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Abstrakt

Práce se zabývá vývojem alternativních p°ístup· k odhadu Rényiho dimenze a
Hurstova exponentu. Cílem je vypracovat metody, které by vedly k odstran¥ní
systematické chyby odhadu, sníºení standardní odchylky odhadu a zobecn¥ní p°í-
stup· k odhadu Rényiho dimenze pro bodové mnoºiny a zlomkové procesy. Práce
p°edstavuje novou metodu rota£ního spektra pro odhad korela£ní dimenze a metodu
modi�kované Rényiho entropie pro odhad Rényiho dimenze. Jejich vlastnosti jsou
studovány teoreticky i experimentáln¥. V oblasti odhadu Hurstova exponentu jsou
vyvinuty metody modi�kovaného pr·chodu nulou, zlomkového Brownova mostu
a autokorela£ní p°ístup s vyuºitím Wishartova rozd¥lení. V²echny metody jsou
podrobeny statistickému testování na mnoºinách se známou dimenzí s cílem ov¥°it
jejich vydatnost, nestrannost a konzistenci. Metody odhadu dimenze jsou aplikovány
na reálná data pro detekci Alzheimerovy choroby ze signálu EEG, m¥°ení predikova-
telnosti index· akciových trh·, studium signálu autolumunescence a detekci rakoviny
prsu z mamogra�e.

Abstract

The work presents alternative approaches to Renyi dimension and Hurst Exponent
estimation. The aim is to develop methods leading to bias removal, reduction
of the standard deviation of the estimate and generalization of the approaches
to Renyi dimension estimation both for point sets as well as fractional processes.
The novel method of rotational spectrum for correlation dimension estimation and
the modi�ed Renyi entropy method for general Renyi dimension estimations are
developed and their properties are theoretically and experimentally veri�ed. For
analysis of fractional processes, the method of revisited zero-crossing, fractional
Brownian bridge and autocorrelation using Wishart distribution are presented. All
the methods are statistically tested on arti�cial sets with known dimension and their
unbiasedness, e�ciency and consistency is veri�ed. The methods were applied to
real data and proven to be suitable for Alzheimer disease detection from EEG signal,
evaluating predictability of stock market indices, analysis of autoluminiscence signal
and breast cancer detection from mammography.
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Introduction

Introduction

Fractal sets are a special class of structures in Euclidean space, having non-integer
dimension that exceeds their standard topological dimension. Many natural phe-
nomena look like they are fractals, but with respect to its formal de�nition, real
fractal sets exist only in theory. The in�nite amount of detail is the pre-requisite of
having non-integer dimension and in real world, every structure has �nite number
of elements - in case of scienti�c computing, we are limited by �nite memory of a
computer, in case of natural phenomena, the scale as the measure of detail ends with
the size of a cell in biological sense or size of atom in the physical sense. Therefore,
there is most likely no structure in the world that would be a true fractal.

Why it is useful to develop the theory of fractal dimension estimation, when there
are no true fractals in reality? In fact, many real-world phenomena, from the area of
economics, hydrology, biomedicine and many more are samples of fractal sets. While
we are never able to �nd a structure with in�nite amount of detail, we assume the
real data are uniformly distributed samples from the theoretical fractal structure
and we can use those to be modelled using a continuous model. Computational
experiments from the past have shown even when using simple techniques for the
fractal dimension estimation, the structures signi�cantly di�er in their dimension
and can be suitable for fractal modelling.

The concept of non-integer dimension is not new, the beginning of the investigations
of the fractal sets started already in the 60s of the previous century, pioneered by
Hurst [1] and Mandelbrot [2]. Since then, the non-integer dimension was examined
both in theoretical and experimental way. There were developed many fractal sets
and functions with known dimension that can nowadays serve as as good examples
for testing purposes.

Looking at the current state of the art, there are various de�nitions of fractal
dimensions as well as conventional methods for its estimation. To the most com-
mon de�nitions belong Hausdor� dimension, self-similarity dimension and Renyi
dimension. Nowadays, any approach leads to several challenges, such as

• uniform generation of points from deterministic and random fractals,

• storing very detailed fractal structures in computer memory,

• precise estimation of any type of fractal dimension.
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Introduction

The �rst challenge exists already from the origination of chaos theory. There are
many ways how to generate points in Rn � using the self-similarity and associated
contraction mappings, one can generate the points in certain recurrence depth. The
other possibility of generation of fractal functions is the uniform sampling of the
function domain and the calculation of dependent values. A little bit more trickier
is the generation of points from multidimensional processes since one needs to use
specialized methods that are compliant with the distribution of the multidimensional
random variable. Most methods, regardless the type of fractal dimension, require
uniform sampling of points from the original set.

Storing the fractal set for analysis is also not an easy task. Since the fractal sets
have usually in�nite level of detail, it is not possible to store them in computers
memory point by point. When measuring the data from real word, such as �nancial
or biomedical data, the detail of the measurement (or sampling rate) and ability of
storing this detail in computer memory plays an important role in the quality of
subsequent estimate.

The biggest challenge that is not resolved yet for many types of fractal structures
is the precise and unbiased estimate of its dimension. The current methods that
are widely used both in mathematics and engineering are heavily dependent on the
type of investigated structure. For �xed structure of data, such as time series, set
sampling or binary picture, the methods can provide relatively accurate estimate of
the dimension.

The research work described in this thesis is directly challenging the methods that
are considered "traditional" for fractal dimension estimation and providing alterna-
tive approaches that are aimed to:

• reduce the bias from the estimation,

• diminish variance of the estimate,

• generalize the approaches to Renyi dimension estimation,

• provide an estimate even when data sample is small,

• provide dimension estimate of real signals and images.

The traditional methods are simple to use, but they come with a cost of a bias that
is present in the estimate, especially when following conventional grid methods. The
uncertainty of the estimates is high and therefore the conventional algorithms are
not so useful for being applied on real data. The problem is present as well when the
size of the input data is small. The general approach of the research methodology
for developing new methods for Renyi dimension estimation always obeys following
procedure:

1. Introduce a new de�nition of the dimension and examine its properties.

2. Theoretically prove that the new de�nition is equivalent to the traditional
de�nition.
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3. De�ne an estimation algorithm using the new de�nition of the dimension.

4. Examine this algorithm on simulated data with known dimension and compare
to the traditional method of estimation.

5. Apply the methods to samples from real processes and/or images.

The thesis follows following order; Chapters 1-3 provide the overview of the current
state of art with respect to the dimension de�nition, description of fractals with
known dimension as well as the sketch of the traditional methods that are used for
Renyi dimension estimation. Chapter 4 summarizes the thesis aims and describes the
research goal. Chapters 5-9 describe novel methods for fractal dimension estimation,
with the focus on correlation and Renyi dimension in case of point sets and with
focus on Hurst exponent estimation in the case of random processes and time
series. Experimental part is divided between chapters 10 and 11, while we are
�rst demonstrating the performance of the developed methods on the fractals with
known dimension and afterwards showing case studies of the applications on real
data.
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Chapter 1. Point Set can be a Fractal Set

Chapter 1

Point Set can be a Fractal Set

This chapter provides an introduction to the fractal sets and summarizes the well-
known fractal dimension types and their properties.

1.1 Topological Dimension

Sets in n-dimensional Euclidean space can be characterized by their topological
dimension. This dimension always exists and its de�nition is based on covering.
The topological dimension is the most common type of dimension and represents the
natural understanding of the space measure. As a simple example, the topological
dimension of �nite number of points in Euclidean space equals zero, while the
topological dimension of a �nite set of lines equals one.

For set A � Rn we de�ne [3] the δ-coverage of set A as a countable sequence of open
sets pAiq, i � 1, . . . ,�8, satisfying

• diampAiq ¤ δ for each i,

• A � �
iAi.

For any δ-coverage of the investigated set, we can always �nd a re�nement, i.e. the
ε-coverage for ε   δ. The topological dimension of set A � Rn is the smallest non-
negative integer m such that for any coverage of set A, there exists a re�nement
satisfying that every point from set A is contained in the intersection at most m� 1
sets from the re�nement.

The topological dimension is often denoted as DT. For any set A � Rn, DT is always
non-negative integer smaller or equal to n. The topological dimension is important
in the de�nition of a fractal sets.
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1.2 Hausdor� Dimension

Hausdor� measure and dimension are the traditional descriptors of a fractal set.
The Hausdor� s-dimensional measure of any set F � Rn is de�ned [3] as

HspFq � lim
δÑ0

inf

#
�8̧

i�1

pdiampAiqqs : pAiq is δ-coverage of set F
+
. (1.1)

As easy to prove, the limit from the equation (1.1) always exists [3]. The interesting
property of Hausdor� s-dimensional measure is that for every set, for most s ¡ 0,
the measure will be having values either 0 or �8. In fact, for any F � Rn, there
exists certain s0 ¡ 0 such as HspFq � �8 for any s   s0 and HspFq � 0 for s ¡ s0.
Since the value of s0 is unique for any Euclidean set, the Hausdor� dimension is
de�ned as

DH � inf ts : HspFq � 0 and s ¥ 0u . (1.2)

The Hausdor� dimension is a theoretical construct and provides the foundation of
fractal sets. Having both Hausdor� and topological dimension in hand, any set
F � Rn that ful�ls the condition of DT   DH is called a fractal set. Moreover,
according to Sznirelman theorem [4] the Hausdor� dimension is always greater or
equal than the topological dimension, therefore for a set to be quali�ed as fractal,
strong inequality must occur between these two dimension types. The advantage
of Hausdo� dimension is its general existence for any set, however the deduction
of the dimension from the de�nition is fairly di�cult. Therefore, there are other
types of dimension that allows to estimate its lower and upper bound using simpler
algorithms.

1.3 Capacity Dimension

Capacity dimension [5, 3, 6] (sometimes called box-counting dimension) is another
type of fractal dimension that is de�ned again via coverings, however the covering
sets can have grid structure and the de�nition does not employ any measure.

For non-empty and bounded set F � Rn and parameter δ ¡ 0 we de�ne NδpFq as
the minimum number of sets with diameter at most δ that can cover the set F , i.e.
the set F is the subset of the union of the covering sets. The capacity dimension
is based on the de�nition of lower and upper case, when as the covering diameter δ
goes to zero. The lower capacity dimension is de�ned as

dimBpFq � lim inf
δÑ0�

logNδpFq
� log δ

(1.3)

and the upper capacity dimension is de�ned as

dimBpFq � lim sup
δÑ0�

logNδpFq
� log δ

. (1.4)
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In case that dimBpFq � dimBpFq, we de�ne the capacity dimension of set F as

D0 � lim
δÑ0�

logNδpFq
� log δ

. (1.5)

For δ Ñ 0�, both nominator and denominator will be increasing their value to
�8. Only when the upper dimension equals the lower dimension, the capacity
dimension exists. This condition is, however, ful�lled in the majority of self-similar
sets. Moreover, the the capacity dimension D0 is the upper bound of the Hausdor�
dimension, i.e. DH ¤ D0. For any set that satis�es the open set condition [7], the
two dimensions are equal.

To simplify the calculation of capacity dimension of Euclidean set F � Rn, the
conditions in the coverage can be further relaxed [3]. The parameter Nδ can denote
the minimum number of closed (hyper)balls of radius δ that cover F as well as by
the (hyper)cubes of side δ that cover F . The covering cubes can be arranged into
a grid, which can simplify the experimental estimation of the capacity dimension
similarly as in Fig. 1.1.

Figure 1.1: Set inside the grid of side δ � 1 with N1 � 45 (left) and δ � 1{2 with
N2 � 144 (right).

1.4 Correlation Dimension

Correlation dimension is based on the calculation of Euclidean distance between
points inside the investigated set F � Rn. To quantify the distances between the
points, one can use the correlation sum Cprq [8, 9] de�ned for any r ¡ 0 as

Cprq � lim
NÑ�8

2

NpN � 1q
N�1̧

i�1

Ņ

j�i�1

I p}~xi � ~xj} ¤ rq (1.6)

for ~xi, ~xj P F and indicator function I.

Correlation sum indicates what is the probability that the distance between two
points from the point set F is at most r. Therefore, this can be equivalently
expressed as
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Cprq � P
~x,~yPF

p}~x� ~y} ¤ rq . (1.7)

Using the correlation sum, one can de�ne the correlation dimension as

D2 � lim
rÑ0�

ln Cprq
ln r

, (1.8)

if the limit exists. As easy to prove, for any set with �nite number of points, the
correlation dimension equals zero. The correlation dimension can serve as the lower
bound for Hausdor� dimension estimation, e.g.

DT ¤ D2 ¤ DH ¤ D0. (1.9)

1.5 Renyi Dimension

The parameterized type of a fractal dimension is the Renyi dimension [10, 11] that
generalizes the capacity and correlation dimensions. The calculation of the Renyi
dimension is based on the Renyi entropy [11] Hα, which is a generalisation of the
Shannon (H1) [12], Hartley (H0) [13] and collision [14] (H2) entropies. The α-entropy
is de�ned for α ¥ 0 as follows

Hαp~pq � 1

1� α
ln

ķ

i�1

pαi (1.10)

for α � 1 and

H1 � lim
αÑ1

Hα � �
ķ

i�1

pi ln pi (1.11)

where k is the number of events and pi are their probabilities satisfying
°
pi � 1.

The formulas (1.10) and (1.11) are frequently used in most sources, but they describe
only a �nite set of events with a possible extension to a countable case. A more
general form which includes also an uncountable case is de�ned as

Hαp~pq � 1

1� α
ln E

�
pα�1

�
(1.12)

for α � 1 and
H1 � E p� ln pq. (1.13)

Based on the de�nition of α-entropy, the Renyi dimension is de�ned as

Dα � lim
εÑ0�

Hα

� ln ε
(1.14)

whereD0,D1 andD2 are called the capacity, information and correlation dimensions,
respectively. In this case, ε is a scaling parameter that in�uences the probabilities
pi.
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Chapter 2

Fractal Sets with known Dimension

This chapter summarizes the �ndings about fractal sets with known dimension and
their properties.

2.1 Self Similar Sets

A signi�cant class of fractal set comprises of deterministically self-similar sets. The
self similarity guarantees that the part of the set is exactly or approximately the
same as the investigated set. Therefore, the set can look the same even when being
magni�ed. To de�ne self similarity, one has to employ the contraction mapping.
The mapping H : Rn ÞÑ Rn is a contraction mapping if for any F � Rn it holds that

Dq P p0, 1q : @~x, ~y P F : }Hp~xq �Hp~yq} ¤ q }~x� ~y} . (2.1)

The set F � Rn is self similar [15] i� there is �nite number of contraction mappings
ϕ1, ϕ2, . . . , ϕk such that

F �
k¤
i�1

ϕipFq. (2.2)

The Hausdor� dimension of any self-similar set equals to the similarity dimension
[15] if the set satis�es the open set condition [7].

A well-known example of self-similar set is Cantor set [16] and n-dimensional Cantor
dust [17] with their Hausdor� and Renyi dimension equal to log3 2 and n log3 2,
respectively. Another famous example of self-similar set is Sierpinski carpet [18]
with DH � Dα � log3 8.

An example of multifractal, e.g. fractal set with variable Renyi dimension depending
on the parameter α is de Wijs' fractal. The graph of De Wijs' fractal [19] with the
parameter a is a kind of multifractal that has the Renyi dimension dependent on
the dimension parameter α. The corresponding Renyi dimension equals

Dα � 1

1� α
log2 paα � p1� aqαq (2.3)
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Figure 2.1: Two-dimensional Cantor dust (left) and De Wijs' fractal (right) point
sets.

for 0   a   1{2 and α P r0; 1q Y p1,�8q with the particular case

D1 � lim
αÑ1

Dα � �a log2 a� p1� aq log2p1� aq. (2.4)

The two dimensional Cantor dust and De Wijs' fractal with a � 1{4 are visualised
in Fig. 2.1.

2.2 Fractal Functions

There is a class of deterministic functions that have fractal character and noninteger
dimension of their graph. The graphs of fractal functions are often self-similar
continuous set.

Weierstrass function W p~xq [20] is well-known fractal function de�ned for any ~x P Rn

as

W p~xq �
�8̧

k�0

ak cos
�
2πbk }~x}� . (2.5)

where 0   a   1, b P N and ab ¥ 1. Weierstrass function is continous in its whole
domain, however the derivative doesn't exist anywhere. The Hausdor� dimension
of the graph equals [21]

DH � n� 1� log a

log b
. (2.6)

Takagi function T p~xq [22] has fractal character as well and it is de�ned as

T p~xq �
�8̧

k�0

ak � min
j�1,..,n

 r2kxjs, 1� r2kxjs
(

(2.7)

28



Chapter 2. Fractal Sets with known Dimension

−1 −0.5 0 0.5 1
−3

−2

−1

0

1

2

3

x

W
(x

)

0

0.5

1

0

0.5

1
0

0.2

0.4

0.6

0.8

x
1

x
2

T
(x

1,x
2)

Figure 2.2: One-dimensional Weierstrass (left) and two-dimensional Takagi (right)
functions.

for 1{2   a   1 and rzs denotes the fractional part of number z P R. The Hausdor�
dimension of Takagi function equals

DH � n� 1� log a

log 2
. (2.8)

The one-dimensional Weierstrass function for a � 0.65 and b � 3 together with
Takagi function with parameter a � 0.55 are visualized in Fig. 2.2.

2.3 Discrete Dynamical Systems

Discrete dynamic systems with chaotic behaviour generate fractal trajectories and
attractors with a nonlinear character. The investigation of this kind of set can be
performed in two ways � the �rst option is to estimate the dimension of the set in
the original state space, the second option is to use Whitney's [23, 24] or Takens'
[25] theorem and estimate it in a reconstructed space.

Generally, the n-dimensional discrete dynamical process has an internal state ~xj P
Rn and output yj P R for j P N0. Using reconstruction length W P N, we de�ne a
sliding sample ~ξj � pyj, . . . , yj�W�1q P RW for j P N0, �rst. Whitney
s embedding
theorem can be rewritten from continuous to discrete time as follows: When W ¥
2n � 1, then the reconstructed series t~ξju8j�0 has the same properties as t~xju8j�0.
Therefore, any Renyi dimension Dα of the reconstructed attractor is the same as in
the case of the state space.

The Henon map is two-dimensional discrete dynamical process de�ned by the fol-
lowing set of equations

xn�1 � 1� ax2
n � yn, (2.9)

yn�1 � bxn, (2.10)
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Table 2.1: Attractor dimensions for discrete dynamical systems.

System D0 D1 D2

Henon map [26, 27] 1.261 1.2583 1.2201
Lozi map [28, 29] unknown 1.4042 1.3845
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Figure 2.3: Trajectories of Henon (left) and Lozi (right) maps.

while Lozi map uses the following de�nition

xn�1 � 1� a|xn| � yn, (2.11)
yn�1 � bxn. (2.12)

The information and correlation dimension is estimated with high precision for the
typical representatives of discrete dynamic systems. Tab. 2.1 shows the Renyi
dimension for Henon map with the parameters a � 0.4, b � 0.3, x0 � 0, y0 � 0.9 and
Lozi map with the parameters a � 1.7, b � 0.5, x0 � �0.1, y0 � 0.1. The systems
for the given parameters are visualized in Fig. 2.3.

2.4 Fractional Processes

Fractional Brownian motion (fBm) [2] is a continuous Gaussian process BHptq de-
�ned for t P r0;�8q, H P p0; 1q and σ ¡ 0. The process starts at zero and has zero
expected value for all positive times t. The autocovariance structure of fBm obeys
for all t, s ¡ 0

EpBHptqBHpsqq � σ2

2

�|t|2H � |s|2H � |t� s|2H� , (2.13)
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where E is mean value operator. Parameter H is called Hurst exponent and it is
related to the Hausdor� dimension of fBm trajectory that equals DH � 2 � H.
Moreover, any Rényi dimension Dα [30] has the same value as DH for α ¥ 0. The
parameter σ is often normalized to be unit and we will denote this special case as
standardized fractional Brownian motion. For H � 1{2, the standard fBm becomes
Wiener process W ptq, which is standard Brownian motion.

Fractional Gaussian noise (fGn) is the process GHptq de�ned for all t ¡ 0 as

GHptq � BHpt� 1q �BHptq. (2.14)

However, the Hausdor� and Renyi dimension of fGn is independent of H and equals
always DH � 2. The process is still Gaussian, zero mean and if it is constructed
on the basis of standardized fBm, it has also unit variance and the autocorrelation
function can be expressed as a function of k P Z and H P p0; 1q in the form

ηpk,Hq � 1

2

�|k � 1|2H � 2|k|2H � |k � 1|2H� . (2.15)

Another derived process from the fBm is called Brownian bridge. The Brownian
bridge (BB)Mptq is de�ned using standard Wiener processW ptq on the unit interval
as

Mptq � W ptq � tW p1q. (2.16)

BB is again Gaussian process with stationary, but not independent increments.
From the de�nition, the value in both endpoints equals zero i.e Mp0q � Mp1q � 0,
and the autocovariance structure is given by

EpMptqMpsqq � min pt, sq � ts. (2.17)

for t, s P p0, 1q.

2.5 Multivariate Random Processes

Levy �ight [31] Lαptq is a special class of multidimensional random processes. It
is a group of Markov processes on the interval T � r0;8q with increments from
distribution P, e.g.

}Lαpt� 1q � Lαptq} � P (2.18)

satisfying
1� Ppuq � Opu�αq (2.19)

for any 0   α   2 and uÑ 8. When the process is realized in n-dimensional space
and when the point set F � Rn consists only of its dependent values

F � tLαptq P Rn : t P r0;8qu , (2.20)

the Hausdor� dimension equals [32] DH � mintα, nu.
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Fractional Brownian trace THptq is n-dimensional process de�ned for any t P R as

THptq �
�
B1
Hptq, B2

Hptq, . . . , Bn
Hptq

�
, (2.21)

where Bi
Hptq are one-dimensional independent fBms for every i � 1, . . . , n. The

Hausdor� dimension of F � Rn consisting only of its dependent values as

F � tTHptq P Rn : t P r0;8qu , (2.22)

equals

DH � min

"
1

H
,n

*
. (2.23)

The one-dimensional fBm with Hurst exponent H P p0, 1q and variance σ2 ¡ 0 can
be generalized also in another way [33, 34]. Let ~x P Rn be independent variable of
dimension n P N. The n-dimensional fBm [35] denoted as BHp~xq satis�es

E pBHp~xqBHp~yqq � σ2

2
�
�
}~x}2H � }~y}2H � }~x� ~y}2H



(2.24)

and EpBHp~xqq � 0 for all ~x, ~y P Rn and σ ¡ 0,where }..} denotes Euclidean distance.
The Hausdor� and Renyi dimension of graph of n-dimensional fBm equals [36] DH �
Dα � n� 1�H.
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Chapter 3

Fractal Dimension Estimation

3.1 Grid Technique

Grid technique is a method of data gathering that allows to place any bounded
�nite-dimensional point sets in Rn into a prede�ned grid structure. The method
involves general and systematic point placement from the investigated set into a
regular structure that is formed by n-dimensional hypercubes with side size ε ¡ 0.

For a bounded set F � Rn and for every i P t1, . . . , nu, we de�ne the lower and
upper bound in each dimension as

ui � maxtxi : ~x P Fu (3.1)

li � mintxi : ~x P Fu. (3.2)

The set of possible grid indexes is de�ned as

Sε �
¡

1¤i¤n

#
0, 1, . . . ,

R
ui � li
ε

V+
, (3.3)

therefore we can de�ne a hypercube in the grid for any ~k P Sε as
Ap~kq �

¡
1¤i¤n

rli � kiε, li � pki � 1qεq . (3.4)

We de�ne partial ordering on the set Sε as follows. Let ~x, ~y P Sε, then

~x ¤ ~y iff
ņ

i�1

10pxn�i�1 ¤
ņ

i�1

10iyn�i�1. (3.5)

Denote the total number of hypercubes as

m �
n¹
i�1

R
ui � li
ε

V
� 1. (3.6)
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Using the ordering (3.5) we can de�ne the grid Gε as a sequence of all hypercubes
that are de�ned by equation (3.4), i.e.

Gε � pAp~k1q,Ap~k2q, . . .Ap~kmqq (3.7)

where ~ki ¤ ~ki�1 for i � 1, . . .m � 1 and ki P Sε for i � 1, . . .m. For simplicity, we
will later denote the grid as

Gε � pAiqmi�1. (3.8)

Analysing data via grid technique has several advantages. Most of the time we
will be interested in the number of hypercubes containing at least one point of the
investigated set F � Rn. The number of hypercubes containing at least one point
from F is denoted as Nε is de�ned as

Nε � card
!
Ap~kq : ~k P Sε and F XAp~kq � H

)
. (3.9)

3.2 Random Sampling

Given measurable set F � Rn a random sample of length N P N is a set of points

~x1, ~x2, . . . , ~xN � UpFq. (3.10)

Most well-known fractal sets can be

• a self-similar set de�ned using translation rules with in�nite steps (e.g. Cantor
set),

• a fractional function de�ned on its domain using a prescribed formula,

• a fractional process de�ned using its autocorrelation function.

Most self-similar sets can be de�ned using in�nite subdivision rule. In each iteration,
the structure replicates itself, diminishes in size and moves towards a particular
direction. Knowing all possible directions, their probability and scale change, one
can start generating the points from such set by starting at prede�ned point in
Rn. At every iteration, shifting this point in one of the directions and scaling the
direction vector, results in a sample generated in certain depth. The Fig. 3.1 shows
the sampling of the Sierpinski carpet for 1000 and 10 000 points, respectively.

Taking fractional functions into account, we introduce a methodology for generating
samples from graph of continuous function with a bounded domain. An initial idea
of generating points uniformly from the domain and completing their functional
values will not result in uniform sampling from its graph. In one dimension, the
procedure can be very straightforward � we �rst generate uniformly the points from
the function's domain and sort them in ascending order. Connecting their functional
values using abscissas in the respective order will result in a sample trajectory in
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Figure 3.1: Sierpinski carpet sample of 1000 points (left) and 10 000 points (right).

R2. Generating uniformly points from the trajectory will assure a uniform sample
from the graph. An example of Takagi function is in Fig. 3.2.

The procedure for generation fractional processes with given autocorrelation func-
tion is thoroughly described in section 3.7.

3.3 Methodological Aspects of Dimension Estima-

tion

When estimating the fractal dimension or Hurst exponent of fractal sets, the bias
is often present in the estimation. No matter how detailed structure we have, the
point estimate can be biased, since the conclusion comes from �nite set of points,
whereas chaotic systems always consist of uncountable number of points. Therefore,
even the sampling is random, the estimation error is always present. Usually, the
bigger the sample, the more details of fractal patterns in the structure can be found
and the lower the bias, however it is never possible to fully get rid of it.

To anticipate against huge bias, the methods are always assuming one or more the-
oretical properties to hold in order to present more accurate estimation. Thorough
this chapter, we introduce box-counting method for D0 estimation, correlation sum
for D2 estimation and general Renyi method for Dα estimation.

3.4 Box-Counting Method

Box-counting is a grid method that supposes the placement of a sample of a fractal
set F � Rn into a grid that is formed by n-dimensional hypercubes with side size
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Figure 3.2: Takagi function graph sample of 1000 points (top) and 10 000 points
(bottom).

ε ¡ 0. The method works under the assumption that the number of hypercubes
NεpFq containing at least one point of the sample follows the power law [3]

NεpFq 9 ε�D0 , (3.11)

where D0 is the capacity dimension of F . For any non-empty F � Rn it holds [3]
that

D0 � lim
εÑ0�

lnNεpFq
� ln ε

, (3.12)

if the limit on the right side of the equation exists and NεpFq denotes the number
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of hypercubes from the grid that have non-empty intersection with the fractal set.
The capacity dimension is estimated using linear regression model

lnNεpFq � A�D0 � ln ε (3.13)

for small values of parameter ε.

3.5 Correlation Sum Evaluation

Recall that the correlation dimension is based on the calculation of Euclidean dis-
tance between points in set F � Rn and the correlation sum Cprq is de�ned for any
r ¡ 0 as

Cprq � lim
NÑ8

2

NpN � 1q
N�1̧

i�1

Ņ

j�i�1

I p}~xi � ~xj} ¤ rq (3.14)

for ~xi, ~xj P F a indicator function I.

Recall the de�nition of correlation dimension as

D2 � lim
rÑ0�

ln Cprq
ln r

, (3.15)

if the limit on the right side of the equation exists. If the investigated set F � Rn

has �nite number of points, the correlation dimension always equals zero. The
estimation of correlation dimension from a �nite sample is again performed using
linear regression model

ln Cprq � A�D2 � ln r (3.16)

for small values of r.

3.6 Renyi Entropy and Dimension Estimation

Recall that the Renyi entropy is de�ned for α ¥ 0 as

Hαp~pq � 1

1� α
ln

ķ

i�1

pαi (3.17)

for α � 1 and

H1 � lim
αÑ1

Hα � �
ķ

i�1

pi ln pi (3.18)

where k is the number of events and pi are their probabilities satisfying
°
pi � 1.

Let Ai � Rn be grid element as hypercube of size ε for i � 1, ..., k satisfying
F � �k

i�1Ai. Recall the system of non-overapping elements is denoted as a grid
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Gε � pAiqki�1 . The probabilities pi are calculated [37, 38] as

pi � µpAi X Fq
µpAiq , (3.19)

for i � 1, . . . , k, where µp...q denotes the volume of the set. The variable pi expresses
the probability that a randomly taken point from set F will be contained in the grid
box Ai. Having a �nite sample, the probabilities are approximated as the number of
points that are contained in a particular box divided by the total number of points
in the sample.

Recall the de�nition of the Renyi dimension as

Dα � lim
εÑ0�

Hα

� ln ε
, (3.20)

the estimation of the Renyi dimension from �nite sample can be calculated via linear
regression model

Hα � A�Dα � ln ε (3.21)

for small values ε.

3.7 Simulation and Parameter Estimation of fBm

There is a variety of methods for fBm sample generation with prede�ned Hurst
exponent H. The most accurate ones focus on drawing the resulting time-series
according to it's autocovariance function. Lowen method [39] relies on the spectral
power in the frequency domain. At �rst, the function Rxplq is de�ned recursively
with period 2N as

Rxplq �
"

1
2
p1� l

N
q2H : 0 ¤ l ¤ N

Rxp2N � lq : N   l ¤ 2N
.

Based on it's spectral power density Sx, we de�ne

Xpfq �

$''&''%
0 f � 0

exppiθkqgk
a
Sxpfq 0   f   N

gk
a
Sxpfq f � N

X�p2N � fq N   f   2N

,

where * denotes the complex conjugate, θk � x0; 2πq and gk � Np0, 1q. The
resulting sample is obtained as inverse Fourier transformation [40] of Xpfq. The
only limitation of Lowen method is that it only works for 0   H   0.5 [39]. Another
technique of fBm generation is Abry�Sellan method [41]. This method is based on
integral representation of fBm and can be expressed as a convergent sum [42] using
wavelets as

BHptq �
�8̧

k��8

ΦHpt� kqSpHqk �
�8̧

j�0

�8̧

k��8

2�jHΨHp2jt� kqgj,k, (3.22)
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where ΦH is bi-orthonormal scaling function [43], ΨH is wavelet, SpHqk is fractional
ARFIMA p0, H � 1{2, 0q process [44] and gj,k are sampled iid from normal dis-
tribution. The method has limited range and reliably works for H ¡ 1{2 [45]. A
general approach for generating any (non)stationary Gaussian process with speci�ed
autocorrelation structure is represented by Davies�Harte method [46]. For given
autocovariance coe�cients c0, c1, . . . , cn and process of length n� 1 we de�ne

gk �
n�1̧

j�0

cj expt2πikj{p2nqu �
2n�1̧

j�n

c2n�j expt2πikj{p2nqu (3.23)

When Zk is a sequence of independent complex normal random variables [46] that
have independent real and imaginary parts for 0 ¤ k ¤ n, Zk � Z2n�k for n   k   2.
Coe�cients Z0 and Zn have variance two, while Zk for 0   k   n has unit variance
for both real and imaginary part. By de�ning

xj � 1

2
n�

1
2

2n�1̧

k�0

Zkg
1{2
k expt2πijk{p2nqu (3.24)

for 0 ¤ j ¤ k, the time series txju has the required distribution [47]. Simple, but
powerful method for generating fBm sequences is represented by circulant embedding
method [48]. This approach is the generalization of traditional Cholesky algorithm
and allows to generate longer sequences with lower computational memory and time
complexity [49].

As the generation methods of fBm trajectories are known, we can introduce a few
traditional methods that serve for Hurst Exponent estimation.

The R/S method, a classical technique of Hurst exponent [1] estimation, repeatedly
separates the original sampling of a signal into disjoint segments and calculates
mean, standard deviation and range for each of them. Considering the division into
r P N segments with m P N elements, the R/S statistic is given by

pR{Sqm � 1

r

ŗ

j�1

Rj

Sj
, (3.25)

where Sj and Rj indicates standard deviation and range at interval j, respectively.
For di�erent interval lengths m, the R/S statistics pR{Sqm is subsequently plot
against m in log-log plot to obtain Hurst parameter using the power law

E rpR{Sqms 9mH . (3.26)

Zero-crossing method, independently investigated by Azais [50], Feuerverger [51] and
Couerjolly [48] provides point estimate of Hurst parameter H based on the number
of zero-crossing of fGn sample. Couerjolly suggests to calculate the relative number
of zero crossing SN with respect to the sample length N , which converges almost
surely to function θpHq{π, where θpHq is de�ned as

θpHq �

$''&''%
atan

�?
1�rpHq2

rpHq



for rpHq ¡ 0

π
2
� atan

�
�rpHq?
1�rpHq2



otherwise
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and rpHq � 22H�1�1. For �niteN large enough, the Hurst parameter approximately
equals

H � 1

2
p1� log2p1� ε| cospπ � SNq|qq , (3.27)

where ε � sgn
�
H � 1

2

�
is assumed to be known.

Whittle estimator [52] is a method for estimation of fractional parameter d of
ARFIMA(p, d, q) process. The covariance function of fGn with H � d� 1

2
obeys the

same power law as ARFIMA(0,d,0), however their spectral densities di�er. The aim
is to estimate the parameter dopt by solving the minimization problem

dopt P argmin
dPp� 1

2
; 1
2q
Qpdq for Qpdq �

» π

�π

Ipλq
fpλ, dqdλ, (3.28)

where Ipλq is the experimental spectral density of investigated sample and fpλ, dq
is theoretical density of ARFIMA(0,d,0) in the form

fpλ, dq � 1

2π

�
2 sin

λ

2


�2d

. (3.29)

Istas and Lang [53] designed a method for Holder parameter estimation of random
process. Since fBm is Holder continuous with parameter H � ε for every ε ¡ 0,
the upper estimate of it can lead to a good estimation of Hurst exponent H. For a
sample of random process Xpiq, i � 0, ..., n and arbitrary vector ~a P Rp�1 satisfying
the condition, that sum of its elements equals zero, they de�ned quadratic variation
with sampling step ∆

Up~a, n,∆q � 1

n

n�p̧

j�0

p∆~aXjq2 where ∆~aXj �
p̧

i�0

aiXppi� jq �∆q. (3.30)

Istas and Lang proved, that the quadratic variation Up~a, n,∆q converges to variance
σ2
~a,∆ of �nite di�erence ∆~aXj as n tends to in�nity. The variance can be expressed
by following formula

σ2
~a,∆ � �C � p�1qD

p̧

k�0

p̧

l�0

akal|k � l|2H �∆2H , (3.31)

for constants C P R, D P N and Hurst exponent H. It is possible to estimate the
parameter H by utilizing di�erent choices of ~a for nonlinear regression model (3.31).
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Chapter 4

Thesis Aims

This thesis is extending the known theory of fractal sets and dimension estimation
in the area of point sets and fractional processes parameter estimation. There are
the aims that were the subject of this thesis.

Develop new method for correlation dimension estimation. Currently the
commonly used methodology is the technique of correlation sum, that is su�cient for
many real world applications, but it comes with a signi�cant bias. Developing a new
method that could provide estimation with the same precision/variance and remove
the bias would be bene�cial for theoretical �eld as well as practical applications.

Develop new method for Renyi dimension estimation. Currently, there are
methods for estimating capacity, information and correlation dimension, however
there is lack of general methods that could estimate any Renyi dimensionDα even for
non-integer parameters α. This would allow to analyze variety of fractal structures
including multifractals.

Develop new method for Hurst exponent estimation. Nowadays, the fractal
investigation of signal often relies just on R/S method or spectral approach that
don't reliably work for extreme values of Hurst exponent. The aim is to propose
approaches for Hurst exponent estimation to correctly analyze short time series as
well as multidimensional fractional surfaces and masses. These approaches should
always aim on diminishing the variance and reducing bias.

Apply the methods to arti�cial sets with known dimension. The proposed
novel methods shall be applied to sets and signal samples with known dimension
that can serve as benchmark of the estimation quality and unbiasedness. There are
variety of arti�cial sets that can serve well for extensive testing.

Apply the methods to biomedical and econometric signals. Once the
methods are validated on sets with known dimension, the techniques can be ad-
vantageously used for analysis of biomedical and econometric signals. There ex-
ists evidence that biomedical data such as EEG or mammography exhibit chaotic
behaviour, thus represents a suitable example to model on using the developed
methods.
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Chapter 5

Spectral Approach to D2 Estimation

This chapter introduces a new method for estimation of D2 (correlation dimension).
We introduce a new characteristics that has smoother development than traditional
correlation sum and prove its properties to verify it is suitable for correlation dimen-
sion estimation. This method is a spectral method, e.g. based on a power spectrum
of a set, which has for most self similar sets not smooth dependence on frequency.

The correlation dimension of fractal set can be investigated using the power spectrum
of the set. The Fourier transform of an n-dimensional set F � Rn is de�ned using
the operator of the expected value [54] as

F p~ωq � E
~x�UpFq

expp�i~ω � ~xq (5.1)

for angular frequency ~ω P Rn and for ~x uniformly distributed on F . The traditional
continuous power spectrum of set F � Rn is de�ned as

P p~ωq � E
~x�UpFq

E
~y�UpFq

expp�i~ω � ~xq exppi~ω � ~yq � E
~x,~y�UpFq

expp�i~ωp~x� ~yqq. (5.2)

The power spectrum does not have suitable properties for statistical analysis. Most
often, we suppose the exponential dependency of power spectrum P p~ωq on the
correlation dimension D2 as

P p~ωq 9 ω�D2 , (5.3)

which can lead to inaccurate results due to the spectrum instability for the majority
of self-similar sets. The power spectra of Cantor set is visualized in Fig. 5.1.

