerbo
E =



1
3 0 ≤ |q⃗R|

cϵR
≤ 1

3
1
2

1−
(
|q⃗R|
cϵR

)2

+
(
|q⃗R|
cϵR

)2 1
3 <

|q⃗R|
cϵR
≤ 1

, (159)

where a cut-off for low anisotropies is made, since it was believed that the value should
not be lower than 1/3, but other authors suggest that this is not a true physical
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requirement [103].
As a final remark, it should be noted that the angular moments method can be

extended to an arbitrary order, which is known as the PN method. However, there exist
multiple variants depending on the closure relation for the last angular moment [98].

4.3 Discrete ordinates method
In addition to the angular moments method presented in chapter 4.2, there exists an-
other large family of methods known as the discrete ordinates method or SN method.
Unlike the PN methods, where a series of coupled equations for the Cartesian tensors
of an increasing order, the SN methods give freedom in the choice of the angular dis-
cretization and the structure of the solved equations remains identical. They are based
on the work of Chadrasekhar [112], but became widely used later due to Pomraning [98].

In essence, the method is based on the approximation of the angular integral over
the unit sphere as follows:

1
4π

∫
4π
IνR(Ω⃗) ≈

∑
i

ΨiI
ν
R(Ω⃗i) =

∑
i

Ψi(IνR)i, (160)

where Ψi are weights of the quadrature, Ω⃗i are their abscissae and (IνR)i are values
of the intensity along the discrete directions (ordinates). The weights must satisfy at
least the conditions of partitioning of the unity and symmetry, i.e. ∑

i Ψi = 1 and∑
i ΨiΩ⃗i = 0. The equation of radiative transfer (140) after the substitution splits to

the series of equations:

1
c

∂

∂t
(IνR)i + Ω⃗i · ∇(IνR)i = jν + σνs ĪνR − χν(IνR)i. (161)

The function ĪνR = ∑
i Ψi(IνR)i is the discrete angular mean of the intensity.

The linear system of equations is solved numerically in an explicit manner clas-
sically, where the domain is swept by the discrete rays, i.e. the characteristics of the
hyperbolic equation (161). However, a problem arises for the laser plasma, where the
spatial scales are minuscule and the radiation crosses the domain quickly. Rather than
the transient transport, the steady state transfer is modelled, but strong coupling with
the matter may exist. Therefore, it was proposed in [113] to solve an implicit set of
equations for the radiation and matter, where the source function is expanded to the
Taylor series in temperature SνR = SνATe + Sνb , which enables the implicit coupling.

Another problem of the classical models was the locking phenomenon, where the
methods were unable to treat the diffusive regime correctly and infeasible number of
cells was needed to resolve the mean free path of photons λR = (ρκP )−1 [114]. This
remedy was solved with the advent of the high-order discontinuous Galerkin (DG)
methods effectively [115, 113, 94].

Finally, the method traditionally suffered from the ray effects, i.e. artificial effects
originating from the fact that preferred directions of the quadrature exist in space [116,
117]. An answer to this issue can be application of the angular finite element method,
which enables the local refinement techniques to be employed straightforwardly [118].
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5 Laser absorption
Laser absorption has a major role in the laser plasma modelling as it presents the
main driving force. Similarly to the kinetic theory of chapter 1, the interaction of
the laser radiation with plasma can be divided to the collisional and collective effects
[43]. The former originates from an interaction of a single particle of the medium
with the incoming radiation, while the latter is given by a resonant excitation of the
collective fields. For dense plasmas and moderate intensities of the laser and/or rather
short wavelength of the laser, the dominant mechanism of the laser–plasma interaction
is the collisional absorption. More specifically, the limit is about the value ILλ2

L <
1·1015 W/cm2µm2, where IL is the intensity of the laser and λL its wavelength [119]. For
higher intensities or longer wavelengths than the given value, the resonance absorption
is dominant and other collective effects may contribute significantly like parametric
instabilities or Landau damping.

In order to understand the collisional absorption for moderate intensities of the
laser, the linear model of the plasma response is sufficient as the distribution function
is not distorted significantly. Essentially, the description of motion of a single particle
provides the full picture of interaction as already stated. For this purpose, the equation
of motion for a single electron in the electric field of the laser E⃗ is considered in the
form:

me
dv⃗e
dt = −eE⃗ −meν̄eiv⃗e. (162)

The linear dumping of the oscillations, through the BGK operator with the mean
electron–ion collision frequency λ̄ei, is applied. The ions are considered relatively cold,
so their thermal velocity vT i is negligible compared to the velocity of the oscillating
electrons v⃗e. Also non-relativistic intensities of the laser are considered, so the effect
of the magnetic field can be neglected in the first approximation.

The electromagnetic field of the laser is governed by the Maxwell’s equations
(3–4). For the purposes of the derivation, the laser radiation is approximated as a
monochromatic planar wave with the angular frequency ωL and wave vector k⃗, which
has the harmonic amplitude ∼ exp(i⃗k · x⃗− iωLt). It is also assumed that the electron
is only weakly dumped and its quiver velocity is synchronous with the driving field.
Insertion of the harmonic profile to (3–4) and (162) then yields:

iωLv⃗e = e

me

E⃗ + ν̄eiv⃗e, (163)

i⃗k × E⃗ = iωLB⃗, (164)

i⃗k × B⃗ = − 1
c2 iωLE⃗ − µ0neev⃗e, (165)

where the current j⃗ = −enev⃗e is inserted simply averaging the process over an ensemble
of particles provided that the interaction is linear as already stated. Multiplication of
(164) by ×k⃗ and subsequent substitution of (163) and (165) gives the stationary wave
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equation for the electric field:

(k⃗ · E⃗)k⃗ −
k⃗ · k⃗ − ω2

L

c2 +
ω2
pe

c2(1 + iν̄ei/ωL)

 E⃗ = 0. (166)

The electron plasma frequency is defined classically as ω2
pe = e2ne/(ε0me). The wave

equation gives the dispersion relation of the transverse electromagnetic waves (k⃗·E⃗ = 0)
and the definition of the complex relative refractive index n̂ as well as the dielectric
constant ε̂:

ε̂ = n̂2 = 1−
ω2
pe

ωL(ωL + iν̄ei)
, (167)

where the relation |⃗k| = n̂ωL/c = n̂k0 holds. It is evident from the expression that a
resonance occurs when ωL = ωpe (despite the fact that this phenomenon is not modelled
correctly by the formula due to the assumptions made). In other words, the density
must be smaller than the critical density:

nc = meε0

e2 ω2
L = 4π2c2meε0

e2λ2
L

, (168)

where λL = 2πc/ωL is the vacuum wavelength. Beyond the critical surface where ne =
nc, only evanescent field exists there, exponentially decaying on distances comparable
with the penetration depth δpen = λL/(2πIm n̂).

The resonance absorption mechanism is caused by a p-polarized laser, which
has a longitudinal component of the electric field. This causes stimulation of the
plasma waves near the caustic of the beam, which reach the resonance conditions at
the critical plane. To see this, the dielectric approximation can be applied using the
dielectric function (167). The macroscopic Gauss’s law then gives the equation for the
longitudinal waves:

0 = ∇ · (ε̂E⃗) = ε̂∇ · E⃗ +∇ε̂ · E⃗. (169)
It was observed that ε̂ has a resonance at the critical point, so once the plasma waves
and the corresponding longitudinal oscillations with ∇ · E⃗ ̸= 0 are generated, the
dielectric function having the values Re ε̂ → 0 close to the critical plane causes their
resonant excitation and absorption due to the collisions (correlating with the non-zero
imaginary part).

When the main absorption mechanisms are understood, the modelling within the
framework of the kinetic and hydrodynamic models must be explained. As already
mentioned in the chapter about the radiative transfer 4, the small dimensions of the
plasma justify stationary treatment also of the laser radiation on the hydrodynamic
time scales. The equation of energy conservation for the electromagnetic field (56) then
misses the inertial term and only the convective and interaction parts are present. Sub-
stitution of the latter in the energy equation of the particles (52) results in the usual
form of the equation, where ∂ϵTα/∂t ∼ −∇ · S⃗. The contribution to the momentum
equation (39) is neglected normally, since the assumption ϵEM ≪ ϵiα was made to guar-
antee dominance of the collisional effects. However, mild effects of the ponderomotive
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force can be included even within the hydrodynamic description [43]. The content of
the following chapters is then to present the basic methods giving the closure model
for the Poynting vector S⃗.

5.1 Ray-tracing models
Modelling of laser absorption in the context of the hydrodynamic models like the one-
fluid model of chapter 2.2 limits the response frequencies of the medium strongly.
Unlike electrons, ions cannot swiftly react on the changes of the local field due to
their higher inertia and the center of mass system of the one-fluid model is tightly
coupled with them due to their the mi/me ≫ 1 mass ratio. Moreover, the laser is
typically modelled within the hydrodynamic description as only a source of energy, so
its dynamic effects are limited. Therefore, the frequency splitting between the slowly
evolving envelope and high frequency carrying wave can be made, which correlates
with the condition L≫ λL. The electric field is then described as:

E⃗ = Ê(x⃗, t) exp(iΦ(x⃗, t)), (170)

where Ê = Ê(x⃗, t) is the aforementioned amplitude and Φ = Φ(x⃗, t) is the phase.
Further, the analysis of the of propagation of transverse electromagnetic waves in the
plasma made in the introduction this chapter is used. Following the derivation of the
system (163–165), the stationary wave equation for the transverse waves reads:

∇×∇× E⃗ − k2
0n̂

2E⃗ = 0. (171)

Inserting the expression (170) to (171) yields:

(∇Φ)2E⃗ − (E⃗ · ∇Φ)∇Φ− k2
0n̂

2E⃗ = 0. (172)

Considering that k⃗ = ∇Φ essentially, the central term is zero for the transverse waves
and the eikonal equation is obtained:

(∇Φ)2 = k2
0n̂

2. (173)

This procedure separated the phase from the amplitude and shows that the rays in
the geometric approximation follow the gradient of the phase. The phase can be also
seen as a potential, where the Fermat’s principle minimizes the (optical) path integral
and defines the unique metric of the space [120]. The widely used ray equation can be
obtained by differentiation along the path element ds:

dk⃗
ds = 1

|⃗k|
(k⃗∇)k⃗ = 1

2|⃗k|
∇|⃗k|2 − k⃗

|⃗k|
× ∇ × k⃗ = 1

2|⃗k|
∇|⃗k|2 − k⃗

|⃗k|
× ∇ ×∇Φ. (174)

The second term is evidently zero and the ray equation reads:

dk⃗
ds = k0∇n̂. (175)
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Another common formulation is known as the equation of motion of the rays
and can be readily obtained from the definition of the group velocity vg = ∂ω/∂ |⃗k| =
c|∇Φ|/k0, which gives [121]:

d2x⃗RT
dt2 = dv⃗RT

dt = c

k0

d∇Φ
dt = c

k0
(v⃗RT · ∇)∇Φ =

= c2

k2
0
(∇Φ · ∇)(∇Φ) = c2

2k2
0
∇|∇Φ|2 = c2

2 ∇n̂
2, (176)

where x⃗RT is the trajectory of the ray and v⃗RT its (group) velocity vector. This can be
also seen as the Hamilton’s equations [122]:

dx⃗RT
dt = v⃗RT ,

dv⃗RT
dt = c2

2 ∇n̂
2, H = 1

2((v⃗RT )2 − c2n̂2), (177)

where H = H(x⃗RT , v⃗RT , t) is the Hamiltonian of the system.
Either way, the incoming radiation is modelled as a bundle of independent rays

following the density gradients, since Re n̂2 ∼ 1 − ne/nc as can be recognized from
the definition (167). The common approach is then to simply replace the dielectric
function by the normalized density ne/nc [123]. The geometric optics is then limited
to the cases where Im ε̂ ≪ Re ε̂. However, it is also possible to solve the equation
(175) or (176) in the complex domain, which is known as the complex geometrical
optics (CGO) [124]. It has the advantage of being able to solve the (171) behind the
caustics. A fundamental problem of the methods is the missing diffraction, where a
high number of the rays must be used, but artificial effects can be still noticed as the ray
models the behaviour of the wave only on its axis. This led to formulation of numerous
paraxial methods [125] (and the references therein). A recent method method of this
kind is the paraxial complex geometrical optics (PCGO), which expands the eikonal
equation (173) around the central ray in a Taylor series to describe the curvature of
the wave front [122]. This results in an additional Riccati type ordinary differential
equation, which must be solved along the ray, but reduces the number of rays greatly.
Rather then a simple average, the energy deposition is calculated from a mesh-less
interpolation of the Gaussian beamlets [93]. Another successful approach are inverse
ray-tracing codes, which rather than interpolation of the beam quantities at random
points distribute the points optimally in space. By variation of the initial positions
of the rays, these points are reached and a smooth interpolation can be performed
afterwards even with reconstruction of the wave-front eventually [126]. The piece of
information about the phase is then essential for calculation of the cross-beam energy
transfer, which is detrimental for the laser–target coupling in the case of multiple
overlapping laser beams [127].

Finally, the absorption rate must be specified. The phase Φ is integrated along
the characteristics x⃗RT =

∫
v⃗RT dt provided they are known already:

Φ(x⃗, t) = ±
∫ x⃗

x⃗0
k⃗ dx⃗′ − ωt = ±k0

∫ s

s0
n̂ ds− ωt. (178)
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The Wentzel–Kramers–Brillouin (WKB) solution for the Helmholtz equation (171) is
obtained in the form [43]:

E⃗ =
(

Q(s0)
n̂(s)Q(s)

)1/2
Ê+ exp

(
ik0

∫ s

s0
n̂ ds

)
+ Ê− exp

(
−ik0

∫ s

s0
n̂ ds

) exp (−iωt) ,

(179)
where Q = Q(s) is the "cross-section" of the beam (a function of the path). Substitution
to (171) reveals that dQ/ ds = 0, i.e. the beam is not attenuated by gradual reflections,
when the second derivatives are neglected compared to the first. The conditions are
precisely:

d2Ê

ds2 ≪ k0Ê
dn̂
ds ,

d2Ê

ds2 ≪ k0n̂
dÊ
ds , ⇒ dÊ

ds ≪ n̂Ê, (180)

where Ê(s) = (Q(s0)/(n̂(s)Q(s)))1/2. This relation can be translated to the refractive
indices as | dn̂/ ds| ≪ |n̂|2. However, this criterion cannot be satisfied near the critical
plane, where rather the opposite is true. Hence, WKB approximation can never self-
consistently describe the interaction in the vicinity of the critical density [119].

The intensity of the ray is taken as the average magnitude of the Poynting vector,
which gives after substitution of (179) the relation:

IL(s) = 1
µ0
|E⃗ × B⃗| = 1

2ε0cn̂rÊÊ
∗ exp(−2k0

∫ s

s0
n̂i ds′) = I(s0) exp(−

∫ s

s0
αL ds′),

(181)
where n̂r = Re n̂, n̂i = Im n̂ and the upper line means averaging over a period
and the asterisk denotes the complex conjugate. Finally, the absorption coefficient
is αL = −2k0Im n̂. In other words, the intensity of the ray follows the differential
Beer–Lambert law in the form:

dIL
ds = ∇ · S⃗ = −αLIL. (182)

This means that the intensity carried by a ray is linearly attenuated along its path.
This chapter presented only attenuation of the laser radiation. However, the

identical formalism can be applied to a gain medium. In essence, the factor of weak
attenuation −αL can be replaced by the gain coefficient αG, giving the gain equation
for the medium. This is the case of plasma X-ray sources, which were studied by
the advised student M. Šach in his academic works in collaboration with the PALS
facility [128, 129]. The state of population inversion is achieved by a specifically tuned
excitation laser. The spontaneous emission or a seed beam preferably is then amplified
by a single pass through the pre-formed plasma medium. As the highest gain factors
for the X-ray range can be found in the vicinity of the critical plane (with respect to the
plasma-forming laser), the refractive effects can be important. Therefore, a ray-tracing
code has been developed for this purpose, where the gain coefficients are calculated
in an atomic code, solving the rate equations for electron population of the relevant
atomic energy levels.
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5.2 Stationary Maxwell’s equations
It was recognized in chapter 5.1 that the optical approximation is mostly valid in the
coronal region, where the densities of the plasma are low and vary slowly compared to
the wavelength of the laser. However, it is unable to self-consistenly model the vicinity
of the critical plane, where |∇ε̂|/|ε̂| ≫ k0n̂r always holds. The problem is circumvented
by formulation of an empirical factor for reflection and absorption at the critical density
typically [130]. An alternative approach presents the wave optics, which relies on the
fundamental principles of electrodynamics without resorting to strongly simplifying
assumptions of the geometrical optics. On the other hand, the differential treatment
of the stationary wave equation (171) is prohibited by the requirement on the spatial
step, where a single wavelength λL/n̂r must be resolved classically. Moreover, the
microscopic conditions for the electromagnetic fields are not known and only the period
averaged value of the Poynting vector enters the hydrodynamic model. Therefore, the
phase of the field is not involved in the model and can be considered as an independent
unknown.

These considerations led to development of the approach based on the stationary
Maxwell’s equations (SME) [131, 132]. Rather than solving the Helmholtz equation
(171) directly, the method relies on the Maxwell’s equations (3–4) rewritten for the
harmonic waves (following the introduction of chapter 5) in 1D:

H ′ + ik0n̂
2E = 0 , (183)

E ′ + ik0H = 0 , (184)

where the prime denotes the spatial derivative. It must be noted that the Gaussian
system of units is used here in accordance with the references [131, 132]. The key
idea of the method is then decomposition of the field to the incoming wave P = P (x)
(from the left hand side without the loss of generality) and outgoing (reflected) wave
R = R(x):

E = P +R, H = n̂(R− P ). (185)
Substitution to the system (183–184) yields the governing equations for both waves:

P ′ = +ik0n̂P −
n̂′

2n̂(P −R) , (186)

R′ = −ik0n̂R + n̂′

2n̂(P −R). (187)

The next step is definition of the (complex) reflection coefficient V (x) = R(x)/P (x).
This procedure implicitly assumes that the incoming wave P does not vanish, but we
are interested only in such solutions. Reformulation of the coupled system (186–187)
to the new primary variables P and V yields:

V ′ = −2ik0n̂V + n̂′

2n̂(1− V 2) , (188)

P ′ = +ik0n̂P −
n̂′

2n̂P (1− V ). (189)
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The solution of the given system is equivalent with the wave solution in terms of E and
B as back substitution can be made. However, the complex amplitude of the incoming
wave P can be reduced to the real function A proportional to the magnitude of the
incoming wave ∼ |P̃ |2 = PP ∗. The governing equation then reads:

A′ = −2k0n̂iA− Re
(
n̂′

n̂
(1− V )

)
A. (190)

The new formulation in terms of A and V is no longer equivalent to the original
system as the piece of information about the phase is lost in the case of A. However,
the solution fully suffices for the purposes of the hydrodynamic simulations, where only
the Poynting vector |S⃗| ∼ A is needed. In particular, the expression for the Poynting
vector reads [132]:

|S⃗| = A(k0n̂(|Ṽ |2 − 1)− 2k0n̂iIm V ). (191)
It can be recognized that the Beer–Lambert law (181) is obtained in the limit

|n̂′/n̂| ≪ k0|n̂|. Therefore, the theory is fully consistent with the WKB approximation,
but the additional terms represent the exact gradual reflections of the wave and the
theory then holds even in the vicinity of the critical plane. As the derivative of the
refractive index goes to infinity, the reflection coefficient V closes to the unity, i.e. the
wave is completely reflected at the critical point.

The cornerstone of the method is the observation that the equation for the reflec-
tion coefficient (188) is decoupled from P or A and can be solved independently. After
the solution for V is known, the complementary equation for A or P can be solved.
Unlike the classical methods for the Maxwell’s equations, the boundary conditions are
known even in the macroscopic description, since the reflection coefficient can be set
V ≈ 0 several penetration depths δpen behind the critical plane. The other boundary
condition is given by the known magnitude of the intensity of the laser outside the
domain, i.e. |S⃗| = IL at the outer boundary.

Another important advantage of the method is the fact that it can be directly
reformulated for an oblique incidence of the of the laser. The structure of the equations
remains nearly the same and the refractive index is replaced by the effective value
[133]. As the approach is fully wave-based, the resonance absorption in the dielectric
approximation is naturally included in the solution, but it is not modelled directly as
only the perpendicular components are simulated.

The equation for the reflection coefficient (188) presents a non-linear ordinary
differential equation of the Riccati type. We proposed two possible approaches to its
solution in [132]. The first one is semi-analytic, where the equation is integrated over a
computational cell, where the density profile is approximated by a piecewise constant
profile [134, 135, 82] or later extended to arbitrary profile as we proposed in [132].
The advantage of the semi-analytic treatment is the fact it is not principally limited
by the constraint on resolution of the wavelength λL/n̂r, so it can be readily applied
even in the coronal plasma. However, the solution itself is still oscillatory, so aliasing
effects may be encountered, but strongly rarefied coronal plasma can be considered
nearly transparent and a cut-off can be applied [82]. Another fundamental approach
is the differential solution of the equation or an equivalent set of linear first order

67



5.2 Stationary Maxwell’s equations 5 LASER ABSORPTION

equations not asimilar to the system (188–189). We proposed to use the high-order
finite element method for this purpose, where an arbitrary order of convergence can be
attained depending on the choice of the basis only [132]. This is in a contrast with the
semi-analytic method, where only the second order convergence is attained.

Concluding the chapter of laser absorption, the methods of geometrical optics
and wave optics can be seen as mutually complementary. The former is ideally suited
for modelling of the absorption in the far coronal plasma, where the dynamics of
the plasma involves remarkably longer length scales that the wavelength of the laser,
i.e. L ≫ λL/n̂r. On the other hand, it fails to describe the vicinity of the critical
plane, where abrupt heating of the plasma occurs and highly non-local electrons are
produced [136, 137]. The coupling of the laser and non-local transport of these is crucial
for the fusion research for example [33]. The wave optics provides an answer to this
problem by modelling the processes self-consistently, but its inherent complexity makes
full simulations of the wave propagation for multi-dimensional hydrodynamic codes
infeasible. The method based on the stationary Maxwell’s equations then presents an
attractive option for solution near the critical point. A combination of the geometrical
and wave approach was then proposed in the literature [138], but remains a topic of the
future work to accommodate for the SME method, where its benefits could be utilized.
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6 Finite element method
The finite element method (FEM) is one of the foremost numerical formalisms. From
its origins in civil engineering [139] (chapter 1 and the references therein), it has devel-
oped to a widely general approach suitable for numerical description of virtually any
linear partial differential equation. Moreover, the generality of the formalism allows to
unify differential schemes with different orders of polynomial interpolation and infer
high-order schemes almost effortlessly. The high-order interpolation offers high orders
of convergence and more precise results even for the same number of degrees of freedom,
attaining higher computational efficiency this way. Also the geometry of the elements
is not restricted, enabling topologically non-uniform meshes, which combine differently
shaped elements. This kind of configuration may appear in adaptive h-refinement
methods, where resolution of the mesh is locally increased based on a posteriori error
evaluation. Furthermore, the seamless description of the elements of different orders al-
lows to refine the polynomial orders of the elements, which is known as the p-refinement
[140]. However, it is already the Lagrangian nature of the hydrodynamic description
reviewed in chapter 2.3, which leads to an automatically increased resolution in the
compressed areas, like shock fronts, for example. The aim of this chapter is to lay
out the common framework for the following chapters about particular finite element
schemes.

In general, the physical problem is assumed to be solved on a Lipschitz domain
Ω (similarly to chapter 1). This allows us to define the outer normal vector n⃗ = n⃗(x⃗, t)
at (almost) all points of the boundary. The domain is assumed to be simply-connected
to simplify the discussion, though it is not principally required for most methods. A
physical quantity Ψ = Ψ(x⃗, t) is approximated by a function from a given functional
space on Ω. The most common choices are Sobolev spaces built from the L2(Ω) space
of square-integrable functions on Ω. The definitions of the common ones are following:

H1(Ω) = {g ∈ L2(Ω) | ∂αg ∈ L2(Ω) ∀|α| ≤ 1}, (192)
Hcurl(Ω) = {g⃗ ∈ (L2(Ω))d | ∇ × g⃗ ∈ (L2(Ω))2d−3}, (193)
Hdiv(Ω) = {g⃗ ∈ (L2(Ω))d | ∇ · g⃗ ∈ L2(Ω)}, (194)

where α is a multi-index for the mixed partial derivative ∂α. The symbol d represents
the dimension of the physical space, where the space of curl-equipped functions Hcurl

is limited only to 2D and 3D. The function Ψ is then considered to be a part of one of
the spaces denoted as V (Ω) (Ψ ∈ V (Ω)). Henceforth, the notation is slightly abused
and no distinction between original quantity and its approximation is made for brevity.

