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Abstrakt

Tato dizertaèní práce se vìnuje studiu strukturních vlastností nekoneèných slov s nízkou
faktorovou komplexitou. Práce je koncipována jako soubor pìti autorèiných èlánkù.
Tøi z nich ji¾ byly publikovány v odborných èasopisech, zbývající dva èlánky jsou v
recenzním øízení.

Nejvìt¹í èást práce se vìnuje derivovaným posloupnostem. Pøipomeòme, ¾e ka¾dé
uniformnì rekurentní slovo u mù¾eme zapsat jako zøetìzení koneèného poètu návra-
tových slov ke zvolenému pre�xu slova u. Uspoøádání návratových slov v tomto
zøetìzení je kódováno pøíslu¹nou derivovanou posloupností. Durand ukázal, ¾e slovo
u je primitivnì substitutivní právì tehdy, kdy¾ je mno¾ina Der(u) v¹ech jeho derivo-
vaných posloupností koneèná.

Nejprve se vìnujeme pøípadu, kdy je sturmovské slovo u pevným bodem primi-
tivního mor�smu. V tomto pøípadì pøicházíme s algoritmem, který vrací v¹echny mor-
�smy �xující derivované posloupnosti slova u. Díky tomu mù¾eme zkonstruovat dobrý
horní odhad na velikost mno¾iny Der(u).

Poté zobecòujeme tyto výsledky a popisujeme mno¾inu Der(u) pro libovolnì zvolené
Arnouxovo{Rauzyho slovo u. Vyu¾íváme k tomu speciální S-adickou reprezentaci slova
u. Z tohoto popisu také pøímo vyplývá, ¾e derivovaná posloupnost k Arnouxovu{
Rauzyho slovu u je v¾dy Arnouxovo{Rauzyho slovo.

Studujeme také derivované posloupnosti pro libovolné komplementárnì symetrické
(CS) Roteho slovo v, které souvisí se standardním sturmovským slovem u. Vysvìtlíme,
¾e libovolný neprázdný pre�x takového slova v má právì tøi návratová slova. Také
uká¾eme, ¾e libovolná derivovaná posloupnost slova v je slovo kódující výmìnu inter-
valù a najdeme parametry této transformace. Dále uká¾eme, ¾e slovo v je primitivnì
substitutivní právì tehdy, kdy¾ je slovo u primitivnì substitutivní.

Vìnujeme se také jiným vlastnostem nekoneèných slov. Pro CS Roteho slova na-
jdeme vzorce pro výpoèet kritického exponentu a rekurentní funkce. S vyu¾itím vzta-
hu pro kritický exponent popí¹eme v¹echna CS Roteho slova s kritickým exponentem
men¹ím nebo rovným tøem. Dále uká¾eme, ¾e existuje nekoneènì mnoho CS Roteho
slov s kritickým exponentem men¹ím, ne¾ je kritický exponent Fibonacciho slova.

Nakonec studujeme komplexitu bez opakování nrCu a poèáteèní komplexitu bez
opakování inrCu, co¾ jsou funkce, které popisují strukturu slova u s ohledem na repetice
jeho faktorù dané délky. Najdeme vyjádøení funkce nrCu pro v¹echna Arnouxova{
Rauzyho slova a také vyjádøení funkce inrCu pro standardní Arnouxova{Rauzyho slova.
Získané vzorce aplikujeme na d-bonacciho slovo.





Abstract

This thesis is devoted to the study of structural properties of sequences with low factor
complexity. The presented work is a collection of �ve author's papers. Three of them
have been already published in refereed journals, while the remaining two articles are
currently being refereed.

The main part of this thesis deals with derived sequences. Any uniformly recurrent
sequence u can be written as the concatenation of a �nite number of return words to
a chosen pre�x of u. Ordering of these return words in this concatenation is coded by
the derived sequence. Durand proved that a sequence u is primitive substitutive if and
only if the set Der(u) of all derived sequences to the pre�xes of u is �nite.

First we focus on a Sturmian sequence u �xed by a primitive morphism. In this
case we provide an algorithm which lists the morphisms �xing the derived sequence of
u. This enables us to provide a sharp upper bound on the cardinality of the set Der(u).

More generally, we describe the set Der(u) for every Arnoux{Rauzy sequence u
using a special S-adic representation of u. As a corollary, we show that all derived
sequences of u are Arnoux{Rauzy sequences.

We study derived sequences also for a complementary symmetric (CS) Rote se-
quence v which is related to a standard Sturmian sequence u. We show that any
non-empty pre�x of v has exactly three return words. We prove that any derived se-
quence of v is the coding of three interval exchange transformation and we determine
the parameters of this transformation. We also prove that v is primitive substitutive
if and only if u is primitive substitutive.

In addition, for all CS Rote sequences we give the formulas for their critical exponent
and recurrence function. Using the formula for the critical exponent, we describe all
CS Rote sequences with the critical exponent less than or equal to three, and we show
that there are uncountably many CS Rote sequences with the critical exponent less
than the critical exponent of the Fibonacci sequence.

Finally, we study non-repetitive complexity nrCu and initial non-repetitive complex-
ity inrCu, which reect the structure of a sequence u with respect to the repetitions of
factors of a given length. We determine nrCu for Arnoux{Rauzy sequences and inrCu for
standard Arnoux{Rauzy sequences. The obtained formulas are then used to evaluate
the values of nrCu and inrCu for the d-bonacci sequence.
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Chapter 1

Introduction

Combinatorics on words is dedicated to the study of properties of �nite and in�nite
words (we call them sequences). Since words appear naturally in many contexts, it is
closely related to many other �elds, e.g., symbolic dynamical systems, some parts of
number theory such as positional number systems or continued fraction expansions, or
several �elds of theoretical informatics such as theory of codes, languages, automata or
L systems.

Among all sequences, the sequences which can be generated via morphisms (also
called substitutions) are prominent, since these generating morphisms provide us with
a useful tool for their study. They are called substitutive sequences.

For example, the sequence u = 0100101001001010010100100101001001 · · · can be
obtained by the repeated application of the morphism ψ : 0→ 010, 1→ 01:

0→ 010→ 01001010→ 010010100100101001010→ · · · → u .

In fact, to get the sequence u we have to apply the morphism ψ in�nitely many times,
and so we write u = ψω(0). More precisely we also say that u is a �xed point of the
morphism ψ, i.e., ψ(u) = u.

Similarly, the sequence v = 001000100100010001001000100100010001 · · · can be
obtained as the image of u under the morphism τ : 0 → 0, 1 → 01, i.e., v = τ(u) =
τ(ψω(0)). Hence v can be easily generated using two morphisms τ and ψ.

More generally, we can consider sequences which are generated using a �nite set of
morphisms by applying them repeatedly in a given order. This leads us to the notion
of S-adic representation, which is the central notion in our research.

In this thesis we study structural properties of well-known classes of sequences with
low factor complexity, namely the Sturmian, Arnoux{Rauzy and Rote sequences. The
main advantage of these classes is that they admit useful S-adic representations.

First of all, we focus on the derived sequences of these sequences, but we also study
their other properties such as the critical exponent, the recurrence function and the
non-repetitive complexity.
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CHAPTER 1. INTRODUCTION

This thesis is organized as follows. We �rst give an overview of the studied properties
and classes of sequences in Chapter 2. Then in Chapter 3 we describe the contents of
the articles comprising the thesis. The articles themselves then follow:

[A] K. Klouda, K. Medková, E. Pelantová, and ©. Starosta, Fixed points of Sturmian
morphisms and their derivated words. Theoretical Computer Science 743 (2018),
23{37.

[B] K. Medková, Derived sequences of Arnoux{Rauzy sequences. In: R. Mercas,
D. Reidenbach (eds.), WORDS 2019, Lecture notes in Computer Science 11682,
Springer (2019), 251{263.

[C] K. Medková, E. Pelantová, and L. Vuillon, Derived sequences of complementary
symmetric Rote sequences. RAIRO - Theoretical Informatics and Applications

53 (2019), 125{151.

[D] K. Medková, E. Pelantová, and É. Vandomme, On non-repetitive complexity of
Arnoux{Rauzy words. Submitted to Discrete Applied Mathematics.

[E] L. Dvoøáková, K. Medková, and E. Pelantová, Complementary symmetric Rote
sequences: the critical exponent and the recurrence function. Submitted to Dis-

crete Mathematics & Theoretical Computer Science.
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Chapter 2

Overview of the �eld

The aim of this chapter is to present several key properties and classes of sequences
which are studied in this thesis. The basic notions of combinatorics on words are
recalled in Section 2.1. In Section 2.2 we introduce well-known classes of sequences with
low factor complexity such as Sturmian, Arnoux{Rauzy, Rote and dendric sequences. In
Section 2.3 we summarize the known results about several key properties of sequences.
We focus on the return words and the derived sequences, the critical exponent, the
recurrence function and the non-repetitive complexity. Finally we present useful tools
for their study in Section 2.4.

2.1 Preliminaries

In this section we recall well-known de�nitions from combinatorics on words and �x the
basic notation that we use in the rest of the thesis. More details about the background
can be found for example in the books [5, 23,72{74].

2.1.1 Words, sequences, factors and languages

An alphabet A is a set of symbols called letters. In this thesis we always suppose that
the alphabet is �nite.

By a (�nite) word of length n over A we mean a �nite string w = w0w1 · · ·wn−1 of
n letters from the alphabet A. We denote its length |w| = n. There is a unique word
ε with the length |ε| = 0 which is called the empty word.

We denote A∗ the set of all �nite words over the alphabet A. We can endow
this set with a binary operation ◦ called the concatenation of words. The concate-
nation of the words u = u0u1 · · ·un−1 and v = v0v1 · · · vm−1 is the word u ◦ v =
u0u1 · · ·un−1v0v1 · · · vm−1. We typically abbreviate the notation and denote uv the
concatenation of the words u and v. The algebraic structure (A∗, ◦) is the free monoid
generated by A and its neutral element is the empty word ε. We also denote A+ the
set of all non-empty �nite words over A.

A sequence u = u0u1u2 · · · over A is a right-in�nite string of letters from A (it is
also called an in�nite word). Let us note that some authors work with the so-called
bi-in�nite sequences · · ·u−2u−1u0u1u2 · · · . While many properties remain the same,
in some aspects right-in�nite and bi-in�nite sequences di�er essentially. Thus we have

17



CHAPTER 2. OVERVIEW OF THE FIELD

to distinguish properly between these two concepts. Here we always work with right-
in�nite sequences and we denote them by bold letters. We also denote AN the set of all
sequences over A. Let us emphasize that by N we always mean the set of non-negative
integers, i.e., N = {0, 1, 2, . . .}.

A sequence of the form u = vuuu · · · = vuω, where v, u ∈ A∗ and u is non-
empty, is called (eventually) periodic. If, moreover, v is empty, then u = uω is called
purely periodic. Since the structure of eventually periodic sequences is clear, we usually
consider these sequences as trivial and we focus especially on aperiodic sequences, i.e.,
the sequences which are not periodic.

Example 2.1. Champernowne (Barbier) sequence h = 011011100101 · · · obtained by
the concatenation of the binary representations of natural numbers is an example of a
binary aperiodic sequence.

A word w of length n is a factor of u if w = uiui+1 · · ·ui+n−1 for some index i ∈ N;
this index i is called an occurrence of w in u. If i = 0, then we say that w is a
pre�x of u. Analogously, we de�ne these terms for �nite words. Let w = pus for some
p, u, s ∈ A∗. Then p is a pre�x of w, u is a factor of w and s is a su�x of w. We also
use the notation us = p−1w and pu = ws−1.

The set of all factors of a sequence u is called the language of u and is denoted Lu.
Moreover, we denote Lu(n) the set of all factors of u of length n. Typically, there are
in�nitely many sequences with the same language. However, these sequences have lots
of common properties, since many properties depend only on the language and not on
the sequences themselves.

The sequence u is called recurrent if each of its factors occurs in u in�nitely many
times. Moreover, u is uniformly recurrent if for each factor w of u the gaps between
consecutive occurrences of w are bounded. In other words, u is uniformly recurrent
if for every integer n there exists an integer m such that each factor of u of length n
occurs in every factor of u of length m.

2.1.2 Morphisms, �xed points and substitutive sequences

Let A,B be alphabets. A morphism from A to B is any homomorphism θ: (A∗, ◦) →
(B∗, ◦), i.e., it is a mapping θ : A∗ → B∗ which for all u, v ∈ A∗ satis�es θ(uv) =
θ(u)θ(v). Clearly, the morphism θ is uniquely determined by the images of letters from
A. Hence the domain of the morphism θ can be naturally extended to the set of all
sequences over A: for any sequence u = u0u1u2 · · · ∈ AN we put

θ(u) = θ(u0)θ(u1)θ(u2) · · · .

If A = B, we say that θ is a morphism on A. A morphism θ on A is called
prolongable on a ∈ A if

θ(a) = aw for some non-empty word w ∈ A∗ and lim
n→+∞

|θn(a)| = +∞ .

Such a morphism is sometimes called a substitution. A morphism θ is primitive if there
is an integer k ≥ 1 such that for all pairs of letters a, b ∈ A the word θk(a) contains
the letter b.

A sequence u such that θ(u) = u is called a �xed point of the morphism θ. Clearly,
a morphism θ which is prolongable on some letter a has the �xed point starting with

18



2.1. PRELIMINARIES

this letter a. Indeed, since for each n ∈ N the word θn(a) is a proper pre�x of the word
θn+1(a) = θn(a)θn(w), the limit of the sequence (θn(a))n≥0 exists and is the sequence

θω(a) = lim
n→∞

θn(a) = awθ(w)θ2(w) · · · .

Clearly, the sequence θω(a) is a �xed point of θ and we usually say that θω(a) is a
sequence generated by θ.

Example 2.2. The Fibonacci morphism ϕ is de�ned as 0 → 01, 1 → 0. It is primitive
since for k = 2 we have ϕ2(0) = 010 and ϕ2(1) = 01. It is also prolongable on 0,
hence it generates the sequence f = 0100101001001 · · · which is called the Fibonacci
sequence. This sequence is the only �xed point of ϕ.

As a generalization of this concept, we can consider also sequences which arise as
the images of �xed points under other morphisms. More precisely, a sequence u over
B is called substitutive (or also morphic) if it is of the form u = κ(θω(a)), where θ is a
morphism on A prolongable on a ∈ A and κ is a letter-to-letter morphism from A to
B (i.e., |κ(c)| = 1 for all c ∈ A).

In fact, every sequence of the form u = τ(ψω(a)), where ψ is a morphism prolongable
on a and τ is any morphism, is substitutive, i.e., there is a letter-to-letter morphism κ
and a morphism θ prolongable on a such that u = κ(θω(a)), see [5, Corollary 7.7.5].

A morphism θ can have more than one �xed point. However, if θ is primitive,
then all its �xed points have the same language. Fixed points of primitive morphisms
have other useful properties. First of all, they are always uniformly recurrent. Even
more generally, every substitutive sequence κ(θω(a)) with primitive θ is also uniformly
recurrent. These sequences are sometimes called primitive substitutive.

Example 2.3. We take the Fibonacci morphism ϕ from Example 2.2 and consider the
Thue{Morse morphism µ de�ned by 0→ 01, 1→ 10. Then the sequence

u = µ(ϕω(0)) = µ(f) = 01100101100110010110010110 · · ·

is primitive substitutive. Indeed, it can be also obtained as u = κ(θω(A)), where the
morphisms θ and κ are de�ned by

θ : A→ AB, B → CD, C → A, D → B and κ : A→ 0, B → 1, C → 1, D → 0 .

One can read more about �xed points and substitutive sequence for example in [5,
Section 7] or in the note [3] that describes a morphic taxonomy of sequences. In Section
2.4.2 we discuss the so-called S-adic representations of sequences which in some sense
further generalize the concept of generating sequences via morphisms.

2.1.3 Parikh vectors

For any (�nite) word w over A and any letter a ∈ A we denote |w|a the number of
letters a occurring in w. Let A have size d. The Parikh vector of a word w is the vector
~V (w) ∈ Nd de�ned as (

~V (w)
)
a

= |w|a for all a ∈ A .
Similarly, the matrix of a morphism θ on A is the matrix Mθ ∈ Nd×d de�ned as

(
Mθ

)
ab

= |θ(b)|a for all a, b ∈ A .

19



CHAPTER 2. OVERVIEW OF THE FIELD

Example 2.4. The word 0100 over the binary alphabet {0, 1} has the Parikh vector
~V (0100) =

(
3
1

)
. The Fibonacci morphism from Example 2.2 has the matrix

Mϕ =

(
1 1
1 0

)
.

This notion is especially useful when dealing with the length of factors and mor-
phisms since the relations

~V (θ(w)) = Mθ · ~V (w) and |w| = (1, 1, . . . , 1) · ~V (w)

convert it to the multiplication of vectors and matrices.

2.1.4 Special factors

Let u be a sequence over A and let w be its factor. The factor w is left special if there
are at least two distinct letters a, b such that aw, bw ∈ Lu. Analogously, w is called
right special if there are at least two distinct letters c, d such that wc,wd ∈ Lu. The
factor is bispecial if it is both left and right special.

In addition, each letter a such that aw ∈ Lu is called a left extension of the factor w
in u and each letter b such that wb ∈ Lu is called a right extension of w in u. We denote
Lextu(w) and Rextu(w) the set of all left and right extensions of w in u, respectively.
The bilateral order of w in u is de�ned as

mu(w) = #{(a, b) ∈ A2 : awb ∈ Lu} −#Lextu(w)−#Rextu(w) + 1 .

Clearly, if w is not bispecial factor of u, then mu(w) = 0. For bispecial factors the
situation is more variable. We say that a bispecial factor w is strong if mu(w) > 0, it
is neutral (ordinary) if mu(w) = 0 and it is weak if mu(w) < 0.

Example 2.5. The bispecial factor 0 of the Champernowne sequence h from Example
2.1 is strong, since Lh(3) = {000, 001, 010, 011, 100, 101, 110, 111}.

The bispecial factor 0 of the Fibonacci sequence f from Example 2.2 is neutral
(ordinary), since Lf (3) = {001, 010, 100, 101}.

The bispecial factor 0 of the periodic sequence u = (001)ω is weak, since Lu(3) =
{001, 010, 100}.

Understanding the structure of special factors is essential for the study of many
properties of sequences since they often enable us to reduce the number of investigated
cases substantially. We will see this in several places in this thesis, e.g., see Proposition
2.6, Remark 2.31 or Lemmas 3.35 and 3.41.

2.1.5 Factor complexity and other types of complexity

There are many ideas how to quantify the complexity of sequences. Overall, it depends
on the context and the intended application which one is the best.

The simplest way of measuring the complexity of a sequence u is to count the
number of its distinct factors of each length. More precisely, we can de�ne the factor
complexity of u as a function Cu : N → N which to each length n assigns the number
of factors of u of length n, i.e., Cu(n) = #Lu(n).
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2.1. PRELIMINARIES

Clearly, the factor complexity function is always non-decreasing. Nevertheless, not
every non-decreasing function is the factor complexity of some sequence. Morse and
Hedlund [82] showed that the factor complexity of u is bounded if and only if u is
periodic and, moreover, for every aperiodic sequence u we have Cu(n) ≥ n + 1 for
every n ∈ N. There exist aperiodic sequences with this minimal factor complexity,
i.e., Cu(n) = n + 1 for every n ∈ N. They are called Sturmian sequence and they are
probably the most studied objects in combinatorics on words. We devote Section 2.2.1
to them.

Nevertheless, other classes of sequences with low factor complexity (i.e., C(n) =
O(n)) are also studied. In this thesis we deal especially with Arnoux{Rauzy sequences
(Section 2.2.2) and Rote sequences (Section 2.2.4), but in Section 2.2.3 we mention also
other classes of sequences that generalize Sturmian sequences, such as sequences coding
interval exchange transformations or dendric sequences.

Another important class of sequences with factor complexity C(n) = O(n) are �xed
points of primitive morphisms, as proved by Pansiot [86]. In fact, he proved that the
factor complexities of �xed points generated by morphisms can only have �ve di�erent
asymptotic behaviours, see also [23, Section 4.7] or [5, Section 10.4] for more details.

On the other hand, the maximal factor complexity of a sequence over an alphabet
A is Cu(n) = (#A)n, since this is the number of all words over A of length n. Such
sequences also exist. For example the Champernowne sequence h from Example 2.1
contains every binary word and so has the complexity Ch(n) = 2n.

The factor complexity of various classes of sequences has been studied (e.g., see [23,
Chapter 4]). In fact, it can be easily computed using special factors.

Proposition 2.6 ( [30, Propositions 3.4 and 3.5]). Let u be a recurrent sequence over

A. Then the �rst di�erence of the factor complexity satis�es for every n ∈ N

∆Cu(n) = Cu(n+ 1)− Cu(n) =
∑

w∈Lu(n) is right special

(#Rextu(w)− 1) ,

=
∑

w∈Lu(n) is left special

(#Lextu(w)− 1) ,

and the second di�erence of the factor complexity satis�es for every n ∈ N

∆2Cu(n) = ∆Cu(n+ 1)−∆Cu(n) =
∑

w∈Lu(n) is bispecial

m(w) ,

where m(w) is the bilateral order of w (see Section 2.1.4).

Several other variants of the complexity function have been introduced. For exam-
ple, the notion of factor complexity can be modi�ed using another equivalence relation
on A∗ instead of the usual equality of words.

Two words v and w over A are said to be Abelian equivalent, denoted v ∼ w, if
|v|a = |w|a for all a ∈ A. In other words, two words are Abelian equivalent if they are
permutations of each other. It is easy to verify that ∼ is indeed an equivalence relation
on A∗.
Example 2.7. The words 00101 and 11000 are Abelian equivalent, while the pairs of
words 00101 and 0100 or 00101 and 00111 are not Abelian equivalent.
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The Abelian complexity of a sequence u is the function ACu : N→ N which to each
n ∈ N assigns the number of pairwise Abelian non-equivalent factors of u of length n.

Example 2.8. Both the periodic sequence 01ω and the Fibonacci sequence f (Example
2.2) has the Abelian complexity ACf (0) = 1 and ACf (n) = 2 for all n ≥ 1.

There are several similarities between the usual factor complexity and Abelian com-
plexity. For example, by Coven and Hedlund [39], Sturmian sequences can be charac-
terized by means of Abelian complexity: an aperiodic binary sequence u is Sturmian
if and only if ACu(n) = 2 for all n ≥ 1. On the other hand, the behaviour of these
two complexities can di�er essentially, too. Cassaigne, Ferenczi and Zamboni [37] con-
structed a sequence with factor complexity C(n) = 2n + 1 and unbounded Abelian
complexity. One can read more for instance in [97]. Further generalizations such as
k-Abelian equivalence [68] or binomial equivalence [98] have been introduced, too.

Palindromic complexity is another type of complexity. If w = w0w1 · · ·wn−1, then
the word w̃ = wn−1wn−2 · · ·w0 is called the reversal (mirror image) of w. A word w
which coincides with its reversal w̃ is a palindrome. The palindromic complexity of a
sequence u is the function PCu : N → N which for each n ∈ N counts the number of
palindromes in u of length n.

Example 2.9. The Fibonacci sequence (Example 2.2) contains the palindromes

ε, 0, 1, 00, 010, 101, 1001, 00100, 01010, 010010, . . .

Thus PCf (0) = 1, PCf (1) = 2, PCf (2) = 1, PCf (3) = 2, PCf (4) = 1, etc.

An interesting relation between the palindromic and factor complexity has been
revealed in [8] (see also [10, Section 3] for some notes). Let us recall that the language
Lu of a sequence u is closed under reversal if Lu contains with every factor w also its
reversal w̃.

Proposition 2.10 ( [8, Theorem 1.2]). Let u be a sequence whose language Lu is

closed under reversal. Then for every n ∈ N we have

PCu(n+ 1) + PCu(n) ≤ ∆Cu(n) + 2 . (2.1)

Moreover, Bucci et al. [28] proved that among sequences with the language Lu
closed under reversal the sequences attaining the equality in (2.1) are exactly the so-
called rich sequences. A sequence u is called rich (in palindromes) if every factor w
of u contains |w|+ 1 palindromes. Let us note that |w|+ 1 is the maximal number of
palindromes which w can contain.

For several classical sequences or classes of sequences the palindrome complexity is
well-understood, e.g., see [1]. We just mention that a sequence u is Sturmian if and
only if it has the palindrome complexity PCu(2k − 1) = 2 and PCu(2k) = 1 for all
k ≥ 1, as proved by Droubay and Pirillo [48, Theorem 5].

Of course, there exist also other functions which reect the complexity of sequences.
We discuss the so-called non-repetitive complexity in Section 2.3.4.

2.2 Sequences with low factor complexity

This thesis deals with some classes of sequences with low factor complexity. We study
especially Sturmian sequences, Arnoux{Rauzy sequences and Rote sequences. In this
section we summarize the basic facts and needed results about these sequences.
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Besides Arnoux{Rauzy and Rote sequences, we mention other generalizations of
Sturmian sequences, too. In particular, we briey present dendric and neutral se-
quences which have been recently introduced in [15]. They represent a natural general
framework which includes many Sturmian generalizations.

2.2.1 Sturmian sequences

Sturmian sequences were �rst introduced by Morse and Hedlund [82] in 1940. Since
then they have become the most studied objects in combinatorics on words and related
�elds as from many points of view they represent the simplest non-trivial case.

Let us recall that a sequence u is called Sturmian if it has n + 1 factors of each
length n, i.e., Cu(n) = #Lu(n) = n + 1. By the de�nition every Sturmian sequence is
de�ned over a binary alphabet, e.g., A = {0, 1}. All Sturmian sequences are uniformly
recurrent. The most famous Sturmian sequence is the Fibonacci sequence f introduced
in Example 2.2.

There are many equivalent de�nitions of Sturmian sequences as well as huge amount
of various results related to them. In this section we recall only several their classical
characterizations and properties. More precisely, we briey mention their special fac-
tors, palindromic properties and balancedness. We also explain their construction via
coding of rotations on the unite circle and coding of two interval exchange transforma-
tions. In Section 2.3.1 we present the characterization of Sturmian sequences by their
return words (Theorem 2.28). More details about these results together with many
other facts about Sturmian sequences can be found for instance in [73, Chapter 2], [14]
or [10].

Sturmian sequences can be describe by means of their special factors. By Propo-
sition 2.6, a recurrent binary sequence u is Sturmian if and only if it has exactly one
right special and one left special factor of each length. In fact, the language Lu of each
Sturmian sequence u is closed under reversal. Thus if a word w is a right special factor
of u, then its reversal w̃ is a left special factor of u and vice versa. It also means that
all bispecial factor of a Sturmian sequence are palindromes.

Sturmian sequences have also other interesting palindromic properties. As we have
mention at the end of Section 2.1.5, a sequence u is Sturmian if and only if u contains
one palindrome of every even length and two palindromes of every odd length. Then
Proposition 2.10 implies that every Sturmian sequence is rich in palindromes.

We say that a sequence u over A is balanced if for any pair of factors v, w ∈ Lu
of the same length the inequality ||v|a − |w|a| ≤ 1 holds for any letter a ∈ A. Already
Morse and Hedlund [82] proved that a binary sequence is Sturmian if and only if it is
balanced and aperiodic. However, there exist balanced aperiodic sequences over larger
alphabets, too. One can read for instance Vuillon's survey [105].

Similarly we can de�ne slightly generalized balancedness. Let c be a positive integer.
We say that a sequence u over A is c-balanced if for any pair of factors v, w ∈ Lu of the
same length the inequality ||v|a−|w|a| ≤ c holds for any letter a ∈ A. This generalized
balancedness is closely related to the Abelian complexity de�ned in Section 2.1.5. For
example, a sequence has bounded Abelian complexity if and only if it is c -balanced for
some positive integer c. See for example [97] or [10, Section 5.6] for more details.

Sturmian sequences can be easily constructed as the so-called mechanical sequences.
Given two real numbers α and ρ with α ∈ [0, 1] and ρ ∈ [0, 1) (or ρ ∈ (0, 1]), we
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de�ne a lower mechanical sequence sα,ρ = s0s1s2 · · · and a upper mechanical sequence

tα,ρ = t0t1t2 · · · by

sn = bρ+ α(n+ 1)c − bρ+ αnc
tn = dρ+ α(n+ 1)e − dρ+ αne for all n ∈ N .

Clearly, mechanical sequences (except the trivial case 0ω and 1ω) are always binary.
In addition, if α is rational, then the respective mechanical sequences are periodic,
while if α is irrational, then the respective mechanical sequences are Sturmian. In fact,
this characterizes Sturmian sequences.

Proposition 2.11 ( [73, Theorem 2.1.13]). A sequence is Sturmian if and only if it is

(lower or upper) mechanical sequence with an irrational parameter α.

For a Sturmian sequence u = sα,ρ (or u = tα,ρ) the parameter α is called the slope
of u and the parameter ρ is called the intercept of u. In fact, the term slope can
sometimes denote also the value 1 − α, but since s1−α,ρ = E(sα,ρ), where E is the
morphism which exchanges the letters 0↔ 1, it usually does not make a big di�erence.

This terminology follows from the graphic interpretation illustrated in Figure 2.1.
We take the straight line y = αx+ρ. Then the lower mechanical sequence s corresponds
with the line which connects the points Pn = (n, bαn+ρc), i.e., the points with integer
coordinates which are situated just below this straight line. More precisely, the points
Pn and Pn+1 are joined by a horizontal line if sn = 0 and by a diagonal line if sn = 1. An
analogous observation holds for the upper mechanical sequence and the points located
just above the straight line, too.

y = αx+ ρ

Pn

P ′
n

0 0 0 0 01 1

Figure 2.1: Graphic interpretation of mechanical sequences (according to [73, Fig. 2.2]).

Mechanical sequences (and so Sturmian sequences) can be also viewed as sequences
coding two interval exchange transformations. It is captured in Figure 2.2. For a given
parameter α ∈ (0, 1) we consider the partition of the interval

(a) I = [0, 1) into I0 = [0, 1− α) and I1 = [1− α, 1);

(b) I = (0, 1] into I0 = (0, 1− α] and I1 = (1− α, 1].
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[

[

)

)

)[

)[

I0

I0

I1

I1

0 11− α

0 1α

vα,ρ = 0 0 1 0 0 · · ·

ρ

Figure 2.2: A sequence coding two interval exchange transformation.

Then the two interval exchange transformation is the mapping T : I → I de�ned by

T (x) =

{
x+ α if x ∈ I0 ,

x+ α− 1 if x ∈ I1 .

If we take an initial point ρ ∈ I, the sequence vα,ρ = v0v1v2 · · · de�ned by

vn =

{
0 if Tn(ρ) ∈ I0 ,

1 if Tn(ρ) ∈ I1 .

is called a 2iet sequence with the slope α and the intercept ρ.
Let us explain that 2iet sequences are just another interpretation of mechanical

sequences. Indeed, if we consider the partition (a), we can rewrite the transformation
T as

T (x) = {x+ α} , where {z} = z − bzc denotes the fractional part of z. (2.2)

And since

bρ+ α(n+ 1)c − bρ+ αnc = 1 ⇐⇒ Tn(ρ) = {ρ+ nα} ∈ [1− α, 1) = I1 ,

the lower mechanical sequence sα,ρ equals the 2iet sequence vα,ρ. Similarly if we con-
sider the partition (b), the respective 2iet sequences correspond with the upper me-
chanical sequences. Hence we may conclude that the class of Sturmian sequences is
precisely the class of 2iet sequences with irrational slopes.

If we naturally identify the interval [0, 1) with the unite circle, then the transforma-
tion T can be viewed as the rotation of an angle α on this circle (see Expression (2.2)).
Hence if we take the partition (a) as the partition of the circle and iterate the rotation
from the initial point ρ, we construct the sequence vα,ρ. Clearly, we can proceed simi-
larly with the partition (b), too. Thus the Sturmian sequences can be also constructed
as sequences coding irrational rotations on the unite circle.
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Let us point out that the language of a Sturmian sequence depends only on its
slope α and not on its intercept ρ. It follows directly from the symbolic dynamics
interpretations mentioned above. In addition, among all Sturmian sequences with a
slope α, the sequence with the intercept ρ = α is exceptional and we call it standard
Sturmian sequence. It can be de�ned also combinatorially. A Sturmian sequence u is
standard if all its left special factors are pre�xes of u, i.e., both sequences 0u and 1u
are Sturmian.

Example 2.12. The Fibonacci sequence f is standard Sturmian sequence with ρ = α =
2− φ, where φ = (1 +

√
5)/2 denotes the golden ratio.

Standard Sturmian sequences have many comfortable properties. For example, a
factor of a standard Sturmian sequence u is bispecial if and only if it is a palindromic
pre�x of u. Hence if we study a property which depends only on the language of a
sequence and not on the sequence itself, we usually work only with standard Sturmian
sequences.

In this thesis we essentially use the characterization of Sturmian sequences via so-
called Sturmian morphism which we introduce in Section 2.4.2.

Continued fraction expansion

Various properties of a Stumian sequence are very often expressed in terms of continued
fraction expansion of its slope α. Hence we briey recall this notion; one can �nd much
more for instance in [60]. Let α be an irrational number. Then the continued fraction

expansion of α is the expression of α in the form

α = a0 +
1

a1 +
1

a2 +
1

a3 + · · ·

.

We shortly write α = [a0; a1, a2, a3, . . .].

Example 2.13. The golden ratio φ = (1 +
√

5)/2 has the continued fraction expansion
φ = [1; 1, 1, . . .] = [1̄]. Hence the slope 2 − φ of the Fibonacci sequence f has the
continued fraction expansion 2− φ = [0; 2, 1, 1, 1, . . .] = [0; 2, 1̄].

By N th convergent to the number α we mean the fraction pN
qN

= [a0; a1, a2, . . . , aN ].
It is well known that the sequences (pN ) and (qN ) ful�l the following recurrence relations

p−1 = 1 , p0 = a0 and pN+1 = aN+1pN + pN−1 for all N ∈ N ;

q−1 = 0 , q0 = 1 and qN+1 = aN+1qN + qN−1 for all N ∈ N .

Example 2.14. The convergents to the number 2− φ are

0

1
,

1

2
,

1

3
,

2

5
,

3

8
,

5

13
,

8

21
,

13

34
, . . .

2.2.2 Arnoux{Rauzy sequences and episturmian sequences

The Arnoux{Rauzy sequences were introduced by Arnoux and Rauzy in [7] as a gener-
alization of the Sturmian sequences to multi-letter alphabets which preserve the special
factors properties.
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A sequence u ∈ AN is Arnoux{Rauzy sequence if its language Lu is closed under
reversal, u has exactly one right special factor of each length and every right special
factor has #A right extensions. Moreover, an Arnoux{Rauzy sequence u is standard if
each of its pre�xes is a left special factor.

Example 2.15. The Tribonacci sequence t = 0102010010201010201001 · · · which is the
�xed point of the morphism ϕ : 0 → 01, 1 → 02, 2 → 0 is a standard Arnoux{Rauzy
sequence over A = {0, 1, 2}.

More generally, we de�ne for every d ≥ 2 the d-bonacci sequence t as a sequence
over the alphabet A = {0, 1, . . . , d− 1} which is the �xed point of the morphism

ϕ : a→ 0(a+ 1) for all a = 0, 1, . . . , d− 2 and (d− 1)→ 0 .

The d-bonacci sequence is standard Arnoux{Rauzy sequence over A.
If we slightly relax the requirements on special factors, we get the set of episturmian

sequences. A sequence u ∈ AN is episturmian sequence if its language Lu is closed under
reversal and u has at most one right special factor of each length. An episturmian
sequence u is standard if all its left special factors are pre�xes of u.

Clearly, every Arnoux{Rauzy sequence is episturmian, but there are also aperiodic
epistumian sequences which are not Arnoux{Rauzy. Hence Arnoux{Rauzy sequences
over the alphabet A are sometimes called #A-strict episturmian sequences. More
details about Arnoux{Rauzy sequences can be found for example in [94], while the
knowledge about episturmian sequences is summarized in [58].

In the binary case, the set of Arnoux{Rauzy sequences equals the set of Sturmian
sequences. Moreover, the Arnoux{Rauzy sequences (or even episturmian sequences)
share many properties with the Sturmian sequences. Droubay, Justin and Pirillo [47]
proved that any episturmian sequence is uniformly recurrent. In addition, the Arnoux{
Rauzy sequences are always aperiodic since they have the factor complexity

Cu(n) = (#A− 1)n+ 1 for every n ∈ N .

Indeed, it follows directly from Proposition 2.6. Nevertheless, there are also other
sequences with the same factor complexity, e.g., the sequences coding interval exchange
transformations or, more generally, the dendric sequences (see Section 2.2.3).

All bispecial factors of an episturmian sequence u are palindromes. Let us emphasize
that for every n ∈ N there is at most one bispecial factor of length n. Hence we can
order the bispecial factors of u by their lengths starting with the empty word ε.

Like in the Sturmian case, for every episturmian sequence there exists a unique
standard episturmian sequence with the same language. Hence if we study properties
which depend only on the language of a sequence, we can deal only with standard
episturmian sequences without loss of generality.

On the other hand, there are also properties in which Sturmian and Arnoux{Rauzy
sequences di�er essentially. For example Cassaigne, Ferenczi and Zamboni [37] con-
structed an Arnoux{Rauzy sequence which is not c-balanced for any positive integer c.

Standard episturmian sequences can be constructed by the co-called palindromic
closures. The palindromic closure w(+) of a �nite word w is the shortest palindrome
having w as a pre�x. A sequence u ∈ AN is standard episturmian if and only if
there exist a directive sequence d = d0d1d2 · · · ∈ AN and a sequence of palindromes
u(0) = ε, u(1), u(2), . . . such that u(n+1) = (u(n)dn)(+) for all n ∈ N and u = limn→∞ u(n).
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Example 2.16. We consider the directive sequence d = (012)ω and we gradually con-
struct the respective sequence of palindromes:

u(0) = ε

u(1) = (0)(+) = 0

u(2) = (0 1)(+) = 010

u(3) = (010 2)(+) = 0102010

u(4) = (0102010 0)(+) = 01020100102010

u(5) = (01020100102010 1)(+) = 0102010010201010

u(6) = (0102010010201010 2)(+) = 010201001020101020100102010

etc.

The limit of this sequence of palindromes is the Tribonacci sequence (Example 2.15).
Similarly the directive sequence of the d-bonacci sequence is (012 · · · (d− 1))ω.

Let us emphasize that a standard episturmian sequence is completely determined by
its directive sequence. The standard Arnoux{Rauzy sequences over A are exactly those
episturmian sequences whose directive sequences contain every letter from A in�nitely
many times. In Section 2.4.2 we generalize this notion of directive sequences also for
non-standard episturmian sequences using the so-called episturmian morphisms.

2.2.3 Dendric and neutral sequences

Dendric sequences represent a very general class of sequences which contains several
generalizations of Sturmian sequences to multi-letter alphabets. They were introduced
by Berthé et. al. in [15]. In fact, they de�ne dendric (tree) sets since they work with
languages rather than with sequences. However, for our purposes it does not make any
di�erence.

Let u be a sequence and w be its factor. The extension graph of w in u is an
undirected bipartite graph Eu(w) de�ned as follows: its vertices are the letters from
the set Lextu(w) and the letters from the set Rextu(w), and there is an edge between
the vertices a ∈ Lext(w) and b ∈ Rext(w) if awb ∈ Lu.
Example 2.17. We consider the Tribonacci sequence t = 0102010010201010201001 · · ·
from Example 2.15. The extension graphs Et(ε), Et(2), Et(01) and Et(10) are displayed
in Figure 2.3.

0

1

2

0

1

2

0

1

2

0

1

2

0 0 0 0

Et(ε) Et(2) Et(01) Et(10)

Figure 2.3: The extension graphs Et(ε), Et(2), Et(01) and Et(10) of the Tribonacci
sequence t.
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A sequence u is dendric if for every w ∈ Lu the extension graph Eu(w) is a tree
(i.e., it is both acyclic and connected).

Example 2.18. The Tribonacci sequence is dendric sequence since one can easily verify
that each of its extensions graphs has one of the shapes displayed in Figure 2.3.

In fact, all Arnoux{Rauzy sequences (and so all Sturmian sequences) are dendric.
Moreover, the sequences coding regular interval exchange transformations are also den-
dric, see [16]. These sequences were introduced in [85]. Since then they have been
intensively studied as they represent another important generalization of Sturmian se-
quences (see 2iet sequences de�ned in Section 2.2.1). We skip their general de�nition
(e.g., see [10, Section 5.1]), but we briey indicate how the sequences coding three
interval exchange transformations look like.

A three interval exchange transformation T : [0, 1)→ [0, 1) is given by two parame-
ters β, γ ∈ (0, 1) such that β + γ < 1, and by a permutation π on the set {1, 2, 3}. The
interval [0, 1) is partitioned into three subintervals

IA = [0, β) , IB = [β, β + γ) and IC = [β + γ, 1) .

These subintervals are then rearranged by the transformation T according to the per-
mutation π. For example, if we take the permutation π = (3, 2, 1), then

T (x) =





x+ 1− β if x ∈ IA ,
x+ 1− 2β − γ if x ∈ IB ,
x− β − γ if x ∈ IC .

If we take another permutation π = (2, 3, 1), then

T (x) =





x+ 1− β if x ∈ IA ,
x− β if x ∈ IB ,
x− β if x ∈ IC .

We can proceed similarly for other permutations. Let ρ ∈ [0, 1). The sequence u =
u0u1u2 · · · ∈ {A,B,C}N de�ned by

un =





A if Tn(ρ) ∈ IA ,
B if Tn(ρ) ∈ IB ,
C if Tn(ρ) ∈ IC

is called a 3iet sequence coding the intercept ρ under the transformation T .

Dendric sequences can be further generalized, too. For example, we say that a
sequence u is neutral if all its non-empty bispecial factors are neutral (see Section
2.1.4). The characteristic of a neutral sequence u is the integer χ(u) = 1−mu(ε), where
mu(ε) is the bilateral order of the empty word ε in u. These sequences are studied by
Dolce and Perrin in [45]. Clearly, every dendric sequence is a neutral sequence with the
characteristic 1 since all its bispecial factors (including the empty word) are neutral.
Other examples of neutral sequences are presented in Section 2.2.4.

Recently, dendric and neutral sequences have been intensively studied, one can read
for example [15{18,20,21,45,46]. We just mention that all neutral sequences have low
factor complexity.

Proposition 2.19 ( [45, Proposition 2.4]). The factor complexity of a neutral sequence
u over A with the characteristic χ(u) is given by

Cu(0) = 1 and Cu(n) = n(#A− χ(u)) + χ(u) for every n ≥ 1 .
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2.2.4 Rote sequences

Rote sequences are another class of sequences with low factor complexity. A sequence
v is called Rote sequence if it has the factor complexity Cv(n) = 2n for every integer
n ≥ 1. By de�nition, all Rote sequences are de�ned over a binary alphabet, e.g.,
A = {0, 1}.

They are named after Rote who proposed several construction of these sequences
in [100]. He showed how one can in principal construct all Rote sequences via their
Rauzy graphs (see [100, Section 2]) and for special subclasses he gave also alternative
methods of construction. In particular, he proved that some of Rote sequences can be
viewed as sequences coding irrational rotations on the unite circle. Let us recall that
Sturmian sequences are also sequences coding irrational rotations (see Section 2.2.1).

Proposition 2.20 ( [100, Theorem 2]). Let ρ, α and β be real numbers with 0 < β < 1,
0 < α < min{β, 1 − β}, α irrational and nα 6= β mod 1 for all n ∈ N. Then the

sequence v = v0v1v2 · · · de�ned by

vn =

{
0 if {ρ+ nα} ∈ [0, β)

1 if {ρ+ nα} ∈ [β, 1)
for all n ∈ N

is a Rote sequence.

However, there are also Rote sequences which cannot be generated by this way.

Example 2.21 ( [100, Sections 3.1 and 3.2]). We consider the morphisms

θ :





0→ 03

1→ 12

2→ 0312031

3→ 1203120

, κ :





0→ 0

1→ 1

2→ 0

3→ 1

, ψ :





0→ 03

1→ 102

2→ 10201

3→ 1020

and τ :





0→ 0

1→ 1

2→ 10110

3→ 101

.

Both sequences u = κ(θω(0)) and v = τ(ψω(0)) are Rote sequences. Nevertheless,
while the sequence u can be constructed by Proposition 2.20, the sequence v cannot
be obtained by this process; see [100] for proofs and other details.

The given examples also illustrate that there exist primitive substitutive Rote se-
quences. Moreover, we can construct also a Rote sequence which is the �xed point of
a non-identical morphism.

Example 2.22 ( [100, Section 3.3]). The morphism θ : 0→ 001, 1→ 111 �xes the Rote
sequence v = 001001111001001111111111111001 · · · . However, let us notice that this
morphism θ is not primitive and the sequence v is not uniformly recurrent.

Complementary symmetric Rote sequences

We are especially interested in the so-called complementary symmetric (CS) Rote se-
quences. They are Rote sequences whose languages are closed under the exchange of
letters 0↔ 1. More precisely, the binary sequence u is complementary symmetric (CS)
if it contains with each factor w also the factor E(w), where E : 0 → 1, 1 → 0 is the
exchange morphism.

Rote [100] proved that these sequences are essentially connected with Sturmian
sequences.

30



2.2. SEQUENCES WITH LOW FACTOR COMPLEXITY

Theorem 2.23 ( [100, Theorem 3]). Let u = u0u1 · · · and v = v0v1 · · · be two se-

quences over {0, 1} such that ui = vi + vi+1 mod 2 for all i ∈ N. Then v is a CS Rote

sequence if and only if u is a Sturmian sequence.

This theorem indicates the usefulness of the following notation. By S we denote
the mapping S : {0, 1}N → {0, 1}N such that for every v ∈ {0, 1}N we put S(v) = u,
where

ui = vi + vi+1 mod 2 for all i ∈ N . (2.3)

In this notation we can reformulate Theorem 2.23:

A sequence v is a CS Rote sequence if and only if u = S(v) is a Sturmian sequence.

We usually say that such a sequence u is associated with v and vice versa.

Example 2.24. If we start with the letter 0 and repeatedly use Equation (2.3) rewritten
to the form vi+1 = ui + vi mod 2, we can construct a CS Rote sequence g associated
with the Fibonacci sequence f , i.e., f = S(g). We have

f = 0100101001001010010100100101001001 · · ·
g = 00111001110001100011000111001110001 · · ·

In fact, the sequence E(g) = 110001100011100 · · · is associated with f , too.

As in Example 2.24, any Sturmian sequence u has two associated CS Rote sequences
v and E(v) such that u = S(v) = S(E(v)). However, since the exchange of letters
does not a�ect the structure of the sequence, we usually consider only the CS Rote
sequences starting with the letter 0 without loss of generality.

Similarly we can de�ne this mapping S also for �nite non-empty words. For every
v0 ∈ {0, 1} we put S(v0) = ε and for every v = v0v1 · · · vn ∈ {0, 1}+ of length at least
2 we put S(v0v1 · · · vn) = u0u1 · · ·un−1, where

ui = vi + vi+1 mod 2 for all i ∈ {0, 1, . . . , n− 1} .

Clearly, the images of v and E(v) under S coincide for each v ∈ {0, 1}+. In fact,
S(x) = S(y) if and only if x = y or x = E(y).

Example 2.25. We have E(001110) = 110001 and S(001110) = S(110001) = 01001.

Then we can comfortably write the relations between the factors of associated se-
quences v and u = S(v).

Proposition 2.26. Let v be a Rote sequence and u = S(v) be its associated Sturmian

sequence.

(i) A word v 6= ε is a factor of u if and only if u = S(v) is a factor of u. Moreover,

for every m ∈ N, the index m is an occurrence of u in u if and only if m is an

occurrence of v in v or an occurrence of E(v) in v.

(ii) A word v 6= ε is a left (right) special factor of v if and only if u = S(v) is a left

(right) special factor of u.
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(iii) Each non-empty bispecial factor of v is neutral and the empty word is a strong

bispecial factor of v.

Finally, we emphasize that CS Rote sequences can be de�ned in other ways, too. The
class of CS Rote sequences is exactly the class of sequences constructed by Proposition
2.20 with β = 1

2 . In particular, by results of Blodin-Massé et al. [25] this means
that CS Rote sequences are rich in palindromes. This observation also follows from
the note stated after Proposition 2.10 since Allouche et al. [1] proved that every CS
Rote sequence u has the palindromic complexity PCu(n) = 2 for all n ≥ 1. CS
Rote sequences can be also constructed using the so-called pseudopalindromic closures,
see [26, Section 6]. In more general setting, they represent an interesting example of
neutral sequences with the characteristic 0 (see Item (iii) of Proposition 2.26). Hence
they are not dendric.

2.3 Main subjects of our research

In this section we briey recall several properties of sequences which we are interested in
and we summarize the relevant known results about them. First we focus on the notion
of return words and derived sequences since it creates a key part of this thesis. Then
we introduce also the critical exponent, the recurrence function and the non-repetitive
complexity.

2.3.1 Return words and derived sequences

Return words

Return words are well established notion in combinatorics on words. To this �eld they
were �rst introduced by Durand [49], however, they can be seen as a kind of analogue
to the �rst return map occurring in the theory of dynamical systems (e.g., see [24]).

First, let us recall the de�nition. We consider a sequence u and its factor w.
Whenever i < j are two consecutive occurrences of w in u, then the string uiui+1 · · ·uj−1

is a return word to w in u. In other words, a return word to w in u is every factor r
such that rw ∈ Lu and w occurs exactly twice in the word rw: both as a pre�x and a
su�x. We denote Ru(w) the set of all return words to w in u.

Example 2.27. We consider the Fibonacci sequence f = 010010100100101001010 · · ·
from Example 2.2. Its pre�x 0 has two return words 01 and 0, hence Rf (0) = {01, 0}.
Its pre�x 0100 has two return words 01001 and 010, hence Rf (0100) = {01001, 010}.

In fact, the notion of return words make sense especially for recurrent sequences,
otherwise there are factors with no return words. Moreover, we usually consider only
uniformly recurrent sequences since each of their factors has the �nite number of return
words. That is, a recurrent sequence u is uniformly recurrent if and only if the set
Ru(w) is �nite for each factor w of u.

First let us observe that periodic sequences can be easily characterized by means of
the return words. Indeed, a recurrent sequence u is periodic if and only if there exists
a factor of u having only one return word (see [104, Proposition 3.1]).

Similarly, Vuillon [104] showed that Sturmian sequences can be also easily charac-
terized by their return words.
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Theorem 2.28 ( [104, Main Theorem]). A binary sequence u is Sturmian if and only

if the set of return words to w has exactly two elements for every non-empty factor w
of u.

In fact, if we consider also return words to the empty word ε, which are by de�nition
all distinct letters from u, we can exclude the binary assumption: A sequence u is
Sturmian if and only if each of its factors has two return words.

This characterization inspired the following generalization of Sturmian words to
m-letter alphabets described in [11, 106]. We say that the recurrent sequence has the
property Rm if each of its factors has exactlym return words. The class of all sequences
with Rm covers some other generalizations of Sturmian words. Justin and Vuillon [65]
proved that Arnoux{Rauzy sequences over #A = m satisfy Rm, Vuillon [106] proved
this property for sequences coding regular m-interval exchange transformations.

It is worth to notice that all sequences from both these classes have the factor
complexity C(n) = (m − 1)n + 1 for all n ≥ 0. However, unlike the binary case,
Vuillon [106] observed that this condition is not su�cient for sequences to satisfy Rm
for m ≥ 3. He found a sequence with the complexity 2n + 1 which has some factors
with more than three return words (see Section 3 in [106]). Balková, Pelantová, and
Steiner [11] characterized the sequences with R3.

Proposition 2.29 ( [11, Theorem 5.7]). A uniformly recurrent sequence u has three

return words to each of its factors if and only if Cu(n) = 2n + 1 for all n ≥ 0 and u
has no weak bispecial factor.

In addition, they showed that analogous conditions are su�cient, but not necessary
if m ≥ 4. More precisely, if a uniformly recurrent sequence u has the complexity
Cu(n) = (m− 1)n+ 1 for all n ≥ 0 and u has no weak bispecial factors, then u has m
return words to each of its factors. Let us note that in the notion of [45] these sequences
are neutral of characteristic 1 (see Section 2.2.3). On the other hand, they constructed
a sequence which ful�ls R4 while it has di�erent factor complexity and it contains weak
bispecial factors [11, Proposition 6.1].

Return words were studied also for more general classes of sequences. Berthé et
al. [20] studied return words in sequences coding linear involutions which generalize
sequences coding interval exchange transformations. Even more generally, Dolce and
Perrin [45] determined the number of return words for neutral sets of any characteristic.
In particular, for a uniformly recurrent neutral sequence u their result implies that the
number of return words to non-empty factors of u is constant:

Proposition 2.30 ( [45, Corollary 5.4]). Let u be a uniformly recurrent neutral se-

quence over A of characteristic χ(u). For any non-empty w ∈ Lu, the set Ru(w) has

#A− χ(u) + 1 elements.

Nevertheless, they are known also some classes of sequences whose factors do not
have constant number of return words. Justin and Vuillon [65] explicitly described
return words in episturmian sequences which generalize the Arnoux{Rauzy sequences.
It directly follows from [65, Theorem 4.4] that every episturmian sequence which is not
k-strict for any k has factors with at least two di�erent numbers of return words.

Balková, Pelantová and Steiner [11] studied a class of sequences associated to β-
numeration systems. This class can be viewed as a generalization of Arnoux{Rauzy
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sequences, too. They identi�ed the basis β for which the associated sequence has
constant number of return words, see [11, Section 7].

Finally, we mention two results on particular sequences. As follows from Huang
and Wen [64] the period doubling sequence, which is the �xed point of the primitive
morphism 0 → 01, 1 → 00, has to each of its factors two or three return words. The
Thue{Morse sequence, which is �xed by the primitive morphism 0 → 01, 1 → 10, has
to each of its factors two (only to the empty word), three or four return words, see
e.g. [35, Section 6].

Remark 2.31. Let us mention that to describe return words in aperiodic uniformly
recurrent sequence u, it basically su�ces to investigate only return words to bispecial
factors of u. Indeed, in such a sequence u each factor w has the unique shortest bispecial
factor containing w, we denote it v = pws, where p, s ∈ A∗ (e.g., see [27, Proposition
5]). Then it is easy to realize that

Ru(w) = p−1Ru(v)p = {p−1rp : r ∈ Ru(v)} .

Other details can be found for example in [11].

Derived sequences

If u is a uniformly recurrent sequence and w is its factor, then the �nite set Ru(w) =
{r0, r1, . . . , rk−1} creates a code. In particular, if w is a pre�x of u, then u can be
written uniquely in the form

u = rd0rd1rd2 · · · , where all rdj ∈ Ru(w) , i.e., all dj ∈ {0, 1, . . . , k − 1} .

Similarly, if w is not a pre�x of u, i.e., the �rst occurrences of w in u is i ≥ 1, then u
can be written as

u = u0u1 · · ·ui−1rd0rd1rd2 · · · , where all rdj ∈ Ru(w) , i.e., all dj ∈ {0, 1, . . . , k − 1} ,

in other words, u can be uniquely decoded to return words except for some �nite pre�x.
In both cases, the unique sequence d0d1d2 · · · de�ned over the alphabet of cardinal-

ity #Ru(w) codes the order of return words in u. It is called the derived sequence of
u with respect to w and denoted du(w).

Example 2.32 (Example 2.27 continued). Since the pre�x 0 of the Fibonacci sequence
f has the return words 01 and 0, the sequence f can be written as a concatenation of
the words r0 = 01 and r1 = 0:

f = 01 0 01 01 0 01 0 01 01 0 01 01 0 = r0r1r0r0r1r0r1r0r0r1r0r0r1 · · · .

Hence the derived sequence of f with respect to 0 is

df (0) = 0100101001001 · · · = f .

In fact, any derived sequence of f with respect to its pre�x is equal (up to exchange of
letters 0 ↔ 1 which make no di�erence) to the Fibonacci sequence f . In other words,
the Fibonacci sequence has only one derived sequence and it is the Fibonacci sequence
itself.
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Let us emphasize that, unlike the return words, derived sequence depends on the
original sequence and not only on its language.

For w being a non-empty pre�x, these sequences were introduced by Durand [49]
and, independently, for a general factor w they were investigated by Holton and Zam-
boni [61]. In this thesis we follow the Durand's notion and we consider only derived
sequences to pre�xes.

When studying derived sequences, the usual aim is to describe the set Der(u) of all
derived sequences of a given uniformly recurrent sequence u:

Der(u) = {du(w) : w is a non-empty pre�x of u} .
In fact, it su�ces to investigate only derived sequences to right special pre�xes. The
reason is the same as in Remark 2.31. By the de�nition, the return words to the empty
word ε are all letters in u and so the corresponding derived sequence is du(ε) = u for
every sequence u. Hence we omit the empty pre�x.

It is also worth to realize that the sequence u is a morphic image of each of its derived
sequences, i.e., for every pre�x w there exists a morphism τ such that u = τ(du(w)).
In fact, τ is just the inverse morphism to the coding of return words which creates the
derived sequence.

Let us mention one more Durand's simple observation.

Proposition 2.33 ( [49, Proposition 2.6]). Let u be a uniformly recurrent sequence, w
be its non-empty pre�x, v = du(w) and v be a non-empty pre�x of v. Then the derived

sequence dv(v) is also the derived sequence of u with respect to some non-empty pre�x

u of u, i.e., dv(v) = du(u).

The derived sequences were so far studied especially for Sturmian sequences and
their generalization. Araújo and Bruy�ere [6] precisely described derived sequences of
standard Sturmian sequences in terms of continued fraction expansions of their slopes,
see [6, Proposition 15]. Furthermore, the description of derived sequences of all standard
episturmian sequences can be easily deduced from the work of Justin and Vuillon [65,
Corollary 4.1 and Theorem 4.4]. They use the very comfortable notion of directive
sequences and episturmian morphisms.

Huang and Wen studied the derived sequences to all factors in the Fibonacci se-
quence [62], Tribonacci sequence [63] and period doubling sequence [64]. In the case
of the Fibonacci and Tribonacci sequences, they found out that each of its derived se-
quences is Fibonacci and Tribonacci sequence, respectively. In fact, this can be trivially
deduced from much earlier work of Justin and Vuillon [65, Corollary 4.1 and Theorem
4.4].

Characterization of primitive substitutive sequences

Both Durand [49] and Holton and Zamboni [61] introduced derived sequences when
studying substitutive sequences. Let us recall that a sequence u is called substitutive
if u = κ(θω(a)) for some 1-uniform morphism κ and some substitution θ. Moreover, if
θ is primitive, we call such a sequence u primitive substitutive. These sequences are
always uniformly recurrent (e.g., see [5, Theorem 10.9.5]).

