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Abstrakt

Hlavním cílem této práce bylo vyvinout novou cell-centered numerickou metodu pro hy-
drodynamiku v 1D, 2D kartézské a 2D rz cylindrické geometrii a pro problémy elastoplas-
ticity v 1D a 2D kartézské geometrii. Hydrodynamika je popsána soustavou zákonů za-
chování – Eulerových rovnic v Lagrangeovských souřadnicích. Systém je uzavřen stavovou
rovnicí pro ideální plyn. Elastoplasticita je popsána Wilkinsovým modelem obsahujícím
podobný systém zákonů zachování doplněný rovnicí pro výpočet tensoru napětí založe-
nou na Hookeově zákoně a Mie-Grünneisenovou stavovou rovnicí. Zmíněné soustavy
parciálních difirenciálních rovnic jsou numericky řešeny pomocí hybridní cell-centered
metody konečných objemů. Fyzikální toky jsou diskretizovány pomocí Richtmyerovy
dvoukrokové formulace Laxova-Wenroffova schematu typu prediktor-korektor. Původní
Laxův-Friedrichsův prediktor je vylepšen Wendroffovým-Weightovým vážením [B. Wen-
droff, A. B. White, Comput. Math. with Appl. 18:761, (1989)], které významně zlepšuje
chování metody na nerovnoměrných výpočetních sítích. K potlačení nefyzikálních oscilací
způsobených disperzivitou LW schématu je metoda doplněna umělou disipativitou založe-
nou na HLL schematu – do rovnice pro hybnost je přidána umělá vazkost a do rovnice pro
energii umělý tok energie. Rozlišení kontaktní nespojitosti či rozhraní různých materiálů
je vylepšeno pomocí speciálního algoritmu, znaného interface fix. Tenzor napětí je počítán
metodou inspirovanou [P. H. Maire et al., J. Comput. Phys. 235:626,(2013)], zatímco
plasticita je započítána pomocí Wilkinsova radial-return algoritmu. Numerické vlastnosti
metody jsou ilustrovány na několika analýzách řádu konvergence a typických testovacích
úlohách. Uvedená metoda splňuje geometrický zákon zachování a na polární síti za-
chovává přesnou symetrii pro hydrodynamiku v cylindrických rz souřadnicích. Symetrie
na pravoúhlých sítích zůstává velmi dobrá.
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Abstract

The main goal of this thesis was to develop a novel cell-centered numerical method for
calculating 1D, 2D Cartesian, and 2D axisymmetric cylindrical hydrodynamics and 1D
and 2D Cartesian elastic-plastic flows in Lagrangian coordinates. The hydrodynamics
is described by a system of conservation laws – Euler equations in Lagrangian coordi-
nates closed by an ideal gas equation of state. For the description of elastic-plastic flow,
Wilkins model is used incorporating a similar set of conservation laws supplemented by
incremental constitutive law based on Hooke’s law for evolution of elastic deviatoric stress,
Mie-Grüneisen equation of state, and plasticity due to von Mises yield condition. The
aforesaid systems of partial differential equations are numerically treated by a hybrid ex-
plicit cell-centered finite volume method. The physical fluxes are discretized using the
Richtmyer two-step predictor-corrector formulation of the Lax-Wendroff scheme. The
original Lax-Friedrichs predictor is improved by inverse area weighting [B. Wendroff and
A. B. White, Comput. Math. with Appl. 18:761, (1989)], which significantly improves
the performance of the method on nonuniform meshes. To mitigate nonphysical oscil-
lations due to LW dispersivity, HLL based artificial dissipation is added to momentum
and energy equations, and a limiting procedure for this artificial dissipation is also pro-
posed. Contact discontinuity capturing and material interfaces treatment are enhanced
by a simple interface fix procedure. The discretization of incremental constitutive law is
inspired by the method due to [P. H. Maire et al., J. Comput. Phys. 235:626,(2013)],
while the plasticity is calculated using the Wilkins radial return algorithm. The numerical
performance of the method is illustrated on several convergence rate analyses and typical
benchmark tests. The presented method satisfies Geometric Conservation Law and pre-
serves the exact symmetry in axisymmetric rz hydrodynamics on polar meshes while the
symmetry on initially rectangular meshes remains very good.
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Chapter 1

Introduction

This work deals with simulations of high-speed continuum flows described by the systems
of conservation laws, namely hydrodynamics studying the behavior of inviscid compress-
ible fluid flows, and Wilkins model [1] addressing rapid deformations of elastic-plastic
solids.

Based on the used reference frame, the problems of continuum mechanics can be for-
mulated using two different frameworks. One option is the Eulerian description, where
the fluid is observed using a fixed reference frame, which means that the computational
mesh does not change in the time, and the fluid flow is expressed in terms of mass fluxes
through the edges of computational cells. This approach works well for a considerable ma-
jority of engineering applications, such as Computational Fluid Dynamics (CFD), where
the flows usually do not undergo rapid changes.

The second option is a Lagrangian description, where the computational mesh moves
with the flow velocity, and therefore there is no mass flux through the cell edges. The main
advantages of this method are the ability to resolve material interfaces sharply and dealing
with the changing computational domain and moving boundary conditions. However,
besides conserving variables, one has to compute also the vertex velocities with which the
mesh moves. The additional complexity due to the discretization of the nodal motion
is usually redeemed by a smaller number of computational cells. Thus, the Lagrangian
methods are better suited for research fields dealing with high-speed phenomena, such as
astrophysics, Inertial Confinement Fusion (ICF), or high-velocity impacts of solids.

The Lagrangian methods can be further divided into two groups depending on the
computational quantities organization and the way of how the vertex velocities are com-
puted. The most straightforward way of how to obtain vertex velocities is to use staggered
discretization, where position, velocity, and kinetic energy are computed in cell vertices,
while the thermodynamical variables, like density, pressure, sound speed, and internal
energy are computed in cell centers. These methods are referred to as Staggered methods
and were historically the first developed.

The first Lagrangian method for 1D hydrodynamics was published in 1950 by von
Neumann and Richtmyer [2], and used staggered discretization. Later it was extended
for 2D elastic-plastic flows in [3]. The original version of the scheme did not conserve the
total energy and suffered from spurious numerical oscillations.

Over the decades, these staggered methods have been continuously improved in many

15



CHAPTER 1. INTRODUCTION 16

different directions, overviewed in great detail by Benson in [4]. More recently, Cara-
mana and Shashkov suggested a new subzonal forces discretization [5] based on subzonal
pressures, which helps to mitigate spurious vorticity and hourglass effects. The conserva-
tion of total energy has been achieved by the compatible discretization of divergence and
gradient operators proposed in [6], [7].

Moreover, the artificial viscosity (AV) has drawn large attention: The multidimen-
sional formulation of AV has been proposed in [8], followed by the schemes constructed
using mimetic Finite Difference Method in [9], [10], based on Riemann solvers [11]–[15],
or those focused on symmetry preservation [16]–[18].

Despite these achievements, which made the staggered schemes very successful and
widely used, there are still some problems difficult or impossible to overcome: the im-
plementation of all mentioned improvements can be demanding, they suffer from mesh
imprinting and symmetry breaking, and due to the staggered discretization, variables are
not conserved over the same space, which complicates the use in the context of Arbi-
trary Lagrangian-Eulerian (ALE) frameworks or assessment of analytical properties of
numerical solutions.

The second group of Lagrangian methods is called Cell-centered methods. The cell-
centered methods keep all quantities in the cells. The history of cell-centered methods
dates to the 50s when the first cell-centered 1D method, although in Eulerian coordi-
nate, was proposed by S. K. Godunov[19], [20], and it has taken his name. Godunov
method assumes that each cell is represented by a constant state and each edge hence
represents the interface between those states, so the intercell fluxes can be then treated
like a Riemann problem, either by using an exact or approximate Riemann solver. This
method is robust and straightforward, yet its extension into either multiple dimensions
or Lagrangian coordinates is not trivial.

The first attempt to extend the Godunov method into multiple spatial dimensions and
Lagrangian coordinates was the computational code CAVEAT [21], where the edge fluxes
were computed using 1D approximate Riemann solver, and nodal velocities were obtained
using the weighted least squares algorithm. The method was not able to satisfy the
Geometric Conservation Law (GCL), which led to spurious artificial mesh movement. This
drawback was later partially solved in [22] by incorporating complex filtering procedures.

The lack of GCL compatibility and the need to use computationally expensive filtering
was two decades, later addressed by first-order cell-centered Finite Volume GLACE (Go-
dunov LAgrangian scheme Conservative for total Energy) scheme [23], [24]. The GLACE
scheme introduced a multidimensional nodal solver that was able to recover nodal veloc-
ities in a way compatible with GCL. A unique nodal velocity is computed using node-
centered approximate Riemann solver, assuming multiple nodal pressures, one per each
surrounding cell. The scheme conserves the momentum and the total energy, but it is
sensitive to the cell aspect ratio, which can lead to spurious numerical instabilities [25].
This can be a severe problem for Lagrangian simulations of Inertial Confinement Fusion
(ICF), where one usually uses the computational grids with cells characterized by a high
aspect ratio.

In 2007 P.H. Maire et al. proposed an alternative EUCCLHYD (Explicit Unstruc-
tured Cell-Centered Lagrangian HYDrodynamics) scheme [26] that does not suffer from
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the sensitivity to the cell aspect ratio. This scheme conserves momentum and total en-
ergy, satisfies GCL, and was later extended in multiple directions, including high-order
accuracy, based first on the piece-wise linear monotonic reconstruction of cell pressure and
velocity [27] and later using Generalized Riemann Problem [28] presented in [29], [30], ap-
plication to axisymmetric rz geometry [29] and 3D Cartesian geometry [31], elastic-plastic
flow [32]–[34] and unified formulation of subzonal force-based discretization [35].

Based on these ground-breaking papers, plenty of cell-centered methods have been
proposed over the past decade, including, e.g. a new tensor dissipation model enforcing
symmetry of viscous stress tensor [36], utilizing different Riemann solvers [37], and many
others [38]–[43].

We should not omit the schemes based on the Finite Element Method. According
to [44], the first interpretation of classical methods [3], [45] was proposed by Lascaux
in [46], [47]. Further development of this approach brings various interesting staggered
schemes, e.g., compatible finite element scheme [48]. Another interesting method based
on a variational multiscale stabilized approach has been proposed in [49], [50]. Based on
the observation that the spatial discretization based on straight lines limits to the second
order of accuracy [51], several methods using curvilinear cell edges have been proposed
[44], [52], [53].

The different development direction in Lagrangian cell-centered schemes was started
by the Lax-Wendroff (LW) scheme in [54], followed by its extension into 2D based on
gradient matrices of flux functions [55], which was, however, not very practical. In [56],
Richtmyer proposed to write the LW scheme in a two-step predictor-corrector form. Each
step of the scheme begins with evaluating auxiliary nodal quantities by the substep,
usually referred to as Lax-Friedrichs (LF) predictor, followed by a corrector in which the
cell value update is computed. The stability of these methods in 2D was assessed in [57]
in Eulerian coordinates. In Lagrangian coordinates, the mesh positions can be updated
using nodal velocities computed by the LF predictor.

The Richtmyer form of the LW scheme is second-order accurate in space and time.
It is a well-known fact that the second-order accurate methods suffer from dispersion
caused by third-order truncation error [58]. This dispersion is manifested by the forma-
tion of spurious nonphysical oscillations behind shock waves, and the presence of such
features, however, makes the computed solution useless. This drawback was addressed
by the composite schemes [59]–[61] and later by application of Flux Corrected Transport
methodology in [62]. However, none of these methods suggested to use artificial viscosity,
although already proposed in the first paper [54]. Designing a new artificial dissipation
for the Richtmyer scheme based on Harten-Lax-van Leer (HLL) scheme [63] will be the
main subject of this thesis.

In this work, we will present LW+n schemes originally published in [64], followed by
its extension for solid dynamics [65], cylindrical rz geometry [66], [67], and unstructured
meshes [68].



Chapter 2

Lagrangian and Eulerian description

In this chapter, we will follow definitions and notations presented in [26], [69]–[73]. Let
us start by introducing d-dimensional Euclidean space Rd, where d ∈ {1, 2, 3}. For d = 3

this space has coordinates (x, y, z) and orthonormal basis (ex, ey, ez), the reduction to
the lower dimension is clear. Next, let us consider the particle P moving with the fluid,
which at initial time t = 0 occupies initial position X = (X1, X2, X3) = (X, Y, Z), and at
time t > 0, it has moved to position x = (x1, x2, x3) = (x, y, z). Then current position x
can be written as a function of initial position X and time t in terms of transformation

ϕ : X → x = ϕ(X, t), (2.1)

while
x(0) = ϕ(X, 0) = X.

We assume that ϕ has continuous derivatives up to second order almost everywhere and
that the inverse transformation

Φ : x→X = ϕ−1(x, t) (2.2)

exists. Let Ω be a region in Rd then its moving image using flow map (2.1) ω = ω(t)

reads
ω(t) = {x = ϕ(X, t)|X ∈ Ω}, (2.3)

while ω(0) = Ω. The boundaries of Ω and ω will be labeled ∂Ω and ∂ω respectively, N is
the outward unit normal vector of Ω and n is an outward unit normal vector of ω. The
illustration of flow map(2.1) is presented in Figure 2.1.

18
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Figure 2.1: Flow map (2.1) notation.

The variables (x, t) will be referred to as spatial variables, while the variables (X, t)

will be called material variables.
Now we can introduce two formalisms of flow dynamics description, namely Eulerian

and Lagrangian. The Eulerian description, which is also known as spatial description, is
characterized by observing the fluid flow in the positions fixed in space and uses spatial
variables (x, t) as its independent variables. In other words, the fluid flow is characterized
by the fluxes through a given control volume around a fixed point in space. Such control
volume does not change with time. A fixed reference frame is used.

On the other hand, the Lagrangian description, referred to also asmaterial description,
observes the fluid flow in moving coordinates bound to the fixed flow particles and uses
material variables (X, t) as independent variables. That means there is no mass flux
through the control volume around the flow particle, but such control volume moves and
deforms with the time. Moving reference frame is used.

Any scalar or vector flow quantity f can be expressed in both variables using the
following relation:

f = f(x, t) = f(ϕ(X, t), t) = f(X, t). (2.4)

More precisely, f(x, t) is the value of quantity f observed by fluid particle located at
position x and time t, while f(X, t) is the value of quantity f observed at time t by the
particle that was initially located at X.

2.1 Material derivative

Let a flow quantity f be a function sufficiently smooth to allow computation of its first
partial derivatives with respect to x andX, then we can define material derivative df/dt

and spatial derivative ∂f/∂t as:

df

dt
=
∂f

∂t
(X, t),

∂f

∂t
=
∂f

∂t
(x, t) (2.5)
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The material derivative of f measures the rate of change of f following a fluid particle
initially at X along with its motion, while the spatial derivative gives the rate of change
of f observed at a fixed location x.

The fluid velocity is denoted by U and is defined as the material derivative of the
position vector x(t):

U(X, t) =
dx

dt
=
∂ϕ(X, t)

∂t
(2.6)

Although the velocity U is a function of Lagrangian variables, it can also be expressed
in Eulerian variables writing U = U(x, t). If the velocity field expressed in Eulerian
variables is known, the fluid flow can be determined by solving the system of ordinary
differential equations

dx

dt
= U(x, t) (2.7)

with initial condition x(X, 0) = X∀x ∈ ω(t). Let us consider scalar physical quantity
f expressed in Eulerian variables, i.e. f = f(x, t), then using the chain rule and the
definition (2.1), its material derivative is

df

dt
=
∂f

∂t
+

(
dx

dt

)
·∇xf (2.8)

where ∇x is a gradient operator with respect to Eulerian variables given by

∇xf =

(
∂f

∂x
,
∂f

∂y
,
∂f

∂z

)
.

After substitution of velocity definition (2.6) into (2.8) we finally get the material deriva-
tive of f :

df

dt
=

∂

∂t
f +U ·∇xf. (2.9)

The Jacobian matrix of transformation (2.1) reads

F =
∂(x, y, z)

∂(X, Y, Z)
=

(
∂xi
∂Xj

)
. (2.10)

Assuming the existence of inversion (2.2), the determinant J = detF exists, it is finite
and nonzero. Let us remark that F is often referred to as deformation tensor and F = I
for t = 0, where I is matrix identity. Let dV denote a Lagrangian volume element, and dv

denote its Eulerian image, then the transformation from Lagrangian to Eulerian volume
is given by:

dv = JdV. (2.11)

The material derivative of flow map Jacobian J writes:

dJ

dt
= J∇x ·U . (2.12)

To prove this useful lemma, let us first rewrite the Jacobian (2.10) using the Levi-Civita
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symbol εijk. Following Einstein’s summation convention, we can write:

J = εijk
∂x1

∂Xi

∂x2

∂Xj

∂x3

∂Xk

(2.13)

Using the definition of velocity (2.6), and assuming sufficient smoothness of ϕ, we can
write:

dJ

dt
=

d

dt
εijk

(
∂x1

∂Xi

∂x2

∂Xj

∂x3

∂Xk

)
= εijk

(
∂U1

∂Xi

∂x2

∂Xj

∂x3

∂Xk

)
+ εijk

(
∂x1

∂Xi

∂U2

∂Xj

∂x3

∂Xk

)
+ εijk

(
∂x1

∂Xi

∂x2

∂Xj

∂U3

∂Xk

)
.

(2.14)

Let us now focus on the first term of the right-hand side of (2.14). After the use of chain
rule

∂U1

∂Xi

=
∂U1

∂x1

∂x1

∂Xi

+
∂U1

∂x2

∂x2

∂Xi

+
∂U1

∂x3

∂x3

∂Xi

the term can be rewritten into:

εijk
∂U1

∂Xi

∂x2

∂Xj

∂x3

∂Xk

=

=
∂U1

∂x1

εijk
∂x1

∂Xi

∂x2

∂Xj

∂x3

∂Xk

+
∂U1

∂x2

εijk
∂x2

∂Xi

∂x2

∂Xj

∂x3

∂Xk

+
∂U1

∂x3

εijk
∂x3

∂Xi

∂x2

∂Xj

∂x3

∂Xk

.

(2.15)

Since the second and the third terms in (2.15) pose determinants with equal rows, the
only nonzero term is the first one and therefore:

εijk
∂U1

∂Xi

∂x2

∂Xj

∂x3

∂Xk

=
∂U1

∂x1

εijk
∂x1

∂Xi

∂x2

∂Xj

∂x3

∂Xk

=
∂U1

∂x1

J. (2.16)

The similar arguments also apply for the second and the third terms of (2.14), so we can
finally write

dJ

dt
=
∂U1

∂x1

J +
∂U2

∂x2

J +
∂U3

∂x3

J = J∇x ·U . (2.17)

2.2 Reynolds transport formula

Let us assume that ω = ω(t) is an arbitrary moving volume, and f = f(x, t) is a scalar
function representing some physical quantity. The time rate of change of integral of
function f over moving volume ω(t) is

d

dt

∫
ω(t)

f(x, t)dv. (2.18)

Our objective is to rewrite this integral into terms of Lagrangian coordinates. More let
f be a function continuously differentiable over ω = ω(t), which moves with the velocity
U . Because of the dynamic boundary, the time derivative of the integral

∫
ω(t)

f(x, t)dv

cannot be computed directly. Therefore we will first change the variables into the fixed
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Lagrangian coordinates:

d

dt

∫
ω(t)

f(x, t)dv =
d

dt

∫
Ω

f(X, t)JdV, (2.19)

where ω is the image of Ω transformed using (2.3). After performing this change of
variables the time derivative (2.18) can be using (2.12) rewritten:

(2.20)

d

dt

∫
ω

f(x, t)dv =
d

dt

∫
Ω

f(X, t)JdV

=

∫
Ω

d

dt
(fJ)dV

=

∫
Ω

(
J

d

dt
f + f

d

dt
J

)
dV

=

∫
Ω

J

(
df

dt
+ f∇x ·U

)
dV

=

∫
ω

(
df

dt
+ f∇x ·U

)
dv

which is the Reynolds transport formula for scalar function f :

d

dt

∫
ω

f(x, t)dv =

∫
ω

(
df

dt
+ f∇x ·U

)
dv. (2.21)

After substitution of material derivative (2.9) into (2.21) one obtains an alternative form:

d

dt

∫
ω

f(x, t)dv =

∫
ω

(
∂f

∂t
+ ∇x · (fU)

)
dv, (2.22)

Using the Green theorem ∫
ω

∇ ·Udv =

∫
∂ω

U · nds, (2.23)

where n is the unit outward vector normal to the boundary ∂ω, the equation (2.22) can
be rewritten into:

d

dt

∫
ω

f(x, t)dv =

∫
ω

∂f

∂t
dv +

∫
∂ω

(fU) · nds, (2.24)

Let us now repeat the derivation for a vector function f :

(2.25)

d

dt

∫
ω

f(x, t)dv =
d

dt

∫
Ω

f(X, t)JdV

=

∫
Ω

d

dt
(fJ)dV

=

∫
Ω

(
J

d

dt
f + f

d

dt
J

)
dV

=

∫
ω

(
df

dt
+ f∇x ·U

)
dv
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Reynolds transport theorem for vector function f is then:

d

dt

∫
ω

f(x, t)dv =

∫
ω

(
df

dt
+ f∇x ·U

)
dv. (2.26)

The equations (2.21) and (2.26) can be used for the derivation of governing equations,
which will be demonstrated in the following section.

2.3 Conservation laws

2.3.1 Continuity equation

Let us start by deriving the continuity equation from the law of conservation of mass,
which states that the mass in arbitrary material volume ω of fluid does not change due to
transport. Let mω be the mass of fluid filling the volume ω, %(x, t) be the mass density
(i.e. mass per unit volume) of fluid. Then the law of conservation of mass can be written
as:

d

dt
mω =

d

dt

∫
ω

%(x, t)dv = 0. (2.27)

Rewriting the integrand in Lagrangian coordinates, we get:∫
ω

%(x, t)dv =

∫
Ω

%(X, t)JdV =

∫
Ω

%0(X)dV, (2.28)

where %0 is the initial density. As the law (2.27) holds for any arbitrary volume ω, it
can be immediately rewritten into the differential form of the equation of continuity in a
material variable:

d

dt
(%(X, t)J) = 0, (2.29)

and
%J = %0. (2.30)

The continuity equation in spatial variable can be derived by setting f = % into Reynolds
transport theorem (2.21) and assuming (2.27):∫

ω

(
d%

dt
+ %∇x ·U

)
dv = 0. (2.31)

Because
d

dt

(
1

%

)
= − 1

%2

d%

dt
,

we can also write: ∫
ω

(
%

dη

dt
−∇x ·U

)
dv = 0, (2.32)

where η = 1/% is the specific volume (volume per unit mass). Since this equation should
hold for any volume ω:

%
dη

dt
−∇x ·U = 0 (2.33)
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Another useful formula expresses the time rate of change of the integral of density %

multiplied by an arbitrary scalar function f over the moving volume ω:

d

dt

∫
ω

%fdv =

∫
ω

%
df

dt
dv. (2.34)

The variant for vector f reads

d

dt

∫
ω

%fdv =

∫
ω

%
df

dt
dv. (2.35)

Both can be derived by inserting %f or %f into (2.21), or (2.26) respectively, and assuming
(2.33). For further details, please refer to [69]–[71] or [73].

2.3.2 Conservation of momentum

The law of conservation of momentum is based on the second Newton’s law applied to
the moving control volume ω. Let τ be an external force per unit surface acting on the
control volume boundary ∂ω. Then assuming no extraneous force

d

dt

∫
ω

%Udv −
∫
∂ω

τds = 0. (2.36)

If n is a unit outward normal vector to ∂ω located at x ∈ ∂ω, then the external force
τ = τ (x, t,n) is completely defined by

τ (x, t,n) = Tn, (2.37)

where T is Cauchy tensor. After substitution of (2.37) into (2.36) and using the Green
formula for tensor T ∫

ω

∇ · Tdv −
∫
∂ω

Tnds = 0, (2.38)

the first integral on the right-hand side of (2.36) writes∫
∂ω

τds =

∫
ω

∇ · Tdv. (2.39)

Applying this intermediate result to the left-hand side of (2.34), the equation (2.36) can
be rewritten as: ∫

ω

%
dU

dt
dv −

∫
ω

∇ · Tdv = 0. (2.40)

Again under the assumption that this holds for any arbitrary volume, we obtain:

%
dU

dt
−∇ · T = 0, (2.41)
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which is nothing else than the local equation of motion. For a perfect fluid τ = −P I,
where P is pressure, and I is tensor identity, hence (2.41) writes

%
dU

dt
+ ∇P = 0. (2.42)

2.3.3 Conservation of energy

The law of conservation of energy states that the time rate of increase of total energy in
control volume ω equals to the sum of the power of applied external forces:

d

dt

∫
ω

%Edv −
∫
∂ω

τ ·Uds = 0, (2.43)

where
E =

1

2
|U |2+ε

is the specific total energy (energy per unit mass), ε is the specific internal energy. Fol-
lowing similar arguments as in the derivation of momentum equation, the equation (2.43)
can be rewritten as: ∫

ω

%
dE

dt
dv −

∫
ω

∇ · (TU)dv = 0, (2.44)

which again holds for any arbitrary volume ω and therefore:

%
dE

dt
−∇ · (TU) = 0. (2.45)

For a perfect fluid, this becomes:

%
dE

dt
+ ∇ · (PU) = 0. (2.46)

2.3.4 Geometric Conservation Law

Geometry Conservation Law (GCL) expresses the time rate of change of moving control
volume ω =

∫
ω

dv. For GCL derivation, we will use equations (2.12) and (2.11):

d

dt

∫
ω

dv =
d

dt

∫
Ω

JdV =
d

dt

∫
Ω

J∇ ·UdV =

∫
Ω

J∇ ·UdV =

∫
ω

∇ ·Udv (2.47)

Using the Green theorem (2.23) we can also write:

d

dt

∫
ω

dv =

∫
∂ω

U · ndv. (2.48)

As one can see, GCL connects the time rate of change of control volume ω with the
displacement of its boundary ∂ω.
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2.3.5 Euler equations in Lagrangian coordinates

Let us now for the sake of simplicity rewrite the whole system of Euler equations in
Lagrangian coordinates (2.33),(2.41), and (2.45):

%
dη

dt
−∇ ·U = 0, (2.49a)

%
dU

dt
+ ∇P = 0, (2.49b)

%
dE

dt
+ ∇ · (PU) = 0, (2.49c)

where equation (2.49a) is the equation of continuity (the law of conservation of mass),
(2.49b) is the law of conservation of momentum, and (2.49c) is the law of conservation of
total energy.

2.4 Lagrangian finite volume

The integral form of system (2.49) with Geometric Conservation Law (2.48) writes:

d

dt

∫
ω

%dv = 0, (2.50a)

d

dt

∫
ω

dv −
∫
∂ω

U · nds = 0, (2.50b)

d

dt

∫
ω

%Udv +

∫
∂ω

Pnds = 0, (2.50c)

d

dt

∫
ω

%Edv +

∫
∂ω

PU · nds = 0. (2.50d)

Let us now consider an arbitrary moving fluid element V enclosed by ∂V . Its volume V ,
mass mV , momentum MV , and total energy EV are given by:

V =

∫
V

dv, mV =

∫
V

%dv, MV =

∫
V

%Udv, EV =

∫
V

%Edv. (2.51)

Then system (2.50) can be simplified to the following single vector equation:

dWV

dt
=

∫
∂V

F · nds, (2.52)

where W is the vector of conserved variables, and F is the vector of fluxes through the
boundary ∂ω given by:

WV = (V,MV , EV )t, F = (U ,−P I,−PU)t. (2.53)
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2.5 Ideal Gas Equation of State

The system (2.50) contains more variables than the equations, and hence some additional
relation has to be provided. The common closure is some equation of state (EOS), which
connects thermodynamical quantities like density, Cauchy stress tensor or pressure, spe-
cific internal energy, and temperature. For hydrodynamics, we will use the ideal gas
EOS.

The ideal gas equation of state is usually given by equation

P = R%T, (2.54)

where P is pressure, R is the ideal gas constant, % is density, and T is temperature. The
ideal gas constant is

R = CP − CV ,

where CP and CV are specific heats at constant pressure and volume respectively. For a
polytropic ideal gas, the specific internal energy is a function of temperature:

E = CPT.