It must be noted that the functional spaces (192–194) are internally related.
There exist exact sequences of operations traversing between the spaces, where the
resulting function after the operation identically appears in the next space. These are
also known as the de Rham complex [141]. In 3D, it takes the form:

L2(Ω) ∇·←− Hdiv(Ω) ∇×←− Hcurl(Ω) ∇←− H1(Ω). (195)

The operation connecting the spaces is noted above the arrow. In 2D, two separate
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complexes exist, which can be written as:

L2(Ω) ∇⊥×←− Hcurl(Ω) ∇←− H1(Ω), (196)

L2(Ω) ∇·←− Hdiv(Ω)
∇∥×
←− H1(Ω). (197)

Note the subscript of the curl operators denotes the destination transversal (⊥) or
coplanar (∥) component. Finally, the 1D de Rham complex is trivial, having the form:

L2(Ω) ∇←− H1(Ω). (198)

Practically, it is desired to follow the exact sequences, which avoid reinterpola-
tion errors. For this purpose, the mathematical model is rewritten in the weak form
typically. Illustratively, consider the governing equation:

AΨ = b, A : V (Ω) 7→ V ′(Ω), b ∈ V ′(Ω). (199)

First, the governing equation is multiplied by a test function from the space V ′(Ω).
In the case of the Galerkin methodology, the trial and test spaces are chosen identical
in principal. Variations are then performed for all test functions from V ′(Ω) with the
inner product induced by the chosen space:

(AΨ, ψ) = (b, ψ) ∀ψ ∈ V ′(Ω). (200)

The integral formulation allows to apply outer calculus and manipulate the terms to
obtain the weak formulation. However, it must be realized that the weak solution
may not be contained in the originally searched sub-space used by the differential
formulation. This points to another advantage of FEM, where even discontinuous
solutions can be obtained directly and without a loss of precision, for example.

It is then convenient to rewrite the equation in terms of (bi-)linear forms, i.e.
(·, ·)A : V (Ω) × V ′(Ω) 7→ R and (·)b : V ′(Ω) 7→ R. Existence of a solution for
(Ψ, ψ)A = (ψ)b and invertibility of the underlying operator A are matter of func-
tional and variational analysis, but a spacial role is played by self-adjoint operators
and the associated symmetric forms. These arise from the mass terms in parabolic
and hyperbolic equations, i.e. the identity operators multiplied by a lower bounded
positive scalar or symmetric positively-definite tensor coefficient. Alternatively, they
appear in elliptic equations as the stiffness terms. Provided they satisfy coercivity and
boundedness, the Lax–Milgrem lemma can be applied and an unique solution exists.

The next step is tessellation of the domain, which is broken down to the elements
Σh, covering the domain ⋃∀Ωe∈Σh

Ωe ⊃ Ωh while not overlapping Ωe∩Ωe′ = ∅ ∀Ωe,Ωe′ ∈
Σh, e ̸= e′ (the upper line designates the closure). It must be noted Ωh is not identical
with the original domain Ω strictly speaking, pointing to a possible geometrical error.
However, this type of error is not considered any further and it is assumed the domain
is perfectly aligned with the edges of the elements for simplicity. This is usually the
case for flat solid targets.

An essential part of the construction is then choice of the bases functions. In
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the case of conforming methods, the functional space V (Ω) is replaced by the finite-
dimensional sub-space Vh(Ω) ⊂ V (Ω). The functions are expanded to the basis func-
tions:

Ψ(x⃗, t) ≈ Ψh(x⃗, t) =
NDOF∑
i=1

Ψi(t)ψi(x⃗), Vh(Ω) = span({ψi, 1 ≤ i ≤ NDOF}), (201)

where the total number of degrees of freedom is NDOF = dim(Vh).
Insertion of the expansion to the weak form yields the linear system:

AΨ = b, Aij = (Ψi,Ψj)A,bi = (Ψi)b, ∀i, j ∈ {1, . . . NDOF}. (202)

The system is solved numerically, where the properties of the system matrix A are
closely tight to the underlying bilinear form. The aforementioned self-adjoint operators
lead to positively-definite (square) matrices (with appropriate boundary conditions),
which are invertible and stable numerical algorithms can be applied. Although in more
involved cases, one of the main aims of the finite element theory is then to prove
convergence of the discrete solution Ψh to Ψ for decreasing maximal diameter of the
elements.

A special category of the finite elements are curvilinear elements. These perfectly
fit the Lagrangian framework by going beyond the classical affine transformation of the
elements, better modelling propagating discontinuities and boundaries. In essence, the
basis functions do not have to be constant, but may vary in time. In the case of
Lagrangian methods, it is rather their dependency on the Lagrangian coordinates.
Following the notation of chapter 2.3, the basis functions can be rewritten as ψi(x⃗, t) =
ψ̃i(ψ⃗−1

t (x⃗)). Typically, the isoparametric finite elements are used, where the identical
polynomial space for interpolation of the values is also used for the mapping [140].
However, inversion of the flow ψ⃗t is not necessary in practice, since integration of the
(bi-)linear forms is performed in the reference space, which can be assumed to coincide
with the Lagrangian coordinates for simplicity. The time-evolving mapping is then
only manifested by a time-dependent Jacoby matrix J = J(X⃗, t). The transformation
rules are applied to perform all differential operations in the reference space, giving
various combinations of the Jacoby matrices. Though, the integration is written only
in the physical space here for brevity.

The outlined assembly process of the matrices and vectors from the mathemat-
ically defined (bi-)linear forms is demanding from the algebraic and computational
point of view. For this reason, the construction of the discrete system and actual im-
plementation of the numerical methods relies on the MFEM library [142, 143], which
bestows the codes scalability, flexibility and high performance. It offers a large variety
of finite elements including the curvilinear, like the aforementioned isoparametric or
others. Also it provides the functionality of the mesh refinement mentioned in the
introduction and other means of adaptivity. Likewise, it aggregates a large collection
of different linear solvers from other libraries. Prominently, it integrates the Hypre
library [144] and its construction, preconditioners and solvers for parallel sparse ma-
trices. The recent development goes even further and accelerates the computation on
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graphic cards and other architectures, which paves the way towards the exascale com-
puting. However, changes on the side of the code are necessary and dedicated solvers
must be used instead of the traditional ones, where the range of choices is limited, but
grows steadily. Still, implementation of the presented methods on these architectures
remain a topic of the future work.

Also visualization of the results of obtained with high-order finite elements is non-
trivial. The support for these modern methods slowly finds its way to the visualization
tools, but the best interoperability of MFEM is achieved with the sister project GLVis
[145]. It is a lightweight, yet powerful tool for visualization in multiple dimensions,
which also offers the possibility of the online regime of operation, when the solution is
visualized during the computation directly.
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7 Kinetic models
The kinetic modelling reviewed in chapter 1 presented one of the most accurate de-
scriptions of plasma. However, numerical simulations in the full phase space are enor-
mously demanding in multiple dimensions. For this reason, chapter 1.3 expanded the
electron distribution function f to the Cartesian tensors f0, f⃗1, f2, . . . for increasingly
more anisotropic corrections. A truncated series of the tensors for mildly anisotropic
electron transport already represents a tractable system of equations in up to three
spatial dimensions, a single velocity (magnitude) dimension and time. Our paper [146]
presents a new reduced Vlasov–Fokker–Planck–Maxwell code based on the P1 approx-
imation, i.e. solving (65–66) for the first two tensors (f2 = 0). In essence, the structure
then resembles the non-local heat transport model from chapter 3.2, but it keeps the
full non-linear Fokker–Planck operator for f0 and the Maxwell’s equations to model
the time-evolving electric and magnetic fields. Unlike traditional codes, it is based
on high-order finite elements, giving practically an arbitrary order of convergence in
space. Moreover, the temporal discretization is implicit, not requiring to perform time
steps significantly shorter than the plasma frequency ωpe. The plasma frequency can
be extremely short in a dense plasma due to the dependency ωpe ∼

√
ne and repre-

sents a characteristic frequency for the electrodynamic coupling between Vlasov and
the Maxwell’s equations, as already recognized in the context of the collisional laser
absorption in chapter 5. It poses a stringent limit for convergence of explicit schemes,
while the implicit scheme remains robust and invulnerable to local inhomogeneities
of the plasma. Finally, the scheme is designed to conserve mass, charge and energy,
providing a long-term stability to the simulations.

7.1 Weak formulation
The construction of the finite element scheme in space (following the methodology of
chapter 6) relies on the following functional spaces:

F0 = L2(Ω) (203)
F1 = {ψ⃗ ∈ Hdiv(Ω) ψ⃗(x⃗) · n⃗ = 0 ∀x⃗ ∈ Γisol}, (204)
E = {ξ⃗ ∈ Hdiv(Ω) ξ⃗(x⃗) · n⃗ = En⃗(x⃗) ∀x⃗ ∈ ΓE⃗n⃗

}. (205)

These definitions can be used in 2D or 3D. The 1D case is not detailed, but it is com-
pletely analogous, only replacing Hdiv(Ω) space by H1(Ω). The only formal difference
between the 2D and 3D models is in the definition of the space for magnetic field. In
2D, only the transversal component of the field is modelled, which can be induced by
the electric currents in the plane of simulation. The corresponding space is defined as:

B = {ω ∈ H1(Ω) ω(x⃗) = Bτ (x⃗) ∀x⃗ ∈ ΓB⃗τ
}. (206)
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In contrast, all components of the magnetic field are modelled in 3D with the space
defined as:

B = {ω⃗ ∈ Hcurl(Ω) (ω⃗(x⃗)× n⃗)× n⃗ = B⃗τ (x⃗) ∀x⃗ ∈ ΓB⃗τ
}. (207)

The definitions include the essential boundary conditions (i.e. enforced through the
definitions of the spaces, typically corresponding to Dirichlet boundary conditions for
the primary variables). Namely, it is the isolating boundary condition on Γisol ⊂ ∂Ω for
the anisotropic part of the distribution function f⃗1 ∈ F1, which is responsible for the
fluxes (see chapter 1.3). Secondly, it is the boundary condition for the normal electric
field En⃗ on ΓEn⃗

⊂ ∂Ω and tangential magnetic field B⃗τ on ΓBτ⃗
⊂ ∂Ω.

The choices of the functional spaces have a central role for the numerical scheme.
The combination of the discontinuous isotropic part of the distribution f0 ∈ F0 and
divergence-equipped f⃗1 ∈ F1 ideally fits the classical thermodynamics, where the ther-
modynamic potentials originating from f0 are conserved over an arbitrary volume and
only transported by fluxes corresponding to f⃗1 (consult chapter 9). This property of
local conservation is mimicked through the de Rham complex (195) and (197) and will
be preserved on the discrete level. Similarly, coincidence of the electric field E⃗ ∈ E
and f⃗1 ∈ F1 respects consistency of the electric charge ∼ ∇· E⃗ (according to (37)) and
electron density ∼ ∇ · f⃗1 ∼ f0. Finally, the combination of the electric field E⃗ ∈ E
and magnetic field B⃗ ∈ B follows the de Rham complex (195) and (196), which is
widely utilized in electromagnetism [147]. However, the opposite configuration is more
common, where Hdiv space for magnetic field would respect the magnetic Gauss’s law
(37). Consequently, the conforming discrete scheme does not maintain divergence-free
magnetic field, but the violation was found to be minimal [146].

The weak formulation of the system (65–66) in the P1 approximation comple-
mented by the Maxwell’s equations (3–4) can be written as (∀φ ∈ F ′

0, ψ⃗ ∈ F ′
1, ξ⃗ ∈

E ′, B⃗ ∈ B′):(
∂

∂t
f0, φ

)
F0F0

+ v

3
(
∇ · f⃗1, φ

)
F1F0
− e

me

1
3v2

(
∂

∂v
(v2f⃗1), E⃗, φ

)
F1EF0

=
(
C̄ee[f0]f0, φ

)
F0F0

,

(208)(
∂

∂t
f⃗1, ψ⃗

)
F1F1

− v
(
∇ · ψ⃗, f0

)
F1F0
− e

me

(
ψ⃗, E⃗,

∂

∂v
f0

)
F1EF0

+

+ e

me

(
f⃗1, B⃗, ψ⃗

)
F1BF1

= −
(
νsf⃗1, ψ⃗

)
F1F1
− v

〈
TF0f0, ψ⃗

〉Γfree

F0F1
,

(209)

− 1
c2

(
∂

∂t
E⃗, ξ⃗

)
EE

+
(
∇× B⃗, ξ⃗

)
BE

= µ0
(⃗
j, ξ⃗

)
F1E

,

(210)(
∂

∂t
B⃗, ω⃗

)
BB

+
(
∇× ω⃗, E⃗

)
BE

= −
〈
E⃗τ , ω⃗

〉Γ
E⃗τ

B
,

(211)
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where the subscript denotes the spaces on which the (tri-/bi-)linear forms operate.
They represent L2 products with the additional operators as indicated. The usage of
the trilinear forms is problematic from the theoretical standpoint, since their integra-
bility is not guaranteed. Though, it is assumed that f0 and f⃗1 are uniformly bounded
functions, which is reasonable physically. The bilinear forms designated with ⟨·, ·⟩ rep-
resent the surface integrals over the parts of the domain denoted in the superscript.
The symbol TF0 stands for the trace of the function from F0 on the boundary. The
newly appearing natural boundary condition (i.e. enforced by an additional term, typ-
ically corresponding to Neumann boundary conditon for the primary variables) on Γfree
sets ∂f0/∂n⃗ = 0. Finally, the factor C̄ee[f0] represents the linearized Fokker–Planck
operator, which still strongly depends on f0. The definition follows (68), but is not
detailed for brevity. Instead of the full operator C01, the scattering frequency νs is
calculated from νei, but includes the correction for electron–electron collisions accord-
ing to chapter 3.1. This simplification maintains consistency with the diffusion model,
but looses its theoretical foundation with increasing non-locality and becomes rather
empirical.

7.2 Discrete model
Moving towards the discrete model, the finite elements are chosen from conforming
spaces, i.e. sub-spaces of the functional spaces (208–207). Discontinuous polynomial fi-
nite elements are used for discretization of f0. Since f0 is a positive quantity fundamen-
tally, the positive basis of Bernstein polynomials is chosen. The (normally-continuous)
Raviart–Thomas Hdiv-conforming elements are used for f⃗1 and E⃗ [148, 149]. The mag-
netic field B⃗ utilizes the continuous nodal finite elements in 2D and the (tangentially-
continuous) Nédélec Hcurl-conforming finite elements are used in 3D [149]. The details
are omitted for brevity, but the spatial layout of the degrees of freedom (DOFs) on
elements is visualized in Figure 4. It must be noted the polynomial order p appears
in the definitions only as a parameter, where schemes of an arbitrary order can be
constructed in principal.

a) b) c) d)

Figure 4: The spatial configuration of the reduced Vlasov–Fokker–Planck–Maxwell
finite elements in 2D (a,b) and 3D (c,d) with the polynomial orders p = 1 (a,c) and
p = 2 (b,d). (purple - f0 DOFs, cyan - f⃗1 / E⃗ DOFs, orange - B⃗ DOFs).

The discretization in the velocity dimension applies the staggered differences.
The reason for this choice is the complex structure of the Fokker–Planck operator
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(68). In order to conserve energy, an internal symmetry of the operator (including the
Rosenbluth potentials) is required [150, 151]. Thus, application of the finite elements
is highly non-trivial and remains a topic of the future work. Still, the scheme is
conservative as already mentioned and attains the second order convergence in velocity
[146]. In particular, the velocity domain spans from v0 = 0 to vNg = vmax, where the
maximal velocity vmax is chosen as a multiple of the expected maximal electron thermal
velocity. The boundary condition f⃗1(vmax) = 0 is applied, which indicates problems
with the choice of vmax. Too low values inevitably lead to boundary effects, while too
high values poorly resolve the thermal species. For that reason, new adaptive methods
are being developed [152]. In any case, the anisotropic part of the distribution function
f⃗1 occupies the velocity levels with integer indices, while f0 has the half-integer indices
in between v1/2, . . . vNg−1/2. Essentially, the layout is not asimilar to the combination of
H1 and L2 encountered before and lead to a consistent and conserving discretization.
The velocity steps are ∆vg = vg+1/2−vg−1/2 = (vg+1−vg−1)/2 for g ∈ {1 . . . Ng−1} and
∆vg+1/2 = (v3

g+1 − v3
g)/(3v2

g+1/2) for g ∈ {0 . . . Ng − 1}. The latter formula stems from
the momentum-conserving differencing [150], although momentum is not conserved by
the physical model (65–66) already. The momentum of electrons is lost by scattering on
static ions without their reaction to conserve the total balance of momentum between
both species. Ultimately, the velocity differences have the form:

Dvg [A] = Ag+1/2 − Ag−1/2

∆vg
, Dvg+1/2 [A] = Ag+1 − Ag

∆vg+1/2
. (212)

The time integration is fully implicit in the Vlasov part, relying on the backward
Euler scheme, which is L-stable and provides robustness to the scheme [153]. This fea-
ture becomes important when approaching the plasma frequency ωpe, where problems
with convergence of a semi-implicit and only A-stable differencing may appear [154]. In
contrast, the Maxwell part is discretized with the semi-implicit Crank–Nicolson scheme,
which presents a symplectic integrator [155]. This choice is related to conservation of
the electromagnetic energy ϵEM (57), where both parts, electric and magnetic, are
squares of the field intensities, which are not conserved by classical methods. However,
the equations posses a Hamilton–Jacobi structure and the symplectic integration leads
to the conservation of energy [146]. The notation of the time levels uses integers from
0 to Nt as the upper index and a constant time step ∆t. The differences are denoted
as:

Dt[A] = An+1 − An

∆t . (213)

After the discretization in space, velocity and time, the governing equations (208–
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211) can be written for the time level n and velocity level g as:

Mf0Dt[f0g+1/2] + 1
3D{vf1

n+1}g+1/2 −
1

3v2
g+1/2

Dvg+1/2 [v2Mf⃗1·E⃗]En+1/2 = +qf0
g+1/2,

(214)

Mf⃗1Dt[f1g] + (Bf⃗1
free − DT ){vf0

n+1}g −Dvg [Mf0E⃗]En+1 + Mf1×B⃗
g Bn+1 = −Qf⃗1

g f1
n+1
g ,

(215)

− 1
c2M

E⃗Dt[E] + CBn+1/2 = µ0Mj⃗jn+1,

(216)
MB⃗Dt[B] + CTEn+1/2 = −bB⃗

E⃗τ
, (217)

where the half-integer time levels symbolize the arithmetic mean between the consec-
utive levels. Likewise, the curly brackets represent the arithmetic mean between the
adjacent velocity levels. Following the notation of chapter 6, the grid functions asso-
ciated with the primary quantities are written in bold. The matrices and vectors can
be identified with the corresponding terms in (208–211), but their definitions are not
presented for brevity and can be found in [146]. Note that the referenced work uses an
additional normalization of the quantities, which was skipped here for simplicity.

However, the newly appearing right-hand-side term qf0
g+1/2 should be explained.

It represents the contribution from the Fokker–Planck collision operator written in the
mass-conserving form as a difference of two velocity-space fluxes [156]:

qf0
g+1/2 = 1

v2
g+1/2

wn+1
g+1 −wn+1

g

∆vg+1/2
∀g ∈ {0 . . . Ng − 1}. (218)

Though, the conservation of mass requires that the boundary fluxes in the velocity
space to be zero, i.e. wn+1

0 = wn+1
Ng

= 0. Elsewhere, the velocity-space fluxes are
defined as follows:

wn+1
Ng−1 = F+

Ng−1f0
n+1
Ng−1/2 + F−

Ng−1f0
n+1
Ng−3/2 −GNg−1

1
vNg−1∆vNg−1

f0
n+1
Ng−3/2, (219)

wn+1
g = F+

g f0
n+1
g+1/2 + F−

g f0
n+1
g−1/2 + Gg

1
vg∆vg

(f0
n+1
g+1/2 − f0

n+1
g−1/2). (220)

The definitions of the matrices F+
g ,F−

g and Gg associated with the friction and diffusion
coefficients (70–71) are not detailed here, but they are implicitly depending on fn+1

0 ,
which requires iterations of the algorithm until convergence is reached. This approach
is preferred over construction of the implicit matrix with implicit friction and diffusion
terms, which would be (nearly) full due to the integral nature of the coefficients [157].
The splitting of the friction term F to the two parts is connected with Chang–Cooper
weighting to stabilize the friction [156]. Conceptually, an upwinded differencing is
favoured to stabilize the advection in friction-dominated areas, while the central differ-
ence is applied in the areas dominated by the dynamic diffusion to prevent negativity
of f0 and guarantee convergence to the equilibrium.
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In addition to the non-linear iterations in the collision operator, also iterations in
the non-linear terms of (214–215) must be performed. All terms are implicitly coupled,
but the values in the matrices are retarded by one iteration. The construction of
the matrix coupling electrons and the electric and magnetic fields is designed to keep
symmetries between the equations and the resulting matrix in turn. Mainly, it is the
symmetry between the electric field acceleration term in (215) and the electric current
term in (216), which are essential for propagating plasma waves. The Hall term in (215)
with the new magnetic field prevents asymmetry of the diagonal block corresponding
to f1 and linearises the magnetic pressure contribution. Finally, the Joule heating term
in (214) reduces the sparsity pattern by dependency on the electric field rather than f1,
but its contribution is relatively small and slow compared to the others, since it can be
considered a second-order term for transient resistive currents (∼ f⃗1 · E⃗ ∼ (∇f0)2/∆t).
It should be also noted that this term does not guarantee positivity of f0, hence not
yet converged f⃗1 could cause negativity of f0 and destabilize the system.

Finally, the linear system (214–217) is solved numerically. Since the system is
asymmetric, non-uniform and non-positive, preconditioning is necessary. It relies on
construction of incomplete Schur complements, which approximate various coupled
complexes and convey them to the solver. This includes potential thermodynamic
diffusion, electric and magnetic resistive diffusion and the electromagnetic wave prop-
agators. The preconditioning matrix is then structurally symmetric and its inverse is
approximated by the ParaSails solver, designed for such purposes [158]. The whole
system is solved by the FGMRES method, which provides robustness to the method
even for considerably asymmetric matrices [159].

7.3 Example problems
To stress the strong points of the developed kinetic code and benchmark its perfor-
mance, two example problems are presented. More test cases and convergence analyses
can be found in [146]. To summarize, the code attains an arbitrary order of conver-
gence in space proportional to the polynomial order of the elements, the second order
in velocities and first order in time. Moreover, it conserves mass, charge and total
energy.