Let us emphasize that, in general, it can be hard to decide if a given sequence is sub-
stitutive or not. However, Durand [49] managed to characterize primitive substitutive
sequences combinatorially using derived sequences.
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Theorem 2.34 ( [49, Theorem 2.5]). A uniformly recurrent sequence u is primitive

substitutive if and only if the number of its distinct derived sequences is �nite.

Moreover, all derived sequences of a primitive substitutive sequence are also prim-
itive substitutive, and especially, all derived sequences of a �xed point of a primitive
morphism are also �xed points of some primitive morphisms. The �niteness of Der(u)
in this special case follows also from [61].

In fact, Theorem 2.34 works for every uniformly recurrent sequence of the form
u = τ(ψω(a)), where τ and ψ are arbitrary morphisms. This assertion is a consequence
of [52, Theorem 3], where Durand proved that every such a sequence is primitive sub-
stitutive.

Note on applications and generalizations of return words and derived se-

quences

Return words are now an integral part of combinatorics on words and it is almost
impossible to mention all their usefulness and applications. And although the notion
of derived sequences is probably not so well-known, they are also naturally present in
many works. Hence we stated only several recent results which are somehow related to
our objects. However, this list is still far from being complete.

Araújo and Bruy�ere [6] applied their description of Sturmian sequences to obtain
a new proof of some characterization of Sturmian sequences. Blodin-Massé et al. [24]
use the description of return words in sequences coding rotations to show that they are
rich. Bucci and De Luca [27] use this notion to show that some kind of generalizations
of Arnoux{Rauzy sequences which seem essential are just morphic images of Arnoux{
Rauzy sequences. Berthé et al. [15] and Berthé et al. [21] exploited the properties of
return words and derived sequences for studying various properties of dendric sequences
and also for a characterization of substitutive dendric sequences. Among many other
things, Durand [52] used this notion to prove that the uniform recurrence of substitutive
sequences is decidable. In the same paper he also considers return words with respect
to a set of factors of a sequence u (instead of to one single factor of u).

Finally, let us mention that also Abelian variants of return words can be considered.
We recall that two words v and w over A are Abelian equivalent if |v|a = |w|a for all
a ∈ A (see Section 2.1.5). All words which are Abelian equivalent to w create the
Abelian class of w. For a recurrent sequence u and its factor w, let n0 < n1 < n2 < · · ·
be all integers ni such that the factor uni · · ·uni+|w|−1 is Abelian equivalent to w. Then
each factor wni · · ·wni+1−1 is called a semi-Abelian return to the Abelian class of w. By
an Abelian return to the Abelian class of w we mean an Abelian class of wni · · ·wni+1−1.
Hence the number of Abelian returns is the number of distinct Abelian classes of semi-
Abelian returns.

Example 2.35 ( [89, Example 5]). We consider the Thue{Morse sequence m which is
�xed by the morphism 0→ 01, 1→ 10.

The Abelian class of the word 01 is {01, 10}. If we mark the occurrences of words
01 and 10 in m by dots:

m = 0.11.0.1.00.11.00.1.0.11.0.1.00.1.0.11.00.11.01.00.1 · · · ,
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we can see that the Abelian class {01, 10} has four semi-Abelian returns: 0, 01, 1 and
10. Since the words 01 and 10 are Abelian equivalent, the class {01, 10} has three
Abelian returns: {0}, {1} and {01, 10}.

This notation was introduced by Puzynina and Zamboni in [89]. In this paper they
study (semi-)Abelian return in Sturmian sequences. Among other things, they revealed
two new characterizations of Sturmian sequences.

Proposition 2.36 ( [89, Theorems 2 and 3]).

(i) A binary recurrent sequence u is Sturmian if and only if the Abelian class of each

factor w of u has two or three Abelian returns in u.

(ii) A binary recurrent sequence u is Sturmian if and only if the Abelian class of each

factor w of u has two or three semi-Abelian returns in u.

The Abelian returns of Sturmian sequences were examined also by Rigo, Salimov
and Vandomme [99]. They also introduced the notion of Abelian derived sequences and
they indicated that their role di�ers from the classical one essentially. More precisely,
they showed that the Thue{Morse sequence (which is �xed by a primitive morphism),
has in�nitely many Abelian derived sequences [99, Proposition 38]. Other related results
can be found in [76,90].

2.3.2 Critical exponent

Roughly speaking, the critical exponent reects the length of the longest repetition in
a given sequence. By repetition of a non-empty factor w we mean every word of the
form z = ww · · ·ww′, where w′ is a proper pre�x of w. Then we say that z has the
fractional root w and the exponent e = |z|/|w|. We also write z = we and z is called
an e-power of w. Let us emphasize that a word z can have multiple exponents and
fractional roots. The word z is primitive if the only integer exponent of z is 1.

Example 2.37. The word z = 01101101 has the fractional root 011 and the exponent
8
3 . However, z also has the fractional root 011011 and the exponent 8

6 or the fractional
root 01101101 and the exponent 1. Hence the word z is primitive.

For every non-empty factor u of u we call the index of u in u the supremum of
e ∈ Q such that ue is a factor of u:

indu(u) = sup{e ∈ Q : ue ∈ L(u)} .

The critical exponent of a sequence u is

cr(u) = sup {indu(u) : u is a non-empty factor of u}

or, equivalently,

cr(u) = sup {e ∈ Q : e is an exponent of a non-empty factor of u} .

In other words, each factors of u has the exponent e ≤ cr(u) and, moreover, for every
δ > 0 there is a factor of u with the exponent e > cr(u)− δ.

Clearly, 1 < cr(u) ≤ +∞ for every sequence u. The critical exponent can be also
in�nite, since there exist sequences with unbounded repetitions, i.e., for every e ∈ Q
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there is an e-power in u. Such a sequence is for example Champernowne sequence or
any periodic sequence.

In addition, the critical exponent can be both rational and irrational. For example,
the Thue{Morse sequence m has cr(m) = 2 (as follows already from the work of

Thue [102] published in 1912), while the Fibonacci sequence f has cr(f) = 2 + 1+
√

5
2 (as

shown by Mignosi and Pirillo [78]). In fact, Krieger and Shallit [71] proved that every
real number grater than 1 is a critical exponent of some sequence.

There is a huge amount of results related to critical exponent, repetitions or power
avoidance and we do not mention them. For survey of some of them see for example [70,
Chapter 3] or [5, Sections 1.6{1.8]. Here we just recall the critical exponents of Sturmian
sequences and we mention some recent results which are relevant for this thesis.

Critical exponent of Sturmian sequences

Preceded by several partial results of various authors, �nally Damanik and Lenz [42] and
Capri and de Luca [38] independently gave a general formula for the critical exponent
of Sturmian sequences in terms of continued fraction expansion of their slopes. We use
the notation from Section 2.2.1.

Theorem 2.38 ( [42, Theorem 1], [38, Theorem 4]). Let α = [0; a1, a2, a3, . . .] and let

u be a Sturmian sequence with the slope α. Then the critical exponent of u is given by

cr(u) = 2 + sup
N≥0

{
aN+1 +

qN−1 − 2

qN

}
.

From this formula can be easily deduced some interesting previous results. For
example, Sturmian sequence has in�nite critical exponent if and only if its slope has
unbounded coe�cients in its continued fraction expansion (which was �rst proved by
Mignosi [77, Theorem 2.25]).

In addition, the Fibonacci sequences with the value cr(f) = 2 + φ, where φ = 1+
√

5
2

is the golden ratio, has the smallest critical exponent among all Sturmian sequences.
However, the Fibonacci sequence is not the only Sturmian sequence with this value.
Obviously, all Sturmian sequences with the same slope 2 − φ has the same critical
exponent, since it depends only on the language of the sequence. Also the sequence
E(f) with the slope φ − 1 has the same critical exponent. Nevertheless, Capri and de
Luca [38] showed that this value is achieved also by Sturmian sequences with di�erent
slopes.

Proposition 2.39 ( [38, Proposition 15]). The minimal critical exponent for a Stur-

mian sequence is 2 +φ, and moreover, a Sturmian sequence u has cr(u) = 2 +φ if and

only if the slope of u is one of the numbers

2− φ = [0; 2, 1̄] , 3−φ
5 = [0; 3, 1̄] , φ+3

11 = [0; 2, 2, 1̄] ,

φ− 1 = [0; 1̄] , φ+2
5 = [0; 1, 2, 1̄] , 8−φ

11 = [0; 1, 1, 2, 1̄] .

In addition, by [35, Section 2.1] Sturmian sequences of slopes φ+4
19 and 15−φ

19 have
critical exponent 11

3 > φ + 2 and all other Sturmian sequences have critical exponent
at least 4.
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In the episturmian case Justin and Pirillo [66, Theorem 5.2] gave a formula for
critical exponent of standard episturmian sequences which are �xed by a primitive
morphism. This formula is stated in terms of directive sequences.

Repetition threshold

We have already mentioned that every real number grater than 1 is a critical exponent
of some sequence. Nevertheless, when the values of critical exponent approach 1, the
needed alphabets grow in size. To capture this growth, the notion of repetition thresh-
old was introduced. The repetition threshold is a mapping RT : N≥1 → R>1 de�ned for
every positive integer n by

RT(n) = inf {γ ∈ R : ∃u over n-letter alphabet with cr(u) = γ} .
It is easy to �nd out that every binary sequence has the critical exponent at least

2 and the value 2 is achieved for example by the Thue{Morse sequence (as shown by
Thue [102]). Hence we get RT(2) = 2. Dejean [43] found RT(3) and also stated a famous
conjecture about the value of this threshold for every n. After many partial results, a
proof of this conjecture was completed independently by Currie and Rampersad [41]
and by Rao [92]. Thus the repetition threshold is as follows:

RT(n) =





2 for n = 2;
7
4 for n = 3;
7
5 for n = 4;
n
n−1 for n ≥ 5.

We are especially interested in some recent results about repetition thresholds in
special classes of sequences. Rampersad, Shallit and Vandomme [91] and later also
Baranwal and Shallit [12] studied this threshold for balanced sequences. Especially the
second paper employs a computational approach using the automatic theorem-proving
software Walnut, which has been recently used to variety of problems in combinatorics
on words. One can read more about Walnut in [83].

In addition, Baranwal and Shallit [13] also studied the repetition threshold for rich
sequences over small alphabets. Using Walnut they gave lower bounds on its value
for binary and ternary sequences. In the binary case they also constructed a sequence
with the critical exponent 2 +

√
2/2 and they conjectured that this critical exponent

is minimal among all binary rich sequences. This conjecture was proven by Curie, Mol
and Rampersad [40].

Theorem 2.40 ( [40, Theorem 2]). Each binary rich sequence u has

cr(u) ≥ 2 +
√

2
2

and this bound is attained by sequences v = τ(ψω(0)) and v′ = σ(ψω(0)), where

ψ :





0→ 01

1→ 02

2→ 022

, τ :





0→ 0

1→ 01

2→ 011

and σ :





0→ 00101

1→ 00101101

2→ 0010110101101

.

It is not di�cult to �nd out that both sequences v and v′ are complementary
symmetric Rote sequences (Section 2.2.4).
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Notions related to the critical exponent

There exist several quantities similar to the critical exponent. Let us mention at least
some of them.

The asymptotic critical exponent of u is de�ned by

cr∗(u) = lim
n→∞

sup{e ∈ Q : e is an exponent of a factor w of u with |w| ≥ n} .

Thus it takes into account only repetitions of factors with growing length. Clearly,
1 ≤ cr∗(u) ≤ cr(u). Let us emphasize that while for some sequences these two quantities
are the same (e.g., if one of them is in�nite), it does not hold in general.

In the case of Sturmian sequences the exact formula for cr∗(u) is known. Vandeth
[103] proved it for Sturmian sequences which are �xed points of some morphisms, but
Cassaigne in [35, Section 2.2] noticed that it remains valid for all Sturmian sequences.

Theorem 2.41 ( [103, Section 5]). Let α = [0; a1, a2, a3, . . .] and let u be a Sturmian

sequence with the slope α. Then the asymptotic critical exponent of u is given by

cr∗(u) = 2 + lim sup
N→∞

[aN ; aN−1, . . . , a1] .

It directly implies that the Fibonacci sequence f with cr∗(f) = cr(f) = φ+2 is again
optimal among Sturmian sequences (as well as the sequence ϕ(f) for any Sturmian
morphism ϕ).

However, the Thue{Morse sequence t with cr∗(t) = cr(t) = 2 is no more optimal
among all binary sequences, since Cassaigne [35, Theorem 2.4] constructed a binary
sequence with cr∗(u) = 1.

The initial critical exponent of u is de�ned by

icr(u) = sup {e ∈ Q : e is an exponent of a non-empty pre�x of u} .

and the asymptotic initial critical exponent of u is

icr∗(u) = lim
n→∞

sup {e ∈ Q : e is an exponent of a pre�x w of u with |w| ≥ n} .

Similarly as in the case of non-initial critical exponent we have 1 ≤ icr∗(u) ≤ icr(u).
Berthé, Holton, and Zamboni [22] studied these quantities in the case of Sturmian

sequences. They gave a formula for the (asymptotic) initial critical exponent of Stur-
mian sequences in terms of some S-adic representations (see [22, Proposition 3.3 and
Corollary 3.5]) as well as they deduced from it some other interesting results.

The de�nitions directly imply that icr(u) ≤ cr(u) and icr∗(u) ≤ cr∗(u). Berthé et
al. [22, Theorem 1.2] proved that for each standard Sturmian sequence u one has

cr∗(u) = 1 + icr∗(u) . (2.4)

The Fibonacci sequence has icr∗(f) = icr(f) = 1 + φ. In addition, Allouche et al. [4]
showed that every Sturmian sequence u has icr∗(u) ≥ 2. Berthé et al. characterized
Sturmian sequence with icr∗(u) = 2 (see [22, Proposition 1.1]), obviously, the Fibonacci
sequence is not one of them.
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Finally, let us mention that while the (asymptotic) critical exponent depends only
on the language of u (hence in the case of Sturmian sequence it depends only on its
slope and not on its intercept), the (asymptotic) initial critical exponent depends on
the sequence u itself. Hence it is natural to ask how the initial critical exponent varies
among the sequences with the same slope. Surprisingly, it seems that it can di�er
essentially.

In particular, for each irrational slope α with unbounded coe�cients in its continued
fraction expansion the respective standard Sturmian sequence u has icr∗(u) = cr∗(u) =
+∞ (see Equation (2.4)). On the other hand, Berthé et al. [22, Proposition 4.1] found
out that for every irrational α there is a Sturmian sequence v with the slope α which
has icr∗(v) ≤ 1 + φ. In fact, Mignosi, Restivo and Salemi [79] proved that this is true
for every in�nite minimal subshift, see [79] and also [22] for more details.

Recently, the Abelian variant of the critical exponent has been considered, too. For
details and references see, e.g., [56, 88].

2.3.3 Recurrence function

Like the return words, also the notion of recurrence origins in the theory of dynamical
systems. The combinatorial point of view was initiated in 1938 by Morse and Hedlund
[81]. Many details about recurrence and other related notions can be found for example
in [5, Sections 10.8{10.10] or in the surveys [34] of [35].

Let us recall that a sequence u is recurrent if each of its factors occurs in�nitely
many times in u. However, the occurrences of a given factor of a recurrent sequence
can occur with arbitrary large gaps. If we suppose that these gaps are bounded, we
get uniformly recurrent sequence. More precisely, a sequence u is uniformly recurrent

if for every n ∈ N there exists m ∈ N such that each factor of length m contains every
factor of length n.

The recurrence function quanti�es the speed of recurrence in the uniformly recurrent
sequence: it assigns to each length n the respective length m. More formally, the
recurrence function of a uniformly recurrent sequences u is the function Ru : N → N
de�ned by

Ru(n) = min {m ∈ N : each factor from Lu(m) contains all factors from Lu(n)} .
If we denote fn(i) the factor of length n occurring in u at the position i, we can

express the recurrence function also as follows:

Ru(n) = min {m ∈ N : ∀i ∈ N {fn(i), fn(i+ 1), . . . , fn(i+m− n)} = Lu(n)} . (2.5)

From this expression it it easy to deduce the following inequality:

Ru(n) ≥ Cu(n) + n− 1 for each n ∈ N . (2.6)

In fact, Morse and Hedlund [81] showed that for aperiodic sequences this inequality
can be improved to Ru(n) ≥ Cu(n) + n for each n ∈ N.

On the other hand, the recurrence function cannot be bounded from above by the
complexity function since, for example, it is possible to �nd Sturmian sequences whose
recurrence functions grow fast. It follows from the formula for the recurrence function
of Sturmian sequences which was constructed by Morse and Hedlund in [82]. We use
the notation from Section 2.2.1.
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Theorem 2.42 ( [82]). Let α = [0; a1, a2, a3, . . .] and let u be a Sturmian sequence

with the slope α. Then the recurrence function of u is given by

Ru(n) = qN+1 + qN + n− 1 for every n ∈ [qN , qN+1) .

This result was further generalized by Cassaigne and Chekhova [36, Proposition
2.4] who gave the formula for Arnoux{Rauzy sequences. Among other things, they use
the following general relation between the recurrence function and the lengths of the
return words.

Proposition 2.43 ( [34, Proposition 2]). For any uniformly recurrent sequence u and

for any n ∈ N we have

Ru(n) = max{|r| : r is a return word to a factor of u of length n}+ n− 1 .

In fact, to �nd the recurrence function of u it su�ces to determine the return words
to so-called (essential) singular factors of u (e.g., see [33]) which can be derived from
bispecial factors. The method is precisely described in [34, Section 5] and it can be
use for example to calculated the recurrence function of the Thue{Morse sequence (see
also [35, Proposition 6.1]). This approach was also used in Balková [9] to obtain the
recurrence function of some class of sequences associated with β-integers.

Recurrence function of Sturmian sequences was recently studied also from proba-
bilistic point of view, see [101].

Recurrence quotient

When the recurrence function of u grows slowly, it means that all factors of u have
to occur quite often and so u has to be highly structured. By Inequality (2.6) such a
sequence u has also small factor complexity. Hence we de�ne the recurrence quotient

of u, denoted ρ(u), as

ρ(u) = lim sup
n→∞

Ru(n)

n
.

Clearly, the recurrence quotient is always at least 1. Let us emphasize that it can be
also in�nite. For example, this is the case of Sturmian sequences whose slopes have
unbounded coe�cients in their continued fraction expansions.

If ρ(u) is �nite, then the sequence u is called linearly recurrent. These sequences
have some interesting properties, e.g., see [53]. In particular, Durand showed in [50,51]
that they have a characterization in terms of S-adic representations.

Clearly, if u is periodic, then ρ(u) = 1. For aperiodic sequences Morse and Hedlund
[81] proposed an open problem to �nd the best lower bound for ρ(u). Cassaigne [34]
proved that ρ(u) ≥ 3, but the Rauzy's conjecture from [93] which states that ρ(u) ≥
2 + φ (where φ is the golden ratio) is, as far as we know, still open.

Nevertheless, for Sturmian sequences this estimate is true and the bound is attained
by the Fibonacci sequence (as well as by the sequence ϕ(f) for any Sturmian morphism
ϕ). In fact, Theorem 2.42 directly implies the following formula for the recurrence
quotients of Sturmian sequences.

Theorem 2.44 ( [82]). Let α = [0; a1, a2, a3, . . .] and let u be a Sturmian sequence

with the slope α. Then the recurrence quotient of u is

ρ(u) = 2 + lim sup
N→∞

qN
qN−1

= 2 + lim sup
N→∞

[aN ; aN−1, . . . , a1] .
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Cassaigne in [33] studies the structure of the set {ρ(u) : u is Sturmian sequence}
in detail, but also in this special case some questions remain open.

Modi�cations of the recurrence function

Some other functions related to the recurrence function have been studied, too. First
of all, it is quite natural to consider the pre�x variant of the recurrence function. We
denote R′u(n) the length of the smallest pre�x of u which contains all factors of u of
length n, i.e.,

R′u(n) = min {m ∈ N : {fn(0), fn(1), . . . , fn(m− n)} = Lu(n)} ,

and we consider also the respective quotient

ρ′(u) = lim sup
n→∞

R′u(n)

n
.

This function was de�ned by Allouche and Bousquet-Mélou [2] to reformulate a
conjecture on automaticity function, see [2] or [31] for details. In fact, they proved that
this conjecture on automaticity function is equivalent to another conjecture which says
that every aperiodic sequence u has ρ′(u) ≥ 1 +φ. It is well-known that the Fibonacci
sequence satis�es ρ′(f) = 1 + φ.

However, Cassaigne [31, Theorem 1] disproved this conjecture and found the correct
optimal lower bound. More precisely, he proved that every aperiodic sequence u has

ρ′(u) ≥ 29− 2
√

10

9

and this value is attained by the Sturmian sequence which is the �xed point of the
morphism 0 → 01001010, 1 → 010. Thus the Fibonacci sequence is optimal only
among standard Sturmian sequences and not in the general case.

Let us mention that one can �nd also closely related function αu(n) = R′u(n)− n,
which is called appearance. The value R′u(n)−n+1 = αu(n)+1 expresses the maximal
position where a factor of length n occurs in u for the �rst time. Some details can be
found in [5, Sections 10.10 and 15.3].

Cassaigne in [32] studied the function R′′u(n) which assigns to each n the length of
the smallest factor of u which contains all factors of length n.

Clearly, the functions Ru and R′′u depend only on the language of u, while the
function R′u depends on the sequence u itself. The mentioned functions also ful�l the
following inequalities:

Cu(n) + n− 1 ≤ R′′u(n) ≤ R′u(n) ≤ Ru(n) for every sequence u and n ∈ N ,

and so each aperiodic sequence u has R′′u(n) ≥ 2n for every n ∈ N.
Cassaigne [32, Theorem 1 and Corollary 1] showed that Sturmian sequences can be

described by means of this function: a sequence u is Sturmian if and only if R′′u(n) = 2n
for every n ∈ N. In particular, it means that all n+1 distinct factors from Lu(n) occur
in some factor w ∈ Lu(2n). This is only possible if each factor from Lu(n) occurs once
in w. In that case, Cassaigne says that u has grouped factors. In general, a sequence u
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has grouped factors if and only if R′′u(n) = Cu(n) +n−1 for every n ∈ N. Among other
things, he showed that Sturmian sequences are not the only sequence with grouped
factors, but the precise characterization of these sequences and many other related
questions remain open.

By studying the relation between the properties of sequences and its morphic im-
ages, Frid [57] computed the functions Ru, R′u and R′′u (as well as some other quantities)
for �xed points of a large class of morphisms.

Links between the critical exponent and the recurrence function

Clearly, the notions of critical exponent and recurrence function (as well as many
other quantities describing sequences) are related. It is particularly evident in the case
of Sturmian sequences, where, in fact, Carpi and de Luca [38] used the formula for
the recurrence function (Theorem 2.42) to �nd the formula for the critical exponent
(Theorem 2.38). Now we state some of these links more explicitly.

Cassaigne [35, Proposition 3.2] observed that the following bound on the asymptotic
critical exponent can be derived from the recurrence quotient:

cr∗(u) ≥ 1 +
1

ρ(u)− 1
for any sequence u .

In particular, when cr∗(u) = 1, then ρ(u) is in�nite. He also explains that, apart from
this case and the periodic case where cr∗(u) = +∞ and ρ(u) = 1, the equality cannot
hold.

Hence it may seem that the quantities cr∗(u) and ρ(u) vary in opposite directions.
However, this is not true at least for Sturmian sequences, since by comparing Theorems
2.41 and 2.44, we get that each Sturmian sequence u has cr∗(u) = ρ(u). Nevertheless,
it is not clear if this property characterizes Sturmian sequences.

Masáková and Pelantová [75, Theorem 1] found another relation between the re-
current function and the indices of factors which holds exactly for Sturmian sequences.
More precisely, they proved that a uniformly recurrent sequence u is Sturmian if and
only if there exist in�nitely many factors w of u such that Ru(|w|) = |w| · ind(w)+1. In
addition, they can used it to present an alternative proof of Theorem 2.38, since their
approach relies on the Vuillon's description of Sturmian sequences by return words (see
Theorem 2.28) instead of the manipulation with the continued fractions of the slopes.

2.3.4 Non-repetitive complexity

Non-repetitive complexity is another type of complexity which can be viewed as a dual
function to the recurrence function.

The non-repetitive complexity of a sequence u is a function nrCu : N → N which
to each length n assigns the maximal integer m such that for some position i ∈ N any
factor of u of length n occurs at most ones in uiui+1 · · ·ui+m+n−2. In other words,
nrCu(n) expresses the maximal number of distinct factors of length n which can be
seen one after another somewhere in u until some factor is repeated. If we denote fn(i)
the factor of length n occurring in u at the position i, we can write

nrCu(n) = max{m ∈ N : ∃ i ∈ N such that

fn(i), fn(i+ 1), . . . , fn(i+m− 1) are pairwise distinct} .
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Similarly we de�ne also the pre�x variant of this function. The initial non-repetitive
complexity of a sequence u is a function inrCu : N→ N which to each length n assigns
the maximal integer m such that any factor of u of length n occurs at most ones in
u0u1 · · ·um+n−2, i.e.,

inrCu(n) = max{m ∈ N : fn(0), fn(1), . . . , fn(m− 1) are pairwise distinct} .

Let us emphasize that while the function nrCu depends only on the language of u
and not on the sequence u itself, the function inrCu depends on the precise structure
of the sequence u. In fact, the situation is exactly the same also in the case of (initial)
critical exponent or (initial) recurrence function.

What we meant by non-repetitive complexity was introduced by Nicholson and
Rampersad in [84], where they study the initial non-repetitive complexity. Nevertheless,
the original idea and also the name come from Moothathu [80]. He proposed a new type
of entropy of dynamical systems, so-called Eulerian entropy, which can be in the setting
of symbolics dynamics formulated as a combinatorial property named non-repetitive
complexity, see [80, Section 3] for details. However, Moothathu used this term for the
quantity

lim sup
n→∞

log inrCu(n)
n .

The initial non-repetitive complexity was independently de�ned also by Bugeaud
and Kim [29], whose motivation comes from the interplay between combinatorics on
words and Diophantine approximation of real numbers. For example, they use the
initial non-repetitive complexity of u to study the irrational exponent of a number x,
whose expansion in a given base corresponds with u (see [29, Section 4]).

In fact, they de�ned the function ru : N → N which to each n assigns the length
of the smallest pre�x of u containing two (possibly overlapping) occurrences of some
factor of length n, i.e.,

ru(n) = min {m ∈ N : fn(i) = fn(m− n+ 1) for some i with 0 ≤ i ≤ m− n} .

However, since
ru(n) = inrCu(n) + n for every n ∈ N ,

we can easily reformulate their results into our notion of inrCu.
Both Nichoson and Rampersad [84] and Bugeaud and Kim [29] examined general

properties of this function in comparison to the classical complexity function. Clearly,
the following inequalities hold:

inrCu(n) ≤ nrCu(n) ≤ Cu(n) for each n ∈ N .

They showed that these functions can both be equal or di�er essentially. More precisely,
they proved that for every d ≥ 3, there exists a sequence u over d-letter alphabet with
inrCu(n) = Cu(n) = dn for all n ∈ N. On the other hand, for every d > 1 they
constructed a sequence v with the factor complexity Cv(n) = dn and the non-repetitive
complexity inrCv(n) ≤ 4n for all n ≥ 1. See [84, Propositions 2 and 3] and [29, Section
2].

In addition, they characterize the periodic sequences by means of the initial non-
repetitive complexity. More precisely, a sequence u is eventually periodic if the function
inrCu(n) is bounded, see [84, Theorem 1] and [29, Theorem 2.3].
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Moreover, Bugeaud and Kim also provide a new characterization of Sturmian se-
quences.

Theorem 2.45 ( [29, Theorem 2.4]). A sequence u is Sturmian if and only if u has

inrCu(n) ≤ n+ 1 for every n ≥ 1 with the equality for in�nitely many n.

They also de�ned the exponent of repetition of u, denoted rep(u), as

rep(u) = lim inf
n→∞

ru(n)

n
.

They proved that 1 ≤ rep(u) ≤
√

10 − 3/2 when u runs over the Sturmian sequences
as well as that both extremal values are attained, see [29, Section 3].

Similarly, Nicholson and Rampersad use the limes superior of ru(n)/n to give a new
criterion for aperiodicity. They showed that u is eventually periodic if and only if

lim sup
n→∞

inrCu(n)

n
<

1

1 + φ2
, where φ is the golden ratio .

Nevertheless, it remains open if the constant 1
1+φ2

is the best possible or if it can be
replaced for example by 1.

Not surprisingly, (initial) non-repetitive complexity and related quantities have
some links with other combinatorial properties such as (initial) recurrence function,
(initial) critical exponent or Diophantine exponent, some details can be found in [29,
Sections 9 and 10].

Although Moothathu introduced the concept of non-repetitive complexity, he did
not explicitly compute this function for any particular sequence. Nicholson and Ram-
persad [84] obtained formulas for the Thue{Morse sequence, the Fibonacci sequence
and the Tribonacci sequence. They also constructed some square-free sequences with
slowly growing initial non-repetitive complexity. The formulas for the Thue{Morse and
Fibonacci sequences are also mentioned in [29].

Proposition 2.46 ( [84, Theorems 6, 10 and 16]). The initial non-repetitive com-

plexities of the Thue{Morse sequence m, the Fibonacci sequence f and the Tribonacci

sequence t are as follows:

(i) If 2k−1 < n ≤ 2k for some integer k ≥ 1, then inrCm(n) = 3 · 2k−1.

(ii) If Fk − 2 < n ≤ Fk+1 − 2 for some integer k ≥ 1, then inrCf (n) = Fk, where Fk
is kth Fibonacci number.

(iii) If
Tk+Tk−2−3

2 < n ≤ Tk+1+Tk−1−3
2 for k ≥ 1, then inrCt(n) = Tk, where Tk is kth

Tribonacci number.

2.4 Our tools for studying sequences

The aim of this section is to briey describe the essential tools which we used to obtain
our results. In particular, we focus on Rauzy graphs and S-adic representation of
sequences. Although both this concepts are now well established in combinatorics on
words, we would like to highlight them since it seems that they can be very useful also
for other studies.
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Let us mention that we take advantage also from other well-known concepts of
combinatorics on words such as special factors (Section 2.1.4) or Parikh vectors (Section
2.1.3). In the article [E] we signi�cantly use continued fraction expansions related to
Sturmian sequences (Section 2.2.1), too. In papers [D] and [E] we also utilize the results
about return words and derived sequences obtained in the articles [A,B,C].

2.4.1 Rauzy graphs

Rauzy graphs can be useful when studying the properties of a sequence u since they
visualize the factor structure of u. They were introduced by Rauzy [93].

First let us recall some de�nitions. For each non-negative integer n, the Rauzy
graph of order n, denoted Γu(n), is the oriented graph (V,E), where the set V of
vertices is the set Lu(n) of all factors of u of length n, the set E of oriented edges is
the set Lu(n+ 1) of all factors of u of length n+ 1 and there is an edge e from v to w
if there exist two letters a and b such that e = va = bw ∈ Lu(n+ 1). Let us emphasize
that we label the vertices by the factors of u of length n and the edges by the factors
of u of length n+ 1. However, in the literature there are also di�erent ways of labelling
the edge e, e.g., by the �rst or the last letter of e. Several �rst Rauzy graphs of the
Fibonacci sequence f are displayed in Figure 2.4.

By a path P of length m in the Rauzy graph Γu(n) we mean a sequence of m + 1
consecutive vertices from Γu(n)

v0
v0a1−−−→ v1

v1a2−−−→ · · · vm−1am−−−−−→ vm , v0, . . . , vm ∈ Lu(n) , a1, . . . , am ∈ A,

and we label the path P by the word p = v0a1a2 · · · am of length n+m.
Clearly, every factor of u of length ` is a label of some path in Γu(n) for each n ≤ `.

On the other hand, not all paths in Γu(n) belong to the language of u. Indeed, for
example the word 000 is the label of the paths

0
00−→ 0

00−→ 0

in the Rauzy graph Γf (1), but, obviously, it is not the factor of the Fibonacci sequence f .
The reason is that the Rauzy graph Γu(n) captures all possible one-letter prolongations

ε
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1

1

0

0110

00

00

1001

001 100

101
101

010
010

001 100

1001

01000010

01011010

Γf(0) Γf(1) Γf(2) Γf(3)

Figure 2.4: Rauzy graphs of the Fibonacci sequence.
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of factors of length n, but it does not take into account the longer factors (or, in other
words, the history). For example, the graph Γf (1) expresses that somewhere in the
word f the factor 0 is followed by 0 and, elsewhere, it is followed by 1. However, it does
not reect the fact that while the factor 10 can be followed by both letters 0 and 1, the
factor 00 cannot be followed by 0 since 000 is not a factor of f . Nevertheless, if each of
inner vertices of a path v0v1 · · · vm has indegree and outdegree 1, then the label of this
path corresponds to a factor of u.

Many properties of sequences can be reformulated in the notion of Rauzy graphs.
For example, a sequence u is recurrent if and only if all its Rauzy graphs are strongly
connected, i.e., every two vertices are connected by an oriented path.

It is also easy to realize which vertices in Γu(n) correspond with special factors of
u of length n. A vertex w is left special if and only if it has indegree at least 2 and,
analogously, w is right special if and only if it has outdegree at least 2. Moreover, the
edges incoming to w and outcoming from w correspond with left and right extensions
of w.

Evolution of Rauzy graphs

In fact, for our purposes it is important to understand how the Rauzy graphs evolve,
i.e., what is the connection between Γu(n) and Γu(n + 1). For simplicity, we suppose
that the sequence u is recurrent. This, in particular, means that for every vertex w of
Γu(n) there is at least one edge aw incoming to w and there is at least one edge wb
outcoming from w.

We create the Rauzy graph Γu(n+ 1) from Γu(n). The vertices of Γu(n+ 1) are all
edges of Γu(n) and the edges of Γu(n+ 1) are de�ned as follows:

(i) for each non-special vertex w of Γu(n) with the unique left extension a and right

extension b there is one edge aw
awb−−→ bw;

(ii) for each left special vertex w of Γu(n) with k left extensions a1, a2, . . . , ak and the
unique right extension b (i.e., w is not bispecial) there are k edges

a1w
a1wb−−−→ wb , a2w

a2wb−−−→ wb , . . . , akw
akwb−−−→ wb ;

(iii) for each right special vertex w of Γu(n) with ` right extensions b1, b2, . . . , b` and
the unique left extension a (i.e., w is not bispecial) there are ` edges

aw
awb1−−−→ wb1 , aw

awb2−−−→ wb2 , . . . , aw
awb`−−−→ wb` ;

(iv) for each bispecial vertex w of Γu(n) with the left extensions a1, . . . , ak and the
right extensions b1, . . . , b` there are edges of the form

aiw
aiwbj−−−→ wbj , where i ∈ {1, . . . , k} , j ∈ {1, . . . , `} and aiwbj ∈ Lu(n+ 2) .

Let us emphasize that in the bispecial case the last condition is essential. Usually,
not all the edges of the form aiwbj are included in Γu(n + 1) since not all the words
aiwbj are factors of u.
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Example 2.47. We derive the graph Γf (2) from the graph Γf (1). The edges 00, 01 and

10 are the vertices of Γu(2). The non-special vertex 1 induces the edge 01
010−−→ 10 and

the bispecial vertex 0 induces three edges 10
100−−→ 00, 10

101−−→ 01 and 00
001−−→ 01. The

edge 00
000−−→ 00 is not included in Γf (2) as 000 /∈ Lf (3).

We can summarize that if there is no bispecial factor in Γu(n), then the Rauzy
graph Γu(n+ 1) is completely determined by Γu(n).

Rauzy graphs of Sturmian sequences

Rauzy graphs are especially useful for the sequences with relatively small factor com-
plexity, since these sequences do not have to many special factors and so their graphs
have simple structure.

Let us recall that every Sturmian sequence u is recurrent and it has exactly one
left and one right special factor of each length n, we denote them x and y. Hence the
Rauzy graph Γu(n) has one of two following shapes (see also Figure 2.4):

(I) If x 6= y (i.e., there is no bispecial factor of length n), then Γu(n) consists of three
paths with the only common vertices x and y: PA is the minimal path that links
x to y, PB and PC are paths that links y to x and do not contain PA.

(II) If x = y (i.e., x is a bispecial factor of length n), then Γu(n) consists of two cycles
PB, PC with the only common vertex x.

Let us emphasize that the shape II can be understood as a special case of the shape
I when PA = x. Moreover, the labels of paths PA and PB, PC are palindromes. For
other details see for example [23, Section 4.5.6].

The Rauzy graphs of Arnoux{Rauzy sequences over d-letter alphabet with d > 2
are nearly the same. The only di�erence is that there are always d (instead of two)
distinct paths from the right special factor to the left special factor.

Finally, let us mention that return words and derived sequences can be also naturally
interpreted in terms of the Rauzy graphs. We utilize this in the article [D], where Rauzy
graphs of Sturmian and Arnoux{Rauzy sequences play a role. The Rauzy graphs of
Sturmian sequences are used in the article [D], too.

2.4.2 S-adic representation of sequences

In Section 2.1.2 we de�ne substitutive sequences which are generated via two mor-
phisms. More precisely, each substitutive sequence u can be written in the form
u = τ(ψω(a)), where τ, ψ are morphisms and ψ is prolongable on a. We can further
generalize this notion by considering an in�nite sequence of generating morphisms.
This is the idea of S-adic representation of sequences.

Let A be an alphabet and let S be a �nite set of (non-erasing) morphisms on A.
Let Z = (ζn)n∈N be a sequence of morphisms from S and let (an)n∈N be a sequence of
letters from A. We say that the sequence u ∈ AN admits ((ζn, an))n∈N as an S-adic

representation if

lim
n→∞

|ζ0ζ1 · · · ζn−1(an)| = +∞ and u = lim
n→∞

ζ0ζ1 · · · ζn−1(an).

49



CHAPTER 2. OVERVIEW OF THE FIELD

The sequence Z is called a directive sequence of u. The sequence of letters (an)n∈N
plays a minor role compared to the directive sequence. Let us remark that also in�nite
sets S are sometimes considered.

The notion of S-adicity was precisely introduced by Ferenczi [54] and one can read
more about it for example in the interesting survey [19]. Clearly, substitutive sequences
admit S-adic representations with periodic directive sequences.

A sequence can admit many di�erent S-adic representations. But some S-adic rep-
resentations might be more useful to get information about the sequence than the oth-
ers. Handy S-adic representations are known especially for Sturmian sequence (found
in [22]) and episturmian sequences (found in [66]). However, S-adic representation are
(partially) known also for other classes of sequences, e.g., sequences coding interval
exchange transformations (see [55]), sequences coding rotations (see [44]) or dendric
sequences (see [21]).

In the sequel we introduce one very useful S-adic representation of episturmian
sequences (and so Sturmian and Arnoux{Rauzy sequences, too). We use this notion
in all our articles [A, B, C, D, E]. But �rst we recall needed facts about episturmian
morphism.

Sturmian and episturmian morphisms

For every a ∈ A we de�ne elementary (fundamental) episturmian morphisms:

La :

{
a→ a

b→ ab for all b 6= a
and Ra :

{
a→ a

b→ ba for all b 6= a .

These 2#A morphisms generate the monoid MA = 〈La, Ra : a ∈ A〉 of pure epistur-

mian morphisms. Let us remark that episturmian morphisms are all morphisms which
can be obtained by composition of pure episturmian morphisms and permutations on
A. Similarly, standard episturmian morphisms are compositions of the morphisms from
〈La : a ∈ A〉 and permutations. See [58,66] for details.

Over a binary alphabet, (standard) episturmian morphisms are called (standard)

Sturmian morphisms. The monoid M = M{0,1} of pure Sturmian morphisms is also
called special Sturmian monoid. It is not di�cult to realize that for any Sturmian
morphism ψ either ψ ∈M or ψ2 ∈M.

Example 2.48. Fibonacci sequence f is the �xed point of the morphism ϕ = 0 → 01,
1→ 0. Clearly, ϕ does not belong toM. However, ϕ = L0 ◦E and so ϕ2 = L0L1 ∈M.
Thus the Fibonacci sequence is �xed also by the pure Sturmian morphism L0L1.

To express the morphisms from MA, we use the following notation adopted from
[59]. For a given alphabetA we de�ne a new alphabet Ā = {ā : a ∈ A}. We put ϕa = La
and ϕā = Ra for every letter a ∈ A. Then for every word z = z0z1 · · · zn−1 ∈ (A ∪ Ā)∗

we write

ϕz = ϕz0ϕz1 · · ·ϕzn−1 ∈MA
and we say that z is a directive word of the morphism ϕz. A word is L-spinned (R-
spinned, respectively) if all its letters are from A (Ā, respectively). The opposite word
of z is obtained from z by switching spins of all its letters.
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Example 2.49. The word 012 is L-spinned, while the word 0̄1̄2̄ is R-spinned. These two
words are opposite words of each other.

The word 0̄01̄2̄0 directs the morphism

ψ = ϕ0̄01̄2̄0 = R0L0R1R2L0 .

However, the morphism ψ is also directed by the word 00120̄, since one can easily verify
that ϕ0̄01̄2̄0 = ϕ00120̄.

We usually work with primitive morphisms. The primitivity of a pure episturmian
morphism can be easily recognized from its directive word: the morphism ϕz ∈MA is
primitive if and only if its directive word z contains a or ā for every letter a ∈ A.
Example 2.50. The Sturmian morphism ϕ0̄01̄ : 0 → 0010, 1 → 010 is primitive, while
the Sturmian morphism ϕ0̄00̄ : 0→ 0, 1→ 0100 is not primitive.

As indicated in Example 2.49, a pure episturmian morphism can have more than
one directive word, i.e., the monoidMA is not free. Nevertheless, the presentation of
the monoid MA is known. In fact, Richomme [95, Theorem 7.1] or [96, Proposition
6.5] described the presentation of the monoid of all episturmian morphisms, too.

Proposition 2.51 ( [96, Proposition 6.5], [67, Theorem 2.2]). The monoid of pure

episturmian morphisms MA with generators {La : a ∈ A} ∪ {Ra : a ∈ A} has the

following presentation:

Ra1Ra2 · · ·RakLa1 = La1La2 · · ·LakRa1 , (2.7)

where k ∈ N, k ≥ 1 and a1, a2, . . . , ak ∈ A with a1 6= ai for all i, 2 ≤ i ≤ k.
This immediately implies that the monoid of pure standard episturmian morphisms

is free.
In the notion of directive words, Relations (2.7) can be restated using the so-called

block transformations introduced by Justin and Pirillo [67]. A block-transformation in
the word z ∈ (A ∪ Ā)∗ is the replacement of the factor avā of z, where a ∈ A and
v ∈ (A \ {a})∗, by the opposite word āv̄a or vice-versa.

Proposition 2.52 ( [96, Proposition 6.5], [67, Theorem 2.2]). Let z, z′ be two words

over A ∪ Ā. Then ϕz = ϕz′ if and only if we can pass from z to z′ by a chain of

block-transformations.

Example 2.53 (Example 2.49 continued). Using block-transformations we can rewrite:

0̄01̄2̄0←→ 00̄1̄2̄0←→ 00120̄ .

Hence by the previous proposition all these words direct the same morphism, i.e.,
ϕ0̄01̄2̄0 = ϕ00̄1̄2̄0 = ϕ00120̄ . Equivalently, by Proposition 2.51 we rewrite:

RaLaRbRcRa = LaRaRbRcLa = LaLaLbLcRa .

A directive word z ∈ (A∪Ā)∗ is a normalized directive word if z has no factor from
the set {āĀ∗a : a ∈ A}.
Example 2.54. (Example 2.53 continued) The directive words 0̄01̄2̄0 and 00̄1̄2̄0 of ψ are
not normalized, while the directive word 00120̄ of ψ is normalized.

Proposition 2.55 ( [59, Lemma 5.3]). Any pure episturmian morphism has the unique

normalized directive word.
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Directive sequences of episturmian sequences

The following theorem ensures the existence of directive sequences of episturmian se-
quences.

Theorem 2.56 ( [66, Theorem 3.10]). A sequence u is episturmian if and only if

there exist a sequence z = z0z1z2 · · · ∈ (A ∪ Ā)N and an in�nite sequence (u(n))n≥0 of

recurrent sequences such that u(0) = u and

u(n) = ϕzn(u(n+1)) for every n ∈ N . (2.8)

This sequence z is called a directive sequence of u.

In fact, Relation (2.8) can be restated as follows:

u = ϕz0ϕz1 · · ·ϕzn(u(n+1)) .

Hence we can understood the sequence u as an S-adic sequence with the set of mor-
phisms S = {La : a ∈ A} ∪ {Ra : a ∈ A} and with the directive sequence Z =
ϕz0ϕz1ϕz2 · · · .

Let us notice that in the case of a standard episturmian sequence u the directive se-
quence of u de�ned in Theorem 2.56 equals the directive sequence from the palindromic
closure construction of u mentioned in Section 2.2.2 (e.g., see [58, Section 3]).

Clearly, an episturmian sequence over A is periodic if and only if its directive
sequence z is of the form z = wa, where w ∈ (A ∪ Ā)∗ and a ∈ {a, ā}N for some letter
a ∈ A. Similarly, the Arnoux{Rauzy (Sturmian) sequences can be easily recognised by
their directive sequences, too (e.g., see [58, Section 2.3]).

Proposition 2.57. An episturmian sequence u ∈ AN with the directive sequence z is

an Arnoux{Rauzy sequence over A if and only if for every a ∈ A the letter a or ā
occurs in�nitely many times in z.

In particular, �xed points of primitive episturmian morphisms are Arnoux{Rauzy
sequences.

Remark 2.58. Theorem 2.56 and Proposition 2.57 immediately imply that for an Ar-
noux{Rauzy (Sturmian) sequence u each sequence u(i) from Theorem 2.56 is an Arnoux{
Rauzy (Sturmian) sequence with a directive sequence zizi+1zi+2 · · · .

Proposition 2.59 ( [66, Proposition 3.11]).

(i) A sequence z ∈ (A ∪ Ā)N which has in�nitely many L-spinned letters directs the

unique episturmian sequence u.

(ii) A sequence z ∈ (A ∪ Ā)N which contains �nitely many L-spinned letters directs

one episturmian sequence for each ā ∈ Ā which occurs in z in�nitely many times.

In particular, for a primitive episturmian morphism ϕz ∈MA it means that

(i) if z contains at least one L-spinned letter, then ϕz has the unique �xed point;

(ii) otherwise, ϕz has #A di�erent �xed points.
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In addition, an episturmian sequence can have more than one directive sequence.
However, Glen, Levé, and Richomme [59] described all directive sequences which direct
the same episturmian sequence.

Theorem 2.60 ( [59, Theorem 4.1]). Two sequences z(1), z(2) ∈ (A ∪ Ā)N direct the

same episturmian sequence if and only if one of the following cases holds for some i, j
such that {i, j} = {1, 2}:
(i) z(i) =

∏
n≥1 u

(n), z(j) =
∏
n≥1 v

(n), where u(n), v(n) are words such that ϕu(n) =
ϕv(n) for all n ≥ 1;

(ii) z(i) = wa
∏
n≥1 u

(n)x(n), z(j) = w′ā
∏
n≥1 ū

(n)y(n), where w,w′ are words such

that ϕw = ϕw′, a ∈ A and for all n ≥ 1, u(n) is a non-empty a-free L-spinned
word, ū(n) is the opposite word of u(n) and x(n), y(n) are non-empty words over

{a, ā} such that |x(n)| = |y(n)| and |x(n)|a = |y(n)|a.

(iii) z(i) = wa and z(j) = w′b, where a, b ∈ A, a ∈ {a, ā}N, b ∈ {b, b̄}N and w,w′ are
words such that ϕw(a) = ϕw′(b).

Items (i) and (ii) are especially important for us since we focus on aperiodic epis-
turmian sequences. One can notice that Item (i) is based on block-transformations of
the directive words of episturmian morphisms, while Item (ii) brings new relations.

Example 2.61. We verify that the sequences y = (01̄2̄0̄)ω and z = 01̄2̄00(1200̄)ω direct
the same Arnoux{Rauzy sequence. Indeed, we start with y and we set u(1) = 01̄2̄,
u(2k) = 0̄0 and u(2k+1) = 1̄2̄ for all k > 0. We make the block-transformations:

01̄2̄︸︷︷︸
u(1)

0̄0︸︷︷︸
u(2)

1̄2̄︸︷︷︸
u(3)

0̄0︸︷︷︸
u(4)

1̄2̄︸︷︷︸
u(5)

0̄0︸︷︷︸
u(6)

· · · ←→ 01̄2̄︸︷︷︸
u(1)

00̄︸︷︷︸
u(2)

1̄2̄︸︷︷︸
u(3)

00̄︸︷︷︸
u(4)

1̄2̄︸︷︷︸
u(5)

00̄︸︷︷︸
u(6)

· · ·

and we get the sequence 01̄2̄(00̄1̄2̄)ω. Then we set u(1) = 01̄2̄0 and u(k) = 0̄1̄2̄0 for all
k > 1. After the block-transformations:

01̄2̄0︸︷︷︸
u(1)

0̄1̄2̄0︸︷︷︸
u(2)

0̄1̄2̄0︸︷︷︸
u(3)

0̄1̄2̄0︸︷︷︸
u(4)

0̄1̄2̄0︸︷︷︸
u(5)

· · · ←→ 01̄2̄0︸︷︷︸
u(1)

0120̄︸︷︷︸
u(2)

0120̄︸︷︷︸
u(3)

0120̄︸︷︷︸
u(4)

0120̄︸︷︷︸
u(5)

· · ·

we get the sequence 01̄2̄0(0120̄)ω. Finally we set u(1) = 01̄2̄00, u(2k) = 12 and u(2k+1) =
0̄0 for all k > 0, and the block-transformations

01̄2̄00︸ ︷︷ ︸
u(1)

12︸︷︷︸
u(2)

0̄0︸︷︷︸
u(3)

12︸︷︷︸
u(4)

0̄0︸︷︷︸
u(5)

12︸︷︷︸
u(6)

· · · ←→ 01̄2̄00︸ ︷︷ ︸
u(1)

12︸︷︷︸
u(2)

00̄︸︷︷︸
u(3)

12︸︷︷︸
u(4)

00̄︸︷︷︸
u(5)

12︸︷︷︸
u(6)

· · ·

lead us to the sequence z = 01̄2̄00(1200̄)ω.

Also the sequences y = (0̄1̄2̄)ω and z = 0̄1(201̄)ω direct the same episturmian
sequence, since in the notation of Item (ii) of Theorem 2.60 we have

y = 0̄︸︷︷︸
w′

1̄︸︷︷︸
ā

2̄0̄︸︷︷︸
ū(1)

1̄︸︷︷︸
y(1)

2̄0̄︸︷︷︸
ū(2)

1̄︸︷︷︸
y(2)

· · · and z = 0̄︸︷︷︸
w

1︸︷︷︸
a

20︸︷︷︸
u(1)

1̄︸︷︷︸
y(1)

20︸︷︷︸
u(2)

1̄︸︷︷︸
y(2)

· · · .

A directive sequence z ∈ (A ∪ Ā)N is normalized if it contains in�nitely many L-
spinned letters, but no factor from the set {āĀ∗a : a ∈ A}. By Proposition 2.59, every
normalized directive sequence directs exactly one episturmian sequence.
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Example 2.62 (Example 2.61 continued). The sequences (01̄2̄0̄)ω and (0̄1̄2̄)ω are not
normalized, while the sequences 01̄2̄00(1200̄)ω and 0̄1(201̄)ω are normalized directive
sequences.

Proposition 2.63 ( [59, Theorem 5.2]). Any aperiodic episturmian sequence u has a

unique normalized directive sequence.

We remark that this unambiguity need not hold for periodic episturmian sequences,
see [59].

Moreover, the normalized directive sequences can be constructed using Theorem
2.60. If a directive sequence does not contain in�nitely many L-spinned letters, then
we use Item (ii) to �nd another one with in�nitely many L-spinned letters. If a direc-
tive sequence contains in�nitely many L-spinned letters, then it can be normalized by
repeated applications of Item (i). See [59, Section 5] for more details.

Example 2.64. By Proposition 2.59, the sequence z = (0̄1̄2̄)ω directs three Arnoux{
Rauzy sequences starting with the letters 0, 1, 2, respectively. All these sequences have
the same language as the Tribonacci sequence t with the directive sequence (012)ω.
Their normalized directive sequences are 0(120̄)ω, 0̄1(201̄)ω and 0̄1̄2(012̄)ω, respectively
(see Example 2.61).

Finally, let us point out that a sequence which is �xed by a primitive episturmian
morphism has to have a purely periodic directive sequence. However, its normalized
directive sequence need not be purely periodic (see Example 2.62). Nevertheless, the
normalized directive sequence of a substitutive sequence is always periodic.
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Chapter 3

Aims and results of the thesis

This chapter is dedicated to a brief summary of the main results of this thesis. First of
all, we focus on the derived sequences of Sturmian, Arnoux{Rauzy and complementary
symmetric (CS) Rote sequences (Section 3.1). We also study the non-repetitive com-
plexity of Arnoux{Rauzy sequences (Section 3.2) and derive formulas for the critical
exponent (Section 3.3) and the recurrence function (Section 3.4) of CS Rote sequences.
To make the summary clearer we partially uni�ed the notation, although the original
papers [A,B,C,D,E] di�er slightly in some aspects.

3.1 Derived sequences

A substantial part of this thesis is devoted to the investigation of derived sequences
in the case of sequences with low factor complexity. The notions of return words and
derived sequences were described in detail in Section 2.3.1. We just recall that the
derived sequence du(w) of u with respect to a non-empty pre�x w of u expresses the
order of return words to w in the sequence u.

Although Durand [49] proved that a uniformly recurrent sequence is primitive sub-
stitutive if and only if it has �nite number of derived sequences (see Theorem 2.34),
many related questions remain open.

Our main aim is to describe the set Der(u) of all derived sequences of u with respect
to its non-empty pre�xes in the case when u is Sturmian (Section 3.1.1), Arnoux{Rauzy
(Section 3.1.2) or CS Rote sequence (Section 3.1.3). Let us recall that two derived
sequences which di�er only by a permutation of letters are identi�ed with one another
and counted as one derived sequence.

3.1.1 Derived sequences of Sturmian sequences

The aim of the article [A] is to study derived sequences of Sturmian sequences. In
particular, we precisely describe the set Der(u) for Sturmian sequences which are the
�xed points of primitive Sturmian morphisms. Sturmian sequences are discussed in
Section 2.2.1; let us now just recall that Araújo and Bruy�ere [6] described derived
sequences of standard Sturmian sequences using continued fraction expansions of their
slopes. Nevertheless, we consider also the more general case of non-standard sequences.

Vuillon [104] proved that every Sturmian sequence has two return words to each of
its factors (see Theorem 2.28). Thus the derived sequences of Sturmian sequences are
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binary and, moreover, they are Sturmian by Theorem 2.28 and Proposition 2.33.

Proposition 3.1. If u is a Sturmian sequence and w is a pre�x of u, then the derived

sequence du(w) is Sturmian as well.

We focus especially on the �xed points of primitive Sturmian morphisms. Hence
we can restrict ourselves on primitive Sturmian morphisms from the special Sturmian
monoid M without loss of generality. Indeed, by Section 2.4.2 for every Sturmian
morphism ψ either ψ ∈M or ψ2 ∈M and the �xed points of ψ are �xed also by ψ2.

Our key tool is the decomposition of Sturmian morphisms fromM into elementary
Sturmian morphisms, which was described in Section 2.4.2. We recall that for ψ ∈ M
we write

ψ = ϕw = ϕw0ϕw1 · · ·ϕwn−1 ,

where w ∈ (A ∪ Ā)∗ = {0, 1, 0̄, 1̄}∗ is the directive word and all ϕwi are elementary
Sturmian morphisms. Since this decomposition need not be unique, we use the so-
called normalized directive word: a directive word z is normalized if it does not contain
a factor of the form āĀ∗a for any a ∈ A. Normalized directive words are unique and
can be easily found by Proposition 2.52.

In fact, this is closely related to S-adic representations of Sturmian sequences ex-
plained in Section 2.4.2. Indeed, if a sequence u is a �xed point of a morphism ϕw,
then the directive sequence of u is z = wω and the sequence u can be expressed in the
form

u = ϕw(u) = ϕw0(u(1)) , where u(1) is �xed by ϕw1···wn−1w0 ;

= ϕw0ϕw1(u(2)) , where u(2) is �xed by ϕw2···wn−1w0w1 ;

etc.

Remark 3.2. Let us briey comment on the notation. While the article [A] denotes
the elementary Sturmian morphisms by ϕb, ϕβ, ϕa, ϕα, in this summary we prefer the
notation L0, L1, R0, R1, or ϕ0, ϕ1, ϕ0̄, ϕ1̄ from Section 2.4.2. Hence we would like to
emphasize their connections:

ϕb = L0 = ϕ0 , ϕβ = L1 = ϕ1 , ϕa = R0 = ϕ0̄ and ϕα = R1 = ϕ1̄ .

Thus in [A] the directive word (called name) of ψ is a word over the alphabet {a, α, b, β}
instead of A ∪ Ā = {0, 1, 0̄, 1̄}.

The structure of any elementary Sturmian morphism ϕ is simple enough to enable
us to precisely describe the relation between the derived sequences of a sequence u and
its preimage u′, where u = ϕ(u′). In fact, special factors and return words of u and u′

are closely linked, too (see [A, Section 3]).

Proposition 3.3. Let u,u′ be Sturmian sequences and c ∈ {0, 1}.

(i) If u = Lc(u
′), then Der(u) = Der(u′) ∪ {u′}.

(ii) If u = Rc(u
′) and u starts with a letter d ∈ {0, 1}, d 6= c, then Der(u) = Der(u′).
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Roughly speaking, we can gradually desubstitute the sequence u onto its preimages
u(1), u(2), etc. and determine the derived sequences of u from this process using the
proposition above. In fact, we have to do it more properly to ensure that we do not
omit any derived sequence.

Although we use these observations only for Sturmian sequences which are the
�xed points of primitive Sturmian morphisms, they can be similarly applied to general
Sturmian sequences (i.e., to eventually periodic or even aperiodic directive sequences).
We deal with these cases in the article [B].

Durand [49] shoved that all derived sequences of a sequence �xed by a primitive
morphism are also �xed points of primitive morphisms, see Section 2.3.1 for further
details. We provide an algorithm which for a given Sturmian morphism ψ lists the
morphisms �xing the derived sequences of the �xed point of ψ.

First we focus on the case of a primitive Sturmian morphism ψ = ϕw ∈ M having
the unique �xed point. By Proposition 2.59 its directive word w contains at least one
letter from A, i.e., w ∈ (A ∪ Ā)∗ \ Ā∗. Moreover, its normalized directive word z is of
the form z = ākbz′ for some a, b ∈ A, a 6= b, k ∈ N and z′ ∈ (A ∪ Ā)∗. Then we de�ne
the transformation ∆ by

∆(z) = N(z′ākb) and ∆(ψ) = ϕ∆(z) , (3.1)

where N(v) is the normalization of the word v (i.e., it is a normalized directive word
of the morphism ϕv). We have to normalize the obtained word since we want to apply
the transformation ∆ repeatedly and ∆ acts only on normalized words.

