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Abstrakt

Moderní experimenty ve fyzice vysokých energií kladou veliké nároky na spolehlivost,
efektivitu a rychlost p°enosu dat systému pro sb¥r dat (DAQ). Tato diserta£ní práce
se zam¥°uje na stabilitu inteligentního systému pro sb¥r dat zaloºeného na FPGA
(iFDAQ) na experimentu COMPASS v CERN. iFDAQ £erpá události vytvo°ené
na úrovni hardwaru a je navrºen tak, aby umoº¬oval £tení dat p°i maximální
rychlosti p°enosu dat z experimentu. Vylep²ení stability iFDAQ se skládá z n¥kolika
r·znorodých úkol·. Nejprve je prezentována nová komunika£ní knihovna DIALOG
pro meziprocesovou komunikaci. Dále byl vyvinut DAQ Debugger slouºící k
detekci chyb v iFDAQ. Stabilní iFDAQ dává p°íleºitost k implementaci nept°etrºit¥
b¥ºícího módu pro iFDAQ b¥ºícího 24/7 bez jediného zastavení. Nakonec je °e²en
problém vyvaºování zát¥ºe v iFDAQ pomocí dynamického programování (DP),
hladové heuristiky (GH), celo£íselného programování (ILP), genetického algoritmu
(GA) a zp¥tnovazebního u£ení (RL).

Abstract

Modern experiments in high energy physics impose great demands on the reliability,
the e�ciency, and the data rate of Data Acquisition System (DAQ). This thesis
focuses on the stability of the intelligent, FPGA-based Data Acquisition System
(iFDAQ) of the COMPASS experiment at CERN. The iFDAQ utilizing a hardware
event builder is designed to be able to readout data at the maximum rate of
the experiment. The iFDAQ stability improvement consists of several various
tasks. Firstly, the new communication library DIALOG for the Inter-Process
Communication (IPC) is presented. Secondly, the DAQ Debugger is developed to
help with the iFDAQ error detection. Then, the stable iFDAQ gives an opportunity
to implement the iFDAQ continuously running mode running 24/7 without any
stops. Finally, Load Balancing (LB) of the iFDAQ is solved using Dynamic
Programming (DP), Greedy Heuristic (GH), Integer Linear Programming (ILP),
Genetic Algorithm (GA) and Reinforcement Learning (RL).
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Introduction

In general, a state-of-the-art Data Acquistion System (DAQ) in high-energy physics
experiments must satisfy high requirements in terms of reliability, e�ciency and
data rate capability. Utilizing a hardware event builder, the intelligent, FPGA-
based Data Acquisition System (iFDAQ) of the COMPASS experiment at CERN is
designed to be able to readout data at the average maximum rate of 1.5 GB/s of
the experiment.

The thesis is organized as follows. In the �rst chapter, the thesis gives an introduc-
tion to CERN and, especially, to the COMPASS experiment.

The description of iFDAQ is stated in Chapter 2. A very detailed overview of the
iFDAQ from the hardware and software point of view is given, followed by a �gure
of the COMPASS iFDAQ topology which put all views together.

In complex softwares, such as the iFDAQ, having tens of processes communicating
with each other, the Inter-Process Communication (IPC) is absolutely essential to
satisfy correct synchronization and proper data taking. The DIALOG library is
designed and implemented to meet all necessary requirements, especially on high-
performance, reliability and robustness. It was fully incorporated to all processes in
the iFDAQ during the Run 2016 and improved the stability of iFDAQ signi�cantly.

Chapter 3 presents the IPC. Section 3.1 deals with the design of the DIM library.
It gives a description and deeper insight into the DIM library. The motivation for
development of a new communication library follows which concludes the previously
used communication approach. Section 3.2 is concerned with the implementation
of the DIALOG library. It presents all requirements, gives description, integra-
tion, robustness and implementation domains. The important subsection is called
�Scenarios� discussing all exemplary situations. Section 3.3 deals with the Online
Monitoring API for the DIALOG library. It presents how to easily develop own mon-
itoring tools and gives a few examples of monitoring tools. In Subsection 3.3.1, the
online monitoring of communication among processes via DIALOG GUI is stated.
The DIALOG GUI allows a visualization of all processes involved in the application.
The �nal section, Section 3.4, presents the e�ciency measurement and performance
of the DIM and DIALOG library.

In the iFDAQ running nonstop 24/7 for most of the calendar year, it is absolutely
essential to detect a source of system crashes and problems. The DAQ Debugger
encapsulates such features and creates detailed reports concerning system crashes.

The iFDAQ Debugging is presented in Chapter 4. Firstly, a basic concept of con-
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ventional debugging is summarized in Section 4.1. The motivation for the DAQ
Debugger implementation follows in Section 4.2 and the state-of-the-art error re-
porting tools are discussed in Section 4.3. Finally, the DAQ Debugger is described
in Section 4.4. In order to conclude how the DAQ Debugger is important, the
iFDAQ stability over the last few years is shown in Section 4.5.

The improved stability opens up a possibility to keep the system continuously run-
ning without interruption of data �ow. This feature reduces time consuming syn-
chronization phases at each start and stop of a run. Chapter 5 describes the con-
tinuous operation mode of the iFDAQ, the necessity of proper timing and synchro-
nization, and the logic in the a�ected processes.

In complex systems, such as the iFDAQ, Load Balancing (LB) of data �ow is abso-
lutely essential to satisfy a proper data taking. The LB algorithms are designed and
implemented to meet all necessary requirements, especially on high-performance,
reliability and robustness. LB aims to optimize resource use, maximize throughput
and avoid overload of any single resource.

The chapter concerning LB is Chapter 6. The chapter starts with the explanation
of the LB problem and at the end, it gives �ve approaches how to solve it.

Section 6.1 deals with the proper de�nition of the LB problem. It gives a description
and deeper insight into the LB problem. The de�nition of mathematical terms being
useful in next subsections follows which concludes the introduction part to the LB
problem. The LB problem complexity is mentioned in Section 6.2.

The �rst approach how to solve the LB problem is based on Dynamic Programming
(DP). Section 6.3 presents the DP approach in more detail. It begins with a short
introduction to DP and builds gradually the algorithm solving the LB problem.

Greedy Heuristic (GH) is the second approach given in Section 6.4. GH typically
goes through a sequence of steps, with a set of choices at each step, and always
makes the choice that looks best at the moment.

Integer Linear Programming (ILP), being a mathematical optimization in which
some or all of the variables are restricted to be integers, follows in Section 6.5.

The fourth approach is based on genetic algorithms. Section 6.6 describes Genetic
Algorithms (GA) and, especially, Di�erential Evolution (DE). It follows with the
proposal of the Modi�ed Di�erential Evolution (MDE) meeting requirements of the
LB problem. All parts of the MDE algorithm are discussed in an extensive way.

Finally, the last approach, Reinforcement Learning (RL), being the study of how
animals and arti�cial systems can learn to optimize their behaviour in the face of
rewards and punishments, is given in Section 6.7.

Several Test Cases are performed in Chapter 7 to demonstrate how particular ap-
proaches are successful and e�cient in the LB problem solving and to compare
them with each other. There are de�ned three test cases � the Test Case 1, Test
Case and Test Case 3 � and all of them are solved using DP, GH, ILP, MDE and
RL, respectively. Then, a discussion follows emphasizing the pros and cons of each
approach.
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Chapter 1

The COMPASS Experiment

COMPASS (COmmon Muon Proton Apparatus for Structure and Spectroscopy)
[1] is a high-energy particle physics experiment with �xed-target situated on the
M2 beamline of the Super Proton Synchrotron (SPS) particle accelerator at CERN
laboratory in Geneva, Switzerland. In Figure 1.1, the COMPASS experiment is
located in the North Area. The scienti�c program of the COMPASS experiment was
approved in 1997. The goal was to study the structure of gluons and quarks and the
spectroscopy of hadrons using high intensity muon and hadron beams. By the year
2010 the experiment entered it's second phase COMPASS-II [3]. The COMPASS-II
program started with a physics run for the study of the polarized Drell-Yan (DY)
process in the years 2014 and 2015 followed by a run dedicated to Deeply Virtual
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Figure 1.1: COMPASS location within the CERN accelerator complex.
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Compton Scattering (DVCS).

The COMPASS spectrometer is designed to perform particle identi�cation, tracking
and measurement of its energy. For these purposes the spectrometer is �tted with:

• Ring Imaging Cherenkov Counters (RICH) or muon �lters for particle identi-
�cation

• Gas Electron Multipliers (GEM), Scintillating Fibres (SciFi) and Drift Cham-
bers (DC) for particle tracking

• Hadronic or Electromagnetic Calorimeters (HCAL, ECAL) for calorimetry
measurements

Moreover, another detectors are placed along the beamline before the spectrometer
to measure momentum and position of the beam (e.g. Beam Momentum Station,
BMS). The exact layout of the spectrometer depends on the scienti�c program and
it is still evolving. For illustration, an artistic view on the spectrometer, which is
over 60 meters long, composition is shown in Figure 1.2.

Figure 1.2: COMPASS experimental setup.

During the previous years, it had a usual data rate of approximately 1.5 GB/s
during approximately 10 seconds on-spill with the o�-spill time between 30 and 50
seconds, depending on SPS super cycle. The original DAQ of the experiment was
built between 1999 and 2001. The Data Acquisition and Test Environment (DATE)
software [4], originally developed for the ALICE at CERN, was used to control DAQ
and event building in old system. Both software package and usage of FPGA-based
cards have been widely studied and as the result a design of the new iFDAQ was
prepared.
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Chapter 2

The iFDAQ Architecture

The COMPASS experiment is in operation since 2002. Since then, the amount of
collected data is steadily increasing. The major growth was caused by improvement
of the beam intensity and increase of trigger rates and it is supposed to continue
to rise in future. Over the years, the electronics of the DAQ was upgraded sev-
eral times in order to be able to handle such amount of data. Furthermore, the
hardware upgrades were getting more and more complicated due to obsolete tech-
nology. Consequently, the COMPASS collaboration has decided for the considerable
iFDAQ improvement during the shutdown in 2013/2014. Nowadays, the �nal part
of hardware and software replacement �nishes.

2.1 Hardware Part

The iFDAQ of the COMPASS experiment consists of several layers [6, 8, 7, 5, 57, 58].
The frontend electronics that form the lowest layer continuously preprocess and
digitize analogue data from the detectors. There are approximately 300,000 detector
channels; trigger rate can rise up to 50 kHz with 36 kB average event size. SPS
accelerator operates in cycles that consist of 10 second long period with beam (called
spill) followed by approximately 40 second period without beam. Data from multiple
channels are readout and assembled by the concentrator modules called CATCH [14],
HGeSiCA [17], and GANDALF [16]. These modules receive signals from the time
and trigger system; when the trigger signal arrives, the readout is performed and
data are sent over optical connection S-Link [19] to the following layer that is based
on special FPGA DHC (Data Handling Card) cards. It is further divided into two
layers and is responsible for building of complete events. It comprises eight FPGA
(multiplexers (MUXes)) and handles another level of multiplexing. S-Links are also
used to connect the �rst sublayer to the second sublayer which is made up of a single
DHC with switch �rmware (SWITCH) � this layer handles event building.

This newly designed event building part allows usage of more compact control sys-
tem. The hardware event builder performs online veri�cation of data consistency.
The last layer of the system consists of eight readout engine computers equipped
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with spillbu�er cards that readout assembled events and transfer them to the CERN
permanent storage (CASTOR) [13].

That is a theoretical description of the iFDAQ full setup. In Figure 2.1, the current
state � used in the Run 2016, 2017 and 2018 � is given. It consists of only six FPGA
cards (MUXes) on the level of multiplexing and four readout engine computers.
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Figure 2.1: The COMPASS iFDAQ topology.

2.2 Software Part

The iFDAQ software [7] is deployed on the readout engine, the individual computers
of which run the Scienti�c Linux CERN 6 (SLC6) operating system [18]. The
software is based on C++ and uses the Qt Framework not only for its GUI, but
also for its threading. Furthermore, Qt data types and a variety of non-GUI classes
are also used in the software. The Qt version used in the iFDAQ software is 5.5.1.
Python and Bash script also �nd use in the iFDAQ, their scripts being particularly
useful for starting processes remotely using SSH. Finally, XML is used to describe
the hardware con�guration of the iFDAQ in XML structure �les and the IPBus [48]
con�guration in XML connection �les and address �les.

Six main functions are provided by the iFDAQ software: con�guration of the hard-
ware, monitoring of the data-taking process, remote control of the hardware, data
�ow control, logging of information and errors and log browsing. The iFDAQ soft-
ware also includes a connection to an MySQL database. The database is used to
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store, among others: con�guration information of the iFDAQ's hardware, informa-
tion logs and error logs.

There are six types of processes ful�lling these six functions in the iFDAQ [9]:
Master, Slave-control, Slave-readout, Runcontrol GUI, MessageLogger, and Mes-
sageBrowser. The Master process is responsible for control of the system by re-
translation of messages from user to slaves according to con�guration loaded from
database. It has access to all slaves through DIALOG services and direct access
to MySQL database. It also has integrated error recovery functions to cope with
problems caused by misbehaving slave processes. The Slave-control process super-
vises connected FPGA card by accessing registers via IPBus. The full scale system
will contain 17 Slave-control processes which will be distributed over the readout
computers. The Slave-readout process is the most complex and demands most of
CPU resources in the iFDAQ. It is a multi-threaded process that monitors readout
activities and checks consistency of accepted data. A Spillbu�er card is used as the
data source. The data are transferred between threads via signal-slot connections
mechanism of Qt by blocks of about 512 events. Events are distributed to 10 pro-
cessing threads before �nal checks and preparation of the �nal data format. Portion
of data is, simultaneously with storing on the HDD, distributed to monitoring out-
puts. The main graphical user interface is implemented in Qt framework. It has
been designed and developed with emphasis on ergonomy and �exibility. It provides
iFDAQ status information for expert and non-expert users. It runs in one of two
modes: runcontrol and monitoring. There is only one runcontrol GUI allowed in
the system; it controls and monitors state of system. The number of running mon-
itoring GUIs is not limited, as they are used only for monitoring. MessageLogger
and MessageBrowser are the last two processes to be discussed. The MessageLogger
receives messages from all parts of the system and stores them in the database. The
MessageBrowser is a visualization tool for browsing through these messages. The
Master process and slave processes are based on state machines.

The original DAQ system of the COMPASS was based on the DATE software [4],
originally developed for the ALICE experiment at CERN for control of the hardware,
therefore, many user programs expect that data �les are in the DATE data format.
In the iFDAQ, transformation of readout data to DATE data format is needed
because of this limitation.
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Chapter 3

The Inter-Process Communication

The Inter-Process Communication (IPC) [59] deals with techniques and mechanisms
provided by operating systems by which multiple threads in one or more processes
exchange data with each other. These processes are not bound to one computer, and
can run on various computers connected by network. Therefore, the IPC mechanisms
are used to support distributed processing. Applications that split processing among
computers using a common network are called distributed applications.

In general, distributed applications using the IPC can be categorized as clients or
servers. A client (a requester of a resource) is an application or a process that
requests a service from some other application or process. A server (a provider of
a resource) is an application or a process that responds to a client request. Many
applications act as both a client and a server, depending on the situation.

Firstly, basic characteristics of applications which would bene�t from the IPC usage
are mentioned. Moreover, to choose the most appropriate the ICP mechanism for
a particular application, a developer has to ask key questions in order to meet
requirements of an application. On the other hand, it is likely that an application will
use several the IPC mechanisms, because some mechanisms partially overlap each
other. Afterwards, the obtained speci�cation determines whether an application can
bene�t by using one, more or combination of the IPC mechanisms.

• Should the application communicate with applications running on di�erent
computer?

• Should the application be able to communicate with applications running on
other computers that may be running under di�erent operating systems?

• Should the application communicate with any other application or with a
cooperating and well-known application only?

• How many processes should participate in the communication?

• Is the communication rather less frequent with larger amount of data or more
frequent with smaller amount of data to transmit?
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• Is performance a critical aspect of the application? All the IPC mechanisms
include some amount of overhead.

• How many computers is connected to network?

• What network bandwidth is currently used?

Processes can communicate with each other in many di�erent ways. The IPC tech-
niques can be divided into various types [59]:

• Pipes � The most basic versions of the UNIX operating system gave birth
to pipes. It is a unidirectional data channel using the pipe system call, thus
creating a pair of �le descriptors. Data written to the write end of the pipe
is bu�ered by the operating system until it is read from the read end of the
pipe. Two-way data streams between processes can be achieved by creating
two pipes utilizing standard input and output.

• FIFO � A pipe implemented through a �le. A FIFO or ��rst in, �rst out� is
a one-way �ow of data. FIFOs are similar to pipes, the only di�erence being
that FIFOs are identi�ed in the �le system with a name. Moreover, multiple
processes can read and write to the �le as a bu�er. In simple terms, FIFOs
are �named pipes�.

• Shared memory � Multiple processes are given access to the same block of
memory which creates a shared bu�er for the processes to communicate with
each other. Therefore, processes communicate by reading and writing to that
memory space.

• Mapped memory � This method can be used to share memory or �les be-
tween di�erent processors. A �le mapped to RAM and can be modi�ed by
changing memory addresses directly instead of outputting to a stream. This
mechanism speeds up a �le access.

• Message queues � Message queues provide an asynchronous communications
protocol, meaning that the sender and receiver of the message do not need to
interact with the message queue at the same time. Messages placed onto the
queue are stored until the recipient retrieves them. A developer can pass
messages between processes via a single queue or a number of message queues.

• Sockets � A data stream sent over a network interface, either to a di�erent
process on the same computer or to another computer on the network. It
is byte-oriented, thus, data written through a socket requires formatting to
preserve message boundaries. This method facilitates a standard connection
that is independent of the type of computer and the type of operating system
used.

• .NET Remoting � It is a .NET based framework for communication between
applications. Objects in .NET are exposed to remote processes, thus allowing
IPC. Unfortunately, it requires .NET framework being usually available on
Windows platforms only.
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Moreover, the interaction style in a communication domain [59] is considered to be
a signi�cant criterion too. When selecting an IPC mechanism for a communication,
it is useful to think �rst about how processes interact with each other. There are
a variety of interaction styles between processes. They can be categorized along
two dimensions. The �rst dimension is whether the interaction is one-to-one or
one-to-many:

• One-to-one � Each client request is processed by exactly one server instance.

• One-to-many � Each client request is processed by multiple server instances.

The second dimension is whether the interaction is synchronous or asynchronous:

• Synchronous � The client expects a timely response from the server and
might even block while it waits.

• Asynchronous � The client does not block while waiting for a response, and
the response, if any, is not necessarily sent immediately.

The following Table 3.1 shows the various interaction styles.

One-to-one One-to-many
Synchronous Request/response �

Asynchronous
Noti�cation Publish/subscribe

Request/async response Publish/async responses

Table 3.1: The IPC interaction styles.

There are the following kinds of one-to-one interactions:

• Request/response � A client makes a request to a server and waits for a
response. The client expects the response to arrive in a timely fashion. In a
thread-based application, the thread that makes the request might even block
while waiting.

• Noti�cation � A client sends a request to a server, but no reply is expected
or sent.

• Request/async response � A client sends a request to a server which replies
asynchronously. The client does not block while waiting and is designed with
the assumption that the response might not arrive for a while.

There are the following kinds of one-to-many interactions:

• Publish/subscribe � A client publishes a noti�cation message which is con-
sumed by zero or more interested servers.
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• Publish/async responses � A client publishes a request message and then,
it waits a certain amount of time for responses from interested servers.

In general, each process typically uses a combination of these interaction styles.

The iFDAQ processes must communicate with each other to satisfy the proper
data taking. The communication library must meet all requirements in terms of
reliability, e�ciency and easy integration to a process. Firstly, the DIM library
served as a communication interface among processes in the Run 2014 and 2015.
From 2016, the newly developed DIALOG library provides with the communication
layer and the previously used DIM library has been fully replaced.

3.1 The DIM Library

DELPHI [32] was one of the largest physics experiments in the world, it's online
control system was composed of many di�erent components distributed over many
machines. In order to allow for e�cient communication among machines and pro-
cesses a communication system � DIM � was developed.

The processes involved in the DELPHI Online System needed to communicate ef-
�ciently and reliably across the di�erent machines. The Online System was re-
sponsible for DAQ, trigger, control, monitoring, user interfacing, etc. The DIM
(Distributed Information Management) [30] system was proposed and implemented
in order to provide the required communication layer.

A generic design and implementation of the DIM o�ers a wide usage in other plat-
forms and for other applications. For this reason, it provides an opportunity to use
it also in other experiments at CERN, e.g., L3, L3 Cosmics and NA50 and by BaBar
at SLAC [31].

3.1.1 Design Requirements

All di�erent types of activities in a system de�ne di�erent demands on a communi-
cation system. From the DAQ point of view, transfer speed, reliability, handling of
large amounts of data and access to all the information available in the experiment
are the most important aspects [31]. In order to accomplish the above-mentioned
demands the DIM was designed meeting the following requirements [31]:

• E�cient Communication Mechanism � A communication system should
provide with an asynchronous behaviour in a message exchange among pro-
cesses to o�er a communication in a most e�cient way. Once a message is
available for sending, the sending procedure is processed. Similar approach
should be implemented for the receiving procedure in a process.

• Uniformity � All processes should use the same communication mechanism
in order to be able to exchange all information within a system. Then, the
implementation and support of such a system is more manageable.
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• Transparency � To satisfy the system independence, a distributed communi-
cation system must ful�l transparency. Any running process should be able to
communicate with any other process in the system regardless of their current
running location.

• Reliability and Robustness � In a system with many processes running on
many machines connected by network links, it might happen that a process,
a machine or a network itself breaks down. The application should be able
to deal with the loss of one of these components, i.e., providing for system
recovery in a self-recoverable manner from error situations or the migration of
processes from one machine to another.

3.1.2 The Motivation for the DIALOG Library Implementa-

tion

The DIM library was fully incorporated to all processes for the Run 2014 and 2015.
The iFDAQ had to face several problems connected to the DIM library during that
time. Messages were sometimes delivered truncated with length multiple 4 B. The
iFDAQ solved that by adding arti�cial spaces to the end of messages. The next
problem is more serious, the messages were sometimes not delivered at all.

However, the decision to implement a new communication library came with the
last issue. Processes crashed without any obvious reason. Especially, the Master
process met this issue quite often. The debugging attempts sometimes terminated
in the DIM library.

Unfortunately, the DIM library is a large package and to understand the source code
is not a trivial task. The iFDAQ group made a decision to implement their own
communication library.

Last but not least, the advantage of understanding the own library also played a
key role in the decision making.

3.2 The Communication Library DIALOG

The name DIALOG represents conversation or interview in English, both connected
to communication. Moreover, each letter is a �rst letter of a word characterizing
somehow the library itself (distributed, inter-process, asynchronous, library, open,
general). The DIALOG library [61] is designed in order to meet the following re-
quirements:

• Any process should be able to access any information it needs in order to
perform its processing or display activities.

• The integration to running system requires interface for an easy use.
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• The information gathered should be consistent over all processes running at a
given moment.

• Any process should be able to move from one machine to another.

• The communication system should be very robust. Any process dying should
not disturb the rest system.

3.2.1 Description

In order to provide an easy recovery mechanism from crashes and migrate processes
to another machine if necessary and satisfy the requirement for transparency, i.e.,
a client does not need to know where a server is running, the Control Server was
introduced.

Information inside the DIALOG library is handled as named services. A service is a
set of data with a name. The data inside a service can be of any type and size, since
they are transferred as bytes. The Control Server keeps an up-to-date directory of
all the processes and services available in the system.

To control particular process, commands are introduced. They are declared by
specifying a name for the command and command with the same name can be
registered by more processes. Once the command is delivered to process, generally,
some action is taken.

The DIALOG library uses a client/server mechanism. A provider (server) is a pro-
cess that has information to publish. It sends the list of services it provides to the
Control Server at startup. A subscriber (client) is any process that uses a service.
When requiring a service the subscriber asks the Control Server which provider pro-
vides that service and from then on, it contacts directly the provider. The Control
Server knows at any time which services are available in the system and who provides
them.

A recovery procedure is started whenever one of the processes (any process or even
the Control Server itself) in the system crashes or dies. It includes the noti�cation to
remaining processes connected to it about the crashed process and reconnection as
soon as a spare process will be available again. Moreover, this feature provides the
possibility of balancing the machine load of the di�erent workstations. By stopping
a process in the �rst machine and starting it in the second one, a process can be
easily migrated.

3.2.2 Integration

The DIALOG library is designed bearing in mind that it has to be integrated in a
running system, so it has to be made as easy to use as possible. The library takes
care of all the communications with the Control Server and with the other processes.

It gives all the DIALOG functionality to an existing process just by inserting one or
two lines of code. This is possible, because the system is completely asynchronous.
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Then, all messages are sent from the OutgoingThread object and delivered to the
IncomingThread object. According to the message header, one can recognize the
message type easily.

3.2.3 Robustness

The DIALOG library has become the most important means of communication
between processes in the iFDAQ, so a very special care has been taken on the
recovery from error situations.

The establishment of a communication channel between processes is independent
of the order in which they are started. The Control Server keeps track of the
subscribers for �non-available� services and contacts them as soon as the providers
start up. More generally when any provider or subscriber dies its partners will
reconnect as soon as it comes back up.

When the Control Server starts all the providers will re-register their services. And
the subscribers will re-request the services they need.

In order to make sure that the processes are in a good state, each process sends a
heartbeat to the Control Server, this way the Control Server can disconnect from a
process or kill it if its behaviour is anomalous.

The communication between providers and subscribers once established is indepen-
dent unless the Control Server dies. If the Control Server dies, the processes delete
all information about other processes and try to reconnect to the new spare Control
Server. Otherwise the behaviour of the whole communication system would become
unpredictable without any heartbeat check. Once the Control Server is on again,
services are registered and subscribed as in a fresh start.

3.2.4 Implementation

Providers

Providers are processes that have information to provide. A process becomes a
provider by declaring any services it can provide and any commands it is willing to
accept. It sends this information to the Control Server.

A service is declared by specifying a name for the service which is unique in the DIA-
LOG system scope. A command is declared by specifying a name for the command
and a command with the same name can be registered by more processes. Once the
command is sent, it is forwarded by the Control Sever to all provider processes that
registered it.
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Subscribers

Subscribers are processes that need the available information in order to accomplish
their tasks that being display, monitoring or processing. In order to become a
subscriber a process has to specify the service name it is interested in and requesting
for it.

From then on, the subscriber can go on with its work, any service message will
automatically be processed whenever a service is received. At any time, a process can
send a command to a provider by specifying the command name and the command
message.

Any process can be a provider and a subscriber at the same time.

The Control Server

The Control Server keeps an up-to-date list of all the servers and services in the
system, it receives registration messages from providers and service requests from
subscribers. All processes send heartbeats at regular intervals so that the Control
Server can be assured that they are functioning. If a process fails sending heart-
beats the Control Server marks its services as not available, send the information
concerning the crashed process to processes providing something to it and sub-
scribing something from it. Once a spare process is started, it overtakes the same
functionality as the crashed one.

The service uniqueness based on their names is a basic requirement for the system
reliability. Any process trying to register a service being already registered is killed
by a kill signal from the Control Server.

If the Control Server dies, the processes delete all information about other processes
and try to reconnect to the new spare Control Server. Otherwise the behaviour of the
whole communication system would become unpredictable without any heartbeat
check. When it comes back up all providers re-register all their services (they have
been trying at regular intervals) and all the subscribers re-request the services they
are waiting for and all connections are then established.

3.2.5 Scenarios

In the following section, the most typical scenarios the DIALOG library is dealing
with are presented. Each scenario is displayed in a particular data �ow diagram
followed by discussion.

In Figure 3.1, data �ow diagram shows the connection mechanism to Control Server
for each process. Once the connection procedure is successful, the Control Server
noti�es to the particular process. The messages from processes, which are not con-
nected to the Control Sever, are ignored. It prevents the misleading or malicious
behaviour of processes not belonging to the DIALOG at all.
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Control Server

Process 1 Process 2

Connect to
Control Server

Connect to
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Connected
successfuly

Connected
successfuly

Figure 3.1: The DIALOG connection to the Control Server diagram.

If the process is not connected to the Control Server, nevertheless, it is still sending
messages to the Control Server, the Control Server sends the message to the process,
that it is not connected and probably it would like to connect.

Control Server

Process 1 Process 2

Heartbeat Heartbeat

Lost Process 2

Figure 3.2: The DIALOG heartbeats diagram.

The heartbeat procedure is stated in Figure 3.2. All connected processes are sending
heartbeats to the Control Server at regular intervals. The Control Server is checking
whether the hearbeat is received in a given checking interval for each process. In
Figure 3.2, the red color indicates a process which did not deliver its hearbeat in
time. The process could fail or be stuck. Regardless of the real reason of the
undelivered heartbeat, the Control Server considers the Process 2 as a lost one and
noti�es to all remaining processes.