If we introduce Poisson constant γ = CP
CV

, we will obtain pressure as the function of density
and specific internal energy:

P (%, ε) = (γ − 1)%ε, (2.55)

that is the form of ideal gas EOS that will be of the most use.
Since several later presented tests are defined by initial pressure and density, we can

also express the specific internal energy as the function of density and pressure:

ε(%, P ) =
P

(γ − 1)%
. (2.56)

Finally, let us define the sound speed cs, which will be necessary for time step computation.
For the case of ideal gas EOS, it is given by:

cs =

√
γP

%
=
√
γ(γ − 1)ε. (2.57)



Chapter 3

Lagrangian hydrodynamics in one
spatial dimension

3.1 Governing equations in 1D

In 1D, the governing equations (2.49a-2.49c) can be simplified to:

%
dη

dt
− ∂U

∂x
= 0, (3.1a)

%
dU

dt
+
∂P

∂x
= 0, (3.1b)

%
dE

dt
+
∂UP

∂x
= 0, (3.1c)

where the total (material) derivative (2.9) reduces to:

d

dt
=

∂

∂t
+ U

∂

∂x
. (3.2)

Using the mass coordinate s:

s =

∫ x

x0

%(x′, t)dx′,
ds

dx
= %, (3.3)

the system(3.1a-3.1c) can be rewritten into the following form:

dη

dt
− ∂U

∂s
= 0, (3.4a)

dU

dt
+
∂P

∂s
= 0, (3.4b)

dE

dt
+
∂(PU)

∂s
= 0, (3.4c)

which is better suited for a numerical solution.

28
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3.2 Geometry

The computational domain is given by a 1D interval divided into N cells by N + 1 points.
The nodes will be indexed by half-integers 1

2
, 3

2
, . . . , N + 1

2
while the cells will be indexed

using integers 1, 2, . . . , N . The cell positions are given by a simple average of nodal
positions:

xni =
xn
i+ 1

2

+ xn
i− 1

2

2
. (3.5)

Let us now define some geometrical quantities. The mass of i-th cell mi, and the mass of
i+ 1

2
th node mi+ 1

2
will be mi+ 1

2
. The volume (length) of i-th cell at time level n, V n

i and
i+ 1

2
-th node V n

i+ 1
2

are

V n
i = ∆xni = xn

i+ 1
2
− xn

i− 1
2
, V n

i+ 1
2

= ∆xn
i+ 1

2
=

∆xni+1 + ∆xni
2

. (3.6)

The 1D mesh is illustrated in Figure 3.1. The masses are computed only once at the
beginning of simulation from density and volume:

mi = %0
iV

0
i , mi+ 1

2
=
mi +mi+1

2
, (3.7)

the density %0
i is given by the initial conditions, and the volume V 0

i is computed from the
initial mesh.

Figure 3.1: Notations for 1D geometry.

3.3 Lax-Wendroff scheme

The basic method used in this work is the well-known Lax-Wendroff scheme, which was
firstly published in 1960 in [54]. Later in 1962, R.D. Richtmyer proposed that LW can be
rewritten in a simple predictor-corrector form [56]. One step of the LW method is divided
into two sub-steps, usually known as Lax-Friedrichs (LF) predictor and the corrector. In
the LF predictor phase, nodal estimates of state variables are obtained. They are then
used in the corrector for evaluation fluxes over the cell edges. The scheme is formally
second-order accurate.

3.3.1 Derivation of the Lax Wendroff scheme

Let us briefly illustrate the derivation of the Lax-Wendroff scheme [54] for scalar advection
equation in Eulerian variable:

∂u(t, x)

∂t
+ a

∂u(t, x)

∂x
= 0, (3.8)
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where u(t, x) is a scalar function, and a is the advection speed. 1D Taylor expansion of
function u in time t+ ∆t is:

u(t+ ∆t, x) = u(t, x) + ∆t
∂u(t, x)

∂t
+

∆t2

2

∂2u(t, x)

∂2t
+O(∆t3) (3.9)

From the advection equation (3.8), we know that the time derivative can be expressed
using the derivative with respect to x:

∂u(t, x)

∂t
= −a∂u(t, x)

∂x
. (3.10)

After differencing this relation with respect to t and using (3.10) again, we obtain:

∂2u(t, x)

∂2t
= −a∂

2u(t, x)

∂t∂x
= −a ∂

∂x

(
∂u(t, x)

∂t

)
= a2∂

2u(t, x)

∂2x
. (3.11)

Now the Taylor expansion (3.9) can be rewritten using (3.10) and (3.11):

u(t+ ∆t, x) = u(t, x)− a∆t
∂u(t, x)

∂x
+ a2 ∆t2

2

∂2u(t, x)

∂2x
+O(∆t3). (3.12)

Let us now define a discrete computational mesh. For t ∈ 〈0,∞) and x ∈ R we define
discrete values

tn = n∆t, n ∈ N0, xi = i∆x, i ∈ Z,

the values of function u(t, x) are approximated by discrete values u(tn, xi) ≈ uni . By
inserting second-order accurate central differences

∂u(t, x)

∂x
≈ ui+1 − ui−1

2∆xi
,

∂2u(t, x)

∂2x
≈ ui+1 − 2ui + ui−1

(∆xi)2

into (3.12), omitting O and rearranging, we obtain:

un+1 − uni
∆t

+ a
uni+1 − uni−1

2∆xi
− a2 ∆t

2

uni+1 − 2uni + uni−1

(∆xi)2
= 0, (3.13)

which is the Lax-Wendroff scheme for the advection equation (3.8). Using von Neumann
analysis, one can show that the scheme is stable under CFL condition

a
∆t

∆x
6 1.

3.3.2 Extension of Lax-Wendroff for nonlinear systems of conser-
vation laws

The scheme (3.13) can be extended for the nonlinear systems. In this work, we will use
the form due to Richtmyer, which was introduced in [56]. One can easily verify that the
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scheme (3.13) can be rewritten into the predictor-corrector form:

u
n+ 1

2

i+ 1
2

=
uni + uni+1

2
− a∆t

2

uni+1 − uni
∆x

, (3.14a)

un+1
i = uni − a

∆t

2

u
n+ 1

2

i+ 1
2

− un+ 1
2

i− 1
2

∆x
. (3.14b)

where (3.14a) is Lax-Friedrichs (LF) predictor, and (3.14b) is the corrector. In the pre-
dictor phase, the nodal estimates of state variables at the time level n + 1

2
are obtained.

In the corrector phase, the nodal predictions are used to compute numerical fluxes over
the nodes.

Let us now move to a nonlinear system of conservation laws given by

∂u(t, x)

∂t
+

∂

∂x
f(u(t, x)) = 0, (3.15)

where f(u(t, x)) is a vector function of vector u. For a special scalar choice f(u) = au,

the equation (3.15) reduces to (3.8). For a nonlinear system (3.15), Richtmyer proposed
the following form:

u
n+ 1

2

i+ 1
2

=
uni + uni+1

2
− ∆t

2

fni+1 − fni
∆x

, (3.16a)

un+1
i = uni −

∆t

2

f
n+ 1

2

i+ 1
2

− fn+ 1
2

i− 1
2

∆x
, (3.16b)

where

fni+1 = f(uni+1), fni = f(uni ), f
n+ 1

2

i+ 1
2

= f(u
n+ 1

2

i+ 1
2

), f
n+ 1

2

i− 1
2

= f(u
n+ 1

2

i− 1
2

)

are numerical fluxes evaluated at cells i, i + 1 or nodes i ± 1
2
respectively. For a scalar

f(u) = au, this scheme reduces to (3.14a-3.14b).

3.3.3 Discretization in Lagrangian coordinates

Let us now rewrite system (3.4) into a vector form, which will allow us to discretize
this system using scheme (3.16a-3.16b). In 1D, we can start directly from the system
(3.4a-3.4c) and rewrite it into the following single vector equation:

dw

dt
+
∂F

∂s
= 0, (3.17)

where
w = (η, U,E)t, (3.18)

are the vector of specific (per unit mass) conserved variables, and

F = (U,−P,−PU)t (3.19)
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is the vector of physical fluxes. Let us now show the discretization of system (3.17-
3.19) using the Lax-Wendroff scheme. The Lax-Friedrichs predictor, which advances the
solution from time level n to n+ 1

2
, writes

w
n+ 1

2

i+ 1
2

=
miw

n
i +mi+1w

n
i+1

mi +mi+1

+
∆t

mi +mi+1

(F n
i+1 − F n

i ), (3.20)

where F n
i = F (wn

i ) and F n
i+1 = F (wn

i+1) are the numerical fluxes in i-th and i+1-th cells
respectively, and ∆t is the time step. Then the nodal pressures and sound speeds can be
updated using EOS (2.55), and the predictor substep is finished. The corrector substep
writes:

wn+1
i = wn

i +
∆t

mi

(F
n+ 1

2

i+ 1
2

− F n+ 1
2

i− 1
2

), (3.21)

where F n+ 1
2

i− 1
2

= F (w
n+ 1

2

i− 1
2

) and F n+ 1
2

i+ 1
2

= F (w
n+ 1

2

i+ 1
2

) are fluxes over the cell boundaries com-
puted from predicted nodal values. Then the nodal positions are advanced from time level
n to new time level n+ 1:

xn+1
i+ 1

2

= xn
i+ 1

2
+ ∆tU

n+ 1
2

i+ 1
2

(3.22)

and the geometry is updated using (3.5-3.6). Finally, we update the pressures and sound
speeds in cell centers using EOS and compute the new time step ∆t.

3.3.4 Time step computation

The scheme described in the previous subsection is stable under the Courant-Friedrichs-
Lewy (CFL) condition [74], each time step ∆t is therefore computed using

∆tn+1 = CCFL min
i∈N̂

{
∆xni
(cs)ni

}
, (3.23)

where N̂ = 1, 2, . . . , N , CCFL is CFL constant, usually set to 0.4 in 1D, and (cs)
n
i is the

sound speed in cell i computed by (2.57). Additionally, we restrict each time step to
increase no more than by 10% and set it to ∆t/2 if the volume in any cell changes more
than by 10%:

∆tn+1 =

{
min(1.1∆tn,∆tn+1) if ∆xn+1/∆xn ∈ 〈0.9, 1.1〉
∆tn+1/2 otherwise

3.3.5 Accuracy of Lax-Wendroff scheme – test problem

Before we move on to the actual accuracy test, let us first define L1 error and Numerical
Order of Convergence (NOC). L1 error is for arbitrary quantity q defined by:

L1(q) =
∑
c

|qc − qexc |Vc, (3.24)

where qc is the value of q in cell c computed by the presented method, qexc is the exact
solution in cell c, and the sum

∑
c goes over all cells within the computational domain.
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The numerical order of convergence is then binary logarithm of fraction of L1 errors
computed on meshes with N and 2N cells:

NOC(q,N) = log2

(
L1(qN)

L1(q2N)

)
. (3.25)

The LW scheme defined by (3.20) and (3.21) on a uniform mesh is equivalent to the
LW scheme in Eulerian coordinates (3.16a-3.16b), and therefore it is nominally second-
order accurate and stable under the CFL condition. The scheme remains second-order
accurate and stable even for mesh smooth in mass coordinates, which is numerically
verified on the following test problem taken from [75]. This test case is characterized by
the initial smooth density %0(x) = 1 + 0.1 sin(2πx), zero velocity, and the initial pressure
P 0(x) = (%0)γ, where γ = 3. For this choice of γ the exact solution can be constructed.
We refer the reader to [75] for the details. The computational domain is the 1D interval
〈0, 1〉. The final time is T = 0.8. Periodic boundary conditions are used.

This test has been computed on initially uniform mesh with 80, 160, 320, 640, and 1280

cells using the pure LW scheme. The results computed on a coarse mesh of 50 cells are
shown in Figure 3.2. In Table 3.1, we present a Numerical Order of Convergence (NOC)
and L1 errors of density, velocity, and pressure. Pure LW scheme achieves numerically
second order of convergence in the regions where the solution remains smooth.

0.0 0.2 0.4 0.6 0.8 1.0
(a)

0.96

0.98

1.00

1.02

1.04

1.06

1.08

1.10 exact
LW

0.0 0.2 0.4 0.6 0.8 1.0
(b)

0.10

0.05

0.00

0.05

0.10
exact
LW

0.0 0.2 0.4 0.6 0.8 1.0
(c)

0.9

1.0

1.1

1.2

1.3
exact
LW

Figure 3.2: The density (a), the velocity (b), and the pressure (c) by pure LW on a coarse
mesh of 50 cells for smooth flow problem [75] on an initially uniform grid.
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mesh L1(%) L1(P ) L1(U) NOC(%) NOC(P ) NOC(U)

50 3.3e-03 1.1e-02 5.3e-03 1.5 1.5 1.5
100 1.2e-03 3.9e-03 1.8e-03 1.7 1.7 1.6
200 3.8e-04 1.2e-03 5.9e-04 1.8 1.9 1.8
400 1.1e-04 3.4e-04 1.7e-04 2.0 2.0 2.0
800 2.7e-05 8.6e-05 4.2e-05 2.0 2.0 2.0
1600 6.6e-06 2.1e-05 1.0e-05

Table 3.1: Convergence for the problem with initially smooth data [75] computed using
the pure LW scheme. L1 error and numerical order of convergence.

3.3.6 Wendroff-White averaging in Lagrangian coordinates

The major drawback of the presented Lax-Wendroff method with predictor (3.20) is a
bad performance on highly nonuniform meshes. Let us assume the smooth test described
in the previous subsection on a grid generated using the following recurrent formula:

xi+1 = xi + (mod(i, 2) + 1)h, x0 = 0, h =
1

3N
, (3.26)

where N is the number of cells over the computational domain. Clearly, the odd cells of
such mesh will have the length of 2h while the even cells will have the length of h, and
hence the cell sizes will follow h−2h−h−2h . . . pattern. As we can see in Figure 3.3, the
result computed using the LW method on highly non-uniform mesh (3.26) is completely
distorted. To address this drawback, we will use the Wendroff-White (WW) weighting
proposed in [76] instead of weighting the average nodal state using sub zonal masses as
in (3.20). The modified WW predictor will be

w
n+ 1

2

i+ 1
2

=
∆xni+1w

n
i + ∆xniw

n
i+1

∆xni + ∆xni+1

+
∆t

mi +mi+1

(F n
i+1 − F n

i ). (3.27)

Let us note that WW weighting is the same as a linear interpolation in 1D. The results
due to WW predictor (3.27) are also presented in Figure 3.3. The oscillations caused by
the nonuniform grid disappeared completely.

For sake of completeness, numerical orders of convergence for the alternative weighting
(3.27) can be found in Table 3.2. As one can see, the use of WW weighting in the predictor
did not significantly worsen the numerical order of accuracy. All the following presented
results will be computed using the new WW predictor unless otherwise stated. For more
results due to LW+n schemes with originally proposed predictor (3.20), we refer the reader
to the previous works [64], [65].
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Figure 3.3: The density (a), the velocity (b), and the pressure (c) by LW and WW on 50
cells mesh for smooth flow problem [75] on an initially non-uniform grid defined by (3.26).

mesh L1(%) L1(P ) L1(U) NOC(%) NOC(P ) NOC(U)

50 3.3e-03 1.1e-02 5.4e-03 1.5 1.5 1.5
100 1.2e-03 3.9e-03 1.8e-03 1.6 1.6 1.6
200 3.8e-04 1.2e-03 5.9e-04 1.8 1.8 1.8
400 1.1e-04 3.4e-04 1.7e-04 2.0 2.0 2.0
800 2.7e-05 8.7e-05 4.3e-05 2.0 2.0 2.0
1600 7.0e-06 2.2e-05 1.1e-05

Table 3.2: L1 error and NOC for smooth flow problem [75] computed using the Wendroff-
White predictor (3.27).

3.4 HLL based dissipation

Since the Lax-Wendroff scheme is dispersive, it produces nonphysical oscillations behind
the shock waves, which makes the obtained numerical solution useless. Several approaches
for how to prevent the formation of these pathological features exist in the literature, e.g.
[59], [61], [77], but probably the most popular approach is adding an artificial viscosity to
the velocity equation, which has been firstly introduced by von Neumann and Richtmyer
in [2]. In this paper, the authors suggest adding an artificial viscosity term to the pressure
in the momentum equation, which acts as an additional viscous term smearing the shock
front into multiple cells (about 3− 5) [78]. The common form of artificial viscosity is by
Kuropatenko [79], [80].

In this work, we will use new artificial viscosity based on the Harten-Lax-van Leer
scheme [63]. Let us start with the presentation of the Riemann problem and the HLL
scheme.
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3.4.1 Riemann problem

Riemann problem [58], [81] is a special initial value problem given by hyperbolic partial
differential equation (or hyperbolic system) in 1D, which can be solved analytically. It
consists of two constant states, the leftWl and the rightWr, forming a single discontinuity
in one or multiple state variables. Riemann problem is given by vector equation

∂W (x, t)

∂t
+
∂F (W (x, t))

∂x
= 0 (3.28)

for x ∈ (−∞,∞) and t ∈ (0,∞) and initial data with a single jump discontinuity at
arbitrary position x0:

W (x, 0) =

{
Wl if x < x0

Wr if x > x0.
(3.29)

For a hyperbolic system of m equations, the solution to the Riemann problem gener-
ally consists of m waves, each associated with one of m unique eigenvalues of Jacobian
∂F /∂W . The general structure of the solution for Euler equations is illustrated in Figure
3.4.

contact

right wave

left wave

star region

Figure 3.4: Structure of the general solution of the Riemann problem for Euler equations.

More specifically, the solution for the system (3.1a-3.1c) will be formed from three
waves – the middle one will always be the contact discontinuity, the right and the left one
can be either shock or rarefaction waves.

3.4.2 Godunov method

In 1959, Godunov proposed a method for the solution of hyperbolic conservation laws,
which is after him called Godunov method [19]. The data in each computational cell are
constant, and hence the task of finding nodal values between every two cells is a Riemann
problem, which can be solved analytically or using some approximation. The solution of
the Riemann problem is usually called Riemann Solver (RS). One approximate RS will
be described in detail in the next subsection.
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In a conservative form, the discretization of (3.28) using the Godunov method can be
written as [81]:

W n+1
i = W n

i +
∆t

∆x

(
Fi+ 1

2
− Fi− 1

2

)
, (3.30)

whereW n
i is the integral average of the state vector (2.53) within the i-th cell computed

by:

W n
i =

1

∆xi

∫ x
i+1

2

x
i− 1

2

W (x, tn)dx. (3.31)

The values W n
i are assumed to be constant within each cell. In the equation (3.30) the

Fi± 1
2
are inter-cell numerical fluxes given by

Fi± 1
2

= F (Wi± 1
2
), (3.32)

where Wi± 1
2
are the solutions of local Riemann problem RP on the interface between

i− 1-th and i-th or i-th and i+ 1-th cells respectively:

Wi− 1
2

= RP(Wi−1,Wi), Wi+ 1
2

= RP(Wi,Wi+1). (3.33)

Due to the substantial complexity of the Riemann solvers, we will not present it here in
more detail and rather refer the reader to [81].

3.4.3 HLL scheme

HLL scheme [63] is a method of Godunov type. Instead of using the exact Riemann solver,
the intercell flux is given by the two-wave approximation. Let us now briefly show the
derivation of the HLL solver, which has been taken from [81].

Figure 3.5: Wave diagram for HLL scheme – 3 states Wl,W
HLL,Wr.

Let us assume the solution to a Riemann problem, which consists only of three states
Wl,W

HLL,Wr. The situation is illustrated in Figure 3.5.
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Figure 3.6: Control volume for the derivation of the HLL scheme.

Let us assume control volume 〈xl, xr〉× 〈0, T 〉 as depicted in Figure 3.6. The left wave
is moving by signal velocity σl while the right wave is moving with σr. The integral form
of Riemann problem (3.28-3.29) can be expressed as:∫ xr

xl

W (x, T )dx =

∫ xr

xl

W (x, 0)dx+

∫ T

0

F (W (xl, t))dt−
∫ T

0

F (W (xr, t))dt (3.34)

which can be rewritten into consistency equation:∫ xr

xl

W (x, T )dx = xrWr − xlWl + TFl − TFr, (3.35)

where Fl = F (Wl) and Fr = F (Wr). The integral on the left-hand side of (3.34) can be
split by the x-intervals into:∫ xr

xl

W (x, T )dx =

∫ Tσl

xl

W (x, T )dx+

∫ Tσr

Tσl

W (x, T )dx+

∫ xr

Tσr

W (x, T )dx (3.36)

After evaluating the first and the third integrals on the right-hand side of (3.36) where
the data remain unchanged:∫ xr

xl

W (x, T )dx = (Tσl − xl)Wl +

∫ Tσr

Tσl

W (x, T )dx+ (Tσr − xr)Wr. (3.37)

Putting (3.37) into (3.35), we obtain the expression for integral over the star region:∫ Tσr

Tσl

W (x, T )dx = T (σrWr − σlWl + Fl − Fr) . (3.38)

If we divide (3.38) by the interval length T (σr − σl), then we obtain

1

T (σr − σl)

∫ Tσr

Tσl

W (x, T )dx =
σrWr − σlWl + Fr − Fl

σl − σr

. (3.39)
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The left-hand side of (3.39) is nothing else than the integral average of the exact solution
in the region between the two signal speeds σl, σr, hence we will denote the right-hand
side of (3.39) by

W HLL =
σrWr − σlWl + Fr − Fl

σl − σr

. (3.40)

Let us now evaluate the left flux along the t-axis F0l. Considering interval 〈xl, 0〉× 〈0, T 〉:

F0l = Fl − σlWl −
1

T

∫ 0

Tσl

W (x, T )dx (3.41)

and similarly for 〈0, xr〉 × 〈0, T 〉:

F0r = Fr − σrWr +
1

T

∫ Tσr

0

W (x, T )dx (3.42)

we get the right flux along the t axis F0r. Complete HLL approximate Riemann solver is
defined by:

W̃ (x, t) =


Wl if x 6 σlt,

W HLL if σlt 6 x 6 σrt,

Wr if σrt 6 xr.

(3.43)

Let us remark that the HLL flux is not given by F (W HLL), but by substituting (3.40)
into (3.41) or (3.42), which gives us:

F HLL = Fl + σl(W
HLL −Wl),

F HLL = Fr + σr(W
HLL −Wr)

(3.44)

After substitution of (3.40) into (3.44) we finally obtain the desired HLL flux:

F HLL =
σrFl − σlFr + σlσr(Wr −Wl)

σr − σl

. (3.45)

Now we can rewrite the HLL inter-cell flux for node i+ 1
2
:

F HLL
i+ 1

2
=


Fi if 0 6 σi
σi+1Fi−σiFi+1+σiσi+1(Wi+1−Wi)

σi+1−σi . if σi 6 0 6 σi+1

Fi+1 if 0 > σi+1

. (3.46)

3.4.4 HLL scheme in Lagrangian moving frame

1D cell-centered HLL scheme can be written in the mass coordinate:

miw
n+1
i = miw

n
i + ∆t(F n

i+ 1
2
− F n

i− 1
2
) (3.47)
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where the flux expressed in a reference frame moving with node i+ 1
2
writes:

Fi+ 1
2

=
σiwi + σi+1wi+1

σi + σi+1

+
σiσi+1(wi −wi+1)

σi + σi+1

, (3.48)

where σi, σi+1 are HLL speeds. There are more possible choices of σ, e.g. [82] suggests
to use acoustic impedances (Lagrangian sound speeds) defined as −σi = −%i(cs)i, σi+1 =

%i+1(cs)i+1, but instead, we use modified acoustic impedances

σi+1 = %i+1 ((cs)i+1 + |ui+1 − ui|) , σi = %i ((cs)i + |ui+1 − ui|) . (3.49)

The first term on the right-hand side of (3.48) is the physical flux over the node, the
second term

Dd
i+ 1

2
=
σiσi+1(wi −wi+1)

σi + σi+1

(3.50)

is the dissipative part which we will use as the basic building block of our artificial
dissipation.

3.4.5 LW+n schemes

The LW+n scheme is the Lax-Wendroff scheme presented in Section 3.3 with the addi-
tional HLL-based dissipative flux:

miw
d,n+1
i = miw

d,n
i + ∆t

[
(F n

i+ 1
2
− F n

i− 1
2
) +Dτ ·

(
Dd

i+ 1
2
−Dd

i− 1
2

)]
(3.51)

where Dd
i± 1

2

are dissipative fluxes from (3.50) and Dτ is a diagonal matrix of nondimen-
sional coefficients:

Dτ =

τd 0 0

0 τu 0

0 0 τe

 . (3.52)

Coefficients τ in the matrix Dτ control how much dissipation is added to the scheme.
Constant τd specifies the amount of artificial diffusion (mass flux) added to the continuity
equation, τu specifies the amount of artificial viscosity added to the momentum equation,
and τe specifies the amount of artificial energy flux added to the energy equation. By
different choices of τ parameters, one can obtain schemes with qualitatively different
properties. To simplify future reference to some specific choices of parameters, let us
introduce the following naming convention: The scheme adding only artificial viscosity
(τd = τe = 0, τu > 0) will be referred to as LW+1, the scheme adding artificial viscosity
and energy flux (τd = 0, τe > 0, τu > 0) will be LW+2, and the scheme with all τ > 0

(hence adding also artificial diffusion) will be referred to as LW+3. The most usual choice
is LW+2 with τd = 0, and τu = τe ∈ 〈1, 2〉.

Let us note that the LW+3 scheme requires a different definition of density, which
violates GCL. The details can be found in [64].

To illustrate some differences between LW+1, LW+2, and LW+3 schemes and different
values of τ , let us first define the 1D Noh problem.
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3.4.6 Noh problem

The Noh problem was firstly presented in [83] and deals with a symmetric infinitely strong
shock wave reflected from the origin. The exact solution exists for one-, two- and three-
dimensional geometries. The computational domain is a segment, square, or cube with the
edge length of 2 and center in the origin, i.e. 〈−1, 1〉 in 1D, 〈−1, 1〉2 in 2D, and 〈−1, 1〉3
in 3D. In the beginning, the region is filled by an ideal gas characterized by γ = 5/3 with
unit density, zero pressure (numerically we set 10−6), and velocity field of unit magnitude
pointing toward the origin. The exact solution is characterized by a single symmetric
shock wave (e.g., circular in 2D or spherical in 3D) advancing with speed 1/3. The exact
solution depends on constant ν = 1, 2, 3 for one-, two- and three-dimensional geometry,
respectively:

%(t,x) =

{
4ν if |x|< t/3

(1 + t
|x|)

ν−1 otherwise
, P (t,x) =

{
4ν/3 if |x|< t/3

0 otherwise
,

U(t,x) =

{
0 if |x|< t/3

− x
|x| otherwise

.

The final time T = 0.6 implies that the exact position of the shock front is located at
|x|= 0.2. The boundary conditions are given by prescribed velocity similar to the initial
condition. Considering the symmetry, the problem can be computed just in the region
〈0, 1〉ν with reflecting boundary conditions on the axes. The results for different LW+n
scheme variants and different values of τ can be seen in Figure 3.7.
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Figure 3.7: 1D Noh problem; on coarse mesh (100 cells) computed using different LW+n
schemes (a), on coarse mesh (100 cells) computed using LW+2 with different values of
τ = τu = τe (b), convergence on different meshes using LW+2 with τ = 1.5 (c).

As we can see from Figure 3.7(a), the result due to LW+1 suffers from a large density
dip near the center of a shock state, which is caused by wall heating. This phenomenon
is in great detail analyzed in [83]. For the mitigation wall-heating, W. F. Noh proposed
to use among artificial viscosity also the artificial energy flux, which is the inspiration for
the LW+2 scheme. As we can see, the density dip near the origin is significantly reduced
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when LW+2 and LW+3 schemes are used. The results due to LW+3 are slightly closer to
the exact solution, but the introduction of artificial mass flux violates GCL, as discussed
in [64]. Therefore, unless otherwise stated, we will, in the following, always present the
results due to the LW+2 method.

As we can see in Figure 3.7(b), the value of τ controls the amount of added dissipation.
Finally, in Figure 3.7(c) we present the convergence of LW+2 with τ = 1.5 to the exact
solution for subsequently finer meshes of 50× 50, 100× 100 and 200× 200 cells.