5.1 Physical Motivation of Spectral Method

The aim of this approach is to smoothen the power spectra by terms of rotating
it around the origin. The goal of the novel method is to obtain a one-dimensional
function as a derivative of the power spectrum, which is useful in fractal analysis.
The procedure was inspired by Debye [55] and by his X-ray di�raction method,
which is often referred to as the Debye-Scherrer method. We denote SOpnq as the
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Figure 5.1: Power spectrum of one-dimensional Cantor set.

group of all rotations in Rn around the origin. Because any rotation R P SOpnq is a
linear transform, the following equation holds

Rp~xq �Rp~yq � Rp~x� ~yq � }~x� ~y} � ~ξ, (5.4)

where ~ξ is a direction vector satisfying
���~ξ��� � 1 and ~ξ P Sn�1 for an n-dimensional

sphere Sn�1 � t~x P Rn : }~x} � 1u. Using the factorisation of angular frequency
~ω � Ω � ~ψ for Ω P R�

0 and normalisation vector ~ψ P Sn�1, we can de�ne rotational
spectrum as

SpΩq � E
RPSOpnq

E
~ψPSn�1

E
~x,~y�UpFq

expp�iΩ~ψRp~x� ~yqq, (5.5)

which can be expressed explicitly in the following theorem.

Theorem 1. Rotational spectrum can be expressed as

SpΩq � E
~x,~y�UpFq

HnpΩ }~x� ~y}q, (5.6)

where

Hnpqq �
2
n�2
2 � Γ �

n
2

�
q
n�2
2

Jn�2
2
pqq. (5.7)

Proof. Because every rotation is a linear transform, we can rewrite the rotational
spectrum as

SpΩq � E
~x,~y�UpFq

E
~ψ,~ξPSn�1

expp�iΩ }~x� ~y} ~ψ � ~ξq. (5.8)
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The angle ν between vectors ~ψ and ~ξ satis�es cos ν � ~ψ � ~ξ. Without the loss of
generality, we can set ~ξ � p1, 0, 0, . . . , 0q and rewrite the rotational spectrum as

SpΩq � E
~x,~yPF

Hn pΩ}~x� ~y}q , (5.9)

where the function Hn : R ÞÑ C is de�ned as

Hnpqq � E
~ψPSn�1
ψ1�cos ν

expp�iq cos νq. (5.10)

For n � 1, we obtain a degenerated rotation together with ν P t0, πu; therefore, the
kernel function H1 equals

H1pqq � expp�iqq � exppiqq
2

� cos q. (5.11)

In case n ¥ 2, we can express the kernel function using an integral formula:

Hnpqq � I1pqq
I2pqq �

³π
0

expp�iq cos νq sinn�2 ν dν³π
0

sinn�2 ν dν
. (5.12)

The Poisson integral [56] formula for the Bessel function [57] Jppqq of the �rst kind
in the form

Jppqq �
�
q
2

�p
Γ
�
p� 1

2

�?
π

» π

0

expp�iq cos νq sin2p ν dν (5.13)

allows the integral in the nominator to be rewritten as

I1pqq �
JppqqΓ

�
p� 1

2

�?
π�

q
2

�p , (5.14)

whereas the integral in the denominator is a limit case of the Poisson formula

I2pqq � lim
qÑ0

JppqqΓ
�
p� 1

2

�?
π�

q
2

�p � Γ
�
p� 1

2

�?
π

Γ pp� 1q . (5.15)

For p � n�2
2
, we obtain the �nal form of the kernel function expressed by the Bessel

function Jppqq as

Hnpqq �
2
n�2
2 � Γ �

n
2

�
q
n�2
2

Jn�2
2
pqq. (5.16)

Applying Hnpqq for n � 1, we obtain H1pqq � cos q as a particular case, which
extends the range of formula (5.16) to n P N and completes the proof.

The rotation can be performed in any space that has dimension n not smaller than
the dimension m of the original space of F . When the dimension of the rotation is
greater thanm, any vector ~x P F is completed with the zeros for the remaining n�m
coordinates having a su�cient length. The most valuable result can be obtained in
the case of rotation in an in�nite-dimensional space.
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Theorem 2. The scaled limit case of the kernel function Hn is the Gaussian func-
tion, i.e.,

lim
nÑ8

Hnpt
?
nq � exp

�
�t

2

2



. (5.17)

Proof. For the investigation of the behaviour of the kernel function when n Ñ 8,
we use the Taylor expansion of Hnpqq centred at q0 � 0

Hnpqq �
8̧

k�0

Γpn
2
q

Γpn
2
� kqk!

�
�q

2

4


k

, (5.18)

and by using the substitution q � t
?
n, we can transform it into

Hnpt
?
nq �

8̧

k�0

1

k!

�
�t

2

2


k Γpn
2
qnk

Γpn
2
� kq2k . (5.19)

For every k P N, it holds that

lim
nÑ8

Γpn
2
qnk

Γpn
2
� kq2k � 1, (5.20)

which is a fundamental property of Gamma function. Therefore, the limit case of
the kernel function equals

lim
nÑ8

Hnpt
?
nq � exp

�
�t

2

2



. (5.21)

For simplicity, we will use the following notation in the subsequent sections:

H8pqq � exp

�
�q

2

2



. (5.22)

This type of Gaussian kernel has been widely applied in the Parzen density esti-
mates [58, 59, 60] of a probability density function, but with another meaning and
motivation.

To sum up, altogether we have received two types of kernel function for rotational
spectrum:

• Hnpqq represents the rotation in n-dimensional space,

• H8pqq represents rotation in in�nite-dimensional space.

The scaled kernel functions Hnpqq are displayed in Fig. 5.2.
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Figure 5.2: Scaled kernel functions Hnpqq for rotational spectrum.

5.2 Expression using Characteristic Function

Analytical expression of rotational spectrum of set F � Rn

SpΩq � E
~x,~y�UpFq

Hn pΩ}~x� ~y}q , (5.23)

can be performed based on the probability density function (pdf) fp~xq of ~x P F .
Using the distribution we can determine the pdf of ~z � ~x � ~y where both ~x and ~y
share the same pdf f . The pdf gp~zq of a point ~z is given by

gp~zq � pf � fqp~zq, (5.24)

where � denotes the operator of correlation de�ned as

pf � fqp~zq �
»
Rn
f�

�
~t
�
fp~z � ~tq d~t (5.25)

and � is the complex conjugate. The rotational spectrum can be expressed as

SpΩq � E
~x,~y�UpFq

Hn pΩ}~x� ~y}q (5.26)

� E
~z�~x�~y

~x,~y�UpFq

Hn pΩ}~z}q (5.27)

�
»
Rn
gp~zqHnpΩ}~z}q. (5.28)

We de�ne the characteristic function of a set G � Rn as

ψp~t q � E
~z�UpGq

exppi~t � ~zq �
»
Rn
gp~zq exppi~t � ~zqd~z. (5.29)
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Supposing that gp~zq is pdf and ψp~t q is a set characteristic function, we can apply
the inverse Fourier transform to function gp~t q, yielding

F�1
n rgsp~t q � 1

p2πqn
»
Rn
gp~zq exppi~t � ~zqd~z � 1

p2πqnψp
~t q (5.30)

therefore the distribution gp~zq can be expressed as

gp~zq � 1

p2πqnFnrψp
~t qsp~zq. (5.31)

The rotational spectrum equals

SpΩq �
»
Rn
gp~zqHnpΩ}~z}qd~z (5.32)

�
»
Rn

1

p2πqnFnrψp
~t qsHnpΩ}~z}qd~z (5.33)

� 1

p2πqn
»
Rn

»
Rn
ψp~t q expp�i~t � ~zqHnpΩ}~z}qd~zd~t (5.34)

�
»
Rn
ψp~t q

�
1

p2πqn
»
Rn

expp�i~t � ~zqHnpΩ}~z}qd~z



looooooooooooooooooooooomooooooooooooooooooooooon
ΨpΩ,~tq

d~t, (5.35)

therefore
SpΩq �

»
Rn
ψptqΨpΩ,~tqd~t, (5.36)

where
ΨpΩ,~tq � 1

p2πqn
»
Rn

expp�i~t � ~zqHnpΩ}~z}qd~z. (5.37)

Taking substitution ~x � Ω~z we can rewrite into

ΨpΩ,~tq � 1

p2πΩqn
»
Rn

exp

�
� i~t � ~x

Ω



Hnp}~x}qd~x, (5.38)

which can be further expressed using Fourier transform as

ΨpΩ,~tq � 1

p2πΩqnFnrHnp}~x}qs
�
~t

Ω



(5.39)

Using inverse subtitution ~t � Ω~x we can retrieve the equivalent expression for
rotational spectrum as

SpΩq � 1

p2πqn
»
Rn
FnrHnp}~x}qsp~xqψpΩ~xqd~x. (5.40)

Since Hnp}~x}q is a radial function, we can apply radial Fourier transform using
Bochner formula [61] for r � }~x} as

Gpξq � ξ

p2πξqn2
» 8

0

r
n
2HnprqJn�2

2
pξrqdr, (5.41)
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yielding

SpΩq �
»
Rn
Gp}~x}qψpΩ~xqd~x. (5.42)

If Gpξq ful�ls the properties of a pdf of ~x, we can express rotational spectrum as

SpΩq � E
~x�G

ψpΩ~xq. (5.43)

However, function G does not necessarily have to be a pdf. For speci�c kernels Hn

we will express the function explicitly to con�rm the hypothesis.

We will be working with two kinds of kernel functions:

• Hnprq as the kernel function used for rotation,

• Gnpξq its Fourier transform.

The function Gpξq is derived in case in�nite-dimensional rotation where

H8prq � exp

�
�r

2

2



. (5.44)

The integral contained in the radial Fourier transform equals» 8

0

r
n
2H8prqJn�2

2
pξrqdr �

» 8

0

r
n
2 exp

�
�r

2

2



Jn�2

2
pξrqdr � exp

�
�ξ

2

2



ξ
n�2
2

(5.45)

therefore, the function G8pξq equals

G8pξq � 1

p2πqn2 exp

�
�ξ

2

2



. (5.46)

This corresponds to the pdf of n-dimensional normal distribution with zero mean
and unit covariance matrix. Thus, the in�nite-dimensional rotation spectrum can
be expressed as

SpΩq � E
~x�N p~0,Iq

ψpΩ~xq (5.47)

The advantage of this expression is the possibility to use it for simulations. The
rotational spectrum can be estimated using Monte Carlo approach using the known
characteristic function.

As a next step, the Gpξq is simpli�ed for �nite dimensional rotation, therefore for
any kernel function Hn and n P N. In this case, the kernel function equals

Hnprq �
2
n�2
2 Γ

�
n
2

�
r
n�2
2

Jn�2
2
prq. (5.48)

Substituting the function into the formula for Gnpξq and after simpli�cation, we
obtain

Gnpξq �
Γ
�
n
2

�
2π

n
2 ξ

n�2
2

» 8

0

rJn�2
2
prqJn�2

2
pξrqdr, (5.49)
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where the integral on the right hand side equals» 8

0

rJn�2
2
prqJn�2

2
pξrqdr � δpξ � 1q, (5.50)

where δ is Dirac function. Therefore Gnpξq is degenerated pdf, corresponding to the
uniform distribution of points on the surface of pn � 1q dimensional ball, which we
denote Sn�1. Finite-dimensional rotational spectrum can be subsequently expressed
as

SpΩq � E
~x�UpSn�1q

ψpΩ~xq. (5.51)

As easy to prove, in case of kernel function H0prq, the Gpξq does not satisfy the
properties of a pdf, therefore the characteristic function approach to rotational
spectrum estimation is not possible.

5.3 Limit Behaviour of Point Set Spectrum

In this section, we discuss the relationship between the rotational spectrum for the
limit kernel H8 and the correlation dimension. The correlation sum is a cumulative
distribution function of the distances between the points in a fractal set; therefore,
the rotational spectrum can be written as a Stieltjes integral:

SpΩq �
» 8

0

H8pΩrqdCprq �
» 8

0

exp

�
�Ω2r2

2



dCprq. (5.52)

After the application of the integration by parts, we can obtain

SpΩq �
» 8

0

Ω2r exp

�
�Ω2r2

2



CprqΩdr, (5.53)

and by substituting ξ � Ωr, we get the integral formula for the rotational spectrum:

SpΩq �
» 8

0

ξ � C
�
ξ

Ω



exp

�
�ξ

2

2



dξ. (5.54)

Theorem 3. Let F � Rn be a Lebesgue measurable set with the rotational spectrum

SpΩq � E
~x,~y�UpFq

H8pΩ }~x� ~y}q, (5.55)

and let us assume that correlation dimension D2 exists. Then, it holds that

lim
ΩÑ8

lnSpΩq
ln Ω

� �D2. (5.56)

Proof. To prove this, let us suppose that δ   1 and that, at �rst, r   δ. Assuming
the existence of correlation dimension, we have @ε ¡ 0 Dδ ¡ 0

0   r   δ ñ
���� lnCprqln r

�D2

����   ε,
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therefore
rD2�ε   Cprq   rD2�ε. (5.57)

However, for r ¥ δ, we have
δD2�ε   Cprq ¤ 1. (5.58)

Now, we can estimate the lower and the upper boundary for the spectrum

SpΩq � E
~x,~y�UpFq

exp

�
�Ω2 }~x� ~y}2

2



�
» 8

0

CprqΩ2r exp

�
�Ω2 r

2

2



dr (5.59)

as
ILpΩq   SpΩq   IUpΩq. (5.60)

We can rewrite IU as

IUpΩq �
» δ

0

rD2�εΩ2r exp

�
�Ω2r2

2



dr �

» 8

δ

Ω2r exp

�
�Ω2r2

2



dr, (5.61)

and after the substitution t � Ω2r2{2, we get

IUpΩq � Ωε�D2 � 2D2�ε
2 �

» Ω2δ2{2

0

t
D2�ε

2 expp�tqdt� exp

��Ω2δ2

2



. (5.62)

Therefore, the upper bound IU can be expressed as

IUpΩq �
�?

2

Ω


D2�ε

� D2 � ε

2
� Γinc

�
Ω2δ2

2
,
D2 � ε

2



, (5.63)

where Γinc is an incomplete Gamma function. It is possible to do an estimation from
above as

IU  
�?

2

Ω


D2�ε

� D2 � ε

2
� Γ

�
D2 � ε

2



. (5.64)

The lower bound IL is rewritten as

ILpΩq �
» δ

0

rD2�εΩ2r exp

�
�Ω2r2

2



dr �

» 8

δ

rD2�εΩ2r exp

�
�Ω2r2

2



dr (5.65)

and can be estimated as

ILpΩq ¡
�?

2

Ω


D2�ε

� Γinc

�
Ω2δ2

2
,
D2 � ε

2
� 1



. (5.66)

Altogether, we receive the upper and the lower boundary for the logarithm of the
rotational spectrum

pD2 � εq
�

1

2
ln 2� ln Ω



� L1pΩq ¡ lnSpΩq ¡ pD2 � εq

�
1

2
ln 2� ln Ω



� L2pΩq

(5.67)
and after the rearrangement

� ε� L2pΩq � D2�ε
2

ln 2

ln Ω
  SpΩq

ln Ω
�D2   ε� L1pΩq � D2�ε

2
ln 2

ln Ω
(5.68)
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for the functions

L1pΩq � ln Γ

�
D2 � ε

2



� ln

D2 � ε

2
(5.69)

and

L2pΩq � ln Γinc

�
Ω2δ2

2
,
D2 � ε

2
� 1



. (5.70)

It holds that both L1 and L2 are constrained functions of Ω. Therefore, Ω0 exists,
which guarantees that, for any Ω ¡ Ω0 ¡ 1, it is valid that���� lnSpΩqln Ω

�D2

����   2ε � ε�, (5.71)

which completes the proof.

The Lebesgue measurability of the investigated set is an important prerequisite
because it ensures the capability to perform a uniform sampling. As a general
remark, we could consider another kernel function instead of H8. For any non-
increasing function Φ : R�

0 ÞÑ r0; 1s satisfying Φp0q � 1 and Φp8q � 0, and whose
�rst derivative Φ1pξq exists for any ξ ¡ 0, we consider the rotational spectrum in a
more general form as

SpΩq � E
~x,~y�UpFq

Φ pΩ}~x� ~y}q . (5.72)

The Ψ function is de�ned as

Ψpαq � �
» 8

0

ξαΦ1pξqqdξ, (5.73)

and the existence of limit (5.56) is guaranteed only if both ΨpD2� εq and ΨpD2� εq
are �nite for arbitrary ε P p0; ε0q. Another example of a kernel function could be the
generalised exponential kernel

Φ1pξq � exp

�
�ξ

β

β



(5.74)

for β ¡ 0 or the inverse polynomial kernel

Φ2pξq � 1

P pξq , (5.75)

where P pξq represents a polynomial of order M ¡ D2 � 1.

5.4 Estimation of D2

The simulation of the rotational spectrum is based on generating point pairs using a
Monte Carlo approach. The points are independently and uniformly sampled from
the analysed set F . With M P N �xed and ~xi, ~yi � UpFq, the rotational spectrum
is estimated as pSpΩq � 1

M

M̧

j�1

Hn pΩ}~xj � ~yj}q (5.76)
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including the variance estimate

zvar SpΩq � 1

M � 1

M̧

j�1

�
Hn pΩ}~xj � ~yj}q � pSpΩq	2

(5.77)

To take advantage of the linear dependence between the logarithm of the rotational
spectrum and the logarithm of the distance, we can reasonably consider the model

lnSpΩq � A�D2 � ln Ω� ε. (5.78)

The estimation of parameter D2 is based on the maximum likelihood method using
Lp regression with a minimisation criterion

CRIT �
Ņ

k�1

|yk � fpxk,~aq|p (5.79)

for p ¡ 1 and a general model formulated as y � fpxk,~aq. In our case, the
minimisation criterion satis�es

CRIT � �
Ņ

k�1

���ln pSpΩkq � A�D2 ln Ωk

���p . (5.80)

The algorithm is based on the capability to generate point pairs uniformly from a
fractal set and can be formulated as follows:

• The parameter M is chosen arbitrarily, but is large enough (e.g. M � 105).
This parameter represents the number of Monte Carlo simulations, which is
equal to the number of point pairs from the fractal set used for the estimation.

• The values of Ω, in which the calculation is performed, are determined. For the
simulation, it is recommended to choose regular sampling from the interval,
where the rotational spectrum is expected to have a linear characteristic.

• The calculation of the rotational spectrum is performed at points Ω1,Ω2 . . . ,ΩN ,
according to equation (5.76).

• With the values of Ωi and the respective pSpΩiq estimates, it is possible to per-
form minimisation using equation (5.80) with a maximum likelihood method.

• The resulting parameter D2 represents the estimate of the correlation dimen-
sion.

The algorithm's complexity is similar as in the case of traditional correlation sum,
since it allows to generate point pairs and calculate the rotational spectrum pSpΩq
directly for any Ω. We will prove in the experimental part that the dependency in
the spectral domain is smoother than in the time domain.
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Chapter 6

Modi�ed Renyi Dimension

Estimation

The chapter describes an alternative method for estimation of Renyi dimension Dα.
The traditional approach of determination of Renyi dimension is based on Renyi
entropy estimate, which is biased in general. The second and more general problem
is the method of sampling of the point set. Here we focus only on the Lebesgue
measurable sets where uniform sampling is de�ned. When these conditions are not
guaranteed, such as when the geometric structure of the set is inhomogeneous, we
can only test the hypothesis of unbiasedness for the given theoretical value Dα i.e.
H0 : xDα � Dα.

6.1 Renyi Entropy Estimation via Parzen Approach

This section utilizes the Parzen estimate for the derivation of the density function
of elements of the Lebesgue measurable set F � Rn. Supposing the existence of
n-dimensional distribution function φ of points ~x P F i.e. ~x � φ, it is possible to
de�ne a sample of points

Φ � t ~x1, ~x2, . . . , ~xMu � F (6.1)

that are uniformly generated from F , i.e. ~xk � UpFq � φ. For any point ~x P Rn,
we de�ne its ε-neighbourhood, i.e. a ball with radius ε as

Bp~x, εq � t~y P Rn : }~y � ~x}2 ¤ εu (6.2)

for any ε ¡ 0. The volume V� of the ball can be expressed as

V� � Vn � εn (6.3)

where Vn is the volume of an n-dimensional unit ball. The density estimate will be
based on the elementary distribution

f0p~x, εq � Ip}~x}2 ¤ εq
V�

(6.4)
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using the indicator function Ip...q. We can use Parzen's [62] formula

fp~x,Φ, εq � 1

M

M̧

k�1

f0p~x� ~xk, εq (6.5)

to obtain a consistent estimate of φ. However, we will apply (6.5) to a discontinuous
distribution on F to obtain new formulas for the Renyi dimension estimation. The
probability density estimate (6.5) is visualised in Fig. 6.1 in grayscale. The white
area represents the regions where this function equals zero and the darker areas
depict the intersection of several balls centred at points from the set sample Φ.

Figure 6.1: Density of Parzen estimate.

6.2 Limit Behaviour of Entropy Slope

Our novel estimate of the Renyi entropy is based on the di�erential entropy

Hα � 1

1� α
ln

»
~xPRn

fαp~xqd~x (6.6)

for α P R�
0 \t1u and the Parzen estimate fp~xq that is scaled by ε ¡ 0. To avoid

negative entropy values, we de�ne the modi�ed Renyi entropy as

H�
αpΦ, εq �

ln JpΦ, α, εq � ln J0pα, εq
1� α

. (6.7)

for α ¥ 0 and α � 1 where

JpΦ, α, εq �
»
~xPRn

fαp~x,Φ, εqd~x (6.8)
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and
J0pα, εq �

»
~xPRn

fα0 p~x, εqd~x � V 1�α
� . (6.9)

Using the expected value of vp~xq for ~x � g as

E
~x�g

vp~xq �
»
~xPRn

vp~xqgp~xqd~x, (6.10)

the �rst term can be simpli�ed as

J � JpΦ, α, εq �
»
~xPRn

fα�1p~x,Φ, εq � fp~x,Φ, εqd~x � E
~x�f

fα�1p~x,Φ, εq. (6.11)

For the sample Φ � t~x1, ~x2, . . . ~xMu we de�ne the degeneracy of ~x P Rn as

Gp~x,Φ, εq �
M̧

k�1

Ip}~x� ~xk}2 ¤ εq (6.12)

holding that Gp~x,Φ, εq P t0, . . . ,Mu. Recall that the probability density function
fp~xq is

fp~x,Φ, εq � 1

M � V�
M̧

k�1

Ip}~x� ~xk}2 ¤ εq � Gp~x,Φ, εq
M � V� . (6.13)

Therefore

J � E
~x�f

�
Gp~x,Φ, εq
M � V�


α�1

�M1�αV 1�α
� E

~x�f
Gα�1p~x,Φ, εq (6.14)

and subsequently also the modi�ed Renyi entropy is

H�
αpΦ, εq �

ln J � ln J0

1� α
� (6.15)

� p1� αq lnM � p1� αq lnV� � ln E Gα�1p~x,Φ, εq
1� α

� (6.16)

� p1� αq lnV�
1� α

. (6.17)

The resulting modi�ed entropy equals

H�
αpΦ, εq � lnM � ln E Gα�1p~x,Φ, εq

1� α
(6.18)

for α ¡ 0 and α � 1.

The degeneracy of ~x P Rn will be further denoted as Gp~xq instead of Gp~x,Φ, εq for
simplicity. When ~x P Rn, the degeneracy Gp~xq P t0, . . . ,Mu, but for ~x P Φ, the
degeneracy ful�ls Gp~xq P t1, . . . ,Mu. The modi�ed Renyi entropy follows 0 ¤ H�

α ¤
lnM. This entropy is a translational and rotational invariant, as it is easy to prove
from (6.12) and (6.18). For the particular cases of α, one can derive the

• Modi�ed Hartley entropy for α � 0 as

H�
0 � lnM � ln EG�1p~xq, (6.19)
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• Modi�ed Shannon entropy as a limit for αÑ 1 i. e.

H�
1 � lim

αÑ1
H�
α � lnM � E lnGp~xq, (6.20)

• Modi�ed collision entropy for α � 2 as

H�
2 � lnM � ln EGp~xq, (6.21)

• Modi�ed minimum entropy as a limit for αÑ 8 as

H�
8 � lim

αÑ�8
H�
α � lnM � ln maxGp~xq. (6.22)

where the expected values are over ~x � f . The dependency of the modi�ed Renyi
entropies on the logarithm of ε is displayed in Fig. 6.2. If the derivative BH�

Bα
exists,

it is always less or equal to zero, as it is easy to prove.

Moreover, the modi�ed Renyi entropy H�
α can be used for an alternative de�nition

of the dimension as

D�
α � lim

εÑ0�

H�
αpεq

� ln ε
(6.23)

for a given F as an analogy to formula (1.14).

Figure 6.2: Modi�ed Renyi entropies for Cantor set.
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6.3 Relationship to Capacity and Correlation Di-

mensions

The capacity (D0) and correlation (D2) dimensions are de�ned for any Lebesgue
measurable set F . The only possibility how to compare D�

α with Dα is to come
back from the sample Φ to the original set F . The sample Φ is a �nite set with
DH � D0 � D2 � 0, of course. We will study the particular cases of D�

α for α � 0
and α � 2 in the case of the measurable set F . As we see in the following theorem,
the Renyi dimension is the characteristic that has an important relationship to both
capacity and correlation dimensions.

Theorem 4. De�nition of D�
0 is equivalent to the capacity dimension D0 for any

measurable set F .

Proof. The capacity dimension can be de�ned [3] based on the Minkowski sausage
as

D0 � n� lim
εÑ0�

lnµpSq
ln ε

(6.24)

where
S �

¤
~xPF
Bp~x, εq. (6.25)

and µpSq � ³
~xPS is its volume. Supposing the existence of D0, we can directly

calculate
J0 �

»
Rn
f 0

0 p~xqd~x � V� � Vn � εn, (6.26)

and also the density
fp~xq � E

~y�UpFq
f0p~x� ~yq (6.27)

and

f 0p~xq � I

�
E

~y�UpFq
f0p~x� ~yq ¡ 0



� I

�
_
~yPF

}~x� ~y}2 ¤ ε



� Ip~x P Sq. (6.28)

Therefore, the function J can be expressed as

J �
»
Rn
f 0p~xqd~x � µpSq. (6.29)

The resulting modi�ed Hartley entropy equals

H�
0 pεq � ln

³
Rn f

0p~xqd~x³
Rn f

0
0 p~xqd~x

� lnµpSq � lnV� � lnµpSq � lnVn � n ln ε. (6.30)

Now, it is clear that

D�
0 � lim

εÑ0�

H�
0 pεq

� ln ε
(6.31)

� lim
εÑ0�

lnµpSq � lnVn � n ln ε

� ln ε
� (6.32)

� n� lim
εÑ0�

lnµpSq
ln ε

� D0. (6.33)
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Therefore, D�
0 obtained from the modi�ed Hartley entropy H�

0 pεq is equivalent to
the capacity dimension D0 of the measurable set F .
Theorem 5. De�nition of D�

2 is equivalent to the correlation dimension D2 for any
measurable set F .

Proof. The correlation dimension of F is de�ned as

D2 � lim
εÑ0�

lnCpεq
ln ε

(6.34)

where
Cpεq � E

~y,~z�UpFq
Ip}~y � ~z}2 ¤ εq (6.35)

is the correlation integral. Supposing the existence of D2, recall that

f0p~xq � Ip}~x}2 ¤ εq
Vnεn

(6.36)

and by means of integrating the elementary distribution over the space we get

J0 �
»
Rn
f 2

0 p~xqd~x �
1

V 2
n ε

2n
Vnε

n � V �1
n ε�n. (6.37)

In the �nite case, we have

fp~xq � 1

m

m̧

k�1

f0p~x� ~xkq, (6.38)

which can be generalized to

fp~xq � E
~y�UpFq

f0p~x� ~yq. (6.39)

Therefore,
f 2p~xq � E

~y,~z�UpFq
f0p~x� ~yq � f0p~x� ~zq (6.40)

and
J �

»
Rn
f 2p~xqd~x � E

~y,~z�UpFq
Zp~y, ~zq (6.41)

where
Zp~y, ~zq �

»
Rn
f0p~x� ~yq � f0p~x� ~zqd~x. (6.42)

Denoting the distance d � }~y � ~z}2, we can evaluate

Zp~y, ~zq � V �2
n ε�2n

»
Rn

Ip}~x� ~y}2 ¤ εqIp}~x� ~z}2 ¤ εqd~x � V �2
n ε�2nWnpd, εq (6.43)

whereWnpd, εq is the volume of two hyper-ball intersections in the case of the mutual
center distance d and radii ε. Using n-dimensional analytical geometry, we obtain

Wnpd, εq � 2

» ε

d{2

Vn�1

�
ε2 � r2

�n�1
2 dr � 2Vn�1ε

n

» 1

d{2ε

�
1� r2

�n�1
2 dr (6.44)
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and after substitution r � cosφ, we get

Wnpd, εq � 2Vn�1ε
n

» arccospd{2εq

0

sinn φ dφ. (6.45)

Moreover,

Wnp0, εq � 2Vn�1ε
n

» π{2

0

sinn φ dφ � Vn � εn (6.46)

which is also the volume of the n-dimensional ball of radius ε. Therefore, we can
express the Z function as

Zp~y, ~zq � V �1
n ε�n

³arccospd{2εq

0
sinn φ dφ³π{2

0
sinn φ dφ

(6.47)

and the entropy is
H�

2 pεq � � ln E
~x,~y�UpFq

Snp}~x� ~y}2, εq (6.48)

where

Snpd, εq �
³arccospd{2εq

0
sinn φ dφ³π{2

0
sinnpφqdφ

(6.49)

for 0 ¤ d   2ε and Snpd, εq � 0 for d ¥ 2ε. Let

Qn �
³π{3
0

sinn φ dφ³π{2
0

sinn φ dφ
P p0, 1q (6.50)

be the value of Snpε, εq. When 0 ¤ d ¤ ε, we can estimate the ratio as

Qn ¤ Snpd, εq ¤ 1. (6.51)

For ε   d ¤ 2ε, we have 0 ¤ Snpd, εq   Qn . Therefore, we can underestimate

Snpd, εq ¥ Ipd ¤ εq �Qn (6.52)

and an adequate upper estimate is

Snpd, εq ¤ Ipd ¤ εq � pIpd ¤ 2εq � Ipd ¤ εqq �Qn � (6.53)

p1�Qnq � Ipd ¤ εq �Qn � Ipd ¤ 2εq ¤ (6.54)
¤ p1�Qnq � Ipd ¤ 2εq �Qn � Ipd ¤ 2εq � Ipd ¤ 2εq. (6.55)

We can continue in the estimation to obtain

E
~y,~z�UpFq

Ip}~y � ~z}2 ¤ εq �Qn ¤ E
~y,~z�UpFq

Snp}~y � ~z}2, εq (6.56)

¤ E
~y,~z�UpFq

Ip}~y � ~z}2 ¤ 2εq (6.57)

and therefore
Lpεq ¤ E

~y,~z�UpFq
Snp}~y � ~z}2, εq ¤ Upεq (6.58)
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where the lower bound equals

Lpεq � Qn � Cpεq (6.59)

and the appropriate upper bound equals

Upεq � Cp2εq. (6.60)

For all 0   ε   1, the following inequalities hold
lnUpεq

ln ε
¤ H�

2 pεq
� ln ε

¤ lnLpεq
ln ε

. (6.61)

We can calculate

lim
εÑ0�

lnLpεq
ln ε

� lim
εÑ0�

�
lnQn

ln ε
� lnCpεq

ln ε



� D2 (6.62)

and also for the upper bound

lim
εÑ0�

lnUpεq
ln ε

� lim
εÑ0�

lnCp2εq
ln ε

� lim
εÑ0�

lnCpεq
ln ε

2

�

� lim
εÑ0�

lnCpεq
ln ε

� lim
εÑ0�

ln ε

ln ε� ln 2
� D2. (6.63)

Therefore,

D�
2 � lim

εÑ0�

H�
2 pεq

� ln ε
� D2. (6.64)

We have proven that the alternative de�nition of Renyi dimension is equivalent to
the de�nition of capacity and correlation dimensions. As a hypothesis that will be
validated experimentally, we will examine whether this relationship holds for other
α ¡ 0.

6.4 Estimation of Dα

Using the operator U of uniform sampling, the approximation of the Renyi entropy
can be achieved via Monte Carlo technique in the following way:

1. At �rst, the sample index is generated uniformly k � Upt1, . . . ,Muq.
2. The point ~x is generated uniformly from the ε-ball centred at ~xk as ~x �

UpBp ~xk, εqq.
3. The subsequent degeneration is calculated using (6.12).

The entropy H�
α is calculated as an average of the degenerations using (6.18), (6.20)

or (6.22) depending on α. The �rst two steps generate ~x � f , of course. Assuming
the entropy estimate H�

α ful�ls H�
α9ε�D�α for small ε ¡ 0, we can use it for the

estimation of D�
α using the model

H�
αpεq � A�D�

α ln ε (6.65)

for small ε and satisfying linear dependency H�
α on ln ε.
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Chapter 7

Revisited Zero-Crossing for

Fractional Signal Analysis

This chapter summarizes the main contributions to the traditional zero-crossing
method that serves to estimate the Hurst exponent of fBm sample. The novel
method uses Bayesian approach, thus provides more information about the fractal
relevance of investigated data and thanks to the segmentation employs more features
calculated at the interval level.

7.1 Revisited Zero-Crossing Method

The number of zero-crossings (or level crossings) of Gaussian processes and its
relevant fractal properties were published in several papers by Azais [50], Feuerverger
[51] and Couerjolly [48]. The main result of these studies is the dependence of
Hurst parameter on the probability of zero-crossing of random continuous nowhere
di�erentiable process at �xed interval. Our aim is to improve the method by
analysing the number of zero-crossings of fGn process and to deduce the formula in
another way.

Suppose xk � xkpHq is a sampling of fGn process with parameter H, zero mean and
unit variance on �xed interval for k � 1, ..., N�1. The corresponding autocorrelation
function ρk [2] equals

ρk � 1

2

�|k � 1|2H � 2|k|2H � |k � 1|2H� . (7.1)

We denote the �rst autocorrelation coe�cient by ρ � ρ1 � 22H�1 � 1. Since it
is a Gaussian process, the probability density function of two consecutive sample
elements is

fpxk, xk�1q � 1

2π
a

1� ρ2
exp

�
� 1

2p1� ρ2q
�
x2
k � 2ρxkxk�1 � x2

k�1

�

, (7.2)

therefore the probability of zero-crossing equals

p� � prob pxkxk�1   0q (7.3)
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that can be expressed as

p� � 1

π
a

1� ρ2

�8»
0

�8»
0

exp

�
� 1

2p1� ρ2q
�
x2 � 2ρxy � y2

�

dxdy. (7.4)

Using the substitutions ξ � pρx� yqp1� ρ2q� 1
2 and η � x one obtains

p� � 1

π

¼
O�

exp

�
�ξ

2 � η2

2



dξdη (7.5)

where O� �
!�
ρx� yq, x

a
1� ρ2

	
P R2 : x, y P R�

0

)
. Substituting ξ � r cosϕ and

η � r sinϕ the crossing probability can be expressed as

p� � 1

π

ϕmax»
ϕmin

dϕ �
�8»
0

exp

�
�r

2

2



dr � ϕmax � ϕmin

π
. (7.6)

Due to the form of the area O� we have ϕmin � 0 and ϕmax equals

ϕmax �
$&% atan

?
1�ρ2

ρ
ρ ¡ 0

π � atan

?
1�ρ2

|ρ|
otherwise

. (7.7)

Utilizing equations (7.6) and (7.7), it is possible to express the probability p� as

p� � 1

π
arccot

ρa
1� ρ2

(7.8)

and �nally using the identity ρ � 22H�1 � 1, the point estimate of Hurst parameter
H equals

H � 1� log2 cos
πp�

2
, (7.9)

which is revisited form of well-known formula published by Couerjolly [48], originally
in the form

H � 1

2
p1� log2p1� ε| cospπ � SNq|qq , (7.10)

where the relative number of zero crossing SN with respect to the sample length N
and ε � sgn

�
H � 1

2

�
are assumed to be known.

7.2 Bayesian Approach

We already know how to obtain point estimate of H with given fGn sample of
length N � 1 � if the number of zero-crossings in the sample equals Z ¡ 0, we can
approximately express H as

H � 1� log2 cos
πZ

2N
. (7.11)
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Unfortunately, from formula (7.11) we do not know the distribution of Hurst expo-
nent H neither the distribution of zero-crossings p�. Suppose, that the probability
p� is known for investigated sample. Then the number of zero-crossings Z comes
from binomial distribution Z � BipN, p�q with probability density function

fpZ|p�q �
�
N

Z



pp�qZ � p1� p�qN�Z . (7.12)

Using the Bayesian inverse rule [63], the posterior probability density equals

fpp�|Zq � pp�qZp1� p�qN�Z
BpN � 1, N � Z � 1q , (7.13)

where Bpp, qq is the standard beta function. We can generalize the result by means
of using Beta prior as

fPRIORpp�q � pp�q�ap1� p�q�a
Bp1� a, 1� aq , (7.14)

for parameter a P r0, 1q. After the application of Bayesian rule, we get the posterior
probability for p� in the form

fPOSTpp�|Zq � pp�qZ�ap1� p�qN�Z�a
BpZ � 1� a,N � Z � 1� aq , (7.15)

therefore the probability p� comes from Beta distribution p� � BpZ�1�a,N�Z�
1 � aq. Di�erent estimates of p� can be obtained for di�erent choices of parameter
a, however it is reasonable to consider only natural Bayesian approach with a � 0
or Je�reys-Perks law [64],[65] with a � 1{2.

7.3 Signal Segmentation

To be able to capture changes in fractional character over time, it is necessary to
divide the original sampling into disjoint segments and determine the statistical
features in each interval separately. Function (7.15) describes the probability of
zero-crossing in the fGn sample in general � considering the segmentation into L
disjoint segments, each with N � 1 elements, the probability fLppq of zero-crossing
of the whole signal sample with L � pN � 1q elements equals

fLppq � 1

L

Ļ

k�1

pZk�ap1� pqN�a�Zk
BpZk � 1� a,N � Zk � 1� aq , (7.16)

where Zk is the number of zero-crossings in k-th segment. Based on the shape of
the aggregate probability density fLppq one can calculate the mean value of Hurst
parameter as

EpHq � 1�
» 1

0

fLppq log2 cos
pπ

2
dp (7.17)
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and variance

σ2 �
» 1

0

�
1� log2 cos

pπ

2

	2

fLppqdp� pEHq2. (7.18)

with �xed number of signal divisions L.

As easy to prove, fGn of length N P N has the same mean value and variance of H
estimate for any nonoverlaping segmentation of constant segment length M , where
M   N . But in the case of real signal, the fGn assumption with constant Hurst
parameter is not always ful�lled and the number of zero-crossings in each segment
can be di�erent, thus the mean and variance can vary.

7.4 Hurst Exponent Estimation

Using di�erent segmentations of the signal, it is possible to determine the crucial
statistical characteristics that are dependent on the number of divisions L. In this
section we would like to present the key idea of the whole procedure by means of
showing the optimal number of non-overlapping subintervals L�. To formalize such
an idea, it is necessary to introduce two requirements:

• unimodality of the fLppq function,
• minimization of the number of segments L, where L ¡ 1.