The commands are signi�cant part of the DIALOG library. In Figure 3.3, the data
�ow diagram for commands is shown. Process 2 is sending a command with the
command name and the command message. The command is sent from Process
2 to the Control Server which knows all processes registering the command. The
Control Server forwards the command to these processes and each process takes
some action after the command delivery.

In Figure 3.4, data �ow diagram shows the control and data �ow among the ba-
sic components of the DIALOG, the Control Server receives service registration
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Control Server

Process 1 Process 2

Register command

Send commandForward command

Figure 3.3: The DIALOG command diagram.

messages from providers and service requests from subscribers. Once a subscriber
obtains the �Service Info�, i.e. the service co-ordinates (hostname and port), from
the Control Server it can then subscribe to services provided by provider process. If
a subscriber sends a �Request Service� for a service that is not (yet) known to the
Control Server a not-yet-provided �Service Info� is sent back to the subscriber, but
the request stays queued in the Control Server and when the service is made avail-
able a new �Service Info� is then sent to the subscriber and the subscriber proceeds
to connecting to the provider.

Control Server

Process 1 Process 2

Register service

Request service

Subscribe service

Service data

Service info

Figure 3.4: The DIALOG service diagram.

In last two diagrams, a deeper look inside a process and the DIALOG integration
is given. In Figure 3.5, the threads and communication among them are described.
The diagram can be divided into two parts. The �rst part is sending part, the second
part is receiving one.

The Sender, running in the SenderThread, is taken care of dispatching messages
among n ∈ N threads and load balancing. These n threads are establishing con-
nections to other processes, writing data to sockets and keeping sockets open until
timeout. The socket is not closed immediately. It remains open for next messages to
the particular process. If no message is sent to the particular process for some time,
the socket is closed by timeout. That means, there is always one or no open socket
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Figure 3.5: The DIALOG process threads diagram.

from one process to the other. If the socket is already closed and new message must
be delivered to the particular process, the socket is re-established again.

The message consists of two parts � from message header and message data. It is
handling by pointers to them. Once the message is created, it is leaving the process
as soon as possible. All these aspects � open socket, pointers to messages, sending
as soon as possible � speed up the performance and reduce the latency signi�cantly.

According to the message header, the message types are distinguished and how to
deal with them. Messages with header CONNECT_TO_CONTROL_SERVER,
REGISTER_SERVICE, REQUEST_SERVICE, REGISTER_COMMAND, SER-
VICE_MESSAGE and COMMAND_MESSAGE are coming from the OutgoingTh-
read to the SenderThread, to one of n threads and leaving the process. Messages with
header HEARTBEAT and SUBSCRIBE_SERVICE are coming from the Server-
Thread to the SenderThread, to one of n threads and leaving the process.

There are also message headers being sent only from the Control Server, e.g.
SUCCESSFULLY_CONNECTED, CONNECTION_LOST, INFO_SERVICE,
LOST_SENDER or LOST_RECEIVER.

All these message headers are created only once and used until the process termi-
nates.

The second part is the receiving one. Once the Receiver, running in the Receiver-
Thread, receives a new socket descriptor, the socket descriptor is dispatched to one
of m ∈ N threads and the socket is created and opened. The Receiver is taking care
of the new sockets only. The already established ones are keeping open until they
are closed by sender process. These m threads are responsible for reading data out
from sockets. Once a new message is read out, based on its message header, it is
sent either to the ServerThread or to the IncomingThread.

The messages with message header CONNECT_TO_CONTROL_SERVER,
HEARTBEAT, SUCCESSFULLY_CONNECTED, REGISTER_SERVICE, RE-
QUEST_SERVICE, REGISTER_COMMAND, INFO_SERVICE, CONNEC-
TION_LOST, LOST_SENDER or LOST_RECEIVER are sent to the Server-
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Thread. Only SERVICE_MESSAGE and COMMAND_MESSAGE are heading
to the IncomingThread directly.

The establishment of communication between two process has not been discussed in
a precise way yet. In Figure 3.6, the establishment of communication between two
processes is presented. Process 1 is on left and Process 2 is on the right. Process 1
is trying to send a message to Process 2.
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Figure 3.6: The DIALOG communication between processes diagram.

Process 1 sends message to the Sender dispatching it one of n threads. If the
connection is not yet established, the object socket is created and opened in Process
1. In Process 2, if the connection between these two processes is not established
yet, the Receiver receives the socket descriptor trying to connect to Process 2. The
socket descriptor is dispatched to one of m ∈ N threads and object socket is created
and opened. Then, based on the message header, the message is sent either to the
ServerThread or to the IncomingThread.

Socket objects live on both sides until either Process 1 closes it because of timeout,
or one of the processes crashes or one of the processes terminates in a correct way.
Once the connection is established, Process 2 can write to socket as much as it
needs and Process 2 receives and reads out all these messages. If the connection
terminates, sockets are deleted on both sides.

The established socket is used only for one direction connection. To send a message
in an opposite direction from Process 2 to Process 1, the new socket must be estab-
lished. That means, there are either two open sockets, or only one open socket or
no open socket at all between two processes at one point.

3.3 The DIALOG Online Monitoring API

The DIALOG library distinguishes three types of a process [65]. The process type
determines the purpose of a process and how the DIALOG library should deal with
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it.

• ControlServer � The Control Server keeps an up-to-date list of all processes,
services and commands in the system. It receives registration messages from
providers and request messages from subscribers. All processes send heartbeats
at regular intervals so that the Control Server can be assured that they are
working properly.

• Custom � It covers all processes they should communicate through the DIA-
LOG library.

• Monitoring � Processes being responsible for the monitoring of the DIALOG
library. Each of them represents a monitoring tool with a unique purpose. This
general concept o�ers an easy to use API for a developer to implement any
monitoring tool.

This section focuses on processes of typeMonitoring. TheMonitoring type identi�es
a process which does not contribute to the communication at all. It does not provide
with any service. On the other hand, to be able to start listening to some/all
communication, it can subscribe to a service or register a command it is interested
in.

Firstly, a monitoring tool connects to the Control Server as well as anyone else. The
Control Server recognizes the Monitoring type of a process and deals with it like
with a monitoring tool during its whole life cycle.

The Control Server sends a monitoring info to a monitoring tool in XML format after
successful connection of the monitoring tool to the Control Server. This monitoring
info contains list of all connected processes of type Custom to the Control Server.
The monitoring info in XML format also consists of all services being provided and
subscribed by processes and all commands being registered in the Control Server.
If something changes (e.g. a lost process, a new service, a new process, etc.), the
Control Server will recognize it and re-send a new monitoring info immediately to
all monitoring tools currently connected.

The monitoring info considers changes in the list of processes connected to the
Control Server. Once a connected process terminates or crashes, the Control Server
recognizes it and re-sends the monitoring info in XML format with the updated list
of connected processes. If a new service is provided by any process or some service
is subscribed by any process, the monitoring info is re-sent again to all monitoring
tools. The last case is a registration of a new command. In this case, current
monitoring info is again updated and re-sent. Based on the information from the
monitoring info in XML format, a monitoring tool knows everything it needs to
know. If a monitoring tool is interested in all communications it subscribes to all
services and registers all commands and starts to listen to them. If a monitoring tool
is interested in some portion of services, it subscribes to those services and starts to
listen to them again.

The monitoring info in XML format begins with an XML declaration describing
XML version and encoding. The uppermost tag <processes> encapsulates the list
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of all processes. Each <process> tag is a child element of <processes> tag and
has attribute name, address, port and pid. The tag <process> either has no child
elements or has the list of services it provides and registered commands it is willing
to accept. The tag <command> is considered to be an empty-element tag and has only
attribute name, such as <command name="commandName" />. The tag <service>

has also only one attribute name and can contain child elements representing the
list or receivers, i.e., the list of processes being subscribed to the service. The
tag <receiver> consists of attributes name, address, port and pid. The sample of
monitoring info XML format follows in Listing 3.1.

1 <?xml version="1.0" encoding="UTF -8"?>

2 <processes >

3 <process name="SR_RE11" address="pccore11.cern.ch" port="57143"

pid="22640">

4 <service name="INFO_SERVICE_56">

5 <receiver name="MSGBrowser" address="pccorc21.cern.ch"

port="33511" pid="24958" />

6 <receiver name="Master" address="pccore15.cern.ch" port

="51523" pid="17376" />

7 <receiver name="MSGLogger" address="pccore15.cern.ch"

port="56614" pid="17377" />

8 </service >

9 <command name="RUN_CONTROL_56" />

10 </process >

11 </processes >

Listing 3.1: The monitoring info XML sample.

3.3.1 The DIALOG GUI

The DIALOG GUI is one example among many of the monitoring tools using the
online monitoring API for the DIALOG library. A behaviour of complex distributed
applications can be very di�cult to understand without a help of a dedicated tool
for online monitoring. The DIALOG GUI allows a visualization of all processes
involved in the distributed communication system as shown in Figure 3.7.

A development of a distributed system is quite challenging from a synchronization
and robustness point of view. The DIALOG GUI helps with a debugging of mislead-
ing functioning so that the system start to work properly. It provides all information
from the monitoring info in a well-arranged way. The main widget consists of two
parts. The main part contains all necessary information about connected processes
to the Control Server with the process type Custom. There is the name of each
process, the machine where it runs, the port on which it listens to and its process
ID. Moreover, each row corresponding to a single process o�ers the list of provided
services, subscribed services and registered commands by the process. If the DIA-
LOG system contains many processes, a user appreciates a �lter in the DIALOG
GUI for an easy searching.
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Figure 3.7: The DIALOG GUI.

The provided services widget shows the list of provided services by the selected
process. A user can select a service from the list and see the list of all subscribers
of the service. Moreover, a user can start to listen to the selected service and see
what the service is providing, see Figure 3.8.

Figure 3.8: The provided services widget of the DIALOG GUI.

41



The subscribed services widget shows all services being subscribed by the selected
process. Basically, it is a list of all services the process is interested in. In the
subscribed services widget, a user can select a service from the list of services and
see which process is providing the service. Moreover, a user can start to listen to
the selected service again. In both provided/subscribed services widget, a user can
start to listen to all services at once and see the entire process communication.

The commands widget is corresponding to the selected process and its registered
commands it is willing to accept, see Figure 3.9. In the widget, the list of registered
commands is stated.

Figure 3.9: The registered commands widget of the DIALOG GUI.

A user can start to listen to the selected one or to all of them. Moreover, there is
also possibility to send a command message directly from the DIALOG GUI using
the selected command.

3.3.2 The DIALOG POST Daemon

Web-based applications o�er a range of business advantages over traditional desktop
applications. Web-based applications are:

• Easier and more cost e�ective to develop � Users access the system via
a uniform environment (a web browser).

• More useful for users � Unlike traditional applications, web systems are
accessible anytime, anywhere and via any device with an internet connection.
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• Easier to install, maintain and keep secure � Once a new version or
upgrade is installed on the host server, all users can access it straight away
and there is no need to upgrade a device of each potential user.

Considering all above-mentioned aspects, the DIALOG library should provide a
layer for communication between a desktop application and a web application. The
solution should be general as much as possible, although this section deals only
with monitoring tools. On the other hand, such a general solution solves a problem
concerning a connection establishment between any web application and any desktop
application. It o�ers a general communication mechanism regardless of a platform
and environment where it is running.

There is a wide range of possible solutions in terms of a system architecture. The
thesis considers and presents two possible solutions how to communicate between
a desktop application and a web application � HTTP GET/POST methods and
WebSockets, see in Section 3.3.3.

The DIALOG POST Daemon serves as a middleman between a desktop application
side and a web application side. The DIALOG POST Daemon's purpose is to catch
all communication being sent among all processes with the process type Custom and
transmit all data in JSON format using HTTP and its POST method. The POST
request is received by a web application for a communication measurement. It is a
measurement tool of overall communication and shows statistics and plots related
to communication among processes. It can help with understanding of possible
bottlenecks and better load balancing of processes among machines.

The main idea is that the DIALOG POST Daemon with theMonitoring process type
subscribes to all services being provided and registers all commands being already
registered on the Control Server. Once a new monitoring info comes, the DIALOG
POST Daemon subscribes to new services and registers new commands. Then, all
communication is sent to the DIALOG POST Daemon. Basically, the DIALOG
POST Daemon is capable to determine the communication between any processes.

A publish frequency for the POST method is set to 1 second and can be easily
changed. During 1 second period, all received messages are gathered in JSON for-
mat and the collected JSON is published using POST method and freed every 1
second. Each message in JSON consists of information about a sender, i.e., a sender
address, a sender port and its process name. To reduce JSON message size, messages
are grouped by message itself. That means, if a message has more subscribers, the
list of subscribers is only added. Therefore, the list of receivers is added (each entry
with receiver address, receiver port and receiver name). There is also the DateTime
in simpli�ed extended ISO format (ISO 8601) [41] which is always 24 or 27 characters
long (YYYY-MM-DDTHH:mm:ss.sssZ or ±YYYYYY-MM-DDTHH:mm:ss.sssZ, re-
spectively). The timezone is always zero UTC o�set, as denoted by the su�x �Z�.
The proper time format allows to localize the the DateTime in a web application all
over the world with respect to users's current time zone.

The rest of record is �lled with the MessageHeader and the MessageBody. The
MessageHeader distinguishes a message type. Either it can be a service message or
a command message. The MessageHeader contains also information about the name
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of service or command. The MessageBody is �lled with the transmitted information
(message) itself. It is encoded using Base64 [39], since a message could be general
indeed. It could contain also non-printing characters that would be lost during
transmition. Base64 encoding allows to transmit not only messages but also whole
�les. The sample of JSON format being regularly sent using HTTP POST method
follows in Listing 3.2.

1 [

2 {

3 "Sender": {

4 "SenderAddress": "pccore15.cern.ch",

5 "SenderPort": "12345",

6 "SenderName": "Master"

7 },

8 "Receivers": {

9 "Receiver0": {

10 "ReceiverAddress": "pccore13.cern.ch",

11 "ReceiverPort": "54698",

12 "ReceiverName": "SR_RE13"

13 },

14 "Receiver1": {

15 "ReceiverAddress": "pccore12.cern.ch",

16 "ReceiverPort": "54879",

17 "ReceiverName": "SR_RE12"

18 }

19 },

20 "DateTime": "2017 -09 -13 T07 :20:25Z",

21 "MessageHeader": "SERVICE_MESSAGE|STATUS_OF_SLAVES",

22 "MessageBody": "textEncodedInBase64" // base64 encoding

23 }

24 ]

Listing 3.2: The DIALOG POST Daemon JSON sample.

Currently, the DIALOG POST Daemon is prepared and a web application is still
under development. The development of web application should be �nished in 2018
and deployment is planned in the late 2018.

3.3.3 The DIALOG WebSockets Daemon

The HTTP GET/POST method is suitable for a client-server architecture, when
a client (the DIALOG POST Daemon) is publishing something to a server (a web
application). On the other hand, it would be useful to have an e�ective channel
to communicate in both directions. That could be obtain using WebSockets among
others. WebSockets [40] is an advanced technology that makes it possible to open an
interactive communication session between the user's browser and a server. With
this API, an application can send messages to a server and receive event-driven
responses without having to poll the server for a reply. WebSocket provides full-
duplex communication channels over a single TCP connection. Currently, all up-to-
date versions of internet browsers (IE, Edge, Firefox, Chrome, Safari, Opera) fully
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supports WebSockets.

The idea is to develop the DIALOG WebSockets Daemon as a middleman between
a desktop communication system and a web application. The DIALOG WebSockets
Daemon should encapsulate a layer with WebSockets and transmit messages from
the DIALOG communication interface to a web application. Runcontrol GUI for
monitoring and controlling of the iFDAQ as a web application is planned for year
2019. Currently used Runcontrol GUI as a desktop application su�ers from a high
Qt version-dependency, a precise operating system and an environment setup. A
development of the DIALOG WebSockets Daemon providing WebSockets interface
is planned for year 2018.

3.4 Tests

Several tests have been conducted to validate system components. The performance
of the DIALOG and DIM library has been measured. The system consists of 8 Slave-
control processes for 8 MUXes (8 FPGA), 1 Slave-control process for SWITCH (1
FPGA), 8 Slave-control processes for Spillbu�er, and 8 Slave-readout processes (total
25 slaves processes). All slaves are sending messages concerning their status. There
is also one Master process incorporated in this test. The Master is receiving all
messages from all slaves concerning their status. This setup simulates the behaviour
of the iFDAQ full setup.
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Figure 3.10: Number of messages.

The test measures how many messages can be delivered to one single process in 1
second. The test is conducted for di�erent message sizes and for each message size
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is conducted �ve times to obtain the su�cient statistics. Firstly, the test is using
the DIALOG library. Afterwards, the test is performed also with the DIM library.

Before the start of the test, a special attention must be paid to spreading of slaves
among machines. Since on machines operating with Linux, if the Master process
and slave are running on the same machine, the message is sent directly from slave
to the Master process and it is not running through the network at all. If that fact
had not been considered, the test results would have been even above the network
bandwidth. In the test, the Master process is running on its own machine and
nothing else is running there.

For the test, the network bandwidth is 10 Gbps. Based on the bandwidth, the max-
imum data rate ∼ 1.2 GB/s (throughput) can be expected. Moreover, the network
bandwidth is not saturated by anything else and is exclusively at test's disposal.

In Figure 3.10, the number of received messages for the particular message size
is given. As can be seen, the DIALOG library is signi�cantly more e�cient for
messages with the message size up to 10 kB. In particular with small messages,
it is capable to receive approximately �ve times more messages than DIM library.
Unfortunately based on the plot, no conclusion concerning the performance for the
messages with message size over 10 kB can be drawn.
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Figure 3.11: Data �ow.

To overcome the drawback of the plot in Figure 3.10, Figure 3.11 is given. In Figure
3.11, the data �ow for the particular message size is given. As can be seen from
the plot, in particular, the DIALOG library is more e�cient at the beginning with
small message sizes. Taking a deeper look, the biggest di�erence in data �ow is for
messages with message size from 100 B to 1 kB. At these points, the DIALOG data
�ow is approximately �ve times bigger than the DIM data �ow. Both DIALOG and
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DIM curves saturate the network bandwidth eventually. Moreover, the DIALOG
saturation of the network bandwidth occurs even with smaller message size than the
DIM saturation. The DIALOG saturate reaches the maximum network bandwidth
already with message size 2 kB. In comparison to DIM, it is much sooner. The DIM
library is starting to occupy the whole bandwidth with message size 10 kB. At this
moment, it is worth of mentioning the most frequent message size is between 1 kB
and 2 kB in the iFDAQ.

Both libraries stand at the maximum network bandwidth with message size from
10 kB to 100 kB. Then, the data �ow of both libraries changes again. While the
DIALOG data �ow stands at the level of the maximum network bandwidth and
saturates it regardless the message size until the end, the DIM e�ciency starts to
decrease. At the level of 100 kB message size, the DIM data �ow starts to decline
until the end markedly.

From a global perspective, based on both plots in �gures, a �nal conclusion can
be drawn. The performance of the DIALOG library is signi�cantly better than the
DIM library.
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Chapter 4

The iFDAQ Debugging

Nowadays, modern experiments in high energy physics demand a powerful, e�cient
and reliable DAQ. This chapter presents the development and deployment of a
debugging tool called DAQ Debugger for the iFDAQ. In complex softwares, such as
the iFDAQ, having thousands of lines of code, the debugging process is absolutely
essential to reveal all software issues. Unfortunately, conventional debugging of the
iFDAQ is not possible during the real data taking.

The DAQ Debugger is a tool for identifying a problem, isolating the source of the
problem, and then either correcting the problem or determining a way to work
around it. It provides the layer for an easy integration to any process and has
no impact on the process performance. Based on handling of system signals, the
DAQ Debugger represents an alternative to conventional debuggers provided by
most integrated development environments. Whenever problem occurs, it generates
reports containing all necessary information important for a deeper investigation
and analysis.

In general, it is considered as an useful tool for bugs identi�cation and backward
debugging. The DAQ Debugger is fully incorporated to all processes in the iFDAQ
since 2016, including the Run 2016. It helped to reveal remaining software issues and
improved signi�cantly the stability of the system in comparison with the previous
run. In the chapter, the DAQ Debugger is presented from several insights and
discussed in a detailed way.

4.1 Conventional Debugging

In computer programming and engineering, debugging [15, 34, 52] is a multistep
process that involves attempt to reproduce the problem and isolating the source of
the problem. Then, the second phase of �xing the problem follows. It can be either
fully corrected or determined a way to work around it. The �nal step of debugging
is a veri�cation that the �x works and nothing else is broken.

Once an error has been identi�ed, it is essential to detect the error in the source code.
Integrated Development Environment (IDE) is usually very useful in error detection.
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The state-of-the-art IDEs provide developers with a stand-alone debugger tool or
the debugging component helping developers to �nd the error in the source code.

The standard debugging tool provides the programmer with the capability to ex-
amine program states (values of variables, call stack, etc.) and track down the
origin of the problem. The control of program execution is assured by setting up a
�breakpoint� and run the program until that breakpoint. Once the program meets
any breakpoint, the program execution stops and waits. The control of program
execution also o�ers to execute just the next line of code, step into the body of
function/method or even change the value of variables.

In software development, debugging is part of the software testing process and is an
essential part of the entire software development life cycle. The debugging process
starts as soon as a release candidate is implemented and continues step by step to
form a �nal version of software.

4.2 The Motivation for the DAQ Debugger Imple-

mentation

The iFDAQ faced several crashes of the Master process and the Slave-readout process
per day in the Run 2014 and 2015. Processes crashed without any obvious reason
or additional information.

The possibility of conventional debugging during the real data taking is quite limited:

• It would waste the beam time during crash investigation.

• The performance of debugged processes would be lower.

• The conventional debugging process would increase load on readout engine
computers.

• The iFDAQ expert would have to be present 24/7 on site.

In sum, the conventional debugging is possible only during so called machine devel-
opment, i.e., time without beam. Unfortunately, the errors do not occur without
the real data taking and all processes are running smoothly. Under the above men-
tioned circumstances, it gets caught in a vicious circle. Conventional debugging is
not usable and e�ective for the error detection.

4.3 The state-of-the-art error reporting tools

The number of tools generating C++ application crash reports is quite limited.
The report must contain the whole stack trace of all threads and produce a memory
dump. Such requirements decrease the number of open source tools to a single one,
i.e., Google Breakpad [33].
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Google Breakpad is a library and tool suite that allows a developer to distribute an
application to users with compiler-provided debugging information removed, record
crashes in compact �minidump� �les, send them back to a developer's server, and
produce C and C++ stack traces from these minidumps.

In other words, Google Breakpad is responsible for monitoring an application for
crashes (exceptions), handling them when they occur by generating a dump, and
providing a means to upload dumps to a crash reporting server. These tasks are
divided between the �client� library linked in to an application being monitored for
crashes, the �symbol dumper� library reading the debugging information produced
by the compiler and producing a symbol �le, and the �processor� library reading a
minidump �le, �nding the appropriate symbol �les for the versions of the executables
and shared libraries the minidump mentions, and producing a human-readable C++
stack trace.

The reports are created based on system signals. However, the integration to an ap-
plication is not easy-to-use and straightforward. It requires manual integration to a
process, manual production of application symbols and manual process of minidump
�le to produce a �nal stack trace. All these steps should be done automatically.

Moreover, Google Breakpad requires the most recent version of C++ compiler and
Python interpreter. Unfortunately, such a requirement is not possible to meet in
the COMPASS experiment.

Therefore, the DAQ Debugger has been implemented. It helped to detect remaining
software issues and improved signi�cantly the stability of the system.

4.4 DAQ Debugger

The DAQ Debugger [62] is a library helping with the iFDAQ error detection. The
DAQ Debugger was fully incorporated to all processes in the iFDAQ during the Run
2016 and 2017. In general, the integration is very simple to any process. The main
goal is to produce a report concerning the process crash. The report must contain as
much information as possible. Afterwards, the reports are investigated by iFDAQ
experts trying to detect the source of problem. After understanding of a problem,
the �x is released and tested. The DAQ Debugger is designed in order to meet the
following requirements:

• The integration to running system requires interface for an easy use.

• It does not a�ect the process performance.

• It does not increase load on readout engine computers.

• It provides with reports in /tmp folder containing stack trace of all threads
and memory dump.
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4.4.1 Description

The DAQ Debugger is a library easily integrated to a process and standing in the
background of a running process. If the process is running without any crashes,
basically, the DAQ Debugger is only part of the process without any action taken
and behaves during the whole process life cycle in this way.

At the operating system level, the fault is caught and a signal is passed on to the
o�ending process, activating the process's handler for that signal. Di�erent operat-
ing systems have di�erent signal names to indicate that a fault has occurred. For
instance, in case of a segmentation violation, a signal called SIGSEGV (abbrevi-
ated from segmentation violation) is sent to the o�ending process on Unix-based
operating systems.

The main idea of action taken in the right instant is based on catching of system sig-
nals (SIGSEGV, SIGABRT, etc.). In case of a process crash, the following procedure
is started:

• The system signal is caught and forwarded to a signal handler in the DAQ
Debugger.

• The memory dump is produced and stored.

• The whole stack trace for each thread is generated with �le names and code
line numbers.

• The report containing the caught signal and stack trace for each thread is
created in /tmp folder.

• The process is exiting with the caught signal.

4.4.2 Integration

The DAQ Debugger is designed bearing in mind that it has to be integrated in a
running system, so it has to be made as easy to use as possible. To incorporate
it to any process, the static initialization method is called in a single line, as you
can see in the following example in Listing 4.1 showing the integration of the DAQ
Debugger into a Qt-CoreApplication.

1 #include <QCoreApplication >

2 #include "daqdebugger.h"

3

4 int main(int argc , char **argv)

5 {

6 QCoreApplication* app = new QApplication(argc , argv);

7 DAQDebugger ::init(argv [0]);

8 return app ->exec ();

9 }

Listing 4.1: The integration of the DAQ Debugger into a Qt-CoreApplication.
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The �rst argument of DAQDebugger::init(argv[0]) is the name of a process.
Then, the name of a process is included in the report �le name.

Since the DAQ Debugger is a library, it must be located on the system path. Gener-
ally, LD_LIBRARY_PATH is used to specify directories of libraries. It is also necessary
to add the following lines in Listing 4.2 to the Qt-project �le (*.pro) in order to
create the make�le correctly.

1 # DAQDebugger Start

2 INCLUDEPATH += PATH_TO_DAQ_DEBUGGER/

3 DEPENDPATH += PATH_TO_DAQ_DEBUGGER/

4 LIBS += -L PATH_TO_DAQ_DEBUGGER -lDAQDebugger

5

6 QMAKE_CXXFLAGS += -rdynamic -g

7 QMAKE_LFLAGS += -rdynamic -g

8

9 QMAKE_CXXFLAGS +=

10 -include PATH_TO_DAQ_DEBUGGER/qthreaddaqdebugger.h

11 QMAKE_CXXFLAGS +=

12 -include PATH_TO_DAQ_DEBUGGER/qthreaddaqdebugger_macro.h

13 # DAQDebugger End

Listing 4.2: The Qt-project �le (*.pro).

GCC �ags -rdynamic and -g enable use of extra debugging information. The
-rdynamic option instructs the linker to add symbols to the symbol tables that
are not normally needed at run time. The -g option produce debugging information
in the operating system's native format.

The -include option processes �le as if #include "file" appeared as the �rst
line of the primary source �le. If multiple -include options are given, the �les
are included in the order they appear on the command line. Demand on -include

statements is discussed in the implementation subsection in a deeper way.

The process should be compiled without any optimizations, e.g, -O, -O1, -O2, -O3
or -Os, if possible. The default value usually is -O0 that means do not optimize.
It is important for addr2line command that is used for detection of an exact �le
name and a line number crash.

Using optimizations, the compiled source code could be inline and detection of
an exact �le name and a line number crash is then much harder. Hence, using
addr2line command on processes compiled with optimizations could lead to shifted
or mistaken line numbers.

On the other hand, optimizations are very useful for compilation of libraries due to
libraries' shared and linking purpose.

To sum up, turning on optimization �ags makes the compiler attempt to improve
the performance and/or code size at the expense of compilation time and possibly
the ability to debug the program.
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4.4.3 Implementation

The system signals to catch are speci�ed in the DAQDebugger::init(argv[0])

static method. By default, signals SIGABRT, SIGSEGV, SIGILL and SIGFPE
are registered. The signals to catch can be added or removed there.

Whenever the registered signal is caught, it is caught in the thread causing the
crash and the stack trace of thread can be easily produced. It could be enough in
single-threaded processes. Unfortunately, the solution must be more general and
considered even multi-threaded processes. The solution must provide the following
crash procedure:

• The system signal is caught in the crashed thread.