Example 3.4. We consider the primitive morphism ψ = ϕz with the normalized directive
word z = 10̄1̄. We apply repeatedly the transformation ∆ on ψ:

∆(10̄1̄) = N(0̄1̄1) = 0̄11̄ ∆(ψ) = ϕ0̄11̄

∆(0̄11̄) = N(1̄0̄1) = 101̄ ∆2(ψ) = ϕ101̄

∆(101̄) = N(01̄1) = 011̄ ∆3(ψ) = ϕ011̄

∆(011̄) = N(11̄0) = 11̄0 ∆4(ψ) = ϕ11̄0

∆(11̄0) = N(1̄01) = 1̄01 ∆5(ψ) = ϕ1̄01

∆(1̄01) = N(11̄0) = 11̄0 ∆6(ψ) = ∆4(ψ)

Theorem 3.5 ( [A, Theorem 25]). Let ψ = ϕz ∈M be a primitive Sturmian morphism

with the normalized directive word z ∈ (A∪ Ā)∗ \ Ā∗, i.e., ψ has the unique �xed point

u. Then x is a derived sequence of u with respect to one of its non-empty pre�xes if

and only if x is the �xed point of the morphism ∆m(ψ) for some m ≥ 1.

Example 3.6. The unique �xed point u of the morphism ψ = ϕ10̄1̄ considered in Exam-
ple 3.4 has �ve distinct derived sequences. They are �xed by morphisms ∆(ψ), ∆2(ψ),
∆3(ψ), ∆4(ψ) and ∆5(ψ), respectively. Nevertheless, only the �xed points of ∆4(ψ)
and ∆5(ψ) represent the derived sequences of u to in�nitely many pre�xes of u.

The remaining case of Sturmian sequences with two �xed points can be easily trans-
formed to Theorem 3.5 by the following proposition.
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Proposition 3.7 ( [A, Proposition 29]). Let ψ = ϕz ∈ M be a primitive Sturmian

morphism which has two �xed points, i.e., z = z0z1 · · · zn−1 ∈ Ā∗. We denote c the

letter from A such that z0 = c̄ and d the other letter from A.

(i) The �xed point u of ψ starting with the letter c has Der(u) = Der(v)∪{v}, where
v is the unique �xed point of the morphism ϕv with v = c−1N(zc) ∈ {c̄, d}∗.

(ii) The �xed point x of ψ starting with the letter d has Der(x) = Der(y), where
y is the �xed point starting with the letter d of the morphism ϕy with y =
z1z2 · · · zn−1z0.

We give a sharp bound on the cardinality of Der(u), too.

Proposition 3.8 ( [A, Corollary 35 and Proposition 37]). Let ψ = ϕw ∈ M be a

primitive Sturmian morphism. Then for its �xed point u we have

1 ≤ #Der(u) ≤ 3|w| − 4 .

Moreover, both bounds are attained for in�nitely many morphisms which are not powers

of any other morphisms.

Example 3.9. For every n ≥ 2 the �xed point of the primitive Sturmian morphism
ψ = ϕz, where z = (ā)n−1b for a, b ∈ A, a 6= b, has one derived sequence. This derived
sequence is also �xed by the morphism ψ.

For every n ≥ 2 the �xed point of the primitive Sturmian morphism ψ = ϕz, where
z = an−2b̄ā for a, b ∈ A, a 6= b, has 3n− 4 distinct derived sequences. See also Example
3.6 or [A, Example 33].

In addition, for the �xed points of two special classes of Sturmian morphisms we
determine the precise numbers of their distinct derived sequences.

Proposition 3.10 ( [A, Propositions 36 and 37]). Let ψ = ϕz ∈ M be a primitive

Sturmian morphism which is not a power of any other morphism.

(i) If ψ is standard, i.e., z ∈ A∗, then its unique �xed point has |z| derived sequences.

Moreover, if z = z0z1 · · · zn−1, then their �xing morphisms have the directive words

z1z2 · · · zn−1z0, z2z3 · · · zn−1z0z1, . . . , zn−1z0 · · · zn−2 and z0z1 · · · zn−1, respectively.

(ii) If ψ has two �xed points, i.e., z ∈ Ā∗, then its �xed point starting with the letter a
has 1 + |z|b̄ derived sequences, where a, b ∈ A, a 6= b.

Proposition 3.8 and 3.10 can be stated analogously also for primitive Sturmian
morphisms which are not included in the special Sturmian monoid M, i.e., for the
morphisms of the form ψ = ϕw ◦ E, where ϕw ∈ M and E is the morphism which
exchanges the letters 0↔ 1.

To give the exact number of derived sequences, one needs to describe when the
normalized directive word z corresponds to some power of a Sturmian morphism. This
is not trivial, since z may be a normalized directive word of a power of a morphism
without z being a power of some other word. For example, if z = 1̄00̄1̄1̄, then the
normalized directive word of (ϕz)

3 is the primitive word N(z3) = 1̄0011100̄1110̄0̄1̄1̄.
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3.1.2 Derived sequences of Arnoux{Rauzy sequences

In the article [B] we generalize the results of [A] to the case of Arnoux{Rauzy sequences
(see Section 2.2.2). We use a similar technique based on the representation of Arnoux{
Rauzy sequence by episturmian morphisms. However, we slightly modify the notation,
which enables us to comfortably work also with primitive substitutive sequences (and
not only with �xed points of primitive morphisms). More precisely, we use the normal-
ized directive sequences (explained in Section 2.4.2) of Arnoux{Rauzy sequences which
were introduced by Glen, Levé and Richomme [59].

Let us recall that by Theorem 2.56 and Proposition 2.57 each Arnoux{Rauzy se-
quence u has a directive sequence z ∈ (A ∪ Ā)N such that, for every a ∈ A, a or ā
occurs in�nitely many times in z, and a sequence of its recurrent preimages (u(n))n≥0

such that

u = ϕz0z1···zn−1(u(n)) for every n ∈ N . (3.2)

These directive sequences do not have to be unique, but every Arnoux{Rauzy sequence
has a unique normalized directive sequence (see Proposition 2.63) which can be con-
structed using Theorem 2.60. The directive sequence is normalized if it contains in-
�nitely many letters from A, but no factor from the set {āĀ∗a : a ∈ A}.

Justin and Vuillon [65] showed that every Arnoux{Rauzy sequence over A has #A
return words to each of its factors. Hence the corresponding derived sequences can be
considered over the same alphabet A. Nevertheless, it is not clear if these sequences
are also Arnoux{Rauzy. In particular, we cannot use the same argument as in the
case of Sturmian sequences since the number of return words does not characterize
Arnoux{Rauzy sequences (see Section 2.3.1 for more details).

We �rst deduce the following proposition which is completely analogous to Propo-
sition 3.3 from the previous section.

Proposition 3.11 ( [B, Corollary 21]). Let u,u′ be Arnoux{Rauzy sequences over A
and a ∈ A.

(i) If u = La(u
′), then Der(u) = Der(u′) ∪ {u′}.

(ii) If u = Ra(u
′) and u starts with a letter b ∈ A, b 6= a, then Der(u) = Der(u′).

Hence, we can again determine the derived sequences of a given Arnoux{Rauzy
sequence by analyzing the process of desubstitution of u onto its preimages u(i) which
is controlled by its directive sequence z (see Relation (3.2)). This proposition also
indicates that only the letters of z which are from A (in [B] they are called L-spinned
letters) are important. This leads us to the following de�nition of the transformation
∆ (compare with (3.1)): Let z = z0z1z2 · · · ∈ (A ∪ Ā)N be a normalized directive
sequence. Then ∆ applied to z removes the smallest pre�x of z ending with a letter
from A (L-spinned letter), i.e.,

∆(z) = zk+1zk+2zk+3 · · · , where k is the smallest index such that zk ∈ A.

One can notice that the sequence ∆(z) is still normalized. Hence we can apply this
transformation repeatedly.
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Example 3.12. We consider the normalized directive sequence z = 2̄10(2̄10̄1)ω and we
apply repeatedly the transformation ∆ on z:

∆(z) = 0(2̄10̄1)ω ;

∆2(z) = (2̄10̄1)ω ;

∆3(z) = 0̄1(2̄10̄1)ω = (0̄12̄1)ω ;

∆4(z) = (2̄10̄1)ω = ∆2(z) .

Using this ∆ notation we can easily describe all the derived sequences of a given
Arnoux{Rauzy sequence.

Theorem 3.13 ( [B, Theorem 24]). Let u be an Arnoux{Rauzy sequence over A with

the normalized directive sequence z. Then a sequence x is a derived sequence of u with

respect to one of its non-empty pre�xes if and only if x is an Arnoux{Rauzy sequence

directed by ∆m(z) for some m ≥ 1, i.e.,

Der(u) = {sequence directed by ∆m(z) : m ≥ 1} .

Example 3.14. We consider the Arnoux{Rauzy sequence u directed by the normalized
directive sequence z = 2̄10(2̄10̄1)ω from Example 3.12. One can easily verify that the
sequences directed by (2̄10̄1)ω and (0̄12̄1)ω are the same up to the exchange of letters
0↔ 2. Hence we consider them as the same derived sequence. We may conclude that
the sequence u has two derived sequences directed by ∆(z) and ∆2(z). However, only
the derived sequence directed by ∆2(z) appears for in�nitely many pre�xes of u.

Let us mention that while the description of derived sequences of standard Arnoux{
Rauzy sequences can be easily deduced from the work of Justin and Vuillon [65], we
cover also the more complicated case of non-standard sequences.

Since the sequence directed by ∆m(z), where m ≥ 1, is obviously Arnoux{Rauzy
sequence, we immediately obtain the following corollary that con�rms the natural con-
jecture that derived sequences of Arnoux{Rauzy sequences are also Arnoux{Rauzy
sequences.

Corollary 3.15 ( [B, Corollary 25]). Each derived sequence with respect to a non-

empty pre�x of a given Arnoux{Rauzy sequence over A is an Arnoux{Rauzy sequence

over A as well.

Finally, we focus on Arnoux{Rauzy sequences with periodic directive sequences. If
an Arnoux{Rauzy sequence u is the �xed point of a primitive episturmian morphism
ϕw, i.e., its (not necessarily normalized) directive sequence is w = wω, then

1 ≤ Der(u) ≤ 3|w| − 2#A

and both bounds are attained for in�nitely many sequences. Since the statement and
its proof are completely analogous to the Sturmian case (Proposition 3.8), this is not
included in the paper [B].

It is possible to similarly bound the cardinality of Der(u) also for a primitive substi-
tutive Arnoux{Rauzy sequence u = τ(ψω(a)) in terms of the lengths of decompositions
of τ and ψ into elementary episturmian morphisms. Moreover, if we know the normal-
ized directive sequence of u, we can determine the exact number of derived sequences
of u.
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Proposition 3.16 ( [B, Corollary 29]). Let u be an Arnoux{Rauzy sequence over A
with the eventually periodic normalized directive sequence z = x

(
yP (y) · · ·Pn−1(y)

)ω ∈
(A∪Ā)N, where the words x and y are the shortest possible and P is a permutation on

A of the order n. We denote |xy|A the numbers of letters from A in the word xy.

(i) If the last letters of both x, y are L-spinned, then #Der(u) = |xy|A − 1.

(ii) If the last letter of x or y is R-spinned or x = ε, then #Der(u) = |xy|A.

Example 3.17. The Tribonacci sequence t (see Example 2.15) with the normalized
directive sequence z = (012)ω = (0P (0)P 2(0))ω, where P : 0 → 1, 1 → 2, 2 → 0, has
only one derived sequence and it is equal to t.

On the other hand, the Arnoux{Rauzy sequence with the normalized directive se-
quence z = 0(120̄)ω, which has the same language as t (see Example 2.64), has three
derived sequences directed by ∆(z) = (120̄)ω, ∆2(z) = (20̄1)ω and ∆3(z) = (0̄12)ω,
respectively.

Let us mention one related open question. For any Sturmian sequence u we can
decide if u is a �xed point of a primitive morphism by the well-known Yasutomi's
condition [107]. However, we do not known any analogous result for Arnoux{Rauzy
sequences over the alphabet of size grater than two.

In particular, it means that we are not able to (easily) recognize Arnoux{Rauzy
sequences which are �xed points from their normalized directive sequences. Indeed, an
Arnoux{Rauzy sequence which is a �xed point has to have a purely periodic directive
sequence, but its normalized directive sequence can be eventually periodic with a non-
empty pre-period.

Example 3.18. The �xed point of the morphism ϕ10̄2̄1̄ has the directive sequence (10̄2̄1̄)ω,
but its normalized directive sequence is z = 10̄2̄11(0211̄)ω.

Hence some derived sequences may be falsely considered to not be �xed by a prim-
itive morphism.

Example 3.19. The primitively substitutive sequence u with the normalized directive
sequence z = 110̄2̄11(0211̄)ω is not the �xed point of any morphism. Although, all its
derived sequences with respect to its non-empty pre�xes are �xed points of morphisms:

∆(z) = 10̄2̄11(0211̄)ω = (10̄2̄1̄)ω ; ∆5(z) = (211̄0)ω ;

∆2(z) = 0̄2̄11(0211̄)ω = (0̄2̄11̄)ω ; ∆6(z) = (11̄02)ω ;

∆3(z) = 1(0211̄)ω = (1021̄)ω ; ∆7(z) = (1̄021)ω ;

∆4(z) = (0211̄)ω ; ∆8(z) = ∆5(z) .

From this point of view, the method used in [A] is for �xed points slightly more
informative, since it enable us to obtain directly the �xing morphisms of derived se-
quences.

3.1.3 Derived sequences of complementary symmetric Rote sequences

The article [C] focuses on the return words and derived sequences of complementary
symmetric (CS) Rote sequences which were introduced in Section 2.2.4.
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First, we easily deduce from some results of [11] that every non-empty pre�x of a
CS Rote sequence has exactly three return words. The same also follows directly from
Proposition 2.30, since CS Rote sequences are neutral sequences of characteristic 0.
Thus derived sequences of a CS Rote sequence with respect to its non-empty pre�xes
are ternary sequences.

The detailed study of return words and derived sequences is based on Theorem
2.23 which expresses the link between CS Rote sequences and Sturmian sequences: the
sequence v is a CS Rote sequence if and only if u = S(v) is a Sturmian sequence. These
sequences u and v are called associated. Let us recall that the mapping S assigns to
each sequence v ∈ {0, 1}N the sequence u = S(v) such that

ui = vi + vi+1 mod 2 for all i ∈ N .

The mapping S is analogously de�ned also for non-empty words. For every v0 ∈ {0, 1}
we put S(v0) = ε and for every v = v0v1 · · · vn ∈ {0, 1}+ of length at least 2 we put
S(v0v1 · · · vn) = u0u1 · · ·un−1, where

ui = vi + vi+1 mod 2 for all i ∈ {0, 1, . . . , n− 1} .

Proposition 2.26 shows that the factors of associated sequences v and u are closely
related, too. Using Theorem 2.23 and Proposition 2.26 we transform our task to precise
description of return words and derived sequences of Sturmian sequence studied in [A].

We would like to emphasize that we study only CS Rote sequences associated with
standard Sturmian sequences (in [26] they are called standard Rote sequences). Let us
recall that for a standard Sturmian sequence u it su�ces to determine return words
and derived sequences to its bispecial factors, since those factors coincides with the
right special pre�xes of u. In addition, the structure of derived sequences of u is quite
simple (see Item (i) of Proposition 3.10). Nevertheless, it seems that it is possible to
do the same also for general CS Rote sequences.

The form of return words (and so derived sequences) of a CS Rote sequence v
depends on the number of ones in the return words of the associated Sturmian sequence
u. Hence we de�ne the following notion of stability. A word u = u0u1 · · ·un−1 ∈ {0, 1}∗
is called stable (S) if |u|1 = 0 mod 2. Otherwise, it is called unstable (U).

Example 3.20. The word u = 0110101 is stable while the word v = 011010 is unstable.

Then we classify pre�xes of a standard Sturmian sequence into three types accord-
ing to the stability of their return words. Let w be a pre�x of a standard Sturmian
sequence u and let r, s be its return words and k be a positive integer such that u is a
concatenation of the blocks rks and rk+1s. Then the type Tw of w is

(i) Tw = SU(k), if r is stable and s is unstable;

(ii) Tw = US(k), if r is unstable and s is stable;

(iii) Tw = UU(k), if both r and s are unstable.

Example 3.21. We consider the Fibonacci sequence f . Its empty pre�x ε has return
words r = 0 and s = 1 and since f is composed of the blocks 01 and 001, the respective
parameter is k = 1. Hence the type of ε is Tε = SU(1).

The pre�x 0 of f has return words r = 01 and s = 0. Since f is composed of the
blocks 010 and 01010, the parameter is k = 1. Hence the type of 0 is T0 = US(1).
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It is easy to verify that all these types appear in the case of pre�xes of Sturmian
sequences, while the fourth possible case, i.e., the type SS, cannot appear. In fact, these
pre�x types can be determine from the directive sequence of the standard Sturmian
sequence, we explain details in [C, Section 5].

Proposition 3.22 ( [C, Theorem 3.10]). Let v be a CS Rote sequence associated with a

standard Sturmian sequence u = S(v). Let x be a non-empty pre�x of v and w = S(x).
Then the pre�x x of v has three return words A,B,C ∈ {0, 1}∗ satisfying
(i) if Tw = SU(k), then S(A0) = r, S(B0) = srk+1s and S(C0) = srks;

(ii) if Tw = US(k), then S(A0) = rr, S(B0) = rsr and S(C0) = s;

(iii) if Tw = UU(k), then S(A0) = rr, S(B0) = rs and S(C0) = sr.

Among other things, this proposition directly implies that the derived sequences of
a CS Rote sequence depend only on the derived sequences of the associated standard
Sturmian sequence and on the types of respective pre�xes.

Proposition 3.23 ( [C, Corollary 4.1]). Let v be a CS Rote sequence associated with

a standard Sturmian sequence u = S(v) and let x be a non-empty pre�x of v. Then

the derived sequence dv(x) is uniquely determined by the derived sequence du(w) of u
to the pre�x w = S(x) and by the type Tw of the pre�x w.

Example 3.24. The CS Rote sequence g from Example 2.24 associated with the Fi-
bonacci sequence f has three derived sequences. Indeed, f has only one derived se-
quence which is (up to a permutation of letters) equal to f and by [C, Example 5.13]
the pre�xes of f are of three distinct types SU(1), US(1) and UU(1).

In the article [A] we explain that all derived sequences of a standard Sturmian
sequence are standard Sturmian sequences as well. Hence they can be interpreted
as 2iet sequences, i.e., sequences coding two interval exchange transformations (see
section 2.2.1). Similarly, all derived sequences of the associated CS Rote sequence with
respect to its non-empty pre�xes are 3iet sequences, i.e., sequences coding three interval
exchange transformations. Thus these sequences are dendric (see Section 2.2.3).

Proposition 3.25 ( [C, Proposition 4.2]). Let v be a CS Rote sequence associated

with a standard Sturmian sequence u = S(v), let x be a non-empty pre�x of v and

w = S(x). Let (1 − α) < 1
2 be the slope of the Sturmian sequence du(w). Then the

derived sequence dv(x) is a 3iet sequence coding the intercept ρ = 1 − α under the

three interval exchange transformation T given by the following parameters β, γ and

permutation π:

(i) if Tw = SU(k), then β = α, γ = α− k(1− α), and π = (3, 2, 1);

(ii) if Tw = US(k), then β = 2α− 1, γ = 1− α, and π = (3, 2, 1);

(iii) if Tw = UU(k), then β = 2α− 1, γ = 1− α, and π = (2, 3, 1).

Example 3.26 (Example 3.24 continued). The Fibonacci sequence f has the slope 1− 1
φ =

2 − φ and the intercept 2 − φ, where φ = (1 +
√

5)/2 denotes the golden ratio. Thus
each of three derived sequences of g is a 3iet sequence coding the intercept 2− τ under
the three interval exchange transformation T with the parameters:
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(i) β = 1
τ , γ = 2

τ − 1 and π = (3, 2, 1),

(ii) β = 2
τ − 1, γ = 2− τ and π = (3, 2, 1) or

(iii) β = 2
τ − 1, γ = 2− τ and π = (2, 3, 1).

Finally, we discuss the case of primitive substitutive CS Rote sequences.

Theorem 3.27. Let v be a CS Rote sequence associated with a standard Sturmian

sequence u = S(v). Then v is primitive substitutive if and only if u is primitive

substitutive.

For CS Rote sequences associated with �xed points of standard Sturmian morphisms
we bound the number of their distinct derived sequences. Clearly, similar bound can
be constructed also for primitive substitutive CS Rote sequences.

Proposition 3.28 ( [C, Corollary 6.4]). Let v be a CS Rote sequence associated with a

standard Sturmian sequence u = S(v) �xed by a primitive morphism ϕz, where z ∈ A∗.
Then v has at most 3|z| derived sequences with respect to its non-empty pre�xes and

each of them is �xed by a primitive morphism over a ternary alphabet.

Using Durand's general construction (see [49, Proposition 5.1]) we can also �nd the
primitive morphisms which �x these derived sequences. The process is summarized
in [C, Algorithm 6.7].

Example 3.29 (Example 3.26 continued). The three derived sequences of g are �xed by
the following morphisms:

σ0 :





A→ AB

B → ABAACAACA

C → ABAACA

, σ1 :





A→ BBCAC

B → BBCACAC

C → B

, σ2 :





A→ BACCB

B → BACC

C → BACB

.

On the other hand, every CS Rote sequence associated with a standard Sturmian
sequence has at least two derived sequences. Moreover, this bound is attained by only
one CS Rote sequence which is associated with the Sturmian sequence directed by
(1001)ω. See [A, Remark 7.1].

If ϕz is not a power of any other morphism, then the Sturmian sequence u has
exactly |z| distinct derived sequences (see Proposition 3.10) and thus by Proposition
3.23 the CS Rote sequence v has at least |z| derived sequences. In each of our examples
the actual number of derived sequences was |z|, 2|z| or 3|z|, but we do not know whether
some other values can also appear.

3.2 Non-repetitive complexity of Arnoux{Rauzy sequences

The article [D] is dedicated to the non-repetitive complexity and the initial non-
repetitive complexity of Arnoux{Rauzy sequences. These functions were discussed
in Section 2.3.4. The study is motivated by recent results of Nicholson and Ram-
persad [84] on the initial non-repetitive complexity of the Fibonacci and Tribonacci
sequences stated in Proposition 2.46.

Our aim is to express the values of these functions for an arbitrary Arnoux{Rauzy
sequence u. For this purpose, we �rst use the Rauzy graphs of u (see Section 2.4.1) to
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transform our task into the evaluation of the lengths of return words to the bispecial
factors of u (see [D, Proposition 7]). Then we utilize the knowledge of the form of these
return words and respective derived sequences obtained in [B]. It leads to the desired
formulas in terms of the directive sequence of u.

To state the relevant theorems we have to recall that Bu(k) denotes the k-th bispe-
cial factor of u (see Section 2.2.2) and ϕa for each a ∈ A is the elementary episturmian
morphism (see Section 2.4.2).

Theorem 3.30 ( [D, Theorem 13]). Let u be an Arnoux{Rauzy sequence over A and let

z = z0z1z2 · · · be the directive sequence of the standard Arnoux{Rauzy sequence with the
language Lu. Let n ∈ N, n ≥ 1. Find the unique k such that |Bu(k− 1)| < n ≤ |Bu(k)|
and for every b ∈ A de�ne Sb(k) = sup{` : 0 ≤ ` < k, z` = b}. Then we have

nrCu(n) = |ϕz0ϕz1 · · ·ϕzk−1
ϕzk(a)| − 1− |Bu(k)|+ n ,

where a ∈ A \ {zk} is the letter such that Sa(k) = inf{Sb(k) : b ∈ A \ {zk}}.

Let us notice that the case of Sturmian sequences is much easier. In fact, the simple
form of their Rauzy graphs enables us to state immediately an explicit formula.

Theorem 3.31 ( [D, Theorem 5]). Let u be a Sturmian sequence. Then nrCu(n) = n+1
for every n ∈ N.

Nevertheless, Sturmian sequences are not the only sequences with the equality
nrCu(n) = Cu(n) for every n ∈ N, one can reads more in Section 2.3.4 or in the
paper [84].

We determine the initial non-repetitive complexity only for standard Arnoux{Rauzy
sequence. It seems that for non-standard Arnoux{Rauzy sequences the evaluating of
the initial non-repetitive complexity is much more complicated, as, unlike the standard
case, we do not have the control over the positions of the vertices corresponding to
pre�xes in the respective Rauzy graphs.

Theorem 3.32 ( [D, Theorem 15]). Let u be a standard Arnoux{Rauzy sequence with

the directive sequence z = z0z1z2 · · · . For every integer n ≥ 1 we take the unique k
such that |Bu(k − 1)| < n ≤ |Bu(k)|. Then we have

inrCu(n) = |ϕz0ϕz1 · · ·ϕzk−1
(zk)| .

Moreover, for standard Sturmian sequence we deduce the following corollary. How-
ever, Bugeaud and Kim [29] showed the more general result, see Theorem 2.45.

Corollary 3.33 ( [D, Corollary 16]). Let u be a standard Sturmian sequence. Then

inrCu(n) = n+ 1 for in�nitely many n ∈ N.

Finally, we apply Theorems 3.30 and 3.32 to the d-bonacci sequence t (see Example
2.15). We get the formulas for nrCt(n) and inrCt(n) in terms of the so-called d-bonacci
numbers which naturally generalized the famous Fibonacci numbers. The sequence of
d-bonacci numbers (Dk)k≥0 is de�ned by the linear recurrence:

Dk =
d∑

j=1

Dk−j for k ≥ d and Dk = 2k for all k = 0, 1, . . . , d− 1 .
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Proposition 3.34 ( [D, Theorems 20 and 21]). Let t be the d-bonacci sequence and

let n, k be positive integers such that

1

d− 1

d−1∑

i=0

(d− i)Dk−i−2 −
d

d− 1
< n ≤ 1

d− 1

d−1∑

i=0

(d− i)Dk−i−1 −
d

d− 1
.

Then

nrCt(n) = Dk+1 − 1− 1

d− 1

d−1∑

i=0

(d− i)Dk−i−1 +
d

d− 1
+ n and

inrCt(n) = Dk .

This generalizes the results of Nicholson and Rampersad [84] stated in Item (ii) and
(iii) of Proposition 2.46.

3.3 Critical exponent of complementary symmetric Rote

sequences

In the article [E] we determine the critical exponent of complementary symmetric (CS)
Rote sequences. The critical exponent was explained in Section 2.3.2. The motivation
for this work comes from the result on the repetition threshold of binary rich sequences
stated in Theorem 2.40. This statement was formulated as a conjecture by Baranwal
and Shallit [13] and proved by Curie, Mol, and Rampersad [40]. For us it is especially
important that the two sequences with the minimal critical exponent among all binary
rich sequences are CS Rote sequences.

First of all, it is worth to realize that for �nding the critical exponent of a sequence
only some of its factors have to be considered.

Lemma 3.35 ( [E, Lemma 3]). Let u be a uniformly recurrent aperiodic sequence.

Then cr(u) = sup {indu(u) : u ∈M}, where

M = {u : u is a return word to a bispecial factor of u} .

The relation between a CS Rote sequence v and the associated Sturmian sequence
u = S(v) stated in Proposition 2.23 directly implies the following method of computa-
tion of the critical exponent of v. In fact, it holds for more general pairs of sequences
satisfying u = S(v), too.

Proposition 3.36 ( [E, Theorem 14]). Let v be a binary aperiodic uniformly recurrent

sequence whose language is closed under E. Denote u = S(v),

A1 =
{
indu(u) + 1

|u| : u is a stable return word to a bispecial factor of u
}

and

A2 =
{

1
2

(
indu(u) + 1

|u|
)

: u is an unstable return word to a bispecial factor of u
}
.

Then

cr(v) = sup
(
A1 ∪A2

)
.

Hence it su�ces to study the return words to bispecial factors of the Sturmian
sequence u. We continue in the results of [A] and using the directive sequences of

66



3.3. CRITICAL EXPONENT OF CS ROTE SEQUENCES

Sturmian sequences (described in Section 2.4.2) we determine both the stability ( [E,
Proposition 30]) and the indices ( [E, Proposition 32]) of these return words.

Thus we get the formula for the critical exponent of v in terms of continued fraction
expansions related to the directive sequence of u. Let us emphasize that in this section
the directive sequence is a sequence of morphisms D = ϕ0 and G = ϕ1 (instead of a
sequence of letters 0 and 1). To a sequence u with the directive sequence Ga1Da2Ga3 · · ·
or Da1Ga2Da3 · · · we assign an irrational number θ ∈ (0, 1) with the continued fraction
expansion θ = [0; a1, a2, a3, . . .]. We denote pN

qN
the N th convergent to the number θ

and p′N
q′N

the N th convergent to the number θ
1+θ . Other details about these continued

fraction expansions are summarized in [E, Section 5].

Theorem 3.37 ( [E, Theorem 33]). Let v be a CS Rote sequence and let u be the

standard Sturmian sequence such that LS(v) = Lu.
If u has the directive sequence Ga1Da2Ga3Da4 · · · , then we have cr(v) = sup(M1 ∪

M2 ∪M3) , where

M1 =

{
aN+1 + 2 +

q′N−1 − 1

q′N
: qN is even, N ∈ N

}
;

M2 =

{
aN+1 + 2

2
+
q′N−1 − 1

2q′N
: qN is odd, N ∈ N

}
;

M3 =

{
2 +

q′N − 1

q′N−1 + q′N
: qN−1, qN are odd and aN+1 > 1, N ≥ 1

}

If u has the directive sequence Da1Ga2Da3Ga4 · · · , then the formula is the same

except for the replacement of qN and qN−1 by pN and pN−1.

Using this formula we describe all CS Rote sequences with the critical exponent less
than or equal to 3.

Proposition 3.38 ( [E, Proposition 34]). Let v be a CS Rote sequence associated with

the standard Sturmian sequence u = S(v). If cr(v) ≤ 3, then the directive sequence of

u is of one of the following forms:

(i) Ga1(D2G2)ω, where a1 = 1 or a1 = 3; in this case cr(v) = 2 + 1√
2
;

(ii) Ga1D4(G2D2)ω, where a1 = 1 or a1 = 3; in this case cr(v) = 3;

(iii) Ga1D1Ga3(D2G2)ω, where a1 = 2 or a1 = 4 and a3 = 1 or a3 = 3; in this case

cr(v) = 3;

(iv) D1Ga2(D2G2)ω, where a2 = 1 or a2 = 3; in this case cr(v) = 3.

Let us mention that the sequences from Item (i) are the sequences v and v′ from
Theorem 2.39.

In addition, we show that there are uncountably many CS Rote sequences with
the critical exponent less than 7

2 (see [E, Theorem 37]). By Proposition 2.39 all these
sequences has smaller critical exponent that any Sturmian sequence. Nevertheless, the
detailed structure of the set {cr(v) : v is CS Rote sequence} remains unclear.

67



CHAPTER 3. AIMS AND RESULTS OF THE THESIS

3.4 Recurrence function of complementary symmetric Rote

sequences

The article [E] contains the formula for the recurrence function of CS Rote sequences,
too. This function is described in Section 2.3.3. As in the case of the critical exponent,
the values of the recurrence function are expressed by means of continued fraction
expansions related to the directive sequences of associated Sturmian sequences (see
Section 3.3). Also in this section the directive sequence is a sequence of morphisms
D = ϕ0 and G = ϕ1.

Theorem 3.39 ( [E, Theorem 54]). Let v be a CS Rote sequence and let u be the

standard Sturmian sequence such that LS(v) = Lu.
If u has the directive sequence Ga1Da2Ga3Da4 · · · , then the recurrence function Rv

for n ∈ [q′N , q
′
N+1), N ∈ N, is given by

Case qN even Rv(n+ 1) =

{
2q′N+1 + q′N + n if aN+2 > 1,
2q′N+2 + n if aN+2 = 1.

Case qN+1 even Rv(n+ 1) =

{
q′N+2 + 2q′N+1 + q′N + n if aN+2 > 1
2q′N+2 + q′N+1 + n if aN+2 = 1.

Case qN , qN+1 odd Rv(n+ 1) =

{
3q′N+1 + q′N + n if aN+2 > 1
q′N+3 + q′N+2 + q′N+1 + n if aN+2 = 1.

If u has the directive sequence Da1Ga2Da3Ga4 · · · , then the admissible values of Rv

for n ∈ [q′N , q
′
N+1), N ∈ N, are the same, but the cases above have to be distinguished

according to the parity of pN and pN+1 instead of qN and qN+1.

Example 3.40. We consider the CS Rote sequence v such that S(v) has the directive se-
quence G(D2G2)ω. Since in this case all qN are odd, we obtain for every n ∈ [q′N , q

′
N+1)

the formula

Rv(n+1) = 3q′N+1+q′N+n = n+
1

2
√

2

(
(4+3

√
2)(1+

√
2)N+1−(4−3

√
2)(1−

√
2)N+1

)
.

We briey indicate how we derive the statement of Theorem 3.39. First, we use the
following reformulation of Proposition 2.43.

Lemma 3.41 ( [E, Lemma 41]). Let u be a uniformly recurrent aperiodic sequence.

For n ∈ N, we denote

Bu(n) = {b ∈ Lu : there is a factor w ∈ Lu(n) such that

b is the shortest bispecial factor containing w} .

Then

Ru(n) = max{|r| : r is a return word to b ∈ Bu(n)}+ n− 1.
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3.5. FUTURE DIRECTIONS

From the close relation between a CS Rote sequence v and the Sturmian sequence
u = S(v) it is easy to realize that the sets Bv(n + 1) and Bu(n) correspond naturally
for every n ∈ N. Thus it su�ces to describe the bispecial factors from the set Bu(n)
(see [E, Theorem 48]). This can be done through the investigation of the Rauzy graphs
and palindromic properties of Sturmian sequences.

Finally, we use the comfortable description of the lengths of return words to bispecial
factors of u ( [E, Proposition 32]) as well as the relation between the return words in
the Sturmian sequence u and the CS Rote sequence v explained in [C] (see Proposition
3.22).

3.5 Future directions

We hope that some of our tools and ideas can be utilized also for other tasks. We can
see at least four possible future directions:

• The crucial notion for our study of derived sequences of Sturmian and Arnoux{
Rauzy sequences is their handy S-adic representation. S-adic representations
are (partially) known also for other classes of sequences. It would be nice to
utilize them for the description of derived sequences of sequences coding interval
exchange transformation or even dendric sequences.

• To study properties of Rote sequences, we especially use their S-relation to Stur-
mian sequences (see Section 2.2.4). This S-relation (or its generalizations) can
be considered also for other classes of sequences. It seems that similar methods
can lead to some interesting results also in this cases.

• Following Durand's example we study only derived sequences with respect to
pre�xes of sequences. However, it could be also interesting to understand the
(more complicated) structure of derived sequences to non-pre�xes. Some results
in this direction can be found in [64,69,87].

• Like many other authors we use our results on return words and derived se-
quences to study other properties of sequences such as critical exponent, recur-
rence function or non-repetitive complexity. It seems that there are other similar
possibilities how utilize the results.

3.6 Note on authorship

Besides this extensive Introduction, the thesis is a collection of articles, most of which
are co-authored. My contribution to each of these articles corresponds to the number
of authors: all of them contributed equally.
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Any infinite uniformly recurrent word u can be written as concatenation of a finite number 
of return words to a chosen prefix w of u. Ordering of the return words to w in this 
concatenation is coded by derivated word du(w). In 1998, Durand proved that a fixed 
point u of a primitive morphism has only finitely many derivated words du(w) and each 
derivated word du(w) is fixed by a primitive morphism as well. In our article we focus on 
Sturmian words fixed by a primitive morphism. We provide an algorithm which to a given 
Sturmian morphism ψ lists the morphisms fixing the derivated words of the Sturmian 
word u = ψ(u). We provide a sharp upper bound on length of the list.

© 2018 Published by Elsevier B.V.

1. Introduction

Sturmian words are probably the most studied object in combinatorics on words. They are aperiodic words over a binary 
alphabet having the least factor complexity possible. Many properties, characterizations and generalizations are known, see 
for instance [5,4,2].

One of their characterizations is in terms of return words to their factors. Let u = u0u1u2 · · · be a binary infinite word 
with ui ∈ {0, 1}. Let w = uiui+1 · · · ui+n−1 be its factor. The integer i is called an occurrence of the factor w . A return word 
to a factor w is a word uiui+1 · · · u j−1 with i and j being two consecutive occurrences of w such that i < j. In [22], Vuillon 
showed that an infinite word u is Sturmian if and only if each nonempty factor w has exactly two distinct return words. 
A straightforward consequence of this characterization is that if w is a prefix of u, we may write

u = rs0 rs1 rs2 rs3 · · ·
with si ∈ {0, 1} and r0 and r1 being the two return words to w . The coding of these return words, the word du(w) =
s0s1s2 · · · is called the derivated word of u with respect to w , introduced in [10]. A simple corollary of the characterization by 
return words and a result of [10] is that the derivated word du(w) is also a Sturmian word (see Theorem 1). This simple 
corollary follows also from other results. For instance, it follows from [1], where the authors investigate the derivated word 

* Corresponding author.
E-mail address: medkokat@fjfi.cvut.cz (K. Medková).
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of a standard Sturmian word and give its precise description. It also follows from the investigation of a more general setting 
in [7], which may in fact be used to describe derivated words of any episturmian word — generalized Sturmian words [12].

By the main result of [10], if u is a fixed point of a primitive morphism, the set of all derivated words of u is finite (the 
result also follows from [13]). In this case, again by [10], a derivated word itself is a fixed point of a primitive morphism.

In this article we study derivated words of fixed points of primitive Sturmian morphisms. By the results of [18], any 
primitive Sturmian morphism may be decomposed using elementary Sturmian morphisms — generators of the Sturmian 
monoid. In Theorems 14 and 18, we describe the relation between the set of derivated words of a Sturmian sequence u and 
the set of derivated words of ϕ(u), where ϕ is a generator of the Sturmian monoid.

The main result of our article is an exact description of the morphisms fixing the derivated words du(w) of u, where 
u is fixed by a Sturmian morphism ψ and w is its prefix. For this purpose, we introduce an operation � acting on the 
set of Sturmian morphisms with unique fixed point, see Definition 22. Iterating this operation we create the desired list 
of the morphisms as stated in Theorem 25. The Sturmian morphisms with two fixed points are treated separately, see 
Proposition 29.

We continue our study by counting the number of derivated words, in particular by counting the distinct elements in 
the sequence 

(
�k(ψ)

)
k≥1. This number depends on the decomposition of ψ into the generators of the special Sturmian 

monoid, see below in Section 2.3.
Using this decomposition, Propositions 36 and 37 provide the exact number of derivated words for two specific classes 

of Sturmian morphisms.
For a general Sturmian morphism ψ , Corollary 35 gives a sharp upper bound on their number. The upper bound depends 

on the number of the elementary morphisms in the decomposition of ψ . In the last section, we give some comments and 
state open questions.

2. Preliminaries

An alphabet A is a finite set of symbols called letters. A finite word of length n over A is a string u = u0u1 · · · un−1, 
where ui ∈ A for all i = 0, 1, . . . , n − 1. The length of u is denoted by |u| = n. By |u|a we denote the number of copies of 
the letter a used in u, i.e. |u|a = #{i ∈ N : i < n, ui = a}. The set of all finite words over A together with the operation of 
concatenation forms a monoid A∗ . Its neutral element is the empty word ε and A+ = A∗ \ {ε}. On this monoid we work 
with two operations which preserve the length of words. The mirror image or reversal of a word u = u0u1 · · · un−1 ∈ A∗ is 
the word u = un−1un−2 · · · u1u0. The cyclic shift of u is the word

cyc(u) = u1u2 · · · un−1u0. (1)

An infinite word over A is a sequence u = u0u1u2 · · · = (ui)i∈N ∈ AN with ui ∈ A for all i ∈ N = {0,1,2, . . .}. Bold letters 
are systematically used to denote infinite words throughout this article.

A finite word p ∈ A∗ is a prefix of u = u0u1 · · · un−1 if p = u0u1u2 · · · uk−1 for some k ≤ n, the word ukuk+1 · · · un−1
is denoted p−1u. Similarly, p ∈ A∗ is a prefix of u = u0u1u2 · · · if p = u0u1u2 · · · uk−1 for some integer k. We usually 
abbreviate u0u1u2 · · · uk−1 = u[0,k) .

A finite word w is a factor of u = u0u1u2 · · · if there exists an index i such that w is a prefix of the infinite word 
uiui+1ui+2 · · · . The index i is called an occurrence of w in u. If each factor of u has infinitely many occurrences in u, the 
word u is recurrent.

The language L(u) of an infinite word u is the set of all its factors. The mapping Cu : N �→ N defined by Cu(n) = #{w ∈
L(u) : |w| = n} is called the factor complexity of the word u.

An infinite word u is eventually periodic if u = w v v v v v · · · for some v, w ∈ A∗ . If w is the shortest such word possible, 
we say that |w| is the preperiod of u; if v is the shortest possible, we say that |v| is the period of u. If u is not eventually 
periodic, it is aperiodic. A factor w of u is a right special factor if there exist at least two letters a, b ∈ A such that wa, wb
belong to the language L(u). A left special factor is defined analogously.

An infinite word u is eventually periodic if and only if L(u) contains only finitely many right special factors. Equivalently, 
u is eventually periodic if and only if its factor complexity Cu is bounded. On the other hand, the factor complexity of any 
aperiodic word satisfies Cu(n) ≥ n + 1 for every n ∈ N.

An infinite word u with Cu(n) = n + 1 for each n ∈ N is called Sturmian. A Sturmian word is standard (or characteristic) 
if each of its prefixes is a left special factor.

2.1. Derivated words

Consider a prefix w of an infinite recurrent word u. Let i < j be two consecutive occurrences of w in u. The string 
uiui+1 · · · u j−1 is a return word to w in u. The set of all return words to w in u is denoted by Ru(w). Let us suppose that 
the set of return words to w is finite, i.e. Ru(w) = {r0, r1, . . . , rk−1}. The word u can be written as unique concatenation of 
the return words u = rs0 rs1 rs2 · · · . The derivated word of u with respect to the prefix w is the infinite word

du(w) = s0s1s2 · · ·
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over the alphabet of cardinality #Ru(w) = k. In his original definition, Durand [10] fixed the alphabet of the derivated word 
to the set {0, 1, . . . , k −1}. Moreover, Durand’s definition requires that for i < j the first occurrence of ri in u is less than the 
first occurrence of r j in u. In particular, a derivated word always starts with the letter 0. In the article [1], where derivated 
words of standard Sturmian words are studied, the authors required that the starting letters of the original word and its 
derivated word coincide. For our purposes, we do not need to fix the alphabet of derivated words: two derivated words 
which differ only by a permutation of letters are identified one with another.

In the sequel, we work only with infinite words which are uniformly recurrent, i.e. each prefix w of u occurs in u infinitely 
many times and the set Ru(w) is finite. Our aim is to describe the set

Der(u) = {du(w) : w is a prefix of u}.
Clearly, if a prefix w is not right special, then there exists a unique letter x such that wx ∈ L(u). Thus the occurrences of 
w and wx coincide, Ru(w) = Ru(wx) and du(w) = du(wx). If u is not eventually periodic, then w is a prefix of a right 
special prefix of u. Therefore for an aperiodic uniformly recurrent word u we have

Der(u) = {du(w) : w is a right special prefix of u}.
2.2. Sturmian words

Any Sturmian word u can be identified with an upper or lower mechanical word. A mechanical word is described by two 
parameters: slope and intercept. The slope is an irrational number γ ∈ (0, 1) and the intercept is a real number ρ ∈ [0, 1). 
To define the lower mechanical word s(γ , ρ) = (sn(γ ,ρ))n∈N we put I0 = [0, 1 − γ ). The nth letter of s(γ , ρ) is as follows:

sn(γ ,ρ) =
{

0 if the number γ n + ρ mod 1 belongs to I0,

1 otherwise.

The definition of the upper mechanical word s′(γ , ρ) = (
s′

n(γ ,ρ)
)

n∈N is analogous, it just uses the interval I0 = (0, 1 − γ ]. 
Let us stress that sn(γ , ρ) 	= s′

n(γ , ρ) for at most two neighboring indices n and n + 1. All upper and lower mechanical 
words with irrational slope are Sturmian and any Sturmian word equals to a lower or to an upper mechanical word. Let 
us stress that one-sided Sturmian words with irrational slope are always uniformly recurrent. The language of a Sturmian 
word depends only on γ . The number γ is in fact the density of the letter 1, i.e., γ = lim

n→∞
1
n # 

{
i ∈ N : i < n, si(γ ,ρ) = 1

}
. 

Consequently, 1 − γ is the density of the letter 0.
For any irrational γ ∈ (0, 1) there exists a unique mechanical word c(γ ) with slope γ such that both 0c(γ ) and 1c(γ ) are 

Sturmian. The word c(γ ) is a standard Sturmian word and c(γ ) = s(γ , γ ) = s′(γ , γ ). Many further properties of Sturmian 
words can be found in [16,5].

For our study of derivated words, the following result of Vuillon from [22] is important: a word u is Sturmian if and 
only if any prefix of u has exactly two return words. By combining this result with [10], we obtain an essential observation 
about derivated words of Sturmian words, which also follows from [1].

Theorem 1. If u is a Sturmian word and w is a prefix of u, then its derivated word du(w) is Sturmian as well.

Proof. Set v = du(w). Let p be a prefix of v. Due to Proposition 2.6 in [10], there exists a prefix q of u such that 
dv(p) = du(q). By Vuillon’s characterization of Sturmian words, the word du(q) is binary. It means that any prefix p of 
v has two return words in v and so v is Sturmian. �
Remark 2 (Historical). The Sturmian words (sequences) were originally defined by Hedlund and Morse in [19]. Their defi-
nition is more general as they consider also biinfinite words and (in terms of our definition above) rational slopes. Hence 
their Sturmian words may not be recurrent. For details on the history of definition of Sturmian words see [11], especially 
the historical remark at page 146. Interestingly enough, the term derivated sequence is also used in [19], however, its defini-
tion differs from our one (as taken from [10]): Using again our terminology, their derivated word is a derivated word with 
respect to a one-letter word in a biinfinite Sturmian word.

2.3. Sturmian morphisms

A morphism over A∗ is a mapping ψ : A∗ �→ A∗ such that ψ(v w) = ψ(v)ψ(w) for all v, w ∈ A∗ . The domain of the 
morphism ψ can be naturally extended to AN by

ψ(u0u1u2 · · · ) = ψ(u0)ψ(u1)ψ(u2) · · · .

A morphism ψ is primitive if there exists a positive integer k such that the letter a occurs in the word ψk(b) for each pair 
of letters a, b ∈ A. A fixed point of a morphism ψ is an infinite word u such that ψ(u) = u.
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A morphism ψ is a Sturmian morphism if ψ(u) is a Sturmian word for any Sturmian word u. The set of Sturmian 
morphisms together with composition forms the so-called Sturmian monoid usually denoted St. We work with these four 
elementary Sturmian morphisms:

ϕa :
{

0 → 0

1 → 10
ϕb :

{
0 → 0

1 → 01
ϕα :

{
0 → 01

1 → 1
ϕβ :

{
0 → 10

1 → 1

and with the monoid M generated by them, i.e. M = 〈ϕa, ϕb, ϕα, ϕβ〉. The monoid M is also called special Sturmian monoid. 
For a nonempty word u = u0 · · · un−1 over the alphabet {a, b, α, β} we put

ϕu = ϕu0 ◦ ϕu1 ◦ · · · ◦ ϕun−1 .

The monoid M is not free. It is easy to show that for any k ∈ N we have

ϕαakβ = ϕβbkα and ϕaαkb = ϕbβka.

We can equivalently say that the following rewriting rules hold on the set of words from {a, b, α, β}∗:

αakβ = βbkα and aαkb = bβka for any k ∈ N . (2)

In [21], the author reveals a presentation of the Sturmian monoid which includes the special Sturmian monoid M =
〈ϕa, ϕb, ϕα, ϕβ〉. A presentation of the special Sturmian monoid follows from this result. It is also given explicitly in [15]:

Theorem 3. Let w, v ∈ {a, b, α, β}∗ . The morphism ϕw is equal to ϕv if and only if the word v can be obtained from w by applying 
the rewriting rules (2).

Note that the presentation of a generalization of the Sturmian monoid, the so-called episturmian monoid, is also known, 
see [20]. The next lemma summarizes several simple and well-known properties of Sturmian morphisms we exploit in the 
sequel.

Lemma 4. Let w ∈ {a, b, α, β}+ .

(i) The morphism ϕw is primitive if and only if w contains at least one Greek letter α or β and at least one Latin letter a or b.
(ii) If ϕw is primitive, then each of its fixed points is aperiodic and uniformly recurrent.

(iii) If ϕw is primitive, then it has two fixed points if and only if w belongs to {a, α}∗ .

For w ∈ {a, b, α, β}∗ the rules (2) preserve positions in w occupied by Latin letters {a, b} and positions occupied by Greek 
letters {α, β}. We define that a < b and α < β which allows the following definition.

Definition 5. Let w ∈ {a, b, α, β}∗ . The lexicographically greatest word in {a, b, α, β}∗ which can be obtained from w by 
application of rewriting rules (2) is denoted N(w). If ψ = ϕw , then the word N(w) is the normalized name of the morphism 
ψ and it is also denoted by N(ψ) = N(w).

The next lemma is a direct consequence of Theorem 3.

Lemma 6. Let w ∈ {a, b, α, β}∗ . We have w = N(w) if and only if w does not contain αakβ or aαkb as a factor for any k ∈ N. In 
particular, if w ∈ {a, b, α, β}∗ \ {a, α}∗ , the normalized name N(w) has prefix either aiβ or αib for some i ∈ N.

Example 7. Since ψ = ϕaϕbϕαϕb = ϕbϕaϕαϕb = ϕbϕbϕβϕa , the normalized name of ψ is N(ψ) = bbβa.

The morphism E : 0 → 1, 1 → 0 which exchanges letters in words over {0, 1} cannot change the factor complexity of 
an infinite word. Thus, E is clearly a Sturmian morphism. But E does not belong to the monoid M = 〈ϕa, ϕb, ϕα, ϕβ〉. In 
fact, E is the only missing morphism. More precisely, any Sturmian morphism ψ either belongs to M or ψ = η ◦ E , where 
η ∈ M (see [18]). To generate the whole monoid of Sturmian morphisms St , one needs only three morphisms, say E , ϕa

and ϕb (see [16]). We have

ϕα = Eϕa E and ϕβ = Eϕb E. (3)

Our aim is to study derivated words of fixed points of Sturmian morphisms. If u is a fixed point of ψ , it is also a fixed 
point of ψ2. Due to (3), the square ψ2 always belongs to M. To illustrate why this is true, assume, e.g., that ψ ∈ St =
〈E, ϕa, ϕb〉 equals ψ = ϕa Eϕbϕa . Using (3) and the fact that E2 is the identity morphism, we have

ψ = ϕa Eϕb E Eϕa E E = ϕaϕβϕα E
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and hence

ψ2 = ϕaϕβϕα Eϕaϕβϕα E = ϕaϕβϕα Eϕa E Eϕβ E Eϕα E = ϕaϕβϕαϕαϕbϕa ∈ M.

Therefore we may restrict ourselves to fixed points of morphisms from the special Sturmian monoid M. Note that this 
would not be true if we consider only the morphisms from 〈ϕa, ϕb〉, see also Lemma 4.

Example 8. The Fibonacci word is the fixed point of the morphism τ : 0 → 01, 1 → 0. The morphism τ is Sturmian, but 
τ /∈ M. We see that τ = ϕb ◦ E and by the relations (3) we have τ 2 = ϕbϕβ .

Remark 9. Two infinite words u and E(u) over the alphabet {0, 1} coincide up to a permutation of the letters 0 and 1. If a 
word u is a fixed point of a morphism ϕw , then E(u) is a fixed point of the morphism E ◦ ϕw ◦ E = ϕv for some v . By (3), 
the word v is obtained from w by exchange of letters a ↔ α and b ↔ β . Therefore we introduce the following morphism 
F : {a, b, α, β}∗ �→ {a, b, α, β}∗ by

F (a) = α, F (α) = a, F (b) = β, F (β) = b. (4)

This notation enables us to formulate two useful facts on composition of E with morphisms from M. Namely,

E ◦ ϕw ◦ E = ϕF (w) and (ϕw ◦ E)2 = ϕw F (w) . (5)

Later on we will need the following statement on the morphism F . First we recall two classical results on word equa-
tions:

Lemma 10 ([17]). Let y ∈ A∗ and x, z ∈ A+ . Then xy = yz if and only if there are u, v ∈ A∗ and � ∈ N such that x = uv, z = vu and 
y = (uv)�u.

Lemma 11 ([17]). Let x, y ∈ A+ . The following three conditions are equivalent:

(i) xy = yx;
(ii) There exist integers i, j > 0 such that xi = y j ;

(iii) There exist z ∈ A+ and integers p, q > 0 such that x = zp and y = zq.

With these two lemmas we prove the following result on word equations involving the morphism F . Note that this result 
is within the general setting considered in [9], however we give an explicit solution of cases that we need later.

Lemma 12. Let z and p be nonempty words from {a, b, α, β}+.

(i) If zp = F (p)F (z), then there is x ∈ {a, b, α, β}+ such that

z = x
(

F (x)x
)i

and p = (
F (x)x

) j
F (x) for some i, j ∈ N.

(ii) If zp = pF (z), then there is x ∈ {a, b, α, β}+ such that

z = (
F (x)x

)i
and p = (

F (x)x
) j

F (x) for some i, j ∈ N.

Proof. We prove Item (i) by induction on |zp| ≥ 2. If |z| = |p|, then z = F (p) and the statement is true for x = z and 
i = j = 0.

Assume |z| > |p| (the case of |z| < |p| is analogous). There must be a nonempty word q such that z = F (p)q and this 
yields qp = F (z) = pF (q). By Lemma 10 there are words u and v and � ∈ N such that q = uv, p = (uv)�u and F (q) = vu. 
This implies that vu = F (u)F (v) and we can apply the induction hypothesis as |uv| < |pz|. Therefore, there are x and 
s, r ∈ N such that v = x

(
F (x)x

)s
and u = (

F (x)x
)t

F (x). Putting this altogether we obtain

q = uv = (
F (x)x

)t
F (x)x

(
F (x)x

)s = (
F (x)x

)t+s+1
,

p = (uv)�u = (
F (x)x

) j
F (x), with j = �(t + s + 1) + t,

z = F (p)q = x
(

F (x)x
)i

, with i = �(t + s + 1) + 2t + s + 1.

To prove Item (ii), we apply Lemma 10 on zp = pF (z). We have z = uv, F (z) = vu and p = (uv)�u for some words u

and v and � ∈ N. It follows that vu = F (u)F (v) and so, by Item (i), there is x such that v = x
(

F (x)x
)i

and u = (
F (x)x

) j
F (x)

for some i, j ∈ N. Using all these equations we finish the proof by stating that

z = uv = (
F (x)x

) j
F (x)x

(
F (x)x

)i = (
F (x)x

) j+i+1
and p = (uv)�u = (

F (x)x
)�( j+i+1)+ j

F (x). �



28 K. Klouda et al. / Theoretical Computer Science 743 (2018) 23–37

3. Derivated words of Sturmian preimages

In this section we study relations between derivated words of a Sturmian word and derivated words of its preimage 
under one of the morphisms ϕa, ϕb, ϕα and ϕβ . We prove that the set of all derivated words of these two infinite words 
coincide up to at most one derivated word, see Theorems 14 and 18. This will be crucial fact for proving the main results 
of this paper. Because of (3), the roles of ϕa and ϕα and, analogously, the roles of ϕb and ϕβ are symmetric. Therefore we 
can restrict the statements and proofs in this section to the morphisms ϕa and ϕb with no loss of generality. Again we use 
results from [16], in particular this slightly modified Proposition 2.3.2:

Proposition 13 ([16]). Let x be an infinite word.

(i) If ϕb(x) is Sturmian, then x is Sturmian.
(ii) If ϕa(x) is Sturmian and x starts with the letter 1, then x is Sturmian.

Theorem 14. Let u and u′ be Sturmian words such that u = ϕb(u′). Then the sets of their derivated words satisfy

Der(u) = Der(u′) ∪ {u′} .

The proof of the previous theorem is split into two parts: In Proposition 16, Item (i) says {u′} ⊂ Der(u) and Item (ii) says 
Der(u) ⊂ Der(u′) ∪{u′}. Proposition 17 says Der(u′) ⊂ Der(u). Proofs of these propositions use the following simple property 
of the injective morphism ϕb .

Lemma 15. Let u = ϕb(u′) be a Sturmian word. If p0 ∈ L(u) and 0 is a prefix of p, then there exists a unique factor p′ ∈ L(u′) such 
that p0 = ϕb(p′)0.

Proposition 16. Let u and u′ be Sturmian words such that u = ϕb(u′) and let w be a prefix of u.

(i) If |w| = 1, then du(w) = u′ (up to a permutation of letters).
(ii) If |w| > 1, then there exists a prefix w ′ of u′ such that |w ′| < |w| and du(w) = du′ (w ′) (up to a permutation of letters). Moreover, 

if w is right special, w ′ is right special as well.

Proof. Since ϕb(0) = 0 and ϕb(1) = 01, the word u = ϕb(u′) has a prefix 0 and the letter 1 is in u separated by 
blocks 0k with k ≥ 1. Therefore, the two return words in u to the word w = 0 are r0 = 0 and r1 = 01. We may 
write u = rs0 rs1 rs2 · · · , where rs j ∈ {r0, r1} and thus du(w) = s0s1s2 · · · . Since r0 = ϕb(0) and r1 = ϕb(1), we obtain also 
ϕb(u′) = u = ϕb(s0)ϕb(s1)ϕb(s2) · · · = ϕb(s0s1s2 · · · ). The statement in (i) now follows from injectivity of ϕb .

Now suppose that the prefix w of u is of length > 1. As explained earlier, it suffices to consider right special prefixes. 
Since the letter 1 is always followed by 0, each right special factor must end in 0. So the first and the last letter of w is 0, 
hence by Lemma 15 there is a unique prefix w ′ of u′ such that ϕb(w ′)0 = w . Let r0 and r1 be the two return words to w
and let u = rs0 rs1 rs2 · · · . Since the first letter of both r0 and r1 is 0, there are uniquely given r′

0 and r′
1 such that r0 = ϕb(r′

0)

and r1 = ϕb(r′
1) and u′ = r′

s0
r′

s1
r′

s2
· · · .