3.4.7 Treating material interfaces and contact discontinuities

Let us first address the contact discontinuity – a special wave where the pressure and
velocity remain constant, while there is a discontinuity in the density. However, this
feature of the solution is poorly resolved by the HLL scheme, which is built upon the
assumption that the solution consists only of two waves. This fact results in large smearing
of the contact when unlimited artificial dissipation is used. Due to the constant pressure
and velocity on contact, the artificial energy flux can be turned off on the interface node
lying between both states. For Lagrangian hydrodynamics, the contact discontinuity
moves with the mesh and can be easily tracked as it remains at the same node as the
initial interface between two different states. The influence of such a fix can be seen in
Figure 3.10(c).

Although this simple switch improves the resolution of contact, it can cause problems
when small CFL numbers are used, or the viscosity is limited in some way. In such
situations, the computation can fail from a too-small time step, which is due to two small
cells on the right of the interface at the beginning of the simulation when the three-wave
structure is being formed. This flaw has motivated the introduction of the following
special treatment of numerical flux at the material interface or contact discontinuities.

The first version of the interface fix proposed in [64] has been based on using the EUC-
CLHYD scheme [26] for computation of nodal velocity and pressure estimates from which
the numerical fluxes on the contact discontinuity or material interface were computed.

The drawback of the interface fix based on the EUCCLHYD scheme is the additional
computational complexity. Specifically, in more spatial dimensions, one has to implement
also EUCCLHYD nodal solver [30]. Hence, in [67] a new treatment has been introduced.
It is based on replacing ∆t in the predictor of velocity at the interface point f = i+ 1

2
by

local time step

∆Tf =
min{∆xni ,∆xni+1}

max{ai, ai+1}
,

where ∆Tf can be viewed as a maximum allowed time step of node (face) f . The predicted
velocity at the node f is then given by:

U
n+ 1

2
f =

Un
i /∆x

n
i + Un

i+1/∆x
n
i+1

1/∆xni + 1/∆xni+1

+
∆Tf

mi +mi+1

(P n
i − P n

i+1). (3.53)

From a different point of view, this means that the global time step ∆t is locally replaced
by ∆Tf , which speeds up the equilibration of velocity and pressure at the interface for
Riemann problems. The effect of this modification makes the difference between the result
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presented in Fig. 3.10(d) (turned off) Fig. 3.10(e) (turned on). Although there is not
a big difference in the contact itself, the oscillations at the end of the rarefaction wave
are remarkably reduced when the interface fix is applied. This new modification performs
comparably to that based on EUCCLHYD, although it is significantly less complicated.

3.4.8 Limiting artificial dissipation

When the proposed artificial viscosity is applied everywhere, it also smears the solution in
continuous regions, which is shown in Figures 3.10(b-c), and which is usually not necessary
and not even desirable. Ideally, the artificial dissipation should only smear the shock fronts
while it should not take place in continuous solution to preserve higher accuracy where
possible. We will now describe two strategies for limiting our artificial dissipation.

The easiest way of how to control the amount of dissipation being added to a particular
region would be to simply switch it on or off. This approach can be easily applied in
expanding regions. To detect whether the node i+ 1

2
is expanding, we simply compare the

volumes of its adjacent cells in times tn and tn+1 – i.e. whether both cell volumes ∆xn+1
i

and ∆xn+1
i+1 are greater than the old volumes ∆xni and ∆xni+1. The effect of this simple

logical switch on the Sod problem is presented in Figures 3.10(d) (without interface fix )
and 3.10(e) (with interface fix ). As one can see, the resolution of the rarefaction wave is
better when the dissipation is turned off in the expansion region.

Although this simple switch works reasonably well in 1D geometry, it can violate the
symmetry in multiple dimensions for certain cases. Another problem is that it does not
affect the regions of weak smooth compression. In such cases, artificial dissipation can
be switched off too. To detect these situations, we use the limiter described in [5]. Let
us first start by the definition of nodal velocity difference ∆ui+ 1

2
= ui+1 − ui and nodal

volume ∆xi+ 1
2

= (∆xi + ∆xi+1)/2. Instead of the direct use of Dd
i+ 1

2
, we will use the

limited term
Dlim
i+ 1

2
= (1− ψi+ 1

2
)Dd

i+ 1
2

(3.54)

where ψi+ 1
2
is a nodal limiter given by

ψi+ 1
2

=

{
max{0,min[(ri + ri+1), 2ri, 2ri+1, 1]} if ∆ui+ 1

2
< 0

1 otherwise
, (3.55)

and ri, ri+1 are fractions of discrete spatial derivatives of velocity computed as:

ri+1 =
∆ui+ 3

2
/∆xi+ 3

2

∆ui+ 1
2
/∆xi+ 1

2

, ri =
∆ui− 1

2
/∆xi− 1

2

∆ui+ 1
2
/∆xi+ 1

2

. (3.56)

The stencil for the computation of limiter ψi+ 1
2
can be seen in Figure 3.8.
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Figure 3.8: Stencil for 1D AV limiters.

The results computed with the limiter (3.55) can be found in Figure 3.10(f). Compared
to the simple switching, the shock wave is better resolved and the density undershot at
the tail of the rarefaction wave is no longer present.

We should note here that in some cases, the described limiting procedure may require
increasing the value of the dissipative coefficient τ . We demonstrate this on the 1D Noh
problem in Figure 3.9(a). When τ = 1.5 is kept and the limiter is turned on, a small
overshot near shock wave occurs, but it vanishes for τ = 2.0. On the other hand, the shock
wave computed using limited LW+2 with τ = 2.0 is better resolved than the unlimited
case with smaller τ . Figure 3.9(b) then shows the convergence for limited LW+2 with
τ = 2.0. Besides better capture of shock wave, the density dip near origin due to wall
heating is also slightly reduced.
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Figure 3.9: The effect of dissipation limiting on Noh test computed on coarse mesh; limited
and unlimited LW+2 with τ = 1.5 and limited LW+2 withτ = 2.0 (a); convergence for
1D Noh problem computed using limited LW+2 with τ = 2.0 (b).

3.4.9 Recapitulation of the method

For the sake of simplicity, let us now shortly summarize a single time step of the LW+n
method within which the solution is advanced from the old time level n to the new time
level n+ 1.

1. Knowing all cell data from time level n, we can compute a new time step ∆tn.
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2. Next, the predicted nodal values wn+ 1
2

p can be computed.

3. Nodal thermodynamical quantities (cs,P ,ε) are updated.

4. Knowing all the nodal data at tn+ 1
2 the new cell state values wn+1

c are computed.

5. Artificial dissipation and limiter terms are computed and applied to wn+1.

6. The nodal positions are advanced by ∆tn+1 to time level tn+1 using nodal velocities
U
n+ 1

2
p , geometry structures (cell centers and volumes) are updated.

7. Cell densities are recomputed from the new geometry using (3.7).

8. Cell thermodynamical quantities are updated.

9. Finally, we apply boundary conditions.

Let us note that steps 1-3 describe the predictor phase (substep), while steps 4-9
constitute the corrector phase. At the end of each time step, the mesh is checked for too
large volume changes, and if no such problem is detected, the arrays storing new data
are copied to those with the old values, and the whole sequence is repeated. If there is
some problem, the whole step is restarted with a smaller time step ∆tlim = ∆tn+1/2. The
algorithm stops if the final time is reached (success) or when the time step is too small
(error).

3.5 Numerical results in 1D

3.5.1 Sod shock tube

This test was introduced by Sod in [84]. Let us assume a closed one-dimensional tube of a
unit length separated by a membrane at position x0 = 0.5 into two regions. Each region is
initially filled with a perfect gas with γ = 1.4. The state in the left region is characterized
by the density %l = 1 and pressure Pl = 1, the right state has the density %r = 0.125 and
pressure Pr = 0.1. The gas is initially at rest, i.e. ul = ur = 0. At the time t = 0, the
membrane is removed, and three waves are formed – the rarefaction wave on the left, the
contact discontinuity in the middle, and the shock wave on the right. The final time is
T = 0.25 and CCFL = 0.4. The 1D mesh is initially discretized into 100 equally spaced
cells.

Similarly to [67], we present in Figure 3.10 some effects of individual ingredients de-
scribed in the preceding two subsections. Figure 3.10(a) shows the results of the Sod
problem computed using the pure LW scheme, where we can see the oscillations behind
the shock wave and at the end of rarefaction. Figure 3.10(b) shows the result of the LW+2
scheme. As one can see, the spurious oscillations were successfully mitigated. On the other
hand, the contact discontinuity is nearly completely smeared, while the rarefaction and
shock wave is also not sharply resolved.
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Figure 3.10: Density for Sod problem with τ = 1.5; 100 cells; different ingredients of the
scheme: pure LW (a), LW+2 with dissipation (b), LW+2 with artificial energy flux off
at interface (c), LW+2 with energy flux off at interface, and all dissipation turned off in
expansion (d), LW+2 with energy flux off at interface with artificial viscosity, and energy
flux turned off in expansion (e), LW+2 with energy flux off at interface, interface fix,
limited dissipation with interface fix (f).

The comparison with the EUCCLHYD method [26] for the Sod shock tube problem is
presented in Figure 3.11. The results due to both methods are comparable. EUCCLHYD
resolves the head of the rarefaction wave better, while LW+2 performs better near the
contact, which can be best seen in Fig. 3.11(d) showing the internal energy.
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Figure 3.11: Comparison of EUCCLHYD method [26] (orange) with limited LW+2 with
τ = 1.5, and interface fix (green) for Sod problem computed on initially equidistant mesh
with 100 cells. The density(a), the velocity(b), the pressure(c), and the internal energy(d).

3.5.2 Woodward-Collela blast wave

Another well-known test is the Woodward-Collela blast wave problem [85]. This problem
involves multiple interactions between waves arising from two Riemann problems and
reflecting boundaries. The problem is prescribed on 1D interval 〈0, 1〉 and consists of
three constant states of an ideal gas with γ = 1.4. The states are separated by xl = 0.1

and xr = 0.9. In all three states, the initial density is one, and the initial velocity is
zero. The left pressure Pl = 1000, the middle pressure Pm = 0.01 and the right pressure
Pr = 100. The final time is T = 0.038. The results for the density computed by unlimited
LW+2 with τ = 1.5, interface fix, and zero artificial energy flux on both interfaces and
CCFL = 0.4 on initially equally spaced mesh with 400 cells can be found in Figure 3.12.
Since the exact solution for this problem is not known, we use a solution computed on a
finer mesh with 2000 cells as a reference. Dissipation was not turned off in expansion for
this case. The obtained result is reasonable compared with e.g. [86].
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Figure 3.12: Density plot for Woodward-Colella problem at time t = 0.038 computed on
400 cells mesh.



Chapter 4

Lagrangian hydrodynamics in 2D
Cartesian geometry

This chapter deals with 2D hydrodynamics in Cartesian geometry. Since in multiple
dimensions, it is not possible to write Euler equations in mass coordinate similarly to
the 1D case, we start by redefinition vector of specific conserved variables (3.17). Let m
be mass of arbitrary moving control volume V (t), both defined by (2.51), the vector of
specific quantities can be then defined as:

w =
1

m
W = (η,U , E)t. (4.1)

The vector of specific quantities (4.1) represents dependent variables related to the vector
of conserved variables (2.52). The numerical method will be presented in terms of w.

4.1 Geometry

In the two-dimensional case, we consider arbitrarily polygonal computational domain,
which is filled by nonoverlapping n-lateral cells without any gaps.

Each cell is formed by n points connected by straight lines. As one can see in Fig.
4.1(a), each cell is further divided into n subcells. Each subcell (subzone) is quadrilateral
given by one node, one cell center, and two edge midpoints. Two edges of the subcell
adjacents to the cell node are called half-edges, while the other two adjacents to the cell
center are called separators. The mesh given by edges (plotted in Fig. 4.1(a) by black
lines) will be further referred to as a primary mesh, while the mesh formed by separators
(plotted by blue lines) will be called a dual mesh.

49
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(a) (b)

Figure 4.1: pc notation in 2D geometry. Primary (black) and dual (blue) cell (a); Edges
and corner vectors (b).

Similarly to [30], we adopt a pc notation [86]: each cell will be indexed by unique
index c and each point by unique index p. Since every subzone is given by a single unique
cell c and a single unique point p, it will be indexed by pc = cp. The edge between two
adjacent cells c and a will be denoted eca = e(ca). The separators of subcell pc are spc±.
Let us define the set of points around the cell c as p(c) and the set of cells around the
point p as c(p). Using these sets, we can define the sum of nodal values around cell c as∑

p(c) and similarly, the sum of cells around the point p as
∑

c(p). Similarly, we can define
e(c) as the set of the edges of cell c and sum

∑
e(c) going over the set e(c).

The position xc = (xc, yc) of cell center c is given by the simple arithmetic average of
nodal positions:

xc =
1

n

∑
p(c)

xp. (4.2)

Let Vpc be the volume of subcell pc and mpc = %cVpc its mass. In the case of Cartesian
geometry, subcell volume is given by:

Vpc =
1

2

∑
q(pc)

(yq+ − yq)(xq − xq+), (4.3)

Where q+ = mod(q+1, n) is the neighboring index, and q(pc) is the set of nodes of subzone
pc. Lagrangian hydrodynamics assumes a constant mass in a given control volume, i.e.,
the subzonal mass mpc = %cVpc remains constant since initialized.

After sub-zonal volume and mass are known, we can define cell volume Vc, nodal
volume Vp, cell mass mc, and nodal mass mp using the simple sums of adjacent subzones:

Vc =
∑
p(c)

Vpc, Vp =
∑
c(p)

Vpc, mc =
∑
p(c)

mpc, mp =
∑
c(p)

mpc. (4.4)

Next, we can define the vector ne(ca), which is the normal vector to the edge e(ca)

pointing outwards the cell c and having the same length as e(ca). Corner vector ncp
adjacent to subzone pc is defined as the average of normal vectors of edges of cell c that
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are adjacent to point p:

ncp =
1

2
(ne(ca) + ne(cb)),

as shown in Figure 4.1(b). The vectors nnspc± are normals to the separators spc± pointing
outwards subzone pc having the length of spc±.

4.2 Lax-Wendroff Scheme for Finite Volumes

Let us assume that the fluid element V is a convex 2D polygon with n edges, e(V ) is
the set of its edges, and ne is an outward normal vector of the same length as the edge
e pointing outwards the volume V . The equation (2.52) can be discretized using the
following simple formula:

W n+k
V −W n

V

k∆t
=
∑
e(V )

F
n+k− 1

2
e · nn+k− 1

2
e , (4.5)

where k is the time index shift and has value k = 1
2
for predictor and k = 1 for corrector.

4.2.1 Lax-Friedrichs and Wendroff-White predictors

The LF predictor can be obtained by applying (4.5) with k = 1
2
on dual cells p:

w
n+ 1

2
p =

∑
c(p) mpcw

n
c∑

c(p) mpc

+
∆t

2

∑
c(p)

F n
c · (nnspc+ + nnspc−), (4.6)

where the sum on the right-hand side goes over the separators spc±.
Similarly to 1D, one can also use the Wendroff-White predictor given by:

w
n+ 1

2
p =

∑
c(p)w

n
pc/Vpc∑

c(p) 1/Vpc
+

∆t

2mp

∑
c(p)

F n
c · (nnspc+ + nnspc−). (4.7)

Let us here remark that on the rectangular meshes, the WW weighting is similar to
bilinear interpolation. The computed nodal velocity estimates Un+ 1

2
p are used to advance

the mesh:
x
n+ 1

2
p = xnp +

∆t

2
U
n+ 1

2
p (4.8)

4.2.2 Lax-Wendroff corrector

The LW corrector can be obtained by applying (4.5) with k = 1 on primary cells c:

mcw
n+1
c = mcw

n
c + ∆t

∑
e(c)

F
n+ 1

2

e(ca) · n
n+ 1

2

e(ca), (4.9)

where e(c) is the set of edges of cell c, nn+ 1
2

e(ca) is an outward vector normal to edge e(ca)

having the same size as the edge and F n+ 1
2

e(ca) is flux over the edge computed from nodal
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state estimates wn+ 1
2

p by

F
n+ 1

2

e(ca) =
F
n+ 1

2

p(ca)+ + F
n+ 1

2

p(ca)−

2
. (4.10)

The corrector (4.9) can be rewritten using summation over the nodal values:

mcw
n+1
c = mcw

n
c + ∆t

∑
p(c)

F
n+ 1

2
p · nn+ 1

2
pc , (4.11)

where
n
n+ 1

2
pc =

1

2

(
n
n+ 1

2
pc+ + n

n+ 1
2

pc−

)
is the corner outward vector and nn+ 1

2
pc+ ,n

n+ 1
2

pc− are normal vectors to edges adjacent to cell
c and point p. After the corrector is performed, the mesh is again advanced by point
velocities Un+ 1

2
p :

xn+1
p = x

n+ 1
2

p +
∆t

2
U
n+ 1

2
p . (4.12)

4.2.3 GCL proof

Here we will prove that the LW scheme preserves Geometric Conservation Law (2.48).
This proof is taken from [64]. Let us start by writing the corrector (4.9) only for a specific
volume η, which discretizes the equation (2.48):

mcη
n+1
c = mcη

n
c +

∆t

2

∑
p(c)

U
n+ 1

2
p · nn+ 1

2
pc . (4.13)

We want to prove that if the nodal positions are advanced using (4.8) and (4.12), then

V n+1
c = V n

c +
∆t

2

∑
p(c)

U
n+ 1

2
p · nn+ 1

2
pc . (4.14)

The following proof of (4.14) holds for any arbitrary choice of nodal velocity Up. We will
repeatedly use the following identity:

a2b2 − a1b1 =
1

2
[(a1 + a2)(b2 − b1) + (a2 − a1)(b2 + b1)] . (4.15)

The cell volume (area) update from time level n to n+ 1 is given by:

V n+1
c − V n

c =
1

4

∑
p(c)

xn+1
p · nn+1

pc −
∑
p(c)

xnp · nnpc


=

1

8

∑
p(c)

[
(xn+1

p − xnp ) · (nn+1
pc + nnpc) + (xn+1

p + xnp ) · (nn+1
pc − nnpc)

]
=

1

4

∑
p(c)

∆tUp · n
n+ 1

2
pc +

1

2
(V n+1

c − V n
c ) +

1

8

∑
p(c)

(xnp · nn+1
pc − xn+1

p · nnpc).

(4.16)
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And so:
V n+1
c − V n

c =
1

2

∑
p(c)

∆tUp · n
n+ 1

2
pc +

1

4
A, (4.17)

where
A =

∑
p(c)

(xnp · nn+1
pc − xn+1

p · nnpc). (4.18)

To prove (4.14), we have to show that A is zero. Now, we also have that A can be written
as a sum over edges:

A =
∑
e(c)

(xne · nn+1
e − xn+1

e · nne ). (4.19)

where xe is the sum of the endpoint positions, and ne is the edge normal. With and
x = (x, y),

A =
∑
e(c)

[
xne∆(yn+1)e − yne∆(xn+1)e − xn+1

e ∆(yn)e + yn+1
e ∆(xn)e

]
. (4.20)

The first and the last terms can be combined as

A1 =
∑
e(c)

[xne∆(yn+1)e + yn+1
e ∆(xn)e]. (4.21)

From (4.15), A1 is a collapsing sum,

A1 = 2
∑
e(c)

∆(yn+1xn)e = 0. (4.22)

A similar result holds for the middle two terms, thus proving that A = 0 and hence we
have proved (4.14), which means that if we set

mcη
0
c = V 0

c

then for all n
mcη

n
c = V n

c ,

which implies that (4.13) is irrelevant and

%n+1
c = mc/V

n+1
c .

4.3 Artificial dissipation in 2D

The artificial dissipation in 2D is again based on HLL approximate Riemann solver, in
this case, used on the cell edges. Assuming that the finite element V corresponds with
the cell c, the Equation (2.52) can be discretized as:

mcw
n+1
c = mcw

n
c + ∆t

∑
e(ca)∈e(c)

fne(ca)|nne(ca)|, (4.23)



CHAPTER 4. LAGRANGIAN HYDRODYNAMICS IN 2D CARTESIAN GEOMETRY54

where the projection to the edge normals has been moved into the fluxes

fne(ca) =
σacF

n
c + σcaF

n
a

σac + σca
·
nne(ca)

|nne(ca)|
+

σacσca
σac + σca

(wn
a −wn

c ). (4.24)

These fluxes can be obtained from the modified solution of the 1D Riemann problem on
the symmetry normal nne(ca) to the edge e(ca). If we apply the HLL approximate Riemann
solver (3.48) with the HLL signal speeds −σca and σac in the Lagrangian frame moving
with the edge e(ca), we obtain (4.24). The fne(ca) flux consists of two parts. The first
part on the right-hand side of (4.24) represents the physical fluxes, while the second term
represents numerical dissipation. Similarly to 1D, the Lagrangian LW+n scheme can be
written as

mcw
d,n+1
c = mcw

n
c + ∆t

∑
e(c)

(
F
n+ 1

2

e(ca) · n
n+ 1

2

e(ca) +Dτ ·Dd
e(ca)

)
, (4.25)

where F n+ 1
2

e(ca) is the LW flux obtained from (4.10),

Dτ =


τd 0 0 0

0 τu 0 0

0 0 τu 0

0 0 0 τe

 , (4.26)

and
Dd

e(ca) =
σacσca
σac + σca

(wn
a −wn

c ).

The modified acoustic impedances in 2D on edge e(ca) write:

σac = %c

(
csc +

|(Uc −Ua) · ne(ca)|
|ne(ca)|

)
, σca = %a

(
csa +

|(Uc −Ua) · ne(ca)|
|ne(ca)|

)
. (4.27)

Let us end the 2D scheme description with a remark that for ne(ca) = (±1, 0)t the 2D
scheme (4.25) becomes the 1D version (3.51).

4.3.1 Limiting artificial dissipation in multiple dimensions

Multidimensional artificial dissipation limiters are taken from [9]. Because LW+n dissi-
pative fluxes are defined on the edges, their limiters should also be edge-based.

Let us start by the computation of the velocity divergence over the edge e(ca). The
control volume for the divergence calculation is quadrilateral given by cell centers a, c
adjacent to the edge, and its endpoints p− and p+. The velocity divergence over the edge
e is given by:

(4.28)(∇ ·U)e(ca) =
1

2Ve(ca)

[(up+ − up−)(ya − yc)− (ūa − ūc)(yp+ − yp−)

− (vp+ − vp−)(xa − xc) + (v̄a − v̄c)(xp+ − xp−)] ,
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where node velocities up±, vp± are components of nodal velocity estimate Un+ 1
2

p± due to
predictor (4.7), and cell values are simple averages of nodal values

Ūc = (ūc, v̄c)
t =

1

n

∑
p(c)

U
n+ 1

2
p ,

Ve(ca) is the volume of the edge e(ca) control volume, computed using (4.3), x, y are
components of node or cell center positions, and u, v are components of the velocity
vector. Subscripts a, c stand for cell centers adjacent to the edge f = e(ca), while p−, p+
denote the edge endpoints. The situation is illustrated in Figure 4.2.

Figure 4.2: The control volumes used for the computation of velocity divergence.

When edge-based velocity divergences are known, we can advance to the computation
of limiters. The limiter ψe(ca) as proposed in [9] uses 4 neighbor edges (5 edges stencil)
and is defined as the minimum of 1D limiters in logically horizontal and vertical directions
(denoted by h and v subscripts respectively):

ψe(ca) = min(ψh, ψv), (4.29)

where
ψh = max [0,min((rw + re)/2, 2rw, 2re, 1)] , (4.30a)

ψv = max [0,min((rn + rs)/2, 2rn, 2rs, 1)] . (4.30b)

The divergence fractions r are subscribed by compass points (n – North, w – West, s
– South, e – East) with respect to their position logically relative to the central edge
f = e(ca) as depicted in Fig. 4.3 and write:

rn =
(∇ ·U)n

(∇ ·U)f

, rw =
(∇ ·U)w

(∇ ·U)f

, rs =
(∇ ·U)s

(∇ ·U)f

, re =
(∇ ·U )e

(∇ ·U)f

. (4.31)



CHAPTER 4. LAGRANGIAN HYDRODYNAMICS IN 2D CARTESIAN GEOMETRY56

Figure 4.3: Illustration of cell indexing used for limiter computation. Dark dual cells are
used for 5 edges stencil, the light cells are added to the 9 edges stencil.

To improve the symmetry on nonpolar meshes, we can modify the limiter (4.29) by
extending the neighbors to 8 edges (9 edges stencil), taking into account also the ratios
(defined again using compass points and illustrated in Figure 4.2) rnw, rse and rne, rsw that
form the logically diagonal limiters:

ψ13 = max [0,min((rne + rsw)/2, 2rne, 2rsw, 1)] , (4.32a)

ψ24 = max [0,min((rnw + rse)/2, 2rnw, 2rse, 1)] . (4.32b)

And the final 9 edges stencil limiter will be

ψe(ca) = min(ψh, ψv, ψ13, ψ24). (4.33)

The comparison of different limiters will be presented in Subsection 4.5.2, dealing with
the 2D Noh test.

4.4 Time step control

The time step ∆t is controlled mainly by the Courant-Friedrichs-Levy (CFL) condition.
At the time level n, the CFL time step is given by:

∆tnCFL = CCFL min
c

lnc
(cs)nc

, (4.34)
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where CCFL ∈ (0, 1〉 is Courant-Friedrichs-Lewy constant, lnc is the minimal edge of cell c,
and (cs)

n
c is nothing else than sound speed defined by EOS (2.57).

To prevent volumes from changing too fast, the time step (4.34) is additionally re-
stricted to increase no more than by 10% and set it to ∆t/2 if the volume in any cell
changes more than that:

∆tn+1 = min(1.1∆tn, tn+1); ∆t = tn+1/2 if V n+1/V n /∈ 〈0.9, 1.1〉. (4.35)

4.5 Numerical results in 2D Cartesian geometry

All the presented results were computed on quadrilateral (logically rectangular) meshes.
In the case of polar mesh, the cells near the origin are treated as degenerated quadrilat-
erals.

4.5.1 Kidder

This test is taken from [29], [44], and deals with an isentropic compression of a shell filled
by perfect gas characterized by γ = 1 + 2

ν
, where ν = 1 for planar, ν = 2 for cylindrical,

and ν = 3 for spherical symmetry. Here we assume cylindrical symmetry and therefore
set γ = 2. This problem has an analytical solution; hence it can be used to assess the
accuracy order of the scheme. Let us define radius R =

√
x2 + y2 at time t = 0, the

radius of a fluid particle at time t > 0 initially located at radius R ∈ 〈Ri, Ro〉 can be
written as [29]:

R(R, t) = h(t)R, (4.36)

where

h(t) =

√
1−

(
t

tf

)2

and tf is the focusing time of the shell (i.e., the time when the shell collapses into itself)
given by

tf =

√
γ − 1

2

R2
o −R2

i

a2
o − a2

i

,

where
a =

√
sγ%γ−1

is an isentropic sound speed, and Ri, Ro are the initial inner and outer radii of the shell.
Let arbitrary physical quantity q in position Ri be noted qi and similarly, q(Ro) = qo.

Let R(R, t) = h(t)R be the radius of a fluid particle at time t > 0 initially located at
radius R ∈ 〈Ri, Ro〉. The self-similar analytical solution for density %, radial velocity
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mesh L1(%) L1(P ) L1(U) NOC(%) NOC(P ) NOC(U)
45x25 5.9e-03 1.0e-02 3.9e-03 1.3 1.7 2.0
90x50 2.4e-03 3.1e-03 1.0e-03 1.6 1.7 1.8
180x100 7.9e-04 9.5e-04 2.9e-04 1.7 1.8 1.8
360x200 2.5e-04 2.7e-04 8.2e-05

Table 4.1: Convergence rates for density, velocity, and pressure for Kidder problem.

mesh Ri Ro L1(Ri) L1(Ro) NOC(Ri) NOC(Ro)
45x25 0.4492 0.4994 1.1e-03 9.5e-04 2.0 2.0
90x50 0.4501 0.5001 2.6e-04 2.4e-04 2.0 2.0
180x100 0.4503 0.5003 6.7e-05 6.0e-05 2.0 2.0
360x200 0.4503 0.5003 1.7e-05 1.5e-05

Table 4.2: Convergence rates for input radius Ri and output radius Ro for the Kidder
problem.

component U , and pressure P has the following form:

%(R(R, t), t) = h(t)−
2

γ−1%0

[
R(R, t)

h(t)

]
= h(t)−

2
γ−1%0(R), (4.37)

U(R(R, t), t) =
d

dt
h(t)
R(R, t)

h(t)
, (4.38)

P (R(R, t), t) = h(t)−
2γ
γ−1P 0

[
R(R, t)

h(t)

]
= h(t)−

2γ
γ−1P 0(R), (4.39)

For any R ∈ 〈Ri, Ro〉 the initial density and pressure are:

%0(R) =

(
R2

o −R2

R2
o −R2

i

%γ−1
i +

R2 −R2
i

R2
o −R2

i

%γ−1
o

) 1
γ−1

, P 0(R) = s(%0(R))γ.