• All remaining threads are immediately suspended.

• Store memory dump.

• Get stack trace of the crashed thread.

• Get stack traces of suspended threads.

• The crashed thread (whole process) is exiting with the caught signal.

To register a system signal, the following statement in Listing 4.3 is executed.

1 // to register a system signal

2 signal(signal , signalHandler );

Listing 4.3: The registration of a system signal.

POSIX [38] de�nes a standard threading library API in order to control and send
suspend/resume signals to threads. All important statements are given in the fol-
lowing source code in Listing 4.4 with the explanations in comments.

1 // to send a signal to thread ID

2 pthread_kill (( pthread_t)threadID , signal)

3

4 // to catch the sent signal in a thread

5 struct sigaction sigActionThreadControlSignal;

6 sigfillset (& sigActionThreadControlSignal.sa_mask );

7 sigdelset (& sigActionThreadControlSignal.sa_mask , signal );

8

9 sigActionThreadControlSignal.sa_flags = 0;

10 sigActionThreadControlSignal.sa_handler = signalHandler;

11 sigaction(signal , &sigActionThreadControlSignal , NULL);

12

13 // to suspend a thread

14 sigset_t sigActionThreadControlSignalMask;

15 sigfillset (& sigActionThreadControlSignalMask );
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16 sigdelset (& sigActionThreadControlSignalMask , signal2 );

17

18 sigsuspend (& sigActionThreadControlSignalMask );

Listing 4.4: The thread control based on POSIX.

The signalHandler is registered in sigaction and it is triggered if the signal is
sent to the thread. Moreover, the thread is suspended by sigsuspend with given
signal mask and it resumes if the signal2 is sent to the thread.

At this point, the control of threads is prepared, the DAQ Debugger can obtain
the stack trace with �le names and line numbers for each thread. Using backtrace

and backtrace_symbols, the stack trace is generated. The backtrace command
returns the series of currently active function calls for the process. Moreover, using
backtrace_symbols, the symbolic description of function calls is translated from
information obtained by backtrace to function names and hexadecimal addresses.
Unfortunately, it returns each line of stack trace in a hexadecimal address format
and thus, it is not easily readable for a human being. However, to overcome this
drawback, the DAQ Debugger is using addr2line. It is capable to convert hexadec-
imal addresses into �le names and line numbers. In the following code in Listing
4.5, you can see a short example.

1 // storage array for stack trace address data

2 unsigned int max_frames = 63;

3 void* addrlist[max_frames + 1];

4

5 // retrieve current stack addresses

6 unsigned int addrlen = backtrace(addrlist , sizeof

7 (addrlist )/ sizeof(void *));

8

9 // resolve addresses into strings containing

10 // "filename(function + address )"

11 char** symbollist = backtrace_symbols(addrlist , addrlen );

12

13 for (unsigned int i = 1; i < addrlen; i++)

14 std::cout << readSystemCommand

15 ("addr2line -e " + processName + " " + getHexAddress

16 (symbollist[i])) << std::endl;

Listing 4.5: The conversion of stack trace using �le names and line numbers.

The stack trace is one thing, on the other hand, it is still not su�cient for the error
detection. To satisfy the comprehensive understanding of crash, the memory dump
is absolutely essential. The DAQ Debugger is using gcore command for memory
dump storage.

Another challenge in the design of the DAQ Debugger is the registration of all
threads without violating the concept of easy integration. In order to be able to
send signals and to control threads in case of a crash, it is necessary to obtain all
thread IDs at the beginning of a process.
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Unfortunately, it is not an easy task to obtain IDs of all threads in a process.
Moreover, it is even more complex if the integration of DAQ Debugger should be
as simple as possible. The only way how to get thread ID is executing the part
of code in this thread asking for thread ID. So, it must be ensured the execution
of DAQDebugger::addThreadSlot(thread) static method in each thread. Each
thread must register itself in the DAQ Debugger immediately when it starts its
execution. It uses started() signal in QThread object being emitted when the
thread starts executing. The functionality of QThread object must be extended
in order to cover the registration in the DAQ Debugger and its integration would
be still simple to any process. This extension is hidden and added by -include

statements to Qt-project �le (*.pro). File qthreaddaqdebugger.h contains the def-
inition of thread satisfying the required functionality and inheriting from QThread

object. Moreover, �le qthreaddaqdebugger_macro.h replace all QThread objects
for QThreadDAQDebugger objects by preprocessor de�nition in the whole process as
follows in Listing 4.6.

1 #define QThread QThreadDAQDebugger

Listing 4.6: The preprocessor de�nition for replacement of all QThread objects for
QThreadDAQDebugger objects.

In Figure 4.1, you can see the DAQ Debugger class diagram being obtained by the
described integration process.

QThread

List of QThread attributes

List of QThread methods

QThreadDAQDebugger

- qThreadDAQDebuggerHelper : QThreadDAQDebuggerHelper*

+ currentThread() : QThreadDAQDebugger*
+ removeThreadSlot()

QThreadDAQDebuggerHelper

+ addThreadSlot()

+ addThreadSignal(thread : QThreadDAQDebugger*)

+ addThreadSignal(thread : QThreadDAQDebugger*)
+ removeThreadSignal(thread : QThreadDAQDebugger*)

0..1

1..1

DAQDebugger

- process : QString
- procesName : QString
- mutex : QMutex
- threads : QMap<Qt::HANDLE, QThreadDAQDebugger*>
- crashedThread : Qt::HANDLE
- pFILE : FILE*
- threadCounter : quint32
- sigActionThreadControlSignalMask : sigset_t
- sigActionThreadControlSignal : struct sigaction
- sigActionThreadControlSuspend : struct sigaction

- abortHandler(signum : int)
- abortHandler2(signum : int)
- suspendHandler(signum : int)
- readSystemCommand(command : QString) : QString
- printStackTrace(out : FILE*, max_frames : unsigned int)
- getThreadStackTrace(signum : int)
+ init(processInit : QString, processNameInit : QString)
+ addThreadSlot(thread : QThreadDAQDebugger*)
+ removeThreadSlot(thread : QThreadDAQDebugger*)

Figure 4.1: Class diagram of the DAQ Debugger.

The way how to introduce the DAQ Debugger to each thread has been described.
It remains to discuss all most common scenarios, including the thread registration
procedure, in the DAQ Debugger in a deeper way. It is given in the next subsection.
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4.4.4 Scenarios

Basic scenarios are emphasized in this subsection dealing with how one or more
components interact inside the DAQ Debugger or with the DAQ Debugger itself.

QThreadDAQDebugger

Process events

Is QThreadDAQDebugger 
running

Create and start 
QThreadDAQDebugger

Event Loop

qThreadDAQDebuggerHelper
addThreadSlot()

Signal
QThreadDAQDebugger

started

DAQDebugger
addThreadSlot(thread)

addThreadSignal(thread)

QThreadDAQDebugger
removeThreadSlot()

Signal
QThreadDAQDebugger

finished

DAQDebugger
removeThreadSlot(thread)

removeThreadSignal(thread)

Figure 4.2: Flow diagram of the thread life cycle in the DAQ Debugger.

The description of thread life cycle gives a comprehensive insight from a global
point of view. The diagram of the thread life cycle is shown in Figure 4.2.
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The QThreadDAQDebugger object inheriting from QThread object is created and
the thread is started. The signal started() is emitted and it is connected to
the slot addThreadSlot() of qThreadDAQDebuggerHelper object. This object
has already been moved to the thread of QThreadDAQDebugger object in the
QThreadDAQDebugger object constructor, since it must live in this thread. This
is the way how to force the execution of DAQDebugger::addThreadSlot(thread)
static method in this thread and thus, the DAQ Debugger gets thread
ID. Finally, the slot addThreadSlot() of qThreadDAQDebuggerHelper ob-
ject is emitting the signal addThreadSignal(thread) being connected to the
DAQDebugger::addThreadSlot(thread) static method. This concept ensures the
execution of DAQDebugger::addThreadSlot(thread) in the thread itself.

Moreover, Figure 4.2 covers the concept when a thread is �nishing its execution.
The thread must unregister in the DAQ Debugger. When the QThreadDAQDebugger
object �nishes its execution the signal finished() is emitted and it is con-
nected to the slot removeThreadSlot() of QThreadDAQDebugger object. There
the signal removeThreadSignal(thread) is emitted and it goes directly to the
removeThreadSlot(thread) of DAQ Debugger. In comparison with the registration
procedure, the unregistration procedure is much simpler, since the DAQ Debugger
already knows the �nished thread. Since the QThreadDAQDebugger object lives in the
main thread, no one has to worry about handling of emitted QThreadDAQDebugger

signals after the thread has �nished its execution. These emitted signals are handled
by the main thread.

To �nish the discussion concerning the thread registration procedure properly, the
description of registration of n ∈ N threads when a process starts is given. In Fig-
ure 4.3, the diagram begins with the main thread. First of all, the main thread
starts its execution. It registers system signals and registers the main thread
in the DAQ Debugger. Whole mentioned functionality is encapsulated in the
DAQDebugger::init(argv[0]) static method. Then, the main thread continues
its execution and processes events. All remaining of n ∈ N threads are registered in
the DAQ Debugger afterwards. The detail of registration procedure for each thread
was already mentioned and it triggered with the emitting of signal started(). Of
course, whenever some of n ∈ N threads �nish their execution, they are unregistred
from the DAQ Debugger. For simplicity reasons, the unregistration procedure is not
depicted in the diagram.

Probably the most important scenario is the crash of a process. This situation
is described in Figure 4.4. From a process start, the DAQ Debugger is a part of
a process and standing in the background of a running process. If the process is
running smoothly without any single crash, the DAQ Debugger does not take any
action. For this reason, the DAQ Debugger does not a�ect the process performance
and does not increase load on readout engine computers at all.

The system signals are registered, the process continues its execution. Once the
crash of process occurs, the DAQ Debugger handles it. The system signal is emitted
and it is caught by the signal handler of crashed thread in the DAQ Debugger. At
this point, it is important to realize the crashed thread where crash has occurred
is responsible for the control of all remaining threads, memory dump storage and

58



Main Thread

Create and start Main 
Thread

Thread #1

Process events

Is Main
Thread
running

Event Loop

Process events

Is Thread #1
 running

Signal Thread
started

Register Thread 
in DAQ 

Debugger

Register Main 
Thread in DAQ 

Debugger

Create and start
Thread #1

Event Loop

Register system 
signals handling

Thread #n

Process events

Is Thread #n
 running

Create and start
Thread #n

Event Loop

...

Signal Thread
started

Register Thread 
in DAQ 

Debugger

Figure 4.3: Flow diagram of the thread registration procedure in the DAQ Debugger.

creation of a crash report.

Firstly, the crashed thread sends the suspend signal to all remaining threads. It
is necessary to suspend them otherwise they would continue their execution and
thus, the exact point of crash would be lost. Then, the memory dump is produced
and stored. The memory dump can be easily loaded to Qt Creator (Debug →
Start Debugging→ Load Core File) and memory can be investigated as much as by
conventional debugging.

Secondly, the report �le is created and open for writing. The crashed thread writes
its stack trace to the �le.

Afterwards, the control of all suspended threads is started. The crashed thread
sends the resume signal to �rst suspended thread and the crashed thread itself is
suspended. The resumed thread writes its stack trace to the �le, then sends the
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Figure 4.4: Flow diagram of the thread crash caught and handled by the DAQ
Debugger.

resume signal to the crashed thread and is suspended again. The resumed crashed
thread sends the resume signal to second thread and it is again suspended. The
second resumed thread writes its stack trace to the �le, then sends the resume
signal to the crashed thread and is suspended again. It continues in this way to the
last suspended thread. The resumed crashed thread (resumed by the resume signal
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sent from (n − 1)-th thread) sends the resume signal to n-th thread and it is again
suspended. The n-th resumed thread writes its stack trace to the �le, then sends the
resume signal to the crashed thread and is suspended again. This suspend/resume
procedure ensures the serial writing to �le and proper thread control. Finally, the
report �le is closed and process is exiting with the caught signal in the crashed
thread. The whole control of threads, memory dump storage, opening and closing
of report �le is controlled by the crashed thread.

4.5 The iFDAQ Stability

Since beam time is highly valuable and it is usually provided 24/7 for most of the
calendar year, high reliability of the DAQ system is of major importance to high-
energy physics experiments. This section discusses the iFDAQ stability over the last
few years.

There are three main sources of instabilities leading to time periods when no physics
data can be taken. The overall time period when no physics data can be taken is
called the iFDAQ downtime. On the other hand, the iFDAQ uptime denotes the
overall time period when the iFDAQ is stable and ready for a proper data taking.

The �rst source of instability is a memory access error (PCI/DMA) caused by scram-
bled data being transferred to the RAM of the readout engines. It is the most
time-consuming failure, since it requires to reboot all readout engine computers and
the recovery procedure takes approximately 10 minutes on average. The second one
is an unrecoverable loss of synchronization in the hardware event builder leading
to a safe stop of a run. The safe stop of a run might be considered as one of the
intelligent elements of the iFDAQ, since a safe stop prevents more serious problems
which would lead to the higher downtime. The contribution of these two problems
to the overall system downtime decreased during the course of one year due to better
commissioning and calibration of detectors and consequently higher data quality.

The third source of the downtime is based on unknown software crashes being not
fully understood. The DIALOG library and, especially, the DAQ Debugger have
been developed in order to eliminate software errors in the iFDAQ and thus, to
improve the iFDAQ software stability.

Figure 4.5 shows the iFDAQ stability in the last few years. The values are calculated
by parsing messages that have been stored by the MessageLogger in a database.

The plot shows data from August 2015 to October 2017. Each bar shows the number
of hours per month representing the total downtime for this period and, moreover,
it is split into three components � PCI/DMA errors (blue), event builder desyn-
chronization (red) and software errors (yellow). In addition, the relative uptime per
month is stated in the top of each bar.

In August, September and October 2015, messages that were stored do not include
information about the kind of error. Thus, it can not be distinguished between event
builder desynchronization and software errors (purple).
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Figure 4.5: Absolute downtime of the iFDAQ per month and corresponding relative uptime.
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From the plot, it can be seen that in 2015, most of the 40 hours downtime per month
were caused by software errors.

The DIALOG library integration to the iFDAQ is the �rst big milestone in the
iFDAQ stability improvement. The DIALOG library was introduced to the iFDAQ
in June and July 2016. The bar plot in Figure 4.5 shows a signi�cant drop in the
software errors component of each bar from that time.

The second milestone is located in June 2017 when the DAQ Debugger has been
deployed and helped to identify all remaining software errors in the following months.

Finally, the iFDAQ has reached the state when no software errors are present any-
more. The last software error was observed at the end of September 2017.

Presently, the iFDAQ reaches a system availability of 99.88% and only PCI/DMA
errors and event builder desynchronization appear from time to time. In absolute
numbers, the downtime of the iFDAQ has decreased from around 40 hours per month
in 2015 to only 1 hour per month in October 2017.

The increase of downtime in May of each year can be explained by the commissioning
phase that takes place in the beginning of each year and in which all detectors, the
frontend electronics and the iFDAQ do not operate in stable conditions.
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Chapter 5

The Continuously Running iFDAQ

Recently, a stability of DAQ has become a vital precondition for a successful data
taking in high-energy physics experiments.

In the previous chapters, all aspects which were essential in making the iFDAQ sta-
ble were discussed. Firstly, the DIALOG library has been developed and replaced
the unreliable DIM library. The implementation followed by the integration to all
processes represents the �rst successful milestone in the iFDAQ stability achieve-
ment. The IPC became reliable and robust for the very �rst time.

Unfortunately, the e�ort dedicated to the IPC improvement was not enough and
the undetected bugs, inconsistencies and improper synchronization leading to the
iFDAQ misleading and malicious behaviour were still present in the iFDAQ.

Therefore, a new challenge dealing with the resolution of all remaining issues arose.
To detect these issues, the DAQ Debugger o�ered an alternative to the widespread
conventional debugging being not e�ective and applicable. It helped to reveal all
remaining software issues and improved signi�cantly the stability of the system.

Once the iFDAQ stability ensured a smooth data taking, the last challenge came
along. It requires such a version of the iFDAQ running in a mode without any
stops where no data are lost. DAQ systems ful�lling such requirements reach the
e�ciency up to 99%. The iFDAQ runs nonstop 24/7 regardless of nights, weekends
or bank holidays for most of the calendar year. Thus, it puts stress on reliability
and robustness of the system. Every undesirable interruption of data taking results
in a possible loss of physics data. Thus, the state with the continuously running
iFDAQ is about to achieve [64].

Another signi�cant contribution to the loss of beam time originates from the time
that is needed to initiate a synchronized data �ow through the event builder. Estab-
lishing synchronous processing of data by all involved hardware nodes is achieved by
distributing trigger and spill cycle information to all nodes via the Trigger Control
System (TCS) [35] and applying reset commands and timeouts. Following section
describes how the SPS spill cycle information is used initiate and maintain proper
synchronization.
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5.1 The Proper Timing and Synchronization

Before the continuously running mode is presented in a deeper way, it is worth of
mentioning how to deal with accurate timing and synchronization being absolutely
essential for such a mode [64]. To synchronize the iFDAQ processes correctly, the
iFDAQ needs to take advantage of some proper timing mechanism. The SPS super
cycle is a good candidate o�ering and ensuring the proper timing.

t [s]
on-spill on-spilloff-spill

First event in cycle,
Last event in cycle

First event in cycle,
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Figure 5.1: Particle intensity in the SPS for an exemplary SPS cycle.

The beam for COMPASS is provided by the SPS. As a circular particle accelerator,
the SPS provides beam to experiments in bursts, called spills. Before being able to
deliver a particle spill to COMPASS, the SPS has to be �lled with proton bunches,
the bunches have to be accelerated to the desired energy, and the particle load inside
the SPS has to be debunched. Only when the particles circulate homogeneously
distributed in the SPS, a spill of stable particle intensity can be delivered. After
one �lling is completely extracted from the machine, the cycle starts over. Figure
5.1 shows the proton intensity in the SPS during two cycles which together form an
exemplary SPS super-cycle.

For COMPASS, the load in the SPS is slowly extracted over the course of 4.8 seconds.
After the spill, there are at least 5 seconds without spill: �lling the SPS with two
injections from the PS takes approximately 2 seconds, and ramping up the energy
and debunching (�at top in Figure 5.1) takes another 3 seconds. However, the
o�-spill period can take signi�cantly longer -� depending on the SPS super-cycle
-� when the next charge of the SPS is not conducted to COMPASS but to other
recipients (e.g. the LHC).
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For a successful synchronization of the iFDAQ to the SPS cycle, dedicated types
of triggers have been established. In the iFDAQ, following types of events are
distinguished:

• Start of run event is �rst event in a run after it starts for the �rst time.

• End of run event is last event in a run before it terminates.

• First event in cycle/Start of burst event is �rst event in burst (start of
beam extraction) and hence in the on-spill period. At the same time, it marks
the beginning of a cycle.

• Last event in cycle is last event in the o�-spill period, it is followed by
a reset signal for bu�er memory in the frontend electronics ensuring proper
synchronization for the next spill.

• End of burst event is last event in burst (end of beam extraction and on-spill
period).

• Physics event contains real physics data and is collected during the on-spill
period.

• Calibration event can be collected in both the on-spill and o�-spill period.
It contains calibration data for calorimeters.

Timing and synchronization are based on the arti�cial events and their correct order.
To initiate data �ow through the event builder and establish correct timing, three
cycles are required � and thus lost � before �rst physics triggers can be sent to the
frontend electronics.

5.2 The Continuously Running Mode

The continuously running mode was introduced to the iFDAQ before the Run 2017
and from then on, it is an integral part of the iFDAQ [64]. To collect more physics
data, the iFDAQ with the continuously running mode must take data nonstop with-
out any useless user interventions. Therefore, the continuously running mode has to
provide a functionality for a proper transition between two consecutive runs. The
transition demands appropriate synchronization, because it must be successfully
done within a very short time period (approximately one second).

To safe time-consuming stop and restart of the data �ow between two runs, the
continuously running mode was introduced. It ensures a smooth transition between
two consecutive runs without intervention of the shift crew and without stop of data
�ow through the event builder. The transition between two runs requires several
important things to do. Data �les from the previous run must safely be closed and
new �les for a new run have to be opened in the same time on all machines. The
run number has to be increased in the correct time so that data belonging to the
previous run and data belonging to the new one are properly distinguished. The
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Figure 5.2: The iFDAQ state machine diagram [46].

records in the electronic logbook concerning the previous run have to be �lled in and
new records concerning the following run have to be created. All these functionalities
require proper synchronization.

Before the continuously running mode is discussed in a deeper way, it is necessary to
show the iFDAQ state machine, see Figure 5.2, and to give more details to particular
states. The iFDAQ can be found in one of the following states (ID represents the
value of the given state) [46]:

1. Turned o� (ID: N/A) � An abstract state which represents that the Master
process is turned o�.

2. Starting (ID: 21) � The Master process is being initialized.
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3. Waiting (ID: 1) � The Master process is initialized and is ready to receive
commands.

4. Closing (ID: 22) � The Master process is being turned o� (ends threads).

5. Starting Slaves (ID: 23) � The Master process is starting the slave processes.

6. Ready (ID: 2) � The Master process has received con�rmation that the slave
processes are turned on.

7. Turning Slaves o� (ID: 24) � The slave processes are being turned o� by
The Master process.

8. Con�guring (ID: 25) � The Master process is retrieving con�guration infor-
mation from the database and con�guring the slave processes.

9. Con�gured (ID: 3) � The Master process has received con�rmation that the
slaves are con�gured and ready for a run.

10. Uncon�guring (ID: 26) � The Master process is uncon�guring the slave pro-
cesses.

11. Starting run (ID: 27) � The Master process has sent the command to initiate
a run and is waiting for the slaves to enter the Dry run state.

12. Stopping run (ID: 28) � The Master process has sent the command to stop
the run and is waiting for the slaves to enter the Con�gured state.

13. Dry Run (ID: 11) � The Master process has received con�rmation that the
slaves have entered the Dry run state and initiated the data-taking process
(veri�cation and debugging purpose).

14. Run (ID: 12) � The Master process has received con�rmation that the slaves
have entered the Run state and initiated the data-taking process (real data
taking).

15. Error (ID: 41-48) � Error 1-8.

Moreover, the idea of maintaining data �ow in the event builder has been extended
to periods when no data taking is requested. To do so, a new state, the so called
Dry Run (state 11) was introduced. It maintains the data �ow through the whole
acquisition chain and provides a monitoring data stream to the online monitoring
tools, but the acquired events are not written to hard drives. Thus, it serves as
veri�cation, monitoring, and diagnostic stage, even in periods when the experiment
is not ready for data taking. The consecutive step relevant to real data taking
is called Run (state 12) and its start is possible on the next delivered spill, since
synchronization is already established. Using the Dry Run state and a smooth
transition between runs, the data �ow in the iFDAQ is only stopped in case of
serious errors (see Section 4.5) or in case of interventions on detectors that require
a stop of trigger distribution to the frontends.
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At this point, basic functionality requirements are speci�ed. Using the continu-
ously running mode, the Dry Run state is designed in order to meet the following
requirements:

• It checks the incoming data stream from the detectors on consistency.

• The transition from Dry Run to Run and vice versa must be fast and smooth.

• It uses the arti�cial run number in the range from 999,990 to 999,999.

• Starting procedure � The Master process sends a command to initiate a run
and waits for the slaves to enter the Dry Run state.

• Terminating procedure � The Master process sends a command to the slaves
to stop a run.

• It provides physics data to online monitoring tools.

• No data are stored in �les.

• No records in the electronic logbook concerning current run are created.

• The spill number is iterated. After the last spill, the spill counter is reset to 1
in the following spill and the arti�cial run number is changed.

Similar characteristics can be summarized also for the Run state. Using the contin-
uously running mode, the Run state must meet the following requirements:

• It is started from the active Dry Run state.

• It always uses the last real run number incremented by one.

• Starting procedure � It sends a command to reset the spill counter to 1 and
set the real run number after the end of current spill.

• Terminating procedure � A run stops in the Run state and moves to the Dry
Run state where a new run starts.

• It provides physics data to online monitoring tools.

• The data are stored in �les.

• Records in the electronic logbook concerning current run are created.

• The continuously running mode can be switch on/o� in Runcontrol GUI.

• If a run is stopped manually or automatically (by reaching the maximum
number of spills set in Runcontrol GUI) in the Run state, the iFDAQ moves
to the Dry Run state.

70



To sum it up, the iFDAQ using the continuously running mode is a self-running
data-taking system where decisions related to the continuously running mode are
taken based on delivered events. Timing critical actions that have to be taken in
transitions from one run to another or from the Dry Run state to the Run state and
vice versa are executed on reception of arti�cial events and depend on their type of
trigger:

• First event in cycle in �rst spill of a run opens/closes �les and create
the electronic logbook records, if necessary.

• End of burst event in last spill of a run resets the spill counter and set
the next run number.

• Last event in cycle in last spill of a run �lls in the electronic logbook
records and moves to Dry Run/Run, if necessary.

5.3 The Logic in the Master Process

The whole synchronization mechanism in the Master process is based on arti�cial
events, i.e., �rst event in cycle, end of burst event, last event in cycle.
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Figure 5.3: The logic in the Master process for the Dry Run state.

A user starts the Dry Run state from the Runcontrol GUI, see Figure 5.3. The
command is sent to the Master process where it is forwarded to n Slave-control
processes and m Slave-readout processes. Once all processes are in the Dry Run
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state, the data are readout. It may remain in the Dry Run state and create runs
with 200 spills and with the run number in the range from 999,990 to 999,999.
In the Dry Run state, the physics data are processed in online monitoring tools
and not stored in �les. In addition, no records are created in the electronic logbook.
Therefore, the Dry Run state is a useful veri�cation step before the real data taking.

Once a user decides to move to the Run state, it can be either the Run state with
the continuously running mode creating runs with the set number of spills or the
Run state without the continuously running mode terminating after the set number
of spills and moving back to the Dry Run state. The default value for the number
of spills is 200.

Firstly, a discussion related to the automatic transition between two consecutive
runs is given. The whole logic is stated in the last spill of current run. If the end of
burst event occurs in the last spill of current run, the Master process sends the next
run number to all slaves and executes a DIM command in order to reset current spill
number. Thus, the next spill starts with the spill number 1. If the iFDAQ is in the
Dry Run state, then the next run number is in the range from 999,990 to 999,999 and
it goes again from 999,990 after 999,999. If the Run state is active, the run number
in the Run state is incremented based on the maximum run number stored in the
database. Especially because of online monitoring tools, the run number must be
changed even in the Dry Run state. All online monitoring tools restart all statistics
about current run if the run number is changed. Statistics are not a�ected by the
previous run at all.

The last but not least automatic transition between two consecutive runs remaining
to be discussed is actually a transition between two states � from the Run state
to the Dry Run state. If the iFDAQ is in the Run state, the continuously running
mode is disabled and the end of burst event occurs in the last spill (the set number of
spills) of current run, the Master process sends the next run number equal to 999,990
to all slaves and it also sends a DIM command to reset current spill number. Thus,
the next spill starts with the spill number 1, with the run number 999,990 and the
iFDAQ moves to the Dry Run state.

Secondly, the manual transition between two consecutive runs (the Dry Run state
to the Run state and vice versa) is also worth of mentioning. Once a user goes
from the Dry Run state to the Run state and vice versa, the transition is done
immediately and a DIM command to reset the spill counter is sent. Moreover, the
next run number is sent to all slaves. In fact, a new run is started in the next spill
with the spill number 1 and the run number equal to the next run number. The run
number in the Run state is incremented based on the maximum run number stored
in the database. On the other hand, the run number is set to 999,990 in the Dry
Run state after the transition from the Run state.

A user starts the Run state from the Runcontrol GUI, see Figure 5.4. In order to
move to the Run state, the iFDAQ must be in the Dry Run state already. The
command is sent to the Master process where it is forwarded to n Slave-control
processes and m Slave-readout processes. In the Run state, the Master process
creates a record for the electronic logbook in the database for each run. At the
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beginning of each run in the Run state, each Slave-readout process opens a �le for
writing of physics data. At the end of each run in the Run state, the Master process
�nishes a record for the electronic logbook in the database and each Slave-readout
process closes the �le for writing.

Informator
Master process
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Figure 5.4: The logic in the Master process for the Run state.

Moreover, a user sometimes needs to switch o� continuously running mode even
during the Run state so that it could terminate after the set number of spills and
move to the Dry Run state. It is usually used if a source of error (detectors, frontend
electronics, etc.) not being so urgent to be immediately reloaded occurs. The
a�ected equipment can be less important and a user would like to have a full run
with the set number of spills. Of course, if a user needs to stop a run running in the
continuously running mode in the Run state immediately, it can be done manually
and then, it moves to the Dry Run state promptly.