Clearly w ′ is a prefix of r′
s j

r′
s j+1

r′
s j+2

· · · for all j ∈ N and so the number |r′
s0

r′
s1

· · · r′
sk

| is an occurrence of w ′ in u′ for all 
k ∈ N. Let i > 0 be an occurrence of w ′ in u′ . It follows that ϕb

(
u′

[0,i)

)
w is a prefix of u and |ϕb

(
u′

[0,i)

)| is an occurrence 
of w in u. There must be j ∈ N such that ϕb

(
u′

[0,i)

) = rs0 rs1 · · · rs j and hence, by injectivity of ϕb , u′
[0,i) = r′

s0
r′

s1
· · · r′

s j
and 

i = |r′
s0

r′
s1

· · · r′
s j

|.
We have proved that the numbers 0 and |r′

s0
r′

s1
· · · r′

s j
|, j = 0, 1, . . ., are all occurrences of w ′ in u′ . It follows that r′

0 and 
r′

1 are the two return words to w ′ in u′ and

du′(w ′) = s0s1s2 · · · = du(w).

Since w = ϕb(w ′)0 is a right special factor, we must have that both ϕb(w ′)00 and ϕb(w ′)01 are factors of u. It follows 
that both w ′0 and w ′1 are factors of u′ and w ′ is right special. �
Proposition 17. Let u and u′ be Sturmian words such that u = ϕb(u′) and let w ′ be a nonempty right special prefix of u′. Then 
du′(w ′) = du(w), where w = ϕb(w ′)0.

Proof. Let r′
0 and r′

1 be the two return words to w ′ in u′ and du′ (w ′) = s0s1s2 · · · . Put w = ϕb(w ′)0, r0 = ϕb(r′
0) and 

r1 = ϕb(r′
1). We obtain

u = ϕb(u′) = ϕb(r
′
s0

r′
s1

r′
s2

· · · ) = rs0 rs1 rs2 · · ·
Clearly, w is prefix of rsk rsk+1 rsk+2 · · · for all k ∈ N and |rs0 rs1 · · · rs j | is an occurrence of w in u for all j ∈ N.
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Assume now i > 0 is an occurrence of w in u. This means that u[0,i) w is a prefix of u and hence, by Lemma 15 (note 
that w begins with 0), there must be p′ a prefix of u′ such that ϕb(p′) = u[0,i) and p′w ′ is a prefix of u′ . Since |p′| is an 
occurrence of w ′ in u′ , there is j ∈ N such that p′ = r′

s0
r′

s1
· · · r′

s j
. It follows that

u[0,i) = ϕb(r
′
s0

r′
s1

· · · r′
s j

) = rs0 rs1 · · · rs j

and i = |rs0 rs1 · · · rs j |.
So, again as in the previous proof, we have shown that the numbers 0 and |rs0 rs1 · · · rs j |, j = 0, 1, . . ., are all occurrences 

of w in u. It follows that r0 and r1 are the two return words to w in u and

du(w) = s0s1s2 · · · = du′(w ′). �
Theorem 18. Let u and u′ be Sturmian words such that u starts with the letter 1 and u = ϕa(u′). Then u′ starts with 1 and the sets of 
their derivated words coincide, i.e.,

Der(u) = Der(u′) .

In particular, for any prefix w of u there exists a prefix w ′ of u′ such that |w ′| ≤ |w| and du(w) = du′ (w ′) (up to a permutation of 
letters). Moreover, if w is right special, w ′ is right special as well.

Proof. The morphisms ϕa and ϕb are conjugate, that is, 0ϕa(x) = ϕb(x)0 for each word x. This means that for any 
prefix u′

0u′
1u′

2 · · · u′
k of u′ we have 0ϕa(u′

0u′
1u′

2 · · · u′
k) = ϕb(u′

0u′
1u′

2 · · · u′
k)0. As this holds true for each k, we obtain 

0u = 0ϕa(u′) = ϕb(u′).
Denote v = v0 v1 v2 · · · = 0u0u1u2 · · · . We have vi = ui−1 for each i ≥ 1. Let w be a nonempty prefix of u and (in) be the 

increasing sequence of its occurrences in u. Note that w starts with the letter 1. This letter is in u surrounded by 0’s. Thus 
the sequence (in) is also the sequence of occurrences of 0w in v and thus dv(0w) = du(w). It follows that

Der(u) = {dv(v) : v is a prefix of v and |v| > 1} .

We finish the proof by applying Theorem 14 and Proposition 16 to the word v = ϕb(u′). �
The only case which is not treated by Theorems 14 and 18, namely the case when u = ϕa(u′) and u begins with 0, can 

be translated into one of the previous cases.

Lemma 19. Let u be a Sturmian word such that u starts with the letter 0 and u = ϕa(u′) for some word u′ . Then there exists a Sturmian 
word v such that u′ = 0v and u = ϕb(v).

Proof. Since u starts with 0, the form of ϕa implies that u′ = 0v for some Sturmian word v. As 0ϕa(x) = ϕb(x)0 for each 
word x, we have

u = ϕa(u′) = ϕa(0v) = 0ϕa(v) = ϕb(v). �
To sum up the results of this section, let us assume we have a sequence of Sturmian words u0, u1, u2, . . . such that 

u = u0 and for every i ∈ N one of the following is true:

(i) ui = ϕb(ui+1) or ui = ϕβ(ui+1),
(ii) ui begins with 1 and ui = ϕa(ui+1),

(iii) ui begins with 0 and ui = ϕα(ui+1).

If (i) holds for ui , then by Theorem 14

Der(ui) = Der(ui+1) ∪ {ui+1},
moreover, ui+1 is the derivated word of the first letter of ui . This first letter is also the shortest right special prefix. If (ii) 
or (iii) holds for ui , then by Theorem 18

Der(ui) = Der(ui+1).

The crucial assumption, namely the existence of the above described sequence (uk)k≥0, is guaranteed by the well-known 
fact on the desubstitution of Sturmian words (see, e.g., [14] and [19] and also Lemma 19). Here we formulate this fact as 
the following theorem:
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Theorem 20 ([14], [19]). An infinite binary word u is Sturmian if and only if there exists an infinite word w = w0 w1 w2 · · · over the 
alphabet {a, b, α, β} and an infinite sequence (ui)i≥0 , such that u = u0 and ui = ϕwi (ui+1) for all i ∈ N.

In the following section we work only with the sequence (ui)i≥0 corresponding to a fixed point u of a Sturmian mor-
phism ψ . The next lemma provides us a simple technical tool for a description of the elements ui as fixed points of some 
Sturmian morphisms.

Lemma 21. Let ξ and η be Sturmian morphisms and u = (
ξ ◦η

)
(u). If u = ξ(u′) for some u′ , then u′ is the fixed point of the morphism 

η ◦ ξ , i.e. u′ = (
η ◦ ξ

)
(u′).

Proof. For any Sturmian morphism ξ , the equation ξ(x) = ξ(y) implies that x = y. We deduce that

ξ(u′) = u = (
ξ ◦ η

)
(u) = (

ξ ◦ η
)(

ξ(u′)
) = (

ξ ◦ η ◦ ξ
)
(u′) ,

and so u′ = (
η ◦ ξ

)
(u′). �

4. Derivated words of fixed points of Sturmian morphisms

Let u be an fixed point of a primitive Sturmian morphism (note that if the morphism is primitive, all its fixed points are 
aperiodic). It is known due to Durand [10] that the set Der(u) is finite (as the morphism is primitive). Put

Der(u) = {x1,x2, . . . ,x�}.
Our main result is an algorithm that returns a list of Sturmian morphisms ψ1, ψ2, . . . , ψ� such that xi is a fixed point of ψi
(up to a permutation of letters) for all i such that 1 ≤ i ≤ �.

As we have noticed before, we can restrict ourselves to the morphisms belonging to the monoid M = 〈ϕa, ϕb, ϕα, ϕβ〉. 
Let us recall (see Lemma 4) that a morphism from 〈ϕa, ϕb〉 or from 〈ϕα, ϕβ 〉 is not primitive and has no aperiodic fixed 
point. Thus we consider only morphisms ϕw whose normalized name w contains at least one Latin and one Greek letter.

We will treat two cases separately. The first one is the case when the morphism ϕw has only one fixed point. Lemma 4
says that in such a case w /∈ {a, α}∗ . In the second case, when w ∈ {a, α}∗ , the morphism ϕw has two fixed points.

4.1. Morphisms with unique fixed point

Let ψ ∈ 〈ϕa, ϕb, ϕα, ϕβ〉 and N(ψ) = w ∈ {a, b, α, β}∗ \ {a, α}∗ be the normalized name of the morphism ψ . By Lemma 6
the word w has a prefix akβ or αkb for some k ∈ N. This property enables us to define a transformation on the set of 
morphisms from M \ 〈ϕa, ϕα〉. As we will demonstrate later, this transformation is in fact the desired algorithm returning 
the morphisms ψ1, ψ2, . . . , ψ� mentioned above.

Definition 22. Let w ∈ {a, b, α, β}∗ \ {a, α}∗ be the normalized name of a morphism ψ , i.e., ψ = ϕw . We put

�(w) =
{

N(w ′akβ) if w = akβw ′,
N(w ′αkb) if w = αkbw ′

and, moreover, �(ψ) = ϕ�(w) .

Example 23. Consider the morphism ψ = ϕw , where w = βαaaα, and apply repeatedly the transformation � on ψ .

ψ = ϕβαaaα and N(ψ) = w = βαaaα

�(ψ) = ϕαaaαβ and N
(
�(ψ)

) = βbbαα

�2(ψ) = ϕbbααβ and N
(
�2(ψ)

) = bbβαα

�3(ψ) = ϕbβααb and N
(
�3(ψ)

) = bβααb

�4(ψ) = ϕβααbb and N
(
�4(ψ)

) = βααbb

�5(ψ) = ϕααbbβ and N
(
�5(ψ)

) = ααbbβ

�6(ψ) = �3(ψ)

In what follows we prove that the five fixed points of morphisms �(ψ), �2(ψ), �3(ψ), �4(ψ), �5(ψ) are exactly the five 
derivated words of the fixed point of ψ .
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Lemma 24. Let u be a fixed point of a morphism ψ and N(ψ) = w ∈ {a, b, α, β}∗ be the normalized name of the morphism ψ . If one 
of the following condition is satisfied

(i) u starts with 0 and w starts with a,
(ii) u starts with 1 and w starts with α,

then w ∈ {a, α}∗ .

Proof. We consider only the case (i), the case (ii) is analogous. Let us assume w /∈ {a, α}∗ . According to Lemma 6, the word 
w has a prefix akβ , for some k ≥ 1. Consequently, the morphism ψ equals ϕk

a ◦ϕβ ◦η for some morphism η. Any morphism 
of this form maps 0 to 1w1 and 1 to 1w2 for some words w1 and w2. Therefore, the fixed point starts with the letter 1, 
which is a contradiction. �

The following theorem along with Definition 22 provides the algorithm which to a given Sturmian morphism ψ lists the 
morphisms fixing the derivated words of the Sturmian word u = ψ(u).

Theorem 25. Let ψ ∈ 〈ϕa, ϕb, ϕα, ϕβ〉 be a primitive morphism and N(ψ) = w ∈ {a, b, α, β}∗ \ {a, α}∗ be its normalized name. 
Denote u the fixed point of ψ . Then x is (up to a permutation of letters) a derivated word of u with respect to one of its prefixes if and 
only if x is the fixed point of the morphism � j(ψ) for some j ≥ 1.

Proof. Denote x j the fixed point of � j(ψ), j = 1, 2, . . . and assume that v is a right special prefix of u. We will prove that if 
|v| = 1, then du(v) = x1, and if |v| > 1, then there is a right special prefix v ′ of x1 such that |v ′| < |v| and du(v) = dx1 (v ′). 
We can repeat this proof for the prefix v ′ of x1 and eventually prove that du(v) = x j for some j and that for any j there is 
a right special prefix v of u so that du(v) = x j .

Without loss of generality we assume that the normalized name of ψ is w = akβz. This means that �(ψ) = ϕz ◦ ϕakβ .
First we assume |v| = 1. If k > 0, then the first letter of u is 1 which is not a right special factor. This implies that k = 0. 

Hence we have that u = ϕβ(u′), where u′ = ϕz(u). By Item (i) of Proposition 16 we obtain du(v) = u′ . Lemma 21 says the 
word u′ is fixed by the morphism ϕz ◦ ϕβ = �(ψ), which implies u′ = x1.

Now assume |v| > 1. If k = 0, then by Item (ii) of Proposition 16 there is a right special prefix v ′ of u′ = ϕz(u) such that 
|v ′| < |v| and du(v) = du′ (v ′). Again by Lemma 21 we obtain u′ = x1.

Let k > 0. For i = 0, 1, . . . , k we define u(i) = ϕak−iβz(u). By Lemma 24, the words u(i) all start with the letter 1. Obviously, 
u(0) = u and u(i) = ϕa

(
u(i+1)

)
for i = 0, 1, . . . , k − 1. By Theorem 18, there are factors v(i) with i = 0, 1, . . . , k such that v(i)

is a right special prefix of u(i) ,

|v| = |v(0)| ≥ |v(1)| ≥ |v(2)| ≥ · · · ≥ |v(k)|
and

du(v) = du(1) (v(1)) = du(2) (v(2)) · · · = du(k) (v(k)) .

Define u′ = ϕz(u). Then u(k) = ϕβz(u) = ϕβ(u′) and by Item (ii) of Proposition 16 there is a right special prefix v ′ of 
u′ = ϕz(u) such that |v ′| < |v(k)| and du(k) (v(k)) = du′ (v ′). According to Lemma 21, the word u′ is fixed by the morphism 
ϕz ◦ϕakβ = �(ψ). Thus, we have again proved that there is a prefix v ′ of u′ = x1 such that |v ′| < |v| and du(v) = du′ (v ′). �
Remark 26. In Example 23 we considered the morphism ψ = ϕw , where w = βαaaα. We have found only five different 
morphisms �i(ψ) for i = 1, . . . , 5. The sixth morphism �6(ψ) already coincides with �3(ψ). As it follows from the proofs 
of Theorems 14 and 25, the fixed points of �3(ψ), �4(ψ) and �5(ψ) represent the derivated words of u to infinitely many 
prefixes of u. Whereas the fixed point of �(ψ) or �2(ψ) is a derivated word of u to only one prefix of u.

Example 27. As explained in Example 8, to find the derivated words of the Fibonacci word we consider the morphism 
ψ = τ 2 = ϕbϕβ . We have �(ψ) = ϕβϕb and �2(ψ) = ψ . But these two morphisms are equal up to a permutation of letters, 
as Eψ E = �(ψ). This means that all derivated words of the Fibonacci word are the same and coincide with the Fibonacci 
word itself.

4.2. Morphisms with two fixed points

Let us now consider a Sturmian morphism ψ which has two fixed points. Let us denote u(0) and u(1) the fixed points 
of ψ starting with 0 and 1, respectively. Clearly, ψ(0) starts with 0 and ψ(1) with 1. Since the morphism ψ has to belong 
to the monoid 〈ϕa, ϕα〉, the transformation � cannot be applied on it. However, we will show that there is a morphism 
from 〈ϕa, ϕβ〉 (or 〈ϕb, ϕα〉) with a unique fixed point v such that the set of derivated words of u(0) (or u(1)) equals to 
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{v} ∪ Der(v). And since v is a fixed point of some morphism from 〈ϕa, ϕb, ϕβ, ϕα〉 \ 〈ϕa, ϕα〉, the set Der(v) can be described 
using Theorem 25.

Here we give results only for the case when the normalized name w ∈ {a, α}∗ of the morphism begins with a. The case 
when the first letter is α is completely analogous. It suffices to exchange a ↔ b and α ↔ β in the statements and proofs.

Lemma 28. Let w ∈ {a, α}∗ be the normalized name of a morphism starting with the letter a. Then the normalized name N(wb) has 
a prefix b and a suffix a, the word v = b−1 N(wb) belongs to {a, β}∗ , and |v|β = |w|α .

Proof. First, we consider the special case when w = akα� , with k ≥ 1 and � ≥ 0. By the relation (2), N(wb) = bak−1β�a and 
the statement is true.

Let w ∈ {a, α}∗ be arbitrary. It can be decomposed to several blocks of the form akα� with k ≥ 1, � ≥ 0. Now the proof 
can be easily finished by induction on the number of these blocks. �
Proposition 29. Let w ∈ {a, α}∗ be the normalized name of a primitive morphism ψ and let a be its first letter.

(i) Let u be the fixed point of ψ starting with 0. Denote v = b−1 N(wb) ∈ {a, β}∗ . Then Der(u) = {v} ∪ Der(v), where v is the unique 
fixed point of the morphism ϕv .

(ii) Let u be the fixed point of ψ starting with 1. Put v = cyc(w) (see (1)). Then Der(u) = Der(v), where v is the fixed point of the 
morphism ϕv .

Proof. Let us start with proving (i). Let v be the infinite word given by Lemma 19. Then

ϕb(v) = u = ψ(u) = ϕw(u) = (
ϕw ◦ ϕb

)
(v) = ϕwb(v) = ϕN(wb)(v) .

By definition of v we have N(wb) = bv and thus

ϕb(v) = ϕbv(v) = ϕb
(
ϕv(v)

)
.

This implies that v = ϕv(v) . Since v /∈ {a, α}∗ , the morphism ϕv has a unique fixed point, namely the word v. By Theo-
rem 14, Der(u) = {v} ∪ Der(v) as stated in (i).

Statement (ii) is a direct consequence of Theorem 18 and Lemma 21. �
5. Bounds on the number of derivated words

In this section we study the relation between the normalized name w of a primitive morphism ψ = ϕw and the number 
of distinct return words to its fixed point. We restrict ourselves to the case when w /∈ {a, α}∗ , as the case w ∈ {a, α}∗ is 
treated in the next section.

Theorem 25 says that the number of derivated words of u cannot exceed the upper bound:

number of distinct words in the sequence
(
�k(w)

)
k≥1

.

Since the words �k(w) ∈ {a, b, α, β}∗ are all of the same length and �k+1(w) is completely determined by �k(w), the 
sequence 

(
�k(w)

)
k≥1 is eventually periodic.

The number of distinct elements in 
(
�k(w)

)
k≥1 is only an upper bound on the number of derivated words of u. As 

we have already mentioned in Remark 9, fixed points of morphisms corresponding to the names v and F (v) coincide up 
to exchange of letters 0 and 1 and hence define the same derivated word. On the other hand, if v and v ′ are normalized 
names with |v| = |v ′| and fixed points of ϕv and ϕv ′ coincide (up to exchange of letters), then either v ′ = v or v ′ = F (v).

First we look at two examples that illustrate some special cases of the general Proposition 32 on the period and preperiod 
of the sequence 

(
�k(w)

)
k≥1.

Example 30. Consider a word w of length n in the form w = bn−2βa. The sequence of 
(
�k(w)

)
k≥1 is eventually periodic. 

Its preperiod equals n − 2 and is given by the words bn−kβbk−2a, for k = 3, 4, . . . , n. The period equals n − 1 and is given by 
the words bn−kaβbk−2, for k = 2, 3, . . . , n.

Let us stress that for any v ∈ {a, b, α, β}∗ the equation v ′ = F (v) implies |v|a = |v ′|α and |v|b = |v ′|β . Since all words 
�k(w) we listed above contain one letter a and no letter α, we can conclude that the morphism ϕw has 2n − 3 distinct 
derivated words.

Example 31. Consider a normalized name w in which the letter b is missing and w contains all the three remaining letters. 
Necessarily w has the form

β�1ak1β�2ak2 · · ·β�s aksα j,
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where s ≥ 1, �i ≥ 1 for all i = 2, . . . , s and ki ≥ 1 for all i = 1, 2, . . . , s − 1 and j ≥ 1. It is easy to see that the normalized 
names of words obtained by repeated application of the mapping � are

��1(w) = ak1β�2ak2 · · ·β�s aksβ�1α j and ��1+1(w) = β�2−1ak2 · · ·β�s aksβ�1+1α j−1bk1α

We see that the (�1 + 1)st iteration already contains all four letters.

Proposition 32. Let w ∈ {a, b, α, β}∗ \ {a, α}∗ be the normalized name of a primitive Sturmian morphism ψ = ϕw . Then the sequence (
�k(w)

)
k≥1 is eventually periodic and:

(i) If it is purely periodic, then its period is at most |w|, otherwise, its period is at most |w| − 1.
(ii) If both b and β occur in w, then the preperiod is at most |w| − 2, otherwise the preperiod is at most 2|w| − 3.

Proof. By Lemma 6, the word w (and all the elements of the sequence 
(
�k(w)

)
k≥1) has the form w = aiβw ′ or w = αibw ′

for some i ≥ 0. In this proof we distinguish three cases such that exactly one of them is valid for all �k(w), k = 1, 2, . . . The 
first two cases correspond to the “periodic” part of the sequence 

(
�k(w)

)
k≥1.

Case 1: If w has a suffix β or b, then the word �(w) equals to w ′aiβ or w ′αib and thus has again a suffix β or b. 
Indeed, since N(w) = w , the words αa jβ and aα jb are not factors of w and so they are not even factors of w ′ . As the last 
letter of w ′ is b or β , neither αa jβ nor aα jb is a factor of w ′aiβ and hence �(w) = N(w ′aiβ) = w ′aiβ . This means that 
for any k the word �k(w) is just a cyclic shift of w (see (1)). Therefore, 

(
�k(w)

)
k≥1 is purely periodic and its period is 

given by the number of letters β and b in w which is clearly at most |w|. Moreover, the word w belongs to the sequence (
�k(w)

)
k≥1 and the fixed point u of ψ itself is a derivated word of u.

Without loss of generality we assume that w = aiβw ′; the case of w = αibw ′ can be treated in the same way, it suffices 
to exchange letters a ↔ b and α ↔ β . Denote p the longest suffix of w such that p ∈ {a, α}∗ . It remains to consider only 
the case of nonempty p.

Case 2: If p = a j for some j ≥ 1, then w ′ has a suffix ba j or βa j . No rewriting rule from (2) can be applied to w ′aiβ , 
hence, �(w) = w ′aiβ has a suffix β . So, we can apply the reasoning from Case 1 on the word �(w) and hence the sequence (
�k(w)

)
k≥1 is purely periodic. As w contains at least one letter a as a suffix, the period is shorter than |w| and w itself 

does not occur in 
(
�k(w)

)
k≥1.

Case 3: Now assume that the letter α occurs in p. We split this case into three subcases and show that if one of these 
subcases is valid for a word �k(w), then this word belongs to the “preperiodic” part of 

(
�k(w)

)
k≥1. These three subcases 

(for word w) read:
(i) w begins with the letter a, i.e., i ≥ 1;
(ii) w has a prefix β and p has a factor αa;
(iii) w has a prefix β and p = a jαs for j ≥ 0 and s ≥ 1.

(i) Since we assume that α occurs in p, a suffix of p has a form αat for some t ≥ 0. It follows that w ′aiβ , has a suffix 
αat+iβ . After applying the rewriting rules (2) to w ′aiβ we obtain the normalized name �(w) which has a suffix bα.

(ii) A suffix of w can be expressed in the form αarαsat , where r ≥ 1 and s, t ≥ 0. Therefore w ′β has a suffix αarαsatβ . 
After normalization we get that �(w) has a suffix in the form of bα� for some � ≥ 1.

(iii) As w = βw ′ has a suffix βa jαs or ba jαs , the word N(w ′β) has a suffix βαs .

All the three discussed subcases share the following property: The longest suffix p′ ∈ {a, α}∗ of the normalized name 
v = �(w) is of the form p′ = αm , for some m ≥ 1. It means that Case 3 (ii) is not applicable in the second iteration of �. 
By Lemma 6, the word v has a prefix anβ or αnb, n ≥ 0.

If the prefix of v is of the form αnb, then the word �(v) = �2(w) belongs to Case 2. This means that v is the last 
member of the preperiodic part.

If the prefix of v is of the form anβ , then we must apply either Case 3 (i) or 3 (iii) which means that α is again a suffix 
of the word obtained in the next iteration of �.

Let us give a bound on the number of times that we have to use Case 3 (i) or 3 (iii) before we reach Case 2.
If w contains both β and b, then the number of times of using Case 3 (i) or 3 (iii) is at most the number of letters β

occurring in w before the first occurrence of b. Thus there are at most |w| − 2 such letters since w contains β , b and α.
If w does not contain b, then w must contain besides the letters β and α also the letter a; otherwise the morphism 

ϕw would be not primitive (see Lemma 4). The word w has a form described in Example 31 and thus ��1+1(w) contains 
both letter b and β (for the meaning of �1 see Example 31). For this word we can apply the reasoning from the previous 
paragraph, meaning that after �1 + 1 iterations we need at most |w| − 2 further iterations before reaching the periodic part 
of 

(
�k(w)

)
k≥1. Since �1 ≤ |w| − 2, we get that the preperiod is at most 2|w| − 3. �
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Example 30 illustrates that in the case that w contains the letters b and β the upper bounds on preperiod and period 
provided by the previous proposition are attained. The following example proves that the bound from Proposition 32 for w
which does not contain both letters b and β is attained as well.

Example 33. Let us consider the normalized name w = βn−2aα. It is easy to evaluate iterations of the operator �:

�n−2(w) = aβn−2α

�n−1(w) = βn−2bα

�2n−3(w) = bβn−2α

�2n−2(w) = βn−2αb — the first member of the periodic part of
(
�k(w)

)
k≥1

�3n−4(w) = αbβn−2 — the last member of the periodic part of
(
�k(w)

)
k≥1

�3n−3(w) = �2n−2(w).

In Example 27 we showed that for the Fibonacci word the derivated words to all prefixes coincide. There are infinitely 
many words with this property:

Example 34. Consider w = an−1β and the morphism ψ = ϕw . Then �(ψ) = ψ and thus the fixed point u of ψ is the 
derivated word to any prefix of u.

Combining Proposition 32 and the last two examples we can give an upper and lower bound on the number of distinct 
derivated words.

Corollary 35. Let w ∈ {a, b, α, β}∗ \ {a, α}∗ be normalized name of a primitive Sturmian morphism ψ = ϕw and u be a fixed point 
of ψ . Then

1 ≤ #Der(u) ≤ 3|w| − 4 . (6)

Moreover, for any length n ≥ 2 there exist normalized names w ′, w ′′ ∈ {a, b, α, β}∗ \ {a, α}∗ of length n such that

(i) ϕw ′ and ϕw ′′ are not powers of other Sturmian morphisms,
(ii) for the fixed points u′ and u′′ of the morphism ϕw ′ and ϕw ′′ , the lower resp. the upper bound in (6) is attained.

6. Standard Sturmian morphisms and their reversals

In this section we provide precise numbers of distinct derivated words for these three types of morphisms:

(1) ψ is a standard morphism from M, i.e. ψ ∈ 〈ϕb, ϕβ 〉,
(2) ψ is a standard morphism from M ◦ E , i.e. ψ ∈ 〈ϕb, ϕβ 〉 ◦ E ,
(3) ψ is a morphism from 〈ϕa, ϕα〉.

First we explain the title of this section and the fact that the fourth type of Sturmian morphism, namely a Sturmian 
morphism from 〈ϕa, ϕα〉 ◦ E , is not considered at all.

A standard Sturmian morphism is a morphism fixing some standard Sturmian word. A reversal morphism ψ to a mor-
phism ψ is defined by ψ(0) = ψ(0) and ψ(1) = ψ(1). Since ϕa = ϕb and ϕα = ϕβ , any morphism in 〈ϕa, ϕα〉 is just a 
reversal of a morphism in 〈ϕb, ϕβ〉.

Due to the form of the morphisms ϕa and ϕα , any morphism η ∈ 〈ϕa, ϕα〉 satisfies that the letter 0 is a prefix of η(0)

and the letter 1 is a prefix of η(1). As any morphism ξ ∈ 〈ϕa, ϕα〉 ◦ E can be written in the form ξ(0) = η(1) and ξ(1) = η(0)

for some η ∈ 〈ϕa, ϕα〉, the morphism ξ cannot have any fixed point.

The normalized name w of a standard morphism from M is composed of the letters b and β only. Thus �(w) = cyc(w)

(see (1)).
To describe all standard morphisms we have to take into account also the morphisms of the form ψ = ϕw ◦ E . In this 

case ψ2 ∈ 〈ϕb, ϕβ〉, in particular ψ2 = ϕw F (w) . To describe the derivated words of fixed points of these standard morphisms, 
we need the notation

cycF(w1 w2 w3 · · · wn) = w2 w3 · · · wn F (w1) .

Proposition 36. Let u be a fixed point of a standard Sturmian morphism ψ which is not a power of any other Sturmian morphism.
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(i) If ψ = ϕw , then u has |w| distinct derivated words, each of them (up to a permutation of letters) is fixed by one of the morphisms

ϕv0 ,ϕv1 ,ϕv2 , . . . ,ϕv |w|−1 , where vk = cyck(w) for k = 0,1, . . . , |w| − 1.

(ii) If ψ = ϕw ◦ E, then u has |w| distinct derivated words, each of them (up to a permutation of letters) is fixed by one of the 
morphisms

ϕv0 ◦ E,ϕv1 ◦ E,ϕv2 ◦ E, . . . ,ϕv |w|−1 ◦ E, where vk = cyck
F (w) for k = 0,1, . . . , |w| − 1.

Proof. (i) Since ψ = ϕw is a standard morphism, its normalized name w belongs to {b, β}∗ and �(w) = cyc(w). By Theo-
rem 25, all derivated words of u are fixed by one of the morphisms listed in (i). We only need to show that fixed points of 
the listed morphisms differ. More precisely, we need to show that vs 	= vt and vs 	= F (vt) for all 0 ≤ t < s ≤ |w| − 1. Here 
the assumption that ψ is not a power of any other Sturmian morphism is crucial.

Let us recall simple facts about powers of morphisms: For any � = 1, 2, . . . and u ∈ {b, β}+ we have

(ϕu)� = ϕu� , (ϕu ◦ E)2� = ϕ(uF (u))� and (ϕu ◦ E)2�+1 = ϕ(uF (u))�u ◦ E.

If ψ = ϕw is not a power of any Sturmian morphism, we have

w 	= u� and w 	= (
uF (u)

)k
for any u ∈ {b, β}+ and any �,k ∈ N, � ≥ 2,k ≥ 1. (7)

Lemma 11 implies that equation cycs(w) = cyct(w) has no solution if w 	= u� and 0 ≤ t < s ≤ |w| − 1. Therefore all the 
normalized names v0, v1, . . . , v |w|−1 are distinct.

Now assume that vs = cycs(w) = F
(
cyct(w)

) = F (vt), where 0 ≤ t < s ≤ |w| − 1.
Let z and p be the words such that cycs(w) = zp, where |z| = s − t . We have zp = F (p)F (z) and by Lemma 12 there is 

x such that cycs(w) = zp = x(F (x)x)i(F (x)x) j F (x) = (xF (x))i+ j+1 for some non-negative integers i, j. This implies that there 
is a factor y of xF (x) such that |y| = |x| and w = (yF (y))i+ j+1 which is a contradiction with (7).

(ii) If we apply Theorem 25 to the morphism 
(
ϕw ◦ E

)2 = ϕw F (w) , we obtain the list of 2|w| normalized names 
cycs(w F (w)), with s = 0, 1, . . . , 2|w| − 1. As cyc|w|+i(w F (w)) = cyci(F (w)w), all the derivated words are given by the 
fixed points of morphisms

ϕv0 F (v0),ϕv1 F (v1),ϕv2 F (v3), . . . ,ϕv |w|−1 F (v |w|−1)

that are just squares of morphisms listed in Item (ii) of the proposition. To finish the proof, we need to show that the fixed 
points of the listed morphisms do not coincide nor coincide after exchange of the letters 0 ↔ 1. In other words we need to 
show vs F (vs) 	= vt F (vt) and vs F (vs) 	= F (vt)vt .

Assume the contrary. Then vs = vt or vs = F (vt) for some t < s. If we put k = s − t , then vs = cyck
F (vt). Let vt = zp, 

where |z| = k, then vs = pF (z). Since the morphism ψ = ϕw ◦ E is not a power of other morphism we know that

w 	= (
uF (u)

)�
u for any u ∈ {b, β}+ and any � ∈ N, � ≥ 1. (8)

Two cases vs = vt and vs = F (vt) will be discussed separately.

• If vs = vt , then zp = pF (z) and Lemma 12 says there is x so that vt = zp = (F (x)x)i+ j F (x), which contradicts (8).
• If vs = F (vt), then zp = F (p)z and by Lemma 12 there is x so that vt = zp = (F (x)x)i+ j F (x) which is again a contradic-

tion with (8). �
Proposition 37. Let w ∈ {α, a}∗ be the normalized name of a primitive morphism ψ such that the letter a is a prefix of w. Moreover, 
assume that ψ is not a power of any other Sturmian morphism.

(i) The fixed point of ψ starting with 0 has exactly 1 + |w|α distinct derivated words.
(ii) The fixed point of ψ starting with 1 has exactly 1 + |w|a distinct derivated words.

Proof. We prove only Item (i), the proof of (ii) is analogous. Let u denote the fixed point starting with 0.
Proposition 29 says that we have to count elements in the set {v} ∪ Der(v), where v is a fixed point of ϕv with the 

normalized name v = b−1N(wb). By Lemma 28, the word v ∈ {a, β}∗ . This property of v implies that �k(v) is equal to 
some cyclic shift cyc j(v) having a suffix β . There are |v|β cyclic shifts of v with this property and hence this number is an 
upper bound for the period of the sequence 

(
�k(v)

)
k≥1. By Lemma 28, the normalized name v has a suffix a and thus the 

word v itself does not appear in 
(
�k(v)

)
k≥1. We can conclude that u has at most 1 + |w|α derivated words.

For each k the iteration �k(v) belongs to {a, β}∗ and consequently F
(
�i(v)

)
belongs to {a, b}∗ . Therefore, � j(v) 	=

F
(
�i(v)

)
for any pair of positive integers i, j.
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As ψ is not a power of any other morphism, we can use the same technique as in the proof of Proposition 36 to show 
that cyci(v) 	= cyc j(v) for i, j = 1, . . . , |v|, i 	= j. This means that the period of the sequence 

(
�k(v)

)
k≥1 is indeed equal to 

|w|α and its preperiod is zero. �
7. Comments and conclusions

1. In [1], the authors studied derivated words only for standard Sturmian words c(γ ).
However, they did not restrict their study to words fixed by a primitive morphism.
Let us show an alternative proof of their result.
The proof is a direct corollary of our Theorem 14 and the following result of [5]:

Lemma 38 ([5, Lemma 2.2.18]). For any irrational γ ∈ (0, 1) we have

ϕb(c(γ )) = c
(

γ

1 + γ

)
.

As we have already mentioned, the authors of [1] required that any derivated word du(v) to a prefix v of a Sturmian 
word u starts with the same letter as the word u.
By interchanging letters 0 ↔ 1 in a characteristic word c(γ ), we obtain the characteristic word c(1 − γ ). If γ < 1

2 , 
then the continued fraction of γ is of the form [0, c1 + 1, c2, c3, . . .] with c1 > 0 and the continued fraction of 1 − γ
equals [0, 1, c1, c2, c3, . . .]. Clearly, Der(c(γ )) and Der(c(1 − γ )) coincide up to a permutation of letters. Without loss of 
generality we state the next theorem for the slope γ < 1

2 only.

Theorem 39 ([1]). Let c(γ ) be a standard Sturmian word and γ = [0, c1 + 1, c2, c3, . . .] with c1 > 0. Then

Der(c(γ )) = {
c(δ) : δ = [0, ck + 1 − i, ck+1, ck+2, . . .] with 0 ≤ i ≤ ck − 1 and (k, i) 	= (1,0)

}
.

Proof. Let δ = [0, d1 + 1, d2, d3, . . .] with d1 > 0. Set δ′ = δ
1−δ

. It is easy to see that δ′ = [0, d1, d2, d3, . . .]. Since δ′ ∈
(0, 1) and δ = δ′

1+δ′ , Lemma 38 implies that c(δ) = ϕb(c(δ′)). Applying Theorem 14 we obtain that Der(c(δ)) = {c(δ′)} ∪
Der(c(δ′)). We have transformed the original task to the task to determine the set of derivated words of the standard 
sequence c(δ′). If δ′ < 1

2 , i.e., d1 > 1, we repeat this procedure with δ′ . If d1 = 1, i.e., δ′ > 1
2 , we use the fact that 

Der(c(δ)) and Der(c(1 − δ)) coincide, and replace δ′ by 1 − δ′ and repeat the procedure with its continued fraction 
[0, d2 + 1, d3, d4, . . .].
In the terms of corresponding continued fractions, one step of the described procedure can be represented as

[0,d1 + 1,d2,d3, . . .] �→
{

[0,d1,d2,d3, . . .] if d1 > 1,

[0,d2 + 1,d3,d4, . . .] if d1 = 1.

We conclude that the set Der(c(γ )) is in the form given in the theorem. �
2. In case that u is a fixed point of a standard Sturmian morphisms, we have determined the exact number of distinct 

derivated words of u, see Proposition 36. Let us mention that this result can be inferred from [1]. We also have provided 
the exact number of derivated words when u is a fixed point of a Sturmian morphism which has two fixed points, see 
Proposition 37.
For fixed points of other Sturmian morphisms we only gave an upper bound on the number of their distinct derivated 
words, see Corollary 35. To give an exact number, one needs to describe when the normalized name w ∈ {a, b, α, β}∗
corresponds to some power of a Sturmian morphism. Clearly, w may be a normalized name of a power of a Sturmian 
morphism without w being a power of some other word from {a, b, α, β}∗ . For example, if v = αbaαα = N(v), then 
the normalized name of v3 is the primitive word N(v3) = αbbβββbaβββaaαα.

3. The key tool we used to determine the set Der(u) is provided by Theorems 14 and 18. We believe that an analogue of 
these theorems can be found also for Arnoux–Rauzy words over multiliteral alphabet. For definition and properties of 
these words see [4,12].
In [8], the authors described a new class of ternary sequences with complexity 2n + 1. These sequences are constructed 
from infinite products of two morphisms. The structure of their bispecial factors suggests that due to result of [3], any 
derivated word of such a word is over a ternary alphabet. Probably, even for these words an analogue of Theorems 14
and 18 can be proved. Other candidates for generalization of Theorems 14 and 18 seem to be the infinite words whose 
language forms tree sets as defined in [6].
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Abstract. For an Arnoux–Rauzy sequence u we describe the set Der(u)
of derived sequences corresponding to all nonempty prefixes of u using
the normalized directive sequence of u. As a corollary, we show that all
derived sequences of u are also Arnoux–Rauzy sequences. Moreover, if
u is primitive substitutive, we precisely determine the cardinality of the
set Der(u).
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1 Introduction

Derived sequences were introduced by Durand [4] to characterize the primitive
substitutive sequences, i.e., the sequences which are morphic images of fixed
points of primitive morphisms.

Let u = u0u1u2 · · · be a recurrent sequence. An occurrence of the factor w in
u is the index i such that w is a prefix of the sequence uiui+1ui+2 · · · . Let i < j
be two consecutive occurrences of w in u. Then the word uiui+1 · · · uj−1 is a
return word to w in u. We take into consideration only the sequence u for which
each factor w has finitely many return words, and we denote these return words
by r0, r1, . . . , rk−1. Such a sequence is called uniformly recurrent. In addition, if
w is a prefix of u, then the sequence u can be written as the unique concatenation
of the return words to w: u = rd0

rd1
rd2

· · · with all di ∈ {0, 1, . . . , k − 1}. The
ordering of the return words in this concatenation is coded by the sequence
du(w) = d0d1d2 · · · which is called the derived sequence of u with respect to w.

Return words and derived sequences were especially studied in the case of
Sturmian sequences, which are the aperiodic binary sequences having the least
factor complexity possible. Every Sturmian sequence u has exactly one left and
one right special factor per length. The factor w is left (right, respectively) special
if the words aw, bw (wa,wb, respectively) are factors of u for two different letters
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a, b. Moreover, a Sturmian sequence is standard if all its prefixes are left special
factors.

Vuillon [14] showed that a binary sequence is Sturmian if and only if each
of its factors has exactly two return words. This property implies that the
derived sequence with respect to each prefix of a Sturmian sequence is Sturmian
as well. The derived sequences of standard Sturmian sequences were precisely
described in [1], where the one-to-one correspondence between standard Stur-
mian sequences and continued fractions of irrational numbers from the interval
(0, 1) is used. Clearly, this approach does not work in the non-standard case, but
using a special representation of Sturmian sequences by Sturmian morphisms,
we can deal with it, too. This technique is basically used in [12] to study the
derived sequences of fixed points of primitive Sturmian morphisms.

As is well known, Sturmian sequences have various generalizations for multi-
letter alphabets. The first one was introduced by Arnoux and Rauzy [2]: a uni-
formly recurrent sequence u over A is called Arnoux–Rauzy if it has exactly
one left and one right special factor per length and all left (right, respectively)
special factors appear in u immediately preceded (followed, respectively) by all
letters from A.

Many properties of the Arnoux–Rauzy sequences are known (see for example
the survey [8]). For our considerations the work [9] is especially important since
its authors showed that each factor of an Arnoux–Rauzy sequence over A has
exactly #A return words. It means that the derived sequences of Arnoux–Rauzy
sequences over A can be considered over the same alphabet A. Nevertheless,
such a property does not characterize Arnoux–Rauzy sequences if #A > 2. For
example, by [6] the sequences coding interval exchange transformations can have
this property, too. More generally, the sequences over A each of whose factors
has exactly #A return words were studied in [3].

The aim of this paper is to study the derived sequences of Arnoux–Rauzy
sequences. Let us emphasize that the description of derived sequences of stan-
dard Arnoux–Rauzy sequences can be easily deduced from the work of Justin and
Vuillon [9], while here we cover also the more complicated case of non-standard
Arnoux–Rauzy sequences. As in [12], our main tool is a special representation of
Arnoux–Rauzy sequences, namely the directive sequences containing pure epis-
turmian morphisms (see Sect. 2.3). Since these directive sequences need not be
unique, in [7] the authors introduce so-called normalized directive sequences and
show that these representations are unique. Moreover, they have also other use-
ful properties which allow us to use them for a construction of derived sequences
(see Sects. 2.3 and 3).

For every Arnoux–Rauzy sequence u we describe the set Der(u) of derived
sequences with respect to all nonempty prefixes of u (see Theorem 24). As a
corollary, we show that every derived sequence of an Arnoux–Rauzy sequence
is an Arnoux–Rauzy sequence as well. By Durand’s fundamental result [4] the
sequence u is primitive substitutive if and only if the set Der(u) is finite. Here
we precisely determine the cardinality of Der(u) for all primitive substitutive
Arnoux–Rauzy sequences (see Corollary 29). It generalizes the results from [12],
where the cardinality of Der(u) is bounded for the fixed points of primitive
Sturmian morphisms.
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2 Preliminaries

2.1 Words, Sequences and Morphisms

An alphabet A is a finite set of symbols called letters. A word of length n over
A is a string u = u0u1 · · · un−1, where all ui ∈ A. The length of u is denoted by
|u| = n. The unique word ε of length 0 is called the empty word. The symbol
A∗ denotes the set of all finite words over A and A+ = A∗ \ {ε}. By |u|a we
denote the number of copies of the letter a used in u. The reversal of a word
u = u0u1 · · · un−1 is the word un−1 · · · u1u0.

A sequence over A is a right infinite string u = u0u1u2 · · · ∈ AN with letters
ui ∈ A for all i ∈ N = {0, 1, 2, . . .}. A sequence u is eventually periodic if
u = wvvv · · · = wvω for some v, w ∈ A∗; otherwise it is aperiodic.

A word w of length n is a factor of u = u0u1u2 · · · if there is an index i
such that w = uiui+1ui+2 · · · ui+n−1. The index i is called an occurrence of w
in u. Further, if i = 0, then w is a prefix of u. We will also use the abbreviated
notation uiui+1 · · · uj−1 = u[i,j) and uiui+1 · · · = u[i,∞) for all integers 0 ≤ i < j.

The language F(u) of a sequence u is the set of all its factors. A factor w of
u is right special (left special, resp.) if there exist at least two letters a, b ∈ A
such that wa,wb ∈ F(u) (aw, bw ∈ F(u), resp.).

If each factor w of u has infinitely many occurrences in u, the sequence u is
recurrent. Moreover, if the distances between two consecutive occurrences of w
are bounded, then u is uniformly recurrent.

A morphism over A∗ is a mapping ψ : A∗ �→ A∗ such that ψ(vw) = ψ(v)ψ(w)
for all v, w ∈ A∗. We consider only non-erasing morphisms for which ψ(a) �= ε
for every a ∈ A. Then the domain of the morphism ψ can be naturally extended
to AN by ψ(u0u1 · · · ) = ψ(u0)ψ(u1) · · · . A morphism ψ is primitive if there is
k ∈ N such that for every a, b ∈ A the letter a occurs in ψk(b).

A fixed point of a morphism ψ is a sequence u such that ψ(u) = u. A sequence
v is primitive substitutive if v = θ(u), where θ is a morphism and u is a fixed
point of a primitive morphism.

A permutation P on A is a morphism over A∗ such that {P (a) : a ∈ A} = A.
The order of the permutation P is the smallest integer n > 0 such that Pn = Id.

2.2 Return Words and Derived Sequences

Let i < j be two consecutive occurrences of a factor w in a recurrent sequence
u. Then the word u[i,j) is a return word to w in u. The set of all return words
to w in u is denoted Ru(w). If the sequence u is uniformly recurrent, then every
factor w of u has a finite number of return words, we denote them Ru(w) =
{r0, r1, . . . , rk−1}. In addition, if w is a prefix of u, the sequence u can be written
as the unique concatenation of these return words: u = rd0

rd1
rd2

· · · and the
derived sequence of u to the prefix w is the sequence du(w) = d0d1d2 · · · over the
alphabet of cardinality #Ru(w) = k. Originally, Durand [4] fixed this alphabet
to the set {0, 1, . . . , k − 1} and required that for i < j the first occurrence of ri

in u is less than the first occurrence of rj in u. In particular, this means that his
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derived sequences always start with the letter 0. In this article, we do not need
to fix the alphabet of derived sequences: two derived sequences which differ only
by a permutation of letters are identified with one another.

We consider only aperiodic and uniformly recurrent sequences u. Our aim is
to describe the set

Der(u) = {du(w) : w is a nonempty prefix of u}.

Let us emphasize that we study only derived sequences with respect to nonempty
prefixes since the derived sequence with respect to the empty word is trivial.

Clearly, if a nonempty prefix w of u is not right special, then there exists a
unique letter a such that wa ∈ F(u). Thus the occurrences of w and wa coincide,
and so Ru(w) = Ru(wa) and du(w) = du(wa). Since u is aperiodic, w is a prefix
of some right special prefix of u. Therefore, it suffices to take into consideration
only right special prefixes of u, i.e.,

Der(u) = {du(w) : w is a nonempty right special prefix of u}.

2.3 Episturmian and Arnoux–Rauzy Sequences

Definition 1. A sequence u ∈ AN is episturmian if its language is closed under
reversal and u has at most one right special factor of each length.

An episturmian sequence u ∈ AN is an Arnoux–Rauzy sequence if u has
exactly one right special factor of each length and wa ∈ F(u) for every right
special factor w of u and every letter a ∈ A. An Arnoux–Rauzy sequence u is
standard if each of its prefixes is a left special factor of u.

The Arnoux–Rauzy sequences over A are sometimes called #A-strict epistur-
mian sequences, since there are also epistumian sequences which are not Arnoux–
Rauzy (e.g., see [8]). In the binary case, the set of all Arnoux–Rauzy sequences
coincides with the set of all Sturmian sequences. Clearly, all Arnoux–Rauzy
sequences are aperiodic and by [5] they are also uniformly recurrent.

Example 2. The Tribonacci sequence uτ = abacabaabacababacabaa · · · which is
the fixed point of the morphism τ : a → ab, b → ac, c → a is a standard
Arnoux–Rauzy sequence over {a, b, c}.

In the sequel, we will use the description of episturmian sequences in terms
of sequences of pure episturmian morphisms. We follow the notation from [7].

Definition 3. For every a ∈ A we define elementary episturmian morphisms:

La :

{
a → a

b → ab for all b �= a
and Ra :

{
a → a

b → ba for all b �= a.

These 2#A morphisms generate the monoid MA = 〈La, Ra : a ∈ A〉 of pure
episturmian morphisms.
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Let us remark that episturmian morphisms are the morphisms obtained by
composition of pure episturmian morphisms and permutations (e.g., see [8,10]).
All episturmian morphisms are injective.

Definition 4. For a given alphabet A we define a new alphabet Ā = {ā : a ∈ A}
and we consider words and sequences over the alphabet A ∪ Ā called spinned.
We put ϕa = La and ϕā = Ra for every letter a ∈ A. Then for every spinned
word z = z0z1 · · · zn−1 ∈ (A ∪ Ā)∗ we write

ϕz = ϕz0
ϕz1

· · · ϕzn−1
∈ MA

and we say that z is a directive word of the morphism ϕz. A spinned word is
L-spinned (R-spinned, respectively) if all its letters are from A (Ā, respectively).
The opposite word z̄ of a spinned word z is obtained from z by switching spins
of all its letters.

Example 5. The words āab̄c̄a, abc, b̄b̄ are spinned words over {a, b, c, ā, b̄, c̄}. The
word z = āab̄c̄a directs the morphism ψ = ϕz = ϕāab̄c̄a = RaLaRbRcLa. The
word abc is L-spinned, while b̄b̄ is R-spinned. The opposite word of z is aābcā.

Pure episturmian morphisms can have more than one directive word, i.e.,
the monoid MA is not free. Nevertheless, the presentation of the monoid MA is
known. Here we state it in the notion of directive words using the so-called block-
transformation from [11], but it also follows from more general presentation of
the whole episturmian monoid as stated in [13].

Definition 6. A block-transformation in the word z is the replacement of the
factor avā of z, where a ∈ A and v ∈ (A \ {a})∗, by the opposite word āv̄a or
vice-versa.

Proposition 7 ([11]). Let z, z′ be two spinned words over A∪Ā. Then ϕz = ϕz′

if and only if we can pass from z to z′ by a chain of block-transformations.

Example 8. Using the block-transformations from Definition 6 we may rewrite
āab̄c̄a ←→ aāb̄c̄a ←→ aabcā, and so by Proposition 7 all these words direct the
same morphism, i.e., ϕāab̄c̄a = ϕaāb̄c̄a = ϕaabcā.

The following theorem extends the notion of directive words to infinite epis-
turmian sequences.

Theorem 9 ([10]). A sequence u is episturmian if and only if there exists a
spinned sequence z = z0z1z2 · · · ∈ (A ∪ Ā)N and an infinite sequence (u(i))i≥0 of
recurrent sequences such that u(0) = u and

u(i) = ϕzi
(u(i+1)).

This sequence z is called a directive sequence of u.

Let us notice that the directive sequence from Theorem 9 is the same object
as the directive sequence from the construction of episturmian sequences using
palindromic closures (e.g., see Sect. 3 in [8]).
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Proposition 10 ([10]).

(i) A spinned sequence z ∈ (A∪Ā)N which has infinitely many L-spinned letters
directs the unique episturmian sequence u. Moreover, the sequence u starts
with the left-most L-spinned letter in z.

(ii) A spinned sequence z ∈ (A ∪ Ā)N which contains finitely many L-spinned
letters directs one episturmian sequence for each ā ∈ Ā which occurs in z
infinitely many times.

Proposition 10 implies that some directive sequences direct more than one
episturmian sequence. In addition, an episturmian sequence can have more
than one directive sequence. However, in [7] the authors describe all directive
sequences which direct the same episturmian sequence. Here we state this result
only for the case of aperiodic episturmian sequences.

Theorem 11 (Theorem 4.1 in [7]). Two spinned sequences z(1) and z(2) direct
the same aperiodic episturmian sequence if and only if one of the following cases
holds for some i, j such that {i, j} = {1, 2}:

(i) z(i) =
∏

n≥1 u(n), z(j) =
∏

n≥1 v(n), where u(n), v(n) are spinned words such
that ϕu(n) = ϕv(n) for all n ≥ 1;

(ii) z(i) = wa
∏

n≥1 u(n)x(n), z(j) = w′ā
∏

n≥1 ū(n)y(n), where w,w′ are spinned

words such that ϕw = ϕw′ , a is an L-spinned letter and for all n ≥ 1, u(n)

is a nonempty a-free L-spinned word, ū(n) is the opposite word of u(n) and
x(n), y(n) are nonempty spinned words over {a, ā} such that |x(n)| = |y(n)|
and |x(n)|a = |y(n)|a.

Item (i) is based on block-transformations of the directive words of epis-
turmian morphisms, while Item (ii) brings new relations. Now we define the
normalized directive sequences which are unique for all aperiodic episturmian
sequences.

Definition 12. A spinned sequence z ∈ (A ∪ Ā)N is normalized if it contains
infinitely many L-spinned letters, but no factor from the set {āĀ∗a : a ∈ A}.

Theorem 13 (Theorem 5.2 in [7]). Any aperiodic episturmian sequence u has
a unique normalized directive sequence.

Every normalized spinned sequence directs exactly one episturmian sequence,
see Proposition 10. Moreover, the normalized directive sequences can be con-
structed using Theorem 13. If a directive sequence does not contain infinitely
many L-spinned letters, then we use Item (ii) to find another one with infinitely
many L-spinned letters. If a directive sequence contains infinitely many L-
spinned letters, then it can be normalized from left to right by repeated appli-
cations of Item (i) (see [7] for more details).

The Arnoux–Rauzy sequences can be easily recognised by their directive
sequences (e.g., see Sect. 2.3 in [8]).
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Proposition 14. An episturmian sequence u ∈ AN with the directive sequence
z is an Arnoux–Rauzy sequence over A if and only if for every a ∈ A the letter
a or ā occurs infinitely many times in z.

Remark 15. Theorem 9 and Proposition 14 immediately imply that for an
Arnoux–Rauzy sequence u each sequence u(i) from Theorem 9 is an Arnoux–
Rauzy sequence with a directive sequence z[i,∞) = zizi+1 · · · .

Example 16. By Propositions 10 and 14, the spinned sequence y = a(ab̄c̄ā)ω

directs the unique Arnoux–Rauzy sequence u over {a, b, c}. Obviously, y is not
normalized. We can normalize it using Item (i) of Theorem 11. First we set
u(1) = aab̄c̄, u(2k) = āa and u(2k+1) = b̄c̄ for all k > 0 and make the block-
transformations in all even blocks. We get y′ = aab̄c̄(aāb̄c̄)ω. Then we set u(1) =
aab̄c̄a and u(k) = āb̄c̄a for all k > 1. After the relevant block-transformations we
get y′′ = aab̄c̄a(abcā)ω. Finally we set u(1) = aab̄c̄aa, u(2k) = bc and u(2k+1) = āa
for all k > 0, which leads us to the normalized sequence y′′′ = aab̄c̄aa(bcaā)ω.

By Proposition 10, the spinned sequence z = (āb̄c̄)ω directs three Arnoux–
Rauzy sequences u(a), u(b), u(c) starting with the letters a, b, c, respectively.
Using Item (ii) of Theorem 11 we find their normalized directive sequences
z(a) = a(bcā)ω, z(b) = āb(cab̄)ω and z(c) = āb̄c(abc̄)ω, respectively.

Justin and Vuillon [9] completely describe the return words to any factor
of an episturmian sequence. In particular, an Arnoux–Rauzy sequence has the
same number of return words to each of its factors.

Proposition 17 ([9]). Let u be an Arnoux–Rauzy sequence over A. Then every
factor w of u has exactly #A different return words.

3 Derived Sequences of Episturmian Preimages

In this section we study the relations between the derived sequences of a given
Arnoux–Rauzy sequence and the derived sequences of its preimage under the
morphisms La or Ra. In the binary case, these relations are completely analogous
to those described in Section 3 of [12]. Proposition 19 can be also deduced from
the results in [9].

For simplicity, we now define the return words and the derived sequence
with respect to the empty prefix ε of a sequence u over A as Ru(ε) = A and
du(ε) = u. We start with an auxiliary lemma which follows directly from the
form of the morphism La.

Lemma 18. Let u, u′ be Arnoux–Rauzy sequences over A such that u = La(u′)
for some a ∈ A. For each factor pa ∈ F(u) with the prefix a there is exactly one
word p′ ∈ F(u′) such that pa = La(p′)a.

Proposition 19. Let u and u′ be Arnoux–Rauzy sequences over A such that
u = La(u′) for some a ∈ A.
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(i) If w is a nonempty right special prefix of u, then there exists a right special
prefix w′ of u′ such that w = La(w′)a and du(w) = du′(w′).

(ii) If w′ is a right special prefix of u′, then w = La(w′)a is a right special prefix
of u and du′(w′) = du(w).

Proof. We start with Item (i). For a nonempty right special prefix w of u we
denote its return words Ru(w) = {rc : c ∈ A} and its derived sequence du(w) =
d0d1 · · · . Thus u = rd0

rd1
· · · . By the form of the morphism La, the sequence u

starts with the letter a and a is also separating in u, i.e., every factor of u of
length two contains the letter a. Since w is nonempty right special prefix, it both
starts and ends with the letter a and by Lemma 18 there is a unique prefix w′ of
u′ such that w = La(w′)a. Since w is a right special factor of the Arnoux–Rauzy
sequence u, the word wc = La(w′)ac ∈ F(u) for every c ∈ A. Thus w′c ∈ F(u′)
for every c ∈ A and so w′ is a right special factor of u′. In addition, all return
words rc start with the letter a and so by Lemma 18 there are uniquely given
words r′

c such that rc = La(r′
c) for all c ∈ A. Since La is injective, we have

u′ = r′
d0

r′
d1

· · · .
Now it suffices to prove that the set {|r′

d0
· · · r′

dj
| : j ∈ N} ∪ {0} is the set of

all occurrences of w′ in u′. Then the words r′
c, c ∈ A, are return words to w′ in

u′ and du(w) = du′(w′). Let i > 0 be an occurrence of w′ in u′. It means that
u′

[0,i)w
′c is a prefix of u′ for some c ∈ A. Then La(u′

[0,i)w
′c) is a prefix of u, the

word La(w′c) has a prefix La(w′)a = w and |La(u′
[0,i))| is an occurrence of w in

u. Thus La(u′
[0,i)) = rd0

· · · rdj
for some j ∈ N and by injectivity of La, it follows

that u′
[0,i) = r′

d0
· · · r′

dj
and so i = |r′

d0
· · · r′

dj
| for some j ∈ N.

Conversely, we suppose that i = |r′
d0

· · · r′
dj

| for some j ∈ N. If we denote
p = rd0

· · · rdj
, then pw is a prefix of u and by Lemma 18 there is a unique prefix

p′ of u′ such that p = La(p′). Clearly, p′w′ is also a prefix of u′ and by injectivity
of La we can conclude that p′ = r′

d0
· · · r′

dj
. Thus i is an occurrence of w′ in u′.