7.3.1 Diffusion transport in magnetic field

The diffusion theory presented in chapter 3.1 was derived from the truncated Cartesian
tensor expansion of chapter 1.3. Consequently, the reduced Vlasov–Fokker–Planck–
Maxwell code numerically solving the governing equations (65–66) should converge to
the identical result in the diffusion limit. In order to attain this limit, the electron
Knudsen number must be small enough (Kne ≪ 1) or the length-scales of the elec-
tron temperature and density perturbations should be significantly shorter that the
mean free path in other words. Secondly, the simulation must be performed in the
electrostatic regime (∂E⃗/∂t = 0) with stationary fluxes f⃗1 (∂f⃗1/∂t = 0). Although
not required in principal, the transport is performed in the perturbative regime and
the magnetic field is set also constant similarly to the isotropic part of the distribution
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function f0. This way, the transport is completely diffusive and linear.
The initial conditions for the problem are set in 2D as follows:

ne(x, y) = 1 + δne(cos(kxx) + cos(kyy)), (221)
Te(x, y) = 1 + δTe(cos(kxx)− cos(kyy)), (222)
B(x, y) = δB sin(kxx) sin(kyy). (223)

In an agreement with the perturbative regime of the transport, the parameters are set
to δne = δTe = δB = 10−3 and kx = ky = 10−4π. Note that the parameters (221–223)
are normalized according to [146]. In order to relate the quantities, the ratio between
the collisional and collective plasma behaviour must be fixed, which is ωpe = 10−1νs
in this case. This value favours the resistive current and Hall term contributions to
f⃗1 over the gradient ∇f0 part. The normalized magnetic field is proportional to the
magnetization, which would be χ = 3

√
π/2 δB .= 3.76 · 10−3 according to the classical

definition [8]. Such field is not very strong from the point of view of the transport
anisotropy according to chapter 3.1.1, but the induced electric current will dominate
the transport. The boundary conditions are set isolating for f⃗1 and free for the electric
field, i.e. ∂E⃗ · n⃗/∂n⃗|Γfree = 0. Due to the limit nature of the test, only a single time step
was performed with the length ∆t = tfin = 10−4ν−1

s . The domain has size 104× 104λ̄e.

Figure 5: Numerical solution of the electron transport in magnetic field: a) electric
field b) total heat flux. The values are normalized according to [146]. The false colours
correspond to the magnitude, arrows show direction of the field/flux.

The solution for the heat flux and electric field is plotted in Figure 5. The
simulation used 8 × 8 cubic elements and Ng = 800 velocity levels. As presumed, the
electric field is dominated by the resistive current induced by the magnetic field. This
can be clearly distinguished from the pressure term ∼ ∇pe or the thermoelectric term
∼ ∇Te, which are proportional to the gradients of the temperature or density and
which are maximal at the center of the domain. In contrast, the curl of the magnetic
field is minimal there and in the corners, which agrees with the simulation. The profile
of the heat flux is nearly identical and only oppositely oriented as it is dominated by
the convective flux. However, also the term Teβ · j⃗ significantly contributes by 37 %
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approximately.

Figure 6: Convergence of the heat flux in the square root of the number of degrees of
freedom. The resolution is Ng = 800 velocity levels. The legend denotes the orders of
the elements. The black dash-dot lines indicate the first three orders of convergence.

The second goal of this test is benchmarking of the convergence in space and
velocity. For reference, the classical diffusion solution is used [81], but it does not
have a sufficient precision for the higher resolutions. Therefore, a reference numerical
solution with 96 × 96 cubic elements was computed. The convergence analysis in
Figure 6 shows the order of convergence is proportional to the order of the elements,
which stresses the benefit of the high-order finite element methods. There is only a
slight deviation near 10−7, which can be attributed to the tolerance of the linear solver.

The velocity convergence is analysed in Figure 7. Approximately equal number
of DOFs is used for all orders of the elements to not bias the results by this factor. The
results confirm the second order of convergence, except the linear elements, where the
error saturation onsets very early due to the slow convergence in space.

This test verified reproduction of the classical diffusive results by the kinetic
model, where the high orders of convergence are attained thanks to the high-order
finite elements in space. A strong steering of the heat flux by a magnetic field was
observed.

7.3.2 Heat bath problem

The second problem considers a non-linear heat flux over a steep transition profile. This
kind of problem is known as the heat bath in the literature [160, 27, 161]. Unlike the
previous problem of heat diffusion, the non-local limit is explored with the Knudsen
number Kne ≳ 1. The electrons are delocalized and a self-consistent electric field
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Figure 7: Convergence of the heat flux in the number of velocity levels Ng. The
resolution is 200, 100 and 68 for the elements of the first, second and third order
respectively. The legend denotes the orders of the elements. The black dash-dot lines
indicates the second order of convergence.

emerges. The full transient electric field is modelled, despite that the simulation is run
until the stationary limit is secured.

The transition profile is one-dimensional and only in the electron temperature,
which is initially set as:

Te(x) = 1 + δTe
2
π

arctan(x/σT ). (224)

The parameters are chosen as δTe = 0.9 (in the relative units) and σT = δTe/(2Kne),
where the Knudsen number is Kne = 10−1. This setting presents already moderately
strong non-locality [20]. The final time is tfin = 10ν−1

s to safely reach the desired
stationary limit. Also the transient electrodynamic effects are minimized by the plasma
frequency ωpe = 102νs. The size of the domain is 200λ̄e to avoid boundary effects.
The boundary conditions are set to the isolating for f⃗1 and free for the electric field
(∂E⃗ · n⃗/∂n⃗|Γfree = 0).

The spatial profiles of the results are plotted in Figure 8. The simulation used 40
cubic elements, Ng = 200 velocity levels and the time step was set to ∆t = 10−3ν−1

s .
The non-linearity of the flux is clearly visible from the strong asymmetry of the profiles.
The flux is inhibited along the downstream, while it freely diffuses to the upstream.

A better insight is obtained from the plots of the distribution function in Figure 9.
The energy-weighted isotropic part of the distribution function f0v

4 is compared with
the heat-flux-weighted anisotropic part f⃗1v

5 at the three different point 80, 100 and
120 mean free paths from the left boundary (which are also indicated in Figure 8).
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Figure 8: The numerical solution of electron transport across a transient profile. The
electron temperatures are orange, heat fluxes blue. The dashed line shows the initial
profile. The vertical lines indicate the points where the distribution function is inves-
tigated.

0 1 2 3 4 5 6 7
v

0.000

0.025

0.050

0.075

0.100

0.125

0.150

0.175

0.200

f 0
v4

a)
x = 80
x = 100
x = 120

0 1 2 3 4 5 6 7
v

0.20

0.15

0.10

0.05

0.00

0.05

0.10

0.15

0.20

0.25

f 1
v5

b)
x = 80
x = 100
x = 120

Figure 9: Spectral distribution of the electron internal energy (a) and total heat flux
(b). The values are normalized according to [146]. The legend denotes the coordinates
where distributions are observed along the transient profile.
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The energy distribution has nearly the classical Maxwell–Boltzmann form at the first
point in the upstream, but becomes gradually more non-equilibrium going further to
the downstream. At the center of the domain (x = 100λ̄e), a significant deviation from
the equilibrium is visible. The last point, deep in the downstream, shows a complete
splitting of the distribution, where the left peak corresponds to the local temperature
and the right to the temperature of the non-local electrons. The maximum is relatively
small and distant, which can be attributed to the fact that only a small fraction of
the high-velocity electrons is sufficiently collisionless to travel deep to the downstream.
The rest is absorbed on shorter distances as the central point showed. The heat flux
distributions confirm this observation. The classical profile, associated with the balance
between the down-slope streaming electrons and the counter-streaming return current,
appears in the upstream (compare with Figure 1). The situation changes at the central
point, where the amount of the forward streaming electrons becomes relatively higher
compared to the ones flowing in the opposite direction. However, the distribution of
the heat flux is totally broken down in the downstream, where the return stream is
strongly outbalanced by the non-local flux. Strong convective fluxes exist and the
system is far from the charge and collisional equilibrium.

The problem showed an example of the non-linear, non-local heat transfer over
a steep slope of temperature. The deviation of the distribution function from the
Maxwell–Boltzmann distribution was observed, which points to the origins of the non-
local behaviour and stresses importance of such modelling for the laser plasma physics.
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8 Magneto-hydrodynamic models
The kinetic modelling of the previous chapter described electrons in a great detail,
but was limited to the scale of the electron plasma frequency and approximation of
motion-less ions. On the opposite side of the spectrum, magneto-hydrodynamic codes
operate on longer scales, where ions and electrons move together in an approximately
quasi-neutral flow (see chapter 2). Presumably, the best approach to modelling of laser
plasma, where both aspects are important, is combination of the both. For this purpose,
a multi-dimensional multi-physics code PETE2 has been developed [162, 163]. At the
core, it relies on the resistive magneto-hydrodynamic description of the plasma, but
enhances it by multiple closure models, which are subjects of the subsequent chapters.

8.1 Governing equations
The dynamics of the plasma is described in the Lagrangian framework, which was
theoretically summarized in chapter 2.3. On top of the basic model, it applies the
two-temperature description and contains additional terms. The governing equations
are following [162, 164]:

Dρ
Dt = −ρ∇ · u⃗, (225)

ρ
Du⃗
Dt = −∇ · (P e + P i + PB), (226)

E⃗ ′ = 1
µ0
α · ∇ × B⃗ − 1

ene
∇ · P e, (227)

DB⃗
Dt = −∇× E⃗ ′, (228)

ρ
Dεe
Dt = −P e : ∇u⃗+G(Ti − Te) + j⃗ · E⃗ ′ −∇ · (q⃗e + S⃗L) + gR, (229)

ρ
Dεi
Dt = −P i : ∇u⃗+G(Te − Ti)−∇ · q⃗i, (230)

ρ
DεB
Dt = −PB : ∇u⃗− 1

µ0
B⃗ · ∇ × E⃗ ′, (231)

where E⃗ ′ is the fluid-frame electric field, which is a subject of the Lorentz transfor-
mation (97). The energy contributions are the electron heat flux q⃗e, ion heat flux q⃗i,
radiation energy exchange rate gR and the laser Poynting vector S⃗L. It should be also
noted that whole electric current j⃗ is inserted to the Joule heating term j⃗ · E⃗ ′, which
is solely contributing to the electron energy equation (229). This procedure is justified
by the domination of the electric and heat conduction by electrons due to their higher
mobility. Though, ion heat transport is considered for the special when this assumption
does not hold, but it is turned off in the most cases.

Lastly, a meaning must be given to (231). It presents the equation for the specific
magnetic energy εB = |B⃗|2/(2ρµ0), which can be derived similarly to the equation for
the total electromagnetic energy (56). Consequently, the equation is redundant to the
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equation for magnetic field (228) and mass density (225) in essence. However, it is
one of the central ideas for construction of a conserving MHD scheme to keep this
auxiliary equation [162, 53]. It has an identical structure to the other equations, where
mechanical work of the pressure tensors matches the momentum gain in (226). Another
symmetry appears between the electron energy equation (229) and the magnetic energy
equation (231) when the Joule heating term in the former is rewritten as j⃗ · E⃗ ′ =
1/µ0∇×B⃗ ·E⃗ ′ = −∇·S⃗+1/µ0B⃗ ·∇×E⃗ ′. This symmetry leads to conservation of energy
between the equations as the total contribution from the divergence of the Poynting
vector vanishes globally for non-radiating boundary conditions ((S⃗ · n⃗)|∂Ω = 0).

8.1.1 Inversion of equation of state

The energy equations (229) and (230) are formally correct, but it must be realized that
the temperatures are primarily used for calculation of the physical coefficients from
the closure models. In order to obtain the temperatures, the equation of state must
be inverted, which involves iterative algorithms and evaluations at multiple points in
the thermodynamic space, which might be computationally expensive in the total. For
this reason, the inversion is avoided by the following expansion, rewriting the internal
derivatives as:

Dεe
Dt =

(
∂εe
∂Te

)
ρ

DTe
Dt +

(
∂εe
∂ρ

)
Te

Dρ
Dt = cV e

DTe
Dt − ρ

(
∂εe
∂ρ

)
Te

∇ · u⃗, (232)

Dεi
Dt =

(
∂εi
∂Ti

)
ρ

DTi
Dt +

(
∂εi
∂ρ

)
Ti

Dρ
Dt = cV i

DTi
Dt − ρ

(
∂εi
∂ρ

)
Ti

∇ · u⃗, (233)

where cV e and cV i are the electron and ion specific heats. This means that substitution
to (229) and (230) leads to only modification of the pressure work and no new term
is necessary. For brevity, this is not explicitly written in the following chapters, but
this substitution is always performed, so the primary variables are the temperatures
instead of the internal energies. However, this relation holds only for the differential
formulation and the discretization breaks it and the energy conservation consequently.
Hence, the energy increments are integrated in parallel and the temperature is corrected
in the sense of the symmetrical semi-implicit method (SSI) [165].

8.1.2 Temperature relaxation

The temperature relaxation is not linearized alongside the rest of the equations (225–
231), since the relaxation operates on the time scales proportional to the local electron–
ion energy collision frequency, which can be prohibitively short. For this reason, a
semi-analytic approach is preferred, which may operate even on the longer time scales
and preserves the correct limit behaviour. With the substitution according to chapter
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8.1.1, the relaxation equations have the form:

ρ
Dεe
Dt

∣∣∣∣∣
relax

= ae
DTe
Dt

∣∣∣∣∣
relax

= G(Ti − Te), (234)

ρ
Dεi
Dt

∣∣∣∣∣
relax

= ai
DTi
Dt

∣∣∣∣∣
relax

= G(Te − Ti), (235)

where ae = ρcV e and ai = ρcV i are the heat capacities.
The semi-analytic solution approximates the equation of state as the ideal gas,

i.e. considers the heat capacities constant. In fact, this is the approximation already
applied in chapter 8.1.1. However, it is important that the method conserves the
energy-like invariant ϵrelax = aeTe + aiTi of the equations (234–235). With its help, the
system can be reduced to a single equation:

aei
D(Te − Ti)

Dt

∣∣∣∣∣
relax

= −G(Te − Ti), (236)

where aei = 1/(1/ae + 1/ai) is the combined heat capacity. This equation can be
solved analytically between the time levels n and n+ 1. After some manipulations, the
solution can be written in the form of the differences as follows:

ρ
εn+1
e − εne

∆t ≈ ae
T n+1
e − T ne

∆t = aei
T ni − T ne

∆t

1− exp
(
− G

aei
∆t
) , (237)

ρ
εn+1
i − εni

∆t ≈ ai
T n+1
i − T ni

∆t = aei
T ne − T ni

∆t

1− exp
(
− G

aei
∆t
) . (238)

The equalities exactly hold only for the ideal gas, otherwise the conservative formula-
tion with the internal energies is preferred. In this form, it is discretized analogously
to the rest of the equations and the relaxation step is performed at the end of each
time step.

8.2 Weak formulation
The weak formulation of the system (225–231) recognizes the thermodynamic space T
for the scalar thermodynamic potentials (Te, Ti, εe, εi, εB), the kinematic space K for
the kinematic vectors (x⃗, u⃗), the magnetic spaceM for the magnetic field (B⃗) and the
electric space E for the electric field (E⃗). The energy flux terms q⃗e, q⃗i, q⃗R and S⃗L are not
considered for the moment and are left for the subsequent chapters. The definitions of
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the spaces in three dimensions are following:

T = L2(Ω), (239)
K = {ψ⃗ ∈ (H1(Ω))3 | ψ⃗(x⃗) · n⃗ = 0 ∀x⃗ ∈ Γu⃗n}, (240)
M = Hdiv(Ω), (241)
E = {ξ⃗ ∈ Hcurl(Ω) | ξ⃗(x⃗)× n⃗× n⃗ = E⃗τ ∀x⃗ ∈ ΓE⃗τ

}. (242)

The prescriptions already include the essential boundary conditions for non-moving
boundary on Γu⃗n and tangential component of the electric field on ΓE⃗τ

.
The definitions in 2D are more involved, because both, the coplanar (∥) and

transversal (⊥), components of the fields are modelled. The kinematic space has ten-
sorial form and only the vector dimension is decreased (K ⊂ (H1(Ω))2). The definitions
of the electric and magnetic spaces are:

M∥ = Hdiv(Ω), (243)
M⊥ = L2(Ω), (244)
E∥ = {ξ⃗ ∈ Hcurl(Ω) | ξ⃗(x⃗)× n⃗× n⃗ = E⃗τ

∥ ∀x⃗ ∈ ΓE⃗τ
}, (245)

E⊥ = {ξ ∈ H1(Ω) | ξ(x⃗) = Eτ
⊥ ∀x⃗ ∈ ΓE⃗τ

}. (246)

Returning back to the three-dimensional description, the procedure from chapter
6 is followed and the governing equations are multiplied by appropriate test functions.
After some manipulations, the weak formulation is obtained (∀φ ∈ T ′, ψ⃗ ∈ K′, Ξ⃗ ∈
M′):(

ρ
Du⃗
Dt , ψ⃗

)
KK

=
(
(P e + P i + PB) : ∇ψ⃗

)
K
−
〈
P⃗n · ψ⃗

〉Γ
P⃗n

K
, (247)

DB⃗
Dt = −∇× E⃗ ′, (248)(

α−1E⃗ ′, ξ⃗
)

EE
= 1
µ0

(
B⃗,∇× ξ⃗

)
ME

+
(
α−1E⃗B, ξ⃗

)
EE
− 1
µ0

〈
B⃗τ · ξ⃗

〉Γ
B⃗τ

E
, (249)(

ρ
Dεe
Dt , φ

)
T T

= −
(
P e : ∇u⃗, φ

)
KT

+ 1
µ0

(
∇× E⃗ ′, B⃗, φ

)
EMT

+
(
E⃗ ′, B⃗,∇φ

)
E×MT

+

− 1
µ0

〈
E⃗τ × TMB⃗,TT φ

〉Γ
E⃗τ

MT
− 1
µ0

〈
E⃗ ′ × B⃗τ ,TT φ

〉Γ
B⃗τ

ET
, (250)(

ρ
Dεi
Dt , φ

)
T T

= −
(
P i : ∇u⃗, φ

)
KT

, (251)(
ρ

DεB
Dt φ

)
T T

= −
(
PB : ∇u⃗, φ

)
KT
− 1
µ0

(
∇× E⃗ ′, B⃗, φ

)
EMT

. (252)

The notation of the forms follows chapter 7.1, where the symbol × between the spaces
denotes the cross product between the operands. The newly appearing vector P⃗n is the
normal pressure at the boundary, which is a part of the natural boundary condition
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for velocity on ΓP⃗n
⊂ ∂Ω. Similarly, the boundary part ΓB⃗τ

⊂ ∂Ω sets the natural
boundary condition for the tangential magnetic field B⃗τ . The symbol TM represents
trace of the tangential component in M. Likewise, TT is trace in the thermodynamic
space T . Also, it can be noticed the equation of magnetic field (248) is written in
the strong form, because the combination of the electric and magnetic fields respects
the de Rham complex (195). In turn, the magnetic field remains always divergence-
free, provided the initial condition satisfies the magnetic Gauss’s law (37). Finally,
it should be mentioned that the temperature relaxation terms are omitted, because
they are treated separately as described in chapter 8.1.2. Also the definition of the
Biermann battery term E⃗B is left for chapter 8.3.1. The construction in 2D and 1D is
analogous, but more involved due to the splitting of the components, and the reader is
navigated to [162] for more details.

8.3 Discrete model
The discretization procedure applies the conforming finite elements from subspaces
of the functional spaces (239–246). The choices are similar to chapter 7.2, where
discontinuous positive finite elements are used for the thermodynamic quantities. The
numerical scheme can benefit from this construction in the vicinity of propagating
discontinuities, for example [166]. The kinematic quantities rely on the (continuous)
nodal Lagrange elements. Contrary to the kinetic model, the electric field uses the
Hcurl-conforming Nédélec finite elements and magnetic field the Raviart–Thomas Hdiv–
conforming finite elements [149, 148]. These choices are made with respect to the de
Rham complexes from chapter 6, so they are satisfied even on the discrete level for
appropriately chosen spaces. Consequently, the (maximal) polynomial order of the
discontinuous elements is lower by one than for the rest of the elements. Moreover, the
thermodynamic part has the same order as the magnetic, which is denoted as TpMp
for the finite elements with the order of the thermodynamic space p [162]. The layout
of the degrees of freedom on quadrilaterals/hexahedrals is depicted in Figure 10.

Unlike the kinetic model, where the computational mesh is static, the Lagrangian
magnetohydrodynamics has a moving mesh, where the transformation properties of
the elements are important. At the core, all finite elements utilize the isoparametric
mapping, which ideally suits the Lagrangian description (see chapter 6). Essentially, it
means the coordinates of the elements in the physical space are treated as the kinematic
variable x⃗ ∈ K, which obeys the equation of motion Dx⃗/Dt = u⃗. The continuity
equation (225) does not have to be solved at all. Due to the invariance of |J |ρ according
to chapter 2.3, density can be calculated at an arbitrary point as ρ = |J0|ρ0/|J | from the
initial values of density ρ0 and Jacobian |J0|. This property can be transferred to the
discrete level and is known as the strong mass conservation [25]. It is also related to the
fact that the matrices MK and MT are constant, since the invariant combination ρ|J |
is involved in their definitions. Secondly, it can be shown that the Piola transformation
of the magnetic finite elements conserve their divergence and normal integrals, which
implies a divergence-free structure for the field and conservation of the magnetic flux
for arbitrarily deformed meshes. Similarly, the electric finite elements conserve their
circulation [162, 167].
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a) b)

Figure 10: The spatial configuration of the magneto-hydrodynamic degrees of freedom
on the reference quadrilateral/hexahedral element in 2D (a) and 3D (b). The piecewise-
constant/linear finite elements T0M0 are presented. (red – thermodynamic, orange –
kinematic, blue – (transverse) magnetic field, green – (coplanar) electric field, purple
– coplanar magnetic field (only (a)), cyan – transverse electric field (only (a))).

The discretization procedure then follows chapter 6. After the discretization in
space, the semi-discrete form of the system (247–252) becomes:

dx
dt = u, (253)

MK
du
dt = −(Fe + Fi + FB)1 + bP⃗n

, (254)
dB
dt = −CDE, (255)

MEE = 1
µ0

C·jkBj1k + MEEB + XT
B1, (256)

MT
dee
dt = FTe u + 1

µ0
Cij·EiBj + Sij·EiBj + XEB + XBE + ecB, (257)

MT
dei
dt = FTi u, (258)

MT
deB
dt = FTBu− 1

µ0
Cij·EiBj. (259)

The terms can be identified with the corresponding forms in (247–252). The full
definitions are not presented for brevity and can be found in [162]. The dot index
means the tensors are contracted over the rest of the indices and the vectorial notation
is used for the indicated one. As mentioned in the previous paragraph, the equation
of motion (253) effectively replaces the continuity equation (225).

Important features of the scheme are its conservation properties. The mass and
magnetic flux were discussed in the previous paragraph, while the momentum con-
servation is due to the definitions of the force matrices Fe,Fi and FB. Provided the
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boundary term bP⃗n
is zero, the weak gradients appearing in the force matrices vanish

when integrated over the whole domain [25]. The most intriguing is conservation of
the total energy. The kinetic energy contribution is obtained by multiplication of the
momentum equation (254) by uT from the left. Apparently, the right hand side can-
cels out with the contributions from the energy equations (257–259) when integrated
over the domain (multiplication by the unity vector of the thermodynamic space 1T ).
As discussed already in connection with the weak form in chapter 8.2, the symmetry
between (257) and (259) leads to cancellation of the exchange terms and the weak
divergence of the Poynting vector also vanishes globally (S · 1 = O, where O is the
zero matrix in the thermodynamic space). However, this is only true as long as the
actual magnetic energy BTMMB/(2µ0) is consistent with the auxiliary definition of
the magnetic energy 1TMT eB. Without motion of the mesh, this is satisfied due to
the consistency of the magnetic field equation (255) and the auxiliary magnetic energy
equation (259), which can be recognized from the identity C ·1 = CT

DMM. Though, the
consistency is broken for a moving mesh and the correction term ecB is evaluated after
each time step to re-establish the total energy conservation [162]. It can be viewed as
a subtle additional Joule heating term acting on the electrons.

8.3.1 Biermann battery

As straightforward integration of the Biermann term E⃗B = −∇pe/(ene) to the nu-
merical scheme may seem as problematic it can be. It must be realized the term
is non-linear in terms of the primary variables ρ and Te, which predetermines it
to be a subject of geometric errors. Moreover, the electron density appears in the
denominator, where a direct discretization may result in the magnetic field update
∼ ∇ne × ∇Te/ne not vanishing for co-aligned gradients. Even worse, the term does
not satisfy the magneto-hydrodynamic Rankine–Hugeniot conditions at shock waves.
Consequently, strong, spatially oscillating localized magnetic fields might be generated
at the shock fronts, which are further artificially self-amplified. This numerical insta-
bility is known as the Biermann catastrophe [168]. It was proposed to replace the term
by E⃗B = kB ln pe∇Te/e, which already satisfies the shock conditions and the involved
temperature is typically continuous across a shock front. As long as the induced mag-
netic field is considered, both definitions are equivalent (for the ideal gas equation of
state). Still, the full electric field is needed for the Poynting vector in the electron
energy equation (257).