All commands are generated in the Runcontrol GUI and sent to the Master process.
The Master process checks consistency and integrity of the iFDAQ. Therefore, it
triggers the state transitions in the state machine and controls all slaves via com-
mands. Each slave has its own state machine for the state transitions.

If the continuously running mode is disabled in the Run state, a proper transition
from the Run state to the Dry Run state after the set number of spills must be
ensured. This synchronization must be precise, since the iFDAQ should stay in the
Run state until the last event of the last spill is processed and move to the Dry Run
state afterwards.

This particular synchronization procedure is done in two steps. Firstly, a command
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indicating to the slaves that they must prepare for a transition from the Run state
to the Dry Run state after the end of current spill. Once the last event of the last
spill occurs, the Master process sends the �nal command indicating to the slaves
that they must �nish the transition procedure from the Run state to the Dry Run
state. It ensures that all events readout by the Slave-readout processes are stored
in the �les, i.e., no event from the Run state is lost and no event from the Dry Run
state is stored.

It was already mentioned, a user can change whether to use the continuously running
mode during the Run state or not. However, it is not allowed to go from the
discontinuously running mode to the continuously running mode in the last spill.
In this case, the transition procedure from the Run state to the Dry Run state has
already begun.

5.4 The Logic in the Slave-readout Process

The whole logic is designed in order to meet requirements for a transition between
two consecutive runs, i.e., the Dry Run state and the Dry Run state, the Dry Run
state and the Run state, the Run state and the Run state, the Run state and the
Dry Run state.

It was already mentioned, a DIM command is used in order to reset the spill counter,
i.e., the spill counter is starting with the spill number 1 in the next spill. Moreover,
a command with the next run number is delivered to all slaves too.

The main idea is based on a recognition of the �rst event of a new run. Unfortunately,
the �rst event in cycle can not be used, because it is delivered to only one readout
engine computer.

Instead, it uses the spill number and the event number for a detection of a new run
detection. The event number is a unique number for each event in a spill counting
from 1. Basically, the Slave-readout process is waiting for the �rst event with the
spill number set to 1 and the event number smaller than the previous event number.
This condition ensures a precise recognition of the �rst event in a new run on each
readout engine computer.

The run number is �lled in the event header in the Slave-readout process. All physics
monitoring tools restart their statistics of collected events when a new run is started.
For that reason, the synchronization must be very precise.

Moreover, each event has an attribute saveToFile. The attribute indicates whether
the events are going to be stored in the �les or not. Apparently, it is set to false
in the Dry Run state and true in the Run state. Based on the run number and the
saveToFile attribute, the �le for current run is closed and a new one is open for a
new run.

No data are stored in �les in the Dry Run state. The Master process sends the run
number to the Slave-readout process and the Slave-readout process �lls in the run
number to all events starting from the next spill.
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Once a user goes from the Dry Run state to the Run state, this transition is done
immediately. The run number for the Run state is delivered to the Slave-readout
process from the Master process. The data relevant to the Run state are readout in
the next spill starting with the spill number 1 and the new run number is �lled in
the header of events. It continues until the last spill of current run, when the new
run number is again delivered and assigned to all events starting from the next spill.

Once a user needs to return back to the Dry Run state, it is done manually. The
data are not stored to �les anymore and it is done immediately. For instance, the
data from only one half of current spill could be stored in the �les in that case.

There is also a possibility of the automatic transition from the Run state to the Dry
Run state after the set number of spills. In this case, all events from the set number
of spills are stored in the �les. It stays in the Run state for the whole last spill.
It receives the �rst command in the last spill from the Master process that it must
prepare for the transition to the Dry Run state and it receives the second command
when it reads out the last event of cycle and the transition to the Dry Run state is
�nished.

The possibility of changing the continuously running mode to the discontinuously
running mode even during the Run state has already been mentioned. The Slave-
readout process is not a�ected at all, because the continuously running mode is
controlled by the Master process. In that case, the procedure of the transition to
the Dry Run state is performed in the same way as it would have been set it up
even before the start of the Run state itself.

5.5 Contribution of the Continuously Running

Mode

Before the incorporation of the continuously running mode, the procedure for start-
ing a new run after another run was successfully �nished was always connected to
a loss of beam time. Firstly, there is loss due to the already mentioned necessary
synchronization phases. The start of run procedure requires three spills for the syn-
chronization of the TCS with the SPS cycle. The terminating procedure takes one
spill to end up data taking. Secondly, there is beam time loss due to necessary hu-
man intervention. Before the incorporation of the continuously running mode, a run
had to be started manually. An inattentive shift crew could hence add a signi�cant
part to the beam time loss by not starting the next run right after the previous run
is stopped. Eliminating both factors, the continuously running mode contributes to
the e�ciency of data taking.

In Table 5.1, the contribution of the continuously running mode is demonstrated.
In order to eliminate problems unrelated to the iFDAQ, one day with smooth data
taking is selected for the Run 2016 (without the continuously running mode) and the
Run 2017 (with the continuously running mode). The loss unrelated to the iFDAQ
on 2017-07-30 refers to the beam polarity change procedure. In case of smooth
data taking, the percentage of collected spills reaches almost 100% in case of the
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continuously running mode. Without the continuously running mode, the loss of
spills is around 3.5%.

2016-10-10 2017-07-30
# spills % # spills %

Delivered from SPS 4,648 � 4,569 �
Recorded 4,487 96.54 4,488 98.23
Loss related to TCS synchronization 112 2.41 4 0.09
Loss related to inattentive shift crew 49 1.05 0 0
Loss unrelated to the iFDAQ 0 0 77 1.69

Table 5.1: The contribution of the continuously running mode.
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Chapter 6

Load Balancing

Generally, in computing, Load Balancing (LB) [42] improves the distribution of
workloads across multiple computing resources, such as computers, a computer clus-
ter, network links, central processing units, or disk drives. LB aims to optimize
resource use, maximize throughput, minimize response time, and avoid overload of
any single resource. Using multiple components with LB instead of a single com-
ponent may increase reliability and availability through redundancy. LB usually
involves dedicated software or hardware, such as a multilayer switch or a Domain
Name System server process.

For the iFDAQ, the most challenging task from the LB point of view is load bal-
ancing at the multiplexer (MUX) level. The optimization criterion is minimization
of the di�erence between the output �ows of the individual multiplexers. This min-
imization is achieved by remapping the connection of inputs to input ports of the
multiplexers. Each input port establishes a connection between a data source (a de-

2 p p+ 1 p+ 2 2p1
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Figure 6.1: Visualization of LB at the MUX level.
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tector or a data concentrator) and the MUX level. For the COMPASS experiment,
it is necessary to consider �ows varying from 0 B to 10 kB for each input port.

In Figure 6.1, a visualization of LB at the MUX level is given. There are m MUXes
with p ingoing ports each. Moreover, n ∈ N �ows fk1, fk2, . . . , fkmp ∈ N0, where
n = m · p, are shown in the �gure with indices k1, k2, . . . , kmp ∈ {i | 1 ≤ i ≤ n} ∧∀i, j :
ki , k j .

Despite the fact that each �ow varies from 0 B to 10 kB in the COMPASS experi-
ment, the domain N0 is used. The motivation comes from a general approach to LB.
Moreover, a �ow with 0 B can be either a physical connected input port sending no
data or an empty input port where no data source is connected to. In brief, there
are always n = m · p �ows regardless whether all ports are used or not.

6.1 Problem Formulation

This subsection deals with a proper de�nition of the LB problem and preparation
for discussion of the complexity of the LB problem. The Multiple Knapsack problem
[43] is useful for the examination of the LB problem complexity as it can be shown
that there exists a polynomial reduction from the MK problem to the LB problem.
As MK problem is NP-complete, this implies the LB problem is NP-complete.

De�nition 1. Let m ∈ N denote the number of MUXes with p ∈ N ingoing ports
each, i.e., n = m · p ∈ N ingoing ports in total and �ows f1, f2, . . . , fn ∈ N0. Let

S1,S2, . . . ,Sm be subsets of indices and F =

⌈
n∑

i=1

fi/m

⌉
be a theoretical average �ow

for one MUX. The Load Balancing (LB) problem is an optimization problem such
that:

To minimize √√√√ m∑
i=1

(
F −

∑
j∈Si

f j

)2
, (6.1)

subject to the constraints

• each �ow must be allocated

m⋃
i=1

Si = {i | i ∈ 1, . . . ,n} (6.2)

• each �ow must be allocated at most once

Si ∩ Sj = ∅ ∀i, j = 1, . . . ,m ∧ i , j (6.3)

• each MUX has p ports

|Si | = p ∀i = 1, . . . ,m (6.4)
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In this subsection, the index function, the reduced set, the Knapsack problem and
the Multiple Knapsack problem are de�ned too.

De�nition 2. Let S = {ak1,ak2, . . . ,akn} be a set of elements with indices
k1, k2, . . . , kn ∈ {i | 1 ≤ i ≤ n} ∧ ∀i, j : ki , k j . Function ϕ(i,S) is the index
function such that

ϕ(i,S) = ki ∀i = 1, . . . ,n. (6.5)

De�nition 3. Let A = {ak1,ak2, . . . ,akn} be a set of elements with indices
k1, k2, . . . , kn ∈ {i | 1 ≤ i ≤ n} ∧ ∀i, j : ki , k j . Sets A1,A2, . . . ,Ai−1 are subsets of

A and
i−1⋂
j=1

A j = ∅. The i-th reduced set Ri is a set such that

Ri = {ak1,ak2, . . . ,akn}\

i−1⋃
j=1

A j . (6.6)

De�nition 4. Given n ∈ N items with weight w1,w2, . . . ,wn ∈ N, value v1, v2, . . . , vn ∈

R+ and capacity W ∈ N. The Knapsack problem is an optimization problem such
that:

To maximize
n∑

i=1

vi xi, (6.7)

subject to the constraints

• maximum knapsack capacity

n∑
i=1

wi xi ≤ W (6.8)

• assignment of item i
xi ∈ {0,1} ∀i = 1, . . . ,n (6.9)

Being a generalization of the well-known Knapsack problem [43], the Multiple Knap-
sack problem represents an extension to m knapsacks.

De�nition 5. Given n ∈ N items with weights w1,w2, . . . ,wn ∈ N and values
v1, v2, . . . , vn ∈ R

+, and m ∈ N knapsacks with capacities W1,W2, . . . ,Wm ∈ N. The
Multiple Knapsack problem is an optimization problem such that:

To maximize
m∑

i=1

n∑
j=1

v j xi j, (6.10)

subject to the constraints
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• maximum knapsack capacity

n∑
j=1

w j xi j ≤ Wi ∀i = 1, . . . ,m (6.11)

• each item must be allocated at most once
m∑

i=1

xi j ≤ 1 ∀ j = 1, . . . ,n (6.12)

• assignment of item

xi j ∈ {0,1} ∀i = 1, . . . ,m, ∀ j = 1, . . . ,n (6.13)

In order to simplify a description of algorithms solving the LB problem, the LB
problem can be presented as m ∈ N independent Knapsack problems. Thus, the
m�Knapsack problem is de�ned as follows.

De�nition 6. Given n ∈ N items with weight w1,w2, . . . ,wn ∈ N, value v1, v2, . . . , vn ∈

R+ and capacities W1,W2, . . . ,Wm ∈ N. The m�Knapsack problem is an optimization
problem of m ∈ N independent Knapsack problems using the index function and the
reduced set of items such that for the i-th Knapsack problem:

To maximize
|Rvi |∑
j=1

vϕ( j,Rvi )x j, (6.14)

subject to the constraints

• maximum i-th knapsack capacity

|Rwi |∑
j=1

wϕ( j,Rwi )x j ≤ Wi (6.15)

• assignment of item j

x j ∈ {0,1} ∀ j = 1, . . . , |Rw
i | (6.16)

where

Rw
i = {wk1,wk2, . . . ,wkn}\

i−1⋃
j=1

⋃
k∈Sj

wk, (6.17)

Rv
i = {vk1, vk2, . . . , vkn}\

i−1⋃
j=1

⋃
k∈Sj

vk (6.18)

and sets S1,S2, . . . ,Si−1 contain indices of items already assigned in the previous i -
1 Knapsack problems. Apparently, |Rw

i | = |R
v
i |.
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Mentioned de�nitions are useful in the following subsection concerning the prob-
lem complexity and the proof of NP-completeness. Moreover, they are used in an
extensive way in a description of methods solving the LB problem.

The LB problem is a completely new optimization problem. In general, it is very
common approach trying to �nd a similar well-known optimization problem in the
theory of mathematical optimization at �rst. Such a well-known optimization prob-
lem can provide an inspiration how to solve a new optimization problem or infor-
mation how a new optimization problem might be complex.

Unfortunately, there is no general procedure how to identify similarities with the
di�erent well-known optimization problems. It always depends on experience of a
solver how well he/she knows all the well-known optimization problems and their
speci�cations. A solver has to start with the abstraction of a new problem and focus
on the key aspects. Then, the similarities might be easier to be identi�ed.

The Multiple Knapsack problem being only an extension of the well-known Knapsack
problem to m knapsacks has been de�ned. It is not a coincidence that this fact is
used for a solution of the LB problem.

If a solver sets the capacities of m knapsacks to the same values as the theoretical

average �ow for one MUX, i.e., F =

⌈
n∑

i=1

fi/m

⌉
and uses weights as �ows, then both

problems might be strongly linked. Apparently, the theoretical average �ow F for
one MUX must be adjusted for the remaining MUXes which have not been allocated
yet based on the remaining not yet allocated �ows.

Moreover, the level of abstraction might be even higher. In fact, there are always
two disjoint sets � the set of allocated �ows to the i-th MUX and the set of not yet
allocated �ows. In addition, if it is considered that all MUXes are supposed to have
the similar total �ow, then it is comparable with the well-known Partition problem
[29] where the task of deciding is whether a given set U of positive integers can be
partitioned into two subsets U1 and U2 such that the sum of the numbers in U1

equals the sum of the numbers in U2.

Several variants and generalizations of the Partition problem are already known.
There is a problem called the 3-Partition problem [27] which is to partition the set
U into |U|/3 triples each with the same sum.

Moreover, the Multi-Way Partition problem [45] generalizes the optimization version
of the Partition problem. In this optimization problem, the goal is to divide a set
n ∈ N integers into a given number m ∈ N of subsets, minimizing the di�erence
between the smallest and the largest subset sums. Except the same number of
integers p ∈ N in all subsets, the analogy with the LB problem is perceptible.

To conclude, taking into consideration that the proof of the Knapsack problem
complexity [43] is based on the Partition problem, the optimization problems might
be similar and connected at a certain level of abstraction. Thus, the proof of LB
problem complexity is derived from the Multiple Knapsack problem.
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6.2 Problem Complexity

De�nition 7. The encoding of an input to a problem is denoted by 〈·〉.

For example, the input to Linear Programming (LP)

min{cTx | Ax = b,x ≥ 0} (6.19)

can be denoted 〈A,b,c〉.

De�nition 8. The set of all binary strings is de�ned as {0,1}∗ =

{0,1,00,01,10,11,000, . . . }.

De�nition 9. A decision problem is one such that the expected output is either YES
or NO. It is represented by a set A ∈ {0,1}∗ of exactly those inputs whose outputs
are YES.

LP can be seen as a decision problem. Taking into consideration LP de�ned above,
the decision problem can be formulated

LP = {〈A,b,c, t〉 : There is a solution x s. t. Ax = b,x ≥ 0, and cTx ≤ t}. (6.20)

If an optimal solution is desired to be found, it can begin at t = −∞ and decide
whether 〈A,b,c, t〉 ∈ LP, then an optimal solution t∗ can be found as the point
where the answer �switches� from YES to NO.

De�nition 10. Algorithm φ runs in polynomial time if there exists a polynomial p
such that the number of steps of φ on input x is no more than p(|x |).

De�nition 11. x is a YES instance of a decision problem A if x ∈ A. x is a NO
instance of a decision problem A if x < A. An algorithm φ decides A if φ(x) outputs
YES i� x ∈ A.

De�nition 12. |x | is the length of the string x (e.g. the number of bits it takes to
represent x).

De�nition 13. If a computational problem is de�ned as π, then the set of
polynomial-time decision problems, denoted by P, is de�ned as:

P = {π : There is an algorithm to decide π in polynomial time}. (6.21)

De�nition 14. A decision problem is in NP if there exists a veri�er ψ(·, ·), poly-
nomials p1, p2 such that:

• for all x ∈ A there exists y ∈ {0,1}∗ where |y | ≤ p1(|x |) such that ψ(x, y)
outputs YES.

• for all x < A there exists y ∈ {0,1}∗ where |y | ≤ p1(|x |) such that ψ(x, y) outputs
NO.
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• the number of steps of ψ(x, y) is no more than p2(|x | + |y |).

NP means non-deterministic polynomial time.

De�nition 15. For decision problems A,B, a polynomial-time reduction from A to
B is a polynomial time algorithm φ such that φ(x) ∈ B i� x ∈ A. In other words,
φ(x) is a yes instance of B i� x is a yes instance of A. It is written as A ≤P B.

For example, the Knapsack problem is NP. A decision problem can be: is the set
K of items that are chosen a solution with

∑
i∈K vi ≥ V? It takes polynomial time

to compute
∑

i∈S wi and
∑

i∈S vi.

De�nition 16. B is a NP-complete problem if B ∈ NP and for all A ∈ NP, A ≤P
B.

In Figure 6.2, relationships between classes P, NP, NP-complete and NP-hard are
shown.

P

NP

NP-complete

NP-hard

complexity

Figure 6.2: Relationships between complexity classes P, NP, NP-complete and
NP-hard.

The main complexity classes P, NP and NP-complete have been de�ned. It re-
mains to discuss the complexity of the LB problem. In the rest of this subsection,
it is proven that the LB problem belongs to NP-complete class.

Firstly, the decision version of the Knapsack problem is needed. Given n ∈ N items
with weight w1,w2, . . . ,wn ∈ N, value v1, v2, . . . , vn ∈ R

+, capacity W ∈ N and value
V ∈ R+, is there a subset K ⊆ {1, . . . ,n} such that

∑
i∈K wi ≤ W and

∑
i∈K vi ≥ V?

Secondly, in order to determine the complexity of the LB problem, the decision
version of the LB problem must be de�ned accordingly. Given m ∈ N MUXes
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with p ∈ N ingoing ports each, i.e., n = m · p ∈ N ingoing ports in total and �ows

f1, f2, . . . , fn ∈ N0. Are there subsets S1,S2, . . . ,Sm such that
m⋃

i=1

Si = {i | i ∈ 1, . . . ,n}

and Si ∩Sj = ∅,∀i, j = 1, . . . ,m∧ i , j and |Si | = p,∀i = 1, . . . ,m and
∑
j∈Si

f j ≤ F,∀i =

1, . . . ,m where F =

⌈
n∑

i=1

fi/m

⌉
?

In the proof, the known complexities of the Knapsack problem and the Multiple
Knapsack problem are used. Thus, a discussion of their complexity is required
beforehand.

Theorem 1. The Knapsack problem is NP-complete.

Proof. The proof can be found here [43]. �

Theorem 2. The Multiple Knapsack problem is NP-complete.

Proof. Being a generalization of the Knapsack problem, the Multiple Knapsack prob-
lem is NP-complete. The proof can be found here [43]. �

Theorem 3. The Load Balancing (LB) problem is NP-complete.

Proof. First, the LB problem is a NP problem. The proof are the subsets
S1,S2, . . . ,Sm of �ow indices that are chosen and the veri�cation process is to com-
pute |Si | = p,∀i = 1, . . . ,m and

∑
j∈Si

f j ≤ F,∀i = 1, . . . ,m which takes polynomial time

in the size of input.

Second, it will be shown there is a polynomial reduction from the Multiple Knapsack
problem to the LB problem. It su�ces to show that there exists a polynomial time
reduction Q(·) such that Q(x) is a YES instance to the LB problem i� x is a YES
instance to the Multiple Knapsack problem. Suppose there are given f1, f2, . . . , fn, for
the LB problem, consider the following Multiple Knapsack problem: Wi = F,Vi =

p,∀i = 1, . . . ,m and wi = fi, vi = 1 + fi/h,∀i = 1, . . . ,n where h >

n∑
i=1

fi and K =

m⋃
i=1

Ki ⊆ {1, . . . ,n} and Ki ∩ K j = ∅,∀i, j = 1, . . . ,m ∧ i , j where Ki represents

indices of items assigned to the i-th knapsack. Here, Q(·) is the process converting
the Multiple Knapsack problem to the LB problem. It is clear that this process is
polynomial in the input size.

If x is a YES instance for the Multiple Knapsack problem, with the chosen sets

K1,K2, . . . ,Km, let R = {1, . . . ,n}\
m⋃

i=1

Ki. It follows that
∑
j∈Ki

w j =
∑
j∈Ki

f j ≤ Wi =

F,∀i = 1, . . . ,m and it remains to prove there are p items in each knapsack. It
follows that

∑
j∈Ki

v j =
∑
j∈Ki

(1+ f j/h) ≥ Vi = p,∀i = 1, . . . ,m and thus, there must be at
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least p items in each knapsack to satisfy the inequality. Moreover, n = m · p implies
there must be exactly p items in each knapsack and thus, R = ∅. Therefore, the
sets K1,K2, . . . ,Km correspond to sets S1,S2, . . . ,Sm, respectively, and x is a YES
instance for the LB problem.

Conversely, if Q(x) is a YES instance for the LB problem, there exists S1,S2, . . . ,Sm

such that Si ∩ Sj = ∅,∀i, j = 1, . . . ,m ∧ i , j and
m⋃

i=1

Si = {i | i ∈ 1, . . . ,n} and |Si | =

p,∀i = 1, . . . ,m and
∑
j∈Si

f j ≤ F,∀i = 1, . . . ,m. Let the Multiple Knapsack problem

consist of m knapsacks and let the i-th knapsack contain the items corresponding
to indices in Si, and it follows that

∑
j∈Ki

w j =
∑
j∈Ki

f j ≤ Wi = F,∀i = 1, . . . ,m and∑
j∈Ki

v j =
∑
j∈Ki

(1 + f j/h) ≥ Vi = p,∀i = 1, . . . ,m. Therefore, Q(x) is a YES instance for

the Multiple Knapsack problem.

This proves the NP-completeness of the LB problem.

�

While a method for computing the solutions to NP-complete problems using a rea-
sonable amount of time remains undiscovered, computer scientists and programmers
still frequently encounter NP-complete problems. NP-complete problems are of-
ten addressed by using heuristic methods and approximation algorithms. In the
following sections, in order to solve the LB problem, �ve di�erent approaches are
proposed, namely, Dynamic Programming (DP), Greedy Heuristic (GH), Integer
Linear Programming (ILP), Genetic Algorithm (GA) and Reinforcement Learning
(RL).

6.3 Dynamic Programming

Dynamic Programming (DP) [50] is an optimization approach that transforms a
complex problem into a sequence of simpler problems; its essential characteristic
is the multistage nature of the optimization procedure. In general, DP provides a
general framework for analyzing many problem types. Within this framework, a
variety of optimization techniques can be employed to solve particular aspects of a
more general formulation. A creativity is usually required before it can be recognized
that a particular problem can be cast e�ectively as a dynamic program; and often
subtle insights are necessary to restructure the formulation so that it can be solved
e�ectively. DP solutions have a polynomial complexity which assures a much faster
running time than other techniques like backtracking, brute-force, etc.

In other words, it solves a complex problem by breaking it down into a collection of
simpler subproblems, solving each of those subproblems just once, and storing their
solutions.
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An easy recipe how to proceed using DP to solve a particular optimization problem
is as follows [56]:

1. Embed a problem in a family of related problems.

2. Derive a relationship between the solutions to these problems.

3. Solve this relationship.

4. Recover a solution to the original problem from this relationship.

In contrast to LP, there does not exist a standard mathematical formulation of �the�
DP problem [37]. Rather, DP is a general type of approach to problem solving, and
the particular equations used must be developed to �t each situation. Therefore, a
certain degree of ingenuity and insight into the general structure of DP problems
is required to recognize when and how a problem can be solved by DP procedures.
These abilities can best be developed by an exposure to a wide variety of DP appli-
cations and a study of the characteristics that are common to all these situations.

The brief introduction to DP was given. In order to understand the above-mentioned
principles, the Fibonacci numbers are discussed in the next subsection and how to
�nd the n-th member of the Fibonacci sequence using DP. It follows with demon-
stration how to solve the Knapsack problem based on DP. Both phases, namely,
calculation and retrieval procedures are explained on a simple example. Finally, the
last subsection deals with the LB problem.

6.3.1 Fibonacci Numbers

In this subsection, a simple example how to use DP to obtain the Fibonacci numbers
is given. The Fibonacci numbers are the numbers in the following integer sequence,
called the Fibonacci sequence, and characterized by the fact that every number after
the �rst two is the sum of the two preceding ones, i.e.,

0,1,1,2,3,5,8,13,21,34,55,89,144, . . . . (6.22)

In mathematical terms, the sequence Fn of Fibonacci numbers is de�ned by the
recurrence relation

Fn = Fn−1 + Fn−2 (6.23)

with seed values
F0 = 0,F1 = 1. (6.24)

The goal is �nding the n-th member of the Fibonacci sequence. A simple method
that is a direct recursive implementation mathematical recurrence relation given
above is shown in the following Listing 6.1.
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1 #include <QCoreApplication >

2

3 int fibonacci(int n)

4 {

5 if (n <= 1)

6 return n;

7

8 return fibonacci(n - 1) + fibonacci(n - 2);

9 }

10

11 int main(int argc , char **argv)

12 {

13 QCoreApplication* app = new QApplication(argc , argv);

14 int n = 5;

15 int result = fibonacci(n);

16 return app ->exec ();

17 }

Listing 6.1: The Fibonacci numbers using recursion.

It can be observed that this implementation does a lot of repeated work, see the
following recursion tree in Figure 6.3.

fibonacci(5)

fibonacci(4)

fibonacci(2) fibonacci(1)

fibonacci(2)

fibonacci(2)

fibonacci(3)

fibonacci(3)

fibonacci(1) fibonacci(1) fibonacci(0) fibonacci(1) fibonacci(0)

fibonacci(1) fibonacci(0)

Figure 6.3: The recursion tree for the n-th member of the Fibonacci sequence.

Using recursion is not e�cient. Time complexity of such a naive approach is expo-
nential, namely, O(2n). The repeated work done in the approach using recursion can
be avoided by storing the Fibonacci numbers calculated so far. The resulting func-
tion requires only O(n) time instead of exponential time, but requires O(n) space.
The code using DP is given in the following Listing 6.2.

1 #include <QCoreApplication >

2

3 int fibonacci(int n)

4 {

5 int f[n + 1];

6 f[0] = 0;

7 f[1] = 1;

8

9 for (int i = 2; i <= n; i++) // use the calculated and

10 f[i] = f[i - 1] + f[i - 2]; // stored Fibonacci numbers
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11

12 return f[n];

13 }

14

15 int main(int argc , char **argv)

16 {

17 QCoreApplication* app = new QApplication(argc , argv);

18 int n = 5;

19 int result = fibonacci (5);

20 return app ->exec ();

21 }

Listing 6.2: The Fibonacci numbers using DP.

6.3.2 The Knapsack Problem

Given weights and values of n ∈ N items, put these items in a knapsack of capacity
W ∈ N to get the maximum total value in the knapsack. In other words, given
two integer arrays v1, v2, . . . , vn ∈ R

+ and w1,w2, . . . ,wn ∈ N which represent values
and weights associated with n items respectively. Also given an integer W which
represents a knapsack capacity. The goal is to �nd out the maximum value subset
of v1, v2, . . . , vn such that sum of the weights w1,w2, . . . ,wn of this subset is smaller
than or equal to W .

Firstly, m[i,w] can be de�ned to be the maximum value that can be attained with
a weight less than or equal to w using items up to i (�rst i items) where w ∈

{0,1, . . . ,
n∑

i=1

wi} and i ∈ {0,1,2, . . . ,n}.

In general, m[i,w] can be de�ned recursively as follows [56]:

• initialization

m[0,w] = 0 ∀w ∈ 0,1, . . . ,
n∑

i=1

wi

m[i,0] = 0 ∀i ∈ 0,1, . . . ,n

(6.25)

• recursive step

m[i,w] =
{

m[i − 1,w] if wi > w

max(m[i − 1,w], vi + m[i − 1,w − wi]) if wi ≤ w
(6.26)

The solution can then be found by calculating m[n,W]. In order to do this e�ciently,
a table to store the previous computations can be used.