The second requirement can be replaced by a stricter condition, that the variance
of Hurst exponent estimation has to be minimized. However, considering real data,
these two conditions often coincide.

For certain L� large enough the aggregate probability density function becomes
unimodal and we denote this number as the optimal segmentation of the given
sample de�ned as

L� �
$&% 1 whenfLppq is unimodal

for all allowable L
min tL ¡ 1 : fLppq is unimodalu otherwise

On the basis of the function f�Lppq we can determine the boundaries pmin, pmax of
con�dence interval for p with con�dence level rα as

pmin»
0

fL�ppqdp � rα
2
, (7.19)

pmax»
0

fL�ppqdp � 1� rα
2
. (7.20)

Finally, we obtain the boundaries of con�dence interval for H as

Hmin � 1� log2 cos
pmaxπ

2
, (7.21)
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Hmax � 1� log2 cos
pminπ

2
, (7.22)

where pmin and pmax were calculated from (7.19) and (7.20) with given con�dence
level rα.
In the traditional frequentist method one could calculate the con�dence intervals
by means of utilizing the properties of standard binomial distribution. Under the
assumption that the number of zero-crossings Z � BipN, p�q denote that

PpZ � kq � pk �
�
N

k



pp�qkp1� p�qN�k. (7.23)

One determines the highest value of non-negative integer A and the lowest value of
non-negative integer B satisfying conditions

A̧

k�0

pk ¤ α{2, (7.24)

Ņ

k�B

pk ¤ α{2, (7.25)

where α is the con�dence level. The adequate boundaries of con�dence interval for
Hurst exponent equal

HZC
min � 1� log2 cos

Bπ

2N
, (7.26)

and
HZC

max � 1� log2 cos
Aπ

2N
, (7.27)

where HZC
min and HZC

max denote the lower and upper bound of the con�dence interval,
respectively.
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Chapter 8

Fractional Analysis of Short Time

Series

Previously, we introduced a few methods for analysing fractal sets and signals when
we have enough data. It is well known the quality of the estimation signi�cantly
depends on the number of input data and with more detailed sampling, the standard
deviation of the estimate decreases. There are very few techniques that would be able
to extract fractional character from short samples. This is due to several reasons;
The �rst reason is the theory of fractal sets is based on self-similarity and the in�nite
level of detail that every fractal set has. Most frequently, a large sample is required
to be able to reliably capture the density of the points in the space. Second reason
is that the methods usually require multiple independent random sampling, which
is very often impossible to achieve with real data. Therefore, we aim to present a
method that would be able to extract Hurst exponent from short time series based
on the autocorrelation properties of the signal.

8.1 Di�erenced Fractional Brownian Bridge

Inspired by the Brownian Bridge, it is possible to construct fractional generalization
of this process that we call fractional Brownian bridge (fBB). The new process
employs fBm sample in its de�nition and can be used in more general models. The
construction of this kind of bridge is the key idea for the presented methodology for
several reasons:

• the suggested process has still fractional character,

• the process is de�ned only on �xed interval of �nite length, and therefore it is
more suitable for short time analysis,

• the fractional bridge starts and ends with zero and therefore, no side e�ects
occur in the case of the left and right zero padding.
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Finite sample BHpkq of size N �1 for k � 0, . . . , N of standardized fBm can be used
for the construction of fractional Brownian bridge MHpkq in the following way

MHpkq � BHpkq �BHp0q � k

N
pBHpNq �BHp0qq, (8.1)

which is direct generalization of Brownian Bridge. The fBB holds all the important
properties of BB such as left and right zero padding [66] and in addition it has
desired fractional character. In fractal analysis of time series, the fractional processes
are often converted to fractional noises [2] by means of di�erencing to simplify
their covariance structure together with its spectral properties [67] keeping the
desired dependence on Hurst exponent. Here we follow this procedure and the
�nal suggested process XHpkq is presented as the di�erentiation of fBB. We de�ne
the di�erenced fractional Brownian bridge (dfBB) XHpkq as

XHpkq �MHpk � 1q �MHpkq (8.2)

for k � 0, . . . , N � 1. The sample of fBm with N � 20 and corresponding fBB and
dfBB are displayed in Fig. 8.1.
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Figure 8.1: Fractional Brownian motion sample and derived processes.
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Based on the de�nition of dfBB we can deduce statistical characteristics that are the
subject of following analysis. The process XHpkq representing di�erenced fractional
Brownian bridge can be simpli�ed as

XHpkq � GHpkq � 1

N
BHpNq, (8.3)

for k � 0, 1, . . . , N �1 where GHpkq is sample of fGn and BHpNq is the last element
in the corresponding fBm sequence. The sample XHpkq itself is fully determined by
two parameters � the Hurst exponent H and the length of the sequence N . The
appropriate formulas for statistical features are in most cases naturally dependent
on these two parameters.

Due to the fact, that the dfBB comprises of two processes with both zero expected
value, the expected value of dfBB equals zero too, i.e

EpXHpkqq � EpGHpkqq � 1

N
EpBHpNqq � 0. (8.4)

A little bit more di�cult can be the computation of the variance EpX2
Hpkqq. Using

the autocovariance structure of fBm given in (2.13) and rewriting fGn as di�erence
of fBm from de�nition (2.14)one obtains

EpX2
Hpkqq �EpB2

Hpk � 1q �B2
Hpkq �

1

N2
B2
HpNq�

2BHpk � 1qBHpkq�
2

N
BHpk � 1qBHpNq�

2

N
BHpkqBHpNqq.

(8.5)

Using property (2.13) of BHpkq we obtain
EpX2

Hpkqq �1�N2H�2�
� 2

N
p|k|2H � |k � 1|2H � |k �N |2H � |k � 1�N |2Hq. (8.6)

Finally, the variance of the dfBB process can be subsequently written as

γ0 � varpXHq � 1

N

N�1̧

k�0

EpX2
Hpkqq � 1�N2H�2. (8.7)

Calculation of autocovariance requires the computation of EpXHpkqXHplqq for k, l �
0, . . . , N � 1 where k ¡ l. The expected value of XHpkqXHplq can be expressed as

EpXHpkqXHplqq �
E

�
GHpkqGHplq � 1

N
GHplqBHpNq



�

E

�
1

N
GHpkqBHpNq � 1

N2
B2
HpNq



.

(8.8)
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Using the correlation between GH and BH as

EpGHpkqBHplqq � 1

2

�|k � 1|2H � |k|2H � |k � l|2H � |k � 1� l|2H� (8.9)

together with substitution m � k � l, one obtains that the autocovariance is

γm � ηpm,Hq �N2H�2 � |m|2H � |N �m|2H � |N |2H
NpN �mq , (8.10)

that is expressed as a sum of fGn autocorrelation function η and correction of order
O
�
N2H�2

�
as N goes to in�nity. The corresponding autocorrelation function is

expressed as
ρm � γm

γ0

(8.11)

for m � 0, . . . , N � 1.

8.2 Parameter Estimation Method

Having generated Q P N independent samples of fGn of length N P N with the
same theoretical value of Hurst exponent H, the new methodology of estimation
could be applied to investigate fractional properties of these trajectories. By means
of cumulative sum, the fGn sample is transformed into fBm and utilizing formula
(8.1), the fBB can be constructed. The dfBB sample x0, x1, . . . , xM�1 arises as a
di�erentiation of fBB. The estimation of n-th autocovariance coe�cient prn can be
expressed for n � 0, . . . , N � 1 as

prn � M�n�1¸
k�0

xkxk�n (8.12)

and the estimation of autocorrelation coe�cient pρn as

pρn � prnpr0

. (8.13)

Denote the theoretical value of autocorrelation from equation (8.11) as ρn � ρnpHq
and the averaged autocorrelation from Q independent realisations as Eppρnq. Than
we obtain the estimation of parameter H by means of solving the minimization
problem pH � argmin

HPp0,1q

N�1̧

n�1

pEppρnq � ρnpHqq2 . (8.14)

The point estimate of pH can be obtained by the maximum likelihood method [68]
together with its standard deviation.
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Chapter 9

Hurst Exponent Estimation via

Wishart Distribution

Autocorrelation properties of fractional processes are very useful for estimating
their Hurst exponent. The idea of the following approach is following: Having
independent samples of the same process allows to create a structure that would
capture and generalize the autocorrelation properties of the original process. We
assume that we have a couple of samples of n-dimensional process and will form a
scatter matrix, that summarizes the properties of all samples. Using the Wishart
distribution and the summarized matrix, it is possible to derive the statistical
properties of the original process. We will demonstrate both on how to apply this
method on one-dimensional signals as well as on multidimensional structures, such
as fractional surfaces and fractional masses.

9.1 Wishart Distribution Primer

This section summarizes the key properties of Wishart distribution [69] that will
be applied later. The Wishart distribution generalizes gamma distribution and it
is de�ned over random matrices. Since in this work, we consider mostly Gaussian
processes [70], we use �nite length samples of fractional processes as samples from
a multidimensional normal distribution with given covariance matrix V.

Let p P N, n P N be number of dimensions and samples, respectively. Let V P
Rp�p,V ¡ 0 be covariance matrix. Let G � p~g1, ~g2, . . . ~gnq P Rp�n be the sample
matrix, where ~gj � Np~0,Vq. Then the scatter matrix S � GGT P Rp�p has Wishart
distribution, i.e. S � WpV, p, nq.
Adequate probability density function (pdf) can be expressed as

fpS,V, p, nq � |S|pn�p�1q{2 exp
��1

2
trpV�1Sq�

2np{2 |V|n{2 Γppn2 q
, (9.1)
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where

Γppξq � πppp�1q{2 �
p¹
j�1

Γ

�
ξ � j � 1

2



(9.2)

and trp...q means trace of a matrix.

There is a useful property of Wishart distribution. When the transform matrix
C P Rq�p has rank equal to q, then

CSCT � WpCVCT, q, nq. (9.3)

The previous property is useful for the analysis of transformed processes. Given
a sample matrix G, we can transform the data using a transformation matrix C,
thus the new process sample matrix will equal Gnew � CG and resulting scatter
matrix equals GnewGT

new � CSCT. Therefore, for any derived process for which we
know the transformation matrix, we immediately know the parameters of Wishart
distribution as well.

When the transformation matrix C has full rank, we obtain

trpV�1
new � Snewq � trpV�1Sq, (9.4)

where Snew � CSCT and Vnew � CVCT. Therefore, the pdf of transformed process
is only rescaled pdf of the original one. In the particular case, when C is square
matrix with |C| � 1, the pdf remains unchanged.

We will relate the previously introduced terms to the fractional random processes.
Fractional Brownian motion of length N P N is a Gaussian process dependent on
parameters H P p0; 1q, σ ¡ 0, therefore

~x � px1, x2, . . . , xNqT � N
�
~0,V0

	
, (9.5)

where V0 � pvi,jqNi,j�0 for

vi,j � σ2

2

�|i|2H � |j|2H � |i� j|2H� . (9.6)

There are various stochastic processes, that are derived from fBm. Frequently used
fractional Gaussian noise (fGn) generates a sample pyiqNi�1 as fBm di�erentiation as

yi � xi � xi�1, (9.7)

which can be rewritten as
~y � C~x (9.8)

where C � pci,jqNi,j�1 and ci,j � δi,j � δi,j�1 for Kronecker delta δi,j. Resulting matrix
is triangular and |C| � 1. Adequate covariance matrix of fGn is V � CV0.

Another possibility is to analyse fractional bridge. The fractional Brownian bridge
(fBB) generates a sample pziqNi�0 de�ned as

zi � xi � x0 � i

N
pxN � x0q . (9.9)

71



Chapter 9. Hurst Exponent Estimation via Wishart Distribution

The transformation matrix C P RpN�1q�N has decreased rank and adequate covari-
ance matrix is V � CV0.

During the fractal analysis of time series, the fractional processes are often converted
to fractional noises by means of di�erencing to simplify their covariance structure
together with its spectral properties, while keeping the desired dependence on Hurst
exponent. The sample pwiqi�1,N of di�erenced fractional Brownian bridge (dfBB) is
de�ned as

wi � zi � zi�1 (9.10)

and C P RpN�1q�N ,V � CV0 again.

All mentioned discrete processes and derived samples are dependent on the Hurst
exponent H determining whether the process has long or short memory.

9.2 Maximum Likelihood Estimation Approach

Observing independent fBm samples of length N , we can compare the experimental
scatter matrix with theoretical covariance matrix using maximum likelihood ap-
proach [71]. The scatter matrix can be evaluated from n ¡ N samples of fBm
as

S0 �
ņ

k�1

~xk~x
T
k , (9.11)

which is single, but summarized result of the fBm observations. The likelihood value
is therefore

LpH, σq � fpS0,V0, N, nq, (9.12)

because V0 is function of H, σ. Using adequate negative-logarithm transformation,
the likelihood maximization can be converted to a minimization of

ΦpH, σq � � lnLpH, σq � Q� n

2
ln |V0| � 1

2
tr
�
V�1

0 S0

�
, (9.13)

where Q is dependent on the input data, but independent on H, σ. The range of H
is constrained, but σ ¡ 0 could vary in order. Therefore, we prefer to use r � lnσ
as more suitable parameter. Resulting optimization task is

ΨpH, rq � ΦpH, expprqq Ñ min. (9.14)

The optimum values H�, r� are the point estimates of H, r in the sense of likelihood
technique. After the evaluation of Hessian matrix [71]

H �
�

B
2Ψ

BH2
B
2Ψ

BHBr

B
2Ψ

BrBH
B
2Ψ
Br2

�
H�H�,r�r�

¡ 0 (9.15)

we directly evaluate asymptotic variance of H� estimate as u1,1 where U � H�1

and adequate standard deviation is obtained as sd � ?
u1,1. The unbiasedness of
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proposed method can be measured by z-score as z � pH �H�q{sd, which should
satisfy |z| ¤ 1.960 for signi�cance level 0.05. The corresponding 95% con�dence
interval is therefore

CI � rH� � 1.96sd;H� � 1.96sds. (9.16)

The con�dence region for parameter pair pH, rq is de�ned as set

CR �
"
pH, rq : ΨpH, rq ¤ ΨpH�, r�q � χ2

2p0.95q
2

*
. (9.17)

We can calculate the mean square error as precision measure

MSE � sd � sd� pH� �Hq2. (9.18)

Similar methodology can be used also for derived processes. Using the transform
matrix C, we can obtain another covariance matrix V � CV0CT of a given process.
The Corresponding scatter matrix can be written as

S �
ņ

k�1

~yk~y
T
k � CS0CT. (9.19)

After the application of maximum likelihood technique, we have

ΦpH, σq � � lnLpH,ωq � Q� n

2
ln |V| � 1

2
tr
�
V�1S

�
. (9.20)

Finding minima of ΦpH, σq at point pH�, r�q, we can calculate all other statistical
properties, such as sd, CI, CR and MSE.

9.3 Generalized Circulant Embedding

The methods for simulation of one-dimensional fBm are known, but the generation
methods of multidimensional fBm from (2.24) are not well developed. We will
need an exact method for multidimensional fBm generation to be able to verify its
properties via simulations. This section describes an idea of multidimensional fBm
generation that is based on the generalization of traditional circulant embedding [72,
73] (TCE) method. We introduce the general circulant embedding (GCE) method
as follows. The method utilizes the simulation of incremental fractional Gaussian
noise (ifGn) signal in its core. Suppose that M is even size of n-dimensional integer
grid D � t�M{2, . . . ,M{2� 1un which is a support of BHp~kq as fBm and YHp~kq as
ifGn for ~k P D.
Using index vector ~k P D, we will study the relationship between BHp~kq and YHp~kq.
Using discrete Laplacian ∆D in cubic domain, we can directly calculate

YHp~kq � ∆DBHp~kq �
¸
~uPZn
}~u}�1

�
BHp~k � ~uq �BHp~kq

	
. (9.21)

73



Chapter 9. Hurst Exponent Estimation via Wishart Distribution

Having BHp~0q � 0, we can continue with

Cp~kq � E
�
YHp~pkqYHp~0

	
(9.22)

� E

��� ¸
~uPZn
}~u}�1

�
BHp~k � ~uq �BHp~kq

	
�
¸
~vPZn
}~v}�1

�
BHp~vq �BHp~0q

	��
 (9.23)

�
¸

~u,~vPZn
}~u}�}~v}�1

E
�
BHp~k � ~uqBHp~vq �BHp~kqBHp~vq

	
(9.24)

�
¸

~u,~vPZn
}~u}�}~v}�1

E
�
BHp~k � ~uqBHp�~vq �BHp~kqBHp�~vq

	
(9.25)

� σ2

2

¸
~u,~vPZn

}~u}�}~v}�1

�
}~k � ~u}2H � } � ~v}2H � }~k � ~u� ~v}2H�

� }~k}2H � } � ~v}2H � }~k � ~v}2H
	
�

(9.26)

� σ2

2

¸
~u,~vPZn

}~u}�}~v}�1

�
}~k}2H � }~k � ~u}2H � }~k � ~v}2H � }~k � ~u� ~v}2H

	
. (9.27)

Using matrix WH P RMn
of elements WHp~kq � }~k}2H for ~k P D we can also apply

the discrete Laplacian ∆D to produce

∆DWHp~kq �
¸
~uPZn
}~u}�1

�
WHp~k � ~uq �WHp~kq

	
(9.28)

and also the convolution�
∆D �∆D



WHp~kq � (9.29)

�
¸
~vPZn
}~v}�1

�
∆DWHp~k � ~vq �∆DWHp~kq

	
� (9.30)

�
¸

~v,~uPZn
}~v}�}~u}�1

�
WHp~k � ~u� ~vq �WHp~k � ~uq �WHp~k � ~vq �WHp~kq

	
� (9.31)

�
¸

~v,~uPZn
}~v}�}~u}�1

�
}~k � ~u� ~v}2H � }~k � ~u}2H � }~k � ~v}2H � }~k}2H

	
. (9.32)

Therefore,

Cp~kq � �σ
2

2
p∆D �∆DqWHp~kq (9.33)

or in matrix form as

C � �σ
2

2

�
∆D �∆D



WH . (9.34)
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Process YH is still Gaussian with known autocovariance structure. Moreover, its
autocorrelation is not dependent on the time lag, therefore it can be generated
using the circulant embedding method.

Having randomly generated sample of ifGn as YHp~kq with zero mean value, we
recognize (9.21) as Discrete Poisson Equation [74] for an instance of fBm BHp~kq on
the integer domain D. Denoting DFT , DFT �1 as Discrete Fourier transform and
its inversion on D, we can directly solve (9.21) with periodic boundary conditions.
In this case, (9.21) has in�nite many solutions which di�er by constants.Without
loosing generality, we will �nd the solution with zero mean value as follows. First,
we will apply the discrete Fourier transform to (9.21) and obtain

DFT tYHp~kqu � F p~ωq bDFT tBHp~kqu,

where

F p~ωq � �4
ņ

j�1

sin2pωj{2q P R

with ~ω � 2π~k{N for ~k P D is transformed discrete Laplacian operator and b is
component�wise multiplication. The deconvolution can be obtained using Wiener
�lter [75, 76] with parameter λ ¡ 0 using formula

BHp~kq � DFT �1tW p~ωq bDFT tYHp~kquu, (9.35)

where

W p~ωq � F �p~ωq
λ2 � |F p~ωq|2 �

F p~ωq
λ2 � F 2p~ωq . (9.36)

9.4 Multi-Dimensional Generalization

Recall n-dimensional fBm denoted as BHp~xq satis�es

E pBHp~xqBHp~yqq � σ2
0

2
�
�
}~x}2H � }~y}2H � }~x� ~y}2H



(9.37)

and E BHp~xq � 0 for all ~x, ~y P Rn where }..}2 denotes Euclidean distance. Using
rectangular equidistant sampling with step h ¡ 0 and denoting Bp ~Kq � BHph ~Kq
for ~K P Zn, we obtain discrete fBm formula satisfying EBp ~Kq � 0 and

E
�
Bp ~KqBp~Lq

	
� σ2

2

�
} ~K}2H � }~L}2H � } ~K � ~L}2H

	
(9.38)

for ~K, ~L P Zn, where σ � σ0 � hH .
The discretized n-dimensional signal can be sampled by symmetric compact mask

M� � t~s P Zn : }~s}p ¤ ρu (9.39)
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Figure 9.1: Example of rectangular mask applied to two-dimensional fBm.

using Minkowski norm }..}p for p, ρ ¥ 1. The parameter ρ is later called mask radius.
The mask M� consists of N � 1 points ~s0 � ~0, ~s1, . . . , ~sN and can be shifted from
the origin to a point ~K P Zn to form

Mp ~Kq �
!
~K � ~s : ~s PM�

)
. (9.40)

Therefore, the sample at point ~K consists of values Bp ~Kq, Bp ~K�~s1q, . . . , Bp ~K�~sNq.
The neighbourhood of Bp ~Kq and its generation for rectangular mask with nine
elements is visualized in Fig. 9.1. We investigate the reduced sample of size N
and values ξi � Bp ~K � ~ξiq � Bp ~Kq for i � 1, . . . , N . Adequate covariance matrix
V � var ~xi has elements

vi,j � Epξiξjq � E
�
Bp ~K � ~siq �Bp ~Kq

	�
Bp ~K � ~sjq �Bp ~Kq

	
� (9.41)

� E
�
Bp~siq �Bp~0q

	�
Bp~sjq �Bp~0q

	
� (9.42)

� σ2

2
� �}~si}2H � }~sj}2H � }~si � ~sj}2H

�
(9.43)

which is independent on ~K. The theoretical covariance matrix of the sample has
the same dependences as the covariance matrix of the original process.

Given n-dimensional fBm and maskM�, we consider m setsMp~rqq where ~rq P Zn
for q � 1, . . . ,m. The parameter m will be further called number of samples. For
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each set, we de�ne sample vector ~gq P RN as

~gT
q � pBp~rq � ~s1q �Bp~rqq, Bp~rq � ~s2q �Bp~rqq, . . . , Bp~rq � ~sNq �Bp~rqqq . (9.44)

for q � 1, . . . ,m. Let G � p~g1, ~g2, . . . , ~gmq P RN�m be the sample matrix, having
~gq � Np~0,Vq. The scatter matrix S � GGT has Wishart distribution [69] with
probability density function

fpS,V, N,mq � |S|m�N�1
2 exp

��1
2
trpV�1Sq�

2mN{2 |V|m{2 ΓNpm2 q
, (9.45)

where

ΓNpξq � πNpN�1q{2 �
N¹
j�1

Γ

�
ξ � j � 1

2



(9.46)

and trp...q means trace of a matrix.

Given m ¡ N samples of n-dimensional fBm, one can calculate the scatter matrix
as

S �
m̧

l�1

~gj~g
T
j . (9.47)

The scatter matrix generation from two-dimensional fBm and rectangular mask is
visualized in Fig. 9.2.

By maximizing the value of corresponding likelihood

LpH, σq � fpS,VpH, σq, N,mq Ñ max, (9.48)

one gets the optimum estimated values p pH, pσq along with the standard deviations of
the estimates. For standardized fBm with σ � 1, we will use the mean square error
(MSE) as a measure of accuracy.
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Figure 9.2: Scatter matrix generation from two-dimensional fBm sample.
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Chapter 10

Statistical Testing on Simulated Data

Having described the theoretical properties of the estimation algorithms, this chapter
summarizes the results on how the methods perform when applied to simulated data
with known fractal dimension. Here we describe on how we generate the training
sets and how we validate the method performance. We will be verifying following
methods on simulated data sets:

• Rotational spectrum for D2 estimation,

• Modi�ed Renyi entropy for Dα estimation,

• Short time series methodology for H estimation,

• Wishart distribution method for H estimation.

The rotational spectrum and Renyi entropy use as input point sets, therefore we
summarize the sets with known dimension used within this chapter in Tab. 10.1.
The other two methods use fBm as input, and therefore we summarize techniques
for generating fBm in Tab. 10.2.

The methods are tested for wide range of input parameters and eligible dimensions
as well as for their input parameters. The outcome of the simulation is veri�-
cation, whether the methods works as expected, how accurate it is and what is
the recommended parameter settings to achieve best results. The methods have
usually internal parameters that directly in�uence the estimation routine (e.g. lower
and upper bound for performing regression, size of segments) as well as minimum
requirement for the number of data points. Each of the method is tested on fractals
with known dimension and the optimal setting is recommended. Thorough this
chapter, we will use standard notation that is summarized in Tab. 10.3.
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Table 10.1: Sets with known dimension.

structure name parameter(s) meaning reference
Cantor set a � 1{3 contraction ratio [17]
Cantor dust a � 1{3 contraction ratio [77]
Sierpinski carpet a � 1{3 contraction ratio [18]
Real numbers with
even digits set

- - [3]

Takagi function
a P p1{2, 1q scale ratio

[22]
n P N dimension

fBm trajectory
H P p0, 1q Hurst exponent

[33, 34]
n P N space dimension

Levy �ight
α P p0, 2q stability parameter

[31]
n P N dimension

Henon map
a � 0.4, b � 0.3 system parameters

[78]px0 � 0, y0 � 0.9q starting point

Lozi map
a � 1.7, b � 0.5 system parameters

[79]px0 � �0.1, y0 � 0.1q starting point
de Wijs' fractal a P p0, 1{2q system parameter [19]

Table 10.2: Methods for fBm estimation.

method name range of H space reference
Lowen method p0, 0.5s 1D [39]

Davies-Harte method p0, 1q 1D [41, 45]
Abry-Sellan method p0.5, 1q 1D [46]

Traditional circulant embedding p0, 1q 1D [80]
Generalized circulant embedding p0, 1q nD section 9.3

Table 10.3: Notation of variables.

variable meaning
H,Dα theoretical value of Hurst exponent (Renyi dimension)pH,xDα point estimate of Hurst exponent (Renyi dimension)
sd standard deviation of the estimate
z z-score (unbiasedness of the estimate), denoted as ** if

lower than 1.24 and * if lower than 1.96
p-value probability that the point estimate does not di�er from

the theoretical value
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10.1 Estimating D2 using Rotational Spectrum

The methodology of estimating correlation dimension via rotational spectrum em-
ploys its dependence on the logarithm of Ω as

lim
ΩÑ8

lnSpΩq
ln Ω

� lim
ΩÑ8

logSpΩq
log Ω

� �D2. (10.1)

and can be estimated using the linear model

logSpΩq � A�D2 � log Ω� ε (10.2)

for suitable values Ω. The aim is to validate that the estimation of correlation
dimension is unbiased for sets with known dimension and recommend parameters
Ωmin,Ωmax for regression alongside a suitable kernel function. Recall the rotational
spectrum of a �nite sample is de�ned as

pSpΩq � 1

M

M̧

j�1

Hn pΩ}~xj � ~yj}q (10.3)

for M point pairs ~xj, ~yj P F for j � 1, . . . ,M and n P N.

The main feature of the proposed methodology is its smoother dependence of the
spectrum on Ω in comparison to traditional approach with correlation sum (3.14).
The Fig. 10.1 compares the dependency of correlation sum Cprq on the distance r
and rotational spectrum SpΩq with kernel function H8 on the frequency Ω. The
investigated set is Cantor dust withM � 105 point pairs. Subjectively one can argue
that the rotational spectrum has much more smooth dependency in comparison to
the correlation sum, therefore could carry more precise information of the correlation
dimension. For its estimation, we will be using Lp regression with p � 4 while using
the model (10.2).

At �rst, the dependency of variance of the estimation on the total number of
point pairs M is investigated. The reference set is again Cantor dust with various
number of generated point pairs. Table 10.4 presents the point estimate its variance
depending on the number of points M . Rotational spectrum is calculated for kernel
H8. Both in the case of correlation sum and in the case of rotational spectrum, the
standard deviation sd of the estimate decreases, though for M ¡ 104, the rotational
spectrum estimation provides the same accurate estimate, but with smaller standard
deviation.

It is also possible to estimate the rotational spectrum for �nite dimensional rotation
using the kernel functions Hn for n P N . We have proven that the correlation
dimension estimation coincides with D2 in case of in�nite rotational spectrum, but
we will validate experimentally that the relationship holds also for other degrees of
rotation n P N. The comparison of the kernel functions that can be used for the
rotation of the power spectrum is shown in Fig. 10.2 for H2, H3, H4 and H8. The
traditional Sierpinski carpet was used for this simulation.
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Figure 10.1: Traditional correlation sum (left) and rotational spectrum (right).

Table 10.4: Cantor dust analysis using L4 regression.

Correlation sum Rotational spectrum
M xD2 sd z p-value xD2 sd z p-value
103 1.2941 0.1178 ** 0.7843 1.2378 0.1010 ** 0.8117
104 1.2937 0.0803 ** 0.6917 1.3019 0.0470 ** 0.3943
105 1.2341 0.0574 ** 0.6287 1.2618 0.0100 ** 0.9953
106 1.2654 0.0474 ** 0.9405 1.2609 0.0076 ** 0.8995

The estimation of the correlation dimension using di�erent kernel functions can
vary. The estimation of the dimension for the Sierpinski carpet for di�erent kernel
functions is presented in Tab. 10.5. The table shows the theoretical dimension D2

and its estimate xD2 together with the standard deviation sd. The recommended
range for L4 regression is also included, where fmin � log Ωmin and fmax � log Ωmax.

Table 10.5: Sierpinski carpet analysis for the di�erent kernel functions.

Kernel function D2
xD2 sd z p-value fmin fmax

H2 1.8928 1.9851 0.2625 ** 0.7251 1.0 3.0
H4 1.8928 1.8673 0.1128 ** 0.8212 1.0 3.0
H7 1.8928 1.9148 0.0863 ** 0.7988 1.0 3.0
H10 1.8928 1.9019 0.0636 ** 0.8862 1.0 3.0
H8 1.8928 1.8958 0.0559 ** 0.9572 1.0 3.0

With the increasing dimension of the kernel function Hn, the standard deviation
decreases. The estimates were unbiased in all cases, however, the most accurate
estimation occurred for H8. The recommended intervals for the regression were
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Figure 10.2: Rotational spectra of the Sierpinski carpet.

the same in all cases, which means that they were independent of the kernel func-
tion; nevertheless, as will be seen later, they will be dependent on the theoretical
dimension of the fractal structure.

We will verify that the rotational spectrum provides unbiased estimate of the corre-
lation dimension. The following experiments are conducted for parametersM � 105

and kernel function H8 for various fractal sets. The parameter n denotes the
topological dimension of the space, where the set is investigated. The analysis of
n-dimensional Cantor dust is presented in Tab 10.6, the Takagi function is analysed
in Tab 10.7, the fBm trajectory correlation dimension is presented in Tab 10.8, the
Levy �ight results are in Tab. 10.9 and �nally the results of n-dimensional fBm
trajectory are summarized in Tab. 10.10.

The results presents unbiased estimation of correlation dimension for a variety of sets
in one or multiple dimensions. The variance of the estimate decreases with increasing
number of points, though the minimal recommended sample size is M ¥ 105 for
in�nite-dimensional kernel H8. The suggested frequency range fmin and fmax for
regression is still dependent on the fractal set type, though in general the optimal
thresholds are higher for fractal sets with higher theoretical correlation dimension.
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Table 10.6: Correlation dimension of Cantor dust.

n D2
xD2 sd z p-value fmin fmax

1 0.6309 0.6324 0.0053 ** 0.7772
2 1.2619 1.2765 0.0136 ** 0.2830 0.0 2.0
3 1.8928 1.9065 0.0148 ** 0.3278

Table 10.7: Correlation dimension of Takagi function.

n a D2
xD2 sd z p-value fmin fmax

0.55 1.1375 1.1108 0.0324 ** 0.4099 0.5 1.5
0.60 1.2630 1.2469 0.0179 ** 0.3684 1.0 2.0
0.65 1.3785 1.3547 0.0801 ** 0.7664 0.5 1.5
0.70 1.4854 1.4981 0.0577 ** 0.8258 1.0 2.0

2 0.75 1.5850 1.5889 0.0169 ** 0.8175 1.0 1.9
0.80 1.6780 1.6961 0.0401 ** 0.6517 0.9 1.9
0.85 1.7655 1.7731 0.0141 ** 0.5899 1.1 1.9
0.90 1.8480 1.8475 0.0149 ** 0.9732 1.1 1.8
0.95 1.9260 1.9206 0.0096 ** 0.5738 1.1 1.7

Table 10.8: Correlation dimension of fBm trajectory.

n H D2
xD2 sd z p-value fmin fmax

0.1 1.9 1.9152 0.0233 ** 0.5142 0.9 1.5
0.2 1.8 1.8193 0.0113 * 0.0876 0.9 1.5
0.3 1.7 1.7003 0.0136 ** 0.9824 0.7 1.5
0.4 1.6 1.6068 0.0168 ** 0.6857 1.0 1.5

1 0.5 1.5 1.4946 0.0075 ** 0.4715 1.0 2.0
0.6 1.4 1.4218 0.0392 ** 0.5781 1.0 2.0
0.7 1.3 1.2964 0.0981 ** 0.9707 0.7 2.0
0.8 1.2 1.1677 0.0512 ** 0.5281 0.8 2.0
0.9 1.1 1.1019 0.0070 ** 0.7861 0.9 1.5
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Table 10.9: Correlation dimension of two-dimensional Levy �ight.

n a D2
xD2 sd z p-value fmin fmax

0.2 0.2 0.1931 0.0235 ** 0.7691 �16.5 �14.5
0.3 0.3 0.2948 0.0134 ** 0.6980 �14.0 �12.0
0.4 0.4 0.4036 0.0163 ** 0.8252 �10.0 �8.0
0.5 0.5 0.4946 0.1098 ** 0.9608 �8.0 �6.0

2 0.6 0.6 0.6048 0.0184 ** 0.7942 �5.0 �3.0
0.7 0.7 0.7252 0.0372 ** 0.4981 �4.0 �2.0
0.8 0.8 0.8013 0.0718 ** 0.9856 �5.0 �2.0
0.9 0.9 0.9343 0.0944 ** 0.7163 �3.0 �1.0
1.0 1.0 0.9711 0.0621 ** 0.6417 �3.0 0.0

Table 10.10: Correlation dimension of n-dimensional fBm trajectory.

n H D2
xD2 sd z p-value fmin fmax

3 0.75 1.3333 1.3334 0.0302 ** 0.9974 1.5 2.0
3 0.50 2.0000 2.0083 0.0203 ** 0.6826 1.3 1.8
3 0.33 3.0000 2.9857 0.0580 ** 0.8053 1.2 1.7
4 0.75 1.3333 1.3328 0.0165 ** 0.9758 1.4 1.9
4 0.5 2.0000 1.9958 0.0203 ** 0.8361 1.3 1.8
4 0.33 3.0303 3.0503 0.0467 ** 0.6685 1.0 1.5
4 0.25 4.0000 4.0770 0.0959 ** 0.4220 0.9 1.4

10.2 Estimating Dα Using Modi�ed Renyi Entropy

The methodology of estimating Renyi dimension using the modi�ed entropy ap-
proach employs its dependence on the logarithm of ε as

D�
α � lim

εÑ0�

H�
αpεq

� ln ε
(10.4)

and can be estimated using model with additional Gaussian noise e � N p0;σ2q in
the form

H�
α � A�D�

α ln ε� e. (10.5)

We can use least squares method for D�
α estimation using di�erent values εi for

i � 1, . . . , N . We suggest to use geometrically increasing series of εi generated by
formula

εi � 10fmin�pi�1q∆f (10.6)

with N � tpfmax � fminq{∆f u � 1. The entropy dependency on parameter ε is
visualized in Fig. 10.3.
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Figure 10.3: Renyi entropy for various α and Cantor dust (top), de Wij's fractal
(middle) and Lozi map (bottom).
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At �rst, we would like to prove that the estimate is unbiased with increasing number
of data points. We have theoretically deduced that both correlation and capacity
dimensions can be estimated using the modi�ed entropy. We will use the example
of Cantor set to perform the estimation of dimension for various number of input
points. The results for capacity dimension are in Tab. 10.11, while the results for
correlation dimension are displayed in Tab. 10.12. As easy to see, the standard
deviation decreases with increasing number of points, while keeping its estimation
unbiased.

Table 10.11: Capacity dimension estimation of Cantor set.

N D2
xD�

2 sd z p-value fmin fmax

103 0.6309 0.6295 0.0343 ** 0.9674 -3.0 -1.0
104 0.6309 0.6305 0.0239 ** 0.9866 -3.0 -1.0
105 0.6309 0.6327 0.0034 ** 0.5965 -3.0 -1.0
106 0.6309 0.6311 0.0018 ** 0.9115 -3.0 -1.0

Table 10.12: Correlation dimension estimation of Cantor set.

N D2
xD�

2 sd z p-value fmin fmax

103 0.6309 0.6215 0.0465 ** 0.8398 -3.0 -1.0
104 0.6309 0.6344 0.0134 ** 0.7939 -3.0 -1.0
105 0.6309 0.6286 0.0047 ** 0.6246 -3.0 -1.0
106 0.6309 0.6301 0.0015 ** 0.5938 -3.0 -1.0

As next, we would like to demonstrate the unbiasedness of the method using the
comparison with traditional box-counting approach and model (3.21). For a fair
comparison we have chosen the dimension estimation of discrete dynamic systems.
Discrete dynamic systems with chaotic behaviour generate fractal trajectories and
attractors with nonlinear character. The investigation of this kind of sets can be
performed in to ways � in the original state space or in the reconstructed space.
Recall that any Renyi dimension Dα of reconstructed attractor is the same as in the
case of state space.

Tab.10.13 is showing the comparison of dimension estimation using box-counting
(denoted as box-count) method and new method of modi�ed Renyi entropy (denoted
as m. Renyi). For the experiment, Henon map with parameters a � 0.4, b � 0.3 and
starting points x0,1 � 0, x0,2 � 0.9 and Lozi map with parameters a � 1.7, b � 0.5
and starting points x0,1 � �0.1, x0,2 � 0.1 were used for the simulation for M � 105

points. The analysis was studied in two cases, in the case of resulting sample of the
discrete dynamical system (point set) and in the case of state space reconstruction
(reconstr.). The estimates in the case of the point set were not biased in both
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Table 10.13: Discrete dynamical system analysis.

system α Dα data method xDα sd z p-value

1 1.2583
point set

m. Renyi 1.2608 0.0156 ** 0.8727

Henon box-count 1.2428 0.0113 * 0.1702

map
reconst.

m. Renyi 1.2590 0.0056 ** 0.9005

box-count 1.2489 0.0031 0.0024

2 1.2201
point set

m. Renyi 1.2243 0.0174 ** 0.8093

Henon box-count 1.2161 0.0109 ** 0.7136

map
reconst.

m. Renyi 1.2230 0.0026 ** 0.2647

box-count 1.2172 0.0014 0.0383

1 1.4042
point set

m. Renyi 1.4131 0.0197 ** 0.6514

Lozi box-count 1.3915 0.0174 ** 0.4655

map
reconst.

m. Renyi 1.4098 0.0044 * 0.2031

box-count 1.3945 0.0032 0.0024

2 1.3845
point set

m. Renyi 1.3937 0.0144 ** 0.5229

Lozi box-count 1.3786 0.0161 ** 0.7140

map
reconst.

m. Renyi 1.3885 0.0031 * 0.1969

box-count 1.3749 0.0041 0.0192

approaches, however the reconstruction for W = 5 and the dimension estimation
in 5-dimensional space has shown that both methods can achieve smaller standard
deviations, but the resulting estimate was unbiased only in the case of modi�ed
Renyi entropy approach, as seen from the corresponding p-values. The experiment
was also conducted for bigger lengths of the reconstruction sliding window, but it
didn't have signi�cant impact on the results and their precision.