Another challenge is posed by generalization to the high-order finite elements [169,
170, 171]. The discontinuous temperature finite elements can be only differentiated in
terms of the generalized functions, i.e. as sum of the jumps across the edges of the
elements and gradients in their interiors. Due to the inherent non-linearity of the term,
convergence cannot be expected for the solenoidal component especially. Secondly, the
gradient part dominates the Biermann electric field with magnitude higher by multiple
orders compared to the solenoidal typically, which leads to losses of precision when the
components are calculated together. For these reasons, we propose a method treating
the solenoidal and gradient components separately [164]. Fundamentally, it applies the
Helmholtz decomposition E⃗B = E⃗sol

B + E⃗grad
B . The solenoidal part E⃗sol

B and gradient
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part E⃗grad
B = ∇A are then calculated as follows:

∇×∇× E⃗sol
B = kB

e
∇× (∇ ln pe ×∇Te), (260)

∆A = −1
e
∇ · ∇pe

ne
. (261)

The potential is discretized byH1-conforming finite elements (A ⊂ H1(Ω)), where
the corresponding de Rham complexes (195), (196) can be utilized to obtain E⃗grad

B

without interpolation errors. The gradients of the thermodynamic potentials in (260)
are not calculated directly, but projections through weak gradients to the auxiliary
variables g⃗ln pe , g⃗Te ∈ G ⊂ Hdiv(Ω) is made to avoid the problem with differentiation of
discontinuous quantities. The resulting discrete system can be written as:

DĒB = Xij·(gln pe)i(gTe)j, (262)
DAA = bA −GT ĒB, (263)

EB = ĒB + GDA, (264)

where ĒB appears in the system instead of a grid function associated with E⃗sol
B , because

a numerical solution cannot guarantee that the undetermined gradient component of
ĒB is not modified. Therefore, the weak gradient GT then adds this spurious contribu-
tion to the potential A. The discrete gradient GD of the potential in turn eliminates
this part from the electric field EB. The details about the procedure can be found
in [164].

8.3.2 Magnetic diffusion

The semi-discrete model (253–259) involves not only the hyperbolic ideal magneto-
hydrodynamic part, but also the parabolic magnetic diffusion due to the resistive eddy
currents. This complex poses a computational challenge for traditional MHD codes,
which apply an explicit time integration. Instead, the diffusive, magneto-dynamic part
of the scheme is separated from the convective here, not stringently limiting the time
step of the magnetohydrodynamics. In order to preserve the divergence-free structure of
the magnetic field, the diffusion is solved for the electric field, where the new magnetic
field Bn+1 is inserted to the Ohm’s law (256). This way, the implicit equations of
magnetodynamics are obtained in the form:(

ME + αm∆t
µ0

D
)

En+αm = 1
µ0

C·jkBn
j 1k + XT

B1, (265)

1
∆tB

n+1 = 1
∆tB

n − CDEn+αm , (266)

where the diffusion matrix D = (C·1)CD = CT
DMMCD acts on the intermediate electric

field En+αm . The parameter αm enables to chose between the explicit scheme (αm = 0),
semi-implicit Crank-Nicolson scheme (αm = 1/2) and the fully implicit backward Euler
scheme (αm = 1).
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Numerically, the system (265–266) is solved by the preconditioned conjugate gra-
dient method. In this case, the preconditioner is the Auxiliary-space Maxwell Solver
(AMS) [172], which translates the problem to a nodal H1-conforming space, where the
algebraic multigrid method can be applied [173, 174].

The new values of the fields are inserted to the energy equations (257), (259),
yielding the following explicit updates:

dee
dt

∣∣∣∣
Joule

= M−1
T

(
+ 1
µ0

Cij·En+αm
i Bn+1/2

j + Sij·En+αm
i Bn+1/2

j + XEBn+1/2 + XBEn+αm

)
,

(267)
deB
dt

∣∣∣∣
Joule

= M−1
T

(
− 1
µ0

Cij·En+αm
i Bn+1/2

j

)
. (268)

Note that the time-centred magnetic field is used, which can be proved to guarantee
exact energy conservation [162].

8.3.3 Time integration

Integration of the system (253–259) in time can be performed with multiple differ-
ent methods. The Runge-Kutta methods of different orders present the basic option.
However, this choice does not conserve the quadratic invariants, like the kinetic or
magnetic energy. In this case, the operator splitting technique is applied and the
magneto-dynamic part is solved as described in chapter 8.3.2. Another option is to
employ the RK2-Average scheme derived from the classical Runge–Kutta method of
the second order [25]. Although originally proposed for the classical hydrodynamics,
the scheme can be extended for the resistive magnetohydrodynamics [162]. At the core,
the state is split to the following three parts:

V = [ u ], B = [ B ], Y = [ x, ee, ei, eB ]T (269)
V̇ = V̇ (t, Y ), Ḃ = Ḃ(t, V, Y ), Ẏ = Ẏ (t, V, B, Y ), (270)

where the upper dot designates the time derivatives. The updates V̇ and Ḃ are implicit,
while Ẏ is explicit. However, the form of the momentum equation (254) does require
an implicit solution, since the right hand side is independent of V . Thus, an explicit
integration can be applied in fact, but it is important that the integration remains
symplectic. Secondly, the magnetic field is solved within the update of B according
to chapter 8.3.2, where the velocities are already known (which are needed in 2D and
1D, see [162]). Finally, the explicit step with Ẏ is performed, where the time-centred
velocity and magnetic field are known already. This way, the total energy is conserved.
The outlined scheme presents a second-order implicit-explicit method (IMEX), which
can be generalized for the hydrodynamics to the higher orders [175]. Unfortunately,
this approach cannot be followed in the case of the magneto-hydrodynamic methods,
where the negative time steps in the implicit part would draw the diffusion equation
(265) ill posed. The high-order symplectic IMEX methods for this purpose remain a
topic of the future research and the code is limited to the RK2-Average scheme.
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The actual length of the time step controlled by the Courant–Fridrichs–Lewy
(CFL) condition [176]. It limits the length of the time step with respect to the fastest
propagating mode in the system. In the case of MHD, it is the fast mode with velocity
v2
f = c2

s + v2
A, where cs = cs(ρ, Te, Ti) is the speed of sound and vA = |B|/√µ0ρ is the

Alfvén velocity. The time step is then determined as the minimum of CCFLh/vf , where
h is the inner radius of the element and CCFL < 1 a chosen parameter. Though, the
range of the permissible values of CCFL is limited by the stability of the scheme, where
CCFL ≤ 1/2 holds for the hydrodynamic scheme [25].

8.3.4 Artificial viscosity

Although the momentum equation (254) is deemed to be explicit within the time
integration (chapter 8.3.3), the force matrices Fe and Fi depend on the internal energies
ee and ei, which in turn depend on their mechanical work. Similarly, the magnetic
pressure term FB depends on the magnetic field, which is compressed by motion of the
fluid and computational mesh. Therefore, the numerical scheme must be stabilized to
take into account this kind of non-linearity. The classical approach to this problem
is integration of an artificial viscosity to the system. This viscosity is added to the
physical pressure tensors and dissipates the kinetic energy to the internal through its
mechanical work, which is typically added to the ion equation as ions are dominantly
involved in the shocks in dense matter. In order to take into account directionality
of the compression, the tensor viscosities are utilized, which depend on ∇u⃗ [25, 177].
These are modified similarly to the CFL condition (chapter 8.3.3) to consider the
magneto-hydrodynamic fast mode in plasma.

8.4 Example problems
Two example problems are presented here to test the features of the MHD model
and benchmark its properties. The first problem (chapter 8.4.1) analyses convergence
for smooth problems of ideal MHD on deformed meshes, while the second explores
behaviour of the code for a physically relevant problem of a blast wave in a magnetic
field. More test cases can be found in [162]. The results can be summarized in the
way that an arbitrary order of convergence is achieved in space, proportional to the
polynomial order of the elements. Similarly, convergence in time has an arbitrary order
of convergence in the case of ideal MHD or uncoupled problems of resistive MHD, when
the high-order IMEX methods are employed. The convergence for coupled problems
of resistive MHD is limited to the second order for the RK2-Average scheme at the
moment.

8.4.1 Taylor–Green vortex

The problem known as the Taylor–Green vortex presents a steady-state solution of
incompressible, inviscid hydrodynamics. It was successfully applied to the high-order
curvilinear finite element hydrodynamics [175, 25] and we extend its formulation to
ideal magnetohydrodynamics in [162]. A specific magnetic field field B⃗ = β

√
µ0u⃗ co-

aligned with the velocity is chosen, where β is a free parameter. This construction
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guarantees a divergence-free structure of the magnetic field similarly to the velocity.
The stationary solution takes the following form in 2D:

u⃗x(x, y) = sin(πx) cos(πy), (271)
u⃗y(x, y) = − cos(πx) sin(πy), (272)

p(x, y) = 1 + 1− β2

4 (cos(2πx) + cos(2πy))− β2

2 (sin2(πx) cos2(πy) + cos2(πx) sin2(πy)).
(273)

The classical hydrodynamic problem is obtained for β = 0, but the magnetic pressure
contributes to the momentum equation in other cases, which is compensated by the
definition of the scalar pressure p (one-temperature model is used). The method of
fabricated solution is then followed to keep the system stationary, which entails an
additional source of energy in the energy equation. It has the identical form with the
original problem due to the compensation of the pressures [162, 25]:

Se = 3
8π(cos(3πx) cos(πy)− cos(πx) cos(3πy)). (274)

Figure 11: Numerical solution of the Taylor–Green vortex at the final time t = 0.75:
a) velocity magnitude, b) thermal pressure. All values are in relative units.

The ideal gas equation of state is used throughout the simulations, where proton
number and ionization are set to A = Z = 1 and the Poisson constant is γ = 5/3.
The initial density is uniformly set as ρ = 1 and remains (approximately) constant
due to the incompressibility, hence it is not a part of the solution. The artificial
viscosity is not applied, because the problem is smooth as full consistency with the
ideal model is desired. The coefficient of the magnetic field is chosen as β = 1/2, which
effectively means the dynamic pressure is four times stronger than the magnetic. The
numerical solution in visualized in Figure 11 for quadratic/cubic finite elements T2M2
and the third-order IMEX time integrator with CCFL = 0.5. A strong torsion of the
computational mesh is apparent, but the quantities remain mostly unaffected, which
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highlights advantages of high-order methods.
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Figure 12: Convergence rates for the Taylor–Green problem in the number of degrees of
freedom NDOF : a) velocity, b) magnetic field. The legend designates the finite elements
used. See the accompanying text for more details.

The convergence analysis of the problem is plotted in Figure 12. Finite elements
of different orders are compared (T1M1, T2M2 and T3M3), where the orders of the
conservative IMEX integrators are chosen adequately. Due to the fixed CFL condition,
the time step decreases with increasing resolution, implying the total convergences are
measured. The convergence rates proportional to the polynomial order of the elements
are apparent. However, the velocity rate is noticeably higher. This phenomenon can
be explained by the magnetic pressure contributing to the momentum equation, which
has a higher order than the thermal pressure. The effect vanishes with decreasing
coefficient β as the Alfvén velocity slows down compared to the fluid velocity.

The problem of the Taylor–Green vortex showed the high orders of convergence of
the curvilinear finite element MHD for smooth problems. The high-order finite elements
in space were combined with high-order time integration methods. The presence of a
magnetic field was not jeopardizing the convergence, but rather improving it.

8.4.2 Blast wave in magnetic field

The problem of a propagating blast wave in a magnetic field is one of the classical
test cases for magneto-hydrodynamic codes [178], but already presents a simplified
model of magnetized cosmic jets [179]. Although, it has a relevance to the inertial
confinement fusion too [180]. In principal, it holds a strong resemblance to the (purely)
hydrodynamic problem of Sedov blast wave [181]. A high amount of energy is deposited
at the center of the domain and the symmetric blast wave propagating from this point is
simulated. The imposed magnetic field then adds the effect of collimation and along the
field lines and generation of magneto-hydrodynamic blasts in the transverse direction.
Still, the symmetry along the field is preserved, where the effects of mesh imprinting
can be studied, i.e. effect of the mesh geometry on the dispersion relations and the
numerical results in the end.
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The simulation runs on the simulation domain (−1, 1)3 in three dimensions. The
energy E = 1 is deposited at the origin of the coordinates system, while the background
medium has density ρ = 1 and negligible pressure. The ideal gas equation of state is
used with the Poisson constant γ = 5/3, atomic mass number A = 1 and ionization
Z = 0. The magnetic field is imposed along the x axis with magnitude Bx =

√
4/3µ0.

The evolution is tracked till the final time tfin = 0.25 with the CFL constant CCFL =
0.5. The tensor artificial viscosity based on eigenvector decomposition is used with the
linear coefficient 0.5 and quadratic 2 [25, 177].

Figure 13: The numerical solution of the blast wave in magnetic field: a) velocity
magnitude, b) magnetic field magnitude. The values are in the relative units. The
resolution is 24× 24× 24 finite elements of the T2M2 type.

The numerical profiles of the velocity and magnetic field are plotted at the fi-
nal time in Figure 13. The quadratic/cubic finite elements T2M2 are employed with
the third-order IMEX time integrator. The results confirm the high resiliency of the
numerical scheme with respect to deformation of the computational mesh. The prop-
agation of the wave remains mostly unaffected by the geometry and the Lagrangian
nature of the model leads to an increased resolution near the tips of the collimated
jet in x axis. The natural compression of the magnetic field in the transverse plane
can be also observed, which is not modelled explicitly, but given by the transformation
properties of the magnetic elements (see chapter 8.3).

The problem of a strong blast wave in a magnetic field showed capabilities of the
MHD code under physically-relevant conditions. The symmetry of the problem was
maintained to a great extend thanks to the high-order curvilinear finite elements. The
magnetic field was compressed and convected along the blast fronts correctly without
its explicit calculation, highlighting another benefit of the finite element Lagrangian
magnetohydrodynamics.
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9 Diffusion models
The diffusion modelling is the most common approach for the heat fluxes and radiation
fluxes as described in chapters 3.1 and 4.1. From the theoretical point of view, the
parabolic nature of the equations is advantageous in the way that entropy is produced
and the minimal value theorem holds. Therefore, stable convergent numerical methods
can be constructed with a relative ease. An implicit treatment of the time integration
is favoured to avoid explicit time-stepping with ∆t ∼ ∆x/η, where ∆x is the resolved
spatial scale and η the diffusivity. This approach was already followed in the chapter
about the magnetodynamics 8.3.2.

9.1 Governing equations
The equations of heat diffusion and radiation diffusion hold many similarities, but there
are subtle, yet important differences in the formulations and the accustomed types of
the boundary conditions. Typically, it is the isolating boundary condition for zero
normal boundary heat flux in the case of heat diffusion, while free streaming to open
space is used for the radiation.

9.1.1 Heat diffusion

The electron/ion heat diffusion contribution to the electron/ion energy equations (229),
(230) has the form:

ae/i
DTe/i

Dt

∣∣∣∣∣
heat

= −∇ · q⃗e/i, (275)

q⃗e/i = −κe/i · ∇Te/i, (276)

where symbols κe and κi represent the tensor heat conductivities. However, the con-
ductivities are strongly temperature-dependent as derived in chapter 3.1. Hence, it is
beneficial to non-linearly transform the equations to obtain the normalized form:

āe/i
DT̄e/i

Dt

∣∣∣∣∣
heat

= −∇ · q⃗e/i, (277)

q⃗e/i = −κ̄e/i · ∇T̄e/i, (278)

where the quantities are transformed as follows:

T̄e/i = TαT +1, āe/i = ae/i
αT + 1T

−αT

e/i , κ̄e/i =
κe/i

αT + 1T
−αT

e/i . (279)

The parameter αT is the exponent of the nominal dependency of the heat conductivity
κ ∼ TαT

e/i on temperature. In the case of the Spitzer-Härm conductivity it is αT = 5/2.
This way, the equations is approximately linear and suitable for discretization.
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9.1.2 Radiation diffusion

The radiation non-equilibrium diffusion in the gray-body approximation (152) has
nearly the identical structure to the heat diffusion equations (275–276) and read:

DϵR
Dt = −∇ · q⃗R + µR(aRT 4

e − ϵR), (280)

ae
DTe
Dt

∣∣∣∣∣
rad

= µR(ϵR − aRT 4
e ), (281)

q⃗R = −DR∇ϵR, (282)

where DR = f limR c/(3ρκR) is the radiation diffusion coefficient and µR = cρκP is the
relaxation coefficient. The difference is given by the coupling to another quantity. In
principle, a similar linear coupling appears between the electron and ion temperatures,
but the temperature relaxation is treated separately by the procedure outlined in chap-
ter 8.1.2. In the case of radiation, the coupling can be very strong and compete with
the transport within the radiative shock waves. Therefore, the coupling is implicitly
included, following the methodology of [182]. The system (280–281) is rewritten as:

DϵR
Dt = −∇ · q⃗R + µR(θe − ϵR), (283)

Dθe
Dt

∣∣∣∣∣
rad

= 1
τR

(ϵR − θe), (284)

where θe = aRT
4
e is the material source function and τR = aeT

−3
e /(4aRµR) is the

relaxation time of θe. The material equation (284) can be implicitly solved either
numerically or semi-analytically and inserted to the radiation equation (283). The
implicit temperature is expressed as a mere linear combination θe = βRθ

n
e +(1−βR)ϵR,

reducing the system to a single equation:

DϵR
Dt = −∇ · q⃗R + µRβR(θne − ϵR). (285)

The numerical approach is based on the backward Euler scheme for (281). It is
straightforward to derive βR = 1/(1+∆t/τR) in this case. Principally, the result is only
correct for ∆t/τR ≪ 1, but an advantage of the approach is the symmetry between the
equations when the radiation equation (283) is discretized implicitly.

Another choice is the semi-analytic approach when ϵR is assumed fixed. Inte-
gration of the linear equation yields the result βR = exp(1 −∆t/τR). It is valid even
for ∆t/τR ≫ 1, but breaks the symmetry between the equations, because a numerical
solution of (283) does not respect this limit.

In any case, time-stepping with a time step significantly longer than the relaxation
time τR is not advisable, because propagation of the non-linear radiation waves can
be affected [108]. Therefore, time sub-steps with length equal to a fraction of τR are
performed. Note the non-linear transformation from chapter 9.1.1 is not possible here
unless the model is reduced to the equilibrium diffusion.
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9.2 Weak formulation
The diffusion equations for heat transport (277–278) or radiation diffusion (285), (282)
present a classical mixed problem. Instead of reducing the system to the primary form
for the temperatures/energies, it is intentionally left in the mixed form. The reason
can be seen from the choices of the functional spaces, which follow the MHD code
construction (chapter 8):

T = L2(Ω), (286)
G = {ζ⃗ ∈ Hdiv(Ω) | ζ⃗(x⃗) · n⃗ = q⃗n ∀x⃗ ∈ Γq⃗n}. (287)

Note the definitions are applicable only in 2D and 3D, while H1(Ω) space is used for
G in 1D instead. The essential boundary condition for the normal flux on Γq⃗n ⊂ ∂Ω
is included. The discontinuous nature of the thermodynamic space would lead to the
methods of discontinuous diffusion in the primary form, where treatment of the double
discontinuities in the Laplace operator is a subject of research [183]. Instead, the mixed
form is preferred here, which respects the de Rham complex (195) in 3D and (197) in
2D and yields a locally conserving scheme as becomes clear from the weak formulation.

The transformed system of heat diffusion (277–278) in the weak form becomes
(∀φ ∈ T ′, ζ⃗ ∈ G ′):āe/iDT̄e/iDt , φ


T T

+
(
∇ · q⃗e/i, φ

)
GT

= 0, (288)

−
(
T̄e/i,∇ · ζ⃗

)
T G

+
(
κ̄e/i

−1q⃗ei/i, ζ⃗
)

GG
= −

〈
T̄ Γ
e/iζ⃗ · n⃗

〉ΓTe/i

G
. (289)

The newly appearing boundary term corresponds to the natural boundary condition
for the outer temperature T̄ Γ

e/i on ΓTe/i
⊂ ∂Ω. Conveniently, the temperature equation

(288) has conserving form and is consistent with Gauss’s theorem. Indeed, choosing an
arbitrary sub-domain V ⊂ Ω and inserting its characteristic function χV ∈ L2(Ω) as the
test function (φ← χV ) to (288) enables to use Gauss’s theorem and state conservation
of the energy on V , which is only exchanged by the obtained boundary fluxes.

The weak formulation of the radiation transport is mostly analogous and can be
written as (∀φ ∈ T ′, ζ⃗ ∈ G ′):(

DϵR
Dt + µRβRϵR, φ

)
T T

+ (∇ · q⃗R, φ)GT = (µRβRθneφ)T , (290)

−
(
ϵR,∇ · ζ⃗

)
T G

+
(
D−1
R q⃗R, ζ⃗

)
GG

= −
〈

1
kR
q⃗R · n⃗, ζ⃗ · n⃗

〉ΓkR

GG
−
〈
ϵΓ
Rζ⃗ · n⃗

〉ΓϵR

G
.

(291)

The main distinction points are the additional relaxation terms in the energy equation
(290) and the new natural boundary condition in the flux equation (291). The Newton
boundary condition q⃗R · n⃗ = kR(ϵR−ϵΓ

R) on ΓϵR∩ΓkR
⊂ ∂Ω enables to set the boundary

radiation conduction factor kR ̸= 0. This general construction allows to impose the
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very common Milne-like boundary condition q⃗R · n⃗ = 1/2cϵR on ΓkR
⊂ Ω,ΓkR

∩ΓϵR = ∅
for the value of the conductivity kR = 1/2c, which can be understood as free streaming
of radiation to an empty half-space [102].

9.3 Discrete model
The discretization procedure follows the general pattern of chapter 6. The finite el-
ements are chosen from the Hdiv-conforming Raviart–Thomas spaces [148, 149] for
the fluxes from G and the positive discontinuous L2 finite elements for the tempera-
tures/energies. This setting keeps compatibility with the MHD model from chapter 8,
so no reinterpolations are needed for transition between the models.

After the discretization in space, the semi-discrete formulation of the mixed heat
diffusion (277–278) has the form:

MT̄e/i

DT̄e/i

Dt −GT
T qe/i = 0, (292)

GT T̄e/i + Mq⃗e/i
qe/i = bT̄e/i

. (293)

The definitions of the matrices are not detailed here for brevity and the reader is
navigated to [164]. Although the model applies the local approximation by the ideal
gas and the non-linear transformation of temperature (see chapter 9.1.1), the energy
equation (257) or (258) can be directly used after the sought heat flux qe/i is obtained,
as it is invariant of the transformation. The model maintains the local conservation
property on the discrete level, which can be seen from multiplication of the temperature
equation (292) by the grid function 1χ equal to one on the support of a selected element
and zero elsewhere. The product 1TχGT

T qe/i is equal to the integral of normal fluxes
over the faces of the element due to the construction of the Raviart–Thomas finite
elements [148, 149]. The global conservation of energy is then a mere consequence of
the local one, since the elements are normally-continuous, so the inter-element fluxes
cancel each other out exactly.

The spatial discretization of the radiation diffusion governed by the weak formu-
lation (285), (282) is similar and reads:(

MϵR

D
Dt + MβRµR

)
ϵR −GT

T qR = MβRµR
θne , (294)

GT ϵR + Mq⃗R
qR = bϵR . (295)

Note the conductivity boundary contribution is absorbed in the definition of Mq⃗R
. The

local conservation properties are satisfied also in this case for the radiation energy, but
the exchange of energy between material and radiation must be checked. In order to
conserve energy, it must have the symmetric form:

MT
Dee
Dt = MβRµR

(ϵR − θne ). (296)

Apparently, the sum of the material equation (296) and the radiation equation (294)
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cancels out in the exchange terms and the (local) conservation of the total energy
1T (MϵRϵR + MT ee) is attained.