The shell is initially at rest, so U0 = 0. The boundary conditions are given by prescribed
pressure:

Pi(t) = P 0
i h(t)−

2γ
γ−1 , Po(t) = P 0

o h(t)−
2γ
γ−1

The following constants are used (assuming cylindrical symmetry): ri = 0.9, ro = 1.0, Pi =

0.1, Po = 10, %o = 0.01, from which the following values can be computed: %o = 6.31 ×
10−4, s = 2.15 × 104 and tf = 7.26 × 10−3. The final time was set to t = (

√
3/2)tf =

6.29× 10−3, at which the outer radius ro = 0.5. The experimental convergence order for
density, pressure, and radial velocity by pure LW method can be found in Table 4.1, while
the convergence of inner and outer radius is presented in Table 4.2. Both tables verify
the second order of accuracy for the scheme given by predictor (4.7) and corrector (4.11).
Figure 4.4 then shows a pseudocolor plot of the density for a coarse mesh with 5 angular
times 10 radial cells and finer mesh with 45 angular times 25 radial cells. For this test,
Tables 4.1 and 4.2 show the numerical order of convergence by pure LW scheme slightly
below 2. Figure 4.4 shows the reasonable performance of the method.



CHAPTER 4. LAGRANGIAN HYDRODYNAMICS IN 2D CARTESIAN GEOMETRY59

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

0.0 0.1 0.2 0.3 0.4 0.5
0.0

0.1

0.2

0.3

0.4

0.5

0.000

0.005

0.010

0.015

0.020

0.025

0.030

0.035

(a) (b)

Figure 4.4: Pseudocolor plots of density for Kidder problem on equiangular mesh com-
puted by pure LW; 5× 10 cells (a), 45× 25 cells (b).

4.5.2 Noh

Let us now present some results of the Noh test in 2D Cartesian geometry. For the sake of
simplicity, we will now recall the initial conditions, exact solution, and scheme parameters
specific for this geometry. For a detailed description, we refer the reader to Subsection
3.4.6. In 2D, the computational domain is initially equally spaced square 〈0, 1〉2, or a
single quarter of a circle with cells equally spaced in either radius or angle directions. For
the initially equiangular mesh, the triangular cells adjacent to the origin are treated as
degenerated quadrilaterals. The initial conditions are given by unit density, zero pressure
(numerically we set P0 = 10−6), and unit velocity pointing towards the origin, that is for
cell c given by

U 0
c = − x

0
c

|x0
c |

=
1√

x2
c + y2

c

(−xc,−yc),

where x0
c = (xc, yc) is initial position of cell c center. The exact solution for γ = 5/3 is a

circularly symmetric shock wave with

%(t,x) =

{
16 if |x|< t/3

1 + t
|x| otherwise

, P (t,x) =

{
16/3 if |x|< t/3

0 otherwise
,

U(t,x) =

{
0 if |x|< t/3

− x
|x| otherwise

.

We use CCFL = 0.2. The final time is T = 0.6, which corresponds to the shock position
at radius R =

√
x2 + y2 = 0.2. Reflective boundaries are applied on the axes, while the

exact velocity is imposed on the rest of the boundary.
Let us start by comparison of LW+2 and staggered method with tensor artificial vis-

cosity [9]. The pseudocolor plots computed on an initially orthogonal uniform coarse mesh
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of 50 × 50 cells can be seen in Figure 4.5. Figure 4.6 then shows the same comparison
using the contour plot. As one can see, the unlimited LW+2 method clearly outperforms
the Staggered scheme regarding the symmetry of the solution. The scatterplots for dif-
ferent mesh resolutions, namely 50 × 50, 100 × 100, and 200 × 200 are then presented
in Figure 4.7(a). Figure 4.8 then shows the influence of different versions of unlimited
LW+n schemes and different values of τ . The scatterplots for the Noh problem on the
initially polar equiangular grid with mesh resolutions (angular × radial direction) 25×50,
50× 100, and 100× 200 are shown in Figure 4.7(b).

The symmetry of unlimited LW+2 is kept within the machine precision for the polar
mesh, while it remains very nice for the initially rectangular case. The density dip near
the origin is successfully mitigated by the artificial energy flux (i.e., LW+2 and LW+3
schemes) in comparison with the reference staggered method and LW+1.
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Figure 4.5: Pseudocolor plots of Noh problem on initially rectangular 50 × 50 mesh.
Unlimited LW+2 with τ = 1.5(a) and Staggered scheme with tensor viscosity [9] (b).
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Figure 4.6: Pseudocolor plots of Noh problem on initially rectangular 50 × 50 mesh.
Unlimited LW+2 with τ = 1.5 (a) and Staggered scheme with tensor viscosity [9] (b).
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Figure 4.7: Scatter plots of Noh problem computed using unlimited LW+2 on different
meshes. On initially rectangular 50× 50 mesh. LW+2 with τ = 1.5 (a), on polar meshes
(b).
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Figure 4.8: Scatter plots of Noh problem computed using different variants of unlimited
LW+n scheme on coarse 50 × 50 initially rectangular mesh (a) and using LW+2 with
different τ .

Figures 4.9 and 4.10 show results computed with the LW+2 scheme limited using 5
edge limiter (4.29), and 9 edges limiter (4.33). A symmetry on the initially rectangular
mesh is worse than in unlimited cases presented in Fig. 4.6, 9 edges limiter (4.33) performs
slightly better than the 5 edges one. On the other hand, the convergence due to LW+2
with 9 edges limiter for initially rectangular meshes presented in Figure 4.10 is regarding
the height and shape of density plateau better than that due to unlimited LW+2. On
polar meshes, the difference between unlimited and limited case is smaller; the overshot
behind the shock is worse when a limiter is turned on.
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Figure 4.9: Contours for Noh on coarse initially rectangular 50×50 mesh computed using
limited LW+2 with τ = 2.0. The 5 edges stencil limiter (a); 9 edges stencil limiter(b).
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Figure 4.10: Scatter plots for Noh computed on different meshes using limited LW+2
with τ = 2.0. On the initially rectangular grid with 9 point stencil (a); on the initially
equiangular grid with limiter comparing only edges on a circle (b).

4.5.3 Sedov

Another well-known test case is the Sedov problem [87]. Similarly to the previous Noh test,
we can again consider the symmetry and solve the problem only on a single quadrant. In
2D Cartesian geometry, the computational domain is a square 〈0, 1.2〉2 or a single quarter
of circle defined by angle α ∈ 〈0, π/2〉 and radius R =

√
x2 + y2 ∈ 〈0, 1.2〉. We consider

ideal gas with γ = 7/5. The initial density is 1, and the pressure is 0 (numerically treated
as 10−6), and zero velocity. A single corner cell at the origin has the initial internal energy
Eblast = 0.07783925, which corresponds to the total blast energy Eblast = 0.311357 for all
four quadrants as in [88]. We use free boundary condition on the outer boundaries (North
and East) and reflecting BC on axes. In Figure 4.11(a), we show the results for the initially
rectangular coarse mesh of 50 × 50 cells, while in Figure 4.11(b), we present the result
for the initially equiangular polar mesh with the resolution of 25 × 50 cells in angular
and radial direction respectively. The convergence of numerical solutions computed on
50×50, 100×100, and 200×200 initially rectangular cells to the exact solution computed
by [88] is then shown in Figure 4.12, similarly to the convergence of solutions on initially
equiangular polar meshes with 25×50, 50×100 and 100×200 cells presented in Fig. 4.13.
The effect of limiters can be seen in Figures 4.14, 4.15, and 4.16. Compared to unlimited
cases, the density near the origin is closer to the analytical solution even though the τ
was increased to a value of 2. The density overshot near the shockwave due to the 5-edge
limiter is lower for the limited case, while due to the 9-edge limiter is comparable to the
unlimited case. For polar meshes, we have limited only dissipation fluxes on circular edges
to preserve the exact symmetry.
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Figure 4.11: Pseudocolor plots of the Sedov problem in Cartesian geometry computed
using unlimited LW+2 with τ = 1.5 on initially rectangular 50 × 50 grid (a); initially
equiangular polar 25× 50 grid (b).
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Figure 4.12: Scatter plots of the Sedov problem computed using unlimited LW+2 with
τ = 1.5 on initially rectangular meshes.
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Figure 4.13: Scatter plots of the Sedov problem computed using unlimited LW+2 with
τ = 1.5 on polar meshes.
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Figure 4.14: Pseudocolor plots of the Sedov problem in Cartesian geometry computed
using limited LW+2 with τ = 2.0 on initially rectangular 50 × 50 grid (a); initially
equiangular polar 25× 50 grid (b).
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Figure 4.15: Scatter plots of the Sedov problem computed using limited LW+2 with
τ = 2.0 on initially rectangular meshes.
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Figure 4.16: Scatter plots of the Sedov problem computed using limited LW+2 with
τ = 2.0 on polar meshes.

4.5.4 Saltzman

This test is taken from [22], [38], [89], and it is basically the 2D piston-like problem on an
initially skewed mesh. The computational region 〈0, 1〉 × 〈0, 0.1〉 is filled by an ideal gas
with γ = 1.4 initially at rest. The initial density %0 = 1, the initial pressure is P 0 = 10−6.
The boundaries are treated as walls except for the left (West) edge, where we prescribe
piston velocity upiston = 1. The nodes of the equidistant rectangular mesh with 100× 10
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cells are initially displaced using the following formula:

xskew = x+ (0.1− y) sin(πx).

The analytical solution for this problem is characterized by a single shockwave moving
from the left to the right with speed 4/3, so the East (right) boundary is reached at
t = 0.75 when the shockwave is reflected. The density behind the unreflected shock (for
t < 0.75) is 4, while the density behind the reflected shock is 10.

Similarly to [9], Figures 4.17 and 4.19 show the results in times T = 0.7 and T = 0.85

respectively computed by the unlimited LW+2 with τ = 1.5. In Figures 4.18 and 4.20,
one can see the result due to LW+2 with τ = 1.5 and 9 edges limiter turned on. For
this problem, the use of limiters reduces the density distortion, as visible mainly on the
density scatter plots. The results are comparable to e.g. [9], [44].
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Figure 4.17: Density colormap and scatter plot for Saltzman problem computed by un-
limited LW+2 with τ = 1.5 in final time T = 0.7.
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Figure 4.18: Density colormap and scatter plot for Saltzman problem computed by limited
LW+2 with τ = 1.5 in final time T = 0.7.
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Figure 4.19: Density colormap and scatter plot for Saltzman problem computed by un-
limited LW+2 with τ = 1.5 in final time T = 0.85.
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Figure 4.20: Density colormap, and scatter plot for Saltzman problem computed by lim-
ited LW+2 with τ = 1.5 in final time T = 0.85.

4.5.5 Triple point

The Triple point test [90] is a two-dimensional Riemann problem that comprises three
different states shown in Figure 4.21. The computational region 〈0, 7〉 × 〈0, 3〉 is initially
divided into 70×30 square cells. Reflective boundary conditions are imposed everywhere.
Several different variants with different choices of γ in each state exist; we consider the
version from [40] with γ = 1.4 in all three states as proposed in [91]. The interface fix has
been applied on all interface edges separating the individual states. The results at time
T = 2.7 computed by the unlimited and limited LW+2 with τ = 1.5 are shown in Figures
4.22 and 4.23 respectively. In this case, the use of limited use allowed a slightly better
resolution of the interfaces between states and the vortex among the triple point. The
shock wave generated by the left and bottom states is significantly better localized when
the 9-edge limiter is used. The unlimited case is closer to the result due to the first-order
scheme presented in [36], while the limited case is closer to that second order in the same
place.
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Figure 4.21: Initial conditions for thr Triple point problem.
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Figure 4.22: Density for the Triple point problem computed using unlimited LW+2 with
τ = 1.5 at time t = 2.7.
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Figure 4.23: Density for the Triple point problem computed by limited LW+2 with τ = 1.5

at time t = 2.7.



Chapter 5

Lagrangian hydrodynamics in 2D
cylindrical coordinates

The primary motivation for the extension of the LW+n method to cylindrical geometry
is the existence of cylindrically symmetric physical phenomena, mainly in the fields of
inertial confinement fusion (ICF), astrophysics, or high energy density physics (HEDP).

In the literature, one can distinguish two families of numerical methods differing in a
way how the extension to cylindrical geometry is performed. The first class of schemes is
called area weighed, where one uses the Cartesian form of momentum equation in cylin-
drical coordinates system to preserve symmetry [3], [92]–[94]. Therefore, the integration
is performed with respect to the area, not the cylindrical volume, which leads to the loss
of energy conservation property [95]. This drawback was later corrected in [96] and more
recently in [97].

The second family are the control volume (CV), or volume weighted methods [29],
[98]–[102], where the momentum equation is integrated with respect to true cylindrical
volume. Control volume methods conserve the total energy, but usually do not preserve
spherical symmetry [96], which was later addressed in e.g. [101] by a different definition
of average pressure in the geometrical source.

For a more detailed discussion of AW and CV differences, we refer the reader to e.g.,
[103], [104].

Let us now present the rz cylindrical geometry extension of our method, which also has
these important properties. The governing equations will be again discretized in terms of
Richtmyer form of Lax-Wendroff scheme with Wendroff-White weighting in the predictor,
for which we will prove the symmetry-preserving property on equiangular meshes. This
basic method will be complemented by the cylindrical version of our HLL-based artificial
viscosity with a geometrical correction term, which construction has been inspired by [17].

5.1 Cylindrical 2D geometry

Let us briefly mention the differences from the Cartesian geometry. Similarly to the
literature, the position vector components will be denoted by r, z, so that x = (r, z).
Within the whole chapter, we will assume rotational symmetry around the z-axis, as

71
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shown in Figure 5.1.

Figure 5.1: Illustration of cylindrical geometry and coordinates notation.

Figure 5.2: pc-notation in cylindrical geometry.

All the definitions remain similar as in the Cartesian geometry presented in Chapter
4.1 unless explicitly mentioned here. The sub-zonal volume is no longer defined by (4.3)
but rather:

Vpc =

∫
∂V

1rdrdz. (5.1)

Using the Green formula and assuming polygonal subzone pc

Vpc =

∫
∂V

r2

2
=
∑
e(c)

∫
e

r2

2
dz, (5.2)

Using parametrization

r(s) =(1− s)rq + srq+1 (5.3a)

z(s) =(1− s)zq + szq+1 (5.3b)

dz(s) =(zq+1 − zq)ds (5.3c)
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we can compute the integral over a single sub-zonal edge:∫
e

r2

2
dz =

∫ (r,z)q+1

(r,z)q

r2

2
dz =

∫ 1

0

1

2
[(1− s)rq + srq+1]2 (zq+1 − zq)ds

=
zq+1 − zq

2

[
−(1− s)3

3
r2
q + 2

(
s2

2
− s3

3

)
rqrq+1 +

s3

3
r2
q

]1

0

=
1

6
(zq+1 − zq)(r2

q + rqrq+1 + r2
q+1),

(5.4)

so finally:

Vpc =
∑
e

1

6
(zq+1 − zq)(r2

q + rqrq+1 + r2
q+1). (5.5)

Along with the cylindrical volume, let us also define the Cartesian area, which is given by
(4.3):

Apc =
1

2

∑
e

(yq+1 − yq)(xq − xq+1), Ac =
∑
p(c)

Apc, Ap =
∑
c(p)

Apc (5.6)

5.2 Differential operators in cylindrical geometry

Let us now recall the definitions of gradient and divergence operators needed for the
derivation of governing equations in cylindrical coordinates. The gradient operator in 3D
cylindrical coordinates applied to a scalar function P (r, ϕ, z) is [105]:

∇(P (r, ϕ, z)) =

(
∂P

∂r
,
1

r

∂P

∂ϕ
,
∂P

∂z

)t
(5.7)

And the cylindrical divergence applied to vector field U (r, ϕ, z) = (Ur, Uϕ, Uz)
t is:

∇ ·U(r, ϕ, z) =
1

r

∂(rUr)

∂r
+

1

r

∂Uϕ
∂ϕ

+
∂Uz
∂z

. (5.8)

Assuming cylindrical symmetry, neither P , nor U depends on the axial angle ϕ, and the
partial derivatives with respect to ϕ are therefore zero, so they can be omitted. Due to
that, in axisymmetric cylindrical coordinates:

∇(P (r, z)) =

(
∂P

∂r
,
∂P

∂z

)t
. (5.9)

Using the chain differentiation rule:

∇ ·U(r, z) =
1

r

∂(rUr)

∂r
+
∂Uz
∂z

=
1

r

(
∂(rUr)

∂r
+
∂(rUz)

∂z

)
=
∂(Ur)

∂r
+
Ur
r

+
∂(Uz)

∂z
, (5.10)
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that is, applied to the velocity U = (Ur, Uz)
t = (u, v)t:

∇ ·U(r, z) =
1

r

∂(ru)

∂r
+
∂v

∂z
=

1

r

(
∂(ru)

∂r
+
∂(rv)

∂z

)
=
∂u

∂r
+
u

r
+
∂v

∂z
, (5.11)

The last useful identity we will mention here is:

∇ · (PU) = (∇P ) ·U + P (∇ ·U). (5.12)

5.3 Governing equations in cylindrical geometry

In this section, we will rewrite the system (2.50) in cylindrical rz coordinates. By consid-
ering that dV = rdA: ∫

V

∇ ·UdV =

∫
A

1

r

(
∂(ru)

∂r
+
∂(rv)

∂z

)
rdA

=

∫
A

(
∂(ru)

∂r
+
∂(rv)

∂z

)
dA

=

∫
L

U · (rn)dL,

(5.13)

where the last equality is due to the Green theorem. By integration of (5.12) over the
control volume V we have:∫

V

U · ∇PdV =

∫
L

PU · nrdL−
∫
A

P∇ ·UrdA, (5.14)

which, under the assumption that U is constant, leads to:∫
V

∇PdV =

∫
L

P (rn)dL− r
∫
A

PdA, (5.15)

where r = (r, 0)t remarks the fact, the geometrical source term appears only in the first
component of momentum. Let us note that the last term of (5.15) is a source term due to
cylindrical geometry. Assuming P constant over the volume V , the equation (5.15) leads
into the following identity: ∫

L

rndL = r

∫
A

dA, (5.16)
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which will be used later in the scheme description. Now we can summarize the governing
equations. The system (2.50) in cylindrical rz geometry writes [29]:

d

dt

∫
V (t)

%dV = 0 (5.17a)

d

dt

∫
V (t)

%UdV +

∫
L

P (rn)dL = r

∫
A

PdA (5.17b)

d

dt

∫
V (t)

%EdV +

∫
L

PU · (rn)dL = 0 (5.17c)

d

dt

∫
V (t)

dV −
∫
L

U · (rn)dL = 0 (5.17d)

Using the identity (5.16), the momentum equation (5.17b) can be further rewritten in the
form

d

dt

∫
V (t)

%UdV +

∫
L

(P − P̄ )(rn)dL = 0, (5.18)

where
P̄ =

1

A

∫
A

PdA (5.19)

is the average of pressure P over the surface A. Knowing the governing equations, we can
advance to the description of the numerical method.

5.4 Lax-Wendroff Scheme in 2D cylindrical coordinates
(LWrz)

The predicted nodal velocity Un+ 1
2

p is computed using a Cartesian form of the predictor
with Wendroff-White averaging (4.7):

U
n+ 1

2
p =

∑
c(p)Uc/Acp∑
c(p) 1/Acp

− ∆t

2
∑

c(p) %
n
cA

n
cp

∑
c(p)

P n
c (nnspc+ + nnspc−), (5.20)

while the predicted nodal energy En+ 1
2

p can be written as:

E
n+ 1

2
p =

∑
c(p) Ec/Acp∑
c(p) 1/Acp

− ∆t

2mp

∑
c(p)

P n
c U

n
c · (rnspc+nnspc+ + rnspc−n

n
spc−), (5.21)

where nspc± stand for normal vectors to separators of the subzone pc and rspc± are r
coordinates of separator centers as illustrated in Figure 5.2. After the predicted velocity
U
n+ 1

2
p is known, the mesh is moved by ∆t/2:

x
n+ 1

2
p = xnp +

∆t

2
U
n+ 1

2
p , (5.22)
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The nodal specific volume and density are computed from geometry. The corrected ve-
locity Un+1

c given by discretization of (5.17b) writes:

Un+1
c = Un

c −
∆t

mc

∑
e(c)

(
(P

n+ 1
2

e − P̄ n+ 1
2

c )r
n+ 1

2
e n

n+ 1
2

e

)
, (5.23)

where
P̄
n+ 1

2
c =

1

N(c)

∑
p(c)

P
n+ 1

2
p (5.24)

is the averaged cellular pressure at the time tn+ 1
2 and N(c) is the number of nodes. Due

to ∑
e(c)

re(ne)z = 0 and
∑
e(c)

re(ne)r = Ac, (5.25)

the velocity corrector (5.23) can be rewritten into the following two separate equations
for components u, v of velocity U :

un+1
c = unc −

∆t

mc

∑
e(c)

r
n+ 1

2
e P

n+ 1
2

e (n
n+ 1

2
e )r − P̄

n+ 1
2

c Ac


vn+1
c = vnc −

∆t

mc

∑
e(c)

r
n+ 1

2
e P

n+ 1
2

e (n
n+ 1

2
e )z

(5.26)

The new energy is computed using

En+1
c = En

c −
∆t

mc

∑
e(c)

(rePeUe · ne)n+ 1
2 . (5.27)

When the new cellular velocities Un+1
c and energies En+1

c are known, the mesh is moved
again:

xn+1
p = x

n+ 1
2

p +
∆t

2
U
n+ 1

2
p (5.28)

and the new cell-specific volume and density are computed from geometry. Finally, we
can update the cell pressures and sound speeds using (2.55) and (2.57) respectively.

5.4.1 GCL Compatibility – using Simpson’s rule

Since volume formulas in Cartesian and cylindrical coordinates differ, the proof 4.2.3 is no
longer valid for cylindrical geometry. Let us now study the conditions under which GCL
is satisfied in 2D cylindrical geometry. We will start from the equation (5.17d). Assuming
the polygonal cell, the volume difference for ∆t = tn+1 − tn can be rewritten as:

V n+1
c − V n

c =

∫ tn+1

tn

dVc
dt

dt =

∫ tn+1

tn

∑
e(c)

F ν
ecdt, (5.29)
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where
F ν
ec =

∫
e

(rue) · neds. (5.30)

Let c be a polygonal cell with nodes p moving with the velocities Up = (up, vp). Its volume
Vc is then a function of nodal positions xp = (rp, zp):

V n+1
c − V n

c =

∫ tn+1

tn

dVc
dt

dt =

∫ tn+1

tn

∑
p(c)

(
∂Vc
∂rp

up +
∂Vc
∂zp

vp

)
dt, (5.31)

which holds for any differentiable function Vc(t) satisfying Vc(tn) = V n
c and Vc(t

n+1) =

V n+1
c . Let us assume Un+ 1

2
p be a constant within the interval 〈tn, tn+1〉 and set

xp(t) = xnp + (t− tn)U
n+ 1

2
p , (5.32)

then

V n+1
c − V n

c =

∫ tn+1

tn

∑
p(c)

(
∂Vc
∂rp

u
n+ 1

2
p +

∂Vc
∂zp

v
n+ 1

2
p

)
dt. (5.33)

The cell volume Vc can be expressed as:

Vc =
1

6

∑
e(c)

(r2
p + rprp+1 + r2

p)n
r
p,p+1, (5.34)

or
Vc =

1

6

∑
e(c)

[zprp+1 + zp+1rp+ 2(zprp + zp+1rp+1)]nzp,p+1, (5.35)

where np,p+1 = (nrp,p+1, n
z
p,p+1) is the normal vector to the edge defined by endpoints p and

p + 1. Because nrp,p+1 = zp+1 − zp depends only on z-coordinates and nzp,p+1 = rp − rp+1

depends only on r coordinates. From (5.34) one obtains:

∂Vc
∂rp

=
1

6
[(2rp + rp+1)nrp,p+1 + (2rp+ rp−1)nrp,p−1] (5.36)

and from (5.35)

∂Vc
∂zp

=
1

6
[(2rp + rp+1)nzp,p+1 + (2rp+ rp−1)nzp,p−1]. (5.37)

Then: ∑
p(c)

(
∂Vc
∂rp

u
n+ 1

2
p +

∂Vc
∂zp

v
n+ 1

2
p

)
=

=
1

6

∑
p(c)

(2rp + rp+1)up · np,p+1 +
∑
p(c)

(2rp + rp−1)up · np,p−1

 . (5.38)
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After shifting index p to p+ 1 we can write:

V n+1
c − V n

c =

∫ tn+1

tn

1

6

∑
e(c)

[(2rp + rp+1)up + (2rp+1 + rp)up+1)] · nedt, (5.39)

which means that for computing the flux function (5.30), the following expression has to
be used:

f ηec =
1

6
[(2rp + rp+1)up + (2rp+1 + rp)up+1)] · ne, (5.40)

which corresponds to the Simpson’s rule for spatial quadrature for (5.30). Let us note
that the time integration in (5.31) has to be also discretized using Simpson’s quadrature
on rr and rz products. If done so, the new geometric volume and the volume obtained
from (5.29) would be equal.

5.4.2 Artificial dissipation in cylindrical coordinates

Similarly to [64], [66], after each LW step, the artificial dissipation is added. The artificial
viscosity and energy update has the following form:

Un+1
c = Un+1,LW

c + τu
∆t

mc

∑
e∈e(c)

(reD
u
e ) +

(
CAV

0

) (5.41a)

En+1
c = En+1,LW

c + τE
∆t

mc

∑
e∈e(c)

(
reD

E
e

)
(5.41b)

where the upper index LW refers to the Lax-Wendroff step given by (5.23) and (5.27).
DU

e(ca),D
E
e(ca) are artificial viscosity and artificial energy fluxes over the edge e(ca) respec-

tively:

DU
e(ca) =

σcaσac|nne(ca)|
σca + σac

(Un
c −Un

a ), (5.42a)

DE
e(ca) =

σcaσac|nne(ca)|
σca + σac

(En
c − En

a ), (5.42b)

where

σca = %nc

[
(cs)

n
c +
|(Un

c −Un
a ) · nne(ca)|

|nne(ca)|

]
is modified acoustic impedance used here as HLL wave speed, and (cs)c =

√
γPc/%c is

the cell sound speed. τu and τE are parameters. In rz we usually set τu = τE = 1.25.
The CAV is AV correction term in Eq. (5.41a) and is added only to the r-component of
velocity, which is denoted by the column vector:

CAV
c =

1

2

∑
a∈{e,g}

CAV
e(ac) =

1

2

∑
a∈{e,g}

(
Bac

uc
rc

)
, Bac = σac|ne(ac)||xa − xc|2, (5.43)
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where the edges e and g lie on rays. The derivation of (5.43) is presented in Section B.7.

5.5 Numerical results in 2D cylindrical coordinates

Similarly to [64], [67], all the following tests are computed using LWrz+2, i.e. τd = 0, τv =

τh = τ if not stated otherwise.