In order to demonstrate and describe algorithms, a simple example is given. It
considers a knapsack with capacity W = 13 and 8 items with weights w1 = 8,w2 =

8,w3 = 3,w4 = 7,w5 = 7,w6 = 2,w7 = 2,w8 = 5 and values v1 = 8, v2 = 8, v3 = 3, v4 =
7, v5 = 7, v6 = 2, v7 = 2, v8 = 5. The following code in Listing 6.3 computes and stores
values in a table.
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1 static const int n = 8;

2 static const int W = 13;

3

4 int weights[n] = { 8, 8, 3, 7, 7, 2, 2, 5 };

5 int values[n] = { 8, 8, 3, 7, 7, 2, 2, 5 };

6

7 int m[n + 1][W + 1];

8

9 // m(i, w) means the value of the best knapsack

10 // with capacity w using the first i items

11 for (int i = 0; i <= n; i++)

12 {

13 for (int w = 0; w <= W; w++)

14 {

15 if (i == 0 || w == 0)

16 m[i][w] = 0;

17 else if (weights[i - 1] > w)

18 m[i][w] = m[i - 1][w];

19 else

20 m[i][w] = max(m[i - 1][w],

21 values[i - 1] + m[i - 1][w - weights[i - 1]]);

22 }

23 }

Listing 6.3: The calculation of values and storing them in a table for the Knapsack
problem using DP.

Time complexity of algorithm based on DP is O(nW) where n ∈ N is the number of
items and W ∈ N is the capacity of knapsack.

0 1 2 3 4 5 6 7 8 9 10 11 12 13
0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
1 0 0 0 0 0 0 0 0 8 8 8 8 8 8
2 0 0 0 0 0 0 0 0 8 8 8 8 8 8
3 0 0 0 3 3 3 3 3 8 8 8 11 11 11
4 0 0 0 3 3 3 3 7 8 8 10 11 11 11
5 0 0 0 3 3 3 3 7 8 8 10 11 11 11
6 0 0 2 3 3 5 5 7 8 9 10 11 12 13
7 0 0 2 3 4 5 5 7 8 9 10 11 12 13
8 0 0 2 3 4 5 5 7 8 9 10 11 12 13

Table 6.1: The values stored in a table for the Knapsack problem using DP.

The values stored in a table are shown in Table 6.1. The total value of items being in
the knapsack is located in the bottom-right corner. Based on the table, it is possible
to retrieve which items are assigned to the knapsack and which are not.

The last question is how to obtain items based on the stored table being in the
knapsack. Using backtrace, the retrieval procedure starts in the bottom-right corner.
There is 13 in row 8 and column 13. It continues up and looks for the last row with
value of 13 in the same column. It �nds row 6 as the last row with value of 13.
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That means, the �rst item in the knapsack is the item 6. It decreases the capacity
of knapsack by w6 = 2, i.e., w = W − w6 = 11.

Then, it moves to the cell in row 6 and column 11 with value of 11. It looks for
the last row with value of 11 in the same column again. It �nds row 3 as the last
row with value of 11. Thus, the item 3 belongs to the knapsack. The capacity of
knapsack is decreased by w3 = 3 and results in the remaining capacity equal to 8.

Finally, it moves to the cell in row 3 and column 8 with value of 8. The last row
with value of 8 in the same column is row 1. The item 1 belongs to the knapsack
too. The weight of item 1 w1 = 8 is equal to the remaining capacity of the knapsack,
i.e., there is no free space in the knapsack, the algorithm terminates.

To sum it up, the knapsack contains the items 1, 3, 6 with weights w1 = 8,w3 =

3,w6 = 2 and has the total weight of 13 being equal to the initial knapsack capacity
W = 13. The following code in Listing 6.4 summarizes the retrieval procedure.

1 int best = m[n][W];

2

3 // true/false if the i-th item is/is not in the knapsack

4 int solution[n];

5 for (int i = 0; i < n; i++)

6 solution[i] = 0;

7

8 // backtrace

9 int a = best;

10 int i = n;

11 int w = W;

12

13 while (a > 0)

14 {

15 while (m[i][w] == a)

16 i = i - 1;

17

18 solution[i] = 1; // this item has to be in the knapsack

19 w = w - weights[i];

20 a = m[i][w];

21 }

Listing 6.4: The retrieval procedure based on values in the stored table for the
Knapsack problem using DP.

6.3.3 The Load Balancing Problem

Given m ∈ N MUXes with p ∈ N ingoing ports each, i.e., n = m · p ∈ N ingoing ports
in total and �ows f1, f2, . . . , fn ∈ N0. The goal is to �nd out the best allocation of n
�ows to m MUXes based on the LB problem, see De�nition 1.

The idea how to solve the LB problem using DP is based on the DP approach for
the Knapsack problem [66]. The �rst approximation is taken from the fact that
the LB problem is very similar to the m�Knapsack problem, see De�nition 6. If
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these two problems were the same, the algorithm for the Knapsack problem using
DP would only be used m-times considering a reduced set of �ows Ri = { f j | j ∈

{1, . . . ,n}\
i−1⋃
k=1

Sk} for the i-th MUX where a subset Si encapsulates �ow indices of

the i-th MUX. Finally, it would obtain the solution for the LB problem.

Unfortunately, these two problems are only similar and not the same. The con-
straint considering p ingoing ports for each MUX makes the di�erence. Using the
m�Knapsack problem terminology, the m�Knapsack problem has no constraint or
restriction dealing with exactly p items in the i-th knapsack. That means, the i-th
knapsack could have consisted of either less, equal or more items than p.

For the i-th knapsack, a stored table is built where mi[ j,w] contains an optimal
value when the overall capacity of the i-th knapsack equals w and only the �rst j
items are considered. If Wi is the overall capacity of the i-th knapsack and there are
in total |Rw

i | items, an optimal solution is given by mi[|R
w
i |,Wi]. Using backtrace,

the items being in the i-th knapsack can be retrieved.

However, considering the exact number of items p in the i-th knapsack, the Knapsack
problem algorithm based on DP can not be used. The reason is that the recurrence
formula in Equation 6.26 does not take into account di�erent combinations of items
[66]:

• Firstly, if the following condition is satis�ed

mi[ j − 1,w] < mi[ j − 1,w − wϕ( j,Rwi )] + vϕ( j,Rvi ), (6.27)

then
mi[ j,w] = mi[ j − 1,w − wϕ( j,Rwi )] + vϕ( j,Rvi ) (6.28)

so that the j-th item is inserted into the i-th knapsack and the exact number
of items p is not considered at all. It might lead to a violation of the con-
straint. On the other hand, the recurrence formula in Equation 6.26 could
be improved by keeping track of the number of items inserted at each step
and not adding others if the number of items inserted into the i-th knapsack
exceeds p. However, a new problem would rise up, see the next point.

• Secondly, assuming the recurrence formula in Equation 6.26 keeps track of the
number of items inserted at each step. If the following condition is satis�ed

mi[ j − 1,w] > mi[ j − 1,w − wϕ( j,Rwi )] + vϕ( j,Rvi ), (6.29)

then
mi[ j,w] = mi[ j − 1,w] (6.30)

so that the j-th item is not inserted into the i-th knapsack. It might be a
mistake in case an optimal solution mi[ j − 1,w] already consists of the exact
number of items p to be inserted into the i-th knapsack. The source of a
problem is that the comparison is not done in a proper way. On one hand, to
preserve an optimal solution consisting of p items selected among the previous
j−1 items, on the other hand, to insert the j-th item and, additionally, consider
the best subset with p − 1 items among the previous j − 1 items.
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Moreover, such a strict constraint is hard to ful�l. Therefore, two mechanisms are
introduced ensuring the exact number of items p in the i-th knapsack. Firstly, the
mechanism for the upper bound � a maximum number of items p in the i-th knapsack
� is proposed. Secondly, the mechanism for the lower bound � a minimum number
of items p in the i-th knapsack � is presented. Finally, both mechanisms together
form the constraint on the exact number of items p in the i-th knapsack.

Thus, the mechanism for the upper bound consists of adding the third dimension,
i.e., mi[ j,w, k] is an optimal solution when the capacity of the i-th knapsack is w,
only the �rst j items are considered and it is not allowed to insert more than k items
into the i-th knapsack [66].

In general, mi[ j,w, k] can be de�ned recursively as follows:

• initialization

mi[0,w, k] = 0 ∀w ∈ 0,1, . . . ,Wi, ∀k ∈ 0,1, . . . , p
mi[ j,0, k] = 0 ∀ j ∈ 0,1, . . . ,n, ∀k ∈ 0,1, . . . , p
mi[ j,w,0] = 0 ∀ j ∈ 0,1, . . . ,n, ∀w ∈ 0,1, . . . ,Wi

(6.31)

• recursive step

mi[ j,w, k] =



mi[ j − 1,w, k]
if wϕ( j,Rwi ) > w

max(mi[ j − 1,w, k], vϕ( j,Rvi ) + mi[ j − 1,w − wϕ( j,Rwi ), k])
if wϕ( j,Rwi ) ≤ w ∧ j ≤ k

max(mi[ j − 1,w, k], vϕ( j,Rvi ) + mi[ j − 1,w − wϕ( j,Rwi ), k − 1])
if wϕ( j,Rwi ) ≤ w ∧ j > k

(6.32)

It remains to discuss the lower bound mechanism [66]. Actually, it is based on values
vϕ( j,Rvi ),∀ j = 1, . . . , |Rv

i | for the i-th knapsack. The main idea relies on an e�cient
and clever form of the values. On one hand, it should motivate the algorithm to
add as much items as p into the i-th knapsack, on the other hand, it should still
keep in mind that a higher �ow deserves better reward. For this reason, values are
introduced in the following form

vϕ( j,Rvi ) = 1 + fϕ( j,Ri)/h ∀ j ∈ 1, . . . , |Rv
i | (6.33)

where h >
∑n

k=1 fk . The reward �1� is gained by inserting of one item into the i-th
knapsack and the fraction fϕ( j,Ri)/h assures items with a higher �ow to be rather
inserted into the i-th knapsack. Moreover, the fraction fϕ( j,Ri)/h ensures that a
reward for allocation of a single �ow is always higher than a reward gained only
based on the sum of size of all �ows themselves. Such a form of values has already
been used in the proof of the LB problem complexity, see Theorem 3.

In order to �nalize the problem transformation from the LB problem to the
m�Knapsack problem and vice versa, it is necessary to use weights wϕ( j,Rwi ) =
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fϕ( j,Ri),∀ j = 1, . . . , |Rw
i |, values vϕ( j,Rvi ) = 1 + fϕ( j,Ri)/h,∀ j = 1, . . . , |Rv

i | and ca-

pacity Wi =

⌈
(m−i+1)p∑

j=1

fϕ( j,Ri)/(m − i + 1)

⌉
for the i-th knapsack. In addition,

the constraint on the exact number of items p in the i-th knapsack results in
|Rv

i | = |R
w
i | = |Ri | = (m − i + 1)p.

The following code in Listing 6.5 computes and stores values in a three-dimensional
table for the i-th MUX of the LB problem [66].

1 double m_i[flowCount + 1][F + 1][ portCount + 1];

2

3 // m_i(j, f, k) means the value of the best i-th knapsack

4 // with capacity f using the first j items and

5 // considering maximum number of items k

6 for (int j = 0; j <= flowCount; j++)

7 {

8 for (int f = 0; f <= F; f++)

9 {

10 for (int k = 0; k <= portCount; k++)

11 {

12 if (j == 0 || f == 0 || k == 0)

13 m_i[j][f][k] = 0;

14 else if (flows[j - 1] > f)

15 m_i[j][f][k] = m_i[j - 1][f][k];

16 else

17 {

18 if (j <= k)

19 m_i[j][f][k] =

20 max(m_i[j - 1][f][k], values[j - 1] +

21 m_i[j - 1][f - flows[j - 1]][k]);

22 else

23 m_i[j][f][k] =

24 max(m_i[j - 1][f][k], values[j - 1] +

25 m_i[j - 1][f - flows[j - 1]][k - 1]);

26 }

27 }

28 }

29 }

Listing 6.5: The calculation of values and storing them in a table for the i-th MUX
of the LB problem using DP.

Time complexity of the LB problem algorithm based on DP is O((m − i + 1)pWi p)
where (m − i + 1)p ∈ N is the number of items, Wi ∈ N is the capacity of the i-th
knapsack and p is the exact number of items in the i-th knapsack. A solution can
be found by calculating mi[|R

w
i |,Wi, p]. Using backtrace in the stored table, the

allocated items can then be retrieved. The following code in Listing 6.6 summarizes
the retrieval procedure for the i-th MUX of the LB problem [66].

1 double best = m_i[flowCount ][F][ portCount ];

2

3 // true/false if the j-th item is/is not in the i-th knapsack

4 int solution[flowCount ];
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5 for (int j = 0; j < flowCount; j++)

6 solution[i] = 0;

7

8 // backtrace

9 double a = best;

10 int j = flowCount;

11 int f = F;

12 int k = portCount;

13

14 while (a > 0)

15 {

16 while (m_i[j][f][k] == a)

17 j = j - 1;

18

19 solution[j] = 1; // this item has to be in the i-th knapsack

20 f = f - flows[j];

21 k = k - 1;

22 a = m_i[j][f][k];

23 }

Listing 6.6: The retrieval procedure based on values in the stored table for the i-th
MUX of the LB problem using DP.

The algorithms for both phases � computing the stored table and the retrieval
procedure � have been discussed. Both algorithms are written for the LB problem
of the i-th MUX in a general way. In order to combine the whole LB problem
together, a proposal of an algorithm considering all m MUXes is required. The idea
is to compute and retrieve S1 for the �rst MUX, then reduce a set of �ows R1 by the
allocated �ows and get a set of �ows R2 for the second MUX and so forth. Generally,
the stored table is computed for the i-th MUX, Si is retrieved and Ri is reduced by
Si giving Ri+1 for the (i + 1)-th MUX. Regarding the last MUX, the m-th MUX, a
set Rm determines directly Sm. The proposed algorithm [66] is stated in Algorithm
6.7.

Algorithm 6.7 The complete LB problem algorithm considering m MUXes using
DP
1: load �ows R1
2: for i = 1→ m − 1 do . get LB of the i-th MUX

3: F =

⌈
(m−i+1)p∑

j=1

fϕ( j,Ri)/(m − i + 1)

⌉
4: mi = computeTheStoredTable(Ri,F) . based on Listing 6.5
5: Si = retrievalPhase(Ri,F,mi) . based on Listing 6.6

6: Ri+1 = { f j | j ∈ {1, . . . ,n}\
i⋃

k=1

Sk}

7: end for
8: Sm = {ϕ( j,Rm) | ∀ j = 1, . . . , p}
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6.4 Greedy Heuristic

Algorithms for optimization problems typically go through a sequence of steps, with
a set of choices at each step. For many optimization problems, using DP to deter-
mine the best choices is overkill. Therefore, simpler and more e�cient algorithms
sometimes o�er an interesting alternative. A greedy algorithm [20] always makes
the choice that looks best at the moment. That is, it makes a locally optimal choice
in the hope that this choice will eventually lead to a globally optimal solution.
However, generally, greedy algorithms do not provide globally optimized solutions.

In other words, greedy is an algorithmic paradigm that builds up a solution piece
by piece, always choosing the next piece that o�ers the most obvious and immediate
bene�t. An optimization problem can be solved using a greedy strategy if the
problem has the following property: At every step, a choice can be made that looks
best at the moment, and the optimal solution of the complete problem is obtained.

In many problems, a greedy strategy does not in general produce an optimal so-
lution, however, a Greedy Heuristic (GH) may yield locally optimal solutions that
approximate a global optimal solution in a reasonable time.

At this point, a discussion about some of the general properties of greedy methods
is started. In general, greedy algorithms have �ve components [20]:

1. A candidate set from which a solution is created.

2. A selection function which chooses the best candidate to be added to the
solution.

3. A feasibility function that is used to determine if a candidate can be used to
contribute to a solution.

4. An objective function which assigns a value to a solution, or a partial solution.

5. A solution function which will indicate when a complete solution has been
discovered.

Moreover, a greedy algorithm development goes through the following steps [20]:

1. Determine the optimal substructure of the problem.

2. Develop a recursive solution.

3. Show that if the greedy choice is made, then only one subproblem remains.

4. Prove that it is always safe to make the greedy choice.

5. Develop a recursive algorithm that implements the greedy strategy.

6. Convert the recursive algorithm to an iterative algorithm.
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The key question being still remaining not answered is how a solver can tell whether
a greedy algorithm will solve a particular optimization problem. No way works all
the time, but the greedy-choice property and optimal substructure are the two key
ingredients [20]. If it can be demonstrated that the problem has these properties,
then it is well on the way to developing a greedy algorithm for that problem.

The �rst key ingredient is the greedy-choice property [20]. A globally optimal solution
can be assembled by making locally optimal (greedy) choices. In other words, when
it is considering which choice to make, it makes the choice that looks best in the
current problem, without considering results from subproblems.

Here is where greedy algorithms di�er from DP. In DP, a choice is made at each
step, but the choice usually depends on the solutions to subproblems. Consequently,
DP problems are solved typically in a bottom-up manner, progressing from smaller
subproblems to larger subproblems. In a greedy algorithm, whatever choice seeming
best at the moment is made and then, it solves the subproblem that remains. The
choice made by a greedy algorithm may depend on choices so far, but it can not
depend on any future choices or on the solutions to subproblems. Thus, unlike DP,
solving the subproblems before making the �rst choice, a greedy algorithm makes
its �rst choice before solving any subproblems. A DP algorithm proceeds bottom
up whereas a greedy strategy usually progresses in a top-down fashion, making one
greedy choice after another, reducing each given problem instance to a smaller one.

In other words, a greedy algorithm never reconsiders its choices. This is the main
di�erence from DP which is exhaustive and is guaranteed to �nd the solution. After
every stage, DP makes a decision based on all the decisions made in the previous
stage, and may reconsider the previous stage's algorithmic path to a solution.

The second key aspect is the optimal substructure [20]. A problem exhibits optimal
substructure if an optimal solution to the problem contains within it optimal solu-
tions to subproblems. This property is a key ingredient of assessing the applicability
of DP as well as greedy algorithms.

A more direct approach regarding optimal substructure is usually used when apply-
ing it to greedy algorithms. Thus, there is the luxury of assuming that it arrived at a
subproblem by having made the greedy choice in the original problem. All it really
needs to do is argue that an optimal solution to the subproblem, combined with
the greedy choice already made, yields an optimal solution to the original problem.
This scheme implicitly uses induction on the subproblems to prove that making the
greedy choice at every step produces an optimal solution.

To conclude, greedy algorithms mostly (but not always) fail to �nd the globally
optimal solution, because they usually do not operate exhaustively on all the data.
They can make commitments to certain choices too early which prevent them from
�nding the best overall solution later. Therefore, greedy algorithms can be charac-
terized as being �shortsighted�, and also as �non-recoverable�. They are ideal only for
problems which have optimal substructure. Despite this, for many simple problems,
the best suited algorithms are greedy algorithms.
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6.4.1 The Partition Problem

Given a set of n ∈ N positive integers, a task is to separate them into two subsets. It
may put as many or as few numbers as it pleases in each of the subsets, but it must
make the sums of the subsets as nearly equal as possible. Ideally, the two sums would
be exactly the same, but this is feasible only if the sum of the entire set is even. In
the event of an odd total, the best you can possibly do is to choose two subsets that
di�er by 1. Accordingly, a perfect partition is de�ned as any arrangement for which
the �discrepancy� � the absolute value of the subset di�erence � is no greater than
1.

1 #include <QCoreApplication >

2 #include <list >

3

4 using namespace std;

5

6 int main(int argc , char **argv)

7 {

8 QCoreApplication* app = new QApplication(argc , argv);

9

10 list<int > U = { 4, 6, 7, 5, 8 };

11 list<int > U1;

12 list<int > U2;

13 int sumU1 = 0;

14 int sumU2 = 0;

15

16 U.sort ();

17 U.reverse ();

18

19 for (list<int >:: iterator it = U.begin (); it != U.end(); it++)

20 {

21 if (sumU1 <= sumU2)

22 {

23 U1.push_back (*it);

24 sumU1 += *it;

25 }

26 else

27 {

28 U2.push_back (*it);

29 sumU2 += *it;

30 }

31 }

32

33 return app ->exec ();

34 }

Listing 6.8: The greedy algorithm for the Partition problem.

More formally, the Partition problem is the task of deciding whether a given set U
of positive integers can be partitioned into two subsets U1 and U2 such that the
sum of the numbers in U1 equals the sum of the numbers in U2.

The GH algorithm for the Partition Problem starts with a sorting of the numbers
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in descending order, and then assigns each number in turn to the subset with the
smaller sum so far [45]. For example, given the numbers U = {8,7,6,5,4}, it would
assign the 8 and 7 to di�erent subsets, the 6 to the subset with the 7, the 5 to
the subset with the 8, and �nally the 4 to either subset, yielding for example the
partition U1 = {8,5,4} and U2 = {7,6}, with a subset di�erence of 17 - 13 = 4.
The average solution quality of this heuristic is based on the order of the smallest
number.

However, if U is divided into the subsets U1 = {7,8} and U2 = {4,5,6}, the sum of
the numbers in each subset is 15, and the di�erence between the subset sums is zero
which is optimal.

Time complexity of the Partition problem algorithm based on GH is O(n log n). This
heuristic works well in practice, however, as it can be seen in the particular example,
generally, it is not guaranteed to produce the best possible partition. To conclude,
the above-mentioned code in Listing 6.8 summarizes the greedy algorithm for the
Partition problem.

6.4.2 The Load Balancing Problem

The LB problem can be seen as a generalization of the Partition problem with m
subsets [66] and such a problem is called the Multi-Way Partition problem. However,
such a generalization is not enough. In general, the goal is to divide a set of n ∈ N
integers into a given number m ∈ N of subsets, minimizing the di�erence between
the smallest and the largest subset sums.

Unfortunately, the Multi-Way Partition problem does not keep in mind the con-
straint on the same number of integers p ∈ N in all subsets. In other words, the
Multi-Way Partition problem would be equal to the LB problem if and only if the
Multi-Way Partition problem also held the same number of integers p in all subsets.

Therefore, the code for the Partition problem can be generalized to m subsets and
adjusted so that it does not consider �full� subsets (p integers have been already
allocated to the subset) anymore, see Listing 6.9.

Due to a temporary assignment of INT_MAX to subset sum for all �full� subsets, the
algorithm does not consider �full� subsets for an allocation anymore. The remaining
�not-full� subsets have smaller subset sum each. Thus, a subset with the smallest
sum is selected for the allocation of the integer.

The algorithm proceeds in this way and in the last step, there remains only one
subset for the allocation of the last integer. The other subsets are �full� subsets with
p integers each. Finally, all subsets have the same number of integers p at the end
of the algorithm.

1 static const int MUXCount = 6;

2 static const int MUXPortCount = 15;

3 static const int portCount = MUXCount * MUXPortCount;

4
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5 static const int maxPortSize = 10000;

6 static const int minPortSize = 1;

7

8 int f[portCount ];

9

10 // load flows in the range from 1 B to 10 kB

11 loadFlows(f, portCount , minPortSize , maxPortSize)

12

13 int MUXes[MUXCount ][ MUXPortCount ];

14 int flowSum[MUXCount ];

15 int flowSumTemp[MUXCount ];

16 int flowAssignedCount[MUXCount ];

17 for (int i = 0; i < MUXCount; i++)

18 {

19 flowSum[i] = 0;

20 flowSumTemp[i] = 0;

21 flowAssignedCount[i] = 0;

22 }

23

24 sortDescending(f, portCount );

25

26 for (int i = 0; i < portCount; i++)

27 {

28 for (int j = 0; j < MUXCount; j++)

29 {

30 if (flowAssignedCount[j] < MUXPortCount)

31 flowSumTemp[j] = flowSum[j];

32 else

33 flowSumTemp[j] = INT_MAX;

34 }

35

36 // get index of list with smallest sum so far

37 int minSumIndex = getMinSumIndex(flowSumTemp , 0, MUXCount - 1);

38

39 MUXes[minSumIndex ][ flowAssignedCount[minSumIndex ]] = f[i];

40 flowSum[minSumIndex] += f[i];

41 flowAssignedCount[minSumIndex ]++;

42 }

Listing 6.9: The greedy algorithm for the LB problem.

6.5 Integer Linear Programming

Integer Linear Programming (ILP) [12] is a mathematical optimization dealing with
a class of constrained optimization problems in which some or all variables are
integers and all mathematical functions in the objective and constraints are conven-
tionally linear. The insertion of integer variables in Linear Programming (LP) [51]
enables much more rich and realistic representations of decision situations.

This integrality restriction may seem rather innocuous, but in reality, it has far
reaching e�ects. On one hand, modeling with integer variables has turned out
to be useful far beyond restrictions to integral production quantities. With integer
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variables, one can model logical requirements, �xed costs, sequencing and scheduling
requirements, and many other problem aspects.

The downside of all this power, however, is that problems with as few as 40 variables
can be beyond the abilities of even the most sophisticated computers. While these
small problems are somewhat arti�cial, most real problems with more than 100
variables are not possible to solve unless they show speci�c exploitable structure.
Despite the possibility (or even likelihood) of enormous computing times, there are
methods that can be applied to solving integer programs.

LP is a method to achieve the best outcome in a mathematical model whose require-
ments are represented by linear relationships. In other words, LP is a special case
of mathematical programming (mathematical optimization). Using LP, it searches
a set of values for continuous variables (x1, x2, . . . , xn) that maximizes or minimizes
a linear objective function z, while satisfying a set of linear constraints (a system of
simultaneous linear equations and/or inequalities). Mathematically, LP is expressed
as follows [51]:

To maximize

z =
n∑

j=1

c j x j, (6.34)

subject to the constraints

n∑
j=1

ai j x j ≤ bi ∀i = 1, . . . ,m

x j ≥ 0 ∀ j = 1, . . . ,n.

(6.35)

The ILP problem is the LP problem in which at least one of the variables is restricted
to integer values. In the past two decades, there has been an increasing use of an
alternate term � the mixed integer linear programming problem � for LP problems
with integer restrictions on some or all of the variables. For clarity, a term the
pure integer linear programming problem is sometimes used to emphasize the ILP
problem whose variables are all restricted to be integer valued.

The term �programming� in this context means planning activities that consume
resources and/or meet requirements, as expressed in the m ∈ N constraints. The
resources may include raw materials, machines, equipments, facilities, workforce,
money, management, information technology, and so forth. In the real world, these
resources are usually limited and must be shared with several competing activities.
Requirements may be implicitly or explicitly imposed. The objective of the LP/ILP
problem is to allocate the shared resources, and responsibility to meet requirements,
to all competing activities in an optimal (best possible) manner.

Mathematically, the ILP problem is de�ned as [12]:

T maximize

z =
n1∑
j=1

c j x j +

n2∑
k=1

dk yk, (6.36)
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subject to the constraints

n1∑
j=1

ai j x j +

n2∑
k=1

eik yk ≤ bi ∀i = 1, . . . ,m

x j ≥ 0 ∀ j = 1, . . . ,n1
yk ∈ N0 ∀k = 1, . . . ,n2.

(6.37)

If n1 = 0, then the ILP problem can be called as the pure integer linear programming
problem. Then, the ILP problem is basically the LP problem if n2 = 0. Finally, if
n1 > 0 and n2 > 0, then the ILP problem can be called as the mixed integer linear
programming problem.

However, only pure integer linear programming problems are assumed in the rest of
this section, i.e., n1 = 0. Moreover, for the ILP problem, an integer decision variable
is denoted as xi, an integer solution as x = (x1, x2, . . . , xn) and an integer optimum
solution as x∗ in the rest of this section.

This section gives a brief description of two classical approaches for solving ILP
problems, namely, branch-and-bound and cutting-plane methods [12]. Although
both approaches are capable of solving ILP problems, their degrees of success vary
in software implementation. The cutting-plane approach, when used as a stand-
alone solver, has potential to solve ILP problems of limited size, but may not work
well in a large-scale application.

However, the valid inequality cuts generated by the cutting-plane approach can
be useful when combined with the branch-and-bound method to yield a powerful
branch-and-cut approach [12].

For over three decades, the branch-and-bound had been the prevailing solution
method until the emergence of the branch-and-cut in early 1990s. The branch-
and-cut combined the branch-and-bound with the generated cutting planes into a
much more e�cient �hybrid� approach.

As a whole, extracting the strengths of the cutting-plane method and injecting them
into the branch-and-bound may greatly increase the modern solution power for ILP
problems. In what follows, it introduces the concepts and background of these two
solution approaches, and then exploit the potential strengths of each approach.

In contrast with ILP, all other approaches, like DP, GH, Genetic Algorithm (GA) and
Reinforcement Learning (RL), being used in this thesis require own implementation
for each particular optimization problem in general. Thus, all of them represent a
general type of an approach to problem solving and the particular equations used
must be developed to �t each situation.

