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Abstrakt

Tato dizertacni prace se vénuje studiu strukturnich vlastnosti nekonec¢nych slov s nizkou
faktorovou komplexitou. Prace je koncipovana jako soubor péti autoréinych ¢lanki.
TF z nich jiz byly publikovany v odbornych ¢asopisech, zbyvajici dva ¢élanky jsou v
recenznim fizeni.

Nejvétsi ¢ast prace se vénuje derivovanym posloupnostem. Pripomenme, Ze kazdé
uniformné rekurentni slovo u muiZeme zapsat jako zietézeni koneéného poc¢tu nivra-
tovych slov ke zvolenému prefixu slova u. Usporddani nivratovych slov v tomto
zietézeni je kddovano piislusnou derivovanou posloupnosti. Durand ukazal, Ze slovo
u je primitivné substitutivni pravé tehdy, kdyZ je mnozina Der(u) vSech jeho derivo-
vanych posloupnosti kone¢na.

Nejprve se vénujeme pripadu, kdy je sturmovské slovo u pevnym bodem primi-
tivniho morfismu. V tomto pfipadé prichazime s algoritmem, ktery vraci v8echny mor-
fismy fixujici derivované posloupnosti slova u. Diky tomu miZeme zkonstruovat dobry
horni odhad na velikost mnoZiny Der(u).

Poté zobecniujeme tyto vysledky a popisujeme mnozinu Der(u) pro libovolné zvolené
Arnouxovo—Rauzyho slovo u. Vyuzivame k tomu specidlni S-adickou reprezentaci slova
u. Z tohoto popisu také primo vyplyva, Ze derivovand posloupnost k Arnouxovu-—
Rauzyho slovu u je vzdy Arnouxovo—Rauzyho slovo.

Studujeme také derivované posloupnosti pro libovolné komplementarné symetrické
(CS) Roteho slovo v, které souvisi se standardnim sturmovskym slovem u. Vysvétlime,
ze libovolny neprazdny prefix takového slova v ma pravé tii navratova slova. Také
ukdzeme, Ze libovolnd derivovana posloupnost slova v je slovo kédujici vyménu inter-
vali a najdeme parametry této transformace. Dale ukazeme, ze slovo v je primitivné
substitutivni pravé tehdy, kdyz je slovo u primitivné substitutivni.

Vénujeme se také jinym vlastnostem nekonec¢nych slov. Pro CS Roteho slova na-
jdeme vzorce pro vypocet kritického exponentu a rekurentni funkce. S vyuzitim vzta-
hu pro kriticky exponent popiSeme vSechna CS Roteho slova s kritickym exponentem
mensim nebo rovnym tfem. Daéle ukazeme, Ze existuje nekoneéné mnoho CS Roteho
slov s kritickym exponentem mensim, nez je kriticky exponent Fibonacciho slova.

Nakonec studujeme komplexitu bez opakovani nrC, a pocateéni komplexitu bez
opakovani inrCy, coz jsou funkce, které popisuji strukturu slova u s ohledem na repetice
jeho faktorti dané délky. Najdeme vyjadieni funkce nrC, pro vSechna Arnouxova—
Rauzyho slova a také vyjadreni funkce inrCy, pro standardni Arnouxova—Rauzyho slova.
Ziskané vzorce aplikujeme na d-bonacciho slovo.






Abstract

This thesis is devoted to the study of structural properties of sequences with low factor
complexity. The presented work is a collection of five author’s papers. Three of them
have been already published in refereed journals, while the remaining two articles are
currently being refereed.

The main part of this thesis deals with derived sequences. Any uniformly recurrent
sequence u can be written as the concatenation of a finite number of return words to
a chosen prefix of u. Ordering of these return words in this concatenation is coded by
the derived sequence. Durand proved that a sequence u is primitive substitutive if and
only if the set Der(u) of all derived sequences to the prefixes of u is finite.

First we focus on a Sturmian sequence u fixed by a primitive morphism. In this
case we provide an algorithm which lists the morphisms fixing the derived sequence of
u. This enables us to provide a sharp upper bound on the cardinality of the set Der(u).

More generally, we describe the set Der(u) for every Arnoux—Rauzy sequence u
using a special S-adic representation of u. As a corollary, we show that all derived
sequences of u are Arnoux—Rauzy sequences.

We study derived sequences also for a complementary symmetric (CS) Rote se-
quence v which is related to a standard Sturmian sequence u. We show that any
non-empty prefix of v has exactly three return words. We prove that any derived se-
quence of v is the coding of three interval exchange transformation and we determine
the parameters of this transformation. We also prove that v is primitive substitutive
if and only if u is primitive substitutive.

In addition, for all CS Rote sequences we give the formulas for their critical exponent
and recurrence function. Using the formula for the critical exponent, we describe all
CS Rote sequences with the critical exponent less than or equal to three, and we show
that there are uncountably many CS Rote sequences with the critical exponent less
than the critical exponent of the Fibonacci sequence.

Finally, we study non-repetitive complexity nrCy and initial non-repetitive complex-
ity inrCy, which reflect the structure of a sequence u with respect to the repetitions of
factors of a given length. We determine nrC, for Arnoux-Rauzy sequences and inrC,, for
standard Arnoux—Rauzy sequences. The obtained formulas are then used to evaluate
the values of nrCy,, and inrCy for the d-bonacci sequence.
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Chapter 1

Introduction

Combinatorics on words is dedicated to the study of properties of finite and infinite
words (we call them sequences). Since words appear naturally in many contexts, it is
closely related to many other fields, e.g., symbolic dynamical systems, some parts of
number theory such as positional number systems or continued fraction expansions, or
several fields of theoretical informatics such as theory of codes, languages, automata or
L systems.

Among all sequences, the sequences which can be generated via morphisms (also
called substitutions) are prominent, since these generating morphisms provide us with
a useful tool for their study. They are called substitutive sequences.

For example, the sequence u = (0100101001001010010100100101001001 - - - can be
obtained by the repeated application of the morphism ) : 0 — 010,1 — 01:

0 — 010 — 01001010 — 010010100100101001010 — --- — u.

In fact, to get the sequence u we have to apply the morphism ¢ infinitely many times,
and so we write u = ¢*(0). More precisely we also say that u is a fixed point of the
morphism 7, i.e., ¥(u) = u.

Similarly, the sequence v = 001000100100010001001000100100010001 - - - can be
obtained as the image of u under the morphism 7 : 0 — 0,1 — 01, i.e.,, v = 7(u) =
7(1*(0)). Hence v can be easily generated using two morphisms 7 and .

More generally, we can consider sequences which are generated using a finite set of
morphisms by applying them repeatedly in a given order. This leads us to the notion
of S-adic representation, which is the central notion in our research.

In this thesis we study structural properties of well-known classes of sequences with
low factor complexity, namely the Sturmian, Arnoux—Rauzy and Rote sequences. The
main advantage of these classes is that they admit useful S-adic representations.

First of all, we focus on the derived sequences of these sequences, but we also study
their other properties such as the critical exponent, the recurrence function and the
non-repetitive complexity.
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CHAPTER 1. INTRODUCTION

This thesis is organized as follows. We first give an overview of the studied properties
and classes of sequences in Chapter 2. Then in Chapter 3 we describe the contents of
the articles comprising the thesis. The articles themselves then follow:

[A]

[B]

[€]

[D]

[E]
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Chapter 2

Overview of the field

The aim of this chapter is to present several key properties and classes of sequences
which are studied in this thesis. The basic notions of combinatorics on words are
recalled in Section[2.1] In Section [2.2] we introduce well-known classes of sequences with
low factor complexity such as Sturmian, Arnoux—Rauzy, Rote and dendric sequences. In
Section we summarize the known results about several key properties of sequences.
We focus on the return words and the derived sequences, the critical exponent, the
recurrence function and the non-repetitive complexity. Finally we present useful tools

for their study in Section

2.1 Preliminaries

In this section we recall well-known definitions from combinatorics on words and fix the
basic notation that we use in the rest of the thesis. More details about the background
can be found for example in the books [5[23}[72-74].

2.1.1 Words, sequences, factors and languages

An alphabet A is a set of symbols called letters. In this thesis we always suppose that
the alphabet is finite.

By a (finite) word of length n over A we mean a finite string w = wowy - - - wy—1 of
n letters from the alphabet A. We denote its length |w| = n. There is a unique word
e with the length |¢| = 0 which is called the empty word.

We denote A* the set of all finite words over the alphabet A. We can endow
this set with a binary operation o called the concatenation of words. The concate-
nation of the words v = woui - Up—1 and v = vgv1 -+ Vyy—1 18 the word wov =
UQUL * * - Up—1V0V1 - Um—1. We typically abbreviate the notation and denote wv the
concatenation of the words v and v. The algebraic structure (A*, o) is the free monoid
generated by A and its neutral element is the empty word . We also denote AT the
set of all non-empty finite words over A.

A sequence u = ugujusg - -- over A is a right-infinite string of letters from A (it is
also called an infinite word). Let us note that some authors work with the so-called
bi-infinite sequences - --u_su_juguius ---. While many properties remain the same,

in some aspects right-infinite and bi-infinite sequences differ essentially. Thus we have

17



CHAPTER 2. OVERVIEW OF THE FIELD

to distinguish properly between these two concepts. Here we always work with right-
infinite sequences and we denote them by bold letters. We also denote AN the set of all
sequences over A. Let us emphasize that by N we always mean the set of non-negative
integers, i.e., N={0,1,2,...}.

A sequence of the form u = vuuu--- = vu®, where v,u € A* and w is non-
empty, is called (eventually) periodic. If, moreover, v is empty, then u = u* is called
purely pertodic. Since the structure of eventually periodic sequences is clear, we usually
consider these sequences as trivial and we focus especially on aperiodic sequences, i.e.,
the sequences which are not periodic.

Ezample 2.1. Champernowne (Barbier) sequence h = 011011100101 --- obtained by
the concatenation of the binary representations of natural numbers is an example of a
binary aperiodic sequence.

A word w of length n is a factor of u if w = w;u;qq - - - Uj4pn—1 for some index ¢ € N;
this index ¢ is called an occurrence of w in u. If ¢ = 0, then we say that w is a
prefiz of u. Analogously, we define these terms for finite words. Let w = pus for some
p,u,s € A*. Then p is a prefiz of w, u is a factor of w and s is a suffiz of w. We also
use the notation us = p~lw and pu = ws™ L.

The set of all factors of a sequence u is called the language of u and is denoted L,,.
Moreover, we denote Ly(n) the set of all factors of u of length n. Typically, there are
infinitely many sequences with the same language. However, these sequences have lots
of common properties, since many properties depend only on the language and not on
the sequences themselves.

The sequence u is called recurrent if each of its factors occurs in u infinitely many
times. Moreover, u is uniformly recurrent if for each factor w of u the gaps between
consecutive occurrences of w are bounded. In other words, u is uniformly recurrent
if for every integer n there exists an integer m such that each factor of u of length n
occurs in every factor of u of length m.

2.1.2 Morphisms, fixed points and substitutive sequences

Let A, B be alphabets. A morphism from A to B is any homomorphism 6: (A*, o) —
(B*,0), i.e., it is a mapping 0 : A* — B* which for all u,v € A* satisfies O(uv) =
O(u)f(v). Clearly, the morphism 6 is uniquely determined by the images of letters from
A. Hence the domain of the morphism # can be naturally extended to the set of all
sequences over A: for any sequence u = ugujus - - - € AN we put

0(u) = 0(uo)0(u1)0(usz) - - - .

If A = B, we say that 0 is a morphism on A. A morphism 6 on A is called
prolongable on a € A if

f(a) = aw for some non-empty word w € A* and lim [0"(a)| = +o0.
n——+oo

Such a morphism is sometimes called a substitution. A morphism 6 is primitive if there
is an integer k > 1 such that for all pairs of letters a,b € A the word #*(a) contains
the letter b.

A sequence u such that 6(u) = u is called a fized point of the morphism 6. Clearly,
a morphism 6 which is prolongable on some letter a has the fixed point starting with

18



2.1. PRELIMINARIES

this letter a. Indeed, since for each n € N the word 6" (a) is a proper prefix of the word
0" (a) = 0"(a)0"(w), the limit of the sequence (6™(a)),>0 exists and is the sequence
0“(a) = ILm 0"(a) = awd(w)?(w) - -

Clearly, the sequence 0“(a) is a fixed point of # and we usually say that 6“(a) is a
sequence generated by 6.

Ezrample 2.2. The Fibonacci morphism ¢ is defined as 0 — 01, 1 — 0. It is primitive
since for k = 2 we have ¢%(0) = 010 and ¢?(1) = 01. Tt is also prolongable on 0,
hence it generates the sequence f = 0100101001001 - - - which is called the Fibonacci
sequence. This sequence is the only fixed point of .

As a generalization of this concept, we can consider also sequences which arise as
the images of fixed points under other morphisms. More precisely, a sequence u over
B is called substitutive (or also morphic) if it is of the form u = k(6% (a)), where 0 is a
morphism on A prolongable on a € A and k is a letter-to-letter morphism from A to
B (i.e., |[k(c)| =1 for all ¢ € A).

In fact, every sequence of the form u = 7(¢*(a)), where 1 is a morphism prolongable
on a and 7 is any morphism, is substitutive, i.e., there is a letter-to-letter morphism «
and a morphism 0 prolongable on a such that u = k(0¥ (a)), see [5, Corollary 7.7.5].

A morphism 6 can have more than one fixed point. However, if 6 is primitive,
then all its fixed points have the same language. Fixed points of primitive morphisms
have other useful properties. First of all, they are always uniformly recurrent. Even
more generally, every substitutive sequence k(6“(a)) with primitive # is also uniformly
recurrent. These sequences are sometimes called primitive substitutive.

Ezample 2.3. We take the Fibonacci morphism ¢ from Example and consider the
Thue-Morse morphism p defined by 0 — 01, 1 — 10. Then the sequence

u = 1(¢*(0)) = u(f) = 01100101100110010110010110 - - -

is primitive substitutive. Indeed, it can be also obtained as u = k(0“(A)), where the
morphisms 6 and k are defined by

f:A—-AB,B—-CD,C—-A, D—B and Kk:A—>0,B—1,C—1,D—0.

One can read more about fixed points and substitutive sequence for example in [5,
Section 7] or in the note [3] that describes a morphic taxonomy of sequences. In Section
2.4.2 we discuss the so-called S-adic representations of sequences which in some sense
further generalize the concept of generating sequences via morphisms.

2.1.3 Parikh vectors

For any (finite) word w over A and any letter a € A we denote |w|, the number of
letters a occurring in w. Let A have size d. The Parikh vector of a word w is the vector
V(w) € N% defined as

(V(w))a = |wl|, for all a € A.

Similarly, the matriz of a morphism 0 on A is the matrix My € N¢*? defined as

(M@)ab = 10(b)|, for all a,be A.

19



CHAPTER 2. OVERVIEW OF THE FIELD

Ezample 2.4. The word 0100 over the binary alphabet {0,1} has the Parikh vector
V(0100) = (?) The Fibonacci morphism from Example has the matrix

11
M= (1)

This notion is especially useful when dealing with the length of factors and mor-
phisms since the relations

—

V(O(w) =Mp-V(w) and |uw|=(1,1,...,1) - V(w)

convert it to the multiplication of vectors and matrices.

2.1.4 Special factors

Let u be a sequence over A and let w be its factor. The factor w is left special if there
are at least two distinct letters a,b such that aw,bw € L. Analogously, w is called
right special if there are at least two distinct letters ¢, d such that we, wd € Ly. The
factor is bispecial if it is both left and right special.

In addition, each letter a such that aw € Ly, is called a left extension of the factor w
in u and each letter b such that wb € Ly, is called a right extension of w in u. We denote
Lexty(w) and Rexty(w) the set of all left and right extensions of w in u, respectively.
The bilateral order of w in u is defined as

mu(w) = #{(a,b) € A% : awb € Ly} — #Lexty(w) — #Rexty(w) + 1.

Clearly, if w is not bispecial factor of u, then my(w) = 0. For bispecial factors the
situation is more variable. We say that a bispecial factor w is strong if my(w) > 0, it
is neutral (ordinary) if my(w) = 0 and it is weak if my(w) < 0.

Ezrample 2.5. The bispecial factor 0 of the Champernowne sequence h from Example
is strong, since £y (3) = {000,001, 010,011,100, 101,110,111}.

The bispecial factor 0 of the Fibonacci sequence f from Example is neutral
(ordinary), since L¢(3) = {001,010, 100, 101}.

The bispecial factor 0 of the periodic sequence u = (001)% is weak, since L4(3) =
{001,010, 100}.

Understanding the structure of special factors is essential for the study of many
properties of sequences since they often enable us to reduce the number of investigated
cases substantially. We will see this in several places in this thesis, e.g., see Proposition

Remark or Lemmas and

2.1.5 Factor complexity and other types of complexity

There are many ideas how to quantify the complexity of sequences. Overall, it depends
on the context and the intended application which one is the best.

The simplest way of measuring the complexity of a sequence u is to count the
number of its distinct factors of each length. More precisely, we can define the factor
complexity of u as a function C, : N — N which to each length n assigns the number
of factors of u of length n, i.e., Cy(n) = #Lyu(n).

20



2.1. PRELIMINARIES

Clearly, the factor complexity function is always non-decreasing. Nevertheless, not
every non-decreasing function is the factor complexity of some sequence. Morse and
Hedlund [82] showed that the factor complexity of u is bounded if and only if u is
periodic and, moreover, for every aperiodic sequence u we have Cy(n) > n + 1 for
every n € N. There exist aperiodic sequences with this minimal factor complexity,
ie., Cyu(n) = n+ 1 for every n € N. They are called Sturmian sequence and they are
probably the most studied objects in combinatorics on words. We devote Section
to them.

Nevertheless, other classes of sequences with low factor complexity (i.e., C(n) =
O(n)) are also studied. In this thesis we deal especially with Arnoux—Rauzy sequences
(Section[2.2.2) and Rote sequences (Section [2.2.4)), but in Section[2.2.3| we mention also
other classes of sequences that generalize Sturmian sequences, such as sequences coding
interval exchange transformations or dendric sequences.

Another important class of sequences with factor complexity C(n) = O(n) are fixed
points of primitive morphisms, as proved by Pansiot [86]. In fact, he proved that the
factor complexities of fixed points generated by morphisms can only have five different
asymptotic behaviours, see also [23, Section 4.7] or |5, Section 10.4] for more details.

On the other hand, the maximal factor complexity of a sequence over an alphabet
A is Cy(n) = (#.A)", since this is the number of all words over A of length n. Such
sequences also exist. For example the Champernowne sequence h from Example
contains every binary word and so has the complexity Cp(n) = 2.

The factor complexity of various classes of sequences has been studied (e.g., see [23,
Chapter 4]). In fact, it can be easily computed using special factors.

Proposition 2.6 ( |30, Propositions 3.4 and 3.5]). Let u be a recurrent sequence over
A. Then the first difference of the factor complexity satisfies for every n € N

ACy(n) = Cu(n +1) — Cy(n) = > (#Rexty(w) — 1),

weLu(n) is right special

= Z (#Lexty(w) — 1),

weLu(n) is left special

and the second difference of the factor complexity satisfies for every n € N

A%Cy(n) = ACyu(n +1) — ACy(n) = > m(w),

weLy(n) is bispecial
where m(w) is the bilateral order of w (see Section .

Several other variants of the complexity function have been introduced. For exam-
ple, the notion of factor complexity can be modified using another equivalence relation
on A* instead of the usual equality of words.

Two words v and w over A are said to be Abelian equivalent, denoted v ~ w, if
|v|q = |w], for all a € A. In other words, two words are Abelian equivalent if they are
permutations of each other. It is easy to verify that ~ is indeed an equivalence relation

on A*.

Ezample 2.7. The words 00101 and 11000 are Abelian equivalent, while the pairs of
words 00101 and 0100 or 00101 and 00111 are not Abelian equivalent.
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CHAPTER 2. OVERVIEW OF THE FIELD

The Abelian complezity of a sequence u is the function ACy : N — N which to each
n € N assigns the number of pairwise Abelian non-equivalent factors of u of length n.

Ezample 2.8. Both the periodic sequence 01¢ and the Fibonacci sequence f (Example
has the Abelian complexity AC¢(0) = 1 and AC¢(n) = 2 for all n > 1.

There are several similarities between the usual factor complexity and Abelian com-
plexity. For example, by Coven and Hedlund [39], Sturmian sequences can be charac-
terized by means of Abelian complexity: an aperiodic binary sequence u is Sturmian
if and only if ACy(n) = 2 for all n > 1. On the other hand, the behaviour of these
two complexities can differ essentially, too. Cassaigne, Ferenczi and Zamboni [37] con-
structed a sequence with factor complexity C(n) = 2n + 1 and unbounded Abelian
complexity. One can read more for instance in [97]. Further generalizations such as
k-Abelian equivalence [68] or binomial equivalence [98] have been introduced, too.

Palindromic complexity is another type of complexity. If w = wow; - - - wy,_1, then
the word @ = wp_jwy_2---wp is called the reversal (mirror image) of w. A word w
which coincides with its reversal @ is a palindrome. The palindromic complexity of a
sequence u is the function PCy : N — N which for each n € N counts the number of
palindromes in u of length n.

Ezample 2.9. The Fibonacci sequence (Example contains the palindromes
e,0,1,00,010,101, 1001, 00100,01010, 010010, . . .

Thus PC¢(0) =1, PCf(l) =2, PCe(2) =1, PCf(?)) =2, PCf(4) =1, etc.

An interesting relation between the palindromic and factor complexity has been
revealed in [8] (see also [10, Section 3] for some notes). Let us recall that the language
Ly of a sequence u is closed under reversal if Ly contains with every factor w also its
reversal .

Proposition 2.10 ( [8, Theorem 1.2]). Let u be a sequence whose language Ly is
closed under reversal. Then for every n € N we have

PCuln + 1) + PCu(n) < ACu(n) + 2. (2.1)

Moreover, Bucci et al. [28] proved that among sequences with the language Ly
closed under reversal the sequences attaining the equality in are exactly the so-
called rich sequences. A sequence u is called rich (in palindromes) if every factor w
of u contains |w| + 1 palindromes. Let us note that |w| + 1 is the maximal number of
palindromes which w can contain.

For several classical sequences or classes of sequences the palindrome complexity is
well-understood, e.g., see [1]. We just mention that a sequence u is Sturmian if and
only if it has the palindrome complexity PCy(2k — 1) = 2 and PCy(2k) = 1 for all
k > 1, as proved by Droubay and Pirillo [48, Theorem 5].

Of course, there exist also other functions which reflect the complexity of sequences.
We discuss the so-called non-repetitive complexity in Section [2.3.4]

2.2 Sequences with low factor complexity

This thesis deals with some classes of sequences with low factor complexity. We study
especially Sturmian sequences, Arnoux—Rauzy sequences and Rote sequences. In this
section we summarize the basic facts and needed results about these sequences.
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Besides Arnoux—Rauzy and Rote sequences, we mention other generalizations of
Sturmian sequences, too. In particular, we briefly present dendric and neutral se-
quences which have been recently introduced in [15]. They represent a natural general
framework which includes many Sturmian generalizations.

2.2.1 Sturmian sequences

Sturmian sequences were first introduced by Morse and Hedlund [82] in 1940. Since
then they have become the most studied objects in combinatorics on words and related
fields as from many points of view they represent the simplest non-trivial case.

Let us recall that a sequence u is called Sturmian if it has n + 1 factors of each
length n, i.e., Cy(n) = #Lu(n) = n + 1. By the definition every Sturmian sequence is
defined over a binary alphabet, e.g., A = {0,1}. All Sturmian sequences are uniformly
recurrent. The most famous Sturmian sequence is the Fibonacci sequence f introduced
in Example

There are many equivalent definitions of Sturmian sequences as well as huge amount
of various results related to them. In this section we recall only several their classical
characterizations and properties. More precisely, we briefly mention their special fac-
tors, palindromic properties and balancedness. We also explain their construction via
coding of rotations on the unite circle and coding of two interval exchange transforma-
tions. In Section we present the characterization of Sturmian sequences by their
return words (Theorem [2.28). More details about these results together with many
other facts about Sturmian sequences can be found for instance in [73, Chapter 2], [14]
or [10].

Sturmian sequences can be describe by means of their special factors. By Propo-
sition a recurrent binary sequence u is Sturmian if and only if it has exactly one
right special and one left special factor of each length. In fact, the language £, of each
Sturmian sequence u is closed under reversal. Thus if a word w is a right special factor
of u, then its reversal @ is a left special factor of u and vice versa. It also means that
all bispecial factor of a Sturmian sequence are palindromes.

Sturmian sequences have also other interesting palindromic properties. As we have
mention at the end of Section a sequence u is Sturmian if and only if u contains
one palindrome of every even length and two palindromes of every odd length. Then
Proposition implies that every Sturmian sequence is rich in palindromes.

We say that a sequence u over A is balanced if for any pair of factors v,w € Ly
of the same length the inequality ||v]|, — |w|s| < 1 holds for any letter a € A. Already
Morse and Hedlund [82] proved that a binary sequence is Sturmian if and only if it is
balanced and aperiodic. However, there exist balanced aperiodic sequences over larger
alphabets, too. One can read for instance Vuillon’s survey [105].

Similarly we can define slightly generalized balancedness. Let ¢ be a positive integer.
We say that a sequence u over A is c-balanced if for any pair of factors v, w € Ly of the
same length the inequality ||v|, — |w|s| < ¢ holds for any letter a € A. This generalized
balancedness is closely related to the Abelian complexity defined in Section For
example, a sequence has bounded Abelian complexity if and only if it is ¢-balanced for
some positive integer c. See for example [97] or [10, Section 5.6] for more details.

Sturmian sequences can be easily constructed as the so-called mechanical sequences.
Given two real numbers a and p with a € [0,1] and p € [0,1) (or p € (0,1]), we

23



CHAPTER 2. OVERVIEW OF THE FIELD

define a lower mechanical sequence s, , = sgs152--- and a upper mechanical sequence
ta,p = totita -+ by

sn=lptan+1)]=lp+an] for all n € N.
th =[p+a(n+1)] = [p+an]
Clearly, mechanical sequences (except the trivial case 0 and 1¢) are always binary.
In addition, if « is rational, then the respective mechanical sequences are periodic,
while if « is irrational, then the respective mechanical sequences are Sturmian. In fact,
this characterizes Sturmian sequences.

Proposition 2.11 ( [73, Theorem 2.1.13]). A sequence is Sturmian if and only if it is
(lower or upper) mechanical sequence with an irrational parameter .

For a Sturmian sequence u = s, , (or u =t ,) the parameter « is called the slope
of u and the parameter p is called the intercept of u. In fact, the term slope can
sometimes denote also the value 1 — «, but since s1_,, = E(sa,p), where FE is the
morphism which exchanges the letters 0 <+ 1, it usually does not make a big difference.

This terminology follows from the graphic interpretation illustrated in Figure [2.1
We take the straight line y = axz+p. Then the lower mechanical sequence s corresponds
with the line which connects the points P, = (n, |an+ p]), i.e., the points with integer
coordinates which are situated just below this straight line. More precisely, the points
P, and P, 11 are joined by a horizontal line if s,, = 0 and by a diagonal line if s,, = 1. An
analogous observation holds for the upper mechanical sequence and the points located
just above the straight line, too.

Figure 2.1: Graphic interpretation of mechanical sequences (according to |73, Fig. 2.2]).

Mechanical sequences (and so Sturmian sequences) can be also viewed as sequences
coding two interval exchange transformations. It is captured in Figure For a given
parameter o € (0,1) we consider the partition of the interval

(a) I =10,1) into Iy =[0,1 — ) and [} =[1 — a, 1);
(b) I =(0,1] into Iy = (0,1 — o] and I = (1 — a, 1].
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Figure 2.2: A sequence coding two interval exchange transformation.

Then the two interval exchange transformation is the mapping T : I — I defined by

T+« if xe€ly,
T(x) = B
zr+a—1 if z€ly.
If we take an initial point p € I, the sequence v, , = vgv1v2 - - - defined by

0 if T%(p) € Io,
Uy =
1 if T"(p) €Iy

is called a 2iet sequence with the slope o and the intercept p.

Let us explain that 2iet sequences are just another interpretation of mechanical
sequences. Indeed, if we consider the partition (a), we can rewrite the transformation
T as

T(z) = {x + «} , where {z} = z — | z] denotes the fractional part of z. (2.2)
And since
lp+an+1)]—|p+an]=1 <<= T'(p)={p+natel—a,l)=1,

the lower mechanical sequence s, , equals the 2iet sequence v, ,. Similarly if we con-
sider the partition (b), the respective 2iet sequences correspond with the upper me-
chanical sequences. Hence we may conclude that the class of Sturmian sequences is
precisely the class of 2iet sequences with irrational slopes.

If we naturally identify the interval [0, 1) with the unite circle, then the transforma-
tion T can be viewed as the rotation of an angle a on this circle (see Expression (2.2)).
Hence if we take the partition (a) as the partition of the circle and iterate the rotation
from the initial point p, we construct the sequence v, ,. Clearly, we can proceed simi-
larly with the partition (b), too. Thus the Sturmian sequences can be also constructed
as sequences coding irrational rotations on the unite circle.
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Let us point out that the language of a Sturmian sequence depends only on its
slope a and not on its intercept p. It follows directly from the symbolic dynamics
interpretations mentioned above. In addition, among all Sturmian sequences with a
slope «, the sequence with the intercept p = « is exceptional and we call it standard
Sturmian sequence. It can be defined also combinatorially. A Sturmian sequence u is
standard if all its left special factors are prefixes of u, i.e., both sequences Ou and 1lu
are Sturmian.

Ezample 2.12. The Fibonacci sequence f is standard Sturmian sequence with p = a =
2 — ¢, where ¢ = (1 +/5)/2 denotes the golden ratio.

Standard Sturmian sequences have many comfortable properties. For example, a
factor of a standard Sturmian sequence u is bispecial if and only if it is a palindromic
prefix of u. Hence if we study a property which depends only on the language of a
sequence and not on the sequence itself, we usually work only with standard Sturmian
sequences.

In this thesis we essentially use the characterization of Sturmian sequences via so-
called Sturmian morphism which we introduce in Section [2.4.2]

Continued fraction expansion

Various properties of a Stumian sequence are very often expressed in terms of continued
fraction expansion of its slope a. Hence we briefly recall this notion; one can find much
more for instance in [60]. Let o be an irrational number. Then the continued fraction
expansion of « is the expression of « in the form

1

a=ag+
al +
az +

1
as + -
We shortly write a = [ag; a1, a2, as, .. .].
Ezample 2.13. The golden ratio ¢ = (1 + 1/5)/2 has the continued fraction expansion

¢ = [1;1,1,...] = [1]. Hence the slope 2 — ¢ of the Fibonacci sequence f has the
continued fraction expansion 2 — ¢ = [0;2,1,1,1,...] =[0;2,1].
By N convergent to the number o we mean the fraction Z—g = lag; a1, az,...,an].

It is well known that the sequences (py) and (g ) fulfil the following recurrence relations
p1=1,po=ap and pyy1=any1py +py-1 forall N € N;
g-1=0,q=1 and qny1=ant1gyv +qnv-1 forall N € N.

Ezample 2.14. The convergents to the number 2 — ¢ are

o 1 1 2 3 5 8 13

172737578 137 217 347"
2.2.2 Arnoux—Rauzy sequences and episturmian sequences

The Arnoux—Rauzy sequences were introduced by Arnoux and Rauzy in [7] as a gener-
alization of the Sturmian sequences to multi-letter alphabets which preserve the special
factors properties.
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A sequence u € AV is Arnouz-Rauzy sequence if its language Ly is closed under
reversal, u has exactly one right special factor of each length and every right special
factor has #.A right extensions. Moreover, an Arnoux—Rauzy sequence u is standard if
each of its prefixes is a left special factor.

Ezrample 2.15. The Tribonacci sequence t = 0102010010201010201001 - - - which is the
fixed point of the morphism ¢ : 0 — 01, 1 — 02, 2 — 0 is a standard Arnoux—Rauzy
sequence over A = {0, 1,2}.

More generally, we define for every d > 2 the d-bonacci sequence t as a sequence
over the alphabet A ={0,1,...,d — 1} which is the fixed point of the morphism

p:a—0@+1)foralla=0,1,...,d—2 and (d—1)—0.

The d-bonacci sequence is standard Arnoux—Rauzy sequence over A.

If we slightly relax the requirements on special factors, we get the set of episturmian
sequences. A sequence u € AN is episturmian sequence if its language L, is closed under
reversal and u has at most one right special factor of each length. An episturmian
sequence u is standard if all its left special factors are prefixes of u.

Clearly, every Arnoux—Rauzy sequence is episturmian, but there are also aperiodic
epistumian sequences which are not Arnoux—Rauzy. Hence Arnoux—Rauzy sequences
over the alphabet A are sometimes called #.A-strict episturmian sequences. More
details about Arnoux—Rauzy sequences can be found for example in [94], while the
knowledge about episturmian sequences is summarized in [58].

In the binary case, the set of Arnoux—Rauzy sequences equals the set of Sturmian
sequences. Moreover, the Arnoux—Rauzy sequences (or even episturmian sequences)
share many properties with the Sturmian sequences. Droubay, Justin and Pirillo [47]
proved that any episturmian sequence is uniformly recurrent. In addition, the Arnoux—
Rauzy sequences are always aperiodic since they have the factor complexity

Cu(n) = (#A—-1)n+1 forevery n € N.

Indeed, it follows directly from Proposition Nevertheless, there are also other
sequences with the same factor complexity, e.g., the sequences coding interval exchange
transformations or, more generally, the dendric sequences (see Section .

All bispecial factors of an episturmian sequence u are palindromes. Let us emphasize
that for every n € N there is at most one bispecial factor of length n. Hence we can
order the bispecial factors of u by their lengths starting with the empty word e.

Like in the Sturmian case, for every episturmian sequence there exists a unique
standard episturmian sequence with the same language. Hence if we study properties
which depend only on the language of a sequence, we can deal only with standard
episturmian sequences without loss of generality.

On the other hand, there are also properties in which Sturmian and Arnoux—Rauzy
sequences differ essentially. For example Cassaigne, Ferenczi and Zamboni [37] con-
structed an Arnoux—Rauzy sequence which is not c-balanced for any positive integer c.

Standard episturmian sequences can be constructed by the co-called palindromic
closures. The palindromic closure w*) of a finite word w is the shortest palindrome
having w as a prefix. A sequence u € AN is standard episturmian if and only if
there exist a directive sequence d = dodids--- € AY and a sequence of palindromes
u® =g W, 4@ . such that vt = (u(")dn)(ﬂ for alln € N and u = lim,,_,o0 u(™.
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Ezample 2.16. We consider the directive sequence d = (012)* and we gradually con-
struct the respective sequence of palindromes:

=&

=)

= (01)*) =010

= (0102)*") = 0102010

= (0102010 0)") = 01020100102010

= (01020100102010 1)) = 0102010010201010

= (0102010010201010 2)*) = 010201001020101020100102010

etc.

The limit of this sequence of palindromes is the Tribonacci sequence (Example [2.15)).
Similarly the directive sequence of the d-bonacci sequence is (012--- (d — 1))%.

Let us emphasize that a standard episturmian sequence is completely determined by
its directive sequence. The standard Arnoux—Rauzy sequences over A are exactly those
episturmian sequences whose directive sequences contain every letter from A infinitely
many times. In Section we generalize this notion of directive sequences also for
non-standard episturmian sequences using the so-called episturmian morphisms.

2.2.3 Dendric and neutral sequences

Dendric sequences represent a very general class of sequences which contains several
generalizations of Sturmian sequences to multi-letter alphabets. They were introduced
by Berthé et. al. in [15]. In fact, they define dendric (tree) sets since they work with
languages rather than with sequences. However, for our purposes it does not make any
difference.

Let u be a sequence and w be its factor. The extension graph of w in u is an
undirected bipartite graph £,(w) defined as follows: its vertices are the letters from
the set Lexty(w) and the letters from the set Rexty,(w), and there is an edge between
the vertices a € Lext(w) and b € Rext(w) if awb € L.

Example 2.17. We consider the Tribonacci sequence t = 0102010010201010201001 - - -
from Example The extension graphs & (¢), &(2), &(01) and &£:(10) are displayed
in Figure

O AV © ©
DPRE D=0 OO
@ \® ® ®

Eile) &(2) &(01) &(10)

Figure 2.3: The extension graphs &/(c), &(2), £(01) and &:(10) of the Tribonacci
sequence t.
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A sequence u is dendric if for every w € L, the extension graph &,(w) is a tree
(i.e., it is both acyclic and connected).
Ezample 2.18. The Tribonacci sequence is dendric sequence since one can easily verify
that each of its extensions graphs has one of the shapes displayed in Figure [2.3

In fact, all Arnoux—Rauzy sequences (and so all Sturmian sequences) are dendric.
Moreover, the sequences coding regular interval exchange transformations are also den-
dric, see [16]. These sequences were introduced in [85]. Since then they have been
intensively studied as they represent another important generalization of Sturmian se-
quences (see 2iet sequences defined in Section . We skip their general definition
(e.g., see [10, Section 5.1]), but we briefly indicate how the sequences coding three
interval exchange transformations look like.

A three interval exchange transformation T : [0,1) — [0, 1) is given by two parame-
ters 3,7 € (0,1) such that 5+~ < 1, and by a permutation 7 on the set {1,2,3}. The
interval [0,1) is partitioned into three subintervals

Ix=100,8), Ip=[3,8+~) and Ic=[B+,1).

These subintervals are then rearranged by the transformation 7" according to the per-
mutation m. For example, if we take the permutation 7 = (3,2, 1), then

r+1-8 ifrely,
Tx)=<{ z+1-28—~ ifzelp,
r—0—" ifxelo.
If we take another permutation 7 = (2,3, 1), then
r+1-p ifrxely,
Tx)=< -0 iteelp,
x—p ifxelo.

We can proceed similarly for other permutations. Let p € [0,1). The sequence u =
uguqus - - € {A, B, C}Y defined by

A if T(p) € I4,
u, =4 B it T"(p) € Ip,
C if T"(p) € Ic

is called a Siet sequence coding the intercept p under the transformation 7.

Dendric sequences can be further generalized, too. For example, we say that a
sequence u is neutral if all its non-empty bispecial factors are neutral (see Section
2.1.4). The characteristic of a neutral sequence u is the integer x(u) = 1—my(¢), where
my(€) is the bilateral order of the empty word e in u. These sequences are studied by
Dolce and Perrin in [45]. Clearly, every dendric sequence is a neutral sequence with the
characteristic 1 since all its bispecial factors (including the empty word) are neutral.
Other examples of neutral sequences are presented in Section [2.2.4]

Recently, dendric and neutral sequences have been intensively studied, one can read
for example [15H18},20,121,45,46]. We just mention that all neutral sequences have low
factor complexity.

Proposition 2.19 ( [45, Proposition 2.4]). The factor complezity of a neutral sequence
u over A with the characteristic x(u) is given by

Cu(0) =1 and Cy(n)=n(#A—-x(u))+x(u) foreveryn>1.
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2.2.4 Rote sequences

Rote sequences are another class of sequences with low factor complexity. A sequence
v is called Rote sequence if it has the factor complexity Cy(n) = 2n for every integer
n > 1. By definition, all Rote sequences are defined over a binary alphabet, e.g.,
A ={0,1}.

They are named after Rote who proposed several construction of these sequences
in [100]. He showed how one can in principal construct all Rote sequences via their
Rauzy graphs (see [100, Section 2]) and for special subclasses he gave also alternative
methods of construction. In particular, he proved that some of Rote sequences can be
viewed as sequences coding irrational rotations on the unite circle. Let us recall that
Sturmian sequences are also sequences coding irrational rotations (see Section .

Proposition 2.20 ( [100, Theorem 2]). Let p, « and (3 be real numbers with 0 < § < 1,
0 < a < min{B,1 — B}, « irrational and na # f mod 1 for all n € N. Then the
sequence v = vguivs - - - defined by

) :{0 if {p+na}el0,B)

L if {p+nalelB1) for alln € N

1s a Rote sequence.

However, there are also Rote sequences which cannot be generated by this way.
Ezample 2.21 ( [100, Sections 3.1 and 3.2]). We consider the morphisms

0—03 0—0 0—03 0—=0
1—12 1—1 1— 102 1—1

0 : , K: , P and 7 .
2 — 0312031 2—=0 2 — 10201 2 — 10110
3 — 1203120 3—>1 3 — 1020 3 — 101

Both sequences u = k(6“(0)) and v = 7(1)*(0)) are Rote sequences. Nevertheless,
while the sequence u can be constructed by Proposition the sequence v cannot
be obtained by this process; see [100] for proofs and other details.

The given examples also illustrate that there exist primitive substitutive Rote se-
quences. Moreover, we can construct also a Rote sequence which is the fixed point of
a non-identical morphism.

Ezample 2.22 ( [100, Section 3.3]). The morphism 6 : 0 — 001,1 — 111 fixes the Rote
sequence v = 001001111001001111111111111001 - - -. However, let us notice that this
morphism 6 is not primitive and the sequence v is not uniformly recurrent.

Complementary symmetric Rote sequences

We are especially interested in the so-called complementary symmetric (CS) Rote se-
quences. They are Rote sequences whose languages are closed under the exchange of
letters 0 <+ 1. More precisely, the binary sequence u is complementary symmetric (CS)
if it contains with each factor w also the factor E(w), where £ : 0 — 1,1 — 0 is the
exchange morphism.

Rote [100] proved that these sequences are essentially connected with Sturmian
sequences.
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Theorem 2.23 ( [100, Theorem 3]). Let u = upuy -+ and v = vgvy --- be two se-
quences over {0, 1} such that u; = v; +v;41 mod 2 for alli € N. Then v is a CS Rote
sequence if and only if u is a Sturmian sequence.

This theorem indicates the usefulness of the following notation. By S we denote
the mapping S : {0, 1} — {0,1}" such that for every v € {0, 1} we put S(v) = u,
where

u; =v; + viy1 mod 2 forall ¢ € N. (2.3)
In this notation we can reformulate Theorem 2.23}
A sequence v is a CS Rote sequence if and only if u = §(v) is a Sturmian sequence.

We usually say that such a sequence u is associated with v and vice versa.

Ezrample 2.24. If we start with the letter 0 and repeatedly use Equation (2.3) rewritten
to the form v;11 = u; + v; mod 2, we can construct a CS Rote sequence g associated
with the Fibonacci sequence f, i.e., f = S(g). We have

f = 0100101001001010010100100101001001 - - -
g = 00111001110001100011000111001110001 - - -

In fact, the sequence F(g) = 110001100011100- - - is associated with f, too.

As in Example[2.24] any Sturmian sequence u has two associated CS Rote sequences
v and E(v) such that u = S(v) = S(E(v)). However, since the exchange of letters
does not affect the structure of the sequence, we usually consider only the CS Rote
sequences starting with the letter 0 without loss of generality.

Similarly we can define this mapping S also for finite non-empty words. For every
vo € {0,1} we put S(vg) = € and for every v = vovy - - - v, € {0,1}T of length at least
2 we put S(vovy + - - vy) = ugUq -+ Up—1, Where

u; =v; +v;y1 mod 2 forall i€ {0,1,...,n—1}.
Clearly, the images of v and E(v) under S coincide for each v € {0,1}T. In fact,
S(x) = S(y) if and only if x =y or x = E(y).
Ezample 2.25. We have E(001110) = 110001 and S(001110) = S(110001) = 01001.

Then we can comfortably write the relations between the factors of associated se-
quences v and u = S§(v).

Proposition 2.26. Let v be a Rote sequence and u = S(v) be its associated Sturmian
sequence.

(i) A word v # € is a factor of u if and only if u = S(v) is a factor of u. Moreover,
for every m € N, the index m s an occurrence of u in u if and only if m is an
occurrence of v in v or an occurrence of E(v) in v.

(ii) A word v # € is a left (right) special factor of v if and only if u = S(v) is a left
(right) special factor of u.
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(#ii) Each non-empty bispecial factor of v is neutral and the empty word is a strong
bispecial factor of v.

Finally, we emphasize that CS Rote sequences can be defined in other ways, too. The
class of CS Rote sequences is exactly the class of sequences constructed by Proposition
with 8 = % In particular, by results of Blodin-Massé et al. [25] this means
that CS Rote sequences are rich in palindromes. This observation also follows from
the note stated after Proposition since Allouche et al. [1] proved that every CS
Rote sequence u has the palindromic complexity PCy(n) = 2 for all n > 1. CS
Rote sequences can be also constructed using the so-called pseudopalindromic closures,
see [26, Section 6]. In more general setting, they represent an interesting example of
neutral sequences with the characteristic 0 (see Item (iii) of Proposition [2.26). Hence

they are not dendric.

2.3 Main subjects of our research

In this section we briefly recall several properties of sequences which we are interested in
and we summarize the relevant known results about them. First we focus on the notion
of return words and derived sequences since it creates a key part of this thesis. Then
we introduce also the critical exponent, the recurrence function and the non-repetitive
complexity.

2.3.1 Return words and derived sequences
Return words

Return words are well established notion in combinatorics on words. To this field they
were first introduced by Durand [49], however, they can be seen as a kind of analogue
to the first return map occurring in the theory of dynamical systems (e.g., see [24]).

First, let us recall the definition. We consider a sequence u and its factor w.
Whenever i < j are two consecutive occurrences of w in u, then the string w;u;11 - - - uj_1
is a return word to w in u. In other words, a return word to w in u is every factor r
such that rw € L4 and w occurs exactly twice in the word rw: both as a prefix and a
suffix. We denote Ry(w) the set of all return words to w in u.

Ezample 2.27. We consider the Fibonacci sequence f = 010010100100101001010 - - -
from Example Its prefix 0 has two return words 01 and 0, hence R¢(0) = {01,0}.
Its prefix 0100 has two return words 01001 and 010, hence R¢(0100) = {01001, 010}.

In fact, the notion of return words make sense especially for recurrent sequences,
otherwise there are factors with no return words. Moreover, we usually consider only
uniformly recurrent sequences since each of their factors has the finite number of return
words. That is, a recurrent sequence u is uniformly recurrent if and only if the set
Ru(w) is finite for each factor w of u.

First let us observe that periodic sequences can be easily characterized by means of
the return words. Indeed, a recurrent sequence u is periodic if and only if there exists
a factor of u having only one return word (see [104, Proposition 3.1]).

Similarly, Vuillon [104] showed that Sturmian sequences can be also easily charac-
terized by their return words.
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Theorem 2.28 ( [104, Main Theorem]). A binary sequence u is Sturmian if and only
if the set of return words to w has exactly two elements for every non-empty factor w
of u.

In fact, if we consider also return words to the empty word €, which are by definition
all distinct letters from u, we can exclude the binary assumption: A sequence u is
Sturmian if and only if each of its factors has two return words.

This characterization inspired the following generalization of Sturmian words to
m-letter alphabets described in [11,[106]. We say that the recurrent sequence has the
property R,, if each of its factors has exactly m return words. The class of all sequences
with R, covers some other generalizations of Sturmian words. Justin and Vuillon [65]
proved that Arnoux—Rauzy sequences over #.A4 = m satisfy R,,, Vuillon [106] proved
this property for sequences coding regular m-interval exchange transformations.

It is worth to notice that all sequences from both these classes have the factor
complexity C(n) = (m — 1)n + 1 for all n > 0. However, unlike the binary case,
Vuillon [106] observed that this condition is not sufficient for sequences to satisfy R,,
for m > 3. He found a sequence with the complexity 2n + 1 which has some factors
with more than three return words (see Section 3 in [106]). Balkové, Pelantovd, and
Steiner [11] characterized the sequences with Rs.

Proposition 2.29 ( [11, Theorem 5.7]). A uniformly recurrent sequence u has three
return words to each of its factors if and only if Cu(n) = 2n+ 1 for alln > 0 and u
has no weak bispecial factor.

In addition, they showed that analogous conditions are sufficient, but not necessary
if m > 4. More precisely, if a uniformly recurrent sequence u has the complexity
Cu(n) = (m —1)n+1 for all n > 0 and u has no weak bispecial factors, then u has m
return words to each of its factors. Let us note that in the notion of [45] these sequences
are neutral of characteristic 1 (see Section[2.2.3). On the other hand, they constructed
a sequence which fulfils R4 while it has different factor complexity and it contains weak
bispecial factors [11, Proposition 6.1].

Return words were studied also for more general classes of sequences. Berthé et
al. [20] studied return words in sequences coding linear involutions which generalize
sequences coding interval exchange transformations. Even more generally, Dolce and
Perrin [45] determined the number of return words for neutral sets of any characteristic.
In particular, for a uniformly recurrent neutral sequence u their result implies that the
number of return words to non-empty factors of u is constant:

Proposition 2.30 ( [45, Corollary 5.4]). Let u be a uniformly recurrent neutral se-
quence over A of characteristic x(u). For any non-empty w € Ly, the set Ry(w) has
#A — x(u) + 1 elements.

Nevertheless, they are known also some classes of sequences whose factors do not
have constant number of return words. Justin and Vuillon [65] explicitly described
return words in episturmian sequences which generalize the Arnoux—Rauzy sequences.
It directly follows from [65, Theorem 4.4] that every episturmian sequence which is not
k-strict for any k£ has factors with at least two different numbers of return words.

Balkova, Pelantovd and Steiner [11] studied a class of sequences associated to (-
numeration systems. This class can be viewed as a generalization of Arnoux—Rauzy
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sequences, too. They identified the basis § for which the associated sequence has
constant number of return words, see [11, Section 7].

Finally, we mention two results on particular sequences. As follows from Huang
and Wen [64] the period doubling sequence, which is the fixed point of the primitive
morphism 0 — 01, 1 — 00, has to each of its factors two or three return words. The
Thue-Morse sequence, which is fixed by the primitive morphism 0 — 01, 1 — 10, has
to each of its factors two (only to the empty word), three or four return words, see
e.g. |35, Section 6].

Remark 2.31. Let us mention that to describe return words in aperiodic uniformly
recurrent sequence u, it basically suffices to investigate only return words to bispecial
factors of u. Indeed, in such a sequence u each factor w has the unique shortest bispecial
factor containing w, we denote it v = pws, where p,s € A* (e.g., see [27, Proposition
5]). Then it is easy to realize that

Ru(w) = p_lRu(v)p = {p—lrp 17 € Ru(v)}.

Other details can be found for example in [11].

Derived sequences

If u is a uniformly recurrent sequence and w is its factor, then the finite set Ry (w) =
{ro,m1,...,rk—1} creates a code. In particular, if w is a prefix of u, then u can be
written uniquely in the form

U =74,7q,Tdy -+, Where all 7y, € Ry(w), ie., all d;j € {0,1,... . k—1}.

Similarly, if w is not a prefix of u, i.e., the first occurrences of w in uis ¢ > 1, then u
can be written as

U = UgUy -+ Ui—1TdyTdyTdy - -+ » Where all rg, € Ry(w), ie., all d; € {0,1,...,k— 1},

in other words, u can be uniquely decoded to return words except for some finite prefix.

In both cases, the unique sequence dopd;ds - - - defined over the alphabet of cardinal-
ity #Ru(w) codes the order of return words in u. It is called the derived sequence of
u with respect to w and denoted dy(w).

Ezample 2.32 (Example continued). Since the prefix 0 of the Fibonacci sequence
f has the return words 01 and 0, the sequence f can be written as a concatenation of
the words ro = 01 and r; = 0:

f=010010100100101001010 = rgrirerorirorirororirTorors - - -
Hence the derived sequence of f with respect to 0 is
ds(0) = 0100101001001 - -- = f.

In fact, any derived sequence of f with respect to its prefix is equal (up to exchange of
letters 0 <» 1 which make no difference) to the Fibonacci sequence f. In other words,
the Fibonacci sequence has only one derived sequence and it is the Fibonacci sequence
itself.
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Let us emphasize that, unlike the return words, derived sequence depends on the
original sequence and not only on its language.

For w being a non-empty prefix, these sequences were introduced by Durand [49]
and, independently, for a general factor w they were investigated by Holton and Zam-
boni [61]. In this thesis we follow the Durand’s notion and we consider only derived
sequences to prefixes.

When studying derived sequences, the usual aim is to describe the set Der(u) of all
derived sequences of a given uniformly recurrent sequence u:

Der(u) = {dy(w) : w is a non-empty prefix of u}.

In fact, it suffices to investigate only derived sequences to right special prefixes. The
reason is the same as in Remark By the definition, the return words to the empty
word ¢ are all letters in u and so the corresponding derived sequence is dy () = u for
every sequence u. Hence we omit the empty prefix.

It is also worth to realize that the sequence u is a morphic image of each of its derived
sequences, i.e., for every prefix w there exists a morphism 7 such that u = 7(dyu(w)).
In fact, 7 is just the inverse morphism to the coding of return words which creates the
derived sequence.

Let us mention one more Durand’s simple observation.

Proposition 2.33 ( [49, Proposition 2.6]). Let u be a uniformly recurrent sequence, w
be its non-empty prefiz, v = du(w) and v be a non-empty prefix of v. Then the derived
sequence dy(v) is also the derived sequence of w with respect to some non-empty prefiz

u of u, i.e., dy(v) = dy(u).

The derived sequences were so far studied especially for Sturmian sequences and
their generalization. Aratjo and Bruyere [6] precisely described derived sequences of
standard Sturmian sequences in terms of continued fraction expansions of their slopes,
see [6, Proposition 15]. Furthermore, the description of derived sequences of all standard
episturmian sequences can be easily deduced from the work of Justin and Vuillon [65,
Corollary 4.1 and Theorem 4.4]. They use the very comfortable notion of directive
sequences and episturmian morphisms.

Huang and Wen studied the derived sequences to all factors in the Fibonacci se-
quence [62], Tribonacci sequence [63] and period doubling sequence [64]. In the case
of the Fibonacci and Tribonacci sequences, they found out that each of its derived se-
quences is Fibonacci and Tribonacci sequence, respectively. In fact, this can be trivially
deduced from much earlier work of Justin and Vuillon [65, Corollary 4.1 and Theorem
4.4].

Characterization of primitive substitutive sequences

Both Durand [49] and Holton and Zamboni [61] introduced derived sequences when
studying substitutive sequences. Let us recall that a sequence u is called substitutive
if u = k(0¥(a)) for some l-uniform morphism s and some substitution 6. Moreover, if
0 is primitive, we call such a sequence u primitive substitutive. These sequences are
always uniformly recurrent (e.g., see |5, Theorem 10.9.5]).

Let us emphasize that, in general, it can be hard to decide if a given sequence is sub-
stitutive or not. However, Durand [49] managed to characterize primitive substitutive
sequences combinatorially using derived sequences.
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Theorem 2.34 ( [49, Theorem 2.5]). A uniformly recurrent sequence u is primitive
substitutive if and only if the number of its distinct derived sequences is finite.

Moreover, all derived sequences of a primitive substitutive sequence are also prim-
itive substitutive, and especially, all derived sequences of a fixed point of a primitive
morphism are also fixed points of some primitive morphisms. The finiteness of Der(u)
in this special case follows also from [61].

In fact, Theorem works for every uniformly recurrent sequence of the form
u = 7(¢*(a)), where 7 and 1 are arbitrary morphisms. This assertion is a consequence
of |52, Theorem 3], where Durand proved that every such a sequence is primitive sub-
stitutive.

Note on applications and generalizations of return words and derived se-
quences

Return words are now an integral part of combinatorics on words and it is almost
impossible to mention all their usefulness and applications. And although the notion
of derived sequences is probably not so well-known, they are also naturally present in
many works. Hence we stated only several recent results which are somehow related to
our objects. However, this list is still far from being complete.

Aratijo and Bruyere [6] applied their description of Sturmian sequences to obtain
a new proof of some characterization of Sturmian sequences. Blodin-Massé et al. [24]
use the description of return words in sequences coding rotations to show that they are
rich. Bucci and De Luca [27] use this notion to show that some kind of generalizations
of Arnoux—Rauzy sequences which seem essential are just morphic images of Arnoux—
Rauzy sequences. Berthé et al. [15] and Berthé et al. [21] exploited the properties of
return words and derived sequences for studying various properties of dendric sequences
and also for a characterization of substitutive dendric sequences. Among many other
things, Durand [52] used this notion to prove that the uniform recurrence of substitutive
sequences is decidable. In the same paper he also considers return words with respect
to a set of factors of a sequence u (instead of to one single factor of u).