5.5.1 Free expansion problem

The free expansion problem[36], [87], [100] deals with a free expansion of ideal gas with
γ = 5/3 into the vacuum. The exact solution can be obtained, and hence it can be used
to assess the accuracy of the scheme. The computational domain is a two-dimensional
interval in polar coordinates (r, z) ∈ 〈0, 1〉 × 〈0, π/2〉 on the logically quadrilateral polar
mesh. The initial conditions are:

% = 1, U = 0, P (R) = 1−R2,

where R =
√
r2 + z2. The analytical solution has the following form:

Ro(t) =
√

1− 2t2, %(t) =
1

R3
o(t)

,

U(r, t) = |U(r, t)|= 2t

1 + 2t2
R, P (r, t) =

1

R5
o(t)

(
1− R2

R2
o(t)

)
,

where Ro is the outer radius. The boundary condition on the outer boundary is character-
ized by Po = 0 (numerically we set 10−6). Similarly to [100], all errors in convergence for
this problem are computed only on sub-region 〈 3

10
Nr + 1, 7

10
Nr〉 × 〈1, Nϕ〉, where Nr, Nϕ

are numbers of cells in radial and axial directions respectively, to exclude the effects of
boundary conditions. This is a smooth problem, so it is computed using pure LW. The
solution was computed on meshes with 20× 20, 40× 40, 80× 80 and 160× 160 until the
final time T = 0.4. The convergence rate for the free expansion problem can be found in
Table 5.1, the LW scheme achieves numerically second order of convergence for the free
expansion test case.

n L1(%) L1(U) L1(P ) NOC(%) NOC(U) NOC(P )
20 9.20e-04 2.75e-03 9.04e-04 2.0 2.0 1.9
40 2.34e-04 6.70e-04 2.39e-04 2.0 2.0 1.9
80 5.90e-05 1.67e-04 6.23e-05 2.0 2.0 1.9
160 1.50e-05 4.26e-05 1.63e-05

Table 5.1: Convergence rates for density %, radial velocity U and pressure P for Free
expansion problem by pure LW.
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5.5.2 Coggeshall problem

The next test is the Coggeshall problem, also known as Coggeshall-Meyer-ter Vehn prob-
lem [18], [101], [106]. It describes a simple adiabatic compression. The exact solution at
time t ∈ 〈0, 1〉 is

u =
−r

1− t
, v =

−z
4(1− t)

, % = (1− t)
−9
4 ,

ε =

(
3z

8(1− t)

)
, P =

3

32

z2

(1− t) 17
4

, S =
3

32

z2

(1− t) 1
2

(5.44)

The reflective boundary conditions are applied on the axes. Similarly to [18], we prescribe
exact velocities u, v as the boundary conditions on the nodes that initially formed the outer
circle. The second option would be to prescribe the exact pressure. With velocity BC, the
scheme better preserves elliptical shape. This is a continuous problem, so it was computed
with τ = 0. The convergence rates presented in Table 5.2 show that the numerical order
of convergence for this test is between 1 and 2. The computational meshes of 20×20 cells
at initial time t = 0 and final time T = 0.8 are shown in Figure 5.3. Regarding the shape
of the solution, the results due to the LW scheme are comparable to those in [18], [107],
and closer to the exact solution than those presented in [8], [101]
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Figure 5.3: Meshes with 20×20 cells for the Coggeshall problem. At T = 0 (a), at T = 0.8

(b).

5.5.3 Kidder

The next presented test is the Kidder problem in spherical symmetry. This test is similar
to the version assuming cylindrical symmetry presented in Subsection 4.5.1, so we will
reduce this description only to the spherical symmetry specifics. We refer the reader to the



CHAPTER 5. LAGRANGIAN HYDRODYNAMICS IN 2D CYLINDRICAL COORDINATES81

n L1(%) L1(u) L1(v) L1(P ) NOC(%) NOC(u) NOC(v) NOC(P )
20 2.9e-02 1.1e-02 2.9e-02 3.7e-02 1.2 1.3 1.1 1.3
40 1.3e-02 4.4e-03 1.3e-02 1.5e-02 1.4 1.4 1.3 1.4
80 4.9e-03 1.7e-03 5.4e-03 5.7e-03 1.5 1.5 1.4 1.5
160 1.7e-03 5.9e-04 2.1e-03 2.1e-03

Table 5.2: Convergence rates for density, u and v velocity components, and pressure for
the Coggeshall problem by pure LW.

mesh L1(%) L1(P ) L1(U) NOC(%) NOC(P ) NOC(U)
45x25 4.8e-03 8.0e-03 3.7e-03 1.3 1.6 2.0
90x50 1.9e-03 2.6e-03 9.4e-04 1.4 1.5 1.8
180x100 7.2e-04 9.2e-04 2.7e-04 1.4 1.5 1.7
360x200 2.7e-04 3.3e-04 8.2e-05

Table 5.3: Convergence rates for density, velocity, and pressure for the Kidder problem.

version in Cartesian 2D geometry for the detailed description. For a spherical symmetry,
we set ν = 3 and hence γ = 5

3
and by R we understand spherical radius defined by

R =
√
r2 + z2. The only other change is the focusing time tf = 6.72 × 10−3, so the final

time at which the outer radius Ro = 0.5 is t = (
√

3/2)tf = 5.82× 10−3. The Kidder test
deals with a smooth flow, so it is computed by pure LW.

Similarly to the Cartesian geometry, we present the numerical order of convergence.
Tables 5.3 and 5.4 show that the rz version of LW scheme with predictor (5.20-5.21) and
corrector (5.23) can achieve second order of accuracy.

The pseudocolor plots of density computed on meshes with 5 × 10 and 45 × 25 cells
are presented in Figure 5.4.

mesh Ri Ro L1(Ri) L1(Ro) NOC(Ri) NOC(Ro)
45x25 0.4486 0.4988 1.3e-03 1.0e-03 2.0 2.0
90x50 0.4496 0.4996 3.3e-04 2.6e-04 2.0 2.0
180x100 0.4498 0.4998 8.3e-05 6.5e-05 2.0 2.0
360x200 0.4499 0.4999 2.1e-05 1.6e-05

Table 5.4: Convergence rates for inner radius Ri and outer radius Ro for the Kidder
problem.
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Figure 5.4: Pseudocolor plots of the Kidder problem on polar mesh computer by pure
LW; 5× 10 cells (a), 45× 25 cells (b).

5.5.4 Noh

The next test is the Noh problem in rz geometry. Similarly to the Noh problem in xy

geometry presented in Subsection 4.5.2. This test deals with a spherically symmetric
shockwave of ideal gas characterized by γ = 5/3 reflecting from the origin. The initial
conditions remain the same as in the xy case, which means unit density, zero pressure
(numerically we set P0 = 10−6), and unit velocity pointing towards the origin. The
computational domain is again the square 〈0, 1〉2 for the case with initially rectangular
mesh, or a single quarter of circle given by angle ϕ ∈ 〈0, π/2〉, and radius r ∈ 〈0, 1〉.
Concerning symmetry, the boundary conditions are reflective on the axes, and the imposed
velocity BC is used otherwise. Assuming spherical symmetry, the exact solution is:

%(t,X) =

{
64 if |X|< t/3

(1 + t
|X|)2 otherwise

, P (t,X) =

{
64/3 if |X|< t/3

0 otherwise
.

U(t,x) =

{
0 if |x|< t/3

− x
|x| otherwise

.

The final time remains T = 0.6, which corresponds to the shock wave position at R = 0.2.
The results have been computed using an unlimited LW+2 scheme with τ = 1.25 and
a limited scheme with τ = 1.75. Let us first present a comparison of LW and classical
staggered method with tensor viscosity [9]. The pseudocolor plots of density are shown
in Figure 5.5 and the contour plots in Fig. 5.6. Similarly to the xy case, the symmetry of
the solution due to LW is significantly better. The solution on the polar meshes remains
exactly symmetric. The scatter plots for subsequently refined initially rectangular meshes
with resolution 50× 50, 100× 100, and 200× 200 cells can be seen in Figure 5.7(a), the
results on polar grids with 25×50, 50×100, and 100×200 are presented in Figure 5.7(b).
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Figure 5.5: Pseudocolor plots of Noh problem on an initially rectangular mesh. Unlimited
LW+2 with τ = 1.25 (a) and Staggered scheme with tensor viscosity [9] (b).
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Figure 5.6: Contour plots of Noh problem on an initially rectangular mesh. Unlimited
LW+2 with τ = 1.25 (a) and Staggered scheme with tensor viscosity [9] (b).
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Figure 5.7: Scatter plots of Noh problem computed using the unlimited LW+2 with
τ = 1.25; on an initially rectangular mesh (a), on polar mesh (b).

For the sake of completeness, we will now present also some results computed using the
limited LW+2 with τ = 1.75. The contour and pseudocolor plots for density on initially
orthogonal mesh with 50×50 cells can be found in Fig. 5.8, while the density scatter plots
are presented in Figure 5.9. The symmetry on the initially rectangular mesh is worse but
still reasonable. On the other hand, the shock wave position and the plateau behind the
shock are closer to the exact solution.
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Figure 5.8: Contour (a) and pseudocolor plot (b) for density for Noh problem in rz

geometry. Limited LW+2 with τ = 1.75 on coarse 50× 50 initially rectangular grid.
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Figure 5.9: Scatter plots of Noh problem computed using the limited LW+2 with τ = 1.75;
on initially rectangular meshes (a), on polar meshes (b).

5.5.5 Spherical Sedov

The spherical Sedov test shares all initial and boundary conditions except the value of
blast energy with its Cartesian version. We again consider square 〈0, 1.2〉2 or a single
quarter of circle given by angle ϕ ∈ 〈0, π/2〉 and radius r ∈ 〈0, 1.2〉 filled by an ideal
gas characterized by γ = 1.4, initially at rest. The initial density is unit, and the initial
pressure is set to zero (numerically set to 10−6) everywhere except the cells having some
vertex at the origin (a single cell for square or entire circle of cells for polar mesh), where
we set the initial internal blast energy Eblast = 0.851072. This value corresponds to the
shock wave position r = 1 at the final time T = 1.

Pseudocolor plots of density computed on coarse grids 50 × 50 for the square case
and 25 angular times 50 radial cells in polar case computed using the unlimited version
of LW+2 with τ = 1.25 are presented in Figure 5.10. Figures 5.11 and 5.12 then show
convergences to the exact solution taken from [88].

In Figures 5.13, 5.14, and 5.15, we present similar plots of results due to limited LW+2
with τ = 1.75. The 9-edge stencil limiter has been used for square cases. As limiting ray
edges on polar grids can break the symmetry, for polar meshes, only edges on mesh circles
have been limited.

The symmetry is exact for polar grids while remaining very good on initially rectan-
gular meshes. The smooth solution behind the shockwave is better resolved when the
limiter is used.
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Figure 5.10: Pseudocolor plots of the Sedov problem in cylindrical geometry computed
using the unlimited LW+2 τ = 1.25 on initially rectangular grid (a) initially equiangular
grid (b).
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Figure 5.11: Scatter plots of the Sedov problem computed using the unlimited LW+2
with τ = 1.25 on initially rectangular meshes.
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Figure 5.12: Scatter plots of the Sedov problem computed using unlimited LW+2 with
τ = 1.25 on polar meshes.
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Figure 5.13: Pseudocolor plots of the Sedov problem in cylindrical geometry computed
using unlimited LW+2 with τ = 1.25 on initially rectangular grid (a) initially equiangular
grid (b).
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Figure 5.14: Scatter plots of the Sedov problem computed using limited LW+2 with
τ = 1.75 on initially rectangular meshes.
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Figure 5.15: Scatter plots of the Sedov problem computed using limited LW+2 with
τ = 1.75 on polar meshes.

5.5.6 Spherical Sod

The next test is a generalization of the 1D Sod shock tube presented in Subsection 3.5.1
into spherical geometry [29]. The initial conditions of 1D Sod are copied to every ray of
the polar mesh 25× 100 cells covering a single quarter of the circle by angle α ∈ 〈0, π/2〉,
and radius R ∈ 〈0, 1〉. The reflective boundary conditions are imposed everywhere.
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The initial conditions are given by:

(%,U , P ) =

{
(1.0,0, 1.0) forR 6 0.5

(0.125,0, 0.1) forR > 0.5
R =

√
r2 + z2

The final time is T = 0.2. Similarly to the 1D version, the results for this test
case computed using limited LW+2 with artificial energy flux turned off on contact and
interface fix enabled. The dissipation coefficient τ has been set to 1.25. The results
presented in Figure 5.16 are comparable with other methods like e.g. [29], [43], [52], [101].
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Figure 5.16: Scatter and pseudocolor plots of spherical Sod problem at T = 0.2 computed
using limited LW+2 with τ = 1.25 on the polar mesh. 25× 100 cells.

5.5.7 Axisymmetric Triple-Point

The last presented problem is a generalization of the Triple point problem defined in
Subsection 4.5.5 into spherical geometry inspired by [15], [53]. The initial conditions
are defined in Figure 5.17. The boundary conditions remain the same as in Cartesian
geometry, i.e. reflecting BC’s everywhere. The final time is again T = 2.7, while the τ
has been set to 1.25. Figures 5.18 and 5.19 show the results computed using unlimited
and limited versions of LW+2 respectively on 70× 30 initially uniform orthogonal mesh.
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Figure 5.17: Initial conditions for the triple point problem in cylindrical geometry.
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Figure 5.18: Axisymmetric triple point problem computed using the unlimited LW+2
scheme on 70× 30 initially orthogonal equally spaced grid.
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Figure 5.19: Axisymmetric triple point problem computed using the limited LW+2 scheme
on 70× 30 initially orthogonal equally spaced grid.
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Similarly to the Cartesian geometry version of this test, using limiter enhances the
resolution of the density peak near the triple point, and compared with that, the results
are reasonable, although worse than these published in [15] since our method uses only
straight lines on cell edges, which limits the vortex resolution.



Chapter 6

Wilkins model for elastoplasticity

The hypoelastic, also referred to as an elastic-perfectly plastic, material description of solid
dynamics has been introduced by Wilkins in [3]. The model consists of a system of conser-
vation laws coupled with an incremental constitutive law. The conservation laws part is
expressed using momentum and energy fluxes that are dependent on Cauchy stress tensor
comprising hydrostatic pressure and traceless deviatoric stress tensor. The incremental
constitutive law describes the evolution of the deviatoric stress as a dependency of the
velocity gradient. The principle of material frame indifference (independence on the ref-
erence frame) is fulfilled by means of Jaumann objective derivative, which involves the
spin tensor (the antisymmetric part of the velocity gradient). Within the Wilkins model,
the strain rate tensor is decomposed into the elastic part, and the plastic deviatoric part
and von Mises yield criterion is used for modelling of plastic yielding, which works well
for metals [32].

Historically, the first method for the hypoelastic model was the staggered method due
to Wilkins [3], later followed by the Godunov method [108] and free-Lagrange [109] meth-
ods. Recently, the development of the Finite Element Method [110] has been proposed,
and significant interest has been drawn in cell-centered methods [32], [33], [36], [111].

Looking away from the Wilkins model, a consistent non-dissipative hypoelastic model
based on the 4D Lie derivative has been proposed in [112], [113].

Besides hypoelastic models, it is worth to mention also hyperelastic model [114]–[118],
where the Cauchy stress tensor is derived from strain energy density function [119], and
unified first-order hyperbolic formulation of continuum mechanics [120], which describes
the fluid and solid mechanics using a single universal hyperbolic system.

Wilkins model suffers from several drawbacks, namely somehow arbitrary choice of
objective derivative, the lack of thermodynamic consistency (the entropy is produced
even in elastic regime), and the fact that due to the use of Jaumann derivative, the
system cannot be expressed in a conservative form, which makes its mathematical analysis
questionable [114].

Despite the existence of more rigorous models and the above-mentioned problems,
the Wilkins model is still being used even in commercial computational codes, such as
LS-DYNA [121], mainly due to its simplicity and good accuracy for metal dynamics.
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6.1 Conservation laws

Within the Wilkins model, the elastic behaviour is described using Euler equations. Unlike
hydrodynamics, Cauchy stress tensor no longer reduces to pressure, so in Lagrangian
coordinates, we can write:

%
dη

dt
−∇ ·U = 0, (6.1a)

%
dU

dt
−∇ · T = 0, (6.1b)

%
dE

dt
−∇ · (TU) = 0, (6.1c)

where P is the pressure given by EOS (6.17), I is the tensor identity, and S is deviatoric
stress. The equation (6.1a) is the equation of continuity (the law of conservation of mass),
(6.1b) is the law of conservation of momentum, and (6.1c) is the law of conservation of
total energy. The integral form of system (6.1) together with GCL (2.48) is:

d

dt

∫
ω

%dv = 0, (6.2a)

d

dt

∫
ω

dv −
∫
∂ω

U · nds = 0, (6.2b)

d

dt

∫
ω

%Udv −
∫
∂ω

T · nds = 0, (6.2c)

d

dt

∫
ω

%Edv −
∫
∂ω

TU · nds = 0. (6.2d)

The system (6.2) can be rewritten using a single vector equation (2.52) with the only
difference in physical flux vector F , which is now

F = (U ,T,T ·U)t. (6.3)

6.2 Incremental constitutive law

For an elastic–perfectly plastic material, the evolution of S is given by incremental consti-
tutive law. Within the whole description, we will follow the notations presented in [32].
Let us start by defining the strain rate tensor:

D = (∇U + (∇U)t). (6.4)

The strain rate tensor D is by definition symmetric, and its trace is equal to the velocity
divergence:

tr(D) = ∇ ·U . (6.5)

Similarly, we can define antisymmetric spin tensor:

W = (∇U − (∇U )t). (6.6)
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The deviatoric part of strain rate tensor D is

D0 = D− 1

3
tr(D)I. (6.7)

The strain rate tensor D can also be split into elastic (De) and plastic (Dp) parts:

D = De + Dp. (6.8)

The plastic part is deviatoric because

tr(Dp) = 0.

Let us define the inner product of two tensors

P : Q = tr(P ·Qt).

To incorporate plasticity, the magnitude of stress tensor |S|=
√
S : S, is limited by von

Mises yield criterion:

|S|6
√

2

3
Y0 ⇔ f = |S|−

√
2

3
Y0 6 0, (6.9)

where Y0 is the yield strength of the material under simple tension, and f is the function
for yield surface. The plastic part of the strain rate tensor Dp reads

Dp = (Np : D)χNp, (6.10)

where
Np =

1

|S|
S

is the plastic flow direction and χ is the logical switch defined by

χ =

{
0 if f < 0 or f = 0 ∧ Np : D 6 0

1 if f = 0 ∧ Np : D > 0.
(6.11)

Using the above-mentioned definitions, we can finally write the incremental constitutive
law:

dS
dt

= 2µ(D0 − Dp)− (S ·W−W · S), (6.12)

where µ is the Lamé coefficient equal to the shear modulus. Finally, we introduce the
Jaumann derivative

S̊ =
dS

dt
+ S ·W−W · S, (6.13)

using that, the definition (6.12) can be rewritten as

S̊ = 2µ(D0 − Dp). (6.14)
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6.3 Mie-Grüneisen equation of state

For closing the system (6.2a-6.2d), which describes elastic-plastic flow, we will use Mie-
Grüneisen equation of state [1], [32]. Pressure P can be expressed as a function of specific
volume η = 1/% and specific internal energy ε:

P (η, ε) =
a2

0(η0 − η)

[η0 − s(η0 − η)]2
+

Γ(η)

η

[
ε− 1

2

(
a0(η0 − η)

η0 − s(η0 − η)

)2
]
, (6.15)

where a0 and s are empirically obtained coefficients connecting particle speed Up and
shock speed Us = a0 + sUp, Γ is Grüneisen coefficient given by

Γ = η

(
∂P

∂ε

)
V

= Γ0
η

η0

. (6.16)

Zero subscribed values η0, %0 represent specific volume and density at a reference state.
Specific values for particular materials can be found in Table 6.1. For computational
purposes, we will stick with the formula found in [32]:

P (%, ε) = %0a
2
0f(ν) + %0Γ0ε, (6.17a)

f(ν) =
(ν − 1) [ν − Γ0(ν − 1)/2]

[ν − s(ν − 1)]2
(6.17b)

where ν = %/%0 is the ratio of densities of unstressed material and material under load.
The sound speed is computed using:

a =

√
a2

0f
′(ν) +

Γ0

%0

P

ν2
, (6.18)

where f ′(ν) is a simple derivative of f(ν):

f ′(ν) =
df

dν
=
ν + (s− Γ0)(ν − 1)

[ν − s(ν − 1)]3
. (6.19)

6.3.1 Material parameters

Let us summarize the parameters necessary for the Mie-Grüneisen equation of state and
constitutive model. The values for materials presented in numerical tests in this work can
be found in Table 6.1.
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Mie-Grüneissen EOS parameters Constitutive parameters
Material %0[kg/m3] a0[m/s] Γ0 s µ[Pa] Y0[Pa]
Cu 8930 3940 2 1.49 45× 109 90× 106

Al 2785 5328 2 1.338 27.6× 109 300× 106

Be 1845 7998 2 1.124 151.9× 109 330× 106

Table 6.1: Mie-Grüneissen equation of state and constitutive model parameters (the shear
modulus µ and the yield strength Y 0) for Copper, Aluminum, and Beryllium.



Chapter 7

Method for 1D Elastic-Plastic flow

In this chapter, we will discuss the extension of the LW+2 for 1D elastoplasticity described
by Wilkins model. Although on the first look, the system is very similar to that describing
hydrodynamics, there are a few differences, which will be discussed in more detail.

Assuming 1D geometry, the system (6.1a-6.1c) simplifies to:

%
dη

dt
− ∂U

∂x
= 0 (7.1a)

%
dU

dt
− ∂T

∂x
= 0 (7.1b)

%
dE

dt
− ∂(TU)

∂x
= 0, (7.1c)

where T = −P + Sxx is the Cauchy stress, P is pressure and Sxx is deviatoric stress.
Using the mass coordinate (3.3) we can rewrite (7.1a-7.1c):

dη

dt
− ∂U

∂s
= 0, (7.2a)

dU

dt
− ∂T

∂s
= 0, (7.2b)

dE

dt
− ∂(TU)

∂s
= 0. (7.2c)

Similarly to Section 3.3, the system (7.2a-7.2c) can be compacted into a single vector
equation (3.17) with the only difference in physical flux vector which is now

F = (U, T, TU)t. (7.3)

The system is closed by Mie-Grünneisen EOS (6.17-6.19).

7.1 Incremental constitutive law in 1D

Assuming the fact that the Jaumann derivative (6.13) is the same as the material deriva-
tive (3.2) in 1D and that deviatoric stress is initially zero, the one-dimensional version of
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incremental constitutive law(6.14) can be then written as [32]:

dSxx
dt

=
4

3
µ
∂U

∂x
, (7.4a)

dSyy
dt

= −2

3
µ
∂U

∂x
, (7.4b)

dSzz
dt

= −2

3
µ
∂U

∂x
. (7.4c)

The plasticity is again incorporated using yield criterion. Since tensor S in 1D reads:

S =

Sxx 0 0

0 −1
2
Sxx 0

0 0 −1
2
Sxx

 ⇒ |S| = √tr(S : S)

=

√
(Sxx)

2 +

(
−1

2
Sxx

)2

+

(
−1

2
Sxx

)2

=

√
3

2
Sxx.

(7.5)

From this, the 1D yield criterion(6.9) becomes [32]:

f = |Sxx|−
2

3
Y0 6 0. (7.6)

Since either Cauchy or deviatoric stress tensor can be expressed using just its Sxx and T
components, we will, for the sake of simplicity, omit their subscripts.

7.2 Numerical method

The basic step is again given by the Lax-Wendroff method with HLL based artificial
dissipation discussed in Section 3.3 with a small difference that the numerical fluxes
F n
i , F

n+ 1
2

i± 1
2

are given by (7.3). For the computation of fluxes, one needs the values of S,
which are obtained from constitutive law (7.4a) discretized using the central difference.
In a predictor, the nodal estimate of S in i+ 1

2
-th node is given by:

S
n+ 1

2

i+ 1
2

=
∆xni+1S

n
i + ∆xni S

n
i+1

∆xni + ∆xni+1

+
1

2
∆t

4

3
µ
u
n+ 1

2

i+ 1
2

− un+ 1
2

i− 1
2

∆xn
i+ 1

2

, (7.7)

where the first term of the right-hand side is the nodal mass average of the strain rate sim-
ilar to the WW predictor (3.27), and the second term is a central difference approximation
of (7.4a). The value of S in i-th cell is computed using corrector:

Sn+1,tr
i = Sni + ∆t

4

3
µ
u
n+ 1

2

i+ 1
2

− un+ 1
2

i− 1
2

∆xni
. (7.8)
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7.2.1 Radial return algorithm

Formulas (7.7) and (7.8) give us the trial value of deviatoric stress S, which is denoted
by the upper index tr. These values describe the evolution of the purely elastic flow.
To incorporate plasticity, one has to enforce the von Mises yield criterion (7.6). For this
purpose, we will use a simple radial return algorithm originally proposed by Wilkins [3].
The idea of the radial return algorithm is to limit the value of deviatoric stress, so the
criterion (6.9) is not violated. In 1D, the new deviatoric stress is defined by:

Sn+1
i = sign(Sn+1,tr

i ) max

{
|Sn+1,tr
i |, 2

3
Y0

}
. (7.9)

7.2.2 Timestep

The time step for 1D elastic-perfectly plastic flow is computed similarly to 1D hydrody-
namics defined by (3.23) with the only difference that instead of sound speed (2.57), we
use longitudinal elastic wave speed, which writes

a2
i = ((cs)i)

2 +
4

3

µ

%i
, (7.10)

where (cs)i is the sound speed (6.18) obtained from Mie-Grünneissen EOS. Therefore, the
time step reads:

∆tn+1 = CCFL min
i∈N̂

{
∆xni
ani

}
. (7.11)

Similarly to 1D hydrodynamics, the time step (7.10) is additionally restricted by the
maximum allowable change of the cell length.

7.2.3 Recapitulation of a single step

For the sake of simplicity, let us now shortly summarize a single step of the proposed
method.

1. Starting with cell data at time level n, we compute a new timestep using (7.11).

2. Then the predicted nodal values are evaluated wn+ 1
2

p using (3.27).

3. When we have predicted nodal velocity, we can compute nodal stress from (7.7).

4. Nodal thermodynamical quantities (cs,p,ε) can be now updated by EOS (6.17) and
(6.18).

5. Knowing all the nodal data at tn+ 1
2 , the new cell state values wn+1

c are computed
using corrector (3.21).

6. Trial cell stress is updated using incremental constitutive law (7.8).

7. The final cell stress computed from the trial one using the radial return algorithm
(7.9).
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8. Artificial dissipation and limiter terms are computed using (3.50) and (3.55) and
applied to wn+1.

9. The nodal positions are advanced by ∆tn+1 to time level tn+1 using nodal velocities
U
n+ 1

2
p , geometry structures (cell centers and volumes) are updated using (3.5 - 3.6).

10. Cell densities are recomputed from the new geometry using (3.7).

11. Cell thermodynamical quantities are updated from EOS.

12. Boundary conditions are applied.

7.3 Numerical results

7.3.1 Elastoplastic piston

The first test is taken from [32], [122], and it is similar to the classical hydrodynamic
piston problem, unlike from which it consists of two waves – a small elastic precursor and
a “main” plastic wave.

Let us consider a 1D copper wire initially at rest characterized by material parameters
presented in Table 6.1. The wire is at the beginning 1 cm long, and the pressure at t = 0 is
P0 = 105 Pa. There is a piston-like moving boundary condition characterized by velocity
upiston = 20 m/s prescribed on the left, and the wall boundary on the right. The final
time is T = 150× 10−6 s.

This test was computed on initially equidistant meshes consisting of 100, 200, and 400

cells using the pure LW scheme, i.e. no artificial dissipation was included (τd = τu = τE =

0). The results, together with the analytical solution, are presented in Figure 7.1. Several
numerical experiments have shown that in this and the following test, the dissipation due
to radial return algorithm is sufficient for the mitigation of oscillations caused by LW. For
this reason, the τ is here set to zero. The resolution of the elastic precursor is similar to
the methods [32], [111].
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Figure 7.1: Convergence for the elastoplastic piston at t = 150 × 10−6 s for different
resolutions; density (a); pressure (b); velocity (c); deviatoric stress (d).

7.3.2 Wilkins problem

The next problem was firstly introduced by Wilkins in [3]. It deals with a 1D thin flying
Aluminium projectile that strikes the thick Aluminium target that is initially at rest.
The material parameters for Aluminium can be again found in Table 6.1. At t = 0 the
computational domain is given by interval 〈0, 0.05〉 cm divided at x0 = 0.005 cm into two
states. The left state represents the projectile with the initial velocity u0 = 800 m/s and
pressure P0 = 10−6 Pa. The right state representing the thick target has at the beginning
zero velocity and pressure P0 = 10−6 Pa. The final time is T = 5 ·10−6 s. The free surface
boundary conditions are prescribed on both ends. The result for a mesh consisting of 500

initially equidistant cells can be found in Figure 7.2. Similarly to the previous test, τ = 0.
Compared with [32], the results are reasonable.
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Figure 7.2: Wilkins problem by LW+1 scheme; density (a); pressure (b); velocity (c);
deviatoric stress (d).