In other words, there does not exist any standard mathematical formulation of �the�
optimization problem for any of them and ILP is an exception. Therefore, it gives
an opportunity to use some standard solvers. In this thesis, to �nd a solution of ILP
problems, a standard MATLAB function intlinprog [49] and very powerful COIN-
OR (Computational Optimization Infrastructure for Operations Research) project
[70] written in C++ based both on the branch-and-cut method are used.
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To sum it up, generally, the branch-and-bound, cutting-plane and branch-and-cut
methods are well-known and widely used. For this reason, a description of these
methods is not going into details and it rather focuses on intlinprog and COIN-
OR project themselves.

Moreover, it takes into account that the simplex method and dual simplex method
used for the LP optimization [51] are generally known and it refers to them without
any additional explanation.

6.5.1 Branch and Bound Method

The branch-and-bound approach [12] can be viewed as a divide-and-conquer ap-
proach to solving the ILP problem in which a branching process represents dividing
and a bounding process stands for conquering. Throughout the algorithm, a se-
ries of LP subproblems are systematically generated and solved. Then, upper and
lower bounds are progressively tightened on the objective value of the original ILP
problem.

A typical way to represent such a process is via a branch-and-bound tree which is a
specialized enumeration tree for keeping track of how LP subproblems are generated
and solved. The branch-and-bound tree by convention is drawn upside down with
its root node at the top. The root node that represents the LP problem relaxation of
the original ILP problem (in mathematics, the relaxation of the ILP problem is the
problem that arises by removing the integrality constraint of each variable) is solved.
If the LP problem optimum solution satis�es the integer requirement, the ILP prob-
lem is solved. Otherwise, the LP problem objective value becomes the initial upper
bound on the ILP problem optimal objective value and the root node is partitioned
into two successor nodes (subproblems) by two branches. These branches are valid
cuts in terms of simple inequality constraints that have the following properties [12]:

• They cut o� the current non-integer LP problem optimum point and other
fractional region.

• The two successor nodes are mutually exclusive and their union contains the
same integer feasible region as that of their predecessor, i.e., no integer points
are eliminated.

The solution of the LP problem relaxation on a node provides information about
[12]:

• Whether a further branching from this node is needed (or whether the node
can be pruned).

• A better lower bound (for maximization problem) on the objective of the
original ILP problem.

There are three cases indicating that a node can be pruned [12]:
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1. Pruned by infeasibility � The subproblem has no feasible LP problem so-
lution.

2. Pruned by optimality � The subproblem has an integer optimum solution.

3. Pruned by bound � The upper bound of the subproblem optimum is less
than or equal (for maximization problem) to the lower bound of the original
problem.

If a node is pruned by optimality, its optimum solution can be used to increase the
lower bound on the objective value of the original ILP problem. Whenever an integer
solution to a subproblem is obtained, it is a candidate optimum to the original ILP
problem. In the solution process of the branch-and-bound, the best integer solution
found so far is continuously updated.

6.5.2 Cutting Plane Method

The term cutting plane [12] is often used for an equality or inequality constraint that
can cut o� a fractional part of the LP problem feasible region, without excluding
any integer feasible solution. In the cutting plane approach, one or more such
cutting planes are added to the current LP problem simplex tableau which in turn
are resolved for a new LP problem optimum. This process is repeated until the
prescribed integer requirements are satis�ed.

The method is running in the following steps [12]:

Step 1 � the LP problem
Solve the ILP problem as if it were the LP problem. If it is infeasible, so is the
LP problem and then stop. Else if an LP problem optimal solution satisfying
the integer requirements is found, then the ILP problem is solved. Otherwise,
go to Step 2.

Step 2 � a generating row (or source row) selection
Select a row, having the non-integer right side with the highest non-integer
violation bi − bbic in simplex tableau, to be a generating row (or source row)
from the LP problem optimum simplex tableau.

Step 3 � a new Gomory's cut
Derive a cut constraint from the generating row and augment it to the current
tableau, resulting in a primal infeasible solution. Given m ∈ N rows in current
simplex tableau (there are m ∈ N basic variables and k ∈ N non-basic variables
[51]), the i-th row is selected and a new Gomory's cut is added, then a new
constraint can be formulated as:

xm+k+1 +

m+k∑
j=1

(bai jc − ai j)x j = bbic − bi (6.38)

where xm+k+1 is a new Gomory's slack variable associated with the cut. For
clarity, the result of sum in Gomory's cut does not contain m basic variables
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at all, because m basic variables have coe�cients ai j either equal to 1 or 0 in
current simplex tableau , i.e., b1c − 1 = 0 and b0c − 0 = 0.

Step 4 � the dual simplex method
Apply the dual simplex method to reoptimize the augmented LP problem. If a
new LP problem optimum satis�es the integer requirements, the original ILP
problem is solved. Otherwise, go to Step 2.

The main di�erence among various methods of cutting plane is how a cut constraint
is generated. The main requirement is that a generated cut constraint must be valid,
meaning that its addition will result in cutting o� the current LP problem optimal
point, but will not eliminate any integer feasible solution. In other words, every
valid cut has two properties [12]:

• The current optimal solution to the LP problem relaxation will violate the cut
constraints.

• Any feasible point to the corresponding ILP problems will satisfy the cut
constraint.

6.5.3 Branch and Cut Method

Conceptually, the branch-and-cut method [12] can be viewed as a generalization
of the branch-and-bound method. Basically, it builds upon the same branch-and-
bound framework with additional cuts generated and imposed on each node of the
branch-and-bound tree, prior to pruning and branching processes.

Although both methods solve a series of LP problem relaxation at various nodes,
their solution philosophies are di�erent. The branch-and-bound applies two simple
bound cuts at each node and takes advantage of fast reoptimization of the LP
problem at each node. The branch-and-cut philosophy is to do as much work as
necessary to get a �tight bound� at the node before pruning and branching. The
work at each node may include generating strong cuts, improving formulations,
problem preprocessing, and applying a primal heuristic. In practice, many cuts may
be added at each node which may slow down the reoptimization. For a given large-
scale problem, an empirical investigation is usually used to determine the proper
number of cuts to be imposed on the root and other nodes.

The branch-and-cut method can be summarized in the following steps [12]:

1. Add the initial ILP problem to L � the set of active problems.

2. Set x∗ = null and z∗ = −∞.

3. While the L is not empty.

(a) Select and remove a problem from L.

(b) Solve the LP relaxation of the problem.
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(c) If the solution is infeasible, then go back to Step 3. Otherwise, denote
the solution by x with the objective value z.

(d) If z ≤ z∗, then go back to Step 3.

(e) If x satis�es the integer requirements, then set x∗ = x, z∗ = z and go back
to Step 3.

(f) If desired, then search for the cutting planes that are violated by x. If
any are found, then add them to the LP relaxation of the problem and
return to Step 3b.

(g) Branch to partition the problem into new problems with the restricted
feasible regions. Add these problems to the set L and go back to Step 3.

4. Return x∗.

6.5.4 The Load Balancing Problem

This subsection focuses on a standard MATLAB function intlinprog and the
COIN-OR project written in C++. They both provide an interface for solving
of ILP problems based on the branch-and-cut method.

However, it is necessary to de�ne the LB problem in terms of ILP �rstly. Given
m ∈ N MUXes with p ∈ N ingoing ports each, i.e., n = m · p ∈ N ingoing ports in

total and �ows f1, f2, . . . , fn ∈ N0. F =

⌈
n∑

i=1

fi/m

⌉
is a theoretical average �ow for

one MUX. Moreover, the rewards r j ∈ R
+,∀ j ∈ 1, . . . ,n obtained by the allocation of

the j-th �ow f j are de�ned.

To maximize
m∑

i=1

n∑
j=1

r j xi j, (6.39)

subject to the constraints

• MUX �ow limit
n∑

j=1

f j xi j ≤ F ∀i = 1, . . . ,m (6.40)

• each MUX has p ports

n∑
j=1

xi j = p ∀i = 1, . . . ,m (6.41)

• each �ow must be allocated

m∑
i=1

xi j = 1 ∀ j = 1, . . . ,n (6.42)
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• allocation of the j-th �ow to the i-th MUX

xi j ∈ {0,1} ∀i = 1, . . . ,m, ∀ j = 1, . . . ,n (6.43)

In the LB problem using ILP, the rewards are set to be 1 for each �ow allocation and
thus, they are not set in any sophisticated way. That means, the optimal objective
value z∗ can be achieved at the level of n = m · p.

Firstly, it is showed how to solve the LB problem in MATLAB using intlinprog

[49]. Function intlinprog is a mixed integer linear programming solver. In contrast
with the ILP de�nition, the intlinprog �nds the minimum of the ILP problem.

If function intlinprog considers a minimization problem, say min f (x) subject to
x ∈ M where M is a feasible set, then an equivalent maximization problem is
max− f (x) subject to x ∈ M. That is, minimizing − f is the same as maximizing f .
Any solution to the minimization problem is a solution to the maximization problem
and vice versa. For clarity, the value of the maximization problem is −1 times the
value of the minimization problem.

Function intlinprog uses the following basic strategy in order to solve mixed integer
linear problems. It can solve the problem in any of the stages. If it solves the problem
in a stage, intlinprog does not execute the later stages [49]:

1. Reduce the problem size using the LP problem preprocessing.

2. Solve an initial relaxed (non-integer) problem using LP.

3. Perform mixed integer problem preprocessing to tighten the LP relaxation of
the mixed integer problem.

4. Try cut generation to further tighten the LP relaxation of the mixed-integer
problem.

5. Try to �nd integer-feasible solutions using heuristics.

6. Use the branch-and-bound algorithm to search systematically for the optimal
solution. This algorithm solves LP problem relaxations with restricted ranges
of possible values of the integer variables. It attempts to generate a sequence
of updated bounds on the optimal objective function value.

In the following Listing 6.10, the code of algorithm for the LB problem using MAT-
LAB function intlinprog based on ILP is given. In order to control the optimiza-
tion process, it is highly recommended to adjust solve options. In the LB problem,
it is required to adjust LPMaxIter in order to prevent an early termination and
TolInteger determining the maximum deviation from integer that a component of
the solution x can have and still be considered an integer.

1 MUXCount = 6;

2 MUXPortCount = 15;

3 portCount = MUXCount * MUXPortCount;
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4 variableCount = portCount * MUXCount;

5

6 maxPortSize = 10000;

7 minPortSize = 1;

8

9 f = loadFlows(portCount , minPortSize , maxPortSize );

10 r = ones(variableCount , 1) .* (-1); % rewards

11 F = ceil(sum(f)/ MUXCount );

12

13 A = zeros(MUXCount , variableCount );

14 for i = 1 : MUXCount

15 for j = 1 : portCount

16 A(i, ((i - 1) * portCount) + j) = f(j); % MUX flow limit

17 end

18 end

19

20 Aeq = zeros(MUXCount + portCount , variableCount );

21 for i = 1 : MUXCount

22 for j = 1 : portCount

23 % each MUX has p ports

24 Aeq(i, ((i - 1) * portCount) + j) = 1;

25 end

26 end

27 for i = 1 : portCount

28 for j = 1 : MUXCount

29 % each flow must be allocated

30 Aeq(MUXCount + i, ((j - 1) * portCount) + i) = 1;

31 end

32 end

33

34 b = ones(MUXCount , 1) .* F; % MUX flow limit

35

36 beq = zeros(MUXCount + portCount , 1);

37 for i = 1 : MUXCount

38 beq(i) = MUXPortCount; % each MUX has p ports

39 end

40 for i = 1 : portCount

41 beq(MUXCount + i) = 1; % each flow must be allocated

42 end

43

44 intcon = 1 : variableCount; % all variables are integer

45 lb = zeros(variableCount , 1); % variable lower bounds

46 ub = ones(variableCount , 1); % variable upper bounds

47 [x, fval , exitflag , output]

48 = intlinprog(r, intcon , A, b, Aeq , beq , lb, ub);

Listing 6.10: The algorithm for the LB problem using a standard MATLAB function
intlinprog based on ILP.

Secondly, a discussion how to solve the LB problem in C++ using the powerful
COIN-OR project based on the branch-and-cut method [70] is given. The COIN-
OR project is an open source for the operations research community. In 2018, it
consists of 53 projects, most of them are written in C++ and the rest in Python
or Java. For instance, it includes tools for LP (e.g., CLP), nonlinear programming
(e.g., Ipopt), ILP (e.g., CBC, BCP and SYMPHONY) and more.
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The COIN-OR project is provided for Windows, Linux and Mac OS X with a de-
ployment guide. For Windows, the solution CoinAll in Visual Studio is prepared
containing all COIN-OR projects and after a compilation of the whole solution, it
is ready to solve optimization problems.

For Linux, the installation is also very straightforward. It requires to clone the
COIN-OR project from repository and follow installation instructions in INSTALL

�le. In brief, there is prepared a script to download dependencies, a con�gure script
a it is �nished by the project compilation using make command.

Once the optimization environment is ready to be used, a solver implements his/her
particular optimization problem and includes the compiled COIN-OR projects. The
algorithm for the LB problem using the COIN-OR project is shown in the following
Listing 6.11. It uses OsiClpSolverInterface to solve LP problem relaxations and
CbcModel to apply the branch-and-cut method. Moreover, it requires to specify its
own model describing the LB problem. The CelModel consists of all LB problem
constraints and the objective function, both described by a standard COIN-OR
class CelExpression. In order to require exclusively integer variables, the CelModel
uses CelIntVar for all variables with lower and upper bounds set to 0.0 and 1.0,
respectively.

1 static const int MUXCount = 6;

2 static const int MUXPortCount = 15;

3 static const int portCount = MUXCount * MUXPortCount;

4 static const int variableCount = portCount * MUXCount;

5

6 static const int maxPortSize = 10000;

7 static const int minPortSize = 1;

8

9 int* f = new int[portCount ];

10

11 // load flows in the range from 1 B to 10 kB

12 loadFlows(f, portCount , minPortSize , maxPortSize)

13 int F = (int)ceil(sum(f) / (( double)MUXCount ));

14

15 OsiClpSolverInterface *solver = new OsiClpSolverInterface ();

16 CelModel model (* solver );

17

18 CelIntVar ** x = new CelIntVar *[ variableCount ]; // variables

19 for (int i = 0; i < variableCount; i++)

20 x[i] = new CelIntVar("x" + i, 0.0, 1.0); // integer (0.0 - 1.0)

21

22 CelExpression objective;

23 for (int i = 0; i < variableCount; i++)

24 objective += (*x[i]);

25

26 model.setObjective(objective ); // objective

27

28 for (int i = 0; i < MUXCount; i++)

29 {

30 CelExpression constraint; // MUX flow limit

31 for (int j = 0; j < portCount; j++)

32 constraint += f[j] * (*x[i * portCount + j]);
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33 model.addConstraint(constraint <= F);

34 }

35

36 for (int i = 0; i < MUXCount; i++)

37 {

38 CelExpression constraint; // each MUX has p ports

39 for (int j = 0; j < portCount; j++)

40 constraint += (*x[i * portCount + j]);

41 model.addConstraint(constraint == MUXPortCount );

42 }

43

44 for (int i = 0; i < portCount; i++)

45 {

46 CelExpression constraint; // each flow must be allocated

47 for (int j = 0; j < MUXCount; j++)

48 constraint += (*x[j * portCount + i]);

49 model.addConstraint(constraint == 1);

50 }

51

52 solver ->setObjSense( -1.0); // maximization

53 model.builderToSolver ();

54 solver ->setLogLevel(0);

55 solver ->initialSolve (); // solve initial LP relaxation

56

57 CbcModel cbcModel (* solver );

58 cbcModel.setLogLevel(1);

59 cbcModel.solver()->setHintParam(OsiDoReducePrint , true , OsiHintTry );

60 cbcModel.branchAndBound (); // invoke the branch -and -cut algorithm

Listing 6.11: The algorithm for the LB problem using the COIN-OR project based
on ILP.

6.6 Genetic Algorithm

Belonging to the Evolutionary Algorithms (EA) class [28], a Genetic Algorithm
(GA) [21] is a heuristic technique inspired by the process of natural selection and
evolutionary biology. It attempts to simulate evolutionary principles in order to
�nd estimate solutions of complex problems for which any algorithm ensuring an
optimum retrieval is not e�ective, applicable or is not known at all. These algorithms
use techniques and strategies simulating processes well-know from nature (biology
and genetics) � heredity, mutation, natural selection and crossover � for a selective
breeding. Thus, the best solution of a given problem can be found.

GA uses Mendel's theory of genetics and Darwin's theory of natural selection as a
theoretical background. Mendel's theory of genetics builds up the fundamental laws
of heredity being applied in heredity of characters that are not in�uenced by gender.
The theory of natural selection says that stronger and more powerful individuals
have bigger chance to survive in a dynamic and constantly changing environment
than weaker individuals. In general, such a stronger individual is usually faster, more
intelligent or more powerful than its competitors. Weaker individuals survive in their
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environment rather due to their luck than due to their characteristics. Therefore, the
weaker individuals participate in a production of next generation in a less signi�cant
way than stronger individuals.

The main principle of the GA process is gradual production of stronger generations
containing individuals representing di�erent solutions of a given optimization prob-
lem. In a optimization process, a new population is created in each generation and
each individual in a population represents just one solution of a given problem. As
a population evolves, solutions improve.

From the optimization process point of view, a population in �rst generation consists
of random individuals x1,x2, . . . ,xNp at the beginning of evolution where Np ∈ N.
Their elements ful�l the constraints of a problem. In a transition to a new generation,
f itness value (value of f itness function) is counted for each individual where f itness
value represents a quality of solution given by a particular individual and it is
considered as the objective function f of a optimization problem. Based on f itness
values, individuals are selected being modi�ed using mutation and crossover and
resulting in a production of a new population. This process is repeated iteratively.
Thus, quality of solutions in population should improve gradually. An algorithm
terminates if the stopping criterion is satis�ed, e.g., a threshold of solution quality
or the maximum number of iterations.

Algorithm can be summarized in the following steps:

Step 1 � initialization
Random initialization of the entire individuals of population (�rst generation)

Step 2 � evolution step
Using a particular selection strategy (partially random), several high-quality
individuals from current population are selected. To produce a new generation,
it generates new individuals using the selected high-quality individuals based
on the following operators:

• crossover � swapping of elements between a few individuals

• mutation � random change of element of individual so that it still ful�ls
all constraints of a optimization problem

• reproduction � selection of individual without any change to a new gen-
eration

Evaluation of quality of new individuals.

Step 3 � stopping criterion
If the stopping criterion is not satis�ed go to Step 2.

Step 4 � termination
An individual with the highest quality (best evaluation) represents the best
solution of a optimization problem.

In this section, it is denoted a solution by individual and vice versa. Its genes
(characteristics) are called elements. For each individual, the i-th element represents
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the characteristic of the same kind. An individual of size n ∈ N (n elements) is
denoted as x = (x1, x2, . . . , xn)

T.

To create a new o�spring, crossover is a operator used for a recombination simulating
a random change of information contained in parents. An application of crossover
operator should result in better individuals, i.e., better chromosomes.

Mutation is a reproductive operator being used with small probability for a random
change of elements in a particular individual. In other words, it changes value
of some elements in some individuals. Mutation operator is able to return back
value of element already lost. Moreover, it prevents from an early convergence
and o�ers possibility of searching in a neighbourhood of current population (it is
necessary to understand a neighbourhood as a set of individuals being di�erent
from individuals in current population in the minimum number of elements). Thus,
mutation operator helps to abandon from a local extreme of the f itness function.

The improvement of entire population is performed iteratively. Just created individ-
uals become a new generation and replace the old generation completely. It regards
to the simplest strategy in which a former population dies out entirely. This process
can be called as a generational change. After a generational change �nalization, the
whole cycle is repeated until the stopping criterion is satis�ed.

The stopping criterion is used for an algorithm termination. For instance, it can
be represented by the maximum number of iterations, the �nding of satisfactory
solution, the negligible change of the best so far found solution in last generations,
etc.

6.6.1 Di�erential Evolution

Di�erential Evolution (DE) [60, 24] is a stochastic, population-based search strategy
developed based on the same principles as GA. However, it di�ers signi�cantly in
mutation step, crossover operator and following selection mechanism. DE di�ers
from GA in that mutation is applied �rst to generate a trial vector which is then used
within the crossover operator to produce one o�spring, and mutation step sizes are
not sampled from a prior known probability distribution function. In DE, mutation
step sizes are in�uenced by di�erences between individuals of current population.

Algorithm runs in the following steps:

Step 1 � parameter setup
To determine size of population Np ∈ N (number of individuals in each popu-
lation), the boundary constraints of decision variables representing each gene
of an individual, the mutation factor β, the crossover rate CR and stopping
criterion.

Step 2 � initialization of population
To initialize randomly the entire individuals of population within the given
upper and lower limits.
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Step 3 � evaluation of population
To evaluate f itness of each individual according to objective function.

Step 4 � mutation operation
The DE mutation operator produces a trial vector for each individual of current
population. This trial vector will then be used by the crossover operator to
produce o�spring. For each parent xi(s) from current population generates the
trial vector ui(s) as follows:

ui(s) = xi,1(s) + β(xi,2(s) − xi,3(s)) (6.44)

where xi,1(s), xi,2(s) and xi,3(s) are randomly selected individuals from current
population for the parent xi(s). β is the scaling factor, controlling the ampli-
�cation of the di�erential variation. Theoretically β ∈ (0;∞), but it is usually
taken from the range [0.1,1].

Step 5 � crossover (recombination operation)
The DE crossover operator implements a discrete recombination of the trial
vector ui(s) and the parent vector xi(s) to produce o�spring x′i(s). The
crossover is implemented as follows:

x′i,j(s) =
{

ui,j(s) if rand( j) ≤ CR
xi,j(s) if rand( j) > CR (6.45)

where xi,j(s) refers to the j-th element of the vector xi(s). Elements ui,j(s) and
x′i,j(s) are de�ned in the same way and refer to j-th element of vectors x′i(s)
and ui(s), respectively. CR is the crossover or recombination rate in the range
[0,1].

Step 6 � selection
To construct the population of the next generation, deterministic selection is
used: the o�spring replaces the parent if the f itness of the o�spring is better
than its parent; otherwise the parent survives to the next generation. In the
case of minimization problems, selection is implemented as follows:

xi(s + 1) =
{
x′i(s) if f (x′i(s)) < f (xi(s))
xi(s) otherwise (6.46)

where f (·) indicates the objective function of DE. This mechanism ensures
that the average f itness of the population does not deteriorate.

Step 7 � stopping criterion
If the stopping criterion is not satis�ed go to Step 3, else return the individual
with the best f itness as the solution. Here, the maximum number of iterations
is selected as the stopping criterion.

6.6.2 Modi�ed Di�erential Evolution

The Modi�ed Di�erential Evolution (MDE) [63] is a heuristic algorithm based on GA
[21] and has new mutation operation, crossover operator and selection mechanism.
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Selection mechanism is inspired by Simulated Annealing (SA) [26, 44]. In this
section, an individual is represented by vector with n elements x = (x1, x2, . . . , xn)

T.

At �rst, all parts are presented in more detail. Namely, f itness function, mutation
operator, crossover operation, and selection mechanism are described. Consequently,
the whole MDE algorithm is presented.

Objective Function

The objective function of the LB problem is directly used as the f itness function
for the MDE [63], i.e., √√√√ m∑

i=1

(
F −

∑
j∈Si

f j

)2
(6.47)

where f1, f2, . . . , fn ∈ N0 are �ows, S1,S2, . . . ,Sm are subsets of �ow indices for m ∈ N

MUXes and F =

⌈
n∑

i=1

fi/m

⌉
is a theoretical average �ow for one MUX.

Moreover, the objective function restricted to the i-th MUX only is used as the i-th
MUX f itness function for the MDE [63], i.e.,(

F −
∑
j∈Si

f j

)2
. (6.48)

Mutation Operator

The mutation operator [63] produces a trial vector for each individual of the current
population. This trial vector will then be used by the crossover operator to produce
o�spring.

Let the �rst (i − 1) MUXes be already allocated. In general, the mutation operator
tries to mutate the i-th MUX only. The trial vector u j(s) is created based on a
random individual xr

j(s) selected from the current population for a parent x j(s) for
the i-th MUX in iteration s. Firstly, all n elements from the random individual xr

j(s)
are copied to the trial vector u j(s). Actually, the �ows represented by elements with
indices 1, . . . , (i−1)p have already been allocated to the �rst (i−1)MUXes. Therefore,
the mutation operator does not consider elements with indices 1, . . . , (i − 1)p and
leaves them as they are copied from the random individual xr

j(s). Otherwise, the so
far achieved solution would have been damaged or completely lost.

Thus, the mutation operator considers only elements with indices (i−1)p+1, . . . ,mp.
It performs dβpe swaps. In more detail, it randomly selects one element from the
elements with indices (i − 1)p+ 1, . . . , ip and one element from elements with indices
ip + 1, . . . ,mp in each swap from dβpe swaps and swaps them.

To sum it up in a well-arranged way, a detailed diagram of the mutation operator
is shown in Figure 6.4.
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⌈βp⌉–times

xr
j,1(s) xr

j,2(s) xr
j,p(s) xr

j,(i−1)p+1(s) xr
j,ip(s) xr

j,(m−1)p+1(s) xr
j,mp(s)

i-th MUXFlows already allocated
to (i− 1) MUXes

Remaining (m− i) MUXes

xr
j(s)

uj(s)

copy of all
n elements

uj,1(s) uj,2(s) uj,p(s) uj,(i−1)p+1(s) uj,ip(s) uj,(m−1)p+1(s) uj,mp(s)

i-th MUXFlows already allocated
to (i− 1) MUXes

Remaining (m− i) MUXes

Figure 6.4: The mutation operator used to produce a trial vector u j(s) from a
random individual xr

j(s) selected from current population for a parent x j(s) for the
i-th MUX in iteration s using dβpe swaps.

β is the scaling factor, controlling the ampli�cation of the di�erential variation.
Theoretically β ∈ (0,∞), but it is usually taken from the range [0.1, 1].

Crossover Operator

The MDE crossover operator [63] implements a discrete recombination of the trial
vector u j(s) and the parent vector x j(s) to produce o�spring x′j(s). xi,j(s) refers to
the j-th element of the vector xi(s). Elements ui,j(s) and x′i,j(s) are de�ned in the
same way and refer to the j-th element of vectors xi(s) and ui(s), respectively. CR
is the crossover or recombination rate in the range [0,1].

The approach is similar to the mutation operator. Let the �rst (i − 1) MUXes be
already allocated. In general, the crossover operator tries to cross the i-th MUX
only. Firstly, all n elements from the parent x j(s) are copied to the o�spring x′j(s).
Actually, �ows represented by elements with indices 1, . . . , (i−1)p have already been
allocated to the �rst (i − 1) MUXes. Therefore, the crossover operator does not
consider elements with indices 1, . . . , (i − 1)p and leaves them as they are copied
from the parent x j(s). The reason is the same as for the mutation operator � the so
far achieved solution would be damaged or completely lost.

Thus, the crossover operator considers only the elements with indices (i − 1)p +
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xj,1(s) xj,2(s) xj,p(s) xj,(i−1)p+1(s) xj,ip(s) xj,(m−1)p+1(s) xj,mp(s)

i-th MUXFlows already allocated
to (i− 1) MUXes

Remaining (m− i) MUXes

xj(s)

x′
j(s)

uj(s)

copy of all

n elements

if rand(k) ≤ CR k ∈ {(i− 1)p+ 1, . . . , ip}
then find element x′

j,l(s) l ∈ {(i− 1)p+ 1, . . . ,mp}

and swap it with value x′
j,k(s) in x′

j(s)

in x′
j(s) with value uj,k(s)

x′
j,1(s) x

′
j,2(s) x′

j,p(s) x′
j,(i−1)p+1(s) x′

j,ip(s) x′
j,(m−1)p+1(s) x′

j,mp(s)

i-th MUXFlows already allocated
to (i− 1) MUXes

Remaining (m− i) MUXes

uj,1(s) uj,2(s) uj,p(s) uj,(i−1)p+1(s) uj,ip(s) uj,(m−1)p+1(s) uj,mp(s)

i-th MUXFlows already allocated
to (i− 1) MUXes

Remaining (m− i) MUXes

Figure 6.5: The crossover operator used to produce an o�spring x′j(s) from a parent
x j(s) and a trial vector u j(s) for the i-th MUX in iteration s.

1, . . . ,mp. Then, for each element

x′j,(i−1)p+1(s), . . . , x
′
j,ip(s), (6.49)

if
rand(k) ≤ CR k ∈ {(i − 1)p + 1, . . . , ip}, (6.50)

then �nd element
x′j,l(s) l ∈ {(i − 1)p + 1, . . . ,mp} (6.51)

in x′j(s) with value u j,k(s) and swap the values of element x′j,k(s) and element x′j,l(s)
in x′j(s). If the condition in Equation 6.50 is not satis�ed, then do nothing.