Finally, let us mention that also Abelian variants of return words can be considered.
We recall that two words v and w over A are Abelian equivalent if |v|, = |w|, for all
a € A (see Section 2.1.5). All words which are Abelian equivalent to w create the
Abelian class of w. For a recurrent sequence u and its factor w, let ng <ny < ng < ---
be all integers n; such that the factor uy, - - - uy,, 4|1 is Abelian equivalent to w. Then
each factor wy, - - wy,,, 1 is called a semi-Abelian return to the Abelian class of w. By
an Abelian return to the Abelian class of w we mean an Abelian class of wy,, - - - Wy, , —1.
Hence the number of Abelian returns is the number of distinct Abelian classes of semi-
Abelian returns.

Ezample 2.35 ( [89, Example 5]). We consider the Thue-Morse sequence m which is
fixed by the morphism 0 — 01, 1 — 10.

The Abelian class of the word 01 is {01,10}. If we mark the occurrences of words
01 and 10 in m by dots:

m = 01101001100101101001011001101001 - - - ,

36



2.3. MAIN SUBJECTS OF OUR RESEARCH

we can see that the Abelian class {01, 10} has four semi-Abelian returns: 0, 01, 1 and
10. Since the words 01 and 10 are Abelian equivalent, the class {01,10} has three
Abelian returns: {0}, {1} and {01,10}.

This notation was introduced by Puzynina and Zamboni in [89]. In this paper they
study (semi-)Abelian return in Sturmian sequences. Among other things, they revealed
two new characterizations of Sturmian sequences.

Proposition 2.36 ( [89, Theorems 2 and 3]).

(i) A binary recurrent sequence u is Sturmian if and only if the Abelian class of each
factor w of u has two or three Abelian returns in u.

(1) A binary recurrent sequence u is Sturmian if and only if the Abelian class of each
factor w of u has two or three semi-Abelian returns in u.

The Abelian returns of Sturmian sequences were examined also by Rigo, Salimov
and Vandomme [99]. They also introduced the notion of Abelian derived sequences and
they indicated that their role differs from the classical one essentially. More precisely,
they showed that the Thue-Morse sequence (which is fixed by a primitive morphism),
has infinitely many Abelian derived sequences [99, Proposition 38]. Other related results
can be found in [76,90].

2.3.2 Critical exponent

Roughly speaking, the critical exponent reflects the length of the longest repetition in
a given sequence. By repetition of a non-empty factor w we mean every word of the
form z = ww---ww’, where w’ is a proper prefix of w. Then we say that z has the
fractional root w and the exponent e = |z|/|w|. We also write z = w® and z is called
an e-power of w. Let us emphasize that a word z can have multiple exponents and
fractional roots. The word z is primitive if the only integer exponent of z is 1.

Ezrample 2.37. The word z = 01101101 has the fractional root 011 and the exponent
%. However, z also has the fractional root 011011 and the exponent % or the fractional
root 01101101 and the exponent 1. Hence the word z is primitive.

For every non-empty factor v of u we call the index of u in u the supremum of
e € Q such that u€ is a factor of u:

indy(u) =sup{e € Q: u® € L(u)}.
The critical exponent of a sequence u is
cr(u) = sup {indy (u) : u is a non-empty factor of u}
or, equivalently,
cr(u) =sup{e € Q : e is an exponent of a non-empty factor of u}.

In other words, each factors of u has the exponent e < cr(u) and, moreover, for every
d > 0 there is a factor of u with the exponent e > cr(u) — ¢.

Clearly, 1 < cr(u) < 400 for every sequence u. The critical exponent can be also
infinite, since there exist sequences with unbounded repetitions, i.e., for every e € Q
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there is an e-power in u. Such a sequence is for example Champernowne sequence or
any periodic sequence.

In addition, the critical exponent can be both rational and irrational. For example,
the Thue-Morse sequence m has cr(m) = 2 (as follows already from the work of

Thue [102] published in 1912), while the Fibonacci sequence f has cr(f) = 2+ 1+72\/5 (as
shown by Mignosi and Pirillo [78]). In fact, Krieger and Shallit [71] proved that every
real number grater than 1 is a critical exponent of some sequence.

There is a huge amount of results related to critical exponent, repetitions or power
avoidance and we do not mention them. For survey of some of them see for example [70,
Chapter 3] or [5, Sections 1.6-1.8]. Here we just recall the critical exponents of Sturmian
sequences and we mention some recent results which are relevant for this thesis.

Critical exponent of Sturmian sequences

Preceded by several partial results of various authors, finally Damanik and Lenz [42] and
Capri and de Luca [38] independently gave a general formula for the critical exponent
of Sturmian sequences in terms of continued fraction expansion of their slopes. We use
the notation from Section

Theorem 2.38 ( [42, Theorem 1], [38, Theorem 4]). Let o = [0;aq,a2,as,...] and let
u be a Sturmian sequence with the slope . Then the critical exponent of u is given by

1—2
cr(u) = 2+]Svu>1;()]{aN+1 + qu;;} )

From this formula can be easily deduced some interesting previous results. For
example, Sturmian sequence has infinite critical exponent if and only if its slope has
unbounded coefficients in its continued fraction expansion (which was first proved by
Mignosi 77, Theorem 2.25]).

1+v5

In addition, the Fibonacci sequences with the value cr(f) = 2 + ¢, where ¢ = 1 5
is the golden ratio, has the smallest critical exponent among all Sturmian sequences.
However, the Fibonacci sequence is not the only Sturmian sequence with this value.
Obviously, all Sturmian sequences with the same slope 2 — ¢ has the same critical
exponent, since it depends only on the language of the sequence. Also the sequence
E(f) with the slope ¢ — 1 has the same critical exponent. Nevertheless, Capri and de
Luca [38] showed that this value is achieved also by Sturmian sequences with different
slopes.

Proposition 2.39 ( |38, Proposition 15]). The minimal critical exponent for a Stur-
mian sequence is 2+ ¢, and moreover, a Sturmian sequence u has cr(u) = 2+ ¢ if and
only if the slope of u is one of the numbers

2_¢:[0;271]7 %Z[O;Bvﬂﬂ %:[0;27271]7
¢—1=10;1], 212 —0;1,2,1], 82 = 10;1,1,2,1].
In addition, by [35, Section 2.1] Sturmian sequences of slopes ¢1—J54 and % have

critical exponent % > ¢ + 2 and all other Sturmian sequences have critical exponent
at least 4.
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In the episturmian case Justin and Pirillo [66, Theorem 5.2] gave a formula for
critical exponent of standard episturmian sequences which are fixed by a primitive
morphism. This formula is stated in terms of directive sequences.

Repetition threshold

We have already mentioned that every real number grater than 1 is a critical exponent
of some sequence. Nevertheless, when the values of critical exponent approach 1, the
needed alphabets grow in size. To capture this growth, the notion of repetition thresh-
old was introduced. The repetition threshold is a mapping RT : N>; — R~ defined for
every positive integer n by

RT(n) = inf {y € R : Ju over n-letter alphabet with cr(u) =~} .

It is easy to find out that every binary sequence has the critical exponent at least
2 and the value 2 is achieved for example by the Thue-Morse sequence (as shown by
Thue [102]). Hence we get RT(2) = 2. Dejean [43] found RT(3) and also stated a famous
conjecture about the value of this threshold for every n. After many partial results, a
proof of this conjecture was completed independently by Currie and Rampersad [41]
and by Rao [92]. Thus the repetition threshold is as follows:

2 for n =2;
RT(n) % for n = 3;
. g for n =4;

s for n>5.

3

We are especially interested in some recent results about repetition thresholds in
special classes of sequences. Rampersad, Shallit and Vandomme [91] and later also
Baranwal and Shallit [12] studied this threshold for balanced sequences. Especially the
second paper employs a computational approach using the automatic theorem-proving
software Walnut, which has been recently used to variety of problems in combinatorics
on words. One can read more about Walnut in [83].

In addition, Baranwal and Shallit [13] also studied the repetition threshold for rich
sequences over small alphabets. Using Walnut they gave lower bounds on its value
for binary and ternary sequences. In the binary case they also constructed a sequence
with the critical exponent 2 4+ 1/2/2 and they conjectured that this critical exponent
is minimal among all binary rich sequences. This conjecture was proven by Curie, Mol
and Rampersad [40].

Theorem 2.40 ( [40, Theorem 2]). Each binary rich sequence u has
cr(u) > 2+ ?

and this bound is attained by sequences v = 7(¢*(0)) and v/ = o(¢*(0)), where

0—01 0—0 0 — 00101
Y:¢1—=02 , 7:¢1—-01 and o:<¢1— 00101101
2 — 022 2 =011 2 — 0010110101101

It is not difficult to find out that both sequences v and v/ are complementary
symmetric Rote sequences (Section [2.2.4)).
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Notions related to the critical exponent

There exist several quantities similar to the critical exponent. Let us mention at least
some of them.
The asymptotic critical exponent of u is defined by

cr*(u) = nh—>Holo sup{e € Q : e is an exponent of a factor w of u with |w| > n}.

Thus it takes into account only repetitions of factors with growing length. Clearly,
1 <cr*(u) < cr(u). Let us emphasize that while for some sequences these two quantities
are the same (e.g., if one of them is infinite), it does not hold in general.

In the case of Sturmian sequences the exact formula for cr*(u) is known. Vandeth
[103] proved it for Sturmian sequences which are fixed points of some morphisms, but
Cassaigne in [35, Section 2.2] noticed that it remains valid for all Sturmian sequences.

Theorem 2.41 ( |103 Section 5]). Let o = [0;a1,a2,as,...| and let u be a Sturmian
sequence with the slope a. Then the asymptotic critical exponent of u is given by

cr*(u) =2+ limsup [any;an—1,...,a1] .
N—oo

It directly implies that the Fibonacci sequence f with cr*(f) = cr(f) = ¢+ 2 is again
optimal among Sturmian sequences (as well as the sequence ¢(f) for any Sturmian
morphism ).

However, the Thue-Morse sequence t with cr*(t) = cr(t) = 2 is no more optimal
among all binary sequences, since Cassaigne [35, Theorem 2.4] constructed a binary
sequence with cr*(u) = 1.

The initial critical exponent of u is defined by
icr(u) =sup{e € Q: e is an exponent of a non-empty prefix of u} .
and the asymptotic initial critical exponent of u is
icr*(u) = nh_)rr;o sup {e € Q: e is an exponent of a prefix w of u with |w| > n} .

Similarly as in the case of non-initial critical exponent we have 1 < icr*(u) < icr(u).
Berthé, Holton, and Zamboni [22] studied these quantities in the case of Sturmian
sequences. They gave a formula for the (asymptotic) initial critical exponent of Stur-
mian sequences in terms of some S-adic representations (see [22, Proposition 3.3 and
Corollary 3.5]) as well as they deduced from it some other interesting results.
The definitions directly imply that icr(u) < cr(u) and icr*(u) < cr*(u). Berthé et
al. |22, Theorem 1.2] proved that for each standard Sturmian sequence u one has

cr*(u) =1 +icr*(u). (2.4)

The Fibonacci sequence has icr*(f) = icr(f) = 1 4+ ¢. In addition, Allouche et al. [4]
showed that every Sturmian sequence u has icr*(u) > 2. Berthé et al. characterized
Sturmian sequence with icr*(u) = 2 (see |22}, Proposition 1.1]), obviously, the Fibonacci
sequence is not one of them.
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Finally, let us mention that while the (asymptotic) critical exponent depends only
on the language of u (hence in the case of Sturmian sequence it depends only on its
slope and not on its intercept), the (asymptotic) initial critical exponent depends on
the sequence u itself. Hence it is natural to ask how the initial critical exponent varies
among the sequences with the same slope. Surprisingly, it seems that it can differ
essentially.

In particular, for each irrational slope o with unbounded coefficients in its continued
fraction expansion the respective standard Sturmian sequence u has icr*(u) = cr*(u) =
+0o (see Equation (2.4)). On the other hand, Berthé et al. |22, Proposition 4.1] found
out that for every irrational o there is a Sturmian sequence v with the slope o which
has icr*(v) <1+ ¢. In fact, Mignosi, Restivo and Salemi [79] proved that this is true
for every infinite minimal subshift, see [79] and also [22] for more details.

Recently, the Abelian variant of the critical exponent has been considered, too. For
details and references see, e.g., [56}88].

2.3.3 Recurrence function

Like the return words, also the notion of recurrence origins in the theory of dynamical
systems. The combinatorial point of view was initiated in 1938 by Morse and Hedlund
[81]. Many details about recurrence and other related notions can be found for example
in [5, Sections 10.8-10.10] or in the surveys [34] of [35].

Let us recall that a sequence u is recurrent if each of its factors occurs infinitely
many times in u. However, the occurrences of a given factor of a recurrent sequence
can occur with arbitrary large gaps. If we suppose that these gaps are bounded, we
get uniformly recurrent sequence. More precisely, a sequence u is uniformly recurrent
if for every n € N there exists m € N such that each factor of length m contains every
factor of length n.

The recurrence function quantifies the speed of recurrence in the uniformly recurrent
sequence: it assigns to each length n the respective length m. More formally, the
recurrence function of a uniformly recurrent sequences u is the function Ry : N — N
defined by

Ru(n) = min{m € N : each factor from L£,(m) contains all factors from L4(n)} .

If we denote f, (i) the factor of length n occurring in u at the position i, we can
express the recurrence function also as follows:

Ru(n) =min{m e N:Vi e N {f,(¢), fu(i+1),..., fu(i+m—n)} = Ly(n)} . (2.5)
From this expression it it easy to deduce the following inequality:
Ru(n) > Cu(n) +n—1 for eachn € N. (2.6)

In fact, Morse and Hedlund [81] showed that for aperiodic sequences this inequality
can be improved to Ry(n) > Cy(n) + n for each n € N.

On the other hand, the recurrence function cannot be bounded from above by the
complexity function since, for example, it is possible to find Sturmian sequences whose
recurrence functions grow fast. It follows from the formula for the recurrence function
of Sturmian sequences which was constructed by Morse and Hedlund in [82]. We use
the notation from Section
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Theorem 2.42 ( [82]). Let o = [0;a1,a2,as,...] and let u be a Sturmian sequence
with the slope . Then the recurrence function of u is given by

Ry(n) =qn+1+qgv+n—1 for everyn € [qn,qn+1) -

This result was further generalized by Cassaigne and Chekhova [36, Proposition
2.4] who gave the formula for Arnoux—Rauzy sequences. Among other things, they use
the following general relation between the recurrence function and the lengths of the
return words.

Proposition 2.43 ( [34, Proposition 2]). For any uniformly recurrent sequence u and
for any n € N we have

Ry(n) = max{|r| : r is a return word to a factor of u of length n} +n —1.

In fact, to find the recurrence function of u it suffices to determine the return words
to so-called (essential) singular factors of u (e.g., see [33]) which can be derived from
bispecial factors. The method is precisely described in [34, Section 5] and it can be
use for example to calculated the recurrence function of the Thue-Morse sequence (see
also [35, Proposition 6.1]). This approach was also used in Balkova [9] to obtain the
recurrence function of some class of sequences associated with S-integers.

Recurrence function of Sturmian sequences was recently studied also from proba-
bilistic point of view, see [101].

Recurrence quotient

When the recurrence function of u grows slowly, it means that all factors of u have
to occur quite often and so u has to be highly structured. By Inequality such a
sequence u has also small factor complexity. Hence we define the recurrence quotient
of u, denoted p(u), as
Ru(n)
man

p(u) = lim sup

n—oo
Clearly, the recurrence quotient is always at least 1. Let us emphasize that it can be
also infinite. For example, this is the case of Sturmian sequences whose slopes have
unbounded coefficients in their continued fraction expansions.

If p(u) is finite, then the sequence u is called linearly recurrent. These sequences
have some interesting properties, e.g., see [53]. In particular, Durand showed in [50,51]
that they have a characterization in terms of S-adic representations.

Clearly, if u is periodic, then p(u) = 1. For aperiodic sequences Morse and Hedlund
[81] proposed an open problem to find the best lower bound for p(u). Cassaigne [34]
proved that p(u) > 3, but the Rauzy’s conjecture from [93] which states that p(u) >
2 4 ¢ (where ¢ is the golden ratio) is, as far as we know, still open.

Nevertheless, for Sturmian sequences this estimate is true and the bound is attained
by the Fibonacci sequence (as well as by the sequence ¢(f) for any Sturmian morphism
¢). In fact, Theorem directly implies the following formula for the recurrence
quotients of Sturmian sequences.

Theorem 2.44 ( [82]). Let o = [0;a1,a9,as,...] and let u be a Sturmian sequence
with the slope . Then the recurrence quotient of u is
p(u) = 2+ limsup IN__ 9 + limsup [any;an—1,...,a1] .
N—oo 4N-1 N—oo
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Cassaigne in [33] studies the structure of the set {p(u) : u is Sturmian sequence}
in detail, but also in this special case some questions remain open.

Modifications of the recurrence function

Some other functions related to the recurrence function have been studied, too. First
of all, it is quite natural to consider the prefix variant of the recurrence function. We
denote R),(n) the length of the smallest prefix of u which contains all factors of u of
length n, i.e.,

R, (n) =min{m € N: {£,(0), fn(1),..., fa(m —n)} = Lu(n)} ,

and we consider also the respective quotient

/
P (u) = lim sup Ru(n) .
n—00 n

This function was defined by Allouche and Bousquet-Mélou [2] to reformulate a
conjecture on automaticity function, see [2] or [31] for details. In fact, they proved that
this conjecture on automaticity function is equivalent to another conjecture which says
that every aperiodic sequence u has p/(u) > 1+ ¢. It is well-known that the Fibonacci
sequence satisfies p'(f) = 1 + ¢.

However, Cassaigne |31, Theorem 1] disproved this conjecture and found the correct
optimal lower bound. More precisely, he proved that every aperiodic sequence u has

> 29 — 2+/10

p'(u) 5

and this value is attained by the Sturmian sequence which is the fixed point of the
morphism 0 — 01001010, 1 — 010. Thus the Fibonacci sequence is optimal only
among standard Sturmian sequences and not in the general case.

Let us mention that one can find also closely related function ay(n) = R, (n) — n,
which is called appearance. The value R),(n) —n+1 = ay(n)+1 expresses the maximal
position where a factor of length n occurs in u for the first time. Some details can be
found in [5, Sections 10.10 and 15.3].

Cassaigne in [32] studied the function Rl (n) which assigns to each n the length of
the smallest factor of u which contains all factors of length n.

Clearly, the functions Ry, and R/, depend only on the language of u, while the
function R, depends on the sequence u itself. The mentioned functions also fulfil the
following inequalities:

Cu(n) +n—1 < RI(n) < Ry(n) < Ry(n) for every sequence u and n € N,

and so each aperiodic sequence u has R (n) > 2n for every n € N.

Cassaigne [32, Theorem 1 and Corollary 1] showed that Sturmian sequences can be
described by means of this function: a sequence u is Sturmian if and only if R} (n) = 2n
for every n € N. In particular, it means that all n+ 1 distinct factors from Ly (n) occur
in some factor w € L4(2n). This is only possible if each factor from Ly, (n) occurs once
in w. In that case, Cassaigne says that u has grouped factors. In general, a sequence u
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has grouped factors if and only if R)(n) = Cu(n)+n —1 for every n € N. Among other
things, he showed that Sturmian sequences are not the only sequence with grouped
factors, but the precise characterization of these sequences and many other related
questions remain open.

By studying the relation between the properties of sequences and its morphic im-
ages, Frid [57] computed the functions Ry, Ri; and R/, (as well as some other quantities)
for fixed points of a large class of morphisms.

Links between the critical exponent and the recurrence function

Clearly, the notions of critical exponent and recurrence function (as well as many
other quantities describing sequences) are related. It is particularly evident in the case
of Sturmian sequences, where, in fact, Carpi and de Luca [38] used the formula for
the recurrence function (Theorem to find the formula for the critical exponent
(Theorem [2.38). Now we state some of these links more explicitly.

Cassaigne [35, Proposition 3.2] observed that the following bound on the asymptotic
critical exponent can be derived from the recurrence quotient:

1
* > -
cr (u)_1+p(u)—1
In particular, when cr*(u) = 1, then p(u) is infinite. He also explains that, apart from
this case and the periodic case where cr*(u) = 400 and p(u) = 1, the equality cannot
hold.

Hence it may seem that the quantities cr*(u) and p(u) vary in opposite directions.
However, this is not true at least for Sturmian sequences, since by comparing Theorems
and we get that each Sturmian sequence u has cr*(u) = p(u). Nevertheless,
it is not clear if this property characterizes Sturmian sequences.

Masékova and Pelantova [75, Theorem 1] found another relation between the re-
current function and the indices of factors which holds exactly for Sturmian sequences.
More precisely, they proved that a uniformly recurrent sequence u is Sturmian if and
only if there exist infinitely many factors w of u such that Ry (Jw|) = |w|-ind(w)+1. In
addition, they can used it to present an alternative proof of Theorem since their
approach relies on the Vuillon’s description of Sturmian sequences by return words (see
Theorem instead of the manipulation with the continued fractions of the slopes.

for any sequence u.

2.3.4 Non-repetitive complexity

Non-repetitive complexity is another type of complexity which can be viewed as a dual
function to the recurrence function.

The non-repetitive complexity of a sequence u is a function nrCy : N — N which
to each length n assigns the maximal integer m such that for some position i € N any
factor of u of length n occurs at most ones in w;u;y1 - Ujtmin—2. In other words,
nrCy(n) expresses the maximal number of distinct factors of length n which can be
seen one after another somewhere in u until some factor is repeated. If we denote f,(7)
the factor of length n occurring in u at the position i, we can write

nrCy(n) = max{m € N : 37 € N such that
(@), fa(i+1),..., fu(i +m — 1) are pairwise distinct} .
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Similarly we define also the prefix variant of this function. The initial non-repetitive
complezity of a sequence u is a function inrCy, : N — N which to each length n assigns
the maximal integer m such that any factor of u of length n occurs at most ones in

UQUL * * * Umptn—2, L€,
inrCy(n) = max{m € N : f,(0), fn(1),..., fn(m — 1) are pairwise distinct} .

Let us emphasize that while the function nrC,, depends only on the language of u
and not on the sequence u itself, the function inrC, depends on the precise structure
of the sequence u. In fact, the situation is exactly the same also in the case of (initial)
critical exponent or (initial) recurrence function.

What we meant by non-repetitive complexity was introduced by Nicholson and
Rampersad in [84], where they study the initial non-repetitive complexity. Nevertheless,
the original idea and also the name come from Moothathu [80]. He proposed a new type
of entropy of dynamical systems, so-called Eulerian entropy, which can be in the setting
of symbolics dynamics formulated as a combinatorial property named non-repetitive
complexity, see [80, Section 3] for details. However, Moothathu used this term for the

quantity
log inrCy (n)

lim sup m

n—o0

The initial non-repetitive complexity was independently defined also by Bugeaud
and Kim [29], whose motivation comes from the interplay between combinatorics on
words and Diophantine approximation of real numbers. For example, they use the
initial non-repetitive complexity of u to study the irrational exponent of a number z,
whose expansion in a given base corresponds with u (see |29, Section 4]).

In fact, they defined the function ry : N — N which to each n assigns the length
of the smallest prefix of u containing two (possibly overlapping) occurrences of some
factor of length n, i.e.,

ry(n) =min{m € N: f,,(i) = fn(m —n + 1) for some ¢ with 0 <i <m —n} .

However, since
ru(n) = inrCy(n) + n for every n € N,

we can easily reformulate their results into our notion of inrCy.

Both Nichoson and Rampersad [84] and Bugeaud and Kim [29] examined general
properties of this function in comparison to the classical complexity function. Clearly,
the following inequalities hold:

inrCy(n) < nrCy(n) < Cuy(n) for each n € N.

They showed that these functions can both be equal or differ essentially. More precisely,
they proved that for every d > 3, there exists a sequence u over d-letter alphabet with
inrCy(n) = Cy(n) = d" for all n € N. On the other hand, for every d > 1 they
constructed a sequence v with the factor complexity Cy(n) = d™ and the non-repetitive
complexity inrCy(n) < 4n for all n > 1. See |84 Propositions 2 and 3] and [29|, Section
2].

In addition, they characterize the periodic sequences by means of the initial non-
repetitive complexity. More precisely, a sequence u is eventually periodic if the function
inrCy(n) is bounded, see [84, Theorem 1] and |29, Theorem 2.3].
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Moreover, Bugeaud and Kim also provide a new characterization of Sturmian se-
quences.

Theorem 2.45 ( [29, Theorem 2.4]). A sequence u is Sturmian if and only if u has
inrCy(n) < n+1 for every n > 1 with the equality for infinitely many n.

They also defined the exponent of repetition of u, denoted rep(u), as

rep(u) = linni)gf Tu;Ln) .

They proved that 1 < rep(u) < /10 — 3/2 when u runs over the Sturmian sequences
as well as that both extremal values are attained, see [29, Section 3].

Similarly, Nicholson and Rampersad use the limes superior of r,(n)/n to give a new
criterion for aperiodicity. They showed that u is eventually periodic if and only if

inrCy(n 1
lim sup u(n) 5+  where ¢ is the golden ratio.
Nevertheless, it remains open if the constant —L~ is the best possible or if it can be

14+¢2
replaced for example by 1.

Not surprisingly, (initial) non-repetitive complexity and related quantities have
some links with other combinatorial properties such as (initial) recurrence function,
(initial) critical exponent or Diophantine exponent, some details can be found in [29,
Sections 9 and 10].

Although Moothathu introduced the concept of non-repetitive complexity, he did
not explicitly compute this function for any particular sequence. Nicholson and Ram-
persad [84] obtained formulas for the Thue-Morse sequence, the Fibonacci sequence
and the Tribonacci sequence. They also constructed some square-free sequences with
slowly growing initial non-repetitive complexity. The formulas for the Thue-Morse and
Fibonacci sequences are also mentioned in [29].

Proposition 2.46 ( [84, Theorems 6, 10 and 16]). The inilial non-repetitive com-
plexities of the Thue—Morse sequence m, the Fibonacci sequence f and the Tribonacci
sequence t are as follows:

(i) If 2871 < n < 2% for some integer k > 1, then inrCpm(n) = 3 - 281,

(i1) If F, —2 < n < Fgyq1 — 2 for some integer k > 1, then inrCe¢(n) = Fy, where Fy,
is k™ Fibonacci number.

(iii) If W <n< M for k > 1, then inrCy(n) = Ty, where Ty is k'
Tribonacci number.

2.4 Our tools for studying sequences

The aim of this section is to briefly describe the essential tools which we used to obtain
our results. In particular, we focus on Rauzy graphs and S-adic representation of
sequences. Although both this concepts are now well established in combinatorics on
words, we would like to highlight them since it seems that they can be very useful also
for other studies.
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Let us mention that we take advantage also from other well-known concepts of
combinatorics on words such as special factors (Section[2.1.4) or Parikh vectors (Section
[2.1.3). In the article [E] we significantly use continued fraction expansions related to
Sturmian sequences (Section[2.2.1)), too. In papers [D] and [E] we also utilize the results
about return words and derived sequences obtained in the articles [AlBL|C].

2.4.1 Rauzy graphs

Rauzy graphs can be useful when studying the properties of a sequence u since they
visualize the factor structure of u. They were introduced by Rauzy [93].

First let us recall some definitions. For each non-negative integer n, the Rauzy
graph of order n, denoted I'y(n), is the oriented graph (V) E), where the set V of
vertices is the set L, (n) of all factors of u of length n, the set E of oriented edges is
the set Ly(n + 1) of all factors of u of length n + 1 and there is an edge e from v to w
if there exist two letters a and b such that e = va = bw € Ly(n+ 1). Let us emphasize
that we label the vertices by the factors of u of length n and the edges by the factors
of u of length n+ 1. However, in the literature there are also different ways of labelling
the edge e, e.g., by the first or the last letter of e. Several first Rauzy graphs of the
Fibonacci sequence f are displayed in Figure [2.4]

By a path P of length m in the Rauzy graph I'y(n) we mean a sequence of m + 1
consecutive vertices from I'y(n)

voal vi1a2 Um—1a0m
Vg v S Ums  V0y--Um € Ly(n), a1,...,am € A,

and we label the path P by the word p = vgaias - - - ap, of length n + m.

Clearly, every factor of u of length £ is a label of some path in I'y(n) for each n < £.
On the other hand, not all paths in I'y(n) belong to the language of u. Indeed, for
example the word 000 is the label of the paths

00

00
0—

0—20

in the Rauzy graph I'g(1), but, obviously, it is not the factor of the Fibonacci sequence f.
The reason is that the Rauzy graph I'y(n) captures all possible one-letter prolongations

1001
0
10 01
1 00
['¢(0) ['e(1)

Figure 2.4: Rauzy graphs of the Fibonacci sequence.
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of factors of length n, but it does not take into account the longer factors (or, in other
words, the history). For example, the graph T'f(1) expresses that somewhere in the
word f the factor 0 is followed by 0 and, elsewhere, it is followed by 1. However, it does
not reflect the fact that while the factor 10 can be followed by both letters 0 and 1, the
factor 00 cannot be followed by 0 since 000 is not a factor of f. Nevertheless, if each of
inner vertices of a path vguy - - - vy, has indegree and outdegree 1, then the label of this
path corresponds to a factor of u.

Many properties of sequences can be reformulated in the notion of Rauzy graphs.
For example, a sequence u is recurrent if and only if all its Rauzy graphs are strongly
connected, i.e., every two vertices are connected by an oriented path.

It is also easy to realize which vertices in I'y(n) correspond with special factors of
u of length n. A vertex w is left special if and only if it has indegree at least 2 and,
analogously, w is right special if and only if it has outdegree at least 2. Moreover, the
edges incoming to w and outcoming from w correspond with left and right extensions
of w.

Evolution of Rauzy graphs

In fact, for our purposes it is important to understand how the Rauzy graphs evolve,
i.e., what is the connection between I'y(n) and I'y(n + 1). For simplicity, we suppose
that the sequence u is recurrent. This, in particular, means that for every vertex w of
I'u(n) there is at least one edge aw incoming to w and there is at least one edge wb
outcoming from w.

We create the Rauzy graph I'y(n+ 1) from I'y(n). The vertices of I'y(n + 1) are all
edges of I'y(n) and the edges of I'y(n + 1) are defined as follows:

(i) for each non-special vertex w of I'y(n) with the unique left extension a and right

. . awb
extension b there is one edge aw — bw;

(ii) for each left special vertex w of I'y(n) with k left extensions aq, ag, ..., ar and the
unique right extension b (i.e., w is not bispecial) there are k edges

b
aw a1—wb>wb, asw a2—wb>wb, cee, QRW M>wb;
(iii) for each right special vertex w of I'y(n) with £ right extensions by, b, ..., b; and

the unique left extension a (i.e., w is not bispecial) there are ¢ edges

awby awbs awby
aw — wby, aw —= wby, ..., aw —> wby;

(iv) for each bispecial vertex w of I'y(n) with the left extensions aq,...,a; and the
right extensions b1, ..., by there are edges of the form

aiwbj

a;w — wb; , where i € {1,...,k}, je{l,...,¢} and a;wb; € Ly(n+2).

Let us emphasize that in the bispecial case the last condition is essential. Usually,
not all the edges of the form a;wb; are included in I'y(n + 1) since not all the words
a;wb; are factors of u.
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Ezample 2.47. We derive the graph I'g(2) from the graph T'¢(1). The edges 00, 01 and

10 are the vertices of I'y(2). The non-special vertex 1 induces the edge 01 219 10 and

the bispecial vertex 0 induces three edges 10 100, 00, 10 9% 01 and 00 2% 01. The

edge 00 22 00 is not included in T'¢(2) as 000 ¢ L¢(3).

We can summarize that if there is no bispecial factor in I'y(n), then the Rauzy
graph I'y(n + 1) is completely determined by I'y(n).

Rauzy graphs of Sturmian sequences

Rauzy graphs are especially useful for the sequences with relatively small factor com-
plexity, since these sequences do not have to many special factors and so their graphs
have simple structure.

Let us recall that every Sturmian sequence u is recurrent and it has exactly one
left and one right special factor of each length n, we denote them x and y. Hence the
Rauzy graph I'y(n) has one of two following shapes (see also Figure [2.4):

(I) If  # y (i.e., there is no bispecial factor of length n), then I'y;(n) consists of three
paths with the only common vertices z and y: P4 is the minimal path that links
x to y, P and Pg are paths that links y to x and do not contain Pj.

(IT) If x = y (i.e., x is a bispecial factor of length n), then I'y(n) consists of two cycles
Pp, Pc with the only common vertex x.

Let us emphasize that the shape II can be understood as a special case of the shape
I when P4 = x. Moreover, the labels of paths P4 and Pg, Po are palindromes. For
other details see for example |23, Section 4.5.6].

The Rauzy graphs of Arnoux—Rauzy sequences over d-letter alphabet with d > 2
are nearly the same. The only difference is that there are always d (instead of two)
distinct paths from the right special factor to the left special factor.

Finally, let us mention that return words and derived sequences can be also naturally
interpreted in terms of the Rauzy graphs. We utilize this in the article [D], where Rauzy
graphs of Sturmian and Arnoux—Rauzy sequences play a role. The Rauzy graphs of
Sturmian sequences are used in the article [D], too.

2.4.2 S-adic representation of sequences

In Section we define substitutive sequences which are generated via two mor-
phisms. More precisely, each substitutive sequence u can be written in the form
u = 7(¢*(a)), where 7,7 are morphisms and v is prolongable on a. We can further
generalize this notion by considering an infinite sequence of generating morphisms.
This is the idea of S-adic representation of sequences.

Let A be an alphabet and let S be a finite set of (non-erasing) morphisms on A.
Let Z = ((u)nen be a sequence of morphisms from S and let (a,)en be a sequence of
letters from A. We say that the sequence u € AN admits (((n,an))nen as an S-adic
representation if

Tim (GG Gur(an)| = +o0 and  w= Tim Godi -+ Guoi(an).
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The sequence Z is called a directive sequence of u. The sequence of letters (a,)nen
plays a minor role compared to the directive sequence. Let us remark that also infinite
sets S are sometimes considered.

The notion of S-adicity was precisely introduced by Ferenczi [54] and one can read
more about it for example in the interesting survey [19]. Clearly, substitutive sequences
admit S-adic representations with periodic directive sequences.

A sequence can admit many different S-adic representations. But some S-adic rep-
resentations might be more useful to get information about the sequence than the oth-
ers. Handy S-adic representations are known especially for Sturmian sequence (found
in [22]) and episturmian sequences (found in [66]). However, S-adic representation are
(partially) known also for other classes of sequences, e.g., sequences coding interval
exchange transformations (see [55]), sequences coding rotations (see [44]) or dendric
sequences (see [21]).

In the sequel we introduce one very useful S-adic representation of episturmian
sequences (and so Sturmian and Arnoux—Rauzy sequences, too). We use this notion
in all our articles [ALBL|CL|D\E]. But first we recall needed facts about episturmian
morphism.

Sturmian and episturmian morphisms

For every a € A we define elementary (fundamental) episturmian morphisms:

a—a a—a
a: and R, :
{b%ab for all b # a {b%ba forall b# a.

These 2#.A morphisms generate the monoid My = (Ly, Ry : a € A) of pure epistur-
mian morphisms. Let us remark that episturmian morphisms are all morphisms which
can be obtained by composition of pure episturmian morphisms and permutations on
A. Similarly, standard episturmian morphisms are compositions of the morphisms from
(Lg : a € A) and permutations. See [58166] for details.

Over a binary alphabet, (standard) episturmian morphisms are called (standard)
Sturmian morphisms. The monoid M = My 1, of pure Sturmian morphisms is also
called special Sturmian monoid. Tt is not difficult to realize that for any Sturmian
morphism 4 either ¢ € M or 9% € M.

Ezample 2.48. Fibonacci sequence f is the fixed point of the morphism ¢ = 0 — 01,
1 — 0. Clearly, ¢ does not belong to M. However, ¢ = Loo E and so ¢?> = LoL; € M.
Thus the Fibonacci sequence is fixed also by the pure Sturmian morphism LgL.

To express the morphisms from M 4, we use the following notation adopted from
[59]. For a given alphabet, A we define a new alphabet A = {a@: a € A}. Weput ¢, = L,
and p; = R, for every letter a € A. Then for every word z = 2921 - -+ 2,1 € (AU A)*
we write

P2 = PagPay Py € M

and we say that z is a directive word of the morphism ¢.. A word is L-spinned (R-
spinned, respectively) if all its letters are from A (A, respectively). The opposite word
of z is obtained from z by switching spins of all its letters.
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Ezample 2.49. The word 012 is L-spinned, while the word 012 is R-spinned. These two
words are opposite words of each other.
The word 00120 directs the morphism

) = @gora0 = RoLoR1RoLy .

However, the morphism 1) is also directed by the word 00120, since one can easily verify
that pgo120 = Po0120-

We usually work with primitive morphisms. The primitivity of a pure episturmian
morphism can be easily recognized from its directive word: the morphism ¢, € M 4 is
primitive if and only if its directive word z contains a or a for every letter a € A.
Example 2.50. The Sturmian morphism ¢gp7 : 0 — 0010,1 — 010 is primitive, while
the Sturmian morphism ¢gqg : 0 = 0,1 — 0100 is not primitive.

As indicated in Example a pure episturmian morphism can have more than
one directive word, i.e., the monoid M 4 is not free. Nevertheless, the presentation of
the monoid M4 is known. In fact, Richomme [95, Theorem 7.1] or [96, Proposition
6.5] described the presentation of the monoid of all episturmian morphisms, too.

Proposition 2.51 ( |96, Proposition 6.5], [67, Theorem 2.2]). The monoid of pure
episturmian morphisms M 4 with generators {L, : a € A} U{R, : a € A} has the
following presentation:

Ra, Rqy - - RakLm = L, La, - 'LakRm ) (2-7)
where k € NJk > 1 and a1, a9, ...,ar € A with a1 # a; for all i, 2 <i < k.

This immediately implies that the monoid of pure standard episturmian morphisms
is free.

In the notion of directive words, Relations can be restated using the so-called
block transformations introduced by Justin and Pirillo [67]. A block-transformation in
the word 2z € (AU A)* is the replacement of the factor ava of z, where a € A and
v e (A\ {a})*, by the opposite word ava or vice-versa.

Proposition 2.52 ( [96, Proposition 6.5], [67, Theorem 2.2]). Let z,z" be two words
over AU A. Then o, = @, if and only if we can pass from z to 2’ by a chain of
block-transformations.

Ezample 2.53 (Example continued). Using block-transformations we can rewrite:
00120 +— 00120 +— 00120.
Hence by the previous proposition all these words direct the same morphism, i.e.,
V50130 = Po5130 = Poo120 - Lquivalently, by Proposition we rewrite:
RoLo,RyR:R, = LyRoRyR.Lq = Lo Lo LyL R, .
A directive word z € (AU A)* is a normalized directive word if z has no factor from
the set {aA*a:a € A}.

Ezample 2.54. (Example continued) The directive words 00120 and 00120 of ¢ are
not normalized, while the directive word 00120 of 1) is normalized.

Proposition 2.55 ( [59, Lemma 5.3]). Any pure episturmian morphism has the unique
normalized directive word.

51



CHAPTER 2. OVERVIEW OF THE FIELD

Directive sequences of episturmian sequences

The following theorem ensures the existence of directive sequences of episturmian se-
quernces.

Theorem 2.56 ( [66, Theorem 3.10]). A sequence u is episturmian if and only if
there exist a sequence z = 202122 - € (AU AN and an infinite sequence (u™),>q of
recurrent sequences such that u(¥) = u and

u™ =, (u")  for every n e N. (2.8)

This sequence z is called a directive sequence of u.

In fact, Relation (2.8) can be restated as follows:

U= QP21 " Pzp (u(n+l)) .

Hence we can understood the sequence u as an S-adic sequence with the set of mor-
phisms S = {L, : a € A} U{R, : a € A} and with the directive sequence Z =
Pz0Pz1Pza " "

Let us notice that in the case of a standard episturmian sequence u the directive se-
quence of u defined in Theorem [2.56] equals the directive sequence from the palindromic
closure construction of u mentioned in Section [2.2.2] (e.g., see [58, Section 3]).

Clearly, an episturmian sequence over A is periodic if and only if its directive
sequence z is of the form z = wa, where w € (AU A)* and a € {a,a}" for some letter
a € A. Similarly, the Arnoux-Rauzy (Sturmian) sequences can be easily recognised by
their directive sequences, too (e.g., see [58, Section 2.3]).

Proposition 2.57. An episturmian sequence u € AN with the directive sequence z is
an Arnouz—Rauzy sequence over A if and only if for every a € A the letler a or a
occurs infinitely many times in z.

In particular, fixed points of primitive episturmian morphisms are Arnoux—Rauzy
sequences.

Remark 2.58. Theorem [2.56] and Proposition immediately imply that for an Ar-
noux-Rauzy (Sturmian) sequence u each sequence u® from Theorem is an Arnoux—
Rauzy (Sturmian) sequence with a directive sequence z;z; 1212+ -.

Proposition 2.59 ( |66, Proposition 3.11]).

(i) A sequence z € (AU AN which has infinitely many L-spinned letters directs the
unique episturmian sequence .

(ii) A sequence z € (AU AN which contains finitely many L-spinned letters directs
one episturmian sequence for each a € A which occurs in z infinitely many times.

In particular, for a primitive episturmian morphism ¢, € M 4 it means that
(i) if z contains at least one L-spinned letter, then ¢, has the unique fixed point;

(ii) otherwise, ¢, has #.A4 different fixed points.
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In addition, an episturmian sequence can have more than one directive sequence.
However, Glen, Levé, and Richomme [59] described all directive sequences which direct
the same episturmian sequence.

Theorem 2.60 ( [59, Theorem 4.1]). Two sequences z™1),2z) € (AU AN direct the
same episturmian sequence if and only if one of the following cases holds for some 1, j
such that {i,5} = {1,2}:

(i) z) = [1>1 u™, z20) = [1>1 o™ where u™, v are words such that v, m) =
©,m) for alln >1;

(ii) 29 = wa[],s, u™2z™, 20) = w'a[], -, a™y™, where w,w' are words such
that 0w = @y, a € A and for all n > 1, u(™ is a non-empty a-free L-spinned
word, W™ is the opposite word of u™ and 2™, y(") are non-empty words over
{a,a} such that || = |y™| and ||, = |y™|,.

(iii) 2z) = wa and zU) = w'b, where a,b € A, a € {a,a}Y, b € {b,b}" and w,w’ are
words such that oy (a) = @y (b).

Items (i) and (i7) are especially important for us since we focus on aperiodic epis-
turmian sequences. One can notice that Item (7) is based on block-transformations of
the directive words of episturmian morphisms, while Item (i7) brings new relations.

Ezample 2.61. We verify that the sequences y = (0120)* and z = 01200(1200)“ direct
the same Arnoux-Rauzy sequence. Indeed, we start with y and we set u(!) = 012,
u(%) =00 and w1 =12 for all k > 0. We make the block-transformations:

012 00 12 00 12 00 --- +«+— 012 00 12 00 12 00
NP Sl N S g N
w42 4B M) 4B ) w4 4B) ) 4B )

k > 1. After the block-transformations:

01200120012001200120--- «—  01200120012001200120 - - -
SN NSNNSNANN NN SMsNNSNNNNN NN
@ @ B (@) y6) u@® w2 w3 (@) y6)

we get the sequence 0120(0120)“. Finally we set u!) = 01200, u(**) = 12 and u(?+1) =
00 for all £ > 0, and the block-transformations

01200 12 00 12 00 12 --- +«+— 01200 12 00 12 00 12 -
AP A O R N s N~ N~ =
w@) w2 B (4 4 (B) 4 (6) w12 w3 (@) 4 (B) 4 (6)

lead us to the sequence z = 01200(1200)%.

2)¥ and z = 01(201)“ direct the same episturmian
f Item (ii) of Theorem we have

Also the sequences y = (
sequence, since in the notation o

y=_0 1 20 1 20 1 -+ and z=_0 1 20 1 20 1
R e e N N
wa  g) 4 g@2) y(®2) w a 1) y(1) 4(2) y(2)

A directive sequence z € (AU A)N is normalized if it contains infinitely many L-
spinned letters, but no factor from the set {a.A*a : a € A}. By Proposition every
normalized directive sequence directs exactly one episturmian sequence.
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Ezample 2.62 (Example continued). The sequences (0120)“ and (012)¥ are not
normalized, while the sequences 01200(1200)“ and 01(201)% are normalized directive
sequences.

Proposition 2.63 ( [59, Theorem 5.2]). Any aperiodic episturmian sequence u has a
unique normalized directive sequence.

We remark that this unambiguity need not hold for periodic episturmian sequences,
see [59].

Moreover, the normalized directive sequences can be constructed using Theorem
If a directive sequence does not contain infinitely many L-spinned letters, then
we use Item (ii) to find another one with infinitely many L-spinned letters. If a direc-
tive sequence contains infinitely many L-spinned letters, then it can be normalized by
repeated applications of Item (i). See [59 Section 5] for more details.

Ezample 2.64. By Proposition the sequence z = (012)* directs three Arnoux—
Rauzy sequences starting with the letters 0, 1, 2, respectively. All these sequences have
the same language as the Tribonacci sequence t with the directive sequence (012)%.
Their normalized directive sequences are 0(120)“, 01(201)“ and 012(012)“, respectively

(see Example [2.61)).

Finally, let us point out that a sequence which is fixed by a primitive episturmian
morphism has to have a purely periodic directive sequence. However, its normalized
directive sequence need not be purely periodic (see Example . Nevertheless, the
normalized directive sequence of a substitutive sequence is always periodic.
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Chapter 3

Aims and results of the thesis

This chapter is dedicated to a brief summary of the main results of this thesis. First of
all, we focus on the derived sequences of Sturmian, Arnoux—Rauzy and complementary
symmetric (CS) Rote sequences (Section [3.1). We also study the non-repetitive com-
plexity of Arnoux-Rauzy sequences (Section and derive formulas for the critical
exponent (Section[3.3) and the recurrence function (Section of CS Rote sequences.
To make the summary clearer we partially unified the notation, although the original
papers [A,BL|C, D} E| differ slightly in some aspects.

3.1 Derived sequences

A substantial part of this thesis is devoted to the investigation of derived sequences
in the case of sequences with low factor complexity. The notions of return words and
derived sequences were described in detail in Section We just recall that the
derived sequence dy(w) of u with respect to a non-empty prefix w of u expresses the
order of return words to w in the sequence u.

Although Durand [49] proved that a uniformly recurrent sequence is primitive sub-
stitutive if and only if it has finite number of derived sequences (see Theorem ,
many related questions remain open.

Our main aim is to describe the set Der(u) of all derived sequences of u with respect
to its non-empty prefixes in the case when u is Sturmian (Section[3.1.1)), Arnoux—Rauzy
(Section or CS Rote sequence (Section [3.1.3). Let us recall that two derived
sequences which differ only by a permutation of letters are identified with one another
and counted as one derived sequence.

3.1.1 Derived sequences of Sturmian sequences

The aim of the article [A] is to study derived sequences of Sturmian sequences. In
particular, we precisely describe the set Der(u) for Sturmian sequences which are the
fixed points of primitive Sturmian morphisms. Sturmian sequences are discussed in
Section let us now just recall that Aradjo and Bruyere [6] described derived
sequences of standard Sturmian sequences using continued fraction expansions of their
slopes. Nevertheless, we consider also the more general case of non-standard sequences.

Vuillon [104] proved that every Sturmian sequence has two return words to each of
its factors (see Theorem . Thus the derived sequences of Sturmian sequences are
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binary and, moreover, they are Sturmian by Theorem and Proposition [2.33]

Proposition 3.1. If u is a Sturmian sequence and w is a prefiz of u, then the derived
sequence dy(w) is Sturmian as well.

We focus especially on the fixed points of primitive Sturmian morphisms. Hence
we can restrict ourselves on primitive Sturmian morphisms from the special Sturmian
monoid M without loss of generality. Indeed, by Section for every Sturmian
morphism 4 either ¢ € M or 12 € M and the fixed points of 1) are fixed also by 2.

Our key tool is the decomposition of Sturmian morphisms from M into elementary
Sturmian morphisms, which was described in Section We recall that for v € M

we write

Y = Quw = PuwgPwy * Pwn_y 5

where w € (AU A)* = {0,1,0,1}* is the directive word and all ,, are elementary
Sturmian morphisms. Since this decomposition need not be unique, we use the so-
called normalized directive word: a directive word z is normalized if it does not contain
a factor of the form a.A*a for any a € A. Normalized directive words are unique and
can be easily found by Proposition [2.52]

In fact, this is closely related to S-adic representations of Sturmian sequences ex-
plained in Section Indeed, if a sequence u is a fixed point of a morphism ,,,
then the directive sequence of u is z = w* and the sequence u can be expressed in the
form

u = p,(u) = gpwo(u(l)) , where u® is fixed by ©uw,-w,_1wo
= Vw0, (P, where u® is fixed by Qupw, wow; ;

etc.

Remark 3.2. Let us briefly comment on the notation. While the article [A] denotes
the elementary Sturmian morphisms by ¢y, ©8, Qa, Pa. in this summary we prefer the
notation Lg, L1, Rg, R1, or o, ¢1, 5, 7 from Section Hence we would like to
emphasize their connections:

wv=Lo=wo, wp=Li1=¢1, wa=Ro=¢; and ¢ = R1=p7.

Thus in |A] the directive word (called name) of 1 is a word over the alphabet {a, , b, 5}
instead of AU A = {0,1,0,1}.

The structure of any elementary Sturmian morphism ¢ is simple enough to enable
us to precisely describe the relation between the derived sequences of a sequence u and
its preimage u’, where u = p(u’). In fact, special factors and return words of u and u’
are closely linked, too (see [A} Section 3]).

Proposition 3.3. Let u,u’ be Sturmian sequences and ¢ € {0,1}.
(i) If u = L.(u’), then Der(u) = Der(u’) U {u’'}.
(11) If u = R.(u') and u starts with a letter d € {0,1}, d # ¢, then Der(u) = Der(u’).
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Roughly speaking, we can gradually desubstitute the sequence u onto its preimages
uM, u®, etc. and determine the derived sequences of u from this process using the
proposition above. In fact, we have to do it more properly to ensure that we do not
omit any derived sequence.

Although we use these observations only for Sturmian sequences which are the
fixed points of primitive Sturmian morphisms, they can be similarly applied to general
Sturmian sequences (i.e., to eventually periodic or even aperiodic directive sequences).
We deal with these cases in the article [B].

Durand [49] shoved that all derived sequences of a sequence fixed by a primitive
morphism are also fixed points of primitive morphisms, see Section for further
details. We provide an algorithm which for a given Sturmian morphism 1 lists the
morphisms fixing the derived sequences of the fixed point of .

First we focus on the case of a primitive Sturmian morphism ¥ = ¢,, € M having
the unique fixed point. By Proposition its directive word w contains at least one
letter from A, i.e., w € (AU A)* \ A*. Moreover, its normalized directive word z is of
the form z = @bz’ for some a,b € A,a #b, k € Nand 2’ € (AU A)*. Then we define
the transformation A by

A(z) = N(Z@"b) and A(y) = DPA(2) > (3.1)

where N (v) is the normalization of the word v (i.e., it is a normalized directive word
of the morphism ¢, ). We have to normalize the obtained word since we want to apply
the transformation A repeatedly and A acts only on normalized words.

Ezrample 3.4. We consider the primitive morphism ¢ = ¢, with the normalized directive
word z = 101. We apply repeatedly the transformation A on 1):

A(101) = N(011) = 011 A(Y) = oot
A(011) = N(I01) = 101 A% (1) = @101
A(101) = N(011) = 011 A3 () = g1
A(01T) = N(110) = 110 AY) = o1
A(110) = N(101) = 101 A°(¥) = w101
A(101) = N(110) = 110 AS(y) = At ()

Theorem 3.5 ( |[A, Theorem 25]). Let ) = ¢, € M be a primitive Sturmian morphism
with the normalized directive word z € (AU A)*\ A*, i.e., ¥ has the unique fized point
u. Then x is a derived sequence of u with respect to one of its non-empty prefives if
and only if x is the fized point of the morphism A™ (1)) for some m > 1.

Example 3.6. The unique fixed point u of the morphism ¢ = 57 considered in Exam-
ple has five distinct derived sequences. They are fixed by morphisms A(w), A%(1),
A3(zp), A*(y) and AS(v)), respectively. Nevertheless, only the fixed points of A%(v)
and A®(¢) represent the derived sequences of u to infinitely many prefixes of u.

The remaining case of Sturmian sequences with two fixed points can be easily trans-
formed to Theorem by the following proposition.
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Proposition 3.7 ( |A, Proposition 29]). Let v = ¢, € M be a primitive Sturmian
morphism which has two fized points, i.e., z = z9z1 - 2n_1 € A*. We denote c the
letter from A such that zo = ¢ and d the other letter from A.

(i) The fized point u of 1 starting with the letter ¢ has Der(u) = Der(v)U{v}, where
v is the unique fized point of the morphism ¢, with v = c 1 N(zc) € {¢, d}*.

(ii) The fized point x of 1 starting with the letter d has Der(x) = Der(y), where
y s the fized point starting with the letter d of the morphism ¢, with y =
2129 Zn—1%0-

We give a sharp bound on the cardinality of Der(u), too.

Proposition 3.8 ( [A, Corollary 35 and Proposition 37]). Let ¢ = ¢, € M be a
primitive Sturmian morphism. Then for its fixed point u we have

1 < #Der(u) < 3|lw| —4.

Moreover, both bounds are attained for infinitely many morphisms which are not powers
of any other morphisms.

Ezample 3.9. For every n > 2 the fixed point of the primitive Sturmian morphism
¥ = ., where z = (@)" b for a,b € A, a # b, has one derived sequence. This derived
sequence is also fixed by the morphism .

For every n > 2 the fixed point of the primitive Sturmian morphism ¥ = ¢, where
2z =a""%ba for a,b € A,a # b, has 3n — 4 distinct derived sequences. See also Example

[3.6] or [A] Example 33].

In addition, for the fixed points of two special classes of Sturmian morphisms we
determine the precise numbers of their distinct derived sequences.

Proposition 3.10 ( [A, Propositions 36 and 37]). Let ¥ = ¢, € M be a primitive
Sturmian morphism which is not a power of any other morphism.

(i) If ¢ is standard, i.c., z € A*, then its unique fized point has |z| derived sequences.
Moreover, if z = 2021+ 2n—1, then their fixing morphisms have the directive words
2129 Zn_120, 2923 Zn—120%21s -y Zn—120" " 2Zn—o and 2021 - - Zn_1, respectively.

(ii) If 1 has two fived points, i.c., z € A*, then its fized point starting with the letter a
has 1+ |z|; derived sequences, where a,b € A,a # b.

Proposition and can be stated analogously also for primitive Sturmian
morphisms which are not included in the special Sturmian monoid M, i.e., for the
morphisms of the form ¢ = ¢, o FE, where ¢,, € M and E is the morphism which
exchanges the letters 0 <+ 1.

To give the exact number of derived sequences, one needs to describe when the
normalized directive word z corresponds to some power of a Sturmian morphism. This
is not trivial, since z may be a normalized directive word of a power of a morphism
without z being a power of some other word. For example, if z = 10011, then the

normalized directive word of ()3 is the primitive word N(z3) = 100111001110011.
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3.1.2 Derived sequences of Arnoux—Rauzy sequences

In the article [B] we generalize the results of [A] to the case of Arnoux—Rauzy sequences
(see Section. We use a similar technique based on the representation of Arnoux—
Rauzy sequence by episturmian morphisms. However, we slightly modify the notation,
which enables us to comfortably work also with primitive substitutive sequences (and
not only with fixed points of primitive morphisms). More precisely, we use the normal-
ized directive sequences (explained in Section of Arnoux—Rauzy sequences which
were introduced by Glen, Levé and Richomme [59].