When the systems are investigated in the state space of low dimension (n = 2),
the box-counting o�ered more accurate estimates with smaller standard deviation
than the novel method. However, the p-values indicate unbiasedness in both cases.
Another behaviour of estimation methods has been observed in the case of state
reconstruction when the space dimension is large (n = 5). Therefore, the box-
counting estimates of event probabilities are biased due to data sparsity. Moreover,
all the box-counting estimates after reconstruction are biased. The sparsity e�ect is
not present in the case of new method, where the p-values are higher with similar
standard deviation. Therefore, the modi�ed Renyi dimension is more suitable for
reconstructed systems in higher-dimensional space.

The following calculations are performed for M � 105 for respective boundaries
fmin and fmax and various parameters α. At �rst, the calculation is performed
for monofractals - self-similar sets that ful�l the open set condition, therefore their
Hausdor� dimension equals Renyi dimension for any eligible parameter α, e.g. DH �
D0 � D2. The results of capacity dimension estimation are provided in Tab. 10.14
and the estimates in the case of correlation dimension are in the Tab. 10.15 for ∆f �
0.05 and M � 105. The theoretical capacity (correlation) dimension is denoted D0
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(D2) whereas its estimate is xD�
0 (xD�

2 ) together with its standard deviation sd. The
range for the choice of ln ε is recommended to be in interval rfmin; fmaxs.

Table 10.14: Capacity dimension analysis.

System a D0
xD�

0 sd z p-value fmin fmax

Cantor set 1{4 0.5000 0.5059 0.0070 ** 0.3993 -3.0 -1.0
Cantor set 1{3 0.6309 0.6327 0.0034 ** 0.5965 -3.0 -1.0
Cantor dust 1{4 1.0000 0.9834 0.0157 ** 0.2937 -2.0 0.0
Cantor dust 1{3 1.2619 1.2547 0.0133 ** 0.5883 -2.0 0.0

Even numbers set - 0.6990 0.7030 0.0148 ** 0.7870 -4.0 -1.0
Sierpinki carpet 1{3 1.8928 1.8894 0.0059 ** 0.5644 -2.0 -1.0
Sierpinki carpet 1{4 1.5000 1.4901 0.0148 ** 0.5035 -2.0 -1.0

Table 10.15: Correlation dimension analysis.

System a D2
xD�

2 sd z p-value fmin fmax

Cantor set 1{4 0.5000 0.4974 0.0034 ** 0.4444 -3.0 -1.0
Cantor set 1{3 0.6309 0.6286 0.0047 ** 0.6246 -3.0 -1.0
Cantor dust 1{4 1.0000 0.9863 0.0221 ** 0.5353 -2.0 -1.0
Cantor dust 1{3 1.2619 1.2630 0.0269 ** 0.9674 -2.0 0.0

Even numbers set - 0.6990 0.6991 0.0038 ** 0.9790 -4.0 -1.0
Sierpinki carpet 1{3 1.8928 1.8964 0.0083 ** 0.6645 -2.0 -1.0
Sierpinki carpet 1{4 1.5000 1.5053 0.0064 ** 0.4076 -2.0 -1.0

The graph of De Wijs fractal with parameter a is a kind of multifractal that has
Renyi dimension dependent on the dimension parameter α. Recall its corresponding
Renyi dimension equals

Dα � 1

1� α
log2 paα � p1� aqαq (10.7)

for 0   a   1{2 and α P r0; 1q Y p1,8q with particular case

D1 � lim
αÑ1

Dα � �a log2 a� p1� aq log2p1� aq. (10.8)

The D�
α has been estimated for α P t0, 1{2, 1, 3{2, 2u and the testing results are

included in Tab. 10.16. In all cases we accepted the hypothesis that the estimated
dimension is unbiased estimation of the true Renyi dimension of the fractal set.

The experiments exhibited that the modi�ed Renyi dimension can be suitable for
dimension estimation both in time space and reconstructed space. The minimal
recommended number of points for analysis is M ¥ 105. We have veri�ed that the
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method works reliably for capacity, information and correlation dimension as well
as fractional dimensions with α P t1{2, 3{2u. Numerical calculations further showed
that recommended thresholds for fmin and fmax can be obtained by focusing only
on the dependent value of modi�ed Renyi entropy. For any set with M points, the
maximum value of modi�ed Renyi entropy is lnM . We recommend to use values ε
that satisfy H�

αpεq ¥ lnM{2 and H�
αpεq ¤ 0.7 lnM .

Table 10.16: De Wijs fractal dimensions.

α a Dα
xD�
α sd z p-value fmin fmax

0 a � 1{3 1.0000 0.9908 0.0058 * 0.1127 -6.0 -4.0
0 a � 1{4 1.0000 0.9890 0.0087 * 0.2062 -6.0 -4.0
0 a � 1{6 1.0000 0.9780 0.0143 * 0.1240 -6.0 -4.0
1/2 a � 1{3 0.9581 0.9574 0.0062 ** 0.9101 -5.5 -3.5
1/2 a � 1{4 0.9000 0.8921 0.0103 ** 0.4431 -5.5 -3.5
1/2 a � 1{6 0.8035 0.7895 0.0159 ** 0.3786 -5.0 -3.0
1 a � 1{3 0.9183 0.9158 0.0060 ** 0.6769 -4.0 -2.0
1 a � 1{4 0.8250 0.8259 0.0098 ** 0.9269 -4.0 -2.0
1 a � 1{6 0.6500 0.6387 0.0217 ** 0.6026 -3.0 -1.0
3/2 a � 1{3 0.8814 0.8749 0.0099 ** 0.5115 -4.0 -2.0
3/2 a � 1{4 0.7376 0.7255 0.0153 ** 0.4290 -4.0 -2.0
3/2 a � 1{6 0.5419 0.5234 0.0209 ** 0.3761 -3.0 -1.0
2 a � 1{3 0.8480 0.8359 0.0189 ** 0.5220 -3.0 -1.0
2 a � 1{4 0.6781 0.6687 0.0205 ** 0.6466 -3.0 -1.0
2 a � 1{6 0.4695 0.4552 0.0235 ** 0.5429 -2.0 0.0

10.3 Estimating H from Short Time Series

This section experimentally veri�es the method of dfBB parameter estimation on
short time series. To be able to verify the deduction of the dfBB correlation function,
it is necessary to apply precise fGn sample generator with correlation function
speci�ed by formula

ηpm,Hq � 1

2

�|m� 1|2H � 2|m|2H � |m� 1|2H� (10.9)

for m � 0, . . . , N . At �rst, we validate that it is possible to simulate the fGn with
proper autocorrelation structure, and on the basis of fGn sample one can reconstruct
the dfBB and test its properties. Therefore, it is needed to investigate the quality of
the generator by means of testing the accuracy of correlation coe�cients for di�erent
Hurst exponents H. Four generators of fGn were tested � Circulant embedding
method (CEM), Lowen method (LM), Abry-Sellan wavelet method (ASM) and
Randomly Stimulated Method (RSM) that uses FIR �lter [81, 82]. For Q realisations
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of fGn of length M � 106 we denote the estimated i-th correlation coe�cient from
j-th realisation as ρji . For given H, the theoretical i-th correlation coe�cient is
denoted as ρTHi � ηpi,Hq. The null hypothesis for one-sample t-test states that the
expected value of k-th correlation coe�cient equals the theoretical value

H0pkq : Epρkq � ρTHk . (10.10)

The p-values for ρ1 are shown in Tab. 10.17, whereas the Tab. 10.18 displays the
p-values for second autocorrelation coe�cient ρ2. The symbol 
 indicates that the
p-value is smaller than 10�10. The estimates of ρ1, ρ2 are unbiased when p-value
¡ α for critical level α � 0.05. As seen, the CEM o�ers unbiased estimates for
H ¤ 0.75. The LM is unbiased only for H ¤ 0.5 and ASM just for H � 1{2.
Considering the expected values Epρ1q and Epρ2q as the descriptors of the problem,
only RSM provided unbiased correlation coe�cients in the whole range of H. The
RSM method employs FIR �lter [83] of length L � 10 that was designed to generate
signal from input iid noise from standard normal distribution. The coe�cients ai
(i � 1, . . . , N) of FIR �lter were calculated to satisfy

rn � 1

N � n� 1

N�n�1¸
j�0

anaj�n (10.11)

for n � 0, . . . , L� 1, where rn is n-th autocovariance coe�cient of fGn.

Table 10.17: Unbiasedness of ρ1 coe�cient of dfBB as p-value from (10.10).

method
H

0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.98 0.99
CEM 0.93 0.78 0.32 0.35 0.97 0.76 0.32 
 
 

LM 0.26 0.82 0.16 0.19 0.55 
 
 
 
 

ASM 
 
 
 
 0.66 4 � 10�7 
 
 
 

RSM 0.38 0.69 0.66 0.66 0.38 0.45 0.50 0.33 0.82 0.39

Table 10.18: Unbiasedness of ρ2 coe�cient of dfBB as p-value from (10.10).

method
H

0.01 0.05 0.10 0.25 0.50 0.75 0.90 0.95 0.98 0.99
CEM 0.68 0.25 0.16 0.35 0.40 0.12 0.01 
 
 

LM 0.98 0.42 0.15 0.33 0.40 
 
 
 
 

ASM 
 
 
 2 � 10�7 0.73 3 � 10�6 
 
 
 

RSM 0.30 0.62 0.34 0.89 0.91 0.28 0.51 0.68 0.85 0.64
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It was discovered that not all fGn generators produce samples with su�cient sta-
tistical properties so that they would be usable for further testing. Therefore, we
investigate only samples generated by RSM and CEM, that were proven to provide
satisfactory samples. Recall that in this method, we �rst generate Q independent
samples of fGn, which are summarized and transferred into dfBB sample. At �rst,
we would like to prove the dependency of the estimate pH and its standard deviation
sd on the number of generated samples Q for theoretical value of H � 0.4 and
sample length N � 10. Tab. 10.19 summarizes the results for both CEM and RSM
methods and illustrates the decay of the standard deviation in both cases.

Table 10.19: Analysis of dfBB for H � 0.4.

Q
RSM CEMpH sd z p-value pH sd z p-value

1 0.3183 0.6524 ** 0.9003 0.2541 0.7811 ** 0.8518
10 0.3610 0.1869 ** 0.8347 0.4991 0.2439 ** 0.6845
100 0.4563 0.0617 ** 0.3615 0.4528 0.0905 ** 0.5596

For the following calculations we allow Q � 100, therefore the estimation has been
done from N � Q � 1000 data points in total. The results and corresponding p-
values are included in Tab. 10.20 for RSM and Tab. 10.21 for CEM. As far as RSM
generator is concerned, the methodology provides fair and unbiased estimate of
Hurst exponent in the whole range of H. Due to the inaccuracy of CEM generation
for higher values of H, we get the unbiased estimate of Hurst exponent only for
H   0.8.

Table 10.20: Hurst exponent estimate using RSM for N � 10 (left) and N � 20
(right).

H pH sd z p-value
0.1 0.0806 0.0872 ** 0.8289
0.2 0.2316 0.0792 ** 0.6992
0.3 0.3454 0.0909 ** 0.6175
0.4 0.4563 0.0617 ** 0.3853
0.5 0.4619 0.0572 ** 0.5054
0.6 0.6510 0.0834 ** 0.5409
0.7 0.6848 0.0933 ** 0.8706
0.8 0.7544 0.0570 ** 0.4237
0.9 0.9617 0.0703 ** 0.3801

H pH sd z p-value
0.1 0.1081 0.0848 ** 0.9239
0.2 0.2244 0.0579 ** 0.6735
0.3 0.2991 0.0458 ** 0.9843
0.4 0.3682 0.0526 ** 0.5455
0.5 0.5428 0.0792 ** 0.5889
0.6 0.6203 0.0478 ** 0.6711
0.7 0.6905 0.0535 ** 0.8591
0.8 0.8441 0.0482 ** 0.3602
0.9 0.9528 0.0681 ** 0.4381

The standard deviation of Hurst exponent estimate performed at samples of length
N � 20 was in the majority of cases lower than in the case N � 10. The increasing
sample length can reduce the uncertainty of estimate and the method can be reliably
used for any length of the time series, but the recommended number of input samples
is (at least) Q � 100. The main advantages of this method is the ability to process
short independent samples in the whole range of possible Hurst exponent. To the
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Table 10.21: Hurst exponent estimate using CEM for N � 10 (left) and N � 20
(right).

H pH sd z p-value
0.1 0.1486 0.1299 ** 0.7083
0.2 0.1700 0.1383 ** 0.8283
0.3 0.3103 0.0989 ** 0.9171
0.4 0.4528 0.0905 ** 0.5596
0.5 0.4627 0.0880 ** 0.6717
0.6 0.5749 0.1010 ** 0.8037
0.7 0.6156 0.1183 ** 0.4756
0.8 0.6467 0.0646 0.0176
0.9 0.7227 0.0447 0.0001

H pH sd z p-value
0.1 0.0870 0.1112 ** 0.9069
0.2 0.1971 0.0666 ** 0.9653
0.3 0.3371 0.1039 ** 0.7210
0.4 0.4328 0.0771 ** 0.6705
0.5 0.5255 0.0714 ** 0.7210
0.6 0.5687 0.0424 ** 0.4604
0.7 0.7162 0.0443 ** 0.7146
0.8 0.7059 0.0675 * 0.1633
0.9 0.7454 0.0714 0.0304

disadvantages belongs mainly the focusing on the several �rst correlation coe�cients
which cannot discover the dependencies between more distant time series elements
and bigger standard deviation of the estimate. This technique is recommended in
two cases:

• analysis of short time series with at least 10 elements,

• analysis of stationary time series using signal segmentation which satis�es
segment independence.

The second approach leads to more accurate estimate of H which we later demon-
strate experimentally on the signals from biological autoluminiscence.

10.4 Hurst Exponent Estimation in 1D UsingWishart

Distribution

The experimental study of Hurst exponent estimation via Wishart distribution is
at �rst conducted in one dimension on simulated data. There are a few well-
known generators of one dimensional fBm, such as Lowen, Davies-Harte, Circulant
embedding and Abry-Sellan methods. The generators can be used in two ways:

• produce fBm samples and estimate its parameters,

• produce fBm samples and transform them into another series (e.g. fBB), which
autocorrelation function is also known.

The parameter estimate can be obtained via solving optimization task (9.14) and
the con�dence regions for H and σ can be calculated using equation (9.17). In the
following experiments we will be using standardized fBm, therefore its variance is
normalized to σ � 1 for various values of Hurst exponent H.
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At �rst, the con�dence regions (9.17) were investigated for H P p0, 1q and fBm,
fGn, fBB and dfBB models. Experiments showed that the con�dence regions using
fractional motions and noises models (fBm and fGn) have the same shape and area
for the whole spectrum of parameter H. The con�dence region for fractional bridges
(fBB and dfBB) are wider, but again alike within this process family. The con�dence
regions for theoretical value H � 0.25 generated by the Lowen method and fBm
model for di�erent sample sizes is depicted in Fig. 10.4, whereas the con�dence
interval using fBB method for the same H is in Fig. 10.5. The circle symbol marks
the theoretical value of pH, lnσq, whereas the star denotes its estimate. With the
increasing length of the generated time series, the con�dence region is getting more
narrow, however, still containing the theoretical value of H. For the rest of this
chapter, we will not di�erentiate between fBm and fGn models, neither between
fBB and dfBB since the results coming from these approaches are almost alike. In
the rest of the calculations, the fBm and fBB models are used for illustration of
the method performance. The standardized fBm was examined for di�erent input
sample sizes n and the Hurst exponent estimates and their standard deviation is
illustrated in Tab. 10.22. As expected, the standard deviation of the estimate
decreases with increasing sample size and the estimate converges to the theoretical
value.
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Figure 10.4: Con�dence region of fBm model with N � 10 for n � 104 (left) and
n � 106 (right) generated by Lowen method.

Table 10.22: Analysis of fBm and fBB for H � 0.25.

n
fBm fBBpH sd z p-value pH sd z p-value

103 0.25174 0.022340 ** 0.9379 0.25284 0.032865 ** 0.9311
104 0.25071 0.010592 ** 0.9466 0.25079 0.014354 ** 0.9561
105 0.25083 0.002175 ** 0.7028 0.25012 0.003193 ** 0.9700
106 0.24980 0.001078 ** 0.8528 0.25069 0.001436 ** 0.6309

The next step is veri�cation of the generation methods in one dimension for both fBm
and fBB models. At �rst, we estimated the Hurst exponent of a time series generated
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Figure 10.5: Con�dence region of fBB model with N � 10 for n � 104 (left) and
n � 106 (right) generated by Lowen method.

by the Lowen method. The time-series of length 2�pN�1q�n was always generated
and divided into segments of size N � 1. For the analysis, only even segments were
taken into consideration, due to the memory of fBm and fBB processes. Removing
odd segments from the initial sample assures there is no correlation between the
segments and their independence. The total number of segments for analysis was
n � 105 and the study has been performed for N � 10. Therefore, the parameter
of Wishart distribution is p � 10 for fBm and fGn models, but p � 9 for fBB and
dfBB. The results for Hurst exponent estimation are in Tab. 10.23, while H denotes
the theoretical value of Hurst exponent, pH is its estimate, sd is standard deviation.
Column z denotes the unbiasedness of the estimate, having one-star symbol (*)
when z-score is lower than 1.96 and two stars (**) if z-score is lower than 1.24. The
standard deviation of H estimate was always smaller when using the fBm method
in contrast to the fBB method, however, for all H ¥ 0.1, the estimate was unbiased.

Table 10.23: Estimation of H from short samples (N � 10, n � 105) generated by
Lowen method.

H
fBm fBBpH sd z p-value pH sd z p-value

0.05 0.07990 0.001631   10�5 0.06923 0.002541   10�5

0.10 0.09880 0.001716 ** 0.4844 0.10065 0.002698 ** 0.8096
0.15 0.15199 0.001935 ** 0.3038 0.14781 0.002906 ** 0.4511
0.20 0.19995 0.002076 ** 0.9808 0.19995 0.003048 ** 0.9869
0.25 0.25083 0.002175 ** 0.7028 0.25012 0.003193 ** 0.9700
0.30 0.30060 0.002268 ** 0.7914 0.30027 0.003303 ** 0.9349
0.35 0.34902 0.002289 ** 0.6686 0.34878 0.003397 ** 0.7195
0.40 0.39999 0.002323 ** 0.9966 0.39878 0.003440 ** 0.7229
0.45 0.45057 0.002306 ** 0.8048 0.44998 0.003533 ** 0.9955
0.50 0.50061 0.002283 ** 0.7893 0.50275 0.003543 ** 0.4376
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Very similar results were obtained by the Davies�Harte method and Circulant Em-
bedding. Hurst exponent generated from the whole spectra from 0.05 to 0.95 was
estimated both using fBm and fBB methods. The fBm model again provided better
performance and a smaller standard deviation for all H except H � 0.95, where the
estimate was biased. Complete results are in Tab. 10.24 for Davies�Harte and Tab.
10.25 for circulant embedding.

Table 10.24: Estimation of H from short samples (N � 10, n � 105) generated by
Davies-Harte method.

H
fBm fBBpH sd z p-value pH sd z p-value

0.05 0.05980 0.001187   10�5 0.07451 0.001967   10�5

0.10 0.09877 0.001435 ** 0.3914 0.10210 0.001960 ** 0.2840
0.15 0.15222 0.001652 * 0.1790 0.15442 0.002510 * 0.0782
0.20 0.19887 0.001801 ** 0.5304 0.20451 0.003229 * 0.1625
0.25 0.25257 0.001947 * 0.1868 0.24976 0.003627 * 0.9472
0.30 0.30175 0.002138 ** 0.4131 0.30795 0.004149 * 0.0553
0.35 0.35022 0.002047 ** 0.9144 0.34893 0.004579 ** 0.8152
0.40 0.39673 0.002098 * 0.1191 0.39597 0.003467 ** 0.2451
0.45 0.44987 0.002128 ** 0.9513 0.44899 0.003486 ** 0.7720
0.50 0.50014 0.002121 ** 0.9474 0.50280 0.003547 ** 0.4299
0.55 0.55041 0.002132 ** 0.8475 0.55340 0.003570 ** 0.3409
0.60 0.60201 0.002083 ** 0.3346 0.59880 0.003595 ** 0.7385
0.65 0.64995 0.002033 ** 0.9804 0.65293 0.003649 ** 0.4220
0.70 0.69876 0.003593 ** 0.7300 0.70022 0.003609 ** 0.9514
0.75 0.75105 0.001855 ** 0.5714 0.74892 0.003082 ** 0.7260
0.80 0.79553 0.003558 ** 0.2090 0.79553 0.003558 ** 0.2090
0.85 0.84511 0.003502 * 0.1626 0.84511 0.003502 * 0.1626
0.90 0.90206 0.001245 * 0.0980 0.90083 0.003454 ** 0.8101
0.95 0.95057 0.001434 ** 0.6910 0.95057 0.002934 * 0.8460

The experiment was conducted as well using Abry�Sellan algorithm for parameters
H from the long-memory spectrum and the H estimates are presented in Tab. 10.26.
We have analysed criterion MSE as well. The decadic logarithm of MSE is plotted
against H in in Fig. 10.6. It is clear that the MSe is always lower in case of fBm
than using fGn approach. Except extreme values of H close to 0.1, the MSE exhibits
stable values in its whole range.

To sum up, the investigation has shown that even for large samples, the method
is unbiased for all H between 0.1 and 0.95, having low standard deviation with an
order of magnitude minus three. With increasing length of input time series n, the
con�dence region size is signi�cantly reduced. Moreover, the experiments showed
that the mean square error of H estimate is inversely proportional to the number
of segments which could be further used to achieve more accurate estimates. The
comparison between the fBm and fBB models has shown the fBm model was proved
to have smaller estimation error and its accuracy is most dependent on the product
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Table 10.25: Estimation of H from short samples (N � 10, n � 105) generated by
Circulant Embedding method.

H
fBm fBBpH sd z p-value pH sd z p-value

0.05 0.06005 0.001994   10�5 0.07367 0.002529   10�5

0.10 0.10032 0.001894 ** 0.8658 0.09517 0.002655 * 0.0689
0.15 0.15017 0.002162 ** 0.9373 0.14985 0.002934 ** 0.9592
0.20 0.19984 0.002110 ** 0.9396 0.20031 0.002944 ** 0.9161
0.25 0.24977 0.002275 ** 0.9195 0.24526 0.003054 ** 0.1206
0.30 0.30035 0.002268 ** 0.8774 0.29964 0.003127 ** 0.9083
0.35 0.34988 0.002317 ** 0.9587 0.35028 0.003317 ** 0.9327
0.40 0.39982 0.002195 ** 0.9346 0.40007 0.003502 ** 0.9841
0.45 0.45034 0.002161 ** 0.8750 0.45496 0.003536 * 0.1607
0.50 0.49985 0.002105 ** 0.9432 0.50425 0.003564 ** 0.2331
0.55 0.55129 0.002060 ** 0.5312 0.55010 0.003602 ** 0.9779
0.60 0.59971 0.002000 ** 0.8847 0.60323 0.003392 ** 0.3410
0.65 0.64986 0.001852 ** 0.9397 0.64967 0.003423 ** 0.9232
0.70 0.70024 0.001569 ** 0.8784 0.69990 0.003364 ** 0.9763
0.75 0.75127 0.001329 ** 0.3393 0.74503 0.003460 * 0.1509
0.80 0.79988 0.000972 ** 0.9017 0.80491 0.003422 * 0.1513
0.85 0.85027 0.000668 ** 0.6861 0.85052 0.003413 * 0.8789
0.90 0.90037 0.001098 ** 0.7361 0.90461 0.003338 * 0.1673
0.95 0.94582 0.000868   10�5 0.94549 0.003469 *   10�5

Table 10.26: Estimation of H from short samples (N � 10, n � 105) generated by
Abry-Sellan method.

H
fBm fBBpH sd z p-value pH sd z p-value

0.50 0.50042 0.002278 ** 0.8537 0.50046 0.0035246 ** 0.8962
0.55 0.55054 0.002235 ** 0.8091 0.55093 0.0035687 ** 0.7944
0.60 0.59971 0.000691 ** 0.6747 0.59881 0.0035774 ** 0.7394
0.65 0.64954 0.002097 ** 0.8264 0.65654 0.0035517 * 0.0656
0.70 0.70024 0.000618 ** 0.6978 0.69741 0.0035767 ** 0.4690
0.75 0.74961 0.001854 ** 0.8334 0.74483 0.0035599 * 0.1464
0.80 0.79889 0.001655 ** 0.5024 0.80139 0.0035584 ** 0.6961
0.85 0.84895 0.001440 ** 0.4659 0.85071 0.0035218 ** 0.8402
0.90 0.89828 0.001136 * 0.1300 0.89827 0.0035014 ** 0.6212
0.95 0.94739 0.000219   10�5 0.95153 0.0032925 ** 0.6422

of N � n rather than individually on n or N . The recommended model is the fBm
model for at least n � 105 data points and segment size N ¥ 10 which assures, the
resulting correlating coe�cients have high precision.
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Figure 10.6: Decadic logarithm of mean square error (MSE) of H estimate for fBm
(straight line) and fBB (dashed line).

10.5 Hurst exponent estimation in nD UsingWishart

Distribution

Whereas in one dimension, there are a lot of methods that could be used for the
simulation, in n-dimensional space the amount of methods is limited. In this section,
the generalized circulant embedding method (GCE) is used for multidimensional
fBm generation and the Hurst exponent is subsequently estimated via the Wishart
distribution approach. Recall that thorough this chapter we are using slightly
di�erent notation than before, since n P N denotes the dimension of the space
where fBm is generated, N P N still denotes the number of points in each segment
sample and m P N is the total number of samples of the n-dimensional fBm.

At �rst, we would like to validate the GCE generation method. Since the method
can generate fBm in any dimension, we can easily validate it in one dimension
and verify that it provides the same performance as traditional one-dimensional
methods. The comparison between the traditional circulant embedding method
(TCE) and generalized circulant embedding method is performed for the full range
of parameter H and standardized fBm with unit variance. We investigated the
optimal value of regularization parameter λ ¡ 0 in one and two dimensions. It has
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been observed the Wiener method of regularization numerically fails for λ   10�13

in many cases. Therefore, we suggest λ � 10�12 as the minimum but safe value.
Using this value of λ we can generate the n-dimensional fBm and estimate H using
the maximum likelihood method and Wishart approach. The theoretical value of H
is uniformly generated from 0.05 to 0.95.

The results for one dimensional case (traditional fractional Brownian motion) for
TCE and GCE methods are shown in Tab. 10.27. While H denotes the theoretical
value of Hurst exponent, pH is its estimate with corresponding standard deviation sd.
We get unbiased estimate for all H except H � 0.95, when the fractional Brownian
motion has a very long memory and both methods overestimate its theoretical value.
Additionally, in all cases when the estimates are unbiased, the novel GCE method
is having smaller MSE. The performance of TCE method is visualized in Fig. 10.7
as a 95% con�dence interval of H � pH.

Table 10.27: Hurst exponent estimation of fBm in one dimension for N = 10 and
m � 104.

H
TCE GCEpH sd z p-value pH sd z p-value

0.0500 0.0459 0.00276 * 0.1374 0.0498 0.00141 ** 0.8872
0.1000 0.1010 0.00354 ** 0.7776 0.0997 0.00180 ** 0.8676
0.1500 0.1519 0.00405 ** 0.6390 0.1538 0.00203 * 0.0612
0.2000 0.1923 0.00440 * 0.0801 0.2020 0.00222 ** 0.3676
0.2500 0.2578 0.00472 * 0.0984 0.2479 0.00236 ** 0.3736
0.3000 0.3013 0.00480 ** 0.7865 0.3033 0.00246 * 0.1798
0.3500 0.3509 0.00502 ** 0.8577 0.3487 0.00248 ** 0.6001
0.4000 0.4068 0.00504 * 0.1773 0.4006 0.00252 ** 0.8118
0.4500 0.4482 0.00493 ** 0.7150 0.4494 0.00256 ** 0.8147
0.5000 0.4956 0.00509 ** 0.3873 0.5002 0.00250 ** 0.9362
0.5500 0.5495 0.00497 ** 0.9199 0.5512 0.00251 ** 0.6326
0.6000 0.6001 0.00493 ** 0.9838 0.6024 0.00249 ** 0.3351
0.6500 0.6515 0.00477 ** 0.7532 0.6501 0.00237 ** 0.9663
0.7000 0.6942 0.00457 * 0.2044 0.7002 0.00222 ** 0.9282
0.7500 0.7459 0.00440 ** 0.3514 0.7490 0.00218 ** 0.6464
0.8000 0.8020 0.00397 ** 0.6144 0.7989 0.00197 ** 0.5766
0.8500 0.8531 0.00346 ** 0.3703 0.8490 0.00175 ** 0.5677
0.9000 0.9052 0.00267 * 0.0515 0.8979 0.00147 * 0.1531
0.9500 0.9444 0.00175 0.0014 0.9594 0.00088   10�5

In two dimensional space, where the equivalent of TCE does not exist, the exper-
iment is performed for GCE and symmetric compact mask with p � 1 and ρ � 4,
yielding N � 80. The estimation has been performed from m � 104 independent
samples and the results are presented in Tab. 10.28. The method provided unbiased
estimation of Hurst exponent for all H   0.90, except the extreme case of long
memory fractional Brownian surface. The performance of the GCE method is
visualized in Fig. 10.8. Similar experiment was also conducted for three dimensional
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Figure 10.7: TCE method performance in one-dimensional space.

fBm where we used again symmetric compact mask with p � 1 and ρ � 2, yielding
N � 124. The method was reliable for all cases where H   0.85, whereas with
long memory cases the estimates had low standard deviation, but were biased. The
results from GCE method in three dimensions are contained in Tab. 10.29.

The results have shown that the GCE method can be used reliably for fBm genera-
tion except the cases with long memory. In that case the covariance function is hav-
ing long dependence, where the di�erences between the autocorrelation coe�cients
are only tiny. Conducting further experiments, it was found that the performance
of the estimation again depends on m � N rather than independently on m or N .
When validating the unbiasedness of GCE, the experiments on fractional Brownian
surface (n � 2) and fractional Brownian mass (n � 3) showed that the range of
reliability for Hurst exponent shrinks its upper bound when the space dimension
increases. For further analyses, it is recommended N �m ¥ 105 and for investigation
of sets with H   0.95 and n � 1, with H   0.9 and n � 2 and with H   0.85 and
n � 3, respectively.
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Figure 10.8: GCE method performance in two-dimensional space.

Table 10.28: Hurst exponent estimation of fBm in two dimensions for N = 80 and
m � 104.

H pH sd z p-value MSE
0.0500 0.0508 0.00119 ** 0.5014 2.06 � 10�6

0.1000 0.0973 0.00158 * 0.0875 9.79 � 10�6

0.1500 0.1515 0.00191 ** 0.4323 5.90 � 10�6

0.2000 0.2007 0.00215 ** 0.7447 5.11 � 10�6

0.2500 0.2535 0.00230 * 0.1281 1.75 � 10�5

0.3000 0.2993 0.00247 ** 0.7769 6.59 � 10�6

0.3500 0.3495 0.00256 ** 0.8451 6.80 � 10�6

0.4000 0.4047 0.00264 * 0.0750 2.91 � 10�5

0.4500 0.4516 0.00270 ** 0.5535 9.85 � 10�6

0.5000 0.4986 0.00845 ** 0.8684 7.34 � 10�5

0.5500 0.5467 0.00238 * 0.1656 1.66 � 10�5

0.6000 0.5995 0.00209 ** 0.8109 4.62 � 10�6

0.6500 0.6433 0.00362 * 0.0642 5.80 � 10�5

0.7000 0.6973 0.00364 ** 0.4582 2.05 � 10�5

0.7500 0.7478 0.00323 ** 0.4958 1.53 � 10�5

0.8000 0.8040 0.00213 * 0.0604 2.05 � 10�5

0.8500 0.8511 0.00163 ** 0.4998 3.87 � 10�6

0.9000 0.9081 0.00112   10�5 6.69 � 10�5

0.9500 0.9467 0.00086 0.0001 1.16 � 10�5

101



Chapter 10. Statistical Testing on Simulated Data

Table 10.29: Hurst exponent estimation of fBm in three dimensions for N = 124
and m � 103.

H pH sd z p-value MSE
0.0500 0.0486 0.0051 ** 0.7837 2.75 � 10�5

0.1000 0.0976 0.0072 ** 0.7389 5.70 � 10�5

0.1500 0.1471 0.0089 ** 0.7445 8.74 � 10�5

0.2000 0.1991 0.0053 ** 0.8652 2.88 � 10�5

0.2500 0.2530 0.0019 * 0.1143 1.27 � 10�5

0.3000 0.3003 0.0024 ** 0.9005 6.07 � 10�6

0.3500 0.3542 0.0058 ** 0.4690 5.15 � 10�5

0.4000 0.4047 0.0078 ** 0.5468 8.31 � 10�5

0.4500 0.4508 0.0077 ** 0.9173 5.93 � 10�5

0.5000 0.4868 0.0095 * 0.1647 2.64 � 10�4

0.5500 0.5403 0.0064 * 0.1296 1.35 � 10�4

0.6000 0.5901 0.0060 * 0.0989 1.34 � 10�4

0.6500 0.6500 0.0052 ** 0.9847 2.73 � 10�5

0.7000 0.6958 0.0042 ** 0.3173 3.60 � 10�5

0.7500 0.7455 0.0029 * 0.1207 2.84 � 10�5

0.8000 0.7958 0.0024 * 0.0801 2.32 � 10�5

0.8500 0.7951 0.0018   10�5 3.02 � 10�3

0.9000 0.8306 0.0015   10�5 4.82 � 10�3

0.9500 0.9012 0.0012   10�5 2.39 � 10�3
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Chapter 11

Applications on Real Data

After reviewing the methods performance on simulated data, the recommended
settings and parameters for the methods usage are demonstrated, so they provide
reliable, unbiased and as accurate results as possible. This chapter describes the
e�orts that have been made on applying these methods on real-world data, assuming
the real data represents a fractal set that can be modelled using the outlined
techniques. The applications of the methods are demonstrated on following data:

• EEG data of patients with Alzheimer disease,

• econometric time-series of stock market indices development,

• biological autoluminiscence signal from mung beans,

• mammography screening images of patients with breast cancer.

The aim of the work is to prove that the fractal dimension or Hurst exponent could be
a suitable feature for data classi�cation and the chaotic information can be extracted
using the newly proposed methods. Based on the input data, their length and quality
we choose the most suitable method from the one described in previous chapters.

11.1 Application to EEG Signal

The rotational spectrum method has been proven to provide reliable estimation
of correlation dimension for wide range of sets in Euclidean space, including the
trajectories of time series. This method also allows us to study both the set in
original time domain and in reconstructed space. The aim of our work is to analyse
electroencephalogram (EEG) signals from patients that are su�ering from Alzheimer
disease (AD) and control normal (CN) patients. The subject of the analysis is 146
EEG samples of CN and 28 samples of AD patients. Every sample contains 19
time series of the signal development in time from 19 electrodes located on the
patient head. The sample signal from 17th channel of CN patient is visualized in
Fig.11.1, while the electrode scheme is visualised in Fig. 11.2. The EEG signal will
be analysed in three di�erent ways:

103



Chapter 11. Applications on Real Data

• as a vector process in 19-dimensional space,

• using state space reconstruction assuming it is a dynamic process,

• graph of each channel trajectory.
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Figure 11.1: Sample of EEG signal from channel 17 of CN patient.

Figure 11.2: Electrode scheme 10-20.

Each of the time series coming from one of the 19 channels has the same length,
3 � 105 values. The aim of this study is to understand, whether there are channels
that would have signi�cantly di�erent chaotic behaviour (by terms of measuring
their correlation dimension) between the AD and CN patients.
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For all calculations in this section, the kernel function H8 was used. The advantage
of the rotational spectrum method is that it can analyse any �nite dimensional
set. Therefore, the �rst possibility of EEG signal analysis considers the signal as a
vector process in 19-dimensional space and estimates the correlation dimension for
each patient. This approach analyses the vector process in high dimensional space
where for each time there is vector that represents the state of the whole human
brain taking the information from all electrodes. We call this approach as global
channel based analysis and this approach is denoted as G. The mean correlation
dimension of the 19-dimensional process in case of CN patients was estimated as
4.3452 with standard deviation 0.9756 and in case of AD patients the dimension
was 3.9058 with standard deviation 0.8458. The results from both groups were
obeying normal distribution and by means of mean equality t-test the p-value was
calculated as 0.0272. The results of the experiment are visualised in Fig. 11.3.
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Figure 11.3: Global channel based analysis of EEG signal.

The second possibility of the investigation is to use state space reconstruction,
considering the sample as discrete dynamical system. Considering the time series
is a dynamic process, we can employ the Whitney embedding theorem for the
estimation of attractor dimension. Recall that for reconstruction length L P N
and N -dimensional discrete dynamical system holds that if L ¥ 2N � 1, then the
correlation dimension D2 of reconstructed attractor is the same as in the case of
state series. Based on the analysis of EEG it was proven that the reconstruction
length has to be greater than or equal 15. In case L ¥ 15 the dimension estimates
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vary only slightly and the results are not signi�cantly higher as in the case of lower
window lengths. Therefore, we use L � 15 for the analysis of the EEG channels.
The state space reconstruction approach is denoted as SR.

The last approach for the EEG analysis is to estimate the correlation dimension of
the graph of single trajectory. EEG time series graph is a set in two dimensional
space, therefore the correlation dimension can vary between one and two. In this
case, the input is the original time series measured by the electroencephalogram
containing 3 � 105 points. This approach is denoted as graph method, GM.

Considering all three approaches, we performed 39 tests:

• 1 with G approach (global channel analysis),

• 19 with SR approach (space reconstruction),

• 19 with GM approach (graph method)

all with the null hypothesis
H0 : DAD � DCN (11.1)

where the DAD is the expected value of correlation dimension of AD patients and
DCN is the expected value of CN patients. The aim is to �nd the channels where the
di�erence between the dimension estimates is highest. Since in this case multiple
testing is presented, we need to diminish the signi�cance level based on Hochberg
false discovery rate theorem to be αFDR � 0.00143.