7.3.3 Purely elastic impact

This test is similar to the Wilkins problem presented in the previous paragraph 7.3.2,
with the only difference that the radial return algorithm (7.9) has not been applied,
which means that the flow remains purely elastic even when von Mises yield condition
should apply. Turning the radial return algorithm off is equivalent to artificially setting
Y0 sufficiently high. In Figure 7.3, one can see that the plastic wave has not developed
and, what is more important, that the oscillations due to the LW scheme occur behind
the shock wave and even on the tail of rarefaction. When the artificial viscosity (i.e.,
LW+1 scheme) is turned on with τ = 0.2, the oscillations due to LW dispersion are no
longer present. From this rather synthetic test, we can conclude that the radial return
algorithm can itself provide enough dissipation to prevent the oscillations due to LW.
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Figure 7.3: Wilkins problem without radial return computed by pure LW scheme and
LW+1 with τ = 0.2; density (a); pressure (b); velocity (c); deviatoric stress (d).



Chapter 8

Method for 2D Elastic-Plastic flow

The conservation laws part of the Wilkins model is described by (2.52) with physical
fluxes (6.3), which are directly discretized using (4.7) and (4.9). The only specific is the
deviatoric stress S, which will be described in the following section.

8.1 Incremental constitutive law in 2D

Deviatoric stress tensor S in 2D geometry can be written as:

S =

Sxx Sxy 0

Sxy Syy 0

0 0 −Sxx − Syy

 . (8.1)

Because the stress tensor is no longer given by just a single component Sxx, as in the 1D
case, the simplification described in the previous chapter is no longer applicable. Therefore
we have to solve the equation (6.14) directly, and the method for 2D has to be different.
The full discretization of the elastic step of incremental constitutive law is taken from
[32]. We want to solve the following equation for t ∈ 〈tn, tn+k〉, for k = 1

2
or 1:

S̊c = 2µD0c (8.2)

with initial condition Sc = Snc , where D0c is deviatoric part of strain rate tensor given
by (6.7) in cell c. The equation (8.2) is, as shown in [108], equivalent to the ordinary
differential equation

d

dt
(Ωt

cScΩc) = 2µcΩ
t
cD0cΩc, (8.3)

with the initial condition Ωc(t
n) = I, where Ωc is the rotation tensor given by the solution

of ODE (8.3):
d

dt
Ωc = WcΩc (8.4)

and Wc is the value of spin tensor (6.6) in cell c. The solution of this equation is

Ωc(t) = exp[(t− tn)Wn
c ]. (8.5)
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If we integrate (8.3) over the interval 〈tn, tn + k∆t〉, we obtain

Ωt
c(t

n+k)Sn+k
c Ωc(t

n+k)− Snc = 2µc

∫ tn+k∆t

tn
Ωt
c(t)D0cΩc(t)dt. (8.6)

After substituting (8.5) into (8.3) and approximation of the integral by the midpoint
formula, one gets:

exp (−k∆tWc)Sn+k
c exp (k∆tWc)− Snc =

= 2µk∆t exp

(
−k∆t

2
Wc

)
D0c exp

(
k∆t

2
Wc

)
,

(8.7)

from which we can extract the unknown Sn+k
c :

Sn+k
c = exp (k∆tWc)Snc exp (−k∆tWc)

+ 2µk∆t exp

(
k∆t

2
Wc

)
D0c exp

(
−k∆t

2
Wc

)
.

(8.8)

The exponentials of tensors in (8.8) are approximated using Padé approximant Q[W](t) :

exp(tWc) ≈ Q[Wc](t) =

(
I− t

2
Wc

)−1(
I +

t

2
Wc

)
. (8.9)

By substituting approximation (8.9) into (8.8), one gets the final expression for Sn+k
c

dependent only on known variables k,Snc ,D0c and Wc:

Sn+k
c (k,Snc ,D0c,Wc) = Q[Wc] (k∆t)SncQt[Wc] (k∆t)

+ 2µk∆tQ[Wc]

(
k∆t

2

)
D0cQt[Wc]

(
k∆t

2

)
,

(8.10)

which is used in both predictor and corrector substeps.

8.1.1 Discretization of conservation laws

The discretization of conservation laws for EP flow is the same as the 2D hydrodynamics
described in Chapter 4 with a small difference in the definition of physical flux with is
now governed by (6.3). Therefore the reader is kindly referred to Section 4 for the details.

8.1.2 Predictor for strain rate tensor

The values of the stress tensor D and spin tensor W in node p at time level n are obtained
by integration over dual cell p using compatible discretization [32]:

Dn
p =

1

Vp

∑
c(p)

1

2

(
Un
c ⊗ nnspc + nnspc ⊗Un

c

)
, (8.11)
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Wn
p =

1

Vp

∑
c(p)

1

2

(
Un
c ⊗ nnspc − nnspc ⊗Un

c

)
, (8.12)

where nnspc = nnspc+ + nnspc−. The deviatoric part of the strain rate tensor (8.11) is
computed using

Dn
0p = Dn

p −
1

3
tr(Dn

p )I, (8.13)

where the trace of Dn
p is given by:

tr(Dn
p ) =

1

V n
p

∑
c(p)

Un
c · nnspc. (8.14)

To advance the deviatoric stress in dual cell p, using (8.10), one has to interpolate cellular
values Snc into node p, for which we again use Wendroff-White weighting:

Snp =

∑
c(p) Snc /Anpc∑
c(p) 1/Anpc

(8.15)

Then we can finally use (8.10) to advance Snp :

Sn+ 1
2

p = Sp(
1

2
,Snp ,Dn

0p,Wn
p ). (8.16)

Let us remark that the Wilkins’ radial return algorithm is not applied to Sn+ 1
2

p in the
predictor phase because it would violate the evaluation of the trial elastic value in the
corrector.

8.1.3 Corrector for strain rate tensor

The corrector phase for Sn+1
c is very similar to the predictor. The stress tensor D and

spin tensor W in cell c at time tn+ 1
2 are:

Dn+ 1
2

c =
1

Vc

∑
p(c)

1

4

(
U
n+ 1

2
p ⊗ nn+ 1

2
pc + n

n+ 1
2

pc ⊗Un+ 1
2

p

)
, (8.17)

Wn+ 1
2

c =
1

Vc

∑
p(c)

1

4

(
U
n+ 1

2
p ⊗ nn+ 1

2
pc − nn+ 1

2
pc ⊗Un+ 1

2
p

)
, (8.18)

where
n
n+ 1

2
pc = (n

n+ 1
2

e(ca) + n
n+ 1

2

e(cb))/2

is the sum of vectors normal to edges e(ca) and e(cb) of cell c adjacent to node p. The
deviatoric part of stress tensor Dn

c is given by:

Dn+ 1
2

0c = Dn+ 1
2

c − 1

3
tr(Dn+ 1

2
c )I, (8.19)
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where
tr(Dn+ 1

2
c ) =

1

V
n+ 1

2
c

∑
c(p)

U
n+ 1

2
p · nn+ 1

2
pc . (8.20)

Now we can evaluate the trial elastic value of strain rate tensor by applying (8.10):

Sn+1,tr
c = Sn+1

c (1,Snc ,D
n+ 1

2
0c ,Wn+ 1

2
c ). (8.21)

The final value for strain rate tensor Sn+1
c which takes into account the plasticity described

by von Mises criterion in the form

f(Sn+1
c ) = |Sn+1

c |−
√

2

3
Y0

is computed by the radial return algorithm, which is given by the following simple limiter
applied to elastic trial strain rate:

Sn+1
c =

Sn+1,tr
c iff(Sn+1,tr

c 6 0),√
2
3
Y0

Sn+1,tr
c

|Sn+1,tr
c |

otherwise.
(8.22)

8.1.4 Timestep

The main restriction of the time step for 2D elastic plastic flow is given by the CFL
condition (4.34) and the definition (7.10):

∆tnCFL = CCFL min
c

lnc
anc
, (8.23)

where
a2
c = (cs)

2
c +

4

3

µ

%c

is again the longitudinal elastic wave speed.

8.2 Numerical results

In this section, we will present numerical results for 2D elastic-plastic flow. In contrast
with [65], all here presented results were computed using predictor (4.7).

Let us first define a dimensionless coefficient called plasticity threshold similarly to
[32]:

pt =

√
3

2

|S|
Y0

, (8.24)

which refers to the von Mises yield criterion (6.9). In the regions where the deformations
are plastic, its value is 1, and in regions of elastic deformations, its value is less than 1.
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8.2.1 Elastic vibration of Beryllium plate

This test has been firstly introduced in PAGOSA [123] and deals with purely elastic
oscillations of a thin Beryllium plate. The material constants can be again found in
Table 6.1, except that the yield strength Y0 is artificially set to 1011 Pa to keep the flow
purely elastic. The computational domain is a 2D region 〈−5, 5〉 × 〈−30, 30〉 mm. The
x-component of velocity is initially zero, and the y-component is given by:

v(0, x) = Aω {g1[sinh(ξ) + sin(ξ)]− g2[cosh(ξ) + cos(ξ)]} ,

where ξ = Ω(x + 0.03), Ω = 78.83401241m−1 is the first nonzero root of equation
cosh(0.06Ω) cos(0.06Ω) = 1. The coefficients g1, g2, A are

g1 = cosh(0.06Ω)− cos(0.06Ω) ≈ 56.63685154, (8.25a)

g2 = sinh(0.06Ω)− sin(0.06Ω) ≈ 57.64552048, (8.25b)

A =
ymax
2g2

≈ 0.04336850425 mm, (8.25c)

ymax = 5 mm is the maximum displacement in the y-direction, and

ω = Ω2∆y

√
E

12%(1− ν2)
Hz

is the frequency-dependent on elastic modulus E = 3.182656 × 1011 Pa, Poisson ratio
ν = 0.053896, and the thickness of the plate ∆y = 0.01 m. Initially, the pressure P 0 and
the strain tensor S0 are set to zero. The analytical solution for a thin plate gives a time
period for the first flexural moment 2π/ω ≈ 26.6µs [40]. However, the exact solution for
the thick plate does not exist. The final time of the simulation is Tf = 100× 10−6 s. The
computational domain is discretized by 100×16 initially rectangular, equally spaced cells.
Figure 8.1 shows the time evolution (history) of the y-coordinate of the slab center, its
velocity, and the conversion between internal and kinetic energy. The observed period is
approximately 30µs, which is in good agreement with the results presented in [32], [40].
The meshes at different fractions of the observed period Tp can be seen in Figure 8.2.



CHAPTER 8. METHOD FOR 2D ELASTIC-PLASTIC FLOW 109
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Figure 8.1: Time evolution of the vibrating Beryllium plate: the y-position of the plate
center (a); the y-velocity component of the plate center (b); conversion between kinetic
and internal energies (c).
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Figure 8.2: The evolution of the mesh for the Beryllium plate problem at different fractions
of observed period Tp.

8.2.2 Collapse of Beryllium shell

This test taken from [109], [124] deals with a collapse of the Beryllium shell. Although the
originally proposed version used different equations of state, the use of Mie-Grünneisen
EOS has also been studied, showing similar results [32]. The Beryllium shell with the
inner radius R0

i = 0.08 m, and outer radius R0
o = 0.1 m with the initial state defined by

the density %0 from Table 6.1, pressure P 0, and velocity field U 0 depending on radius
r =

√
x2 + y2 defined by

U 0(r) = −Ui
Ri

r2
r,

where r is the position vector from the origin and Ui = 417.1 m/s is an axial velocity
reached at the inner radius Ri. Assuming incompressibility, one can obtain analytic
solutions for the inner and the outer radii, which are at time T = 150 × 10−6 s, Ri =

0.05 m and Ro = 0.0781 m. The problem was computed on a single quarter of the
shell with free surface boundary conditions on inner and outer circle and with reflecting
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boundary conditions on x- and y- axes. The resolutions in circular × angular directions
were 8×10, 16×20, and 32×40 cells. The plasticity threshold map (8.24) for the fine grid
can be seen in Figure 8.3, while the history of radii positions and energy conversion are
presented in Figure 8.4. The radii positions converge to the exact ones, while the total
energy is well conserved.
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Figure 8.3: Collapse of Beryllium shell: the plasticity threshold (a) and the density (b)
on mesh with 32× 40 cells.
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Figure 8.4: Evolution of radius (a) and energy (b) for the collapse of Beryllium shell.

8.2.3 Cartesian Taylor bar impact

This test, which is a Cartesian analogy of Taylor bar impact [125], has been proposed
in [40]. It models a 2D rectangular Aluminium projectile, which is initially a plate 5m
long and 1m high. The initial computational domain is hence given by a 2D region
〈0, 5〉 × 〈−0.5, 0.5〉 m filled with Aluminium given by the density %0, which can be found
in Table 6.1 and pressure P 0 = 10−6 Pa. The final time is T = 5 ms. Free boundaries are
prescribed everywhere except the left boundary, which is treated as a wall. The problem
has been computed on initially rectangular meshes of 50×10, 100×20, 200×40 cells with
CCFL = 0.3 by pure LW scheme and LW+1 with τ = 0.1.
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Figure 8.6 shows the plasticity threshold map for pure LW, limited and unlimited
LW+1. In Figure 8.5, one can find the time evolution of bar length and kinetic-to-
internal energy conversion history. The result computed by pure LW in Fig. 8.6 contains
spurious checkerboard-like oscillations near yielding level x ≈ 0.75 and near the left (West)
boundary, which means that the dissipation due to the radial return algorithm is no longer
sufficient to mitigate the LW dispersion. The mesh near the origin is, in this case, denser
as this region is at the final time fully plastic, which is different from the results due to
[32]. Figure 8.6(b) then shows the results due to unlimited LW+1 with very low τ = 0.1,
which is enough to mitigate spurious checkerboard pattern. The region near the origin
is, in this case, not fully yielded, which is closer to the reference. The last Figure 8.6(c)
shows the result due to LW+1 with τ = 0.1 and 9 edges limiter. As one can see, the
region near the origin is not fully yielded, but the value of the plasticity threshold there
is higher. The higher modes (at approximately at x ∈ 〈0.75, 2.2〉 m) of elastic waves
are closer to the pure LW case. The features have more details for pure LW and fewer
details for unlimited LW+1. Due to the lack of an analytical solution for this test and the
observed fast evolution of these features, it is hard to say which are closer to the physical
reality. Both limited and unlimited cases are somehow comparable to the results due to
EUCCLHYD[32].
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Figure 8.5: Evolution of length for the Taylor bar impact (a) and evolution of energy (b)
for unlimited LW+1.
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Figure 8.6: Taylor bar problem on the 200 × 40 cells mesh; the plasticity threshold by
pure LW (a), unlimited LW+1 with τ = 0.1 (b), limited LW+1 with τ = 0.1 (c).



Chapter 9

Conclusion

The main objective of this thesis was to develop and study a new method for simulations
of systems of conservation laws, specifically hydrodynamics, described using the system
of Euler equations for inviscid compressible fluids closed by an ideal gas equation of state
and solid dynamics, which is described by the Wilkins model.

We have presented a novel cell-centered Lagrangian method originally published in
[64], later applied to elastoplasticity in [65], implemented on unstructured meshes [68],
and most recently extended to cylindrical rz geometry in [67]. The scheme consists
of Richtmyer’s finite volume formulation of the Lax-Wendroff scheme used to discretize
physical fluxes, and Harten-Lax-van Leer (HLL) based artificial dissipation.

The proposed artificial dissipative flux can be applied not only to the momentum
equation, forming artificial viscosity in the traditional sense but also to the energy and
specific volume equations. The addition of artificial energy flux into the energy equation
reduces the effect of well-known wall heating phenomena and improves the symmetry.
The application of artificial mass flux violates the GCL law and requires an alternative
definition of density to keep the GCL error low. The amount of dissipation being applied
to each equation can be changed using a single parameter τ . For the hydrodynamics,
adding of artificial viscosity and energy flux, called LW+2, has been observed to perform
best, while adding a significantly lower amount of only artificial viscosity has worked fine
for solid dynamics.

The original method [66] has been further improved in several directions, namely the
inverse area weighting of conserved quantities in predictor inspired by [76], which has
significantly improved the behavior on highly nonuniform meshes, simplified interface fix
recovering material interfaces, and contact discontinuities, and finally, the introduction
of limiters, that helps to reduce the amount of dissipation being added in regions with
expanding cells or smooth solution.

Concerning the solid dynamics, the elastic evolution of deviatoric stress is computed
by the method due to Maire et al. [29], while the plastic behavior is computed by Wilkins’
radial return algorithm [1] enforcing von Mises yield criterion.

Good overall performance has been demonstrated on several tests. Namely, on the
1D problem with initially smooth data [44], we have shown that the LW scheme achieves
second order of accuracy and demonstrated the effect of Wendroff-White averaging of
conserved quantities in the predictor. On the Noh problem, we have studied the effect of
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different choices of τ and different versions of the LW+n methods family. The Sod shock
tube helped us to illustrate the effects of the interface fix and the dissipation limiting,
and the Woodward-Colella test demonstrated the ability of the scheme to cope with
interactions and reflections of multiple shock waves.

In 2D hydrodynamics, the numerical order of accuracy of LW has been assessed on
the Kidder test. The performance of the method with artificial dissipation has been then
tested on Noh and Sedov tests, where we focused mainly on symmetry, and later on Saltz-
man and Triple point problems assessing the mesh distortion due to artificial dissipation
and the effects of the interface fix in multiple dimensions. In the cylindrical rz geometry,
we have studied the symmetry and order of accuracy on Free expansion, Coggeshall, and
Kidder problems and later demonstrated the artificial viscosity performance on spherical
Noh, Sedov, Sod, and triple point problems.

The studied method performed well for most of the presented hydrodynamics test
cases. The symmetry in 2D Cartesian geometry is exact for the equiangular meshes, while
it remains very good for initially rectangular meshes and clearly outperforms the staggered
method [5] with tensor AV [9]. The use of dissipation limiting procedure inspired by [9]
does not affect the symmetry on equiangular meshes when applied on circle edges only.
In the case of initially rectangular mesh, the symmetry of LW+2 limited by the original 5
edges stencil limiter was worse, but it could be slightly recovered by computing limiter on
9 edges. A similar statement can also be expressed for the cylindrical rz geometry. The
symmetry remains exact on equiangular meshes, which has been proven for the rz version
of LW and tested on several problems. Inspired by [18], the correction term has been
designed to make the artificial dissipation symmetry-preserving in rz. Again, although
the exact symmetry can not be recovered in cases with initially rectangular meshes, the
symmetry keeps very nice. The effect of the limiter remains the same as in Cartesian
geometry.

On the other side, on test cases not concerning cylindrical or spherical phenomena, it
has been shown that the usage of limiters can improve the solution, especially when the
mesh is aligned with the waves, like Saltzman, Triple-point, or Sod.

The simplified interface fix resolves the contact discontinuity similarly to the original
one, although it is much simpler.

It has been proven that the LW+1 and LW+2 methods satisfy the Geometric Conser-
vation Law in Cartesian geometry. In the case of cylindrical geometry, GCL is satisfied if
the Simpson quadrature rule is used in space and time. However, when using this quadra-
ture in all equations, one has to use a different definition of pressure average. The formula
is significantly complicated, and hence not very practical from the implementation point
of view. Fortunately, the specific volume can be computed directly from volume and mass,
so neither Simpson quadrature nor specific pressure average has to be used.

The results for solid dynamics have been illustrated on elastic-plastic piston and
Wilkins problem in 1D, and the elastic vibration of the Beryllium plate, the collapse of the
Beryllium shell, and Taylor bar impact in 2D. The method has produced reasonably good
results, mostly comparable to the method of Maire et al.[32] It has been observed that
even some problems involving shock waves can be treated by pure Lax-Wendroff without
any dissipation because Wilkins radial return algorithm can remove the oscillations due
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to LW.
The proposed method is also relatively easy to implement, as it does not require any

special nodal solver and can be simply applied also to the different systems of conservation
laws. Therefore it is worth further study, for example, in terms of the extension to
the 3D geometry, the extension of elastoplasticity to cylindrical rz geometry or other
elastoplastic models, application to different systems of conservation laws (e.g., shallow-
water equations), using a different equation of state, implementation or extension to ALE
(Arbitrary Lagrangian-Eulerian) framework.

The results presented in this thesis were originally published in [64]–[68]. The author
of this thesis has participated in developing the numerical method and was responsible
mainly for its implementation and validation.



Appendix A

Boundary conditions

A.1 Ghost cells

All presented schemes and formulas assume that for any node or cell edge, the values
at adjacent cells are known. That holds true inside the computational domain, but not
when the node or cell edge lies on the computational boundary. In such cases, some
special treatment has to be done. In other words, we need to compute or prescribe nodal
or edge fluxes on the boundaries.

Let us start from the 1D perspective. In such case, the computational domain is
1D interval 〈a, b〉 divided into N cells indexed 1, 2, . . . , N and nodes 1

2
, . . . , N + 1

2
. The

boundary conditions tell us how to compute fluxes F 1
2
and FN+ 1

2
. One option is to use a

special formula for computing fluxes at the boundary nodes, the second is to add one or
more layers of cells (depending on the scheme stencil) outside the computational domain
that allows using the same formulas as if the boundary nodes lay inside.

Since in 1D LW+n scheme is computed on three cells stencil, one layer of the extra
cell is sufficient. In such case, the left ghost cell will be indexed 0 and the right N + 1.
The situation is illustrated in Fig. A.1.

Figure A.1: Illustration of 1D mesh containing ghost cells. Inner cells are plotted by solid
lines, ghost cells by dashed lines.

In 2D logically orthogonal grids, the ghost cells will make two extra rows (one on the
top and one on the bottom) and two extra columns (one on the left and one on the right).

Since in Lagrangian geometry, the mesh moves with the fluid, ghost cell positions
have to be updated, which is done by mirroring the nodal positions from the inside of the
computational domain. For straight-line boundaries that are usually treated as the walls
or piston, the nodal positions are mirrored by the boundary line, which automatically
preserves the same volumes as inside. For curved boundaries, the nodal positions are
mirrored by boundary node positions. Both situations are depicted in Figure A.2.
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In some cases, it can be advantageous to prescribe fluxes directly, so the ghost nodes
are set to have the same positions as the boundary nodes, and therefore the volumes
and masses of ghost cells are zero. Therefore, the dual cell laying on boundary consists
only from two inner subzones, and predictor integration (4.6) is performed only over
them, which was verified to work reasonably well for example, for Kidder tests described
in Sections 4.5.1 and 5.5.3, where the exact pressure (which is dependent on time) is
prescribed on the boundary.

(a) (b)

Figure A.2: The part of the 2D mesh containing ghost cells. Inner cells are in grey, ghost
cells in white color. Mirrored cells on initially rectangular mesh (a); ghost cells formed
by mirroring inner points on polar grids (b).

Before we move on to the description of individual types of boundary conditions, let us
introduce the following notation. Let us assume a cell that lays inside the computational
domain Ω while at least one of its edges constitutes the domain boundary ∂Ω. Such cell
will be subscribed i, referring to the inner cell. The cell outside the computational domain
Ω neighboring with cell i, which shares at least one point with it, will be subscribed by
g(i) referring to the ghost cell image of cell i. The common edge of cells i and g(i) laying
on the boundary subscribed by b and its endpoints will be denoted by p(b)±.

Let us remark that we always need to know the velocity and the pressure on the
boundary to evaluate numerical fluxes over the boundary edge. If we do not want to
prescribe it, it is computed using the standard predictor with ghost cell values copied
from the inside, as described in more detail in the next paragraph.

A.2 Free boundary condition

A free boundary condition means that no external force is applied, indicating zero pres-
sure. The boundary should move freely, depending on the velocity from the inside of the
computational domain. In other words, the velocity and pressure are interpolated from
the values of the inner cells. Such boundary condition can be easily implemented using
ghost-cells. The vector of conserved variables in the ghost cell g(i) is just a simple copy
of the values in cell i:

wg(i) = wi.
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In this case, the states at the endpoint of the boundary edge wp(b)± are computed using
the predictor (4.7), or (5.20-5.21). Thermodynamical variables are computed using EOS.
Corner ghost cell values are set to the value of the cell, with which they share a single
node.

A.3 Prescribed velocity

In the case of prescribed velocity (used for example in Saltzman and Coggeshall tests) we
set the velocity in the ghost cell using the following simple extrapolation:

Ug(i) = 2UBC −Ui, (A.1)

and update the specific total energy in ghost cell g(i):

Eg(i) = εg(i) + (UBC ·UBC)/2. (A.2)

Here, we assume that the cell volume and mass of cells i and g(i) are the same, the nodal
velocity Up(b) is then computed by the predictor.

A.4 Reflecting boundary

The reflecting boundary condition or no-slip condition, is defined by zero perpendicular
component of velocity on the boundary. Besides piston-like problems (e.g. Saltzman), this
BC is often used for circularly symmetric tests, such as Noh, Sedov, Kidder, or Coggeshall,
where by imposing this condition on x- and y- axes one can compute only one quadrant
of the whole problem. Because in this work, this boundary condition is always set on
boundaries formed by straight-line, the implementation reduces to a simple combination
of free boundary condition and changing sign of perpendicular velocity component, which
corresponds to extrapolation (A.1) with UBC = (u, 0)t for horizontal boundary (x-axis)
and UBC = (0, v)t for vertical boundary (y-axis) respectively.

A.5 Prescribed pressure

Imposing pressure on boundary ∂Ω is done on the boundary nodes, where one has to do
nothing else than updating the pressures on the boundary:

Pp(b) = PBC ,

while the nodal velocity Up(b) is computed by the predictor (4.7) with ghost cells set to
have zero volume and mass, so the integration by predictor is performed only over the
two inner subzones.
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A.6 Free Surface Boundary

For 2D elastic-perfectly plastic flow, one often needs to prescribe a free surface boundary,
expressing the fact that there is no external force acting on the boundary node. The Free
Surface boundary condition (also known as Traction Free BC) is given by the following
equation [119]:

τ = T · n = 0, (A.3)

where τ is the traction (force per unit area), T is Cauchy stress tensor, and n is the unit
outward vector normal to the boundary. Let us now study the boundary equation (A.3)
in more detail. After breaking it down into components, the previous equation reads:

T · n =

(
Txx Txy
Txy Tyy

)
·
(
nx
ny

)
=

(
Txxnx + Txyny
Txynx + Tyyny

)
=

(
0

0

)
, (A.4)

where we have used the fact that Cauchy tensor is symmetric and hence Txy = Tyx. This
vector equation gives us two constraints on three unique tensor components.

For the sake of simplicity, we will now focus on the special case of West (left) vertical
boundary, where n = (−1, 0)t. After substitution into (A.4) we have

Txx = 0, Txy = Tyx = 0. (A.5)

The remaining component Tyy represents shear stress and does not change on the bound-
ary.

For the implementation of this specific case, one has to first compute the Cauchy stress
tensor in node p(b) laying on the boundary. The values in ghost cell g(i) are copied from
the neighboring cell i, and the predictor (3.27) and (8.16) computes the nodal Cauchy
tensor Tn+ 1

2

p(b) , which is then updated using the following procedure.
For a special case when the cell edge on the boundary is parallel with the y-axis, the

free surface boundary condition is done by applying (A.3) to the Cauchy tensor Tn+ 1
2

p(b) :

Tn+ 1
2

p(b) =

(
0 0

0 (Tyy)
n+ 1

2

p(b)

)
. (A.6)

Any general case can be easily converted to this particular situation using tensor rotation.
Let us define rotation tensor

R =

(
cosϕ − sinϕ

sinϕ cosϕ

)
. (A.7)

Then Cauchy tensor T rotated counterclockwise by the angle ϕ will be.

TR = RTRt. (A.8)

The general algorithm for Free Surface BC consists of the following steps:

1. Copy the specific vector of conserved variables and Cauchy stress tensor from cell i
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to cell g(i) using
wg(i) = wi, Tg(i) = Ti,

2. compute predicted Cauchy stress tensor Tn+ 1
2

p(b) using the standard predictor (4.7)
and (8.16),

3. rotate the tensor using (A.8), so it is aligned with the y-axis,

4. prescribe the components of rotated tensor according to (A.6),

5. rotate the updated tensor back.