Let us recall that by Theorem [2.56] and Proposition each Arnoux—Rauzy se-
quence u has a directive sequence z € (AU A)YN such that, for every a € A, a or a
occurs infinitely many times in z, and a sequence of its recurrent preimages (u(”))nzo
such that

U=z, (u™)  forevery n e N, (3.2)

These directive sequences do not have to be unique, but every Arnoux—Rauzy sequence
has a unique normalized directive sequence (see Proposition which can be con-
structed using Theorem The directive sequence is normalized if it contains in-
finitely many letters from A, but no factor from the set {aA*a : a € A}.

Justin and Vuillon [65] showed that every Arnoux—Rauzy sequence over A has #.A
return words to each of its factors. Hence the corresponding derived sequences can be
considered over the same alphabet A. Nevertheless, it is not clear if these sequences
are also Arnoux—Rauzy. In particular, we cannot use the same argument as in the
case of Sturmian sequences since the number of return words does not characterize
Arnoux-Rauzy sequences (see Section for more details).

We first deduce the following proposition which is completely analogous to Propo-
sition [3.3] from the previous section.

Proposition 3.11 ( [Bl Corollary 21]). Let u,u’ be Arnouz—Rauzy sequences over A
and a € A.

(i) If u= L,(1'), then Der(u) = Der(u’) U {u’}.
(i1) If u= R,(u') and u starts with a letter b € A, b # a, then Der(u) = Der(u’).

Hence, we can again determine the derived sequences of a given Arnoux—Rauzy
sequence by analyzing the process of desubstitution of u onto its preimages u(” which
is controlled by its directive sequence z (see Relation (3.2))). This proposition also
indicates that only the letters of z which are from A (in [B] they are called L-spinned
letters) are important. This leads us to the following definition of the transformation
A (compare with (3.1)): Let z = zz122--- € (AU AN be a normalized directive
sequence. Then A applied to z removes the smallest prefix of z ending with a letter
from A (L-spinned letter), i.e.,

A(z) = zk412k422k+3 - -, where k is the smallest index such that z; € A.

One can notice that the sequence A(z) is still normalized. Hence we can apply this
transformation repeatedly.
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Ezample 3.12. We consider the normalized directive sequence z = 210(2101)“ and we
apply repeatedly the transformation A on z:

Using this A notation we can eagily describe all the derived sequences of a given
Arnoux—Rauzy sequence.

Theorem 3.13 ( [B, Theorem 24]). Let u be an Arnouz—Rauzy sequence over A with
the normalized directive sequence z. Then a sequence X is a derived sequence of u with
respect to one of its non-empty prefizes if and only if x is an Arnouz—Rauzy sequence
directed by A™(z) for some m > 1, i.e.,

Der(u) = {sequence directed by A"™(z) : m > 1}.

Ezample 3.14. We consider the Arnoux—Rauzy sequence u directed by the normalized
directive sequence z = 210(2101)* from Example One can easily verify that the
sequences directed by (2101)% and (0121)¥ are the same up to the exchange of letters
0 <> 2. Hence we consider them as the same derived sequence. We may conclude that
the sequence u has two derived sequences directed by A(z) and A%(z). However, only
the derived sequence directed by A2(z) appears for infinitely many prefixes of u.

Let us mention that while the description of derived sequences of standard Arnoux—
Rauzy sequences can be easily deduced from the work of Justin and Vuillon [65], we
cover also the more complicated case of non-standard sequences.

Since the sequence directed by A™(z), where m > 1, is obviously Arnoux—Rauzy
sequence, we immediately obtain the following corollary that confirms the natural con-
jecture that derived sequences of Arnoux—Rauzy sequences are also Arnoux—Rauzy
sequences.

Corollary 3.15 ( |B, Corollary 25]). Fach derived sequence with respect to a non-
empty prefiz of a given Arnoux—Rauzy sequence over A is an Arnouz—Rauzy sequence
over A as well.

Finally, we focus on Arnoux—Rauzy sequences with periodic directive sequences. If
an Arnoux—Rauzy sequence u is the fixed point of a primitive episturmian morphism
Vw, 1.e., its (not necessarily normalized) directive sequence is w = w*, then

1 < Der(u) < 3|lw| — 2#.A

and both bounds are attained for infinitely many sequences. Since the statement and
its proof are completely analogous to the Sturmian case (Proposition , this is not
included in the paper [B].

It is possible to similarly bound the cardinality of Der(u) also for a primitive substi-
tutive Arnoux-Rauzy sequence u = 7(1)*(a)) in terms of the lengths of decompositions
of 7 and % into elementary episturmian morphisms. Moreover, if we know the normal-
ized directive sequence of u, we can determine the exact number of derived sequences
of u.
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Proposition 3.16 ( [B, Corollary 29]). Let u be an Arnouz—Rauzy sequence over A
with the eventually periodic normalized directive sequence z = x (yP(y) x -P"_l(y))w €
(AUA)N, where the words x and y are the shortest possible and P is a permutation on
A of the order n. We denote |xy| the numbers of letters from A in the word xy.

(i) If the last letters of both x,y are L-spinned, then #Der(u) = |zy|4 — 1.
(ii) If the last letter of x or y is R-spinned or x = €, then #Der(u) = |zy|4.

Ezample 3.17. The Tribonacci sequence t (see Example with the normalized
directive sequence z = (012)% = (0P(0)P?(0))¥, where P : 0 — 1,1 — 2,2 — 0, has
only one derived sequence and it is equal to t.

On the other hand, the Arnoux—Rauzy sequence with the normalized directive se-
quence z = 0(120)“, which has the same language as t (see Example , has three
derived sequences directed by A(z) = (120)%, A%(z) = (201)¥ and A3(z) = (012)v,
respectively.

Let us mention one related open question. For any Sturmian sequence u we can
decide if u is a fixed point of a primitive morphism by the well-known Yasutomi’s
condition [107]. However, we do not known any analogous result for Arnoux—Rauzy
sequences over the alphabet of size grater than two.

In particular, it means that we are not able to (easily) recognize Arnoux—Rauzy
sequences which are fixed points from their normalized directive sequences. Indeed, an
Arnoux—Rauzy sequence which is a fixed point has to have a purely periodic directive
sequence, but its normalized directive sequence can be eventually periodic with a non-
empty pre-period.

Ezample 3.18. The fixed point of the morphism ¢;gs7 has the directive sequence (1021)%,
but its normalized directive sequence is z = 10211(0211).

Hence some derived sequences may be falsely considered to not be fixed by a prim-
itive morphism.

Ezample 3.19. The primitively substitutive sequence u with the normalized directive
sequence z = 110211(0211)% is not the fixed point of any morphism. Although, all its
derived sequences with respect to its non-empty prefixes are fixed points of morphisms:

A(z) = 10211(0211)* = (1021); A%(z) = (2110)%;
A%(z) = 0211(0211)* = (0211)~; AS(z) = (1102)%;
A3(z) = 1(0211)¥ = (1021)%; A"(z) = (1021)%;
Al(z) = (0211)%; A¥(z) = A%(z).

From this point of view, the method used in [A] is for fixed points slightly more
informative, since it enable us to obtain directly the fixing morphisms of derived se-
quences.

3.1.3 Derived sequences of complementary symmetric Rote sequences
The article [C] focuses on the return words and derived sequences of complementary

symmetric (CS) Rote sequences which were introduced in Section [2.2.4]
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First, we easily deduce from some results of [11] that every non-empty prefix of a
CS Rote sequence has exactly three return words. The same also follows directly from
Proposition [2.30] since CS Rote sequences are neutral sequences of characteristic 0.
Thus derived sequences of a CS Rote sequence with respect to its non-empty prefixes
are ternary sequences.

The detailed study of return words and derived sequences is based on Theorem
which expresses the link between CS Rote sequences and Sturmian sequences: the
sequence v is a CS Rote sequence if and only if u = S(v) is a Sturmian sequence. These
sequences u and v are called associated. Let us recall that the mapping S assigns to
each sequence v € {0, 1} the sequence u = S(v) such that

u; =v; +viy1 mod 2 forall ¢ € N.

The mapping S is analogously defined also for non-empty words. For every vy € {0, 1}
we put S(vg) = € and for every v = vgv1---v, € {0,1}T of length at least 2 we put
S(vm}l ce Un) = Uupuiq - - Up-—1, where

u; =v; +v;y1 mod 2 forall i€{0,1,...,n—1}.

Proposition shows that the factors of associated sequences v and u are closely
related, too. Using Theorem [2.23]and Proposition [2.26] we transform our task to precise
description of return words and derived sequences of Sturmian sequence studied in |A].

We would like to emphasize that we study only CS Rote sequences associated with
standard Sturmian sequences (in |26] they are called standard Rote sequences). Let us
recall that for a standard Sturmian sequence u it suffices to determine return words
and derived sequences to its bispecial factors, since those factors coincides with the
right special prefixes of u. In addition, the structure of derived sequences of u is quite
simple (see Item (i) of Proposition [3.10). Nevertheless, it seems that it is possible to
do the same also for general CS Rote sequences.

The form of return words (and so derived sequences) of a CS Rote sequence v
depends on the number of ones in the return words of the associated Sturmian sequence
u. Hence we define the following notion of stability. A word u = upuq - - - u,—1 € {0,1}*
is called stable (S) if |ul; =0 mod 2. Otherwise, it is called unstable (U).

FEzample 3.20. The word v = 0110101 is stable while the word v = 011010 is unstable.

Then we classify prefixes of a standard Sturmian sequence into three types accord-
ing to the stability of their return words. Let w be a prefix of a standard Sturmian
sequence u and let r, s be its return words and k be a positive integer such that u is a
concatenation of the blocks 7¥s and r*t1s. Then the type Ty, of w is

(i) Tw = SU(k), if  is stable and s is unstable;
(ii) Tw = US(k), if r is unstable and s is stable;
(iii) Ty = UU(k), if both r and s are unstable.

FEzample 3.21. We consider the Fibonacci sequence f. Its empty prefix € has return
words r = 0 and s = 1 and since f is composed of the blocks 01 and 001, the respective
parameter is k = 1. Hence the type of € is 7. = SU(1).

The prefix 0 of f has return words r = 01 and s = 0. Since f is composed of the
blocks 010 and 01010, the parameter is £ = 1. Hence the type of 0 is 7o = US(1).
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It is easy to verify that all these types appear in the case of prefixes of Sturmian
sequences, while the fourth possible case, i.e., the type S.S, cannot appear. In fact, these
prefix types can be determine from the directive sequence of the standard Sturmian
sequence, we explain details in [Cl Section 5].

Proposition 3.22 ( [C, Theorem 3.10]). Let v be a CS Rote sequence associated with a
standard Sturmian sequence u = S(v). Let x be a non-empty prefix of v and w = S(x).
Then the prefix © of v has three return words A, B,C € {0,1}* satisfying

(i) if T = SU(k), then S(A0)=r, S(B0)=srktls and S(C0) = srks;
(i) if Tw = US(k), then S(A0)=rr, S(B0)=rsr and S(C0) = s;
(#5i) if Tw = UU(k), then S(A0)=rr, S(B0)=rs and S(C0) = sr.

Among other things, this proposition directly implies that the derived sequences of
a CS Rote sequence depend only on the derived sequences of the associated standard
Sturmian sequence and on the types of respective prefixes.

Proposition 3.23 ( [C, Corollary 4.1]). Let v be a CS Rote sequence associated with
a standard Sturmian sequence u = S(v) and let x be a non-empty prefix of v. Then
the derived sequence dy(x) is uniquely determined by the derived sequence dy(w) of u
to the prefiz w = S(x) and by the type Ty, of the prefiz w.

Erample 3.24. The CS Rote sequence g from Example associated with the Fi-
bonacci sequence f has three derived sequences. Indeed, f has only one derived se-

quence which is (up to a permutation of letters) equal to f and by |C, Example 5.13]
the prefixes of f are of three distinct types SU(1), US(1) and UU(1).

In the article [A] we explain that all derived sequences of a standard Sturmian
sequence are standard Sturmian sequences as well. Hence they can be interpreted
as 2iet sequences, i.e., sequences coding two interval exchange transformations (see
section. Similarly, all derived sequences of the associated CS Rote sequence with
respect to its non-empty prefixes are 3iet sequences, i.e., sequences coding three interval
exchange transformations. Thus these sequences are dendric (see Section [2.2.3)).

Proposition 3.25 ( [C, Proposition 4.2]). Let v be a CS Rote sequence associated
with a standard Sturmian sequence u = S(v), let  be a non-empty prefix of v and
w = S(z). Let (1 —a) < i be the slope of the Sturmian sequence du(w). Then the
derived sequence dy(x) is a 3iet sequence coding the intercept p = 1 — a under the
three interval exchange transformation T given by the following parameters B,~ and
permultation m:

(i) if Tw = SU(k), then f=a, y=a—k(l —a), and 7 = (3,2,1);

(ii) if Tw =US(k), then f=2a—1,v=1—a, and m = (3,2,1);
(iii) if Tw = UU(k), then  =2a—1,vy=1—q, and 7 = (2,3,1).
Ezxample 3.26 (Examplecontinued). The Fibonacci sequence f has the slope 1—% =
2 — ¢ and the intercept 2 — ¢, where ¢ = (1 +1/5)/2 denotes the golden ratio. Thus

each of three derived sequences of g is a 3iet sequence coding the intercept 2 — 7 under
the three interval exchange transformation T with the parameters:
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(i) p=1 ’y:%—landﬂ:(3,2,1),

=

i) B=2-1,y=2—-7and 7= (3,2,1) or

=
(iii) B=2—-1,y=2—71and 7= (2,3,1).
Finally, we discuss the case of primitive substitutive CS Rote sequences.

Theorem 3.27. Let v be a CS Rote sequence associated with a standard Sturmian
sequence u = S(v). Then v is primitive substitutive if and only if w is primitive
substitutive.

For CS Rote sequences associated with fixed points of standard Sturmian morphisms
we bound the number of their distinct derived sequences. Clearly, similar bound can
be constructed also for primitive substitutive CS Rote sequences.

Proposition 3.28 ( [C, Corollary 6.4]). Let v be a CS Rote sequence associated with a
standard Sturmian sequence u = S(v) fized by a primitive morphism ¢,, where z € A*.
Then v has at most 3|z| derived sequences with respect to its non-empty prefizes and
each of them s fized by a primitive morphism over a ternary alphabet.

Using Durand’s general construction (see [49, Proposition 5.1]) we can also find the
primitive morphisms which fix these derived sequences. The process is summarized
in |[C, Algorithm 6.7].

Ezample 3.29 (Example continued). The three derived sequences of g are fixed by
the following morphisms:

A— AB A — BBCAC A — BACCB
o0: 4 B—ABAACAACA , o,:{B— BBCACAC , o2:{ B — BACC
C - ABAACA C —B C - BACB

On the other hand, every CS Rote sequence associated with a standard Sturmian
sequence has at least two derived sequences. Moreover, this bound is attained by only
one CS Rote sequence which is associated with the Sturmian sequence directed by
(1001)¥. See [A, Remark 7.1].

If ¢, is not a power of any other morphism, then the Sturmian sequence u has
exactly |z| distinct derived sequences (see Proposition and thus by Proposition
the CS Rote sequence v has at least |z| derived sequences. In each of our examples
the actual number of derived sequences was |z|, 2|z| or 3|z|, but we do not know whether
some other values can also appear.

3.2 Non-repetitive complexity of Arnoux—Rauzy sequences

The article [D] is dedicated to the non-repetitive complexity and the initial non-
repetitive complexity of Arnoux—Rauzy sequences. These functions were discussed
in Section The study is motivated by recent results of Nicholson and Ram-
persad [84] on the initial non-repetitive complexity of the Fibonacci and Tribonacci
sequences stated in Proposition [2.46]

Our aim is to express the values of these functions for an arbitrary Arnoux—Rauzy
sequence u. For this purpose, we first use the Rauzy graphs of u (see Section [2.4.1)) to
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transform our task into the evaluation of the lengths of return words to the bispecial
factors of u (see [D), Proposition 7]). Then we utilize the knowledge of the form of these
return words and respective derived sequences obtained in [B]. It leads to the desired
formulas in terms of the directive sequence of u.

To state the relevant theorems we have to recall that By (k) denotes the k-th bispe-
cial factor of u (see Section and ¢, for each a € A is the elementary episturmian
morphism (see Section [2.4.2)).

Theorem 3.30 ( [D}, Theorem 13]). Let u be an Arnouz—Rauzy sequence over A and let
7z = 292122 -+ - be the directive sequence of the standard Arnouz—Rauzy sequence with the
language Ly. Let n € Nyn > 1. Find the unique k such that |By(k —1)| < n < |By(k)]
and for every b € A define Sy(k) = sup{l:0 < { < k,z; = b}. Then we have

nrcu(n) = “pzo()pfq P 1 Py (a)‘ —1- ’Bu(k” +n,
where a € A\ {z} is the letter such that Su(k) = inf{Sp(k) : b€ A\ {z}}.

Let us notice that the case of Sturmian sequences is much easier. In fact, the simple
form of their Rauzy graphs enables us to state immediately an explicit formula.

Theorem 3.31 ( [D, Theorem 5]). Let u be a Sturmian sequence. Then nrCy(n) = n+1
for every n € N.

Nevertheless, Sturmian sequences are not the only sequences with the equality
nrCy(n) = Cu(n) for every n € N, one can reads more in Section or in the
paper [84].

We determine the initial non-repetitive complexity only for standard Arnoux—Rauzy
sequence. It seems that for non-standard Arnoux—Rauzy sequences the evaluating of
the initial non-repetitive complexity is much more complicated, as, unlike the standard
case, we do not have the control over the positions of the vertices corresponding to
prefixes in the respective Rauzy graphs.

Theorem 3.32 ( [D, Theorem 15]). Let u be a standard Arnouz—Rauzy sequence with
the directive sequence z = 2g9z129---. For every integer n > 1 we take the unique k
such that |By(k — 1)| < n < |Bu(k)|. Then we have

ianu(n) = |80z08021 Pz (Zk?)| :

Moreover, for standard Sturmian sequence we deduce the following corollary. How-
ever, Bugeaud and Kim [29] showed the more general result, see Theorem m

Corollary 3.33 ( [D| Corollary 16]). Let u be a standard Sturmian sequence. Then
inrCy(n) = n+ 1 for infinitely many n € N.

Finally, we apply Theorems and to the d-bonacci sequence t (see Example
[2.15). We get the formulas for nrCg(n) and inrC¢(n) in terms of the so-called d-bonacci
numbers which naturally generalized the famous Fibonacci numbers. The sequence of
d-bonacci numbers (Dy)>o is defined by the linear recurrence:

d
Dp=> Dy fork>d and Dy=2" forallk=0,1,...,d—1.
j=1

65



CHAPTER 3. AIMS AND RESULTS OF THE THESIS

Proposition 3.34 ( [D, Theorems 20 and 21]). Let t be the d-bonacci sequence and
let n, k be positive integers such that

1 d—1 d 1 d—1 d
— PR < - —j o
11 i:O(d i)Dy_i—2 T <" ;:()(d i)Dy—i—1 T 1
Then
R d
ant(n) = Dk_l’_]_ -1 ﬁ '_O(d — i)Dk;_i_]_ + ﬁ +n and

inrC¢(n) = Dy, .

This generalizes the results of Nicholson and Rampersad [84] stated in Item (ii) and
(iii) of Proposition [2.46]

3.3 Critical exponent of complementary symmetric Rote
sequences

In the article [E] we determine the critical exponent of complementary symmetric (CS)
Rote sequences. The critical exponent was explained in Section The motivation
for this work comes from the result on the repetition threshold of binary rich sequences
stated in Theorem This statement was formulated as a conjecture by Baranwal
and Shallit [13] and proved by Curie, Mol, and Rampersad [40]. For us it is especially
important that the two sequences with the minimal critical exponent among all binary
rich sequences are CS Rote sequences.

First of all, it is worth to realize that for finding the critical exponent of a sequence
only some of its factors have to be considered.

Lemma 3.35 ( [E, Lemma 3]). Let u be a uniformly recurrent aperiodic sequence.
Then cr(u) = sup {indy(u) : w € M}, where

M ={u:u is a return word to a bispecial factor of u}.

The relation between a CS Rote sequence v and the associated Sturmian sequence
u = S(v) stated in Proposition directly implies the following method of computa-
tion of the critical exponent of v. In fact, it holds for more general pairs of sequences
satisfying u = S(v), too.

Proposition 3.36 ( |[E, Theorem 14]). Let v be a binary aperiodic uniformly recurrent
sequence whose language is closed under E. Denote u = S(v),

A = {indu(u) + |Tli| 1w 15 a stable return word to a bispecial factor of u} and

Ay = {%(indu(u) + ﬁ) tu 18 an unstable return word to a bispecial factor of u} .
Then
cr(v) = sup(4; U 4g) .

Hence it suffices to study the return words to bispecial factors of the Sturmian
sequence u. We continue in the results of |A] and using the directive sequences of
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Sturmian sequences (described in Section we determine both the stability ( [E,
Proposition 30]) and the indices ( [E, Proposition 32]) of these return words.

Thus we get the formula for the critical exponent of v in terms of continued fraction
expansions related to the directive sequence of u. Let us emphasize that in this section
the directive sequence is a sequence of morphisms D = g and G = ¢; (instead of a
sequence of letters 0 and 1). To a sequence u with the directive sequence G D*2G - - -
or D' G* D% ... we assign an irrational number 6 € (0, 1) with the continued fraction
expansion 6 = [0;aq,as9,as,...]. We denote % the N convergent to the number 6

5 Other details about these continued

fraction expansions are summarized in [E, Section 5].

and Z’,—N the N convergent to the number %
N

Theorem 3.37 ( [E, Theorem 33]). Let v be a CS Rote sequence and let u be the
standard Sturmian sequence such that Lsi) = Ly.

If u has the directive sequence G D*2G*¥ D ... then we have cr(v) = sup(M; U
My U M3), where

M. — qﬁ\/—l_l_ . .
1=9aN4+1 +2+—F—: qn is even, N € N ;
an
2 ¢y —1
My = aN+1 + qu1/
2 2qN

: qusodd,NGN};

o —1
M3 = {2—1— /QN7/ : gN-1,9N ore odd and any1 > 1, N > 1}
In—1 T an

If u has the directive sequence DM G2 DG --. | then the formula is the same
except for the replacement of qn and qn_1 by pn and py_1.

Using this formula we describe all CS Rote sequences with the critical exponent less
than or equal to 3.

Proposition 3.38 ( [E, Proposition 34]). Let v be a CS Rote sequence associated with
the standard Sturmian sequence u = S(v). If cr(v) < 3, then the directive sequence of
u is of one of the following forms:

(i) G (D?G?)%, where a; = 1 or a; = 3; in this case cr(v) = 2 + %;
(i) G D*(G?D?)%, where a1 = 1 or a1 = 3; in this case cr(v) = 3;

(iii) G*D'G%(D2G?)*, where a; = 2 or a1 = 4 and ag = 1 or ag = 3; in this case
cr(v) = 3;

(iv) D*G*(D?*G?)*, where ag = 1 or as = 3; in this case cr(v) = 3.

Let us mention that the sequences from Item (i) are the sequences v and v’ from
Theorem

In addition, we show that there are uncountably many CS Rote sequences with
the critical exponent less than I (see [E, Theorem 37]). By Proposition all these
sequences has smaller critical exponent that any Sturmian sequence. Nevertheless, the
detailed structure of the set {cr(v) : v is CS Rote sequence} remains unclear.
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3.4 Recurrence function of complementary symmetric Rote
sequences

The article [E] contains the formula for the recurrence function of CS Rote sequences,
too. This function is described in Section [2.3.3] As in the case of the critical exponent,
the values of the recurrence function are expressed by means of continued fraction
expansions related to the directive sequences of associated Sturmian sequences (see
Section . Also in this section the directive sequence is a sequence of morphisms
D = ¢y and G = ;.

Theorem 3.39 ( [E, Theorem 54]). Let v be a CS Rote sequence and let u be the
standard Sturmian sequence such that Ls) = Lu.
If u has the directive sequence G DG D - .. | then the recurrence function Ry

forn € [dy,dy41), N €N, is given by

/ / .
Case gy even  Ry(n+1) — { 2q5\7+1 +qy+n Z.f ant2 > 1,
2(]N+2 +n if an42 = 1.
Case gy even Ry(n+1)= { qEV,“ * 2(]2\[“ +ay +n Z:f an+z > 1
2,9t qn 0 if ango=1.
3Gy Ty +n if anio>1

Case ¢y, odd Ry(n+1)= .
4N, gN+1 V( ) { Q§V+3+QEV+2+Q§V+1+” if an4o = 1.

If u has the directive sequence DG DG ... | then the admissible values of Ry
forn € [y, qy11), N €N, are the same, but the cases above have to be distinguished
according to the parity of py and pyy1 instead of qn and qn11.

Ezample 3.40. We consider the CS Rote sequence v such that S(v) has the directive se-
quence G(D?*G?)*. Since in this case all gx are odd, we obtain for every n € [¢}y, In11)
the formula

Ry(n+1) =3¢y +anv+n = n—|—2\1&((4+3\/§)(1+\/§)N+1_(4—3\/5)(1—\/§)N+1> ’

We briefly indicate how we derive the statement of Theorem First, we use the
following reformulation of Proposition [2.43]

Lemma 3.41 ( |[E| Lemma 41]). Let u be a uniformly recurrent aperiodic sequence.
For n € N, we denote

Bu(n) ={b € Ly : there is a factor w € Ly(n) such that

b is the shortest bispecial factor containing w} .

Then
Ry(n) = max{|r| : v is a return word to b € By(n)} +n — 1.

68



3.5. FUTURE DIRECTIONS

From the close relation between a CS Rote sequence v and the Sturmian sequence
u = S(v) it is easy to realize that the sets By (n + 1) and By(n) correspond naturally
for every n € N. Thus it suffices to describe the bispecial factors from the set By(n)
(see [E, Theorem 48]). This can be done through the investigation of the Rauzy graphs
and palindromic properties of Sturmian sequences.

Finally, we use the comfortable description of the lengths of return words to bispecial
factors of u ( |[E, Proposition 32]) as well as the relation between the return words in
the Sturmian sequence u and the CS Rote sequence v explained in |C] (see Proposition
3.29).

3.5 Future directions

We hope that some of our tools and ideas can be utilized also for other tasks. We can
see at least four possible future directions:

e The crucial notion for our study of derived sequences of Sturmian and Arnoux—
Rauzy sequences is their handy S-adic representation. S-adic representations
are (partially) known also for other classes of sequences. It would be nice to
utilize them for the description of derived sequences of sequences coding interval
exchange transformation or even dendric sequences.

e To study properties of Rote sequences, we especially use their S-relation to Stur-
mian sequences (see Section [2.2.4). This S-relation (or its generalizations) can
be considered also for other classes of sequences. It seems that similar methods
can lead to some interesting results also in this cases.

e Following Durand’s example we study only derived sequences with respect to
prefixes of sequences. However, it could be also interesting to understand the
(more complicated) structure of derived sequences to non-prefixes. Some results
in this direction can be found in [64,69,[87].

e Like many other authors we use our results on return words and derived se-
quences to study other properties of sequences such as critical exponent, recur-
rence function or non-repetitive complexity. It seems that there are other similar
possibilities how utilize the results.

3.6 Note on authorship

Besides this extensive Introduction, the thesis is a collection of articles, most of which
are co-authored. My contribution to each of these articles corresponds to the number
of authors: all of them contributed equally.

69






References

[A]

K. Klouda, K. Medkova, E. Pelantova, and S. Starosta, Fixed points of Sturmian
morphisms and their derivated words. Theoretical Computer Science 743 (2018),
23-37.

K. Medkova, Derived sequences of Arnoux—Rauzy sequences. In: R. Mercas, D.
Reidenbach (eds.), WORDS 2019, Lecture notes in Computer Science, vol. 11682,
Springer (2019), 251-263.

K. Medkové, E. Pelantova, and L. Vuillon, Derived sequences of complementary
symmetric Rote sequences. RAIRO - Theoretical Informatics and Applications
53 (2019), 125-151.

K. Medkové, E. Pelantova, and E. Vandomme, On non-repetitive complexity of
Arnoux—Rauzy words. Submitted to Discrete Applied Mathematics.

L. Dvorakova, K. Medkova, and E. Pelantova, Complementary symmetric Rote
sequences: the critical exponent and the recurrence function. Submitted to Dis-
crete Mathematics & Theoretical Computer Science.

J.-P. Allouche, M. Baake, J. Cassaigne, and D. Damanik, Palindrome complexity.
Theoret. Comput. Sci. 292 (2003), 9-31.

J.-P. Allouche and M. Bousquet-Mélou, On the conjectures of Rauzy and Shallit
for infinite words. Comment. Math. Univ. Carolinae 36 (1995), 705-711.

J.-P. Allouche, J. Cassaigne, J. Shallit, and L. Q. Zamboni, A Taxonomy of
Morphic Sequences. Preprint: https://arxiv.org/abs/1711.10807| (2017).

J.-P. Allouche, J. L. Davison, M. Queffélec, and L. Q. Zamboni, Transcendence
of Sturmian or morphic continued fractions. J. Number Theory 91 (2001), 39-66.

J.-P. Allouche and J. Shallit, Automatic Sequences, Theory, Applications, Gen-
eralizations. Cambridge University Press, Cambridge (2003).

I. M. Aradjo and V. Bruyere, Words derivated from Sturmian words. Theoret.
Comput. Sci. 340 (2005), 204-219.

P. Arnoux and G. Rauzy, Représentation géométrique de suites de complexité
2n + 1. Bulletin de la Société Mathématique de France 119 (1991), 199-215.

71


https://arxiv.org/abs/1711.10807

REFERENCES

8]

[21]

[22]

72

P. Balazi, Z. Masakova, and E. Pelantova, Factor versus palindromic complexity
of uniformly recurrent infinite words. Theoret. Comput. Sci. 380 (2007), 266—275.

L. Balkova, Return words and recurrence function of a class of infinite words.
Acta Polytechnica 47 (2007), 15-19.

L. Balkova, E. Pelantové, and S. Starosta, Sturmian jungle (or garden?) on
multiliteral alphabets. RAIRO Theor. Inf. Appl. 44 (2010), 443-470.

L. Balkova, E. Pelantova, and W. Steiner, Sequences with constant number of
return words. Monatsh. Math. 155 (2008), 251-263.

A. R. Baranwal and J. Shallit, Critical expoment of infinite balanced words via
the Pell number system. In: R. Mercas and D. Reidenbach (eds.), Proceedings
WORDS 2019, Lecture Notes in Computer Science, vol. 11682, Springer (2019),
80-92.

A. R. Baranwal and J. Shallit, Repetitions in infinite palindrome-rich words. In:
R. Mercas and D. Reidenbach (eds.), Proceedings WORDS 2019, Lecture Notes
in Computer Science, vol. 11682, Springer (2019), 93-105.

J. Berstel, Sturmian and Episturmian words. In: S. Bozapalidis and G. Rahonis
(eds.), Algebraic Informatics, Springer Berlin Heidelberg (2007), 23-47.

V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, and G.
Rindone, Acyclic, connected and tree sets. Monatsh. Math. 176 (2015), 521-550.

V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, and G.
Rindone, Bifix codes and interval exchanges. J. Pure Appl. Algebra 219 (2015),
2781-2798.

V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, C. Reutenauer, and G.
Rindone, The finite index basis property. J. Pure Appl. Algebra 219 (2015),
2521-2537.

V. Berthé, C. De Felice, F. Dolce, J. Leroy, D. Perrin, Ch. Reutenauer, and G.
Rindone, Maximal bifix decoding. Discrete Math. 338 (2015), 725-742.

V. Berthé and V. Delecroix, Beyond substitutive dynamical systems: S-adic
expansions. In: S. Akiyama (ed.), Numeration and Substitution 2012, RIMS
Kokyturoku Bessatsu, vol. B46 (2014), 81-123.

V. Berthé, V. Delecroix, F. Dolce, D. Perrin, Ch. Reutenauer, and G. Rindone,
Return words of linear involutions and fundamental groups. Ergodic Theory and
Dynamical Systems 37 (2017), 693-715.

V. Berthé, F. Dolce, F. Durand, J. Leroy, and D. Perrin, Rigidity and substitutive
dendric words. IJFCS International Journal of Foundations of Computer Science
29 (2018), 705-720.

V. Berthé, C. Holton, and L. Q. Zamboni, Initial powers of Sturmian sequences.
Acta Arith. 122 (2006), 315-347.



REFERENCES

[23]

[27]

28]

[29]

[30]

[35]

[36]

V. Berthé and M. Rigo (eds.), Combinatorics, Automata and Number Theory, En-
cyclopedia of Mathematics and Its Applications, vol. 135. Cambridge University
Press (2010).

A. Blondin-Massé, S. Brlek, S. Labbé, and L. Vuillon, Codings of rotations on two
intervals are full. Electronic Notes in Discrete Mathematics 34 (2009), 289-393.

A. Blondin-Massé, S. Brlek, S. Labbé, and L. Vuillon, Palindromic complexity of
codings of rotations. Theoret. Comput. Sci. 412 (2011), 6455-6463.

A. Blondin-Massé, G. Paquin, H. Tremblay, and L. Vuillon, On Generalized Pseu-
dostandard Words over Binary Alphabet. Journal of Int. Sequences 16 (2013),
article 13.2.11.

M. Bucci and A. De Luca, On a family of morphic images of Arnoux—Rauzy words.
In:  LATA ’09: Proceedings of the 3rd International Conference on Language
and Automata Theory and Applications, Springer-Verlag, (2009), 259-266.

M. Bucci, A. De Luca, A. Glen, and L. Q. Zamboni, A connection between
palindromic and factor complexity using return words. Adv. in Appl. Math 42
(2009), 60-74.

Y. Bugeaud and D. H. Kim, A new complexity function, repetitions in Sturmian
words, and irrationality exponents of Sturmian numbers. Trans. Amer. Math.
Soc. 371 (2019), 3281-3308.

J. Cassaigne, Complexité et facteurs spéciaux. Bull. Belg. Math. Soc. Simon
Stevin 4(1) (1997), 67-88.

J. Cassaigne, On a conjecture of J. Shallit. In: ICALP’97, Lect. Notes Comput.
Sci., vol. 1256, Springer-Verlag (1997), 693-704.

J. Cassaigne, Sequences with grouped factors. In: Developments in Language
Theory III, Aristotle University of Thessaloniki (1998), 211-222.

J. Cassaigne, Limit values of the recurrence quotient of Sturmian sequences.
Theoret. Comput. Sci. 218 (1999), 3-12.

J. Cassaigne, Recurrence in Infinite Words. In: A. Ferreira and H. Reichel (eds.),
STACS 2001, Lecture Notes in Computer Science, vol. 2010, Springer, Berlin,
Heidelberg (2001), 1-11.

J. Cassaigne, On extremal properties of the Fibonacci word. RAIRO-Theor. Inf.
Appl. 42(4) (2008), 701-715.

J. Cassaigne and N. Chekhova, Fonctions de récurrence des suites d’Arnoux—
Rauzy et réponse a une question de Morse et Hedlund. Ann. Inst. Fourier (Greno-
ble) 56(7) (2006), 2249-2270.

J. Cassaigne, S. Ferenczi, and L. Q. Zamboni, Imbalances in Arnoux—Rauzy se-
quences. Ann. Inst. Fourier (Grenoble) 50(4) (2000), 1265-1276.

73



REFERENCES

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

74

A. Carpi and A. de Luca, Special factors, periodicity, and an application to
Sturmian words. Acta Informatica 36 (2000), 983—-1006.

E. M. Coven and G. A. Hedlund, Sequences with minimal block growth. Mathe-
matical Systems Theory 7 (1973), 138-153.

J. D. Currie, L. Mol, and N. Rampersad, The repetition threshold for binary rich
words. Discrete Math. Theoret. Comput. Sci. 22(1) (2020), no. 6.

J. D. Currie and N. Rampersad, A proof of Dejean’s conjecture. Mathematics of
Computation 80 (2011), 1063-1070.

D. Damanik and D. Lenz, The index of Sturmian sequences. FEuropean J. Combin.
23 (2002), 23-29.

F. Dejean, Sur un théoréme de Thue. J. Combin. Theory. Ser. A 13 (1972),
90-99.

G. Didier, Codages de rotations et fractions continues. J. Num-ber Theory, 71(2)
(1998), 275-306.

F. Dolce and D. Perrin, Neutral and tree sets of arbitrary characteristic. Theoret.
Comput. Sci. 658 (2017), 159-174.

F. Dolce and D. Perrin, Eventually dendric subshifts. Preprint: https://arxiv.
org/abs/1807.05124 (2018).

X. Droubay, J. Justin, and G. Pirillo, Episturmian words and some constructions
of de Luca and Rauzy. Theoret. Comput. Sci. 225(1-2) (2001), 539-553.

X. Droubay and G. Pirillo, Palindromes and Sturmian words. Theoret. Comput.
Sci. 223 (1999), 73-85.

F. Durand, A characterization of substitutive sequences using return words. Dis-
crete Math. 179 (1998), 89-101.

F. Durand, Linearly recurrent subshifts have a finite number of non-periodic
subshift factors. Ergodic Theory and Dynamical Systems 20 (2000), 1061-1078.

F. Durand, Erratum: Linearly recurrent subshifts have a finite number of non-
periodic factors. Ergodic Theory and Dynamical Systems 23(2) (2003), 663—669.

F. Durand, Decidability of uniform recurrence of morphic sequence. International
Journal of Foundations of Computer Science 24(1) (2013), 123-146.

F. Durand, B. Host, and C. Skau, Substitutions, Bratteli diagrams and dimension
groups. Ergod. Th. Dyn. Sys. 19 (1999), 952—993.

S. Ferenczi, Rank and symbolic complexity. Ergodic Theory Dynam. Syst. 16
(1996), 663-682.

S. Ferenczi, C. Holton, and L. Q. Zamboni, Structure of three-interval exchange
transformations: II. A combinatorial description of the trajectories. J. Anal.
Math. 89 (2003), 239-276.


https://arxiv.org/abs/1807.05124
https://arxiv.org/abs/1807.05124

REFERENCES

[56]

[70]

[71]

G. Fici, A. Langiu, T. Lecroq, A. Lefebvre, F. Mignosi, J. Peltomiiki, and E.
Prieur-Gaston, Abelian powers and repetitions in Sturmian words. Theoret. Com-
put. Sci. 635 (2016), 16-34.

A. Frid, Applying a uniform marked morphism to a word. Discrete Math. and
Theoret. Comput. Sci. 3 (1999), 125-140.

A. Glen and J. Justin, Episturmian words: a survey. RAIRO-Theoret. Inf. Appl.
43 (2009), 403-442.

A. Glen, F. Levé, and G. Richomme, Directive words of episturmian words: equiv-
alences and normalization. RAIRO-Theoret. Inf. Appl. 43 (2009), 299-319.

D. Hensley, Continued Fractions, World Scientific Publishing (2006).

C. Holton and L. Q. Zamboni, Descendants of primitive substitutions. Theoret.
Comput. Syst. 32 (1999), 133-157.

Y. Huang and Z. Wen, The sequence of return words of the Fibonacci sequence.
Theor. Comput. Sci. 593 (2015), 106-116.

Y. Huang and Z. Wen, Kernel words and gap sequence of the Tribonacci sequence.
Acta Mathematica Scientia 36B(1) (2016), 173-194.

Y. Huang and Z. Wen, Envelope words and the reflexivity of the return word
sequences in the period-doubling sequence. Preprint: https://arxiv.org/abs/
1703.07157 (2017).

J. Justin and L. Vuillon, Return words in Sturmian and episturmian words. Theor.

Inform. Appl. 34 (2000), 343-356.

J. Justin and G. Pirillo, Episturmian words and episturmian morphisms. Theoret.
Comput. Sci. 276(1-2) (2002), 281-313.

J. Justin and G. Pirillo, Episturmian words: shifts, morphisms and numeration
systems. Internat. J. Found. Comput. Sci. 15(2) (2004), 329-348.

J. Karhumiki, A. Saarela, and L. Q. Zamboni, On a generalization of Abelian

equivalence and complexity of infinite words. J. Combin. Theory Ser. A 120
(2013), 2189-2206.

V. Kosik and S. Starosta, On Substitutions Closed Under Derivation: Examples.
In: R. Mercas and D. Reidenbach (eds.), Proceedings WORDS 2019, Lecture
Notes in Computer Science, vol. 11682, Springer (2019), 226-237.

D. Krieger, Critical exponents and stabilizers of infinite words. Ph.D. thesis,
http://hdl.handle.net/10012/3599 (2008).

D. Krieger and J. Shallit, Every real number greater than 1 is a critical exponent.
Theoret. Comput. Sci. 381 (2007), 177-182.

75


https://arxiv.org/abs/1703.07157
https://arxiv.org/abs/1703.07157
http://hdl.handle.net/10012/3599

REFERENCES

[72]

[73]

[74]

[75]

[82]

[83]

[84]

76

M. Lothaire, Combinatorics on Words, Encyclopaedia of Mathematics and its
Applications, vol. 17, Addison-Wesley (1983). Reprinted in the Cambridge Math-
ematical Library, Cambridge University Press (1997).

M. Lothaire, Algebraic Combinatorics on Words, Encyclopedia of Mathematics
and its Applications, vol. 90, Cambridge University Press (2002).

M. Lothaire, Applied Combinatorics on Words, Encyclopedia of Mathematics and
its Applications vol. 105, Cambridge University Press (2005).

Z. Masidkova and E. Pelantova, Relation between powers of factors and the recur-
rence function characterizing Sturmian words. Theoret. Comput. Sci. 410 (2009),
589-3596.

Z. Masakova and E. Pelantova, Enumerating Abelian Returns to Prefixes of Stur-
mian Words. In: J. Karhuméki, A. Lepisto, L. Zamboni (eds.), Combinatorics on
Words, Lecture Notes in Computer Science, vol. 8079, Springer (2013), 193-204.

F. Mignosi, Infinite words with linear subword complexity. Theoret. Comput. Sci.
65 (1989), 221-242.

F. Mignosi and G. Pirillo, Repetitions in the Fibonacci infinite word. RAIRO
Theor. Inform. Appl. 26 (1992), 199-204.

F. Mignosi, A. Restivo, and S. Salemi, Periodicity and the golden ratio. Theoret.
Comput. Sci. 204 (1998), 153-167.

T. K. S. Moothathu, Eulerian entropy and non-repetitive subword complexity.
Theoret. Comput. Sci. 420 (2012), 80-88.

M. Morse and G. A. Hedlund, Symbolic dynamics. Amer. J. Math. 60 (1938),
815-866.

M. Morse and G. A. Hedlund, Symbolic dynamics II - Sturmian trajectories.
Amer. J. Math. 62 (1940), 1-42.

H. Mousavi, Automatic theorem proving in Walnut. Preprint: https://arxiv.
org/abs/1603.06017| (2016).

J. Nicholson and N. Rampersad, Initial non-repetitive complexity of infinite
words. Discrete Appl. Math. 208 (C) (2016), 114-122.

V. I. Oseledec, The spectrum of ergodic automorphisms. Doklady Akademii Nauk
SSSR 168 (1966), 1009-1011 (in Russian).

J. J. Pansiot, Complexité des facteurs des mots infinis engendrés par morphismes
itérés. In: J. Paredaens (ed.), Proc. 11th Int. Conf. on Automata, Languages, and
Programming (ICALP), Lecture Notes in Computer Science, vol. 172, Springer-
Verlag (1984), 380-389.

E. Pelantova and S. Starosta, On Sturmian substitutions closed under derivation.
Preprint: https://arxiv.org/abs/1908.11095 (2019).


https://arxiv.org/abs/1603.06017
https://arxiv.org/abs/1603.06017
https://arxiv.org/abs/1908.11095

REFERENCES

[83]

[94]

[95]

[96]

[97]

[103]

J. Peltomiki and M. A. Whiteland, Every Nonnegative Real Number Is an
Abelian Critical Exponent. In: R. Mercas and D. Reidenbach (eds.), Proceed-
ings WORDS 2019, Lecture Notes in Computer Science, vol. 11682, Springer
(2019), 275-285.

S. Puzynina and L. Zamboni, Abelian returns in Sturmian words. J. Combin.
Theory Ser. A 120(2) (2013), 390-408.

N. Rampersad, M. Rigo, and P. Salimov, A note on abelian returns in rotation
words. Theoret. Comput. Sci. 528 (2014), 101-107.

N. Rampersad, J. Shallit, and E. Vandomme, Critical exponents of infinite bal-
anced words. Theoret. Comput. Sci. 777 (2019), 454-463.

M. Rao, Last cases of Dejean’s conjecture. Theoret. Comput. Sci. 412 (2011),
3010-3018.

G. Rauzy, Suites & termes dans un alphabet fini. In: Séminaire de Théorie des
Nombres de Bordeauz (1982-1983) 12 (1983), 1-16.

R. N. Risley and L. Q. Zamboni, A generalization of Sturmian sequences: Com-
binatorial structure and transcendence. Acta Arith. 95 (2000), 167-184.

G. Richomme, Conjugacy and episturmian morphisms, Theoret. Comput. Sci.
302 (2003), 1-34.

G. Richomme, Lyndon morphisms. Bull. Belg. Math. Soc. Simon Stevin 10
(2003), 761-785.

G. Richomme, K. Saari, and L. Q. Zamboni, Abelian complexity of minimal
subshifts. J. Lond. Math. Soc. 83(1) (2011), 79-95.

M. Rigo and P. Salimov: Another generalization of abelian equivalence: Binomial
complexity of infinite words. Theoret. Comput. Sci. 601 (2015), 47-57.

M. Rigo, P. Salimov and E. Vandomme, Some properties of abelian return words.
Journal of Int. Sequences 16 (2013), article 13.2.5.

G. Rote, Sequences with subword complexity 2n. J. Number Theory 46 (1994),
196-213.

P. Rotondo and B. Vallée, The recurrence function of a random Sturmian word.
In: C. Martinez et al. (eds.), Proceedings of 14th ANALCO17, SIAM (2017),
100-114.

A. Thue, Uber die gegenseitige Lage gleicher Teile gewisser Zeichenreihen. Kra.
Vidensk. Selsk. Skrifter. I. Mat. Nat. KI. 1 (1912), 1-67. Reprinted in T. Nagell
et al. (eds.), Selected Mathematical Papers of Axel Thue. Universitetsforlaget,
Oslo (1977), 413-477.

D. Vandeth, Sturmian words and words with a critical exponent. Theoret. Com-
put. Sci. 242 (2000), 283-300.

7



REFERENCES

[104] L. Vuillon, A characterization of Sturmian words by return words. Eur. J. Com-
bin. 22 (2001), 263-275.

[105] L. Vuillon, Balanced words. Bull. Belg. Math. Soc. Simon Stevin 10 (2003),
787-805.

[106] L. Vuillon, On the number of return words in infinite words constructed by in-
terval exchange transformations. Pure Mathematics and Applications 18 (2007),
issue no. 3-4.

[107] S.-I. Yasutomi, On Sturmian sequences which are invariant under some substitu-
tions. In: Number theory and its applications (Kyoto, 1997), Kluwer Acad. Publ.,
Dordrecht (1999), 347-373.

78



Article A

Fixed points of Sturmian
morphisms and their derivated
words

79






Theoretical Computer Science 743 (2018) 23-37

Contents lists available at ScienceDirect ?“!emﬁu,
D e
Theoretical Computer Science '
www.elsevier.com/locate/tcs =

o.)

Check for
updates

Fixed points of Sturmian morphisms and their derivated
words

Karel Klouda®, Katefina Medkova **, Edita Pelantova?, Stépan StarostaP

2 Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University in Prague, Biehovd 7, 115 19,
Prague 1, Czech Republic

b Department of Applied Mathematics, Faculty of Information Technology, Czech Technical University in Prague, Thakurova 9, 160 00, Prague 6,
Czech Republic

ARTICLE INFO ABSTRACT

Article history: Any infinite uniformly recurrent word u can be written as concatenation of a finite number
Received 28 January 2018 of return words to a chosen prefix w of u. Ordering of the return words to w in this
Received in revised form 8 May 2018 concatenation is coded by derivated word dy(w). In 1998, Durand proved that a fixed

Accepted 21 June 2018
Available online 2 July 2018
Communicated by P. Spirakis

point u of a primitive morphism has only finitely many derivated words dy(w) and each
derivated word dy(w) is fixed by a primitive morphism as well. In our article we focus on
Sturmian words fixed by a primitive morphism. We provide an algorithm which to a given

Keywords: Sturmian morphism v lists the morphisms fixing the derivated words of the Sturmian
Derivated word word u =1/ (u). We provide a sharp upper bound on length of the list.
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Sturmian morphism
Sturmian word

1. Introduction

Sturmian words are probably the most studied object in combinatorics on words. They are aperiodic words over a binary
alphabet having the least factor complexity possible. Many properties, characterizations and generalizations are known, see
for instance [5,4,2].

One of their characterizations is in terms of return words to their factors. Let u = uguqu;--- be a binary infinite word
with u; € {0, 1}. Let w = ujuj4q---Ujyn—1 be its factor. The integer i is called an occurrence of the factor w. A return word
to a factor w is a word uju;yq---uj_q with i and j being two consecutive occurrences of w such that i < j. In [22], Vuillon
showed that an infinite word u is Sturmian if and only if each nonempty factor w has exactly two distinct return words.
A straightforward consequence of this characterization is that if w is a prefix of u, we may write

U =Tyl Ts,ls5 -

with s; € {0,1} and rp and r; being the two return words to w. The coding of these return words, the word dy(w) =
S0S1S2 - - - is called the derivated word of u with respect to w, introduced in [10]. A simple corollary of the characterization by
return words and a result of [10] is that the derivated word dy(w) is also a Sturmian word (see Theorem 1). This simple
corollary follows also from other results. For instance, it follows from [1], where the authors investigate the derivated word
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of a standard Sturmian word and give its precise description. It also follows from the investigation of a more general setting
in [7], which may in fact be used to describe derivated words of any episturmian word — generalized Sturmian words [12].

By the main result of [10], if u is a fixed point of a primitive morphism, the set of all derivated words of u is finite (the
result also follows from [13]). In this case, again by [10], a derivated word itself is a fixed point of a primitive morphism.

In this article we study derivated words of fixed points of primitive Sturmian morphisms. By the results of [18], any
primitive Sturmian morphism may be decomposed using elementary Sturmian morphisms — generators of the Sturmian
monoid. In Theorems 14 and 18, we describe the relation between the set of derivated words of a Sturmian sequence u and
the set of derivated words of ¢(u), where ¢ is a generator of the Sturmian monoid.

The main result of our article is an exact description of the morphisms fixing the derivated words dy(w) of u, where
u is fixed by a Sturmian morphism i and w is its prefix. For this purpose, we introduce an operation A acting on the
set of Sturmian morphisms with unique fixed point, see Definition 22. Iterating this operation we create the desired list
of the morphisms as stated in Theorem 25. The Sturmian morphisms with two fixed points are treated separately, see
Proposition 29.

We continue our study by counting the number of derivated words, in particular by counting the distinct elements in
the sequence (Ak(w))kﬂ. This number depends on the decomposition of i into the generators of the special Sturmian
monoid, see below in Section 2.3.

Using this decomposition, Propositions 36 and 37 provide the exact number of derivated words for two specific classes
of Sturmian morphisms.

For a general Sturmian morphism v, Corollary 35 gives a sharp upper bound on their number. The upper bound depends
on the number of the elementary morphisms in the decomposition of . In the last section, we give some comments and
state open questions.

2. Preliminaries

An alphabet A is a finite set of symbols called letters. A finite word of length n over A is a string u = uguq ---up_1,
where u; € A for all i =0,1,...,n— 1. The length of u is denoted by |u| =n. By |u|, we denote the number of copies of
the letter a used in u, i.e. |ulg = #{i € N: i <n, u; =a}. The set of all finite words over A together with the operation of
concatenation forms a monoid A*. Its neutral element is the empty word ¢ and AT = A*\ {¢}. On this monoid we work
with two operations which preserve the length of words. The mirror image or reversal of a word u = uguy ---up—1 € A* is
the word U = up_1up—_3 -+ - uqup. The cyclic shift of u is the word

cyc(u) =uquy -+ - Up_1lp. (1)

An infinite word over A is a sequence u = uguquy - -- = (Uj)jey € AN with u; € A for all i e N=1{0,1,2,...}. Bold letters
are systematically used to denote infinite words throughout this article.

A finite word p € A* is a prefix of u = upuy---up—1 if p = upuquy---ug_q for some k <n, the word uptlpyq---Un—1
is denoted p~lu. Similarly, p € A* is a prefix of u = ugujuy--- if p = uguquy---ux_; for some integer k. We usually
abbreviate ugujuy - - - Ug—1 =Ug ).

A finite word w is a factor of u = uguqu;--- if there exists an index i such that w is a prefix of the infinite word
Uijli+qUi4 - --. The index i is called an occurrence of w in u. If each factor of u has infinitely many occurrences in u, the
word u is recurrent.

The language L(u) of an infinite word u is the set of all its factors. The mapping Cy : N+ N defined by Cy(n) = #{w €
L(u) : |[w| =n} is called the factor complexity of the word u.

An infinite word u is eventually periodic if u=wvvvvv... for some v, w € A*. If w is the shortest such word possible,
we say that |w| is the preperiod of u; if v is the shortest possible, we say that |v| is the period of u. If u is not eventually
periodic, it is aperiodic. A factor w of u is a right special factor if there exist at least two letters a, b € A such that wa, wb
belong to the language L(u). A left special factor is defined analogously.

An infinite word u is eventually periodic if and only if £(u) contains only finitely many right special factors. Equivalently,
u is eventually periodic if and only if its factor complexity Cy is bounded. On the other hand, the factor complexity of any
aperiodic word satisfies Cy(n) >n+ 1 for every n € N.

An infinite word u with Cy(n) =n+ 1 for each n € N is called Sturmian. A Sturmian word is standard (or characteristic)
if each of its prefixes is a left special factor.

2.1. Derivated words

Consider a prefix w of an infinite recurrent word u. Let i < j be two consecutive occurrences of w in u. The string
Ujljyq---Uj_q is a return word to w in u. The set of all return words to w in u is denoted by Ryu(w). Let us suppose that
the set of return words to w is finite, i.e. Ry(w) = {ro,r1,...,7k_1}. The word u can be written as unique concatenation of
the return words u =rs,rs, 15, - - -. The derivated word of u with respect to the prefix w is the infinite word

du(W) =505152 -~
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over the alphabet of cardinality #Ry(w) =k. In his original definition, Durand [10] fixed the alphabet of the derivated word
to the set {0, 1, ...,k —1}. Moreover, Durand’s definition requires that for i < j the first occurrence of r; in u is less than the
first occurrence of r; in w. In particular, a derivated word always starts with the letter 0. In the article [1], where derivated
words of standard Sturmian words are studied, the authors required that the starting letters of the original word and its
derivated word coincide. For our purposes, we do not need to fix the alphabet of derivated words: two derivated words
which differ only by a permutation of letters are identified one with another.

In the sequel, we work only with infinite words which are uniformly recurrent, i.e. each prefix w of u occurs in u infinitely
many times and the set Ry(w) is finite. Our aim is to describe the set

Der(u) = {dy(w): w is a prefix of u}.

Clearly, if a prefix w is not right special, then there exists a unique letter x such that wx € £(u). Thus the occurrences of
w and wx coincide, Ry (W) = Ry(wx) and dy(w) = dy(wx). If u is not eventually periodic, then w is a prefix of a right
special prefix of u. Therefore for an aperiodic uniformly recurrent word u we have

Der(u) = {dy(w): w is a right special prefix of u}.
2.2. Sturmian words

Any Sturmian word u can be identified with an upper or lower mechanical word. A mechanical word is described by two
parameters: slope and intercept. The slope is an irrational number y € (0, 1) and the intercept is a real number p € [0, 1).
To define the lower mechanical word s(y, p) = (sp (¥, P))peny We put Ig =[0,1 — y). The nth letter of s(y, p) is as follows:

0 if the number yn+ p mod 1 belongs to Io,

N s = .
n(.p) 1 otherwise.