The time discretization of the systems (292–293) and (294–295) is implicit. The
fully implicit, L-stable backward Euler method can be used or the semi-implicit, A-
stable Crank-Nicolson scheme can be applied. Alternatively, the singly diagonally
implicit Runge–Kutta (SDIRK) methods can be employed, which do not require more
than an implicit solution for a certain fractional time step.

Numerically, the heat and radiation systems are solved in the mixed forms or the
dual form for the heat fluxes, i.e. the temperature/energy is expressed from the corre-
sponding equation and substituted to the flux equation. The latter has the following
form for the heat diffusion system (292–293):(

Mq⃗e/i
+ αh∆tGT M−1

T̄e/i
GT

T

)
qn+αh

e/i = bT̄e/i
−GT T̄n

e/i, (297)

where the fractional time index is meant in the sense of linear interpolation and the
parameter αh allows to chose between the Crank-Nicolson scheme (αh = 1/2) and back-
ward Euler scheme (αh = 1) similarly to chapter 8.3.2. Returning to the mixed system,
it is indefinite and the generalized minimal residual method (GMRES) is employed.
However, the discontinuous nature of the temperature/energy elements favours the
dual form (297) (and the analogous for the radiation diffusion), where the mass matrix
of the discontinuous elements has a block-diagonal structure and its inverse can be cal-
culated on the element level. The dual form has a positively-definite matrix and can be
solved by the preconditioned conjugate gradient (PCG) method. The preconditioner
in this case is the Auxiliary-space Divergence Solver (ADS) [184], which converts the
problem to an auxiliary H1-conforming space to apply the algebraic multigrid method
(AMG) [173, 174]. Still, the high-order elements are not efficiently treated, because
many DOFs are inner and do not contribute to diffusion of the solution globally. Hence,
the hybridization technique is implemented, which can be understood in simple terms
as enforcing of the continuity between the flux elements weakly, through Lagrange
multipliers. Only the constraint equation for the multipliers is then solved globally,
where the flux equation is locally eliminated [185]. This approach greatly reduces the
number of DOFs, but requires inversion of the local dense matrices. In this case, the
AMG preconditioner can be applied directly to the system.

Lastly, a problem associated with the high-order elements for parabolic equations
should be mentioned. The Laplace operator formed for the flux in (297) does not
respect the minimal value theorem, i.e. local extrema can be created by its application
[186]. The problem stems from the inverse of the temperature mass matrix, which
involves anti-diffusive contributions for high-order elements. When lumped (i.e. sums
of the rows/columns form a diagonal matrix), the Laplace operator ∼ GT GT

T would be
obtained with only diffusive contributions, but the high-order order interpolation of the
temperature elements would not be respected, degrading the convergence. A corrective
(conservative) post-processing of the fluxes can be performed when the energy update
is calculated through (257), (258) or (294), but stability of the implicit method can
be hazarded already. Truly monotonous operators for the high-order positive elements
are needed in this case [187], which remain a topic of the future development.
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9.4 Example problems
The purpose of this chapter is to validate and benchmark the numerical methods of ra-
diation and heat diffusion. Since the equations of radiation and heat diffusion presented
in this chapter have nearly an identical structure, also the numerical implementation
is shared among them. Therefore, the tests devised for one of the models can be rein-
terpreted for the other only by redefinition of the variables. The first test in chapter
9.4.1 measures convergence of the schemes on the problem of diffusion over a transition
profile. The second problem presents the results for a non-equilibrium radiation wave
in chapter 9.4.2.

9.4.1 Heat bath

The first test concerns heat diffusion over a transition profile. In essence, it strongly
resembles the heat bath problem from chapter 7.3.2, but the transport is linear inde-
pendently of the initial conditions as long as heat flux limiters are not used (see chapter
3.1.2). Another difference is given by the fact the initial profile is chosen as a step func-
tion, highlighting the benefits of the discontinuous temperature finite elements and the
weak formulation avoiding differentiation of the temperature.

In particular, the initial profile is a step function in temperature centred around
x = 0.5 with the left temperature Tl = 13 and the right Tr = 3. The analytic solution
of the one-temperature heat diffusion is:

T (x, t) = Tr + Tl
2 + Tr − Tl

2 erf

 x− x0√
4κt/a

 , (298)

q(x, t) = −(Tr − Tl)
√
κa

4πt exp
(
−(x− x0)2

4κt/a

)
. (299)

Note the relative units are applied for all quantities. The heat conductivity is set to κ =
0.1 and the heat capacity a = 10, yielding the diffusivity ηh = k/a = 10−2. The final
time of the simulation is tfin = 0.4 and it runs on the domain (0, 1) in one dimension,
as the construction of the schemes is completely analogous in all dimensions. However,
the results were checked in multiple dimensions that they agree almost perfectly. The
solution and the initial profile are depicted in Figure 14. It can be compared with
similar Figure 8. The ideal symmetry of the linear diffusive heat flux is apparent.

An analysis of the spatial convergence can be found in Figure 15. Different
orders of the finite elements are compared, where the semi-implicit scheme (αh = 1/2)
is used in all cases. The time step is fixed at the relatively small value ∆t = 10−4

in order to not limit the convergence by the time integration error. The order of the
convergence proportional to the polynomial order of the elements is confirmed, where
it should be noted the heat flux elements have the order higher by one compared to the
thermodynamic. The only deviation from the trend occurs for the heat fluxes, where
the error saturates at about the value 10−8, which can be attributed to the tolerance of
the linear solver. Fortunately, the error does not propagate to the temperatures thanks
to the symmetry of the problem.
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Figure 14: The analytic solution of the heat bath problem at the final time tfin = 0.4:
temperature (orange), heat flux (blue). The initial profile is designated by the dashed
line. The values are in the relative units.
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Figure 15: Spatial convergence of the heat diffusion in the heat bath problem: a) tem-
perature, b) heat flux. The integral L1 errors are plotted as functions of the number
of degrees of freedom NDOF . The legend denotes the polynomial orders of the thermo-
dynamic elements.
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The problem of heat conduction over a step function of temperature with an
analytic solution was used for testing of the diffusion model. The discontinuity was
resolved perfectly and the orders of convergence proportional to the polynomial orders
of the elements were measured, showing benefits of the high-order finite elements.

9.4.2 Marshak wave

The second problem concentrates on a classical test for non-equilibrium radiation diffu-
sion, which is known as the Su–Olson problem in the literature [188]. We concentrate
on its original form for the grey-body diffusion, even though a solution was found
even for more complicated cases later [189, 190]. The essence of the problem is a
non-equilibrium radiative Marshak wave propagating to the domain from a radiating
boundary condition. No hydrodynamic motion is considered and only the radiation
diffusion and relaxation processes lead to heating of the material inside the domain.

The initial conditions are trivial in this case, setting the density to ρ ≡ 1 g/cm3

radiation temperature TR and material Tm to zero, where ϵR = aRT
4
R. The radiating

boundary condition sets the outer radiation temperature to T Γ
R = 1 keV and the (single)

opacity to κP = κR = 1 cm2/g. The opposite boundary condition is then for zero outer
radiation temperature. However, the cornerstone of the semi-analytic solution is a
special form of the dependency of the heat capacity on temperature a = 4aRT 3

m, which
was proposed by Pomraning originally [191]. It can be noticed it cancels out with the
temperature dependency of the relaxation coefficient τR, making it constant, which
greatly simplifies the problem.
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Figure 16: The numerical (solid) and semi-analytic (dashed) solution of the non-
equilibrium Marshak wave problem: average of the radiation and material temper-
atures (left) and their difference (right).

The numerical simulation is performed on the domain (0, 20 cm) from the time
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t0 = 0.1 ns to the final time tfin = 0.6 ns. The computational mesh consists of 20
quadratic/cubic finite elements of T2 type in 1D. The time integration is implicit
(backward Euler) with the semi-analytic approximation of the relaxation. The time
step is kept as small as ∆t = 10 ps, but it must be considered the relaxation time is only
τR

.= 33.4 ps. Therefore, the time step is still smaller, but numerical errors originating
from the integration of the radiation relaxation can be expected. The results are
presented in Figure 16. The numerical solution shows a very good performance on
the left, near the radiating boundary condition, and only slightly underestimates the
relaxation in the central area. Though, a more noticeable deviation can be seen on the
right side, but it can be attributed to the semi-analytic initial condition already. As
can be observed on the difference curve, the semi-analytic solution based on ExactPack
[192] exhibits an oscillative behaviour for more distant areas from the radiation source.
In the case of the initial condition, the semi-analytic profiles are non-monotonous and
the temperatures are not lower than ≈ 30 eV. Therefore, the numerical results seem to
be adequate and smoother than the reference solution in fact.

In summary, the capabilities of the non-equilibrium radiation diffusion code were
demonstrated on the problem of a radiative Marshak wave. The strong coupling be-
tween the radiation and material tested the implicit radiation energy relaxation and
diffusion. Relatively accurate results were obtained even with a low number of the
finite elements, pointing to the rapid convergence of the method and its robustness.
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10 Non-local models
There exists various models of non-local energy transport, where the most popular ap-
proaches were reviewed in chapters 3 and 4 for the electron heat transport and radiation
transfer respectively. The methods greatly vary in their formulations and so do their
numerical implementations, but the fundamental difference from the diffusive methods
of chapter 9 is given by the fact that the transport is not governed by a parabolic
equation, but contain also a hyperbolic contribution. This distinction point then must
be reflected also on the side of the numerical methods applied. The major influence in
the field of non-local electron heat transport comes from the well-established methods
of radiation transfer. This resemblance is highlighted in the following chapter, but im-
portant differences between them must be recognized as well. Photons are charge-free
quanta, which do not experience the Lorentz force. In contrast, numerical treatment
of the electric and magnetic fields must be then an inherent part of the methods of
the electron transport. Though, we have mainly concentrated on the BGK model of
transport (chapter 3.3), which considers the electric effect only through an explicit
correction, where a full parallel to the discrete ordinates method for radiation transfer
(chapter 4.3) can be made. The methods of angular moments (chapters 3.2 and 4.2)
with self-consistent electric (and magnetic) fields are then topics of the future research.

10.1 Governing equations
As mentioned in the introduction, an analogy between the methods of radiation transfer
and the BGK model from chapter 3.3 can be found. In particular, the equations of
transfer (135) and (144) for the electron heat intensity Ie and total radiation intensity
IR can be unified into a single system together with the electron energy equation (229).
The resulting governing equations take the form:

1
ce/R

DIe/R
Dt + Ω⃗ · ∇Ie/R = 1

λ̄e/R

(
Se/R − Ie/R

)
, (300)

ρcV e
DTe
Dt

∣∣∣∣∣
heat/rad

+
∫

4π

 1
ce/R

DIe/R
Dt + Ω⃗ · ∇Ie/R

 dΩ⃗ = 0, (301)

where the velocities are ce = +∞ and cR = c, the mean free paths λ̄e = αλSH and
λ̄R = 1/(ρκP ), and the source functions Se =

√
2nev3

Te/π
3/2 and SR = σSB/πT

4
e . It can

be noticed the velocity of the electrons is higher than that of radiation paradoxically.
The reason can be seen from the construction of the BGK model in chapter 3.3, where
the averaging procedure for the inverse electron velocity yields a dependency on a
different velocity moment, which cannot be easily modelled, in contrast to the radiation
with an approximately constant velocity. The inertial term for the radiation could be
neglected similarly to the electron under the same assumptions, but its integration does
not pose any problem and rather stabilizes the simulation, as explained later. Also
note that transition to the fluid-frame is made without transformation of the transfer
equations, because the velocities of the species are significantly higher than the velocity
of the fluid (ce, cR ≫ |u⃗|). Though, the contributions to the energy equation involve
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only the non-convective terms, as it was the case with the diffusion models in chapter
9. It should be also noted the scattering terms are omitted for simplicity, even though
the uniform isotropization according to the equation (144) or the Laplace–Beltrami
operator ∼ ∂2Ie/R/∂Ω⃗2 are implemented, but the electron model in the presented form
does not consider them and scattering effects for the radiation are of a lesser importance
in laser plasma typically [100, 106]. Finally, it should be recognized the temperature
dependencies are considerably different, where the source function depends on ∼ T 3/2

e

for electrons and ∼ T 4
e for radiation and similarly the mean free paths differ. This

fact has a significant effect on the global profiles and dynamics during the laser–target
interaction [95].

In any case, the procedure of the source function linearisation is performed. As
already mentioned in chapter 4.3, the method consists in expansion of the source func-
tions to the Taylor series Se/R = SAe/RTe + Sbe/R [113]. Both terms are still strongly
temperature dependent due to the non-linearity of the system, but it can be solved
implicitly in temperatures already. It implies the incoming flux is balanced with the
outgoing and the expensive iterations in the source function are avoided or reduced
from the numerical point of view.

For brevity, we limit the discussion to the 1D Cartesian geometry and the con-
struction of the numerical scheme in multiple dimensions and coordinate systems is not
reviewed here, but all details can be found in [94]. For convenience, the single spatial
coordinate z, polar angle ϕ ∈ [0, π) and azimuthal angle θ ∈ [0, 2π) (not to be confused
with θe in chapter 9.1.2) are used instead of the spatial vector x⃗ and the direction
vector Ω⃗. In this 1D cylindrical geometry, the system (301–300) can be rewritten as:

1
ce/R

DIe/R
Dt + cosϕ∂zIe/R = 1

λ̄e/R

(
SAe/RTe + Sbe/R − Ie/R

)
,

(302)

ρcV e
DTe
Dt +

∫
2π

∫
π

 1
ce/R

DIe/R
Dt + cosϕ∂zIe/R

 sinϕ dϕ dθ = 0. (303)

Note the equations are independent of the azimuthal angle θ, which could be removed
from the integration, but the terms are retained for a formal correspondence with other
geometries.

10.2 Weak formulation
The weak formulation of the non-local transport system (300–301) relies on discontin-
uous functions in space. This choice matches the numerical magnetohydrodynamics
described in chapter 8.2 and is suitable for hyperbolic systems, where discontinuities
may appear in the solution and dissipative processes are not desired. The angular
space is approximated by the discontinuous functions, which are suitable for strongly
anisotropic transport, but may lead to considerable ray effects [116, 117]. Also only the
uniform isotropization is implemented, as the angular diffusion is not straightforward
to employ. On the other hand, a space of continuous functions offers a direct way
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towards implementation of the Laplace–Beltrami operator (in addition to the uniform
isotropization), but an artificial diffusion in angles can be expected [118]. Hence, it
better suits more diffusive conditions.

In order to proceed according to the finite element method apparatus from chapter
6, the problem is considered on the multi-dimensional domain ΩI = Ω×ΩΩ⃗ = Ω×Ωϕ×
Ωθ, where the latter is the decomposition for the cylindrical geometry. The spatial and
angular spaces then read:

T = Iz = L2(Ω), (304)
Iϕ = L2(Ωϕ) or H1(Ωϕ), (305)
Iθ = L2(Ωθ) or H1(Ωθ), (306)

where the temperatures are taken from the thermodynamic space (Te ∈ T ) and the
intensities are taken from the combination of the spatial, polar and azimuthal spaces
(Ie/R ∈ I = Iz × Iϕ × Iθ). As mentioned in chapter 10.1, the 1D formulation is
independent of the azimuthal angle, so only the space of constant functions span(1) ⊂
L2(Ωθ) is considered there.

Afterwards, the variational formulation of the non-local transport system in the
cylindrical coordinates can be obtained in the following form (∀φ ∈ T ′, ωz ∈ I ′

z, ωϕ ∈
I ′
ϕ, ωθ ∈ I ′

θ): 1
ce/R

DIe/R
Dt + cosϕ∂zIe/R + λ̄−1

e/RIe/R, ωzωϕωθ


II

+
〈

(Ω⃗ · n⃗)TΩ⃗·n⃗
Iz
Ie/R,TIzωzωϕωθ

〉
II

+

+
〈
(Ω⃗ · n⃗)TIzIe/R,TIzωzωϕωθ

〉−

II
= 4π

(
λ̄−1
e/RS

A
e/RTe, ωz

)
T Iz

+ 4π
(
λ̄−1
e/RS

b
e/Rωz

)
Iz

+

+
〈
(q⃗Γ
e/R · n⃗)TIzωz

〉Γ+
q⃗

Iz
, (307)

(
ρcV e

DTe
Dt , φ

)
T T

+
 1
ce/R

DIe/R
Dt + cosϕ∂zIe/R, φ


II

= 0. (308)

Note the identity of the thermodynamic and spatial intensity spaces is utilized and
contraction by constant functions is made in (308). The transformation of the sphere
differential dΩ⃗ = sin(ϕ) dϕ dθ is included in the definitions of the forms. Finally, a
meaning must be given the plus and minus signs in the superscript. They symbolize
the outflow (−) and inflow (+) parts of the boundary, i.e. the parts with Ω⃗ · n⃗ ≥ 0
or Ω⃗ · n⃗ < 0 respectively. The boundary inflow is then determined by the boundary
flux q⃗Γ

e/R defined on Γq⃗ ⊂ ∂Ω, where only the part Γ+
q⃗ ⊂ Γq⃗ is considered with the flow

opposing the outer normal. The identical upwinding is applied anywhere discontinuities
appear inside the domain. The surface integrals of the sub-domains are evaluated,
where TIz represents the trace of the space Iz on the integrated sub-domain and TΩ⃗·n⃗

Iz

the trace from the upstream sub-domain. The idea behind the procedure is to naturally
follow the characteristics of the hyperbolic system along Ω⃗ and stabilize the method.

Furthermore, it should be mentioned the boundary conditions are not limited
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to the influx only, but there exits also the reflective boundary condition, which is not
detailed for its formal complexity. Though, it is important for thermodynamic isolation
of the system, similarly to the heat diffusion in chapter 9.

It is also worth a note the divergence term is formulated in the strong way,
which does not guarantee conservation of energy for the discrete scheme. The weak
form would solve this problem and remains a topic of the future development. This
point is also related to the simplification given by absence of the normal jumps at
the discontinuities in (308), which is justified by convergence of the intensity to a
continuous solution, as only volumetric losses are involved.

10.3 Discrete model
The discretization of the non-local transport employs discontinuous elements in space,
while classical nodal continuous or discontinuous elements are used in angles, follow-
ing the choices in chapter 10.2. The design with discontinuous elements has another
advantage of an increased sparsity of the resulting discrete system. Also the assembly
process is greatly simplified, when the matrices are constructed from separate blocks
corresponding to the spatial, polar and azimuthal coordinates. In this connection, it
must be noted only the spatial matrices must be recomputed every time step, but the
angular tessellation is not changing in time and the element matrices are constant.

The time integration is fully implicit to treat correctly the coupling through the
temperature. The first order backward Euler scheme is employed, where a higher order
time stepping could be devised with the SDIRK methods similarly to chapter 9, but
non-linearity of the system must be considered. All coefficients in the equations are
temperature-dependent and must be updated, so an improved convergence only of the
linearised system would not yield the desired overall results.

The discretized system (307–308) takes the form:

Mθ ⊗

Mϕ ⊗

 1
ce/R∆tMz + Mλe/R

+ Mcosϕ ⊗ Dz


︸ ︷︷ ︸

AIe/R

In+1 =

= Mθ0 ⊗Mϕ0 ⊗MSA
e/R︸ ︷︷ ︸

AIe/RTe

Tn+1
e +Mθ0 ⊗Mϕ0 ⊗ bSb

e/R
+ bq⃗e/R

+ 1
ce/R∆tMθ ⊗Mϕ ⊗MzIn︸ ︷︷ ︸

bIe/R

,

(309)
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1
∆tMTeTn+1

e + Mθ0 ⊗

Mϕ0 ⊗
1

ce/R∆tM
TeI
z + Mcosϕ0 ⊗ DTeI

z


︸ ︷︷ ︸

ATeIe/R

In+1 =

= 1
∆tMTeTn

e + 1
ce/R∆tMθ ⊗Mϕ ⊗MTeI

z In︸ ︷︷ ︸
bTeIe/R

. (310)

The zeros in the subscripts designate the contracted matrices. The matrices and vec-
tors correspond to chapter 10.2, but more details with exact definitions of the terms
can be found in [94]. Note the spatial matrices in the temperature equation (310)
are distinguished from those in the intensity equation (309). This points to the fact
the discrete spaces can be different. Typically, the intensity spatial polynomial order
is chosen higher by one than the temperature, which correlates with the divergence
gradient terms.

The implicit system (309–310) is not solved in the mixed form, but reduced to
the temperature or intensity equation. To see this, the system is rewritten as:

AIe/R
In+1 − AIe/RTeTn+1

e = bIe/R
, (311)

ATeIe/R
In+1 + 1

∆tMTeTn+1
e = 1

∆tMTeTn
e + bTeIe/R

. (312)

The elimination of the intensity leads to a banded system for the temperature, which
was originally solved by an iterative sweeping of the domain with in-time construc-
tion of the element matrices [82, 113]. However, this approach is not transferable to
multiple dimensions, where an optimal explicit ordering of the elements is not known.
Therefore, an alternative approach is devised, where a global system of intensity is
formed with the upwinding procedure determining the sparsity pattern. Eventually,
the hybridization technique is applied for high-order elements to decrease the size of
the linear system, similarly to chapter 9.3. The system can be then efficiently solved
by the block incomplete LU preconditioner and generalized minimal residual method
or a direct solver. Thus, the second method better suits the anisotropic and non-local
regime of the transport, while a tight coupling with the material temperature and
rather local, isotropic transport favours the original method.

Another related problem is the possible poor regularity of AIe/R
. Especially for

the electrons, the inertial term is absent (or weak in the case of radiation) and the
absorption part might be in the non-local regime relatively weak as well. A slight regu-
larization of the system by an additional diagonal matrix scaled by a factor proportional
to the Frobenius norm is applied and iterated until convergence in the intensities is
reached. Note the procedure is completely local and executed on the element level due
to discontinuity of the intensity elements.
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10.4 Example problems
This chapter presents numerical tests and examples of the non-local transport. Due to
the identical construction of the scheme for radiation and electron heat, both can be
validated by a single test. In particular, it is the steady cosines test in chapter 10.4.1,
which serves for this purpose and offers measurement of the convergence too. The
hotspot problem covered in chapter 10.4.2 is more realistic and compares the results
with reference models of the transport.

10.4.1 Steady cosines

The first problem validates and analyses convergence of the numerical methods of non-
local transport to a stationary solution. In order to simplify the conditions, the test
is considered in 1D with a constant absorptivity kλ and a prescribed source function
S = S(z). The transport equation (302) reduces to an ordinary differential equation
of the form:

µ∂zI(z, µ) = kλ(S(z)− I(z, µ)), (313)
where the single intensity I = I(z, µ) and the polar cosine µ = cosϕ appear. It can be
noticed the system is dependent only on the single parameter of the effective inverse
mean free path kµ = kλ/µ. The source function is chosen as S(z) = sin(πz) and the
boundary condition for zero influx is applied at z0. The opposite boundary condition
is free, i.e. setting zero normal jump of the intensity. Under these conditions, the
transport equation (313) has an analytic solution, which reads [94]:

I(z, µ) = exp(−kµ(z − z0))
kµπ cos(πz0)− k2

µ sin(πz0)
π2 + k2

µ

−
kµπ cos(πz)− k2

µ sin(πz)
π2 + k2

µ

.

(314)
The solution for different polar angles is depicted in Figure 314. The domain

spans from 0 to 1 and the left boundary has the zero inflow condition (z0 = 0). The
absorptivity is set to kλ = 4 in the relative units. The intensity originating from the
source is gradually attenuated with the travelled distance, but the intensity closer to
the axis penetrates further due to the contribution of the relatively stronger cosine
terms, which represent the advection in the solution.