The estimates of correlation dimension were proven to have normal distribution
along the groups, therefore we use the two-sample t-test for the hypothesis testing.
Table 11.1 provides the results of the correlation dimension estimation together with
the p-value for those channels, where the null hypothesis was rejected. The pDCN andpDAD are the mean values of correlation dimension in case of CN and AD patients,
respectively, whereas std is their standard deviation. There was no signi�cant result
coming from the analysis of the graph method. The box-plots showing the di�erences
between the two groups of patiens in case of global analysis is visualized in Fig. 11.3,
whereas the results of the best option, state space reconstruction on 17th channel,
is depicted in Fig. 11.4.

Table 11.1: Correlation dimension of EEG signal.

channel method pDCN stdCN
pDAD stdAD p-value

- G 1.7776 0.2760 1.6051 0.1282 0.0015
17 SR 5.5412 0.9385 4.8159 0.7146 0.0001
18 SR 5.5004 0.9484 4.8259 0.9733 0.0007
8 SR 5.4573 0.9181 4.8029 1.2555 0.0014
13 SR 5.4947 0.8995 4.9561 0.8167 0.0037
14 SR 5.6979 1.1058 5.1039 0.6296 0.0065

The most signi�cant changes were recorded on the channels in the left occipital and
the left temporal part of human brain where the null hypothesis about the equality
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Figure 11.4: The best state space reconstruction (17th channel).

of mean values of correlation dimension was rejected. The channels with the lowest
p-value are illustrated in Fig. 11.5.

Figure 11.5: Signi�cant channels from space reconstruction.
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In comparison to graph method or global analysis, the more suitable technique for
the EEG analysis is the state space reconstruction that was performed in our case
in 15-dimensional space that brought signi�cant di�erences between the two groups
of patients. Statistically signi�cant changes occurred on channels 17, 18 and 8. The
experiments have proven that the correlation dimension is a powerful tool that can
statistically distinguish between two groups of patients and provide small standard
deviation of the estimates.

11.2 Application to Econometric Time Series

Any stock market index daily closing value can be considered as a realisation of
a random variable using discrete time. The aim of this study is to examine the
revisited zero-crossing method and analyse the autocorrelation and predictability of
stock market indices. The study should reveal whether some stock market indices
have di�erent behaviour than others and describe how much their Hurst exponent
varies in time. We used nine stock market indices for the analysis � CAC40, DAX,
FTSE, HSI, NASDAQ, NIKKEI, SMI, SP500, TSX. The data contained the daily
closing values of the stock markets between 2009-2016. For each index, there is
roughly 260 records based on the number of trading days in that year. The aim is
to �nd out which stock markets are more volatile in time and which ones are more
predictable. We will use Hurst exponent as the measure of stock market variability.
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Figure 11.6: NIKKEI stock price development (top) and its logarithmic returns
(bottom).

The theory of revisited zero-crossing and optimal segmentation is applied to the
development of stock market indices. The data from stock market is �rst transformed
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into their logarithmic returns as visualized in Fig. 11.6. We assume that the
resulting time-series is a random process and model it using fGn properties of
zero-crossing. At �rst it is necessary to investigate the behaviour of segmentation-
dependent probability density. We have option to use natural Bayesian approach
with α � 0 or Je�eys-Perks law with α � 1{2. We divide the input time series into
segments of di�erent lengths L and using the posterior probability we can calculate
the distribution fLppqof zero-crossing of the whole time series.

Probability density function fLppq for TSX stock market index is depicted in Fig.
11.7 for α � 1{2 and L � 2 (top left), 4 (top right), 7 (bottom left) and optimal
segmentation L� � 12 (bottom right). Recall, that the optimal segmentation is the
lowest value of L when the fLppq function is unimodal. Results for α � 0 show
similar behaviour, therefore we consider only the case α � 1{2 in the following
calculations.
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Figure 11.7: Bayesian density for various sizes of segmentation blocks of TSX.

With increasing number of segments L the support of function fLppq extends while
the total range decreases causing the unimodal property for large parameters L. It
is generally not true that the function is unimodal for all parameters L ¡ L�. We
demonstrate this fact in Fig. 11.8 showing the 95% con�dence intervals and mean
values of H for all feasible divisions with unimodal fLppq. The optimal segmentation
occurs for L� � 5, however, the function has not unique peak for all 5   L  
10. Once the segmentation on L intervals is �ne enough, the new additions to
segmentation-dependent probability distribution are no longer signi�cant to spoil
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the trend of the whole function obtained by dividing into L� 1 blocks.
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Figure 11.8: 95% con�dence intervals for feasible segmentations of CAC40.

Table 11.2 shows the traditional (ZC) point estimate (7.11) of H together with ex-
pected values and 95% con�dence intervals obtained by Bayesian approach without
segmentation (for L � 1) and revisited approach showing the parameter of optimal
segmentation L� and appropriate statistical characteristics. When the parameter
of optimal segmentation equals 1 (for DAX,HSI and SMI), it means the function
fLppq is unimodal from the beginning signifying more or less constant parameter
H in the entirety of the signal. NASDAQ and TSX are the stock markets whose
Hurst parameters varies in time a lot, because their optimal segmentation parameter
equals 14 and 12, respectively.

The revisited zero crossing provides usually wider con�dence intervals for the major-
ity of stock markets than the traditional approach. However, the optimal expected
values remain almost the same in comparison with the case without segmentation.
In most cases, larger con�dence interval indicate that the speci�c index does not
follow the same fractal behaviour during the entire investigated period. Therefore
the method is able to �nd new fractal patterns by means of dividing original sig-
nal � when the optimal segmentation is reached, the estimates are more realistic
and therefore useful for further analysis such as investment recommendations or
predictions.
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Table 11.2: Comparison of traditional and revisited method.

index
ZC no segmentation (L � 1) optimal segmentation
H� EH 95% CI L� EH 95% CI

CAC40 0.4745 0.4672 (0.4435; 0.4909) 5 0.4652 (0.3746;0.5545)
DAX 0.5007 0.4790 (0.4556; 0.5023) 1 0.4790 (0.4556;0.5023)
FTSE 0.5502 0.4906 (0.4676; 0.5135) 3 0.4863 (0.4361;0.5482)
HSI 0.5664 0.4974 (0.4746; 0.5201) 1 0.4974 (0.4746;0.5201)

NASDAQ 0.5631 0.5584 (0.5375; 0.5792) 14 0.5418 (0.4008;0.7136)
NIKKEI 0.4583 0.4553 (0.4312; 0.4793) 3 0.4532 (0.4034;0.5068)
SMI 0.5303 0.5087 (0.4863; 0.5310) 1 0.5087 (0.4863;0.5310)
SP500 0.4722 0.4456 (0.4212; 0.4699) 6 0.4460 (0.3225;0.5628)
TSX 0.6107 0.5646 (0.5439; 0.5852) 12 0.5607 (0.3957;0.6992)

11.3 Application to Autoluminiscence Signal

This section describes analysis of signal from biological autoluminiscence (BAL).
Autoluminiscence is a weak light that is generated practically by all organisms and
is present in the 300-700 nm wavelength range, therefore the light cannot be spotted
by naked human eye. The emitting mechanism is not known yet, but widely accepted
hypothesis is that BAL is related to a chamical generation of electron-excited states
of biomolecules in the course of oxidative metabolism and oxidative stress. This kind
of signal arises from metabolic and physiological processes and can be detected using
photomultiplier in the form of emitted photons. The object of our study is the BAL
signal of mung beans and the aim is to �nd out whether there is autocorrelation or
dependency in the signal.

The biological material in this case were mung bean seeds that were �rstly steril-
ized, disinfected and having the green covers removed. The photon emission was
measured in low-noise photomultiplier tube (PMT). A PMT can exhibit noise on its
own, therefore it was necessary to introduce a methodology, that could distinguish
between the noise signal of PMT and the signal from the mung beans. For this
work we generated the reference signal as a sum of measured detector noise and
computer-generated Poisson signal with given λ in every experimental point where
λ � E yB

k �E yD
k , where y

B
k and yD

k are signal mean values of mung beans and noise,
respectively. The respective values of λ in case of 200µs signal as well as 500 µs
signal are calculated in Tab. 11.3. Hence, experimentally detected BAL signals
from mung beans and reference signals have practically the same mean value and
same signal-to-noise ratio.

Since the input series are rather short, we will be using the method for short time
series to investigate the statistical properties of BAL. To sum up, for the analysis,
we have three types of signals available:

• (B) - mung beans signal yB
k (containing PMT noise),

• (D) - noise signal of PMT detector yD
k ,
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• (R) - reference signal as a sum of measured detector noise (D) and computer-
generated Poisson noise denoted as yRk

Table 11.3: Mean values of mung beans signal and noise.

Ts 200 µs 500 µs
E yB

k 0.0115 0.0288
E yD

k 0.0036 0.0088
λ 0.0079 0.0200

The physical data collection happens in a photomultiplier tube which has two bin size
settings used to collect the signals: Ts = 200µs and 500µs. For each sampling period,
we have corresponding mung bean signals, detector noise signals, and computer-
generated reference signals. Both mung beans signal and PMT detector noise signal
are assumed to be stationary with their mean values with the Poisson distribution.
Therefore, they can be represented by their mean values E yB

k and E yD
k that are

estimated from the measured data.

Recall the aim of study is to compare mung beans signal with the reference signal and
�nd statistical di�erence between them using their autocorrelation. With each of
these two signals independently, we performed basic data processing. This procedure
describes the normalization of the data, which is the essential property of fBm
processes. At �rst the input time series yk for k � 0, 1, . . . , Q� 1 was cumulatively
summed for a window size h P N and Anscombe transformation [84] was performed.
The resulting signal zk can be expressed based on the output from measuring device
yk as

zk � 2 �
�

3

8
�

pk�1qh�1¸
i�kh

yi

�1{2

(11.2)

for k � 0, . . . ,M �1. This transformations assures stationarity by terms of variance
and guarantees Gaussian distribution of the resulting signal. The example of the
input signal yk from mung beans with Ts = 500µs and corresponding zk is visualized
in Fig. 11.9.

Having signal from the mung beans photon emission as well as the reference signal,
we will use likelihood ratio test [85] to decide, whether the Hurst exponent of both
samples is signi�cantly di�erent. We denote HD as the Hurst exponent estimate of
the PMT detector noise or reference signal and HB as the Hurst exponent estimate
of mung emission. The overall error (sum of the squares of residuals) is de�ned as

SSQFULL �
M̧

i�1

N�1̧

j�1

�
ρB
i,j � ρjpHBq

�2 �
M̧

i�1

N�1̧

j�1

�
ρD
i,j � ρjpHDq

�2
, (11.3)

where ρD, ρB are the autocorrelation coe�cient of the noise and photon emission,
respectively. The case of j � 0 is excluded due to ρDi,0 � ρ0pHDq � 1 for all
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Figure 11.9: Mung beans signal yk (top) and corresponding zk (bottom).

i � 1, ..,M . Using sub-model satisfying HB � HD we get

SSQSUB �
M̧

i�1

N�1̧

j�1

�
ρB
i,j � ρjpHDq

�2 �
M̧

i�1

N�1̧

j�1

�
ρD
i,j � ρjpHDq

�2
. (11.4)

Using likelihood ratio (LR) test of signi�cant di�erence between the sub-model and
the full model, we calculate

χ2 � 2 ln
LFULL

LSUB

�M � pN � 1q � ln SSQSUB

SSQFULL

, (11.5)

where LFULL and LSUB are corresponding likelihoods.

When the hypothesis H0 : HD � HB holds, i.e. the full model has the same validity
as the submodel, the criterion has χ2

1 distribution due to single parameter constrain.

There is no prior knowledge of optimal model length, accumulation compression,
and Hurst exponent. Therefore, we will apply the maximum likelihood method of
Hurst exponent estimation for the various model and segment lengths, and then
we will individually test the di�erences in the Hurst exponent. However, there is a
�nite number of reasonable pairs (model length N , segment length h), which will
cause the phenomenon of the multiple hypothesis testing. After the False Discovery
Rate (FDR) correction, we will localize the model and segment lengths, which cause
signi�cant di�erences in the Hurst exponent. These pairs ph,Nq will be declared as
signi�cantly sensitive to the signal di�erences in the Hurst exponent.

Having signals with two di�erent bin sizes, we will use the signal bin size Tb � 200µs
as a training set and the signal with Tb � 500µs as a veri�cation set. Normalized

113



Chapter 11. Applications on Real Data

mung beans and reference signals with bin size Tb � 200 µs and length Q � 500 000
were the subject of the initial analysis. The signal accumulation of size h was applied
to the signals, therefore the number of bins was tQ{hu. After the accumulation, the
signal is divided into segments of length N . Due to the memory of fBm process, we
will use only the odd segments for the calculation of autocorrelation function and
the even segments are excluded. The new signal has length rttQ{hu {N u {2s. Using
maximum likelihood method, we obtain the corresponding HD and HB estimates
for the Hurst exponent of referential signal and mung beans, respectively. Based on
these estimates, we can derive the p-values of LR test using (11.5) statistics.

In our case, we performed altogether 11�11 � 121 tests for h � 1500, 1550, . . . , 2000
and N � 20, 21, . . . , 30. Accumulation h could not be higher than 2000 due to the
rapid decrease of the number of processed segments. The values h   1500 caused
lower event frequencies and the conversion from Poisson noise to Gaussian noise is
not guaranteed. Similar reasons are for the range of parameter N . In fact, the
fractional model is less discriminative for N   20 and the case N ¡ 30 reduces the
number of segments. Due to multiple testing and obeying the Hochberg-Benjamini
principle, we diminish the signi�cance level from 0.05 to αFDR = 0.000050. The
p-values as decadic logarithms are shown in Tab. 11.4.

Table 11.4: Di�erence between the estimated Hurst exponent of mung beans (B)
and reference signal (R) as p� log10 pq-values of likelihood ratio test (11.5).

h \N 20 21 22 23 24 25 26 27 28 29 30
1500 1.188 2.934 1.835 1.888 3.175 1.645 2.284 0.863 0.506 0.192 0.762
1550 1.172 1.617 0.394 0.887 1.420 1.470 0.912 2.113 1.651 0.026 0.691
1600 1.978 1.576 0.646 0.523 1.217 0.394 1.597 0.786 1.487 0.880 1.859
1650 0.990 1.616 1.127 2.024 1.209 0.651 1.635 0.909 1.906 3.573 2.927
1700 0.772 0.621 1.288 1.196 1.239 0.488 0.407 1.175 2.658 0.463 0.776
1750 1.475 2.325 1.269 3.131 4.638 1.535 2.370 1.017 0.726 0.412 1.945
1800 0.465 1.455 1.394 1.098 1.313 0.180 2.661 2.064 2.449 1.917 2.001
1850 2.377 2.010 1.308 0.567 1.533 2.382 3.184 4.301 3.328 2.418 1.968
1900 2.599 0.879 0.850 0.629 1.053 1.264 0.950 0.943 1.397 2.093 0.142
1950 2.574 0.095 0.706 1.900 2.843 2.874 3.261 2.514 3.462 2.501 2.405
2000 2.212 1.611 1.315 0.935 1.040 1.232 0.922 0.282 0.366 1.159 0.963

In these settings, there were two cases where the Hurst exponent was signi�cantly
di�erent. The results from these two cases are displayed in Table 11.5. The 95%
interval of Hurst exponent estimates of mungo beans signal (HB) was [0.2108,
0.5086], while the 95% interval for reference signal (HR) was [0.4041,0.5931].

The lowest p-value was obtained in the case of ph,Nq � p1750, 24q, which represents
the segmentation into bins with duration 1750� 200 µs � 350 000 µs � 0.35 sec.

As the veri�cation set, the signal with Ts � 500 µs was taken into account, follow-
ing the same procedure as the previous one. The accumulation parameter h was
accordingly diminished to 2{5 of its previous value to guarantee the same segment
length.

We perform the veri�cation for the combination of signals (B) and (R) similarly as
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Table 11.5: Estimated Hurst exponent values for mung beans (B) signal and
reference signal (R).

h N HB HR p-val � log10 p-val
1750 24 0.4142 0.5299 2.3135�10�5 4.638
1850 27 0.3569 0.4291 4.9977�10�5 4.301

in the previous case and additionally for the combination of (B) and (D). The �rst
set of signals ((B) and (R)) will be used to test if the photon emission is not random
and has a negative memory, while the results from the second set ((B) and (D))
of signals will be used to test if there is a signi�cant di�erence between the cases,
when the PMT detects BAL signals from mung beans compared to PMT noise. We
use the signi�cant cases from Table 11.5 to estimate their Hurst exponent and the
results on veri�cation set is displayed in Tab.11.6. The parameter value h=700 for
500 µs signals corresponds to h=1750 for 200 µs signals. The variables s1, s2 denote
the pair of signals, whereas the HX denotes the estimation of Hurst exponent of the
signal s2.

Table 11.6: Estimated Hurst exponent values from veri�cation dataset.

s1 s2 h N HB HX p-val
B R 700 24 0.4032 0.4415 0.0130
B R 740 27 0.3761 0.4112 0.0042
B D 700 24 0.4032 0.4378 0.0169
B D 740 27 0.3761 0.4480 0.0054

We performed four tests, and according to Hochberg-Benjamini false discovery rate,
we diminish the αFDR � 0.0169. Therefore, all four cases are considered signi�cant,
and we reject the hypothesis that the Hurst exponent of mung beans would be the
same as HX.

For comparison, we also performed a similar analysis with noise signal (D) and
mungo beans signal (B) and captured the results in the Table 11.7. Using Hochberg-
Benjamini principle, there is only one combination (h,N) = (1850,27) that is signif-
icant.

Results from statistical analysis and testing suggest that the mung beans signal has
a negative memory and its Hurst exponent is lower than the referential signal. The
0.35s (700 � 500µs) was the time with statistically signi�cant di�erences between
the mung bean signal and reference signal. This could correspond to the rate of
underlying chemical process that give rise to BAL. The methodology of signal pre-
processing via cumulative sum and Anscombe transformation has assured that the
signal can be modelled using the fractional processes. Therefore it is recommended
as a useful technique on how to process input data for subsequent analysis using
fBm and fGn models.
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Table 11.7: Di�erence between the estimated Hurst exponent of mung beans (B)
and noise signal (D) as p� log10 pq-values of likelihood ratio test (11.5).

h \N 20 21 22 23 24 25 26 27 28 29 30
1500 2.181 2.881 1.395 1.656 3.192 2.058 2.203 0.087 0.444 1.131 3.319
1550 2.191 1.125 0.446 0.736 0.348 2.101 0.283 2.378 1.936 1.560 0.407
1600 2.008 2.039 1.259 0.006 1.071 1.098 1.604 2.003 0.665 1.468 1.415
1650 1.230 1.535 1.334 2.804 1.249 0.914 0.858 1.470 2.923 2.190 3.056
1700 1.015 1.359 0.376 0.460 0.473 0.665 0.182 0.906 1.812 1.532 0.107
1750 0.769 1.218 0.926 0.346 1.771 2.386 0.687 0.331 1.286 1.136 1.605
1800 0.696 1.791 0.871 0.666 2.058 2.153 2.053 1.145 2.400 0.692 0.881
1850 2.891 1.967 1.349 0.297 1.051 2.343 2.754 4.602 3.472 0.779 1.432
1900 2.795 0.434 0.708 1.273 0.619 0.631 1.797 1.101 0.395 1.371 1.069
1950 1.657 1.694 0.386 2.885 2.373 2.199 2.504 2.292 1.651 0.926 2.209
2000 1.281 0.048 0.215 1.050 0.140 1.031 0.234 1.303 1.186 0.239 0.939

11.4 Application to Mammography Images

As an application of fractal theory on images, we want to study mammography
screening images, assuming the scan of woman's breast is a sample of fractional
Brownian surface. The introduced methodology of Wishart estimate of Hurst expo-
nent can be tailored to analyze surfaces in the form of intensity images. The data
are taken from the Digital Database for Screening Mammography [86, 87] containing
public and open-access data for research in image processing. For the study, we have
selected 140 patients who have benign lump (BL) and 140 patients with cancerous
lump (CL). The cranio caudal (CC) images are used for the purposes of this study.
The images were captured by DBA M2100 ImageClear digitizer with sampling rate
42 microns and 16 bits gray level. The pictures were processed in Matlab as grayscale
pictures and cropped, so the picture only contains human tissue without background
noise.
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Figure 11.10: Hurst exponent distribution map (left) and the original intensity image
(right) of a CC image of woman's right breast.

Afterwards, the threshold technique has been applied to the images. For image with
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dimensions P,Q P N, we de�ne dimensionless parameter θ P p0; 1q and de�ne our
region of interest as

ROI � tpi, jq : xi,j ¡ θ � max
1¤i¤Q
1¤j¤P

xi,ju (11.6)

to localize the benign and cancerous lumps on the breast image. For our experiment,
we have chosen three thresholds selecting points with high intensity from the original
x-ray scans. The threshold θ � 0.80 corresponds to roughly 5%, threshold θ � 0.85
assures roughly 3% and threshold θ � 0.9 corresponds to roughly 1% of pixels of the
original image. For generating scatter matrix, we will use symmetric masks with
radius from three to seven pixels, i.e. ρ P t3, 4, 5, 6, 7u.

Figure 11.11: Regions selected for analysis for benign �nding for θ � 0.9 (left),
θ � 0.85 (middle) and a�ected area highlighted by a medical doctor (right).

We will use two approaches to compare the results between BL and CL patients.
First approach estimatesH for each patient in the respective groups. UsingWilcoxon
ranksum test, we will test hypothesis

H0 : HB � HC, (11.7)

where HB and HC are the Hurst exponent estimates of BL and CL groups, re-
spectively. The results of the estimation are displayed in Tab. 11.8. Using false
discovery rate, we diminish the critical level of signi�cance to αFDR � 0.0217. The
cases, where the null hypothesis is rejected are highlighted in bold.

The case with highest signi�cance (lowest p-value) in the traditional approach is
pθ, ρq � p0.85, 5q. This combination will be investigated further using another
approach that employs the estimation of both parameters pH, σq and the hypothesis
claims, that the observed images of both cancerous and benign patterns are samples
of fractional Brownian surface, but they can vary in parameters H and/or σ. We
denote HB as the Hurst exponent of the BL patients and HC as the Hurst exponent
of the CL patients and the corresponding σ as σC and σB respectively. Therefore,
there are four sub-models in run:

117



Chapter 11. Applications on Real Data

Table 11.8: Wilcoxon-Mann-Whitney test for various thresholds and masks.

θ ρ HB stdpHBq HC stdpHCq p-val
0.8 3 0.5513 0.1912 0.5663 0.1891 0.1560
0.8 4 0.5943 0.1768 0.6281 0.1680 0.0732
0.8 5 0.5833 0.1766 0.6172 0.1733 0.0623
0.8 6 0.6384 0.1885 0.6664 0.1744 0.1386
0.8 7 0.6225 0.1866 0.6518 0.1737 0.1341
0.85 3 0.5313 0.1972 0.5782 0.2258 0.0142

0.85 4 0.6195 0.1752 0.6645 0.1927 0.0107

0.85 5 0.6158 0.1803 0.6601 0.1956 0.0104

0.85 6 0.6793 0.1917 0.7179 0.2029 0.0192

0.85 7 0.6616 0.1887 0.7018 0.2025 0.0217

0.9 3 0.4964 0.2454 0.5102 0.2781 0.0634
0.9 4 0.6551 0.1877 0.6908 0.2106 0.0245
0.9 5 0.6586 0.1895 0.6961 0.2199 0.0212

0.9 6 0.7300 0.2078 0.7549 0.2190 0.0445
0.9 7 0.7084 0.2053 0.7378 0.2178 0.0476

1. model H � HB � HC and σ � σC � σB

2. model H � HB � HC and σC , σB

3. model HB, HC and σ � σC � σB

4. model HB, HC and σC , σB

Their hierarchy is depicted on Fig. 11.12. Both H and σ parameters can vary
due to structural changes of the tissue. The estimated values of parameter σ also
depend on X-ray intensity and sample depth, therefore their di�erences are of low
practical importance. The estimated values of parameter H also depend on scanning
apparatus resolution, which is constant for given data set and therefore more suitable
for biomedical interpretation. The results of parameters for each of the models
separately is presented in Tab. 11.9.

The models will be compared using likelihood ratio test. We can perform 4 compar-
isons: 2 to 1 (comparison D), 3 to 1 (comparison C), 4 to 2 (comparison B) and 4
to 3 (comparison A), while the �rst mentioned model in the pair is called full model
and the latter one is its submodel. Having four comparisons in place allows us to
measure, whether the di�erence between the BL and CL is in the Hurst exponent
H or in the σ. For each of the models, we estimate its parameters by maximizing
(9.48) and then calculate corresponding logarithm of likelihood as

lnL � ln fpS,V, p,mq (11.8)

using (9.45). Comparing any model to its submodel, we calculate the log-likelihood
of the full model and denote it lnLFULL, while the log-likelihood of the submodel
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Figure 11.12: Model hierarchy schema.

equals lnLSUB. In our setting, any full model always di�ers in one free parameter
in comparison to its sub-model. It holds that

2 plnLFULL � lnLSUBq � χ2. (11.9)

Table 11.9: Estimates of model parameters.

model HB HC σB σC

1 0.5037 0.5037 0.0073 0.0073
2 0.5034 0.5043 0.0070 0.0075
3 0.5072 0.5085 0.0073 0.0073
4 0.4980 0.5085 0.0070 0.0075

Using the likelihood ratio tests, the comparisons A,B,C,D were evaluated, the χ2

value together with the logarithms of p-values were calculated. The comparisons
are depicted in tab 11.10. All four sub models signi�cantly di�er in the sense of
likelihood ratio test and therefore the fourth model i.e. the full model statistically
dominates the others. It implies the rejection of hypothesis HB � HC.

Table 11.10: Model and sub-model comparison.

full-model sub-model comparison χ2 ln p-val
4 3 A 1.13 � 105 �5.63 � 104

4 2 B 1.68 � 103 �8.46 � 102

3 1 C 1.53 � 105 �7.63 � 104

2 1 D 4.16 � 104 �2.08 � 104

Both Wilcoxon-approach combined with the false discovery rate as well as the
likelihood ratio test have discovered sigi�cant di�erences between the CL and BL
patients. The image of CL patients has statistically higher Hurst exponent when
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considering the tissue has properties of fractional Brownian surface. The distribution
of Hurst exponent in case of CL and BL for pθ, ρq � p0.85, 5q is visualized using box-
plot in Fig. 11.13.
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Figure 11.13: Distribution of Hurst exponent in case of BL (right) and CL (left)
patients.

The methodology of Hurst exponent estimate was applied to cranio caudal mam-
mography images, considering the human tissue as a sample of fractional Brownian
surface with unknown Hurst exponent. Two approaches involved testing through
false discovery rate combined with the Wilcoxon test as well as likelihood ratio test.
Both approaches have rejected the null hypothesis that the CL and BL patients
have the same Hurst exponent, resulting in patients with cancerous �ndings having
higher Hurst exponent and more chaotic structures in the investigated breast. This
is in accordance with the latest research �ndings in mammogram diagnostics [88].
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Conclusions

There were �ve main goals to be achieved in this thesis;

• development of a new method for correlation dimension estimation,

• development of a new method for Renyi dimension estimation,

• development of a new method for Hurst exponent estimation,

• application of the methods to arti�cial sets with known dimension,

• application of the methods to biomedical and econometric signals.

The �rst introduced novel method of rotational spectrum can be used as an al-
ternative technique for correlation dimension estimation. The method utilizes the
rotation of a power spectrum of a set around the origin and can be expressed in
an explicit formula using the expected value operator and a kernel function. The
rotational spectrum has smoother dependency than standard correlation sum and
can provide more accurate estimate of correlation dimension. Moreover, the ratio
of logarithm of rotational spectrum and logarithm of the frequency can be used for
correlation dimension estimation in similar way as in the case of correlation sum
approach. The method has been published in journal Chaos, Solitons & Fractals.

The estimation using modi�ed Renyi entropy is alternative method to Renyi di-
mension estimation. The method utilizes the Parzen density estimation based on
the points from the sample set and de�nes a new entropy that is translational and
rotational invariant. The resulting entropy can be used for an alternative de�nition
of the Renyi dimension for any parameter α ¥ 0. Additionally, it was proven that
the modi�ed Renyi dimension coincides with the de�nition of both capacity and
correlation dimension for any measurable point set. Via simulations, the validity
of the de�nition was proven also for other dimension types. The method has been
published in journal Chaos, Solitons & Fractals.

By terms of Hurst exponent estimation, the focus was both on estimation from short
time series as well as from longer signals and fractional surfaces. The di�erenced
fractional Brownian bridge is a generalization of Brownian bridge that is especially
designed to estimate Hurst exponent from short time series. The autocorrelation
function of the resulting signal was theoretically derived and is used for the pa-
rameter estimation. The method has been published in journal Signal, Image and
Videoprocessing. The autocorrelation properties were used for derivation of another
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method for Hurst exponent estimation using Wishart distribution. The method
utilizes the input fBm division into smaller samples and calculates the aggregate
scatter matrix that has known probability density function. Using maximum likeli-
hood approach and based on the fact that the autocorrelation of the original process
is known, one can estimate the Hurst exponent of the whole sample. The method
can be used both in one-dimension as well as for fractional surfaces and masses. The
method has been published in journal Physica A.

The methods of estimation have been successfully veri�ed in the experimental part.
We have used 10 parametrizable sets with known Renyi dimension to validate the
rotational spectrum, modi�ed Renyi entropy as well as Hurst exponent estimation
methods. The method's performance has been examinated both in comparison to
traditional approaches as well as arti�cial data via statistical testing. To the main
outcomes of the statistical testing belongs:

• comparison between the novel method and standard method; The
methods were compared against traditional approaches of dimension estima-
tion (correlation sum, box-counting, . . . ) to verify the performance. It was
found out that the proposed methods are not worse than the standard approach
in the whole range of the eligible parameters; moreover, the proposed metrics
has smoother dependency than the traditional ones and frequently result in a
more accurate estimate with smaller standard deviation of the estimate.

• recommended parameter setting; The newly introduced methods are de-
signed with a set of parameters (number of samples, size of input data, fre-
quency range, . . . ). Using large number of examples, it was possible to
recommend the best parameter setting where the methods provide unbiased
estimation of the dimension. The parameter recommendation is important,
since it can be later used for investigation of signals with unknown dimension
or unknown Hurst exponent.

• unbiasedness of the estimation; Thanks to the fact that the fractal dimen-
sion of simulated sets is known, the statistical testing has revealed in which
range of dimensions (and range of Hurst exponent) the novel methods provide
an unbiased estimate. The unbiasedness range for both Dα and H is wider
than in the case of traditional methods, but often fails for extreme values (e.g.
Hurst exponent close to zero or one).

• consistency of the estimation; The standard deviation of the estimate has
been studied for various sample sizes, ranging from 103 to 106. To experimen-
tally prove the consistency of the methods, it was calculated that the standard
deviation signi�cantly decreases with increasing amount of data.

The statistical testing enabled the methods to be con�dently used on real data. As
we had methods for many data structures, such as point sets, signals and images, this
allowed to perform several case studies. The main achievements of the application
parts are following:
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• detection of Alzheimer disease via EEG; The rotational spectrum has
been applied to EEG signals of control normal and Alzheimer diseased patients.
Using state space reconstruction, it was possible to �nd signi�cant di�erences
in correlation dimension between the two patient groups. The patients with
Alzheimer disease had smaller value of correlation dimension, which is in-
line with the recent scienti�c �ndings. The precise estimation of correlation
dimension has been identi�ed as a powerful feature that carries new type of
information about the investigated signal.

• predictability analysis of stock market indices; Revisited zero-crossing
method and theory of optimal segmentation have discovered stock indices such
as SMI or HSI that are less volatile in time by terms of Hurst exponent changes
and have Hurst exponent value above 1/2. Therefore, these markets can be
suitable for investment or prediction-making.

• negative memory of autoluminescence of mung beans; To investigate
rather short input series of biological autoluminiscence, the novel method of
fractional Brownian bridge has been applied to estimate its Hurst exponent.
Via comparing with both reference signal and arti�cial noise it has been found
out that the mung beans signal has negative memory. This indicates that the
live of the mung beans is not completely random and could be connected with
the nature of underlying chemical processes. The case study was published in
journal PLOS ONE.

• detection of breast cancer from mammography; Craunio caudal mam-
mography images were used for a detection of breast cancer. The Hurst
exponent was estimated both for patients with benign and cancerous lump.
The patients with cancerous lump had statistically higher value of Hurst
exponent. The results were published in journal Physica A.

The often underestimated topic of fractal sets and dimension estimation has proven
to be perspective in many fronts. The contribution to the current state of art has
been performed both on the theoretical and application side: the work resulted in
7 published papers in journals with impact factor and 6 peer-reviewed conference
papers.

One of the possible continuation of this e�ort could be optimization for speed. The
current methods have good statistical foundations, but sometimes they can be very
computationally expensive. For larger sets exceeding 106 points, the estimation
of dimension can cost several minutes of computational time. Optimization of the
current algorithms without the need of sacri�cing accuracy would be a great improve-
ment that could help to implement them into applications in industry. The second
possible continuation would be to extend the applications outside the biomedical
and econometric sphere. It is believed that many real world phenomena, such as
load of computer networks, music generation, geology or animal behaviour have
fractal character and could be modelled via the tools of fractal geometry. Moreover,
the comparison of di�erent Renyi dimension estimates for various parameters α and
understanding on what kind of information they carry in a particular real-world
application might be a rewarding exercise.
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a b s t r a c t 

Correlation dimension is one of the many types of fractal dimension. It is usually estimated from a finite 

number of points from a fractal set using correlation sum and regression in a log-log plot. However, this 

traditional approach requires a large amount of data and often leads to a biased estimate. The novel ap- 

proach proposed here can be used for the estimation of the correlation dimension in a frequency domain 

using the power spectrum of the investigated fractal set. This work presents a new spectral character- 

istic called “rotational spectrum” and shows its properties in relation to the correlation dimension. The 

theoretical results can be directly applied to uniformly distributed samples from a given point set. The 

efficiency of the proposed method was tested on sets with a known correlation dimension using Monte 

Carlo simulation. The simulation results showed that this method can provide an unbiased estimation for 

many types of fractal sets. 

© 2017 Published by Elsevier Ltd. 

1. Introduction 

Correlation dimension D 2 is a popular tool for fractal dimension 

estimation and belongs to a family of entropy-based fractal dimen- 

sions such as capacity dimension D 0 , information dimension D 1 

and their generalisation, Renyi dimension D α , for α ≥ 0. The prop- 

erties of the different dimension types are summarised in [1] and 

[2] . The main idea of using correlation dimension is the distance 

between its points in space. In the original concept, only the num- 

ber of points that are not farther apart as a fixed value can carry 

the information about the density of points contained in the in- 

vestigated set. The geometrical meaning of correlation dimension 

is explained well in [3] . 

This traditional approach of correlation dimension estimation is 

based on Grassberger and Procaccia’s algorithm [4,5] and is widely 

used in biomedicine for electroencephalography signal analysis 

[6,7] or in cardiology [8] . Recently, new approaches of correlation 

dimension estimation were presented using a weighting function 

[9] or methods suitable for high-dimensional signals [10] . The lin- 

ear regression model, on which the majority of methods are based, 

provides an often biased estimate of fractal dimension; for this rea- 

son, Hongying and Duanfeng [11] made some effort s to improve 

this procedure. 

∗ Corresponding author. 

E-mail address: martindlask@centrum.cz (M. Dlask). 

In this work, we present a novel approach of correlation dimen- 

sion estimation that is based on the rotation of the power spec- 

trum of a point set. The proposed method is stable even for a small 

number of points, and the resulting characteristic has a smooth de- 

velopment. 

2. Correlation dimension 

Correlation dimension, introduced by Grassberger and Procac- 

cia, involves measuring the distance between all pairs of points in 

the investigated set. For the Lebesgue measurable set F ⊂ R 

n , the 

correlation sum [4] is defined for r > 0 as the limit case 

C(r) = lim 

N→∞ 

2 

N(N − 1) 

N−1 ∑ 

i =1 

N ∑ 

j= i +1 

I(‖ x i − x j ‖ ≤ r) , (1) 

where ‖·‖ denotes a Euclidean norm that is rotation invariant, I is 

the indicator function and x 1 , . . . , x N are vectors from F . Because 

the correlation dimension expresses the relative amount of points 

whose distance is less than r , the correlation sum can be rewritten 

as 

C(r) = E 

x , y ∼U(F ) 
I( ‖ 

x − y ‖ 

≤ r) = prob 

x , y ∼U(F ) 

( ‖ 

x − y ‖ 

≤ r ) , (2) 

for x , y that are uniformly distributed on F . Therefore, C( r ) is a cu- 

mulative distribution function of random variable r = ‖ x − y ‖ . The 

http://dx.doi.org/10.1016/j.chaos.2017.04.026 

0960-0779/© 2017 Published by Elsevier Ltd. 
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correlation dimension D 2 of set F is based on the correlation sum 

and is defined as 

D 2 = lim 

r→ 0 + 

ln C(r) 

ln r 
, (3) 

if the limit exists. 

3. Continuous spectrum of a point set 

The Fourier transform of an n -dimensional set F ⊂ R 

n is de- 

fined using the operator of the expected value [12] as 

F( ω ) = E 

x ∼U(F ) 
exp (−i ω · x ) (4) 

for angular frequency ω ∈ R 

n and for x uniformly distributed on F . 

The power spectrum of set F equals P( ω ) = | F( ω ) | 2 = F( ω ) · F ∗( ω ) , 

where F ∗ is a complex conjugate of F. Moreover, it can be ex- 

pressed as 

P( ω ) = E 

x ∼U(F ) 
E 

y ∼U(F ) 
exp (−i ω · x ) exp (i ω · y ) 

= E 

x , y ∼U(F ) 
exp (−i ω · ( x − y )) , (5) 

where x and y are independent and identically distributed from F . 

The power spectrum is frequently used for fractal set investigation 

[13–15] . When the research is physically motivated, it is usual to 

denote the angular frequency as ω = 2 π/λ for wavelength λ of an 

X-ray or light beam. 

4. Rotational spectrum 

The goal of the novel method is to obtain a one-dimensional 

function as a derivative of the power spectrum, which is useful 

in fractal analysis. The procedure was inspired by Debye [16] and 

by his X-ray diffraction method, which is often referred to as the 

Debye-Scherrer method. We denote SO( n ) as the group of all rota- 

tions in R 

n around the origin. Because any rotation R ∈ SO( n ) is a 

linear transform, the following equation holds 

R( x ) − R( y ) = R( x − y ) = ‖ 

x − y ‖ 

· ξ, (6) 

where ξ is a direction vector satisfying 
∥∥ξ

∥∥ = 1 and ξ ∈ S n −1 for 

an n -dimensional sphere S n −1 = { x ∈ R 

n : ‖ x ‖ = 1 } . Using the fac- 

torisation of angular frequency ω = � · ψ for � ∈ R 

+ 
0 

and normali- 

sation vector ψ ∈ S n −1 , we can define rotational spectrum as 

S(�) = E 

R ∈ SO (n ) 

E 

ψ ∈S n −1 

E 

x , y ∼U(F ) 
exp (−i�ψ R( x − y )) , (7) 

which can be expressed explicitly in the following theorem. 