The definition of the upper mechanical word s'(y, p) = (s;l(y, ,0))"EN is analogous, it just uses the interval Ip = (0,1 — y].
Let us stress that s,(y, p) # s, (v, p) for at most two neighboring indices n and n + 1. All upper and lower mechanical
words with irrational slope are Sturmian and any Sturmian word equals to a lower or to an upper mechanical word. Let
us stress that one-sided Sturmian words with irrational slope are always uniformly recurrent. The language of a Sturmian
word depends only on y. The number y is in fact the density of the letter 1, ie, y = nli)rrolo %#{i eN:ii<n,si(y,p)= 1}.

Consequently, 1 — y is the density of the letter 0.

For any irrational y € (0, 1) there exists a unique mechanical word c(y) with slope y such that both Oc(y) and 1c(y) are
Sturmian. The word c(y) is a standard Sturmian word and c(y) =s(y, y) =s'(y, ). Many further properties of Sturmian
words can be found in [16,5].

For our study of derivated words, the following result of Vuillon from [22] is important: a word u is Sturmian if and
only if any prefix of u has exactly two return words. By combining this result with [10], we obtain an essential observation
about derivated words of Sturmian words, which also follows from [1].

Theorem 1. If u is a Sturmian word and w is a prefix of u, then its derivated word dy(w) is Sturmian as well.

Proof. Set v =dy(w). Let p be a prefix of v. Due to Proposition 2.6 in [10], there exists a prefix q of u such that
dy(p) = du(q). By Vuillon’s characterization of Sturmian words, the word dy(q) is binary. It means that any prefix p of
v has two return words in v and so v is Sturmian. 0O

Remark 2 (Historical). The Sturmian words (sequences) were originally defined by Hedlund and Morse in [19]. Their defi-
nition is more general as they consider also biinfinite words and (in terms of our definition above) rational slopes. Hence
their Sturmian words may not be recurrent. For details on the history of definition of Sturmian words see [11], especially
the historical remark at page 146. Interestingly enough, the term derivated sequence is also used in [19], however, its defini-
tion differs from our one (as taken from [10]): Using again our terminology, their derivated word is a derivated word with
respect to a one-letter word in a biinfinite Sturmian word.

2.3. Sturmian morphisms

A morphism over A* is a mapping ¥ : A* — A* such that ¢ (vw) = ¢ (v)¥(w) for all v, w € A*. The domain of the
morphism v can be naturally extended to AN by
Y (uouguz ) =y (Uo)y (un)y(uz)--- .

A morphism v is primitive if there exists a positive integer k such that the letter a occurs in the word ¥ (b) for each pair
of letters a, b € A. A fixed point of a morphism v is an infinite word u such that ¥ (u) =u.



26 K. Klouda et al. / Theoretical Computer Science 743 (2018) 23-37

A morphism  is a Sturmian morphism if ¥ (u) is a Sturmian word for any Sturmian word u. The set of Sturmian
morphisms together with composition forms the so-called Sturmian monoid usually denoted St. We work with these four
elementary Sturmian morphisms:

J0—>0 Jj0—>0 Jo—o01 J0—10
11510 Pl )i 1151

and with the monoid M generated by them, i.e. M = (¢q, @b, ¥, ¢p). The monoid M is also called special Sturmian monoid.
For a nonempty word u =ug---uy—1 over the alphabet {a, b, o, 8} we put

Pu = Pug ©Puy ©- -0 Puy_4-
The monoid M is not free. It is easy to show that for any k € N we have

Paakp = Ppbka and @k = Pppka-
We can equivalently say that the following rewriting rules hold on the set of words from {a, b, «, 8}*:

adp=pb*a and aakb=bga  foranykeN. (2)

In [21], the author reveals a presentation of the Sturmian monoid which includes the special Sturmian monoid M =
(®a, Pb, Yo, Pp). A presentation of the special Sturmian monoid follows from this result. It is also given explicitly in [15]:

Theorem 3. Let w, v € {a, b, o, B}*. The morphism ¢, is equal to ¢, if and only if the word v can be obtained from w by applying
the rewriting rules (2).

Note that the presentation of a generalization of the Sturmian monoid, the so-called episturmian monoid, is also known,
see [20]. The next lemma summarizes several simple and well-known properties of Sturmian morphisms we exploit in the
sequel.

Lemmad. Let w € {a, b, a, B}T.

(i) The morphism @, is primitive if and only if w contains at least one Greek letter o or § and at least one Latin letter a or b.
(ii) If pw is primitive, then each of its fixed points is aperiodic and uniformly recurrent.
(iii) If pw is primitive, then it has two fixed points if and only if w belongs to {a, o }*.

For w € {a, b, «, B}* the rules (2) preserve positions in w occupied by Latin letters {a, b} and positions occupied by Greek
letters {ct, B}. We define that a < b and o < 8 which allows the following definition.

Definition 5. Let w € {a, b, @, B}*. The lexicographically greatest word in {a, b, @, 8}* which can be obtained from w by
application of rewriting rules (2) is denoted N(w). If ¥ = ¢, then the word N(w) is the normalized name of the morphism
¥ and it is also denoted by N(y¥) = N(w).

The next lemma is a direct consequence of Theorem 3.

Lemma 6. Let w € {a, b, a, B}*. We have w = N(w) if and only if w does not contain ozak,{} or ac®b as a factor for any k € N. In
particular, if w € {a, b, , B}* \ {a, a}*, the normalized name N(w) has prefix either a'8 or o'b for some i € N.

Example 7. Since ¥ = @@ PaPb = PoPaPa Py = PbPbPp¥a, the normalized name of yr is N(y) = bbpa.

The morphism E : 0 — 1,1 — 0 which exchanges letters in words over {0, 1} cannot change the factor complexity of
an infinite word. Thus, E is clearly a Sturmian morphism. But E does not belong to the monoid M = (@4, ¥p, P, @g). In
fact, E is the only missing morphism. More precisely, any Sturmian morphism i either belongs to M or ¥ =1 o E, where
n € M (see [18]). To generate the whole monoid of Sturmian morphisms St, one needs only three morphisms, say E, ¢4
and ¢, (see [16]). We have

¢o =E@eE and ¢g=E@pE. 3)

Our aim is to study derivated words of fixed points of Sturmian morphisms. If u is a fixed point of v, it is also a fixed
point of 2. Due to (3), the square 2 always belongs to M. To illustrate why this is true, assume, e.g., that y € St =
(E, ¢a, 9p) equals ¥ = gaE@pe,. Using (3) and the fact that E2 is the identity morphism, we have

Y =@aEQEEQEE = papppo E
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and hence

¥ = 0appPo EQapppo E = 0apu EQaEEQREEQLE = 0upPaPuPsa € M.

Therefore we may restrict ourselves to fixed points of morphisms from the special Sturmian monoid M. Note that this
would not be true if we consider only the morphisms from (¢q, ¢3), see also Lemma 4.

Example 8. The Fibonacci word is the fixed point of the morphism 7 : 0 — 01,1 — 0. The morphism 7 is Sturmian, but
T ¢ M. We see that T = ¢} o E and by the relations (3) we have 72 = OrPp-

Remark 9. Two infinite words u and E(u) over the alphabet {0, 1} coincide up to a permutation of the letters 0 and 1. If a
word u is a fixed point of a morphism ¢, then E(u) is a fixed point of the morphism E o ¢, o E = ¢, for some v. By (3),
the word v is obtained from w by exchange of letters a <> @ and b <> B. Therefore we introduce the following morphism
F:fa,b,a, B}* > {a,b, o, B}* by

F(@=«a, F(@)=a, F(b)=p, F(B)=b. (4)

This notation enables us to formulate two useful facts on composition of E with morphisms from M. Namely,
Eo@woE=@rmw) and  (pw o E)* = @urw) - (5)

Later on we will need the following statement on the morphism F. First we recall two classical results on word equa-
tions:

Lemma 10 ([17]). Let y € A* and x, z € A™. Then xy = yz if and only if there are u, v € A* and ¢ € N such that x = uv, z = vu and
y = uv)tu.

Lemma 11 ([17]). Let x, y € A™. The following three conditions are equivalent:

(i) xy =yx; o
(ii) There exist integers i, j > O such that x' = yJ;
(iii) There exist z € A and integers p, q > 0 such that x=zP and y = z1.

With these two lemmas we prove the following result on word equations involving the morphism F. Note that this result
is within the general setting considered in [9], however we give an explicit solution of cases that we need later.

Lemma 12. Let z and p be nonempty words from {a, b, o, B} .

(i) If zp = F(p)F(2), then thereis x € {a, b, a, B} such that

z= X(F(X)X)i and p = (F(x)x)jF(x) for some i, j e N.
(ii) If zp = pF(2), then there is x € {a, b, &, B} such that

z= (F(x)x)i and p = (F(x)x)jF(x) for some i, j e N.

Proof. We prove Item (i) by induction on |zp| > 2. If |z| = |p|, then z = F(p) and the statement is true for x =z and
i=j=0.

Assume |z| > |p| (the case of |z| < |p| is analogous). There must be a nonempty word q such that z= F(p)q and this
yields qp = F(z) = pF(q). By Lemma 10 there are words u and v and ¢ € N such that g =uv, p = (uv)‘u and F(q) = vu.
This implies that vu = F(u)F(v) and we can apply the induction hypothesis as |uv| < |pz|. Therefore, there are x and
s,r € N such that v = x(F(x)x)S and u = (F(x)x)[F(x). Putting this altogether we obtain

q=uv = (Fx) Feox(Fxx) = (F(X)X)t+s+1’

p=v)u=(Fx)F, withj=e@t+s+1)+t,
z=F(p)g=x(FXx)', withi=0(¢+s+1)+2t+5s+1.
To prove Item (ii), we apply Lemma 10 on zp = pF(z). We have z=uv, F(z) = vu and p = (uv)‘u for some words u

and v and ¢ € N. It follows that vu = F(u)F(v) and so, by Item (i), there is x such that v :x(F(x)x)i and u = (F(x)x)jF(x)
for some i, j € N. Using all these equations we finish the proof by stating that

zZ=uv= (F(x)x)jF(x)x(F(x)x)i = (F(x)x)j+i+l and p=@wwv)iu= (F(x)x)l(jHH)HF(x). m|
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3. Derivated words of Sturmian preimages

In this section we study relations between derivated words of a Sturmian word and derivated words of its preimage
under one of the morphisms g, ¢, 9o and @g. We prove that the set of all derivated words of these two infinite words
coincide up to at most one derivated word, see Theorems 14 and 18. This will be crucial fact for proving the main results
of this paper. Because of (3), the roles of ¢, and ¢, and, analogously, the roles of ¢, and ¢g are symmetric. Therefore we
can restrict the statements and proofs in this section to the morphisms ¢, and ¢, with no loss of generality. Again we use
results from [16], in particular this slightly modified Proposition 2.3.2:

Proposition 13 ([16]). Let x be an infinite word.

(i) If g (x) is Sturmian, then x is Sturmian.
(ii) If pq(X) is Sturmian and x starts with the letter 1, then x is Sturmian.

Theorem 14. Let u and u’ be Sturmian words such that u = @, (W'). Then the sets of their derivated words satisfy
Der(u) = Der(u) U {u'}.

The proof of the previous theorem is split into two parts: In Proposition 16, Item (i) says {u’} C Der(u) and Item (ii) says
Der(u) C Der(u’) U {u’}. Proposition 17 says Der(u’) C Der(u). Proofs of these propositions use the following simple property
of the injective morphism .

Lemma 15. Let u = ¢}, (w') be a Sturmian word. If p0 € L(u) and 0 is a prefix of p, then there exists a unique factor p’ € L(u') such
that p0 = ¢ (p’)0.

Proposition 16. Let u and u’ be Sturmian words such that u = ¢, (0') and let w be a prefix of u.

(i) If {\w| =1, then dy(w) = W’ (up to a permutation of letters).
(ii) If|lw| > 1, then there exists a prefix w’ of 0’ such that |w’| < |w| and dy(w) = dy (W’) (up to a permutation of letters). Moreover,
if w is right special, w’ is right special as well.

Proof. Since ¢,(0) =0 and ¢,(1) = 01, the word u = ¢,(u’) has a prefix 0 and the letter 1 is in u separated by
blocks 0% with k > 1. Therefore, the two return words in u to the word w =0 are ro = 0 and r; = 01. We may
write u = 1575, Ts, - - -, Where rs; € {ro.m1} and thus dy(w) = sps1s2---. Since rg = ¢p(0) and r; = ¢, (1), we obtain also
op(W) =u=@p(50)Pp(51)Pp(52) - - - = Pp(S0S152 - - - ). The statement in (i) now follows from injectivity of ¢p.

Now suppose that the prefix w of u is of length > 1. As explained earlier, it suffices to consider right special prefixes.
Since the letter 1 is always followed by 0, each right special factor must end in 0. So the first and the last letter of w is 0,
hence by Lemma 15 there is a unique prefix w’ of u’ such that ¢,(w’)0 = w. Let ro and ry be the two return words to w

and let u=rgrs,Ts, - - -. Since the first letter of both ro and rq is 0, there are uniquely given r( and r} such that ro = ¢, (rp)
/ / VA A
and rq =<pb(r]? and w' =rgrore o . ' .
Clearly w' is a prefix of r.rg, 75, -~ for all jeN and so the number |rg rg ---r5, | is an occurrence of w' in w’ for all

k € N. Let i > 0 be an occurrence of w’ in u'. It follows that ¢, (u/, . )w is a prefix of u and |, (u/, . )| is an occurrence
@b (U @p\Ug i

0.0)
of w in u. There must be j € N such that ¢ (“fo,i)) =Tgls, -+ Ts; and hence, by injectivity of ¢, UEOJ) =Tg T, ---rgj and
PP /
i= \rsarsl ---rsjl.

We have proved that the numbers 0 and |r¢rg, ---r¢[. j=0,1,..., are all occurrences of w" in u'. It follows that ry and
ry are the two return words to w’ in w’ and

dw (W) = 505152+ = du(W).

Since w = ¢p(w")0 is a right special factor, we must have that both ¢;,(w")00 and ¢,(w’)01 are factors of u. It follows
that both w’0 and w’1 are factors of u’ and w’ is right special. O

Proposition 17. Let u and ' be Sturmian words such that u = @p(u’) and let w’ be a nonempty right special prefix of w’. Then
dy (W) = dy(w), where w = @ (w')0.

Proof. Let r; and r} be the two return words to w’ in u’ and dy(W’) = sps152---. Put w = @p(W')0, 1o = @p(ry) and
r1 = @p(r}). We obtain

/ / / /
u=@p(W) =@y (g s Ts, ) =TsoTs Tsy -

Clearly, w is prefix of ry 1,15, -+~ for all ke N and |rg,rs, - 15;| is an occurrence of w in u for all jeN.
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Assume now i > 0 is an occurrence of w in u. This means that ujp ;yw is a prefix of u and hence, by Lemma 15 (note
that w begins with 0), there must be p” a prefix of u’ such that @,(p’) =ujo ;) and p’w’ is a prefix of u'. Since |p’| is an
occurrence of w’ in W, there is j € N such that p"=rgrg ---r5,. It follows that

up i) = (pb(rgor;1 .. .r;j) =Tsol'sy - Ts;

and i = [rgyls; -+ T, .
So, again as in the previous proof, we have shown that the numbers 0 and |rsyrs, ---15;], j=0,1,..., are all occurrences
of w in u. It follows that rg and ry are the two return words to w in u and

du(W) =$ps152---=dy(W). O

Theorem 18. Let u and u’ be Sturmian words such that u starts with the letter 1 and u = @, (0'). Then o’ starts with 1 and the sets of
their derivated words coincide, i.e.,

Der(u) = Der(u').
In particular, for any prefix w of u there exists a prefix w’ of w’ such that |w’| < |w| and dy(w) = dy (W') (up to a permutation of

letters). Moreover, if w is right special, w’ is right special as well.

Proof. The morphisms ¢, and ¢, are conjugate, that is, Opq(x) = ¢p(x)0 for each word x. This means that for any
prefix ugujul---u; of w' we have Ogpq(ugujul---up) = @p(uguiuy---u)0. As this holds true for each k, we obtain
Ou = 0gq (u') = @ (u').

Denote v=vqVviVvy---=0uguiuy---. We have v; =u;_q for each i > 1. Let w be a nonempty prefix of u and (i) be the
increasing sequence of its occurrences in u. Note that w starts with the letter 1. This letter is in u surrounded by 0’s. Thus
the sequence (i) is also the sequence of occurrences of Ow in v and thus dy(0w) = dy(w). It follows that

Der(u) = {dy(v): v is a prefix of vand |v| > 1}.

We finish the proof by applying Theorem 14 and Proposition 16 to the word v=g,(u’). O

The only case which is not treated by Theorems 14 and 18, namely the case when u = ¢,(u’) and u begins with 0, can
be translated into one of the previous cases.

Lemma 19. Let u be a Sturmian word such that u starts with the letter 0 and u = @, (u’) for some word u'. Then there exists a Sturmian
word v such that ' = 0v and u = ¢ (V).

Proof. Since u starts with 0, the form of ¢, implies that u’ = Ov for some Sturmian word v. As 0¢,(x) = ¢p(x)0 for each
word x, we have

u=g(u) =@ (0V) =00 (V) = gp(V). O

To sum up the results of this section, let us assume we have a sequence of Sturmian words ug, uj, uy, ... such that
u=up and for every i € N one of the following is true:

(i) wi = @p(uit1) or u; = @g(uit1),
(ii) u; begins with 1 and u; = ¢, (u;41),
(iii) u; begins with 0 and w; = @g (Uj41).

If (i) holds for u;, then by Theorem 14

Der(u;) = Der(u;+1) U {uj 11},

moreover, u;;q is the derivated word of the first letter of w;. This first letter is also the shortest right special prefix. If (ii)
or (iii) holds for u;, then by Theorem 18

Der(u;) = Der(u;41).

The crucial assumption, namely the existence of the above described sequence (u)k=o, is guaranteed by the well-known
fact on the desubstitution of Sturmian words (see, e.g., [14] and [19] and also Lemma 19). Here we formulate this fact as
the following theorem:
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Theorem 20 ([14], [19]). An infinite binary word u is Sturmian if and only if there exists an infinite word w = wow{ w5 - - - over the
alphabet {a, b, &, B} and an infinite sequence (u;);>o, such that u =g and u; = @y, (Wiy1) foralli e N.

In the following section we work only with the sequence (u;)i>o corresponding to a fixed point u of a Sturmian mor-
phism . The next lemma provides us a simple technical tool for a description of the elements u; as fixed points of some
Sturmian morphisms.

Lemma 21. Let & and 1 be Sturmian morphisms and u = (E o 77) (u). Ifu= &) for some w’, then W' is the fixed point of the morphism
nok, iew =(no&)).

Proof. For any Sturmian morphism &, the equation &(x) = &(y) implies that x =y. We deduce that

EW)=u=((on)w=(5on)(5W))=(ono§)),
andsou' = (no&)W). O

4. Derivated words of fixed points of Sturmian morphisms

Let u be an fixed point of a primitive Sturmian morphism (note that if the morphism is primitive, all its fixed points are
aperiodic). It is known due to Durand [10] that the set Der(u) is finite (as the morphism is primitive). Put

Der(u) = {X1,X2, ..., X¢}.

Our main result is an algorithm that returns a list of Sturmian morphisms vy, ¥, ..., ¥, such that x; is a fixed point of ¥;
(up to a permutation of letters) for all i such that 1 <i <.

As we have noticed before, we can restrict ourselves to the morphisms belonging to the monoid M = (¢q, b, P, ).
Let us recall (see Lemma 4) that a morphism from (¢q, @p) or from (@, @g) is not primitive and has no aperiodic fixed
point. Thus we consider only morphisms ¢,, whose normalized name w contains at least one Latin and one Greek letter.

We will treat two cases separately. The first one is the case when the morphism ¢,, has only one fixed point. Lemma 4
says that in such a case w ¢ {a, o}*. In the second case, when w € {a, «}*, the morphism ¢,, has two fixed points.

4.1. Morphisms with unique fixed point
Let ¥ € (@a, ¥, Pu, ¢g) and N(¥) =w € {a, b, o, B}* \ {a, &}* be the normalized name of the morphism . By Lemma 6
the word w has a prefix a¥g or o*b for some k € N. This property enables us to define a transformation on the set of

morphisms from M \ (¢q, ¢y). As we will demonstrate later, this transformation is in fact the desired algorithm returning
the morphisms 1, ¥, ..., ¥, mentioned above.

Definition 22. Let w € {a, b, «, 8}* \ {a, a}* be the normalized name of a morphism v, i.e., ¥ = ¢. We put

’ gk i — gk /
A(w)= N(Wazﬂ) ?f w_akﬁw,
N(w'akb) if w=a*bw’

and, moreover, A(Y) = @a(w).

Example 23. Consider the morphism v = ¢,,, where w = Saaaxr, and apply repeatedly the transformation A on .

V¥ =@paaae  and N(Y) =w = Baaax
A(Y) =@aaaep and N(AY)) = gbbac

A2(V) = @ppaap and  N(A%(y)) =bbpaa
A(Y) = @ppaap  and  N(A*()) =bpaab
A* (V) = @paary  and  N(A*(y)) = Baabb
A (V) =@aapbs  and  N(A>(y)) = aabbp

APy = A3(y)

In what follows we prove that the five fixed points of morphisms A(y), A2(y), A3(¥), A*(y), A>(¥) are exactly the five
derivated words of the fixed point of .
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Lemma 24. Let u be a fixed point of a morphism ¢ and N(y¥/) = w € {a, b, «, B}* be the normalized name of the morphism . If one
of the following condition is satisfied

(i) w starts with 0 and w starts with a,
(ii) u starts with 1 and w starts with «,

then w € {a, a}*.

Proof. We consider only the case (i), the case (ii) is analogous. Let us assume w ¢ {a, «}*. According to Lemma 6, the word
w has a prefix a*8, for some k > 1. Consequently, the morphism ¥ equals ‘Pg o g on for some morphism 7. Any morphism
of this form maps 0 to 1w and 1 to 1w, for some words w; and wy. Therefore, the fixed point starts with the letter 1,
which is a contradiction. O

The following theorem along with Definition 22 provides the algorithm which to a given Sturmian morphism v lists the
morphisms fixing the derivated words of the Sturmian word u = v (u).

Theorem 25. Let v € (¢q, @b, Yo, Yp) be a primitive morphism and N(3) = w € {a,b, o, B}* \ {a, a}* be its normalized name.
Denote u the fixed point of yr. Then X is (up to a permutation of letters) a derivated word of u with respect to one of its prefixes if and
only if x is the fixed point of the morphism A’ (y) for some j > 1.

Proof. Denote X; the fixed point of Ai(y), j=1,2,... and assume that v is a right special prefix of u. We will prove that if
|v| =1, then dy(v) =Xq, and if |v| > 1, then there is a right special prefix v/ of x; such that |v/| < |v| and dy(v) = dx, (V).
We can repeat this proof for the prefix v’ of x; and eventually prove that dy(v) =X; for some j and that for any j there is
a right special prefix v of u so that dy(v) =X;.

Without loss of generality we assume that the normalized name of ¥ is w = a*Bz. This means that A(y) = ¢, 0 Pgkg-

First we assume |v| = 1. If k > 0, then the first letter of u is 1 which is not a right special factor. This implies that k = 0.
Hence we have that u = gg(u’), where u’ = ¢,(u). By Item (i) of Proposition 16 we obtain dy(v) =u’. Lemma 21 says the
word u’ is fixed by the morphism ¢, o ¢g = A(y), which implies u’ =x;.

Now assume |v| > 1. If k =0, then by Item (ii) of Proposition 16 there is a right special prefix v/ of ' = ¢,(u) such that
V'] < |v] and dy(v) = dy (v'). Again by Lemma 21 we obtain v’ = x;.

Let k>0.Fori=0,1,...,k we define u”) = @iz, (u). By Lemma 24, the words u”) all start with the letter 1. Obviously,
u® =u and u® = @, (V) for i=0,1,...,k — 1. By Theorem 18, there are factors v with i =0, 1,...,k such that v®
is a right special prefix of u®,

Wi=v® > vD > v?| > ... > |v®)
and

du(v) = dyy VD) = dyay (vP) -+ = dyeo (V).

Define u’ = ¢,(u). Then u® = @p;(w) = pg(u’) and by Item (ii) of Proposition 16 there is a right special prefix v/ of
u' = ¢, (u) such that |v/| < [v®]| and du (v*) = dy(v"). According to Lemma 21, the word w’ is fixed by the morphism
@z0¢4p = A(Y). Thus, we have again proved that there is a prefix v’ of w’ =x; such that |v'| < |v| and dy(v) =dw (V). O

Remark 26. In Example 23 we considered the morphism ¢ = ¢, where w = Baaac. We have found only five different
morphisms Ai(ilf) for i=1,...,5. The sixth morphism A®(y/) already coincides with A3(y). As it follows from the proofs
of Theorems 14 and 25, the fixed points of A3(y/), A*(¥) and A°(y) represent the derivated words of u to infinitely many
prefixes of u. Whereas the fixed point of A(y) or A%(y) is a derivated word of u to only one prefix of u.

Example 27. As explained in Example 8, to find the derivated words of the Fibonacci word we consider the morphism
Yy=12= Yppg. We have A(Y) = @pep and AZ() = . But these two morphisms are equal up to a permutation of letters,
as EyYE = A(y). This means that all derivated words of the Fibonacci word are the same and coincide with the Fibonacci
word itself.

4.2. Morphisms with two fixed points

Let us now consider a Sturmian morphism v which has two fixed points. Let us denote u® and u™ the fixed points
of ¢ starting with 0 and 1, respectively. Clearly, v (0) starts with 0 and v (1) with 1. Since the morphism  has to belong
to the monoid (g,, ¢y ), the transformation A cannot be applied on it. However, we will show that there is a morphism
from (@a, @) (or (b, py)) with a unique fixed point v such that the set of derivated words of u©® (or u¥) equals to
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{v}UDer(v). And since v is a fixed point of some morphism from (g, @5, ©8, ¥a) \ (¢a, Ya), the set Der(v) can be described
using Theorem 25.

Here we give results only for the case when the normalized name w € {a, @}* of the morphism begins with a. The case
when the first letter is o is completely analogous. It suffices to exchange a <> b and o <> 8 in the statements and proofs.

Lemma 28. Let w € {a, a}* be the normalized name of a morphism starting with the letter a. Then the normalized name N(wb) has
a prefix b and a suffix a, the word v = b~ N(wb) belongs to {a, 8}*, and Vg =Wlg.

Proof. First, we consider the special case when w = a*a¢, with k> 1 and ¢ > 0. By the relation (2), N(wb) = ba*~1g%a and
the statement is true.

Let w € {a, }* be arbitrary. It can be decomposed to several blocks of the form a
can be easily finished by induction on the number of these blocks. O

kot with k> 1, € > 0. Now the proof

Proposition 29. Let w € {a, a}* be the normalized name of a primitive morphism v and let a be its first letter.

(i) Let u be the fixed point of y starting with 0. Denote v =b~'N(wb) € {a, B}*. Then Der(u) = {v} U Der(v), where v is the unique
fixed point of the morphism @,

(ii) Let u be the fixed point of { starting with 1. Put v = cyc(w) (see (1)). Then Der(u) = Der(v), where v is the fixed point of the
morphism @y.

Proof. Let us start with proving (i). Let v be the infinite word given by Lemma 19. Then

@p(V) ==y (W) = P (W) = (Pw © ¥p) (V) = Pwp (V) = PN (wh) (V) -
By definition of v we have N(wb) =bv and thus

Pb(V) = Ppy (V) = 9 (v (V).
This implies that v = ¢, (v). Since v ¢ {a, a}*, the morphism ¢, has a unique fixed point, namely the word v. By Theo-
rem 14, Der(u) = {v} U Der(v) as stated in (i).
Statement (ii) is a direct consequence of Theorem 18 and Lemma 21. O

5. Bounds on the number of derivated words

In this section we study the relation between the normalized name w of a primitive morphism v = ¢,, and the number
of distinct return words to its fixed point. We restrict ourselves to the case when w ¢ {a, a}*, as the case w € {a, a}* is
treated in the next section.

Theorem 25 says that the number of derivated words of u cannot exceed the upper bound:

number of distinct words in the sequence (Ak(w))k g
>

Since the words AK(w) € {a, b, a, B}* are all of the same length and A¥*!(w) is completely determined by A¥(w), the

sequence (AK(w)),_, is eventually periodic.

The number of distinct elements in (A"(w))k>l is only an upper bound on the number of derivated words of u. As
we have already mentioned in Remark 9, fixed points of morphisms corresponding to the names v and F(v) coincide up
to exchange of letters 0 and 1 and hence define the same derivated word. On the other hand, if v and v’ are normalized
names with |v| = |v/| and fixed points of ¢, and ¢,  coincide (up to exchange of letters), then either v/ =v or v/ = F(v).

First we look at two examples that illustrate some special cases of the general Proposition 32 on the period and preperiod
of the sequence (Ak(w))

k>1"

Example 30. Consider a word w of length n in the form w = b"2ga. The sequence of (Ak(w))k>1
Its preperiod equals n — 2 and is given by the words b"*gb¥~2q, for k=3, 4, ..., n. The period equals n — 1 and is given by
the words b"kapbk=2, for k=2,3,...,n.

Let us stress that for any v € {a, b, «, 8}* the equation v’ = F(v) implies |v|q = |V'|¢ and |v|, = |V'|g. Since all words
Ak(w) we listed above contain one letter a and no letter o, we can conclude that the morphism ¢y, has 2n — 3 distinct
derivated words.

is eventually periodic.

Example 31. Consider a normalized name w in which the letter b is missing and w contains all the three remaining letters.
Necessarily w has the form

1 k1 pla Ak Ls ks J
ﬁ]a]ﬂzafz.“ﬂsasa]!
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where s>1, ¢;>1foralli=2,...,sand k;>1foralli=1,2,...,s—1 and j > 1. It is easy to see that the normalized
names of words obtained by repeated application of the mapping A are

Al] (w) = a/(] ﬂlzakz . ﬁi;aksﬁﬁ CYj and A(]-Fl (w) = ﬁlz—lakz . ﬂ@sal<5ﬂ£1+laj—lbk1a

We see that the (¢1 + 1) iteration already contains all four letters.

Proposition 32. Let w € {a, b, o, B}*\ {a, a}* be the normalized name of a primitive Sturmian morphism ¥ = @,. Then the sequence
(A"(w))k>l is eventually periodic and:

(i) Ifitis purely periodic, then its period is at most |w/|, otherwise, its period is at most |w| — 1.
(ii) If both b and B occur in w, then the preperiod is at most |w| — 2, otherwise the preperiod is at most 2|w| — 3.

Proof. By Lemma 6, the word w (and all the elements of the sequence (Ak(w))k>1) has the form w =a!fw’ or w = a’bw’
for some i > 0. In this proof we distinguish three cases such that exactly one of them is valid for all A"(w), k=1,2,... The
first two cases correspond to the “periodic” part of the sequence (A"(w))k>1.

Case 1: If w has a suffix 8 or b, then the word A(w) equals to w’a'g or w'a'b and thus has again a suffix g or b.
Indeed, since N(w) = w, the words aalp and ac’b are not facto;s of w and so they are not even factors of w’. As the last
letter of w’ is b or B, neither aa’B nor aa’b is a factor of w'a'g and hence A(w) = N(w'a'8) = w'a'B. This means that
for any k the word A¥(w) is just a cyclic shift of w (see (1)). Therefore, (Ak(w))k>1 is purely periodic and its period is
given by the number of letters 8 and b in w which is clearly at most |w|. Moreover, the word w belongs to the sequence
(A"(w))k>1 and the fixed point u of v itself is a derivated word of u.

Without loss of generality we assume that w = a'w’; the case of w = a’bw’ can be treated in the same way, it suffices
to exchange letters a <> b and o <> 8. Denote p the longest suffix of w such that p € {a, «}*. It remains to consider only
the case of nonempty p.

Case2: If p =af: for some j > 1, then w’ has a suffix ba’ or Ba/. No rewriting rule from (2) can be applied to w’'a'g,
hence, A(w) = w’d'B has a suffix B. So, we can apply the reasoning from Case 1 on the word A(w) and hence the sequence
(A"(w))k>1 is purely periodic. As w contains at least one letter a as a suffix, the period is shorter than |w| and w itself

does not occur in (Ak(w)),_,.
Case 3: Now assume that the letter o occurs in p. We split this case into three subcases and show that if one of these

subcases is valid for a word A¥(w), then this word belongs to the “preperiodic” part of (Ak(w)) These three subcases

(for word w) read:

i) w begins with the letter g, i.e., i > 1;

ii) w has a prefix 8 and p has a factor aa;

iii) w has a prefix g and p =a/a® for j>0 and s > 1.

k>1°
(
(
(

(i) Since we assume that o occurs in p, a suffix of p has a form «a’ for some t > 0. It follows that w’a'g, has a suffix
aa'tig. After applying the rewriting rules (2) to w’a' 8 we obtain the normalized name A(w) which has a suffix ba.

(ii) A suffix of w can be expressed in the form aa’o’af, where r > 1 and s,t > 0. Therefore w’g has a suffix aa"a®a‘B.
After normalization we get that A(w) has a suffix in the form of ba‘ for some ¢ > 1.

(iii) As w = Bw’ has a suffix fa’a® or bala®, the word N(w’g) has a suffix Sa*.

All the three discussed subcases share the following property: The longest suffix p’ € {a, «}* of the normalized name
v = A(w) is of the form p’ =™, for some m > 1. It means that Case 3 (ii) is not applicable in the second iteration of A.
By Lemma 6, the word v has a prefix a"8 or «"b,n > 0.

If the prefix of v is of the form «”b, then the word A(v) = AZ(w) belongs to Case 2. This means that v is the last
member of the preperiodic part.

If the prefix of v is of the form a" 8, then we must apply either Case 3 (i) or 3 (iii) which means that « is again a suffix
of the word obtained in the next iteration of A.

Let us give a bound on the number of times that we have to use Case 3 (i) or 3 (iii) before we reach Case 2.

If w contains both 8 and b, then the number of times of using Case 3 (i) or 3 (iii) is at most the number of letters g
occurring in w before the first occurrence of b. Thus there are at most |w| — 2 such letters since w contains g, b and «.

If w does not contain b, then w must contain besides the letters 8 and « also the letter a; otherwise the morphism
@w would be not primitive (see Lemma 4). The word w has a form described in Example 31 and thus A‘'*1(w) contains
both letter b and B (for the meaning of ¢; see Example 31). For this word we can apply the reasoning from the previous
paragraph, meaning that after £; + 1 iterations we need at most |w| — 2 further iterations before reaching the periodic part

of (A"(w))k>]. Since ¢1 < |w| — 2, we get that the preperiod is at most 2|w| —3. O
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Example 30 illustrates that in the case that w contains the letters b and B the upper bounds on preperiod and period
provided by the previous proposition are attained. The following example proves that the bound from Proposition 32 for w
which does not contain both letters b and B is attained as well.

Example 33. Let us consider the normalized name w = " 2aw. It is easy to evaluate iterations of the operator A:

A2 (w) = ap" %
A" (w) = B %ba
A3 (w) = bB" 2
A?"2(w) = p"2ab — the first member of the periodic part of (A*(w))
A4 (w) =abg™2 — the last member of the periodic part of (Ak(w))

A3n—3 (w) = AZn—Z (w).

k>1

k>1

In Example 27 we showed that for the Fibonacci word the derivated words to all prefixes coincide. There are infinitely
many words with this property:

Example 34. Consider w =¢"~'8 and the morphism ¥ = ¢,,. Then A(¥/) = ¢ and thus the fixed point u of ¥ is the
derivated word to any prefix of u.

Combining Proposition 32 and the last two examples we can give an upper and lower bound on the number of distinct
derivated words.

Corollary 35. Let w € {a, b, o, B}* \ {a, a}* be normalized name of a primitive Sturmian morphism ¥ = ¢, and u be a fixed point
of y. Then

1 <#Der(u) < 3|w|—4. (6)

Moreover, for any length n > 2 there exist normalized names w’', w” € {a, b, «, B}* \ {a, a}* of length n such that

(i) @w and ¢, are not powers of other Sturmian morphisms,
(ii) for the fixed points w’ and u” of the morphism ¢,, and ¢, the lower resp. the upper bound in (6) is attained.

6. Standard Sturmian morphisms and their reversals
In this section we provide precise numbers of distinct derivated words for these three types of morphisms:

(1) ¥ is a standard morphism from M, i.e. ¥ € (¢p, @p),
(2) ¥ is a standard morphism from Mo E, i.e. ¥ € (gp, ) o E,
(3) ¢ is a morphism from (@q, ¢ )-

First we explain the title of this section and the fact that the fourth type of Sturmian morphism, namely a Sturmian
morphism from (¢g, @) o E, is not considered at all.

A standard Sturmian morphism is a morphism fixing some standard Sturmian word. A reversal morphism ¥ to a mor-
phism v is defined by ¥ (0) = ¥ (0) and ¥ (1) = ¥ (1). Since ¢, = @5 and ¢, = @p, any morphism in (@q, @a) is just a
reversal of a morphism in (¢, @g).

Due to the form of the morphisms ¢, and ¢,, any morphism 7 € (¢4, @y) satisfies that the letter 0 is a prefix of 1(0)
and the letter 1 is a prefix of n(1). As any morphism & € (¢q, @) o E can be written in the form &(0) = n(1) and £(1) = n(0)
for some 71 € (@q, Yo ), the morphism & cannot have any fixed point.

The normalized name w of a standard morphism from M is composed of the letters b and g only. Thus A(w) = cyc(w)
(see (1)).

To describe all standard morphisms we have to take into account also the morphisms of the form ¢ = ¢y o E. In this
case 2 € (@p, @g), in particular Y2 = @wFw)- To describe the derivated words of fixed points of these standard morphisms,
we need the notation

CYyCF(W1WoWs3 - Wp) = Waws -+ WpF(wq).

Proposition 36. Let u be a fixed point of a standard Sturmian morphism v which is not a power of any other Sturmian morphism.
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(i) If ¥ = @w, then w has |w| distinct derivated words, each of them (up to a permutation of letters) is fixed by one of the morphisms

Pgs Pvi> Prgs oo Pupy»  Where vy = cyck(w) fork=0,1,..., |w| —1.
(ii) If ¥ = @w o E, then u has |w| distinct derivated words, each of them (up to a permutation of letters) is fixed by one of the
morphisms
@vo o E, @y, 0E, @y, 0E, ..., 0y, oE, wherev,= cyc’}(w)fork: 0,1,...,|lw|—1.

Proof. (i) Since ¥ = ¢,, is a standard morphism, its normalized name w belongs to {b, 8}* and A(w) = cyc(w). By Theo-
rem 25, all derivated words of u are fixed by one of the morphisms listed in (i). We only need to show that fixed points of
the listed morphisms differ. More precisely, we need to show that vy # v; and vs # F(v;) for all 0 <t <s < |w| — 1. Here
the assumption that ¢ is not a power of any other Sturmian morphism is crucial.

Let us recall simple facts about powers of morphisms: For any £ =1,2,... and u € {b, 8} we have

@) =¢u . @uoB*' =@uruy and (a0 B> =g py o E.

If ¥ = @y, is not a power of any Sturmian morphism, we have
w£u" and w# (uF(u))k foranyu e {b,f} T andany ¢,keN,£>2 k> 1. (7)

Lemma 11 implies that equation cyc®(w) = cyc/(w) has no solution if w # uf and 0 <t <s < |w| — 1. Therefore all the
normalized names vg, V1,..., V|w—1 are distinct.

Now assume that v = cyc®(w) = F(cyct(w)) = F(v;), where 0 <t <s < |w|—1.

Let z and p be the words such that cyc’(w) = zp, where |z| =s —t. We have zp = F(p)F(z) and by Lemma 12 there is
x such that cyc(w) = zp = x(F (x)x)! (F (x)x)J F (x) = (xF (x))!*J+1 for some non-negative integers i, j. This implies that there
is a factor y of xF(x) such that |y| = |x| and w = (yF(y))"*/*! which is a contradiction with (7).

(ii) If we apply Theorem 25 to the morphism ((pw o E)2 = @wF(w), We obtain the list of 2|w| normalized names
cycS(WF(w)), with s =0,1,...,2|w| — 1. As cyc"H(WwF(w)) = cyc (F(w)w), all the derivated words are given by the
fixed points of morphisms

PvoF(vo)s PviF(v1)s PvaF(v3)s - -+ s Pvjw—1 F(Viw)-1)
that are just squares of morphisms listed in Item (ii) of the proposition. To finish the proof, we need to show that the fixed
points of the listed morphisms do not coincide nor coincide after exchange of the letters 0 <> 1. In other words we need to
show vgF(vs) # viF(vy) and vsF(vs) # F(ve)vy.
Assume the contrary. Then vy = v; or v¢ = F(v;) for some t <s. If we put k=5 —t, then vs = cyc’}(vr). Let v; = zp,
where |z| =k, then vs = pF(z). Since the morphism ¥ = ¢y o E is not a power of other morphism we know that

w;é(uF(u))eu foranyu e (b, 8} andany £ €N, ¢ > 1. (8)

Two cases v = v; and vg = F(v;) will be discussed separately.

o If v = v¢, then zp = pF(z) and Lemma 12 says there is x so that v =zp = (F(x)x)"fjlj‘(x), which contradicts (8).
e If vs = F(v;), then zp = F(p)z and by Lemma 12 there is x so that v; = zp = (F(x)x)'T/ F(x) which is again a contradic-
tion with (8). O

Proposition 37. Let w € {«, a}* be the normalized name of a primitive morphism v such that the letter a is a prefix of w. Moreover,
assume that v is not a power of any other Sturmian morphism.

(i) The fixed point of v starting with 0 has exactly 1+ |w|y distinct derivated words.
(ii) The fixed point of Y starting with 1 has exactly 1 + |w|, distinct derivated words.

Proof. We prove only Item (i), the proof of (ii) is analogous. Let u denote the fixed point starting with 0.

Proposition 29 says that we have to count elements in the set {v} U Der(v), where v is a fixed point of ¢, with the
normalized name v = b~'N(wb). By Lemma 28, the word v € {a, 8}*. This property of v implies that AK(v) is equal to
some cyclic shift cyc/(v) having a suffix 8. There are [v|g cyclic shifts of v with this property and hence this number is an

upper bound for the period of the sequence (Ak(v)),<>1. By Lemma 28, the normalized name v has a suffix a and thus the

word v itself does not appear in (A"(v))k>]. We can conclude that u has at most 1+ |w|, derivated words.
For each k the iteration A¥(v) belongs to {a, 8}* and consequently F(Ai(v)) belongs to {a, b}*. Therefore, Ai(v) #

F(A'(v)) for any pair of positive integers i, j.
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As ¥ is not a power of any other morphism, we can use the same technique as in the proof of Proposition 36 to show
that cyc'(v) #cyc/(v) for i, j=1,...,|v|, i # j. This means that the period of the sequence (A"(v)) is indeed equal to
|w|q and its preperiod is zero. O

k>1

7. Comments and conclusions

1. In [1], the authors studied derivated words only for standard Sturmian words c(y).
However, they did not restrict their study to words fixed by a primitive morphism.
Let us show an alternative proof of their result.

The proof is a direct corollary of our Theorem 14 and the following result of [5]:

Lemma 38 ([5, Lemma 2.2.18]). For any irrational y € (0, 1) we have

_ v
@p(e(y)) —C<—1 n y) .

As we have already mentioned, the authors of [1] required that any derivated word dy(v) to a prefix v of a Sturmian
word u starts with the same letter as the word u.

By interchanging letters 0 <> 1 in a characteristic word c(y), we obtain the characteristic word c(1 — y). If y < %
then the continued fraction of y is of the form [0,cq 4+ 1,¢3,c¢3,...] with ¢; > 0 and the continued fraction of 1 — y
equals [0, 1, cq, c2, c3, ...]. Clearly, Der(c(y)) and Der(c(1 — y)) coincide up to a permutation of letters. Without loss of

generality we state the next theorem for the slope y < % only.

Theorem 39 ([1]). Let c(y) be a standard Sturmian word and y = [0, c1 + 1, ¢2, 3, ...] with ¢c; > 0. Then
Der(c(y)) ={c(®): § =0, ck+ 1 — i, Cks1, Chg2, .. I WithO < i < ¢, — T and (k, i) # (1,0)}.

Proof. Let § =[0,d; + 1,d,,ds3,...] with d; > 0. Set §' = ]‘%5 It is easy to see that 8’ =[0,dq,d3,ds,...]. Since §' €
(0,1) and § = 1(5? Lemma 38 implies that ¢(8) = ¢, (c(8")). Applying Theorem 14 we obtain that Der(c(8)) = {c(8")} U
Der(c(8’)). We have transformed the original task to the task to determine the set of derivated words of the standard
sequence c(8'). If §' < % i.e, di > 1, we repeat this procedure with §'. If d; =1, i.e, § > % we use the fact that
Der(c(8)) and Der(c(1 — §)) coincide, and replace 8’ by 1 — & and repeat the procedure with its continued fraction
[0,dy +1,d3,dq,...].

In the terms of corresponding continued fractions, one step of the described procedure can be represented as

0,dq1,dy,ds, ... if d 1,
[0,d1 +1,dy,ds, .| > |10 d0 0201 =
[0,dy +1,d3,d4,...] ifd;=1.
We conclude that the set Der(c(y)) is in the form given in the theorem. O

2. In case that u is a fixed point of a standard Sturmian morphisms, we have determined the exact number of distinct

derivated words of u, see Proposition 36. Let us mention that this result can be inferred from [1]. We also have provided
the exact number of derivated words when u is a fixed point of a Sturmian morphism which has two fixed points, see
Proposition 37.
For fixed points of other Sturmian morphisms we only gave an upper bound on the number of their distinct derivated
words, see Corollary 35. To give an exact number, one needs to describe when the normalized name w € {a, b, o, B}*
corresponds to some power of a Sturmian morphism. Clearly, w may be a normalized name of a power of a Sturmian
morphism without w being a power of some other word from {a, b, &, 8}*. For example, if v = abacax = N(v), then
the normalized name of v3 is the primitive word N(v3) = abbgBBbapSBaacc.

3. The key tool we used to determine the set Der(u) is provided by Theorems 14 and 18. We believe that an analogue of

these theorems can be found also for Arnoux-Rauzy words over multiliteral alphabet. For definition and properties of
these words see [4,12].
In [8], the authors described a new class of ternary sequences with complexity 2n + 1. These sequences are constructed
from infinite products of two morphisms. The structure of their bispecial factors suggests that due to result of [3], any
derivated word of such a word is over a ternary alphabet. Probably, even for these words an analogue of Theorems 14
and 18 can be proved. Other candidates for generalization of Theorems 14 and 18 seem to be the infinite words whose
language forms tree sets as defined in [6].
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Abstract. For an Arnoux—Rauzy sequence u we describe the set Der(u)
of derived sequences corresponding to all nonempty prefixes of u using
the normalized directive sequence of u. As a corollary, we show that all
derived sequences of u are also Arnoux—Rauzy sequences. Moreover, if
u is primitive substitutive, we precisely determine the cardinality of the
set Der(u).
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1 Introduction

Derived sequences were introduced by Durand [4] to characterize the primitive
substitutive sequences, i.e., the sequences which are morphic images of fixed
points of primitive morphisms.

Let u = uguqus - - - be a recurrent sequence. An occurrence of the factor w in
u is the index ¢ such that w is a prefix of the sequence u;u;y1u;yo---. Let ¢ < j
be two consecutive occurrences of w in u. Then the word w;u;q1---uj—1 is a
return word to w in u. We take into consideration only the sequence u for which
each factor w has finitely many return words, and we denote these return words
by rg,71,...,7k_1. Such a sequence is called uniformly recurrent. In addition, if
w is a prefix of u, then the sequence u can be written as the unique concatenation
of the return words to w: w = rg,rq4, 74, --- with all d; € {0,1,...,k — 1}. The
ordering of the return words in this concatenation is coded by the sequence
dy(w) = dodyds - - - which is called the derived sequence of u with respect to w.

Return words and derived sequences were especially studied in the case of
Sturmian sequences, which are the aperiodic binary sequences having the least
factor complexity possible. Every Sturmian sequence u has exactly one left and
one right special factor per length. The factor w is left (right, respectively) special
if the words aw, bw (wa, wbd, respectively) are factors of u for two different letters
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a,b. Moreover, a Sturmian sequence is standard if all its prefixes are left special
factors.

Vuillon [14] showed that a binary sequence is Sturmian if and only if each
of its factors has exactly two return words. This property implies that the
derived sequence with respect to each prefix of a Sturmian sequence is Sturmian
as well. The derived sequences of standard Sturmian sequences were precisely
described in [1], where the one-to-one correspondence between standard Stur-
mian sequences and continued fractions of irrational numbers from the interval
(0,1) is used. Clearly, this approach does not work in the non-standard case, but
using a special representation of Sturmian sequences by Sturmian morphisms,
we can deal with it, too. This technique is basically used in [12] to study the
derived sequences of fixed points of primitive Sturmian morphisms.

As is well known, Sturmian sequences have various generalizations for multi-
letter alphabets. The first one was introduced by Arnoux and Rauzy [2]: a uni-
formly recurrent sequence u over A is called Arnouz—Rauzy if it has exactly
one left and one right special factor per length and all left (right, respectively)
special factors appear in u immediately preceded (followed, respectively) by all
letters from A.

Many properties of the Arnoux—Rauzy sequences are known (see for example
the survey [8]). For our considerations the work [9] is especially important since
its authors showed that each factor of an Arnoux—Rauzy sequence over A has
exactly #.A return words. It means that the derived sequences of Arnoux—Rauzy
sequences over A can be considered over the same alphabet A. Nevertheless,
such a property does not characterize Arnoux—Rauzy sequences if #.A4 > 2. For
example, by [6] the sequences coding interval exchange transformations can have
this property, too. More generally, the sequences over A each of whose factors
has exactly #.4 return words were studied in [3].

The aim of this paper is to study the derived sequences of Arnoux—Rauzy
sequences. Let us emphasize that the description of derived sequences of stan-
dard Arnoux—Rauzy sequences can be easily deduced from the work of Justin and
Vuillon [9], while here we cover also the more complicated case of non-standard
Arnoux—Rauzy sequences. As in [12], our main tool is a special representation of
Arnoux—Rauzy sequences, namely the directive sequences containing pure epis-
turmian morphisms (see Sect. 2.3). Since these directive sequences need not be
unique, in [7] the authors introduce so-called normalized directive sequences and
show that these representations are unique. Moreover, they have also other use-
ful properties which allow us to use them for a construction of derived sequences
(see Sects. 2.3 and 3).

For every Arnoux-Rauzy sequence u we describe the set Der(u) of derived
sequences with respect to all nonempty prefixes of u (see Theorem 24). As a
corollary, we show that every derived sequence of an Arnoux—Rauzy sequence
is an Arnoux—Rauzy sequence as well. By Durand’s fundamental result [4] the
sequence u is primitive substitutive if and only if the set Der(u) is finite. Here
we precisely determine the cardinality of Der(u) for all primitive substitutive
Arnoux—Rauzy sequences (see Corollary 29). It generalizes the results from [12],
where the cardinality of Der(u) is bounded for the fixed points of primitive
Sturmian morphisms.
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2 Preliminaries

2.1 Words, Sequences and Morphisms

An alphabet A is a finite set of symbols called letters. A word of length n over
A is a string u = uguy - - - up_1, where all u; € A. The length of u is denoted by
|u| = n. The unique word ¢ of length 0 is called the empty word. The symbol
A* denotes the set of all finite words over A and AT = A* \ {¢}. By |u|, we
denote the number of copies of the letter a used in u. The reversal of a word
U = UugUy -+ - Up—1 1S the word wu,_1 - - - ugug.

A sequence over A is a right infinite string u = ugujus - - - € AN with letters
u; € Afor alli € N = {0,1,2,...}. A sequence u is eventually periodic if
u = wovv - -- = wv* for some v,w € A*; otherwise it is aperiodic.

A word w of length n is a factor of u = wuguqusg--- if there is an index i
such that w = w;u;y1uiy2 - Uign—1. The index 7 is called an occurrence of w
in u. Further, if ¢ = 0, then w is a prefiz of u. We will also use the abbreviated
notation w;u;41 -+ - uj—1 = Uy ;) and u;u;pq -0 = (i o0) for all integers 0 < ¢ < j.

The language F(u) of a sequence u is the set of all its factors. A factor w of
u is right special (left special, resp.) if there exist at least two letters a,b € A
such that wa,wb € F(u) (aw,bw € F(u), resp.).

If each factor w of u has infinitely many occurrences in u, the sequence u is
recurrent. Moreover, if the distances between two consecutive occurrences of w
are bounded, then u is uniformly recurrent.

A morphism over A* is a mapping ¢ : A* — A* such that ¢ (vw) = ¥ (v)p(w)
for all v,w € A*. We consider only non-erasing morphisms for which 1 (a) # e
for every a € A. Then the domain of the morphism 1 can be naturally extended
to AN by ¥ (upur --+) = ¥(ug)(uy) - -+ . A morphism 4 is primitive if there is
k € N such that for every a,b € A the letter a occurs in 1*(b).

A fized point of a morphism 1) is a sequence u such that ¢)(u) = u. A sequence
v is primitive substitutive if v = 6(u), where € is a morphism and u is a fixed
point of a primitive morphism.

A permutation P on A is a morphism over A* such that {P(a) : a € A} = A.
The order of the permutation P is the smallest integer n > 0 such that P™ = Id.

2.2 Return Words and Derived Sequences

Let ¢ < j be two consecutive occurrences of a factor w in a recurrent sequence
u. Then the word uy; jy is a return word to w in u. The set of all return words
to w in u is denoted Ry (w). If the sequence u is uniformly recurrent, then every
factor w of u has a finite number of return words, we denote them R, (w) =
{ro,r1,...,7k—1}. In addition, if w is a prefix of u, the sequence u can be written
as the unique concatenation of these return words: u = rq,7rq,74, - -- and the
derived sequence of u to the prefix w is the sequence dy (w) = dodids - - - over the
alphabet of cardinality #Ry(w) = k. Originally, Durand [4] fixed this alphabet
to the set {0,1,...,k — 1} and required that for i < j the first occurrence of r;
in u is less than the first occurrence of r; in u. In particular, this means that his
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derived sequences always start with the letter 0. In this article, we do not need
to fix the alphabet of derived sequences: two derived sequences which differ only
by a permutation of letters are identified with one another.

We consider only aperiodic and uniformly recurrent sequences u. Our aim is
to describe the set

Der(u) = {dy(w): w is a nonempty prefix of u}.

Let us emphasize that we study only derived sequences with respect to nonempty
prefixes since the derived sequence with respect to the empty word is trivial.

Clearly, if a nonempty prefix w of u is not right special, then there exists a
unique letter a such that wa € F(u). Thus the occurrences of w and wa coincide,
and so Ry(w) = Ry(wa) and dy(w) = dy(wa). Since u is aperiodic, w is a prefix
of some right special prefix of u. Therefore, it suffices to take into consideration
only right special prefixes of u, i.e.,

Der(u) = {dy(w): w is a nonempty right special prefix of u}.

2.3 Episturmian and Arnoux—Rauzy Sequences

Definition 1. A sequence u € AY is episturmian if its language is closed under
reversal and u has at most one right special factor of each length.

An episturmian sequence u € AN is an Arnoux-Rauzy sequence if u has
exactly one right special factor of each length and wa € F(u) for every right
special factor w of u and every letter a € A. An Arnour—Rauzy sequence u is
standard if each of its prefixes is a left special factor of u.

The Arnoux—Rauzy sequences over A are sometimes called #.A-strict epistur-
mian sequences, since there are also epistumian sequences which are not Arnoux—
Rauzy (e.g., see [8]). In the binary case, the set of all Arnoux—Rauzy sequences
coincides with the set of all Sturmian sequences. Clearly, all Arnoux—Rauzy
sequences are aperiodic and by [5] they are also uniformly recurrent.

Ezxzample 2. The Tribonacci sequence u, = abacabaabacababacabaa - - - which is
the fixed point of the morphism 7 : a — ab, b — ac, ¢ — a is a standard
Arnoux—Rauzy sequence over {a, b, c}.

In the sequel, we will use the description of episturmian sequences in terms
of sequences of pure episturmian morphisms. We follow the notation from [7].

Definition 3. For every a € A we define elementary episturmian morphisms:

a—a a—a
a' and R, :
{b—>ab for all b # a {b—>ba for all b # a.