To prove Item (ii) we suppose that w′ is a right special prefix of u′. We denote
its return words Ru′(w′) = {r′

c : c ∈ A} and its derived sequence du′(w′) =
d0d1 · · · . Thus u′ = r′

d0
r′
d1

· · · . If we set w = La(w′)a and rc = La(r′
c) for all

c ∈ A, we get u = rd0
rd1

· · · . Now it remains to prove that w is a right special
prefix of u and the set {|rd0

· · · rdj
| : j ∈ N} ∪ {0} is the set of all occurrences of

w in u. We skip these proofs since the arguments are completely analogous to
those used in the proof of Item (i).

Proposition 20. Let u and u′ be Arnoux–Rauzy sequences over A such that
u = Ra(u′) for some a ∈ A and let u start with the letter b ∈ A, b �= a.

(i) If w is a nonempty right special prefix of u, then there exists a nonempty
right special prefix w′ of u′ such that w = Ra(w′) and du(w) = du′(w′).

(ii) If w′ is a nonempty right special prefix of u′, then w = Ra(w′) is a nonempty
right special prefix of u and du′(w′) = du(w).

Proof. The morphisms La and Ra are conjugate, i.e., aRa(x) = La(x)a for
every word x ∈ A∗. Thus for the Arnoux–Rauzy sequence v = au we get v =
aRa(u′) = La(u′) , since the conjugacy holds for every prefix of u′.
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Let w be a nonempty right special prefix of u and let (in) be the increasing
sequence of the occurrences of w in u. By the form of the morphism Ra, each
letter b �= a (excluding the first letter of u) is preceded by the letter a. Thus
the sequence (in) is also the sequence of the occurrences of the word aw in v
and du(w) = dv(aw). Moreover, aw is a right special prefix of v and so we
can apply Proposition 19 and find the right special prefix w′ of u′ such that
aw = La(w′)a = aRa(w′) and du(w) = dv(aw) = du′(w′). The proof of Item
(ii) is similar and so we skip it.

Propositions 19 and 20 can be also restated as follows.

Corollary 21. Let u,u′ be Arnoux–Rauzy sequences over A and a ∈ A.

(i) If u = La(u′), then Der(u) = Der(u′) ∪ {u′}.
(ii) If u = Ra(u′) and u starts with a letter b ∈ A, b �= a, then Der(u) =

Der(u′).

4 Derived Sequences of Arnoux–Rauzy Sequences

First, we introduce a transformation Δ on the set of normalized directive
sequences. Subsequently, we use this transformation to describe the set Der(u)
of derived sequences of an Arnoux–Rauzy sequence u.

Definition 22. Let z = z0z1z2 · · · be a normalized spinned sequence and let k
be the unique index such that zk is an L-spinned letter and z0z1 · · · zk−1 is an
R-spinned word (or is empty). Then Δ(z) = z[k+1,∞) = zk+1zk+2zk+3 · · · .

Clearly, if z is the normalized directive sequence of an Arnoux–Rauzy
sequence u, then Δ(z) is the normalized directive sequence of an Arnoux–Rauzy
sequence as well. For every integer m ≥ 1 we let dm denote the Arnoux–Rauzy
sequence directed by Δm(z) and we also set d0 = u.

Example 23. For the normalized spinned sequence z = c̄ba(c̄bāb)ω we get Δ(z) =
a(c̄bāb)ω, Δ2(z) = (c̄bāb)ω, Δ3(z) = (ābc̄b)ω and Δ4(z) = (c̄bāb)ω = Δ2(z).

Theorem 24. Let u be an Arnoux–Rauzy sequence over A with the normalized
directive sequence z. Then d is the derived sequence with respect to a nonempty
prefix of u if and only if d = dm for some m ≥ 1, i.e., d is an Arnoux–Rauzy
sequence directed by Δm(z) for some m ≥ 1.

Proof. (⇒) We consider a nonempty right special prefix w of u and prove that
du(w) = dm for some m ≥ 1. In fact, we prove that for every i ∈ N and a right
special prefix v of di there is a right special prefix v′ of di+1 such that |v′| < |v|
and ddi

(v) = ddi+1
(v′). Then starting with a nonempty right special prefix w of

u we eventually find the index m ≥ 1 and the prefix w′′ of dm such that w′′ = ε
and so du(w) = ddm

(ε) = dm.
Since z is normalized, Δi(z) = y is also normalized and so it has a prefix

x̄a for some a ∈ A and x̄ ∈ (Ā \ {ā})∗. If x̄ = ε, then Δi+1(z) = y[1,∞) and so
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di = La(di+1). By Proposition 19 there is a right special prefix v′ of di+1 such
that v = La(v′)a and ddi

(v) = ddi+1
(v′). If x̄ is nonempty, we denote |x̄| = n.

Then Δi+1(z) = y[n+1,∞). Let us denote u(�) the sequence directed by y[�,∞) for

all � ∈ N. In particular, u(0) = di, u(n+1) = di+1 and u(�) = ϕy�
(u(�+1)) for all

� ∈ N. By Proposition 10 all sequences u(0), . . . ,u(n) starts with the letter a and
so by Proposition 20 there are nonempty right special prefixes v(�) of u(�) for all
� = 0, . . . , n such that v(0) = v, v(�) = ϕy�

(v(�+1)) for all � = 0, . . . , n − 1 and

ddi
(v) = du(1)(v(1)) = · · · = du(n)(v(n)).

By Proposition 19 there is a right special prefix v′ of u(n+1) = di+1 such that
v(n) = La(v′)a and du(n)(v(n)) = ddi+1

(v′). Since we also have

|v| > |v(1)| > |v(2)| > · · · > |v(n)| > |v′|,

v′ is the desired right special prefix of di+1.
(⇐) For arbitrary m ≥ 1 we find a nonempty right special prefix w of u such

that du(w) = dm. We set z = z0z1 · · · ziΔ
m(z) for some i ∈ N and we let u(�)

denote the sequence directed by z[�,∞) for all � ∈ N. In particular, u(0) = u and

u(i+1) = dm. Now we take the right special prefix ε of dm and using Propositions
19 and 20 we successively find right special prefixes w(�) of u(�) for all � = i, . . . , 0.
Since zi is L-spinned, the inequalities 0 < |w(i)| < |w(i−1)| < · · · < |w(0)| hold
and

dm = ddm
(ε) = du(i)(w(i)) = · · · = du(1)(w(1)) = du(w(0)).

Then w(0) is the desired prefix w of u.

Corollary 25. All derived sequences with respect to nonempty prefixes of a
given Arnoux–Rauzy sequence over A are Arnoux–Rauzy sequences over A as
well.

Proof. This follows directly from Theorems 24 and 9.

By Durand’s result [4] the set Der(u) is finite if and only if u is a primitive
substitutive sequence. An Arnoux–Rauzy sequence is primitive substitutive if
and only if its normalized directive sequence is eventually periodic. Indeed, a
pure episturmian morphism is primitive if and only if its directive word contains
at least one letter a or ā for every a ∈ A and the normalization of an eventually
periodic directive sequence always produces an eventually periodic normalized
directive sequence (see [7] for more details).

Now we specify the cardinality of Der(u) according to the normalized direc-
tive sequence of an Arnoux–Rauzy sequence u. Let us recall that two derived
sequences d(1),d(2) such that d(1) = P (d(2)) for some permutation P are con-
sidered as equal since their structure is the same. Let us emphasize that a per-
mutation P on A can be naturally extended to the alphabet A∪Ā: P acts on the
letters from A without any changes and for every letter ā ∈ Ā we put P (ā) = b̄
if P (a) = b.
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Observation 26. Let u(1), u(2) be Arnoux–Rauzy sequences with the normalized
directive sequences z(1), z(2), respectively, and let P be a permutation. Then
u(1) = P (u(2)) if and only if z(1) = P (z(2)).

Lemma 27. Let z be the normalized directive sequence and let k < � be the
minimal indices such that there is a permutation P satisfying z[�,∞) = P (z[k,∞)).
We denote x = z[0,k), y = z[k,�) and n the order of the permutation P . Then z is

eventually periodic: z = x
(
yP (y) · · · Pn−1(y)

)ω
. Moreover, every sequence z[i,∞)

with i ≥ � is equal (up to permutation of letters) to the sequence z[j,∞) for some
j ∈ {k, . . . , �−1} and if z[i,∞) = Q(z[j,∞)) for some j < i and a permutation Q,
then i ≥ �.

Proof. In the notation from the statement we can write

z = xyz[�,∞) = xyP (z[k,∞)) = xyP (yz[�,∞)) = xyP (y)P 2(z[k,∞)) = · · ·
= xyP (y) · · · Pn−1(y)Pn(y)Pn+1(y) · · · = x

(
yP (y) · · · Pn−1(y)

)ω
.

Moreover, for every i ≥ l we can write z[i,∞) = P (z[i−�+k,∞)). Thus eventually
we get z[i,∞) = Pm(z[i′,∞)) for some positive integer m and an index i′ such
that k ≤ i′ < �. The last part of the statement clearly holds since otherwise it
leads us to the contrary with the minimality of the indices k, �.

Corollary 28. Let u be an Arnoux–Rauzy sequence over A with the aperiodic
normalized directive sequence and let v, w be two distinct nonempty right special
prefixes of u. Then the derived sequences with respect to v and w are distinct,
i.e., du(v) �= P (du(w)) for any permutation P .

Proof. We argue by contradiction. By Theorem 24 all derived sequences with
respect to nonempty prefixes of u are the elements of the sequence (dm)m≥1.
Thus we can suppose that dm = P (d�) for some positive integers m, � and a
permutation P . Since v, w are distinct right special prefixes, we get m �= �. By
Observation 26, it means that Δm(z) = P (Δ�(z)) and so by Lemma 27 z is
eventually periodic, which is the contradiction.

Corollary 29. Let u be an Arnoux–Rauzy sequence over A with the eventually
periodic normalized directive sequence z = x

(
yP (y) · · · Pn−1(y)

)ω
, where the

words x ∈ (A∪Ā)∗, y ∈ (A∪Ā)+ are the shortest possible and P is a permutation
with the order n. We denote |x|L, |xy|L the numbers of L-spinned letters in the
words x, xy, respectively.

(i) If the last letters of both x, y are L-spinned, then #Der(u) = |xy|L − 1.
More precisely, there are |x|L − 1 derived sequences belonging to exactly one
nonempty right special prefix of u and |y|L derived sequences belonging to
infinitely many right special prefixes of u.

(ii) If the last letter of x or y is R-spinned or x = ε, then #Der(u) = |xy|L.
More precisely, there are |x|L derived sequences belonging to exactly one
nonempty right special prefix of u and |y|L derived sequences belonging to
infinitely many right special prefixes of u.
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Proof. By Theorem 24 all elements of Der(u) are the elements of the sequence
(dm)m≥1. To prove Item (i), we have to show that the sequence (dm)m≥1 has
pre-period |x|L − 1 and period |y|L (up to permutation of letters). However, the
sequence (Δm(z))m≥1 has the same pre-period and period, see Observation 26.
Now it suffices to apply Lemma 27 with k = |x| and � = |xy|. Since both x and
y end with L-spinned letters, the sequences that occur once in (Δm(z))m≥1 are
exactly the elements of the set {z[i,∞) : 0 < i < |x|} for which zi−1 is L-spinned.

Thus they are the sequences Δ(z), . . . , Δ|x|L−1(z). Similarly, the sequences that
occur (up to permutation of letters) infinitely many times in (Δm(z))m≥1 are
exactly the elements of the set {z[i,∞) : |x| ≤ i < |xy|} for which zi−1 is L-

spinned, so they are the sequences Δ|x|L(z), . . . , Δ|xy|L−1(z).
We prove Item (ii) analogously. It suffices to realize that if x or y ends with an

R-spinned letter or x is the empty word, then the periodic part of (Δm(z))m≥1

starts with the element Δ|x|L+1(z). Thus the sequence (Δm(z))m≥1 has pre-
period |x|L and period |y|L (up to permutation of letters).

Example 30. The Arnoux–Rauzy sequence u is directed by the normalized direc-
tive sequence z = c̄ba(c̄bāb)ω = c̄ba(c̄bP (c̄b))ω for the permutation P : a →
c, b → b, c → a with the order 2. By Item (i) of Corollary 29, the sequence u
has two derived sequences: d1 directed by Δ(z) = a(c̄bāb)ω belonging to the
shortest nonempty right special prefix of u and d2 directed by Δ2(z) = (c̄bāb)ω

belonging to all the others right special prefixes of u.
The Tribonacci sequence uτ from Example 2 is directed by the normalized

directive sequence z = (abc)ω = (aP (a)P 2(a))ω for the permutation P : a →
b, b → c, c → a with the order 3. Then by Item (ii) of Corollary 29, uτ has one
derived sequence d directed by (abc)ω. In other words, the derived sequence with
respect to any prefix of uτ is the sequence uτ itself.

The Arnoux–Rauzy sequence u(a) directed by the normalized directive
sequence z(a) = a(bcā)ω (see Example 16) has by Item (ii) of Corollary 29 three
derived sequences d1,d2,d3 directed by Δ(z(a)) = (bcā)ω, Δ2(z(a)) = (cāb)ω,
Δ3(z(a)) = (ābc)ω, respectively. The sequence d1 is the derived sequence with
respect to the shortest nonempty right special prefix of u(a), while both d2,d3

belong to infinitely many right special prefixes of u(a).
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morphisms and their derivated words. Theoret. Comput. Sci. 743, 23–37 (2018)

13. Richomme, G.: Lyndon morphisms. Bull. Belg. Math. Soc. Simon Stevin 10, 761–
785 (2003)

14. Vuillon, L.: A characterization of Sturmian words by return words. Eur. J. Combin.
22, 263–275 (2001)





Article C

Derived sequences of

complementary symmetric Rote

Sequences

113





RAIRO-Theor. Inf. Appl. 53 (2019) 125–151 RAIRO - Theoretical Informatics and Applications
https://doi.org/10.1051/ita/2019004 www.rairo-ita.org

DERIVED SEQUENCES OF COMPLEMENTARY SYMMETRIC

ROTE SEQUENCES

Kateřina Medková1,*, Edita Pelantová1 and Laurent Vuillon2

Abstract. Complementary symmetric Rote sequences are binary sequences which have factor com-
plexity C(n) = 2n for all integers n ≥ 1 and whose languages are closed under the exchange of letters.
These sequences are intimately linked to Sturmian sequences. Using this connection we investigate the
return words and the derived sequences to the prefixes of any complementary symmetric Rote sequence
v which is associated with a standard Sturmian sequence u. We show that any non-empty prefix of v
has three return words. We prove that any derived sequence of v is coding of three interval exchange
transformation and we determine the parameters of this transformation. We also prove that v is prim-
itive substitutive if and only if u is primitive substitutive. Moreover, if the sequence u is a fixed point
of a primitive morphism, then all derived sequences of v are also fixed by primitive morphisms. In that
case we provide an algorithm for finding these fixing morphisms.
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1. Introduction

The notion of return words and derived sequences has been introduced by Durand in [16] and seems to
be a powerful tool for studying the structure of aperiodic infinite sequences, and so also of the corresponding
dynamical systems.

A return word can be considered as a symbolical analogy of return time occurring in the theory of dynamical
systems. Let u = u0u1u2 · · · be a sequence and let w = uiui+1 · · ·ui+n−1 be its factor. The index i is an
occurrence of w. A return word to w is a word uiui+1 · · ·uj−1 with i < j being two consecutive occurrences
of w.

Return words are well understood in the case of Sturmian sequences, i.e. aperiodic sequences with the lowest
possible factor complexity C(n) = n+ 1 for all n ∈ N. They can be also seen as the coding of rotation with an
irrational angle α on the unit circle with the partition in two intervals of lengths α and 1− α, respectively.

The third author characterizes Sturmian sequences as sequences with two return words to each their factor
in [31]. Similarly the paper [4] is dedicated to investigation of sequences with a fixed number of return words to
any factors, in particular, Arnoux-Rauzy sequences and sequences coding interval exchange transformations are
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of this type, see [32]. Besides, return words in episturmian sequences were described in [21] while the description
of return words in the coding of rotations was used to show their fullness in [10].

A derived sequence expresses the order of return words in the sequence u. More precisely, if w is a prefix
of u with k return words r1, r2, . . . , rk, then u can be written as the concatenation of these return words:
u = rd0rd1rd2 · · · . Then the derived sequence of u to the prefix w is the sequence d = d0d1d2 · · · over an
alphabet of size k.

Durand’s result from [16] states that a sequence is primitive substitutive if and only if its number of derived
sequences is finite. Now the goal is to understand the structure of the derived sequences. Derived sequences
of standard Sturmian sequences were investigated in [1] and the derived sequences of fixed points of primitive
Sturmian morphisms were described in [23].

Recently, new developments are done to understand the structure of more complicated objects, e.g. acyclic,
neutral and tree sequences introduced in [7]. Return words in sequences coding linear involutions were studied
in [8] and the number of return words for more general neutral sequences was determined in [15]. In [9] the
properties of return words and derived sequences were exploited for the characterization of substitutive tree
sequences.

In this paper, we study complementary symmetric Rote sequences, i.e. the binary sequences with factor
complexity C(n) = 2n for all n ≥ 1 whose languages are closed under the exchange of letters. These sequences
are not tree, but they represent an interesting example of neutral sequences with characteristics 1. They are
named after Rote, who proposed several constructions of these sequences in [30]. For example, he constructed
them as projections of fixed points over a four letter alphabet (see Sect. 7 of our paper) or as the coding of
irrational rotations on a unit circle with the partition on two intervals of length 1/2. Later on, they were also
constructed using palindromic and pseudopalindromic closures, see [11]. This construction was proposed and
firstly applied to the Thue-Morse sequence in [13] and later extended in [27] to a broader class of sequences.

Our techniques are based on the close relation between complementary symmetric Rote sequences and
Sturmian sequences shown in [30]: a sequence v = v0v1v2 is a complementary symmetric Rote sequence if
and only if its difference sequence u, which is defined by ui = vi+1 − vi mod 2, is a Sturmian sequence. In fact,
we investigate the consequences of this relation, see Sections 2.5, 3 and 5. We also use the description of derived
sequences of Sturmian sequences as studied in detail in [23]. Here we focus on complementary symmetric Rote
sequences which are associated with standard Sturmian sequences.

First we recall needed terminology and notations in Section 2. Section 3 is dedicated to return words: in
Theorem 3.1 we show that every non-empty prefix of any complementary symmetric Rote sequence v has three
return words. In other words, all derived sequences of v are over a ternary alphabet. Then we proceed with
the study of derived sequences. In Proposition 4.2 we prove that any derived sequence of v is the coding of
a three interval exchange transformation and we determine the parameters of this transformation. Then in
Theorem 6.3 and Lemma 6.1 we concentrate on the question of substitutivity of Rote sequences. In the case
when the associated standard Sturmian sequence u is fixed by a primitive morphism, Corollary 6.4 estimates the
number of distinct derived sequences of v from above and Algorithm 6.7 provides a list of all derived sequences
of v. Section 7 compares our techniques with the original Rote’s construction of substitutive Rote sequences
and the last section collects related open questions.

2. Preliminaries

2.1. Sequences and morphisms

An alphabet A is a finite set of symbols called letters. A word over A of length n is a string u = u0u1 · · ·un−1,
where ui ∈ A for all i ∈ {0, 1, . . . , n− 1}. The length of u is denoted by |u|. The set of all finite words over A
together with the operation of concatenation form a monoid A∗. Its neutral element is the empty word ε and
we denote A+ = A∗ \ {ε}.

If u = xyz for some x, y, z ∈ A∗, then x is a prefix of u, z is a suffix of u and y is a factor of u.
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To any word u over A with the cardinality #A = d we assign the vector Vu ∈ Nd defined as (Vu)a = |u|a for
all a ∈ A, where |u|a is the number of letters a occurring in u. The vector Vu is usually called the Parikh vector
of u.

A sequence over A is an infinite string u = u0u1u2 · · · , where ui ∈ A for all i ∈ N = {0, 1, 2, . . .}. We always
denote sequences by bold letters. The set of all sequences over A is denoted AN. A sequence u is eventually
periodic if u = vwww · · · = v(w)∞ for some v ∈ A∗ and w ∈ A+, moreover, u is purely periodic if u = www · · · =
w∞. Otherwise u is aperiodic.

A factor of u is a word y such that y = uiui+1ui+2 · · ·uj−1 for some i, j ∈ N, i ≤ j. The index i is called an
occurrence of the factor y in u. In particular, if i = j, the factor y is the empty word ε and any index i is its
occurrence. If i = 0, the factor y is a prefix of u.

If each factor of u has infinitely many occurrences in u, the sequence u is recurrent. Moreover, if the distances
between two consecutive occurrences are bounded, u is uniformly recurrent.

The language L(u) of the sequence u is the set of all factors of u. A factor w of u is right special if both
words wa and wb are factors of u for at least two distinct letters a, b ∈ A. Analogously we define the left special
factor. The factor is bispecial if it is both left and right special. Note that the empty word ε is the bispecial
factor if at least two distinct letters occur in u.

The factor complexity of a sequence u is the mapping Cu : N→ N defined by

Cu(n) = #{w ∈ L(u) : |w| = n} .

A classical result of Hedlund and Morse [25] says that a sequence is eventually periodic if and only if its factor
complexity is bounded. The factor complexity of any aperiodic sequence u satisfies Cu(n) ≥ n + 1 for every
n ∈ N.

A morphism from a monoid A∗ to a monoid B∗ is a mapping ψ : A∗ → B∗ such that ψ(uv) = ψ(u)ψ(v) for
all u, v ∈ A∗. In particular, if A = B, ψ is a morphism over A. The domain of a morphism ψ can be naturally
extended to AN by

ψ(u) = ψ(u0u1u2 · · · ) = ψ(u0)ψ(u1)ψ(u2) · · · .

The matrix of a morphism ψ over A with the cardinality #A = d is the matrix Mψ ∈ Nd×d defined as
(Mψ)ab = |ψ(a)|b for all a, b ∈ A. The Parikh vector of the ψ-image of a word w ∈ A∗ can be obtained via
multiplication by the matrix Mψ, i.e. Vψ(w) = MψVw.

The morphism is primitive if there is a positive integer k such that all elements of the matrix Mk
ψ are positive.

A fixed point of a morphism ψ is a sequence u such that ψ(u) = u. It is well known that all fixed points of a
primitive morphism have the same language. The sequence u ∈ AN is primitive substitutive if u = σ(v) for a
morphism σ : B∗ → A∗ and a sequence v ∈ BN which is a fixed point of a primitive morphism over B.

2.2. Derived sequences

Consider a prefix w of a recurrent sequence u. Let i < j be two consecutive occurrences of w in u. Then the
word uiui+1 · · ·uj−1 is a return word to w in u. The set of all return words to w in u is denoted Ru(w).

If the sequence u is uniformly recurrent, the set Ru(w) is finite for each prefix w, i.e. Ru(w) =
{r0, r1, . . . , rk−1}. Then the sequence u can be written as a concatenation of these return words:

u = rd0rd1rd2 · · ·

and the derived sequence of u to the prefix w is the sequence du(w) = d0d1d2 · · · over the alphabet of cardinality
#Ru(w) = k. For simplicity, we do not fix this alphabet and we consider two derived sequences which differ



128 K. MEDKOVÁ ET AL.

only in a permutation of letters as identical. The set of all derived sequences to the prefixes of u is

Der(u) = {du(w) : w is a prefix of u} .

If the prefix w is not right special, there is a unique letter a such that wa is a factor of u. It means that the
occurrences of factors w and wa in u coincides, thus Ru(w) = Ru(wa) and du(w) = du(wa). If u is aperiodic,
then any prefix of u is a prefix of some right special prefix of u. Therefore, for an aperiodic uniformly recurrent
sequence u we can take into consideration only right special prefixes since

Der(u) = {du(w) : w is a right special prefix of u} . (2.1)

In the sequel we will essentially use the following Durand’s result.

Theorem 2.1 (Durand [16]). A sequence u is substitutive primitive if and only if the set Der(u) is finite.

2.3. Sturmian sequences

Sturmian sequences are aperiodic sequences with the lowest possible factor complexity. In other words, a
sequence u is Sturmian if it has its factor complexity Cu(n) = n + 1 for all n ∈ N. Clearly, all Sturmian
sequences are defined over a binary alphabet.

There are many equivalent definitions of Sturmian sequences, see for example [3, 5, 6]. One of the most
important characterizations of Sturmian sequences comes from the symbolic dynamics: any Sturmian sequence
can be obtained by a coding of two interval exchange transformation. Here we recall only the basic facts about
this transformation, a detailed explanation can be found in [24].

For a given parameter α ∈ (0, 1), consider the partition of the interval I = [0, 1) into I0 = [0, α) and I1 = [α, 1)
or the partition of I = (0, 1] into I0 = (0, α] and I1 = (α, 1]. Then the two interval exchange transformation
T : I → I is defined by

T (y) =

{
y + 1− α if y ∈ I0 ,
y − α if y ∈ I1 .

If we take an initial point ρ ∈ I, the sequence u = u0u1u2 · · · ∈ {0, 1}N defined by

un =

{
0 if Tn(ρ) ∈ I0 ,
1 if Tn(ρ) ∈ I1

is a 2iet sequence with the slope α and the intercept ρ. It is well known that the set of all 2iet sequences with
irrational slopes coincides with the set of all Sturmian sequences.

Any Sturmian sequence is uniformly recurrent. The language of a Sturmian sequence is independent of its
intercept ρ, i.e. it depends only on its slope α. The frequencies of the letters 0 and 1 in a Sturmian sequence with
the slope α are α and 1− α, respectively. In the case that α > 1

2 , the form of the transformation T implies that
two consecutive occurrences of the letter 1 are separated by the block 0k or 0k+1, where k = b α

1−αc. Similarly,

if α < 1
2 , two 0’s are separated by the block 1k or 1k+1, where k = b 1−α

α c.
Among all Sturmian sequences with a given slope α, the sequence with the intercept ρ = 1−α plays a special

role. Such a sequence is called a standard Sturmian sequence and it is usually denoted by cα. Any prefix of cα
is a left special factor. In other words, a Sturmian sequence u ∈ {0, 1}N is standard if both sequences 0u, 1u
are Sturmian. In particular, it means that

– if α > 1
2 , then cα has a prefix 0k1 and cα can be uniquely written as a concatenation of the blocks 0k1

and 0k+11;
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– if α < 1
2 , then cα has a prefix 1k0 and cα can be uniquely written as a concatenation of the blocks 1k0

and 1k+10.

Moreover, a factor of cα is bispecial if and only if it is a palindromic prefix of cα.
In the context of derived sequences the most important characterization of Sturmian sequences is provided

by the third author in [31]: a given sequence u is Sturmian if and only if any prefix of u has exactly two return
words.

Let us denote the return words to a prefix w of a Sturmian sequence u as Ru(w) = {r, s}. Then the derived
sequence du(w) of u to the prefix w can be considered over the alphabet {r, s}, i.e. du(w) ∈ {r, s}N. As follows
from Vuillon’s [31] and Durand’s result [16], the derived sequence du(w) of a Sturmian sequence u is also a
Sturmian sequence. Moreover, if u is standard, then both sequences 0u and 1u are Sturmian. It implies that
rdu(w) and sdu(w) are Sturmian as well. We can conclude that the derived sequence to any prefix of a standard
Sturmian sequence is a standard Sturmian sequence. It also means that du(w) ∈ {r, s}N can be decomposed
into blocks rks and rk+1s, where k is a positive integer and r is the most frequent return word. We will strictly
use this notation through the whole paper.

In [1], Araújo and Bruyère described derived sequences of any standard Sturmian sequence u. Their descrip-
tion uses the continued fraction of the slope α of u. Derived sequences of all Sturmian sequences are studied in
[23]. In the sequel, we will work only with standard Sturmian sequences since especially in this case the elements
of the set Der(u) are easily expressible. In accordance with a wording provided in [23], the S-adic representation
of u by a sequence of Sturmian morphisms will be used for expression of the set Der(u).

2.4. Sturmian morphisms

A morphism ψ : {0, 1}∗ → {0, 1}∗ is Sturmian if ψ(u) is a Sturmian sequence for any Sturmian sequence
u. The set of all Sturmian morphisms together with the operation of composition form the so-called Sturmian
monoid St. This monoid is generated by two morphisms E and F , where E is the morphism which exchanges
letters, i.e. E : 0→ 1, 1→ 0, and F is the Fibonacci morphism, i.e. F : 0→ 01, 1→ 0. In the sequel, we work
with the submonoid of St which is generated by two elementary morphisms ϕb and ϕβ defined by

ϕb = F ◦ E :

{
0→ 0

1→ 01
and ϕβ = E ◦ F :

{
0→ 10

1→ 1
.

Their corresponding matrices are:

Mb =

(
1 1
0 1

)
and Mβ =

(
1 0
1 1

)
.

The image of a standard Sturmian sequence under ϕb or ϕβ is a standard Sturmian sequence as well.
Therefore, any element of the submonoid 〈ϕb, ϕβ〉 preserves the set of standard Sturmian sequences. For some
z = z0z1 · · · zn−1 ∈ {b, β}+, the composition of the morphisms ϕz0 , ϕz1 , ϕz2 , . . . , ϕzn−1

will be denoted by ϕz =
ϕz0ϕz1 · · ·ϕzn−1 . Let us stress that the morphism ϕz is primitive if and only if z contains both letters b and β.
By ϕε we denote the identity morphism.

Lemma 2.2. For every standard Sturmian sequence u there is a uniquely given standard Sturmian sequence u′

such that u = ϕb(u
′) or u = ϕβ(u′).

Proof. Let us suppose that the letter 0 is more frequent in u (the second case can be proved analogously).
Since u is a standard Sturmian sequence, it can be written as a concatenation of blocks 0k1 and 0k+11 for some
integer k ≥ 1. Thus u can be uniquely desubstituted by 0→ 0 and 01→ 1 to the standard Sturmian sequence
u′ which is a concatenation of blocks 0k−11 and 0k1. Therefore u = ϕb(u

′).
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By the previous lemma, to a given standard Sturmian sequence u we can uniquely assign the pair: the
directive sequence z = z0z1 · · · ∈ {b, β}N and the sequence (u(n))n≥0, such that

u(n) ∈ {0, 1}N is a standard Sturmian sequence and u = ϕz0z1...zn−1(u(n)) for every n ∈ N .

In fact, a sequence z ∈ {b, β}N containing infinitely many occurrences of both letters already determines a unique
standard Sturmian sequence u, as

u = lim
n→∞

ϕz0z1...zn−1(0) = lim
n→∞

ϕz0z1...zn−1(1) .

Now we can formulate several simple consequences of Lemma 2.2.

Observation 2.3. Let u be a standard Sturmian sequence with the directive sequence z ∈ {b, β}N.

(i) The sequence z contains infinitely many letters b and infinitely many letters β.
(ii) If z has a prefix bkβ for some positive integer k, then the letter 0 is more frequent in u and u can be

written as a concatenation of blocks 0k1 and 0k+11.
(iii) If z has a prefix βkb for some positive integer k, then the letter 1 is more frequent in u and u can be

written as a concatenation of blocks 1k0 and 1k+10.
(iv) The directive sequence z is eventually periodic if and only if the sequence u is substitutive. Moreover, z is

purely periodic, i.e. z = z∞ for some z ∈ {b, β}+, if and only if u is a fixed point of the morphism ϕz.

2.5. Complementary symmetric Rote sequences

A Rote sequence is a sequence v with the factor complexity Cv(n) = 2n for all integer n ≥ 1. Clearly, all
Rote sequences are defined over a binary alphabet, e.g. {0, 1}. If the language of a Rote sequence v is closed
under the exchange of letters, i.e. E(v) ∈ L(v) for each v ∈ L(v), the Rote sequence v is called complementary
symmetric. Rote in [30] proved that these sequences are essentially connected with Sturmian sequences:

Proposition 2.4 (Rote [30]). Let u = u0u1 · · · and v = v0v1 · · · be two sequences over {0, 1} such that ui =
vi + vi+1 mod 2 for all i ∈ N. Then v is a complementary symmetric Rote sequence if and only if u is a
Sturmian sequence.

Convention. In this paper, we work only with complementary symmetric Rote sequences and for simplicity
we usually call them shortly Rote sequences.

As indicated by Proposition 2.4, it will be useful to introduce the following notation.

Definition 2.5. By S we denote the mapping S : {0, 1}+ → {0, 1}∗ such that for every v0 ∈ {0, 1} we put
S(v0) = ε and for every v = v0v1 · · · vn ∈ {0, 1}+ of length at least 2 we put S(v0v1 · · · vn) = u0u1 · · ·un−1,
where

ui = vi + vi+1 mod 2 for all i ∈ {0, 1, . . . , n− 1} .

Example 2.6. Let v = 001110. Then S(v) = S(E(v)) = 01001. Clearly, the images of v and E(v) under S
coincide for each v ∈ {0, 1}+. Moreover, S(x) = S(y) if and only if x = y or x = E(y).

If we extend the domain of S naturally to {0, 1}N, Proposition 2.4 says: v is a Rote sequence if and only if
S(v) is a Sturmian sequence. Moreover, for any Sturmian sequence u there exist two Rote sequences v and E(v)
such that u = S(v) = S(E(v)). Since a permutation of letters in the sequence does not influence its derived
sequences, we will work only with Rote sequences starting with the letter 0 without lose of generality. We will
also use the bar notation v̄ = E(v) or v̄ = E(v) to express the sequence or the word with exchanged letters
0↔ 1.
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Convention. We consider only Rote sequences v ∈ {0, 1}N with the prefix 0. If a Sturmian sequence u ∈ {0, 1}N
satisfies u = S(v), we say that v is associated with u or equivalently u is associated with v.

To a given word u ∈ {0, 1}∗ there are exactly two words v, v̄ such that S(v) = S(v̄) = u. Moreover, if the first
letter of v is given, then the rest of the word v = v0 · · · vn is completely determined by u = u0 · · ·un−1:

vi+1 = v0 + u0 + u1 + · · ·+ ui mod 2 for all i ∈ {0, 1, . . . , n− 1} . (2.2)

Lemma 2.7. Let u be a Sturmian sequence associated with a Rote sequence v. A word u is a factor of u if and
only if both words v, v̄ such that u = S(v) = S(v̄) are factors of v. Moreover, for every m ∈ N, the index m is
an occurrence of u in u if and only if m is an occurrence of v in v or an occurrence of v̄ in v.

Bispecial factors of a sequence u play a crucial role in finding its derived sequences. We use the terminology
introduced by Cassaigne [12] to distinguish three types of bispecial factors. Let w be a bispecial factor of u.
Then the bilateral order of w is the number

B(w) = #{(a, b) ∈ A×A : awb ∈ L(u)} −#{a ∈ A : aw ∈ L(u)} −#{b ∈ A : wb ∈ L(u)}+ 1 .

The bispecial factor w is weak if B(w) < 0, it is ordinary if B(w) = 0 and it is strong if B(w) > 0.

Corollary 2.8. Let u be a Sturmian sequence associated with a Rote sequence v, let ` ∈ N. If w is a bispecial
factor of length ` in u, then there are two bispecial factors x, x̄ of length `+ 1 in v such that w = S(x) = S(x̄).
Conversely, if x is a bispecial factor of length `+1 in v, then S(x) of length ` is a bispecial factor in u. Moreover,
each non-empty bispecial factor of v is ordinary and the empty word is a strong bispecial factor of v.

Proof. Let w be a bispecial factor of u. By the well known balance properties of Sturmian sequences, the
bispecial factor w is ordinary. Indeed, the words 0w1, 1w0 are always factors of u, in addition, just one word
from {1w1, 0w0} is a factor of u. Without lose of generality let us suppose that 1w1 ∈ L(u). The associated
factors of the Rote sequence v are 0xā, 1x̄a, 0x̄ā, 1xa, 0x̄a and 1xā, where w = S(x) and x starts with 0 and
ends with a. Combining with Lemma 2.7 we get that both words x, x̄ are ordinary bispecial factors of v.

Conversely, let us suppose that x is a non-empty bispecial factor of v. It means that the words 0x, 1x, x0, x1
are factors of v. Then S(0x) = aw, S(1x) = āw, S(x0) = wb, S(x1) = wb̄, where w = S(x), a is the first letter
of x and b is the last letter of x. Thus w is a bispecial factor of u.

Since 00, 11, 01, 10 ∈ L(v), the bilateral order of ε is 1, i.e. ε is strong.

3. Return words to prefixes of complementary symmetric
Rote sequences

Complementary symmetric Rote sequences form a special subclass of binary sequences coding the rotations.
The return words in the sequences coding the rotations were studied in [10] in particular for palindromic factors.
To compute the exact number of return words to a factor of a given Rote sequence, we use the following results
from [4] (Lems. 4.2 and 4.4):

(i) If v is uniformly recurrent sequence with no weak bispecial factor, then #Rv(x) ≥ 1 + ∆Cv(|x|) for every
factor x ∈ L(v).

(ii) If v has no weak bispecial factor and ∆Cv(n) < m for all n ≥ 0, then #Rv(w) ≤ m for every factor
w ∈ L(v).

Recall that ∆Cv denotes the first difference of the factor complexity Cv, i.e. ∆Cv(n) = Cv(n + 1) − Cv(n) for
each n ∈ N.

Theorem 3.1. Let v be a Rote sequence. Then every non-empty prefix x of v has exactly three distinct return
words.
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Proof. By Corollary 2.8, no bispecial factor of a Rote sequence v is weak. Every Rote sequence is uniformly
recurrent and for all n ≥ 1 it holds true ∆Cv(n) = 2. Thus by Lemma 4.2 from [4], we have #Rv(x) ≥ 3 for
every non-empty prefix x of v.

On the other hand, since ∆Cv(n) < 3 for all n ≥ 0, by Lemma 4.4 from [4] we have #Rv(x) ≤ 3 for every
prefix x of v. Therefore, #Rv(x) = 3 for every non-empty prefix x of v.

Remark 3.2. The previous theorem also follows from a more general result obtained by Dolce and Perrin
in [15]. They studied the so-called neutral sets. By our Corollary 2.8, the language L of a Rote sequence is a
neutral set with the characteristic χ(L) = 0. As the language L is uniformly recurrent, we can apply Corollary
5.4 of [15] to deduce that any non-empty factor of a Rote sequence has exactly three return words.

A direct consequence of Theorem 3.1 is that all derived sequences of a Rote sequence to its non-empty prefixes
are over a ternary alphabet. However, to study derived sequences we need to know also the structure of return
words, not only their number.

For this purpose we now describe the crucial relation between return words of Sturmian and Rote sequences.
Suppose that v is a Rote sequence with a prefix x. Then by Proposition 2.4 and Lemma 2.7, u = S(v) is a
Sturmian sequence, w = S(x) is a prefix of u and the occurrences of w in u coincide with the occurrences of x
and x̄ in v. Let r, s be two return words to w in u, r is the most frequent one. Our aim is to find three return
words to x in v. We start with an example.

Example 3.3. Consider the Sturmian sequence u = u0u1 · · · which is fixed by the Sturmian morphism ψ : 0→
010, 1→ 01001, i.e.

u = 01001001010010010010100100100101001001010 · · · .

The associated Rote sequence v = v0v1 · · · (i.e. u = S(v)) starting with 0 is

v = 001110001100011100011000111000110001110011 · · · .

Take the prefix w = 0 of u. It has two return words r = 01, s = 0 and the occurrences of w in u are
0, 2, 3, 5, 6, 8, 10, 11, . . . The associated prefix of v is x = 00 since 0 = S(00). As we know from Lemma 2.7, the
occurrences of w = 0 in u correspond to the occurrences of x = 00 and x̄ = 11 in v. To find the return words
to x = 00 we have to determine precisely when the words 00 and 11 occur in v.

Clearly, there is the factor 00 at the position 0, i.e. v0v1 = 00. Which word from {00, 11} starts at the position
2 depends only on the letter v2, see equation (2.2). This letter is completely determined by the prefix of u of
length 2, which is u0u1 = 01 (this is also the first return word to 0 in u). Indeed, v2 = v0 + u0 + u1 mod 2.
Since v2 = 0 + 0 + 1 = 1, there is the factor 11 starting at position 2, i.e. v2v3 = 11. In other words, the return
word 01 causes the alternation of the factors x and x̄, since it has an odd number of 1’s.

To determine the factor v3v4 starting at position 3 we have to compute the letter v3 = v0 + u0 + u1 + u2 =
v2 + u2 mod 2. Since v2 = 0, we get v3 = 1 and v3v4 = 11. Notice that the word u2 is the second return word
to 0 in u. Since u2 has an even number of 1’s, it leaves the factors x, x̄ unchanged. In the next step we get
v5v6 = 00, since v5 = v3 + u3 + u4 = 1 + 0 + 1 = 0 mod 2. So we find the first return word to 00 in v, it is the
word v0v1v2v3v4 = 00111.

Similarly we get v6 = v5 + u5 = 0 + 0 = 0 and thus v6v7 = 00, so the next return word to 00 in v is the word
v5 = 0.

As v8 = v6 + u6 + u7 = 0 + 0 + 1 = 1, it holds true v8v9 = 11. So we have to wait until another factor 01
appears in u. It happens immediately since u8u9 = 01. Thus v10 = v8 + u8 + u9 = 0 mod 2 and v10v11 = 00.
Therefore the word v6v7v8v9 = 0011 is the last return word to 00 in v.

In total, the prefix x = 00 of v has three return words 0, 0011 and 00111.

As we have seen in Example 3.3, to describe the return words to x, we have to distinguish if a given return
word to w causes the alternation of the factors x, x̄ or not. This is the meaning of the following definition.
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Definition 3.4. A word u = u0u1 · · ·un−1 ∈ {0, 1}∗ is called stable (S) if |u|1 = 0 mod 2. Otherwise, u is
unstable (U).

Example 3.5. The word u = 0110101 is stable while the word v = 011010 is unstable.

Remark 3.6. In the notion of Parikh vectors, the factor u is stable if its Parikh vector Vu =
(
p
0

)
mod 2 and

it is unstable if Vu =
(
p
1

)
mod 2 for some number p ∈ {0, 1}.

Lemma 3.7. Let v be a Rote sequence and let x be its prefix. Denote u = S(v) and w = S(x). An index m is
an occurrence of x in v if and only if m is an occurrence of w in u and the prefix u = u0u1 · · ·um−1 of u is
stable.

Proof. Recall that ui = vi+1 + vi mod 2 holds true for all i ∈ N. By summing up mod 2 we get for the prefix
u = u0u1 · · ·um−1 of u:

|u|1 =

m−1∑

i=0

ui =

m−1∑

i=0

(vi+1 + vi) = vm + v0 mod 2. (3.1)

By Lemma 2.7, m is an occurrence of the prefix x in v if and only if m is an occurrence of w in u and the letter
vm coincides with v0, which is the first letter of x. The equation (3.1) says that the letters v0 and vm coincide
if and only if the prefix of u of length m is stable.

We have seen that the form of return words in a Rote sequence depends on the stability of the return words
in the associated Sturmian sequence. The following definition sorts the prefixes of standard Sturmian sequences
according to the stability of their return words.

Definition 3.8. Let w be a prefix of a standard Sturmian sequence u with return words Ru(w) = {r, s}, where
r is the most frequent return word. Let k be a positive integer such that u is a concatenation of blocks rks and
rk+1s. We distinguish three cases:

(i) w is of type SU(k), if r is stable and s is unstable;
(ii) w is of type US(k), if r is unstable and s is stable;

(iii) w is of type UU(k), if both r and s are unstable.

The type of the prefix w is denoted Tw (or T if the respective factor w is clear). If the number k is not essential,
we write only SU , US and UU .

Remark 3.9. It is easy to verify that all these types appear in the case of prefixes of Sturmian sequences. On
the other hand, the fourth possible case, i.e. the type SS, cannot appear. We can prove this using the results
from [2]. It also follows from the proof of Theorem 4 in [30].

First we recall the WELLDOC property. A sequence u ∈ {0, 1}N has well distributed occurrences modulo 2
(shortly WELLDOC(2) property) if for every factor w ∈ L(u) we have

{(
|u|0
|u|1

)
mod 2 : uw is a prefix of u

}
=

{(
0
0

)
,

(
0
1

)
,

(
1
0

)
,

(
1
1

)}
.

As shown in [2], all Sturmian sequences have the WELLDOC(2) property.
Let us suppose that w is a prefix of u with two stable return words, i.e. the numbers of 1’s occurring in r

and s are even. Since any word u such that uw is a prefix of u is a concatenation of words r and s, u contains
an even number of 1’s. It contradicts the WELLDOC(2) property of u.

We use these prefix types to describe the return words to corresponding Rote prefixes.
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Theorem 3.10. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v). Let x be a
non-empty prefix of v and w = S(x). Then the prefix x of v has three return words A,B,C ∈ {0, 1}+ satisfying
(r, s and k are the same as in Def. 3.8):

(i) if Tw = SU(k), then S(A0) = r, S(B0) = srk+1s and S(C0) = srks;
(ii) if Tw = US(k), then S(A0) = rr, S(B0) = rsr and S(C0) = s;

(iii) if Tw = UU(k), then S(A0) = rr, S(B0) = rs and S(C0) = sr.

Proof. Let us suppose that Tw = SU(k), i.e. |r|1 = 0 mod 2 and |s|1 = 1 mod 2. Let n be an occurrence of
x in v. Then by Lemma 3.7 the index n is an occurrence of w in u and the prefix u = u0u1 · · ·un−1 is stable.
Since u is a concatenation of the blocks rk+1s and rks, the sequence u has one of the prefixes ur, usrk+1s or
usrks.

– If ur is a prefix of u, then n+ |r| is an occurrence of w in u. Moreover, the prefix of u of length n+ |r| is
stable. It means that m := n+ |r| is the subsequent occurrence of x in v and A := vnvn+1 · · · vm−1 is a return
word to x in v. Let us recall our convention that 0 is a prefix of v and thus any return word to the prefix x
begins with 0, in particular vm = 0. Therefore, r = unun+1 · · ·um−1 = S(A0).

– If usrk+1s is a prefix of u, then any index ` ∈ {n+ |s|, n+ |s|+ |r|, n+ |s|+2|r|, · · ·, n+ |s|+(k+1)|r|} is an
occurrence of w in u. Since r is stable and s is unstable, prefixes of these lengths ` are unstable and by Lemma 3.7,
such a index ` is not an occurrence of x in v. The next occurrence of w in u is m := n+ |s|+ (k + 1)|r|+ |s|.
The prefix of u of length m is stable and thus m is the smallest occurrence of x in v grater than n. Therefore
B := vn · · · vm−1 is a return word to x in v and obviously srk+1s = S(B0).

The reasoning in all remaining cases is analogous and so we omit it.

Example 3.11 (Example 3.3 continued). Recall that the prefix 00 of v has three return words A = 0, B =
0011 and C = 00111. The associated Sturmian prefix S(00) = 0 has the return words r = 01, s = 0 and u
is a concatenation of blocks rs = 010 and rrs = 01010. Thus the type of 0 is T0 = US(1). It holds true
S(A0) = S(00) = 0 = s, S(B0) = S(00110) = 0101 = rr and S(C0) = S(001110) = 01001 = rsr.

It remains to explain how to determine the type of a given prefix w of a standard Sturmian sequence u. This
question will be solved in Section 5.

4. Derived sequences of complementary symmetric
Rote sequences

As we have proved in Theorem 3.1, any derived sequence of a Rote sequence v is over a ternary alphabet
(we use the alphabet {A,B,C}). In this section we study the structure of these ternary sequences in the case
that v is associated with a standard Sturmian sequence. First we mention an important direct consequence of
Theorem 3.10.

Corollary 4.1. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v) and let x be
a non-empty prefix of v. Then the derived sequence dv(x) is uniquely determined by the derived sequence du(w)
of u to the prefix w = S(x) and by the type Tw of the prefix w.

Proof. Let r, s be the return words to w in u and let u be a concatenation of blocks rks and rk+1s for some
positive integer k. We decompose the sequence du(w) ∈ {r, s}N from the left to the right into three types of
blocks S(A0),S(B0) and S(C0) according to the type Tw (the relevant blocks are listed in Thm. 3.10). Then
the order of letters A,B,C in this decomposition is the desired derived sequence dv(x) of v to x. It remains
to explain that this decomposition is unique. In the case i) we decompose du(w) into the minimal blocks with
an even number of letter s, similarly in the case ii) we decompose du(w) into the minimal blocks with an even
number of letter r. In the case iii) we decompose du(w) into the pairs of letters.
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The main goal of this section is to show that any derived sequence dv(x) of v is in fact coding of a three
interval exchange transformation. The sequences coding the interval exchange transformation were introduced
in [26] and they are intensively studied as they represent an important generalization of Sturmian sequences to
the multi-literal alphabets, see [29]. Here we define only those interval exchange transformations which appear
in our description of derived sequences dv(x).

A three interval exchange transformation T : [0, 1)→ [0, 1) is given by two parameters β, γ ∈ (0, 1), β+γ < 1,
and by a permutation π on the set {1, 2, 3}. The interval [0, 1) is partitioned into three subintervals

IA = [0, β) , IB = [β, β + γ) and IC = [β + γ, 1)

of lengths β, γ and 1−β−γ respectively. These intervals are then rearranged by the transformation T according
to the permutation π. More specifically:

– If the permutation π = (3, 2, 1), then

T (y) =





y + 1− β if y ∈ IA ,
y + 1− 2β − γ if y ∈ IB ,
y − β − γ if y ∈ IC .

– If the permutation π = (2, 3, 1), then

T (y) =





y + 1− β if y ∈ IA ,
y − β if y ∈ IB ,
y − β if y ∈ IC .

Let ρ ∈ [0, 1). The sequence u = u0u1u2 · · · ∈ {A,B,C}N defined by

un =





A if Tn(ρ) ∈ IA ,
B if Tn(ρ) ∈ IB ,
C if Tn(ρ) ∈ IC

is called a 3iet sequence coding the intercept ρ under the transformation T .
Take a standard Sturmian sequence u. As we have mentioned before, every derived sequence du(w) of u to

a given prefix w is also a standard Sturmian sequence. Thus du(w) is expressible as a 2iet sequence with the
slope α and the intercept ρ = 1− α.

Proposition 4.2. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v), let x be a
non-empty prefix of v and w = S(x). Let α > 1

2 be the slope of the Sturmian sequence du(w). Then the derived
sequence dv(x) is a 3iet sequence coding the intercept ρ = 1−α under the three interval exchange transformation
T , where T is given by the following parameters β, γ and permutation π:

(i) if Tw = SU(k), then β = α, γ = α− k(1− α), and π = (3, 2, 1);
(ii) if Tw = US(k), then β = 2α− 1, γ = 1− α, and π = (3, 2, 1);

(iii) if Tw = UU(k), then β = 2α− 1, γ = 1− α, and π = (2, 3, 1).

Proof. Since any derived sequence of a standard Sturmian sequence is standard as well, du(w) is coding of the
intercept 1− α under the transformation G : [0, 1)→ [0, 1) defined by

G(y) = y + 1− α, if y ∈ Ir = [0, α) and G(y) = y − α, if y ∈ Is = [α, 1) .

Let us start with the simplest case iii): By Theorem 3.10, the derived sequence dv(x) of v to the prefix x
is determined by the decomposition of du(w) into blocks of length 2. The order of blocks rr, rs and sr in the
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decomposition of du(w) is given by the transformation G2 under which the point ρ = 1− α is coded. A simple
computation gives:

G2(y) =





y + 2− 2α if y ∈ [0, 2α− 1) ,
y + 1− 2α if y ∈ [2α− 1, α) ,
y + 1− 2α if y ∈ [α, 1) .

It means that G2 exchanges three intervals under the permutation (2, 3, 1) with the parameters β, γ as claimed
in point iii) of the statement.

Let w be of type SU(k) as assumed in i). Let us denote the intervals

IA = [0, α), IB = [α, 2α− k(1− α)), IC = [2α− k(1− α), 1)

and define the transformation

T (y) =





G(y) if y ∈ IA ,
Gk+3(y) if y ∈ IB ,
Gk+2(y) if y ∈ IC .

Recall that the parameter k in the type of w means that du(w) is a concatenation of blocks rks and rk+1s.
By Theorem 3.10, the derived sequence dv(x) of v to the prefix x is determined by the unique decomposition
of du(w) into blocks r, srk+1s and srks. As mentioned in Section 2.3, k = b α

1−αc, i.e. α > k(1 − α) and
α < (k + 1)(1− α). Therefore the intervals IA, IB , and IC are well defined.

To prove i), one has to check

(1) IA ⊂ Ir;
(2) IB ⊂ Is, Gj(IB) ⊂ Ir for all j = 1, 2, . . . , k + 1, Gk+2(IB) ⊂ Is;
(3) IC ⊂ Is, Gj(IC) ⊂ Ir for all j = 1, 2, . . . , k, Gk+1(IC) ⊂ Is;
(4) T is an interval exchange transformation under the permutation (3,2,1), i.e.,

T (IA) =
[
1− α, 1

)
, T (IB) =

[
(k + 1)(1− α)− α, 1− α

)
, T (IC) =

[
0, (k + 1)(1− α)− α

)
.

Validity of (1)–(4) follows directly from the definition of G.

Proof of point ii) is analogous.

Remark 4.3. It can be shown that all three transformations T from Proposition 4.2 satisfy the so called i.d.o.c.
property [22]. For a three interval exchange transformation with the discontinuity points β and β + γ it means
that Tn(β) 6= β + γ for all n ∈ Z. Property i.d.o.c. implies that the factor complexity of any derived sequence
dv(x) is C(n) = 2n+ 1.

Corollary 4.4. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v) and let x, x′

be two non-empty prefixes of v. Denote w = S(x) and w′ = S(x′). The derived sequence of v to the prefix x
coincides with the derived sequence of v to the prefix x′ if and only if the types of w and w′ are the same and the
derived sequence of u to the prefix w coincides with the derived sequence of u to the prefix w′. In other words,

dv(x) = dv(x′) iff Tw = Tw′ and du(w) = du(w′) .

Proof. Let us assume that dv(x) = dv(x′). We use two well known properties of 3iet sequences, see for example
[18, 19]:

– the frequencies of letters in a 3iet sequence correspond to the lengths of the intervals IA, IB and IC ;
– the language of a 3iet sequence is closed under reversal if and only if the permutation is (3, 2, 1).
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By Proposition 4.2, the language of dv(x) is not closed under reversal if and only if w = S(x) is of type UU .
Moreover, if w is of type SU , the frequencies of letters are: α, α− k(1− α) and (k + 1)(1− α)− α. Since α is
irrational, these three lengths are pairwise distinct. If w is of type US or UU , the letters B and C have the
same frequency 1 − α. Therefore, the assumption dv(x) = dv(x′) implies that the type of w and the type of
w′ are the same. Moreover, the lengths of the intervals IA, IB , IC , i.e. the frequencies of the letters, must be
the same. It implies that the slopes of du(w) and du(w′) are equal. Since du(w) and du(w′) are both standard
Sturmian sequences with the same slope, obviously du(w) = du(w′).

The opposite implication follows from Corollary 4.1.

The proof of Corollary 4.1 gives us the instructions how to construct the derived sequences of a Rote sequence:
we need to know both the derived sequences of the associated Sturmian sequence u and the types of prefixes
of u. Remind that we work only with Rote sequences associated with standard Sturmian sequences, thus u is
always standard and any prefix of u is left special. Due to (2.1) and Corollary 2.8, we can focus only on the
bispecial prefixes of standard Sturmian sequences.

5. Types of bispecial prefixes of Sturmian sequences

Consider a standard Sturmian sequence u with the directive sequence z ∈ {b, β}N. It means that there is a
sequence (u(n))n≥0 of standard Sturmian sequences such that for every n ∈ N

u = ϕz0z1...zn−1
(u(n)) . (5.1)

Convention. We order the bispecial prefixes of u by their length and we denote the nth bispecial prefix of u
by w(n). In particular, w(0) = ε, w(1) = 0 if z0 = b and w(1) = 1 if z0 = β.

Our aim is to find for each n ∈ N the derived sequence of u to the prefix w(n) and to determine the type
of w(n). First we need to know how bispecial factors and their return words change under the application of
morphisms ϕb and ϕβ . It is shown in [23].

Lemma 5.1. Let u′,u be Sturmian sequences such that u = ϕb(u
′).

(i) For every bispecial factor w′ of u′, the factor w = ϕb(w
′)0 is a bispecial factor of u.

(ii) Every bispecial factor w of u which is not empty can be written as w = ϕb(w
′)0 for a uniquely given

bispecial factor w′ of u′.
(iii) The words r′, s′ are return words to a bispecial prefix w′ of u′ if and only if r = ϕb(r

′), s = ϕb(s
′) are

return words to a bispecial prefix w = ϕb(w
′)0 of u. Moreover, du(w) = du′(w

′).

Lemma 5.2. Let u′,u be Sturmian sequences such that u = ϕβ(u′).

(i) For every bispecial factor w′ of u′, the factor w = ϕβ(w′)1 is a bispecial factor of u.
(ii) Every bispecial factor w of u which is not empty can be written as w = ϕβ(w′)1 for a uniquely given

bispecial factor w′ of u′.
(iii) The words r′, s′ are return words to a bispecial prefix w′ of u′ if and only if r = ϕβ(r′), s = ϕβ(s′) are

return words to a bispecial prefix w = ϕβ(w′)1 of u. Moreover, du(w) = du′(w
′).

Example 5.3. The sequence from Example 3.3 is the fixed point of the morphism ϕbβb. So it is a standard
Sturmian sequence with the directive sequence z = bβbbβbbβb · · · .

The 0th bispecial prefix of u is the empty word w(0) = ε. Its return words are 0 and 1 and clearly du(w(0)) = u.
By Lemma 5.1, the bispecial prefix w(1) can be obtained from ε using the morphism ϕb: w

(1) = ϕb(ε)0 = 0.
It means that w(1) = 0 originates in the sequence u(1) which has the directive sequence βbbβbb · · · . The return
words to w(1) are ϕb(0) = 0 and ϕb(1) = 01 and its derived sequence is du(w(1)) = du(1)(ε) = u(1).
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Similarly, the prefix w(2) arises from ε by application of ϕbϕβ , i.e.

w(2) = ϕb(ϕβ(ε)1)0 = 010 .

Thus w(2) originates in u(2) with the directive sequence bbβbbβ · · · . The return words to w(2) are ϕbϕβ(0) = 010
and ϕbϕβ(1) = 01 and its derived sequence is du(w(2)) = du(2)(ε) = u(2).

The method explained in Example 5.3 can be easily generalized. Let us formalize this procedure.

Corollary 5.4. Let z ∈ {b, β}N be a directive sequence of a standard Sturmian sequence u and let n ∈ N. Denote
by r(n) the most frequent and by s(n) the less frequent return words to the nth bispecial prefix w(n) of u. Then the
derived sequence du(w(n)) is a standard Sturmian sequence with the directive sequence z(n) = znzn+1zn+2 · · · .
Moreover

(i) If zn = b, then r(n) = ϕz0z1···zn−1
(0) and s(n) = ϕz0z1...zn−1

(1).

(ii) If zn = β, then r(n) = ϕz0z1···zn−1
(1) and s(n) = ϕz0z1...zn−1

(0).