Theorem 1. Rotational spectrum can be expressed as 

S(�) = E 

x , y ∼U(F ) 
H n (�‖ 

x − y ‖ 

) , (8) 

where 

H n (q ) = 

2 

n −2 
2 · �

(
n 
2 

)
q 

n −2 
2 

J n −2 
2 

(q ) . (9) 

Proof. Because every rotation is a linear transform, we can rewrite 

the rotational spectrum as 

S(�) = E 

x , y ∼U(F ) 
E 

ψ , ξ∈S n −1 

exp (−i�‖ 

x − y ‖ 

ψ · ξ) . (10) 

The angle ν between vectors ψ and ξ satisfies cos ν = ψ · ξ. With- 

out loss of generality, we can set ξ = (1 , 0 , 0 , . . . , 0) and rewrite 

the rotational spectrum as 

S(�) = E 

x , y ∈F 
H n ( �‖ x − y ‖ ) , (11) 

where the function H n : R �→ C is defined as 

H n (q ) = E 

ψ ∈S n −1 

ψ 1 = cos ν

exp (−i q cos ν) . (12) 

For n = 1 , we obtain a degenerated rotation together with ν ∈ {0, 

π}; therefore, the kernel function H 1 equals 

H 1 (q ) = 

exp (−i q ) + exp (i q ) 

2 

= cos q. (13) 

In case n ≥ 2, we can express the kernel function using an integral 

formula: 

H n (q ) = 

I 1 (q ) 

I 2 (q ) 
= 

∫ π
0 exp (−i q cos ν) sin 

n −2 ν d ν∫ π
0 sin 

n −2 ν d ν
. (14) 

The Poisson integral [17] formula for the Bessel function J p ( q ) of 

the first kind in the form 

J p (q ) = 

(
q 
2 

)p 

�
(

p + 

1 
2 

)√ 

π

∫ π

0 

exp (−i q cos ν) sin 

2 p ν d ν (15) 

allows the integral in the nominator to be rewritten as 

I 1 (q ) = 

J p (q )�
(

p + 

1 
2 

)√ 

π(
q 
2 

)p , (16) 

whereas the integral in the denominator is a limit case of the Pois- 

son formula 

I 2 (q ) = lim 

q → 0 

J p (q )�
(

p + 

1 
2 

)√ 

π(
q 
2 

)p = 

�
(

p + 

1 
2 

)√ 

π

�( p + 1 ) 
. (17) 

For p = 

n −2 
2 , we obtain the final form of the kernel function ex- 

pressed by the Bessel function J p ( q ) as 

H n (q ) = 

2 

n −2 
2 · �

(
n 
2 

)
q 

n −2 
2 

J n −2 
2 

(q ) . (18) 

Applying H n ( q ) for n = 1 , we obtain H 1 (q ) = cos q as a particular 

case, which extends the range of formula (18) to n ∈ R . �

The rotation can be performed in any space whose dimension n 

is not less than the dimension m of the original space of F . When 

the dimension of the rotation is greater than m , any vector x ∈ F
is completed, with the zeros for the remaining n − m coordinates 

having a sufficient length. The most valuable result can be obtained 

in the case of rotation in an infinite-dimensional space. 

Theorem 2. The scaled limit case of the kernel function H n is the 

Gaussian function, i.e., 

lim 

n →∞ 

H n (t 
√ 

n ) = exp 

(
− t 2 

2 

)
. (19) 

Proof. For the investigation of the behaviour of the kernel function 

when n → ∞ , we use the Taylor expansion of H n ( q ) centred at 

q 0 = 0 

H n (q ) = 

∞ ∑ 

k =0 

�( n 
2 
) 

�( n 
2 

+ k ) k ! 

(
−q 2 

4 

)k 

, (20) 

and by using the substitution q = t 
√ 

n , we can transform it into 

H n (t 
√ 

n ) = 

∞ ∑ 

k =0 

1 

k ! 

(
− t 2 

2 

)k 
�( n 

2 
) n 

k 

�( n 
2 

+ k )2 

k 
. (21) 

For every k ∈ N , it holds that 

lim 

n →∞ 

�( n 
2 
) n 

k 

�( n 
2 

+ k )2 

k 
= 1 , (22) 
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Fig. 1. Kernel functions of a rotational spectrum. 

and, therefore, the limit case of the kernel function equals 

lim 

n →∞ 

H n (t 
√ 

n ) = exp 

(
− t 2 

2 

)
. (23) 

�

For simplicity, we will use the following notation in the subse- 

quent sections: 

H ∞ 

(q ) = exp 

(
−q 2 

2 

)
. (24) 

This type of Gaussian kernel has been widely applied in the 

Parzen density estimates [18–20] of a probability density function 

and its properties, but with another meaning and motivation. The 

behaviour of the H n ( q ) kernels is visualised in Fig. 1 for various 

dimensions. 

5. Relationship to correlation dimension 

In this section, we discuss the relationship between the rota- 

tional spectrum for the limit kernel H ∞ 

and the correlation dimen- 

sion. The correlation sum is a cumulative distribution function of 

the distances between the points in a fractal set; therefore, the ro- 

tational spectrum can be written as a Stieltjes integral: 

S(�) = 

∫ ∞ 

0 

H ∞ 

(�r )dC(r ) = 

∫ ∞ 

0 

exp 

(
−�2 r 2 

2 

)
dC(r) . (25) 

After the application of the integration by parts, we can obtain 

S(�) = 

∫ ∞ 

0 

�2 r exp 

(
−�2 r 2 

2 

)
C(r)�d r, (26) 

and by substituting ξ = �r, we get the integral formula for the ro- 

tational spectrum: 

S(�) = 

∫ ∞ 

0 

ξ · C 

(
ξ

�

)
exp 

(
−ξ 2 

2 

)
d ξ . (27) 

Theorem 3. Let F ⊂ R 

n be a Lebesgue measurable set with the rota- 

tional spectrum 

S(�) = E 
x , y ∼U(F ) 

H ∞ 

(�‖ 

x − y ‖ 

) , (28) 

and let us assume that correlation dimension D 2 (3) exists. Then, it 

holds that 

lim 

�→∞ 

ln S(�) 

ln �
= −D 2 . (29) 

Proof. To prove this, let us suppose that δ < 1 and that, at first, 

r < δ. Owing to the existence of correlation dimension, we have 

∀ ε > 0 ∃ δ > 0 

0 < r < δ ⇒ 

∣∣∣∣ ln C(r) 

ln r 
− D 2 

∣∣∣∣ < ε, 

and, therefore, 

r D 2 + ε < C(r) < r D 2 −ε . (30) 

However, for r ≥ δ, we have 

δD 2 + ε < C(r) ≤ 1 . (31) 

Now, we can estimate the lower and the upper boundary for the 

spectrum 

S(�) = E 

x , y ∼U(F ) 
exp 

(
−�2 ‖ x − y ‖ 

2 

2 

)

= 

∫ ∞ 

0 

C(r )�2 r exp 

(
−�2 r 

2 

2 

)
d r (32) 

as 

I L (�) < S(�) < I U (�) . (33) 

We can rewrite I U as 

I U (�) = 

∫ δ

0 

r D 2 −ε�2 r exp 

(
−�2 r 2 

2 

)
d r 

+ 

∫ ∞ 

δ
�2 r exp 

(
−�2 r 2 

2 

)
d r, (34) 

and after the substitution t = �2 r 2 / 2 , we get 

I U (�) = �ε−D 2 · 2 

D 2 −ε
2 ·

∫ �2 δ2 / 2 

0 

t 
D 2 −ε

2 exp (−t)d t + exp 

(
−�2 δ2 

2 

)
. 

(35) 

Therefore, the upper bound I U can be expressed as 

I U (�) = 

(√ 

2 

�

)D 2 −ε

· D 2 − ε

2 

· �inc 

(
�2 δ2 

2 

, 
D 2 − ε

2 

)
, (36) 

where �inc is an incomplete Gamma function. It is possible to do 

an estimation from above as 

I U < 

(√ 

2 

�

)D 2 −ε

· D 2 − ε

2 

· �
(

D 2 − ε

2 

)
. (37) 
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The lower bound I L is rewritten as 

I L (�) = 

∫ δ

0 

r D 2 + ε�2 r exp 

(
−�2 r 2 

2 

)
d r 

+ 

∫ ∞ 

δ
r D 2 −ε�2 r exp 

(
−�2 r 2 

2 

)
d r (38) 

and can be estimated as 

I L (�) > 

(√ 

2 

�

)D 2 + ε
· �inc 

(
�2 δ2 

2 

, 
D 2 + ε

2 

+ 1 

)
. (39) 

Altogether, we receive the upper and the lower boundary for the 

logarithm of the rotational spectrum 

(D 2 − ε) 
(

1 

2 

ln 2 − ln �
)

+ L 1 (�) > ln S(�) 

> (D 2 + ε) 
(

1 

2 

ln 2 − ln �
)

+ L 2 (�) (40) 

and after the rearrangement 

−ε + 

L 2 (�) + 

D 2 + ε
2 

ln 2 

ln �
< 

S(�) 

ln �
+ D 2 < ε + 

L 1 (�) + 

D 2 −ε
2 

ln 2 

ln �
(41) 

for the functions 

L 1 (�) = ln �
(

D 2 − ε

2 

)
+ ln 

D 2 − ε

2 

(42) 

and 

L 2 (�) = ln �inc 

(
�2 δ2 

2 

, 
D 2 + ε

2 

+ 1 

)
. (43) 

It holds that both L 1 and L 2 are constrained functions of �. There- 

fore, �0 exists, which guarantees that, for any � > �0 > 1, it is 

valid that ∣∣∣∣ ln S(�) 

ln �
+ D 2 

∣∣∣∣ < 2 ε = ε∗, (44) 

which completes the proof. �

The Lebesgue measurability of the investigated set is an im- 

portant prerequisite because it ensures the capability to perform a 

uniform sampling. As a general remark, we could consider another 

kernel function instead of H ∞ 

. For any non-increasing function 
 : 

R 

+ 
0 

�→ [ 0 ; 1 ] satisfying 
(0) = 1 and 
(∞ ) = 0 , and whose first 

derivative 
′ ( ξ ) exists for any ξ > 0, we consider the rotational 

spectrum in a more general form as 

S(�) = E 

x , y ∼U(F ) 

( �‖ x − y ‖ ) . (45) 

The � function is defined as 

�(α) = −
∫ ∞ 

0 

ξα
′ (ξ ))d ξ , (46) 

and the existence of limit (29) is guaranteed only if both �(D 2 + 

ε) and �(D 2 − ε) are finite for arbitrary ε ∈ (0; ε0 ) s . Another ex- 

ample of a kernel function could be the generalised exponential 

kernel 


1 (ξ ) = exp 

(
−ξβ

β

)
(47) 

for β > 0 or the inverse polynomial kernel 


2 (ξ ) = 

1 

P(ξ ) 
, (48) 

where P( ξ ) represents a polynomial of order M > D 2 + 1 . 

6. Method of estimation 

The simulation of the rotational spectrum is based on gener- 

ating point pairs using a Monte Carlo approach. The points are in- 

dependently and uniformly sampled from the analysed set F . With 

M ∈ N fixed and x i , y i ∼ U(F ) , the rotational spectrum is estimated 

as 

̂ S (�) = 

1 

M 

M ∑ 

j=1 

H ∞ 

(�‖ x j − y j ‖ ) (49) 

including the variance estimate 

̂ var S (�) = 

1 

M − 1 

M ∑ 

j=1 

(H ∞ 

(
�‖ x j − y j ‖ 

)
−̂ S (�)) 2 (50) 

To take advantage of the linear dependence between the loga- 

rithm of the rotational spectrum and the logarithm of the distance, 

we can reasonably consider the model 

ln S(�) = A − D 2 · ln � + ε. (51) 

The estimation of parameter D 2 is based on the maximum likeli- 

hood method using L p regression with a minimisation criterion 

CRIT = 

N ∑ 

k =1 

| y k − f(x k , a ) | p (52) 

for p > 1 and a general model formulated as y = f(x k , a ) . In our 

case, the minimisation criterion satisfies 

CRIT ∗ = 

N ∑ 

k =1 

∣∣ln 

̂ S (�k ) − A + D 2 ln �k 

∣∣p 
. (53) 

The algorithm is based on the capability to generate point pairs 

uniformly from a fractal set and can be formulated as follows: 

• The parameter M is chosen arbitrarily, but is large enough (e.g., 

M = 10 5 ). This parameter represents the number of Monte Carlo 

simulations, which is equal to the number of point pairs from 

the fractal set used for the estimation. 

• The values of �, in which the calculation is performed, are de- 

termined. For the simulation, it is recommended to choose reg- 

ular sampling from the interval, where the rotational spectrum 

is expected to have a linear characteristic. 

• The calculation of the rotational spectrum is performed at 

points �1 , �2 . . . , �N , according to Eq. (49) . 

• With the values of �i and the respective ̂ S (�i ) estimates, it is 

possible to perform minimisation using Eq. (53) with a maxi- 

mum likelihood method. 

• The resulting parameter D 2 represents the estimate of the cor- 

relation dimension. 

7. Application to simulated data 

The main feature of the proposed methodology is its smoother 

dependence of the spectrum on �. We tested this property on 

point sets with well-known Hausdorff dimension, which are sum- 

marised in Table 1 . On the left side of Fig. 2 , there is a traditional 

log-log plot, where the logarithm of the correlation sum is plot- 

ted against the logarithm of the distances. The lines represent the 

upper and the lower theoretical bounds for C( r ). The right side of 

the figure shows the dependence of the logarithm of the infinite- 

dimensional rotational spectrum on the logarithm of the frequency 

( �). The experiment was performed on a two-dimensional Cantor 

dust with the contraction coefficient a = 1 / 3 and M = 10 5 pairs of 

points. 
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Fig. 2. Sample from the two-dimensional Cantor dust: correlation sum (left), rotational spectrum (right). 

Table 1 

List of point sets. 

Structure n Parameter Value D 2 

Cantor dust [21] 1–3 a 1/20–1/2 −n ln 2 / ln a 

Levy flight trajectory [22] 2–4 α 0.2–1.0 min ( α, n ) 

fBm trajectory [22] 3–4 H 0.25–0.75 min 
(

1 
H 

, n 
)

fBm graph [23] 1 H 0.1–0.9 2 − H

Takagi function graph [24] 1 a 0.55–0.95 2 + log 2 a 

Table 2 

Cantor dust analysis using linear least squares fitting. 

M Correlation sum Rotational spectrum 

̂ D 2 sd p -value ̂ D 2 sd p -value 

10 3 1.2254 0.0648 0.2868 1.2501 0.0323 0.3579 

10 4 1.2392 0.0202 0.1310 1.2689 0.0183 0.3502 

10 5 1.2513 0.0039 0.0034 1.2592 0.0030 0.1915 

10 6 1.2599 0.0 0 05 4 . 44 · 10 −5 1.2601 0.0 0 03 1 . 54 · 10 −7 

Table 3 

Cantor dust analysis using L 4 . 

M Correlation sum Rotational spectrum 

̂ D 2 sd p -value ̂ D 2 sd p -value 

10 3 1.2941 0.1178 0.3922 1.2378 0.1010 0.4059 

10 4 1.2937 0.0803 0.3459 1.3019 0.0470 0.1971 

10 5 1.2341 0.0574 0.3143 1.2618 0.0100 0.4976 

10 6 1.2654 0.0474 0.4702 1.2609 0.0076 0.4498 

The reason for the smooth development of the rotational spec- 

trum characteristic is the infinite-dimensional rotation. It is possi- 

ble to compare the correlation dimension estimate from the rota- 

tional spectrum approach and the traditional correlation sum. At 

first, the linear regression with least squares minimisation crite- 

rion was used to fit the model. However, the results were biased 

for a larger number of data points, as can be seen from Table 2 . 

To avoid the bias, we decided to use L p regression for the rota- 

tional spectrum fitting using a maximum likelihood method. The 

numerical experiments proved that any order p ≥ 4 is appropri- 

ate to fit the model. Therefore, we considered L 4 regression for the 

estimation of the correlation dimension. Table 3 shows the results 

Table 4 

Sierpinski carpet analysis for the different kernel functions. 

Kernel function D 2 ̂ D 2 sd p -value f min f max 

H 2 1.8928 1.9851 0.2625 0.4106 1.0 3.0 

H 4 1.8928 1.8673 0.1128 0.3624 1.0 3.0 

H 7 1.8928 1.9148 0.0863 0.3993 1.0 3.0 

H 10 1.8928 1.9019 0.0636 0.4431 1.0 3.0 

H ∞ 1.8928 1.8958 0.0559 0.4784 1.0 3.0 

for different numbers of point pairs M . The estimates of ̂ D 2 based 

on L 4 regression were unbiased for both the correlation sum and 

the rotational spectrum. However, the variance of spectrum-based 

estimates rapidly decreased with M . 

It is also possible to estimate the rotational spectrum for finite 

rotation using the kernel functions H n for n ∈ N . The comparison of 

the kernel functions that can be used for the rotation of the power 

spectrum is shown in Fig. 3 for H 2 , H 3 , H 4 and H ∞ 

. The traditional 

Sierpinski carpet was used for this simulation. 

The estimation of the correlation dimension using different ker- 

nel functions can vary. The estimation of the dimension for the 

Sierpinski carpet for different kernel functions is presented in 

Table 4 . The table shows the theoretical dimension D 2 based on 

the parameters and its estimate ̂ D 2 together with the standard de- 

viation sd . The recommended � range for L 4 regression is also in- 

cluded, where f min = log 10 �min and f max = log 10 �max . 

With the increasing dimension of the kernel function H n , the 

standard deviation decreased. The estimates were unbiased in all 

cases; however, the most accurate estimation occurred for H ∞ 

. The 

recommended intervals for the regression were the same in all 

cases, which means that they were independent of the kernel func- 

tion; nevertheless, as will be seen later, they will be dependent on 

the theoretical dimension of the fractal structure. 

All of the subsequent numerical experiments were performed 

in MATLAB by means of Monte Carlo simulation for M = 10 5 point 

pairs. At first, we tested the methodology for correlation dimen- 

sion estimation for an n -dimensional Cantor dust with contraction 

coefficient a . This methodology provided an unbiased estimation 

of the correlation dimension in the whole range of possible the- 

oretical dimensions for different contraction coefficients a . Almost 

the same behaviour was exhibited in the estimation of the corre- 
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Fig. 3. Rotational spectra of the Sierpinski carpet. 

Table 5 

Analysis of the fractal sets with known dimension. 

System Parameters D 2 ̂ D 2 sd f min f max 

Cantor set a = 1 / 5 , n = 1 0.4307 0.4298 0.0396 0.0 2.0 

Cantor set a = 1 / 3 , n = 3 1.8929 1.9065 0.0148 0.0 2.0 

Levy flight α = 1 , n = 2 1.0 0 0 0 0.9718 0.0627 −3.0 0.0 

Levy flight α = 0 . 7 , n = 3 0.70 0 0 0.6817 0.0323 −4.0 −2.0 

fBm trajectory H = 0 . 75 , n = 3 1.3333 1.3334 0.0302 1.5 2.0 

fBm trajectory H = 0 . 5 , n = 4 2.0 0 0 0 1.9958 0.0203 1.3 1.8 

fBm graph H = 0 . 3 , n = 1 1.70 0 0 1.7003 0.0136 0.7 1.5 

fBm graph H = 0 . 8 , n = 1 1.20 0 0 1.1677 0.0512 0.8 2.0 

Takagi function a = 0 . 75 , n = 1 1.5850 1.5889 0.0169 1.0 1.9 

Takagi function a = 0 . 90 , n = 1 1.8480 1.8475 0.0149 1.1 1.8 

Logistic map [25] 0.50 0 0 0.4 94 8 0.0360 0.8 1.4 

Rossler oscillator [26] 2.0100 1.9845 0.0788 0.2 0.9 

Lorenz system [27] 1.2409 1.2388 0.0342 1.2 1.9 

lation dimension of the trajectory of an n -dimensional Levy flight 

with the parameter α ∈ (0; 1). The lower and the upper boundary 

for the linear segment were shifted to the left when the theoret- 

ical dimension was lower. The graph of the fBm graph was also 

investigated to determine the efficiency of the D 2 estimator and 

had a theoretical dimension of D 2 = 2 − H. As a representative of 

the deterministic fractal functions, points from the Takagi function 

graph were generated. The Takagi function was dependent on the 

parameter a ∈ (1/2; 1), and the theoretical correlation dimension 

was equal to D 2 = 2 + log 2 a. The results from the estimation are 

shown in Table 5 . The representatives of classical dynamic systems 

were also examined, namely, a logistic map [25] for r = 3 . 56995 

with an estimated value of D 2 = 0 . 500 ± 0 . 005 ; a Rossler oscilla- 

tor [26] for a = 0 . 1 , b = 0 . 1 and c = 14 , with an estimated value of 

D 2 = 2 . 01 ± 0 . 01 ; and a Lorenz-like system attractor [27] for α = 

51 / 64 , β = 396 / 256 and θ = 109 / 64 , with D 2 ∈ [1.2406, 1.2412]. 

8. Conclusion 

The asymptotic behaviour of a rotational spectrum was in- 

vestigated under the assumption of D 2 existence. Rotation in an 

infinite-dimensional space is recommended for correlation dimen- 

sion estimation that is based on Monte Carlo simulation. As stated 

previously, there is a significant difference between traditional cor- 

relation integral behaviour and rotational spectrum, which can be 

seen on the basis of the log-log plot. The effect of spectrum stabil- 

isation for n → ∞ is also useful for D 2 estimation from relatively 

small uniform samples. However, the proposed method has a dis- 

advantage in the experimental choice of the frequency range for 

regression, as in the case of the traditional approach. 
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1. Introduction 

A fractal dimension is a non-integer characteristic that allows 

to measure the space-filling property of any set in Euclidean space. 

There are several definitions of dimension. The most general defi- 

nition is the Hausdorff dimension [1] based on the Hausdorff mea- 

sure and covering of the set with smaller sets with different radii. 

The similarity dimension [2] is based on the scaling property of 

fractal sets and is used only for the analysis of simple self-similar 

sets. The parameterized type of a fractal dimension is the Renyi 

dimension [1,3] that is the main object of interest in this paper. 

The calculation of the Renyi dimension is based on the Renyi 

entropy [4] H α , which is a generalisation of the Shannon ( H 1 ), 

Hartley ( H 0 ) and collision ( H 2 ) entropies. The α-entropy is defined 

for α ≥ 0 as follows 

H α( � p ) = 

1 

1 − α
ln 

k ∑ 

i =1 

p αi (1) 

for α � = 1 and 

H 1 = lim 

α→ 1 
H α = −

k ∑ 

i =1 

p i ln p i (2) 

where k is the number of events and p i are their probabilities sat- 

isfying 
∑ k 

i =1 p i = 1 . The formulas (2) and (1) are frequently used in 

most sources, but they describe only a finite set of events with a 

∗ Corresponding author. 

E-mail address: martindlask@centrum.cz (M. Dlask). 

possible extension to a countable case. A more general form which 

includes also an uncountable case is defined as 

H α( � p ) = 

1 

1 − α
ln E 

(
p α−1 

)
(3) 

and 

H 1 = E (− ln p) . (4) 

Based on the definition of α-entropy, the Renyi dimension is de- 

fined as 

D α = lim 

ε→ 0 + 

H α

− ln ε
(5) 

where D 0 , D 1 and D 2 are called the capacity, information and cor- 

relation dimension, respectively. In this case, ε is a scaling param- 

eter that influences the probabilities p i . 

The methods that are used to estimate the Renyi dimension are 

usually different for different parameters α. The capacity dimen- 

sion for α = 0 is usually estimated via the box-counting method 

[5] or the Minkowski covering method [1] . The particular type of 

dimension for α = 2 is called the correlation dimension and was 

introduced first in [6] . There are several methods to estimate the 

correlation dimension including the traditional approach in [7] or 

the spectral approach in [8] . 

The determination of the Renyi dimension is based on Renyi en- 

tropy estimates, which is biased in general. The second and more 

general problem is how to sample the point set. Our approach is 

focused only on the Lebesgue measure sets where uniform sam- 

pling is defined. When these conditions are not guaranteed, such 

as when the geometric structure of the set is inhomogeneous, we 

https://doi.org/10.1016/j.chaos.2018.07.030 

0960-0779/© 2018 Elsevier Ltd. All rights reserved. 
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Fig. 1. Density of Parzen estimate and corresponding S M . 

can only test the hypothesis of unbiasedness for the given theoret- 

ical value D α i.e., H 0 : 
̂ D α = D α . In such cases, it was shown that 

the correlation sum represents an unbiased estimator of D 2 with 

respect to approach in [9,10] . 

Recently, there were efforts to improve the estimation of the 

capacity dimension of binary images [11,12] and to estimate this 

dimension of the set of possible singular points in the space-time 

of suitable weak solutions to the Navier–Stokes equations [13,14] . 

The correlation dimension is widely used in biomedicine for elec- 

troencephalography signal analysis [15,16] or in cardiology [17] . 

Economical data are also often the subject of the correlation di- 

mension analysis, for example financial markets [18] , and espe- 

cially capital markets [19] . 

2. Parzen estimate with ball kernel 

This section utilizes the Parzen estimate for the derivation 

of the density function of elements of the Lebesgue measurable 

set F ⊂ R 

n . Supposing the existence of n -dimensional distribution 

function φ of points � x ∈ F i.e., � x ∼ φ, it is possible to define a sam- 

ple of points 

� = { � x 1 , � x 2 , . . . , � x M 

} ⊂ F (6) 

that are uniformly generated from F , i.e., �
 x k ∼ U(F ) ≡ φ. For any 

point � x ∈ R 

n , we define its ε-neighbourhood, i.e., a ball with radius 

ε as 

B( � x , ε) = { � y ∈ R 

n : ‖ 

�
 y − �

 x ‖ 2 ≤ ε} (7) 

for any ε > 0. The volume V 

∗ of the ball can be expressed as 

V ∗ = V n · εn (8) 

where V n is the volume of an n -dimensional unit ball. The density 

estimate will be based on the elementary distribution 

f 0 ( � x , ε) = 

I(‖ 

�
 x ‖ 2 ≤ ε) 

V ∗
(9) 

using the indicator function I( . . . ) . We can use Parzen’s [20] for- 

mula 

f ( � x , �, ε) = 

1 

M 

M ∑ 

k =1 

f 0 ( � x − �
 x k , ε) (10) 

to obtain a consistent estimate of φ. However, we will apply (10) to 

a discontinuous distribution on F to obtain new formulas for the 

Renyi dimension estimation. 

The probability density estimate (10) is visualised on Fig. 1 in 

grayscale. The white area represents the regions where this func- 

tion equals zero and the darker areas depict the intersection of 

several balls centred at points from the set sample �. The balls 

can be also used for the traditional definition of the Minkowski 

sausage [2] as 

S = 

⋃ 

�
 x ∈F 

B( � x , ε) . (11) 

The sample set � is useful for its finite approximation 

S ≈ S M 

= 

M ⋃ 

k =1 

B( � x k , ε) . (12) 

3. Renyi entropy estimate 

Our novel estimate of the Renyi entropy is based on the differ- 

ential entropy 

H α = 

1 

1 − α
ln 

∫ 
�
 x ∈ R n 

f α( � x )d 

�
 x (13) 

for α ∈ R 

+ 
0 
\ {1} and the Parzen estimate f ( � x ) that is scaled by ε > 0. 

To avoid negative entropy values, we define the modified Renyi en- 

tropy as 

H 

∗
α(�, ε) = 

ln J(�, α, ε) − ln J 0 (α, ε) 

1 − α
. (14) 

for α ≥ 0 and α � = 1 where 

J(�, α, ε) = 

∫ 
�
 x ∈ R n 

f α( � x , �, ε)d 

�
 x (15) 

and 

J 0 (α, ε) = 

∫ 
�
 x ∈ R n 

f α0 ( � x , ε)d 

�
 x = V 

1 −α
∗ . (16) 

Using the expected value of v ( � x ) for � x ∼ g as 

E 

�
 x ∼g 

v ( � x ) = 

∫ 
�
 x ∈ R n 

v ( � x ) g( � x )d 

�
 x , (17) 

the first term can be simplified as 

J = J(�, α, ε) = 

∫ 
�
 x ∈ R n 

f α−1 ( � x , �, ε) · f ( � x , �, ε)d 

�
 x 

= E 

�
 x ∼ f �

f α−1 ( � x , �, ε) (18) 

We define the degeneracy of � x ∈ R 

n as 

G ( � x , �, ε) = 

M ∑ 

k =1 

I(‖ 

�
 x − �

 x k ‖ 2 ≤ ε) (19) 

holding that G ( � x , �, ε) ∈ { 0 , . . . , M} . Recall that the probability 

density function f ( � x ) is 

f ( � x , �, ε) = 

1 

M · V ∗

M ∑ 

k =1 

I(‖ 

�
 x − �

 x k ‖ 2 ≤ ε) = 

G ( � x , �, ε) 

M · V ∗
. (20) 

Therefore 

J = E 

�
 x ∼ f �

(
G ( � x , �, ε) 

M · V ∗

)α−1 

= M 

1 −αV 

1 −α
∗ E 

�
 x ∼ f �

G 

α−1 ( � x , �, ε) (21) 

and subsequently also the modified Renyi entropy is 

H 

∗
α(�, ε) = 

ln J − ln J 0 
1 − α

(22) 

= 

(1 − α) ln M + (1 − α) ln V ∗ + ln E G 

α−1 ( � x , �, ε) − (1 − α) ln V ∗
1 − α

(23) 

The resulting modified entropy equals 

H 

∗
α(�, ε) = ln M + 

ln E G 

α−1 ( � x , �, ε) 

1 − α
(24) 

for α > 0 and α � = 1. 
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4. Basic properties and particular cases 

In this and the following sections, the degeneracy of �
 x ∈ R 

n 

will be denoted as G ( � x ) instead of G ( � x , �, ε) . When 

�
 x ∈ R n , the 

degeneracy G ( � x ) ∈ { 0 , . . . , M} , but for � x ∈ S M 

, the degeneracy ful- 

fils G ( � x ) ∈ { 1 , . . . , M} . The modified Renyi entropy follows 0 ≤ H 

∗
α ≤

ln M. This entropy is a translational and rotational invariant, as it 

is easy to prove from (19) and (24) . For the particular cases of α, 

one can derive the 

• Modified Hartley entropy for α = 0 as 

H 

∗
0 = ln M + ln E G 

−1 ( � x ) , (25) 

• Modified Shannon entropy as a limit for α → 1 i.e. 

H 

∗
1 = lim 

α→ 1 
H 

∗
α = ln M − E ln G ( � x ) , (26) 

• Modified collision entropy for α = 2 as 

H 

∗
2 = ln M − ln E G ( � x ) , (27) 

• Modified minimum entropy as a limit for α → ∞ as 

H 

∗
∞ 

= lim 

α→ + ∞ 

H 

∗
α = ln M − ln max G ( � x ) . (28) 

where the expected values are over � x ∼ f . If the derivative ∂H ∗
∂α

ex- 

ists, it is always less or equal to zero, as it is easy to prove. 

Moreover, the modified Renyi entropy H 

∗
α can be used for an 

alternative definition of the dimension as 

D 

∗
α = lim 

ε→ 0 + 

H 

∗
α(ε) 

− ln ε
(29) 

for a given F as an analogy to formula (5) . 

5. Monte carlo approach 

Basic properties of the finite sample � have been collected in 

the previous sections. Their direct application to the given data set 

is useful for the estimation of H 

∗
α(ε) and consequently for the D 

∗
α

estimation. Using the operator U of uniform sampling, the approx- 

imation of the Renyi entropy can be achieved via a Monte Carlo 

technique in the following way: 

1. At first, the sample index is generated uniformly k ∼
U({ 1 , . . . , M} ) . 

2. The point � x is generated uniformly from the ε-ball centred at 

�
 x k as � x ∼ U(B( � x k , ε)) . 

3. The subsequent degeneration is calculated using (19) . 

The entropy H 

∗
α is calculated as an average of the degenera- 

tions using (24), (26) or (28) depending on α. The first two steps 

generate � x ∼ f, of course. Assuming the entropy estimate H 

∗
α fulfils 

H 

∗
α ∝ ε−D ∗α for small ε > 0, we can use it for the estimation of D 

∗
α

using the model 

H 

∗
α(ε) = A − D 

∗
α ln ε (30) 

for small ε and satisfying linear dependency H 

∗
α on ln ε. The aim 

of this study is to demonstrate that D 

∗
α is an unbiased estimate of 

D α for large M . 

6. Relationship to capacity and correlation dimension 

The capacity ( D 0 ) and correlation ( D 2 ) dimensions are defined 

for any Lebesgue measurable set F . The only possibility how to 

compare D 

∗
α with D α is to come back from the sample � to the 

original set F . The sample � is a finite set with D H = D 0 = D 2 = 0 , 

of course. We will study the particular cases of D 

∗
α for α = 0 and 

α = 2 in the case of the measurable set F . 

6.1. Relationship to D 0 

The Renyi dimension is the characteristic that has an important 

relationship to the Minkowski-Bouligard capacity dimension. The 

capacity dimension can be defined [1] based on the Minkowski 

sausage as 

D 0 = n − lim 

ε→ 0 + 

ln vol(S) 

ln ε
(31) 

where S is defined in (11) and vol (S) = 

∫ 
�
 x ∈S is its volume. Suppos- 

ing the existence of D 0 , we can directly calculate 

J 0 = 

∫ 
R n 

f 0 0 ( � x )d 

�
 x = V ∗ = V n · εn , (32) 

and also the density 

f ( � x ) = E 

�
 y ∼U(F ) 

f 0 ( � x − �
 y ) (33) 

and 

f 0 ( � x ) = I 

(
E 

�
 y ∼U(F ) 

f 0 ( � x − �
 y ) > 0 

)
= I 

(
∨ 

�
 y ∈F 

‖ 

�
 x − �

 y ‖ 2 ≤ ε
)

= I( � x ∈ S) . 

(34) 

Therefore, the function J can be expressed as 

J = 

∫ 
R n 

f 0 ( � x )d 

�
 x = vol (S) . (35) 

The resulting modified Hartley entropy equals 

H 

∗
0 (ε) = ln 

∫ 
R n f 0 ( � x )d 

�
 x ∫ 

R n f 0 
0 
( � x )d 

�
 x 
= ln vol (S) − ln V ∗

= ln vol (S) − ln V n − n ln ε. (36) 

Now, it is clear that 

D 

∗
0 = lim 

ε→ 0 + 

H 

∗
0 (ε) 

− ln ε
= lim 

ε→ 0 + 

ln vol (S) − ln V n − n ln ε

− ln ε

= n − lim 

ε→ 0 + 

ln vol (S) 

ln ε
= D 0 . (37) 

Therefore, D 

∗
0 

obtained from the modified Hartley entropy H 

∗
0 
(ε) is 

equivalent to the capacity dimension D 0 of the measurable set F . 

6.2. Relationship to D 2 

The correlation dimension of F is defined as 

D 2 = lim 

ε→ 0 + 

ln C(ε) 

ln ε
(38) 

where 

C(ε) = E 

�
 y , � z ∼U(F ) 

I(‖ 

�
 y − �

 z ‖ 2 ≤ ε) (39) 

is the correlation integral. Supposing the existence of D 2 , recall 

that 

f 0 ( � x ) = 

I(‖ 

�
 x ‖ 2 ≤ ε) 

V n εn 
(40) 

and by means of integrating the elementary distribution over the 

space we get 

J 0 = 

∫ 
R n 

f 2 0 ( � x )d 

�
 x = 

1 

V 

2 
n ε2 n 

V n ε
n = V 

−1 
n ε−n . (41) 

In the finite case, we have 

f ( � x ) = 

1 

m 

m ∑ 

k =1 

f 0 ( � x − �
 x k ) , (42) 

which can be generalized to 

f ( � x ) = E 

�
 y ∼U(F ) 

f 0 ( � x − �
 y ) . (43) 
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Therefore, 

f 2 ( � x ) = E 

�
 y , � z ∼U(F ) 

f 0 ( � x − �
 y ) · f 0 ( � x − �

 z ) (44) 

and 

J = 

∫ 
R n 

f 2 ( � x )d 

�
 x = E 

�
 y , � z ∼U(F ) 

Z( � y , � z ) (45) 

where 

Z( � y , � z ) = 

∫ 
R n 

f 0 ( � x − �
 y ) · f 0 ( � x − �

 z )d 

�
 x . (46) 

Denoting the distance d = ‖ � y − �
 z ‖ 2 , we can evaluate 

Z( � y , � z ) = V 

−2 
n ε−2 n 

∫ 
R n 

I(‖ 

�
 x − �

 y ‖ 2 ≤ ε)I(‖ 

�
 x − �

 z ‖ 2 ≤ ε)d 

�
 x 

= V 

−2 
n ε−2 n W n (d, ε) (47) 

where W n ( d , ε) is the volume of two hyper-ball intersections in 

the case of the mutual center distance d and radii ε. Using n- 

dimensional analytical geometry, we obtain 

W n ( d, ε) = 2 

∫ ε

d/ 2 

V n −1 

(
ε2 − r 2 

) n −1 
2 d r 

= 2 V n −1 ε
n 

∫ 1 

d/ 2 ε

(
1 − r 2 

) n −1 
2 d r (48) 

and after substitution r = cos φ, we get 

W n (d, ε) = 2 V n −1 ε
n 

∫ arccos (d/ 2 ε) 

0 

sin 

n φ d φ. (49) 

Moreover, 

W n (0 , ε) = 2 V n −1 ε
n 

∫ π/ 2 

0 

sin 

n φ d φ = V n · εn (50) 

which is also the volume of the n -dimensional ball of radius ε. 