In Figure 6.5, a diagram of the crossover operator is given. The dashed arrows
represent actions being subjected to the condition in Equation 6.50. Once the con-
dition is not satis�ed for a given element, it does nothing and continues to the next
element.
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Adaptive Parameters

The scaling factor β and recombination rate CR a�ect the exploration and exploita-
tion of the algorithm [63, 22, 53]. Exploration is the algorithm ability to cover and
explore di�erent areas in the feasible search space while exploitation is the ability to
concentrate only on promising areas in the search space and to enhance the quality
of the potential solution in the promising region. The scaling factor β controls the
ampli�cation of the di�erential variations. The smaller the value of β, the smaller
the mutation step sizes, and the longer it will take for the algorithm to converge.
Larger values of β facilitate exploration, but may cause the algorithm to overshoot
good optima. The value of β should be small enough to allow di�erentials to ex-
plore tight valleys, and large enough to maintain diversity. As the population size
increases, the scaling factor should be decreased. In this thesis, an adaptive scaling
factor is adopted to achieve a favorable compromise between exploration and ex-
ploitation. For increasing exploration, a large initial value of β is chosen. Then, it
is reduced linearly along the iterations for good exploitation:

β(s) = c1 − c2
s

smax
(6.52)

where smax is the maximum number of iterations and c1, c2 are constants.

In this way, the mutation operator performs a wider search in the solution space
at the early stages of the evolution and at the later stages, the search is restricted
around the local area, resembling a hill-climbing operator [55].

The probability of recombination, CR, has a direct in�uence on a diversity of the
MDE. The higher the probability of recombination, the more variation is introduced
in a new population, thereby increasing diversity and exploration. Increasing CR
often results in faster convergence, while decreasing CR increases search robustness.
In the MDE, an adaptive CR is similarly adopted. CR is changed along the evolution
process like β as follows:

CR(s) = k1 − k2
s

smax
(6.53)

where smax is the maximum number of iterations and k1, k2 are constants.

Selection Mechanism

In the MDE, a probabilistic selection mechanism [23] is used instead of the deter-
ministic selection of the original DE [63]. The selection mechanism has been inspired
by SA [26, 44]. SA uses a random search strategy which not only accepts new solu-
tions that decrease the objective function value (assuming a minimization problem),
but may also accept new solutions that rather increase the objective function value
based on a predetermined probability distribution function. Exponential probabil-
ity distribution function is normally used for this purpose. Based on this idea, the
selection mechanism of the MDE can be described as follows:

x j(s + 1) =

x′j(s) if f (x′j(s)) ≤ f (x j(s))
x′j(s) if f (x′j(s)) > f (x j(s)) ∧ h(x j(s),x′j(s)) > rand()

x j(s) otherwise
(6.54)
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h(x j(s),x′j(s)) = exp

(
f (x j(s)) − f (x′j(s))

f (x j(s))T

)
(6.55)

where T is the temperature, as de�ned in the SA technique.

Algorithm 6.12 The MDE algorithm
1: load �ows R1
2: set size of population Np, the maximum iteration smax, constants c1, c2, k1, k2, α,

initial value of the temperature T
3: initPopulation()
4: i = 1 . current MUX

5: F =

⌈
n∑

j=1

f j/m

⌉
6: for s = 1→ smax ∧ i < m do . loop for the MDE iterations
7: set β = c1 − c2 · s/smax, CR = k1 − k2 · s/smax, T = α · T
8: for j = 1→ Np do . update the population by evolutionary operators
9: xParent = getIndividual( j)

10: xRandom = getRandomIndividual()
11: uTrial = mutation( j, xRandom, k, β)
12: xO f f spring = crossover( j,uTrial, xParent,CR)
13: xResult = selection(xParent, xO f f spring,T)
14: setIndividual( j, xResult)
15: end for
16: bestMUXIndividual = getBestMUXIndividual() . based on Equation 6.48
17: if �tnessMUX(bestMUXIndividual) = 0 then . based on Equation 6.48
18: for j = 1→ Np do
19: x = getIndividual( j)
20: x = bestMUXIndividual . assign bestMUXIndividual
21: x = shu�e(x,m − i) . shu�e elements in the remaining m − i MUXes
22: setIndividual( j, x)
23: end for
24: Si = getMUXFlows(i, bestMUXIndividual)

25: Ri+1 = { f j | j ∈ {1, . . . ,n}\
i⋃

k=1

Sk}

26: F =

⌈
(m−i)p∑

j=1

fϕ( j,Ri+1)/(m − i)

⌉
27: i = i + 1
28: end if
29: end for
30: bestIndividual = getBestIndividual() . based on Equation 6.47
31: error = �tness(bestIndividual) . based on Equation 6.47
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Here, the temperature T is adaptively changed in the evolution process as follows:

T(s + 1) = αT(s)
T(0) = T0.

(6.56)

The parameter α is the rate of reducing the temperature (α < 1). T0 is the initial
temperature. A normalized di�erence between the parent and o�spring objective
functions has been considered in Equation 6.55 to eliminate the e�ect of di�erent
ranges of objective functions (the adjustment of the temperature T becomes inde-
pendent from the range of objective function). The selection mechanism begins with
a large value for the initial temperature. In other words, at the beginning of the evo-
lution process, many new worse solutions x j(s) have chance to be selected to increase
the exploration of the MDE. However, by evolving the individuals, the temperature
T decreases along the iterations and so the probability of selecting worse solutions
is decreased.

The MDE Algorithm

At �rst, the parameters are set. Then, the initialization of population is executed.
To create a new population, the mutation operator, the crossover operator and the
selection mechanism, respectively, are applied. The algorithm tries to allocate �ows
to MUXes gradually, i.e., it always deals with one particular MUX only. Once the
allocation procedure for such a particular MUX is �nished, it moves to the next
MUX and tries to allocate �ows from remaining �ows to this MUX. If the stopping
criterion is not satis�ed go to produce a new population by evolutionary operators,
else return the individual with the best f itness as the solution. Here, the maximum
number of iterations smax is selected as the stopping criterion. The MDE algorithm
[63] is described in Algorithm 6.12.

6.7 Reinforcement Learning

Reinforcement Learning (RL) is a study of how animals and arti�cial systems can
learn to optimize their behaviour in the face of rewards and punishments [68, 69, 47].
One way in which animals acquire complex behaviours is by learning to obtain
rewards and to avoid punishments. Learning of a baby to walk, a child acquiring
the lesson of riding bicycle, an animal learning to trap his food, etc., are some
examples. During this learning process, the agent interacts with the environment.
At each step of interaction, on observing or feeling the current state, an action
is taken by the learner (agent). Depending on the goodness of the action at the
particular situation, it is tried at the next stage when the same or similar situation
arises [54, 10, 11].

The learning methodologies developed for such learning tasks originally combine two
disciplines: Dynamic Programming (DP) and Function Approximation. DP is a �eld
of mathematics that has been traditionally used to solve a variety of optimization
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problems [54, 10, 36, 11]. However, DP in its pure form is limited in size and
complexity of the problems it can address. Function Approximation methods like
Neural Networks learn the system by di�erent sets of input�output pairs to train
the network. In RL, the goal to be achieved is known and the system learns how to
achieve the goal by trial and error interactions with the environment.

In the conventional RL framework, the agent does not initially know what e�ects its
actions have on the state of the environment and also what the immediate reward
he will get on selecting an action. It particularly does not know what action is best
to do. Rather, it tries out the various actions at various states, gradually learns
which one is the best at each state so as to maximize its long term reward. Thus,
the agent tries to acquire a control policy or a rule for choosing an action according
to the observed current state of the environment. One of the most natural ways to
acquire the above mentioned control rule would be the agent to visit each and every
state in the environment and try out the various possible actions. At each state it
observes the e�ect of the actions in terms of rewards. From the observed rewards,
the best action at each state or the best policy is manipulated. However, this is not
practically possible, since planning ahead involves accurate enumeration of possible
actions and rewards at various states which is computationally very expensive.

The concept of the RL problem and action selection is explained with the N�arm
Bandit problem in the next subsection. Then, the multi-stage decision making tasks
are explained. The Grid World problem is a multi-stage decision making problem.

6.7.1 Single-Stage Decision Making Problem

The N�arm Bandit Problem

The N�arm Bandit is a game based on slot machines [68]. The slot machine has a
number of arms or levers. For playing the game, one has to pay a �xed fee. The
player will obtain a monetary reward by playing an arm of his choice. The monetary
reward may be greater or lesser than the fee he had paid. Also the reward from each
arm will be around a mean value with some value of variance. The aim of the player
is to obtain maximum reward by playing the game. The play on an arm is considered
as an action or decision and the objective is to �nd the best action from the action
set (set of arms). Since the reward is around a mean value, the problem is to �nd
the arm with highest mean value which can be called as the best arm.

In order to introduce the notations used in the thesis, an action of choosing an arm
is denoted by a. The goodness of choosing an arm or quality of an arm is the mean
value of the reward and is denoted by Q(a). If the mean of all arms are known the
best arm is given by the equation

a∗ = argmax
a∈A

Q(a) A = {1,2, . . . ,N}. (6.57)

As mentioned earlier, the problem is that the Q(a) values are unknown. One simple
and direct method is to play each arm a large number of times. Let the reward
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received in playing an arm in the k-th trial be r k(a). Then, an estimate of Q(a) after
s trials is obtained using the equation

Q̂s(a) =
1

s

s∑
k=1

r k(a) (6.58)

and by the Law of large numbers

lim
s→∞

Q̂s(a) = Q(a). (6.59)

In order to update the value of Q(a) (the mean value of reward) in current iteration,
the following equation is used

Q̂s+1(a) = Q̂s(a) + α[r s+1(a) − Q̂s(a)]. (6.60)

Above equation tells that the new estimate based on the (s + 1)-th observation
(r s+1(a)) is old estimate Qs(a) plus a small number times the error (r s+1(a) −Qs(a)).

Algorithm 6.13 Algorithm for the N�arm Bandit problem using RL [68]

1: set the learning parameter α and the greedy factor ε
2: set the maximum iteration smax

3: for all a ∈ A do . initialize Q values to zero
4: Q0(a) = 0
5: end for
6: for s = 1→ smax do . learning phase
7: a = getGreedyAction(Q, ε)
8: r s(a) = getReward(a)
9: Q = updateQ(Q,r s(a)) . based on Equation 6.60

10: set the greedy factor ε = 1 − s/smax

11: end for
12: best Action = getBestAction() . retrieval phase

In order to improve the learning phase, an e�cient action selection strategy is re-
quired. One method would be to take an action with the uniform probability. In
this way, one will play all the arms almost equal number of times, i.e., throughout
the learning the action space is explored.

Instead of playing all arms several times, it makes sense to play the arms which may
be the best arm. One such an e�cient algorithm for the action selection is the ε�
greedy algorithm. In this algorithm, the greedy arm is played with a probability (1−
ε) and one of the other arms with a probability ε. The greedy arm (ag) corresponds
to the arm with the best estimate of the Q value, i.e.,

ag = argmax
a∈A

Qn(a). (6.61)

It may be noted that if ε = 1, the algorithm will select one of the actions with
uniform probability and if ε = 0, the greedy action will be selected. Initially, the
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estimates Qs(a) may be far from their true value. However as s→∞, Qs(a) → Q(a),
the information contained in Qs(a) becomes increasingly exploitable. So in the ε�
greedy algorithm, initially ε is chosen close to 1 and as s increases, ε is gradually
reduced.

Finally, a proper balancing of exploration and exploitation of the action space ul-
timately reduces the number of trials needed to �nd the best arm. The complete
algorithm for the N�arm Bandit problem is given in Algorithm 6.13.

6.7.2 Multi-Stage Decision Making Problem

The Grid World Problem

In the previous subsection, the N�arm Bandit problem has only one state. In many
practical situations, the problem might be to �nd the best action for di�erent states.
In order to make the characteristics of such general RL problems clearer, and to
identify the di�erent parts of RL, the shortest path problem is considered in this
section. Consider the Grid World problem as given in Figure 6.6.

Goal

Figure 6.6: The Grid World problem.
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The Grid World problem is represented by a maze, see Figure 6.6. The maze is
considered as a grid consisting of 81 cells arranged in 9 rows and 9 columns and
separated by dotted lines. A robot can be at anyone of the possible cells at any
time instant. Goal denotes the goal cell to which the robot aim to reach and
the solid lines denote walls of the maze. There is a cost associated with each cell
transition while the cost of passing through a wall is much higher compared to other
transitions. Starting from any initial position in the grid, robot can reach the goal
cell by following di�erent paths and correspondingly cost incurred will also vary.
The problem is to �nd an optimum path to reach the goal starting from anyone of
the initial cell position. Apparently, the optimum path is the shortest one.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17
1 1 w 1 1 1 1 1 1 1 1 1 1 1 1 1 w 1
2 1 w 1 w w w w w w w 1 w w w w w 1
3 1 1 1 1 1 1 1 1 1 w 1 1 1 1 1 1 1
4 w w w w 1 w w w 1 w w w w w w w w

5 1 w 1 w 1 w 1 w 1 1 1 1 1 1 1 w 1
6 1 w 1 w w w 1 w w w w w w w 1 w 1
7 1 w 1 1 1 1 1 1 1 1 1 1 1 w 1 w 1
8 1 w 1 w w w w w 1 w w w 1 w 1 w 1
9 1 w 1 w 1 1 1 w 1 1 1 w 1 w 1 w 1
10 1 w 1 w w w 1 w 1 w 1 w 1 w 1 w 1
11 1 w 1 1 1 w 1 w 1 w 1 w 1 w 1 w 1
12 1 w w w 1 w 1 w 1 w 1 w w w 1 w 1
13 1 1 1 1 1 w 1 w 1 w 1 1 1 1 1 w 1
14 w w 1 w 1 w 1 w 1 w w w w w w w 1
15 1 1 1 w 1 w 1 1 1 1 1 1 1 1 1 1 1
16 w w w w 1 w 1 w w w w w w w w w 1
17 1 1 1 1 1 w 1 w 1 1 1 1 1 1 1 1 1

Table 6.2: The grid represents the maze with a transition cost for each cell where w
= 1000.

In Figure 6.6, the maze consists of 81 cells arranged in 9 rows and 9 columns. The
treasure is denoted by Goal cell which is stated in top-right corner of the maze. The
maze is represented by a grid in Table 6.2 where cell transition costs are listed.

All walls of the maze have to be considered. Thus, the grid in Table 6.2 have 17 ×
17 cells where the cells with the odd number of row and column represent the cell
itself and cells with the even number of row and column represent walls or gaps for
passing. The task is to reach the goal state from any initial position in the grid with
the lowest costs.

State Space

The cell number can be taken as a state of the robot at any time. The possible state
the robot can occupy at any instant is coming from the entire cell space. In RL
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terminology, it is termed as state space. State space in the RL problem is de�ned
as the set of possible states the agent (learner) can occupy at di�erent instants of
time. At any instant, the agent will be at anyone of the state from the entire state
space. The state of the robot at instant k can be denoted as xk . The entire state
space is then taken as X so that at any instant k, xk ∈ X. In order to reach the
goal state Goal from the initial state x0, the robot has to take a series of actions
a0,a1, . . . aN−1.

Action Space

At any instant k, the robot can take any of the action ak from the set of permissible
actions in the action set or action space Ak . The permissible set of actions at each
instant k depends on the current state xk of the robot. If the Robot stays in any of
the cells in the �rst column, �move to Left� is not possible. Similarly for each cell
in the grid, there is a set of possible cell movements or state transitions. The set of
possible actions or cell transitions at current state xk is denoted as Axk .

State�Evolution Model

On taking an action, the robot proceeds to the next cell position which is a function
of the current state and action. In other words, the state occupied by the robot in
k + 1, xk+1 depends on xk and ak , i.e.,

xk+1 = f (xk,ak). (6.62)

The aim of a robot in the grid is to reach the goal state starting from its initial
position or state at minimum cost. At each step, it takes an action which is followed
by state transition or movement in the grid. The actions which make state tran-
sitions to reach the goal state at minimum cost points out the optimum solution.
Therefore, the shortest path problem can be stated as �nding the sequence of actions
a0,a1, . . . aN−1 starting from any initial state such that the total cost for reaching
goal state Goal is minimum.

Policy

As explained in the previous section, whenever an action ak is taken in a state xk ,
state transition occurs governed by Equation 6.62. Ultimate learning solution is to
�nd out a rule by which an action is chosen at any of the possible states. In other
words, a good mapping from the state space X to action space A has to be derived.

π : X → A (6.63)

In RL problems, any mapping from state space to action space is termed as policy.
The optimum policy at any state x is denoted as π∗(x).
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Q�learning

Q�learning is a RL algorithm that learns the values of the function Q(x,a) to �nd
an optimal policy [68]. The value of the function Q(x,a) indicates how good is to
perform action a at the given state x.

At each iteration of the algorithm, from the current state x, it chooses an action
a based on some strategy and reaches the new state y and obtains reward g(x,a, y)
which is used for updating the Q value of the state�action pair as

Qs+1(x,a) = Qs(x,a) + α[g(x,a, y) + γ min
a′∈A

Qs(y,a′) −Qs(x,a)] (6.64)

where α ∈ [0,1] is the learning parameter and determines the extent of modi�cation
of the Q value at each iteration of the learning phase. Discount factor γ ∈ [0,1]
indicates the real goodness of an action. It may not be re�ected by its immediate
reward. Value of γ is decided by the problem environment to account how much the
future rewards to be discounted to rate the goodness of the policy at the present
state. A value 1 indicates that all the future rewards are having equal importance as
the immediate reward. In this shortest path problem, since all the costs are relevant
to the same extent, γ is taken 1.

When the learning parameter α is su�ciently small and if all possible (x,a) combi-
nations of state and action occur su�ciently often, then the above iteration given
by Equation 6.64 will result Qs converging to Q∗. The complete algorithm for the
Grid World problem is given as follows.

Algorithm 6.14 Learning algorithm for the Grid World problem using RL [68]

1: set the learning parameter α, the discount factor γ and the greedy factor ε
2: set the maximum iteration smax

3: for all x ∈ X,a ∈ Ax do . initialize Q values to zero
4: Q0(x,a) = 0
5: end for
6: for s = 1→ smax do . learning phase
7: x0 = getRandomInitState()
8: k = 0
9: while isNotGoalState(xk) do

10: xk = getCurrentState()
11: ak = getGreedyAction(Q, ε)
12: xk+1 = getNextState(xk,ak) . based on Equation 6.62
13: rk = g(xk,ak, xk+1)

14: Q = updateQ(Q,rk) . based on Equation 6.64
15: k = k + 1
16: end while
17: set the greedy factor ε = 1 − s/smax

18: end for

The algorithm described so far gives only the learning phase. To get the best path
in the maze, the retrieval phase of the algorithm is also needed. The complete
algorithm of the retrieval phase for getting the path is given as follows.
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Algorithm 6.15 Policy retrieval algorithm for the Grid World problem using RL
1: x0 = Start
2: addStateToPath(x0)
3: k = 0
4: while isNotGoalState(xk) do
5: xk = getCurrentState()
6: ak = getGreedyAction(Q, ε)
7: xk+1 = getNextState(xk,ak) . based on Equation 6.62
8: addStateToPath(xk+1)
9: k = k + 1

10: end while

Load Balancing as Multi-Stage Decision Making Problem

In order to view the LB problem as a multi-stage decision making problem, the
various stages of the problem are to be identi�ed [67]. Consider a system with
n ∈ N �ows f1, f2, . . . , fn ∈ N0 committed for allocation to n = m · p ports. Then,
the LB problem involves selecting p ∈ N �ows to be allocated to the �rst MUX
from �ows R1 = { fi | i ∈ {1, . . . ,n}}, i.e., determined by subset S1. For the second
MUX, p �ows are selected from �ows R2 = { fi | i ∈ {1, . . . ,n}}\S1} and described
by S2. The last, i.e., the m-th MUX is occupied by remaining p �ows Rm = { fi | i ∈

{1, . . . ,n}\
m−1⋃
j=1

Sj = Sm} and in fact, there is no selection procedure at all and the

subset Sm is determined directly.

In general, the i-th MUX selects p �ows from �ows Ri = { f j | j ∈ {1, . . . ,n}\
i−1⋃
k=1

Sk}

and a subset Si contains �ow indices of the i-th MUX.

The problem statement follows. Initially, there are p �ows to be allocated in the
i-th MUX chosen from n − (i − 1)p �ows, see Figure 6.7. In this formulation, a �ow
to be allocated at stagek is denoted as FA

k and is based on an action ak . In RL
terminology, the action ak corresponds to a �ow allocation either fϕ(k,Ri) or 0 to the
i-th MUX at stagek , i.e.,

FA
k =

{
0 if ak = 0
fϕ(k,Ri) if ak = 1.

(6.65)

Therefore, the action set Ak consists of either 2 possibilities (allocate ak = 1 and do
not allocate ak = 0) or 1 possibility (allocate ak = 1 or do not allocate ak = 0) at
stagek . That is,

Ak = {amin
k , . . . ,amax

k }, (6.66)

amin
k being the minimum possible action at stagek and amax

k being the maximum
possible action at stagek . Values of amin

k and amax
k depend on the total �ow which

has already been allocated at the previous k − 1 stages, the number of �ows already
allocated, a �ow at the k-th stage and �ows that can be allocated at the remaining
(n − (i − 1)p) − k stages.
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FT
1 = 0

FT
2 = FT

1 + FA
1

FT
k = FT

k−1 + FA
k−1

FT
k+1 = FT

k + FA
k

FT
ni

= FT
ni−1 + FA

ni−1

stage1

fϕ(1,Ri) : F
A
1

fϕ(k,Ri) : F
A
k

fϕ(ni,Ri) : F
A
ni

stagek

stageni

Figure 6.7: Visualization of p �ows allocation to the i-th MUX where ni = n−(i−1)p.

The initial state is denoted as stage1. At stage1, a decision is made on whether a
�ow fϕ(1,Ri) is allocated or not. This action is denoted as a1 and corresponds to FA

1
allocation at stage1.
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Upon having made this decision, stage2 is reached. The expression (FT
1 + FA

1 )

represents the total �ow which has already been allocated at the previous stages,
i.e., stage1. At stage2, a decision a2 is made on whether a �ow fϕ(2,Ri) allocates or
does not allocate. Generally at stagek , a decision is made on whether a �ow fk is
allocated or not. Finally, stagen−(i−1)p is reached and a decision an−(i−1)p is made on
whether a �ow fϕ(n−(i−1)p,Ri) is allocated or not.

Each state at any stagek can be de�ned as a tuple (k,FT
k ) where k is the stage

number and FT
k is the total �ow which has already been allocated at the previous

k − 1 stages.

Thus, for k = 1, the state information is denoted as (1,FT
1 ) where FT

1 is equal
to 0, since no decision concerning any �ow allocation has been made so far. The
algorithm for the LB problem selects one among the permissible set of actions and
either allocates or does not allocate a �ow fϕ(1,Ri) at stage1 so that it reaches the
next stage k = 2 with the total �ow already allocated and (n − (i − 1)p) − 1 �ows
for an allocation decision. Transition from (1,FT

1 ) on performing an action a1 ∈ A1

results in the next state reached as (2,FT
2 ) where

FT
2 = FT

1 + FA
1 . (6.67)

Generally at stagek , from a state xk on performing an action ak reaches a state xk+1,
i.e., state transition is from (k,FT

k ) to (k + 1,F
T
k+1) where

FT
k+1 = FT

k + FA
k . (6.68)

This repeats until the last stage. Therefore, a state transition can be denoted as

xk+1 = f (xk,ak) (6.69)

where f (xk,ak) is the function of state transition de�ned by Equation 6.68.

Thus, the algorithm for the LB problem can be treated as one of �nding an optimum
mapping from the state space X to the action space A. The algorithm design for
the LB problem is �nding or learning a good or optimal policy (�ows allocation)
which is the optimum allocation at each stage. Such an allocation can be treated as
elements of an optimum policy π∗. For �nding the cost of allocation, it cumulates
the costs at each of the n−(i−1)p stages of the problem. These costs can be treated
as a reward for performance of an action in the perspective of the LB problem. The
cost of generation on following a policy π can be treated as a measure of goodness
of that policy. The Q�learning technique is employed to cumulate costs and thus
�nd out the optimum policy.

For updating the Q value associated with the di�erent state�action pairs, one should
cumulate the total reward at di�erent stages of allocation. In the LB problem, the
reward function g(xk,ak, xk+1) can be chosen as −FA

k at stagek . The rewards are
negative, since Q�learning is considered as a minimization problem. In the RL
terminology, the immediate reward is

rk = g(xk,ak, xk+1). (6.70)
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Since the aim is to allocate as large as possible a total �ow, the estimated Q values
of the state�action pair are modi�ed at each step of learning as

Qs+1(xk,ak) = Qs(xk,ak)+α[g(xk,ak, xk+1)+γ min
a′∈Ak+1

Qs(xk+1,a′)−Qs(xk,ak)]. (6.71)

Here, α is the learning parameter and γ is the discount factor. When the system
comes to the last stage of decision making, there is no need of accounting the future
e�ects and then, the estimate of Q value is updated using the equation

Qs+1(xk,ak) = Qs(xk,ak) + α[g(xk,ak, xk+1) −Qs(xk,ak)]. (6.72)

For �nding an optimum policy, a learning algorithm is designed. It iterates through
each of the n − (i − 1)p stages at each step of learning. As the learning steps are
carried out a su�cient number of times, the estimated Q values of state�action pairs
will approach the optimum so that the optimum policy π∗(x) corresponding to any
state x can be easily retrieved.

6.7.3 RL Algorithm for the LB Problem using ε�greedy

Strategy

In the previous subsection, the LB problem is formulated as a multi-stage decision
making problem. To �nd the best policy or the best action corresponding to each
state, the RL technique is used. The solution consists of two phases, namely the
learning phase and the policy retrieval phase [67].

To carry out the learning task, one issue concerns how to select an action from the
action space. In this subsection, the ε�greedy strategy of exploring action space is
used.

For solving this multi-stage problem using RL, the �rst step is �xing of state space
X and action space A precisely. The whole concept for the i-th MUX is explained
in a general way where the number of �ows is n − (i − 1)p.

The �xing of state space X [67] primarily depends on the number of �ows and the
possible values of the total �ow in the i-th MUX (which in turn directly depends on
the minimum and maximum values of each �ow). Since there are n − (i − 1)p stages
for solution of the problem, the state space is also divided into n−(i−1)p subspaces.
Thus, if there are n − (i − 1)p �ows to be allocated, then

X = X1 ∪ X2 ∪ . . . ∪ Xn−(i−1)p. (6.73)

The allocation problem should go through n − (i − 1)p stages for making decision
to allocate or not to allocate for each of the n − (i − 1)p �ows. At any stagek , the
part of state space to be considered Xk consists of the di�erent tuples having the
stage number as k and the total �ow already allocated varying from FTmin

k to FTmax
k

where FTmin
k is the minimum possible total �ow already allocated and FTmax

k the
maximum possible total �ow already allocated at the previous k − 1 stages. Thus,

Xk = {(k,FTmin
k ), . . . , (k,FTmax

k )} (6.74)
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where FTmin
k is the minimum possible total �ow already allocated at the previous

k − 1 stages, i.e.,
FTmin

k = 0 (6.75)

and FTmax
k is the maximum possible total �ow already allocated at the previous

k − 1 stages, i.e.,

FTmax
k =

k−1∑
j=1

fϕ( j,Ri). (6.76)

At each step, the LB problem algorithm will select an action from the permissible
set of actions and forward the system to one among the next permissible states.
Therefore, the action set Ak is a dynamically varying one, depending on the �ows
already allocated at the previously considered stages. As the number of MUXes or
number of ports in each MUX increases, the number of states in the state space
increases. Thus, state space and action space are both discrete.

The action set Ak [67] consists of either 2 possibilities (allocate ak = 1 and do
not allocate ak = 0) or 1 possibility (allocate ak = 1 or do not allocate ak = 0) at
stagek . At the current state xk , the action set Ak depends on the total �ow already
allocated FT

k , the number of �ows already allocated pA, a �ow at the k-th stage
fϕ(k,Ri) and �ows that can be allocated at the remaining (n− (i − 1)p) − k stages, i.e.,
fϕ(k+1,Ri), . . . , fϕ(n−(i−1)p,Ri). Therefore, the action set Ak is dynamic in nature in the
sense that it depends on the total �ow already allocated up to that stage and also
the number of �ows already allocated at the previous k − 1 stages. If FT

k is the total
�ow already allocated, pA is the number of �ows already allocated, fϕ(k,Ri) is a �ow
at stagek , the minimum value and the maximum value of action ak are de�ned as

amin
k =



0 if p = pA

0 if F − FT
k < fϕ(k,Ri)

0 if p − pA < (n − (i − 1)p) − k ∧

F − FT
k < Lp−pA−1,(n−(i−1)p)−k + fϕ(k,Ri)

0 if p − pA < (n − (i − 1)p) − k ∧

F − FT
k ≥ Lp−pA,(n−(i−1)p)−k

1 otherwise

amax
k =


0 if p = pA

0 if F − FT
k < fϕ(k,Ri)

0 if p − pA < (n − (i − 1)p) − k ∧

F − FT
k < Lp−pA−1,(n−(i−1)p)−k + fϕ(k,Ri)

1 otherwise

(6.77)

where Lu,v denotes the sum of the u smallest �ows at last v stages. In order to
illustrate the situation from action's point of view, a visualization in Figure 6.8 is
given. Below, Equation 6.77 is discussed in more detail.