Appendix B

Symmetry proofs

B.1 Symmetry preservation for LWrz

For the following symmetry proofs, it will be beneficial to use polar coordinates (R, θ)

instead of cylindrical coordinates (r, z). Polar (spherical) radius R is defined as the
distance of the point (r, z) from the origin, i.e.

R =
√
r2 + z2,

while the polar angle θ = arctan r
z
is the angle between the vector (r, z) and the z−axis.

The polar coordinates are hence connected with the cylindrical ones using transformation

(r, z) = R(sin θ, cos θ). (B.1)

Assuming equiangular polar mesh, every node xi+ 1
2
,j+ 1

2
can be defined using angle θi+ 1

2

and radius Rj+ 1
2
so

xi+ 1
2
,j+ 1

2
= Rj+ 1

2
(sin θi+ 1

2
, cos θi+ 1

2
). (B.2)

The ray edges on the polar mesh have a constant index i while circles have a constant
index j. By the spherical symmetry, we understand the situation when the value of any
scalar quantity at point (r, z) = R(sin θ, cos θ) does not depend on the polar angle θ.
Vector quantity is spherically symmetric when its magnitude does not depend on polar
angle θ and is spherically radial, which means parallel to the vector (r, z).

Similarly to [67], we will in the following text always assume equiangular meshes, and
by symmetry, we will always understand spherical symmetry.

B.2 Equiangular polar mesh

Let us now define equiangular polar mesh and some notations which will be used in the
symmetry proofs. We would like to remind here that by A we mean Cartesian area
computed by (5.6), while by V we mean true cylindrical volume (5.5). The equiangular
polar mesh is illustrated in Figure B.1. A primary cell i, j is a trapezoid given by vertices
xi+ 1

2
,j− 1

2
,xi− 1

2
,j− 1

2
,xi− 1

2
,j+ 1

2
,xi+ 1

2
,j+ 1

2
. Its area Ai,j can be computed as a difference of

areas of the triangle with vertices 0,xi− 1
2
,j+ 1

2
,xi+ 1

2
,j+ 1

2
and the triangle with vertices
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0,xi− 1
2
,j− 1

2
,xi+ 1

2
,j− 1

2
:

Ai,j = A4(0,X
i− 1

2 ,j+
1
2
,X

i+1
2 ,j+

1
2

) − A4(0,X
i− 1

2 ,j−
1
2
,X

i+1
2 ,j−

1
2

).

A similar formula is also valid for the volume Vi,j. Let us find the volume of the polar
triangle T = 4(0,xi− 1

2
,j+ 1

2
,xi+ 1

2
,j+ 1

2
). Its area AT for given j + 1

2
is clearly independent

on the angle θi and its volumes VT is

VT =
1

3
(ri− 1

2
,j+ 1

2
+ ri+ 1

2
,j+ 1

2
)AT =

2

3
Rj+ 1

2
sin θi cos ∆θ/2.

Therefore, assuming symmetric mesh, the primary cell volume depends on the angle as
sin θi, and also primary mass cell depends on the angle as sin θi, because the density is sym-
metric. Dual cell i−1

2
, j+1

2
is a hexagon with vertices xi−1,j,xi−1,j+1,xi− 1

2
,j+1,xi,j+1,xi,j,xi− 1

2
,j

and consists of four quadrilateral subzones with a common vertex xi− 1
2
,j+ 1

2
. Its volume

is given by the sum of volumes of these subzones. If we look closer on the volume of two
subcells with the common ray edge i − 1

2
, j + 3

4
, using similar arguments as for primary

cell, we find that the volumes depend on the angle as sin θi± 1
4
times the same value in-

dependent on the angle, thus the volume of their union depends on the angle as sin θi− 1
2
.

The same dependency clearly holds for the rest two subzones sharing the common ray
edge i− 1

2
, j + 1

4
and hence the volume and the mass of the dual cell depend on the angle

as sin θi− 1
2
.

B.3 Proof of symmetry of velocity predictor

In this section, we will prove that if quantities in time tn are spherically symmetric, the
nodal velocity at tn+ 1

2 due to (5.20) is also spherically symmetric.
Let us first look into the weighted average given by the first term of the right-hand

side of Eq. (5.20). Since the cell velocities are assumed to be symmetric, subcell areas
do not depend on the angle θ, and the polar mesh is symmetric, this term is clearly also
symmetric. To show the symmetry of the second term of the right-hand side of (5.20), we
will first assume two circle separators (dual cell edges) with radial index j + 1. From the
assumption that the underlying pressures are symmetric, the fact that on the symmetric
mesh the separators laying on the same circle have the same length, and that their normals
are radial, also their sum has to be symmetric. A similar argument also holds for two
circle separators with radial index j.

It remains to prove the symmetry of radial separators. Let us consider two rays
separators with radial index j + 3

4
. The situation is similar to the circle separators –

the pressures on the same circle are the same, and the length of separators is the same,
hence the sum of the fluxes through them is symmetric. This is also true for the rest ray
separators, and hence the whole term is symmetric.
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i-1/2,j+1/2

i-1/2,j+1

i-1,j+1

i,j+1

i,j

i-1,j

i-1/4,j+1

i-3/4,j+1

i-3/4,j

i-1/4,j

i,j+1/2

i+1/2,j-1/2

i-1/2,j-1/2

i+1/2,j

i+1/2,j+1/2

i-1/2,j

i,j-1/2

i-1,j+1/2

Figure B.1: Illustration of primary cell i, j, and dual cell i− 1
2
, j + 1

2
on the equiangular

polar grid.
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B.4 Proof of symmetry of predictor for density, energy,
and pressure

In Section B.2 we have shown that both volume and mass depend on the angle as sin θi− 1
2
.

Since the nodal estimate of density is computed as the fraction of mass and velocity, it
does not depend on the angle θ and hence is symmetric.

Let us now discuss the predicted total energy given by (5.21). The first term on the
right-hand side is symmetric due to the same arguments as in the previous Section B.3.

Now we can advance to the second term of RHS of (5.21), which contains separator
(dual cell edge) fluxes PcrspcUc ·nspc. On the ray edges, these fluxes are zero because the
radial velocity Uc is perpendicular to nspc. The circle fluxes are parallel, and therefore
Uc · nspc = |Uc||nspc|= Ucnspc, so these fluxes do not depend on the angle θ and can be
factored out. The only angular dependence of the flux at the separator si− 1

4
,j is then

ri− 1
4
,j+1 + ri− 3

4
,j+1 = 2Rj+ 1

2
sin θi− 1

2
cos(∆θ/4).

The entire sum in the second term hence depends on the angle as sin θi− 1
2
, which is the

same dependence as for nodal mass mp, as shown in Section B.2. Since the second term is
a fraction of the sum and the nodal mass, the angular dependence cancels, and the whole
term is symmetric, therefore the entire energy predictor is symmetric.

As the pressure computed using EOS (2.55) depends only on quantities proved already
to be symmetric, it is also symmetric.

B.5 Proof of symmetry of velocity corrector

To prove symmetry for corrector (5.23), we will assume that all quantities at times tn and
tn+ 1

2 are symmetric. The situation is again illustrated in Fig. B.1. Let us start with the
ray edges. Due to the symmetry P n+ 1

2
e = P̄

n+ 1
2

c and hence the ray fluxes are zero. For a
circle edge of a primary cell, the pressure difference P n+ 1

2
e − P̄ n+ 1

2
c does not depend on the

angle and the normal nn+ 1
2

e is radial, and its magnitude is symmetric, therefore the only
dependence on the angle is due to the radius re, which is for the edge i, j + 1

2
:

ri,j+ 1
2

= Rj+ 1
2

sin θi.

As shown in Section B.2, the primary cell mass also depends as sin θi. Since the entire
last term of (5.23) is the ratio of the sum and the mass, the dependence on the angle θ is
canceled out, and hence the whole corrector preserves spherical symmetry.

B.6 Proof of symmetry of corrector for density, energy,
and pressure

The density of the primary cell is again given by the ratio of cell mass and cell volume,
which, as shown in Sec. B.2, both depend on the angle as sin θi, and hence the density is
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symmetric.
The corrector for the energy is given by (5.27). At the ray edges of a primary cell, the

velocity is perpendicular to the edge normals and hence the flux containing Ue ·ne is zero.
At the circle edges, the velocity and edge normals are parallel, so PeUe ·ne = Pe|Ue||ne|,
and hence the only dependence of the face flux is due to the radius re. Similarly to the
previous proof in Sec. B.5, the dependence of re is the same as the dependence of primary
cell mass, so their ratio does not depend on the polar angle, and the corrector (5.27) does
not violate the symmetry.

B.7 Symmetry preservation of artificial viscosity term
and its correction

The artificial viscous fluxes for the cell c are given by:∑
e(c)

re(c)|ne(ca)|σ̂e(ca)(Ua −Uc), (B.3)

where the summation e(c) goes over all edges of cell c, and the edge e(ca) is the common
edge adjacent to cells c and a. Let us assume the symmetric case depicted in Fig. B.1.
We will now investigate the cell c = i, j. The edges lying on logical circles, i.e. the
edges having the same j-coordinate, are spherically radial, which means that Uc||Ua and
therefore (Uc −Ua)||Uc. The edge radius re(ca) = ri,j− 1

2
and cell mass mc depend on the

angle as sin(θi), and hence their ratio is independent on the angle θ. All that means that
the viscous flux (B.3) at the circle edges is symmetric.

For the ray edges (the edges having the same i-coordinate), the term |ne(ca)σ̂e(ca)| is
independent on the angle θ. The symmetry of the viscous flux then depends on vector
quantity fAVj given by

fAVj = ri− 1
2
,j+1(Ui−1,j −Ui,j) + ri+ 1

2
,j(Ui+1,j −Ui,j). (B.4)

After some trigonometry manipulations the z-component of AV flux fAV,zj can be rewrit-
ten:

fAV,zj = −8RjUj sin2(∆θ/2) cos(∆θ/2) sin(θi) cos(σi), (B.5)

where Rj is the distance from the origin, and Uj is a signed magnitude of velocity.
The factor of sin(σi) cancels with the same factor in cell mass mi,j and the factor

cos(σi) from fAV,zj is nothing else than the projection of a vector of length

8RjUj sin2(∆θ/2) cos(∆θ/2)

on the z-axis, so the z-component of (B.4) does not violate the symmetry.
The r-component of (B.4) is

fAV,rj = −4RjUj sin2(∆θ/2) cos(∆θ/2)(2 sin2(θi)− 1), (B.6)
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which violates symmetry. Deriving the correction δ is however straightforward with the
following result:

δ = 4RjUj sin2(∆θ/2) cos(∆θ/2), (B.7)

which can be easily verified:

fAV,rj − δ = −8RjUj sin2(∆θ/2) cos(∆θ/2) sin2(θi). (B.8)

Here, one factor sin(θi) cancels with the same one contained in cell mass mi,j, and the
second one is a projection of vector of a length 8RjUj sin2(∆θ/2) cos(∆θ/2) on the r-axis.

The distance of two cell centers is:

|xi+1 − xi|= 2Rj sin(∆θ/2) cos(∆θ/2), (B.9)

which can be used for rewriting the symmetry correction (B.7) as:

δ = 4RjUj sin2(∆θ/2) cos(∆θ/2) = |xi+1 − xi|2
ui,j
ri,j

, (B.10)

where ui,j is r-component of velocity Ui,j = (ui,j, vi,j) and ri,j is the radius of the cell
center. The final formula for the correction of the viscous flux (B.3) through the ray
edges of cell c writes:

δ =
Bi− 1

2
,j +Bi+ 1

2
,j

2

ui,j
ri,j

, Bi− 1
2
,j = σ̂i− 1

2
,j|ni− 1

2
,j||xi,j − xi−1,j|2. (B.11)

Going back to the pc-notation, the formula (B.11) can be rewritten as (5.43).

B.8 Proof of symmetry of energy dissipation

Now we will shortly discuss the symmetry of energy dissipation given by (5.42b). Due to
the symmetry, Ea = Ec on the ray edge e(ca) and therefore the artificial energy fluxes at
the ray edges are zero. At the circle edges, only the radius rne(ca) depends on the angle
as sin(θi), which cancels with the cell mass that also depends on the angle as sin(θi),
therefore the energy dissipation fluxes preserve the symmetry.



Bibliography

[1] M. L. Wilkins, Computer simulation of dynamic phenomena, ser. Scientific Com-
putation. Springer, 2013, p. 247, isbn: 3662038854.

[2] J. von Neumann and R. D. Richtmyer, “A method for the numerical calculations
of hydrodynamical shocks”, J. Appl. Phys., vol. 21, no. 3, pp. 232–238, 1950, issn:
0021-8979. doi: 10.1063/1.1699639.

[3] M. L. Wilkins, “Calculations of elastic-plastic flow”, in Methods Comput. Phys.,
B. J. Alder, S Fernbach, and M Rotenberg, Eds., vol. III, 1964, pp. 211–263.

[4] D. J. Benson, “Computational methods in Lagrangian and Eulerian hydrocodes”,
Comput. Methods Appl. Mech. Eng., vol. 99, no. 2-3, pp. 235–394, 1992, issn:
00457825. doi: 10.1016/0045-7825(92)90042-I.

[5] E. Caramana and M. Shashkov, “Elimination of Artificial Grid Distortion and
Hourglass-Type Motions by Means of Lagrangian Subzonal Masses and Pressures”,
J. Comput. Phys., vol. 142, no. 2, pp. 521–561, 1998, issn: 0021-9991. doi: 10.
1006/JCPH.1998.5952.

[6] D. Burton, “Multidimensional discretization of conservation laws for unstructured
polyhedral grids”, SAMGOP-94 2nd Int. Work. Anal. methods Process Optim. fluid
gas Mech. Arzamas, 1994.

[7] J. Campbell and M. Shashkov, “A Compatible Lagrangian Hydrodynamics Al-
gorithm on Unstructured Grids”, Los Alamos National Laboratory, Tech. Rep.
LA-UR-00-3231, 2000.

[8] E. Caramana, M. Shashkov, and P. Whalen, “Formulations of Artificial Viscosity
for Multi-dimensional Shock Wave Computations”, J. Comput. Phys., vol. 144,
no. 1, pp. 70–97, 1998, issn: 0021-9991. doi: 10.1006/JCPH.1998.5989.

[9] J. Campbell and M. Shashkov, “A Tensor Artificial Viscosity Using a Mimetic
Finite Difference Algorithm”, J. Comput. Phys., vol. 172, no. 2, pp. 739–765, 2001,
issn: 0021-9991. doi: 10.1006/jcph.2001.6856.

[10] K. Lipnikov and M. Shashkov, “A Framework for Developing a Mimetic Tensor
Artificial Viscosity for Lagrangian Hydrocodes on Arbitrary Polygonal Meshes”, J.
Comput. Phys., vol. 229, no. 20, pp. 7911–7941, 2010.

[11] A. Burbeau-Augoula, “A Node-centered Artificial Viscosity Method for Two-dimensional
Lagrangian Hydrodynamics Calculations on a Staggered Grid”, Commun. Com-
put. Phys., vol. 8, no. 4, pp. 877–900, 2010, issn: 1815-2406. doi: 10.4208/cicp.
030709.161209a.

128

https://doi.org/10.1063/1.1699639
https://doi.org/10.1016/0045-7825(92)90042-I
https://doi.org/10.1006/JCPH.1998.5952
https://doi.org/10.1006/JCPH.1998.5952
https://doi.org/10.1006/JCPH.1998.5989
https://doi.org/10.1006/jcph.2001.6856
https://doi.org/10.4208/cicp.030709.161209a
https://doi.org/10.4208/cicp.030709.161209a


BIBLIOGRAPHY 129

[12] R. Loubère, P. H. Maire, and P. Váchal, “A second-order compatible staggered
Lagrangian hydrodynamics scheme using a cell-centered multidimensional approx-
imate Riemann solver”, in Procedia Comput. Sci., vol. 1, Elsevier, 2010, pp. 1931–
1939. doi: 10.1016/j.procs.2010.04.216.

[13] P. H. Maire, R. Loubère, and P. Váchal, “Staggered Lagrangian discretization based
on cell-centered Riemann solver and associated hydrodynamics scheme”, Commun.
Comput. Phys., vol. 10, no. 4, pp. 940–978, 2011, issn: 19917120. doi: 10.4208/
cicp.170310.251110a.

[14] R. Loubère, P.-H. Maire, and P. Váchal, “3D staggered Lagrangian hydrodynamics
scheme with cell-centered Riemann solver-based artificial viscosity”, Int. J. Numer.
Methods Fluids, vol. 72, no. 1, pp. 22–42, 2013, issn: 02712091. doi: 10.1002/
fld.3730.

[15] N. N. R. Morgan, K. N. Lipnikov, D. E. Burton, and M. A. Kenamond, “A La-
grangian staggered grid Godunov-like approach for hydrodynamics”, J. Comput.
Phys., vol. 259, pp. 568–597, 2014, issn: 10902716. doi: 10.1016/j.jcp.2013.
12.013.

[16] P. Váchal and B. Wendroff, “A Symmetry Preserving Dissipative Artificial Viscos-
ity in r-z Staggered Lagrangian Discretization”, Journal of Computational Physics,
vol. 258, pp. 118–136, 2014. doi: 10.1016/j.jcp.2013.10.036.

[17] P. Váchal and B. Wendroff, “A symmetry preserving dissipative artificial viscosity
in r-z geometry”, Int. J. Numer. Methods Fluids, vol. 76, no. 3, pp. 185–198, 2014,
issn: 10970363. doi: 10.1002/fld.3926.

[18] P. Váchal and B. Wendroff, “On preservation of symmetry in r–z staggered La-
grangian schemes”, J. Comput. Phys., vol. 307, no. 18, pp. 496–507, 2016, issn:
00219991. doi: 10.1016/J.JCP.2015.11.063.

[19] S. K. Godunov, “A difference scheme for numerical solution of discontinuous solu-
tion of hydrodynamic equations”, Math. Sb., vol. 47, pp. 271–306, 1959.

[20] S. K. Godunov, “Reminiscences about difference schemes”, J. Comput. Phys.,
vol. 153, no. 1, pp. 6–25, 1999.

[21] F. L. Addessio, J. R. Baumgardner, J. K. Dukowicz, N. L. Johnson, B. A. Kashiwa,
R. M. Rauenzahn, and C. Zemach, CAVEAT: A computer code for fluid dynamics
problems with large distortion and internal slip, Unknow, May 1992.

[22] J. K. Dukowicz and B. J. Meltz, “Vorticity errors in multidimensional Lagrangian
codes”, J. Comput. Phys., vol. 99, no. 1, pp. 115–134, 1992, issn: 10902716. doi:
10.1016/0021-9991(92)90280-C.

[23] B. Després and C. Mazeran, “Lagrangian Gas Dynamics in Two Dimensions and
Lagrangian systems”, Arch. Ration. Mech. Anal., vol. 178, no. 3, pp. 327–372, 2005,
issn: 0003-9527. doi: 10.1007/s00205-005-0375-4.

[24] G. Carre, S. Delpino, B. Despres, and E. Labourasse, “A cell-centered Lagrangian
hydrodynamics scheme in arbitrary dimension”, J. Comput. Phys., vol. 228, no. 14,
pp. 5160–5183, 2009.

[25] B. Rebourcet, “Comments on the filtering of numerical instabilities in Lagrangian
hydrocodes”, in Conf. Numer. methods multi-material fluid flows, 2007, pp. 10–14.

https://doi.org/10.1016/j.procs.2010.04.216
https://doi.org/10.4208/cicp.170310.251110a
https://doi.org/10.4208/cicp.170310.251110a
https://doi.org/10.1002/fld.3730
https://doi.org/10.1002/fld.3730
https://doi.org/10.1016/j.jcp.2013.12.013
https://doi.org/10.1016/j.jcp.2013.12.013
https://doi.org/10.1016/j.jcp.2013.10.036
https://doi.org/10.1002/fld.3926
https://doi.org/10.1016/J.JCP.2015.11.063
https://doi.org/10.1016/0021-9991(92)90280-C
https://doi.org/10.1007/s00205-005-0375-4


BIBLIOGRAPHY 130

[26] P.-H. Maire, R Abgrall, J Breil, and J Ovadia, “A Cell-Centered Lagrangian Scheme
for Two-Dimensional Compressible Flow Problems”, SIAM J. Sci. Comput., vol. 29,
no. 4, pp. 1781–1824, 2007.

[27] P.-H. Maire and J Breil, “A second order cell-centered Lagrangian scheme for two-
dimensional compressible flow problems”, Int. J. Numer. Methods Fluids, vol. 56,
pp. 1417–1423, 2008.

[28] M. Ben-Artzi and J. Falcovitz, Generalized Riemann Problems in Computational
Fluids Dynamics. Cambridge University Press, 2003.

[29] P.-H. Maire, “A high-order cell-centered Lagrangian scheme for compressible fluid
flows in two-dimensional cylindrical geometry”, J. Comput. Phys., vol. 228, no. 18,
pp. 6882–6915, 2009, issn: 0021-9991. doi: 10.1016/J.JCP.2009.06.018.

[30] P.-H. Maire, “A high-order cell-centered Lagrangian scheme for two-dimensional
compressible fluid flows on unstructured meshes”, J. Comput. Phys., vol. 228, no. 7,
pp. 2391–2425, 2009.

[31] P.-H. Maire and B. Nkonga, “Multi-scale Godunov-type method for cell-centered
discrete Lagrangian hydrodynamics”, J. Comput. Phys., vol. 228, no. 3, pp. 799–
821, 2009.

[32] P.-H. Maire, R. Abgrall, J. Breil, R. Loubère, and B. Rebourcet, “A nominally
second-order cell-centered Lagrangian scheme for simulating elastic–plastic flows
on two-dimensional unstructured grids”, J. Comput. Phys., vol. 235, pp. 626–665,
2013, issn: 0021-9991. doi: 10.1016/J.JCP.2012.10.017.

[33] S. K. Sambasivan, M. J. Shashkov, and D. E. Burton, “A cell-centered Lagrangian
finite volume approach for computing elasto-plastic response of solids in cylindrical
axisymmetric geometries”, J. Comput. Phys., vol. 237, pp. 251–288, 2013, issn:
0021-9991. doi: 10.1016/j.jcp.2012.11.044.

[34] G. Georges, J. Breil, and P. H. Maire, “A 3D finite volume scheme for solving
the updated Lagrangian form of hyperelasticity”, Int. J. Numer. Methods Fluids,
vol. 84, no. 1, pp. 41–54, 2017, issn: 10970363. doi: 10.1002/fld.4336.

[35] P.-H. Maire, “A unified sub-cell force-based discretization for cell-centered La-
grangian hydrodynamics on polygonal grids”, Int. J. Numer. Methods Fluids, vol. 65,
no. 11-12, pp. 1281–1294, 2011, issn: 02712091. doi: 10.1002/fld.2328.

[36] D. E. Burton, T. C. Carney, N. R. Morgan, S. K. Sambasivan, and M. J. Shashkov,
“A cell-centered Lagrangian Godunov-like method for solid dynamics”, Comput.
Fluids, vol. 83, pp. 33–47, 2013, issn: 0045-7930. doi: 10.1016/J.COMPFLUID.
2012.09.008.

[37] Y. Liu, W. Shen, B. Tian, and D. K. Mao, “Maire’s new cell-centered Lagrangian
method based on arbitrary Riemann solver”, in Proc. - 2014 Int. Conf. Comput.
Sci. Comput. Intell. CSCI 2014, vol. 1, IEEE Computer Society, 2014, pp. 374–
379, isbn: 9781479930098. doi: 10.1109/CSCI.2014.158.

[38] A. Barlow and P. Roe, “A cell centered Lagrangian Godunov scheme for shock
hydrodynamics”, Comput. Fluids, vol. 46, pp. 133–136, 2011.

[39] S. K. Sambasivan, M. J. Shashkov, D. E. Burton, and M. A. Christon, “Mimetic
Theory for Cell-Centered Lagrangian Finite Volume Formulation on General Un-
structured Grids, LA-UR-12-23177”, Los Alamos National Laboratory (LANL),
Los Alamos, NM (United States), Tech. Rep., 2012. doi: 10.2172/1047081.

https://doi.org/10.1016/J.JCP.2009.06.018
https://doi.org/10.1016/J.JCP.2012.10.017
https://doi.org/10.1016/j.jcp.2012.11.044
https://doi.org/10.1002/fld.4336
https://doi.org/10.1002/fld.2328
https://doi.org/10.1016/J.COMPFLUID.2012.09.008
https://doi.org/10.1016/J.COMPFLUID.2012.09.008
https://doi.org/10.1109/CSCI.2014.158
https://doi.org/10.2172/1047081


BIBLIOGRAPHY 131

[40] D. E. Burton, N. R. Morgan, T. C. Carney, and M. A. Kenamond, “Reduction of
dissipation in Lagrange cell-centered hydrodynamics (CCH) through corner gradi-
ent reconstruction (CGR)”, J. Comput. Phys., vol. 299, pp. 229–280, 2015, issn:
0021-9991. doi: 10.1016/j.jcp.2015.06.041.

[41] F. Vilar, C. W. Shu, and P. H. Maire, “Positivity-preserving cell-centered La-
grangian schemes for multi-material compressible flows: From first-order to high-
orders. Part I: The one-dimensional case”, J. Comput. Phys., vol. 312, pp. 385–415,
2016, issn: 10902716. doi: 10.1016/j.jcp.2016.02.027.

[42] F. Vilar, C. W. Shu, and P. H. Maire, “Positivity-preserving cell-centered La-
grangian schemes for multi-material compressible flows: From first-order to high-
orders. Part II: The two-dimensional case”, J. Comput. Phys., vol. 312, pp. 416–
442, 2016, issn: 10902716. doi: 10.1016/j.jcp.2016.01.037.

[43] W. Boscheri, M. Dumbser, R. Loubère, and P.-H. Maire, “A second-order cell-
centered Lagrangian ADER-MOOD finite volume scheme on multidimensional un-
structured meshes for hydrodynamics”, J. Comput. Phys., vol. 358, pp. 103–129,
2018, issn: 0021-9991. doi: 10.1016/J.JCP.2017.12.040.

[44] F. Vilar, P.-H. Maire, and R. Abgrall, “A discontinuous Galerkin discretization
for solving the two-dimensional gas dynamics equations written under total La-
grangian formulation on general unstructured grids”, J. Comput. Phys., vol. 276,
pp. 188–234, 2014, issn: 0021-9991. doi: 10.1016/j.jcp.2014.07.030.

[45] W. B. Goad, “WAT: A numerical method for two-dimensional unsteady fluid flow”,
Los Alamos National Lab NM, Tech. Rep., 1960.

[46] P Lascaux, “Application de la méthode des éléments finis en hydrodynamique
bidimensionnelle utilisant les variables de Lagrange”, Rapp. Tech. CEA Limeil,
1972.

[47] P. Lascaux, “Application of the finite element method to 2D Lagrangian hydrody-
namics”, Proc. Int. Symp. Finite Elem. Methods Flow Probl. Swansea, Wales, Jan.
7–11, 1974, pp. 139–152, 1974.

[48] A. J. Barlow, P.-H. Maire, W. J. Rider, R. N. Rieben, and M. J. Shashkov, “Ar-
bitrary Lagrangian–Eulerian methods for modeling high-speed compressible mul-
timaterial flows”, J. Comput. Phys., vol. 322, pp. 603–665, 2016, issn: 0021-9991.
doi: 10.1016/J.JCP.2016.07.001.

[49] G. Scovazzi, M. A. Christon, T. J. Hughes, and J. N. Shadid, “Stabilized shock
hydrodynamics: I. A Lagrangian method”, Comput. Methods Appl. Mech. Eng.,
vol. 196, no. 4-6, pp. 923–966, 2007, issn: 00457825. doi: 10.1016/j.cma.2006.
08.008.

[50] G. Scovazzi, E. Love, and M. J. Shashkov, “Multi-scale Lagrangian shock hydro-
dynamics on Q1/P0 finite elements: Theoretical framework and two-dimensional
computations”, Comput. Methods Appl. Mech. Eng., vol. 197, no. 9-12, pp. 1056–
1079, 2008, issn: 00457825. doi: 10.1016/j.cma.2007.10.002.