Proof. We proceed with induction on n ∈ N.
Clearly, the return words to the bispecial prefix w(0) = ε are letters 0 and 1 and thus the derived sequence

of u to w(0) is the sequence u itself. Using the notation of (5.1), we have u = ϕz0(u(1)). If z0 = b then 0 is the
most frequent letter in u, if z0 = β then 1 is the most frequent letter of u.

The directive sequence of u(1) is z(1) = z1z2z3 · · · . Denote u′ = u(1). Let w′ be the nth bispecial prefix of u′

and r′, s′ be its return words. By Lemmas 5.1 and 5.2, the words ϕz0(r′) and ϕz0(s′) are the return words to
the (n+ 1)st bispecial prefix of u (we add 1 for the bispecial prefix ε of u).

If we now apply the induction hypothesis on u′ and take into consideration that the application of ϕz0 to
the return words does not change their frequencies, the statement is proved.

It remains to determine the types of bispecial prefixes of standard Sturmian sequences. We will use the
following matrix formalism.

Definition 5.5. Let w be a prefix of a standard Sturmian sequence u. Let r, s be the return words to w in u,
where r is the most frequent return word. Then the matrix Pw is defined as:

Pw =

(
|r|0 |s|0
|r|1 |s|1

)
mod 2 .

Remark 5.6. The type Tw of the prefix w depends on the bottom row of the matrix Pw. Tw is

(i) SU if Pw =

(
p q
0 1

)
for some numbers p, q ∈ {0, 1};

(ii) US if Pw =

(
p q
1 0

)
for some numbers p, q ∈ {0, 1};

(iii) UU if Pw =

(
p q
1 1

)
for some numbers p, q ∈ {0, 1}.

Example 5.7. Take the prefixes ε, 0 and 010 of Sturmian sequence u from Example 3.3. Their matrices are

Pε =

(
1 0
0 1

)
, P0 =

(
1 1
1 0

)
and P010 =

(
0 1
1 1

)

and their types are Tε = SU(1), T0 = US(1) and T010 = UU(2) respectively.

Convention. To simplify the notation, for the nth bispecial prefix w(n) of a standard Sturmian sequence we
will denote its type T (n) instead of Tw(n) and its matrix P (n) instead of Pw(n) .
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Observation 5.8. Let u be a standard Sturmian sequence with the directive sequence z ∈ {b, β}N.

(i) If u has a prefix bkβ for some positive integer k, then by Observation 2.3, u is a concatenation of the
blocks 0k1 and 0k+11. Therefore, the bispecial prefix w(0) = ε has the stable return word r(0) = 0 and the
unstable return word s(0) = 1, w(0) is of type T (0) = SU(k) and its matrix P (0) is

(
1 0
0 1

)
=: Ob .

(ii) If u has a prefix βkb for some positive integer k, then w(0) = ε has the unstable return word r(0) = 1 and
the stable return word s(0) = 0, its type is T (0) = US(k) and its matrix P (0) is

(
0 1
1 0

)
=: Oβ .

Let us recall that the Parikh vector Vψ(u) can be computed by multiplication Vψ(u) = MψVu for all u ∈ A∗.
By Corollary 5.4, the Parikh vectors of the return words r(n) and s(n) can be computed using the matrix of
the morphism ϕz0z1...zn−1

. Thus the matrix P (n) can be obtained as a product of the matrix of the morphism
ϕz0z1...zn−1 and the matrix Ob or Oβ . The following proposition summarizes these observations.

Proposition 5.9. Let u be a standard Sturmian sequence with the directive sequence z ∈ {b, β}N and let n ∈ N.

(i) If the sequence znzn+1zn+2 · · · has a prefix bkβ, then

P (n) = Mz0Mz1 · · ·Mzn−1
Ob mod 2 .

(ii) If the sequence znzn+1zn+2 · · · has a prefix βkb, then

P (n) = Mz0Mz1 · · ·Mzn−1Oβ mod 2 .

The type T (n) is given by the bottom row of matrix P (n) and the number k.

Example 5.10 (Example 5.3 continued). The 0th bispecial prefix of u is w(0) = ε. Since z has the prefix bβ,
its matrix is Ob and its type is SU(1).

For the bispecial prefix w(1) = 0, we have z0 = b and z1z2z3 · · · = βbbβ · · · has the prefix βb. Thus the
corresponding matrix is

P (1) = MbOβ =

(
1 1
0 1

)(
0 1
1 0

)
=

(
1 1
1 0

)
mod 2

and the 1st bispecial prefix w(1) is of type T (1) = US(1).
For the bispecial prefix w(2) we have z0z1 = bβ and z2z3z4 · · · = bbβb · · · has the prefix b2β. Therefore its

matrix is

P (2) = MbMβOb =

(
1 1
0 1

)(
1 0
1 1

)(
1 0
0 1

)
=

(
0 1
1 1

)
mod 2

and its type is T (2) = UU(2).

Finally, we study what kind of matrices can appear among the matrices P (n) of Sturmian bispecial prefixes.
Clearly, all matrices Mb,Mβ , Ob, Oβ have their determinants equal to 1. By Proposition 5.9, the matrix P (n) is



140 K. MEDKOVÁ ET AL.

Figure 1. The diagram captures the multiplication mod 2 of matrices with the determinant
1 by morphism matrices Mb and Mβ . A directed edge labelled by ϕb goes from matrix M to
matrix M ′ if M ′ = MbM mod 2. Analogously for the label ϕβ .

a product of these matrices modulo 2. So the determinant of P (n) has to be equal to 1. Therefore there are only
six candidates for P (n):

{(
1 0
0 1

)
,

(
1 1
0 1

)
,

(
1 0
1 1

)
,

(
1 1
1 0

)
,

(
0 1
1 1

)
,

(
0 1
1 0

)}
. (5.2)

The relations between these matrices are captured in Figure 1. We can go through this graph instead of
calculating the respective products mod 2.

Example 5.11. The result of the product P (2) = MbMβOb can be obtained as follows. We start in the vertex

Ob =

(
1 0
0 1

)
. Then we move along the edge labelled by ϕβ to the vertex

(
1 0
1 1

)
. After that we move

along the edge labelled by ϕb to the vertex

(
0 1
1 1

)
. This vertex is the desired matrix P (2).

Remark 5.12. Any standard Sturmian sequence u with the directive sequence z has bispecial prefixes of at
least two types. Indeed, by Proposition 5.9 (or by the graph in Fig. 1):

– if z has a prefix b`β, ` ≥ 1, then the types of w(0) and w(`) are SU and US, respectively;
– if z has a prefix β2`b, ` ≥ 1, then the types of w(0), w(1) and w(2`) are US, UU and SU , respectively;
– if z has a prefix β2`−1b, ` ≥ 1, then the types of w(0) and w(2`−1) are US and UU , respectively.

It may happen that these bispecial prefixes are only of two types. For example, if the directive sequence
is z = (βbbβ)∞, then for each n ∈ N, the bispecial factor w(2n) is of the type US(1) and the bispecial factor
w(2n+1) is of the type UU(2).

We illustrate our results on the Rote sequence g associated with the Fibonacci sequence f .

Example 5.13. The Fibonacci sequence f is fixed by the Fibonacci morphism F : 0→ 01, 1→ 0, i.e.

f = 010010100100101001010010010100100101 · · · .

Clearly, the sequence f is a fixed point of the morphism F 2, too. Since F 2 = ϕbβ , the Fibonacci sequence f has
the directive sequence z = (bβ)∞, see Observation 2.3. By Corollary 5.4, the derived sequence df (w

(2n)) has
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the directive sequence (bβ)∞ and the derived sequence df (w
(2n+1)) has the directive sequence (βb)∞. It means

that df (w
(2n)) is the Fibonacci sequence itself and df (w

(2n+1)) can be obtained from the Fibonacci sequence by
exchange of letters 0↔ 1. If we rewrite the derived sequences into the alphabet {r, s}, where the most frequent
letter is denoted by r and the less frequent letter by s (as required in Def. 3.8), we obtain only one derived
sequence d (i.e. the Fibonacci sequence over the new alphabet):

d = rsrrsrsrrsrrsrsrrsrsrrsrrsrsrrsrrsrs · · · .

Therefore, the derived sequence to any prefix of the Fibonacci sequence is the Fibonacci sequence itself.
The types T (n) of the bispecial prefixes of the Fibonacci sequence f can be determined by Proposition 5.9,

where the matrix products can be computed using Figure 1:

– P (0) = Ob =

(
1 0
0 1

)
mod 2 and z0z1z2 · · · = bβbβ · · · , thus w(0) has the type T (0) = SU(1);

– P (1) = MbOβ =

(
1 1
1 0

)
mod 2 and z1z2z3 · · · = βbβb · · · , thus T (1) = US(1);

– P (2) = MbMβOb =

(
0 1
1 1

)
mod 2 and z2z3z4 · · · = bβbβ · · · , thus T (2) = UU(1);

– P (3) = MbMβMbOβ =

(
1 0
0 1

)
mod 2 and z3z4z5 · · · = βbβb · · · , thus T (3) = SU(1);

– P (4) = MbMβMbMβOb =

(
1 1
1 0

)
mod 2 and z4z5z6 · · · = bβbβ · · · , thus T (4) = US(1);

– P (5) = MbMβMbMβMbOβ =

(
0 1
1 1

)
mod 2 and z5z6z7 · · · = βbβb · · · , thus T (5) = UU(1).

By simple computations we get

MbMβMbMβMbMβ = I mod 2 ,

where I is the identity matrix. Then we have

P (6) = MbMβMbMβMbMβOb = Ob mod 2 .

We have also z6z7z8 · · · = bβbβ · · · = z0z1z2 · · · . So we can conclude that w(6) has the same type as w(0), which
is SU(1). Similarly, w(7) has the same type as w(1) etc.

Now we use Corollary 4.4 to describe the derived sequences of the Rote sequence

g = 001110011100011000110001110011100011 · · ·

associated with the Fibonacci sequence f . Since all derived sequences of f are the same and f has three distinct
types of bispecial prefixes, there are exactly three distinct derived sequences of g: dg(x(0)), dg(x(1)) and dg(x(2)).

Finally, we show how to construct these derived sequences dg(x(0)), dg(x(1)) and dg(x(2)). Since the type
of x(0) is SU(1), the return words A,B,C to the prefix x(0) correspond to the Sturmian factors r, sr2s and
srs, respectively, where r, s are the return words to w(0), see Theorem 3.10. Thus we have to decompose the
sequence d ∈ {r, s}N

d = rsrrsrsrrsrrsrsrrsrsrrsrrsrsrrsrrsrs · · ·

onto blocks r, sr2s and srs. The order of these blocks gives us the derived sequence of g to x(0)

dg(x(0)) = ABABAACAACAABABAAC · · · .
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The type of w(1) is US(1), so the return words A,B,C to x(1) correspond to the Sturmian factors rr, rsr, s,
respectively. So we decompose d onto blocks rr, rsr, s and we get

dg(x(1)) = BBCACACBBCACACBBBC · · · .

The type of w(2) is UU(1), so the return words A,B,C to x(2) correspond to the Sturmian factors rr, rs, sr,
respectively. So we decompose d onto blocks rr, rs, sr and we get

dg(x(2)) = BACCBACCBBACBBACBB · · · .

As explained in Section 4, the derived sequences dg(x(0)), dg(x(1)) and dg(x(2)) are 3iet sequences. We can
find the parameters of their interval exchange transformations using Proposition 4.2. The Fibonacci sequence
has the slope α = 1

τ and the intercept ρ = 1− 1
τ = 2− τ , where τ denotes the golden ratio (1+

√
5)/2. Thus these

derived sequences are 3iet sequences coding the intercept 2− τ under the three interval exchange transformation
T with the parameters β, γ and the permutation π as follows:

– for dg(x(0)) the parameters are β = 1
τ , γ = 2

τ − 1 and π = (3, 2, 1);

– for dg(x(1)) the parameters are β = 2
τ − 1, γ = 2− τ and π = (3, 2, 1);

– for dg(x(2)) the parameters are β = 2
τ − 1, γ = 2− τ and π = (2, 3, 1).

6. Derived sequences of substitutive complementary symmetric
Rote sequences

The aim of this section is to decide when a Rote sequence associated with a standard Sturmian sequence is
primitive substitutive, i.e. it is a morphic image of a fixed point of a primitive morphism. First we explain why
a Rote sequence v cannot be purely primitive substitutive, i.e. cannot be fixed by a primitive morphism.

Lemma 6.1. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v). Then v is not
a fixed point of a primitive morphism.

Proof. Let us assume that v is fixed by a primitive morphism ϕ. Then the vector of letter frequencies (ρ0, ρ1)>

is an eigenvector to the dominant eigenvalue Λ of the matrix Mϕ ∈ N2×2. As the language of v is closed under
the exchange of letters 0↔ 1, the vector of frequencies is (ρ0, ρ1)> = ( 1

2 ,
1
2 )>, see [28]. Since all entries of the

primitive matrix Mϕ are integer, an eigenvalue to a rational eigenvector is an integer number. Moreover, by the
Perron-Frobenius theorem the dominant eigenvalue of any primitive matrix with entries in N is bigger then 1,
i.e. Λ > 1. The second eigenvalue Λ′ (i.e. the other zero of the quadratic characteristic polynomial of Mϕ) is
integer, too.

Let x be a prefix of v and dv(x) be the derived sequence of v to the prefix x. Let us assume that dv(x) is
fixed by a primitive morphism ψ. By Proposition 4.2, the derived sequence dv(x) is a ternary sequence coding
a three interval exchange transformation. The letter frequencies in any 3iet sequence are given by the lengths
of the corresponding subintervals. The lengths of three subintervals described in Proposition 4.2 are irrational
as the slope α of a Sturmian sequence is irrational. Therefore, the vector of frequencies and consequently the
dominant eigenvalue of the matrix Mψ is irrational as well.

For a sequence fixed by a primitive morphism η, Durand in [17] proved that any its derived sequence is fixed
by some morphism, say ξ, and each eigenvalue λ of Mξ either belongs to the spectrum of Mη or its modulus |λ|
belongs to {0, 1}.

Applying this result to the morphisms ϕ fixing the Rote sequence v and the morphism ψ fixing its derived
sequence dv(x) we get that the spectrum of Mψ is a subset of {Λ,Λ′, 0} ∪ {y ∈ C : |y| = 1}. Thus the dominant
eigenvalue of the matrix Mψ (which is by the Perron-Frobenius theorem bigger than 1) cannot be irrational.
This is a contradiction.
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Despite the previous lemma, we will show in Theorem 6.3 that a Rote sequence is primitive substitutive when-
ever the associated Sturmian sequence is primitive substitutive. For the proof we need to study the periodicity
of the types of bispecial prefixes in Sturmian sequences.

Proposition 6.2. Let u be a standard Sturmian sequence with an eventually periodic directive sequence z with
a period Q. Then there exists q ∈ {1, 2, 3} such that the sequence

(
P (n)

)
n∈N is eventually periodic with a period

qQ.

Proof. Let p be a preperiod of the directive sequence z = z0z1z2 · · · . We denote

H = MzpMzp+1
· · ·Mzp+Q−1

mod 2 .

The matrix H belongs to the set of matrices displayed in (5.2). One can easily verify that

(i) if H ∈
{(

1 1
0 1

)
,

(
1 0
1 1

)
,

(
0 1
1 0

)}
, then H2 = I mod 2;

(ii) if H ∈
{(

0 1
1 1

)
,

(
1 1
1 0

)}
, then H3 = I mod 2.

Let q be the smallest positive integer such that Hq = I mod 2, obviously q ∈ {1, 2, 3}. To conclude the proof
we show that the sequence

(
P (n)

)
n∈N has a preperiod p and a period qQ. Let n ≥ p and m = n + qQ. By

Proposition 5.9 and the fact that zi = zi+qQ for any i ≥ p we can write

P (n) = Mz0 · · ·Mzn−1Ozn =
(
Mz0 · · ·Mzp−1

)(
Mzp · · ·Mzn−1

)
Ozn ,

P (n+qQ) = P (m) = Mz0 · · ·Mzm−1Ozm =
(
Mz0 · · ·Mzp−1

)
Hq

(
Mzp · · ·Mzn−1

)
Ozn = P (n) .

Theorem 6.3. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v). Then the
Rote sequence v is primitive substitutive if and only if the Sturmian sequence u is primitive substitutive.

Proof. The proof is based on two results:
– A standard Sturmian sequence is primitive substitutive if and only if its directive sequence z ∈ {b, β}N is

eventually periodic, see Observation 2.3.
– A sequence is primitive substitutive if and only if it has finitely many derived sequences, see Theorem 2.1.

Let us assume that u is primitive substitutive and Q is a period of its directive sequence z = z0z1z2 · · · . By
Corollary 5.4, the sequence

(
du(w(n))

)
n∈N is eventually periodic with the same period Q.

Remind that the type T (n) of a bispecial prefix w(n) is determined by the bottom row of the matrix P (n)

and by the length of the maximal monochromatic prefix of the sequence znzn+1zn+2 · · · . By Proposition 6.2,
the sequence

(
T (n)

)
n∈N is eventually periodic with the period qQ.

It implies that the sequence of pairs
(
T (n),du(w(n))

)
n∈N is eventually periodic with the period qQ, too.

Then by Corollary 4.4, the Rote sequence v has only finitely many derived sequences and thus the sequence v
is primitive substitutive.

On the other hand, if v is primitive substitutive, v has only finitely many derived sequences. Then by
Corollary 4.4 the associated Sturmian sequence u has only finitely many derived sequences and thus u is
primitive substitutive.

Corollary 6.4. Let v be a Rote sequence associated with a standard Sturmian sequence u = S(v) fixed by a
primitive morphism ϕz, where z ∈ {b, β}+. Then v has at most 3|z| distinct derived sequences to its non-empty
prefixes and each of them is fixed by a primitive morphism over a ternary alphabet.



144 K. MEDKOVÁ ET AL.

Proof. Using the notation from the proofs of Proposition 6.2 and Theorem 6.3, the sequence of pairs(
T (n),du(w(n))

)
n∈N has a preperiod p and a period qQ, where q ∈ {1, 2, 3}. Since now the directive sequence

z = z∞ is purely periodic, we can choose p = 0 and Q = |z|. Each pair
(
T (n),du(w(n))

)
uniquely determines a

derived sequence in v, and thus there are at most qQ ≤ 3|z| distinct derived sequences to non-empty prefixes
of v.

For the second part of the statement, it suffices to apply Durand’s result from [16]: if a sequence d is the
derived sequence to two distinct prefixes, then d is a fixed point of some morphism.

Let us stress that the previous corollary does not speak about the derived sequence to the prefix ε. In this
case the derived sequence dv(ε) is the sequence v itself and by Lemma 6.1 it is not a fixed point of any primitive
morphism.

Remark 6.5. The number of derived sequences of a Rote sequence v may be smaller than the value 3|z|
announced in Corollary 6.4 and also smaller than the value qQ found in the proof. There are two reasons which
may diminish the number:

(i) The period Q of the sequence
(
du(w(n))

)
n∈N comes from the period Q of the directive sequence z = z∞,

where the word z ∈ {b, β}+ describes the Sturmian morphism ϕz. If the word z is not primitive, i.e. z = ym for
some y ∈ {b, β}+ and m ∈ N,m ≥ 2, we can replace |z| by the smaller number |y|. But even if z is primitive,
the minimal period of

(
du(w(n))

)
n∈N may be smaller. It happens for example in the Fibonacci case, where we

consider the morphism ϕbβ , i.e. z = bβ, see Example 5.13.
(ii) The sequence of matrices

(
P (n)

)
n∈N has the guaranteed period qQ. But since the type T (n) is determined

only by the bottom row of the matrix P (n), it may also happen that T (m) = T (n) for a pair n,m ∈ N, n < m <
n+ qQ.

By the proof of Corollary 6.4, if two distinct prefixes of v has the same derived sequence, then this common
derived sequence is fixed by some morphism. Durand in [16] provided a construction of this fixing morphism.

Durand’s construction of fixing morphisms

Here we remind the construction only for the case when each non-empty prefix x of the sequence v has
exactly three return words in v. We assume:

– x and x′ are prefixes of a sequence v ∈ AN such that |x| < |x′|;
– A,B,C ∈ A+ are the return words to x and A′, B′, C ′ ∈ A+ are the return words to x′;
– the derived sequences dv(x) over {A,B,C} and dv(x′) over {A′, B′, C ′} satisfy

dv(x′) = π
(
dv(x)

)
, where π is the projection A→ A′, B → B′, C → C ′.

Since x is a prefix of x′, the words A′, B′, C ′ are concatenations of the words A,B,C and we can write A′, B′, C ′ ∈
{A,B,C}+. Thus one can find the words wA, wB , wC ∈ {A,B,C}+ such that A′ = wA, B′ = wB and C ′ = wC .
Then the derived sequence dv(x) is fixed by the morphism σ : {A,B,C}∗ → {A,B,C}∗ defined by

σ(A) = wA, σ(B) = wB , σ(C) = wC .

If v is a Rote sequence associated with a standard Sturmian sequence u, the Durand’s construction can be
transformed into the manipulation with the factors of the Sturmian sequence u instead of factors of the Rote
sequence v.

Let x, x′ be two non-empty bispecial prefixes of v with the same derived sequence, i.e. dv(x) = dv(x′), and
let |x| < |x′|. By Corollary 2.8, w := S(x) and w′ := S(x′) are bispecial prefixes of u. By Corollary 4.4, w and w′

have the same type and the same derived sequence of u. Denote by r, s the most frequent and the less frequent
return word to w in u and analogously denote the return words r′, s′ to the prefix w′.
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Let A,B,C and A′, B′, C ′ be the return words to x and x′ in v, respectively. Put

a := S(A0) , b := S(B0) , c := S(C0) and a′ := S(A′0) , b′ := S(B′0) , c′ := S(C ′0) .

Theorem 3.10 implies a, b, c ∈ {r, s}+ and a′, b′, c′ ∈ {r′, s′}+. Recall that A′, B′, C ′ ∈ {A,B,C}+ and as the
types of bispecial prefixes w and w′ are the same, necessarily a′, b′, c′ ∈ {a, b, c}+ as well. Therefore we can find
the words wa, wb, wc ∈ {a, b, c}+ such that a′ = wa, b

′ = wb, c
′ = wc. Then the desired morphism σ fixing the

derived sequence dv(x) is defined by A→ π(wa), B → π(wb), C → π(wc), where π is the projection a→ A, b→
B, c→ C.

Moreover, if u is a fixed point of a primitive Sturmian morphism, then all its derived sequences are fixed
by some primitive Sturmian morphisms as well, see Corollary 5.4. Thus the search for the morphism σ can be
simplified as r′, s′ ∈ {r, s}∗ are images of r, s under a Sturmian morphism over the alphabet {r, s}.

Example 6.6. In Example 5.13 we have showed that the Rote sequence g associated with the Fibonacci
sequence f has three derived sequences dg(x(0)), dg(x(1)) and dg(x(2)). Now we find their fixing morphisms σ0,
σ1, and σ2, respectively.

Let us start with dg(x(0)). We have dg(x(0)) = dg(x(3)) and so df (w
(0)) = df (w

(3)). The return words to
w(0) are r = 0, s = 1 and the return words to w(3) are r′ = 01001, s′ = 010. Both w(0) and w(3) have the same
type SU(1). Thus the return words to x(0) correspond to blocks

a := S(A0) = r = 0 , b := S(B0) = srrs = 1001 , c := S(C0) = srs = 101

and the return words to x(3) correspond to blocks

a′ = r′ = 01001 , b′ = s′r′r′s′ = 0100100101001010 , c′ = s′r′s′ = 01001001010 ,

where we denote a′ := S(A′0), b′ := S(B′0) and c′ := S(C ′0).
If we decompose a′ = 01001 into a = 0, b = 1001, c = 101, we get a′ = ab. Similarly b′ = abaacaaca and

c′ = abaaca. So the fixing morphism σ0 is defined as follows:

σ0 :





A→ AB

B → ABAACAACA

C → ABAACA

.

Equivalently, we can also find σ0 without knowledge of the return words since the Fibonacci sequence f is
the fixed point of the Fibonacci morphism. As shown in Example 5.13, all derived sequences of f are equal to
the Fibonacci sequence over the alphabet {r, s} and so they are fixed by the morphism ψ : r → rs, s→ r. Since
the sequence of types (T (n))n∈N has a period 3, the return words r′ and s′ satisfy r′ = ψ3(r) and s′ = ψ3(s).
Therefore, it is enough to factorize a′ = ψ3(r), b′ = ψ3(srrs) and c′ = ψ3(srs) into the blocks a = r, b = srrs
and c = srs. We get

a′ = r′ = ψ3(r) = rsrrs = ab,
b′ = s′r′r′s′ = ψ3(srrs) = rsrrsrrsrsrrsrsr = abaacaaca,
c′ = s′r′s′ = ψ3(srs) = rsrrsrrsrsr = abaaca .

It exactly corresponds to the morphism σ0.
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Now we find a morphism σ1 fixing the derived sequence of g to the prefix x(1). As the bispecial prefix w(1)

has the type US(1), we work with the blocks a = rr, b = rsr and c = s. We apply the same method and we get

a′ = r′r′ = ψ3(rr) = rsrrsrsrrs = bbcac,
b′ = r′s′r′ = ψ3(rsr) = rsrrsrsrrsrrs = bbcacac,
c′ = s′ = ψ3(s) = rsr = b .

Thus the derived sequence dg(x(1)) is fixed by the morphism

σ1 :





A→ BBCAC

B → BBCACAC

C → B

.

Finally, as w(2) has the type UU(1), we work with the blocks a = rr, b = rs and c = sr and we get

a′ = r′r′ = ψ3(rr) = rsrrsrsrrs = baccb,
b′ = r′s′ = ψ3(rs) = rsrrsrsr = bacc,
c′ = s′r′ = ψ3(sr) = rsrrsrrs = bacb .

Therefore, the morphism fixing the derived sequence dg(x(2)) is

σ2 :





A→ BACCB

B → BACC

C → BACB

.

We finish this section by an algorithm for finding the morphisms fixing the derived sequences of Rote
sequences. To simplify the notation we use the cyclic shift operation cyc : {b, β}+ → {b, β}+ defined by

cyc(z0z1 · · · zQ−1) = z1z2 · · · zQ−1z0 .

By Corollary 5.4, if z = z∞, where z = z0z1 · · · zQ−1 ∈ {b, β}+, is a directive sequence of a Sturmian sequence u,
then the derived sequence du(w(n)) to the nth bispecial prefix of u has the directive sequence z(n) =

(
cycn(z)

)∞
,

and thus du(w(n)) is fixed by the morphism ϕcycn(z).

Algorithm 6.7.
Input: z ∈ {b, β}∗ such that both b and β occur in z.

Output: the list of morphisms over {A,B,C} fixing the derived sequences of the Rote sequence v associated
with the fixed point of the morphism ϕz.

1. Denote Q = |z|, z = z0z1z2 · · · = z∞ and H = Mz.

2. Find the minimal q ∈ {1, 2, 3} such that Hq = I mod 2.

3. For i = 0, 1, 2, . . . , qQ− 1 do:

– Compute P (i) = Mz0Mz1 · · ·Mzi−1Ozi mod 2 and determine the type T (i).
– Rewrite ϕcyci(z) into the alphabet {r, s} by the rule 0→ r, 1→ s if the first letter of cyci(z) is b and by

the rule 0→ s, 1→ r otherwise Denote this morphism ψ.
– Define a, b, c ∈ {r, s}+ according to the type T (i).
– Compute ψq(a), ψq(b), ψq(c).
– Decompose the words ψq(a), ψq(b), ψq(c) into the blocks a, b, c, i.e., find wa, wb, wc ∈ {a, b, c}+ such that
ψq(a) = wa, ψ

q(b) = wb, ψ
q(c) = wc.
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– Put into the list the morphism σi : A→ π(wa), B → π(wb), C → π(wc), where the projection π rewrites
a→ A, b→ B, c→ C.

Example 6.8 (Example 5.10 continued). Our aim is to describe the derived sequences of the Rote sequence
associated with the fixed point of ϕbβb. Each its derived sequence is fixed by a primitive morphism which we
find with Algorithm 6.7 to the input z = bβb.

1. Q = |bβb| = 3, z = (bβb)∞ and H = MbMβMb =

(
0 1
1 0

)
.

2. q = 2 as H2 = I mod 2.

3. For i = 0, 1, ..., 5 (we illustrate the step only for i = 2) do:

– P (2) = MbMβOb =

(
0 1
1 1

)
mod 2 and z2z3z4 · · · = bbβ · · · , thus T (2) = UU(2).

– ϕcyc2(bβb) = ϕbbβ :

{
0→ 0010
1→ 001

and thus ψ :

{
r → rrsr
s→ rrs

.

– a = rr , b = rs, c = sr.

– Since ψ2(r) = rrsrrrsrrrsrrsr and ψ2(s) = rrsrrrsrrrs, we have

ψ2(a) = ψ2(rr) = rrsrrrsrrrsrrsrrrsrrrsrrrsrrsr;

ψ2(b) = ψ2(rs) = rrsrrrsrrrsrrsrrrsrrrsrrrs;

ψ2(c) = ψ2(sr) = rrsrrrsrrrsrrsrrrsrrrsrrsr.

– ψ2(a) = rr︸︷︷︸
a

sr︸︷︷︸
c

rr︸︷︷︸
a

sr︸︷︷︸
c

rr︸︷︷︸
a

sr︸︷︷︸
c

rs︸︷︷︸
b

rr︸︷︷︸
a

rs︸︷︷︸
b

rr︸︷︷︸
a

rs︸︷︷︸
b

rr︸︷︷︸
a

rs︸︷︷︸
b

rr︸︷︷︸
a

sr︸︷︷︸
c

,

thus wa = acacacbabababac;

ψ2(b) = rr︸︷︷︸
a

sr︸︷︷︸
c

rr︸︷︷︸
a

sr︸︷︷︸
c

rr︸︷︷︸
a

sr︸︷︷︸
c

rs︸︷︷︸
b

rr︸︷︷︸
a

rs︸︷︷︸
b

rr︸︷︷︸
a

rs︸︷︷︸
b

rr︸︷︷︸
a

rs︸︷︷︸
b

,

thus wb = acacacbababab;

ψ2(c) = rr︸︷︷︸
a

sr︸︷︷︸
c

rr︸︷︷︸
a

sr︸︷︷︸
c

rr︸︷︷︸
a

sr︸︷︷︸
c

rs︸︷︷︸
b

rr︸︷︷︸
a

rs︸︷︷︸
b

rr︸︷︷︸
a

rs︸︷︷︸
b

rr︸︷︷︸
a

sr︸︷︷︸
c

,

thus wc = acacacbababac.

– We add to the list the morphism

σ2 :





A→ ACACACBABABABAC

B → ACACACBABABAB

C → ACACACBABABAC

.

7. Original Rote’s construction and morphisms on four versus
three letter alphabet

In the original Rote’s paper [30], the author also construct Rote sequences as projections of fixed points on
a four letter alphabet. Let us define the morphism ξ and the projection π as follows:

ξ :





1→ 13

2→ 24

3→ 241

4→ 132

and π :





1→ 0

2→ 1

3→ 0

4→ 1

.
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The morphism ξ has two fixed points. We take its fixed point q starting with the letter 1, i.e.

q = 13241241321324132132412413241241321324124132412413 · · · ,

and we apply the projection π to construct the complementary symmetric Rote sequence:

r = π(q) = 00110110010011001001101100110110010011011001101100 · · · .

Using the operation S (see Def. 2.5), we obtain the associated Sturmian sequence

s = S
(
r
)

= 0101101011010101101011010101101011010110101011010 · · · .

This example was in fact the beginning of this work. We notice that if we add the first letter 1 to the
associated Sturmian sequence s, we get the Sturmian sequence

u = 1s = 101011010110101011010110101011010110101101010110101 · · ·

which is also fixed by a morphism, namely by the morphism:

ψ :

{
0→ 101

1→ 10
.

The question is how to link this Rote’s example to our construction.
In fact, the morphism ψ is a standard Sturmian morphism with the decomposition ψ = ϕβϕbE. Thus we can

use our techniques to find the return words and the derived sequence to the prefix x = 01 of the Rote sequence

v = 0110010011011001101100100110010011011001001100100110 · · · .

associated with the sequence u. We obtain the return words A = 0110, B = 010 and C = 011. The derived
sequence dv(x) of v to the prefix x = 01 is fixed by the morphism

σ :





A→ ABC

B → AC

C → AB

.

The Rote sequence v is clearly the image of the fixed point of σ, i.e. the derived sequence dv(x), under the
projection ρ defined as:

ρ(A) = 0110 , ρ(B) = 010 , ρ(C) = 011 .

As u = 1s, their associated Rote sequences v and r are tied by

v = 011001001101100110110010011 · · · = 100110110010011001001101100 · · · = 1r .

Moreover, all return words to 01 in v obviously start with 0. Thus the original Rote sequence r is the image of
the fixed point of σ under the projection ρ′ defined as

ρ′(A) = 1100 = 0011, ρ′(B) = 100 = 011, ρ′(C) = 110 = 001.
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In other words, r = π(q) = ρ′(dv(x)) .
The morphism ξ on a four letter alphabet can be recovered as follows. We write the images of the projection

ρ′ as suitable projections by π, more precisely

ρ′(A) = 0011 = π(1324), ρ′(B) = 011 = π(124), ρ′(C) = 001 = π(132) .

Then the projections of the images of the morphism σ can be expressed as

ρ′(σ(A)) = ρ′(ABC) = π(1324124132) = π(ξ(1)ξ(3)ξ(2)ξ(4)) ,

ρ′(σ(B)) = ρ′(AC) = π(1324132) = π(ξ(1)ξ(2)ξ(4)) ,

ρ′(σ(C)) = ρ′(AB) = π(1324124) = π(ξ(1)ξ(3)ξ(2)) ,

and by recoding to the suffix code {13, 24, 241, 132} we get the morphism ξ as above.

Finally, let us mention that we are able to generalize the original example as follows. For n ∈ N consider the
morphism ξn defined as

ξn :





1→ 13

2→ 24

3→ (2413)n241

4→ (1324)n132

.

Then the π projection of its fixed point r starting with 1 can be seen as the ρ′ projection of the fixed point of
the morphism σn, where σn and ρ′ are the following:

σn :





A→ AnABAnC

B → AnAC

C → AnAB

and ρ′ :





A→ 0011

B → 011

C → 001

.

Nevertheless, our technique with morphisms on a three letter alphabet is more natural and is based on the
nice properties of return words and derived sequences. This is why we have chosen to write the paper to develop
the whole theory of substitutive Rote sequences.

Remark 7.1. The Rote sequence r from the beginning of this section is connected to the fixed point u of the
Sturmian morphism ψ = ϕβϕbE. Of course, u is fixed also by the morphisms ψ2 = ϕβbbβ which we have studied
in Remark 5.12. It can be shown that the Rote sequence v associated with this u is exceptional among all Rote
sequences associated with standard Sturmian sequences since it has only two distinct derived sequences to its
prefixes. The other Rote sequences have at least three derived sequences.

8. Comments

In this paper, we have studied only the Rote sequences whose associated Sturmian sequences are standard.
By definition, the intercept of a standard Sturmian sequence u is equal to 1 − α, where α is the density of
the letter 0 in u. For such a sequence we have used its S-adic representation z consisting of the morphisms
ϕb : 0→ 0, 1→ 01 and ϕβ : 0→ 10, 1→ 1. In particular, we have used the result from [23] which says that each
suffix of z represents a derived sequence of u.

In [14] M. Dekking studied properties of some submonoids of the Sturmian monoid. In particular, he con-
sidered the submonoid (we kept his notation) M3,8 generated by two morphisms ψ3 : 0 → 0, 1 → 01 and
ψ8 : 0 → 01, 1 → 1. Theorem 3 from [14] says that any fixed point u of a primitive morphism from M3,8 is



150 K. MEDKOVÁ ET AL.

a Sturmian sequence with the intercept 0. Obviously, this u has an S-adic representation z consisting of the
morphisms ψ3 and ψ8. But unlike the case of standard Sturmian sequences, in this case only some of suffixes of
z represent derived sequences to prefixes of u, see [23]. It would be interesting to know how this fact influences
the set of derived sequences of a Rote sequence associated with a Sturmian sequence with the intercept 0.

The definition of derived sequences of u as introduced in [16] takes into account only the prefixes of u.
Recently, Yu-Ke Huang and Zhi-Ying Wen in [20] have considered also the derived sequences of u to non-prefix
factors of u. Recall that if u is a fixed point of a primitive morphism, then by Durand’s result from [16], any
derived sequence to a prefix of u is fixed by a primitive morphism as well. However, a derived sequence to a
non-prefix factor of u need not to be fixed by a non-identical morphism at all.

Huang and Wen study the period-doubling sequence p, i.e. the sequence fixed by the morphism 0 7→ 11, 1 7→
10. They show that there exist two sequences Θ1 and Θ2 such that any derived sequence d to a factor of u is
equal to Θ1 or Θ2. Moreover, any derived sequence d′ to a factor of d is equal to Θ1 or Θ2 and any derived
sequence d′′ to a factor of d′ is equal to Θ1 or Θ2, etc. They called this property Reflexivity. It may be interesting
to look for sequences with Reflexivity among Rote or Sturmian sequences.

Let us note that the period-doubling sequence p and the Thue-Morse sequence t, i.e. the sequence fixed by
the morphism 0 7→ 01, 1 7→ 10, are linked with the same mapping S which associates the Rote and Sturmian
sequences (see Def. 2.5): S(t) = p.

By Corollary 6.4, a Rote sequence v associated with a fixed point u of a primitive standard Sturmian
morphism ϕz has at most 3|z| distinct derived sequences. On the other hand, if ϕz is not a power of any
other morphism, then the Sturmian sequence u has exactly |z| distinct derived sequences (see [23]) and thus
by Corollary 4.1, the Rote sequence v has at least |z| distinct derived sequences. In all examples for which we
have listed the derived sequences of the fixed point of such a ϕz, the actual number of derived sequences was
|z|, 2|z| or 3|z|. We do not know whether some other values can also appear.
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Abstract

The non-repetitive complexity nrCu and the initial non-repetitive complexity inrCu are functions
which reflect the structure of the infinite word u with respect to the repetitions of factors of a given
length. We determine nrCu for the Arnoux–Rauzy words and inrCu for the standard Arnoux–Rauzy
words. Our main tools are S-adic representation of Arnoux–Rauzy words and description of return
words to their factors. The formulas we obtain are then used to evaluate nrCu and inrCu for the
d-bonacci word.

Keywords: Arnoux–Rauzy word, directive sequence, factor complexity, non-repetitivity
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1. Introduction

Variability of an infinite word u = u0u1u2 · · · over a finite alphabet can be judged from distinct
points of view depending on applications or combinatorial properties one is interested in. The
factor complexity of u, here denoted Cu, is a function which to any n ∈ N assigns the number of
distinct factors of length n occurring in u. More formally, Cu(n) = #{uiui+1 · · ·ui+n−1 : i ∈ N}.

For the simplest infinite words, namely the eventually periodic words, the factor complexity is
bounded from above by a constant. In [13], Morse and Hedlund showed that the factor complexity
of an infinite word which is not eventually periodic satisfies Cu(n) ≥ n + 1 for each n ∈ N. If the
equality takes place for each n, the word u is called Sturmian. Sturmian words represent the most
intensively studied class of infinite words. To measure the regularity of an infinite word, Morse
and Hedlund introduced the recurrence function Ru. The value Ru(n) is defined to be the minimal
integer m such that any factor of u of length n occurs at least once in uiui+1ui+2 · · ·ui+m−1 for
every i ∈ N. In the same paper [13], the authors evaluated Ru(n) for any Sturmian word.

A dual function to Ru was recently introduced by Moothathu [12] under the name non-repetitive
complexity function nrCu. The value nrCu(n) is defined as the maximal m such that for some i ∈ N
any factor of u of length n occurs at most once in uiui+1ui+2 · · ·ui+m+n−2. He also considered
a “prefix variant” of this function called the initial non-repetitive complexity function inrCu. By
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definition, inrCu(n) is the maximal length m of a prefix of u such that each factor of u of length
n occurs in u0u1 · · ·um+n−2 at most once. Obviously,

inrCu(n) ≤ nrCu(n) ≤ Cu(n) ≤ Ru(n)− n+ 1 for each n ∈ N.

Moothathu’s concept of the initial non-repetitive complexity function was developed in [14] by
Nicholson and Rampersad. They described some general properties of inrCu and evaluated inrCu
for the Fibonacci, Tribonacci and Thue–Morse words. Note that the Fibonacci word and the
Tribonacci word belong to the class of standard binary and ternary, respectively, Arnoux–Rauzy
words. The Arnoux–Rauzy words represent one of the generalizations of Sturmian words to multi-
letter alphabets. The recurrence function Ru for Arnoux–Rauzy words was determined in [7]. The
initial non-repetitive complexity function for Sturmian sequences was recently studied by Bugeaud
and Kim [5]. Their motivation for this study comes from the connection between the irrational
exponent of a number x and inrCu, where u corresponds to the expansion of x in a given base.

In the present article we focus on the non-repetitive complexity of Arnoux–Rauzy words. Using
the S-adic representation of a given Arnoux–Rauzy word u, we provide in Theorem 13 a formula
for computing nrCu(n) for each n ∈ N. In particular, we show (Theorem 5) that any Sturmian
word (i.e., binary Arnoux–Rauzy word) u satisfies nrCu(n) = Cu(n) for each n ∈ N. It is interesting
that this phenomenon can be observed also among the words with the maximal factor complexity.
In [14], the authors constructed a word over q letter alphabet such that qn = Cu(n) = nrCu(n).

For standard Arnoux–Rauzy words we determine in Theorem 21 also inrCu and thus we gene-
ralize Nicholson and Rampersad’s result on the Fibonacci and the Tribonacci words.

2. Preliminaries

An alphabet A is a finite set of symbols called letters. Here we fix the alphabet A = {0, 1, . . . , d−
1}, where d is a positive integer. A word w = w0 · · ·wn−1 over A is a finite sequence of letters from
A. The number of its letters is called the length of w and it is denoted by |w| = n. The notation
|w|a is used for the number of occurrences of the letter a in w. The empty word, i.e., the unique
word of length zero, is denoted by ε. The concatenation of words v = v0 · · · vk and w = w0 · · ·w`
is the word vw = v0 · · · vkw0 · · ·w`. The set of all finite words over A equipped with the operation
concatenation of words is a free monoid and it is denoted A∗. The Parikh vector of a word w ∈ A∗
is the vector ~V (w) = (|w|0, |w|1, . . . , |w|d−1)>. Obviously, |w| = (1, 1, · · · , 1) · ~V (w).

An infinite sequence of letters u = (ui)i≥0 in A is called infinite word. The set of all infinite
words over A is denoted AN. The word u ∈ AN is said to be eventually periodic if it is of the form
u = vzω, where v, z ∈ A∗, z 6= ε and zω = zzz · · · . Otherwise, u is aperiodic.

A factor of a (finite of infinite) word w is a finite word v such that w = svt for some words
s, t ∈ A∗. Moreover, if s = ε, then v is called a prefix of w and if t = ε, then v is called a suffix of
w. The set of all factors of an infinite word u is called the language of u and denoted by Lu. By
Lu(n) we denote the set of factors of u of length n, i.e., Lu(n) = Lu ∩ An. Using this notation,
the factor complexity of u can be expressed as Cu(n) = #Lu(n) for every n ∈ N. In this paper, we
focus on the (initial) non-repetitive complexity.

Definition 1. The non-repetitive complexity nrCu and the initial non-repetitive complexity inrCu
of an infinite word u are functions defined for each n ∈ N as follows

nrCu(n) := max{m ∈ N : ∃k ∈ N s.t. ui · · ·ui+n−1 6= uj · · ·uj+n−1 ∀i, j with k ≤ i < j ≤ k+m−1},
inrCu(n) := max{m ∈ N : ui · · ·ui+n−1 6= uj · · ·uj+n−1 ∀i, j with 0 ≤ i < j ≤ m− 1} .
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A factor w of u is right special if there exist two distinct letters a, b ∈ A such that wa and
wb belong to Lu. Analogously, w is left special if aw and bw belong to Lu for two distinct letters
a, b ∈ A. A factor which is both left and right special is called bispecial. If u is aperiodic, then for
any length n at least one factor w ∈ Lu(n) is left special and at least one factor v ∈ Lu(n) is right
special.

Factors of an infinite word u can be visualized by the so-called Rauzy graphs Γu(n), n ∈ N.
The set of vertices of Γu(n) is Lu(n) and the set of its edges is Lu(n + 1). An oriented edge
e ∈ Lu(n+ 1) starts in u ∈ Lu(n) and ends in v ∈ Lu(n) if u is a prefix of e and v is a suffix of e.
If w ∈ Lu(n), we denote

N+(w) = {v ∈ Lu(n) : w is a prefix and v is a suffix of an edge e ∈ Lu(n+ 1)} ,
N−(w) = {v ∈ Lu(n) : v is a prefix and w is a suffix of an edge e ∈ Lu(n+ 1)} .

Any factor v ∈ Lu(n+m) with a prefix u ∈ Lu(n) corresponds to an oriented path of length m in
Γu(n) starting with the vertex u.

The occurrence of the word w in u = u0u1u2 · · · is every index i ∈ N such that w is a prefix of
the word uiui+1ui+2 · · · . The factor of length n which occurs at the position i is denoted by fn(i).
Hence, fn(i) = w if w ∈ Lu(n) and w is a prefix of uiui+1ui+2 · · · . An infinite word u is said to
be recurrent if each of its factors has at least two occurrences in u. If i < j are two consecutive
occurrences of w in u, then the word uiui+1 · · ·uj−1 is called the return word to w in u. If the
set of all return words to w in u is finite for each factor w of u, the word u is called uniformly
recurrent.

A morphism of the free monoid A∗ is a map ψ : A∗ → A∗ such that ψ(vw) = ψ(v)ψ(w) for
all v, w ∈ A∗. The incidence matrix of ψ is d × d matrix Mψ given by [Mψ]ab = |ψ(b)|a. The
incidence matrix of ψ can be used to compute the Parikh vector of the image of a word w under
ψ:

~V (ψ(w)) = Mψ · ~V (w) . (1)

The domain of a morphism ψ of A∗ can be naturally extended to AN by putting ψ(u) =
ψ(u0u1u2 · · · ) = ψ(u0)ψ(u1)ψ(u2) · · · . An infinite word u is called a fixed point of the morphism
ψ if u = ψ(u).

3. Arnoux–Rauzy words

The Sturmian words can be described by many equivalent properties, for their list (which
is far from being complete) see for example [2]. These properties offer several possibilities for
generalization. One of them was used by Arnoux and Rauzy in [1] to introduce the words today
known under their names.

Definition 2. A recurrent infinite word u ∈ AN is a d-ary Arnoux–Rauzy word if for all n it has
(d− 1)n+ 1 factors of length n with exactly one left and one right special factor of length n.

Over the binary alphabet the Arnoux–Rauzy words coincide with the Sturmian words. The
Arnoux–Rauzy words belong to a broader family of episturmian words (e.g., see [9]). They are
also embedded in the very general concept of tree sets introduced in [4] which comprises several
generalizations of Sturmian words to multi-letter alphabet. The Arnoux–Rauzy words share many
properties with the Sturmian words (e.g., see [15, 10, 8]). Here we recall some of them. If u is a
d-ary Arnoux–Rauzy word, then
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• there exists a dominant letter a ∈ A such that a occurs in each factor from Lu(2);

• Lu is closed under reversal, i.e., w = w0w1 · · ·wn−1 ∈ Lu implies w̄ = wn−1 · · ·w1w0 ∈ Lu;

• each bispecial factor w of u is a palindrome, i.e., w = w̄;

• u is uniformly recurrent;

• any factor of u has exactly d return words in u.

On the other hand, some properties of Sturmian words are not present in d-ary Arnoux–Rauzy
words when d ≥ 3. An example of such a property is the so-called balancedness. Already Hedlund
and Morse [13] proved that a binary aperiodic word u is Sturmian if and only if for any pair
v, w ∈ Lu of factors of the same length the inequality |v|a−|w|a ≤ c = 1 holds for any letter a ∈ A.
This property is not preserved in Arnoux–Rauzy words, even if the constant c = 1 is allowed to
depend on d. For a detailed study of this problem, see [3].

If each prefix of an Arnoux–Rauzy word u is left special, then u is called standard. For each
Arnoux–Rauzy word v, there exists a unique standard Arnoux–Rauzy word u such that Lu = Lv.
We will work with the S-adic representation of the Arnoux–Rauzy words as described in [8].
Therefore we define the set S of elementary morphisms over the alphabet A = {0, 1, . . . , d− 1}.

For i = 0, 1, . . . , d− 1 we put ϕi :

{
i→ i ;
j → ij for j 6= i .

(2)

Any standard Arnoux–Rauzy word u is an image of a standard Arnoux–Rauzy word u′ under
a morphism ϕi, where the letter i coincides with the dominant letter of u. This property enables
us to assign to any standard Arnoux–Rauzy word a sequence (in)n≥0 of indices and a sequence(
u(n)

)
n≥0 of standard Arnoux–Rauzy words such that

u = u(0) and u(n) = ϕin
(
u(n+1)

)
for each n ∈ N. (3)

The sequence (in)n≥0 is called the directive sequence of u.

For any standard Arnoux–Rauzy word u, both sequences (in)n≥0 and
(
u(n)

)
n≥0 are uniquely

given. Moreover, every letter i ∈ A occurs in (in)n≥0 infinitely many times. On the other hand,
a sequence (in)n≥0 which contains each letter of A infinitely many times determines a unique
Arnoux–Rauzy word and thus the unique sequence

(
u(n)

)
n≥0, cf. [15].

Example 3. The most famous Sturmian word is the Fibonacci word which is the fixed point of
so-called Fibonacci morphism defined as τ : 0 → 01, 1 → 0. Analogously, for every integer d ≥ 2
we define the d-bonacci word t as the fixed point of the d-bonacci morphism

τ :

{
a → 0(a+ 1) for a = 0, . . . , d− 2 ,

(d− 1) → 0 .

It is a d-ary standard Arnoux–Rauzy word. By simple computations we get τd = ϕ0ϕ1 · · ·ϕd−1 and
so its directive sequence (in)n≥0 is (0 1 2 · · · d − 1)ω, i.e., its nth element in ∈ A satisfies in ≡ n
mod d for any n ∈ N. Over a ternary alphabet the word and the corresponding morphism is usually
called Tribonacci word and morphism, respectively.
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4. Special factors and non-repetitive complexity

First we show the role that special factors play in the evaluation of non-repetitive complexity.
Let us recall that for a given infinite word u we denoted by fn(i) the factor of length n occurring
in u at the position i.

Lemma 4. Let u = u0u1u2 · · · be a recurrent aperiodic infinite word, n ∈ N and m = nrCu(n).
Then there exists h ∈ N such that

• the set L = {fn(h), fn(h+ 1), . . . , fn(h+m− 1)} contains m distinct factors of Lu(n);

• the factor fn(h− 1) is right special and belongs to L;

• the factor fn(h+m) is left special and belongs to L.

Proof. Let k be an integer such that the factors from L′ = {fn(k), fn(k + 1), . . . , fn(k + m − 1)}
are pairwise distinct. As u is recurrent, we can assume k ≥ 1. Since m is the maximal number of
distinct consecutive factors, there exist integers i and j such that

k ≤ i, j ≤ k +m− 1, fn(k − 1) = fn(i) and fn(k +m) = fn(j) .

We discuss two cases.
Case I: Assume k < j and i < k + m − 1. As fn(k + m) = fn(j), the factors fn+1(k + m − 1)
and fn+1(j − 1) of length n+ 1 have a common suffix of length n. It follows that uk+m−1 6= uj−1.
Otherwise fn(k+m−1) and fn(j−1) would coincide, which is a contradiction with our choice of k.
It means that uk+m−1fn(j) and uj−1fn(j) both belong to the language Lu. Thus fn(k+m) = fn(j)
is a left special factor. Analogously one can show that fn(k − 1) is a right special factor. Thus we
can choose h = k and L = L′.

Case II: Assume k = j or i = k + m − 1. Without loss of generality we may assume k = j, i.e.,
fn(k) = fn(k +m). Aperiodicity of u guarantees that there exists ` ∈ N such that

fn(k + q) = fn(k +m+ q) for each q = 0, 1, . . . , ` and fn(k + `+ 1) 6= fn(k +m+ `+ 1).

Therefore {fn(k+ `+ 1), fn(k+ `+ 2), . . . , fn(k+ `+m)} = L′. We set h = k+ `+ 1 and we show
that the factor fn(h− 1) = fn(k+ `) is right special and the factor fn(h+m) = fn(k+ `+m+ 1)
is left special.

Since fn(k + `) = fn(k + `+m) and fn(k + `+ 1) 6= fn(k + `+m+ 1), the letters uk+`+n and
uk+`+m+n differ. Hence, the factor fn(k + `) is right special. Since m is the maximal number of
distinct consecutive factors, fn(k+`+m+1) ∈ L′. By definition of `, fn(k+`+m+1) 6= fn(k+`+1),
and so fn(k+ `+m+ 1) = fn(k+ `+ p) for some 1 < p ≤ m. We conclude that fn(k+ `+m+ 1)
is left special using the same arguments as in Case I.

Theorem 5. Let u be a Sturmian word. Then nrCu(n) = n+ 1 for every n ∈ N.

Proof. Let n ∈ N. Any Sturmian word u has exactly one left and one right special factor of length
n. Let us denote them α and β, respectively. Therefore, in the Rauzy graph Γu(n) the vertex
α has indegree 2 and all other vertices have indegree 1 and the vertex β has outdegree 2 and all
others vertices have outdegree 1. Thus Γu(n) is a union of two cycles C0 and C1 which have a
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Figure 1: The Rauzy graph Γu(n) of the Sturmian word u.

common part, namely the path from α to β (see Figure 1). Denote by γ, δ, ζ, η the vertices such
that (β, γ), (β, δ), (ζ, α) and (η, α) are edges in Γu(n).

By Lemma 4, let h,m ∈ N be such that m = nrCu(n), L = {fn(h), fn(h+1), . . . , fn(h+m−1)},
#L = nrCu(n), α = fn(h+m) ∈ L and β = f(h− 1) ∈ L. Hence in the Rauzy graph Γu(n), there
exists a path starting in a vertex of N+(β), passing through α and β, and ending in a vertex of
N−(α). Moreover, this path cannot pass twice through the same vertex. The only possible paths
are the

γ → · · · → α→ · · · → β → δ → · · · → η and δ → · · · → α→ · · · → β → γ → · · · → ζ.

Both paths are hamiltonian, i.e., they are passing through all vertices of Γu(n) exactly once. It
follows that nrCu(n) = Cu(n) = n+ 1.

The previous theorem states that the factor complexity and the non-repetitive complexity
coincide for Sturmian words. In the next section we prove that this property is not preserved in
d-ary Arnoux–Rauzy words with d ≥ 3. Nevertheless, the equality nrCu = Cu we observed in
binary aperiodic words with the smallest factor complexity can take place also in a word with the
maximal factor complexity, as shown in [14]. The next corollary of Lemma 4 illustrates that the
equality nrCu = Cu forces the Rauzy graphs of a word u to have a very special form.

Corollary 6. Let u be a recurrent aperiodic word, n ∈ N, w ∈ Lu(n) and m = nrCu(n). Let h ∈ N
be such that fn(h− 1) and fn(h+m) are respectively the right and left special factors from Lemma
4. Assume nrCu(n) = Cu(n).

1. If w 6= fn(h− 1), then N+(w) contains at least #N+(w)− 1 left special factors.

2. If w 6= fn(h+m), then N−(w) contains at least #N−(w)− 1 right special factors.

Proof. If the factor w is not right special, then the set N+(w) consists of one element and the
statement is trivial. Let w 6= fn(h− 1) be a right special factor. We write it in the form w = as,
where a ∈ A and s ∈ Lu(n − 1). We denote q = #N+(w) and find distinct letters b1, b2, . . . , bq
such that N+(w) = {sb1, sb2, . . . , sbq}. Obviously, asbk ∈ Lu(n + 1) for each k = 1, 2, . . . , q. The
assumption nrCu(n) = Cu(n) implies that sbk occurs in the set L described in Lemma 4. It means
that fn(h + jk) = sbk for some index jk, 0 ≤ jk ≤ m − 1. Moreover, there exists an index p,
0 ≤ p ≤ m− 1 such that fn(h+ p) = w = as.

Let us look at the letter which precedes fn(h+ jk) = sbk, i.e., at the letter uh+jk−1:
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– if h = h+ jk, then uh+jk−1 6= a as w = as 6= fn(h− 1);

– if h 6= h+jk 6= h+p+1, then uh+jk−1 6= a, otherwise the factor as = fn(h+p) = fn(h+jk−1)
occurs twice in L, which is a contradiction.

We showed that for all k = 1, 2, . . . , q (up to one possible exception when h+ jk = h+ p+ 1), the
factors asbk and uh+jk−1sbk belong to the language of u and uh+jk−1 6= a. It means that sbk is a
left special factor.

The proof of the second part of the statement is analogous.

5. Non-repetitive complexity of Arnoux–Rauzy words

For every Arnoux–Rauzy word u, there exists at most one bispecial factor of u of length n.
Thus we can order the bispecial factors by their lengths: for k ∈ N we denote Bu(k) the kth

bispecial factor of u. In particular, Bu(0) = ε, Bu(1) = u0 (the first letter of u), etc.
Now we can formulate the link between the lengths of the return words to the bispecial factors

and the values of non-repetitive complexity. Let us recall that any factor of a d-ary Arnoux–Rauzy
word u has exactly d return words, cf. [10].

Proposition 7. Let u be a d-ary Arnoux–Rauzy word and let n, k ∈ N be such that Bu(k − 1) <
n ≤ Bu(k). Denote by r0, r1, . . . , rd−1 the return words to Bu(k) in u.

1. If n = |Bu(k)|, then

nrCu(n) = max{|rirj | : rirj ∈ Lu, 0 ≤ i, j ≤ d− 1, i 6= j} − 1 .

2. If |Bu(k − 1)| < n < |Bu(k)|, then

nrCu(n) = nrCu
(
|Bu(k)|

)
− |Bu(k)|+ n .

Proof. Let u be a d-ary Arnoux–Rauzy word. Its nth Rauzy graph Γu(n) contains exactly one
vertex α with the indegree d and all other vertices have indegree 1. It also contains exactly one
vertex β with the outdegree d, all other vertices have outdegree 1. It means that Γu(n) is composed
of d cycles C0, C1, . . . , Cd−1 which only have in common the path from α to β (see Figure 2). For
every i ∈ {0, . . . , d − 1}, we denote by `i the number of vertices in the cycle Ci and by γi, ζi the
vertices from the cycle Ci such that (β, γi), (ζi, α) are edges in Γu(n). Let p be the number of
vertices on the minimal path from α to β.