These 2#A morphisms generate the monoid My = (Lo, R, : a € A) of pure
episturmian morphisms.
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Let us remark that episturmian morphisms are the morphisms obtained by
composition of pure episturmian morphisms and permutations (e.g., see [8,10]).
All episturmian morphisms are injective.

Definition 4. For a given alphabet A we define a new alphabet A = {a : a € A}
and we consider words and sequences over the alphabet AU A called spinned.
We put v, = Ly and pz = R, for every letter a € A. Then for every spinned
word z = zgz1 - Zn_1 € (AU A)* we write

Pz = PzoPz1 " Pzq € M-A

and we say that z is a directive word of the morphism ¢,. A spinned word is
L-spinned ( R-spinned, respectively) if all its letters are from A (A, respectively).
The opposite word Z of a spinned word z is obtained from z by switching spins
of all its letters.

Ezample 5. The words aabéa, abe, bb are spinned words over {a, b, c,a,b,c}. The
word z = aabca directs the Iy_orphism V=Y = Paabea = RaLlaRyRcL,. The
word abc is L-spinned, while bb is R-spinned. The opposite word of z is aabca.

Pure episturmian morphisms can have more than one directive word, i.e.,
the monoid M 4 is not free. Nevertheless, the presentation of the monoid M 4 is
known. Here we state it in the notion of directive words using the so-called block-
transformation from [11], but it also follows from more general presentation of
the whole episturmian monoid as stated in [13].

Definition 6. A block-transformation in the word z is the replacement of the
factor ava of z, where a € A and v € (A\ {a})*, by the opposite word ava or
vice-versa.

Proposition 7 ([11]). Let z, 2’ be two spinned words over AUA. Then ¢, = ¢,
if and only if we can pass from z to z' by a chain of block-transformations.

Ezample 8. Using the block-transformations from Definition 6 we may rewrite
aabca <— aabca <— aabca, and so by Proposition 7 all these words direct the

same morphism, i'e'7 Paabea — Paabea — Paabca-

The following theorem extends the notion of directive words to infinite epis-
turmian sequences.

Theorem 9 ([10]). A sequence u is episturmian if and only if there exists a

spinned sequence z = z9z122 - - € (AUA)N and an infinite sequence (uV);>q of

recurrent sequences such that u® = u and
u® =, (uth).

This sequence z is called o directive sequence of u.

Let us notice that the directive sequence from Theorem 9 is the same object
as the directive sequence from the construction of episturmian sequences using
palindromic closures (e.g., see Sect. 3 in [§]).
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Proposition 10 ([10]).

(i) A spinned sequence z € (AUA)N which has infinitely many L-spinned letters
directs the unique episturmian sequence u. Moreover, the sequence u starts
with the left-most L-spinned letter in z.

(ii) A spinned sequence z € (AU AN which contains finitely many L-spinned
letters directs one episturmian sequence for each a € A which occurs in z
infinitely many times.

Proposition 10 implies that some directive sequences direct more than one
episturmian sequence. In addition, an episturmian sequence can have more
than one directive sequence. However, in [7] the authors describe all directive
sequences which direct the same episturmian sequence. Here we state this result
only for the case of aperiodic episturmian sequences.

Theorem 11 (Theorem 4.1 in [7]). Two spinned sequences z) and z? direct
the same aperiodic episturmian sequence if and only if one of the following cases
holds for some i,j such that {i,j} = {1,2}:

(i) 29 =T1],>, u™, 20 =T o, v™, where u™, v(™) are spinned words such
that Q) = @y for alln > 1;

(ii) 29 = wa ], u™z™, 20 =w'al] -, w™y™, where w,w' are spinned
words such that ., = @u, a is an L-spinned letter and for all n > 1, u(™
is a nonempty a-free L-spinned word, @™ is the opposite word of u(™ and
™y are nonempty spinned words over {a,a} such that |z(™| = |y™|
and |2 |, = [y™|,.

Item (i) is based on block-transformations of the directive words of epis-
turmian morphisms, while Item (i7) brings new relations. Now we define the
normalized directive sequences which are unique for all aperiodic episturmian
sequences.

Definition 12. A spinned sequence z € (AU AN is normalized if it contains
infinitely many L-spinned letters, but no factor from the set {aA*a: a € A}.

Theorem 13 (Theorem 5.2 in [7]). Any aperiodic episturmian sequence u has
a unique normalized directive sequence.

Every normalized spinned sequence directs exactly one episturmian sequence,
see Proposition 10. Moreover, the normalized directive sequences can be con-
structed using Theorem 13. If a directive sequence does not contain infinitely
many L-spinned letters, then we use Item (i7) to find another one with infinitely
many L-spinned letters. If a directive sequence contains infinitely many L-
spinned letters, then it can be normalized from left to right by repeated appli-
cations of Item (i) (see [7] for more details).

The Arnoux—Rauzy sequences can be easily recognised by their directive
sequences (e.g., see Sect. 2.3 in [8]).
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Proposition 14. An episturmian sequence u € AN with the directive sequence
z is an Arnour—Rauzy sequence over A if and only if for every a € A the letter
a or a occurs infinitely many times in z.

Remark 15. Theorem 9 and Proposition 14 immediately imply that for an
Arnoux-Rauzy sequence u each sequence u® from Theorem 9 is an Arnoux—
Rauzy sequence with a directive sequence z[; o) = 2;2i+1 " -

Example 16. By Propositions 10 and 14, the spinned sequence y = a(abéa)®
directs the unique Arnoux—Rauzy sequence u over {a,b,c}. Obviously, y is not
normalized. We can normalize it using Item (i) of Theorem 11. First we set
uV = qabe, %) = Ga and w2k = pé for all k > 0 and make the block-
transformations in all even blocks. We get y’ = aabé(aabc)”. Then we set u(t) =
aabéa and u®) = @béa for all k > 1. After the relevant block-transformations we
get v = aabéa(abca)®. Finally we set u!) = aabéaa, u®*) = bc and u?*+1) = aa
for all k > 0, which leads us to the normalized sequence y"’ = aabcaa(bcaa)®.

By Proposition 10, the spinned sequence z = (@bé)* directs three Arnoux—
Rauzy sequences u(®, u® u(® starting with the letters a,b, ¢, respectively.
Using Item (i) of Theorem 11 we find their normalized directive sequences
29 = a(bca)?, z(») = ab(cab)” and z(®) = abc(abe)®, respectively.

Justin and Vuillon [9] completely describe the return words to any factor
of an episturmian sequence. In particular, an Arnoux—Rauzy sequence has the
same number of return words to each of its factors.

Proposition 17 ([9]). Let u be an Arnouz—Rauzy sequence over A. Then every
factor w of u has exactly #.A different return words.

3 Derived Sequences of Episturmian Preimages

In this section we study the relations between the derived sequences of a given
Arnoux—Rauzy sequence and the derived sequences of its preimage under the
morphisms L, or R,. In the binary case, these relations are completely analogous
to those described in Section 3 of [12]. Proposition 19 can be also deduced from
the results in [9].

For simplicity, we now define the return words and the derived sequence
with respect to the empty prefix € of a sequence u over A as Ry(e) = A and
dyu(e) = u. We start with an auxiliary lemma which follows directly from the
form of the morphism L,.

Lemma 18. Let u, u’ be Arnouz—Rauzy sequences over A such that u = L,(u’)
for some a € A. For each factor pa € F(u) with the prefiz a there is exactly one
word p' € F(u') such that pa = L,(p')a.

Proposition 19. Let u and u' be Arnouzr—Rauzy sequences over A such that
u=L,(u) for somea € A.
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(i) If w is a nonempty right special prefix of u, then there exists a right special
prefiz w' of u' such that w = Lg(w')a and dy(w) = dy (w').

(ii) Ifw' is a right special prefiz of ', then w = Ly(w')a is a right special prefix
of u and dy (W) = dy(w).

Proof. We start with Item (7). For a nonempty right special prefix w of u we
denote its return words Ry (w) = {r. : ¢ € A} and its derived sequence d, (w) =
dody - --. Thus u = rq,7r4, - - -. By the form of the morphism L,, the sequence u
starts with the letter a and a is also separating in u, i.e., every factor of u of
length two contains the letter a. Since w is nonempty right special prefix, it both
starts and ends with the letter ¢ and by Lemma 18 there is a unique prefix w’ of
u’ such that w = L,(w')a. Since w is a right special factor of the Arnoux—Rauzy
sequence u, the word we = L, (w')ac € F(u) for every ¢ € A. Thus w'c € F(u’)
for every ¢ € A and so w' is a right special factor of u’. In addition, all return
words r. start with the letter a and so by Lemma 18 there are uniquely given
words 7/, such that r. = L,(r.) for all ¢ € A. Since L, is injective, we have
uw =y g

Now it suffices to prove that the set {|rjy ---ry | :j € N} U {0} is the set of
all occurrences of w’ in u’. Then the words 77, ¢ € A, are return words to w’ in
u’ and dy(w) = dy (w'). Let ¢ > 0 be an occurrence of w’ in u'. It means that
u’[oﬂ.)w’c is a prefix of u’ for some ¢ € A. Then La(ufo7i)w’c) is a prefix of u, the
word Lq(w'c) has a prefix Lq(w')a = w and |Lq(up, ;)| is an occurrence of w in
u. Thus La(ul[o,z')) =74, - - Ta; for some j € N and by injectivity of L,, it follows

that uj, , =7y - -y and so i = [rg - -ry | for some j € N.
Conversely, we suppose that i = \rd . rd | for some j € N. If we denote
D ="Td, - , then pw is a prefix of u and by Lemma 18 there is a unique prefix

p’ of u’ such that p = La(p’). Clearly, p’w’ is also a prefix of u’ and by injectivity
of L, we can conclude that p’ =17 - r&j. Thus ¢ is an occurrence of w’ in u’.

To prove Item (ii) we suppose that w’ is a right special prefix of u’. We denote
its return words Ry (w') = {rl. : ¢ € A} and its derived sequence dy (w’) =
dody ---. Thus u’ = r:ioréll <o If we set w = Lg(w')a and 7. = Ly (7)) for all
ce A, we get u=rg,rq ---. Now it remains to prove that w is a right special
prefix of u and the set {|rg, ---74;| : j € N} U{0} is the set of all occurrences of
w in u. We skip these proofs since the arguments are completely analogous to
those used in the proof of Item (7).

Proposition 20. Let u and u' be Arnour—Rauzy sequences over A such that
u = R,(u’) for some a € A and let u start with the letter b € A,b # a.

(i) If w is a nonempty right special prefix of u, then there exists a nonempty
right special prefix w' of u’' such that w = Ry(w') and dy(w) = dy (w').

(ii) Ifw' is a nonempty right special prefiz of u’, then w = Ry (w') is a nonempty
right special prefiz of u and dy (w') = dy(w).

Proof. The morphisms L, and R, are conjugate, i.e., aR,(x) = Ly(z)a for
every word x € A*. Thus for the Arnoux—Rauzy sequence v = au we get v =
aR,(u") = L,(u’), since the conjugacy holds for every prefix of u’.
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Let w be a nonempty right special prefix of u and let (i,,) be the increasing
sequence of the occurrences of w in u. By the form of the morphism R,, each
letter b # a (excluding the first letter of u) is preceded by the letter a. Thus
the sequence (i) is also the sequence of the occurrences of the word aw in v
and dy(w) = dy(aw). Moreover, aw is a right special prefix of v and so we
can apply Proposition 19 and find the right special prefix w’ of u’ such that
aw = Ly(w')a = aR,(w') and dy(w) = dy(aw) = dy (w’). The proof of Ttem
(14) is similar and so we skip it.

Propositions 19 and 20 can be also restated as follows.

Corollary 21. Let u,u’ be Arnoux—Rauzy sequences over A and a € A.

(i) If u= L,(u’), then Der(u) = Der(u’) U {u'}.
(i) If u = R,(u’) and u starts with a letter b € A,b # a, then Der(u) =
Der(u’).

4 Derived Sequences of Arnoux—Rauzy Sequences

First, we introduce a transformation A on the set of normalized directive
sequences. Subsequently, we use this transformation to describe the set Der(u)
of derived sequences of an Arnoux—Rauzy sequence u.

Definition 22. Let z = zpz129 -+ be a normalized spinned sequence and let k
be the unique index such that zp is an L-spinned letter and zpz1 - - - zp_1 1S an
R-spinned word (or is empty). Then A(z) = Z{p11,00) = Zkt+12k 422643 -

Clearly, if z is the normalized directive sequence of an Arnoux—Rauzy
sequence u, then A(z) is the normalized directive sequence of an Arnoux—Rauzy
sequence as well. For every integer m > 1 we let d,,, denote the Arnoux—Rauzy
sequence directed by A™(z) and we also set dy = u.

Ezample 23. For the normalized spinned sequence z = ¢ba(cbab)“ we get A(z) =
a(ebab)®, A?(z) = (ebab)*, A3(z) = (abeb)” and A*(z) = (cbab)~ = A?(z).

Theorem 24. Let u be an Arnouzr—Rauzy sequence over A with the normalized
directive sequence z. Then d is the derived sequence with respect to a nonempty
prefiz of u if and only if d = d,,, for some m > 1, i.e., d is an Arnouz—Rauzy
sequence directed by A™(z) for some m > 1.

Proof. (=) We consider a nonempty right special prefix w of u and prove that
dy(w) = d,, for some m > 1. In fact, we prove that for every i € N and a right
special prefix v of d; there is a right special prefix v" of d; 1 such that |[v/| < |v]
and dq, (v) = dq,,, (v). Then starting with a nonempty right special prefix w of
u we eventually find the index m > 1 and the prefix w” of d,, such that w"” = ¢
and so dy(w) =dg,, () = dy.

Since z is normalized, A%(z) = y is also normalized and so it has a prefix
Za for some a € A and 7 € (A\ {a})*. If Z = ¢, then A" (z) = y}1 o) and so
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d; = L,(d;y1). By Proposition 19 there is a right special prefix v’ of d;y; such
that v = L,(v")a and dg,(v) = daq,,, (v'). If T is nonempty, we denote |Z| = n.
Then Ail(z) = Y[n+1,00)- Let us denote u® the sequence directed by Y[t,00) for
all £ € N. In particular, u® = d;, u»*V =d,;;; and u® = @, (u+V) for all
¢ € N. By Proposition 10 all sequences u(®, ..., u(™ starts with the letter a and
so by Proposition 20 there are nonempty right special prefixes v*) of ul®) for all
¢=0,...,nsuch that v(® = v, v = ¢, (V) for all ¢ =0,...,n — 1 and

da,(v) = dyoy (01) = -+ = dyon (01).

By Proposition 19 there is a right special prefix v’ of u(»*1) = d;,; such that
v = L,(v)a and dyem (v™) = dg,,, (v). Since we also have

[o > o] > @] > - > o) > ),

v’ is the desired right special prefix of d; 1.

(«=) For arbitrary m > 1 we find a nonempty right special prefix w of u such
that dy(w) = d,,. We set z = 29z - - - 2, A" (z) for some i € N and we let u®
denote the sequence directed by zs o) for all £ € N. In particular, u® = u and
u(1) = d,,,. Now we take the right special prefix ¢ of d,,, and using Propositions
19 and 20 we successively find right special prefixes w® of u® forall ¢ =i, ... ,0.
Since z; is L-spinned, the inequalities 0 < |[w®| < Jw( V| < --. < |w®] hold
and

dm = ddm (E) = duu)(w(i)) == du(1) (w(l)) = du(w(o)).

Then w(® is the desired prefix w of u.

Corollary 25. All derived sequences with respect to nonempty prefizes of a
given Arnouz—Rauzy sequence over A are Arnour—Rauzy sequences over A as
well.

Proof. This follows directly from Theorems 24 and 9.

By Durand’s result [4] the set Der(u) is finite if and only if u is a primitive
substitutive sequence. An Arnoux—Rauzy sequence is primitive substitutive if
and only if its normalized directive sequence is eventually periodic. Indeed, a
pure episturmian morphism is primitive if and only if its directive word contains
at least one letter a or a for every a € A and the normalization of an eventually
periodic directive sequence always produces an eventually periodic normalized
directive sequence (see [7] for more details).

Now we specify the cardinality of Der(u) according to the normalized direc-
tive sequence of an Arnoux—Rauzy sequence u. Let us recall that two derived
sequences dV, d® such that dV) = P(d®) for some permutation P are con-
sidered as equal since their structure is the same. Let us emphasize that a per-
mutation P on A can be naturally extended to the alphabet AUA: P acts on the
letters from A without any changes and for every letter @ € A we put P(a) = b
if P(a) =b.
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Observation 26. LetuV, u® be Arnouz—Rauzy sequences with the normalized

directive sequences z1, z(?) | respectively, and let P be a permutation. Then
u = P(u®) if and only if 2z = P(z(?).

Lemma 27. Let z be the normalized directive sequence and let k < £ be the
minimal indices such that there is a permutation P salisfying zjp o) = P(z[km)).
We denote x = zjo 1), Yy = Z[,¢) and n the order of the permutation P. Then z is
eventually periodic: z = x (yP(y) - - - P”_l(y))w. Moreover, every sequence z[; )
with i > is equal (up to permutation of letters) to the sequence z; ) for some
j ek, ...t =1} and if 2j; o) = Q(2Z[j,)) for some j < i and a permutation Q,
then 1 > /.

Proof. In the notation from the statement we can write

Z = TYZ(1,00) = TYP (2t 00)) = TYP(YZ0,00)) = 2YP(Y) P* (21 ,00)) = - -
=ayP(y)--- P" ' (y)P"(y)P" T (y) - =z (yP(y)--- P" ()"

Moreover, for every i > | we can write z[; o) = P(Z[i—¢1,00)). Thus eventually
we get z[; o) = Pm(z[i/po)) for some positive integer m and an index ¢’ such
that & < ¢’ < £. The last part of the statement clearly holds since otherwise it
leads us to the contrary with the minimality of the indices &, £.

Corollary 28. Let u be an Arnour—Rauzy sequence over A with the aperiodic
normalized directive sequence and let v, w be two distinct nonempty right special
prefizes of u. Then the derived sequences with respect to v and w are distinct,
i.e., dy(v) # P(dy(w)) for any permutation P.

Proof. We argue by contradiction. By Theorem 24 all derived sequences with
respect to nonempty prefixes of u are the elements of the sequence (d,)m>1.
Thus we can suppose that d,, = P(d,) for some positive integers m, ¢ and a
permutation P. Since v, w are distinct right special prefixes, we get m # £. By
Observation 26, it means that A™(z) = P(A(z)) and so by Lemma 27 z is
eventually periodic, which is the contradiction.

Corollary 29. Let u be an Arnour—Rauzy sequence over A with the eventually
periodic normalized directive sequence z = x (yP(y)- --P”fl(y))w, where the
words x € (AUA)*, y € (AUA)" are the shortest possible and P is a permutation
with the order n. We denote |z|r, |xy|r the numbers of L-spinned letters in the
words x, xy, respectively.

(i) If the last letters of both x,y are L-spinned, then #Der(u) = |zy|L — 1.
More precisely, there are |x|, — 1 derived sequences belonging to exactly one
nonempty right special prefix of u and |y| derived sequences belonging to
infinitely many right special prefizes of u.

(i1) If the last letter of x or y is R-spinned or x = ¢, then #Der(u) = |zy|L.
More precisely, there are |x| derived sequences belonging to exactly one
nonempty right special prefix of u and |y|r derived sequences belonging to
infinitely many right special prefizes of u.
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Proof. By Theorem 24 all elements of Der(u) are the elements of the sequence
(dm)m>1. To prove Item (i), we have to show that the sequence (d,,)m>1 has
pre-period |z|r, — 1 and period |y|r (up to permutation of letters). However, the
sequence (A™(z)),>1 has the same pre-period and period, see Observation 26.
Now it suffices to apply Lemma 27 with k = |z| and ¢ = |zy|. Since both x and
y end with L-spinned letters, the sequences that occur once in (A™(z)),>1 are
exactly the elements of the set {z[; o) : 0 < i < |z|} for which z; ; is L-spinned.
Thus they are the sequences A(z),. .., Al*lr=1(z). Similarly, the sequences that
occur (up to permutation of letters) infinitely many times in (A™(z)),,>1 are
exactly the elements of the set {z[; o) : |z| < i < |zy|} for which z;_; is L-
spinned, so they are the sequences Al?Iz(z), ... Alevle=1(gz),

We prove Item (ii) analogously. It suffices to realize that if z or y ends with an
R-spinned letter or z is the empty word, then the periodic part of (A™(z));,>1
starts with the element Al*l2+1(z). Thus the sequence (A™(z)),>1 has pre-
period |x|;, and period |y|; (up to permutation of letters).

Example 30. The Arnoux—Rauzy sequence u is directed by the normalized direc-
tive sequence z = cba(cbab)” = cba(cbP(cb))“ for the permutation P : a —
¢,b — b,c — a with the order 2. By Item (i) of Corollary 29, the sequence u
has two derived sequences: d; directed by A(z) = a(cbab)® belonging to the
shortest nonempty right special prefix of u and ds directed by A%(z) = (¢bab)®
belonging to all the others right special prefixes of u.

The Tribonacci sequence u, from Example 2 is directed by the normalized
directive sequence z = (abc)* = (aP(a)P?(a))* for the permutation P : a —
b,b — ¢,¢ — a with the order 3. Then by Item (ii) of Corollary 29, u, has one
derived sequence d directed by (abc)“. In other words, the derived sequence with
respect to any prefix of u, is the sequence u, itself.

The Arnoux-Rauzy sequence ul® directed by the normalized directive
sequence z(* = a(bca)® (see Example 16) has by Item (ii) of Corollary 29 three
derived sequences dj,ds,ds directed by A(z()) = (bca)*, A%(z\¥) = (cab)*,
A3(z(®)) = (abc)®, respectively. The sequence d; is the derived sequence with
respect to the shortest nonempty right special prefix of u(®, while both ds, ds
belong to infinitely many right special prefixes of u(®.
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DERIVED SEQUENCES OF COMPLEMENTARY SYMMETRIC
ROTE SEQUENCES

KATERINA MEDKOVA*, EDITA PELANTOVA! AND LAURENT VUILLON?

Abstract. Complementary symmetric Rote sequences are binary sequences which have factor com-
plexity C(n) = 2n for all integers n > 1 and whose languages are closed under the exchange of letters.
These sequences are intimately linked to Sturmian sequences. Using this connection we investigate the
return words and the derived sequences to the prefixes of any complementary symmetric Rote sequence
v which is associated with a standard Sturmian sequence u. We show that any non-empty prefix of v
has three return words. We prove that any derived sequence of v is coding of three interval exchange
transformation and we determine the parameters of this transformation. We also prove that v is prim-
itive substitutive if and only if u is primitive substitutive. Moreover, if the sequence u is a fixed point
of a primitive morphism, then all derived sequences of v are also fixed by primitive morphisms. In that
case we provide an algorithm for finding these fixing morphisms.
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1. INTRODUCTION

The notion of return words and derived sequences has been introduced by Durand in [16] and seems to
be a powerful tool for studying the structure of aperiodic infinite sequences, and so also of the corresponding
dynamical systems.

A return word can be considered as a symbolical analogy of return time occurring in the theory of dynamical
systems. Let u = upujus--- be a sequence and let w = w;u;41 - Ujyn—1 be its factor. The index ¢ is an
occurrence of w. A return word to w is a word w;u;41 ---uj—1 with ¢ < j being two consecutive occurrences
of w.

Return words are well understood in the case of Sturmian sequences, i.e. aperiodic sequences with the lowest
possible factor complexity C'(n) =n + 1 for all n € N. They can be also seen as the coding of rotation with an
irrational angle o on the unit circle with the partition in two intervals of lengths o and 1 — «, respectively.

The third author characterizes Sturmian sequences as sequences with two return words to each their factor
in [31]. Similarly the paper [4] is dedicated to investigation of sequences with a fixed number of return words to
any factors, in particular, Arnoux-Rauzy sequences and sequences coding interval exchange transformations are
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of this type, see [32]. Besides, return words in episturmian sequences were described in [21] while the description
of return words in the coding of rotations was used to show their fullness in [10].

A derived sequence expresses the order of return words in the sequence u. More precisely, if w is a prefix
of u with k return words ry, ro,...,7%, then u can be written as the concatenation of these return words:
U = 7q,7d,Td, - -~ LThen the derived sequence of u to the prefix w is the sequence d = dodids--- over an
alphabet of size k.

Durand’s result from [16] states that a sequence is primitive substitutive if and only if its number of derived
sequences is finite. Now the goal is to understand the structure of the derived sequences. Derived sequences
of standard Sturmian sequences were investigated in [1] and the derived sequences of fixed points of primitive
Sturmian morphisms were described in [23].

Recently, new developments are done to understand the structure of more complicated objects, e.g. acyclic,
neutral and tree sequences introduced in [7]. Return words in sequences coding linear involutions were studied
in [8] and the number of return words for more general neutral sequences was determined in [15]. In [9] the
properties of return words and derived sequences were exploited for the characterization of substitutive tree
sequences.

In this paper, we study complementary symmetric Rote sequences, i.e. the binary sequences with factor
complexity C(n) = 2n for all n > 1 whose languages are closed under the exchange of letters. These sequences
are not tree, but they represent an interesting example of neutral sequences with characteristics 1. They are
named after Rote, who proposed several constructions of these sequences in [30]. For example, he constructed
them as projections of fixed points over a four letter alphabet (see Sect. 7 of our paper) or as the coding of
irrational rotations on a unit circle with the partition on two intervals of length 1/2. Later on, they were also
constructed using palindromic and pseudopalindromic closures, see [11]. This construction was proposed and
firstly applied to the Thue-Morse sequence in [13] and later extended in [27] to a broader class of sequences.

Our techniques are based on the close relation between complementary symmetric Rote sequences and
Sturmian sequences shown in [30]: a sequence v = wgvjvy is a complementary symmetric Rote sequence if
and only if its difference sequence u, which is defined by u; = v;41 —v; mod 2, is a Sturmian sequence. In fact,
we investigate the consequences of this relation, see Sections 2.5, 3 and 5. We also use the description of derived
sequences of Sturmian sequences as studied in detail in [23]. Here we focus on complementary symmetric Rote
sequences which are associated with standard Sturmian sequences.

First we recall needed terminology and notations in Section 2. Section 3 is dedicated to return words: in
Theorem 3.1 we show that every non-empty prefix of any complementary symmetric Rote sequence v has three
return words. In other words, all derived sequences of v are over a ternary alphabet. Then we proceed with
the study of derived sequences. In Proposition 4.2 we prove that any derived sequence of v is the coding of
a three interval exchange transformation and we determine the parameters of this transformation. Then in
Theorem 6.3 and Lemma 6.1 we concentrate on the question of substitutivity of Rote sequences. In the case
when the associated standard Sturmian sequence u is fixed by a primitive morphism, Corollary 6.4 estimates the
number of distinct derived sequences of v from above and Algorithm 6.7 provides a list of all derived sequences
of v. Section 7 compares our techniques with the original Rote’s construction of substitutive Rote sequences
and the last section collects related open questions.

2. PRELIMINARIES

2.1. Sequences and morphisms

An alphabet A is a finite set of symbols called letters. A word over A of length n is a string u = uguy « - - Up—1,
where u; € A for all i € {0,1,...,n — 1}. The length of u is denoted by |u|. The set of all finite words over A
together with the operation of concatenation form a monoid A*. Its neutral element is the empty word e and
we denote AT = A* \ {e}.

If uw = zyz for some x,y, z € A*, then x is a prefiz of u, z is a suffiz of v and y is a factor of u.
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To any word u over A with the cardinality #.4 = d we assign the vector V,, € N¢ defined as (V,,)a = |u, for
all a € A, where |u|, is the number of letters a occurring in u. The vector V,, is usually called the Parikh vector
of u.

A sequence over A is an infinite string u = upujusg - - -, where u; € A for all i € N={0,1,2,...}. We always
denote sequences by bold letters. The set of all sequences over A is denoted AYN. A sequence u is eventually
periodic if u = vwww - - - = v(w)> for some v € A* and w € AT, moreover, u is purely periodic if u = www - - - =
w®. Otherwise u is aperiodic.

A factor of u is a word y such that y = u;uip1ui42 - - - uj—q for some i,j € N, 4 < j. The index 7 is called an
occurrence of the factor y in u. In particular, if i = j, the factor y is the empty word € and any index ¢ is its
occurrence. If ¢ = 0, the factor y is a prefiz of u.

If each factor of u has infinitely many occurrences in u, the sequence u is recurrent. Moreover, if the distances
between two consecutive occurrences are bounded, u is uniformly recurrent.

The language L(u) of the sequence u is the set of all factors of u. A factor w of u is right special if both
words wa and wb are factors of u for at least two distinct letters a,b € A. Analogously we define the left special
factor. The factor is bispecial if it is both left and right special. Note that the empty word ¢ is the bispecial
factor if at least two distinct letters occur in u.

The factor complexity of a sequence u is the mapping Cy, : N — N defined by

Cu(n) = #{w € L(u) : |w| =n}.

A classical result of Hedlund and Morse [25] says that a sequence is eventually periodic if and only if its factor
complexity is bounded. The factor complexity of any aperiodic sequence u satisfies Cy(n) > n + 1 for every
n e N.

A morphism from a monoid A* to a monoid B* is a mapping ¢ : A* — B* such that ¥ (uv) = ¥(u)y(v) for
all u,v € A*. In particular, if A = B, 1 is a morphism over A. The domain of a morphism 1 can be naturally
extended to AN by

Y(u) = P(uourug - -+ ) = P(uo)P(ur)(uz) -+ .

The matriz of a morphism 1 over A with the cardinality #.4 = d is the matrix M, € N%*? defined as
(My)ap = |¥(a)]p for all a,b € A. The Parikh vector of the -image of a word w € A* can be obtained via
multiplication by the matrix My, i.e. Vi) = My V.

The morphism is primitive if there is a positive integer & such that all elements of the matrix ]\/[1’; are positive.
A fized point of a morphism v is a sequence u such that ¢ (u) = u. It is well known that all fixed points of a
primitive morphism have the same language. The sequence u € A" is primitive substitutive if u = o(v) for a
morphism o : B* — A* and a sequence v € BY which is a fixed point of a primitive morphism over B.

2.2. Derived sequences

Consider a prefix w of a recurrent sequence u. Let ¢ < j be two consecutive occurrences of w in u. Then the
word u;u;41 -+ -uj_1 is a return word to w in u. The set of all return words to w in u is denoted Ry (w).

If the sequence u is uniformly recurrent, the set Ryu(w) is finite for each prefix w, ie. Ry(w) =
{ro,71,...,7k—1}. Then the sequence u can be written as a concatenation of these return words:

U ="7rqy"d,Tdy "

and the derived sequence of u to the prefix w is the sequence dy(w) = dod;ds - - - over the alphabet of cardinality
#Ru(w) = k. For simplicity, we do not fix this alphabet and we consider two derived sequences which differ
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only in a permutation of letters as identical. The set of all derived sequences to the prefixes of u is
Der(u) = {dy(w) : w is a prefix of u}.

If the prefix w is not right special, there is a unique letter a such that wa is a factor of u. It means that the
occurrences of factors w and wa in u coincides, thus Ry (w) = Ry(wa) and dy(w) = dy(wa). If u is aperiodic,
then any prefix of u is a prefix of some right special prefix of u. Therefore, for an aperiodic uniformly recurrent
sequence u we can take into consideration only right special prefixes since

Der(u) = {dy(w) : w is a right special prefix of u}. (2.1)

In the sequel we will essentially use the following Durand’s result.

Theorem 2.1 (Durand [16]). A sequence u is substitutive primitive if and only if the set Der(u) is finite.

2.3. Sturmian sequences

Sturmian sequences are aperiodic sequences with the lowest possible factor complexity. In other words, a
sequence u is Sturmian if it has its factor complexity Cy(n) = n+ 1 for all n € N. Clearly, all Sturmian
sequences are defined over a binary alphabet.

There are many equivalent definitions of Sturmian sequences, see for example [3, 5, 6]. One of the most
important characterizations of Sturmian sequences comes from the symbolic dynamics: any Sturmian sequence
can be obtained by a coding of two interval exchange transformation. Here we recall only the basic facts about
this transformation, a detailed explanation can be found in [24].

For a given parameter a € (0, 1), consider the partition of the interval I = [0, 1) into Iy = [0, ) and [; = [o, 1)
or the partition of I = (0,1] into Iy = (0,a] and I; = («,1]. Then the two interval exchange transformation
T :1 — I is defined by

y+1l—a ifyel,
T(y) = .
y— ityel.

If we take an initial point p € I, the sequence u = ugujus - - - € {0, 1} defined by

(o T eI,
“"TY1 T e L

is a 2iet sequence with the slope o and the intercept p. It is well known that the set of all 2iet sequences with
irrational slopes coincides with the set of all Sturmian sequences.

Any Sturmian sequence is uniformly recurrent. The language of a Sturmian sequence is independent of its
intercept p, i.e. it depends only on its slope «.. The frequencies of the letters 0 and 1 in a Sturmian sequence with
the slope a are a and 1 — «, respectively. In the case that o > %7 the form of the transformation 7" implies that
two consecutive occurrences of the letter 1 are separated by the block 0% or 0¥+1, where k = 7% ]. Similarly,
if < %, two 0’s are separated by the block 1% or 1¥+1, where k = LI?T"‘J

Among all Sturmian sequences with a given slope «, the sequence with the intercept p = 1 — « plays a special
role. Such a sequence is called a standard Sturmian sequence and it is usually denoted by c,. Any prefix of c,,
is a left special factor. In other words, a Sturmian sequence u € {0,1}" is standard if both sequences Ou, 1u
are Sturmian. In particular, it means that

—ifa> %, then c, has a prefix 0°1 and ¢, can be uniquely written as a concatenation of the blocks 0%1
and 0FF11;
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- iffa< %, then c, has a prefix 1¥0 and ¢, can be uniquely written as a concatenation of the blocks 1%0
and 1%+10.

Moreover, a factor of c,, is bispecial if and only if it is a palindromic prefix of c,.

In the context of derived sequences the most important characterization of Sturmian sequences is provided
by the third author in [31]: a given sequence u is Sturmian if and only if any prefix of u has exactly two return
words.

Let us denote the return words to a prefix w of a Sturmian sequence u as Ry(w) = {r, s}. Then the derived
sequence d, (w) of u to the prefix w can be considered over the alphabet {r, s}, i.e. dy(w) € {r, s}. As follows
from Vuillon’s [31] and Durand’s result [16], the derived sequence dy(w) of a Sturmian sequence u is also a
Sturmian sequence. Moreover, if u is standard, then both sequences Ou and 1u are Sturmian. It implies that
rdy(w) and sdy(w) are Sturmian as well. We can conclude that the derived sequence to any prefix of a standard
Sturmian sequence is a standard Sturmian sequence. It also means that dy(w) € {r, s} can be decomposed
into blocks 7%s and r**1s, where k is a positive integer and r is the most frequent return word. We will strictly
use this notation through the whole paper.

In [1], Aratjo and Bruyere described derived sequences of any standard Sturmian sequence u. Their descrip-
tion uses the continued fraction of the slope a of u. Derived sequences of all Sturmian sequences are studied in
[23]. In the sequel, we will work only with standard Sturmian sequences since especially in this case the elements
of the set Der(u) are easily expressible. In accordance with a wording provided in [23], the S-adic representation
of u by a sequence of Sturmian morphisms will be used for expression of the set Der(u).

2.4. Sturmian morphisms

A morphism v : {0,1}* — {0,1}* is Sturmian if ¢ (u) is a Sturmian sequence for any Sturmian sequence
u. The set of all Sturmian morphisms together with the operation of composition form the so-called Sturmian
monoid St. This monoid is generated by two morphisms F and F, where E is the morphism which exchanges
letters, i.e. £ :0— 1,1 — 0, and F is the Fibonacci morphism, i.e. F': 0 — 01, 1 — 0. In the sequel, we work
with the submonoid of St which is generated by two elementary morphisms ¢, and g defined by

0—0

pp=FoFE: {1%01 and pg=EoF: {

0—10
1—1°

Their corresponding matrices are:

11 1 0
Mb:(OI) and Mg=<11>.

The image of a standard Sturmian sequence under ¢ or ¢g is a standard Sturmian sequence as well.
Therefore, any element of the submonoid (g, pg) preserves the set of standard Sturmian sequences. For some
2= 2921 2Zn—1 € {b, B}, the composition of the morphisms .., ©,, Pzy,- -, Pz,_, Will be denoted by ¢, =
Pr0Pz " Pz, - Let us stress that the morphism ¢, is primitive if and only if z contains both letters b and 3.
By . we denote the identity morphism.

Lemma 2.2. For every standard Sturmian sequence u there is a uniquely given standard Sturmian sequence u’
such that u = @p(u’) or u = @g(u’).

Proof. Let us suppose that the letter 0 is more frequent in u (the second case can be proved analogously).
Since u is a standard Sturmian sequence, it can be written as a concatenation of blocks 01 and 0**'1 for some
integer k£ > 1. Thus u can be uniquely desubstituted by 0 — 0 and 01 — 1 to the standard Sturmian sequence
u’ which is a concatenation of blocks 0711 and 0%1. Therefore u = ¢, (u'). O
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By the previous lemma, to a given standard Sturmian sequence u we can uniquely assign the pair: the
directive sequence z = zpz; - -- € {b, B} and the sequence (u(™),,>, such that

ul™ e {0,1}"  is a standard Sturmian sequence and u = Oroz1o2m1 (u(")) for every n € N.

In fact, a sequence z € {b, 3} containing infinitely many occurrences of both letters already determines a unique
standard Sturmian sequence u, as

u= nlglgo Pzo2z1...2n-1 (0) = nlggo Pzoz1...2n-1 (1).

Now we can formulate several simple consequences of Lemma 2.2.
Observation 2.3. Let u be a standard Sturmian sequence with the directive sequence z € {b, B}.

(i) The sequence z contains infinitely many letters b and infinitely many letters G.
(ii) If z has a prefiz b*B for some positive integer k, then the letter 0 is more frequent in u and u can be
written as a concatenation of blocks 01 and 0F+11.
(iii) If z has a prefiz B*b for some positive integer k, then the letter 1 is more frequent in u and u can be
written as a concatenation of blocks 1¥0 and 1¥+10.
(iv) The directive sequence z is eventually periodic if and only if the sequence u is substitutive. Moreover, z is
purely periodic, i.e. z =z for some z € {b, B}, if and only if u is a fized point of the morphism v,.

2.5. Complementary symmetric Rote sequences

A Rote sequence is a sequence v with the factor complexity Cy(n) = 2n for all integer n > 1. Clearly, all
Rote sequences are defined over a binary alphabet, e.g. {0,1}. If the language of a Rote sequence v is closed
under the exchange of letters, i.e. E(v) € L(v) for each v € L(v), the Rote sequence v is called complementary
symmetric. Rote in [30] proved that these sequences are essentially connected with Sturmian sequences:

Proposition 2.4 (Rote [30]). Let u = uguy--- and v = vgvy - -+ be two sequences over {0,1} such that u; =
v; + viy1 mod 2 for all i € N. Then v is a complementary symmetric Rote sequence if and only if u is a
Sturmian sequence.

Convention. In this paper, we work only with complementary symmetric Rote sequences and for simplicity
we usually call them shortly Rote sequences.

As indicated by Proposition 2.4, it will be useful to introduce the following notation.

Definition 2.5. By S we denote the mapping S : {0,1}T — {0,1}* such that for every vy € {0,1} we put
S(vo) = € and for every v = vovy -+ v, € {0,1}T of length at least 2 we put S(vovy -« vn) = uous - Un_1,
where

u; =v; +v;41 mod 2 forall i€{0,1,...,n—1}.

Example 2.6. Let v = 001110. Then S(v) = S(E(v)) = 01001. Clearly, the images of v and E(v) under S
coincide for each v € {0,1}. Moreover, S(z) = S(y) if and only if z =y or x = E(y).

If we extend the domain of S naturally to {0, 1}Y, Proposition 2.4 says: v is a Rote sequence if and only if
S(v) is a Sturmian sequence. Moreover, for any Sturmian sequence u there exist two Rote sequences v and E(v)
such that u = S(v) = S(E(v)). Since a permutation of letters in the sequence does not influence its derived
sequences, we will work only with Rote sequences starting with the letter 0 without lose of generality. We will
also use the bar notation v = E(v) or o = E(v) to express the sequence or the word with exchanged letters
0+ 1.
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Convention. We consider only Rote sequences v € {0, 1}" with the prefix 0. If a Sturmian sequence u € {0, 1}V
satisfies u = S(v), we say that v is associated with u or equivalently u is associated with v.

To a given word u € {0, 1}* there are exactly two words v, ¥ such that S(v) = S(v) = u. Moreover, if the first
letter of v is given, then the rest of the word v = v - - - v,, is completely determined by v = ug -« - up_1:

Vig1 =voF+up+ur+---+u; mod?2 foralie{0,1,...,n—1}. (2.2)

Lemma 2.7. Let u be a Sturmian sequence associated with a Rote sequence v. A word u is a factor of u if and
only if both words v,v such that u = S(v) = S(¥) are factors of v. Moreover, for every m € N, the index m is
an occurrence of u in u if and only if m is an occurrence of v in v or an occurrence of v in v.

Bispecial factors of a sequence u play a crucial role in finding its derived sequences. We use the terminology
introduced by Cassaigne [12] to distinguish three types of bispecial factors. Let w be a bispecial factor of u.
Then the bilateral order of w is the number

B(w) =#{(a,b) e Ax A:awbe L(u)} —#{a€ A:aw e L(u)} —#{be A:wbe L(u)}+1.

The bispecial factor w is weak if B(w) < 0, it is ordinary if B(w) = 0 and it is strong if B(w) > 0.

Corollary 2.8. Let u be a Sturmian sequence associated with a Rote sequence v, let £ € N. If w is a bispecial
factor of length € in u, then there are two bispecial factors z, T of length £+ 1 in v such that w = S(z) = S(T).
Conversely, if x is a bispecial factor of length £+ 1 in v, then S(x) of length € is a bispecial factor in u. Moreover,
each non-empty bispecial factor of v is ordinary and the empty word is a strong bispecial factor of v.

Proof. Let w be a bispecial factor of u. By the well known balance properties of Sturmian sequences, the
bispecial factor w is ordinary. Indeed, the words Owl, w0 are always factors of u, in addition, just one word
from {lwl,0w0} is a factor of u. Without lose of generality let us suppose that 1wl € £(u). The associated
factors of the Rote sequence v are Oza, 1Za, 0Za, lza, 0Za and lxa, where w = S(x) and z starts with 0 and
ends with a. Combining with Lemma 2.7 we get that both words z, Z are ordinary bispecial factors of v.

Conversely, let us suppose that x is a non-empty bispecial factor of v. It means that the words Oz, 1z, 20, 21
are factors of v. Then S(0z) = aw, S(1z) = aw, S(x0) = wb, S(x1) = wb, where w = S(z), a is the first letter
of x and b is the last letter of z. Thus w is a bispecial factor of u.

Since 00,11,01,10 € L(v), the bilateral order of ¢ is 1, i.e. € is strong. O

3. RETURN WORDS TO PREFIXES OF COMPLEMENTARY SYMMETRIC
ROTE SEQUENCES

Complementary symmetric Rote sequences form a special subclass of binary sequences coding the rotations.
The return words in the sequences coding the rotations were studied in [10] in particular for palindromic factors.
To compute the exact number of return words to a factor of a given Rote sequence, we use the following results
from [4] (Lems. 4.2 and 4.4):

(i) If v is uniformly recurrent sequence with no weak bispecial factor, then #R(z) > 1+ ACy(|z|) for every
factor z € L(v).

(ii) If v has no weak bispecial factor and ACy(n) < m for all n > 0, then #Ry(w) < m for every factor
w € L(v).

Recall that AC, denotes the first difference of the factor complexity Cy, i.e. ACy(n) = Cy(n+ 1) — Cy(n) for
each n € N.

Theorem 3.1. Let v be a Rote sequence. Then every non-empty prefic x of v has exactly three distinct return
words.
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Proof. By Corollary 2.8, no bispecial factor of a Rote sequence v is weak. Every Rote sequence is uniformly
recurrent and for all n > 1 it holds true ACy(n) = 2. Thus by Lemma 4.2 from [4], we have #R.(z) > 3 for
every non-empty prefix x of v.

On the other hand, since ACy(n) < 3 for all n > 0, by Lemma 4.4 from [4] we have #R(z) < 3 for every
prefix x of v. Therefore, #R (z) = 3 for every non-empty prefix z of v. O

Remark 3.2. The previous theorem also follows from a more general result obtained by Dolce and Perrin
in [15]. They studied the so-called neutral sets. By our Corollary 2.8, the language £ of a Rote sequence is a
neutral set with the characteristic x(£) = 0. As the language £ is uniformly recurrent, we can apply Corollary
5.4 of [15] to deduce that any non-empty factor of a Rote sequence has exactly three return words.

A direct consequence of Theorem 3.1 is that all derived sequences of a Rote sequence to its non-empty prefixes
are over a ternary alphabet. However, to study derived sequences we need to know also the structure of return
words, not only their number.

For this purpose we now describe the crucial relation between return words of Sturmian and Rote sequences.
Suppose that v is a Rote sequence with a prefix x. Then by Proposition 2.4 and Lemma 2.7, u = S(v) is a
Sturmian sequence, w = S(x) is a prefix of u and the occurrences of w in u coincide with the occurrences of x
and Z in v. Let r, s be two return words to w in u, r is the most frequent one. Our aim is to find three return
words to z in v. We start with an example.

Example 3.3. Consider the Sturmian sequence u = ugu; - - - which is fixed by the Sturmian morphism ¢ : 0 —
010, 1 — 01001, i.e.

u = 01001001010010010010100100100101001001010 - - - .
The associated Rote sequence v = vgvy - -+ (i.e. u = S(v)) starting with 0 is
v = (001110001100011100011000111000110001110011 - - - .

Take the prefix w = 0 of u. It has two return words » = 01, s = 0 and the occurrences of w in u are
0,2,3,5,6,8,10,11,... The associated prefix of v is = 00 since 0 = §(00). As we know from Lemma 2.7, the
occurrences of w = 0 in u correspond to the occurrences of x = 00 and Z = 11 in v. To find the return words
to x = 00 we have to determine precisely when the words 00 and 11 occur in v.

Clearly, there is the factor 00 at the position 0, i.e. vgv; = 00. Which word from {00, 11} starts at the position
2 depends only on the letter vq, see equation (2.2). This letter is completely determined by the prefix of u of
length 2, which is upu; = 01 (this is also the first return word to 0 in u). Indeed, vo = v + up + u1 mod 2.
Since vo = 0+ 0+ 1 = 1, there is the factor 11 starting at position 2, i.e. vov3 = 11. In other words, the return
word 01 causes the alternation of the factors x and Z, since it has an odd number of 1’s.

To determine the factor vsvy starting at position 3 we have to compute the letter vs = vg + ug + u1 + uz =
vg + ug mod 2. Since ve = 0, we get vs3 = 1 and vsvy = 11. Notice that the word wus is the second return word
to 0 in u. Since uy has an even number of 1’s, it leaves the factors x, & unchanged. In the next step we get
vsvg = 00, since v5 =v3+uz+ugs =14+0+1=0 mod 2. So we find the first return word to 00 in v, it is the
word vgvyvevzvy = 00111.

Similarly we get vg = v5 +us = 04+ 0 = 0 and thus vgv; = 00, so the next return word to 00 in v is the word
V5 = 0.

As vg =vg+ug+uy =0+0+1=1, it holds true vgvg = 11. So we have to wait until another factor 01
appears in u. It happens immediately since ugug = 01. Thus v19 = vg + ug + ug = 0 mod 2 and wvypv1; = 00.
Therefore the word vgvrvgvg = 0011 is the last return word to 00 in v.

In total, the prefix = 00 of v has three return words 0, 0011 and 00111.

As we have seen in Example 3.3, to describe the return words to x, we have to distinguish if a given return
word to w causes the alternation of the factors z, # or not. This is the meaning of the following definition.
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Definition 3.4. A word u = uguy -+ -u,—1 € {0,1}* is called stable (S) if |u|; = 0 mod 2. Otherwise, u is
unstable (U).

Example 3.5. The word v = 0110101 is stable while the word v = 011010 is unstable.

Remark 3.6. In the notion of Parikh vectors, the factor w is stable if its Parikh vector V,, = (p) mod 2 and

0
it is unstable if V,, = (¥) mod 2 for some number p € {0, 1}.

Lemma 3.7. Let v be a Rote sequence and let x be its prefiz. Denote u = S(v) and w = S(x). An index m is
an occurrence of x in v if and only if m is an occurrence of w in u and the prefix u = uguy - - - Upm—1 Of W is
stable.

Proof. Recall that u; = v;11 +v; mod 2 holds true for all i € N. By summing up mod 2 we get for the prefix
U = UQUy * * * Um—1 Of 1

m—1 m—1
luly = Z u; = Z (vig1 + v;) = Uy + 1o mod 2. (3.1)
i=0 i=0

By Lemma 2.7, m is an occurrence of the prefix x in v if and only if m is an occurrence of w in u and the letter
U coincides with vg, which is the first letter of z. The equation (3.1) says that the letters vy and v,, coincide
if and only if the prefix of u of length m is stable. O

We have seen that the form of return words in a Rote sequence depends on the stability of the return words
in the associated Sturmian sequence. The following definition sorts the prefixes of standard Sturmian sequences
according to the stability of their return words.

Definition 3.8. Let w be a prefix of a standard Sturmian sequence u with return words Ry (w) = {r, s}, where
7 is the most frequent return word. Let k be a positive integer such that u is a concatenation of blocks 7*s and
r#+1s. We distinguish three cases:

(i) w is of type SU(k), if r is stable and s is unstable;
(ii) w is of type US(k), if r is unstable and s is stable;
(iii) w is of type UU(k), if both r and s are unstable.

The type of the prefix w is denoted Ty, (or T if the respective factor w is clear). If the number % is not essential,
we write only SU, US and UU.

Remark 3.9. It is easy to verify that all these types appear in the case of prefixes of Sturmian sequences. On
the other hand, the fourth possible case, i.e. the type S, cannot appear. We can prove this using the results
from [2]. It also follows from the proof of Theorem 4 in [30].

First we recall the WELLDOC property. A sequence u € {0, 1}" has well distributed occurrences modulo 2
(shortly WELLDOC(2) property) if for every factor w € £(u) we have

() mozewwisspmaorad =4(5) (1) (o ) (1) )

As shown in [2], all Sturmian sequences have the WELLDOC(2) property.

Let us suppose that w is a prefix of u with two stable return words, i.e. the numbers of 1’s occurring in r
and s are even. Since any word u such that uw is a prefix of u is a concatenation of words r and s, v contains
an even number of 1’s. It contradicts the WELLDOC(2) property of u.

We use these prefix types to describe the return words to corresponding Rote prefixes.
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Theorem 3.10. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v). Let x be a
non-empty prefiz of v and w = 8(x). Then the prefiz  of v has three return words A, B,C € {0,1}1 satisfying
(r, s and k are the same as in Def. 3.8):

(i) if T = SU(k), then S(A0) =7, S(B0)=sr**ls and S(C0) = srFs;
(ii) if T = US(k), then S(A0) =rr, S(B0)=rsr and S(C0)
(i) if Tw = UU(k), then S(A0)=rr, S(BO)=rs and S(CO0)

’

S
ST.

Proof. Let us suppose that T, = SU(k), i.e. |r|; =0 mod 2 and |s|y =1 mod 2. Let n be an occurrence of
z in v. Then by Lemma 3.7 the index n is an occurrence of w in u and the prefix u = uguy - - - u,—1 is stable.
Since u is a concatenation of the blocks r**1s and s, the sequence u has one of the prefixes ur, usr**'s or
usrks.

— If ur is a prefix of u, then n + |r| is an occurrence of w in u. Moreover, the prefix of u of length n + |r| is
stable. It means that m := n + |r| is the subsequent occurrence of z in v and A := v, U471+ Vpp—1 is & return
word to x in v. Let us recall our convention that 0 is a prefix of v and thus any return word to the prefix x

begins with 0, in particular v,, = 0. Therefore, r = uptpy1 - Um—1 = S(A0).

— Ifusrk*1sis a prefix of u, then any index £ € {n+|s|,n+|s|+|r|,n+|s| +2|r|,- -, n+|s|+ (k+1)|r|} is an
occurrence of w in u. Since r is stable and s is unstable, prefixes of these lengths ¢ are unstable and by Lemma 3.7,
such a index ¢ is not an occurrence of z in v. The next occurrence of w in uwis m :=n+ |s| + (k + 1)|r| + |s|.
The prefix of u of length m is stable and thus m is the smallest occurrence of = in v grater than n. Therefore
B :=wv, - Uy_1 is a return word to x in v and obviously sr**ls = S(B0).

The reasoning in all remaining cases is analogous and so we omit it. O

Example 3.11 (Example 3.3 continued). Recall that the prefix 00 of v has three return words A =0, B =
0011 and C' = 00111. The associated Sturmian prefix S(00) = 0 has the return words » = 01, s =0 and u
is a concatenation of blocks rs = 010 and rrs = 01010. Thus the type of 0 is 7o = US(1). It holds true
S(A0) = §(00) =0 = s, S(BO) = §(00110) = 0101 = rr and S(C0) = S§(001110) = 01001 = rsr.

It remains to explain how to determine the type of a given prefix w of a standard Sturmian sequence u. This
question will be solved in Section 5.

4. DERIVED SEQUENCES OF COMPLEMENTARY SYMMETRIC
ROTE SEQUENCES

As we have proved in Theorem 3.1, any derived sequence of a Rote sequence v is over a ternary alphabet
(we use the alphabet {4, B,C}). In this section we study the structure of these ternary sequences in the case
that v is associated with a standard Sturmian sequence. First we mention an important direct consequence of
Theorem 3.10.

Corollary 4.1. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v) and let = be
a non-empty prefiz of v. Then the derived sequence dy(z) is uniquely determined by the derived sequence dy(w)
of u to the prefiz w = S(x) and by the type T, of the prefiz w.

Proof. Let r,s be the return words to w in u and let u be a concatenation of blocks 7*s and r¥*1s for some

positive integer k. We decompose the sequence dy(w) € {r,s}" from the left to the right into three types of
blocks S(A0),S(B0) and S(C0) according to the type Ty, (the relevant blocks are listed in Thm. 3.10). Then
the order of letters A, B,C in this decomposition is the desired derived sequence dy(z) of v to z. It remains
to explain that this decomposition is unique. In the case i) we decompose dy(w) into the minimal blocks with
an even number of letter s, similarly in the case ii) we decompose dy(w) into the minimal blocks with an even
number of letter r. In the case iii) we decompose dy,(w) into the pairs of letters. O
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The main goal of this section is to show that any derived sequence dy(z) of v is in fact coding of a three
interval exchange transformation. The sequences coding the interval exchange transformation were introduced
in [26] and they are intensively studied as they represent an important generalization of Sturmian sequences to
the multi-literal alphabets, see [29]. Here we define only those interval exchange transformations which appear
in our description of derived sequences dy (z).

A three interval exchange transformation T": [0,1) — [0,1) is given by two parameters 8, € (0,1), 8+~ < 1,
and by a permutation 7 on the set {1,2,3}. The interval [0, 1) is partitioned into three subintervals

In=1[0,8), Ip=[8,8+v) and Ic=I[f+1,1)

of lengths /3, v and 1 — 3 — ~y respectively. These intervals are then rearranged by the transformation 7" according
to the permutation 7. More specifically:

— If the permutation 7 = (3,2, 1), then

T(y)=q y+1-28—v ifyelg,
y—p0—7 ifyele.
If the permutation = = (2,3, 1), then
T(y)=q v—~ ifyelgp,
y—p3 ifyelec.

Let p € [0,1). The sequence u = upuyuz - - - € {A, B, C} defined by

A if T"(p) € 14,
u, =< B if T"(p) € Ip,
c if T(p) € I

is called a Jiet sequence coding the intercept p under the transformation 7.

Take a standard Sturmian sequence u. As we have mentioned before, every derived sequence d(w) of u to
a given prefix w is also a standard Sturmian sequence. Thus d,(w) is expressible as a 2iet sequence with the
slope a and the intercept p =1 — a.