Therefore, we can express the Z function as 

Z( � y , � z ) = V 

−1 
n ε−n 

∫ arccos (d/ 2 ε) 
0 sin 

n φ d φ∫ π/ 2 

0 sin 

n φ d φ
(51) 

and the entropy is 

H 

∗
2 (ε) = − ln E 

�
 x , � y ∼U(F ) 

S n (‖ 

�
 x − �

 y ‖ 2 , ε) (52) 

where 

S n (d, ε) = 

∫ arccos (d/ 2 ε) 
0 sin 

n φ d φ∫ π/ 2 

0 sin 

n (φ)d φ
(53) 

for 0 ≤ d < 2 ε and S n (d, ε) = 0 for d ≥ 2 ε. Let 

Q n = 

∫ π/ 3 

0 sin 

n φ d φ∫ π/ 2 

0 sin 

n φ d φ
∈ (0 , 1) (54) 

be the value of S n ( ε, ε). When 0 ≤ d ≤ ε, we can estimate the ratio 

as 

Q n ≤ S n (d, ε) ≤ 1 . (55) 

For ε < d ≤ 2 ε, we have 0 ≤ S n ( d , ε) < Q n . Therefore, we can under- 

estimate 

S n (d, ε) ≥ I(d ≤ ε) · Q n (56) 

and an adequate upper estimate is 

S n (d, ε) ≤ I(d ≤ ε) + ( I(d ≤ 2 ε) − I(d ≤ ε) ) · Q n (57) 

(1 − Q n ) · I(d ≤ ε) + Q n · I(d ≤ 2 ε) ≤ (1 − Q n ) · I(d ≤ 2 ε) 

+ Q n · I(d ≤ 2 ε) = I(d ≤ 2 ε) . (58) 

We can continue in the estimation to obtain 

E 

�
 y , � z ∼U(F ) 

I(‖ 

�
 y − �

 z ‖ 2 ≤ ε) · Q n ≤ E 

�
 y , � z ∼U(F ) 

S n (‖ 

�
 y − �

 z ‖ 2 , ε) 

≤ E 

�
 y , � z ∼U(F ) 

I(‖ 

�
 y − �

 z ‖ 2 ≤ 2 ε) (59) 

and therefore 

L (ε) ≤ E 

�
 y , � z ∼U(F ) 

S n (‖ 

�
 y − �

 z ‖ 2 , ε) ≤ U(ε) (60) 

where the lower bound equals 

L (ε) = Q n · C(ε) (61) 

and the appropriate upper bound equals 

U(ε) = C(2 ε) . (62) 

For all 0 < ε < 1, the following inequalities hold 

ln U(ε) 

ln ε
≤ H 

∗
2 (ε) 

− ln ε
≤ ln L (ε) 

ln ε
. (63) 

We can calculate 

lim 

ε→ 0 + 

ln L (ε) 

ln ε
= lim 

ε→ 0 + 

(
ln Q n 

ln ε
+ 

ln C(ε) 

ln ε

)
= D 2 (64) 

and also for the upper bound 

lim 

ε→ 0 + 

ln U(ε) 

ln ε
= lim 

ε→ 0 + 

ln C(2 ε) 

ln ε
= lim 

ε→ 0 + 

ln C(ε) 

ln 

ε
2 

= lim 

ε→ 0 + 

ln C(ε) 

ln ε
· lim 

ε→ 0 + 

ln ε

ln ε − ln 2 

= D 2 . (65) 

Therefore, 

D 

∗
2 = lim 

ε→ 0 + 

H 

∗
2 (ε) 

− ln ε
= D 2 . (66) 

As a conclusion, when D 0 , D 2 exist for a given set F , the equalities 

D 

∗
0 

= D 0 , D 

∗
2 

= D 2 have been proven. 

7. Experimental part 

Computer experiments can be realized only on the finite sample 

� with three aims: 

• verify hypothesis H 0 : ̂
 D 

∗
0 

= D 0 experimentally, 

• verify hypothesis H 0 : ̂
 D 

∗
2 = D 2 experimentally, 

• evaluate ̂ D 

∗
α in other cases where D α is known theoretically or 

is referenced. 

The estimation of the Renyi dimension D 

∗
α will be performed 

for α ∈ [0; 2]. Supposing the model (30) with additional Gaussian 

noise e ∼ N (0 ;σ 2 ) in the form 

H 

∗
α = A − D 

∗
α ln ε + e (67) 

we can use the least squares method for the D 

∗
α estimation using 

different values ε i for i = 1 , . . . , N. We suggest to use a geometri- 

cally increasing series of ε i generated by the formula 

εi = 10 

f min +(i −1)	 f (68) 

with N = � ( f max − f min ) / 	 f � + 1 . 

The novel algorithm was tested on sets with known capacity 

dimensions. Four traditional deterministic fractal sets were studied 

using recursive random point generation of depth 100: 

• Cantor set [1] with the contraction parameter 0 < a < 1/2 and 

n = 1 with the Hausdorff dimension 

D H = − ln 2 

ln a 
(69) 
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Table 1 

Capacity dimension estimation. 

System a D 0 ̂ D ∗
0 

sd p -value f min f max 

Cantor set 1/4 0.50 0 0 0.5059 0.0070 0.3993 −3.0 −1.0 

Cantor set 1/3 0.6309 0.6327 0.0034 0.5965 −3.0 −1.0 

Cantor dust 1/4 1.0 0 0 0 0.9834 0.0157 0.2937 −2.0 0.0 

Cantor dust 1/3 1.2619 1.2547 0.0133 0.5883 −2.0 0.0 

Even numbers set – 0.6990 0.7030 0.0148 0.7870 −4.0 −1.0 

Sierpinki carpet 1/3 1.8928 1.8894 0.0059 0.2843 −2.0 −1.0 

Sierpinki carpet 1/4 1.50 0 0 1.4901 0.0148 0.2514 −2.0 −1.0 

Table 2 

Correlation dimension estimation. 

System a D 2 ̂ D ∗
2 

sd p -value f min f max 

Cantor set 1/4 0.500 0.4974 0.0034 0.2236 −3.0 −1.0 

Cantor set 1/3 0.6309 0.6286 0.0047 0.3124 −3.0 −1.0 

Cantor dust 1/4 1.0 0 0 0 0.9863 0.0221 0.2676 −2.0 −1.0 

Cantor dust 1/3 1.2619 1.2630 0.0269 0.4840 −2.0 0.0 

Even numbers set – 0.6990 0.6991 0.0038 0.4896 −4.0 −1.0 

Sierpinki carpet 1/3 1.8928 1.8964 0.0083 0.3325 −2.0 −1.0 

Sierpinki carpet 1/4 1.50 0 0 1.5053 0.0064 0.2032 −2.0 −1.0 

• Cantor dust [21] with the contraction parameter 0 < a < 1/2 and 

n = 2 with the Hausdorff dimension 

D H = −2 

ln 2 

ln a 
(70) 

• Even the digits set [1] that contains numbers from (0, 1) with 

even digits and the Hausdorff dimension 

D H = − log 5 

log 10 

(71) 

• Sierpinski carpet [1] with the contraction parameter 0 < a < 1/2 

and n = 2 with the Hausdorff dimension 

D H = − ln 8 

ln a 
(72) 

Since all the mentioned sets are self-similar and fulfil the open 

set condition [22] , their Hausdorff dimension equals the Renyi di- 

mension for any eligible parameter α, e.g. D H = D 0 = D 2 . The re- 

sults of the capacity dimension estimation are provided in Table 1 

and the estimates in the case of the correlation dimension are in 

Table 2 for 	 f = 0 . 05 and M = 10 5 . The theoretical capacity (cor- 

relation) dimension is denoted D 0 ( D 2 ), whereas its estimate is ̂ D 

∗
0 

( ̂  D 

∗
2 
) together with its standard deviation sd . The range for the 

choice of ln ε is recommended to be in the interval [ f min ; f max ]. 

A one-sample, two-sided t -test has been used to prove the un- 

biasedness of the dimension estimates level 0.05. As seen in Tabs. 

1 and 2 the hypotheses H 0 : ̂
 D 

∗
α = D α have been accepted in all 

cases. 

The graph of De Wijs’s fractal [23] with the parameter a is a 

kind of multifractal that has the Renyi dimension dependent on 

the dimension parameter α. The corresponding Renyi dimension 

equals 

D α = 

1 

1 − α
log 2 ( a 

α + (1 − a ) α) (73) 

for 0 < a < 1/2 and α ∈ [0; 1) ∪ (1, ∞ ) with the particular case 

D 1 = lim 

α→ 1 
D α = −a log 2 a − (1 − a ) log 2 (1 − a ) . (74) 

The D 

∗
α has been estimated for α ∈ {0, 1/2, 1, 3/2, 2} and the testing 

results are included in Table 3 . 

The one-sample, two-sided t -test has been also used to prove 

the unbiasedness of the De Wijs’s fractal, the hypotheses H 0 : ̂
 D 

∗
α = 

D α have been again accepted in all cases. 

One of the traditional methods on how to estimate the capac- 

ity dimension D 0 is called box-counting [24] . It is based on count- 

ing points from the sample � using an n -dimensional rectangular 

Table 3 

De Wijs’s fractal dimensions. 

α a D α ̂ D ∗α sd p -value f min f max 

0 a = 1 / 3 1.0 0 0 0 0.9908 0.0058 0.1127 −6.0 −4.0 

0 a = 1 / 4 1.0 0 0 0 0.9890 0.0087 0.2062 −6.0 −4.0 

0 a = 1 / 6 1.0 0 0 0 0.9780 0.0143 0.1240 −6.0 −4.0 

1/2 a = 1 / 3 0.9581 0.9574 0.0062 0.4550 −5.5 −3.5 

1/2 a = 1 / 4 0.90 0 0 0.8921 0.0103 0.2215 −5.5 −3.5 

1/2 a = 1 / 6 0.8035 0.7895 0.0159 0.1893 −5.0 −3.0 

1 a = 1 / 3 0.9183 0.9158 0.0060 0.6769 −4.0 −2.0 

1 a = 1 / 4 0.8250 0.8259 0.0098 0.9269 −4.0 −2.0 

1 a = 1 / 6 0.6500 0.6387 0.0217 0.6026 −3.0 −1.0 

3/2 a = 1 / 3 0.8814 0.8749 0.0099 0.2557 −4.0 −2.0 

3/2 a = 1 / 4 0.7376 0.7255 0.0153 0.2145 −4.0 −2.0 

3/2 a = 1 / 6 0.5419 0.5234 0.0209 0.1880 −3.0 −1.0 

2 a = 1 / 3 0.8480 0.8359 0.0189 0.5220 −3.0 −1.0 

2 a = 1 / 4 0.6781 0.6687 0.0205 0.6466 −3.0 −1.0 

2 a = 1 / 6 0.4695 0.4552 0.0235 0.5429 −2.0 0.0 

grid of size a > 0. Using the grid, there are always k non-empty 

boxes consisting of M 1 , M 2 , . . . , M k ∈ N points satisfying 
∑ k 

j=1 M j = 

M. The basic form of box-counting calculates the Hartley entropy 

estimate according to (1) as ̂ H 0 (α) = ln k which is the logarithm of 

covering an element number. The box-counting estimate of D 0 is 

obtained from the model (67) . It is also possible to estimate the 

general Renyi entropy D α using the approximation p j = M j /M and 

formulas (2) and (1) . 

Discrete dynamic systems with chaotic behaviour generate frac- 

tal trajectories and attractors with a nonlinear character. The in- 

vestigation of this kind of sets can be performed in two ways –

the first option is to investigate the dimension in the original state 

space, the second option is to use Whitney’s theorem [25] and esti- 

mate it in a reconstructed space. Generally, the n -dimensional dis- 

crete dynamical process has an internal state � x j ∈ R 

n and output 

y j ∈ R for j ∈ N 0 . Using reconstruction length W ∈ N , we define 

a sliding sample � ξ j = (y j , . . . , y j+ W −1 ) ∈ R 

W for j ∈ N 0 , first. Whit- 

ney’s embedding theorem can be rewritten from continuous to dis- 

crete time as follows: When W ≥ 2 N + 1 , then the reconstructed 

series { � ξ j } ∞ 

j=0 
has the same properties as { � x j } ∞ 

j=0 
. Therefore, any 

Renyi dimension D α of the reconstructed attractor is the same as 

in the case of the state space. 

Table 4 shows the comparison of the dimension estimation 

using the box-counting (denoted as box-count) method and the 

new method of the modified Renyi entropy (denoted as m. Renyi). 
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Table 4 

Discrete dynamical system analysis. 

system α D α data method ̂ D α sd p -value 

Henon 1 1.2583 OD m. Renyi 1.2608 0.0156 0.4363 

map box-count 1.2428 0.0113 0.0851 

RD m. Renyi 1.2590 0.0056 0.4503 

box-count 1.2489 0.0031 0.0012 

Henon 2 1.2201 OD m. Renyi 1.2243 0.0174 0.4046 

map box-count 1.2161 0.0109 0.3568 

RD m. Renyi 1.2230 0.0026 0.1323 

box-count 1.2172 0.0014 0.0192 

Lozi 1 1.4042 OD m. Renyi 1.4131 0.0197 0.3257 

map box-count 1.3915 0.0174 0.2327 

RD m. Renyi 1.4098 0.0044 0.1016 

box-count 1.3945 0.0032 0.0012 

Lozi 2 1.3845 OD m. Renyi 1.3937 0.0144 0.2614 

map box-count 1.3786 0.0161 0.3570 

RD m. Renyi 1.3885 0.0031 0.0985 

box-count 1.3749 0.0041 0.0096 

The comparison has been performed for original state data (OD) 

and reconstructed data (RD). For the experiment, the Henon map 

[26,27] with the parameters a = 0 . 4 , b = 0 . 3 and the starting 

points x 0 , 1 = 0 , x 0 , 2 = 0 . 9 and the Lozi map [28,29] with the pa- 

rameters a = 1 . 7 , b = 0 . 5 and the starting points x 0 , 1 = −0 . 1 , x 0 , 2 = 

0 . 1 were used for the simulation for α ∈ {1, 2}, reconstruction 

length W = 5 , range for modified Renyi method as f min = −2 . 0 and 

f max = −2 . 0 and for all experiments, the set � contained M = 10 6 

elements. The experiment was also conducted for bigger lengths of 

the reconstruction window, but it didn’t have a significant impact 

on the results and their precision. 

When the systems are investigated in the state space (OD) of 

low dimension ( n = 2 ), the box-counting offered more accurate es- 

timates with smaller standard deviation than the novel method. 

However, the p -values indicate unbiasedness in both cases. Another 

behaviour of estimation methods has been observed in the case 

of state reconstruction (RD) when the space dimension is large 

( n = 5 ). Therefore, the box-counting estimates of event probabili- 

ties are biased due to data sparsity. As seen in Table 4 , all the box- 

counting estimates after reconstruction are biased. The sparsity ef- 

fect is not present in the case of new method, where the p -values 

are higher with similar standard deviation. Therefore, the modi- 

fied Renyi dimension is more suitable for reconstructed systems in 

higher-dimensional space, where the unbiasedness is present and 

the estimation accuracy is higher. 

8. Conclusion 

The paper presents new term modified entropy that has been 

defined using the Parzen formula with a ball kernel. The new en- 

tropy measure can be calculated for all finite samples � using a 

degeneracy function. The Monte Carlo approach enables the es- 

timation of the proposed modified entropy which is later useful 

for the dimension estimation. The relationship between D 0 , D 2 and 

their estimates from the modified entropy have been both theoret- 

ically and numerically proven for an arbitrary measurable set F . 

Moreover, numerical simulations on selected fractal sets verified 

the unbiasedness of the D 

∗
α estimates. 
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a b s t r a c t

The work presents a methodology to precise simulation and parameter estimation
of multidimensional fractional Brownian motion (fBm). The simulation approach uses
circulant embedding algorithm and solution of Poisson equation, while generalizing it to
multiple dimensions. For estimation, a method using Wishart distribution and maximum
likelihood is presented and verified on simulated data. Unlike approximate methods
for generating multidimensional fBm and its Hurst exponent estimation, this approach
shows unbiased results for all processes with short memory and majority of cases with
long memory. The methodology is applied to mammography screening images to find
significant differences between benign and cancerous breast lumps.

© 2021 Elsevier B.V. All rights reserved.

1. Introduction

Fractional Brownian motion (fBm) introduced first in [1] is a stochastic process often used for modeling processes
with long or short memory [2]. Having fractional character depending on parameter H ∈ (0, 1) that is often called Hurst
exponent [3], the process is continuous and has stationary increments. The trajectory of fBm signal in one dimension has
fractal character and its fractal dimension [4] equals 2−H . This process is advantageously used for modeling of stochastic
events, especially in biomedicine and economics.

Many real world phenomena, however, do not occur only in the shape of random processes, but in the shape of random
surfaces or random mass. There is a variety of methods that can analyze sets in multiple dimension, such as variations
of box-counting algorithm [5] and algorithms for point sets, such as rotational spectrum [6] or entropy estimates [7]. By
terms of random processes in higher dimensional spaces and without the loss of generality, the multidimensional fBm [8]
can be defined via extending its definition from one dimension. This paper describes the basic properties of multivariate
fBm and presents the way of estimating its Hurst exponent.

The samples of multidimensional fBm can be simulated using variety of methods. The first category of methods, which
is often used for terrain modeling, is using technique of random point displacement [9]. This kind of methods is very simple
to implement, however, the samples do not conform with the prescribed autocorrelation function. An exact approach
involves the generation using Cholesky decomposition [10] and can provide very accurate samples of fractional Brownian
surfaces and masses. Its major disadvantage is its computational demand, which makes it unusable for simulations of
larger sets. The methods that compromise between the accuracy and speed and in theory converge to the autocorrelation
structure of multidimensional fBm leverage the principle of generalizing fractional Gaussian processes [11] or circulant
embedding [12].

∗ Corresponding author.
E-mail address: martindlask@centrum.cz (M. Dlask).
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The idea of analyzing multidimensional fBm using the separation of two-dimensional trajectories into one-dimensional
ones have been proven to be useful for Bayesian analysis of single-particle tracking data [13] as well as in diffusion
models [14].

Accurate estimation of Hurst exponent can be beneficial for other research areas that investigate samples with chaotic
character. As an example, the human brain [15,16] can be the subject of fractal investigation in the neuroscience area
with aim to discover early stages of Alzheimer disease. Another application area is astronomy, where the structure of
star clusters can be efficiently analyzed using multivariate fBm [17]. The mammography images [18] can be the subject
of analysis with respect to the detection of benign and cancerous lumps.

2. Multidimensional fractional Brownian motion

The one-dimensional fractional Brownian motion (fBm) with Hurst exponent H ∈ (0, 1) and variance σ 2
0 > 0 can be

generalized as follows [8,19]. Let x⃗ ∈ Rn be independent variable of dimension n ∈ N. The n-dimensional fBm [20] denoted
as BH (x⃗) satisfies

E
(
BH (x⃗)BH (y⃗)

)
=

σ 2
0

2
·

(
∥x⃗∥2H

2 + ∥y⃗∥2H
2 − ∥x⃗ − y⃗∥2H

2

)
(1)

and E BH (x⃗) = 0 for all x⃗, y⃗ ∈ Rn where ∥..∥2 denotes Euclidean distance. Using rectangular equidistant sampling with
step h > 0 and denoting B(K⃗ ) = BH (hK⃗ ) for K⃗ ∈ Zn, we obtain discrete fBm formula satisfying E B(K⃗ ) = 0 and

E
(
B(K⃗ )B(L⃗)

)
=

σ 2

2

(
∥K⃗∥

2H
2 + ∥L⃗∥2H

2 − ∥K⃗ − L⃗∥2H
2

)
(2)

for K⃗ , L⃗ ∈ Zn, where σ = σ0 · hH .
The discretized n-dimensional signal can be sampled by symmetric compact mask

M∗
=

{
s⃗ ∈ Zn

: ∥s⃗∥p ≤ ρ
}

(3)

using Minkowski norm ∥..∥p for p, ρ ≥ 1. The parameter ρ is later called mask radius. The mask M∗ consists of N + 1
points s⃗0 = 0⃗, s⃗1, . . . , s⃗N and can be shifted from the origin to a point K⃗ ∈ Zn to form

M(K⃗ ) =

{
K⃗ + s⃗ : s⃗ ∈ M∗

}
. (4)

Therefore, the sample at point K⃗ consists of values B(K⃗ ), B(K⃗ + s⃗1), . . . , B(K⃗ + s⃗N ). The neighborhood of B(K⃗ ) and its
generation for rectangular mask with nine elements is visualized in Fig. 1. We investigate the reduced sample of size N
and values ξi = B(K⃗ + ξ⃗i) − B(K⃗ ) for i = 1, . . . ,N . Adequate covariance matrix V = var x⃗i has elements

vi,j = E(ξiξj) = E
(
B(K⃗ + s⃗i) − B(K⃗ )

)(
B(K⃗ + s⃗j) − B(K⃗ )

)
(5)

= E
(
B(s⃗i) − B(0⃗)

)(
B(s⃗j) − B(0⃗)

)
(6)

=
σ 2

2
·
(
∥s⃗i∥2H

2 + ∥s⃗j∥2H
2 − ∥s⃗i − s⃗j∥2H

2

)
(7)

which is independent on K⃗ . The theoretical covariance matrix of the sample has the same dependences as the covariance
matrix of the original process.

3. Method of estimation

Given n-dimensional fBm and mask M∗, we consider m sets M(r⃗q) where r⃗q ∈ Zn for q = 1, . . . ,m. The parameter m
will be further called number of samples. For each set, we define sample vector g⃗q ∈ RN as

g⃗T
q =

(
B(r⃗q + s⃗1) − B(r⃗q), B(r⃗q + s⃗2) − B(r⃗q), . . . , B(r⃗q + s⃗N ) − B(r⃗q)

)
. (8)

for q = 1, . . . ,m. Let G =
(
g⃗1, g⃗2, . . . , g⃗m

)
∈ RN×m be the sample matrix, having g⃗q ∼ N(0⃗,V). The scatter matrix S = GGT

has Wishart distribution [21] with probability density function

f (S,V,N,m) =
|S|

m−N−1
2 exp

(
−

1
2 tr(V

−1S)
)

2mN/2 |V|
m/2 ΓN (m2 )

, (9)

where

ΓN (ξ ) = πN(N−1)/4
·

N∏
j=1

Γ

(
ξ −

j − 1
2

)
(10)

2
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Fig. 1. Example of rectangular mask applied to two-dimensional fBm.

Fig. 2. Scatter matrix generation from two-dimensional fBm sample.

and tr(...) means trace of a matrix.
Given m > N samples of n-dimensional fBm, one can calculate the scatter matrix as

S =

m∑
l=1

g⃗jg⃗T
j . (11)

The scatter matrix generation from two-dimensional fBm and rectangular mask is visualized in Fig. 2.
By maximizing the value of corresponding likelihood

L(H, σ ) = f (S,V(H, σ ),N,m) → max, (12)

one gets the optimum values (H∗, σ ∗) along with the standard deviations of the estimates.

4. Generalization of circulant embedding method

The idea of novel multidimensional fBm generation is based on the generalization of traditional circulant embed-
ding [22,23] (TCE) method. Now we introduce general circulant embedding (GCE) method as follows. The method
utilizes the simulation of incremental fractional Gaussian noise (ifGn) signal in its core. Suppose that M is even size
of n-dimensional integer grid D = {−M/2, . . . ,M/2−1}n which is a support of BH (k⃗) as fBm and YH (k⃗) as ifGn for k⃗ ∈ D.

3
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Using index vector k⃗ ∈ D, we will study the relationship between BH (k⃗) and YH (k⃗). Using discrete Laplacian ∆D in cubic
domain, we can directly calculate

YH (k⃗) = ∆DBH (k⃗) =

∑
u⃗∈Zn
∥u⃗∥=1

(
BH (k⃗ + u⃗) − BH (k⃗)

)
. (13)

Having BH (0⃗) = 0, we can continue with

C(k⃗) = E
(
YH ((k⃗)YH (0⃗))

)
(14)

= E

⎛⎜⎝ ∑
u⃗∈Zn
∥u⃗∥=1

(
BH (k⃗ + u⃗) − BH (k⃗)

)
·

∑
v⃗∈Zn
∥v⃗∥=1

(
BH (v⃗) − BH (0⃗)

)⎞⎟⎠ (15)

=

∑
u⃗,v⃗∈Zn

∥u⃗∥=∥v⃗∥=1

E
(
BH (k⃗ + u⃗)BH (v⃗) − BH (k⃗)BH (v⃗)

)
(16)

=

∑
u⃗,v⃗∈Zn

∥u⃗∥=∥v⃗∥=1

E
(
BH (k⃗ + u⃗)BH (−v⃗) − BH (k⃗)BH (−v⃗)

)
(17)

=
σ 2

2

∑
u⃗,v⃗∈Zn

∥u⃗∥=∥v⃗∥=1

(
∥k⃗ + u⃗∥2H

+ ∥ − v⃗∥
2H

− ∥k⃗ + u⃗ + v⃗∥
2H

−

− ∥k⃗∥2H
− ∥ − v⃗∥

2H
+ ∥k⃗ + v⃗∥

2H
)

=

(18)

=
σ 2

2

∑
u⃗,v⃗∈Zn

∥u⃗∥=∥v⃗∥=1

(
∥k⃗∥2H

− ∥k⃗ + u⃗∥2H
− ∥k⃗ + v⃗∥

2H
+ ∥k⃗ + u⃗ + v⃗∥

2H
)

. (19)

Using matrix WH ∈ RMn
of elements WH (k⃗) = ∥k⃗∥2H for k⃗ ∈ D we can also apply the discrete Laplacian ∆D to produce

∆DWH (k⃗) =

∑
u⃗∈Zn
∥u⃗∥=1

(
WH (k⃗ + u⃗) − WH (k⃗)

)
(20)

and also the convolution(
∆D ∗ ∆D

)
WH (k⃗) = (21)

=

∑
v⃗∈Zn
∥v⃗∥=1

(
∆DWH (k⃗ + v⃗) − ∆DWH (k⃗)

)
= (22)

=

∑
v⃗,u⃗∈Zn

∥v⃗∥=∥u⃗∥=1

(
WH (k⃗ + u⃗ + v⃗) − WH (k⃗ + u⃗) − WH (k⃗ + v⃗) + WH (k⃗)

)
= (23)

=

∑
v⃗,u⃗∈Zn

∥v⃗∥=∥u⃗∥=1

(
∥k⃗ + u⃗ + v⃗∥

2H
− ∥k⃗ + u⃗∥2H

− ∥k⃗ + v⃗∥
2H

+ ∥k⃗∥2H
)

. (24)

Therefore,

C(k⃗) = −
σ 2

2
(∆D ∗ ∆D)WH (k⃗) (25)

or in matrix form as

C = −
σ 2

2

(
∆D ∗ ∆D

)
WH . (26)

Process YH is still Gaussian with known autocovariance structure. Moreover, its autocorrelation is not dependent on
the time lag, therefore it can be generated using the circulant embedding method.

For instance in case n = 1, the process YH equals

YH (j) = BH (j + 1) − 2BH (j) + BH (j − 1), (27)

4
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in case of n = 2 the process formula can be expressed as

YH (j1, j2) = BH (j1 + 1, j2) + BH (j1, j2 + 1)+
+ BH (j1 − 1, j2) + BH (j1, j2 − 1) − 4BH (j1, j2).

(28)

Having randomly generated sample of ifGn as YH (k⃗) with zero mean value, we recognize (13) as Discrete Poisson
Equation [24] for an instance of fBm BH (k⃗) on the integer domain D. Denoting DFT, DFT−1 as Discrete Fourier transform
and its inversion on D, we can directly solve (13) with periodic boundary conditions. In this case, (13) has infinite many
solutions which differ by constants. Without loosing generality, we will find the solution with zero mean value as follows.
First, we will apply DFT to (13) and obtain

DFT{YH (k⃗)} = F (k⃗) ⊗ DFT{BH (k⃗)},

where

F (k⃗) = −4
n∑

j=1

sin2(kj/2) ∈ R

for k⃗ ∈ D and ⊗ is component-wise multiplication. The deconvolution can be obtained using Wiener filter [25,26] with
parameter λ > 0 using formula

BH (k⃗) = DFT−1
{W (k⃗) ⊗ DFT{YH (k⃗)}}, (29)

where

W (k⃗) =
F∗(k⃗)

λ2 + |F (k⃗)|
2 =

F (k⃗)

λ2 + F 2(k⃗)
. (30)

5. Application to simulated data

The method of Hurst exponent estimation and its standard deviation is first validated on simulated data. At first, we
investigated the optimal value of regularization parameter λ > 0 in one and two dimensions. It has been observed the
Wiener method of regularization numerically fails for λ < 10−13 in many cases. Therefore, we suggest λ = 10−12 as the
minimum but safe value.

Using this value we can generate the n-dimensional fBm and estimate H using the maximum likelihood [27] method
and Wishart approach. The experiment has been performed in one and two dimensions. The theoretical value of H is
uniformly generated from 0.05 to 0.95.

The results for one dimensional case (traditional fractional Brownian motion) for TCE and GCE methods are shown
in Table 1. While Htheory denotes the theoretical value of Hurst exponent, Ĥ is its estimate with corresponding standard
deviation s. The column z denotes the z-score as a measure of the unbiasedness of the estimate. Mean square error (MSE)
is defined as

MSE = (Htheory − Ĥ)2 + s2. (31)

Absolute value of z less than 1.96 cannot reject the null hypothesis on critical level 0.05, that the estimated Hurst
exponent from the sample would significantly differ from its theoretical value. In our case this is fulfilled for all cases
except H = 0.95, when the fractional Brownian motion has a very long memory and both methods overestimate its
theoretical value. Additionally, in all cases when the estimates are unbiased, the novel GCE method is having smaller
MSE. The performance of TCE method is visualized in Fig. 3.

In two dimensional space, where the equivalent of TCE does not exist, the experiment is performed for GCE and
symmetric compact mask with p = 1 and ρ = 4, yielding N = 80. The estimation has been performed from m = 104

independent samples and the results are presented in Table 2. The method provided unbiased estimation of Hurst
exponent for all H < 0.90, except the extreme case of long memory fractional Brownian surface. The performance of
the GCE method is visualized in Fig. 4.

6. Application to mammography

The theory of Wishart distribution and Hurst exponent estimation from sample is applied to the data from mammog-
raphy screening, assuming the scan of woman’s breast is a sample of fractional Brownian surface. The data are taken from
the Digital Database for Screening Mammography [28,29] containing public and open-access data for research in image
processing. For the study, we have selected 140 patients who have benign lump (BL) and 140 patients with cancerous
lump (CL). The cranio caudal (CC) images are used for the purposes of this study. (See Figs. 5 and 6)

The images were captured by DBA M2100 ImageClear digitizer with sampling rate 42 µm and 16 bits gray level. The
pictures were processed in Matlab as grayscale pictures and cropped, so the picture only contains human tissue without
background noise.
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Table 1
Hurst exponent estimation of fBm in one dimension for N = 10 and m = 104 .
Htheory TCE GCE

Ĥ s z MSE Ĥ s z MSE

0.0500 0.0459 0.00276 1.49 2.46 · 10−5 0.0498 0.00141 0.12 2.03 · 10−6

0.1000 0.1010 0.00354 −0.29 1.36 · 10−5 0.0997 0.00180 0.19 3.33 · 10−6

0.1500 0.1519 0.00405 −0.47 2.00 · 10−5 0.1538 0.00203 −1.85 1.86 · 10−5

0.2000 0.1923 0.00440 1.75 7.84 · 10−5 0.2020 0.00222 −0.88 8.93 · 10−6

0.2500 0.2578 0.00472 −1.65 8.24 · 10−5 0.2479 0.00236 0.90 9.98 · 10−6

0.3000 0.3013 0.00480 −0.26 2.46 · 10−5 0.3033 0.00246 −1.35 1.69 · 10−5

0.3500 0.3509 0.00502 −0.18 2.60 · 10−5 0.3487 0.00248 0.52 7.84 · 10−6

0.4000 0.4068 0.00504 −1.34 7.10 · 10−5 0.4006 0.00252 −0.23 6.71 · 10−6

0.4500 0.4482 0.00493 0.36 2.74 · 10−5 0.4494 0.00256 0.22 6.91 · 10−6

0.5000 0.4956 0.00509 0.87 4.54 · 10−5 0.5002 0.00250 −0.09 6.29 · 10−6

0.5500 0.5495 0.00497 0.10 2.50 · 10−5 0.5512 0.00251 −0.46 7.74 · 10−6

0.6000 0.6001 0.00493 −0.01 2.43 · 10−5 0.6024 0.00249 −0.96 1.20 · 10−5

0.6500 0.6515 0.00477 −0.32 2.51 · 10−5 0.6501 0.00237 −0.04 5.63 · 10−6

0.7000 0.6942 0.00457 1.27 5.48 · 10−5 0.7002 0.00222 −0.07 4.97 · 10−6

0.7500 0.7459 0.00440 0.93 3.63 · 10−5 0.7490 0.00218 0.44 5.75 · 10−6

0.8000 0.8020 0.00397 −0.50 1.97 · 10−5 0.7989 0.00197 0.57 5.09 · 10−6

0.8500 0.8531 0.00346 −0.90 2.16 · 10−5 0.8490 0.00175 0.57 4.06 · 10−6

0.9000 0.9052 0.00267 −1.95 3.44 · 10−5 0.8979 0.00147 1.45 6.57 · 10−6

0.9500 0.9444 0.00175 3.22 3.49 · 10−5 0.9594 0.00088 −10.67 8.91 · 10−5

Fig. 3. TCE method performance in one-dimensional space.

Afterwards, the threshold technique has been applied to the images. For image with dimensions P,Q ∈ N, we define
dimensionless parameter θ ∈ (0; 1) and define our region of interest as

ROI = {(i, j) : xi,j > θ · max
1≤i≤Q
1≤j≤P

xi,j} (32)

to localize the benign and cancerous lumps on the breast image. For our experiment, we have chosen three thresholds
selecting points with high intensity from the original x-ray scans. The threshold θ = 0.80 corresponds to roughly 5%,
threshold θ = 0.85 assures roughly 3% and threshold θ = 0.9 corresponds to roughly 1% of pixels of the original image.
For generating scatter matrix, we will use symmetric masks with radius from three to seven pixels, i.e. ρ ∈ {3, 4, 5, 6, 7}.

We will use two approaches to compare the results between BL and CL patients. First approach estimates H for each
patient in the respective groups. Using Wilcoxon ranksum test, we will test hypothesis

H0 : HB = HC, (33)

where HB and HC are the Hurst exponent estimates of BL and CL groups, respectively. The results of the estimation are
displayed in Table 3. Using false discovery rate, we diminish the critical level of significance to αFDR = 0.0217. The cases,
where the null hypothesis is rejected are highlighted in bold.

The case with highest significance (lowest p-value) in the traditional approach is (θ, ρ) = (0.85, 5). This combination
will be investigated further using another approach that employs the estimation of both parameters (H, σ ) and the
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Fig. 4. GCE method performance in two-dimensional space.

Fig. 5. Hurst exponent distribution map (left) and the original intensity image (right) of a CC image of woman’s right breast.

Fig. 6. Regions selected for analysis for benign finding for θ = 0.9 (left), θ = 0.85 (middle) and affected area highlighted by a medical doctor (right).
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Table 2
Hurst exponent estimation of fBm in two dimensions for N = 80 and m = 104 .
Htheory Ĥ s z MSE

0.0500 0.0508 0.00119 −0.66 2.06 · 10−6

0.1000 0.0973 0.00158 1.73 9.79 · 10−6

0.1500 0.1515 0.00191 −0.77 5.90 · 10−6

0.2000 0.2007 0.00215 −0.35 5.11 · 10−6

0.2500 0.2535 0.00230 −1.54 1.75 · 10−5

0.3000 0.2993 0.00247 0.29 6.59 · 10−6

0.3500 0.3495 0.00256 0.20 6.80 · 10−6

0.4000 0.4047 0.00264 −1.80 2.91 · 10−5

0.4500 0.4516 0.00270 −0.60 9.85 · 10−6

0.5000 0.4986 0.00845 0.17 7.34 · 10−5

0.5500 0.5467 0.00238 1.39 1.66 · 10−5

0.6000 0.5995 0.00209 0.24 4.62 · 10−6

0.6500 0.6433 0.00362 1.85 5.80 · 10−5

0.7000 0.6973 0.00364 0.75 2.05 · 10−5

0.7500 0.7478 0.00323 0.68 1.53 · 10−5

0.8000 0.8040 0.00213 −1.87 2.05 · 10−5

0.8500 0.8511 0.00163 −0.68 3.87 · 10−6

0.9000 0.9081 0.00112 −7.28 6.69 · 10−5

0.9500 0.9467 0.00086 3.82 1.16 · 10−5

Table 3
Wilcoxon–Mann–Whitney test for various thresholds and masks.
θ ρ HB std(HB) HC std(HC) p-val

0.8 3 0.5513 0.1912 0.5663 0.1891 0.1560
0.8 4 0.5943 0.1768 0.6281 0.1680 0.0732
0.8 5 0.5833 0.1766 0.6172 0.1733 0.0623
0.8 6 0.6384 0.1885 0.6664 0.1744 0.1386
0.8 7 0.6225 0.1866 0.6518 0.1737 0.1341
0.85 3 0.5313 0.1972 0.5782 0.2258 0.0142
0.85 4 0.6195 0.1752 0.6645 0.1927 0.0107
0.85 5 0.6158 0.1803 0.6601 0.1956 0.0104
0.85 6 0.6793 0.1917 0.7179 0.2029 0.0192
0.85 7 0.6616 0.1887 0.7018 0.2025 0.0217
0.9 3 0.4964 0.2454 0.5102 0.2781 0.0634
0.9 4 0.6551 0.1877 0.6908 0.2106 0.0245
0.9 5 0.6586 0.1895 0.6961 0.2199 0.0212
0.9 6 0.7300 0.2078 0.7549 0.2190 0.0445
0.9 7 0.7084 0.2053 0.7378 0.2178 0.0476

hypothesis claims, that the observed images of both cancerous and benign patterns are samples of fractional Brownian
surface, but they can vary in parameters H and/or σ . We denote HB as the Hurst exponent of the BL patients and HC
as the Hurst exponent of the CL patients and the corresponding σ as σC and σB respectively. Therefore, there are four
sub-models in run:

1. model H = HB = HC and σ = σC = σB
2. model H = HB = HC and σC , σB
3. model HB,HC and σ = σC = σB
4. model HB,HC and σC , σB

Their hierarchy is depicted on Fig. 7. Both H and σ parameters can vary due to structural changes of the tissue. The
estimated values of parameter σ also depend on X-ray intensity and sample depth, therefore their differences are of
low practical importance. The estimated values of parameter H also depend on scanning apparatus resolution, which is
constant for given data set and therefore more suitable for biomedical interpretation. The results of parameters for each
of the models separately is presented in Table 4.

The models will be compared using likelihood ratio test. We can perform 4 comparisons as 2 to 1 (comparison D),
3 to 1 (comparison C), 4 to 2 (comparison B) and 4 to 3 (comparison A), while the first mentioned model in the pair is
called full model and the latter one is its submodel. Having four comparisons in place allows us to measure, whether
the difference between the BL and CL is in the Hurst exponent H or in the σ . For each of the models, we estimate its
parameters by maximizing (12) and then calculate corresponding logarithm of likelihood as

ln L = ln f (S,V, p,m) (34)

using (9). Comparing any model to its submodel, we calculate the log-likelihood of the full model and denote it ln LFULL,
while the log-likelihood of the submodel equals ln LSUB. In our setting, any full model always differs in one free parameter

8
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Fig. 7. Model hierarchy schema.

Table 4
Estimates of model parameters.
Model HB HC σB σC

1 0.5037 0.5037 0.0073 0.0073
2 0.5034 0.5043 0.0070 0.0075
3 0.5072 0.5085 0.0073 0.0073
4 0.4980 0.5085 0.0070 0.0075

Table 5
Model and sub-model comparison.
Full-model Sub-model Comparison χ2 ln p-val

4 3 A 1.13 · 105
−5.63 · 104

4 2 B 1.68 · 103
−8.46 · 102

3 1 C 1.53 · 105
−7.63 · 104

2 1 D 4.16 · 104
−2.08 · 104

in comparison to its sub-model. It holds that

2 (ln LFULL − ln LSUB) ∼ χ2. (35)

Using the likelihood ratio tests, the comparisons A,B,C,D were evaluated, the χ2 value together with the logarithms of
p-values were calculated. The comparisons are depicted in Table 5. All four sub models significantly differ in the sense
of likelihood ratio test and therefore the fourth model i.e. the full model statistically dominates the others. It implies the
rejection of hypothesis HB = HC.