The convergence analysis is performed in Figure 18 for different polynomial orders
of the spatial elements. The polar angle is specifically chosen as ϕ = π/4, which
matches the central DOF of the polar second-order element when two segments are
used. This segmentation is minimal to safely separate the forward and backward
propagating intensity, but the specific combination of the angle with the polar element
implies no interpolation is needed, resembling the discrete ordinate method, and the
convergence is independent of the angular resolution. For different angles, the angular
resolution would have to be increased proportionally to the spatial to decrease the
overall error. The results show the order of convergence is proportional to the spatial
order of the elements. Though, the combination of the linear thermodynamic elements
with the quadratic intensity elements exhibits only the first order convergence after
a steeper start. This phenomenon can be explained by the fact that the asymmetric
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Figure 17: Solution of the steady cosines problem. The dashed curve corresponds to the
source function and the full lines show the solution for different polar angles denoted
in the legend.

shape functions mediate the advection to the neighbouring elements rather than the
symmetric, so the convergence improves only with the odd orders of the intensity
elements. Ultimately, this behaviour is confirmed even by the fourth order elements.

The steady cosines test was designed to verify the stationary non-local transport.
The comparison with the analytic solution confirmed convergence rates proportional to
the polynomial orders of the intensity elements. Though, an irregularity of this relation
was recognized, where the convergence was improving only with the odd orders.

10.4.2 Hotspot relaxation

The second test concentrates on a more realistic problem, which can be relevant to
the ICF or other areas of research. It is known as the hotspot relaxation problem and
consists in dissipation of a compact initial profile of temperature by means of (non-
local) heat transport to the surrounding cold medium [160]. In fact, it closely resembles
the heat bath problem from chapters 7.3.2 and 9.4.1, but the upstream reservoir is
considered finite in this case and the evolution is tracked until (partial) depletion
of the source. The highly non-homogeneous conditions and substantial variations in
the temperature lead to combination of different regimes of the non-local transport.
Consequently, no analytic solution is known for the problem, but multiple models of
transport can be compared instead.

The hotspot is modelled as a Gaussian profile with the peak temperature 5 keV
and the base 1 keV with the initial Gaussian half-width 8.44λ̄0

ei. All values are then nor-
malized to this mean free path, which is calculated for fully ionized hydrogen with the
initial density ne = 1.5 · 1021 cm−3 and the base temperature to be λ̄0

ei = 15 µm. Simi-
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Figure 18: Convergence of the intensity under the polar angle ϕ = π/4. The integral
L1 error of the intensity is plotted as a function of the number of thermodynamic
degrees of freedom. The legend designates the thermodynamic polynomial orders of
the elements.

larly, the time scale is normalized to the collision time τ 0
ei = 1.11 ps. The simulations

are performed on the domain (−80λ̄0
ei,+80λ̄0

ei) till the final time tfin = 30τ 0
ei.

The results for the hotspot problem are summarized in Figure 19. The heat
diffusion with and without a flux limiter is compared with the BGK non-local transport
and kinetic simulations from [160]. At the earliest time, the transport is in the non-
local regime to a large extend and the unlimited diffusion clearly overestimates the
fluxes and the relaxation in turn. By coincidence, the absolute values of the heat
fluxes are similar for the unlimited diffusion and the kinetic simulations, but they must
be related to the temperatures, which are substantially higher for the kinetic model.
In contrast, the non-local closure model shows excessive flux inhibition in this regime,
as already revealed in chapter 3.3. Still, the flux-limited diffusion inhibits the heat
flux even stronger. It becomes more clear for the later times, where the non-physical
limitation of the heat flux leads to the effect of “heat flux starvation”. The artefacts
appear in the solution near the edges of the hotspot, presenting bottlenecks for the
transport, and the central area cannot relax due to the locality of the diffusion model.
Oppositely, the unlimited diffusion continues to excessively dissipate the hotspot, but
the process naturally slows down for the later times. The heat transport gets under
milder conditions and the BGK model starts to show a very good agreement with the
kinetic model.

In conclusion, the hotspot problem showed behaviour of the non-local model
under realistic conditions, which was relatively close to the reference kinetic simulations
for the mildly non-local regime. The comparison with the diffusion model stressed
importance of the non-local models for the laser plasma modelling.
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Figure 19: The spatial profiles for the hotspot relaxation problem at different times
(columns): the electron temperature (top row), heat flux (middle row), and Knud-
sen number (bottom row). The models of heat transport are compared: flux-limited
diffusion (blue), unlimited diffusion (orange), non-local BGK model (green), reference
kinetic simulation (dashed red). The spatial coordinates and time are normalized to
the initial mean free path and collision time respectively. Adopted from [20] with mod-
ifications.
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11 Laser absorption models
The models of laser absorption are absolutely essential for modelling of laser plasma, as
the laser presents the main source of energy in the simulations. Moreover, the vicinity
of the critical plane is also the place of origin for most of the non-local electrons due
to the steep profile of temperature located in this zone typically [95]. Therefore, an
increased physical realism and numerical precision of the methods for laser absorption
is needed. For this purpose, the code PETE2 implements multiple physical models
reviewed in chapter 5.

First, it is the WKB model, which benefits from the high-order finite element
treatment, but no refraction of the rays is considered nor reflection from the critical
plane. The simplicity of the physical model allows its implementation in multiple
dimensions straightforwardly, despite that the model remains only single-dimensional
from the physical point of view, i.e. the propagation follows a single predetermined
direction.

The second model is based on the stationary Maxwell’s equations (SME), as de-
scribed in chapter 5.2. It offers a full self-consistency in the vicinity of the critical plane,
but it is also single-directional and cannot be extended to multiple dimensions directly.
An effort has been done to apply the model on parallel rows/columns of a regular
multi-dimensional mesh, but remapping from the Lagrangian mesh was necessary [82].
This approach is ruled out with the curvilinear finite elements due to the geometrical
complexity of the possible intersection. Therefore, the model remains limited to the
single dimension.

Finally, a ray-tracing code has been developed by M. Šach [128], which was inter-
connected with the code PETE2. At its core, it follows the general description of such
methods presented in chapter 5.1, but ray equation is solved only in the approximation
of a piecewise-constant medium. The rays then propagate along straight lines and
refraction occurs only at the element edges. The connection to the high-order curvi-
linear meshes is enabled by the transfer to a low-order refined mesh and back again.
Furthermore, the ray-tracing is enhanced by additional laser absorption mechanism, as
described in chapter 11.3.

In conclusion, there is no model clearly surpassing the other and different models
better suit different conditions. (Ultra-)short pulses can be modelled realistically by
the SME model in 1D. The absorption on a large focal spot with dominance of the
inverse Bremsstrahlung can be efficiently simulated by the WKB approach in 2D or
3D, while the cases with more pronounced geometrical effects in 2D and eventually
contribution from the resonant absorption or reflection on the critical plane better suit
the ray-tracing method.

11.1 WKB model
The Wentzel–Kramers–Brillouin (WKB) model presents one of the simplest physical
descriptions for propagation and absorption of the laser. Following the optical approx-
imation reviewed in chapter 5.1, the magnitude of the wave envelope is separated from
the direction of propagation. The refraction of the rays is not modelled anyhow in this
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case and they propagate along straight lines. The power of the laser is the attenuated
according to the Beer–Lambert law (179). Together with its contribution to the energy
equation (229), the governing equations read:

Ω⃗L · ∇IL = −αLIL, (315)

ρ
Dεe
Dt

∣∣∣∣∣
laser

+ Ω⃗L · ∇IL = 0. (316)

In essence, the equations strongly resemble the non-local transport of chapter 10.1, but
the single, predetermined direction of propagation Ω⃗L appears in the system. Another
distinction point is absence of the sources in the domain and only a Dirichlet boundary
condition for IL. Moreover, the propagation of the laser is limited to the under-dense
region of the plasma. This phenomenon can be introduced to the model by promotion
of the propagation coefficient to a function (Ω⃗L = Ω⃗L(x⃗)). It is defined as follows:

Ω⃗L(x⃗) =
d⃗L ne(x⃗) < nc,

0⃗ ne(x⃗) ≥ nc,
(317)

where d⃗L is the (unit) direction vector of the laser. The unitary value in the under-
dense part of the domain allows free propagation and the zero value in the over-dense
forces the intensity to zero there effectively. This means no reflection of the intensity
is modelled and the full power is absorbed there. From the physical point of view,
anomalous processes are assumed to operate there and lead to absorption on the dis-
tances of a few mean free paths from the critical plane [43]. Though, a fraction of
the intensity should be reflected back, which cannot be simulated by the means of the
simplified model. However, the input intensity of the laser can be downscaled to match
the absorbed power thanks to the linearity of the model.

11.1.1 Weak formulation

The finite element method is applied also to the WKB model governed by the equations
(315–316). Similarly to the non-local transport in chapter 10.2, discontinuous functions
are used for the intensity. The thermodynamic and intensity spaces then coincide in
the definition T = IL = L2(Ω). The variational formulation of the laser absorption
then reads (∀φ ∈ T ′, ϖ ∈ I ′

L):

(αLIL, ϖ)ILIL
+
(
Ω⃗L · ∇IL, ϖ

)
ILIL

+
〈

(Ω⃗L · n⃗)TΩ⃗L·n⃗
IL

IL,TIL
ϖ
〉

ILIL

+

+
〈
(Ω⃗L · n⃗)TIL

IL,TIL
ϖ
〉−

ILIL

=
〈
(S⃗Γ

L · n⃗)TIL
ϖ
〉Γ+

S⃗L

IL

, (318)
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(
ρ

Dεe
Dt , φ

)
T T

+
(
d⃗L · ∇IL, φ

)
ILT

+
〈

(d⃗L · n⃗)Td⃗L·n⃗
IL

IL,TIL
ϖ
〉

ILIL

+

+
〈
(d⃗L · n⃗)TTL

IL,TT φ
〉−

ILT
=
〈
(S⃗Γ

L · n⃗)TT φ
〉Γ+

S⃗L

T
. (319)

The equations have nearly identical form as the non-local transport in space, where up-
winding is employed in the domain to stabilize the advection. Also an influx boundary
condition is applied for the incoming laser irradiation characterized by the Poynting
vector S⃗Γ

L on the inflow boundary Γ+
S⃗L

. The main difference appears in the energy
equation (319). The strong divergence involves also the normal jumps at the disconti-
nuities, which are upwinded to maintain consistence with the intensity equation, but
the direction vector d⃗L is used directly. The reason is that the critical plane can be
reached and the intensity is discontinuous there due to the propagation coefficient Ω⃗L.
In this case, the whole power should be deposited in the first over-dense element. It im-
plies the solution cannot be assumed continuous even in the limit unlike the non-local
transport and the surface integrals must be evaluated precisely.

11.1.2 Discrete model

The discretization procedure chooses the discontinuous positive finite elements for both
spaces, the thermodynamic and intensity. Due to the strong gradient applied on the
intensities in the energy equation (319), the intensity elements are chosen with the
polynomial order higher by one normally. The resulting semi-discrete model reads:(

MαL
+ DΩ⃗L

)
IL = bS⃗L

, (320)

MT
Dee
Dt + DTeI

d⃗L
IL = bTe

S⃗L
. (321)

The notation follows the chapter about the non-local models (10.3). The system is
solved for the intensity, which is then utilized for an explicit update of the internal
energy. The power of the laser is not conserved exactly, similarly to the non-local
transport. The weak formulation would solve the situation in principle, but mismatch
of the polynomial orders in the definitional integrals can be expected. A more severe
problem is violation of monotonicity during the inversion of MT . The possible dis-
continuity at the critical plane may cause oscillations and undershoots of the intensity
behind it due to Runge’s phenomenon. This effect is then manifested by a non-physical
negative laser absorption at that place. In order to prevent this behaviour, the method
of flux corrected transport (FCT) for L2 elements is utilized [193]. The high-order
anti-diffusive contributions are rescaled to keep the intensity values positive, although
the order of the method is locally decreased effectively.

Also in this case, the combination of block incomplete LU decomposition (ILU)
and generalized minimal residual method (GMRES) is employed or the UMFPACK
direct solver for serial builds of the code [194].
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11.1.3 Example problem

The functioning of the WKB laser absorption model is demonstrated on a simple
problem of normal target irradiation. A step profile of the density and temperature is
tailored to provide conditions for propagation and continuous absorption of the laser on
the right side, while the left side is over-dense, disabling any propagation and localized
absorption of the laser at the critical plane is expected.

The computational domain is defined as (0, 60 µm) × (−40 µm,+40 µm) in 2D.
The mesh consists of 20× 20 linear thermodynamic and quadratic intensity elements.
Moreover, the nodes of the mesh are randomly displaced by the factor of 20 % to
validate behaviour of the method under non-ideal conditions. The critical plane is
placed at the coordinate x = 10 µm and the over-dense part has the density nle = 1.1nc
and temperature T le = 1 eV, while the under-dense plateau has the density nre = (1 −
10−5)nc and temperature T re = 1 keV. The laser impinges the profile from the right
with the intensity 1012 W/cm2 and the Gaussian spatial profile with the full-width-
half-maximum (FWHM) of 40 µm. The wavelength of the laser is set to 1 µm for
simplicity.

Figure 20: Laser propagation and absorption by the WKB method on the step profile:
a) laser intensity [erg/cm2/s], b) absorbed power density [erg/cm3].

The results of the numerical simulation are visualized in Figure 20. The gradual
attenuation of the laser intensity can be seen in the under-dense area until the critical
plane (in the fourth column of cells from the left) is reached. The intensity locally
overshoots the previous values due to discontinuity of the elements and the rapid
decline of the values as approaching critical plane. The absorption plot shows an
intense localized absorption at the place, which is deposited rather to the back side of
the cells, into the over-dense part, due to the upwinding technique. A slight permeation
to the next column of the cells is visible due to interpolation of the intensity elements,
but without any undershoots and negative absorption thanks to the FCT correction of
the projection to the thermodynamic space.

Concluding this chapter, the WKB method of laser absorption was checked to
operate correctly in under-dense media and provide a smooth numerical solution for the
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collisional absorption. Moreover, it was able to capture the critical plane and deposit
the power in a strongly localized manner without numerical artefacts.

11.2 Stationary wave model
The physical model based on the stationary Maxwell’s equations was presented in
chapter 5.2. It provides a full stationary wave solution, which remains valid and fully
self-consistent even in the vicinity of the critical plain unlike the WKB or ray-tracing
models. In other words it is not limited to the slow variations of permittivity compared
to the local wavelength of the laser (|∇ε̂|/|ε̂| ≪ n̂r/λL). The decomposition of the
waves to the incoming characterized by the vector field P and the reflection coefficient V
reduced the problem to the pair of equations (188–189), which has properly determined
boundary conditions. On the side of vacuum, it is the intensity of the laser imposing
the value of P and zero value of the reflection coefficient V a few skin depths behind the
critical plane. Unfortunately, this decomposition is possible only in 1D for transversal
waves. Still, the method can be applied in the normal direction to the target if the
interaction is sufficiently planar, but remapping to a regular mesh is necessary [82]
or application of the parallel rays method [135], which become cumbersome due to
the complex geometry of the high-order curvilinear finite elements, as mentioned in
the introduction of this chapter. Another approach is limitation of the model to the
vicinity of the critical plane, where it is mostly needed, and solve the laser propagation
on larger scales by a ray-tracing code [138]. This methodology can be viable and
remains a topic of the future development.

In any case, the underlying stationary Maxwell’s equations must be solved effi-
ciently and robustly on the hydrodynamic scales to present a feasible option for the
codes. In [132], we devised a method combining a semi-analytic approach with a differ-
ential. The semi-analytic method is applied on the longer scales when the wavelength
of the laser cannot be resolved or the absorption is rapid. Though, the method is
limited only to the second order of convergence. In contrast, the differential approach
can attain virtually an arbitrary order of convergence on a sufficiently resolved domain
due the finite element method applied.

In order to proceed with the description of the methods, it must be realized
the equation for V (189) presents a complex ordinary differential equation (ODE) of
Riccati type. In order to solve it efficiently, it can be reformulated to a pair of linear
ODEs by choosing V = K/L (assuming L ̸= 0), where K = K(x) and L = L(x) are
auxiliary functions. The decomposition is not unique and it can be realized that the
original pair of wave vectors P and R was related to V in the same way, i.e. V = R/P .
Though, this procedure enables to transit to a simpler system of equations:

L′ = n̂′

2n̂K, (322)

K ′ = −2ik0n̂K + n̂′

2n̂L. (323)

The system forms a symmetric matrix and reduces to a single equation effectively in
absence of gradients of the refractive index.
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11.2.1 Semi-analytic method

The first approach to solution of the equations for L and K (322–323) is the semi-
analytic method. It is formally given by the matrix exponential of the integral of
the system matrix A, i.e. (L K)T ∼ exp(

∫
A dx). The derivation of the solution is

detailed not here and can be found in [132]. The resulting propagator matrix, relating
the vector of unknowns at one point (x0) with another (x), depends only on integrals of
the refractive index and its boundary values. Consequently, a semi-analytic method can
be directly constructed by numerical evaluation of these underlying integrals and their
insertion to the analytic solution. The discontinuity of the refractive index calculated
from the thermodynamic quantities can be encompassed by matching conditions at
the interfaces. When the values of L and K are known, the solutions for P or A are
reconstructed in the form:

P (x) = P (x0)
L(x)
L(x0)

√√√√ n̂(x0)
n̂(x) exp

(
ik0

∫ x

x0
n̂ dx

)
, (324)

A(x) = A(x0)

∣∣∣∣∣∣∣
L(x)
L(x0)

√√√√ n̂(x0)
n̂(x)

∣∣∣∣∣∣∣
2

exp
(
−2k0

∫ x

x0
Im n̂ dx

)
. (325)

It can be noticed the solutions simplify to the classical form of exponential attenuation
(and harmonic oscillation in the case of P ) in a homogeneous medium when L is
constant according to (322). The solution is then evaluated on a quadrature and
projected onto appropriate high-order finite elements. In particular, the continuous
Lagrange finite elements are used for the Poynting vector, which is of the primary
interest. Fundamentally, this energy flux must be continuous and it can be proved
the matching conditions at interfaces for the auxiliary variables satisfy this condition,
meaning no averaging has to be done [132].

11.2.2 Differential method

The differential approach relies on the finite element method. The spaces of discon-
tinuous Galerkin elements are used for the quantities L,K and P or A. The system
(322–323) is solved variationally, where the matching conditions at the inter-element
interfaces couple the system. Due to the single-dimensional construction and the afore-
mentioned discontinuity, a sweep can be performed from one boundary to the other,
where the element matrices are inverted locally. The boundary condition for V = 0
behind the critical plain can be translated to K = 0 and L = 1, for example. Indeed,
the system is invariant to mutual scaling of both variables. Moreover, the algorithm
can be switched to the semi-analytic regime any time the resolution criterion is not
met [132]. When L and K are known, the original equation for P (189) or A (190) can
be solved in the identical manner from the opposite boundary. Finally, a quadrature
values of the Poynting vector are calculated according to (191) and projected to the
continuous finite elements.
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11.2.3 Example problem

There are not many known problems in the literature with a full numerical analytic so-
lution for the stationary Maxwell’s equations. An exception are Epstein profiles, which
were first studied in the context of propagation of radio waves in Earth’s atmosphere
[195]. However, they represent simple transition profiles, which are not asimilar from
the partially expanded profiles of laser plasma that are smooth in the vicinity of the
critical plane due to various transport mechanisms. The wave nature of the absorption
can manifest under such conditions. It can be also the environment of foams, which
have low densities and the skin depth can be considerably long [196]. The evanescent
waves, which are not modelled by the classical WKB model, can penetrate the target
to a notable depth.

The Epstein profiles defined for the complex refraction index and permittivity as
follows:

n̂2 = ε̂ = ε̂l + (ε̂r − ε̂l)
1

exp(−ς) , ς = k0x

∆ξ = ξ

∆ξ , (326)

where ξ is (vacuum) phase coordinate and ∆ξ is the width of the transition profile in
these units. For convenience, the width is normalized as ∆ξ = (ξmax − ξmin)σ, where
the ξmin = −400π and ξmax = +400π are the boundaries of the domain. The profiles of
the refractive index are plotted in Figure 21 for three different values of the parameter
σ. The parameters of the transition layer are chosen as ε̂l = (10−2 + 10−6i)2 and
ε̂r = (5 · 10−4 + 10−2i)2.
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Figure 21: Complex refractive index for the Epstein profiles: real part (full), imaginary
part (dashed). The legend designates the steepness parameter σ. Reprinted from [132].

The problem of Epstein transition layers has an analytic solution in terms of
hypergeometric functions [195], which can be translated to the variables of the SME
model [132]. The electromagnetic wave approaches the profile from the left, i.e. the
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left boundary condition for A is set. The resulting Poynting vector and its divergence
are plotted in Figure 22. The wave nature of the interaction is clearly manifested. The
steepest profile shows a single peak in absorption around of the critical plane, which
is located near ξ ≈ 0. In essence, it is very close to the step function and most of the
energy is reflected as can be seen from the Poyinting vector value. Though, considerable
penetration to the target by means of the evanescent wave can be recognized. This
result justifies the technique of absorption at the critical point in the WKB model, but
it must be realized the real problem is inter-coupled and the steep plasma profiles may
not exist without a simplified absorption model and self-consistence of the modelling
is needed. In contrast, the moderate gradients show gradual reflection and a smaller
absorption peak at the critical point. The solution remains significantly oscillating
even about 200 wavelengths from the critical plane, stressing importance of the wave
modelling. Under real conditions, such extreme distances cannot be expected, but the
wave modelling is still important at least multiple wavelengths from the critical plane
[138]. The wave mechanism of the cross-beam energy transfer (CBET) is also strongest
in the vicinity of the caustics with severe implications to the ICF dynamics [197, 198].

200 150 100 50 0 50 100 150 200
ξ/2π

0.000

0.001

0.002

0.003

0.004

0.005

0.006

0.007

S̃
 [r

el
at

iv
e 

un
its

]

σ= 0.1
σ= 0.3
σ= 0.5

0.0

0.2

0.4

0.6

0.8

|S̃
′ | 

[a
rb

. u
ni

ts
]

Figure 22: Solution of the interaction of an electromagnetic wave with the Epstein
profile: normalized Poynting vector (full), normalized divergence of the Poynting vector
(dashed). The legend designates the steepness parameter σ. Reprinted from [132].

In [132], we show the numerical solution converges to the analytic with the first
order for a piecewise constant approximation of the refractive indices and the semi-
analytic method. This improves up to the second order for a quadratic representation
of the refractive index, but the convergence does not scale further. On the other
hand, the differential solution scales with the polynomial order of the elements, but
is strictly limited in the lowest possible resolution, otherwise poorer results than with
the analytic approach are obtained. The optimal strategy is then combination of both
methods based on a local criterion, as we proposed in [132].
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In summary, the problem of an electromagnetic wave interacting with the Epstein
transition profiles showed complexity of the wave optics and its importance in the laser
plasma modelling. The numerical treatment combining the semi-analytic and high-
order finite element approaches can benefit from the positive features of both and
attain robustness as well as a rapid convergence.

11.3 Ray-tracing model
The ray-tracing model relies on the optical approximation of the laser, which was
theoretically summarized in chapter 5.1. From this point of view, it is fundamentally
close to the WKB model presented in chapter 11.1 and shares the differential description
of the collisional absorption through the Beer–Lambert law (315) with it. The main
distinction between the models is refraction, which is naturally included in the ray-
tracing models. The influx of the laser radiation is split to numerous rays, which are
traced throughout the domain, governed by the ray equation (175) or the equation of
motion (177) in the Hamilton–Jacobi formalism.

It can be immediately seen the equations reduce to propagation along straight
lines in absence of gradients of the complex refractive index. In the case of a piecewise-
constant medium, the rays obey Snell’s law at the interfaces:

n⃗× k⃗1 = n⃗× k⃗2, (327)

where n⃗ is the normal to the interface and k⃗1 and k⃗2 are the wave vectors in the half-
spaces separated by the interface. In fact, it can be seen as the mere discontinuous limit
of the aforementioned ray equation with a matching condition for the tangential wave
number. A simple analytic solution also exists for a (piecewise-)linear medium, where
the rays follow parabolas, giving rise to the methods of parabolic ray-tracing [121].

The method of straight-line ray-tracing was implemented by M. Šach primarily
for the purposes of X-rays amplification, but with functionality of the laser absorption
as well [128]. In addition to the classical model of inverse Bremsstrahlung, it offers
a simplified model of resonant absorption near the turning point of the rays for p-
polarized laser beams [123]. Even though the rays are typically totally reflected before
reaching the critical plane, the initial interaction with the laser may lead to their
interaction with the bare critical plane. Therefore, a condition stopping the rays is
integrated. Unlike most of the codes of this kind, which deposit the full power of the
rays at that point similarly to the WKB method, the described ray-tracing code is
equipped with the Fresnel equations to determine the fraction of power crossing the
interface. With an appropriately calibrated collision frequency closure model [82], the
reflectivity of a solid target can be simulated correctly.