Let h ∈ N be such that L = {fn(h), fn(h+ 1), . . . , fn(h+m−1)} is the set from Lemma 4 with
m = #L = nrCu(n). Then fn(h− 1) = β, fn(h+m) = α and α, β ∈ L. Hence the path in Γu(n)
corresponding to L is of the form:

γi → · · · → ζi → α→ · · · → β → γj → · · · → ζj

for some i, j ∈ A, i 6= j, and it contains nrCu(n) = `i + `j − p vertices. So it suffices to compute
the numbers `i, `j and p.

(1): If n = |Bu(k)|, then α = β = Bu(k), p = 1 and the Rauzy graph Γu(n) contains d cycles
C0, C1, . . . , Cd−1 with only the vertex Bu(k) in common. Clearly, these cycles correspond with
the return words to Bu(k): if we start in Bu(k) and concatenate the first letters of all vertices
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Figure 2: The Rauzy graph Γu(n) of a ternary Arnoux–Rauzy word u.

of Ci, we get ri for all i ∈ A. Thus the number `i of vertices in Ci is equal to |ri|. Hence
nrCu(n) = `i + `j − 1 = |ri|+ |rj | − 1 for some i 6= j. By definition of nrCu(n), we have to choose
i 6= j such that the word rirj is a factor of u and its length is maximal possible.

(2): If |Bu(k − 1)| < n < |Bu(k)|, then α 6= β and p > 1. Observe that if p > 1, then
Γu(n + 1) has also cycles of lengths `i for all i ∈ A and the minimal path from the left special
factor to the right special factor contains p − 1 vertices. It follows that Γu(n + p − 1) contains
the bispecial factor Bu(k) and so |Bu(k)| = n + p − 1. By the Rauzy graph Γu(|Bu(k)|) we have
nrCu(|Bu(k)|) = `i + `j − 1, as the lengths of the cycles are preserved. So

nrCu(n) = `i + `j − p = nrCu(|Bu(k)|) + 1− (|Bu(k)| − n+ 1) = nrCu(|Bu(k)|)− |Bu(k)|+ n .

In the introduction we stated the inequality between the recurrence function Ru and the non-
repetitive complexity. It is worth mentioning that Ru is also linked to return words, as stated by
Cassaigne in [6].

Proposition 8 ([6]). Let u be a recurrent infinite word. Then for each n ∈ N,

Ru(n)− n+ 1 = max{|r| : r is a return word to w ∈ Lu(n)}.

To transform Proposition 7 into an explicit formula for nrCu, we have to compute the lengths of
the return words to the bispecial factors in u and also decide which return words are neighbouring
in u. For this purpose we will essentially use the directive sequence (in)n≥0 of a standard Arnoux-
Rauzy word u introduced in Section 3. Let us emphasize that the non-repetitive complexity of u
depends only on the language Lu and not on the word u itself. Since for every Arnoux-Rauzy word
u there exists a unique standard Arnoux-Rauzy word v such that Lu = Lv, we can restrict our
considerations only to standard Arnoux–Rauzy words. Note that if u is standard Arnoux–Rauzy
word, all its bispecial factors are prefixes of u.

The following notion of derived word which codes the order of the return words in u will be
also useful.

Definition 9. Let w be a prefix of a uniformly recurrent word u and let r0, r1, . . . , r`−1 be the
return words to w in u. If we write u as a concatenation u = rj0rj1rj2 · · · , then the word j0j1j2 · · ·
is called the derived word to w in u and is denoted du(w).
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We do not specify the order of the return words and thus the derived word is determined
uniquely up to a permutation of letters. Clearly, the derived word to the empty word ε in u is the
word u itself. The simple form of the morphisms ϕi defined by (2) gives immediately the following
claim, which can be also deduced from the results in [10] or [11].

Claim 10. Let u and v be standard d-ary Arnoux–Rauzy words such that v = ϕi(u) with i ∈ A.
Then for any k ∈ N it holds:

• Bv(k + 1) = ϕi
(
Bu(k)

)
i;

• if r0, r1, . . . , rd−1 are the return words to Bu(k) in u, then ϕi(r0), ϕi(r1), . . . , ϕi(rd−1) are the
return words to Bv(k + 1) in v;

• du

(
Bu(k)

)
= dv

(
Bv(k + 1)

)
up to permutation of letters.

Corollary 11. Let u be a standard Arnoux–Rauzy word with the directive sequence (in)n≥0 and(
u(n)

)
n≥0 be the sequence satisfying (3). Then the derived word to Bu(k) in u is (up to permutation

of letters) the word u(k) and the corresponding return words are ψ(0), ψ(1), . . ., ψ(d − 1), where
ψ = ϕi0ϕi1 · · ·ϕik−1

.

Proof. Obviously, the bispecial factor ε has in the word u(k) the return words 0, 1, . . . , d−1 and the
derived word (up to permutation of letters) to Bu(k)(0) = ε in u(k) is u(k). By repeated application
of Claim 10 we get

du(Bu(k)) = du(1)(Bu(1)(k − 1)) = · · · = du(k)(Bu(k)(0)) = u(k)

and
{r0, . . . , rd−1} = {ϕi0ϕi1 · · ·ϕik−1

(0), . . . , ϕi0ϕi1 · · ·ϕik−1
(d− 1)} .

Corollary 11 enable us to express the return words to the kth bispecial factor Bu(k). However,
we also need to know which return words are neighbouring, i.e., for which i 6= j the word rirj is a
factor of u. Corollary 11 transforms this question to the description of neighbouring letters in the
Arnoux–Rauzy word u(k) with the directive sequence (in+k)n≥0, which is trivial.

Claim 12. Let u be a standard Arnoux–Rauzy word with the directive sequence (in)n≥0. Then i0
is the dominant letter in u and the factors of length 2 in u are the words i0a, ai0 for all a ∈ A.

For every k ∈ N and every letter a ∈ A we define Sa(k) = sup{` : 0 ≤ ` < k, i` = a}. As usual,
if the set is empty, i.e., i` 6= a for all ` < k, then Sa(k) = −∞. Let us emphasize that Sa(k) = Sb(k)
for two distinct letters a and b if and only if Sa(k) = Sb(k) = −∞.

Theorem 13. Let u be a d-ary Arnoux–Rauzy word. For every integer n ≥ 1 we take the unique
k such that |Bu(k − 1)| < n ≤ |Bu(k)|. Then we have

nrCu(n) = |ϕi0ϕi1 · · ·ϕik−1
ϕik(a)| − 1− |Bu(k)|+ n ,

where (in)n≥0 is the directive sequence of the standard Arnoux-Rauzy word with the language Lu
and a ∈ A is any letter different from ik such that Sa(k) = inf{Sb(k) : b ∈ A, b 6= ik}.
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Proof. Since the function nrCu depends only on the language Lu and not on the word u itself, we
can work with the standard Arnoux-Rauzy word v such that Lv = Lu instead of u. We denote
(in)n≥0 the directive sequence of v and to simplify the notation we also denote ψ = ϕi0ϕi1 · · ·ϕik−1

.
We start from Proposition 7 and using the previous claims we express nrCv(|Bv(k)|) more

explicitly. By Corollary 11 and Claim 12 the admissible pairs of return words to Bv(k) are

{|rirj | : rirj ∈ Lv, 0 ≤ i, j ≤ d− 1, i 6= j} = {|ψ(ika)| : a ∈ A, a 6= ik} .

It suffices to determine for which letter a 6= ik the image |ψ(a)| is the longest possible. Let us
emphasize that for every i ∈ {0, . . . , d− 1} and every words x, y ∈ A∗ we have

(i) ϕi(xa) = ϕi(x)ia if i 6= a and ϕi(xa) = ϕi(x)i if i = a;

(ii) if x is a proper prefix of y, i.e., y = xz for some non-empty word z, then ϕi(x) is a proper
prefix of ϕi(y) = ϕi(x)ϕi(z).

For two distinct letters a, b ∈ A we discuss two cases.
– If Sa(k) = Sb(k), then the morphisms ϕa, ϕb are not included in the decomposition of ψ. Thus

by application of Item (i) we get ψ(a) = x′a and ψ(b) = x′b for some non-empty word x′ ∈ A∗ and
so |ψ(a)| = |ψ(b)|.

– If Sa(k) < Sb(k), then we split ψ = σϕbθ such that the decomposition of the morphism θ
contains neither ϕa nor ϕb. Then by Item (i) we have θ(a) = x′a and θ(b) = x′b for some non-
empty word x′ ∈ A∗ and since ϕb(x

′a) = ϕb(x
′)ba and ϕb(x

′b) = ϕb(x
′)b, the word ϕb(θ(b)) is a

proper prefix of ϕb(θ(a)). By Item (ii) it means that also σ(ϕb(θ(b))) = ψ(b) is a proper prefix of
σ(ϕb(θ(a))) = ψ(a) and so |ψ(b)| < |ψ(a)|.

We may conclude that

nrCv(|Bv(k)|) = max{|rirj | : rirj ∈ Lv, 0 ≤ i, j ≤ d− 1, i 6= j}− 1 = |ψ(ika)| − 1 = |ψϕik(a)| − 1 ,

where a is any letter different from ik such that Sa(k) = inf{Sb(k) : b 6= ik}. By Proposition
7 it concludes the proof, since for all n, k ∈ N we clearly have Bu(k) = Bv(k) and nrCu(n) =
nrCv(n).

6. Initial non-repetitive complexity of standard Arnoux–Rauzy words

The following lemma uses again the notation fn(i) for the factor of length n occurring in u at
the position i.

Lemma 14. Let u = u0u1u2 · · · be a recurrent infinite word, n ∈ N and m = inrCu(n). Then the
set L = {fn(0), fn(1), . . . , fn(m− 1)} contains m distinct factors of Lu(n) and the factor fn(m) is
either left special and fn(m) = fn(i) for some i, 0 < i < m, or fn(m) = fn(0).

Proof. The proof of Case I of Lemma 4 immediately gives this statement.

Theorem 15. Let u be a standard d-ary Arnoux–Rauzy word with the directive sequence (in)n≥0.
For every integer n ≥ 1 we take the unique k such that |Bu(k − 1)| < n ≤ |Bu(k)|. Then we have

inrCu(n) = |ϕi0ϕi1 · · ·ϕik−1
(ik)| .

10



Proof. Let u be a standard d-ary Arnoux–Rauzy word and n ∈ N. We denote m = inrCu(n) and
L = {fn(0), . . . , fn(m − 1)} the set from Lemma 14. Then fn(m) = fn(0), since the word fn(0)
is the only left special factor of u of length n. It means that m is equal to the length of the first
return word to fn(0). We now determine its length.

If n = |Bu(k)| for some k ∈ N, it means that fn(0) = Bu(k) is bispecial factor. Then by
Corollary 11 the first return word to fn(0) is equal to the word ϕi0ϕi1 · · ·ϕik−1

(ik), since the word

u(k) is standard and so it starts with its dominant letter, which is by Claim 12 the letter ik. Thus
m = |ϕi0ϕi1 · · ·ϕik−1

(ik)|.
If |Bu(k − 1)| < n < |Bu(k)|, then Bu(k) = fn(0)w for some non-empty word w ∈ A∗ since all

prefixes of u are left special factors. Moreover, the word fn(0) is in u always followed by the word
w. Indeed, since fn(0) is not right special, there is a unique letter a ∈ A such that fn(0)a ∈ Lu
and we can repeat the same process until we reach Bu(k). But it means that the words fn(0) and
Bu(k) have the same return words and derived words and so the first return word to fn(0) is equal
to the word ϕi0ϕi1 · · ·ϕik−1

(ik). Thus m = |ϕi0ϕi1 · · ·ϕik−1
(ik)|.

Let us emphasize that for non-standard Arnoux–Rauzy words the evaluating of the initial non-
repetitive complexity is much more complicated, as, unlike the standard case, we do not have the
control over the positions of the vertices corresponding to prefixes in the respective Rauzy graphs.

Corollary 16. Let u be a standard Sturmian word. Then inrCu(n) = n + 1 for infinitely many
n ∈ N.

Proof. Let (i`)`≥0 denote the directive sequence of u. We will prove that inrCu(n) = n + 1 for
every n such that n = |Bu(k)| + 1 for some k ∈ N and ik 6= ik+1. Since the directive sequence
(i`)`≥0 contains both letters 0 and 1 infinitely many times, it implies the statement of the corollary.

We take n = |Bu(k)| + 1 such that ik 6= ik+1 and denote r0 the more frequent return word to
Bu(k) and r1 the other return word. By Corollary 11 and Claim 12 we have r0 = ϕi0ϕi1 · · ·ϕik−1

(ik)
and r1 = ϕi0ϕi1 · · ·ϕik−1

(ik+1). It also implies that r1 is always followed by r0, while r0 can be
followed both by r0 and r1.

As explained before, the Rauzy graph Γu(n− 1) is composed of two cycles C0 and C1 with only
the vertex Bu(k) in common (see Figure 3). Moreover, these cycles correspond with the return
words r0 and r1: if we start in Bu(k) and concatenate the first letters of vertices from C0, we get
the return word r0. Thus the number of vertices of C0 is equal to |r0|. It is analogous for C1

and r1. This connection also means that the cycle C1 is always followed by C0, while C0 can be
followed by both C0 and C1.

We denote α the edge from the cycle C0 outcoming from the vertex Bu(k) and β the edge from
C0 incoming to Bu(k) (see Figure 3). Then α is the left special factor of u of length n and β is the
right special factor of u of length n. It means that the Rauzy graph Γu(n) is composed of the cycle
with |r0| + |r1| vertices and one extra edge going from the vertex β to the vertex α (see Figure 3).
It follows that |r0|+ |r1| = n+ 1. Moreover, the return words to the factor α are r0 and r0r1 and
|r0r1| = |r0| + |r1| = n + 1. Finally, it suffices to apply Theorem 15 for Bu(k) < n < Bu(k + 1)
such that ik 6= ik+1:

inrCu(n) = |ϕi0ϕi1 · · ·ϕik(ik+1)| = |ϕi0ϕi1 · · ·ϕik−1
(ikik+1)| = |r0r1| = n+ 1.

11



Bu(k)
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· · ·

· · ·
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δ1δj

· · ·

· · ·

Figure 3: The Rauzy graphs Γu(n− 1) (left) and Γu(n) (right) of the standard Sturmian word u for n = |Bu(k)|+ 1.

Recently, Bugeaud and Kim [5] proved the new characterization of Sturmian words using the
initial non-repetitive function: an infinite word u is Sturmian if and only if inrCu(n) ≤ n + 1 for
all n ∈ N with the equality for infinitely many n. So their result is more general than the previous
corollary.

7. Enumeration of non-repetitive complexity for d-bonacci word

In this section we demonstrate the usefulness of Theorems 13 and 15 on the d-bonacci words.
Let us recall that the d-bonacci word t (see Example 3) is the fixed point of the morphism

τ :

{
a → 0(a+ 1) for a = 0, . . . , d− 2

(d− 1) → 0
with the matrix M =




1 1 1 · · · 1
1 0 0 · · · 0
0 1 0 · · · 0
...

. . .
. . .

...
0 0 · · · 1 0



.

In the sequel, we will use so-called d-bonacci numbers, which are the natural generalizations of
the famous Fibonacci numbers. The sequence of the d-bonacci numbers (Dk)k≥0 is defined by the
linear recurrence:

Dk =

d∑

j=1

Dk−j for k ≥ d and Dk = 2k for all k = 0, 1, . . . , d− 1 .

Equivalently, the d-bonacci numbers can be expressed using the matrix recurrence. To simplify
the notation we put D−1 = 1 and D−k = 0 for all k = 2, . . . , d. We also denote the vector
~D(n) = (Dn, Dn−1, . . . , Dn−d+1)

> for all n ≥ −1. Then the recurrence relation for the d-bonacci
numbers can be rewritten in the following vector form:

~D(n) = M ~D(n− 1) for all n ∈ N and ~D(−1) = (1, 0, . . . , 0)> =: ~e ,

where M is the matrix of the d-bonacci morphism τ . Obviously, we can write

~D(n) = Mn+1~e . (4)

12



The simple form of the morphism τ gives us immediately the relation between the consecutive
bispecial factors in the d-bonacci word t (compare with Claim 10), which allows us to express the
lengths of the bispecial factors of t.

Claim 17. For every k ≥ 1 the bispecial factors of the d-bonacci word t fulfil the equation

Bt(k) = τ(Bt(k − 1))0 .

Lemma 18. For every k ∈ N the kth bispecial factor Bt(k) of the d-bonacci word t has the length

|Bt(k)| = 1

d− 1

d−1∑

i=0

(d− i)Dk−i−1 −
d

d− 1
, where Dj is the jth d-bonacci number.

Proof. We denote the Parikh vector of the kth bispecial factor ~V (k). Then using Claim 17 and
Relation (1) we may write:

~V (k) = M ~V (k − 1) + ~e and so ~V (k) = Mk~V (0) + (Mk−1 + Mk−2 + · · ·+ M0)~e .

Since Bt(0) = ε, it is ~V (0) = (0, . . . , 0)> and

~V (k) = (Mk−1 + Mk−2 + · · ·+ M0)~e .

If we multiply this equality by the matrix (M − I), where I is the identity matrix, we get:

(M − I)~V (k) = (Mk + Mk−1 + · · ·+ M1 −Mk−1 − · · · −M0)~e = Mk~e− ~e .

Finally, the application of Equation (4) gives us:

~V (k) = (M − I)−1
(
Mk~e− ~e

)
= (M − I)−1

(
~D(k − 1)− ~e

)
.

Now we can express the length of the kth bispecial factor as:

|Bt(k)| = (1, . . . , 1) · ~V (k) = (1, . . . , 1) · (M − I)−1
(
~D(k − 1)− ~e

)
.

It suffices to compute the inverse matrix (M − I)−1. One can verify that it is

(M − I)−1 =
1

d− 1




1 d− 1 d− 2 · · · 2 1
1 0 d− 2 · · · 2 1
1 0 −1 · · · 2 1
...

...
...

. . .
...

1 0 −1 · · · −d+ 3 1
1 0 −1 · · · −d+ 3 −d+ 2




and thus (1, . . . , 1) · (M − I)−1 = 1
d−1(d, d− 1, d− 2, . . . , 1). Consequently,

|Bt(k)| = 1

d− 1
(d, d− 1, d− 2, . . . , 1) ~D(k − 1)− d

d− 1

=
1

d− 1

d−1∑

i=0

(d− i)Dk−i−1 −
d

d− 1
.
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To find the simple expression for the lengths of the return words to Bt(k), we state one more
auxiliary lemma. Let us remind that the d-bonacci word has the directive sequence (0 1 2 · · · d−1)ω,
as explained in Example 3.

Lemma 19. For the d-bonacci word with the directive sequence (in)n∈N = (0 1 2 · · · d− 1)ω and for
every integer k ≥ 1 we have

|ϕi0ϕi1 · · ·ϕik−1
(ik)| = |τk(0)| = Dk , where Dk is the kth d-bonacci number.

Proof. One can simply verify that τ = ϕ0 ◦ P , where P is a permutation such that P (a) ≡ a + 1
mod d for all a ∈ {0, 1, . . . , d − 1}. It is also easy to realize that P ◦ ϕa = ϕb ◦ P for every
a, b ∈ {0, 1, . . . , d− 1} such that b ≡ a+ 1 mod d. These two facts give us

τk = (ϕ0 ◦ P )k = ϕ0 ◦ (P ◦ ϕ0)
k−1 ◦ P = ϕ0 ◦ (ϕ1 ◦ P )k−1 ◦ P = ϕ0ϕ1 ◦ (P ◦ ϕ1)

k−2 ◦ P 2 = · · ·
= ϕj0ϕj1 · · ·ϕjk−1

P k ,

where jn ∈ A and jn ≡ n mod d. But since the sequence (jn)n∈N is exactly the directive sequence
of the d-bonacci word, i.e., jn = in for every n ∈ N, we may conclude that

τk(0) = ϕj0ϕj1 · · ·ϕjk−1
P k(0) = ϕj0ϕj1 · · ·ϕjk−1

(jk) = ϕi0ϕi1 · · ·ϕik−1
(ik) .

It remains to prove that |τk(0)| = Dk. We will prove that both sequences (|τn(0)|)n∈N and
(Dn)n∈N fulfil the same linear recurrence with the same initial conditions. In fact, we will show
that for every a ∈ A the following equalities hold:

|τk(a)| =
d−a∑

j=1

|τk−j(0)| for all k ≥ d− a and |τk(a)| = 2k for all k = 0, . . . , d− a− 1 . (5)

We will proceed by induction on k. Simple computations verify the initial conditions. Now we
suppose that the equality is true for k − 1 and every letter a ∈ A and we prove that it is true also
for k. If a = d− 1, it is clear since τk(d− 1) = τk−1(0). If a 6= d− 1, we rewrite as follows:

|τk(a)| = |τk−1(0)|+ |τk−1(a+ 1)| = |τk−1(0)|+
d−a−1∑

j=1

|τk−1−j(0)| =
d−a∑

j=1

|τk−j(0)| .

If we consider the relations (5) for the letter a = 0, we get exactly the same recurrence as in
the case of d-bonacci numbers. Thus these two sequences are the same and |τk(0)| = Dk.

Theorem 20. Let t be the d-bonacci word and let n, k be positive integers such that

1

d− 1

d−1∑

i=0

(d− i)Dk−i−2 −
d

d− 1
< n ≤ 1

d− 1

d−1∑

i=0

(d− i)Dk−i−1 −
d

d− 1
.

Then

nrCt(n) = Dk+1 − 1− 1

d− 1

d−1∑

i=0

(d− i)Dk−i−1 +
d

d− 1
+ n .
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Proof. It follows directly from Theorem 13. It suffices to replace the lengths of the bispecial factors
by the expressions from Lemma 18 and determine the value of

|ϕi0ϕi1 · · ·ϕik−1
(ika)| ,

where a ∈ A is any letter such that Sa(k) = inf{Sb(k) : b ∈ A, b 6= ik}. Since t has the directive
sequence (in)n≥0 given by in ≡ n mod d, it is easy to realize that the desired letter a is the letter
ik+1 (note that for k < d− 2 there are also other possible choices of a). Then using Lemma 19 we
get

|ϕi0ϕi1 · · ·ϕik−1
(ika)| = |ϕi0ϕi1 · · ·ϕik−1

(ikik+1)| = |ϕi0ϕi1 · · ·ϕik(ik+1)| = |τk+1(0)| = Dk+1 .

Theorem 21. Let t be the d-bonacci word and let n, k be positive integers such that

1

d− 1

d−1∑

i=0

(d− i)Dk−i−2 −
d

d− 1
< n ≤ 1

d− 1

d−1∑

i=0

(d− i)Dk−i−1 −
d

d− 1
.

Then inrCt(n) = Dk .

Proof. It follows directly from Theorem 15. It suffices to realize that by Lemma 18 we know the
lengths of the bispecial factors of t and by Lemma 19 we have |ϕi0ϕi1 · · ·ϕik−1

(ik)| = |τk(0)| =
Dk.

Note that for d = 2 and d = 3 the previous theorem gives the results stated in [14] as Theorems
10 and 16.

Corollary 22. Let f and t be the Fibonacci and the Tribonacci word, respectively.

• Let n, k be positive integers such that Fk − 2 < n ≤ Fk+1− 2. Then inrCf (n) = Fk, where Fk
is the kth Fibonacci number.

• Let n, k be positive integers such that
Tk+Tk−2−3

2 < n ≤ Tk+1+Tk−1−3
2 . Then inrCt(n) = Tk,

where Tk is the kth Tribonacci number.
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We determine the critical exponent and the recurrence function of complementary symmetric Rote sequences. The
formulae are expressed in terms of the continued fraction expansions associated with the S-adic representations of
the corresponding standard Sturmian sequences. The results are based on a thorough study of return words to bis-
pecial factors of Sturmian sequences. Using the formula for the critical exponent, we describe all complementary
symmetric Rote sequences with the critical exponent less than or equal to 3, and we show that there are uncountably
many complementary symmetric Rote sequences with the critical exponent less than the critical exponent of the Fi-
bonacci sequence. Our study is motivated by a conjecture on sequences rich in palindromes formulated by Baranwal
and Shallit. Its recent solution by Curie, Mol, and Rampersad uses two particular complementary symmetric Rote
sequences.

Keywords: critical exponent, recurrence function, Rote sequence, Sturmian sequence, return word, bispecial factor

1 Introduction
We study the relation between the critical exponents of two binary sequences v = v0v1v2 · · · and u =
u0u1u2 · · · over the alphabet {0, 1}, where ui = vi + vi+1 mod 2 for each i ∈ N. We write u = S(v).
Our study is motivated by a conjecture formulated by Baranwal and Shallit in [3]. They searched for
binary sequences rich in palindromes with a minimum critical exponent. They showed that the value of
this critical exponent is greater than 2.707. Moreover, they found two sequences v(1) and v(2) having
the critical exponent equal to 2 + 1√

2
and they conjectured that this is the minimum value. Both of these

sequences belong to the class of complementary symmetric Rote sequences. Their conjecture has been
recently proved by Curie, Mol, and Rampersad in [7].

A Rote sequence is a binary sequence v containing 2n factors of length n for every n ∈ N, n ≥ 1. If the
language of v is invariant under the exchange of letters 0↔ 1, the sequence v is called a complementary
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symmetric (CS) Rote sequence. Already in his original paper [22], Rote proved that these sequences are
essentially connected with Sturmian sequences. He deduced that a binary sequence v is CS Rote sequence
if and only if the sequence u = S(v) is Sturmian. Both CS Rote sequences and Sturmian sequences are
rich in palindromes, see [5, 9].

The formula for the critical exponent of Sturmian sequences was provided by Damanik and Lenz in [8].
The relation between the critical exponent of a CS Rote sequence v and the associated Sturmian sequence
S(v) is not straightforward: While the minimum exponent among all Sturmian sequences is reached by
the Fibonacci sequence and it is 3 + 2

1+
√
5

(see [17]), the two CS Rote sequences v(1), v(2) whose critical
exponent equals 2 + 1√

2
, i.e., it is minimum among all binary rich sequences, are associated with the

Sturmian sequences S(v(1)) and S(v(2)) whose critical exponent is 3 +
√

2.
In this paper, we will first derive the relation between the critical exponents of the sequences v and
S(v), where v is a uniformly recurrent binary sequence whose language is closed under the exchange
of letters, see Theorem 14. Using this relation, we will determine the formula for the critical exponent of
any CS Rote sequence, see Theorem 33.

One of the consequences of this theorem is for instance the fact that the languages of the sequences
v(1) and v(2) are the only languages of CS Rote sequences with the critical exponent less than 3, see
Proposition 34. In this context, let us mention that in [7] the authors showed that there are exactly two
languages of rich binary sequences with the critical exponent less than 14

5 and they are the languages of the
sequences v(1) and v(2). Furthermore, we show that there are uncountably many CS Rote sequences with
the critical exponent strictly less than the critical exponent of the Fibonacci sequence, see Theorem 37.

Our main technical tool is the description of return words to bispecial factors of Sturmian sequences
in terms of the continued fraction expansions related to the S-adic representations of Sturmian sequences.
As a by-product, we obtain an explicit formula for the recurrence function of CS Rote sequences, see
Theorem 54. When formulating our results, we use the convergents

(
pN
qN

)
of an irrational number θ =

[0, a1, a2, a3, . . .], where the coefficients ai’s in the continued fraction expansion of θ correspond to the
S-adic representation of the standard Sturmian sequence associated to a given CS Rote sequence.

There are many generalizations of Sturmian sequences to multiliteral alphabets, see [1]. The critical
exponent and the recurrence function were studied for two of these generalizations. Justin and Pirillo
described in [13] the critical exponent of substitutive Arnoux-Rauzy sequences. Recently, Rampersad,
Shallit, and Vandomme in [20], and Baranwal and Shallit in [2] determined the minimal threshold for
the critical exponent of balanced sequences over alphabets of cardinality 3, 4, and 5, respectively. The
recurrence function of Sturmian sequences was found by Morse and Hedlund in [18], and their result was
generalized by Cassaigne and Chekhova in [6] for Arnoux-Rauzy sequences.

The paper is organized as follows. We first introduce basic notions from combinatorics on words in
Section 2. In Section 3, we recall how to simplify the formula for the critical exponent using return words
to bispecial factors. The definitions of the already mentioned mapping S and complementary symmetric
Rote sequences and their basic properties are provided in Section 4. The relation between the critical
exponents of the sequences v and S(v) is described in Section 5. The main tool for further results –
a thorough study of return words to bispecial factors of Sturmian sequences using the S-adic representation
– is carried out in Section 6. An explicit formula for the critical exponent of CS Rote sequences is given
in Section 7. CS Rote sequences with a small critical exponent are studied in Section 8. And finally, in
Section 9, an explicit formula for the recurrence function of CS Rote sequences is derived.
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2 Preliminaries
An alphabet A is a finite set of symbols called letters. A word over A of length n is a string u =
u0u1 · · ·un−1, where ui ∈ A for all i ∈ {0, 1, . . . , n − 1}. The length of u is denoted by |u|. The set
of all finite words over A together with the operation of concatenation form a monoid A∗. Its neutral
element is the empty word ε and we denote A+ = A∗ \ {ε}.

If u = xyz for some x, y, z ∈ A∗, then x is a prefix of u, z is a suffix of u and y is a factor of u. We
sometimes use the notation yz = x−1u.

To any word u over A with the cardinality #A = d, we assign its Parikh vector ~V (u) ∈ Nd defined as
(~V (u))a = |u|a for all a ∈ A, where |u|a is the number of letters a occurring in u.

A sequence overA is an infinite string u = u0u1u2 · · · , where ui ∈ A for all i ∈ N = {0, 1, 2, . . .}. We
always denote sequences by bold letters. A sequence u is eventually periodic if u = vwww · · · = v(w)ω

for some v ∈ A∗ and w ∈ A+. Otherwise u is aperiodic.
A factor of u is a word y such that y = uiui+1ui+2 · · ·uj−1 for some i, j ∈ N, i ≤ j. The number

i is called an occurrence of the factor y in u. In particular, if i = j, the factor y is the empty word ε
and any index i is its occurrence. If i = 0, the factor y is a prefix of u. If each factor of u has infinitely
many occurrences in u, the sequence u is recurrent. Moreover, if for each factor the distances between
its consecutive occurrences are bounded, u is uniformly recurrent.

The language L(u) of the sequence u is the set of all factors of u. A factor w of u is right special if
both words wa and wb are factors of u for at least two distinct letters a, b ∈ A. Analogously we define a
left special factor. A factor is bispecial if it is both left and right special. Note that the empty word ε is a
bispecial factor if at least two distinct letters occur in u.

The factor complexity of a sequence u is a mapping Cu : N→ N defined by

Cu(n) = #{w ∈ L(u) : |w| = n} .
The aperiodic sequences with the lowest possible factor complexity are called Sturmian sequences. In
other words, it means that a sequence u is Sturmian if it has the factor complexity Cu(n) = n+ 1 for all
n ∈ N. Clearly, all Sturmian sequences are defined over a binary alphabet, e.g., {0, 1}. There are many
equivalent definitions of Sturmian sequences, see a survey in [1].

A morphism over A is a mapping ψ : A∗ → A∗ such that ψ(uv) = ψ(u)ψ(v) for all u, v ∈ A∗. The
morphism ψ can be naturally extended to sequences by

ψ(u) = ψ(u0u1u2 · · · ) = ψ(u0)ψ(u1)ψ(u2) · · · .
A fixed point of a morphism ψ is a sequence u such that ψ(u) = u. The matrix of a morphism ψ over A
with the cardinality #A = d is the matrix Mψ ∈ Nd×d defined as (Mψ)ab = |ψ(a)|b for all a, b ∈ A.
The Parikh vector of the ψ-image of a word w ∈ A∗ can be obtained via multiplication by the matrixMψ ,
i.e.,

~V (ψ(w)) = Mψ
~V (w) . (1)

Consider a prefix w of a recurrent sequence u. Let i < j be two consecutive occurrences of w in
u. Then the word uiui+1 · · ·uj−1 is a return word to w in u. The set of all return words to w in u is
denoted Ru(w). If the sequence u is uniformly recurrent, the set Ru(w) is finite for each prefix w, i.e.,
Ru(w) = {r0, r1, . . . , rk−1}. Then the sequence u can be written as a concatenation of these return
words:

u = rd0rd1rd2 · · ·
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and the derived sequence of u to the prefix w is the sequence du(w) = d0d1d2 · · · over the alphabet of
cardinality #Ru(w) = k. The concept of derived sequences was introduced by Durand in [11].

3 The critical exponent and its relation to return words
Let z ∈ A+ be a prefix of a periodic sequence uω with u ∈ A+. We say that z has the fractional root u
and the exponent e = |z|/|u|. We usually write z = ue. Let us emphasize that a word z can have multiple
exponents and fractional roots. A word z is primitive if its only integer exponent is 1.

Let u be a sequence and u its non-empty factor. The supremum of e ∈ Q such that ue is a factor of u
is the index of u in u:

indu(u) = sup{e ∈ Q : ue ∈ L(u)} .

If the sequence u is clear from the context, we will write ind(u) instead of indu(u).

Definition 1. The critical exponent of a sequence u is

cr(u) = sup {e ∈ Q : there is a non-empty factor of u with the exponent e}
= sup {indu(u) : u is a non-empty factor of u} .

Remark 2. Let us comment the above definition.

1. If a non-empty factor u ∈ L(u) is non-primitive, i.e., u = xk for some x ∈ A+ and k ∈ N, k ≥ 2,
then indu(x) = k indu(u) > indu(u). Therefore, only primitive factors play a role for finding
cr(u).

2. If some non-empty factor occurs at least twice in u, then ind(x) > 1 for some non-empty factor x
and so cr(u) > 1. Consequently, cr(u) > 1 for each sequence u.

3. We say that u is an overlapping factor in u, if there exist x, y ∈ A∗ such that xu = uy ∈ L(u)
and 0 < |x| < |u|. If u has an overlapping factor, then cr(u) > 2. Indeed, by [15] the equality
xu = uy implies that there exist a, b ∈ A∗ and k ∈ N such that u = (ab)ka, x = ab, and y = ba.
If a is empty then the assumption |u| > |x| > 0 forces k ≥ 2, otherwise k ≥ 1. In both cases
indu(ab) > 2.

4. If u is eventually periodic, then cr(u) is infinite.

5. If u is aperiodic and uniformly recurrent, then each factor of u has a finite index. Nevertheless,
cr(u) may be infinite. As an example of such a sequence may serve a Sturmian sequence, for which
the coefficients in the continued fraction expansion of its slope are not bounded, see [8].

6. If u is a binary sequence, then either 11, 00, or 0101 occur in u. It means that the critical exponent
of a binary sequence is at least 2. This value is attained by the famous Thue-Morse sequence, which
is, of course, overlap-free, see [23] or [4].

Lemma 3. Let u be a uniformly recurrent aperiodic sequence. Then cr(u) = sup {indu(u) : u ∈ M},
where

M = {u : u is a return word to a bispecial factor of u} .
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Proof: Let u ∈ L(u) be a non-empty factor with the index ind(u) > 1. Denote |u| = n. When searching
for supremum, we may assume without loss of generality that u is a factor having the largest index among
all factors of u of length n, i.e., ind(u) ≥ ind(v) for all v ∈ L(u) of length n. Since u is uniformly
recurrent, ind(u) is finite. We denote

z = uind(u) = u′u′′ · · ·u′u′′u′ and b = uind(u)−1 ,

where u = u′u′′ and u′′ 6= ε. Clearly, z = bu′′u′ = u′u′′b.
Let us show that the word b is a bispecial factor of u. The word z is a factor of u and so z occurs in u

at some position j, i.e.,
z = ujuj+1 · · ·uj+|z|−1 .

Then the letter uj+|z| which follows the word z is distinct from the first letter of u′′. Otherwise, we could
prolong z to the right, which contradicts the definition of the index of u = ujuj+1 · · ·uj+n−1. Similarly,
the letter uj−1 which precedes z is distinct from the last letter of u′′. Indeed, if those letters are the same,
then the factor uj−1uj · · ·uj+n−2 of length n has the index at least ind(u) + 1

n , which contradicts the
choice of u. We can conclude that the factor b is a bispecial factor of u.

Moreover, since z = bu′′u′ = u′u′′b, the word u = u′u′′ is a concatenation of the return words to the
bispecial factor b. It suffices to prove that only the cases when u is a return word to the bispecial factor b
have to be inspected. Let us assume that u is a concatenation of at least two return words to b. It means
that

z = ub = sbt for some s, t such that s is a prefix of u and 0 < |s| < |u| . (2)

We will find another factor of u with the index strictly larger than ind(u), which means that such a factor
u can be omitted. We distinguish three cases:

• If ind(u) ≥ 2, then |b| ≥ |u| and both words u and s are prefixes of b. Therefore, the relation (2)
implies us = su and we can easily conclude that there is a word x and an integer k > 1 such that
u = xk. As mentioned in Remark 2, ind(x) > ind(u).

• If 1 < ind(u) < 2 and cr(u) ≤ 2, then by Item (3) of Remark 2, u has no overlapping factor.
Clearly, z = u′u′′u′ and b = u′ for u′, u′′ 6= ε. Then the relation (2) implies u′v = su′ for some
v and |u| > |s| ≥ |u′|. Indeed, if 0 < |s| < |u′|, then u′ is an overlapping factor, which is not
possible. Therefore, u′ is a prefix of s and we can easily deduce that

ind(s) ≥ |s|+ |u
′|

|s| >
|u|+ |u′|
|u| = ind(u) .

• If 1 < ind(u) < 2 and cr(u) > 2, then there is a factor x ∈ L(u) with ind(x) > 2 > ind(u).

Remark 4. In fact, we proved that it suffices to consider the set

M′ = {u : u is a return word to a bispecial factor of u with the fractional root u}

or, even more specifically, the set

M′′ = {u : u is a return word to the bispecial factor b = uind(u)−1 of u}
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instead ofM. Clearly,M′′ ⊂M′ ⊂M.
In Remark 2, we emphasize that only primitive factors are relevant for finding the critical exponent.

Let us verify that all return words from the set M′ (and so M′′, too) are primitive. We prove it by
contradiction. Let us suppose that u ∈ M′ is non-primitive, i.e., u = xk for some non-empty x and
k ∈ N, k > 1. Since b has the fractional root u, b = u` = xk` for some ` ∈ Q. Therefore, ub =
xk(`+1) = xxk`xk−1 = xbxk−1, which contradicts that u is a return word to b in u.

4 The mapping S on binary words and complementary symmetric
Rote sequences

In this section, we introduce a mapping S which enables us to describe the properties of CS Rote se-
quences using Sturmian sequences. Nevertheless, this mapping S can be applied to any binary sequence.

Definition 5. By S we denote the mapping S : {0, 1}+ 7→ {0, 1}∗ such that for every v0 ∈ {0, 1} we
put S(v0) = ε and for every v = v0v1 · · · vn ∈ {0, 1}+ of length at least 2 we put S(v0v1 · · · vn) =
u0u1 · · ·un−1, where

ui = vi + vi+1 mod 2 for all i ∈ {0, 1, . . . , n− 1} .

Moreover, we extend the domain of S naturally to {0, 1}N: for every v ∈ {0, 1}N we put S(v) = u,
where

ui = vi + vi+1 mod 2 for all i ∈ N .

By E : {0, 1}∗ 7→ {0, 1}∗ we denote the morphism which exchanges the letters, i.e., E(0) = 1,
E(1) = 0.

Example 6. We have E(001110) = 110001 and S(001110) = S(110001) = 01001.

Clearly, the images of v and E(v) under S coincide for each v ∈ {0, 1}∗. Moreover, S(x) = S(y) if
and only if x = y or x = E(y). The following rule follows directly from the definition of S:

S(v0v1 · · · vn) = S(v0v1 · · · vk)S(vkvk+1 · · · vn) for any k = 0, . . . , n. (3)

These observations hold also for infinite sequences.

Lemma 7. Let v be a binary sequence whose language L(v) is closed under E. Then w 6= ε is a right
(left) special factor in v if and only if S(w) is a right (left) special factor in S(v).

Proof: We will prove the statement for right special factors. The proof for left special factors is analogous.
Let c be the last letter of w.
(=⇒): Let w0 and w1 belong to L(v). Then S(w0) and S(w1) belong to L(S(v)). By the rule (3),
S(w0) = S(w)S(c0) and S(w1) = S(w)S(c1). As S(c0) 6= S(c1), the factor S(w) is right special in
S(v).
(⇐=): Let S(w)0 and S(w)1 be in L(S(v)). Then S(w)0 = S(w)S(cc) = S(wc) and S(w)1 =
S(w)S(cE(c)) = S(wE(c)). Since L(v) is closed under the exchange of letters, all factors wc, E(wc),
wE(c) and E(w)c are in L(v). It means that w and E(w) are right special factors in v.
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A Rote sequence is a sequence v with the factor complexity Cv(n) = 2n for all n ∈ N, n ≥ 1. Clearly,
all Rote sequences are defined over a binary alphabet, e.g., {0, 1}. If the language of a Rote sequence v is
closed under the exchange of letters, i.e., E(v) ∈ L(v) for each v ∈ L(v), the Rote sequence v is called
complementary symmetric (shortly CS).

Rote in [22] proved that these sequences are essentially connected with Sturmian sequences.

Proposition 8 ([22]). Let u and v be two sequences over {0, 1} such that u = S(v). Then v is a com-
plementary symmetric Rote sequence if and only if u is a Sturmian sequence.

Let us emphasize that to a given CS Rote sequence v there is the unique associated Sturmian sequence
u such that u = S(v). On the other hand, for any Sturmian sequence u there exist two associated CS
Rote sequences v and E(v) such that u = S(v) = S(E(v)). However, L(v) = L(E(v)).

Analogously, to a given factor v ∈ L(v) there is a unique associated word u such that u = S(v) and
this word u is a factor of u. In addition, to a given factor u ∈ L(u) there are exactly two associated words
v,E(v) such that S(v) = S(E(v)) = u and both these words v,E(v) are factors of v.

Example 9. Let us underline that for Sturmian sequences u and E(u) the languages of their associated
CS Rote sequences may essentially differ. Consider the Fibonacci sequence

f = abaababaaba · · · ,

which is the fixed point of the Fibonacci morphism F : a→ ab, b→ a.

• If a = 0 and b = 1, then the associated CS Rote sequence starting with 0 is v = 001110011100 · · · .
The prefix w of v of length 7 is w = 0011100 = (00111)

7
5 , i.e., w has the fractional root 00111

and the exponent 7
5 .

• If a = 1 and b = 0, then the associated CS Rote sequence starting with 0 is v′ = 011011001001 · · · .
The prefix w′ of v′ of length 7 is w′ = 0110110 = (011)

7
3 , i.e., w′ has the fractional root 011 and

the exponent 7
3 .

We will show later in Example 36 that even the critical exponent of CS Rote sequences associated with u
and E(u) may be different.

In the next section, we will explain that the relation between the shortest fractional root of a factor v
and the shortest fractional root of S(v) is influenced by the number of letters 1 occurring in the shortest
fractional root of S(v). This is the reason for the following definition and lemma.

Definition 10. A word u = u0u1 · · ·un−1 ∈ {0, 1}∗ is called stable if |u|1 = 0 mod 2. Otherwise, u is
unstable.

Lemma 11. Let S : {0, 1}+ 7→ {0, 1}∗.
(i) If 0 is a prefix of v ∈ {0, 1}∗, then S(v0) is stable.

(ii) For every u ∈ {0, 1}∗ there exists a unique w ∈ {0, 1}+ with a prefix 0 such that u = S(w).
Moreover, w has a suffix 0 if and only if u is stable.

(iii) If 0 is a prefix of w, then S(vw) = S(v0)S(w).

(iv) Let 0 be a prefix of v and v′. Then S(v′) is a prefix of S(v) if and only if v′ is a prefix of v.
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Proof:

(i) Let v = v0v1 · · · vn−1, n = |v|, and v0 = 0. Put vn = 0. Then S(v0) = u0u1 · · ·un−1, where
ui = vi + vi+1 mod 2 for every i ∈ {0, 1, . . . , n− 1}. It implies

|S(v0)|1 =

n−1∑

i=0

ui = v0 + vn = 0 mod 2 .

(ii) Let u = u0u1 · · ·um−1 and m = |u|. We look for w = w0w1 · · ·wm such that ui = wi + wi+1

mod 2 for every i ∈ {0, 1, . . . ,m− 1}. Clearly, these equations can be equivalently rewritten as

ui = wi+1 − wi mod 2 for every i ∈ {0, 1, . . . ,m− 1} . (4)

Then starting withw0 = 0 and summing up the equations (4) for i = {0, 1, . . . , j−1}, we determine
the letter wj of w as wj =

∑j−1
i=0 ui mod 2. In particular, wm = |u|1 mod 2.

(iii) It is a particular case of the equation (3).

(iv) It follows directly from the definition of S.

5 The relation between the indices of factors in v and S(v)
In this section, we provide a tool for determining the critical exponent of a binary sequence v whose lan-
guage is closed under the exchange of letters. For any factor v of such a sequence, indv(v) = indv(E(v))
and we can consider only factors of v starting with 0 without loss of generality.

Lemma 12. Let v be a binary aperiodic uniformly recurrent sequence whose language is closed under
E. Denote u = S(v). For a non-empty factor v ∈ L(v) with the prefix 0 and indv(v) > 1, there exists
a stable factor u ∈ L(u) such that

indu(u) + 1
|u| = indv(v) and u = S(v0) . (5)

And vice versa, for a non-empty stable factor u ∈ L(u), there exists a factor v ∈ L(v) with the prefix 0
satisfying (5) .

Proof: For a given n ∈ N, n ≥ 1, consider the set Kn of factors v ∈ L(v) of length n with the prefix 0
and indv(v) > 1. First, we show that the mapping v 7→ S(v0) is a bijection between Kn and the set of all
stable factors of u of length n.

Indeed, if v ∈ Kn, then v0 ∈ L(v). The factor u := S(v0) belongs to L(u), |u| = |v|, and by Item
(i) of Lemma 11, u is stable. On the other hand, if u ∈ L(u) is stable and of length n, then by Item
(ii) of Lemma 11, there exists a unique w such that 0 is a prefix and a suffix of w and S(w) = u. As
L(v) is closed under E, necessarily w ∈ L(v) and w = v0 for some v with the prefix 0. In particular,
indv(v) > 1. As u = S(w) = S(v0), the lengths of u and v coincide.
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Now we show that any v ∈ Kn and its image u = S(v0) satisfy (5). Find k ∈ N, k ≥ 1, and θ ∈ (0, 1]
such that indv(v) = k + θ. Denote v′ = vθ. Obviously, v′ 6= ε, v′ is a prefix of v and 0 is a prefix of
v′. Applying Item (iii) of Lemma 11, we get S(vkv′) = (S(v0))kS(v′). Clearly, |S(v′)| = |v′| − 1,
|u| = |v|, and by Item (iv) of Lemma 11, S(v′) is a prefix of S(v0). For u = S(v0) it means that

indu(u) ≥ k + |S(v′)|
|u| = k + |v′|

|v| − 1
|u| = k + θ − 1

|u| = indv(v)− 1
|u| .

To show the opposite inequality, we find ` ∈ N and η ∈ [0, 1) such that indu(u) = ` + η. Denote
u′ = uη . Using Item (ii) of Lemma 11, we find v′ with the prefix 0 such that u′ = S(v′). By Item (iv), v′

is a prefix of v, and by Item (iii), u`u′ = (S(v0))`S(v′) = S(v`v′). Therefore, v`v′ ∈ L(v) and

indv(v) ≥ `+ η + 1
|u| = indu(u) + 1

|u| .

As explained in Lemma 3, only return words to bispecial factors play a role for the determination of the
critical exponent of a sequence. More specifically, we can restrict ourselves to factors from the setM′ (or
M′′) introduced in Remark 4.

Lemma 13. Let v be a binary sequence whose language is closed under E. Assume that v with the prefix
0 is a return word in v to a bispecial factor b = ve−1, where e > 2. Denote u = S(v0). Then

– either u is a stable return word in S(v) to a bispecial factor with the fractional root u;
– or u = x2, where x is an unstable return word in S(v) to a bispecial factor with the fractional root u.

Proof: The factor S(b) is bispecial in S(v) by Lemma 7. Moreover, by the rule (3), we can write
S(b) = S(ve−1) = S(v0)f for f = e− 1− 1

|v| ≥ 1. Thus S(b) has the fractional root u = S(v0).
The word vb is a complete return word to b in v and thus vb = bw for some w. Note that 0 is the first

letter of b and denote z the last letter of b. By the rule (3), we get S(v0)S(b) = S(b)S(zw). It means that
S(b) is a prefix and a suffix of the word S(v0)S(b). We discuss two cases:

– S(b) has exactly two occurrences in S(v0)S(b), one as a prefix and one as a suffix. In this case
u = S(v0) is a return word to S(b) in S(v) and by Item (i) of Lemma 11, u is stable.

– S(b) occurs in S(v0)S(b) as an inner factor. In this case, there exists a return word u′ 6= ε to
S(b) such that |u′| < |u| and u′S(b) is a proper prefix of S(v0)S(b). We take the word b′ such that
b = vb′. Clearly, b′ has the prefix 0 and so S(b) = uS(b′). Then u′S(b) = u′uS(b′) is a proper prefix of
S(v0)S(b) = uS(b) = uuS(b′). In other words, u′uu′′ = uu for some non-empty u′′ and consequently,
u = u′u′′ = u′′u′. This implies the existence of x ∈ {0, 1}+ and k′, k′′ ∈ N, k′, k′′ ≥ 1 such that
u′ = xk

′
and u′′ = xk

′′
. If we denote k = k′ + k′′ ≥ 2, we can write u = xk.

We show that x is unstable and k = 2. Indeed, assume x is stable, then by Item (ii) of Lemma 11, we
find a unique y with the prefix 0 such that x = S(y0). Applying Item (iii), we obtain S(v0) = u = xk =
(S(y0))k = S(yk0) and thus v = yk. Nevertheless, the factor v is primitive as explained in Remark 4.
Thus this is a contradiction.

Since x is unstable and u = xk is stable, necessarily k = 2p for some integer p ≥ 1. Now we deduce
that k = 2. Indeed, if p ≥ 2, then u is a p-power of the stable factor x2 which yields a contradiction with
the primitivity of v as above. Finally, k = 2 implies k′ = 1 and u′ = x is an unstable return word to the
bispecial factor S(b) in S(v).
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Theorem 14. Let v be a binary aperiodic uniformly recurrent sequence whose language is closed under
E. Denote u = S(v),

A1 =
{

indu(u) + 1
|u| : u is a stable return word to a bispecial factor of u

}
and

A2 =
{

1
2

(
indu(u) + 1

|u|
)

: u is an unstable return word to a bispecial factor of u
}
.

Then
cr(v) = sup

(
A1 ∪A2

)
.

Proof: First we show that

indv(v) ≤ sup
(
A1 ∪A2

)
for any non-empty v ∈ L(v) . (6)

If indv(v) ≤ 2, then the inequality (6) is trivially satisfied as A1 contains the number indu(0)+ 1
|0| ≥ 2

(note that 0 is a stable return word in u to the bispecial factor ε). Now we assume that indv(v) = e > 2.
By Lemma 3 and Remark 4, we may focus only on v which is a return word to the bispecial factor
b = ve−1 and v has the prefix 0. By Lemma 12, indv(v) = indu(u) + 1

|u| , where u = S(v0). By
Lemma 13, the factor u is either a stable return word to a bispecial factor in u, or u = x2, where x is
an unstable return word to a bispecial factor in u. In the first case we have indv(v) ≤ supA1, while in
the second case we have indv(v) = indu(u) + 1

|u| = 1
2 indu(x) + 1

2|x| ≤ supA2. We may conclude that
cr(v) ≤ sup

(
A1 ∪A2

)
.

To prove the opposite inequality, we show

A1 ∪A2 \ [0, 1] ⊂ {indv(v) : v ∈ L(v), v 6= ε} .

If H ∈ A1, then there exists a stable factor u in u such that H = indu(u) + 1
|u| , and by Lemma 12, we

find v in v such thatH = indv(v). Analogously, ifH ∈ A2 andH > 1, then indu(u) = 2H− 1
|u| ≥ 2 for

some unstable factor u ∈ L(u). Thus the word y = uu ∈ L(u), it is a stable factor of u and its index in u
is 1

2 indu(u). By Lemma 12, there is v in v such that indv(v) = indu(y)+ 1
|y| = 1

2 indu(u)+ 1
2|u| = H.

Theorem 14 will be used in the next sections to determine the critical exponent of a complementary
symmetric Rote sequence v by exploiting the indices of factors in the Sturmian sequence S(v). The
following example shows an opposite application of Theorem 14. But before that, let us state a simple
auxiliary statement reflecting the behaviour of fractional roots under the application of a morphism.

Observation 15. Let φ : A∗ 7→ A∗ be a morphism and let w ∈ A∗ be a prefix of φ(a) for each a ∈ A. If
u is a fractional root of z, then φ(u) is a fractional root of φ(z)w.

Example 16. Let us consider the Thue–Morse sequence t = 01101001 · · · , which is fixed by the mor-
phism ψ : 0 7→ 01 and 1 7→ 10. It is well-known that t is uniformly recurrent, its language is closed under
the exchange of letters and cr(t) = 2. The corresponding sequence u = S(t) = 1011101 · · · is called
the period doubling sequence and it is fixed by the morphism φ : 0 7→ 11 and 1 7→ 10, see [21].

We determine the critical exponent of u. Theorem 14 implies cr(u) ≤ 4, as otherwise cr(t) > 2, which
is a contradiction. Now we show that the value 4 is attained.

By Observation 15 and the fact that both φ(0) and φ(1) have the prefix 1, the morphism φ has the
following two properties:
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1. If w ∈ L(u), then φ(w)1 ∈ L(u).

2. If u is a fractional root of w, then φ(u) is a fractional root of φ(w)1.

We will construct two sequences
(
u(n)

)
and

(
w(n)

)
of words belonging to L(u). We start with u(0) = 1

and w(0) = 111 ∈ L(u) and for each n ∈ N we define

w(n+1) = φ(w(n))1 and u(n+1) = φ(u(n)) .

Note that u(0) = 1 is a fractional root of w(0) = 111. Because of the property (2), the word u(n)

is a fractional root of w(n) for each n ∈ N. Moreover, the specific form of the morphism φ implies
|u(n+1)| = 2|u(n)| and |w(n+1)| = 2|w(n)|+ 1. It gives |u(n)| = 2n and |w(n)| = 2n+2 − 1. Therefore,
indu(u(n)) ≥ 2n+2−1

2n → 4. We may conclude that cr(u) = 4.

6 Return words to bispecial factors of Sturmian sequences
The main goal of this article is to describe the critical exponent and the recurrence function of CS Rote
sequences. Proposition 8 and Theorem 14 transform the first task to the computation of the indices of
return words to bispecial factors in the associated Sturmian sequences.

This is a preparatory section for this computation. We introduce the directive sequence of a standard
Sturmian sequence and recall some known results on bispecial factors, their return words, and derived
sequences. It allows us to describe the longest factor of u with the fractional root u, where u is any return
word to a bispecial factor of a Sturmian sequence u (Lemma 24). Further on, we explain how to express
the lengths of these factors explicitly (Proposition 30), and eventually in Section 7, we determine the
indices.

First, we recall that a binary sequence u ∈ {0, 1}N is Sturmian if it has the factor complexity Cu(n) =
n + 1 for all n ∈ N. If both sequences 0u and 1u are Sturmian, then u is called a standard Sturmian
sequence. It is well-known that for any Sturmian sequence there exists a unique standard Sturmian se-
quence with the same language. Since all properties which we are interested in (indices of factors, critical
exponent, special factors, return words, recurrence function) depend only on the language of the sequence,
we restrict ourselves to standard Sturmian sequences without loss of generality.

In the sequel, we use the characterization of standard Sturmian sequences by their directive sequences.
To introduce them, we define two morphisms

G =

{
0→ 10

1→ 1
and D =

{
0→ 0

1→ 01

with the corresponding matrices

MG =

(
1 0
1 1

)
and MD =

(
1 1
0 1

)
.

Let us note that G = E ◦ F and D = F ◦ E, where E is the morphism which exchanges letters, i.e.,
E : 0→ 1, 1→ 0, and F is the Fibonacci morphism, i.e., F : 0→ 01, 1→ 0.
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Proposition 17 ([13]). For every standard Sturmian sequence u there is a uniquely given sequence ∆ =
∆0∆1∆2 · · · ∈ {G,D}N of morphisms and a sequence (u(n))n≥0 of standard Sturmian sequences such
that

u = ∆0∆1 . . .∆n−1(u(n)) for every n ∈ N .

Moreover, the sequence ∆ contains infinitely many letters G and infinitely many letters D, i.e.,

∆ = Ga1Da2Ga3Da4 · · · or ∆ = Da1Ga2Da3Ga4 · · · for some sequence (ai)i≥1 of positive integers.

The sequence ∆ is called the directive sequence of u.

Remark 18. Let us note that u has the directive sequenceGa1Da2Ga3Da4 · · · if and only ifE(u) has the
directive sequence Da1Ga2Da3Ga4 · · · . Obviously, both sequences u and E(u) have the same structure
up to the exchange of letters 0 ↔ 1. In particular, any Sturmian sequence with the directive sequence
Ga1Da2Ga3Da4 · · · can be written as a concatenation of the blocks 1a10 and 1a1+10, while any Sturmian
sequence with the directive sequence Da1Ga2Da3Ga4 · · · can be written as a concatenation of the blocks
0a11 and 0a1+11.

By Vuillon’s result [24], every factor of any Sturmian sequence has exactly two return words. Thus for
a given bispecial factor b of u, we usually denote by r the more frequent and by s the less frequent return
word to b in u. In this notation, the sequence u can be decomposed into the blocks rks and rk+1s for
some k ∈ N, k ≥ 1.

We need to know how bispecial factors and their return words change under the application of mor-
phisms G and D. The following description can be found in [16], where several partial statements from
[14] are accumulated.

Lemma 19. Let u′,u be standard Sturmian sequences such that u = G(u′).

(i) For every bispecial factor b′ of u′, the factor b = G(b′)1 is a bispecial factor of u.

(ii) Every bispecial factor b of u which is not empty can be written as b = G(b′)1 for a uniquely given
bispecial factor b′ ∈ L(u′).

(iii) The words r′, s′ are return words to a bispecial prefix b′ of u′ if and only if r = G(r′), s = G(s′)
are return words to a bispecial prefix b = G(b′)1 of u. Moreover, the derived sequences satisfy
du(b) = du′(b

′).

Lemma 20. Let u′,u be standard Sturmian sequences such that u = D(u′).

(i) For every bispecial factor b′ of u′, the factor b = D(b′)0 is a bispecial factor of u.

(ii) Every bispecial factor b of u which is not empty can be written as b = D(b′)0 for a uniquely given
bispecial factor b′ ∈ L(u′).