Both Wilcoxon-approach combined with the false discovery rate as well as the likelihood ratio test have discovered
significant differences between the CL and BL patients. The image of CL patients has statistically higher Hurst exponent
when considering the tissue has properties of fractional Brownian surface. The distribution of Hurst exponent in case of
CL and BL for (θ, ρ) = (0.85, 5) is visualized using boxplot in Fig. 8.

The CL patients have higher mean of Hurst exponent estimates, though their distribution significantly overlaps with
BL patients as well. We have tested a naive-classifier that is using threshold

HT =
E HB + E HC

2
(36)

classifying any patient with H > HT as CL and others as BL. This naive classifier yields sensitivity 55% and accuracy 59%
due to simple design of the classifier and due to the threshold technique does not always identify the affected tissues
correctly. There have been other approaches that use combined information of Hurst exponent of the image, wavelet
analysis and data distribution [30], yielding better performance in accuracy of 65% and sensitivity of 72%. Therefore, we
recommend our algorithm for accurate H estimation that could serve as a powerful feature for image classification.

7. Conclusion

The paper presents findings from three areas — fBm generation, fBm estimation and fBm application to mammography.
The fBm simulation utilizes the generalization of the circulant embedding method. The idea of the signal generation is

expanded to multiple dimensions and allows to generate the fractional Brownian surfaces. In contrast to TCE, the method
uses the solution of discrete Poisson equation and Wiener filter with regularization parameter. This methodology was
proven to be efficient in both one- and two-dimensional space for λ = 10−12 and was shown to be at least the same
efficient as TCE.
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Fig. 8. Distribution of Hurst exponent in case of BL (right) and CL (left) patients.

Method of fBm estimation is using novel approach and Wishart distribution, that allows to squeeze the whole
information from the fBm signal or fBm surface into one matrix. Using the autocorrelation properties, one can obtain
the unbiased estimate of Hurst exponent in the whole spectrum, except extreme values, where H → 1. The method of
estimation has provided very tiny standard deviation in the estimate and therefore has proven to be suitable for real-data
application.

The methodology of Hurst exponent estimate was applied to cranio caudal mammography images, considering the
human tissue as a sample of fractional Brownian surface with unknown Hurst exponent. Two approaches involved testing
through false discovery rate combined with the Wilcoxon test as well as likelihood ratio test. Both approaches have
rejected the null hypothesis that the CL and BL patients have the same Hurst exponent, resulting in patients with cancerous
findings having higher Hurst exponent and more chaotic structures in the investigated breast. This is in accordance with
the latest research findings in mammogram diagnostics [30].
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Abstract

Biological systems manifest continuous weak autoluminescence, which is present even in

the absence of external stimuli. Since this autoluminescence arises from internal metabolic

and physiological processes, several works suggested that it could carry information in the

time series of the detected photon counts. However, there is little experimental work which

would show any difference of this signal from random Poisson noise and some works were

prone to artifacts due to lacking or improper reference signals. Here we apply rigorous statis-

tical methods and advanced reference signals to test the hypothesis whether time series of

autoluminescence from germinating mung beans display any intrinsic correlations. Utilizing

the fractional Brownian bridge that employs short samples of time series in the method ker-

nel, we suggest that the detected autoluminescence signal from mung beans is not totally

random, but it seems to involve a process with a negative memory. Our results contribute to

the development of the rigorous methodology of signal analysis of photonic biosignals.

Introduction

Practically all organisms perpetually generate weak light (300–700 nm wavelength range), too

weak to be visible to naked human eye, in the course of their internal metabolic processes [1].

This light phenomenon differs from a rather bright bioluminescence which is dependent on

specific enzymatic complexes present only in very specific species such as fireflies and selected

jellyfish. What differentiates the general biological autoluminescence from ordinary biolumi-

nescence is, apart from the weaker intensity, its ubiquity across biological species ranging from

microorganisms [2–5] through tissue cultures [6–8], plants [9–13] up to animals [14] includ-

ing human [15–17]. There are also various synonyma used in the literature describing this

light phenomenon such as ultra-weak photon emission [18], ultra-weak bioluminescence [19],

endogenous biological chemiluminescence [20], biophotons [21–23], etc.

Widely accepted underlying mechanism which generates biological autoluminescence

(BAL) is related to a chemical generation of electron-excited states of biomolecules in the

course of oxidative metabolism and oxidative stress [18, 24]. While the intensity and optical
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spectrum properties of BAL as a factor of various influences have been widely investigated [3,

25–29], there is limited knowledge and consensus about statistical properties of BAL.

The object of our current study is the BAL time series from the seeds of mung beans that

were measured using a sensitive photomultiplier setup. We decided to test the hypothesis if the

BAL signals of mung beans contain any intrinsic correlations. To that end, we recorded and

analyzed the time series of the BAL from mung beans. One of the ways to assess correlations in

the signal employs chaos- and fractal-based approaches [30]. We focus here on the analysis of

the fractal character of time series using fractional processes.

Fractional Brownian motion (fBm) and fractional Gaussian noise (fGn), introduced by

Mandelbrot [31], have been intensively investigated over the last few decades. They are both

dependent on Hurst [32, 33] exponent H 2 (0; 1) that influences their autocovariance struc-

ture. The fBm or fGn assumption of finite sample is advantageously used in many fields of

research of time series analysis—in network traffic modelling [34, 35], financial time series [36,

37], or in biomedicine especially for detection of Alzheimer’s disease [38] and cardiology [39].

When analyzing real-world data, the measured sample is usually discrete and short. The tra-

ditional methods are generally not suitable for short time series analysis. That is the reason

why we need to use a precise method that can estimate the Hurst exponent without bias and

can determine the confidence intervals of the estimate. The fractional character of data can be

measured via fractional Brownian bridge model, which is a discrete process derived from tra-

ditional continuous fBm. A lot of time series are short due to their nature or cut by purpose or

experimental limitations. Reconsidering some fBm properties that are taken in long time series

analysis as granted and customizing them into a short-time, the discrete model allows estimat-

ing Hurst exponent of the discrete measured signal. This approach is advantageously used in a

recently developed method of fractional Brownian bridge [40].

The article at first analyzes current open questions of statistical properties of biological

autoluminescence. In the next section, we then describe the theory of fBm and the method of

Hurst exponent estimation as well as other employed methods, whereas the last section con-

tains the results of the analysis of experimental signals compared to computer-generated refer-

ence signals.

Statistical properties of biological autoluminescence (BAL)

Rationale for the need of understanding of BAL statistical properties

Multiple authors proposed that statistical properties of BAL time series might contain an infor-

mation related to the state of biological system [41–43]. If the existence of such nontrivial sta-

tistical properties was rigorously confirmed, it would make a substantial impact on three

major areas of this research field.

At first, the discovery of nontrivial statistical properties of BAL would have an impact on

the understanding of the BAL generating mechanisms [18, 21]. So far, well-accepted generat-

ing mechanism of BAL [18, 24] implicitly considers BAL a weak endogenous biological chemi-

luminescence formed as a by-product of oxidative metabolism and oxidative stress. General

chemiluminescence is typically considered to be random, arising from individual uncorrelated

photon emitter molecules [44]. If any correlations in the signal were observed, one would start

to ask questions what physical, chemical, and biological processes generate such correlations,

hence casting the light on BAL generating mechanisms.

At second, nontrivial statistical properties might revive an interest into long-standing

intriguing, yet unresolved question: does BAL enable optical communication between cells

and organisms [45–48]? Underlying hypotheses for such biocommunication role of BAL usu-

ally expect that BAL carries information which can be processed by a receiver [46]. Such

Short-time fractal analysis of biological autoluminescence
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information could be encoded in the intensity and optical spectrum of BAL [49] or in statisti-

cal properties of BAL, if they are any different from random light, as claimed by some authors

[45].

At third, statistical properties would represent a completely novel fingerprint for application

of BAL in biosensing in biotechnology, agriculture, food industry, and medicine beyond the

intensity and optical spectra, hence greatly enhancing application potential of BAL analysis.

Approaches for analysis of BAL statistical properties

Quantum optics approach. Historically, the first common approach to analyze the statis-

tical properties of the photon signals is based on quantum optics theorems and employs photo-

count statistics of detected photonic signal [50]. Using this approach, several authors

suggested that BAL manifests quantum optical coherent properties [21] or even interpreted

the observed photocount statistics in terms of quantum optical squeezed states [22, 51]. We

have recently criticized the interpretation of experimental evidence claiming quantum optical

and quantum coherence properties of BAL [23].

Fractal- and chaos-based signal analysis approach. We believe that it is more realistic to

consider that BAL could manifest complex statistical or correlated behavior due to the nature

of underlying chemical reactions [52] instead of a hypothetical biological coherent quantum

field as proposed in the earlier approach. For the analysis of such complex statistical or corre-

lated behavior, fractal or chaos-based methods seem to be appropriate. Therefore, more recent

efforts in the analysis of BAL statistical properties were focused on the various measures quan-

tifying the complexity and correlations in the time series such as Hurst exponent [53] and mul-

tifractal spectra [54].

Several works found correlations or deviations from purely random process with a trivial

properties in the BAL signal [42, 43, 54]. However, in all those cases, either signals of different

signal-to-noise ratio [42, 43, 54] or surrogate (randomly reshuffled time series) [43] were used

as reference signals. Comparing BAL signals having different signal-to-noise (signal = net

mean intensity of BAL, noise = mean value of detector noise) ratio may lead to results indicat-

ing different statistical properties due to a trivial fact: statistical properties of experimentally

detected BAL signal are formed by a convolution of detector noise properties with a pure BAL

properties. We demonstrated this issue on the example of Fano factor analysis, see figure 4 in

[13].

Using surrogate signals might also lead to misleading interpretation in case the signal con-

tains a certain trivial linear trend before random reshuffling—such reshuffling would eradicate

any trend. We showed recently that detrending of the BAL signal is not sufficient to remove

artifacts since the trend is present not only in the local mean but also in the local variance of

the signal (see figures 1b and 4b in [53]). We suggest that the most reliable testing of the

hypothesis of nontrivial correlation properties so far can be obtained using reference signals

with well-defined properties. To that end, in our recent works, we used computer-generated

Poisson signal time series superposed on the experimentally detected detector dark count

times series as the control signals with signal-to-noise ratio same as the experimentally

detected BAL signals [53]. Such a method for reference signal generation was also recently

used in entropy analysis of BAL from model plant Arabidopsis thaliana and helped to correctly

interpret findings of different entropy values at different stages of seed germination, see figure

6 in [20].

For the first time, we combine here the advanced approach of computer-generated refer-

ence signals [53] and a novel method based on fractional Brownian motion analysis [55] to

test if BAL signals from mung beans manifest any correlations.

Short-time fractal analysis of biological autoluminescence
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Materials and methods

Experimental

Preparation of samples. Mung bean seeds (Vigna radiata, BIO Mung, CZ-BIO-001) were

used as a biological material. Mung seeds were surface-sterilized with 70% ethanol for 1 min.

Then, the ethanol was removed, and 50% disinfecting agent (SAVO, CZ) was added. After 10

min, the seeds were washed with distilled water 6 times and soaked for 6 h (shaken every half

an hour). After the preparation, the green covers of the seeds were removed. Then, they were

germinated in dark condition on large Petri dishes with ultra-pure water.

Luminescence measurement system. We used a measurement system based on cooled

(-30 ˚C) low-noise photomultiplier tube (PMT) R2256-02 (all components of the system from

Hamamatsu Photonics Deutschland, DE, unless noted otherwise), see Fig 1. Cooling unit

C10372 (Hamamatsu Photonics Deutschland, DE) consisted of a control panel and a housing

in which the PMT is placed. External water cooling is used for lower cooling temperature.

High voltage power supply PS350 (Stanford Research Systems, USA) was used for powering

the PMT. C9744 (converting) unit, consisting of a preamplifier, discriminator and a pulse

shaping circuit, transforms photocount pulses coming from the PMT into 5V TTL pulses

detected by C8855 unit connected to PC. Discriminator level was set to -500 mV and high volt-

age PMT supply to –1550 V based on the experimental SNR (signal-to-noise-ratio) optimiza-

tion procedure performed in [56], see figure 2.13 therein.

The PMT had a dark count of ca. 17.2 s −1 and photocathode diameter 46 mm); see its quan-

tum efficiency in Fig 1. PMT was mounted from the top outer side of the black light-tight

chamber (standard black box, Institute of Photonics and Electronics of the Czech Academy of

Sciences, Czechia). The distance between the PMT housing input window and the inner side

of the bottom of the Petri dish was 3 cm.

Measurement protocol. The second day after the preparation day, 12 similar mung beans

were chosen for the study and distributed into a Petri dish (5 cm in diameter), see Fig 1.

Short sequence analysis

fBm hypothesis. Fractional Brownian motion (fBm) [31] is a continuous Gaussian pro-

cess BH(t) defined for continuous variable t 2 [0; +1), H 2 (0; 1) and σ> 0. The process starts

at zero and has zero expected value for all positive times t. The autocovariance structure of

Fig 1. A: Sample of germinating mung beans. B: Scheme of the luminescence measurement setup. C: Quantum efficiency of the photomultiplier used for the

detection of biological autoluminescence.

https://doi.org/10.1371/journal.pone.0214427.g001
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fBm obeys for all t, s> 0

EðBHðtÞBHðsÞÞ ¼
s2

2
jtj2H þ jsj2H � jt � sj2H
� �

: ð1Þ

Parameter H is called Hurst exponent, for H = 1/2, the fBm becomes Wiener process,

which is standard Brownian motion. There are several cases of time series behaviour:

• H! 1− as strongly dependent and predictable,

• H 2 (1/2; 1) as positive long memory process,

• H = 1/2 as Wiener-like process,

• H 2 (0; 1/2) as negative long memory process,

• H! 0+ as strongly dependent, but hardly predictable.

Discrete fractional Brownian motion of length N 2 N is any discrete process defined for

discrete variable k = 0, . . ., N − 1 with zero mean and autocovariance function defined for

k, l = 0, . . ., N − 1 and l< N − k as

EðBHðkÞBHðkþ lÞÞ ¼
s2

2
jkj2Hþjkþ lj2H � jlj2H
� �

: ð2Þ

Taking a sample of fractional Brownian motion, it is possible to investigate short samples of

time series with fractional character. Finite sample BH(k) of size N + 1 for k = 0, . . ., N of stan-

dardized fBm can be used for the construction of fractional Brownian bridge [55] in the fol-

lowing way

MHðkÞ ¼ BHðkÞ � BHð0Þ �
k
N
ðBHðNÞ � BHð0ÞÞ: ð3Þ

In the fractal analysis of time series, the fractional processes are often converted to frac-

tional noises utilizing signal difference to simplify their covariance structure together with its

spectral properties keeping the desired dependence on Hurst exponent. The differenced frac-

tional Brownian bridge (dfBB) [55] is defined as

XHðkÞ ¼ MHðkþ 1Þ � MHðkÞ ð4Þ

for k = 0, . . ., N − 1.

Theory of dfBB. The dfBB is a discrete process and it is proven that the process has zero

expected value and its variance is independent on the time lag and equals

g0 ¼ 1 � N2H� 2: ð5Þ

The autocovariance of dfBB can be expressed as

gm ¼ Zðm;HÞ þ N2H� 2 þ
jmj2H� jN � mj2H � jNj2H

NðN � mÞ
; ð6Þ

for m = 0, 1, . . .N − 1 where

Zðm;HÞ ¼
1

2
jmþ 1j

2H
� 2jmj2H þ jm � 1j

2H� �
ð7Þ

Short-time fractal analysis of biological autoluminescence
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The corresponding autocorrelation function is again independent on the time lag and can

be expressed as

rm ¼
gm
g0

ð8Þ

for m = 0, . . ., N − 1. The autocorrelation function of dfBB for selected H and N = 21 is

depicted in Fig 2. This function maps non-negative integer values less than N to the autocorre-

lation coefficients that will be the key values for subsequent Hurst exponent estimation.

The estimation of Hurst exponent will be based on the correlation function (8). This corre-

lation function is valid only for discrete processes that originated as sampling continuous fBm.

In our work, we assume that the investigated signals have the fBm property with unknown

Hurst exponent. The advantage of using dfBB is the de-trending of the input signal, which is

important in the real experiment outcome analysis.

Hurst exponent estimation. The estimation of Hurst exponent is based on the fitting of

the autocorrelation function. For an input discrete signal that has the fBm properties, the dfBB

according to formulas (3), (4) is created. If the original signal has length N + 1, the respective

dfBB has length N having elements x0, x1, . . ., xN−1. The estimation of n-th autocovariance

coefficient r̂ n can be expressed for n = 0, . . ., N − 1 as

r̂n ¼
1

N � n

XN� n� 1

k¼0

xkxkþn ð9Þ

in the case of unbiased estimation. Alternative biased estimate is based on formula

r̂ n ¼
1

N

XN� n� 1

k¼0

xkxkþn ð10Þ

Fig 2. Autocorrelation function of dfBB for H = 0.1 (empty circle), H = 0.5 (full circle) and H = 0.9 (star).

https://doi.org/10.1371/journal.pone.0214427.g002
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and the estimation of autocorrelation coefficient r̂n as

r̂n ¼
r̂ n
r̂0

: ð11Þ

The results using (9) and (10) were proven to be comparable, therefore we used the Eq (9)

for the following calculations. Denote the theoretical value of autocorrelation from Eq (8) as ρn
= ρn(H) and the experimentally calculated autocorrelation as r̂n. Then we obtain the estima-

tion of parameter H by means of solving the minimization problem

Ĥ ¼ argmin
H2ð0;1Þ

XM

j¼1

XN� 1

n¼1

ðrn;j � rnðHÞÞ
2
; ð12Þ

where M is the number of signal segments. The point estimate of Ĥ was obtained by the

maximum likelihood method [57] together with its standard deviation ŝ as recommended in

[55].

Likelihood ratio test

Having signal from the mung beans photon emission as well as the reference signal, we will

use likelihood ratio test [58] to decide, whether the Hurst exponent of both samples is signifi-

cantly different. We denote HD as the Hurst exponent estimate of the PMT detector noise or

reference signal and HB as the Hurst exponent estimate of mung emission using the formula

(12). The overall error (sum of the squares of residuals) is defined as

SSQFULL ¼
XM

i¼1

XN� 1

j¼1

ðrB
i;j � rjðHBÞÞ

2
þ
XM

i¼1

XN� 1

j¼1

ðrD
i;j � rjðHDÞÞ

2
; ð13Þ

where ρD, ρB are the autocorrelation coefficient of the noise and photon emission, respectively.

The case of j = 0 is excluded due to rDi;0 ¼ r0ðHDÞ ¼ 1 for all i = 1, .., M. Using sub-model satis-

fying HB = HD we get

SSQSUB ¼
XM

i¼1

XN� 1

j¼1

ðrB
i;j � rjðHDÞÞ

2
þ
XM

i¼1

XN� 1

j¼1

ðrD
i;j � rjðHDÞÞ

2
: ð14Þ

Using likelihood ratio (LR) test of significant difference between the sub-model and the full

model, we calculate

w2 ¼ 2 ln
LFULL

LSUB
¼ M � ðN � 1Þ � ln

SSQSUB

SSQFULL
; ð15Þ

where LFULL and LSUB are corresponding likelihoods.

When the hypothesis H0: HD = HB holds, i.e. the full model has the same validity as the sub-

model, the criterion has w2
1

distribution due to single parameter constrain.

Reference signal generation. Recently we demonstrated that a suitable reference signal is

crucial to understand and interpret the findings from various BAL signal analysis [20, 53].

Detector noise itself is not a suitable reference signal since it contains intrinsic technogenic

correlations itself [53] and using signals of other samples with different signal-to-detector

noise ratio can also lead to misleading results as we explained in section “Approaches for anal-

ysis of BAL statistical properties”. Hence for this work we follow our method [53], and gener-

ated the reference signal as a sum of measured detector noise and computer-generated Poisson

signal (using Matlab12017 poissrnd command) with given λ in every experimental point

Short-time fractal analysis of biological autoluminescence
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where l ¼ E yBk � E yDk , where yBk and yDk are signal mean values of mung beans and noise,

respectively. The respective values of λ in case of 200 μs signal as well as 500 μs signal are calcu-

lated in Table 1. Hence, experimentally detected BAL signals from mung beans and reference

signals have practically the same mean value and same signal-to-noise ratio.

To sum up, for the analysis, we have three types of signals available:

• (B)—mung beans signal yBk ,

• (D)—noise signal of PMT detector yDk ,

• (R)—reference signal as a sum of measured detector noise (D) and computer-generated

Poisson noise denoted as yRk

Results

Measurement

The investigated sample of germinating mung beans is displayed in the Fig 1. An overview of

all signals collected and employed in this paper is in Table 2, where NS denotes the number of

available signals.

There were two bin size settings used to collect the signals: Ts = 200 and 500 μs. For each

sampling period, we have corresponding mung bean signals, detector noise signals, and com-

puter-generated reference signals.

Both mung beans signal and PMT detector noise signal are assumed to be stationary with

their mean values with the Poisson distribution. Therefore, they can be represented by their

mean values E yBk and E yDk that are estimated from the measured data.

As previously mentioned, the aim of study is to compare mung beans signal with the refer-

ence signal and find statistical difference between them using their autocorrelation. With

each of these two signals independently, we performed basic data processing. This procedure

describes the normalization of the data, which is the essential property of fBm processes. At

Table 1. Mean values of mung beans signal and noise.

Tb 200 μs 500 μs

E yBk 0.0115 0.0288

E yDk 0.0036 0.0088

λ 0.0079 0.0200

https://doi.org/10.1371/journal.pone.0214427.t001

Table 2. Number and type of the signals collected.

bin size Tb 200 μs 500 μs

signal type mung beans (B) NS = 5 NS = 5

detector noise (D) NS = 5 NS = 5

reference signals (R) NS = 5 NS = 5

number of bins in each measurement Nb = 100 000 Nb = 100 000

length of each measurement [s] 20 50

total number of bins Q = NS × Nb 500 000 500 000

total length of all measurements per signal type [s] 100 500

https://doi.org/10.1371/journal.pone.0214427.t002

Short-time fractal analysis of biological autoluminescence
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first the input time series yk for k = 0, 1, . . ., Q − 1 was cumulatively summed for a window

size h 2 N and Anscombe transformation [59] was performed. The resulting signal zk can be

expressed based on the output from measuring device yk as

zk ¼ 2 �
3

8
þ

Xðkþ1Þh� 1

i¼kh

yi

 !1=2

ð16Þ

for k = 0, . . ., M − 1. This transformations assures stationarity by terms of variance and guaran-

tees Gaussian distribution of the resulting signal.

Hurst exponent estimates

There is no prior knowledge of optimal model length, accumulation compression, and

Hurst exponent. Therefore, we will apply the maximum likelihood method of Hurst expo-

nent estimation for the various model and segment lengths, and then we will individually

test the differences in the Hurst exponent. However, there is a finite number of reasonable

pairs (model length N, segment length h), which will cause the phenomenon of the multiple

hypothesis testing. After the False Discovery Rate (FDR) correction, we will localize the

model and segment lengths, which cause significant differences in the Hurst exponent.

These pairs (h, N) will be declared as significantly sensitive to the signal differences in the

Hurst exponent.

Having signals with two different bin sizes, we will use the signal bin size Tb = 200 μs as a

training set and the signal with Tb = 500 μs as a verification set. Normalized mung beans and

reference signals with bin size Tb = 200 μs and length Q = 500 000 were the subject of the ini-

tial analysis. The signal accumulation of size h was applied to the signals, therefore the num-

ber of bins was bQ/hc. After the accumulation, the signal is divided into segments of length

N. Due to the memory of fBm process, we will use only the odd segments for the calculation

of autocorrelation function and the even segments are excluded. The new signal has length

dbbQ/hc/Nc/2e. Using Eq (12) and maximum likelihood method, we obtain the correspond-

ing HD and HB estimates for the Hurst exponent of referential signal and mung beans,

respectively. Based on these estimates, we can derive the p-values of LR test using (15)

statistics.

In our case, we performed altogether 11 × 11 = 121 tests for h = 1500, 1550, . . ., 2000 and

N = 20, 21, . . ., 30. Accumulation h could not be higher than 2000 due to the rapid decrease of

the number of processed segments. The values h< 1500 caused lower event frequencies and

the conversion from Poisson noise to Gaussian noise is not guaranteed. Similar reasons are for

the range of parameter N. In fact, the fractional model is less discriminative for N< 20 and the

case N> 30 reduces the number of segments. Due to multiple testing and obeying the Hoch-

berg-Benjamini principle, we diminish the significance level from 0.05 to αFDR = 0.000050.

The p-values as decadic logarithms are shown in Table 3.

In these settings, there were two cases where the Hurst exponent was significantly different.

The results from these two cases are displayed in Table 4. The 95% interval of Hurst exponent

estimates of mungo beans signal (HB) was [0.2108, 0.5086], while the 95% interval for reference

signal (HR) was [0.4041,0.5931].

The lowest p-value was obtained in the case of (h, N) = (1750, 24), which represents the seg-

mentation into bins with duration 1750 × 200 μs = 350 000 μs = 0.35 sec.

As the verification set, the signal with Ts = 500 μs was taken into account, following the

same procedure as the previous one. The accumulation parameter h was accordingly dimin-

ished to 2/5 of its previous value to guarantee the same segment length.

Short-time fractal analysis of biological autoluminescence
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We perform the verification for the combination of signals (B) and (R) similarly as in the

previous case and additionally for the combination of (B) and (D). The first set of signals ((B)

and (R)) will be used to test if the photon emission is not random and has a negative memory,

while the results from the second set ((B) and (D)) of signals will be used to test if there is a sig-

nificant difference between the cases, when the PMT detects BAL signals from mung beans

compared to PMT noise. We use the significant cases from Table 4 to estimate their Hurst

exponent and the results on verification set is displayed in Table 5. The variables s1, s2 denote

the pair of signals, whereas the HX denotes the estimation of Hurst exponent of the signal s2.

We performed four tests, and according to Hochberg-Benjamini false discovery rate, we

diminish the αFDR = 0.0169. Therefore, all four cases are considered significant, and we reject

the hypothesis that the Hurst exponent of mung beans would be the same as HX.

For comparison, we also performed a similar analysis with noise signal (D) and mungo

beans signal (B) and captured the results in the Table 6. Using Hochberg-Benjamini principle,

there is only one combination (h,N) = (1850,27) that is significant.

To demonstrate the efficiency of proposed method for short time series, we applied the

method of power spectral analysis (PSD) [60, 61] for Hurst exponent estimation. The power

spectrum P(f) holds following relationship for any frequency f

Pðf Þ / f � 1� 2H; ð17Þ

Table 3. Difference between the estimated Hurst exponent of mung beans (B) and reference signal (R) as (−log10 p)-values of likelihood ratio test (15).

h \N 20 21 22 23 24 25 26 27 28 29 30

1500 1.188 2.934 1.835 1.888 3.175 1.645 2.284 0.863 0.506 0.192 0.762

1550 1.172 1.617 0.394 0.887 1.420 1.470 0.912 2.113 1.651 0.026 0.691

1600 1.978 1.576 0.646 0.523 1.217 0.394 1.597 0.786 1.487 0.880 1.859

1650 0.990 1.616 1.127 2.024 1.209 0.651 1.635 0.909 1.906 3.573 2.927

1700 0.772 0.621 1.288 1.196 1.239 0.488 0.407 1.175 2.658 0.463 0.776

1750 1.475 2.325 1.269 3.131 4.638 1.535 2.370 1.017 0.726 0.412 1.945

1800 0.465 1.455 1.394 1.098 1.313 0.180 2.661 2.064 2.449 1.917 2.001

1850 2.377 2.010 1.308 0.567 1.533 2.382 3.184 4.301 3.328 2.418 1.968

1900 2.599 0.879 0.850 0.629 1.053 1.264 0.950 0.943 1.397 2.093 0.142

1950 2.574 0.095 0.706 1.900 2.843 2.874 3.261 2.514 3.462 2.501 2.405

2000 2.212 1.611 1.315 0.935 1.040 1.232 0.922 0.282 0.366 1.159 0.963

https://doi.org/10.1371/journal.pone.0214427.t003

Table 4. Estimated Hurst exponent values for mung beans (B) signal and reference signal (R).

h N HB HR p-val −log10 p-val

1750 24 0.4142 0.5299 2.3135 × 10−5 4.638

1850 27 0.3569 0.4291 4.9977 × 10−5 4.301

https://doi.org/10.1371/journal.pone.0214427.t004

Table 5. Estimated Hurst exponent values from verification dataset. h = 700 for 500 μs signals corresponds to

h = 1750 for 200 μs signals.

s1 s2 h N HB HX p-val

B R 700 24 0.4032 0.4415 0.0130

B R 740 27 0.3761 0.4112 0.0042

B D 700 24 0.4032 0.4378 0.0169

B D 740 27 0.3761 0.4480 0.0054

https://doi.org/10.1371/journal.pone.0214427.t005
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therefore the Hurst exponent can be estimated using the maximum likelihood method in log-

log chart. The results from the spectral method from training data are captured in Table 7,

together with the Hurst exponent estimates of referential and mungo beans signals. The

method exhibited similar results, showing that the estimates of HB are lower than HD; however,

due to the very short signal length, the method provided huge standard deviation of the esti-

mate. For this reason, the p-values are not significant, and all of them are above the value of

0.5. The obtained results were similar in the case of verification data as well, showing no signif-

icant records in the whole range of parameter h.

To assure the both PSD and differenced fractional Brownian bridge (DFBB) methods are

unbiased, we generated artificial signal sample of length 300 using circular embedding method

[62], which is an exact method for fractional Brownian motion generation. The results of this

testing are captured in Table 8. While H denotes the Hurst exponent of artificially generated

Table 6. Difference between the estimated Hurst exponent of mung beans (B) and noise signal (D) as (−log10 p)-values of likelihood ratio test (15).

h \N 20 21 22 23 24 25 26 27 28 29 30

1500 2.181 2.881 1.395 1.656 3.192 2.058 2.203 0.087 0.444 1.131 3.319

1550 2.191 1.125 0.446 0.736 0.348 2.101 0.283 2.378 1.936 1.560 0.407

1600 2.008 2.039 1.259 0.006 1.071 1.098 1.604 2.003 0.665 1.468 1.415

1650 1.230 1.535 1.334 2.804 1.249 0.914 0.858 1.470 2.923 2.190 3.056

1700 1.015 1.359 0.376 0.460 0.473 0.665 0.182 0.906 1.812 1.532 0.107

1750 0.769 1.218 0.926 0.346 1.771 2.386 0.687 0.331 1.286 1.136 1.605

1800 0.696 1.791 0.871 0.666 2.058 2.153 2.053 1.145 2.400 0.692 0.881

1850 2.891 1.967 1.349 0.297 1.051 2.343 2.754 4.602 3.472 0.779 1.432

1900 2.795 0.434 0.708 1.273 0.619 0.631 1.797 1.101 0.395 1.371 1.069

1950 1.657 1.694 0.386 2.885 2.373 2.199 2.504 2.292 1.651 0.926 2.209

2000 1.281 0.048 0.215 1.050 0.140 1.031 0.234 1.303 1.186 0.239 0.939

https://doi.org/10.1371/journal.pone.0214427.t006

Table 7. Spectral analysis of mung beans and reference signal as p-values.

h HB HR p-val

1500 0.4366 0.4425 0.9039

1550 0.4871 0.5269 0.8210

1600 0.4661 0.4592 0.9436

1650 0.4107 0.4358 0.9202

1700 0.4551 0.4502 0.9642

1750 0.4322 0.5591 0.5625

1800 0.3827 0.4173 0.6539

1850 0.4366 0.4406 0.9043

1900 0.4257 0.4312 0.8789

1950 0.3973 0.4046 0.8462

2000 0.4715 0.6516 0.6821

https://doi.org/10.1371/journal.pone.0214427.t007

Table 8. Unbiasedness of PSD and DFBB methods as p-value.

H HPSD sPSD p-value HDFBB sDFBB p-value

0.35 0.4268 0.1956 0.3471 0.3513 0.0193 0.4728

0.40 0.4152 0.2211 0.4725 0.4123 0.0205 0.2741

0.45 0.4803 0.1676 0.4786 0.4335 0.0249 0.7443

0.50 0.5454 0.2198 0.4840 0.5030 0.0276 0.4566

https://doi.org/10.1371/journal.pone.0214427.t008
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signal, the HPSD, HDFBB denote the Hurst exponent estimates and sPSD, sDFBB denote the stan-

dard deviation of this estimate using the PSD and DFBB method, while the p-value denotes

the result of the t-test against the null hypothesis that the estimated value equals the theoretical

one. Having all p-values above 0.05 significance level, we conclude that both PSD and DFBB

method provide unbiased estimates.

Discussion

Results from rigorous statistical analysis and testing in Tables 3, 4, and 5 suggest that the

mung beans signal has a negative memory (negative correlations, antipersistent behavior

[63]) and its Hurst exponent is lower than the referential signal. How could such behavior

originate in biological systems? It was proposed that the restriction of Brownian motion due

to the structuring of nano- to microscale intracellular environment leads to anomalous sub-

diffusion [64] characterized by Hurst exponent < 0.5 [63]. This is understandable since a

cytoplasm environment displays fractal spatial structuring [65]. Since biochemical reactions

(encounters of reactants) leading to BAL are taking place within the cell cytoplasm, organ-

elles and lipid membranes [24] where anomalous sub-diffusion was observed [64, 66], it is

not a great logical leap to speculate that BAL from mung bean samples could also display

sub-diffusive features. Actually, it is already acknowledged that chemical reactions spatially

constrained on the microscopic level may lead to fractal reaction kinetics [67–69] also in

case of intracellular biochemical kinetics [70]. The 0.35 s as the time scale where we found

statistically significant differences of mung bean signal Hurst exponent from that of the ref-

erence signal (Table 3) could correspond to a rate of underlying rate-limiting step of chemi-

cal reactions or processes which give rise to BAL. However, one has to be careful in the

interpretation since there are many pitfalls in an accurate estimation of the Hurst exponent

value from experiments [71, 72]. Although unlikely, given the nature of our experiments we

can not fully exclude that the correlations we observe in mung signals are introduced by the

photodetector (PMT) due to the nature of photocounting process [73, 74]. Introduction of

anti-/correlations could be at the physical level of the PMT tube (after-pulsing, a temporary

drop of the voltage at dynodes after ejecting electrons, . . .) or the follow-up circuitry (ampli-

fiers). Anti-correlations of the detected counts depending on the count rate have been actu-

ally observed due to a PMT construction [74, Fig.9]. However, marked anti-correlations

were present only for very high count rates (> kHz) and very low quantum efficiency, which

is not the case in our experiments. We also believe that the dead-time of a PMT [75] is not

affecting the value of correlations we observe since the PMT dead-time is on the time scale of

few hundreds of nanoseconds—several orders of magnitude smaller than the time scale of

correlations we observed (0.35 s) and three orders of magnitude smaller than our bin size

(200 and 500 μs).

Throughout the analysis, the lower limit for accumulation parameter h was chosen as 1500

to assure the normality of the processed data due to the sparsity of the input signal. Higher

accumulation than 2000 is not useful since then we would lose the precision of estimate due to

the short length of investigated time series. The minimal length of signal segment N was cho-

sen to assure consistency of the used model, segment lengths of N> 30 do not significantly

contribute to the higher precision of estimate [40].

Conclusion

In this work, we focused on statistical properties of biological autoluminescence from germi-

nating mung bean sample. Our emphasis was on the development of a rigorous mathematical
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and statistical methodology, which takes into account proper reference signals, likelihood ratio

test, and multiple hypothesis testing effects.

We used a highly sensitive photomultiplier-based detection system to record a time series

of photon counts of the mung bean sample emission and noise of the detector. Using the nor-

malization of the input signal, we were able to employ the fractional models that allowed us to

estimate Hurst exponent. Dividing the input signals into the training set and evaluating the

differences in the Hurst exponent of both signals, the procedure allowed us to test our initial

hypothesis on the verification signal. The resulting Hurst exponent mean value of mung bean

sample time series is below the level of 1/2 which confirmed our initial hypothesis, that the

biological autoluminescence displays correlations. We also proposed that this value could be

related to anomalous sub-diffusive features of biochemical reactions underlying processes

within mung beans, which give rise to photon emission time series. Further extensive work

beyond the scope of this methodical paper needs to be carried out to test the biological ubiq-

uity of anti-/correlations in biological autoluminescence signals and the role of the detector in

the observed Hurst exponent values. Especially interesting would be an analysis of BAL statisti-

cal properties across samples with rising complexity starting from simple chemical solutions of

small biomolecules through isolated cellular structures and cell suspensions up to whole tissues

and organisms. Nevertheless, we believe that rigorous methodology we presented here will

help to support the future research of BAL statistical properties towards a deeper understand-

ing of BAL mechanisms as well as applications for label-free and non-invasive analysis in med-

icine and biotechnology using completely new signal fingerprint types.
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13. Rafieiolhosseini N, Poplová M, Sasanpour P, Rafii-Tabar H, Alhossaini MR, Cifra M. Photocount statis-

tics of ultra-weak photon emission from germinating mung bean. Journal of Photochemistry and Photo-

biology B: Biology. 2016; 162:50–55. https://doi.org/10.1016/j.jphotobiol.2016.06.001

14. van Wijk E, Kobayashi M, van Wijk R, van der Greef J. Imaging of Ultra-Weak Photon Emission in a

Rheumatoid Arthritis Mouse Model. PLoS ONE. 2013; 8(12):e84579. https://doi.org/10.1371/journal.

pone.0084579 PMID: 24386396

15. Ou-Yang H. The application of ultra-weak photon emission in dermatology. Journal of Photochemistry

and Photobiology B: Biology. 2014; 139:63–70. https://doi.org/10.1016/j.jphotobiol.2013.10.003

16. Zhao X, Wijk Ev, Yan Y, Wijk Rv, Yang H, Zhang Y, et al. Ultra-weak photon emission of hands in aging

prediction. Journal of Photochemistry and Photobiology B: Biology. 2016; 162:529–534. https://doi.org/

10.1016/j.jphotobiol.2016.07.030

17. Zhao X, Pang J, Fu J, Wang Y, Yang M, Liu Y, et al. Spontaneous photon emission: A promising non-

invasive diagnostic tool for breast cancer. Journal of Photochemistry and Photobiology B: Biology.

2017; 166:232–238. https://doi.org/10.1016/j.jphotobiol.2016.12.009
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28. Nerudová M,Červinková K, Hašek J, Cifra M. Optical spectral analysis of ultra-weak photon emission
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