[51] J. Cheng and C. W. Shu, “A third order conservative Lagrangian type scheme
on curvilinear meshes for the compressible Euler equations”, Commun. Comput.
Phys., vol. 4, no. 5, pp. 1008–1024, 2008, issn: 18152406.

https://doi.org/10.1016/j.jcp.2015.06.041
https://doi.org/10.1016/j.jcp.2016.02.027
https://doi.org/10.1016/j.jcp.2016.01.037
https://doi.org/10.1016/J.JCP.2017.12.040
https://doi.org/10.1016/j.jcp.2014.07.030
https://doi.org/10.1016/J.JCP.2016.07.001
https://doi.org/10.1016/j.cma.2006.08.008
https://doi.org/10.1016/j.cma.2006.08.008
https://doi.org/10.1016/j.cma.2007.10.002


BIBLIOGRAPHY 132

[52] F. Vilar, “Cell-centered discontinuous Galerkin discretization for two-dimensional
Lagrangian hydrodynamics”, Comput. Fluids, vol. 64, pp. 64–73, 2012, issn: 00457930.
doi: 10.1016/j.compfluid.2012.05.001.

[53] V. A. Dobrev, T. E. Ellis, T. V. Kolev, and R. N. Rieben, “High-order curvilin-
ear finite elements for axisymmetric Lagrangian hydrodynamics”, Comput. Fluids,
vol. 83, pp. 58–69, 2013, issn: 00457930. doi: 10.1016/j.compfluid.2012.06.
004.

[54] P. D. Lax and B Wendroff, “Systems of conservation laws”, Comm. Pure Appl.
Math., vol. 13, pp. 217–237, 1960.

[55] P. D. Lax and B Wendroff, “Difference schemes for hyperbolic equations with high
order of accuracy”, Comm. Pure Appl. Math, vol. 17, pp. 381–398, 1964.

[56] R. D. Richtmyer, “A survey of difference methods for non-steady fluid dynamics”,
National Center for Atmospheric Research, Tech. Rep. NCAR Technical Notes
63-2, 1963, p. 32. doi: 10.5065/D67P8WCQ.

[57] J. C. Wilson, “Stability of Richtmyer Type Difference Schemes in any Finite Num-
ber of Space Variables and Their Comparison with Multistep Strang Schemes”,
IMA J. Appl. Math., vol. 10, no. 2, pp. 238–257, 1972, issn: 0272-4960. doi:
10.1093/imamat/10.2.238.

[58] R. J. LeVeque, Finite Volume Methods for Hyperbolic Problems. Cambridge: Cam-
bridge University Press, 2002, p. 558, isbn: 9780511791253. doi: 10.1017/CBO9780511791253.

[59] M. Shashkov and B. Wendroff, “A Composite Scheme for Gas Dynamics in La-
grangian Coordinates”, J. Comput. Phys., vol. 150, no. 2, pp. 502–517, 1999, issn:
0021-9991. doi: 10.1006/JCPH.1999.6192.

[60] P. Bureš and R. Liska, “Hybrid schemes for Euler equations in Lagrangian coor-
dinates”, in Algoritm. 2005, A Handlovičová, Z Krivá, K Mikula, and D Ševčovič,
Eds., Slovak University of Technology, Bratislava, 2005, pp. 83–92.

[61] R. Liska, M. Shashkov, and B. Wendroff, “The early influence of peter lax on
computational hydrodynamics and an application of lax-friedrichs and lax-wendroff
on triangular grids in Lagrangian coordinates”, Acta Math. Sci., vol. 31, no. 6,
pp. 2195–2202, 2011, issn: 0252-9602. doi: 10.1016/S0252-9602(11)60393-7.

[62] T. Lung, “Toward a Simple, Accurate Lagrangian Hydrocode”, PhD thesis, Uni-
versity of Michigan, 2015.

[63] A. Harten, P. D. Lax, B van Leer, and B. van Leer, “On Upstream Differencing and
Godunov-Type Schemes for Hyperbolic Conservation Laws”, SIAM Rev., vol. 25,
no. 1, pp. 35–61, 1983, issn: 0036-1445. doi: 10.1137/1025002.

[64] D. Fridrich, R. Liska, and B. Wendroff, “Some cell-centered Lagrangian Lax–Wendroff
HLL hybrid schemes”, J. Comput. Phys., vol. 326, pp. 878–892, 2016, issn: 00219991.
doi: 10.1016/j.jcp.2016.09.022.

[65] D. Fridrich, R. Liska, and B. Wendroff, “Cell-centered Lagrangian Lax–Wendroff
HLL hybrid method for elasto-plastic flows”, Comput. Fluids, vol. 157, pp. 164–
174, 2017. doi: 10.1016/j.compfluid.2017.08.030.

https://doi.org/10.1016/j.compfluid.2012.05.001
https://doi.org/10.1016/j.compfluid.2012.06.004
https://doi.org/10.1016/j.compfluid.2012.06.004
https://doi.org/10.5065/D67P8WCQ
https://doi.org/10.1093/imamat/10.2.238
https://doi.org/10.1017/CBO9780511791253
https://doi.org/10.1006/JCPH.1999.6192
https://doi.org/10.1016/S0252-9602(11)60393-7
https://doi.org/10.1137/1025002
https://doi.org/10.1016/j.jcp.2016.09.022
https://doi.org/10.1016/j.compfluid.2017.08.030


BIBLIOGRAPHY 133

[66] D. Fridrich, R. Liska, and B. Wendroff, “Cell-centred Lagrangian Lax–Wendroff
HLL hybrid schemes in cylindrical geometry”, in Springer Proc. Math. Stat., vol. 236,
Springer, Cham, 2018, pp. 565–576, isbn: 9783319915449. doi: 10.1007/978-3-
319-91545-6_43.

[67] D. Fridrich, R. Liska, and B. Wendroff, “Cell-centered Lagrangian Lax-Wendroff
HLL Hybrid Scheme in Cylindrical Geometry”, J. Comput. Phys., vol. 417, p. 109 605,
2020. doi: 10.1016/j.jcp.2020.109605.

[68] D. Fridrich, R. Liska, I. Tarant, P. Váchal, and B. Wendroff, “Cell-centered La-
grangian Lax-Wendroff HLL Hybrid Scheme on unstructured meshes”, Acta Poly-
tech., submitted.

[69] J. Serrin, “Mathematical Principles of Classical Fluid Mechanics”, in Fluid Dynam-
ics I/Strömungsmechanik I, Springer, 1959, pp. 125–263. doi: 10.1007/978-3-
642-45914-6_2.

[70] A. J. Chorin and J. E. Marsden, A mathematical introduction to fluid mechanics.
Springer, 1990, isbn: 0387904069.

[71] E. N. Dvorkin and M. B. Goldschmit, Nonlinear Continua. Springer-Verlag, 2005,
p. 266, isbn: 3-540-24985-0. doi: 10.1007/3-540-29264-0.

[72] G. Scovazzi and T. Hughes, “Lecture Notes on Continuum Mechanics on Arbitrary
Moving Domains, 2007-6312P”, Sandia National Laboratories, Tech. Rep., 2007.

[73] M. E. Gurtin, E. Fried, and L. Anand, The Mechanics and Thermodynamics of
Continua. Cambridge: Cambridge University Press, 2010, isbn: 9780511762956.
doi: 10.1017/CBO9780511762956.

[74] R. Courant, K. Friedrichs, and H. Lewy, “Über die partiellen Differenzengleichun-
gen der mathematischen Physik”, Math. Ann., vol. 100, no. 1, pp. 32–74, 1928,
issn: 00255831. doi: 10.1007/BF01448839.

[75] F. Vilar, P. H. Maire, and R. Abgrall, “Cell-centered discontinuous Galerkin dis-
cretizations for two-dimensional scalar conservation laws on unstructured grids and
for one-dimensional Lagrangian hydrodynamics”, Comput. Fluids, vol. 46, no. 1,
pp. 498–504, 2011, issn: 00457930. doi: 10.1016/j.compfluid.2010.07.018.

[76] B. Wendroff and A. B. White, “A supraconvergent scheme for nonlinear hyperbolic
systems”, Comput. Math. with Appl., 1989, issn: 08981221. doi: 10.1016/0898-
1221(89)90232-0.

[77] J. P. Boris and D. L. Book, “Flux-corrected transport. I. SHASTA, a fluid transport
algorithm that works”, J. Comput. Phys., vol. 11, no. 1, pp. 38–69, 1973, issn:
10902716. doi: 10.1016/0021-9991(73)90147-2.

[78] R. Loubère, “On the effect of the different limiters for the tensor artificial viscos-
ity for the compatible Lagrangian hydrodynamics scheme, LA-UR-05-9301”, Los
Alamos National Laboratory, Tech. Rep., 2006.

[79] V. F. Kuropatenko, “Difference methods for hydrodynamics equations”, in Differ.
methods Solut. Probl. Math. physics. Part 1, Moscow: Nauka, 1966, pp. 107–137.

[80] M. L. Wilkins, “Use of artificial viscosity in multidimensional fluid dynamic calcu-
lations”, J. Comput. Phys., vol. 36, no. 3, pp. 281–303, 1980, issn: 0021-9991. doi:
10.1016/0021-9991(80)90161-8.

https://doi.org/10.1007/978-3-319-91545-6_43
https://doi.org/10.1007/978-3-319-91545-6_43
https://doi.org/10.1016/j.jcp.2020.109605
https://doi.org/10.1007/978-3-642-45914-6_2
https://doi.org/10.1007/978-3-642-45914-6_2
https://doi.org/10.1007/3-540-29264-0
https://doi.org/10.1017/CBO9780511762956
https://doi.org/10.1007/BF01448839
https://doi.org/10.1016/j.compfluid.2010.07.018
https://doi.org/10.1016/0898-1221(89)90232-0
https://doi.org/10.1016/0898-1221(89)90232-0
https://doi.org/10.1016/0021-9991(73)90147-2
https://doi.org/10.1016/0021-9991(80)90161-8


BIBLIOGRAPHY 134

[81] E. F. Toro, Riemann Solvers and Numerical Methods for Fluid Dynamics. Berlin,
Heidelberg: Springer, 2009, isbn: 978-3-540-25202-3. doi: 10.1007/b79761.

[82] S. F. Davis, “Simplified Second-Order Godunov-Type Methods”, SIAM J. Sci. Stat.
Comput., vol. 9, no. 3, pp. 445–473, 1988, issn: 0196-5204. doi: 10.1137/0909030.

[83] W. F. Noh, “Errors for calculations of strong shocks using an artificial viscosity
and artificial heat flux”, J. Comput. Phys., vol. 72, no. 1, pp. 78–120, 1987, issn:
10902716. doi: 10.1016/0021-9991(87)90074-X.

[84] G. A. Sod, “A survey of several finite difference methods for systems of nonlinear
hyperbolic conservation laws”, J. Comput. Phys., vol. 27, no. 1, pp. 1–31, 1978,
issn: 00219991. doi: 10.1016/0021-9991(78)90023-2.

[85] P. Woodward and P. Colella, “The numerical simulation of two-dimensional fluid
flow with strong shocks”, J. Comput. Phys., vol. 54, no. 1, pp. 115–173, 1984, issn:
0021-9991. doi: 10.1016/0021-9991(84)90142-6.

[86] R. Loubère and M. J. Shashkov, “A subcell remapping method on staggered polyg-
onal grids for arbitrary-Lagrangian–Eulerian methods”, J. Comput. Phys., vol. 209,
no. 1, pp. 105–138, 2005, issn: 0021-9991. doi: 10.1016/J.JCP.2005.03.019.

[87] L. I. Sedov, Similarity and dimensional methods in mechanics. Academic Press,
1959, p. 363, isbn: 9781483200880.

[88] J. R. Kamm and F. X. Timmes, “On efficient generation of numerically robust
Sedov solutions”, Los Alamos National Laboratory, Tech. Rep. LA-UR,07-2849,
2007.

[89] J. Saltzman and P. Colella, “Second Order Upwind Transport Methods for La-
grangian Hydrodynamics”, Los Alamos National Laboratory, Tech. Rep. LA-UR
85-678, 1985.

[90] M. Kucharik, R. V. Garimella, S. P. Schofield, and M. J. Shashkov, “A comparative
study of interface reconstruction methods for multi-material ALE simulations”, J.
Comput. Phys., vol. 229, no. 7, pp. 2432–2452, 2010, issn: 10902716. doi: 10.
1016/j.jcp.2009.07.009.

[91] V. P. Chiravalle and N. R. Morgan, “A 3D finite element ALE method using an
approximate Riemann solution”, Int. J. Numer. Methods Fluids, vol. 83, no. 8,
pp. 642–663, 2017, issn: 10970363. doi: 10.1002/fld.4284.

[92] W. D. Schulz, “Two-Dimensional Lagrangian Hydrodynamic Difference Equations,
ADA385003”, California. Univ., Livermore. Lawrence Radiation Lab., Tech. Rep.,
1963.

[93] N. V. Mikhailova, V. F. Tishkin, N. N. Tyurina, A. P. Favorskii, and M. Y.
Shashkov, “Numerical modelling of two-dimensional gas-dynamic flows on a variable-
structure mesh”, USSR Comput. Math. Math. Phys., vol. 26, no. 5, pp. 74–84, 1986,
issn: 00415553. doi: 10.1016/0041-5553(86)90043-1.

[94] A. Solov’ev and M. Shashkov, “Difference scheme for the Dirichlet particle method
in cylindrical method in cylindrical coordinates, conserving symmetry of gas-dynamical
flow”, Differ. Equations, vol. 24, pp. 817–823, 1988.

[95] P. P. Whalen, “Algebraic Limitations on Two-Dimensional Hydrodynamics Simu-
lations”, J. Comput. Phys., vol. 124, no. 1, pp. 46–54, 1996, issn: 0021-9991. doi:
10.1006/JCPH.1996.0043.

https://doi.org/10.1007/b79761
https://doi.org/10.1137/0909030
https://doi.org/10.1016/0021-9991(87)90074-X
https://doi.org/10.1016/0021-9991(78)90023-2
https://doi.org/10.1016/0021-9991(84)90142-6
https://doi.org/10.1016/J.JCP.2005.03.019
https://doi.org/10.1016/j.jcp.2009.07.009
https://doi.org/10.1016/j.jcp.2009.07.009
https://doi.org/10.1002/fld.4284
https://doi.org/10.1016/0041-5553(86)90043-1
https://doi.org/10.1006/JCPH.1996.0043


BIBLIOGRAPHY 135

[96] E. Caramana, D. Burton, M. Shashkov, and P. Whalen, “The Construction of
Compatible Hydrodynamics Algorithms Utilizing Conservation of Total Energy”,
J. Comput. Phys., vol. 146, no. 1, pp. 227–262, 1998, issn: 0021-9991. doi: 10.
1006/JCPH.1998.6029.

[97] A. Barlow, D. Burton, and M. Shashkov, “Compatible, energy and symmetry pre-
serving 2D Lagrangian hydrodynamics in rz — cylindrical coordinates”, Procedia
Comput. Sci., vol. 1, no. 1, pp. 1893–1901, 2010, issn: 1877-0509. doi: 10.1016/
J.PROCS.2010.04.212.

[98] L. G. Margolin, M. Shashkov, and P. K. Smolarkiewicz, “A discrete operator cal-
culus for finite difference approximations”, Comput. Methods Appl. Mech. Eng.,
vol. 187, no. 3-4, pp. 365–383, 2000, issn: 0045-7825. doi: 10 . 1016 / S0045 -
7825(00)80001-8.

[99] Z. Shen, G. Yuan, Y. Jingyan, and X. Liu, “A cell-centered Lagrangian scheme in
two-dimensional cylindrical geometry”, Sci. China, Ser. A Math., vol. 51, no. 8,
pp. 1479–1494, 2008, issn: 1006-9283. doi: 10.1007/s11425-008-0121-0.

[100] J. Cheng and C.-W. Shu, “A cell-centered Lagrangian scheme with the preserva-
tion of symmetry and conservation properties for compressible fluid flows in two-
dimensional cylindrical geometry”, J. Comput. Phys., vol. 229, no. 19, pp. 7191–
7206, 2010, issn: 10902716. doi: 10.1016/j.jcp.2010.06.007.

[101] J. Cheng and C.-W. Shu, “Improvement on Spherical Symmetry in Two-Dimensional
Cylindrical Coordinates for a Class of Control Volume Lagrangian Schemes”, Com-
mun. Comput. Phys., vol. 11, no. 4, pp. 1144–1168, 2012, issn: 1815-2406. doi:
10.4208/cicp.030710.131210s.

[102] X. Liu, N. R. Morgan, and D. E. Burton, “Lagrangian discontinuous Galerkin
hydrodynamic methods in axisymmetric coordinates”, J. Comput. Phys., vol. 373,
pp. 253–283, 2018, issn: 10902716. doi: 10.1016/j.jcp.2018.06.073.

[103] R. Loubère, P. H. Maire, and M. Shashkov, “ReALE: A Reconnection Arbitrary-
Lagrangian-Eulerian method in cylindrical geometry”, Comput. Fluids, vol. 46,
no. 1, pp. 59–69, 2011, issn: 00457930. doi: 10.1016/j.compfluid.2010.08.024.

[104] D. Burton, N. Morgan, and T. Carney, “On the question of area weighting in cell-
centered hydrodynamics, LA-UR-13-23155.2”, Los Alamos National Lab.(LANL),
Los Alamos, NM (United States), Tech. Rep., 2013.

[105] J. D. Huba, NRL Plasma Formulary. Naval Research Laboratory Washington, DC,
2019.

[106] S. V. Coggeshall and J. Meyer-ter Vehn, “Group-invariant solutions and optimal
systems for multidimensional hydrodynamics”, J. Math. Phys., vol. 33, no. 10,
pp. 3585–3601, 1992, issn: 00222488. doi: 10.1063/1.529907.

[107] L. Margolin, M. Shashkov, and M. Taylor, “Symmetry-preserving discretizations
for lagrangian gas dynamics”, in Proceedings of the 3rd European Conference, Nu-
merical Mathematics and Advanced Applications, World Scientific Publisher, 2000,
pp. 725–732.

[108] J. A. Trangenstein and P. Colella, “A higher-order Godunov method for modeling
finite deformation in elastic-plastic solids”, Commun. Pure Appl. Math., vol. 44,
no. 1, pp. 41–100, 1991, issn: 00103640. doi: 10.1002/cpa.3160440103.

https://doi.org/10.1006/JCPH.1998.6029
https://doi.org/10.1006/JCPH.1998.6029
https://doi.org/10.1016/J.PROCS.2010.04.212
https://doi.org/10.1016/J.PROCS.2010.04.212
https://doi.org/10.1016/S0045-7825(00)80001-8
https://doi.org/10.1016/S0045-7825(00)80001-8
https://doi.org/10.1007/s11425-008-0121-0
https://doi.org/10.1016/j.jcp.2010.06.007
https://doi.org/10.4208/cicp.030710.131210s
https://doi.org/10.1016/j.jcp.2018.06.073
https://doi.org/10.1016/j.compfluid.2010.08.024
https://doi.org/10.1063/1.529907
https://doi.org/10.1002/cpa.3160440103


BIBLIOGRAPHY 136

[109] B. Howell and G. Ball, “A Free-Lagrange Augmented Godunov Method for the
Simulation of Elastic–Plastic Solids”, J. Comput. Phys., vol. 175, no. 1, pp. 128–
167, 2002, issn: 0021-9991. doi: 10.1006/JCPH.2001.6931.

[110] V. A. Dobrev, T. V. Kolev, and R. N. Rieben, “High order curvilinear finite
elements for elastic–plastic Lagrangian dynamics”, J. Comput. Phys., vol. 257,
pp. 1062–1080, 2014, issn: 0021-9991. doi: 10.1016/J.JCP.2013.01.015.

[111] J.-B. B. Cheng, E. F. Toro, S. Jiang, M. Yu, and W. Tang, “A high-order cell-
centered Lagrangian scheme for one-dimensional elastic–plastic problems”, Com-
put. Fluids, vol. 122, pp. 136–152, 2015, issn: 0045-7930. doi: 10 . 1016 / J .
COMPFLUID.2015.08.029.

[112] B. Panicaud, E. Rouhaud, G. Altmeyer, M. Wang, R. Kerner, A. Roos, and O.
Ameline, “Consistent hypo-elastic behavior using the four-dimensional formalism
of differential geometry”, Acta Mech., vol. 227, no. 3, pp. 651–675, 2016, issn:
0001-5970. doi: 10.1007/s00707-015-1470-8.

[113] M. Wang, B. Panicaud, E. Rouhaud, R. Kerner, and A. Roos, “Incremental consti-
tutive models for elastoplastic materials undergoing finite deformations by using a
four-dimensional formalism”, Int. J. Eng. Sci., vol. 106, pp. 199–219, 2016, issn:
0020-7225. doi: 10.1016/J.IJENGSCI.2016.06.006.

[114] S. Gavrilyuk, N. Favrie, and R. Saurel, “Modelling wave dynamics of compressible
elastic materials”, J. Comput. Phys., vol. 227, no. 5, pp. 2941–2969, 2008, issn:
0021-9991. doi: 10.1016/j.jcp.2007.11.030.

[115] G. H. Miller and P Colella, “A High-Order Eulerian Godunov Method for Elas-
tic–Plastic Flow in Solids”, J. Comput. Phys., vol. 167, no. 1, pp. 131–176, 2001,
issn: 0021-9991. doi: 10.1006/jcph.2000.6665.

[116] G. Kluth and B. Després, “Discretization of hyperelasticity on unstructured mesh
with a cell-centered Lagrangian scheme”, J. Comput. Phys., vol. 229, no. 24, pp. 9092–
9118, 2010, issn: 0021-9991. doi: 10.1016/j.jcp.2010.08.024.

[117] M. Aguirre, A. J. Gil, J. Bonet, and C. H. Lee, “An upwind vertex centred Finite
Volume solver for Lagrangian solid dynamics”, J. Comput. Phys., vol. 300, pp. 387–
422, 2015, issn: 0021-9991. doi: 10.1016/j.jcp.2015.07.029.

[118] W. Boscheri, M. Dumbser, and R. Loubère, “Cell centered direct Arbitrary-Lagrangian-
Eulerian ADER-WENO finite volume schemes for nonlinear hyperelasticity”, Com-
put. Fluids, vol. 134, pp. 111–129, 2016, issn: 0045-7930. doi: 10 . 1016 / J .
COMPFLUID.2016.05.004.

[119] A. F. Bower, Applied mechanics of solids. CRC press, 2009.

[120] I. Peshkov and E. Romenski, “A hyperbolic model for viscous Newtonian flows”,
Contin. Mech. Thermodyn., vol. 28, no. 1-2, pp. 85–104, 2016, issn: 0935-1175.
doi: 10.1007/s00161-014-0401-6.

[121] J. Hallquist, “LS-DYNA Theory Manual”, Livermore Softw. Technol. Corp., vol. 3,
pp. 25–31, 2006.

[122] H. S. Udaykumar, L. Tran, D. M. Belk, and K. J. Vanden, “An Eulerian method
for computation of multimaterial impact with ENO shock-capturing and sharp
interfaces”, J. Comput. Phys., vol. 186, no. 1, pp. 136–177, 2003, issn: 00219991.
doi: 10.1016/S0021-9991(03)00027-5.

https://doi.org/10.1006/JCPH.2001.6931
https://doi.org/10.1016/J.JCP.2013.01.015
https://doi.org/10.1016/J.COMPFLUID.2015.08.029
https://doi.org/10.1016/J.COMPFLUID.2015.08.029
https://doi.org/10.1007/s00707-015-1470-8
https://doi.org/10.1016/J.IJENGSCI.2016.06.006
https://doi.org/10.1016/j.jcp.2007.11.030
https://doi.org/10.1006/jcph.2000.6665
https://doi.org/10.1016/j.jcp.2010.08.024
https://doi.org/10.1016/j.jcp.2015.07.029
https://doi.org/10.1016/J.COMPFLUID.2016.05.004
https://doi.org/10.1016/J.COMPFLUID.2016.05.004
https://doi.org/10.1007/s00161-014-0401-6
https://doi.org/10.1016/S0021-9991(03)00027-5


BIBLIOGRAPHY 137

[123] W. N. Weseloh, S. P. Clancy, and J. W. Painter, “PAGOSA physics manual, LA-
14425-M”, Los Alamos National Lab., Los Alamos, NM (United States), Tech.
Rep., pp. 1–249.

[124] R. Kamm, James, J. S. Brock, S. T. Brandon, D. L. Cotrell, B. Johnson, and P.
Knupp, “Enhanced Verification Test Suite for Physics Simulation Codes, LLNL-
TR-411291”, Lawrence Livermore National Lab. (LLNL), Livermore, CA (United
States), Los Alamos, NM, Tech. Rep., 2008. doi: 10.2172/950084.

[125] G. I. Taylor, “The use of flat-ended projectiles for determining dynamic yield stress
I. Theoretical considerations”, Proc. R. Soc. London. Ser. A. Math. Phys. Sci.,
vol. 194, no. 1038, pp. 289–299, 1948, issn: 2053-9169. doi: 10.1098/rspa.1948.
0081.

https://doi.org/10.2172/950084
https://doi.org/10.1098/rspa.1948.0081
https://doi.org/10.1098/rspa.1948.0081

	Abstract
	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	Introduction
	Lagrangian and Eulerian description
	Material derivative
	Reynolds transport formula
	Conservation laws
	Continuity equation
	Conservation of momentum
	Conservation of energy
	Geometric Conservation Law
	Euler equations in Lagrangian coordinates

	Lagrangian finite volume
	Ideal Gas Equation of State

	Lagrangian hydrodynamics in one spatial dimension
	Governing equations in 1D
	Geometry
	Lax-Wendroff scheme
	Derivation of the Lax Wendroff scheme
	Extension of Lax-Wendroff for nonlinear systems of conservation laws
	Discretization in Lagrangian coordinates
	Time step computation
	Accuracy of Lax-Wendroff scheme – test problem
	Wendroff-White averaging in Lagrangian coordinates

	HLL based dissipation
	Riemann problem
	Godunov method
	HLL scheme
	HLL scheme in Lagrangian moving frame
	LW+n schemes
	Noh problem
	Treating material interfaces and contact discontinuities
	Limiting artificial dissipation
	Recapitulation of the method

	Numerical results in 1D
	Sod shock tube
	Woodward-Collela blast wave


	Lagrangian hydrodynamics in 2D Cartesian geometry
	Geometry
	Lax-Wendroff Scheme for Finite Volumes
	Lax-Friedrichs and Wendroff-White predictors
	Lax-Wendroff corrector
	GCL proof

	Artificial dissipation in 2D
	Limiting artificial dissipation in multiple dimensions

	Time step control
	Numerical results in 2D Cartesian geometry
	Kidder
	Noh
	Sedov
	Saltzman
	Triple point


	Lagrangian hydrodynamics in 2D cylindrical coordinates
	Cylindrical 2D geometry
	Differential operators in cylindrical geometry
	Governing equations in cylindrical geometry
	Lax-Wendroff Scheme in 2D cylindrical coordinates (LWrz)
	GCL Compatibility – using Simpson's rule
	Artificial dissipation in cylindrical coordinates

	Numerical results in 2D cylindrical coordinates
	Free expansion problem
	Coggeshall problem
	Kidder
	Noh
	Spherical Sedov
	Spherical Sod
	Axisymmetric Triple-Point


	Wilkins model for elastoplasticity
	Conservation laws
	Incremental constitutive law
	Mie-Grüneisen equation of state
	Material parameters


	Method for 1D Elastic-Plastic flow
	Incremental constitutive law in 1D
	Numerical method
	Radial return algorithm
	Timestep
	Recapitulation of a single step

	Numerical results
	Elastoplastic piston
	Wilkins problem
	Purely elastic impact


	Method for 2D Elastic-Plastic flow
	Incremental constitutive law in 2D
	Discretization of conservation laws
	Predictor for strain rate tensor
	Corrector for strain rate tensor
	Timestep

	Numerical results
	Elastic vibration of Beryllium plate
	Collapse of Beryllium shell
	Cartesian Taylor bar impact


	Conclusion
	Boundary conditions
	Ghost cells
	Free boundary condition
	Prescribed velocity
	Reflecting boundary
	Prescribed pressure
	Free Surface Boundary

	Symmetry proofs
	Symmetry preservation for LWrz
	Equiangular polar mesh
	Proof of symmetry of velocity predictor
	Proof of symmetry of predictor for density, energy, and pressure
	Proof of symmetry of velocity corrector
	Proof of symmetry of corrector for density, energy, and pressure
	Symmetry preservation of artificial viscosity term and its correction
	Proof of symmetry of energy dissipation

	Bibliography