11.3.1 High-order mapping

The described model of ray-tracing considered only a piecewise-constant medium.
When integrated with the high-order finite element magnetohydrodynamics of chap-
ter 8, the construction would be limited only to the T0 elements, losing most of the
benefits offered by the method. Therefore, a procedure mapping the high-order finite
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elements to the low-order refined finite elements and back is devised. In fact, the
ray-tracing requires only three quantities to operate: the electron density ne, real re-
fraction index n̂r and absorption coefficient αL = −2k0n̂i. These grid functions must
be mapped to the refined mesh, so the tracing of the rays can be performed and the
absorbed power of the laser is obtained. This power is then mapped back to the coarse
high-order mesh.

In particular, the computational mesh is uniformly refined by the factor equal
to the number of DOFs per element multiplied by an additional coefficient greater or
equal to one. The additional refinement is useful for the ray-tracing algorithm, which
can be strongly non-linear when the rays are totally reflected in the vicinity of the
critical plane. It enables to capture spatial variations of the quantities in the domain
and deformation of the computational mesh.

The interpolation of the quantities is performed by the L2 integral projection in
the direction from the coarse mesh to the fine. The associated operator F is defined
in the discrete form as follows:

Fij = (MLOR
ik )−1

∫
Ωh

φLORk φHOj dV ∀i, j, (328)

where φHOj are the basis functions of the high-order elements from the thermodynamic
space and φLORj correspond to the low-order refined elements. The term MLOR

ik is the
mass matrix of the thermodynamic elements on the fine mesh. It must be noted these
elements are discontinuous, so the operation can be performed locally including the
inversion of the mass matrix, which is diagonal for the piece-wise constant elements.

The reverse procedure of mapping the absorbed power onto the high-order ele-
ments also utilizes an L2 projection. At the core, it performs the operation (MHO)−1FT ,
but such operator does not respect local extremes of the functions. Thus, overshoots
to negative values can be expected behind the critical plane, where the intensity of
the laser rapidly drops. Therefore, the L2 FCT is employed to correct the inversion of
the mass matrix [193], similarly to the WKB method (see chapter 11.1.2). Though, a
difference exists in the procedure, where not only positivity of the function is of a con-
cern, but also the local extrema, which are determined over the sub-cells of the refined
mesh and the edge neighbourhood. Finally, it should be mentioned an alternative to the
high-order mass matrix MHO is construction of FTMLORF, which has an advantage of a
potentially less diffusive action on the grid functions and also providing the left inverse
of the forward operator within the backward projection ((FTMLORF)−1FTMLORF = I)
[199]. However, this alternative approach remains a topic of the future development.

11.3.2 Parallelization

A difficulty inherently connected with the ray-tracing methods is their parallelization.
As they do not operate on grid functions, but a set of independently propagating rays,
they do not conform to the domain decomposition paradigm. Though, the magneto-
hydrodynamic code PETE2 is primarily parallelized in this way. Therefore, the ray-
tracing code has to communicate the rays on the distributed computational mesh,
while load-balancing is nearly ruled out by the fact the trajectory on the mesh is not
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known beforehand and is a part of the solution. This point presents a considerable
disadvantage compared to the simpler, but grid-based WKB method.

hit

discard

inter.

inter.

Figure 23: Diagram of the parallel ray tracing: computational cells (dashed black),
distributed sub-zones (full black), laser (red) and communication (blue). Types of the
messages are denoted (hit/intersection/discard). The refraction of the ray is indicated
only at the sub-zone interfaces for simplicity.

The actual parallelization relies on a global pool of the rays, which are being
traced. A schematic view of the communication is illustrated in Figure 23. The first
type of event that must be communicated is a hit of the target. As the computational
domain can be non-convex, multiple boundary intersections with the axis of an incom-
ing ray may exist. The initial intersection is determined based on the distance from the
source. The globally closest intersection to the source is chosen using chain commu-
nication between the peers. The tracing starts only after this notice loops around the
cluster, guaranteeing consistence between the processes . Oppositely, the ray may not
hit the target at all. This piece of information must be communicated as well, so all
peers can safely remove the ray from the pool. The final decision is made by the root
process, which sends out another type of message, the discard notice, when informed
about the ray by the rest of the processes though a chain message. The discarding
process is initiated not only when the target is missed, but also when it leaves the
domain or is completely absorbed. The discard notice is also relayed by all peers and
loops around until it reaches the originator and only then it is removed from its pool,
guaranteeing consistence of the global pool again. Finally, it is the exchange of the
intersections and powers of the rays transiting from one sub-domain to another. Unlike
the other messages, these are addressed only to the peers sharing the involved face of
an element. All communication is performed in the asynchronous regime with a timely
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garbage collection of the completed transactions to regulate the memory consumption.

11.3.3 Example problem

The test problem for the ray-tracing code is nearly identical to the problem for the
WKB method in chapter 11.1.3. The main difference is given by the angle incidence,
which is fixed to 45◦ in this case to show reflection of the rays, which was not possible
to model within the WKB method. The setting of the test is not fully physical as the
laser is totally reflected at the critical plane, otherwise the results would be very similar
to the WKB approximation with maximal absorption at the plane, only corrected by
the Fresnel coefficients for the given angle of incidence. The coefficients of reflection
are set equal to the unity, in order to make the reflected laser light more visible.

The simulation domain spreads over (0, 60 µm) × (−60 µm,+60 µm). The res-
olution is 20 × 20 linear thermodynamic finite elements. The nodes of the uniform
computational mesh are randomly dislocated by 10 %. The parameters of the laser
are identical to chapter 11.1.3, i.e. wavelength 1 µm, Gaussian spatial profile with
the peak intensity 1012 W/cm2 and FWHM 40 µm. Likewise, the step is located at
x = 10 µm and the left values of the temperature and electron density are T le = 1 eV
and nle = 1.1nc. The opposite side has the relatively high temperature T re = 1 keV to
reduce the absorptivity of the plasma, while the density is very close to the critical
value nre = (1− 10−5)nc.

Figure 24: Total reflection of the laser on the step function simulated by the ray-
tracing method: a) projected absorption on the linear finite elements, b) absorption
on the refined piecewise-constant elements. The values are in erg/cm3/s.

The results of the numerical simulation are visualized in Figure 24. The actual
absorption is performed on the low-order refined mesh and mapped to the high-order
finite elements, as described in chapter 11.3.1. In total, 400 rays are traced from the
emitting line wide 80 µm towards the origin of the coordinate system. The plots of
the absorbed power show a smooth reconstructed profile further from the step, where
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only the incoming laser is gradually attenuated. These results are on par with the
those obtained by the WKB method. The situation becomes more involved closer to
the interface, which is not perfectly flat due to the random displacement of the mesh
nodes. Most of the rays are reflected in an approximately correct direction, giving the
bulk shape to the reflected beam. Though, some of the rays are reflected from the more
uneven segments of the interface. It shows sensitivity of the method to the underlying
geometry of the computational mesh, which must be always kept in mind. However,
it must be mentioned the code relies on the gradients of electron density obtained by
the least squares reconstruction from the local neighbourhood instead of the normals
to the edges when determining refraction and reflection [128]. Thus, relatively stable
results can be expected in continuous media even for disturbed meshes. Furthermore,
the interfaces in discontinuous media can be smoother resolved by the curvilinear finite
elements, which was not investigated in this test, since only the nodes of the mesh were
dislocated.

The test problem confirmed the ability of the ray-tracing method to model re-
flection from an internal interface. The combination of the refinement and the integral
projection offers smooth results in a continuous medium. The actual reflection was af-
flicted by geometrical errors, which presents a difficulty for all methods of this kind, but
the curvilinear finite elements may help to reduce these errors under real conditions.
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12 One-dimensional simulations
This chapter presents one dimensional simulations of laser–target interactions under
realistic conditions. Different contributions to the energy transport are investigated.
Primarily, it is the radiation transport (chapter 12.1) and electron heat transport (chap-
ter 12.2). In both cases, the diffusive approximation and the non-local discrete ordi-
nates methods are compared, highlighting the salient distinct features. From this point
of view, the 1D modelling has the undeniable advantage of a better detail and more
straightforward analysis of the involved physical phenomena.

12.1 Radiation transport
The notion of non-locality is inherently connected with radiation transport, as pho-
tons can travel vast distances between their point of origin and their final destination.
Though, it was already reasoned in chapter 4 that the minuscule dimensions of the laser
plasmas and the high densities favour rather subsequent absorption and re-emission
processes [100]. The measure distinguishing between the diffusive and free stream-
ing regimes of transport is the radiation Knudsen number KnR = |q⃗R|/(cϵR), which
simplifies in the context of the diffusion to KnR = |∇ϵR|/(ρκRϵR) (see chapter 4.1).
Small values (≲ 10−2) indicate mostly diffusive and isotropic transport, while high
values (≳ 1) correspond to the non-local regime accompanied by a strong anisotropy
typically.
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Figure 25: Schematic view of the laser–target interaction: mass density (black), elec-
tron temperature (red), laser intensity (green) and radiation flux (blue).

The typical situation in laser plasma is illustrated in Figure 25. The interaction of
a laser beam with a solid target leads to ablative removal of the material and formation
of a plasma plume. The laser propagates only up to the point of the critical density,
which separates the coronal part and the conduction zone. The corona is partially
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transparent for the laser, which is gradually attenuated until it reaches the critical
plane (consult chapter 5). The deposition of the laser power heats up the plasma and
generates an intense thermal radiation, which almost freely escapes the plume through
the low-density corona, where the Knudsen number is highest normally. On the other
side, radiation propagates to the over-dense region of the so-called conduction zone,
which is established based on the balance between the fluxes. Provided the radiation
transfer is the dominant transport mechanism in the area, which is the case for high-Z
materials typically, it is the balance of the outward hydrodynamic flux ∼ pu⃗ and the
radiation flux q⃗R into the target. For this reason, this zone is very sensitive to the
magnitudes of the fluxes and the underlying transport modelling, strongly affecting
the shape of the so-called double ablation front (DAF) structure [200]. A comparative
study under different physical conditions and the implied regimes of transport was
made in [95]. The Knudsen numbers are moderate in this area, depending on the
particular conditions, making the modelling cumbersome. Returning to the description
of the typical scenario, the efficient transport through the conduction zone induces the
ablation pressure on the target, driving a shock wave inwards. The Knudsen numbers
are very low in the area as the radiation cannot penetrate the compressed material,
but the compression itself mildly heats the matter.

In order to demonstrate the plasma processes and effects of different models, a
numerical simulation under typical conditions is performed. A solid aluminium target
at the approximately room temperature (0.03 eV) is considered. A laser with wave-
length λL = 351 nm (corresponding to the third harmonic frequency of a Nd:glass laser
system) impinges the target from the right side. The laser pulse has the peak inten-
sity IL = 1 · 1014 W/cm2 and Gaussian time profile with FWHM 2.5 ns and an equal
temporal offset. The computational domain spans from −200 µm to 0. In total, 40
quadratic/cubic finite elements T2 are geometrically distributed with the factor 0.88.
The geometric factor determines the ratio between the sizes of every two successive
elements. The time stepping employs the RK2-Average scheme with the CFL constant
CCFL = 0.25. The tensor viscosity based on the full eigenvector decomposition is used
with the linear factor Clin = 0.5 and quadratic Cquad = 2.0 [25, 177]. As the equation
of state, QEOS is chosen with interpolation provided by the HerEOS library (see chap-
ter 2.4). The simulation runs in the two-temperature regime with either the model
of non-equilibrium gray-body radiation diffusion or the gray-body non-local radiation
transport. The diffusion model relies on the backward Euler relaxation and the limiter
by Levermore & Pomraning (see chapters 4.1 and 9.1). The boundary conditions for
zero flux and Milne-like free streaming are set on the left and right boundaries respec-
tively. In the case of the non-local approach, the cubic discontinuous elements are
applied in space and polar angle, which is divided to two π/2 segments. This setting
is sufficient for separation of the forward and backward propagating radiation in 1D
and smooth interpolation in both directions. The combination of the boundary con-
dition for zero intensity derivative and free propagation is set. The mean Planck and
Rosseland opacities are calculated from scaling laws according to [201].

The comparison of the diffusive and non-local modelling is made in Figure 26.
Both approaches exhibit a strong radiation cooling effect, where over 60 % is radiated
away. Though, distribution of the radiation flux on the opposite side is notably differ-
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Figure 26: Comparison of the non-equilibrium radiation diffusion (blue) and non-local
transport (orange) at time t = 2.5 ns: a) mass density, b) electron (full) and radiation
(dashed) temperatures, c) ion temperature, d) radiation flux, e) velocity and f) laser
intensity.
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ent. Although the temperatures are very similar in the conduction zone, the radiation
diffusion does not limit the flux significantly due to the maximal Knudsen number ≈ 2,
which results in an elongated profile of the zone and a continuous temperature and den-
sity profile. In contrast, the non-local model limits the radiation flux strongly, which is
manifested by the laser absorption closer to the target and the bent temperature and
density profiles. The electron temperature then departs from the radiation temperature
given by the conditions at the critical point predominantly. Consequently, the velocity
is higher in the corona and the density decreases to lower values, but with a smaller
slope, since the radiation cooling mechanism is effectively lost due to decoupling of
the electron temperature. In both cases, the temperatures are relatively low and the
simulation remains in the equilibrium between the ions and electrons. Also an effect
of the left non-local transport boundary condition is visible, which causes radiation
temperature accumulation, but without any consequences for the electron and/or ion
temperature.

The problem demonstrated important differences between the radiation transport
modelling and the non-local radiation transfer. However, the peripheral regions of
corona and conduction zone were mainly affected, without any significant effects on
the shock wave propagation.

12.2 Electron heat transport
The electron transport holds many similarities with the radiation transport, as already
recognized in chapters 3 and 10. Also in this case, the regime of transport can be
characterized by the Knudsen number Kne = λ̄e|∇Te|/Te for dominant variations of
the temperature or Kne = λ̄e|∇ne|/ne in the case of the density. Alternatively, these
definitions can be related through the transport equation (300), which offers the ex-
pression for the mixed case Kne = λ̄e|∇Se|/Se = λ̄e(|∇ne|/ne + 3/2|∇Te|/Te). The
electrons with high values of Kne are strongly delocalized and can cross spatial vari-
ations of temperature density before being absorbed. Contrary, the low values of the
parameter indicate transport by means of many collisional events under the conditions
dictated by the local values of the thermodynamic potentials. However, important
differences must be recognized, as the significantly different temperature dependencies
of the coefficients and the collective interaction through the self-consistent electric field
maintaining quasi-neutrality of the plasma. These distinction points lead to overall
different behaviour and operation on different scales traditionally [95].

The typical profiles during a laser–target interaction are schematically depicted
in Figure 27. Similarly to chapter 12.1, the laser is gradually absorbed before reaching
the critical plane. This driver induces localized heating of the plasma and produces the
super-thermal electrons. These electrons can also freely stream through the coronal
low-density plasma, as the mean free paths are comparable with or exceed the size of
the plume, but they cannot escape the expanding plasma due to the conservation of the
total charge. Physically, some separation of the charge is possible, as the Debye length
increases (λDe =

√
ϵ0kBTe/(nee2)), but the approximation of the plasma as a quasi-

neutral fluid does not allow this behaviour in its simplicity. Therefore, the heat flux
must vanish at the outer boundary of the plume, directing most of the energy towards
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Figure 27: Schematic view of the laser–target interaction: mass density (black), elec-
tron temperature (red), laser intensity (green) and electron heat flux (orange). The
preheating effect due to the non-local electrons is distinguished by the dashed line.

the target. Provided the electron transport is dominant in the conduction zone, which is
the case for low-Z materials, its shape is also governed by its balance with other fluxes,
although the spatial scales are typically smaller than for the thermal radiation. Also the
flux limitation may not be as dramatic, not breaking the temperature profile visibly.
However, a small fraction of the highly non-local electrons can penetrate even the
shock wave and get deposited in the area of the hydrodynamically unperturbed target,
degrading the compression ratio, which is critical for ICF applications [31]. Although
the preheat is undesirable, the coupling between the laser and the driven shock wave
can be improved by the non-local species [33], which is especially important for the
shock ignition schemes [32]. For this reason, it is worthwhile to compare estimates of
different electron transport models.

12.2.1 Hydrodynamic closure models

First, the hydrodynamic closure models of heat diffusion and the BGK non-local trans-
port are compared. The physical conditions and numerical settings are identical with
those of chapter 12.1, i.e. an aluminium target is irradiated by a defined laser pulse.
The only difference is the resolution of the computational mesh, where only 30 elements
with the geometric factor 0.9 were taken for the BGK electron transport. The reason
are stability issues connected to the method, as commented later. The heat diffusion
model uses the heat flux limiter rescaling the conductivity by the harmonic mean (see
chapter 3.1.2). The limiting fraction of the heat flux versus the free-streaming flux is
flim = 0.05.

141



12.2 Electron heat transport 12 ONE-DIMENSIONAL SIMULATIONS

0.00 0.05 0.10

10 3

10 2

10 1

100

101
a) Mass density [g/cm3]

0.00 0.05 0.10

100

102

104

b) Electron temperature [eV]

0.00 0.05 0.10

10 1

100

101

102

103

c) Ion temperature [eV]

0.00 0.05 0.10

-2e+20

0

2e+20

d) Heat flux [erg/cm2/s]

0.00 0.05 0.10
x [cm]

0.00

0.25

0.50

0.75

1.00

1.25
1e8

e) Velocity [cm/s]

0.00 0.05 0.10
x [cm]

0

2e+20

4e+20

6e+20

8e+20

f) Laser intensity [erg/cm2/s]

Figure 28: Comparison of the electron heat diffusion (blue) and non-local transport
(orange) at time t = 2 ns: a) mass density, b) electron temperature (non-local temper-
ature is dashed), c) ion temperature, d) heat flux, e) velocity and f) laser intensity.
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The numerical results obtained with the two models are compared in Figure 28.
Very similar density profiles appear in both cases, but with flatter tail for the non-local
transport. This feature corresponds to the ever increasing velocity and temperature,
which are caused by the strong heat flux to the corona and rather weak towards the
target. Contrary, the diffusion model shows only marginal deposition of energy in
the under-dense region, but intense to the target. The flux limitation is potentially
underestimated there as the moderately non-local regime emerges with the Knudsen
number Kne ∼ 10−3 – 10−2 in the vicinity of the critical plane, which stresses im-
portance of a self-consistent treatment. The reason for the peculiar behaviour of the
non-local transport in the corona can be seen in the plot of the non-local electron tem-
perature, which accompanies the (local) electron temperature, but is always slightly
higher. This phenomenon is implicated by the fact the source function of electrons is
density-dependent. When only the heat intensity is transported without any notion of
the spectral distribution, the non-local electron temperature and the the contribution
to the local temperature must be calculated from the local densities, which continuously
decrease. This effect leads to overheating of the corona and issues with stability of the
simulations. The multi-group treatment can potentially cure the problem (similarly
to the SNB model from chapter 3.1.3), but the lack of a self-consistent electric field
implies inability to couple different velocity groups correctly, as discussed in chapter
3.3 already.

Also a minor problem appears near the left boundary condition, where the ac-
cumulated electron heat intensity causes minor heating of the material. A similar
artefact appeared in the radiation transport simulations in the previous chapter (12.1),
but had no implications for the material temperature. The exact mechanism of this
anomaly must be studied, but it has a negligible impact on the overall dynamics of the
simulation.

Finally, the laser intensity profile has its maximum distanced from the emitting
boundary, but this peculiar feature can be attributed to the low resolution and discon-
tinuity of the elements. The inflow boundary condition then integrally acts this way,
but the resulting divergence of the Poynting vector includes the boundary contribution
according to chapter 11.1 and remains negative, i.e. the absorbed power is positive.
Unfortunately, this is not true for the non-local transport based on the original design
[113, 94], which does not include the contributions from the discontinuities in the dis-
crete divergence (see chapter 10.2) and exhibits small ditches between the temperature
elements for these reasons most probably.

In summary, the simulations with the diffusion and non-local transport high-
lighted differences between the approaches, where the technique of flux limitation can-
not reflect the actual changing conditions. However, the comparison also revealed
numerical issues connected to the BGK model of non-local transport, which can be
partially attributed to its physical design already. This point motivates future devel-
opment of better models for the non-local electron transport.
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12.2.2 Kinetic model

The kinetic reduced Vlasov–Fokker–Planck–Maxwell model from chapter 7 presents an
alternative to the hydrodynamic closure models of heat diffusion and non-local BGK
transport. However, it does not account for the ion motion and its temporal scale is
tied to the plasma frequency and other microscopic scales. Even though the implicit
construction and the reduced nature of the model offer less expensive computation,
simulations on the hydrodynamic scales are still demanding and the full coupling with
a hydrodynamic code is non-trivial [202] and remains a possible topic of the future
development. Therefore, a single time frame from the previous hydrodynamic simula-
tion with the diffusion model is used as the initial condition for the kinetic code. In
order to attain the quasi-static regime of the hydrodynamic scales, the calculation is
performed without the transient fluxes and electric fields, i.e. only the isotropic part
of the electron distribution function f0 is non-stationary to self-adjust to the physical
conditions.

In particular, the starting point is the time t = 2 ns investigated in the previous
chapter (12.2.1). The reduced VFP simulation then runs with the time step ∆t =
2.5 · 10−22 s for the time 6.75 · 10−19 s. Such a short time step correlates with the
extremely short collision time in the compressed area, which is as short as ≈ 3.2·10−22 s
for the electron–electron interaction based on the classic formula (72). The combination
of the quadratic f0 and cubic f⃗1 and E⃗ is used to directly match the hydrodynamic
simulation. In total, 400 velocity levels are considered uniformly distributed from 0 to
7vTe for the maximal temperature 1800 eV.
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Figure 29: Heat transport modelled by the diffusion (full) and kinetic model (dashed):
mass density (blue), heat flux (orange) and the Knudsen number (black).

A comparison of the diffusive and kinetic results is made in Figure 29. The plot
of the Knudsen number confirms the previous analysis and indicates that differences
between the approaches can be expected only in the conduction zone and corona. The
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very low values in the solid target push both models towards the diffusive regime,
where they were confirmed to agree in chapter 7.3.1. However, it must be mentioned
the hydrodynamic model includes correction of the heat conductivity for solid den-
sities [82], while the classical Spitzer-Härm conductivity, to which the kinetic model
converges, declines to extremely small values. Replacement of the Fokker–Planck col-
lision operator by a dedicated model for solid matter is a possible topic of the future
research, which would enable simulations of the preheat effect. The most significant
difference appears in the vicinity of the critical plane. The heat flux towards the target
is approximately four times stronger for the kinetic model than for the diffusive one.
Some corrugation of the profile is visible further away from the plane, which can be
attributed to the transition from the hydrodynamic to the kinetic code. Inversion of
the f0 mass matrix is necessary during the process, which entails deformation of the
profile. Also the short convection zone can be affected by this numerical phenomenon
partially. However, there is also the effect of the non-local electrons reflected from the
dense part. On the hydrodynamic scale, these fluxes would elongate the conduction
zone and normalize over time, similarly to the BGK model in the previous chapter
(12.2.1). This argument is supported by the still relatively high values of the Knudsen
number of the order 10−2, which permits moderately non-local transport.