Proposition 4.2. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v), let x be a
non-empty prefix of v and w = S(x). Let o > % be the slope of the Sturmian sequence dy(w). Then the derived
sequence dvy () is a Jiet sequence coding the intercept p = 1 — « under the three interval exchange transformation
T, where T is given by the following parameters 3,y and permutation m:

(i) if To = SU(k), then f=a, vy =a—k(l —a), and 7 = (3,2,1);

(ii) if T =US(k), then f=2a—1,v=1—a, and 7 = (3,2,1);
(i) if Ty =UU(k), then f=2a—1,y=1—q, and m = (2,3,1).
Proof. Since any derived sequence of a standard Sturmian sequence is standard as well, dy(w) is coding of the
intercept 1 — a under the transformation G : [0,1) — [0,1) defined by

Gy)=y+1l—-qa, if yel,=[0,0) and Gy)=y—a, if yel, =]a,1).

Let us start with the simplest case iii): By Theorem 3.10, the derived sequence dy () of v to the prefix =
is determined by the decomposition of dy(w) into blocks of length 2. The order of blocks rr, rs and sr in the
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decomposition of dy(w) is given by the transformation G2 under which the point p = 1 — « is coded. A simple
computation gives:

y+2—-2a if yel0,2a—1),
G y)={ y+1-2a if ye[2a—1,a),
y+1—2a if yeal).

It means that G? exchanges three intervals under the permutation (2,3, 1) with the parameters 3, v as claimed
in point iii) of the statement.

Let w be of type SU (k) as assumed in i). Let us denote the intervals
Ia=100,a), Ig=[,2a0—k(l —«a)), Ic =2a-k(l-a),l)
and define the transformation

G(y) it yely,
T(y) =< G*3(y) if yelg,
GH2(y) if yelc.

Recall that the parameter k in the type of w means that d,(w) is a concatenation of blocks r*s and r*+1s.
By Theorem 3.10, the derived sequence dy(x) of v to the prefix z is determined by the unique decomposition
of dy(w) into blocks r, sr**'s and sr*s. As mentioned in Section 2.3, k = [12-], i.e. & > k(1 — @) and
a < (k+1)(1 — a). Therefore the intervals I4,Ip, and Ic are well defined.

To prove i), one has to check

(1) I C Ir;
(2) IgcCl, G'p)cCl forallj=1,2,....,k+1, GF?2(Ip)C I;
(3) IccCls,, Gi(Ig)C I forallj=1,2,....k GFl(Ic)C I
(4) T is an interval exchange transformation under the permutation (3,2,1), i.e.,
T(a)=[1-a,1), T(Ip)=[k+1)1-a)—a,l—a), T(c)=[0,(k+1)(1-a)-—a).
Validity of (1)—(4) follows directly from the definition of G.
Proof of point ii) is analogous. O

Remark 4.3. It can be shown that all three transformations 7" from Proposition 4.2 satisfy the so called i.d.o.c.
property [22]. For a three interval exchange transformation with the discontinuity points 8 and 8 + v it means
that T™(8) # B + v for all n € Z. Property i.d.o.c. implies that the factor complexity of any derived sequence
dy(z) is C(n) =2n + 1.

Corollary 4.4. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v) and let z,x’
be two non-empty prefizes of v. Denote w = S(x) and w' = S(a’). The derived sequence of v to the prefiz
coincides with the derived sequence of v to the prefix x' if and only if the types of w and w' are the same and the
derived sequence of u to the prefiz w coincides with the derived sequence of u to the prefiz w'. In other words,

dy(z) =dy(2) iff To =T and dy(w)=dy(w').

Proof. Let us assume that dy(z) = dy(2"). We use two well known properties of 3iet sequences, see for example
[18, 19]:

— the frequencies of letters in a 3iet sequence correspond to the lengths of the intervals 14, Ip and I¢;

— the language of a 3iet sequence is closed under reversal if and only if the permutation is (3,2, 1).
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By Proposition 4.2, the language of dy (z) is not closed under reversal if and only if w = S(x) is of type UU.
Moreover, if w is of type SU, the frequencies of letters are: o, @« — k(1 — a) and (k + 1)(1 — a) — o Since « is
irrational, these three lengths are pairwise distinct. If w is of type US or UU, the letters B and C have the
same frequency 1 — a.. Therefore, the assumption dy(z) = dy(z’) implies that the type of w and the type of
w’ are the same. Moreover, the lengths of the intervals 4, Ig, Ic, i.e. the frequencies of the letters, must be
the same. It implies that the slopes of dy(w) and dy(w’) are equal. Since dy(w) and dy(w’) are both standard
Sturmian sequences with the same slope, obviously dy(w) = dy(w’).

The opposite implication follows from Corollary 4.1. O

The proof of Corollary 4.1 gives us the instructions how to construct the derived sequences of a Rote sequence:
we need to know both the derived sequences of the associated Sturmian sequence u and the types of prefixes
of u. Remind that we work only with Rote sequences associated with standard Sturmian sequences, thus u is
always standard and any prefix of u is left special. Due to (2.1) and Corollary 2.8, we can focus only on the
bispecial prefixes of standard Sturmian sequences.

5. TYPES OF BISPECIAL PREFIXES OF STURMIAN SEQUENCES

Consider a standard Sturmian sequence u with the directive sequence z € {b, B}". It means that there is a
sequence (U(n))nzo of standard Sturmian sequences such that for every n € N

U= Q021201 (u(n)) . (51)

Convention. We order the bispecial prefixes of u by their length and we denote the nth bispecial prefix of u
by w(™. In particular, w(©® = ¢, w® =0 if zg = b and w® =1 if 2z = A.

Our aim is to find for each n € N the derived sequence of u to the prefix w(™ and to determine the type
of w(™. First we need to know how bispecial factors and their return words change under the application of
morphisms ¢, and ¢g. It is shown in [23].

Lemma 5.1. Let u',u be Sturmian sequences such that u = pp(u’).

(i) For every bispecial factor w' of W', the factor w = p(w')0 is a bispecial factor of u.
(ii) Every bispecial factor w of u which is not empty can be written as w = p(w’)0 for a uniquely given
bispecial factor w' of u’.
(i1i) The words 1',s' are return words to a bispecial prefiz w' of W' if and only if v = @p(r'), s = wp(s’) are
return words to a bispecial prefix w = pp(w')0 of u. Moreover, dy(w) = dy (w').

Lemma 5.2. Let u’,u be Sturmian sequences such that u = pg(u’).

(i) For every bispecial factor w' of W', the factor w = @g(w')1 is a bispecial factor of u.
(it) Every bispecial factor w of w which is not empty can be written as w = pg(w')1l for a uniquely given
bispecial factor w' of u'.
(itt) The words ', s" are return words to a bispecial prefix w' of W' if and only if r = pa(r’),s = ¢a(s’) are
return words to a bispecial prefix w = pg(w')1 of u. Moreover, dy(w) = dy (w').

Example 5.3. The sequence from Example 3.3 is the fixed point of the morphism @ug,. So it is a standard
Sturmian sequence with the directive sequence z = bBbbSbbSD - - - .
The Oth bispecial prefix of u is the empty word w(® = ¢. Its return words are 0 and 1 and clearly dy (w(o)) =u.
By Lemma 5.1, the bispecial prefix w® can be obtained from e using the morphism ¢,: w®) = ()0 = 0.
It means that w) = 0 originates in the sequence u™) which has the directive sequence Bbbgbb- - -. The return
words to w(!) are ¢, (0) = 0 and (1) = 01 and its derived sequence is dy(w™) = dya (€) = uV.
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Similarly, the prefix w(® arises from e by application of ©ppg, €.
w® = @y(pp(e)1)0 = 010.

Thus w(® originates in u(® with the directive sequence bbBbbj - - - . The return words to w®) are wrpp(0) = 010
and @pps(1) = 01 and its derived sequence is dy, (w?) = dye (¢) = u?.

The method explained in Example 5.3 can be easily generalized. Let us formalize this procedure.

Corollary 5.4. Letz € {b, 3} be a directive sequence of a standard Sturmian sequence u and let n € N. Denote
by ™ the most frequent and by s™ the less frequent return words to the nth bispecial prefiz w™ of u. Then the
derived sequence du(w(")) is a standard Sturmian sequence with the directive sequence z(") = ZnZn+1¥n42 -
Moreover

(i) If z,, = b, then rn) = Prpzrzn_1(0) and s = Prozy.zn_ (1)
(i) If z, = B, then r) = Groz-zna (1) and s = I (1)

Proof. We proceed with induction on n € N.

Clearly, the return words to the bispecial prefix w(® = ¢ are letters 0 and 1 and thus the derived sequence
of u to w(® is the sequence u itself. Using the notation of (5.1), we have u = @, (u). If 25 = b then 0 is the
most frequent letter in u, if zy = 5 then 1 is the most frequent letter of u.

The directive sequence of u™ is z(") = 212925 - --. Denote u’ = u. Let w’ be the nth bispecial prefix of u’
and r/, s’ be its return words. By Lemmas 5.1 and 5.2, the words ¢, (') and ¢,,(s’) are the return words to
the (n + 1)st bispecial prefix of u (we add 1 for the bispecial prefix € of u).

If we now apply the induction hypothesis on u’ and take into consideration that the application of ¢,, to
the return words does not change their frequencies, the statement is proved.

It remains to determine the types of bispecial prefixes of standard Sturmian sequences. We will use the
following matrix formalism.

Definition 5.5. Let w be a prefix of a standard Sturmian sequence u. Let 7, s be the return words to w in u,
where r is the most frequent return word. Then the matrix P, is defined as:

P, = 7o Islo mod 2.
Y ( Irlr [sh
Remark 5.6. The type T, of the prefix w depends on the bottom row of the matrix P,. Ty, is

(i) SU if P, = (g

) for some numbers p, q € {0,1};

(i) US if P, = ( ’1’

> for some numbers p,q € {0,1};

—a OR =R

(ii) UU if P, = ( 11) ) for some numbers p, g € {0,1}.

Example 5.7. Take the prefixes €,0 and 010 of Sturmian sequence u from Example 3.3. Their matrices are

1 0 1 1 0 1
}:'6:(01)7 PO:(lO) and P010:(11)

and their types are 7. = SU(1), To = US(1) and Tg10 = UU(2) respectively.

Convention. To simplify the notation, for the nth bispecial prefix w( of a standard Sturmian sequence we
will denote its type T instead of 7,y and its matrix P(™ instead of P, ).
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Observation 5.8. Let u be a standard Sturmian sequence with the directive sequence z € {b, B}V.

(i) If u has a prefiz b*3 for some positive integer k, then by Observation 2.3, u is a concatenation of the
blocks 0F1 and 0FT11. Therefore, the bispecial prefit w®) = € has the stable return word r® = 0 and the
unstable return word 50 =1, w(©® is of type T = SU (k) and its matriz P is

1 0
e

(i) If u has a prefix B*b for some positive integer k, then w®) = e has the unstable return word r®) =1 and
the stable return word s©) = 0, its type is TO = US(k) and its matriz P©) is

0 1
(0 1)=on

Let us recall that the Parikh vector Vy(,) can be computed by multiplication Vi) = MyV,, for all u € A*.
By Corollary 5.4, the Parikh vectors of the return words (™ and s(™ can be computed using the matrix of
the morphism ¢;,., ...z, ,. Thus the matrix P can be obtained as a product of the matrix of the morphism
Pzo21...2n_, and the matrix Oy or Og. The following proposition summarizes these observations.

Proposition 5.9. Let u be a standard Sturmian sequence with the directive sequence z € {b, 3} and let n € N.
(i) If the sequence zpzni12ny2 - has a prefiz b* 8, then
P™ = M, M., ---M,, 0, mod 2.
(ii) If the sequence ZnZny12na2--- has a prefiv B*b, then
Zn—1

P™ = M, M, ---M.,_,Os mod 2.

The type T is given by the bottom row of matriz P™ and the number k.

Example 5.10 (Example 5.3 continued). The Oth bispecial prefix of u is w(© = ¢. Since z has the prefix bg,
its matrix is O and its type is SU(1).
For the bispecial prefix w(® = 0, we have zg = b and z12023--- = BbbS3--- has the prefix 8b. Thus the

corresponding matrix is
() _ (11 01y (11
P 0= (51 (0 D)= (1 1) w2

and the 1st bispecial prefix w(? is of type TW = US(1).
For the bispecial prefix w® we have 29z = b and zoz32z4--- = bbBb- - has the prefix b28. Therefore its

matrix is
1 1 1 0 1 0 0
p2) — MzOp = _ m
My MO <01>(1 1)(01) <1 > od 2

and its type is 7 = UU(2).
Finally, we study what kind of matrices can appear among the matrices P of Sturmian bispecial prefixes.
Clearly, all matrices My, Mg, Oy, Og have their determinants equal to 1. By Proposition 5.9, the matrix JORT

—_ =

(n
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FI1GURE 1. The diagram captures the multiplication mod 2 of matrices with the determinant
1 by morphism matrices M and Mg. A directed edge labelled by ¢, goes from matrix M to
matrix M’ if M’ = M,M mod 2. Analogously for the label ¢g.

a product of these matrices modulo 2. So the determinant of P(™ has to be equal to 1. Therefore there are only
six candidates for P("):

(I G F GO RO CRS| N

The relations between these matrices are captured in Figure 1. We can go through this graph instead of
calculating the respective products mod 2.

Example 5.11. The result of the product P = M, M, 30y can be obtained as follows. We start in the vertex

Oy = ( 10 ) Then we move along the edge labelled by ¢g to the vertex ( !

01 0 ) After that we move

11

along the edge labelled by ¢, to the vertex ( (1) i

>. This vertex is the desired matrix P,

Remark 5.12. Any standard Sturmian sequence u with the directive sequence z has bispecial prefixes of at
least two types. Indeed, by Proposition 5.9 (or by the graph in Fig. 1):

— if z has a prefix b‘8, £ > 1, then the types of w(® and w® are SU and US, respectively;

— if z has a prefix 42¢b, £ > 1, then the types of w(®, w® and w9 are US, UU and SU, respectively;

—if z has a prefix 32¢71b, £ > 1, then the types of w(® and w2~ are US and UU, respectively.

It may happen that these bispecial prefixes are only of two types. For example, if the directive sequence
is z = (8bbB)>, then for each n € N, the bispecial factor w(®) is of the type US(1) and the bispecial factor
w1 is of the type UU(2).

We illustrate our results on the Rote sequence g associated with the Fibonacci sequence f.

Example 5.13. The Fibonacci sequence f is fixed by the Fibonacci morphism F: 0 — 01, 1 — 0, d.e.
f =010010100100101001010010010100100101 - - - .

Clearly, the sequence f is a fixed point of the morphism F2, too. Since F2 = g, the Fibonacci sequence f has
the directive sequence z = (b3)°, see Observation 2.3. By Corollary 5.4, the derived sequence d¢(w(®™) has
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the directive sequence (b3)> and the derived sequence dg(w**+1)) has the directive sequence (8b)*. It means
that d¢(w®™) is the Fibonacci sequence itself and d¢(w(**1) can be obtained from the Fibonacci sequence by
exchange of letters 0 <> 1. If we rewrite the derived sequences into the alphabet {r, s}, where the most frequent
letter is denoted by r and the less frequent letter by s (as required in Def. 3.8), we obtain only one derived
sequence d (i.e. the Fibonacci sequence over the new alphabet):

d = rsrrsrsrrsrrsrsrrsrsrrsrrSrSrrSrrsrs ..
Therefore, the derived sequence to any prefix of the Fibonacci sequence is the Fibonacci sequence itself.

The types 7™ of the bispecial prefixes of the Fibonacci sequence f can be determined by Proposition 5.9,
where the matrix products can be computed using Figure 1:

- PO =, = ( (1) (1) ) mod 2 and zgz129 - - = bBbB - - -, thus w(® has the type T = SU(1);
) — (11 _ W _ .
- PWY = M,Og = 10 mod 2 and zy2923 -+ = BbBb- -, thus T\ =US(1);

0 1
11
1

-~ P® = M,Mz0, = ( ) mod 2 and zoz3z4 - -~ = bBbB - - -, thus T?) = UU(1);

~ PG = MyMsM,0p = ( 0 ) mod 2 and 232425 - -- = 8bBb- - -, thus T®) = SU(1);

0 1
- pW = MyMgMyMgOy = ( 1 ) mod 2 and z4z526 - -- = bBbB - - -, thus TW = US(1);

1

0
PG — MyMgMy,MsM,O5 = ( (1) i ) mod 2 and z5zgz7--- = BbBb- - -, thus TO) = UU(1).
By simple computations we get

]\/[b]\/[ﬁMb]\/[ﬁMb]Wﬁ =1 mod 2,
where [ is the identity matrix. Then we have
PO = M, MsM,MsM,MzO, = O, mod 2.

We have also zgz72s - = bBbS -+ = 292122 - - - . So we can conclude that w(® has the same type as w(®, which

is SU(1). Similarly, w(7” has the same type as w(?) etc.
Now we use Corollary 4.4 to describe the derived sequences of the Rote sequence

g = 001110011100011000110001110011100011 - - -

associated with the Fibonacci sequence f. Since all derived sequences of f are the same and f has three distinct
types of bispecial prefixes, there are exactly three distinct derived sequences of g: dg (z(0), dg (M) and dg ().

Finally, we show how to construct these derived sequences dg(z(?), dg(z*)) and dg(z(?). Since the type
of z(0 is SU(1), the return words A, B,C to the prefix 2 correspond to the Sturmian factors 7, sr2s and
srs, respectively, where r, s are the return words to w(®, see Theorem 3.10. Thus we have to decompose the
sequence d € {r, s}V

d = rsrrsrsrrsrrSrsSrTSrSrTSrTSrSITSITSrS -
onto blocks r, sr2s and srs. The order of these blocks gives us the derived sequence of g to (%)

dg(2¥) = ABABAACAACAABABAAC - - .
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The type of w® is US(1), so the return words A, B,C' to 2 correspond to the Sturmian factors rr, rsr, s,
respectively. So we decompose d onto blocks rr, rsr, s and we get

dg(zM) = BBOCACACBBCACACBBBC - - - .

The type of w® is UU(1), so the return words A, B,C to x(?) correspond to the Sturmian factors rr, rs, sr,
respectively. So we decompose d onto blocks 77, rs, sr and we get

dg(2®) = BACCBACCBBACBBACBB - -- .

As explained in Section 4, the derived sequences dg(z(?)), dg(z(!)) and dg(2(?)) are 3iet sequences. We can
find the parameters of their interval exchange transformations using Proposition 4.2. The Fibonacci sequence
has the slope a = % and the intercept p = 1— % = 2 — 7, where 7 denotes the golden ratio (1 ++/5)/2. Thus these
derived sequences are 3iet sequences coding the intercept 2 — 7 under the three interval exchange transformation
T with the parameters 3, v and the permutation 7 as follows:

— for dg(:v(o)) the parameters are 8 = %, v = % —land w = (3,2,1);
— for dg(:c(l)) the parameters are § = % —1,y=2—7and 7 = (3,2,1);
— for dg(?) the parameters are 3 = % —1,y=2—-7and 7 =(2,3,1).

6. DERIVED SEQUENCES OF SUBSTITUTIVE COMPLEMENTARY SYMMETRIC
ROTE SEQUENCES

The aim of this section is to decide when a Rote sequence associated with a standard Sturmian sequence is
primitive substitutive, i.e. it is a morphic image of a fixed point of a primitive morphism. First we explain why
a Rote sequence v cannot be purely primitive substitutive, i.e. cannot be fixed by a primitive morphism.

Lemma 6.1. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v). Then v is not
a fized point of a primitive morphism.

Proof. Let us assume that v is fixed by a primitive morphism . Then the vector of letter frequencies (pg, p1) "
is an eigenvector to the dominant eigenvalue A of the matrix M, € N2*2. As the language of v is closed under
the exchange of letters 0 «» 1, the vector of frequencies is (pg, p1)" = (1,3)T, see [28]. Since all entries of the
primitive matrix M, are integer, an eigenvalue to a rational eigenvector is an integer number. Moreover, by the
Perron-Frobenius theorem the dominant eigenvalue of any primitive matrix with entries in N is bigger then 1,
i.e. A > 1. The second eigenvalue A’ (i.e. the other zero of the quadratic characteristic polynomial of M,) is
integer, too.

Let x be a prefix of v and dy(z) be the derived sequence of v to the prefix x. Let us assume that d(z) is
fixed by a primitive morphism . By Proposition 4.2, the derived sequence dy(x) is a ternary sequence coding
a three interval exchange transformation. The letter frequencies in any 3iet sequence are given by the lengths
of the corresponding subintervals. The lengths of three subintervals described in Proposition 4.2 are irrational
as the slope « of a Sturmian sequence is irrational. Therefore, the vector of frequencies and consequently the
dominant eigenvalue of the matrix My, is irrational as well.

For a sequence fixed by a primitive morphism 7, Durand in [17] proved that any its derived sequence is fixed
by some morphism, say &, and each eigenvalue A of M either belongs to the spectrum of M, or its modulus ||
belongs to {0,1}.

Applying this result to the morphisms ¢ fixing the Rote sequence v and the morphism 1 fixing its derived
sequence dy(z) we get that the spectrum of My is a subset of {A, A’,0} U {y € C: |y| = 1}. Thus the dominant
eigenvalue of the matrix M, (which is by the Perron-Frobenius theorem bigger than 1) cannot be irrational.
This is a contradiction. O
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Despite the previous lemma, we will show in Theorem 6.3 that a Rote sequence is primitive substitutive when-
ever the associated Sturmian sequence is primitive substitutive. For the proof we need to study the periodicity
of the types of bispecial prefixes in Sturmian sequences.

Proposition 6.2. Let u be a standard Sturmian sequence with an eventually periodic directive sequence z with
a period Q. Then there exists ¢ € {1,2,3} such that the sequence (P("))neN is eventually periodic with a period

qQ.

Proof. Let p be a preperiod of the directive sequence z = zgz122 - - -. We denote

H=M,M,, M

Zp+Q—1

mod 2.

p+1

The matrix H belongs to the set of matrices displayed in (5.2). One can easily verify that

. 11 10 0 1 . _
(i) 1fH€{<0 1>,<1 1>,<1 0)},thenH =1 mod 2;
(ii) ifHe{((l) 1)(1 O)},thenmzlmodz.

Let g be the smallest positive integer such that H? = I mod 2, obviously ¢ € {1,2,3}. To conclude the proof
we show that the sequence (P(™)) _ has a preperiod p and a period ¢Q. Let n > p and m = n + ¢Q. By
Proposition 5.9 and the fact that z; = z;44¢0 for any < > p we can write

[

P™ =M, M, 0, = (MZO.-.MZP,1> (sz : -'Mzn,l)Ozna

pn+aQ) — p(m) _ M., M

Zm—1

Ozm = (MZD"'MZ,V]) H? (sz...]\/[

Zn—1

)O., = P™.

O

Theorem 6.3. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v). Then the
Rote sequence v is primitive substitutive if and only if the Sturmian sequence u is primitive substitutive.

Proof. The proof is based on two results:

— A standard Sturmian sequence is primitive substitutive if and only if its directive sequence z € {b, B}V is
eventually periodic, see Observation 2.3.

— A sequence is primitive substitutive if and only if it has finitely many derived sequences, see Theorem 2.1.

Let us assume that u is primitive substitutive and @ is a period of its directive sequence z = zgz122 - --. By
Corollary 5.4, the sequence (du(w(”)))n N is eventually periodic with the same period Q.

Remind that the type 7(™ of a bispecial prefix w(™ is determined by the bottom row of the matrix P
and by the length of the maximal monochromatic prefix of the sequence z,zp412p+2---. By Proposition 6.2,
the sequence (T(”))neN is eventually periodic with the period ¢Q.

It implies that the sequence of pairs (T(”),du(w(")))neN is eventually periodic with the period ¢@, too.
Then by Corollary 4.4, the Rote sequence v has only finitely many derived sequences and thus the sequence v
is primitive substitutive.

On the other hand, if v is primitive substitutive, v has only finitely many derived sequences. Then by
Corollary 4.4 the associated Sturmian sequence u has only finitely many derived sequences and thus u is
primitive substitutive. O

Corollary 6.4. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v) fized by a
primitive morphism o, where z € {b, 8}7. Then v has at most 3|z| distinct derived sequences to its non-empty
prefixes and each of them is fized by a primitive morphism over a ternary alphabet.
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Proof. Using the notation from the proofs of Proposition 6.2 and Theorem 6.3, the sequence of pairs
(T(”>, du(w(")))nEN has a preperiod p and a period ¢@, where g € {1,2,3}. Since now the directive sequence
z = 2 is purely periodic, we can choose p = 0 and @ = |z|. Each pair (T<"), du(w(”>)) uniquely determines a
derived sequence in v, and thus there are at most ¢@ < 3|z| distinct derived sequences to non-empty prefixes
of v.

For the second part of the statement, it suffices to apply Durand’s result from [16]: if a sequence d is the
derived sequence to two distinct prefixes, then d is a fixed point of some morphism. O

Let us stress that the previous corollary does not speak about the derived sequence to the prefix €. In this
case the derived sequence dy () is the sequence v itself and by Lemma 6.1 it is not a fixed point of any primitive
morphism.

Remark 6.5. The number of derived sequences of a Rote sequence v may be smaller than the value 3|z|
announced in Corollary 6.4 and also smaller than the value ¢@ found in the proof. There are two reasons which
may diminish the number:

(i) The period @ of the sequence (du(w(")))nEN
where the word z € {b, 3} describes the Sturmian morphism ¢, . If the word z is not primitive, i.e. z = y™ for
some y € {b, 8} and m € N,m > 2, we can replace |z| by the smaller number |y|. But even if z is primitive,
the minimal period of (du(w(”)))nEN may be smaller. It happens for example in the Fibonacci case, where we
consider the morphism ¢yg, i.e. z = b3, see Example 5.13.

(ii) The sequence of matrices (PW)" en has the guaranteed period ¢Q. But since the type 7 is determined

comes from the period @ of the directive sequence z = 2°°,

m

only by the bottom row of the matrix P(™_ it may also happen that 7 = 7 for a pair n,m € N, n < m <
n+qQ.

By the proof of Corollary 6.4, if two distinct prefixes of v has the same derived sequence, then this common
derived sequence is fixed by some morphism. Durand in [16] provided a construction of this fixing morphism.

Durand’s construction of fixzing morphisms

Here we remind the construction only for the case when each non-empty prefix x of the sequence v has
exactly three return words in v. We assume:

— z and 2’ are prefixes of a sequence v € AV such that |z| < |2/;
— A, B,C € AT are the return words to x and A’, B’,C’" € AT are the return words to z;
— the derived sequences dy (z) over {A, B,C} and dy(2') over {A’, B’,C'} satisfy

dy(2') =m(dy(x)), wherem is the projection A - A",B — B',C — C'.

Since z is a prefix of 2/, the words A’, B, C" are concatenations of the words A, B, C' and we can write A’, B, C’ €
{A, B,C}T. Thus one can find the words wa,wp,wc € {A, B, C}T such that A’ = wyu, B’ = wp and C' = wc¢.
Then the derived sequence dy(z) is fixed by the morphism o : {A, B,C}* — {A, B,C}* defined by

0(A) =wa, o(B)=wpg, o(C)=wc.

If v is a Rote sequence associated with a standard Sturmian sequence u, the Durand’s construction can be
transformed into the manipulation with the factors of the Sturmian sequence u instead of factors of the Rote
sequence V.

Let z, 2’ be two non-empty bispecial prefixes of v with the same derived sequence, i.e. dy(z) = dy(z'), and
let |z| < |z'|. By Corollary 2.8, w := S(z) and w’ := S(z’) are bispecial prefixes of u. By Corollary 4.4, w and w’
have the same type and the same derived sequence of u. Denote by r, s the most frequent and the less frequent
return word to w in u and analogously denote the return words 7/, s’ to the prefix w’.
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Let A, B,C and A’, B’,C’ be the return words to x and z’ in v, respectively. Put
a:=8(A40), b:=8(B0), c:=S8(C0) and o =8(A0), b :=8(B'0), :=8(C0).

Theorem 3.10 implies a,b,c € {r,s}* and da’,b',¢’ € {r',s'}". Recall that A’, B’,C" € {A, B,C}T and as the
types of bispecial prefixes w and w’ are the same, necessarily a/,b’, ¢’ € {a,b,c}T as well. Therefore we can find
the words wg, wp, we € {a,b,c}T such that a’ = wg, b’ = wy, ¢’ = w,. Then the desired morphism o fixing the
derived sequence dy(z) is defined by A — m(w,), B — m(wp), C — 7(w,.), where 7 is the projection a — A, b —
B,c— C.

Moreover, if u is a fixed point of a primitive Sturmian morphism, then all its derived sequences are fixed
by some primitive Sturmian morphisms as well, see Corollary 5.4. Thus the search for the morphism ¢ can be
simplified as ', s’ € {r, s}* are images of r, s under a Sturmian morphism over the alphabet {r, s}.

Example 6.6. In Example 5.13 we have showed that the Rote sequence g associated with the Fibonacci
sequence f has three derived sequences dg(z(?)), dg(z(*)) and dg(z®). Now we find their fixing morphisms oy,
o1, and o9, respectively.

Let us start with dg(2(?)). We have dg(z(?) = dg(z®) and so dg(w®) = dg(w'®). The return words to
w©® are r =0, s = 1 and the return words to w® are r/ = 01001, s’ = 010. Both w(® and w® have the same
type SU(1). Thus the return words to z(°) correspond to blocks

a:=8(A0)=r=0, b:=8(B0)=srrs=1001, c:=S8(C0)=srs=101
and the return words to ) correspond to blocks
d =1 =01001, b =s7r'r’s’ =0100100101001010, ¢ = s'+'s' = 01001001010,

where we denote a’ := S(A'0), b’ := S(B'0) and ¢ := S(C'0).
If we decompose a’ = 01001 into a = 0, b = 1001, ¢ = 101, we get a’ = ab. Similarly ¥ = abaacaaca and
¢’ = abaaca. So the fixing morphism o is defined as follows:

A— AB
0p: 4 B— ABAACAACA .
C — ABAACA

Equivalently, we can also find g without knowledge of the return words since the Fibonacci sequence f is
the fixed point of the Fibonacci morphism. As shown in Example 5.13, all derived sequences of f are equal to
the Fibonacci sequence over the alphabet {r, s} and so they are fixed by the morphism v : r — rs, s — r. Since
the sequence of types (7(),ey has a period 3, the return words ' and s’ satisfy ' = %(r) and s’ = ().
Therefore, it is enough to factorize a’ = ¥3(r), b’ = 13(srrs) and ¢’ = ¢3(srs) into the blocks a = r, b = srrs
and ¢ = srs. We get

ad = 7 = ¥3(r) = rsrrs = ab,
b = s'r'r's’ = 3(srrs) = rsrrsrrsrsrrsrsr = abaacaaca,
d = s’ = Y3(srs) = rsrrsrrsrsr = abaaca .

It exactly corresponds to the morphism og.
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Now we find a morphism o fixing the derived sequence of g to the prefix (). As the bispecial prefix w(®
has the type US(1), we work with the blocks a = rr, b = rsr and ¢ = s. We apply the same method and we get

a = r'v" = 3(rr) = rsrrsrsrrs = bbcac,
b = 1's'r’ = 3(rsr) = rsrrsrsrrsrrs = bbcacac,
d = 4 = 93(s) = rsr = b.

Thus the derived sequence dg(x(l)) is fixed by the morphism

A — BBCAC
01:¢ B— BBCACAC .
C—B

Finally, as w® has the type UU(1), we work with the blocks a = rr, b =rs and ¢ = sr and we get

a = 1" = ¢3rr) = rsrrsrsrrs = baceh,
¥V o= r's’ = o3(rs) = rsrrsrsr = bacc,
d = s = Y3sr) = rsrrsrrs = bach.

Therefore, the morphism fixing the derived sequence dg(m(z)) is

A — BACCB
o9 :{ B— BACC
C —- BACB

We finish this section by an algorithm for finding the morphisms fixing the derived sequences of Rote
sequences. To simplify the notation we use the cyclic shift operation cyc : {b, 3} — {b, 3} defined by

cyc(zoz1 - 29—1) = 2122 - 2Q—120 -

By Corollary 5.4, if z = 2°°, where z = zgz1 - - 2g—1 € {b, 8}, is a directive sequence of a Sturmian sequence u,
then the derived sequence dy (w(">) to the nth bispecial prefix of u has the directive sequence z(™) = (cyc"(z))oo7
and thus d (w™) is fixed by the morphism Peyen(z)-

Algorithm 6.7.
Input: z € {b, 8}* such that both b and 3 occur in z.

Output: the list of morphisms over {4, B, C'} fixing the derived sequences of the Rote sequence v associated
with the fixed point of the morphism ¢,.

1. Denote Q = |z|, z = 292122+ - = 2*° and H = M,.
2. Find the minimal ¢ € {1,2,3} such that H? =1 mod 2.
3. Fori=0,1,2,...,qQ — 1 do:

Compute P4 = M, M, ---M,,_,0,, mod 2 and determine the type 7.

— Rewrite @cyci(z) into the alphabet {r, s} by the rule 0 — r,1 — s if the first letter of cyci(z) is b and by
the rule 0 — s,1 — r otherwise Denote this morphism .

Define a, b, ¢ € {r, s}* according to the type 7.

Compute 14(a), $(b), 1(c).

— Decompose the words 19(a), 19(b), 19(c) into the blocks a, b, ¢, i.e., find wq, wp, we € {a,b,c}T such that
¥i(a) = wq, PI(b) = wp, Y(c) = we.
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— Put into the list the morphism o; : A = 7(w,), B — m(wp), C — 7(w,.), where the projection 7 rewrites
a—> A b—B,c— C.

Example 6.8 (Example 5.10 continued). Our aim is to describe the derived sequences of the Rote sequence
associated with the fixed point of ¢ygp. Each its derived sequence is fixed by a primitive morphism which we
find with Algorithm 6.7 to the input z = b3b.

1. Q = [bBb| = 3, z = (b3b)™ and H = MyMsM, = ( (lJ (1) )
2.g=2as H> =1 mod 2.
3. For i =0,1,...,5 (we illustrate the step only for i = 2) do:

-~ P®) = M,Ms0, = ( (1) 1 ) mod 2 and zpz324--- = bb3- -, thus T3 =UU(2).
0 — 0010 T — TS
~ Peyc(bBb) = Pbbg - { 1 — 001 and thus ) : { s —TTSs

—a=rr,b=rs, c=sr.
— Since ¥%(r) = rrsrrrsrrrsrrsr and ¥2(s) = rrsrrrsrrrs, we have

P2(a) = Y2(rr) = rrsrrrSTTTSITSITISITTSITTSITST;

2(b) = Y2(rs) = rrSrrrSIITSITSITTSITTSITTS;
¥2(c) = Y2(sr) = rrsrrrSrTTSITSTITSITTSITST.
—2(a) = _rr _sr_ rr _sr rr_ _sr rs _Tr T8 Tr TS TT TS TT ST,
N o S S e S N S S S S

a c a c a c b a b a b a b a c
thus w, = acacacbabababac;

2(b) = _rr _sr rr sr_rr Sr Ts Trr TS Tr TS TT TS,
N e e e e N e

a c a c b a b a b a b

a C
thus w, = acacacbababab;

W2 (c)= rr sr_rr sr_rr sr_ TS Tr TS TT TS TT ST,
N N e e N N N e N N

a c a c a c b a b a b a c
thus w,. = acacacbababac.

— We add to the list the morphism

A — ACACACBABABABAC
02:{ B— ACACACBABABAB
C - ACACACBABABAC

7. ORIGINAL ROTE’S CONSTRUCTION AND MORPHISMS ON FOUR VERSUS
THREE LETTER ALPHABET

In the original Rote’s paper [30], the author also construct Rote sequences as projections of fixed points on
a four letter alphabet. Let us define the morphism & and the projection 7 as follows:

1—13 1—0
2—24 2—-1
I3 and e .
3 — 241 3—0

4 —132 4—=1
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The morphism ¢ has two fixed points. We take its fixed point q starting with the letter 1, i.e.
q = 13241241321324132132412413241241321324124132412413 - - - |
and we apply the projection 7 to construct the complementary symmetric Rote sequence:
r = 7(q) = 00110110010011001001101100110110010011011001101100- - - .
Using the operation S (see Def. 2.5), we obtain the associated Sturmian sequence
s = 8(r) =0101101011010101101011010101101011010110101011010 - - - .

This example was in fact the beginning of this work. We notice that if we add the first letter 1 to the
associated Sturmian sequence s, we get the Sturmian sequence

u=1s =101011010110101011010110101011010110101101010110101 - - -
which is also fixed by a morphism, namely by the morphism:
0— 101
v { 1—10 °
The question is how to link this Rote’s example to our construction.

In fact, the morphism % is a standard Sturmian morphism with the decomposition ¢ = pgppE. Thus we can
use our techniques to find the return words and the derived sequence to the prefix x = 01 of the Rote sequence

v = 0110010011011001101100100110010011011001001100100110 - - - .

associated with the sequence u. We obtain the return words A = 0110, B = 010 and C = 011. The derived
sequence dy(x) of v to the prefix = 01 is fixed by the morphism

A — ABC
oc:{ B— AC
C — AB

The Rote sequence v is clearly the image of the fixed point of o, i.e. the derived sequence d(z), under the
projection p defined as:

p(A) = 0110, p(B) =010, p(C)=011.

As u = 1s, their associated Rote sequences v and r are tied by

v =011001001101100110110010011 - - - = 100110110010011001001101100 - - - = 1r.

Moreover, all return words to 01 in v obviously start with 0. Thus the original Rote sequence r is the image of
the fixed point of o under the projection p’ defined as

p'(A) = T100 = 0011, p/(B) =100 =011, p/(C) =110 = 001.
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In other words, r = 7(q) = p/(dv(2)) .
The morphism £ on a four letter alphabet can be recovered as follows. We write the images of the projection
p’ as suitable projections by 7, more precisely

p'(A) = 0011 = w(1324), p'(B) =011 ==(124), p'(C) =001 ==(132).
Then the projections of the images of the morphism o can be expressed as

p/(ABC) = m(1324124132) = m(£(DE(3)E(2)E4)
§(o(B)) = p/(AC) = m(1324132) = m(£(VE(2)E(4)),
p/(AB) = m(1324124) = m(§(DE3)E(2))

and by recoding to the suffix code {13,24,241,132} we get the morphism £ as above.

Finally, let us mention that we are able to generalize the original example as follows. For n € N consider the
morphism &, defined as

1—13

224

3 — (2413)"241°
4 — (1324)"132

n

Then the 7 projection of its fixed point r starting with 1 can be seen as the p’ projection of the fixed point of
the morphism o,,, where o, and p’ are the following:

A — A"ABA"C A — 0011
on:{ B— A"AC and p ¢ B—011 .
C - A"AB C — 001

Nevertheless, our technique with morphisms on a three letter alphabet is more natural and is based on the
nice properties of return words and derived sequences. This is why we have chosen to write the paper to develop
the whole theory of substitutive Rote sequences.

Remark 7.1. The Rote sequence r from the beginning of this section is connected to the fixed point u of the
Sturmian morphism 1 = pgppE. Of course, u is fixed also by the morphisms )% = ¢ gy, which we have studied
in Remark 5.12. It can be shown that the Rote sequence v associated with this u is exceptional among all Rote
sequences associated with standard Sturmian sequences since it has only two distinct derived sequences to its
prefixes. The other Rote sequences have at least three derived sequences.

8. COMMENTS

In this paper, we have studied only the Rote sequences whose associated Sturmian sequences are standard.
By definition, the intercept of a standard Sturmian sequence u is equal to 1 — a, where « is the density of
the letter 0 in u. For such a sequence we have used its S-adic representation z consisting of the morphisms
wp:0— 0,1 — 01 and g :0— 10,1 — 1. In particular, we have used the result from [23] which says that each
suffix of z represents a derived sequence of u.

In [14] M. Dekking studied properties of some submonoids of the Sturmian monoid. In particular, he con-
sidered the submonoid (we kept his notation) Msg generated by two morphisms s : 0 — 0,1 — 01 and
g : 0 — 01,1 — 1. Theorem 3 from [14] says that any fixed point u of a primitive morphism from Ms g is
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a Sturmian sequence with the intercept 0. Obviously, this u has an S-adic representation z consisting of the
morphisms 13 and ¥g. But unlike the case of standard Sturmian sequences, in this case only some of suffixes of
z represent derived sequences to prefixes of u, see [23]. It would be interesting to know how this fact influences
the set of derived sequences of a Rote sequence associated with a Sturmian sequence with the intercept 0.

The definition of derived sequences of u as introduced in [16] takes into account only the prefixes of u.
Recently, Yu-Ke Huang and Zhi-Ying Wen in [20] have considered also the derived sequences of u to non-prefix
factors of u. Recall that if u is a fixed point of a primitive morphism, then by Durand’s result from [16], any
derived sequence to a prefix of u is fixed by a primitive morphism as well. However, a derived sequence to a
non-prefix factor of u need not to be fixed by a non-identical morphism at all.

Huang and Wen study the period-doubling sequence p, i.e. the sequence fixed by the morphism 0 — 11,1 —
10. They show that there exist two sequences ©;1 and ©s such that any derived sequence d to a factor of u is
equal to ©1 or O5. Moreover, any derived sequence d’ to a factor of d is equal to ©1 or ©, and any derived
sequence d” to a factor of d’ is equal to ©1 or O3, etc. They called this property Reflexivity. It may be interesting
to look for sequences with Reflexivity among Rote or Sturmian sequences.

Let us note that the period-doubling sequence p and the Thue-Morse sequence t, i.e. the sequence fixed by
the morphism 0 +— 01,1 — 10, are linked with the same mapping S which associates the Rote and Sturmian
sequences (see Def. 2.5): S(t) = p.

By Corollary 6.4, a Rote sequence v associated with a fixed point u of a primitive standard Sturmian
morphism ¢, has at most 3|z| distinct derived sequences. On the other hand, if ¢, is not a power of any
other morphism, then the Sturmian sequence u has exactly |z| distinct derived sequences (see [23]) and thus
by Corollary 4.1, the Rote sequence v has at least |z| distinct derived sequences. In all examples for which we
have listed the derived sequences of the fixed point of such a ¢,, the actual number of derived sequences was
|z|, 2|z| or 3|z|. We do not know whether some other values can also appear.
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Abstract

The non-repetitive complexity nrCy and the initial non-repetitive complexity inrCy are functions
which reflect the structure of the infinite word u with respect to the repetitions of factors of a given
length. We determine nrCy, for the Arnoux—Rauzy words and inrC,, for the standard Arnoux—Rauzy
words. Our main tools are S-adic representation of Arnoux—Rauzy words and description of return
words to their factors. The formulas we obtain are then used to evaluate nrC, and inrC, for the
d-bonacci word.
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1. Introduction

Variability of an infinite word u = ugujusg - - - over a finite alphabet can be judged from distinct
points of view depending on applications or combinatorial properties one is interested in. The
factor complexity of u, here denoted Cy, is a function which to any n € N assigns the number of
distinct factors of length n occurring in u. More formally, Cy(n) = #{ujuit1 - Uiyn—1 : © € N}

For the simplest infinite words, namely the eventually periodic words, the factor complexity is
bounded from above by a constant. In [13], Morse and Hedlund showed that the factor complexity
of an infinite word which is not eventually periodic satisfies Cy(n) > n + 1 for each n € N. If the
equality takes place for each n, the word u is called Sturmian. Sturmian words represent the most
intensively studied class of infinite words. To measure the regularity of an infinite word, Morse
and Hedlund introduced the recurrence function Ry. The value Ry(n) is defined to be the minimal
integer m such that any factor of u of length n occurs at least once in w;u;11u;42 - Ujpm—1 for
every ¢ € N. In the same paper [13], the authors evaluated Ry (n) for any Sturmian word.

A dual function to Ry, was recently introduced by Moothathu [12] under the name non-repetitive
complexity function nrCy. The value nrCy(n) is defined as the maximal m such that for some i € N
any factor of u of length n occurs at most once in w;u; 1%+ Ujtm+n—2. He also considered
a “prefix variant” of this function called the initial non-repetitive complexity function inrCy. By
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definition, inrCy(n) is the maximal length m of a prefix of u such that each factor of u of length
n occurs in uguy - - - Upyn—2 at most once. Obviously,

inrCy(n) < nrCy(n) < Cu(n) < Ry(n) —n+1 for each n € N.

Moothathu’s concept of the initial non-repetitive complexity function was developed in [14] by
Nicholson and Rampersad. They described some general properties of inrCy, and evaluated inrCy
for the Fibonacci, Tribonacci and Thue—Morse words. Note that the Fibonacci word and the
Tribonacci word belong to the class of standard binary and ternary, respectively, Arnoux—Rauzy
words. The Arnoux—Rauzy words represent one of the generalizations of Sturmian words to multi-
letter alphabets. The recurrence function Ry, for Arnoux—Rauzy words was determined in [7]. The
initial non-repetitive complexity function for Sturmian sequences was recently studied by Bugeaud
and Kim [5]. Their motivation for this study comes from the connection between the irrational
exponent of a number x and inrC,, where u corresponds to the expansion of = in a given base.

In the present article we focus on the non-repetitive complexity of Arnoux—Rauzy words. Using
the S-adic representation of a given Arnoux—Rauzy word u, we provide in Theorem 13 a formula
for computing nrCy(n) for each n € N. In particular, we show (Theorem 5) that any Sturmian
word (i.e., binary Arnoux—Rauzy word) u satisfies nrCy(n) = Cy(n) for each n € N. It is interesting
that this phenomenon can be observed also among the words with the maximal factor complexity.
In [14], the authors constructed a word over ¢ letter alphabet such that ¢ = Cy(n) = nrCy(n).

For standard Arnoux—Rauzy words we determine in Theorem 21 also inrCy and thus we gene-
ralize Nicholson and Rampersad’s result on the Fibonacci and the Tribonacci words.

2. Preliminaries

An alphabet A is a finite set of symbols called letters. Here we fix the alphabet A = {0,1,...,d—
1}, where d is a positive integer. A word w = wy - - - wy—1 over A is a finite sequence of letters from
A. The number of its letters is called the length of w and it is denoted by |w| = n. The notation
|w|, is used for the number of occurrences of the letter a in w. The empty word, i.e., the unique
word of length zero, is denoted by . The concatenation of words v = vg--- v and w = wp - - - wy
is the word vw = vg - - - vgwg - - - wy. The set of all finite words over A equipped with the operation
concatenation of words is a free monoid and it is denoted A*. The Parikh vector of a word w € A*
is the vector V(w) = (lwlo, [wl1,. .., |wla_1)T. Obviously, |w| = (1,1,---,1) - V(w).

An infinite sequence of letters u = (u;);>0 in A is called infinite word. The set of all infinite
words over A is denoted AYN. The word u € AN is said to be eventually periodic if it is of the form
u = wvz¥, where v,z € A%, z # ¢ and 2¥ = zzz---. Otherwise, u is aperiodic.

A factor of a (finite of infinite) word w is a finite word v such that w = svt for some words
s, t € A*. Moreover, if s = ¢, then v is called a prefiz of w and if t = €, then v is called a suffiz of
w. The set of all factors of an infinite word u is called the language of u and denoted by L. By
Lu(n) we denote the set of factors of u of length n, i.e., Ly(n) = Ly N A" Using this notation,
the factor complexity of u can be expressed as Cy(n) = #Ly(n) for every n € N. In this paper, we
focus on the (initial) non-repetitive complexity.

Definition 1. The non-repetitive complexity nrCy and the initial non-repetitive complexity inrCy
of an infinite word u are functions defined for each n € N as follows

nrCu(n) :=max{m € N: 3k € N s.t. w; -+ Uiyn—1 # Uj - - Wjyn—1 Vi, j with k <1 < j < k+m—1},
inrCy(n) :==max{m € N: ;- - Uyn—1 # Uj - - Ujyn—1 Vi,j with0<i<j<m-—1}.
2



A factor w of u is right special if there exist two distinct letters a,b € A such that wa and
wb belong to L. Analogously, w is left special if aw and bw belong to L, for two distinct letters
a,b € A. A factor which is both left and right special is called bispecial. If u is aperiodic, then for
any length n at least one factor w € Ly(n) is left special and at least one factor v € Ly(n) is right
special.

Factors of an infinite word u can be visualized by the so-called Rauzy graphs I'y(n), n € N.
The set of vertices of I'y(n) is Ly(n) and the set of its edges is Ly(n + 1). An oriented edge
e € Ly(n+1) starts in u € Ly(n) and ends in v € Ly(n) if w is a prefix of e and v is a suffix of e.
If w € Ly(n), we denote

Ni(w) ={v € Ly(n) : wis a prefix and v is a suffix of an edge e € Ly(n+ 1)},
N_(w) ={v € Ly(n) : vis a prefix and w is a suffix of an edge e € Ly(n+1)}.

Any factor v € Ly(n+ m) with a prefix u € L(n) corresponds to an oriented path of length m in
Tu(n) starting with the vertex w.

The occurrence of the word w in u = uguqus - - - is every index ¢ € N such that w is a prefix of
the word w;u;+1u;to - - -. The factor of length n which occurs at the position i is denoted by f,(4).
Hence, f,(i) = w if w € Ly(n) and w is a prefix of w;u;11u;y2---. An infinite word u is said to
be recurrent if each of its factors has at least two occurrences in u. If i < j are two consecutive
occurrences of w in u, then the word w;u;11---uj—1 is called the return word to w in u. If the
set of all return words to w in u is finite for each factor w of u, the word u is called uniformly
recurrent.

A morphism of the free monoid A* is a map ¢ : A* — A* such that ¢¥(vw) = ¥ (v)y(w) for
all v,w € A*. The incidence matriz of ¢ is d x d matrix M, given by [Myls = |1(b)|a. The
incidence matrix of 1) can be used to compute the Parikh vector of the image of a word w under

P:

V(gh(w)) = My, - V(w). (1)

The domain of a morphism 1 of A* can be naturally extended to AN by putting 1 (u) =

Y(uguiuz -+ ) = Y(ug)(ur)(ug) - --. An infinite word u is called a fized point of the morphism
¥ if u=(u).

3. Arnoux—Rauzy words

The Sturmian words can be described by many equivalent properties, for their list (which
is far from being complete) see for example [2]. These properties offer several possibilities for
generalization. One of them was used by Arnoux and Rauzy in [1] to introduce the words today
known under their names.

Definition 2. A recurrent infinite word u € AN is a d-ary Arnoux-Rauzy word if for all n it has
(d—1)n+1 factors of length n with exactly one left and one right special factor of length n.

Over the binary alphabet the Arnoux—Rauzy words coincide with the Sturmian words. The
Arnoux—Rauzy words belong to a broader family of episturmian words (e.g., see [9]). They are
also embedded in the very general concept of tree sets introduced in [4] which comprises several
generalizations of Sturmian words to multi-letter alphabet. The Arnoux—Rauzy words share many
properties with the Sturmian words (e.g., see [15, 10, 8]). Here we recall some of them. If u is a
d-ary Arnoux-Rauzy word, then



there exists a dominant letter a € A such that a occurs in each factor from £y (2);

Ly is closed under reversal, i.e., w = wowi - - - wp_1 € Ly implies @ = wy,_1 - - - wiwgy € Ly;

each bispecial factor w of u is a palindrome, i.e., w = w;
e u is uniformly recurrent;
e any factor of u has exactly d return words in u.

On the other hand, some properties of Sturmian words are not present in d-ary Arnoux—Rauzy
words when d > 3. An example of such a property is the so-called balancedness. Already Hedlund
and Morse [13] proved that a binary aperiodic word u is Sturmian if and only if for any pair
v, w € Ly of factors of the same length the inequality |v|, — |w], < ¢ = 1 holds for any letter a € A.
This property is not preserved in Arnoux—Rauzy words, even if the constant ¢ = 1 is allowed to
depend on d. For a detailed study of this problem, see [3].

If each prefix of an Arnoux—Rauzy word u is left special, then u is called standard. For each
Arnoux—Rauzy word v, there exists a unique standard Arnoux—Rauzy word u such that £, = Ly.
We will work with the S-adic representation of the Arnoux-Rauzy words as described in [8].
Therefore we define the set S of elementary morphisms over the alphabet A ={0,1,...,d — 1}.

) T—1;
Fori=0,1,...,d—1 weput ¢; : {j—>ij for j 1. (2)

Any standard Arnoux—Rauzy word u is an image of a standard Arnoux—Rauzy word u’ under
a morphism ¢;, where the letter ¢ coincides with the dominant letter of u. This property enables
us to assign to any standard Arnoux—Rauzy word a sequence (in)n,>0 of indices and a sequence
(u(”))n>0 of standard Arnoux—Rauzy words such that

u=u and u =¢; (W) for each n € N. (3)

The sequence (in)n>0 is called the directive sequence of u.

For any standard Arnoux-Rauzy word u, both sequences (i )n>0 and (u(")) are uniquely

n>0
given. Moreover, every letter i € A occurs in (ip)p>0 infinitely many times. On the other hand,
a sequence (ip)p>0 which contains each letter of A infinitely many times determines a unique

Arnoux—Rauzy word and thus the unique sequence (u(”))n>0, cf. [15].

Example 3. The most famous Sturmian word is the Fibonacci word which is the fixed point of
so-called Fibonacci morphism defined as 7 : 0 — 01, 1 — 0. Analogously, for every integer d > 2
we define the d-bonacci word t as the fixed point of the d-bonacci morphism

) a - 0(a+1) fora=0,...,d—2,
Tl d-1) = o.

It is a d-ary standard Arnouz—Rauzy word. By simple computations we get 7% = pop1 - - - 41 and
so its directive sequence (in)p>0 is (012---d —1)¥, i.e., its n' element i, € A satisfies i, = n
mod d for any n € N. Over a ternary alphabet the word and the corresponding morphism is usually
called Tribonacci word and morphism, respectively.
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4. Special factors and non-repetitive complexity

First we show the role that special factors play in the evaluation of non-repetitive complexity.
Let us recall that for a given infinite word u we denoted by f, (i) the factor of length n occurring
in u at the position 7.

Lemma 4. Let u = ugujug - -+ be a recurrent aperiodic infinite word, n € N and m = nrCy(n).
Then there exists h € N such that

o the set L ={fn(h), fu(h+1),..., fa(h+m — 1)} contains m distinct factors of Ly(n);
e the factor fn(h — 1) is right special and belongs to L;
o the factor f,(h +m) is left special and belongs to L.

Proof. Let k be an integer such that the factors from L' = {f,,(k), fu(k +1),..., fu(k +m —1)}
are pairwise distinct. As u is recurrent, we can assume k > 1. Since m is the maximal number of
distinct consecutive factors, there exist integers ¢ and j such that

kSi,jSk#»Wl*l, fn(kil):fnm) and fn(k+m):fn(])

We discuss two cases.
Case I: Assume k < jandi < k+m—1. As f,(k+m) = fo(j), the factors fri1(k+m —1)
and fp4+1(j — 1) of length n + 1 have a common suffix of length n. It follows that uym—1 # wj—1.
Otherwise f,(k+m—1) and f,(j—1) would coincide, which is a contradiction with our choice of .
It means that wgim—1/fn(j) and uj_1 fn(j) both belong to the language L. Thus fr(k+m) = fn(j)
is a left special factor. Analogously one can show that f,,(k — 1) is a right special factor. Thus we
can choose h =k and L = L'.

Case II: Assume k = j or i = k +m — 1. Without loss of generality we may assume k = j, i.e.,
fu(k) = fu(k 4+ m). Aperiodicity of u guarantees that there exists £ € N such that

fulk+¢q) = fa(k+m+q) foreach ¢q=0,1,....¢ and fo(k+L+1)# fu(k+m+L+1).

Therefore {fn(k+ £+ 1), fu(k+0+2),..., fo(k+{l+m)} = L'. Weset h = k+ £+ 1 and we show
that the factor f,(h —1) = f,(k+ ¢) is right special and the factor f,(h+m) = f(k+£+m+1)
is left special.