(iii) The words r′, s′ are return words to a bispecial prefix b′ of u′ if and only if r = D(r′), s = D(s′)
are return words to a bispecial prefix b = D(b′)0 of u. Moreover, the derived sequences satisfy
du(b) = du′(b

′).
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Any prefix of a standard Sturmian sequence is a left special factor. Moreover, a factor of a standard
Sturmian sequence u is bispecial if and only if it is a palindromic prefix of u. Therefore, we can order the
bispecial factors of a given standard Sturmian sequence u by their lengths: we start with the empty word
ε, which is the 0th bispecial factor, then the first letter of u is the 1st bispecial factor of u etc.

Remark 21. If u has the directive sequence ∆0∆1∆2 · · · ∈ {G,D}N, the derived sequence du(b) to
the nth bispecial factor b of u has the directive sequence ∆n∆n+1∆n+2 · · · . Indeed, we denote u′ the
sequence with the directive sequence ∆n∆n+1∆n+2 · · · . It has the bispecial factor ε and by the definition
du′(ε) = u′. If we apply n times Lemmas 19 or 20, we get du(b) = du′(ε) = u′.

Let us formulate a direct consequence of the relation (1) and Lemmas 19 and 20.

Corollary 22. Let k, h ∈ N. Let b′ be the kth bispecial factor of a standard Sturmian sequence u′ and u′

be a return word to b′ in u′. Let ∆ = ∆0∆1∆2 · · · ∈ {G,D}N be the directive sequence of u′.

1. If u = Gh(u′), then the (k + h)th bispecial factor b of u and a return word u to b satisfy

~V (b) =

(
1 0
h 1

)
~V (b′) + h

(
0
1

)
and ~V (u) =

(
1 0
h 1

)
~V (u′) .

The directive sequence of u is Gh∆0∆1∆2 · · · .

2. If u = Dh(u′), then the (k + h)th bispecial factor b of u and a return word u to b satisfy

~V (b) =

(
1 h
0 1

)
~V (b′) + h

(
1
0

)
and ~V (u) =

(
1 h
0 1

)
~V (u′) .

The directive sequence of u is Dh∆0∆1∆2 · · · .

As we have seen in Remark 4, when determining the critical exponent it suffices to take into account
only bispecial factors whose fractional roots are equal to its return words. Lemma 24 says that all bispecial
factors of a Sturmian sequence are of this type, and moreover, it enables to determine the indices of their
return words. The first auxiliary statement is a slightly strengthened variant of Observation 15 for the
morphisms G and D.

Observation 23. Let u be a binary sequence and let u ∈ L(u). If z is the longest factor in L(u) with
the fractional root u, then G(z)1 is the longest factor in L(G(u)) with the fractional root G(u) and,
analogously, D(z)0 is the longest factor in L(D(u)) with the fractional root D(u).

Lemma 24. Let b be a bispecial factor of a standard Sturmian sequence u. Let r and s be the return
words to b in u and let k ∈ N, k ≥ 1, be such that u is concatenated from the blocks rks and rk+1s.
Then rk+1b is the longest factor of u with the fractional root r and sb is the longest factor of u with the
fractional root s.

Proof: We proceed by induction on the length of b. Without loss of generality, we assume that u has the
directive sequence ∆ = Ga1Da2Ga3Da4 · · · .

The bispecial factor b = ε has the return words r = 1, s = 0, and by Remark 18, u is concatenated
from the blocks 1a10 = ra1s and 1a1+10 = ra1+1s. Clearly, ra1+1b = 1a1+1 is the longest factor of u
with the fractional root 1. Similarly, sb = 0 is the longest factor of u with the fractional root 0.
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Let b be a bispecial factor of u with |b| ≥ 1 and let u be concatenated from the blocks rks and rk+1s
for the return words r, s to b in u and some k ∈ N, k ≥ 1. By Proposition 17, there is a unique standard
Sturmian sequence u′ such that u = G(u′). By Lemmas 19 and 20, there is a unique bispecial factor b′

of u′ with the return words r′ and s′ such that b = G(b′)1, r = G(r′), and s = G(s′). Moreover, u′ is
concatenated from the blocks (r′)ks′ and (r′)k+1s′. Clearly, |b′| < |b| and so by the induction hypothesis,
the words (r′)k+1b′ and s′b′ are the longest factors of u′ with the fractional root r′ and s′, respectively.
But then by Observation 23, the words rk+1b = G((r′)k+1b′)1 and sb = G(s′b′)1 are the longest factors
of u with the fractional root r = G(r′) and s = G(s′), respectively.

Having in mind our goal to describe the critical exponent of any CS Rote sequence and Theorem 14,
we need to determine the indices of return words to bispecial factors in standard Sturmian sequences,
i.e., the lengths of factors from Lemma 24. We also want to distinguish, which of these return words are
(un)stable. Both of these tasks can be solved using the Parikh vectors of the relevant bispecial factors and
their return words. We deduce the explicit formulae for the needed Parikh vectors in Proposition 30. For
this purpose, we adopt the following notation.

Notation 25. To a standard Sturmian sequence u with the directive sequence ∆ = Ga1Da2Ga3Da4 · · ·
or ∆ = Da1Ga2Da3Ga4 · · · we assign an irrational number θ ∈ (0, 1) with the continued fraction
expansion

θ = [0, a1, a2, a3, . . .] .

For every N ∈ N, we denote by pN
qN

the N th convergent to the number θ and by p′N
q′N

the N th convergent

to the number θ
1+θ .

Remark 26. Let us recall some basic properties of convergents. They can be found in any number theory
textbook, e.g., [12].

1. The sequences (pN ), (qN ), and (q′N ) fulfil the same recurrence relation for all N ∈ N, N ≥ 1,
namely

XN = aNXN−1 +XN−2 ,

but they differ in their initial values: p−1 = 1, p0 = 0; q−1 = 0, q0 = 1; q′−1 = q′0 = 1. It implies
for all N ∈ N

pN + qN = q′N .

2. For all N ∈ N, N ≥ 1, we have
(

1 0
a1 1

)(
1 a2
0 1

)
· · ·
(

1 0
a2N−1 1

)(
1 a2N
0 1

)
=

(
p2N−1 p2N
q2N−1 q2N

)
;

(
1 0
a1 1

)(
1 a2
0 1

)
· · ·
(

1 a2N−2
0 1

)(
1 0

a2N−1 1

)
=

(
p2N−1 p2N−2
q2N−1 q2N−2

)
.

Remark 27. For the description of a standard Sturmian sequence u we use the number θ. Usually, a
standard Sturmian sequence is characterized by the so-called slope, which is equal to the density of the
letter 1 in the sequence u. In our notation, the slope of u is θ

1+θ = [0, 1 + a1, a2, a3, . . .] if the directive
sequence ∆ starts with D, otherwise the slope is 1

1+θ = [0, 1, a1, a2, a3, . . .].
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In the sequel, we will need two auxiliary statements on convergents pN
qN

to θ.

Lemma 28. For all N ∈ N we have
(
pN
qN

)
6=
(

0
0

)
mod 2 and

(
pN
qN

)
6=
(
pN−1
qN−1

)
mod 2 .

Proof: The first statement is a consequence of the fact that pN and qN are coprime. We show the second

statement by contradiction. Assume that there exists K ∈ N such that
(
pK
qK

)
=

(
pK−1
qK−1

)
mod 2. Let

K denote the smallest integer with this property. As q−1 = 0 and q0 = 1, necessarily, K > 0. Using the
recurrence relation satisfied by the convergents, we can write

(
pK
qK

)
= aK

(
pK−1
qK−1

)
+

(
pK−2
qK−2

)
=

(
pK−1
qK−1

)
mod 2 .

If aK is even, then the previous equation gives
(
pK−2
qK−2

)
=

(
pK−1
qK−1

)
mod 2, which is a contradic-

tion with the minimality of K.

If aK is odd, then the previous equation gives
(
pK−2
qK−2

)
=

(
0
0

)
mod 2, which is a contradiction

with the first statement.

Lemma 29. For all N ∈ N, N ≥ 1, we have

aN

(
pN−1
qN−1

)
+ aN−1

(
pN−2
qN−2

)
+ · · ·+ a2

(
p1
q1

)
+ a1

(
p0
q0

)
=

(
pN
qN

)
+

(
pN−1
qN−1

)
−
(

1
1

)
.

Proof: It can be easily proved by induction on N .

The Parikh vectors of the bispecial factors of u and the corresponding return words can be easily
expressed using the convergents pN

qN
to θ. We will use these expressions essentially in the next sections.

Proposition 30. Let b be the nth bispecial factor of u with the directive sequence Ga1Da2Ga3Da4 · · · .
We denote r and s the more and the less frequent return word to b in u, respectively. Put a0 = 0 and write
n in the form n = m+ a0 + a1 + a2 + · · ·+ aN for a unique N ∈ N and 0 ≤ m < aN+1. Then

1. ~V (r) =

(
pN
qN

)
;

2. ~V (s) =

(
mpN + pN−1
mqN + qN−1

)
;

3. ~V (b) = (m+ 1)

(
pN
qN

)
+

(
pN−1
qN−1

)
−
(

1
1

)
.
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Proof: First we suppose that N is even and denote u′ the standard Sturmian sequence with the direc-
tive sequence GaN+1DaN+2GaN+3 · · · . By Remark 18, u′ is concatenated from the blocks 1aN+10 and
1aN+1+10. Thus its mth bispecial factor is b′ = 1m and the return words to b′ in u′ are r′ = 1 and
s′ = 1m0.

By Lemmas 19 and 20 and Remark 21,

r = Ga1Da2 · · ·GaN−1DaN (r′) and s = Ga1Da2 · · ·GaN−1DaN (s′) .

By Corollary 22 and Lemma 29, the Parikh vectors of r and s satisfy

~V (r) =

(
1 0
a1 1

)(
1 a2
0 1

)
· · ·
(

1 0
aN−1 1

)(
1 aN
0 1

)(
0
1

)
=

(
pN
qN

)
;

~V (s) =

(
1 0
a1 1

)(
1 a2
0 1

)
· · ·
(

1 0
aN−1 1

)(
1 aN
0 1

)(
1
m

)
=

(
mpN + pN−1
mqN + qN−1

)
.

To find the Parikh vector of b we start with the bispecial factor b′ = 1m and N times apply Corollary 22.
Eventually, we rewrite the arising products of matrices by Lemma 29 and we get

~V (b) = m

(
pN
qN

)
+ aN

(
pN−1
qN−1

)
+ aN−1

(
pN−2
qN−2

)
+ · · ·+ a2

(
p1
q1

)
+ a1

(
p0
q0

)
.

This together with Lemma 29 implies the statement of Item (3) for N even. The proof for N odd is
analogous.

Remark 31. If we assume in Proposition 30 that u has the directive sequence ∆ = Da1Ga2Da3Ga4 · · · ,
then by Remark 18, the coordinates of the Parikh vectors will be exchanged, i.e.,

~V (r) =

(
qN
pN

)
, ~V (s) =

(
mqN + qN−1
mpN + pN−1

)
, and ~V (b) = (m+ 1)

(
qN
pN

)
+

(
qN−1
pN−1

)
−
(

1
1

)
.

7 The critical exponent of CS Rote sequences
We are going to give an explicit formula for the critical exponent of a CS Rote sequence v. We will
use Theorem 14 which requires the knowledge of the indices of return words to bispecial factors in the
Sturmian sequence S(v). It is well-known that there is a unique standard Sturmian sequence u such that
both S(v) and u have the same language. Since the critical exponent depends only on the language, we
can work with the standard Sturmian sequence u instead of S(v).

In the following proposition and theorem, we use Notation 25.

Proposition 32. Let u be a standard Sturmian sequence with the directive sequence Ga1Da2Ga3Da4 · · ·
or Da1Ga2Da3Ga4 · · · and let n ∈ N be given. We put a0 = 0 and we denote r and s the more and the
less frequent return words to the nth bispecial factor of u, respectively.

1. If n = m+a0 +a1 +a2 + · · ·+aN , where 0 ≤ m < aN+1, then ind(r) = aN+1 + 2 +
q′N−1−2
q′N

.

2. If n = a0 + a1 + a2 + · · ·+ aN , then ind(s) = aN + 2 +
q′N−2−2
q′N−1

.
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3. If n = m+ a0 + a1 + a2 + · · ·+ aN , where 0 < m < aN+1, then ind(s) = 2 +
q′N−2

mq′N+q′N−1
.

Let us comment what is meant by q′−2 in the case N = 0 in Item (2): we define q′−2 to satisfy the
recurrent relation 1 = q′0 = a0q

′
−1 + q′−2 = q′−2.

Proof: We assume that N is even (the case of N odd is analogous). Moreover, we assume that u has the
directive sequence Ga1Da2Ga3Da4 · · · .

Since b is the nth bispecial factor in u, the derived sequence du(b) is standard Sturmian with the
directive sequence GkDaN+2GaN+3 · · · , where k = aN+1 −m, see Corollary 22. By Remark 18, du(b)
is a concatenation of the blocks 1k0 and 1k+10. Therefore, the sequence u is concatenated from the blocks
rks and rk+1s, where r and s are the return words to b. By Lemma 24, the factor rk+1b is the longest
factor of u with the fractional root r and sb is the longest factor of u with the fractional root s. In other
words, rind(r) = rk+1b and sind(s) = sb. By Proposition 30 and Remark 26, we have

|r| = pN + qN = q′N , |s| = mq′N + q′N−1 , and |b| = (m+ 1)q′N + q′N−1 − 2 .

As |rk+1b| = (k + 1)|r|+ |b| = (aN+1 −m+ 1)|r|+ |b| = (aN+1 + 2)q′N + q′N−1 − 2, we get

ind(r) = |rk+1b|
|r| = aN+1 + 2 +

q′N−1−2
q′N

.

As |sb| = (2m+ 1)q′N + 2q′N−1 − 2, we get for m = 0

ind(s) = |sb|
|s| =

q′N+2q′N−1−2
q′N−1

=
aNq

′
N−1+q

′
N−2+2q′N−1−2
q′N−1

= aN + 2 +
q′N−2−2
q′N−1

and for m > 0

ind(s) = |sb|
|s| =

(2m+1)q′N+2q′N−1−2
mq′N+q′N−1

= 2 +
q′N−2

mq′N+q′N−1
.

If the directive sequence equals Da1Ga2Da3Ga4 · · · , only the coordinates of the Parikh vectors of r, s,
b are exchanged (see Remark 31).

Theorem 33. Let v be a CS Rote sequence and let u be the standard Sturmian sequence such that
L(S(v)) = L(u). Then cr(v) = sup(M1 ∪M2 ∪M3) , where

M1 =

{
aN+1 + 2 +

q′N−1 − 1

q′N
: qN is even, N ∈ N

}
;

M2 =

{
aN+1 + 2

2
+
q′N−1 − 1

2q′N
: qN is odd, N ∈ N

}
;

M3 =

{
2 +

q′N − 1

q′N−1 + q′N
: qN−1, qN are odd and aN+1 > 1, N ≥ 1

}

if the directive sequence of u is Ga1Da2Ga3Da4 · · · , and

M1 =

{
aN+1 + 2 +

q′N−1 − 1

q′N
: pN is even, N ∈ N

}
;

M2 =

{
aN+1 + 2

2
+
q′N−1 − 1

2q′N
: pN is odd, N ∈ N

}
;

M3 =

{
2 +

q′N − 1

q′N−1 + q′N
: pN−1, pN are odd and aN+1 > 1, N ≥ 1

}
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if the directive sequence of u is Da1Ga2Da3Ga4 · · · .

Proof: Let us recall that every CS Rote sequence is uniformly recurrent and aperiodic. In addition, to a
CS Rote sequence v we can always find a unique standard Sturmian sequence u such that u has the same
language as S(v). It is important to realize that Theorem 14 holds for the pair v and u, too.

First, we assume that u has the directive sequence Ga1Da2Ga3Da4 · · · . We compute the suprema of
the sets A1 and A2 defined in Theorem 14, since by this theorem, cr(v) = sup(A1 ∪A2).

Let us decompose A1 into A1 =
⋃∞
N=0A

(N)
1 , where

A
(N)
1 =

{
indu(u) + 1

|u| : u is a stable return word to the nth bispecial f. of u,

N∑

k=0

ak ≤ n <
N+1∑

k=0

ak

}
.

By definition, a word u is stable if the number of ones occurring in u is even, i.e., the second component
of its Parikh vector ~V (u) is even. Combining Propositions 30 and 32, we obtain that A(N)

1 contains

• aN+1 + 2 +
q′N−1−1
q′N

if qN is even,

• aN + 2 +
q′N−2−1
q′N−1

if qN−1 is even,

• the subset B(N)
1 = {2 +

q′N−1
mq′N+q′N−1

: mqN + qN−1 even, 0 < m < aN+1}.

First we look at A(0)
1 . Since q0 = 1 is odd, q−1 = 0 is even, a0 = 0, q′0 = q′−1 = q′−2 = 1, we get

A
(0)
1 = {2}. Since we know that cr(v) > 2, we can consider only N ≥ 1. Let us note that all elements

in B(N)
1 are strictly less than 3. If qN or qN−1 is even, the set A(N)

1 contains an element ≥ 3 and the
set B(N)

1 does not play any role for supA1. If both qN and qN−1 are odd, there is an element in B(N)
1

only for odd m < aN+1, and obviously, supB
(N)
1 is attained for m = 1 (if aN+1 = 1 the set is empty).

Together it gives supA1 = sup(M1 ∪M3).
Analogously we define the sets A(N)

2 for unstable return words. Then A(N)
2 consists of

• 1
2

(
aN+1 + 2 +

q′N−1−1
q′N

)
if qN is odd,

• 1
2

(
aN + 2 +

q′N−2−1
q′N−1

)
if qN−1 is odd,

• the subset B(N)
2 = { 12

(
2 +

q′N−1
mq′N+q′N−1

)
: mqN + qN−1 odd, 0 < m < aN+1}.

We easily compute that supA
(0)
2 = 1

2 (a1 + 2). All elements in B(N)
2 are strictly less than 3

2 . Thus if
qN or qN−1 is odd, the set B(N)

2 does not play any role for supA2. If qN and qN−1 are even, then the
set B(N)

2 is empty. It means that supA2 = supM2. We can conclude that cr(v) = sup(A1 ∪ A2) =
sup(M1 ∪M2 ∪M3).

If the directive sequence equals Da1Ga2Da3Ga4 · · · , only the coordinates of the Parikh vectors of r
and s are exchanged (see Remark 31).
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8 CS Rote sequences with a small critical exponent
In this section, we present some corollaries of Theorem 33. As we have mentioned, Currie, Mol, and
Rampersad proved in [7] that there are exactly two languages of rich binary sequences with the critical
exponent less than 14

5 . Both of them are languages of CS Rote sequences.
Let us remind that the critical exponent depends only on the language of a sequence and not on the

sequence itself. Therefore, there are infinitely many CS Rote sequences with the critical exponent less
than 14

5 , but all of them have one of two languages. We show that among all languages of CS Rote
sequences only these two languages have the critical exponent less than 3. We also describe all languages
of CS Rote sequences with the critical exponent equal to 3.

Proposition 34. Let v be a CS Rote sequence associated with the standard Sturmian sequence u = S(v).
If cr(v) ≤ 3, then the directive sequence of u is of one of the following forms:

1. Ga1(D2G2)ω , where a1 = 1 or a1 = 3; in this case cr(v) = 2 + 1√
2

;

2. Ga1D4(G2D2)ω , where a1 = 1 or a1 = 3; in this case cr(v) = 3;

3. Ga1D1Ga3(D2G2)ω , where a1 = 2 or a1 = 4 and a3 = 1 or a3 = 3; in this case cr(v) = 3;

4. D1Ga2(D2G2)ω , where a2 = 1 or a2 = 3; in this case cr(v) = 3.

Proof: For each N ∈ N we denote βN = aN+1 +2+
q′N−1−1
q′N

the number which is a candidate to join the
set M1. We can easily compute that β0 = a1 + 2, β1 = a2 + 2 and βN > 3 for every N ≥ 2. Indeed, it
suffices to realize that q′−1 = q′0 = 1, q′1 = a1+1 > 1 and (q′N )N≥1 is an increasing sequence of integers,

so q′N−1−1
q′N

∈ (0, 1) for all N ≥ 2. Since we look for a sequence v with cr(v) ≤ 3, we have to ensure that
βN /∈ M1 for all N ≥ 2 by the parity conditions. It is also important to notice that supM3 ≤ 3. Indeed,
since q′N−1

q′N+q′N−1
∈ [0, 1) for all N ∈ N, all elements of M3 are less than 3.

First we assume that the directive sequence of u is Ga1Da2Ga3Da4 · · · . By Theorem 33, if qN is even,
then βN ∈M1, otherwise 1

2βN ∈M2. To ensure supM1 ≤ 3, qN has to be odd for allN ≥ 2. Moreover,
to ensure supM2 ≤ 3, βN ≤ 6 and so aN+1 ≤ 3 for allN ≥ 2. Since q0 = 1 is odd, 1

2β0 = a1
2 +1 ∈M2

and so a1 ≤ 4. We distinguish two cases.
(i) If q1 = a1 is odd, then M1 is empty and 1

2β1 = a2
2 + 1 ∈M2. Thus a2 ≤ 4. The recurrent relation

qN = aNqN−1 + qN−2 with the odd initial conditions q0 and q1 produces qN odd for all N ≥ 2 if and
only if aN is even for all N ≥ 2. We can summarize that a1 ∈ {1, 3}, a2 ∈ {2, 4} and aN = 2 for all
N ≥ 3.

Let us observe that if a2 = 4, then supM2 = 3. Since supM3 ≤ 3 and M1 is empty, we conclude that
cr(v) = supM2 = 3. It gives us Item (2) of our proposition.

If a2 = 2, then it is easy to check that all elements of M2 are smaller than 5
2 and thus supM2 ≤ 5

2 .
Since M1 is empty, to prove Item (1), it remains to compute

supM3 = sup

{
2 +

q′N − 1

q′N−1 + q′N
: N ∈ N

}
= 2 +

1√
2
>

5

2
.
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The sequence (q′N )N≥2 fulfils the recurrence relation q′N = 2q′N−1 + q′N−2 with the initial conditions
q′0 = 1 and q′1 = a1 + 1. This linear recurrence has the solution

q′N = 1
2
√
2

(
(a1 +

√
2)(1 +

√
2)N − (a1 −

√
2)(1−

√
2)N

)
. (7)

Now it suffices to use the expression (7) to verify that

lim
N→∞

q′N − 1

q′N−1 + q′N
=

1√
2

and
q′N − 1

q′N−1 + q′N
≤ 1√

2
for all N ∈ N .

(ii) If q1 = a1 is even, then M1 = {β1 = a2 + 2} since all the others qN are odd. Thus a2 = 1
and cr(v) ≥ 3. The recurrent relation qN = aNqN−1 + qN−2 with the initial conditions q0 = 1,
q1 = a1 ∈ {2, 4} produces odd qN for all N ≥ 2 if and only if a3 is odd and aN is even for all N ≥ 4.
Moreover, to ensure supM2 ≤ 3, we have to take a1 ≤ 4 and aN ≤ 3 for everyN ≥ 3. Together with the
parity conditions we get a1 ∈ {2, 4}, a2 = 1, a3 ∈ {1, 3}, and aN = 2 for all N ≥ 4. Since supM3 ≤ 3,
the set M3 can be omitted. Together it means that in this case cr(v) = 3 and it corresponds to Item (3) of
our statement.

Now we assume that the directive sequence of u isDa1Ga2Da3Ga4 · · · . By Theorem 33, if pN is even,
then βN ∈ M1, otherwise βN

2 ∈ M2. Since p0 = 0 is even, β0 = a1 + 2 ∈ M1. Therefore, a1 = 1 and
cr(v) ≥ 3. Since p1 = a1p0+p−1 = 1 is odd, β1

2 = a2
2 +1 ∈M2 and so a2 ≤ 4. To guarantee cr(v) ≤ 3,

pN has to be odd and aN+1 ≤ 3 for all N ≥ 2. The recurrence relation pN = aNpN−1 + pN−2 with the
initial conditions p0 = 0 and p1 = 1 produces pN odd for all N ≥ 2 if and only if a2 is odd and aN is
even for all N ≥ 2. Clearly, the set M3 can be omitted. We may conclude that cr(v) = 3 and a1 = 1,
a2 ∈ {1, 3}, and aN = 2 for all N ≥ 3, which corresponds to Item (4).

Remark 35. Let us emphasize that all standard Sturmian sequences from Proposition 34, i.e., which are
associated with CS Rote sequences with the critical exponent ≤ 3, are morphic images of the fixed point
of the morphism D2G2. If follows directly from the fact that their directive sequences have the periodic
suffix (D2G2)ω .

Example 36. In Proposition 34, we have shown that the CS Rote sequence v such that S(v) has the
directive sequence G(D2G2)ω has the critical exponent cr(v) = 2 + 1√

2
. Let us determine the critical

exponent cr(v′) of the CS Rote sequence v′ associated to the standard Sturmian sequence S(v′) obtained
by the exchange of letters from S(v), i.e., S(v′) = E(S(v)).

By Remark 18, the directive sequence of S(v′) equalsD(G2D2)ω . Thus we have θ = [0, 1, 2, 2, 2, . . . ]
and it is readily seen that pN is even if and only if N is even. Let us calculate cr(v′) by Theorem 33. We
have

M1 = {a2N+1 + 2 +
q′2N−1 − 1

q′2N
: N ∈ N} = {3} ∪ {4 +

q′2N−1 − 1

q′2N
: N ∈ N, N ≥ 1} .

Using equation (7), we can check that the sequence
( q′2N−1−1

q′2N

)
is increasing and has the limit 1

1+
√
2

,

and therefore supM1 = 4 + 1
1+
√
2

. Since the elements of M2 and M3 are ≤ 3, we can conclude that
cr(v′) = 4 + 1

1+
√
2

.
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It is well-known that among Sturmian sequences the sequence with the lowest possible critical exponent
is the Fibonacci sequence f , which has cr(f) = 3 + 2

1+
√
5
∼ 3.602. The following theorem implies that

there are uncountably many CS Rote sequences with the critical exponent smaller than cr(f).

Theorem 37. Let Ga1Da2Ga3Da4 · · · be the directive sequence of a standard Sturmian sequence u and
let v be the CS Rote sequence associated with u. Then cr(v) < 7

2 if and only if the sequence a1a2a3 · · ·
is a concatenation of the blocks from the following list:
L0: 111;
L1: s1, where s ∈ {2, 4};
L2: cs31, where c ∈ {1, 3} and s ∈ {2, 4}∗;
L3: cs, where c ∈ {1, 3} and s ∈ {2, 4}N,

and if the block L0 appears in a1a2a3 · · · , then it is a prefix of a1a2a3 · · · .

Proof: As in the proof of Proposition 34, we again use the sets M1 and M2 from Theorem 33. The set
M3 can be omitted since supM3 ≤ 3.

Let us recall that q0 = 1, q1 = a1, and if qN is even, then βN = aN+1 + 2 +
q′N−1−1
q′N

∈M1, otherwise
1
2βN ∈ M2. First we suppose that cr(v) < 7

2 and we deduce several auxiliary observations for each
N ∈ N:

1. If qN even, then aN+1 = 1.

Proof: It follows from the inequality βN < 7
2 .

2. If qN odd, then aN+1 ∈ {1, 2, 3, 4}.
Proof: It follows from the inequality 1

2βN < 7
2 .

3. If qN−1 odd and qN even, then qN+1 odd.

Proof: It follows from Item (1) and the relation qN+1 = aN+1qN + qN−1 = qN + qN−1.

4. If qN even, qN+1 odd, and qN+2 even, then aN+2 ∈ {2, 4}.
Proof: It follows from Item (2) and the relation qN+2 = aN+2qN+1 + qN .

5. If qN even, qN+1 odd, and qN+2 odd, then aN+2 ∈ {1, 3}.
Proof: It follows from Item (2) and the relation qN+2 = aN+2qN+1 + qN .

6. If qN odd, qN+1 odd, and qN+2 odd, then aN+2 ∈ {2, 4}.
Proof: It follows from Item (2) and the relation qN+2 = aN+2qN+1 + qN .

7. If qN odd, qN+1 odd, and qN+2 even, then aN+2 = {1, 3}. Moreover, if aN+2 = 1, then N = 0
and a1 = 1.

Proof: Item (2) and the relation qN+2 = aN+2qN+1 + qN imply aN+2 ∈ {1, 3}. Assume that

aN+2 = 1. By Item (1), aN+3 = 1. As qN+2 is even, βN+2 ∈M1 and so βN+2 = 3+
q′N+1−1
q′N+2

< 7
2 .

By some simple rearrangements and applications of the recurrence relation, we can rewrite this
inequality equivalently as (aN+1 − 1)q′N + q′N−1 < 2. It is easy to verify that this inequality holds
only for N = 0 and a1 = 1 or N = 1 and a2 = 1. Nevertheless, the second case leads to a
contradiction with the assumption that both q1, q2 = a2q1 + 1 are odd.
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8. Let M > N + 2. If qN even, qM even, and qK odd for all K,N < K < M , then aN+2 ∈ {1, 3},
aM = 3 and aK ∈ {2, 4} for all K,N + 2 < K < M .

Proof: Item (6) implies aK ∈ {2, 4} for all K, N + 2 < K < M . By Item (5), aN+2 ∈ {1, 3} and
by Item (7), aM = 3.

Using the previous claims we show that for each J for which qJ is even, at the position J + 1 ends one
of the blocks L0, L1, or L2. Moreover, the block L0 can only occur as a prefix of the sequence a1a2a3 · · · ,
while each of the blocks L1 and L2 is either a prefix of a1a2a3 · · · or it starts at the position I + 2, where
I is the greatest integer smaller than J for which qI is even. We discuss three cases:

• Let q1 be even. Then Item (1) implies a2 = 1. And since a1 = q1 is even and q0 = 1 is odd, by
Item (2), we get a1 ∈ {2, 4}. Thus the prefix a1a2 of the sequence a1a2a3 · · · is of the form L1

from our list.

• Let J > 1 be the first index such that qJ is even. As q1 = a1, a1 is odd, and by Item (2), we get
a1 ∈ {1, 3}. Item (6) implies aK ∈ {2, 4} for all K, 1 < K < J . By Item (7), aJ = 3 or aJ = 1.
But if aJ = 1, then J = 2 and a1 = 1. Finally, Item (1) implies aJ+1 = 1. Thus the prefix
a1a2 · · · aJaJ+1 of the sequence a1a2a3 · · · is of the form L0 or L2 from our list.

• Let I be an index such that qI is even and let J be the smallest index greater than I for which qJ
is even. By Item (1), aI+1 = 1. The word aI+2 · · · aJaJ+1 is by Item (4) or Item (8) either of the
form L1 or L2.

If there are infinitely many even denominators qN , then we have shown that the sequence a1a2a3 · · ·
is concatenated from the blocks L0, L1, and L2 (L0 can only be a prefix). It remains to consider the case
when only finitely many denominators qN are even.

• Let qN be odd for every N ∈ N. Then q1 = a1 is odd. Especially, since both q0 and q1 = a1 are
odd, Item (2) implies a1 ∈ {1, 3} and it follows from Item (6) that a2a3a4 · · · ∈ {2, 4}N. Therefore,
the sequence a1a2a3 · · · is equal to the block L3 from our list.

• Let L ≥ 1 be the last index such that qL is even. In particular, it means that qN is even only
for a finite number of indices. Item (1) implies that aL+1 = 1. By Items (5) and (6), the suffix
aL+2aL+3aL+4 · · · of the sequence a1a2a3 · · · equals to L3.

Now we have to show that any directive sequenceGa1Da2Ga3Da4 · · · such that a1a2a3 · · · is concate-
nated of the blocks from the list gives a standard Sturmian sequence u such that the CS Rote sequence v
associated to u has the critical exponent less than 7

2 .

If qN is odd, then 1
2βN = 1

2aN+1 + 1 +
q′N−1−1

2q′N
< 3 +

q′N−1

2q′N−1+q
′
N−2

< 7
2 , as each aN+1 is ≤ 4.

If qN is even, it is easy to prove by induction on N that there is a block of the form L0, L1, or L2

ending at the position N + 1 (and L0 only for N = 2). In particular, it means that aN+1 = 1 and aN ≥ 2

or a1 = a2 = a3 = 1. In the first case, we get βN ≤ 3 +
q′N−1

2q′N−1+q
′
N−2

< 7
2 , while in the second case, we

get β2 = 3 + a1+1−1
a2(a1+1)+1 = 3 + 1

3 <
7
2 .
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To show that sup(M1 ∪M2) < 7
2 , we need to show that sup

q′N−1

2q′N−1+q
′
N−2

< 1
2 . As aN ≤ 4 for all N ,

we can estimate q′N−2

q′N−1
≥ q′N−2

4q′N−2+q
′
N−2

= 1
5 and thus q′N−1

2q′N−1+q
′
N−2

= 1

2+
q′N−2

q′N−1

≤ 5
11 .

Remark 38. It would be interesting to reveal some topological properties of the set

crRote := {cr(v) : v is a CS Rote sequence},

for instance, to find its accumulation points in the interval (3, 72 ). The proof of the previous theorem
implies that there is no CS Rote sequence with the critical exponent between 3 + 5

11 and 3 + 1
2 . We

even believe that for any CS Rote sequence v, the following implication holds: If cr(v) < 3 + 1
2 , then

cr(v) < 3 + 1
1+
√
3

.

9 The recurrence function of CS Rote sequences
The main result of this section is Theorem 54, where we describe the recurrence function of any CS Rote
sequence in terms of the convergents related to the associated Sturmian sequence. To obtain this result,
we proceed similarly as in the previous parts concerning the critical exponent, i.e., we transform our task
of finding the recurrence function of a CS Rote sequence into studying some properties of its associated
Sturmian sequence. Let us emphasize that we may still restrict our consideration to CS Rote sequences
associated with standard Sturmian sequences without loss of generality.

Definition 39. Let u be a uniformly recurrent sequence. The mapping Ru : N→ N defined by

Ru(n) = min{N ∈ N : each factor of u of length N contains all factors of u of length n}

is called the recurrence function of u.

The definition of the recurrence function may be reformulated in terms of return words [6].

Observation 40. Let u be a uniformly recurrent sequence. Then

Ru(n) = max{|r| ∈ N : r is a return word to a factor of u of length n}+ n− 1.

Moreover, to determine Ru(n) we can restrict our consideration to return words to bispecial factors
of u.

Lemma 41. Let u be a uniformly recurrent aperiodic sequence. For n ∈ N, we denote

Bu(n) = {b ∈ L(u) : ∃w ∈ L(u), |w| = n, such that b is the shortest bispecial factor containing w} .

Then
Ru(n) = max{|r| : r is a return word to b ∈ Bu(n)}+ n− 1.

Proof: For evaluation of Ru(n) we use Observation 40. Let w ∈ L(u) and |w| = n.
If w is not right special, then there exists a unique letter x such that wx ∈ L(u). Obviously, the

occurrences of w and wx in u coincide. Therefore, return words to w and wx coincide as well.
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If y is not left special, then there is a unique letter y such that yw ∈ L(u). If r is a return word to w,
then the word yry−1 is a return word to yw and the return words r and yry−1 are of the same length.

These two facts imply that the lengths of return words to w equal the lengths of return words to the
shortest bispecial factor containing w.

The following lemma shows that for a CS Rote sequence v associated with the Sturmian sequence u
the sets Bv(n+ 1) and Bu(n) correspond naturally for every n ∈ N. Thus to determine the set Bv(n+ 1),
we first describe the set Bu(n) for a standard Sturmian sequence u.

Lemma 42. Let w be a factor of length n+ 1 in a CS Rote sequence v and let v be the shortest bispecial
factor of v containing w. Then the factor S(v) is the shortest bispecial factor of the associated Sturmian
sequence S(v) such that S(v) contains S(w).

Proof: The statement is a consequence of the simple fact that S(v) is a bispecial factor of S(v) if and
only if v and E(v) are bispecial factors of v. (See Lemma 7.)

In the sequel, we will essentially use a characterization of Sturmian sequences by palindromes from [10].
Let us first remind some basic notions. Consider an alphabet A. The assignment w = w0w1 · · ·wn−1 →
w = wn−1wn−2 · · ·w0 is called a mirror mapping, and the word w is called the reversal or the mirror
image of w ∈ A∗. A word w which coincides with its mirror image w is a palindrome. If p is a palin-
drome of odd length, then the center of p is a letter a such that p = sas for some s ∈ A∗. The center of a
palindrome p of even length is the empty word ε.

Theorem 43 ([10]). A sequence u is Sturmian if and only if u contains one palindrome of every even
length and two palindromes of every odd length.

Moreover, when studying in detail the proof of Droubay and Pirillo 43, we deduce that any two palin-
dromes of the same odd length have distinct centers, one has the center 0 and the other one has the center 1.
In fact, we get the following corollary.

Corollary 44. A binary sequence u is Sturmian if and only if every palindrome in L(u) has a unique
palindromic extension, i.e., for any palindrome p ∈ L(u) there exists a unique letter a ∈ {0, 1} such that
apa ∈ L(u).

We believe that Theorem 46 is already known. However, since we have not found it in the literature,
we add its proof. For this purpose, we need an auxiliary lemma. Let us remind that the language L(u) of
a Sturmian sequence u is closed under reversal, i.e., L(u) contains with every factor w also its reversal
w, and all bispecial factors of u are palindromes.

Lemma 45. Let u be a Sturmian sequence. Let p ∈ L(u) be a palindrome and let v be the shortest
bispecial factor containing p.

1. Then p is a central factor of v, i.e., v = sps for some word s.

2. If v′ is the shortest bispecial factor with the same center as p and |v′| ≥ |p|, then v′ = v.

Proof:

1. Let v = sp be the shortest left special factor containing p, in particular 0sp and 1sp belong to L(u).
Since the language L(u) is closed under reversal, ps is right special, i.e., ps0 and ps1 belong to
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L(u). As s is the only possible extension of p to the left by a factor of length |s|, both sps0 and
sps1 belong to L(u). By the same argument, s is the only possible extension of p to the right by
a factor of length |s|. Therefore, 0sps and 1sps belong to L(u). Thus sps is the shortest bispecial
factor containing p.

2. Assume for contradiction that v 6= v′. Since v and v′ are palindromes with the same centers, there
exists a palindrome q such that v′ = s′qs′ and v = sqs. Let q be the longest palindrome with
this property. If |q| = |v′|, then necessarily v′ = v. If |v′| > |q|, then the last letters of s′ and
s are distinct and q is a palindrome with two distinct palindromic extensions. This contradicts
Corollary 44.

Theorem 46. Let u be a Sturmian sequence and n ∈ N, n ≥ 1. Find the shortest bispecial factors Pε,
resp. P0, resp. P1 of length greater than or equal to n with the center ε, resp. 0, resp. 1. Then the
following statements hold:

1. Let w be a factor of u of length n and let v be the shortest bispecial factor containing w. Then
v ∈ {Pε, P0, P1}.

2. If u contains no bispecial factor of length n− 1, then for each i ∈ {ε, 0, 1} there exists a factor w
of u of length n such that the shortest bispecial factor containing w is Pi.

3. If there exists a bispecial factor v of u of length n − 1 and let i ∈ {ε, 0, 1} be the center of the
palindrome v, then for each j ∈ {ε, 0, 1}, j 6= i, there exists a factor w of u of length n such
that the shortest bispecial factor containing w is Pj , while Pi is not the shortest bispecial factor
containing w for any factor w of u of length n.

Proof: Consider the Rauzy graph of u of order n − 1, i.e., a directed graph Γn−1 whose vertices are
factors of u of length n − 1 and edges are factors of u of length n. An edge e starts in the vertex x and
ends in the vertex y if x is a prefix and y is a suffix of e. Denote `, resp. r the vertex corresponding to
the unique left special, resp. right special factor of length n − 1. Further on, denote pA the shortest path
from ` to r, and pB and pC the shortest paths of non-zero length starting in r and ending in `. If u has
no bispecial factor of length n − 1, then pA has a positive length, see Figure 1(a). If u has a bispecial
factor of length n−1, then the path pA consists of a unique vertex – the bispecial factor b, see Figure 1(b).

Observing these Rauzy graphs, it is obvious that for each edge e from the path px, where x ∈ {A,B,C},
the shortest bispecial factor containing e is the same as the shortest bispecial factor containing px.

Since the language L(u) is closed under reversal, the mirror mapping restricted to the factors of length
n − 1 and n is an automorphism of the graph Γn−1. Let us suppose that px contains a palindrome q of
length n − 1 or n. As any palindrome is mapped onto itself, r = `, and ` = r, this path px is mapped
onto itself, i.e., px = px, and the palindrome q is a central factor of px. On one hand, it means that px is
a palindrome with the same center as q, on the other hand, it also means that px cannot contain any other
palindrome of length n− 1 and n.

By Theorem 43 and the comment after it, there are exactly three palindromes among all vertices and
edges of Γn−1 (all factors of length n − 1 or n), and moreover, they have distinct centers. We may
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` · · ·
pA

r b=pA

· · ·

· · ·

pB

pC

· · ·

· · ·

pB

pC

(a) (b)

Fig. 1: The Rauzy graph of a Sturmian word (a) without a bispecial vertex, (b) with a bispecial vertex.

conclude that each path pA, pB , pC contains exactly one palindrome of length n− 1 or n. Therefore, all
these paths are palindromes and their centers are distinct. The rest of the proof follows from Lemma 45.

Observation 47. Let P be a palindrome. Then its Parikh vector satisfies:

1. ~V (P ) =
(
0
0

)
mod 2 if and only if P has the center ε;

2. ~V (P ) =
(
1
0

)
mod 2 if and only if P has the center 0;

3. ~V (P ) =
(
0
1

)
mod 2 if and only if P has the center 1.

Let us recall that a factor of a standard Sturmian sequence u is bispecial if and only if it is a palin-
dromic prefix of u. Therefore we can order the bispecial factors of a given standard Sturmian sequence u
according to their lengths and denote BS(k) the k-th bispecial factor of u. Thus BS(0) = ε, BS(1) = a,
where a is the first (and the more frequent) letter of u etc.

The sequences (pN ), (qN ), and (q′N ) we use in the remaining part of the paper were introduced in
Notation 25, the notation Bu(n) comes from Lemma 41.

Theorem 48. Let u be a standard Sturmian sequence with the directive sequence Ga1Da2Ga3Da4 · · · or
Da1Ga2Da3Ga4 · · · , and n ∈ [q′N , q

′
N+1) for some N ∈ N. Put M = a0 + a1 + a2 + · · · + aN , where

a0 = 0.

• If n ∈ [q′N , q
′
N+1 − 1) and n− 1 is not the length of a bispecial factor, then

Bu(n) = {BS(M+m), BS(M+m+1), BS(M+aN+1+1)} for some m ∈ {0, 1, . . . , aN+1 − 1}.

• If n ∈ [q′N , q
′
N+1 − 1] and n− 1 is the length of a bispecial factor, then

Bu(n) = {BS(M +m), BS(M + aN+1 + 1)} for some m ∈ {0, 1, . . . , aN+1}.
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Proof: Assume that u has the directive sequence Ga1Da2Ga3Da4 · · · . By Proposition 30, the Parikh
vectors of bispecial factors satisfy

~V
(
BS(M + i+ 1)

)
= ~V

(
BS(M + i)

)
+

(
pN
qN

)
for i = 0, 1, . . . , aN+1 − 1 (8)

and ~V
(
BS(M + aN+1 + 1)

)
= ~V

(
BS(M + aN+1)

)
+

(
pN+1

qN+1

)
. (9)

Using Observation 47 and the relation
(
pN
qN

)
6=
(

0
0

)
mod 2 from Lemma 28, we deduce that the

centers of palindromes BS(M + i), where i = 0, 1, . . . , aN+1, alternate between two distinct elements
of {ε, 0, 1}. The third element of {ε, 0, 1} is the center of the palindrome BS(M + aN+1 + 1), as(
pN
qN

)
6=
(
pN+1

qN+1

)
mod 2, see Lemma 28. By Proposition 30, the length of BS(M − 1) equals

q′N − 2 and the length of BS(M + aN+1 − 1) equals q′N+1 − 2.

• Let us discuss the case n = q′N+1 − 1. The palindromes BS(M + aN+1 − 1), BS(M + aN+1)
and BS(M + aN+1 + 1) have distinct centers, and n− 1 is the length of the palindrome BS(M +
aN+1 − 1). Item (3) of Theorem 46 implies that all factors of length n occurs in BS(M + aN+1)
and BS(M + aN+1 + 1). Therefore, the set Bu(n) consists of these two bispecial palindromes.

• Now we assume that n ∈ [q′N , q
′
N+1 − 2]. Clearly, the length of BS(M − 1) is strictly smaller

then n − 1 and n does not exceed the length of BS(M + aN+1 − 1). We choose the smallest
m ∈ {0, 1, . . . , aN+1 − 1} such that n ≤ |BS(M + m)|. The bispecial factors BS(M + m),
BS(M +m+ 1), and BS(M + aN+1 + 1) have distinct centers.

If n− 1 is not the length of any bispecial factor, then Item (2) of Theorem 46 implies that Bu(n) =
{BS(M +m), BS(M +m+ 1), BS(M + aN+1 + 1)}.
If n − 1 is the length of a bispecial factor, then Item (3) of Theorem 46 together with the fact that
the centers of BS(M + i) alternate for i = 0, 1, . . . , aN+1 − 1 implies that Bu(n) = {BS(M +
m), BS(M + aN+1 + 1)}.

If u has the directive sequenceDa1Ga2Da3Ga4 · · · , then the proof will be analogous, only the coordinates
of the Parikh vectors will be exchanged, see Remark 31.

Remark 49. The recurrence function of a standard Sturmian sequence u with the directive sequence
Ga1Da2Ga3Da4 · · · or Da1Ga2Da3Ga4 · · · is known to satisfy Ru(n) = q′N+1 + q′N + n− 1 for every
n ∈ [q′N , q

′
N+1). Let us show that this formula is a consequence of the previous statements. Indeed, by

Lemma 41, we have to find the longest return word to the bispecial factor from the set Bu(n) described
in Theorem 48. Using Proposition 30, we find that the longest one is the return word s corresponding to
the bispecial factor BS(M + aN+1 + 1). Its length is |s| = q′N+1 + q′N . And thus Lemma 41 implies the
above mentioned formula, which was obtained by Hedlund and Morse already in 1940, see [18].

We have prepared everything we need to derive the formula for the recurrence function of CS Rote
sequences. For this purpose, we recall Theorem 3.10 from [16]:
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Theorem 50. Let v be a CS Rote sequence associated with the standard Sturmian sequence u = S(v).
Let v be a non-empty prefix of v and u = S(v). Let r, resp. s be the more frequent, resp. the less frequent
return word to u in u and let ` be a positive integer such that u is a concatenation of the blocks r`s and
r`+1s. Then the prefix v of v has three return words A,B,C satisfying:

1. If r is stable and s unstable, then S(A0) = r, S(B0) = sr`s, S(C0) = sr`+1s.

2. If r is unstable and s stable, then S(A0) = s, S(B0) = rr, S(C0) = rsr.

3. If both r and s are unstable, then S(A0) = rr, S(B0) = rs, S(C0) = sr.

We will use the previous theorem for the determination of return words to bispecial factors of CS Rote
sequences (which are by Lemma 42 associated to bispecial factors of Sturmian sequences). In particular,
we focus on v such that S(v) is a bispecial factor of the Sturmian sequence u = S(v) and S(v) belongs
to the set Bu(n) described in Theorem 48.

Lemma 51. Let v be a CS Rote sequence and u = S(v) be the associated standard Sturmian sequence
with the directive sequenceGa1Da2Ga3Da4 · · · orDa1Ga2Da3Ga4 · · · . PutM = a0+a1+a2+· · ·+aN ,
where a0 = 0. Let x and y be the bispecial factors in v such that S(x) = BS(M + aN+1 + 1) and
S(y) = BS(M +m), where m ∈ {0, 1, . . . , aN+1−1}. Then at least one return word to x in v is longer
than every return word to y in v.

Proof: On one hand, by Lemmas 19, 20 and Remark 21, the derived sequence du(S(y)) is a standard Stur-
mian sequence with the directive sequenceGaN+1−mDaN+2GaN+3 · · · orDaN+1−mGaN+2DaN+3 · · · . It
implies that u is a concatenation of the blocks r′`s′ and r′`+1

s′, where ` = aN+1 −m. The return words
to S(y) are by Proposition 30 of length |r′| = pN + qN = q′N and |s′| = mq′N + q′N−1. Regardless of
(un)stability of the return words to S(y), the longest return word to y in v is by Theorem 50 of length at
most

(`+ 1)|r′|+ 2|s′| = (aN+1 −m+ 1)q′N + 2(mq′N + q′N−1) = q′N+1 + (m+ 1)q′N + q′N−1 ≤ 2q′N+1.

On the other hand, the return words r, s to S(x) in u have by Proposition 30 either lengths |r| = q′N+1 and
|s| = q′N+1 + q′N (if aN+2 > 1), or lengths |r| = q′N+1 + q′N and |s| = q′N+1 (if aN+2 = 1). Regardless
of (un)stability of the return words to S(x), one of the return words to x in v is of length at least

|r|+ |s| = 2q′N+1 + q′N .

Lemma 52. Let v be a CS Rote sequence and u = S(v) be the associated standard Sturmian sequence
with the directive sequenceGa1Da2Ga3Da4 · · · orDa1Ga2Da3Ga4 · · · . PutM = a0+a1+a2+· · ·+aN ,
where a0 = 0. Let x and y be the bispecial factors in v such that S(x) = BS(M + aN+1 + 1) and
S(y) = BS(M + aN+1). Then at least one return word to x in v is longer than every return word to y
in v.

Proof: Let us denote the return words to S(y) by r′ and s′, and the return words to S(x) by r and s. By
Proposition 30, |r′| = q′N+1 and |s′| = q′N .
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First, we assume that r′ is unstable. Then by Theorem 50, the return words to y in v are of length at
most 2|r′|+ |s′| = 2q′N+1 + q′N . Regardless of (un)stability of the return words to S(x), one of the return
words to x in v is of length at least |r|+ |s| = 2q′N+1 + q′N .

It remains to discuss the case when r′ is stable. Let us assume that u has the directive sequence
Ga1Da2Ga3Da4 · · · . By Proposition 30, it means that |r′|1 = qN+1 is even. We use Theorem 50 to find
the longest return word to y. Similarly as in the proof of Lemma 51, we determine that ` = aN+2 and
thus the longest return word to y in v is of length

L′ = 2|s′|+ (`+ 1)|r′| = 2 q′N + (aN+2 + 1)q′N+1 = q′N+2 + q′N+1 + q′N .

Let us compare L′ with the length of the return words to x in v. If aN+2 > 1, then by Proposition 30,
|r|1 = |r′|1 = qN+1 and r is stable as well. The longest return word to x is by Theorem 50 the return
word sr`+1s, where ` = aN+2 − 1. Its length is

L = 2|s|+ aN+2|r| = 2(q′N+1 + q′N ) + aN+2q
′
N+1 = q′N+2 + 2q′N+1 + q′N > L′ .

If aN+2 = 1, then by Proposition 30, |r|1 = qN+2 = qN+1 + qN and |s|1 = qN+1. Since qN+1 is
even, necessarily qN is odd (as follows from the well-known relation pNqN+1 − pN+1qN = (−1)N+1

for all N ). It means that r is unstable and s is stable. Thus the longest return word to x in v has the length

L = 2|r|+ |s| = 2(q′N+1 + q′N ) + q′N+1 = 2q′N+2 + q′N+1 > L′.

If u has the directive sequence Da1Ga2Da3Ga4 · · · , the proof is analogous, we only have to take into
account that the coordinates of the Parikh vectors are exchanged (see Remark 31). In particular, instead
of considering qN when determining the number of ones, we consider pN .

Proposition 53. Let v be a CS Rote sequence. Let u be the standard Sturmian sequence such that
L(S(v)) = L(u) and let u have the directive sequenceGa1Da2Ga3Da4 · · · orDa1Ga2Da3Ga4 · · · . Put
M = a0 + a1 + a2 + · · · + aN , where a0 = 0. Let L be the length of the longest return word to the
bispecial factor v of v such that S(v) is the bispecial factorBS(M+aN+1+1) in u. Then the recurrence
function of v satisfies Rv(n+ 1) = L+ n for any n ∈ [q′N , q

′
N+1), where N ∈ N.

Proof: Let v′ be a CS Rote sequence associated with the standard Sturmian sequence u such that
L(S(v)) = L(u). Clearly, L(v) = L(v′). Since the recurrence function depends only on the lan-
guage of the sequence and not on the sequence itself, we can work with the CS Rote sequence v′ instead
of v.

It follows from Lemma 41 that Rv(n+ 1) = Rv′(n+ 1) = L+n, where L is the length of the longest
return word to a bispecial factor from the set Bv′(n+ 1). Lemma 42 shows the correspondence between
the bispecial factors from the set Bv′(n + 1) and the bispecial factors from the set Bu(n). In particular,
if v ∈ Bv′(n + 1), then S(v) ∈ Bu(n). For every n ∈ [q′N , q

′
N+1), where N ∈ N, the set Bu(n) is

described in Theorem 48. Together with Lemmas 51 and 52, it implies that the bispecial factor v such
that S(v) equals BS(M + aN+1 + 1) has the longest return word among all bispecial factors from the set
Bv′(n+ 1).

Theorem 54. Let v be a CS Rote sequence and let u be the standard Sturmian sequence such that
L(S(v)) = L(u). If u has the directive sequence Ga1Da2Ga3Da4 · · · , then the value of the recurrence
function Rv for n ∈ [q′N , q

′
N+1), N ∈ N, is given by
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Case qN even: Rv(n+ 1) =

{
2q′N+1 + q′N + n if aN+2 > 1,
2q′N+2 + n if aN+2 = 1.

Case qN+1 even: Rv(n+ 1) =

{
q′N+2 + 2q′N+1 + q′N + n if aN+2 > 1
2q′N+2 + q′N+1 + n if aN+2 = 1.

Case qN , qN+1 odd: Rv(n+ 1) =

{
3q′N+1 + q′N + n if aN+2 > 1
q′N+3 + q′N+2 + q′N+1 + n if aN+2 = 1.

If u has the directive sequence Da1Ga2Da3Ga4 · · · , then the value of the recurrence function Rv for
n ∈ [q′N , q

′
N+1), N ∈ N, is given by

Case pN even: Rv(n+ 1) =

{
2q′N+1 + q′N + n if aN+2 > 1,
2q′N+2 + n if aN+2 = 1.

Case pN+1 even: Rv(n+ 1) =

{
q′N+2 + 2q′N+1 + q′N + n if aN+2 > 1
2q′N+2 + q′N+1 + n if aN+2 = 1.

Case pN , pN+1 odd: Rv(n+ 1) =

{
3q′N+1 + q′N + n if aN+2 > 1
q′N+3 + q′N+2 + q′N+1 + n if aN+2 = 1.

Proof: By Proposition 53, Rv(n + 1) = L + n, where L is the length of the longest return word to the
bispecial factor v in v such that S(v) = BS(M + aN+1 + 1). Consider first that u has the directive
sequence Ga1Da2Ga3Da4 · · · . By Proposition 30, the Parikh vectors of the return words r and s to the
bispecial factor BS(M + aN+1 + 1) are

1. ~V (r) =

(
pN+1

qN+1

)
, ~V (s) =

(
pN+1 + pN
qN+1 + qN

)
if aN+2 > 1;

2. ~V (r) =

(
pN+1 + pN
qN+1 + qN

)
, ~V (s) =

(
pN+1

qN+1

)
if aN+2 = 1.

Let us emphasize that at most one of the numbers qN and qN+1 is even. It follows from the well-known
relation pNqN+1 − pN+1qN = (−1)N+1 for all N . Moreover, let us recall that pN + qN = q′N .

First we discuss the case aN+2 > 1.

• If qN is even, then qN+1 is odd, i.e., r and s are unstable. Since |r| < |s|, Item (3) of Theorem 50
gives L = |rs| = 2q′N+1 + q′N .

• If qN+1 is even, then qN is odd, i.e., r is stable and s is unstable. We use Item (1) of Theorem 50 with
` = aN+2−1. Clearly, L = 2|s|+(`+1)|r| = 2(q′N+1+q′N )+aN+2q

′
N+1 = q′N+2+2q′N+1+q′N .

• If both qN , qN+1 are odd, then r is unstable and s is stable. Item (2) of Theorem 50 implies
L = |rsr| = 3q′N+1 + q′N .
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It remains to discuss the case aN+2 = 1.

• If qN is even, then qN+1 is odd, i.e., r and s are unstable. Since |r| > |s|, Item (3) of Theorem 50
gives L = |rr| = 2q′N+1 + 2q′N = 2q′N+2.

• If qN+1 is even, then qN is odd, i.e., r is unstable and s is stable. Item (2) of Theorem 50 implies
L = |rsr| = 3q′N+1 + 2q′N = 2q′N+2 + q′N+1.

• If both qN , qN+1 are odd, then r is stable and s is unstable. We use Item (1) of Theorem 50 with
` = aN+3. Thus L = 2|s|+(`+1)|r| = 2q′N+1+(aN+3+1)(q′N+1+q′N ) = q′N+3+q′N+2+q′N+1.

If u has the directive sequence Da1Ga2Da3Ga4 · · · , then the statement of Theorem 54 will stay the
same, only qN and qN+1 will be replaced by pN and pN+1 because the Parikh vectors of r and s have the
coordinates exchanged, see Remark 31.

Example 55. By Proposition 34, the critical exponent of the CS Rote sequence v such that S(v) has
the directive sequence G(D2G2)ω is cr(v) = 2 + 1√

2
. In Example 36, we have shown that the CS Rote

sequence v′ associated to the Sturmian sequence S(v′) = E(S(v)) has the critical exponent cr(v′) =
4 + 1

1+
√
2

.
Let us find an explicit formula for the recurrence function Rv, resp. Rv′ of the CS Rote sequence v,

resp. v′. We will see that these recurrence functions differ essentially, too. In the proof of Proposition 34,
we have shown that all qN are odd and we have found an explicit formula for q′N , see (7). Applying
Theorem 54, we obtain for every n ∈ [q′N , q

′
N+1)

Rv(n+ 1) = 3q′N+1 + q′N + n = n+
1

2
√

2

(
(4 + 3

√
2)(1 +

√
2)N+1 − (4− 3

√
2)(1−

√
2)N+1

)
.

Further on, pN is even if and only if N is even. Therefore, we obtain for every n ∈ [q′2N , q
′
2N+1)

Rv′(n+ 1) = 2q′2N+1 + q′2N + n = n+
1

2
√

2

(
(1 +

√
2)2N+3 − (1−

√
2)2N+3

)
;

and for every n ∈ [q′2N−1, q
′
2N )

Rv′(n+ 1) = q′2N+1 + 2q′2N + q′2N−1 + n = n+
1√
2

(
(1 +

√
2)2N+2 − (1−

√
2)2N+2

)
.
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