The kinetic modelling of a snapshot from the diffusion simulation showed an
excessive heat flux limiting in the latter, but also indicated non-locality of the transport,
which cannot be adequately modelled diffusively. This non-locality was qualitatively
encompassed by the BGK model to some extend, but significant quantitative differences
could be found. This supports the direction of research towards non-local closure
models closer to their kinetic foundation.
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13 Two-dimensional simulations
The two-dimensional simulations focus on problems, where the geometric effects can be
important. Conceptually, they present a trade-off between the enormously demanding
3D simulations on one side and the oversimplified 1D models on the other. In partic-
ular, the problems of laser absorption (chapter 13.1) and spontaneous magnetic fields
generation (chapter 13.2) are presented. The laser absorption involves reflections and
refraction on transverse gradients of the plasma profiles. Moreover, with an oblique
incidence of the laser rays, also the mechanism of resonant laser absorption can be in-
cluded. While the laser absorption can be modelled 1D approximately, the simulations
of spontaneous magnetic fields generation are completely impossible there, since the
mechanism of Biermann battery relies on misalignment of the density and temperature
gradients. The 2D dynamics of both quantities must be simulated precisely, as the
gradients naturally tend to align again due to convective and conductive processes.

13.1 Laser absorption
The process of laser absorption is determining for ablation of material from a solid
target and production of the super-thermal electrons and radiation. Depending on
the parameters of the laser and target, the deposition of the laser power can be more
localized to the vicinity of the critical plane, where it resonantly excites electrons,
which is the case for longer wavelengths typically. Or it can be gradually attenuated in
the corona by the collisional absorption, which occurs for shorter wavelengths usually,
as they penetrate to the more dense regions due to the higher values of the critical
density (consult chapter 5). Moreover, the beam can be partially reflected or refracted
in the plasma, as described in chapter 5.1. Therefore, multiple numerical methods
for solution of the laser absorption were offered in chapter 11. Although the most
physically accurate description is provided by the wave-based model theoretically, it
is limited to a single dimension and differences from the optical limit can be observed
mainly on small spatial and/or temporal scales. For the simulations of longer pulses
in multiple dimensions, the ray-tracing code or the WKB model are more suitable.
Despite the fact the models stem from the identical optical approximation in principle,
their performance under realistic conditions is worthwhile to compare.

The simulated problem is taken from [128, 135], where it served for demonstration
of the developed ray-tracing codes on low order computational meshes. It involves a
laser with wavelength λL = 1.315 µm, corresponding the fundamental frequency of an
iodine laser, which impinges a solid aluminium target from the right. The spatial and
temporal profiles are idealized as Gaussian with FWHM 400 ps in time with an identical
offset and focal spot size 100 µm. The peak intensity is 1.2 · 1015 W/cm2 at the central
axis and p polarization of the laser is assumed. The simulated part of the target has
size 40 µm × 30 µm and the frontal surface is aligned with the coordinate x = 0. It is
covered by the computational mesh with 30 × 20 elements with geometric factor 0.88
along the x axis. The main difference from the original problem is given by usage of
the quadratic/cubic finite elements, where the mapping to the low-order refined mesh
for the ray-tracing is performed according to chapter 11.3.1. The additional refinement
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Figure 30: Comparison of the ray-tracing (a,b) and WKB method (c,d) at time t =
320 ps: a,c) temperature [eV] and b,d) absorbed laser power [erg/cm3/s].

factor is set to 4, meaning that 12× 12 piecewise-constant finite elements are used for
a single high-order element. The rays are distributed uniformly over the transverse
distance of 1.5 FWHM with 10 rays per each frontal surface edge, giving 2400 rays in
total. For simplicity, the ideal gas equation of state with the full ionization is used as in
the references. The hydrodynamic scheme employs the RK2-Average scheme with the
CFL constant CCFL = 0.25 and the full eigenvector decomposition tensor viscosity with
the coefficients Clin = 0.5 and Cquad = 2.0. In addition, the heat diffusion model is used
with the harmonic heat flux limitation and the limiting fraction flim = 0.05. Unlike
other problems presented here, only the single-temperature approach is followed.

The numerical results obtained with the ray-tracing model and the WKB method
are compared in Figure 30. The overall shapes and distributions of the temperature
are very similar in both cases. Though, certain differences exist between the models.
Mainly, the ray-tracing expands the plasma more than the WKB model does. The
reason can be seen in the plots of the absorbed power, which show that the dominant
mechanism of laser absorption is absorption at the critical plane, as expected from the
infra-red laser wavelength and the low associated critical density (nc = 6.45·1020 cm−3).
In other words, the beam crosses the low-density plasma and reaches the critical point
before being attenuated by the inverse Bremsstrahlung. The ray-tracing reduces the
absorbed fraction by the Fresnel coefficient of reflection, but it is insignificant for the
normal incidence and a continuous medium. A difference could appear at the very
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beginning of the simulation, when the frontal cell is over-dense and all power is absorbed
at the interface with vacuum. It should be noted such sharp vacuum boundary is only
a numerical idealization due to finite sizes of the cells and absence of a pre-pulse,
which justifies the technique. After the first low-order mesh cell is burned through,
the interaction is very similar within both methods. Though, the internal reflections
and refraction tends to deposit the energy slightly more to the outer cells, which leads
to the more expanded corona. However, the temperatures are higher in the case of
the WKB method, which indicates approximately same absorbed energy over time in
both simulations, which is only confined in different volumes. Also the peaks of the
absorbed power differ in their maxima and sizes, but the shapes vary dynamically and
the total power is again approximately identical in both cases.

The simulation of the interaction between an iodine laser and a solid target con-
firmed viability of the method remapping between high-order and low-order refined
finite elements for purposes of the ray-tracing. Moreover, it showed convergence of
both methods to a single solution, where only subtle differences exist, which can be
primarily attributed to the richer physical model of laser propagation and absorption
in the case of the ray-tracing method.

13.2 Spontaneous magnetic fields
Even without an external magnetic field, strong magnetic fields may emerge in plasma.
Chapter 3.1 described the Biermann battery process from the physical perspective,
while its numerical modelling within the MHD code was summarized in chapter 8.3.1.
In essence, the process is responsible for generation of localized magnetic fields even in
quasi-neutral plasmas. The only physical condition is misalignment of the density and
temperature gradients in the plasma, which can occur due to non-convective transport
mechanisms. Even in the context of a laser–target interaction, mega-gauss magnetic
fields can be achieved [76, 203]. Approximately toroidal fields are formed above the
target surface in the cusp of the plasma plume or at the front of the shock wave
propagating into the target [204]. Though, other mechanisms can be equally important,
like the generation of the spontaneous fields by a stream of fast electrons generated
by the interaction of the laser with the plasma [205]. These species are highly non-
collisional, penetrating deep through the plasma column, and induce the resistive return
current. The resulting circulation of the currents generates the strong magnetic field.
Ideally, the former contribution could be included in the non-local transport models for
a self-consistent and predictive modelling of the problem, but the generation processes
of the fast electrons on the hydrodynamic scales are poorly understood and the models
of non-local transport from chapter 10 were designed rather for an efficient treatment
of the super-thermal electrons, not far from the collisional equilibrium. However, a
simplified approach was proposed, modelling the species as an external electric current
scaled with the laser intensity [206]. Implementation of this model remains a topic of
the future work, but early results of the Biermann battery mechanism modelled with
the new numerical scheme (chapter 8.3.1) were presented at [207].

A solid aluminium target is considered at the room temperature approximately
(0.03 eV). For purposes of demonstration, a laser with wavelength 1 µm irradiates the
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target from the right hand side. The spatial and temporal profiles of the laser pulse are
Gaussian functions with the spatial FWHM 7.5 µm and temporal FWHM 500 ps. The
pulse reaches its peak intensity 1 · 1012 W/cm2 at time 500 ps. The narrow focusing
implies strong geometric effects, which in turn lead to the circulation of the current and
magnetic field generation. Though, it gets to the limit of the optical approximation, as
the WKB model of absorption is applied, which presents a certain simplification and the
real situation can be more involved, but generation of the spontaneous magnetic field
is the main merit of the problem. The computational domain spans over (0, 2 µm) ×
(0, 10 µm) and the central symmetry is assumed. Since the modelling of the Biermann
battery with high-order finite elements is under development, only piecewise-constant
thermodynamic and magnetic finite elements are used. The elements are not uniformly
distributed, but 120 elements with the geometric factors 0.99 are placed along the
horizontal axis and 75 with the factor 1.01 vertically. The geometric factors determine
the ratio between the size of the next cell compared to the previous. The aim is to refine
the mesh at the front surface, where the laser interacts with the target. The simulation
is performed in the two-temperature regime, where the models of (isotropic) resistive
MHD and electron heat diffusion (with the flux limiter flim = 0.1) are present. The
equation of state based on the SESAME tables was used [63, 64].

Figure 31: The spatial profiles with active magnetic field generation at time t = 300 ps:
a) mass density (interpolated) [g/cm3], b) electron temperature (interpolated) [eV], c)
laser intensity [erg/cm2/s] and d) magnetic field [statT].

The numerical results are presented in Figure 31 for time t = 300 ps. The plasma
expands in a nearly spherical manner due to the small focal spot. The prevalent
density gradient is directed from the target, while the temperature decreases in the
direction from the central axis, where the laser is being absorbed. This misalignment
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of the gradients generates the magnetic field by the effect of Biermann battery. It
is strongest near the surface of the target, but extends in both directions. In the
corona, the gradients naturally align as the flow is driven by the pressure gradient,
combining both quantities. On the other hand, the high densities in the solid target
limit expansion of the fields in that direction, but magnetic diffusion mediated by eddy
currents spreads them considerably. Consequently, the fields produced by the shock
wave propagating into the target are not visible. Due to the relatively weak power of
the laser, the fields do not have the potential to affect the dynamics of the system,
as the magnetic pressure ≈ 2.5 · 107 erg/cm3 .= 25 bar is significantly smaller than the
thermal one. Also the magnetization (χ ≲ 10−3) is not sufficiently high to affect the
thermal transport noticeably, which justifies the applied isotropic approximation (see
chapter 3.1.1).

The problem demonstrates that even a relatively weak laser can generate notably
strong magnetic fields. In this case, the maximal field is 8.3 ·10−7 statT .= 25 kG, which
is in line with the expectations for the given parameters. The fields are not intense
enough to affect the dynamics of the system nor the thermal transport to a greater
extend, but they have been experimentally measured even for longer laser pulses [208].
Such configurations are relevant, among other applications, to the deposition of thin
films studied before [209], where knowledge of the detailed plasma conditions is crucial.
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14 Three-dimensional simulations
The multi-dimensional design of most of the numerical methods presented in this work
allows even 3D simulations of laser–target interaction. Though, such simulations are
demanding in terms of the computational resources required. Therefore, the use is
typically limited to the most complex scenarios of the interaction, where the spatial
symmetries are broken. In the context of ICF, it can be inhomogeneity of the laser
irradiation or of the capsule itself, which in turn generates swirls of the self-generated
magnetic field, further degrading the symmetry [210]. However, the pre-pulse physics
is simulated with idealized conditions of absolutely flat targets usually and it is rather
the effect of spatial confinement of the laser energy for narrow focusing, which plays
a role in the interaction. Still, if the laser has an approximately axially symmetric
intensity profile, the simulations can be performed in the cylindrical coordinates in 2D.
The hydrodynamic scheme based on the high-order curvilinear finite elements can be
formulated axisymmetrically [211], but the implementation and extension to the rest
of the physical models remains a prospect of the future work.

For the computational demands of 3D simulations, a single problem is presented,
designed for demonstration of the code capabilities under typical conditions. An
aluminium target at the solid density ρ0 = 2.7 g/cm3 and near room temperature
T0 = 0.03 eV is irradiated by a constant laser pulse with the intensity 1 · 1014 W/cm2,
which can be considered as an approximation of the pedestal of an ultra-relativistic
laser pulse, for example [34]. The focal spot size is rf = 5 µm for the Gaussian ra-
dial profile of the laser. For simplicity, the ideal gas equation of state is employed
with the full ionization. In addition, the heat diffusion is applied with the flux limiter
flim = 0.05. Finally, the computational mesh consists of 4× 4× 20 elements from the
T2 family, which are distributed over the domain (0, 8 µm)×(0, 8 µm)×(0, 10 µm) with
the geometric factor 0.96 in the z direction, i.e. axis of the laser.

The numerical results from the early stage of the interaction are visualized in
Figure 32, which were also presented in [163]. The process of laser ablation is clearly
visible there, including the launched shock wave, the laser absorption at the critical
density and a strong heat transport in its vicinity. Even relatively low number of the
interacting finite elements is able to capture the spatial details of the plasma profiles
and curvature of the expanding plasma plume. Thanks to the high-order representation
of the quantities, a smooth interpolation is performed inside the elements. Also the
mesh imprint is relatively small as far as the cylindrical symmetry is considered.

The problem of a laser–target interaction demonstrated the capabilities of the
multi-dimensional multi-physics code PETE2 in 3D. Moreover, it showed benefits of
the high-order curvilinear finite element treatment of the Lagrangian hydrodynamics
for simulations of ablative processes.

153



14 THREE-DIMENSIONAL SIMULATIONS

(a) Density [g/cm3] (b) Temperature [eV]

(c) Heat flux magnitude [erg/s/cm2] (d) Laser intensity [erg/s/cm2]

Figure 32: Plasma profiles in the 3D simulation of laser–target interaction at time
30 ps. The combination of the quadratic thermodynamic and cubic kinematic finite
elements is used. Reprinted from [163].
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Conclusions
The non-local transport of energy in laser plasma is a complex phenomenon, which is
not limited only to electrons, but also entails coherent and incoherent radiation, for
example. The species can be called non-local whenever their mean free path exceeds the
characteristic length of the local variations. Freed of the collisions/absorption events,
they can transport energy from the point of their origin on vast distances relatively
to the local conditions. Various attempts have been made to accurately, yet efficiently
capture the behaviour of the non-local species over the course of the past decades.
Though, the challenges associated with the description of non-locality are not only on
the side of the physical description, but also arise in the numerical modelling of the
transport. The non-locality changes the fundamental structure of the equations from
the parabolic diffusion to hyperbolic advection, which renders the efficient and stable
convection solvers honed over time completely inapplicable or inefficient at least. It is
also the increasing anisotropy and non-linearity of the models associated with the non-
locality, which foils the efforts for straightforward integration of this kind of transport
to the existing methods. Therefore, a change of the paradigm is unavoidable from the
theoretical basis to the numerical solution.

The first part of this work laid the theoretical groundwork for the particular meth-
ods presented later on. The fundamental principles of the kinetic theory were covered
in chapter 1, describing plasma in an unmatched detail. However, solution in the full
phase space is infeasible, as it poses a 7D problem in general. Hence, the model was
reduced to the hydrodynamic framework described in chapter 2, where the simplifying
assumption of the kinetic equilibrium was made. This procedure eliminated the notion
of non-locality from the description completely, as only the convective processes are
present in the ideal hydrodynamics. The topic of chapter 3 was then to reintroduce
the heat transport processes. At first, it was achieved by allowing only infinitesimal
deviations from the equilibrium in the classical diffusive paradigm of chapter 3.1. The
additional models of non-local electron transport in chapters 3.2–3.3 partially borrowed
from the kinetic description again, but only in a limited extent to retain feasibility of
the methods. Along the same lines, also the radiation transport description continued
and a good analogy between the descriptions of both species, electrons and photons,
was recognized, which underpinned construction of some of the methods at hand. The
laser absorption modelling described in chapter 5 circumvented the problem of the
unresolved high-frequency fields by formulation of the closure models for the electro-
magnetic energy flux vector (Poynting vector), which reduced the laser model to a
mere energy source from the hydrodynamical point of view. The optical approxima-
tion in chapter 5.1 separated the envelope from the phase completely. However, the
assumptions of the slowly varying envelope break down in the vicinity of the resonant
points like the critical density in the context of laser plasma. This was addressed by the
wave-based method of chapter 5.2, but only in a single dimension, making the methods
complementary in essence.

The second part presented the design and construction of the numerical methods
devised for solution of the physical models from the part first. Chapter 6 established the
framework of the finite element method, which is applied in most of the cases thanks to
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its versatility and scalability to high orders of convergence. Chapter 7 returned to the
kinetic modelling, but the description was reduced to the Cartesian tensor expansion
up to the first order, making the approach feasible even in multiple dimensions. The
implicit formulation provided the method overall robustness and stability. The finite
element construction then offered an arbitrary order of convergence in space, while
maintaining conservation of mass and energy. Despite the undoubted detail of the
Vlasov–Fokker–Planck–Maxwell method in description of electrons, motion of ions was
not encompassed anyhow, limiting the use cases to those dominated by thermal trans-
port. In contrast, chapter 8 summarized construction of the magneto-hydrodynamic
code PETE2, which models the flows of matter in a magnetic field. The Lagrangian
nature of the method was ideally matched by the curvilinear finite elements, providing
also an arbitrary order of convergence in space, while conserving mass, momentum,
magnetic flux and total energy at the same time. Since the idealized MHD does not
include any transport processes other than convection, complementary closure models
are needed. Therefore, the diffusion of electron heat and non-equilibrium radiation
diffusion closures were constructed in chapter 9. As already accustomed, high orders
of convergence were attained with the finite elements, while maintaining (local) en-
ergy conservation. The notion of non-locality was then introduced to the transport in
chapter 10, where the discrete ordinates method for electrons and photons is numeri-
cally solved by finite elements in space and angles. This combination offered smooth
interpolation in both domains and provided the method high rates of convergence, but
exact conservation of energy was not respected by the original design and remains a
prospect of the future work. In any case, the implicit treatment of the coupling with
matter reduced the need of the source iterations, making the methods more feasible
in the context of hydrodynamic simulations. Finally, the techniques of laser absorp-
tion, which fuel all the transport mechanisms essentially, were briefly summarized in
chapter 11. The most accurate physical picture was provided by the method based on
the stationary Maxwell’s equations, which can self-consistently describe the reflection
and absorption in the vicinity of the critical point in terms of the wave optics with
up to the second order of convergence semi-analytically or with even higher orders
differentially, but resolution of the laser wavelength was required. Unfortunately, the
underlying decomposition of the waves was possible only in 1D, leaving the laser ab-
sorption in multiple dimensions on the WKB and ray-tracing methods. Both rely on
the optical approximation, but a grid-based formulation was retained in the case of the
WKB method due to absence of refraction, where the high-order discontinuous finite
elements could be employed. Oppositely, the ray-tracing solved the propagation with
internal refractions along the characteristics, which are the trajectories of the rays es-
sentially. The coupling with the curvilinear finite element MHD code was then enabled
by the mapping between the high-order elements and low-order refined ones.

The last, third part was dedicated to simulations under realistic conditions. The
single-dimensional problems in chapter 12 allowed to study the processes of radiation
transfer and electron heat transport in detail. The former showed an agreement be-
tween the methods to certain extent, but the distribution of the fluxes is not fully
self-consistent as long as the flux-limited diffusion approach is applied. Even the slight
difference in the fluxes in the case of the non-local model notably affected the conduc-
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tion zone and corona. A similar effect was observed for the electron heat transport
on a substantially smaller scale more typical for electrons. However, the non-physical
behaviour of the BGK model in the corona afflicted the simulations, which is given by
the loss of the information about the spectral distribution of the species. This analysis
was confirmed by the kinetic model, resolving fully velocities of the transported species.
No such spurious fluxes to the corona were observed and rather a stronger flux towards
the target appeared in the results with an indication the non-local species contribut-
ing to it. This conclusion underpins efforts in construction of a non-local transport
method more closely related to the kinetic foundations, while remaining efficient and
feasible for large-scale hydrodynamic simulations. The P1/M1 model from chapter 3.2
represents such approach, which can be seen as the quasi-neutral limit of the reduced
VFPM model enhanced by the entropy maximizing closure. Though, the truncation
of the distribution function expansion is related to a destabilizing effect of the electric
field [212]. Therefore, a careful numerical treatment must be devised, which remains a
topic of the future research.

The two-dimensional simulations in chapter 13 focused on problems involving
geometric effects, mainly related to the laser absorption and generation of the sponta-
neous magnetic fields. The importance of the laser absorption is given by the fact it
drives the formation of the plasma and most of the non-local species are produced by
a direct laser–plasma interaction or by the steep slope of temperature in the vicinity
of the critical plane, where the power of the laser is deposited. A comparison of the
methods for laser propagation and absorption is then desirable. The WKB and the
mapped ray-tracing methods were examined, where only minor differences were found
between the two, confirming their common basis. The latter slightly more favoured
absorption further away from target, which can be attributed to the reflections and
refraction in the plasma. Even such a minor detail can have consequences for the non-
local transport of energy by means of super-thermal electrons or radiation, which may
not penetrate deep enough to the target to preheat it in front of the shock wave, for
example. Experimental monitoring of such internal interfaces is challenging, but the
method of resonant small-angle X-ray scattering can reveal these effects [213]. The
second problem under consideration was generation of spontaneous magnetic fields by
the Biermann battery effect. The simulation showed this inherently non-linear and
numerically cumbersome process can be modelled and relatively strong magnetic fields
are generated even for weaker laser pulses. For higher laser intensities, even stronger
magnetic fields on the megagauss level can be expected with implications for the ther-
mal transport in ICF targets [77, 78]. The induced anisotropy inhibits the transport
across the field lines classically or collimates the hot species [214].

Finally, the three-dimensional simulation in chapter 14 demonstrated capabilities
of the Lagrangian code in more dimensions, including the diffusion transport. Though,
such simulations are the most expensive computationally and their usage is designated
to the most complex geometries typically. Such situations may appear in the context
of ICF or narrow focusing in the interaction of a laser with a planar target and effects
of the polarization. Even when the process remains mostly axisymmetric within the
hydrodynamic modelling, our earlier studies pointed to emergence of a strong filamen-
tation in particle-in-cell simulations of an ultra-relativistic laser pulse interacting with

157



the macroscopically modelled density plateau formed by the laser pedestal, where the
non-local transport is important due to sensitivity of the process to the exact plasma
conditions [34, 35]. Later, we proposed the concept of a plasma shutter preventing
the detrimental interaction of the pedestal with the main target. Not only the con-
trast is enhanced, but also a narrower focusing is achieved by means of linear and
non-linear plasma optics [215], improving the laser ion acceleration as one of the major
applications [216, 217, 218].

In conclusion, our research contributed to investigation of various aspects of the
non-local transport of energy in laser plasma, which cannot be narrowed to a single
simplistic model. Moreover, an increased physical realism and resolution is needed
from other involved methods to capture the delicate nature of the kinetic effects. For
this reason, new numerical tools have been developed for high-order modelling of the
underlying magnetohydrodynamics, driving laser absorption and the actual radiation
and thermal transports with a dedicated kinetic code serving as a reference. Shifting
the frontiers of the numerical modelling in multiple ways, the final goal of a robust,
yet efficient description of the non-locality manifested in all its aspects is closer than
ever before.

Being this said, more directions of the future work are opened rather than defi-
nitely closed. The kinetic r-VFPM model would benefit from a high-order treatment in
the velocity domain, while maintaining the conservation of energy. The simulations in
a solid material then pointed to the need of a modification of the collision operator for
such environments. Also ion motion could be introduced to the model through coupling
with a hydrodynamic code. Finally, the modelling of the electrons could be enhanced
by a particle code to treat highly-energetic and nearly collision-less species. Also the
magneto-hydrodynamic code can be further extended in multiple ways. The modelling
of laser–target interaction would definitely benefit from the axisymmetric formulation,
as most lasers in the laboratories posses this symmetry, except dedicated applications,
like X-ray plasma sources or ICF. An Arbitrary Eulerian-Lagrangian (ALE) exten-
sion would then provide robustness to the Lagrangian simulations [193], smoothing
the computational mesh when needed, similarly to the other codes we contributed to
[170, 171, 219]. However, the Eulerian flows open the problem of mixing multiple
materials, which must be addressed specifically [220]. Finally, the model of the Bier-
mann battery effect for high-order elements is one of the nearest goals. However, such
strong magnetic fields are also associated with anisotropy of the transport, where the
diffusion models must be revised. Also the radiation diffusion and non-local radiation
transfer can be extended to the multi-group model and integrated with an opacity
code. The non-local models can further benefit from the conserving weak formulation
for the discontinuous finite elements. In the case of the electron heat transport, the
aforementioned direction of the P1/M1 model is especially promising. However, the
full non-local magnetohydrodynamics must face the same challenges associated with
the increasing anisotropy in magnetic fields as the diffusive approximation. Finally,
the methods of laser absorption can be improved. The WKB model can be formulated
in a conserving way and the wave-based method could enhance the ray-tracing model
in the vicinity of the critical plane.
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