Since fp(k+0) = fu(k+£€+m) and fp(k+ £+ 1) # fo(k+ £+ m + 1), the letters ugiptyn and
Ugt-e+m+n differ. Hence, the factor f,(k + ) is right special. Since m is the maximal number of
distinct consecutive factors, f,,(k+¢+m+1) € L’. By definition of £, f,,(k+£+m+1) # fn(k+{+1),
and so fp(k+{0+m+1) = f,(k+ £+ p) for some 1 < p < m. We conclude that f,(k+£¢+m+1)
is left special using the same arguments as in Case I. O

Theorem 5. Let u be a Sturmian word. Then nrCy(n) =n+ 1 for every n € N.

Proof. Let n € N. Any Sturmian word u has exactly one left and one right special factor of length
n. Let us denote them « and 3, respectively. Therefore, in the Rauzy graph I'y(n) the vertex
a has indegree 2 and all other vertices have indegree 1 and the vertex 8 has outdegree 2 and all
others vertices have outdegree 1. Thus I'y(n) is a union of two cycles Cy and Cy which have a



Figure 1: The Rauzy graph I'y(n) of the Sturmian word u.

common part, namely the path from a to S (see Figure 1). Denote by v, d,(,n the vertices such
that (8,7), (8,0), (¢,a) and (n, ) are edges in T'y(n).

By Lemma 4, let A, m € N be such that m = nrCy(n), L = {fn(h), fu(h+1),..., fu(h+m—1)},
#L =nrCy(n), a = fp(h+m) € L and = f(h—1) € L. Hence in the Rauzy graph I'y(n), there
exists a path starting in a vertex of N, (), passing through « and 8, and ending in a vertex of
N_(«). Moreover, this path cannot pass twice through the same vertex. The only possible paths
are the

vy a— >0 —>--—=nandd > —sa— >y = (L

Both paths are hamiltonian, i.e., they are passing through all vertices of I'y(n) exactly once. It
follows that nrCy(n) = Cu(n) = n + 1. O

The previous theorem states that the factor complexity and the non-repetitive complexity
coincide for Sturmian words. In the next section we prove that this property is not preserved in
d-ary Arnoux—Rauzy words with d > 3. Nevertheless, the equality nrCy = Cy we observed in
binary aperiodic words with the smallest factor complexity can take place also in a word with the
maximal factor complexity, as shown in [14]. The next corollary of Lemma 4 illustrates that the
equality nrCy = Cy forces the Rauzy graphs of a word u to have a very special form.

Corollary 6. Let u be a recurrent aperiodic word, n € N, w € Ly(n) and m = nrCy(n). Let h € N
be such that f,(h—1) and f,(h+m) are respectively the right and left special factors from Lemma
4. Assume nrCy(n) = Cy(n).

1. If w# fo(h— 1), then Ny (w) contains at least # Ny (w) — 1 left special factors.
2. If w # fu(h+m), then N_(w) contains at least #N_(w) — 1 right special factors.

Proof. If the factor w is not right special, then the set Ny (w) consists of one element and the
statement is trivial. Let w # f,,(h — 1) be a right special factor. We write it in the form w = as,
where ¢ € A and s € Ly(n —1). We denote ¢ = # Ny (w) and find distinct letters b1, ba,. .., bq
such that Ni(w) = {sb1, sba,...,sby}. Obviously, asby € Lu(n + 1) for each k =1,2,...,¢. The
assumption nrCy(n) = Cy(n) implies that sby occurs in the set L described in Lemma 4. It means
that f,(h + jr) = sby for some index jr, 0 < jr < m — 1. Moreover, there exists an index p,
0 <p<m—1such that f,(h+p) =w = as.
Let us look at the letter which precedes fy,(h + ji) = sby, i.e., at the letter up4j, —1:
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— if h = h + ji, then upyj, 1 # a as w = as # fo(h —1);

— if h # h+ji # h+p+1, then up4 4,1 # a, otherwise the factor as = f,(h+p) = fo(h+jr—1)
occurs twice in L, which is a contradiction.

We showed that for all k = 1,2,...,¢ (up to one possible exception when h + j, = h+ p+ 1), the
factors asby and upyj,—15b; belong to the language of u and wuj1j,—1 # a. It means that sby is a
left special factor.

The proof of the second part of the statement is analogous. O

5. Non-repetitive complexity of Arnoux—Rauzy words

For every Arnoux—Rauzy word u, there exists at most one bispecial factor of u of length n.
Thus we can order the bispecial factors by their lengths: for k € N we denote By(k) the k"
bispecial factor of u. In particular, By(0) =&, By(1) = ug (the first letter of u), etc.

Now we can formulate the link between the lengths of the return words to the bispecial factors
and the values of non-repetitive complexity. Let us recall that any factor of a d-ary Arnoux—Rauzy
word u has exactly d return words, cf. [10].

Proposition 7. Let u be a d-ary Arnouz—Rauzy word and let n,k € N be such that By(k — 1) <
n < By(k). Denote by ro,r1,...,7q4_1 the return words to By(k) in u.

1. If n = |Bu(k)|, then
nrCu(n) = max{|rir;| : rir; € Ly, 0<4,j <d—1,i#j}—1.
2. If |Bu(k — 1)| < n < |Bu(k)|, then
nrCu(n) = nrCy(|Bu(k)|) — |Bu(k)| +n.

Proof. Let u be a d-ary Arnoux-Rauzy word. Its n'® Rauzy graph I'y(n) contains exactly one
vertex o with the indegree d and all other vertices have indegree 1. It also contains exactly one
vertex [ with the outdegree d, all other vertices have outdegree 1. It means that I'y(n) is composed
of d cycles Cy,C1,...,Cy_1 which only have in common the path from « to 8 (see Figure 2). For
every i € {0,...,d — 1}, we denote by ¢; the number of vertices in the cycle C; and by ~;, (; the
vertices from the cycle C; such that (3,7;), (¢, «) are edges in T'y(n). Let p be the number of
vertices on the minimal path from « to S.

Let h € N be such that L = {fn(h), fo(h+1),..., fn(h+m—1)} is the set from Lemma 4 with
m = #L = nrCy(n). Then f,(h—1) =5, fu(h+m) =« and a,f € L. Hence the path in I'y(n)
corresponding to L is of the form:

Vi G a—= e oy = (G
for some 4,5 € A, # j, and it contains nrCy(n) = £; + £; — p vertices. So it suffices to compute

the numbers ¢;, £; and p.

(1): If n = |By(k)|, then o = 8 = By(k), p = 1 and the Rauzy graph I'y(n) contains d cycles
Co,C4,...,Cq—1 with only the vertex By(k) in common. Clearly, these cycles correspond with
the return words to By(k): if we start in By(k) and concatenate the first letters of all vertices

7



Figure 2: The Rauzy graph I'u(n) of a ternary Arnoux—Rauzy word u.

of C;, we get r; for all ¢ € A. Thus the number ¢; of vertices in C; is equal to |r;|. Hence
nrCu(n) = €; +£; — 1 = |r;| + |rj| — 1 for some i # j. By definition of nrCy(n), we have to choose
i # j such that the word r;r; is a factor of u and its length is maximal possible.

(2): If |Bu(k — 1)] < n < |By(k)|, then a # 8 and p > 1. Observe that if p > 1, then
Tu(n + 1) has also cycles of lengths ¢; for all i € A4 and the minimal path from the left special
factor to the right special factor contains p — 1 vertices. It follows that I'y(n + p — 1) contains
the bispecial factor By (k) and so |By(k)| = n + p — 1. By the Rauzy graph I'y(|Bu(k)|) we have
nrCu(|Bu(k)|) = €; + £; — 1, as the lengths of the cycles are preserved. So

nrCu(n) = i+ 4; —p = nrCu(|Bu(K)]) + 1 = (|Bu(k)| = n + 1) = nrCu(|Bu(k)|) — |Bu(k)| + n.
O

In the introduction we stated the inequality between the recurrence function R, and the non-
repetitive complexity. It is worth mentioning that R, is also linked to return words, as stated by
Cassaigne in [6].

Proposition 8 ([6]). Let u be a recurrent infinite word. Then for each n € N,

Ry(n) —n+1=max{|r| : v is a return word to w € Ly(n)}.

To transform Proposition 7 into an explicit formula for nrC,,, we have to compute the lengths of
the return words to the bispecial factors in u and also decide which return words are neighbouring
in u. For this purpose we will essentially use the directive sequence (i )n>0 of a standard Arnoux-
Rauzy word u introduced in Section 3. Let us emphasize that the non-repetitive complexity of u
depends only on the language £, and not on the word u itself. Since for every Arnoux-Rauzy word
u there exists a unique standard Arnoux-Rauzy word v such that £, = Ly, we can restrict our
considerations only to standard Arnoux—Rauzy words. Note that if u is standard Arnoux—Rauzy
word, all its bispecial factors are prefixes of u.

The following notion of derived word which codes the order of the return words in u will be
also useful.

Definition 9. Let w be a prefix of a uniformly recurrent word u and let ro,r1,...,7¢_1 be the
return words to w in u. If we write u as a concatenation u = r;,r; v, - - -, then the word jojija - - -
is called the derived word to w in u and is denoted dy(w).

8



We do not specify the order of the return words and thus the derived word is determined
uniquely up to a permutation of letters. Clearly, the derived word to the empty word ¢ in u is the
word u itself. The simple form of the morphisms ¢; defined by (2) gives immediately the following
claim, which can be also deduced from the results in [10] or [11].

Claim 10. Let u and v be standard d-ary Arnouz—Rauzy words such that v = p;(u) with i € A.
Then for any k € N it holds:

e By(k+1)= @i(Bu(k))i;

® ifrog,r1,...,74—1 are the return words to By(k) in u, then ¢;(ro), 0i(r1),...,pi(rq—1) are the
return words to By(k + 1) in v;

e dy(Bu(k)) = dv(By(k +1)) up to permutation of letters.
Corollary 11. Let u be a standard Arnouz—Rauzy word with the directive sequence (in)n>0 and
(u(”))n>0 be the sequence satisfying (3). Then the derived word to By (k) inu is (up to permutation
of letters) the word u'® and the corresponding return words are 1(0), ¥(1),..., ¥(d — 1), where
Y= iy Pig_q -

Proof. Obviously, the bispecial factor ¢ has in the word u®) the return words 0,1,...,d—1 and the
derived word (up to permutation of letters) to By (0) = ¢ in u®) is u®). By repeated application
of Claim 10 we get

du(Bu(k)) = dya (Byw (k — 1)) = -+ = dyoo (Byw (0)) = u®
and

{7'0, e 77'd_1} = {Soiogoh e @ik,1(0)7 sy PigPin t Pigeg (d - 1)} .
[

Corollary 11 enable us to express the return words to the k' bispecial factor By(k). However,
we also need to know which return words are neighbouring, i.e., for which ¢ # j the word r;r; is a
factor of u. Corollary 11 transforms this question to the description of neighbouring letters in the
Arnoux—Rauzy word u®) with the directive sequence (intk)n>0, which is trivial.

Claim 12. Let u be a standard Arnouz—Rauzy word with the directive sequence (in)n>0. Then ig
is the dominant letter in u and the factors of length 2 in u are the words iga, aig for all a € A.

For every k € N and every letter a € A we define S, (k) =sup{f:0</{ < k,iy = a}. As usual,
if the set is empty, i.e., iy # a for all £ < k, then S,(k) = —oo. Let us emphasize that S, (k) = Sp(k)
for two distinct letters a and b if and only if S, (k) = Sp(k) = —occ.

Theorem 13. Let u be a d-ary Arnouz—Rauzy word. For every integer n > 1 we take the unique
k such that |Bu(k — 1)| < n < |By(k)|. Then we have

nTCu(n) = \%‘0%‘1 T (pik—lwik(aﬂ -1- |Bu(k)| +n,

where (in)n>0 @S the directive sequence of the standard Arnoux-Rauzy word with the language Ly

and a € A is any letter different from iy such that Sq(k) = inf{Sp(k) : b € A, b # i}.
9



Proof. Since the function nrC, depends only on the language £, and not on the word u itself, we
can work with the standard Arnoux-Rauzy word v such that £, = L, instead of u. We denote
(in)n>0 the directive sequence of v and to simplify the notation we also denote ¥ = i i, « - Pi,_; -
We start from Proposition 7 and using the previous claims we express nrCy(|By(k)|) more
explicitly. By Corollary 11 and Claim 12 the admissible pairs of return words to By (k) are

{lrirj| : mirj € Ly, 0< 4,5 <d—1,i # j} ={|¢(ira)| :a € A,a # i} .

It suffices to determine for which letter a # i the image |¢(a)| is the longest possible. Let us
emphasize that for every ¢ € {0,...,d — 1} and every words z,y € A* we have

(i) wi(za) = gi(x)ia if i # a and p;(za) = p;(z)i if i = a;

(ii) if  is a proper prefix of y, i.e., y = xz for some non-empty word z, then @;(z) is a proper
prefix of ¢;(y) = @i(x)pi(2).
For two distinct letters a,b € A we discuss two cases.

—1If Sa(k) = Sp(k), then the morphisms ¢q, ¢p are not included in the decomposition of ¢p. Thus
by application of Item (i) we get ¥(a) = z’a and 1(b) = z'b for some non-empty word z’ € A* and
so [6(a)| = [(b)].

— If Su(k) < Sp(k), then we split 1p = o@pf such that the decomposition of the morphism 6
contains neither ¢, nor ¢,. Then by Item (i) we have 6(a) = z’a and 6(b) = 2’b for some non-
empty word =/ € A* and since gy(z'a) = wp(z)ba and @p(a'b) = @p(a’)b, the word ¢,(8(b)) is a
proper prefix of pp(6(a)). By Item (ii) it means that also o(¢p(6(b))) = 1¥(b) is a proper prefix of
a(pp(0(a))) = (a) and so |(b)] < |1b(a)].

We may conclude that

nrCy (| By (k)|) = max{|rirj| : rir; € Ly, 0< 4,5 <d—1,i# 5} —1 = |¢Y(iga)| — 1 = |, (a)| — 1,

where a is any letter different from 45 such that S,(k) = inf{Sy(k) : b # it}. By Proposition
7 it concludes the proof, since for all n,k € N we clearly have By(k) = By (k) and nrCy(n) =
nrCy(n). O

6. Initial non-repetitive complexity of standard Arnoux—Rauzy words

The following lemma uses again the notation f, (i) for the factor of length n occurring in u at
the position 1.

Lemma 14. Let u = upujug - -+ be a recurrent infinite word, n € N and m = inrCy(n). Then the
set L ={fn(0), fn(1),..., fu(m —1)} contains m distinct factors of Lu(n) and the factor f,(m) is
either left special and fn,(m) = fn(i) for some 1,0 < i <m, or fo(m) = fn(0).

Proof. The proof of Case I of Lemma 4 immediately gives this statement. O

Theorem 15. Let u be a standard d-ary Arnouz—Rauzy word with the directive sequence (in)n>0-
For every integer n > 1 we take the unique k such that |By(k — 1) <n <|Bu(k)|. Then we have

inrCu(n) = |@ig@iy =~ Pi_, (ik)] -

10



Proof. Let u be a standard d-ary Arnoux—Rauzy word and n € N. We denote m = inrCy(n) and
L = {fn(0),..., fu(m — 1)} the set from Lemma 14. Then f,(m) = f,(0), since the word f,(0)
is the only left special factor of u of length n. It means that m is equal to the length of the first
return word to f,,(0). We now determine its length.

If n = |By(k)| for some k € N, it means that f,(0) = By(k) is bispecial factor. Then by
Corollary 11 the first return word to f,(0) is equal to the word ¢;,pi, - - - ¢i,_, (ix), since the word
u® is standard and so it starts with its dominant letter, which is by Claim 12 the letter 7. Thus
m = |@ioPiy ** Piy_y (ik)]-

If |Bu(k — 1)| <n < |Bu(k)|, then By(k) = f,(0)w for some non-empty word w € A* since all
prefixes of u are left special factors. Moreover, the word f,,(0) is in u always followed by the word
w. Indeed, since f,(0) is not right special, there is a unique letter a € A such that f,(0)a € Ly
and we can repeat the same process until we reach By(k). But it means that the words f,,(0) and
Bu(k) have the same return words and derived words and so the first return word to f,,(0) is equal
to the word ;i i, -+ - iy, _, (ix). Thus m = @i, @i, - @i, (k)| O

Let us emphasize that for non-standard Arnoux—Rauzy words the evaluating of the initial non-
repetitive complexity is much more complicated, as, unlike the standard case, we do not have the
control over the positions of the vertices corresponding to prefixes in the respective Rauzy graphs.

Corollary 16. Let u be a standard Sturmian word. Then inrCy(n) = n + 1 for infinitely many
n € N.

Proof. Let (ig)¢>0 denote the directive sequence of u. We will prove that inrCy(n) = n + 1 for
every n such that n = |By(k)| + 1 for some k € N and i # ix41. Since the directive sequence
(i¢)e>0 contains both letters 0 and 1 infinitely many times, it implies the statement of the corollary.

We take n = |Byu(k)| + 1 such that iy, # ix+1 and denote rg the more frequent return word to
By (k) and r; the other return word. By Corollary 11 and Claim 12 we have 1o = @94, - - - @i, (ik)
and 71 = Qi@ - i, (ik+1). It also implies that r; is always followed by rp, while r¢ can be
followed both by r¢ and 7.

As explained before, the Rauzy graph I'y(n — 1) is composed of two cycles Cp and C; with only
the vertex By(k) in common (see Figure 3). Moreover, these cycles correspond with the return
words rg and r;: if we start in By (k) and concatenate the first letters of vertices from Cjy, we get
the return word rg. Thus the number of vertices of Cj is equal to |rg|. It is analogous for C
and r1. This connection also means that the cycle C7 is always followed by Cy, while Cy can be
followed by both Cy and C1.

We denote a the edge from the cycle Cj outcoming from the vertex By (k) and 8 the edge from
Cy incoming to By(k) (see Figure 3). Then « is the left special factor of u of length n and § is the
right special factor of u of length n. It means that the Rauzy graph I'y(n) is composed of the cycle
with |rg| 4 |r1] vertices and one extra edge going from the vertex /3 to the vertex « (see Figure 3).
It follows that |rg| 4+ |r1| = n + 1. Moreover, the return words to the factor « are rg and ror; and
|ror1| = |ro| + |r1] = n + 1. Finally, it suffices to apply Theorem 15 for By(k) < n < By(k + 1)
such that iy # ixq1:

inrCu(n) = |@ig@ir - - i, (tkt1)| = |@io@ir -+~ Pip_y (tkikt1)| = [rori| =n + 1.

11



Figure 3: The Rauzy graphs I'u(n — 1) (left) and I'u(n) (right) of the standard Sturmian word u for n = |Byu(k)| + 1.

Recently, Bugeaud and Kim [5] proved the new characterization of Sturmian words using the
initial non-repetitive function: an infinite word u is Sturmian if and only if inrCy(n) < n+ 1 for
all n € N with the equality for infinitely many n. So their result is more general than the previous
corollary.

7. Enumeration of non-repetitive complexity for d-bonacci word

In this section we demonstrate the usefulness of Theorems 13 and 15 on the d-bonacci words.
Let us recall that the d-bonacci word t (see Example 3) is the fixed point of the morphism

11 1 - 1

. 10 0

T : “ = 0fa+1) fora=0,...,d-2 with the matrix M = [0 1 0 0
d-1) — 0

o0 --- 1 0

In the sequel, we will use so-called d-bonacci numbers, which are the natural generalizations of
the famous Fibonacci numbers. The sequence of the d-bonacci numbers (D)o is defined by the
linear recurrence:

d
DkZZDH fork>d and Dp=2F forallk=0,1,....,d—1.
j=1

Equivalently, the d-bonacci numbers can be expressed using the matrix recurrence. To simplify
the notation we put D_y = 1 and D_, = 0 for all £k = 2,...,d. We also denote the vector
D(n) = (D, Dp_1,...,Dn_qr1)" for all n > —1. Then the recurrence relation for the d-bonacci
numbers can be rewritten in the following vector form:

D(n)=MD(n—1) foralneN and D(—1)=(1,0,...,0)" =:¢,
where M is the matrix of the d-bonacci morphism 7. Obviously, we can write
D(n) = M"*e. (4)
12



The simple form of the morphism 7 gives us immediately the relation between the consecutive
bispecial factors in the d-bonacci word t (compare with Claim 10), which allows us to express the
lengths of the bispecial factors of t.

Claim 17. For every k > 1 the bispecial factors of the d-bonacci word t fulfil the equation
Bt(k) = T(Bt(k - 1))0
Lemma 18. For every k € N the k' bispecial factor By(k) of the d-bonacci word t has the length

d-1
1 d
|Be (k)| = ] E (d—1i)Dg—j—1 — PR where D; is the 5 d-bonacci number.
=0

Proof. We denote the Parikh vector of the k™ bispecial factor V(k) Then using Claim 17 and
Relation (1) we may write:

V(k)=MV(k—1)+¢é andso V(k)=MV(0)+ (M"'+M2+...+ Mz,

Since By(0) =&, it is V(0) = (0,...,0)T and
Vik)= (M4 M2+ ...+ M°)e.
If we multiply this equality by the matrix (M — I'), where I is the identity matrix, we get:
(M -DV(k)=MF+ M4y M- M - MO)e= MFe—é.
Finally, the application of Equation (4) gives us:
Vk)= (M —I)~! (ng_ 5) = (M —1)! (ﬁ(k 1) - 5) .
Now we can express the length of the k" bispecial factor as:
|&%ﬂ:ﬂwuﬂva%:@“WU-MJ—DA(ﬂk—h—%.

It suffices to compute the inverse matrix (M — I)~!. One can verify that it is

1 d-1 d-2 - 2 1
1 0 d-2 - 2 1
1 |t 0o -1 -2 1
M-I)'=
( ) d—11: S :
1 0 -1 - —d+3 1
1 0 -1 -+ —d+3 —d+2

and thus (1,...,1)- (M —I)~' = ﬁ(d,d— 1,d —2,...,1). Consequently,

- d
B = — —-1,d-2,... )D(k—-1) — ——
d—1
1 d
= — d—1)Dp_;_ _—
deFJ DDk-i-1 = 577
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To find the simple expression for the lengths of the return words to By(k), we state one more
auxiliary lemma. Let us remind that the d-bonacci word has the directive sequence (012---d—1)%,
as explained in Example 3.

Lemma 19. For the d-bonacci word with the directive sequence (ip)nexy = (012---d—1)¥ and for
every integer k > 1 we have

l@io@ir - - @ip_, (ix)| = |78(0)| = Dy, where Dy, is the k'™ d-bonacci number.

Proof. One can simply verify that 7 = g o P, where P is a permutation such that P(a) = a + 1
mod d for all a € {0,1,...,d — 1}. It is also easy to realize that P o ¢, = ¢} o P for every
a,be{0,1,...,d — 1} such that b=a+ 1 mod d. These two facts give us

7 = (990 PY* = g0 (Po o) o P = pgo (10 P)' o P = gopy o (Popr)i 20 P2 = ...
k
= PjoPir - '@jk_lp s
where j, € A and j, =n mod d. But since the sequence (j)nen is exactly the directive sequence
of the d-bonacci word, i.e., j, = i, for every n € N, we may conclude that
k k . .
T(0) = Pjo s+ Pix P (0) = PjoPir " @jkq(]k) = PioPir " Piga (ir) -

It remains to prove that |[7%(0)| = Dy. We will prove that both sequences (|77(0)|)nen and
(Dp)nen fulfil the same linear recurrence with the same initial conditions. In fact, we will show
that for every a € A the following equalities hold:

d—a
[T (a)| = [r"(0)] forallk>d—a and |F(a)]=2* forallk=0,...,d—a—1. (5)

=1

We will proceed by induction on k. Simple computations verify the initial conditions. Now we
suppose that the equality is true for £ — 1 and every letter a € A and we prove that it is true also
for k. If a = d — 1, it is clear since 7%(d — 1) = 7F71(0). If a # d — 1, we rewrite as follows:

d—a—1 d—a
(@) = [ O + 1 a4 D] = O+ Y 0= Y 1 0],
j=1 j=1

If we consider the relations (5) for the letter a = 0, we get exactly the same recurrence as in
the case of d-bonacci numbers. Thus these two sequences are the same and |7%(0)| = Dy. O

Theorem 20. Let t be the d-bonacci word and let n, k be positive integers such that

1 = d YR d
= N d=Dpig— - e < —Sd=)Dpsq — -2
d71i:0( DD—i-2 d71<n*d71§( DDk = 53
Then
1 & d
TLTCt(TL) = Dk_;,_l —1- ﬁ ':O(d — i)Dk_i_l + ﬁ +n.



Proof. 1t follows directly from Theorem 13. It suffices to replace the lengths of the bispecial factors
by the expressions from Lemma 18 and determine the value of

“Piocph to Spik:—l(ika” ’

where a € A is any letter such that S, (k) = inf{Sy(k) : b € A,b # i}. Since t has the directive
sequence (in)n>0 given by i, =n mod d, it is easy to realize that the desired letter a is the letter
ipa1 (note that for £ < d — 2 there are also other possible choices of a). Then using Lemma 19 we
get

|90i090i1 iy (Zka)‘ = ‘@io‘ph Py (ikik+1)| = |‘Pi090i1 2 (ik+1)| = |7-k+1(0)| = D41 -
O

Theorem 21. Let t be the d-bonacci word and let n, k be positive integers such that

U
—

— d—1

1 d 1 d
S =) Dpir— <€ —— 3 (A= ) Dpg — .
g—1 24~ ) Dk-i2 d—1<n_d—1i:0(d DDr-ic1 = 5

Il
=}

i
Then inrCg¢(n) = Dy, .

Proof. Tt follows directly from Theorem 15. It suffices to realize that by Lemma 18 we know the
lengths of the bispecial factors of t and by Lemma 19 we have |@; ¢4, - i, (ir)] = |75(0)] =
Ds. 0

Note that for d = 2 and d = 3 the previous theorem gives the results stated in [14] as Theorems
10 and 16.

Corollary 22. Let f and t be the Fibonacci and the Tribonacci word, respectively.

o Let n,k be positive integers such that Fi, —2 < n < Fyy1 — 2. Then inrCe(n) = Fy, where F,
is the k' Fibonacci number.

e Let n, k be positive integers such that W <n< M Then inrCe(n) = Ty,
where Ty, is the k" Tribonacci number.
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We determine the critical exponent and the recurrence function of complementary symmetric Rote sequences. The
formulae are expressed in terms of the continued fraction expansions associated with the S-adic representations of
the corresponding standard Sturmian sequences. The results are based on a thorough study of return words to bis-
pecial factors of Sturmian sequences. Using the formula for the critical exponent, we describe all complementary
symmetric Rote sequences with the critical exponent less than or equal to 3, and we show that there are uncountably
many complementary symmetric Rote sequences with the critical exponent less than the critical exponent of the Fi-
bonacci sequence. Our study is motivated by a conjecture on sequences rich in palindromes formulated by Baranwal
and Shallit. Its recent solution by Curie, Mol, and Rampersad uses two particular complementary symmetric Rote
sequences.
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1 Introduction

We study the relation between the critical exponents of two binary sequences v = vgviv2 --- and u =
wguqug - - - over the alphabet {0, 1}, where u; = v; + v;11 mod 2 for each i € N. We write u = S(v).
Our study is motivated by a conjecture formulated by Baranwal and Shallit in [3]. They searched for
binary sequences rich in palindromes with a minimum critical exponent. They showed that the value of
this critical exponent is greater than 2.707. Moreover, they found two sequences v() and v(?) having
the critical exponent equal to 2 + % and they conjectured that this is the minimum value. Both of these
sequences belong to the class of complementary symmetric Rote sequences. Their conjecture has been
recently proved by Curie, Mol, and Rampersad in [7].

A Rote sequence is a binary sequence v containing 2n factors of length n forevery n € N,n > 1. If the
language of v is invariant under the exchange of letters 0 <+ 1, the sequence v is called a complementary
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CZ.02.1.01/0.0/0.0/16.019/0000778 and from the Grant Agency of the Czech Technical University in Prague through the grant no.
SGS20/183/0HK4/3T/14.
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symmetric (CS) Rote sequence. Already in his original paper [22], Rote proved that these sequences are
essentially connected with Sturmian sequences. He deduced that a binary sequence v is CS Rote sequence
if and only if the sequence u = S(v) is Sturmian. Both CS Rote sequences and Sturmian sequences are
rich in palindromes, see [5, 9].

The formula for the critical exponent of Sturmian sequences was provided by Damanik and Lenz in [8].
The relation between the critical exponent of a CS Rote sequence v and the associated Sturmian sequence
S(v) is not straightforward: While the minimum exponent among all Sturmian sequences is reached by

the Fibonacci sequence and it is 3 + 1+2 75 (see [17]), the two CS Rote sequences v(D), v(?) whose critical

exponent equals 2 + %, i.e., it is minimum among all binary rich sequences, are associated with the

Sturmian sequences S(v(1)) and S(v(?)) whose critical exponent is 3 4 /2.

In this paper, we will first derive the relation between the critical exponents of the sequences v and
S(v), where v is a uniformly recurrent binary sequence whose language is closed under the exchange
of letters, see Theorem 14. Using this relation, we will determine the formula for the critical exponent of
any CS Rote sequence, see Theorem 33.

One of the consequences of this theorem is for instance the fact that the languages of the sequences
v(1) and v(?) are the only languages of CS Rote sequences with the critical exponent less than 3, see
Proposition 34. In this context, let us mention that in [7] the authors showed that there are exactly two
languages of rich binary sequences with the critical exponent less than % and they are the languages of the
sequences v(1) and v(?). Furthermore, we show that there are uncountably many CS Rote sequences with
the critical exponent strictly less than the critical exponent of the Fibonacci sequence, see Theorem 37.

Our main technical tool is the description of return words to bispecial factors of Sturmian sequences
in terms of the continued fraction expansions related to the S-adic representations of Sturmian sequences.
As a by-product, we obtain an explicit formula for the recurrence function of CS Rote sequences, see
Theorem 54. When formulating our results, we use the convergents ( %) of an irrational number 6 =
[0,aq, a9, as,...], where the coefficients a;’s in the continued fraction expansion of § correspond to the
S-adic representation of the standard Sturmian sequence associated to a given CS Rote sequence.

There are many generalizations of Sturmian sequences to multiliteral alphabets, see [1]. The critical
exponent and the recurrence function were studied for two of these generalizations. Justin and Pirillo
described in [13] the critical exponent of substitutive Arnoux-Rauzy sequences. Recently, Rampersad,
Shallit, and Vandomme in [20], and Baranwal and Shallit in [2] determined the minimal threshold for
the critical exponent of balanced sequences over alphabets of cardinality 3,4, and 5, respectively. The
recurrence function of Sturmian sequences was found by Morse and Hedlund in [18], and their result was
generalized by Cassaigne and Chekhova in [6] for Arnoux-Rauzy sequences.

The paper is organized as follows. We first introduce basic notions from combinatorics on words in
Section 2. In Section 3, we recall how to simplify the formula for the critical exponent using return words
to bispecial factors. The definitions of the already mentioned mapping S and complementary symmetric
Rote sequences and their basic properties are provided in Section 4. The relation between the critical
exponents of the sequences v and S(v) is described in Section 5. The main tool for further results —
a thorough study of return words to bispecial factors of Sturmian sequences using the S-adic representation
— is carried out in Section 6. An explicit formula for the critical exponent of CS Rote sequences is given
in Section 7. CS Rote sequences with a small critical exponent are studied in Section 8. And finally, in
Section 9, an explicit formula for the recurrence function of CS Rote sequences is derived.
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2 Preliminaries

An alphabet A is a finite set of symbols called letters. A word over A of length n is a string u =
Uolq -+ - Up—1, where u; € Aforalli € {0,1,...,n — 1}. The length of u is denoted by |u|. The set
of all finite words over .4 together with the operation of concatenation form a monoid .A*. Its neutral
element is the empty word € and we denote AT = A* \ {e}.

If u = xyz for some z,y, 2z € A*, then x is a prefix of u, z is a suffix of v and y is a factor of u. We
sometimes use the notation yz = z ™ u.

To any word u over A with the cardinality #.4 = d, we assign its Parikh vector v(u) € N? defined as
(V(u))q = |u|, for all a € A, where |ul, is the number of letters a occurring in w.

A sequence over A is an infinite string u = ugujus - - -, where u; € Aforalli € N={0,1,2,...}. We
always denote sequences by bold letters. A sequence u is eventually periodic if u = vwww - - - = v(w)*
for some v € A* and w € A™. Otherwise u is aperiodic.

A factor of u is a word y such that y = w;u;41U;42 - - - uj—; for some 4,7 € N, ¢ < j. The number
1 1s called an occurrence of the factor y in u. In particular, if 7 = j, the factor y is the empty word ¢
and any index ¢ is its occurrence. If ¢ = 0, the factor y is a prefix of u. If each factor of u has infinitely
many occurrences in u, the sequence u is recurrent. Moreover, if for each factor the distances between
its consecutive occurrences are bounded, u is uniformly recurrent.

The language L£(u) of the sequence u is the set of all factors of u. A factor w of u is right special if
both words wa and wb are factors of u for at least two distinct letters a, b € A. Analogously we define a
left special factor. A factor is bispecial if it is both left and right special. Note that the empty word ¢ is a
bispecial factor if at least two distinct letters occur in u.

The factor complexity of a sequence u is a mapping C,, : N — N defined by

Cu(n) =#{w € L(u) : |lw| =n}.

The aperiodic sequences with the lowest possible factor complexity are called Sturmian sequences. In
other words, it means that a sequence u is Sturmian if it has the factor complexity Cy,(n) = n + 1 for all
n € N. Clearly, all Sturmian sequences are defined over a binary alphabet, e.g., {0,1}. There are many
equivalent definitions of Sturmian sequences, see a survey in [1].

A morphism over A is a mapping ¢ : A* — A* such that ¢ (uv) = (u)y(v) for all u,v € A*. The
morphism 1) can be naturally extended to sequences by

Y(u) = P(uourug - -+ ) = P(uo)(ur)P(uz) - .

A fixed point of a morphism ¢ is a sequence u such that ¢)(u) = u. The matrix of a morphism ¢ over A
with the cardinality #.4 = d is the matrix My, € N%*? defined as (My)ap = |1(a)|, for all a,b € A.
The Parikh vector of the 1-image of a word w € A* can be obtained via multiplication by the matrix My,
ie.,
V(Y (w)) = MyV(w). ¢))
Consider a prefix w of a recurrent sequence u. Let ¢ < j be two consecutive occurrences of w in
u. Then the word u;u;41 - - - u;j—1 is a return word to w in u. The set of all return words to w in u is
denoted Ry (w). If the sequence u is uniformly recurrent, the set R, (w) is finite for each prefix w, i.e.,
Ru(w) = {ro,71,...,75—1}. Then the sequence u can be written as a concatenation of these return
words:
U ="7qy"d;Tdy """
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and the derived sequence of u to the prefix w is the sequence d,(w) = dpdyds - - - over the alphabet of
cardinality # R, (w) = k. The concept of derived sequences was introduced by Durand in [11].

3 The critical exponent and its relation to return words

Let z € A* be a prefix of a periodic sequence u* with u € A+. We say that 2 has the fractional root u
and the exponent e = |z|/|u|. We usually write z = u°. Let us emphasize that a word z can have multiple
exponents and fractional roots. A word z is primitive if its only integer exponent is 1.

Let u be a sequence and u its non-empty factor. The supremum of e € Q such that u is a factor of u
is the index of u in u:

indy (u) =sup{e € Q : u® € L(u)}.

If the sequence u is clear from the context, we will write ind(u) instead of ind,, (u).

Definition 1. The critical exponent of a sequence u is

cr(u) = sup {e € Q : there is a non-empty factor of u with the exponent e}

= sup {indy (u) : u is a non-empty factor of u} .
Remark 2. Let us comment the above definition.

1. If a non-empty factor v € £(u) is non-primitive, i.e., u = z* for some r € A* and k € N, k > 2,
then ind, () = kindy(uw) > indy(u). Therefore, only primitive factors play a role for finding

cr(u).

2. If some non-empty factor occurs at least twice in u, then ind(x) > 1 for some non-empty factor x
and so cr(u) > 1. Consequently, cr(u) > 1 for each sequence u.

3. We say that u is an overlapping factor in u, if there exist 2,y € A* such that xu = uy € L(u)
and 0 < |z| < |u|. If u has an overlapping factor, then cr(u) > 2. Indeed, by [15] the equality
xu = uy implies that there exist a,b € A* and k € N such that u = (ab)ka, x = ab, and y = ba.
If a is empty then the assumption |u| > |z| > 0 forces k& > 2, otherwise & > 1. In both cases
indy (ab) > 2.

4. If u is eventually periodic, then cr(u) is infinite.

5. If u is aperiodic and uniformly recurrent, then each factor of u has a finite index. Nevertheless,
cr(u) may be infinite. As an example of such a sequence may serve a Sturmian sequence, for which
the coefficients in the continued fraction expansion of its slope are not bounded, see [8].

6. If u is a binary sequence, then either 11, 00, or 0101 occur in u. It means that the critical exponent
of a binary sequence is at least 2. This value is attained by the famous Thue-Morse sequence, which
is, of course, overlap-free, see [23] or [4].

Lemma 3. Let u be a uniformly recurrent aperiodic sequence. Then cr(u) = sup {indy,(u) : © € M},
where

M = {u : wis a return word to a bispecial factor of u} .
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Proof: Let u € £(u) be a non-empty factor with the index ind(u) > 1. Denote |u| = n. When searching
for supremum, we may assume without loss of generality that  is a factor having the largest index among
all factors of u of length n, i.e., ind(uw) > ind(v) for all v € L(u) of length n. Since u is uniformly
recurrent, ind(u) is finite. We denote

i 1,1 1,1, !
_ umd(u) _

W and b= M-

z
where u = vw/u” and u” # . Clearly, z = bu" v’ = u'u"b.

Let us show that the word b is a bispecial factor of u. The word z is a factor of u and so z occurs in u

at some position j, i.e.,

2= UjUj41 c Ujp|z| -1 -
Then the letter ;.| which follows the word z is distinct from the first letter of u”. Otherwise, we could
prolong z to the right, which contradicts the definition of the index of u = w;u;41 - - - Uj4n—1. Similarly,
the letter u;_; which precedes z is distinct from the last letter of u”. Indeed, if those letters are the same,
then the factor u;_1u; - - - ujyn_2 of length n has the index at least ind(u) + %, which contradicts the
choice of u. We can conclude that the factor b is a bispecial factor of u.

Moreover, since z = bu”’u’ = u'u"'b, the word v = u'u" is a concatenation of the return words to the
bispecial factor b. It suffices to prove that only the cases when u is a return word to the bispecial factor b
have to be inspected. Let us assume that  is a concatenation of at least two return words to b. It means
that

z =ub=sbt forsome s,t such that s is a prefix of u and 0 < |s| < |u] . 2)

We will find another factor of u with the index strictly larger than ind(«), which means that such a factor
u can be omitted. We distinguish three cases:

e Ifind(u) > 2, then |b| > |u| and both words u and s are prefixes of b. Therefore, the relation (2)
implies us = su and we can easily conclude that there is a word = and an integer k£ > 1 such that
u = z*. As mentioned in Remark 2, ind(x) > ind(u).

o If 1 < ind(u) < 2 and cr(u) < 2, then by Item (3) of Remark 2, u has no overlapping factor.
Clearly, z = v/'v/u’ and b = ' for v/, u” # €. Then the relation (2) implies v = su’ for some
vand |u] > |s| > |[u/]. Indeed, if 0 < |s| < |u/], then v is an overlapping factor, which is not
possible. Therefore, u’ is a prefix of s and we can easily deduce that

[s] + '] _ Jul + ||
>

5] Jul

e If1 < ind(u) < 2 and cr(u) > 2, then there is a factor x € £(u) with ind(z) > 2 > ind(u).

ind(s) > = ind(u) .

Remark 4. In fact, we proved that it suffices to consider the set
M = {u: uis areturn word to a bispecial factor of u with the fractional root u}
or, even more specifically, the set

M" = {u : uis areturn word to the bispecial factor b = =1 of u}
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instead of M. Clearly, M" c M’ C M.

In Remark 2, we emphasize that only primitive factors are relevant for finding the critical exponent.
Let us verify that all return words from the set M’ (and so M", too) are primitive. We prove it by
contradiction. Let us suppose that u € M’ is non-primitive, i.e., v = x* for some non-empty = and
k € N, k > 1. Since b has the fractional root u, b = u! = z*¢ for some ¢ € Q. Therefore, ub =
D) — poklyk=1 — 4prk=1 Wwhich contradicts that v is a return word to b in u.

4 The mapping S on binary words and complementary symmetric
Rote sequences

In this section, we introduce a mapping S which enables us to describe the properties of CS Rote se-
quences using Sturmian sequences. Nevertheless, this mapping S can be applied to any binary sequence.

Definition 5. By S we denote the mapping S : {0,1}* — {0,1}* such that for every vy € {0,1} we
put S(vg) = ¢ and for every v = wvovy ---v, € {0,1}T of length at least 2 we put S(vovy - - - vp,) =
UoUq * * * Up—1, Where

u; =v; +v;41 mod 2 forall i€ {0,1,...,n—1}.

Moreover, we extend the domain of S naturally to {0, 1}": for every v € {0, 1} we put S(v) = u,
where
u; =v; + v;401 mod 2 forall i € N.

By F : {0,1}* — {0,1}* we denote the morphism which exchanges the letters, i.e., £(0) = 1,
E(1)=0.

Example 6. We have £(001110) = 110001 and §(001110) = §(110001) = 01001.

Clearly, the images of v and F(v) under S coincide for each v € {0, 1}*. Moreover, S(z) = S(y) if
and only if z = y or x = E(y). The following rule follows directly from the definition of S:

S(vgvy « - vp) = S(vovy -+ - Vg )S (Vg V41 -+ - vp)  forany k=0,...,n. 3)

These observations hold also for infinite sequences.

Lemma 7. Let v be a binary sequence whose language L(v) is closed under E. Then w # € is a right
(left) special factor in v if and only if S(w) is a right (left) special factor in S(v).

Proof: We will prove the statement for right special factors. The proof for left special factors is analogous.
Let ¢ be the last letter of w.
(=): Let w0 and w1 belong to £(v). Then S(w0) and S(w1) belong to L(S(v)). By the rule (3),
S(w0) = S(w)S(c0) and S(wl) = S(w)S(cl). As S(c0) # S(cl), the factor S(w) is right special in
S(v).
(«<=): Let S(w)0 and S(w)1 be in L(S(v)). Then S(w)0 = S(w)S(cc) = S(we) and S(w)l =
S(w)S(cE(c)) = S(wE(c)). Since L(v) is closed under the exchange of letters, all factors we, E(wc),
wE(c) and E(w)c are in £(v). It means that w and E(w) are right special factors in v.

O
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A Rote sequence is a sequence v with the factor complexity Cy (n) = 2n for all n € N,n > 1. Clearly,
all Rote sequences are defined over a binary alphabet, e.g., {0, 1}. If the language of a Rote sequence v is
closed under the exchange of letters, i.e., E(v) € L(v) for each v € L(v), the Rote sequence v is called
complementary symmetric (shortly CS).

Rote in [22] proved that these sequences are essentially connected with Sturmian sequences.

Proposition 8 ([22]). Let u and v be two sequences over {0,1} such that u = S(v). Then v is a com-
plementary symmetric Rote sequence if and only if u is a Sturmian sequence.

Let us emphasize that to a given CS Rote sequence v there is the unique associated Sturmian sequence
u such that u = S(v). On the other hand, for any Sturmian sequence u there exist two associated CS
Rote sequences v and E(v) such that u = S(v) = S(E(v)). However, L(v) = L(E(V)).

Analogously, to a given factor v € L(v) there is a unique associated word « such that v = S(v) and
this word w is a factor of u. In addition, to a given factor u € L£(u) there are exactly two associated words
v, E(v) such that S(v) = S(E(v)) = u and both these words v, F(v) are factors of v.

Example 9. Let us underline that for Sturmian sequences u and F(u) the languages of their associated
CS Rote sequences may essentially differ. Consider the Fibonacci sequence
f = abaababaaba - - -,

which is the fixed point of the Fibonacci morphism F' : a — ab, b — a.

e If a = 0and b = 1, then the associated CS Rote sequence starting with 0 is v = 001110011100 - - - .
The prefix w of v of length 7 is w = 0011100 = (00111)%, i.e., w has the fractional root 00111
and the exponent %

e Ifa = 1and b = 0, then the associated CS Rote sequence starting with 0 is v/ = 011011001001 - - - .
The prefix w’ of v/ of length 7 is w’ = 0110110 = (011)%, i.e., w’ has the fractional root 011 and
the exponent %

We will show later in Example 36 that even the critical exponent of CS Rote sequences associated with u
and F'(u) may be different.

In the next section, we will explain that the relation between the shortest fractional root of a factor v
and the shortest fractional root of S(v) is influenced by the number of letters 1 occurring in the shortest
fractional root of S(v). This is the reason for the following definition and lemma.

Definition 10. A word v = uguy - - - up,—1 € {0,1}* is called stable if |u|; = 0 mod 2. Otherwise, u is
unstable.

Lemma 11. Let S : {0,1}1 — {0,1}*.
(i) If 0 is a prefix of v € {0, 1}*, then S(v0) is stable.

(ii) For every u € {0,1}* there exists a unique w € {0,1} with a prefix 0 such that u = S(w).
Moreover, w has a suffix 0 if and only if u is stable.

(iii) If 0 is a prefix of w, then S(vw) = S(v0)S(w).
(iv) Let 0 be a prefix of v and v'. Then S(v'") is a prefix of S(v) if and only if V' is a prefix of v.
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Proof:

(i) Let v = vovy +-+Vp—1, n = |v], and vg = 0. Put v, = 0. Then S(v0) = wouy -+ - Up—1, Where
u; = v; + v;+1 mod 2 foreveryi € {0,1,...,n — 1}. It implies

n—1

|S(v0)|; = Zui =vyg+v,=0 mod 2.
=0

(ii) Let u = wouy -+ - Um—1 and m = |u|. We look for w = wow; - - - w, such that u; = w; + w41

mod 2 forevery i € {0,1,...,m — 1}. Clearly, these equations can be equivalently rewritten as
u; = w41 —w; mod 2 foreveryi € {0,1,...,m—1}. )
Then starting with wy = 0 and summing up the equations (4) fori = {0,1,...,j—1}, we determine
j—1

the letter w; of w as w; = Y 7 u; mod 2. In particular, w,, = |u|; mod 2.
(iii) Itis a particular case of the equation (3).

(iv) It follows directly from the definition of S.

5 The relation between the indices of factors in v and S(v)

In this section, we provide a tool for determining the critical exponent of a binary sequence v whose lan-
guage is closed under the exchange of letters. For any factor v of such a sequence, indy (v) = indy (E(v))
and we can consider only factors of v starting with 0 without loss of generality.

Lemma 12. Let v be a binary aperiodic uniformly recurrent sequence whose language is closed under
E. Denote u = S(v). For a non-empty factor v € L(v) with the prefix 0 and indy (v) > 1, there exists
a stable factor u € L(u) such that

indy (u) + 1+ = indy(v) and u= S(v0). %)

Jul

And vice versa, for a non-empty stable factor u € L(u), there exists a factor v € L(v) with the prefix 0
satisfying (5).

Proof: For a given n € N,n > 1, consider the set /C,, of factors v € L(v) of length n with the prefix 0
and indy (v) > 1. First, we show that the mapping v — S(v0) is a bijection between K,, and the set of all
stable factors of u of length n.

Indeed, if v € KC,,, then v0 € L(v). The factor u := S(v0) belongs to L£(u), |u| = |v], and by Item
(i) of Lemma 11, w is stable. On the other hand, if w € £(u) is stable and of length n, then by Item
(ii) of Lemma 11, there exists a unique w such that 0 is a prefix and a suffix of w and S(w) = u. As
L(v) is closed under E, necessarily w € £(v) and w = v0 for some v with the prefix 0. In particular,
indy (v) > 1. Asu = S(w) = S(v0), the lengths of u and v coincide.
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Now we show that any v € K,, and its image v = S(v0) satisfy (5). Find k € N,k > 1, and 0 € (0, 1]
such that ind, (v) = k + 6. Denote v’ = v?. Obviously, v’ # &, v’ is a prefix of v and 0 is a prefix of
v’. Applying Item (iii) of Lemma 11, we get S(v*v') = (S(v0))*S(v'). Clearly, |S(v')| = |v'| — 1,
|u| = |v|, and by Item (iv) of Lemma 11, S(v') is a prefix of S(v0). For u = S(v0) it means that

indy (u) > b+ S = WL L — 49— L = ind, (v) — L

u ol Ju STl

To show the opposite inequality, we find ¢ € N and n € [0,1) such that ind,(u) = ¢ + 7. Denote
u' = u". Using Item (ii) of Lemma 11, we find v’ with the prefix 0 such that v’ = S(v’). By Item (iv), v’
is a prefix of v, and by Item (iii), u‘v’ = (S(v0))*S(v') = S(v’0’). Therefore, v’v’ € L(v) and

indy(v) >0 +n+ ﬁ = indy(u) + ITII :

O

As explained in Lemma 3, only return words to bispecial factors play a role for the determination of the
critical exponent of a sequence. More specifically, we can restrict ourselves to factors from the set M’ (or
M) introduced in Remark 4.

Lemma 13. Let v be a binary sequence whose language is closed under E. Assume that v with the prefix
0 is a return word in v to a bispecial factor b = v¢~!, where e > 2. Denote u = S(v0). Then

— either u is a stable return word in S(v) to a bispecial factor with the fractional root u;

—oru = z%, where x is an unstable return word in S(v) to a bispecial factor with the fractional root u.

Proof: The factor S(b) is bispecial in S(v) by Lemma 7. Moreover, by the rule (3), we can write
S(b) =S =Sw0)f for f=e—1— ﬁ > 1. Thus S(b) has the fractional root u = S(v0).

The word vb is a complete return word to b in v and thus vb = bw for some w. Note that 0 is the first
letter of b and denote z the last letter of b. By the rule (3), we get S(v0)S(b) = S(b)S(zw). It means that
S(b) is a prefix and a suffix of the word S(v0)S(b). We discuss two cases:

— S§(b) has exactly two occurrences in S(v0)S(b), one as a prefix and one as a suffix. In this case

u = S(v0) is a return word to S(b) in S(v) and by Item (i) of Lemma 11, w is stable.

— 8(b) occurs in S(v0)S(b) as an inner factor. In this case, there exists a return word u' # ¢ to
S(b) such that |u/| < |u| and w'S(b) is a proper prefix of S(v0)S(b). We take the word b’ such that
b = vb'. Clearly, b’ has the prefix 0 and so S(b) = uS(b'). Then w'S(b) = w'uS (V') is a proper prefix of
S0)S(b) = uS(b) = uuS (V). In other words, v'uu” = wu for some non-empty u” and consequently,
u = u/v” = u”v'. This implies the existence of € {0,1}" and ¥',k” € N, k', k” > 1 such that
u = 2* and v’ = 2" If we denote k = Kk’ + k" > 2, we can write u = z*.

We show that x is unstable and k = 2. Indeed, assume «x is stable, then by Item (ii) of Lemma 11, we
find a unique y with the prefix 0 such that z = S(y0). Applying Item (iii), we obtain S(v0) = u = z*¥ =
(S(y0))* = S(y*0) and thus v = y*. Nevertheless, the factor v is primitive as explained in Remark 4.
Thus this is a contradiction.

Since z is unstable and u = z* is stable, necessarily k = 2p for some integer p > 1. Now we deduce
that £ = 2. Indeed, if p > 2, then u is a p-power of the stable factor 22 which yields a contradiction with
the primitivity of v as above. Finally, k = 2 implies ¥’ = 1 and v’ = z is an unstable return word to the
bispecial factor S(b) in S(v). O
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Theorem 14. Let v be a binary aperiodic uniformly recurrent sequence whose language is closed under
E. Denote u = §(v),

Ay = {indu(u) + ﬁ : w is a stable return word to a bispecial factor ofu} and
Ay = {%(indu(u) + thl) : w is an unstable return word to a bispecial factor of u} .

Then
cr(v) = sup(A4; U A,).
Proof: First we show that
ind, (v) < sup(A; U A;)  for any non-empty v € L(v). (6)

If indy (v) < 2, then the inequality (6) is trivially satisfied as A; contains the number ind, (0) + IT%I >2
(note that 0 is a stable return word in u to the bispecial factor ). Now we assume that indy (v) = e > 2.
By Lemma 3 and Remark 4, we may focus only on v which is a return word to the bispecial factor
b = v°~! and v has the prefix 0. By Lemma 12, indy(v) = indy(u) + ﬁ, where u = S(v0). By
Lemma 13, the factor u is either a stable return word to a bispecial factor in u, or u = 22, where z is
an unstable return word to a bispecial factor in u. In the first case we have indy (v) < sup A;, while in
the second case we have indy (v) = indy (u) + ﬁ = tindy(z) + ﬁ < sup A,. We may conclude that
cr(v) <sup(A4; UA,).

To prove the opposite inequality, we show

A1 U A2\ [0,1] C {indy(v) : v € L(v),v #€}.

If H € Ay, then there exists a stable factor v in u such that H = indy(u) + |17|, and by Lemma 12, we
find v in v such that H = ind, (v). Analogously, if H € Ay and H > 1, thenind, (u) = 2H — %, > 2 for

]
some unstable factor u € £(u). Thus the word y = uu € L(u), it is a stable factor of u and its index in u

is 3indy(u). By Lemma 12, there is v in v such that indy (v) = indu(y)+ 17 = gindu(u)+ 55 = H. O

Theorem 14 will be used in the next sections to determine the critical exponent of a complementary
symmetric Rote sequence v by exploiting the indices of factors in the Sturmian sequence S(v). The
following example shows an opposite application of Theorem 14. But before that, let us state a simple
auxiliary statement reflecting the behaviour of fractional roots under the application of a morphism.

Observation 15. Let ¢ : A* — A* be a morphism and let w € A* be a prefix of ¢(a) for each a € A. If
w is a fractional root of z, then ¢(u) is a fractional root of ¢(z)w.

Example 16. Let us consider the Thue—Morse sequence t = 01101001 - - -, which is fixed by the mor-
phism 1) : 0 — 01 and 1 + 10. It is well-known that t is uniformly recurrent, its language is closed under
the exchange of letters and cr(t) = 2. The corresponding sequence u = S(t) = 1011101 - - - is called
the period doubling sequence and it is fixed by the morphism ¢ : 0 — 11 and 1 — 10, see [21].

We determine the critical exponent of u. Theorem 14 implies cr(u) < 4, as otherwise cr(t) > 2, which
is a contradiction. Now we show that the value 4 is attained.

By Observation 15 and the fact that both ¢(0) and ¢(1) have the prefix 1, the morphism ¢ has the
following two properties:
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1. If w € L(u), then ¢p(w)1 € L(u).
2. If w is a fractional root of w, then ¢(u) is a fractional root of ¢(w)1.

We will construct two sequences (u(™) and (w(™) of words belonging to £(u). We start with u(®) = 1
and w(®) = 111 € £(u) and for each n € N we define

w Y = p(w™)1 and  u"tY = p(u™).

Note that u(®) = 1 is a fractional root of w(®) = 111. Because of the property (2), the word (™
is a fractional root of w(™) for each n € N. Moreover, the specific form of the morphism ¢ implies
|um V| = 2ju( ] and [w™*tV| = 2]w™)| 4 1. Tt gives [u(™| = 2™ and |w™| = 272 — 1. Therefore,

ind, (u™) > %ﬁfl — 4. We may conclude that cr(u) = 4.

6 Return words to bispecial factors of Sturmian sequences

The main goal of this article is to describe the critical exponent and the recurrence function of CS Rote
sequences. Proposition 8 and Theorem 14 transform the first task to the computation of the indices of
return words to bispecial factors in the associated Sturmian sequences.

This is a preparatory section for this computation. We introduce the directive sequence of a standard
Sturmian sequence and recall some known results on bispecial factors, their return words, and derived
sequences. It allows us to describe the longest factor of u with the fractional root u, where w is any return
word to a bispecial factor of a Sturmian sequence u (Lemma 24). Further on, we explain how to express
the lengths of these factors explicitly (Proposition 30), and eventually in Section 7, we determine the
indices.

First, we recall that a binary sequence u € {0, 1}V is Sturmian if it has the factor complexity Cy(n) =
n + 1 for all n € N. If both sequences Ou and 1u are Sturmian, then u is called a standard Sturmian
sequence. It is well-known that for any Sturmian sequence there exists a unique standard Sturmian se-
quence with the same language. Since all properties which we are interested in (indices of factors, critical
exponent, special factors, return words, recurrence function) depend only on the language of the sequence,
we restrict ourselves to standard Sturmian sequences without loss of generality.

In the sequel, we use the characterization of standard Sturmian sequences by their directive sequences.
To introduce them, we define two morphisms

0—10 0—0
G= and D=
1—>1 1—01

with the corresponding matrices

1 0 1 1
MG—<11) and MD—<01>.

Let us note that G = E o F and D = F o F, where E is the morphism which exchanges letters, i.e.,
E:0—1,1— 0,and F is the Fibonacci morphism, i.e., ' : 0 — 01,1 — 0.
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Proposition 17 ([13]). For every standard Sturmian sequence u there is a uniquely given sequence A =
AgA1Ay -+ € {G, DY of morphisms and a sequence (u™),,>q of standard Sturmian sequences such
that

u=A7NgA;... An_l(u(")) forevery n € N.

Moreover, the sequence A contains infinitely many letters G and infinitely many letters D, i.e.,
A =GUD"?G®D" ... or A =D"G">D**G" --- for some sequence (a;);>1 of positive integers.

The sequence A is called the directive sequence of u.

Remark 18. Let us note that u has the directive sequence G** DG D% . .. if and only if F(u) has the
directive sequence D* G*2 D% (G% - ... Obviously, both sequences u and F/(u) have the same structure
up to the exchange of letters 0 <+ 1. In particular, any Sturmian sequence with the directive sequence
G D* G D% . .. can be written as a concatenation of the blocks 1910 and 191710, while any Sturmian
sequence with the directive sequence D* G2 D* (G - - - can be written as a concatenation of the blocks
011 and 0“1 +11.

By Vuillon’s result [24], every factor of any Sturmian sequence has exactly two return words. Thus for
a given bispecial factor b of u, we usually denote by r the more frequent and by s the less frequent return
word to b in u. In this notation, the sequence u can be decomposed into the blocks 7*s and **1s for
some k € N,k > 1.

We need to know how bispecial factors and their return words change under the application of mor-
phisms G and D. The following description can be found in [16], where several partial statements from
[14] are accumulated.

Lemma 19. Let 0, u be standard Sturmian sequences such that u = G(u’).
(i) For every bispecial factor b/ of U, the factor b = G(b')1 is a bispecial factor of u.

(ii) Every bispecial factor b of u which is not empty can be written as b = G(b')1 for a uniquely given
bispecial factor b’ € L(u').

(iii) The words 1, s are return words to a bispecial prefix b of 0’ if and only if r = G(r'),s = G(s')
are return words to a bispecial prefix b = G(b')1 of u. Moreover, the derived sequences satisfy
dy(b) = dw ().

Lemma 20. Let u’',u be standard Sturmian sequences such that u = D(u’).

(i) For every bispecial factor b/ of U, the factor b = D(b')0 is a bispecial factor of u.

(ii) Every bispecial factor b of u which is not empty can be written as b = D(b")0 for a uniquely given
bispecial factor b’ € L(u').

(iii) The words 1, s’ are return words to a bispecial prefix b’ of W' if and only if r = D(r"),s = D(s)
are return words to a bispecial prefix b = D(b')0 of u. Moreover, the derived sequences satisfy

du(b) = du (V).
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Any prefix of a standard Sturmian sequence is a left special factor. Moreover, a factor of a standard
Sturmian sequence u is bispecial if and only if it is a palindromic prefix of u. Therefore, we can order the
bispecial factors of a given standard Sturmian sequence u by their lengths: we start with the empty word
¢, which is the 0t bispecial factor, then the first letter of u is the 15t bispecial factor of u etc.

Remark 21. If u has the directive sequence AgA1Ay--- € {G, D}V, the derived sequence d,(b) to
the n'"* bispecial factor b of u has the directive sequence A, A, 1A, .5 ---. Indeed, we denote u’ the
sequence with the directive sequence A, A, 114,12 ---. It has the bispecial factor € and by the definition
dy (e) = u’. If we apply n times Lemmas 19 or 20, we get dy(b) = dy (e) = u'.

Let us formulate a direct consequence of the relation (1) and Lemmas 19 and 20.

Corollary 22. Let k,h € N. Let b’ be the k*" bispecial factor of a standard Sturmian sequence u' and v’
be a return word to V' inu'. Let A = AgA1As - -+ € {G, D} be the directive sequence of u'.

1. Ifu= G"(1'), then the (k + h)!" bispecial factor b of u and a return word u to b satisfy

V(b)—(i ?)V(b’)Jrh((l)) and V(u)—@ ?)V(u').

The directive sequence of uis G" AgA1 A, - - -.

2. Ifu = D"(u'), then the (k 4 h)*" bispecial factor b of w and a return word u to b satisfy

V(b):(é ?)Wb’)m(é) and V(u):<é ’f)v(u').

The directive sequence of uis D" AgA 1Ay - - -.

As we have seen in Remark 4, when determining the critical exponent it suffices to take into account
only bispecial factors whose fractional roots are equal to its return words. Lemma 24 says that all bispecial
factors of a Sturmian sequence are of this type, and moreover, it enables to determine the indices of their
return words. The first auxiliary statement is a slightly strengthened variant of Observation 15 for the
morphisms G and D.

Observation 23. Let u be a binary sequence and let uw € L(u). If z is the longest factor in L(u) with
the fractional root u, then G(2)1 is the longest factor in L(G(u)) with the fractional root G(u) and,
analogously, D(2)0 is the longest factor in L(D(u)) with the fractional root D(u).

Lemma 24. Let b be a bispecial factor of a standard Sturmian sequence u. Let v and s be the return
words to binu and let k € N, k > 1, be such that u is concatenated from the blocks rks and r¥1s.
Then r¥11b is the longest factor of u with the fractional root v and sb is the longest factor of u with the
fractional root s.

Proof: We proceed by induction on the length of b. Without loss of generality, we assume that u has the
directive sequence A = G* D2 G*3 D% . ..

The bispecial factor b = ¢ has the return words » = 1, s = 0, and by Remark 18, u is concatenated
from the blocks 1910 = 7915 and 191710 = r@1F1g, Clearly, 7% 71b = 19171 is the longest factor of u
with the fractional root 1. Similarly, sb = 0 is the longest factor of u with the fractional root 0.
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Let b be a bispecial factor of u with |[b| > 1 and let u be concatenated from the blocks 7*s and r**1s
for the return words r, s to b in u and some k € N, k£ > 1. By Proposition 17, there is a unique standard
Sturmian sequence u’ such that u = G(u’). By Lemmas 19 and 20, there is a unique bispecial factor o’
of u’ with the return words 7’ and s’ such that b = G(V')1, r = G(r'), and s = G(s’). Moreover, u’ is
concatenated from the blocks (r)*s” and (r')**+1s’. Clearly, [b'| < |b| and so by the induction hypothesis,
the words (/)*+1’ and s'b’ are the longest factors of u’ with the fractional root 7/ and s’, respectively.
But then by Observation 23, the words r*+1b = G((r')¥*+1b')1 and sb = G(s'b')1 are the longest factors
of u with the fractional root r = G(r') and s = G(s'), respectively. O

Having in mind our goal to describe the critical exponent of any CS Rote sequence and Theorem 14,
we need to determine the indices of return words to bispecial factors in standard Sturmian sequences,
i.e., the lengths of factors from Lemma 24. We also want to distinguish, which of these return words are
(un)stable. Both of these tasks can be solved using the Parikh vectors of the relevant bispecial factors and
their return words. We deduce the explicit formulae for the needed Parikh vectors in Proposition 30. For
this purpose, we adopt the following notation.

Notation 25. To a standard Sturmian sequence u with the directive sequence A = G** D*2G* D ...
or A = D*G* D% @G ... we assign an irrational number § € (0,1) with the continued fraction
expansion

0= [0,(11,&2,&3, e ] .

For every N € N, we denote by 2 the N th convergent to the number @ and by o the N th convergent
N

0
to the number i1

Remark 26. Let us recall some basic properties of convergents. They can be found in any number theory
textbook, e.g., [12].

1. The sequences (pn), (¢n), and (q}y) fulfil the same recurrence relation for all N € N, N > 1,
namely
XN =anvXn-1+ XNn-2,

but they differ in their initial values: p_; = 1,po = 0; ¢—1 = 0,90 = 1; ¢"; = ¢{, = 1. It implies
forall N € N
PN 4N =dy -

2. Forall N € N, N > 1, we have
1 0 1 oaz) 1 0 1 aon _ [ P2n-1 P2n ) .
ar 1 0 1 azn—1 1 0 1 GoaN-1 QN )’
1 0 1 az) (1 asn—2 1 0\ _ (Pan-1 Pan-—2
ap 1 0 1 0 1 asy—1 1 GoaN-1 Qan—2 /)

Remark 27. For the description of a standard Sturmian sequence u we use the number 6. Usually, a
standard Sturmian sequence is characterized by the so-called slope, which is equal to the density of the

letter 1 in the sequence u. In our notation, the slope of u is %9 =[0,1 + a1, as,as, .. .| if the directive
sequence A starts with D, otherwise the slope is ﬁ =10,1,a1,as9,as,...].
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In the sequel, we will need two auxiliary statements on convergents % to 6.

Lemma 28. Forall N € N we have
PN 0 PN PN-1
mod 2 and mod 2.
()7 (0) ()7 (33)
Proof: The first statement is a consequence of the fact that p and g, are coprime. We show the second
statement by contradiction. Assume that there exists K € N such that (p K> = (p K=l ) mod 2. Let

dK dr -1
K denote the smallest integer with this property. As ¢_; = 0 and gy = 1, necessarily, K > 0. Using the

recurrence relation satisfied by the convergents, we can write
Pr \ _ aK PK-1 + Prk-2\ _ ( PK-1 mod 2.
dK dK-1 dK -2 dK -1

If ax is even, then the previous equation gives <Z g :z ) = <Z g :i ) mod 2, which is a contradic-
tion with the minimality of K.

If ag is odd, then the previous equation gives (2 ;Ii z) = <8) mod 2, which is a contradiction
with the first statement.

Lemma 29. Forall N € N, N > 1, we have
DPN-1 DPN-2 D1 Do PN DPN-1 1
+an— ot + = - —~ :
aN(QN1> a“ 1(QN2> a2(Q1> al(Qo) (QN> (CJN1> <1>
Proof: It can be easily proved by induction on V. O

The Parikh vectors of the bispecial factors of u and the corresponding return words can be easily
expressed using the convergents % to 6. We will use these expressions essentially in the next sections.

Proposition 30. Let b be the n'" bispecial factor of u with the directive sequence G* D*>G* D% .. ..
We denote r and s the more and the less frequent return word to b in u, respectively. Put ag = 0 and write
ninthe formn =m+ag+ a1 + a2 + - -+ ay for aunique N € Nand 0 < m < any1. Then

=)

(s) = <mpN +PN1>,.

~
<u

<!

2.
maN + gnN-1

3 V()= (m+1) (Zg) + (zzﬁ - G)
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Proof: First we suppose that IV is even and denote u’ the standard Sturmian sequence with the direc-

tive sequence GoN+1 D*N+2(GAN+3 ... By Remark 18, u’ is concatenated from the blocks 1*¥+10 and
1e~+11+10, Thus its m" bispecial factor is & = 1™ and the return words to b’ in u’ are v’ = 1 and
!/ m

s’ =1m0.

By Lemmas 19 and 20 and Remark 21,
r=G"DY...GN-1 DN (y") and  s=G"D*...G"1D"W(s).

By Corollary 22 and Lemma 29, the Parikh vectors of r and s satisfy
= _ 1 0 1 ag L 1 0 1 anN 0 _ PN .
0= (o V)6 )G D)0 M) E) ()
‘7(3)* 1 0 1 ao 1 0 1 an 1\ (mpny+pNn=1
T \la 1 0 1 an—1 1 0 1 m) \mqn+aqv_1 )’

To find the Parikh vector of b we start with the bispecial factor b’ = 1" and N times apply Corollary 22.
Eventually, we rewrite the arising products of matrices by Lemma 29 and we get

> PN PN-1 PN-2 b1 Po
V(b) = _ )
(b) m(qN>+aN(qN_l>+azv 1<QN—2)+ +a2<ql>+a1(qo)

This together with Lemma 29 implies the statement of Item (3) for /N even. The proof for N odd is
analogous. O

Remark 31. If we assume in Proposition 30 that u has the directive sequence A = D1 G*?> D*3 G - . .,
then by Remark 18, the coordinates of the Parikh vectors will be exchanged, i.e.,

Por= () o= (v i) o = () (071) - (1),
7 The critical exponent of CS Rote sequences

We are going to give an explicit formula for the critical exponent of a CS Rote sequence v. We will
use Theorem 14 which requires the knowledge of the indices of return words to bispecial factors in the
Sturmian sequence S(v). It is well-known that there is a unique standard Sturmian sequence u such that
both S(v) and u have the same language. Since the critical exponent depends only on the language, we
can work with the standard Sturmian sequence u instead of S(v).

In the following proposition and theorem, we use Notation 25.

Proposition 32. Let u be a standard Sturmian sequence with the directive sequence G D*2G* D% . . .
or DG DG - .- and let n € N be given. We put ag = 0 and we denote r and s the more and the
less frequent return words to the n'" bispecial factor of u, respectively.

an_1—2

I. Ifn=m+ag+a;+az+---+an, where 0 < m < ani1, then ind(r) =ani1+2+ :
N

2. Ifn=ap+ay+as+---+apn, then ind(s)zaN—i-Q—i-quz_2

aN_1
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3 Ifn=m+ap+a+ax+---+an, where0 <m < any1, then ind(s) =2+ gy —2

may+ay_1’
Let us comment what is meant by ¢’ , in the case N = 0 in Item (2): we define ¢’ 5 to satisfy the
recurrent relation 1 = ¢, = apq’_; + ¢ 5 = ¢’ 5.

Proof: We assume that N is even (the case of NV odd is analogous). Moreover, we assume that u has the
directive sequence G** D*2 G D . ..

Since b is the n'” bispecial factor in u, the derived sequence d(b) is standard Sturmian with the
directive sequence G¥ DN+2(GAN+3 ... where k = ax 1 — m, see Corollary 22. By Remark 18, d(b)
is a concatenation of the blocks 1¥0 and 1¥*10. Therefore, the sequence u is concatenated from the blocks
r*s and r¥t1s, where r and s are the return words to b. By Lemma 24, the factor »**1b is the longest
factor of u with the fractional root r and sb is the longest factor of u with the fractional root s. In other

words, ") = rF+1p and s"() = sb. By Proposition 30 and Remark 26, we have
r|=pyn+av =dqy, Isl=mgy+dy_1, and [b] = (m+1)gy +qy_, —2.
As [rFH1p| = (k + 1)|r[ 4 [b] = (a1 —m + D)7 + [b] = (ani1 +2)gy + gy, — 2, we get

k+1b‘

ind(r) = =t

I7l

2

!’
dh -
ant1 + 2+ 2=
an

As |sb| = (2m + 1)¢ly + 2¢y_; — 2, we get form =0

. b an+2qn_1—2  andn_1+adn_ot+2qNn_1—2 dn_o—2
ind(s) = 12l = INTZINA 72 ONIN AN TRINA T2 ) g IV 2 2

[s| — aN_1 aN -1 aN_1

and form > 0

. sb (2m+1)gn+2qn ;-2 =2
ind(s) = bl =m0 2y g2
INTIN -1 INTAN -1

If the directive sequence equals D% G*2 D% G - - -, only the coordinates of the Parikh vectors of r, s,
b are exchanged (see Remark 31). O

Theorem 33. Let v be a CS Rote sequence and let u be the standard Sturmian sequence such that
L(S(v)) = L(u). Then cr(v) = sup(My U Ma U M3) , where

! -1
Ml_{aN+1+2—|—qN_}: quseven,NEN};

Yy
2 No1—1
M2 = {CLN+; Tt —+ qN;qz\[ . gN is Odd, N € N} ]

=1
Ms = {2+ % t gqN-1,9n areodd and a1 > 1, N > 1}
In—1 tan

if the directive sequence of wis G** D*?G* D - - -, and

/
N —

-1
MI:{aNH—I—Q—i—q } :pNiseven,NeN};
N
2 ! -1
My={ L2 IN1 T 0 isodd, N e NV
2 20N
qy — 1
Ms = {2+ % : pN—1,PN areodd and an+1 > 1, N > 1}
In—1 tan
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if the directive sequence of u is D**G*> D*3G* - . ..

Proof: Let us recall that every CS Rote sequence is uniformly recurrent and aperiodic. In addition, to a
CS Rote sequence v we can always find a unique standard Sturmian sequence u such that u has the same
language as S(v). It is important to realize that Theorem 14 holds for the pair v and u, too.

First, we assume that u has the directive sequence G** D*2G*3 D% - ... We compute the suprema of
the sets A; and Az defined in Theorem 14, since by this theorem, cr(v) = sup(4; U As).

Let us decompose A; into A1 = Ux_, AEN), where

N N+1
AgN) = {indu(u) + ﬁ : wis a stable return word to the n*” bispecial f. of u, Z ap <n < Z ak} .
k=0 k=0

By definition, a word wu is stable if the number of ones occurring in w is even, i.e., the second component
of its Parikh vector V'(u) is even. Combining Propositions 30 and 32, we obtain that AgN) contains

’
gn_1—1 . .
. aN+1+2+Nq%1qu is even,
N

1. .
if g —1 is even,

’
. aN+2+qJ;};21

o the subset B§N) ={2+ # :may +qn_1even, 0 <m < any1}
N N—-1

First we look at Ago). Since qp = lisodd, g1 = Oiseven,ap = 0, q) = ¢ 1 = ¢ 5 = 1, we get
A§0> = {2}. Since we know that cr(v) > 2, we can consider only N > 1. Let us note that all elements

in B§N) are strictly less than 3. If gx or gy_1 is even, the set AgN) contains an element > 3 and the

set BgN) does not play any role for sup A;. If both ¢x and gy _1 are odd, there is an element in BgN)
only for odd m < apy41, and obviously, sup BgN) is attained for m = 1 (if ayy11 = 1 the set is empty).
Together it gives sup A1 = sup(M; U M3).

Analogously we define the sets AgN) for unstable return words. Then AgN) consists of

qn 1

° %(aN+1+2+

) if g is odd,

71_
!
5N

o Lay +2+™=2"1)if gy_y is odd,

_27
’
aN -1

o the subset BéN) ={3(2+ L) :mgn +gn-10dd, 0 <m < any1}.

mqly+ay_q

We easily compute that sup Aéo) = %(al + 2). All elements in BéN) are strictly less than % Thus if

qN or gn_1 is odd, the set BéN) does not play any role for sup As. If gx and gy _1 are even, then the
set BéN) is empty. It means that sup A; = sup My. We can conclude that cr(v) = sup(4; U Ay) =

Sup(Ml U M2 U Mg)

If the directive sequence equals D**G*2 D* G - - -, only the coordinates of the Parikh vectors of r
and s are exchanged (see Remark 31). O
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8 CS Rote sequences with a small critical exponent

In this section, we present some corollaries of Theorem 33. As we have mentioned, Currie, Mol, and
Rampersad proved in [7] that there are exactly two languages of rich binary sequences with the critical
exponent less than . Both of them are languages of CS Rote sequences.

Let us remind that the critical exponent depends only on the language of a sequence and not on the
sequence itself. Therefore, there are infinitely many CS Rote sequences with the critical exponent less
than 12, but all of them have one of two languages. We show that among all languages of CS Rote
sequences only these two languages have the critical exponent less than 3. We also describe all languages
of CS Rote sequences with the critical exponent equal to 3.

Proposition 34. Let v be a CS Rote sequence associated with the standard Sturmian sequence u = S(v).
If cr(v) < 3, then the directive sequence of u is of one of the following forms:

1. G (D*G?)%, where ay = 1 or a1 = 3; in this case cr(v) = 2 + %;
2. G D*(G?D?)%, where a1 = 1 or ay = 3; in this case cr(v) = 3;
3. G DG (D*G?)%, where ay = 2 or a; = 4 and az = 1 or a3 = 3; in this case cr(v) = 3;

4. D'G*(D*G?)“, where ay = 1 or ay = 3; in this case cr(v) = 3.

Proof: Foreach N € N we denote Sy = any1+2 +4 ~! the number which is a candidate to join the

set M. We can easily compute that Bg =a1+2, 0 = a2 + 2 and By > 3 for every N > 2. Indeed, it
suffices to realize that ¢’ | = ¢{ = 1, ¢§ = a1 +1 > 1 and (¢}y) v>1 is an increasing sequence of integers,

) (m%_l € (0,1) for all N > 2. Since we look for a sequence v with cr(v) < 3, we have to ensure that
N

BN ¢ M for all N > 2 by the parity conditions. It is also important to notice that sup M3 < 3. Indeed,

since - L ¢ [0,1) forall N € N, all elements of M3 are less than 3.
INTIN_1

First we assume that the directive sequence of uis G** D%2G?* D% - ... By Theorem 33, if ¢y is even,
then 8y € M, otherwise %BN € Ms. To ensure sup M; < 3, gy has to be odd for all N > 2. Moreover,
to ensure sup Mo < 3, By < 6andsoanyi < 3forall N > 2. Since gg = 1is odd, %50 =5 +1leM
and so a; < 4. We distinguish two cases.

(1) If ¢1 = a4 is odd, then M; is empty and %51 = % + 1 € My. Thus ap < 4. The recurrent relation
qN = aNgN-1 + qn—2 with the odd initial conditions gg and ¢; produces gy odd for all N > 2 if and
only if ay is even for all N > 2. We can summarize that a; € {1,3}, az € {2,4} and any = 2 for all
N > 3.

Let us observe that if ay = 4, then sup My = 3. Since sup M3 < 3 and M; is empty, we conclude that
cr(v) = sup My = 3. Tt gives us Item (2) of our proposition.

If as = 2, then it is easy to check that all elements of M5 are smaller than g and thus sup My <
Since M is empty, to prove Item (1), it remains to compute

pojot

/

qN — 1
dn_1 TN

1 5
:NEN}=2+>.

sup M3 = sup {Q—i— 7372
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The sequence (g )n>2 fulfils the recurrence relation ¢y = 2¢7_; + ¢)y_, with the initial conditions
gy, = 1 and ¢f = a1 + 1. This linear recurrence has the solution

dy = 355 (a1 +V2) (1 + V2N = (@1 = VD)1 = V2)V) . (M)
Now it suffices to use the expression (7) to verify that
=1 1 v —1 1
lim N~ =~ and N < forall N €N,
Nooo gy t+dy V2 dv_1tdy ~ V2
(i) If ¢ = ay is even, then My = {1 = as + 2} since all the others gy are odd. Thus as = 1
and cr(v) > 3. The recurrent relation gy = anqn—1 + gn—2 with the initial conditions ¢y = 1,

g1 = a1 € {2,4} produces odd g for all N > 2 if and only if a3 is odd and ay is even for all N > 4.
Moreover, to ensure sup My < 3, we have to take a; < 4 and ay < 3 forevery N > 3. Together with the
parity conditions we get a; € {2,4}, a2 = 1, a3 € {1,3},and ay = 2 forall N > 4. Since sup M3 < 3,
the set M3 can be omitted. Together it means that in this case cr(v) = 3 and it corresponds to Item (3) of
our statement.

Now we assume that the directive sequence of uis D**G*2 D% G - - .. By Theorem 33, if p is even,
then Sx € My, otherwise BTN € M. Since py = 0is even, 8y = a1 + 2 € M;. Therefore, a; = 1 and
cr(v) > 3. Since p; = a1po+p—1 = 1isodd, % = 2 +1 € My andsoay < 4. To guarantee cr(v) < 3,
pn has tobe odd and a1 < 3 forall N > 2. The recurrence relation py = axpny—1 + py—2 With the
initial conditions py = 0 and p; = 1 produces py odd for all N > 2 if and only if a5 is odd and ay is
even for all N > 2. Clearly, the set M3 can be omitted. We may conclude that cr(v) = 3 and a; = 1,
ag € {1,3}, and ay = 2 for all N > 3, which corresponds to Item (4).

O

Remark 35. Let us emphasize that all standard Sturmian sequences from Proposition 34, i.e., which are
associated with CS Rote sequences with the critical exponent < 3, are morphic images of the fixed point
of the morphism D2G?2. If follows directly from the fact that their directive sequences have the periodic
suffix (D?G?)~.

Example 36. In Proposition 34, we have shown that the CS Rote sequence v such that S(v) has the
directive sequence G(D?G?)“ has the critical exponent cr(v) = 2 + % Let us determine the critical

exponent cr(v’) of the CS Rote sequence v’ associated to the standard Sturmian sequence S(v’) obtained
by the exchange of letters from S(v), i.e., S(v') = E(S(v)).

By Remark 18, the directive sequence of S(v') equals D(G2D?)%. Thus we have § = [0,1,2,2,2,...]
and it is readily seen that py is even if and only if N is even. Let us calculate cr(v’) by Theorem 33. We
have

Goy—1 — 1 Goy—1 — 1
M1:{a2N+1+2+2N71:NEN}={3}U{4+2Nq/71:NEN,N21}.

/
2N 2N

1
1+v2’
. Since the elements of M5 and M3 are < 3, we can conclude that

is increasing and has the limit

Using equation (7), we can check that the sequence (qQN,‘irl)
2N
and therefore sup M; = 4 + —1L

1+v/2
cr(v) =4+ 1+1ﬁ'
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It is well-known that among Sturmian sequences the sequence with the lowest possible critical exponent

is the Fibonacci sequence f, which has cr(f) = 3 + 1+2 75~ 3.602. The following theorem implies that

there are uncountably many CS Rote sequences with the critical exponent smaller than cr(f).

Theorem 37. Let G D*2G*3 D% - - . be the directive sequence of a standard Sturmian sequence u and
let v be the CS Rote sequence associated with u. Then cr(v) < % if and only if the sequence aiaqas - - -
is a concatenation of the blocks from the following list:

Ly: 111;

Ly: sl, where s € {2,4};

Lo: ¢s31, where c € {1,3} and s € {2,4}*;

L3: cs, where c € {1,3} and s € {2,4}",
and if the block Lo appears in ayazas - - -, then it is a prefix of ajasag - - -.

Proof: As in the proof of Proposition 34, we again use the sets M7 and M, from Theorem 33. The set

M3 can be omitted since sup M3 < 3.
‘1;\77 1—1

Let us recall that g = 1, ¢1 = a1, and if g, is even, then By = ayy1 + 2+ € M, otherwise

% BN € Ms. First we suppose that cr(v) < T and we deduce several auxiliary observations for each

2
N eN:
1. If gn even, then ay 41 = 1.

Proof: It follows from the inequality S < %

2. If gy odd, then ay 1 € {1,2,3,4}.

Proof: It follows from the inequality % BN < %

3. If gv—1 odd and g even, then g1 odd.

Proof: It follows from Item (1) and the relation ¢y +1 = an+19y +dN—1 = qN + qN—1-

4. If qiv even, g1 0dd, and gy 12 even, then an o € {2,4}.
Proof: It follows from Item (2) and the relation gn 2 = ant2gN+1 + gN-

5. If gn even, gy 41 0dd, and g 42 0dd, then ay 12 € {1,3}.

Proof: It follows from Item (2) and the relation gn 2 = ant2gN+1 + gN-

6. If gx odd, gn+1 0dd, and gy 42 0dd, then an 4o € {2,4}.
Proof: It follows from Item (2) and the relation ¢n4+2 = an+2qN+1 + N

7. If g odd, qn41 0dd, and gy 42 even, then ayio = {1,3}. Moreover, if ay;2 = 1, then N = 0
and a; = 1.
Proof: Item (2) and the relation gn+2 = ans2gn+1 + gy imply anio € {1,3}. Assume that
an4+2 = 1. Byltem (1), any+3 = 1. Asgny2iseven, 5N+2 € M and so 6N+2 = 3—}—%71_1 < %

N+2

By some simple rearrangements and applications of the recurrence relation, we can rewrite this
inequality equivalently as (ay+1 — 1)qly + ¢y_; < 2. Itis easy to verify that this inequality holds
only for N = 0Oand a; = 1 or N = 1 and az = 1. Nevertheless, the second case leads to a
contradiction with the assumption that both q;, g2 = a2q; + 1 are odd.
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8. Let M > N + 2. If qx even, ¢ even, and gx odd for all K, N < K < M, then an42 € {1,3},
ap =3andag € {2,4} forall K, N +2 < K < M.

Proof: Item (6) implies ax € {2,4} forall K, N +2 < K < M. By Item (5), ay+2 € {1,3} and
by Item (7), apr = 3.

Using the previous claims we show that for each J for which ¢ is even, at the position J + 1 ends one
of the blocks Ly, L1, or L. Moreover, the block Lj can only occur as a prefix of the sequence ajasas - - -,
while each of the blocks L and L is either a prefix of ajasag - - - or it starts at the position I + 2, where
1 is the greatest integer smaller than J for which ¢y is even. We discuss three cases:

e Let ¢; be even. Then Item (1) implies a; = 1. And since a; = ¢ is even and gy = 1 is odd, by
Item (2), we get a1 € {2,4}. Thus the prefix ajas of the sequence ajagas - - - is of the form L,
from our list.

e Let J > 1 be the first index such that ¢; is even. As q; = aj, a; is odd, and by Item (2), we get
ay € {1, 3}. Item (6) implies ax € {2,4} forall K,1 < K < J. By Item (7),ay = 3oray = 1.
Butif ay = 1, then J = 2 and a; = 1. Finally, Item (1) implies ay+; = 1. Thus the prefix
aiasg - - -ajyajyq of the sequence ajaqas - - - is of the form Ly or Ly from our list.

e Let [ be an index such that g is even and let J be the smallest index greater than I for which ¢
is even. By Item (1), a;41 = 1. The word ay12 - - - aja 41 is by Item (4) or Item (8) either of the
form L4 or Ls.

If there are infinitely many even denominators gy, then we have shown that the sequence ajasas - - -
is concatenated from the blocks L, L1, and Lo (L can only be a prefix). It remains to consider the case
when only finitely many denominators ¢ are even.

e Let gy be odd for every N € N. Then ¢; = a; is odd. Especially, since both ¢y and ¢; = a; are
odd, Item (2) implies a; € {1,3} and it follows from Item (6) that asagay - - - € {2,4}". Therefore,
the sequence ajasag - - - is equal to the block L3 from our list.

e Let L > 1 be the last index such that gy, is even. In particular, it means that q) is even only
for a finite number of indices. Item (1) implies that ay+; = 1. By Items (5) and (6), the suffix
ar+201+3ar+4 - - - of the sequence ajasas - - - equals to Ls.

Now we have to show that any directive sequence G** D*2G%3 D% - - . such that ajaqasg - - - is concate-
nated of the blocks from the list gives a standard Sturmian sequence u such that the CS Rote sequence v
associated to u has the critical exponent less than %

If g is odd, then %,BN = %GN+1 + 1+ qN2_q§V71 <3+ 2%2\:3;\]72 < %, aseach ayq is < 4.

If qn is even, it is easy to prove by induction on N that there is a block of the form Lg, L, or Lo
ending at the position IV + 1 (and Lg only for N = 2). In particular, it means thatay; = 1l and ay > 2
adN—1
24y 1Ty

or a; = ag = az = 1. In the first case, we get Sy < 3 +

_ +1-1  _ 1 _7
get B = 3+ a2?¢1zl+1)+1 =3+3 <3

< % while in the second case, we



Complementary symmetric Rote sequences: the critical exponent and the recurrence function 23

’
dN—1

To show that sup(M; U Ms) < %, we need to show that sup T < % Asay < 4forall N,
N-—1 N—2
I ’ ’
. IN—2 IdN—2 1 IN—1 1 5
we can estim = = and th = < 2.
€ can estimate A v =a d thus DT 2+q§V72 < O
d

Remark 38. It would be interesting to reveal some topological properties of the set

Crrote := {cr(v) : v is a CS Rote sequence},
for instance, to find its accumulation points in the interval (3, %) The proof of the previous theorem
implies that there is no CS Rote sequence with the critical exponent between 3 + % and 3 + % We
even believe that for any CS Rote sequence v, the following implication holds: If cr(v) < 3 + 5, then

cr(v) <3+ 1+1\/§-

9 The recurrence function of CS Rote sequences

The main result of this section is Theorem 54, where we describe the recurrence function of any CS Rote
sequence in terms of the convergents related to the associated Sturmian sequence. To obtain this result,
we proceed similarly as in the previous parts concerning the critical exponent, i.e., we transform our task
of finding the recurrence function of a CS Rote sequence into studying some properties of its associated
Sturmian sequence. Let us emphasize that we may still restrict our consideration to CS Rote sequences
associated with standard Sturmian sequences without loss of generality.

Definition 39. Let u be a uniformly recurrent sequence. The mapping R, : N — N defined by
Ry(n) = min{N € N : each factor of u of length N contains all factors of u of length n}

is called the recurrence function of u.
The definition of the recurrence function may be reformulated in terms of return words [6].

Observation 40. Let u be a uniformly recurrent sequence. Then
Ry(n) = max{|r| € N : r is a return word to a factor of u of lengthn} +n — 1.

Moreover, to determine R, (n) we can restrict our consideration to return words to bispecial factors
of u.

Lemma 41. Let u be a uniformly recurrent aperiodic sequence. For n € N, we denote
Bu(n) ={b e L(u) : Jw € L(u),|w| = n, such that b is the shortest bispecial factor containing w} .

Then
Ry(n) = max{|r| : ris a return word to b € By(n)} +n — 1.

Proof: For evaluation of R, (n) we use Observation 40. Let w € £(u) and |w| = n.
If w is not right special, then there exists a unique letter  such that wz € L(u). Obviously, the
occurrences of w and wx in u coincide. Therefore, return words to w and wx coincide as well.
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If y is not left special, then there is a unique letter y such that yw € L(u). If r is a return word to w,
then the word yry ! is a return word to yw and the return words r and yry~! are of the same length.

These two facts imply that the lengths of return words to w equal the lengths of return words to the
shortest bispecial factor containing w. O

The following lemma shows that for a CS Rote sequence v associated with the Sturmian sequence u
the sets By (n+ 1) and B,,(n) correspond naturally for every n € N. Thus to determine the set By (n+ 1),
we first describe the set By (n) for a standard Sturmian sequence u.

Lemma 42. Let w be a factor of length n 4+ 1 in a CS Rote sequence v and let v be the shortest bispecial
factor of v containing w. Then the factor S(v) is the shortest bispecial factor of the associated Sturmian
sequence S(v) such that S(v) contains S(w).

Proof: The statement is a consequence of the simple fact that S(v) is a bispecial factor of S(v) if and
only if v and F(v) are bispecial factors of v. (See Lemma 7.) O

In the sequel, we will essentially use a characterization of Sturmian sequences by palindromes from [10].
Let us first remind some basic notions. Consider an alphabet A. The assignment w = wowy - - - Wp_1 —
W = Wp_1Wp_2 - wWq is called a mirror mapping, and the word w is called the reversal or the mirror
image of w € A*. A word w which coincides with its mirror image w is a palindrome. If p is a palin-
drome of odd length, then the center of p is a letter a such that p = sas for some s € A*. The center of a
palindrome p of even length is the empty word €.

Theorem 43 ([10]). A sequence u is Sturmian if and only if u contains one palindrome of every even
length and two palindromes of every odd length.

Moreover, when studying in detail the proof of Droubay and Pirillo 43, we deduce that any two palin-
dromes of the same odd length have distinct centers, one has the center 0 and the other one has the center 1.
In fact, we get the following corollary.

Corollary 44. A binary sequence u is Sturmian if and only if every palindrome in L(u) has a unique
palindromic extension, i.e., for any palindrome p € L() there exists a unique letter a € {0, 1} such that
apa € L(u).

We believe that Theorem 46 is already known. However, since we have not found it in the literature,
we add its proof. For this purpose, we need an auxiliary lemma. Let us remind that the language £(u) of
a Sturmian sequence u is closed under reversal, i.e., L(u) contains with every factor w also its reversal
w, and all bispecial factors of u are palindromes.

Lemma 45. Ler u be a Sturmian sequence. Let p € L(u) be a palindrome and let v be the shortest
bispecial factor containing p.

1. Then p is a central factor of v, i.e., v = sps for some word s.

, then v/ = v.

2. If V' is the shortest bispecial factor with the same center as p and |[v'| > |p

Proof:

1. Let v = sp be the shortest left special factor containing p, in particular Osp and 1sp belong to L(u).
Since the language £(u) is closed under reversal, ps is right special, i.e., ps0 and ps1 belong to
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L(u). As s is the only possible extension of p to the left by a factor of length |s|, both sps0 and
sps1 belong to £L(u). By the same argument, § is the only possible extension of p to the right by
a factor of length |s|. Therefore, Osps and 1sps belong to £(u). Thus sps is the shortest bispecial
factor containing p.

2. Assume for contradiction that v # v’. Since v and v’ are palindromes with the same centers, there
exists a palindrome ¢ such that v/ = s'qs’ and v = s¢5. Let q be the longest palindrome with
this property. If |q| = |v’|, then necessarily v' = v. If |[v'| > |g|, then the last letters of s’ and
s are distinct and ¢ is a palindrome with two distinct palindromic extensions. This contradicts
Corollary 44.

O

Theorem 46. Let u be a Sturmian sequence and n € N,n > 1. Find the shortest bispecial factors P,
resp. Py, resp. Py of length greater than or equal to n with the center €, resp. 0, resp. 1. Then the
following statements hold:

1. Let w be a factor of u of length n and let v be the shortest bispecial factor containing w. Then
NS {PE,P(),Pl}.

2. If u contains no bispecial factor of length n — 1, then for each i € {,0, 1} there exists a factor w
of u of length n such that the shortest bispecial factor containing w is P;.

3. If there exists a bispecial factor v of u of length n — 1 and let i € {e,0,1} be the center of the
palindrome v, then for each j € {e,0,1}, j # i, there exists a factor w of u of length n such
that the shortest bispecial factor containing w is P;, while P; is not the shortest bispecial factor
containing w for any factor w of u of length n.

Proof: Consider the Rauzy graph of u of order n — 1, i.e., a directed graph I',,_; whose vertices are
factors of u of length n — 1 and edges are factors of u of length n. An edge e starts in the vertex = and
ends in the vertex y if x is a prefix and y is a suffix of e. Denote ¢, resp. r the vertex corresponding to
the unique left special, resp. right special factor of length n — 1. Further on, denote p 4 the shortest path
from ¢ to r, and pp and pc the shortest paths of non-zero length starting in r and ending in ¢. If u has
no bispecial factor of length n — 1, then p4 has a positive length, see Figure 1(a). If u has a bispecial
factor of length n — 1, then the path p 4 consists of a unique vertex — the bispecial factor b, see Figure 1(b).

Observing these Rauzy graphs, it is obvious that for each edge e from the path p,, where z € {A, B, C'},
the shortest bispecial factor containing e is the same as the shortest bispecial factor containing p,.

Since the language £(u) is closed under reversal, the mirror mapping restricted to the factors of length
n — 1 and n is an automorphism of the graph I';,_;. Let us suppose that p, contains a palindrome q of
length n — 1 or n. As any palindrome is mapped onto itself, 7 = ¢, and ¢ = r, this path p, is mapped
onto itself, i.e., p, = p;, and the palindrome q is a central factor of p,.. On one hand, it means that p, is
a palindrome with the same center as ¢, on the other hand, it also means that p, cannot contain any other
palindrome of length n — 1 and n.

By Theorem 43 and the comment after it, there are exactly three palindromes among all vertices and
edges of I',,_; (all factors of length n — 1 or n), and moreover, they have distinct centers. We may



26 Lubomira Dvoidkovd, Katerina Medkovd, Edita Pelantovd

(a) (b)

Fig. 1: The Rauzy graph of a Sturmian word (a) without a bispecial vertex, (b) with a bispecial vertex.

conclude that each path p4, pp, pc contains exactly one palindrome of length n — 1 or n. Therefore, all
these paths are palindromes and their centers are distinct. The rest of the proof follows from Lemma 45.
O

Observation 47. Let P be a palindrome. Then its Parikh vector satisfies:
1. V(P) = (8) mod 2 if and only if P has the center ;

2. V(P) = ((1)) mod 2 if and only if P has the center 0;

3 V(P) = ((1)) mod 2 if and only if P has the center 1.

Let us recall that a factor of a standard Sturmian sequence u is bispecial if and only if it is a palin-
dromic prefix of u. Therefore we can order the bispecial factors of a given standard Sturmian sequence u
according to their lengths and denote BS(k) the k-th bispecial factor of u. Thus BS(0) = ¢, BS(1) = q,
where a is the first (and the more frequent) letter of u etc.

The sequences (pn), (gn). and (¢y) we use in the remaining part of the paper were introduced in
Notation 25, the notation B,,(n) comes from Lemma 41.

Theorem 48. Let u be a standard Sturmian sequence with the directive sequence G** D*?G* D% - - - or
DUG DG -, andn € [qy, Ny, ) for some N € N. Put M = ag + ay + az + - -+ + an, where
ag = 0.

o Ifn €[qy,dny — 1) and n — 1 is not the length of a bispecial factor, then

Bu(n) = {BS(M+m), BS(M+m+1), BS(M+ayn+1+1)} for some m € {0,1,...,an+1 — 1}.

o Ifn € [qy,qny1 — 1] and n — 1 is the length of a bispecial factor, then

Bu(n) ={BS(M +m),BS(M + any1 + 1)} for somem € {0,1,...,an41}.
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Proof: Assume that u has the directive sequence G** D*?G*3D® - ... By Proposition 30, the Parikh
vectors of bispecial factors satisfy
V(BS(M +i+1)) = V(BS(M +1)) + (ZN> for i=0,1,...,an41 — 1 (8)
N
and  V(BS(M +ani1+1)) = V(BS(M +an+1)) + (Zzi > : )

0

0

centers of palindromes BS(M + i), where i = 0,1,...,an1, alternate between two distinct elements

of {¢,0,1}. The third element of {¢,0,1} is the center of the palindrome BS(M + anyy1 + 1), as

(ZN) #* (Z(ZNH) mod 2, see Lemma 28. By Proposition 30, the length of BS(M — 1) equals
N N+1

¢y — 2 and the length of BS(M + an41 — 1) equals ¢ — 2.

Using Observation 47 and the relation (2 N ) #+ < > mod 2 from Lemma 28, we deduce that the
N

e Let us discuss the case n = ¢}y ; — 1. The palindromes BS(M + any1 — 1), BS(M + an41)
and BS(M + an+1 + 1) have distinct centers, and n — 1 is the length of the palindrome BS(M +
an+1 — 1). Item (3) of Theorem 46 implies that all factors of length n occurs in BS(M + any1)
and BS(M + an41 + 1). Therefore, the set B, (n) consists of these two bispecial palindromes.

e Now we assume that n € [y, ¢y, — 2]. Clearly, the length of BS(M — 1) is strictly smaller
then n — 1 and n does not exceed the length of BS(M + any41 — 1). We choose the smallest
m € {0,1,...,an+1 — 1} such that n < |BS(M + m)|. The bispecial factors BS(M + m),
BS(M +m+ 1), and BS(M + an41 + 1) have distinct centers.

If n — 1 is not the length of any bispecial factor, then Item (2) of Theorem 46 implies that B,,(n) =
{BS(M +m),BS(M +m+1),BS(M +an4+1 +1)}.

If n — 1 is the length of a bispecial factor, then Item (3) of Theorem 46 together with the fact that
the centers of BS(M + i) alternate for i = 0,1,...,an4+1 — 1 implies that By(n) = {BS(M +
m),BS(M + an41 + 1)}

If u has the directive sequence D*' G*? DG - - - | then the proof will be analogous, only the coordinates
of the Parikh vectors will be exchanged, see Remark 31. O

Remark 49. The recurrence function of a standard Sturmian sequence u with the directive sequence
G D*GB DY - or DG D* G - -+ is known to satisfy Ry (n) = ¢y, + ¢y +n — 1 for every
n € [q¢ly,qn41)- Let us show that this formula is a consequence of the previous statements. Indeed, by
Lemma 41, we have to find the longest return word to the bispecial factor from the set B, (n) described
in Theorem 48. Using Proposition 30, we find that the longest one is the return word s corresponding to
the bispecial factor BS(M + an 1 + 1). Its length is |s| = ¢y, ; + ¢fy. And thus Lemma 41 implies the
above mentioned formula, which was obtained by Hedlund and Morse already in 1940, see [18].

We have prepared everything we need to derive the formula for the recurrence function of CS Rote
sequences. For this purpose, we recall Theorem 3.10 from [16]:
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Theorem 50. Let v be a CS Rote sequence associated with the standard Sturmian sequence u = S(v).
Let v be a non-empty prefix of v.and w = S(v). Let v, resp. s be the more frequent, resp. the less frequent
return word to u in u and let { be a positive integer such that 0 is a concatenation of the blocks r's and
r**1s. Then the prefix v of v has three return words A, B, C satisfying:

1. Ifr is stable and s unstable, then S(A0) =r, S(B0) = srfs, S(C0) = sr'*ls.
2. If r is unstable and s stable, then S(A0) = s, S(B0)=rr, S(C0)=rsr.
3. If both r and s are unstable, then S(A0) = rr, S(B0) =rs, S(CO) = sr.

We will use the previous theorem for the determination of return words to bispecial factors of CS Rote
sequences (which are by Lemma 42 associated to bispecial factors of Sturmian sequences). In particular,
we focus on v such that S(v) is a bispecial factor of the Sturmian sequence u = S(v) and S(v) belongs
to the set By (n) described in Theorem 48.

Lemma 51. Let v be a CS Rote sequence and u = S(v) be the associated standard Sturmian sequence
with the directive sequence G D*2G* D% - .. or D“*G*2 DG - ... Put M = apg+ai+as+---+ay,
where ag = 0. Let x and y be the bispecial factors in v such that S(x) = BS(M + an4+1 + 1) and
S(y) = BS(M +m), wherem € {0,1,...,an+1 — 1}. Then at least one return word to x in v is longer
than every return word to y in v.

Proof: On one hand, by Lemmas 19, 20 and Remark 21, the derived sequence d,,(S(y)) is a standard Stur-
mian sequence with the directive sequence G*N+1 =" DON+2GAN+3 ... or DIN+HITMGINT2 DAN+S ..t
implies that u is a concatenation of the blocks 7’ ‘s’ and r'* s’ where £ = a ~N+1 — m. The return words
to S(y) are by Proposition 30 of length |r’'| = py + gy = ¢)y and |s'| = mq)y + ¢)y_,. Regardless of
(un)stability of the return words to S(y), the longest return word to y in v is by Theorem 50 of length at
most

4+ D) +2]s" = (ans1 —m+1)gy +2(m gy +ay_1) = vy + (M +Day + oy 1 < 2¢n 1.

On the other hand, the return words 7, s to S() in u have by Proposition 30 either lengths |r| = ¢y, ; and
Is| = qyy1 + dy (f any2 > 1), orlengths |r| = ¢y | + ¢)y and |s| = ¢y, (if an;2 = 1). Regardless
of (un)stability of the return words to S(z), one of the return words to x in v is of length at least

Ir| + |s] = 2¢n11 + dn -

O

Lemma 52. Let v be a CS Rote sequence and u = S(v) be the associated standard Sturmian sequence
with the directive sequence G** D*2G* D% ... or D*G*2 DG - .. Put M = ag+ai+as+---+ap,
where ag = 0. Let x and y be the bispecial factors in v such that S(x) = BS(M + ayy1 + 1) and
S(y) = BS(M + an+1)- Then at least one return word to x in v is longer than every return word to y
inv.

Proof: Let us denote the return words to S(y) by ' and s’, and the return words to S(z) by r and s. By
Proposition 30, |r'| = ¢}y, and |s'| = ¢y
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First, we assume that 7’ is unstable. Then by Theorem 50, the return words to ¥ in v are of length at
most 2|r'| + |s| = 2q}y ; + ¢y Regardless of (un)stability of the return words to S(x), one of the return
words to x in v is of length at least |r| 4 [s| = 2¢y; + ¢y -

It remains to discuss the case when 7’ is stable. Let us assume that u has the directive sequence
G* D% G* D - ... By Proposition 30, it means that |r'|; = gn41 is even. We use Theorem 50 to find
the longest return word to y. Similarly as in the proof of Lemma 51, we determine that £ = ay 4o and
thus the longest return word to y in v is of length

L' =2|s'|+ ({+D|r'| = 2¢y + (ant2 + Va1 = Gvio + v T v

Let us compare L' with the length of the return words to = in v. If a4 2 > 1, then by Proposition 30,
[r]1 = |r'|1 = gn+1 and 7 is stable as well. The longest return word to x is by Theorem 50 the return
word sr**1s, where £ = ayo — 1. Its length is

L =2|s| + anya|r| = 2(dny1 + dv) + ant2dni1 = Ao + 2080 +dv > L.

If an42 = 1, then by Proposition 30, |r|1 = gn+2 = qn+1 + gy and |s|1 = gn4+1- Since gy 41 is
even, necessarily gx is odd (as follows from the well-known relation pygn+1 — PN4+1gN = (—l)N +1
for all N). It means that r is unstable and s is stable. Thus the longest return word to  in v has the length

L=2r|+[s| = 2(qn 41+ dv) + dns1 = 20n 42 + A1 > L.

If u has the directive sequence D% G2 D*3 G - - - | the proof is analogous, we only have to take into
account that the coordinates of the Parikh vectors are exchanged (see Remark 31). In particular, instead
of considering gy when determining the number of ones, we consider py . O

Proposition 53. Let v be a CS Rote sequence. Let u be the standard Sturmian sequence such that
L(S(v)) = L(u) and let u have the directive sequence G** D*2G*3 D% . .. or D**G*2D*G% - - .. Put
M =ay+ay +as + -+ an, where ay = 0. Let L be the length of the longest return word to the
bispecial factor v of v such that S(v) is the bispecial factor BS(M +an1+1) in u. Then the recurrence
function of v satisfies Ry(n + 1) = L +n foranyn € ¢y, ¢y ), where N € N,

Proof: Let v/ be a CS Rote sequence associated with the standard Sturmian sequence u such that
L(S(v)) = L(u). Clearly, L(v) = L(v'). Since the recurrence function depends only on the lan-
guage of the sequence and not on the sequence itself, we can work with the CS Rote sequence v’ instead
of v.

It follows from Lemma 41 that R, (n+ 1) = Ry/(n+ 1) = L 4 n, where L is the length of the longest
return word to a bispecial factor from the set B,/(n + 1). Lemma 42 shows the correspondence between
the bispecial factors from the set By (n + 1) and the bispecial factors from the set By(n). In particular,
if v € By/(n + 1), then S(v) € Byu(n). Forevery n € [y, 1), Where N € N, the set By(n) is
described in Theorem 48. Together with Lemmas 51 and 52, it implies that the bispecial factor v such
that S(v) equals BS(M + an4+1 + 1) has the longest return word among all bispecial factors from the set
By (n+1). O

Theorem 54. Let v be a CS Rote sequence and let u be the standard Sturmian sequence such that
L(S(v)) = L(u). If u has the directive sequence G** DG D ... then the value of the recurrence
function Ry, forn € [qy,¢y,1), N €N, is given by
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21+ dy+n if anyyo>1
Case gy even: R,(n+1)= N+1 T AN ! ’
aN ( ) { 2q§v+2+n lf aN+42 = 1.
. . q?v+2+2q§\,+1+q§v+n if any2>1
Case even: R,(n+1)= .
IN+1 ( ) { 2Q§v+2 + qgv+1 +n if any2 =1
3¢y 1ty +n if any2>1

Case , odd: Ry(n+1)= ;
gN,gN+1 ( ) { q§V+3+q§V+2+q§V+1+n lf CLN+2:1.

If u has the directive sequence D**G*>D*G - - -, then the value of the recurrence function R, for
n € [qn,dn41) N €N, is given by

2¢n. 1+ qy +n if anyo>1
Casepy even: R,(n+1)= N+l TN X ’
b ( ) { QQ§V+2 +n if any2 =1
Ango +2dn 1 Fav+n i anyo>1
Case even: R,(n+1)= + + X
PN+ ( ) { 2¢n 4o T AN T if ant2 =1
31+ dy + 1 if anyo>1
Case py, odd: R,(n+1)= N41 1IN ;
PN, PN+1 ( ) { Anis e T dy T if any2 =1
Proof: By Proposition 53, Ry (n + 1) = L + n, where L is the length of the longest return word to the
bispecial factor v in v such that S(v) = BS(M + an+1 + 1). Consider first that u has the directive
sequence G D*2(G* D - ... By Proposition 30, the Parikh vectors of the return words r and s to the
bispecial factor BS(M + ay41 + 1) are

1L V()= (pN+1), V(s) = <pN+1+pN> if anyo>1;

4N +1 gN+1 T gN
> PN+1 + DN = DPN+1 \ -
2. V(r)= , Vis) = if a =1.
(r) (qN+1 +qN) (s) (QN+1> N+2

Let us emphasize that at most one of the numbers gy and gy 1 is even. It follows from the well-known
relation pygn 11 — Pn+1gn = (—1)V L for all N. Moreover, let us recall that px + gn = ¢ly-

First we discuss the case ay 42 > 1.

e If g is even, then qx 41 is odd, i.e., 7 and s are unstable. Since |r| < |s|, Item (3) of Theorem 50
gives L = |rs| = 2qjy | + dy.

e If g1 iseven, then gy is odd, i.e., 7 is stable and s is unstable. We use Item (1) of Theorem 50 with
{ = ayy2—1. Clearly, L = 2[s|+ ((+1)|r| = 2(qn 11 +an) Han 2011 = Onpa+20v 1 -

e If both gy, gny1 are odd, then r is unstable and s is stable. Item (2) of Theorem 50 implies
L=1rsr|= 3q§\,_~_1 + iy
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It remains to discuss the case ay o = 1.

e If gy is even, then gy 41 is 0dd, i.e., r and s are unstable. Since |r| > |s|, Item (3) of Theorem 50
gives L = |rr| = 2q)y 1 + 2¢y = 2q 4o

e If g1 is even, then gy is odd, i.e., r is unstable and s is stable. Item (2) of Theorem 50 implies
L=lrsr| =3qyx11 + 20y = 2qN 10 + dyi1-

e If both qn, gn 41 are odd, then 7 is stable and s is unstable. We use Item (1) of Theorem 50 with
¢ =any3. Thus L = 2[s|+(£+1)|r| = 2¢y 1 +(ans3+1) (g 1 +aN) = Ozt aviot v

If u has the directive sequence D G*2 D% (G% - - - | then the statement of Theorem 54 will stay the
same, only gn and gy 41 will be replaced by py and py 1 because the Parikh vectors of r and s have the
coordinates exchanged, see Remark 31. O

Example 55. By Proposition 34, the critical exponent of the CS Rote sequence v such that S(v) has
the directive sequence G(D2G?)% is cr(v) = 2 + % In Example 36, we have shown that the CS Rote
sequence v’ associated to the Sturmian sequence S(v’) = E(S(v)) has the critical exponent cr(v’) =
4+ 75

Let us find an explicit formula for the recurrence function R, resp. Ry of the CS Rote sequence v,
resp. v’. We will see that these recurrence functions differ essentially, too. In the proof of Proposition 34,
we have shown that all gy are odd and we have found an explicit formula for ¢y, see (7). Applying

Theorem 54, we obtain for every n € [qj, ¢y 1)

Ry(n+1) =3¢y, +qy+n=n+ 2\1@((4+3\/§)(1 FV2)NHL (4 - 3V2)(1 - ﬁ)N“) :

Further on, py is even if and only if IV is even. Therefore, we obtain for every n € (g5, ¢on41)

1
Ry(n+1)=2¢3y, +dony +n=n+ WG ((1 + V2PN (1 ﬁ)‘m?’) ;

and for every n € [ghn_1,doN)

1
B (n+1) = Gonia + 2008 + Gon-a Fn=n+ - (14 V222 = (1 - v2)2N+2).
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