The conditions F − FT
k < fϕ(k,Ri) and p = pA are common for both amin

k and amax
k .

Clearly, if a �ow fϕ(k,Ri) at stagek is greater than F − FT
k (the rest what remains to

allocate), it does not allow the �ow fϕ(k,Ri) to be allocated at stagek . Similarly, if
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the number of �ows already allocated pA is equal to the number of ports p, there is
no free port available for a �ow allocation. Therefore, both amin

k and amax
k are equal

to 0 if the condition is true.

The second condition p− pA < (n−(i−1)p)− k∧F−FT
k < Lp−pA−1,(n−(i−1)p)−k + fϕ(k,Ri)

is also common for both amin
k and amax

k . The condition examines whether the �ow
fϕ(k,Ri) has to be necessarily allocated or not. The �rst part, p−pA < (n−(i−1)p)−k,
checks whether there are enough �ows at the remaining (n − (i − 1)p) − k stages to
�ll remaining free ports if the �ow fϕ(k,Ri) is not to be allocated. The second part,
F − FT

k < Lp−pA−1,(n−(i−1)p)−k + fϕ(k,Ri), checks if the �ow fϕ(k,Ri) together with the
sum of the p − pA − 1 smallest �ows at the last (n − (i − 1)p) − k stages are higher
than F − FT

k , ensuring that the total i-th MUX �ow is less or equal than F. If both
parts are satis�ed, both amin

k and amax
k are equal to 0.

The last condition deals with amin
k only. The condition p−pA < (n−(i−1)p)− k∧F−

FT
k ≥ Lp−pA,(n−(i−1)p)−k consists of two parts. The �rst part, p− pA < (n−(i−1)p)− k,

checks again whether there are enough �ows at the remaining (n−(i−1)p)− k stages
to �ll remaining free ports if the �ow fϕ(k,Ri) is not to be allocated. The second part,
F − FT

k ≥ Lp−pA,(n−(i−1)p)−k , determines whether the sum of the p− pA smallest �ows
at the last (n − (i − 1)p) − k stages is less than F − FT

k , ensuring that the total i-th
MUX �ow is less or equal than F. If both parts are satis�ed, the �ow fϕ(k,Ri) does
not necessarily have to be allocated, since all LB problem conditions can be still
satis�ed at the remaining (n − (i − 1)p) − k stages.

Clearly, if none of the above-mentioned conditions is satis�ed, both amin
k and amax

k
are equal to 1 and the �ow fϕ(k,Ri) has to be allocated in the i-th MUX.

To conclude, if F − FT
k < fϕ(k,Ri) or p = pA is satis�ed, the choice can only be

made from one action � do not allocate ak = 0. There is also no choice if p − pA <
(n− (i − 1)p) − k ∧ F − FT

k < Lp−pA−1,(n−(i−1)p)−k + fϕ(k,Ri) is true, since it leads to only
one possible action again � do not allocate ak = 0.

The situation when two actions are feasible (allocate ak = 1 and do not allocate
ak = 0) depends on the condition p−pA < (n−(i−1)p)−k∧F−FT

k ≥ Lp−pA,(n−(i−1)p)−k .
The decision to allocate the �ow fϕ(k,Ri) can be seen as a substitution of the (p− pA)-
th smallest �ow at last (n − (i − 1)p) − k stages for the �ow fϕ(k,Ri).

All other situations lead to both amin
k and amax

k being equal to 1 and the only one
possible decision is to allocate the �ow fϕ(k,Ri) in the i-th MUX.

The learning procedure can now be summarized [67], see Algorithm 6.16. Initially,
the total �ow already allocated is set to 0 at stage1. Then, an action is performed
that either allocates or not the �ow at stage1 and then, it proceeds to the next stage
(k = 2) with the total �ow already allocated. This proceeds until all the n − (i − 1)p
�ows are either allocated or not. At each state transition step, the estimated Q
value of the state�action pair is updated using Equation 6.71.

As the learning process reaches the last stage, a �ow at stagen−(i−1)p is either allo-
cated or not. Then, the Q value is updated using Equation 6.72. The transition
process is repeated a su�cient number of times (iterations) and each time the allo-
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Figure 6.8: Visualization of p �ows allocation to the i-th MUX from action's point
of view, ni = n − (i − 1)p. Corresponding amin

k and amax
k are based on (6.77).
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cation process goes through all the n − (i − 1)p stages.

Algorithm 6.16 Learning algorithm for the LB problem of the i-th MUX using
ε�greedy strategy
1: load �ows Ri, average �ow F
2: set the learning parameter α, the discount factor γ and the greedy factor ε
3: set the maximum iteration smax

4: set Q values to zeros
5: for i = 1→ n − (i − 1)p do . stages initialization
6: Xi = initStage(i)
7: for all xk ∈ Xi do . states initialization
8: amin

k = getMinAction() . based on Equation 6.77
9: amax

k = getMaxAction() . based on Equation 6.77
10: setStatePermissibleActions(xk,amin

k ,amax
k )

11: end for
12: end for
13: for s = 1→ smax do . learning phase
14: FT

1 = 0, pA = 0
15: for k = 1→ n − (i − 1)p do
16: xk = getCurrentState(k,FT

k )
17: Ak = getActions(k, xk,F, pA) . based on Equation 6.77
18: ak = getGreedyAction(Q,Ak, ε)
19: pA = pA + ak
20: FT

k+1 = FT
k + fϕ(k,Ri) · ak

21: if k < n − (i − 1)p then
22: Q = updateQ(Q, xk,ak) . based on Equation 6.71
23: else
24: Q = updateQ(Q, xk,ak) . based on Equation 6.72
25: end if
26: end for
27: set the greedy factor ε = 1 − s/smax

28: end for

6.7.4 Policy Retrieval

After the learning phase is done, the retrieval phase begins. The system is learnt
and the learnt values are stored in a lookup table. The retrieval phase accesses
the lookup table in order to retrieve the required results. The learnt values in the
lookup table can be used unless the parameters of the system change. In this case,
the system must be learnt again by triggering a new run of learning phase.

As the learning proceeds, and the Q values of state-action pairs are updated, Qs

approaches Q∗. Next, the optimum Qs values are used to obtain the optimum
allocation. The retrieval algorithm [67] is summarized in Algorithm 6.17. At stage1,
FT
1 = 0 is initialized and thus, the state of the system is (1,FT

1 ). The algorithm �nds
the greedy action at this stage as ag1 which is the best allocation FA

1 for stage1. The
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Algorithm 6.17 Policy retrieval algorithm for the LB problem of the i-th MUX
using RL
1: load �ows Ri, average �ow F, Q values
2: FT

1 = 0, pA = 0
3: Si = {}

4: for k = 1→ n − (i − 1)p do . retrieval phase
5: xk = getCurrentState(k,FT

k )
6: Ak = getActions(k, xk,F, pA) . based on Equation 6.77
7: agk = argmina∈Ak

Q(xk,a)
8: if agk = 1 then
9: Si = Si ∪ ϕ(k,Ri)

10: end if
11: pA = pA + agk
12: FT

k+1 = FT
k + fϕ(k,Ri) · a

g
k

13: end for

retrieval algorithm reaches the next state as (2,FT
2 ) where FT

2 = FT
1 + ag1 · fϕ(1,Ri)

and �nds the greedy action corresponding to stage2 as ag2. This proceeds up to
stagen−(i−1)p. Finally, a set of actions (allocations) ag1,a

g
2, . . . ,a

g
n−(i−1)p is obtained

which is the optimum allocation FA
1 ,F

A
2 , . . . ,F

A
n−(i−1)p for the i-th MUX and thus, it

builds up the subset Si = {ϕ( j,Ri) | FA
j , 0 ∀ j = 1, . . . ,n − (i − 1)p}.

Algorithm 6.18 The complete LB problem algorithm considering m MUXes using
RL
1: load �ows R1
2: for i = 1→ m − 1 do . get LB of the i-th MUX

3: F =

⌈ n−(i−1)p∑
j=1

fϕ( j,Ri)/(m − i + 1)

⌉
4: Q = learningPhase(Ri,F) . based on Algorithm 6.16
5: Si = retrievalPhase(Ri,F,Q) . based on Algorithm 6.17

6: Ri+1 = { f j | j ∈ {1, . . . ,n}\
i⋃

k=1

Sk}

7: end for
8: Sm = {ϕ( j,Rm) | ∀ j = 1, . . . , p}

6.7.5 Complete Algorithm

Finally, an algorithm considering all m ∈ N MUXes is proposed [67], see Algorithm
6.18. The idea is to learn and retrieve S1 for the �rst MUX, then reduce a set of
�ows R1 by the allocated �ows and get a set of �ows R2 for the second MUX, etc.
Generally, the i-th MUX is learnt, Si is retrieved and Ri is reduced by Si giving
Ri+1 for the (i + 1)-th MUX. Regarding the last MUX, the m-th MUX, a set Rm
determines directly Sm.
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Chapter 7

Load Balancing � Numerical Results

All algorithms have been implemented in C++ and Matlab (R2018a, 64-bit) on a
personal computer equipped with Intel(R) Core(TM) i7-8750H CPU (@2.20 GHz,
6 Cores, 12 Threads, 9M Cache, Turbo Boost up to 4.10 GHz) and 16 GB RAM
(DDR4, 2 666 MHz) memory. The LB problem solving methods are examined on
three test cases and numerical results are compared with each other in each section
of this chapter.

Flow [B] Flow [B]
f1 9,282 f16 1,474
f2 5,176 f17 2,531
f3 1,948 f18 4,930
f4 123 f19 507
f5 9,577 f20 1,993
f6 5,930 f21 8,273
f7 7,764 f22 6,070
f8 9,480 f23 1,241
f9 7,989 f24 9,620
f10 565 f25 9,052
f11 6,287 f26 3,319
f12 466 f27 9,036
f13 3,815 f28 2,712
f14 1,360 f29 5,057
f15 5,205 f30 5,338

Table 7.1: Flows in the Test Case 1.

7.1 Test Case 1 � Formulation

In this section, the Test Case 1 of the LB problem is introduced and investigated.
It consists of m = 2 MUXes with p = 15 ingoing ports each and therefore, in terms
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of the number of MUXes, it corresponds to the smallest possible task when LB can
be applied.

The task is very similar to the well-known Partition problem. However, the con-
straint considering 15 ingoing ports for each MUX makes a di�erence. The Partition
problem has no constraint or restriction dealing with exactly 15 positive integers in
both subsets.

In Table 7.1, the �ows used in the Test Case 1 are stated. There are n = m · p =
2 · 15 = 30 �ows with values randomly generated in the range from 0 B to 10 kB.

7.2 Test Case 1 � Results

In the following subsections, the results related to the Test Case 1 are given. The
Test Case 1 is solved by DP, GH, ILP, MDE and RL, respectively. All the listed
solution methods are implemented in C++ and Matlab. Finally, the results are
investigated with respect to the error and computation time. The error is de�ned
as the objective function of the LB problem, see Equation 6.1.

Taking into consideration the sum of all �ows in the Test Case 1, the best possible
LB can be reached with the total �ow allocation of 7,360 B to the �rst MUX and
7,360 B to the second MUX. Therefore, the best possible error is equal to 0 based
on Equation 6.1.

7.2.1 Dynamic Programming

As the DP approach is designed, DP does not bring any partially stochastic problem
solving. However, all executions are following the same computational process. In
other words, the DP method is strictly deterministic in every single step and thus,
the optimization process is easily predictable.

Execution
C++ Matlab

Error Time [ms] Error Time [ms]

1 0.00 1,378 0.00 2,004
2 0.00 1,376 0.00 1,894
3 0.00 1,362 0.00 1,883
4 0.00 1,362 0.00 1,870
5 0.00 1,357 0.00 1,893
6 0.00 1,363 0.00 1,899
7 0.00 1,381 0.00 1,915
8 0.00 1,368 0.00 1,884
9 0.00 1,367 0.00 1,893
10 0.00 1,394 0.00 1,886

Table 7.2: Results for the Test Case 1 using DP in each execution.
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The mentioned determinism can be illustrated in Table 7.2 where the results pro-
duced in C++ and Matlab for the Test Case 1 using DP in each execution are stated.
The error is equal to 0 in all executions regardless of a programming language.

The zero error means a global optimum has been reached, since it is not possible to
acquire a lower value of the LB objective function. Unfortunately, the DP approach
does not give the answer whether there is one and only one global optimum or
multiple di�erent global optima with the same error exist, however, it is not an
important question from the LB point of view. A certainty given by the LB objective
function form � a better solution than the current one is not possible to gain � is
su�cient.

The detailed DP results containing the best �ow allocation for the Test Case 1 are
given in Appendix A in Table A.1 for C++ and in Table A.2 for Matlab. Regardless
of a programming language, the DP method has always reached the same solution.
Therefore, the detailed DP results in Table A.1 and Table A.2 correspond to all
executions stated in Table 7.2.

In both Tables A.1 and A.2, the total �ow allocated to the �rst MUX is 73,060 B
and to the second MUX is 73,060 B. Therefore, the mutual comparison reaches
73,060/73,060 = 100.00%. To conclude, DP prepared the best possible LB for the
Test Case 1.

It remains to compare C++ and Matlab executions with respect to the computa-
tional time. The C++ executions are slightly faster than the executions in Matlab,
however, the di�erence is quite low.

7.2.2 Greedy Heuristic

Based on the greedy principle, the GH approach tends to solutions with the higher
error, i.e., solutions might be less precise in terms of LB.

Execution
C++ Matlab

Error Time [µs] Error Time [µs]

1 107.48 1 107.48 70
2 107.48 1 107.48 67
3 107.48 1 107.48 38
4 107.48 1 107.48 39
5 107.48 1 107.48 41
6 107.48 2 107.48 65
7 107.48 1 107.48 51
8 107.48 1 107.48 38
9 107.48 1 107.48 33
10 107.48 1 107.48 34

Table 7.3: Results for the Test Case 1 using GH in each execution.

In general, GH does not intend to �nd the best solution, but it terminates in a
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reasonable number of steps. Finding an optimal solution to such a complex problem
� like the LB problem � typically requires unreasonably many steps. It might even
happen GH terminates and produces the unique worst possible solution.

Greedy algorithms mostly (but not always) fail to �nd a globally optimal solution,
because they usually do not operate exhaustively on all the data. However for the
LB problem, a probability of such a situation is signi�cantly reduced by the strictly
given range from 0 B to 10 kB for each �ow. In other words, there can not be one
�ow being several times higher than the others which would potentially tend to the
unique worst possible solution.

On the other hand, GH usually requires only few steps to terminate and therefore,
it requires a signi�cantly smaller amount of the computational time.

In Table 7.3, the results produced in C++ and Matlab for the Test Case 1 using GH
in each execution are given. The error is the same in each execution, since GH does
not use any stochastic approach and is strictly deterministic. The error is equal to
107.48 which is higher in comparison with the DP approach where a global optimum
has been reached.

The detailed GH results containing the best �ow allocation for the Test Case 1 are
given in Appendix A in Table A.3 for C++ and in Table A.4 for Matlab. Regardless
of a programming language, the GH method has always reached the same solution.
Therefore, the detailed GH results in Table A.3 and Table A.4 correspond to all
executions stated in Table 7.3.

In both Tables A.3 and A.4, the total �ow allocated to the �rst MUX is 73,136 B
and to the second MUX is 72,984 B. Therefore, the mutual comparison reaches
72,984/73,136 ≈ 99.79%. To conclude, GH is less precise than the DP approach,
however, the obtained GH precision is still remarkable.

Moreover, the GH computational time is worth of mentioning. To gain a solution
being not so far away from a global one, it requires only few microseconds. This
observation o�ers a good candidate for a real-time LB solver where the low compu-
tational time is crucial. It remains to compare C++ and Matlab executions with
respect to the computational time. The C++ executions are signi�cantly faster than
the executions in Matlab.

7.2.3 Integer Linear Programming

In Table 7.4, the results produced in C++ and Matlab for the Test Case 1 using
ILP in each execution are stated. The error is equal to 0 giving a global optimum
in each execution.

The detailed ILP results containing the best �ow allocation for the Test Case 1 are
given in Appendix A in Table A.5 for C++ and in Table A.6 for Matlab. However,
the solutions might di�er, since the implementations in both programming languages
use the intern built-up ILP solving libraries. Therefore, the detailed ILP results in
Table A.5 correspond to all C++ executions stated in Table 7.4 and the detailed
ILP results in Table A.6 correspond to all Matlab executions stated in Table 7.4.
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In both Tables A.5 and A.6, the total �ow allocated to the �rst MUX is 73,060 B
and to the second MUX is 73,060 B. Therefore, the mutual comparison reaches
73,060/73,060 ≈ 100.00%. To conclude, ILP prepared the best possible LB for the
Test Case 1.

As the ILP approach is proposed, ILP is not based on a stochastic problem solving.
Therefore, every ILP execution always runs in the same way for the C++ implemen-
tation and the Matlab implementation, however, both are di�erent from each other
(a standard MATLAB function intlinprog and the COIN-OR project written in
C++ based both on branch-and-cut method are used).

At �rst glance, the ILP method seems to be very e�cient, since the computational
time is remarkably low, especially in Matlab. Nevertheless, larger test cases � the
Test Case 2 and Test Case 3 � show how poor performance the ILP approach actually
might have, and even the ILP approach is not often capable to �nd a feasible solution
at all.

Execution
C++ Matlab

Error Time [ms] Error Time [ms]

1 0.00 2,625 0.00 705
2 0.00 2,351 0.00 703
3 0.00 2,252 0.00 709
4 0.00 2,360 0.00 700
5 0.00 2,485 0.00 709
6 0.00 2,405 0.00 705
7 0.00 2,344 0.00 696
8 0.00 2,326 0.00 702
9 0.00 2,341 0.00 725
10 0.00 2,317 0.00 699

Table 7.4: Results for the Test Case 1 using ILP in each execution.

7.2.4 Modi�ed Di�erential Evolution

The proposed MDE algorithm is partially stochastic and hence, it might produce
di�erent solutions in every execution. Nevertheless, the goal remains still the same,
i.e., to reach as the lowest LB error as possible and thus, to perform proper LB. The
parameters used for the MDE algorithm to solve the Test Case 1 are given in Table
7.5.

Parameter Np smax c1 c2 k1 k2 T0 α

Value 50 20,000 0.6 0.4 0.3 0.1 1 0.7

Table 7.5: Parameters used for the MDE.

In Table 7.6, the results produced in C++ and Matlab for the Test Case 1 using the
MDE in each execution are stated. The error is equal to 0 giving a global optimum in
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Execution
C++ Matlab

Error Time [ms] Error Time [ms]

1 0.00 96 0.00 3,540
2 0.00 154 0.00 692
3 0.00 60 0.00 10,115
4 0.00 47 0.00 267
5 0.00 89 0.00 2,545
6 0.00 40 0.00 6,821
7 0.00 184 0.00 2,301
8 0.00 55 0.00 3,941
9 0.00 172 0.00 1,349
10 0.00 99 0.00 1,426

Table 7.6: Results for the Test Case 1 using the MDE in each execution.

each execution, however, the solutions might be di�erent � multiple global optima are
possible. The detailed MDE results containing the best �ow allocation for the Test
Case 1 are given in Appendix A in Table A.7 for C++ corresponding to Execution
6 and in Table A.8 for Matlab corresponding to Execution 4.
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Figure 7.1: The evolution process of the best Test Case 1 �ow allocation based on
the MDE produced in Matlab corresponding to Execution 4.

In both Tables A.7 and A.8, the total �ow allocated to the �rst MUX is 73,060 B
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and to the second MUX is 73,060 B. Therefore, the mutual comparison reaches
73,060/73,060 = 100.00%. To conclude, MDE prepared the best possible LB for the
Test Case 1.

The computational time is very low for the C++ implementation. The implementa-
tion makes a di�erence. The methods DP and GH being so far examined on the Test
Case 1 are rather based on operations with matrices where Matlab is well-optimized,
and no copying of memory is necessary. Therefore, the Matlab implementations of
DP and GH methods being so far examined on the Test Case 1 are not so much
slower than the C++ implementations.

On the contrary, the MDE and RL algorithms require more frequent copying of
memory. Thus, it opens up a new perspective for a pointers usage and fast memory
access in C++.

In order to demonstrate how well-designed the MDE algorithm is proposed, the
evolution process of the best Test Case 1 �ow allocation produced in Matlab corre-
sponding to Execution 4 is shown in Figure 7.1.

At the beginning of the evolution process, it shows a fast convergence of the proposed
MDE algorithm. A global optimum is reached after 35 iterations and the error is
equal to 0.

7.2.5 Reinforcement Learning

The last results of the Test Case 1 remaining to be discussed are produced by the RL
approach. As the only one representative of the machine learning algorithm class,
RL o�ers quite a di�erent point of view. RL is based on taking suitable action to
maximize reward in a particular situation. The parameters used for the RL approach
to solve the Test Case 1 are given in Table 7.7.

Parameter smax α γ ε

Value 100,000 0.1 1 1

Table 7.7: Parameters used for RL.

Unlike the supervised learning, where the training data set has the answer key so
the model is trained with the correct answer itself, RL has no training data set in
advance. In RL, there is no answer provided together with the model, however, the
agent decides what to do to perform the given task. In the absence of training data
set, it is bound to learn from its experience.

In Table 7.8, the results produced in C++ and Matlab for the Test Case 1 using RL
in each execution are given. Every execution gives a unique solution, since RL is a
strongly stochastic approach.

The detailed RL results containing the best �ow allocation for the Test Case 1 are
stated in Appendix A in Table A.9 for C++ corresponding to Execution 6 and in
Table A.10 for Matlab corresponding to Execution 10.
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Execution
C++ Matlab

Error Time [ms] Error Time [ms]

1 4.24 755 1.41 12,410
2 7.07 747 1.41 12,499
3 0.00 752 7.07 12,452
4 4.24 760 7.07 12,469
5 7.07 749 7.07 12,421
6 0.00 747 1.41 12,422
7 7.07 752 7.07 12.445
8 7.07 756 4.24 12,483
9 7.07 757 7.07 12,445
10 7.07 756 0.00 12,538

Table 7.8: Results for the Test Case 1 using RL in each execution.

In both Tables A.9 and A.10, the total �ow allocated to the �rst MUX is 73,060 B
and to the second MUX is 73,060 B. Therefore, the mutual comparison reaches
73,060/73,060 = 100.00%. To conclude, RL prepared the best possible LB for the
Test Case 1.

However, it has to be taken into account that only two out of ten executions reaches
the error equal to 0 in C++ and one out of ten in Matlab implementation. It
depends how smax is set and such a setting requires experience of an executor. On
the other hand, even all the other executions have the error close to 0.

The C++ computational time is several times lower than Matlab needs to calculate
an optimal solution. The high computational time for Matlab comes from a type of
operation required in the optimization process.

In RL, main mathematical operation are performed on submatices of matrices, e.g.,
a sum of elements, a minimum or maximum from elements of submatrix.

In C++, a usage of pointers is very e�cient way how to implement such mathemat-
ical operations. Unfortunately, there are no pointers in Matlab and therefore, the
submatrix must be always copied to perform a particular mathematical operation.

7.3 Test Case 2 � Formulation

In this section, the Test Case 2 of the LB problem is introduced and investigated.
It consists of m = 6 MUXes with p = 15 ingoing ports each and therefore, in terms
of the number of MUXes, it corresponds to the iFDAQ setup used in the Run 2016,
2017 and 2018.

In Table 7.9, the �ows used in the Test Case 2 are stated. There are n = m · p =
6 · 15 = 90 �ows with values randomly generated in the range from 0 B to 10 kB.
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Flow [B] Flow [B] Flow [B]

f1 668 f31 9,136 f61 8,159
f2 7,870 f32 2,783 f62 9,293
f3 5,280 f33 9,037 f63 5,795
f4 4,988 f34 9,894 f64 9,692
f5 8,109 f35 9,854 f65 3,429
f6 2,825 f36 3,235 f66 4,021
f7 8,998 f37 5,743 f67 7,589
f8 6,853 f38 7,950 f68 3,579
f9 7,151 f39 4,067 f69 2,341
f10 714 f40 6,721 f70 425
f11 3,501 f41 3,097 f71 4,370
f12 9,164 f42 3,876 f72 9,034
f13 1,757 f43 8,043 f73 7,278
f14 5,267 f44 2,354 f74 5,637
f15 5,767 f45 5,015 f75 6,888
f16 1,485 f46 7,160 f76 2,345
f17 6,757 f47 4,619 f77 8,753
f18 6,429 f48 2,743 f78 4,977
f19 7,647 f49 5,318 f79 3,606
f20 8,204 f50 6,399 f80 9,868
f21 4,149 f51 2,806 f81 7,468
f22 7,720 f52 1,422 f82 2,028
f23 5,028 f53 6,683 f83 1,710
f24 7,313 f54 8,703 f84 1,241
f25 8,007 f55 854 f85 5,921
f26 7,766 f56 9,920 f86 64
f27 4,504 f57 710 f87 4,079
f28 6,632 f58 5,745 f88 4,727
f29 7,065 f59 9,333 f89 3,626
f30 8,789 f60 4,753 f90 2,636

Table 7.9: Flows in the Test Case 2.

7.4 Test Case 2 � Results

In the following subsections, the results related to the Test Case 2 are given. The
Test Case 2 is solved by DP, GH, ILP, MDE and RL, respectively. All the listed
solution methods are implemented in C++ and Matlab. Finally, the results are
investigated with respect to the error (see Equation 6.1) and computation time.

Taking into account the sum of all �ows in the Test Case 2, the best possible LB can
be acquired with the total �ow allocation of 82,494 B for one MUX and 82,493 B
for the remaining �ve MUXes each. Therefore, the best possible error is equal
approximately to 2.24 based on Equation 6.1.
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7.4.1 Dynamic Programming

Taking into account a determinism of the DP approach, all executions are follow-
ing the same computational process and thus, DP always generates the same best
solution. Moreover, DP produces solutions at the best possible error level.

In Table 7.10, the results produced in C++ and Matlab for the Test Case 2 using DP
in each execution are given. The error is equal approximately to 2.24 in all executions
regardless of a programming language. A global optimum has been reached, since
it is not possible to acquire a lower value of the LB objective function.

Execution
C++ Matlab

Error Time [ms] Error Time [ms]

1 2.24 10,997 2.24 17,299
2 2.24 10,880 2.24 17,149
3 2.24 10,758 2.24 17,078
4 2.24 10,811 2.24 17,109
5 2.24 10,884 2.24 17,156
6 2.24 10,764 2.24 17,128
7 2.24 10,737 2.24 17,178
8 2.24 10,714 2.24 17,132
9 2.24 10,784 2.24 17,068
10 2.24 10,724 2.24 17,141

Table 7.10: Results for the Test Case 2 using DP in each execution.

The detailed DP results containing the best �ow allocation for the Test Case 2 are
given in Appendix B in Table B.1 for C++ and in Table B.2 for Matlab. Regardless
of a programming language, the DP method has always reached the same solution.
Therefore, the detailed DP results in Table B.1 and Table B.2 correspond to all
executions stated in Table 7.10.

In both Tables B.1 and B.2, the total �ow allocated to the �rst MUX is 82,494 B and
to the remaining �ve MUXes is 82,493 B each. Therefore, the mutual comparison
reaches 82,493/82,494 ≈ 100.00%. To conclude, DP provided the best possible LB
for the Test Case 2.

It remains to discuss the Test Case 2 from the computational time point of view.
The C++ executions are signi�cantly faster than the executions in Matlab. Though,
a comparison of the computational time needed for the Test Case 1 and Test Case 2
requires a deeper insight. There is a signi�cant increase in the computational time
for the Test Case 2 related to the number of MUXes. A size of the Test Case 2
causes an increase of the computational time eventually leading to an elimination
of DP as a real-time LB solver.

On the other hand, if no on-the-�y LB adjustment is demanded, a very price LB
solution might be sometimes useful for the long-term LB setup.
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7.4.2 Greedy Heuristic

In Table 7.11, the results produced in C++ and Matlab for the Test Case 2 using
GH in each execution are given. The error is the same in each execution, since GH
does not use any stochastic approach and is strictly deterministic. The error is equal
approximately to 243.89 being higher in comparison with the DP approach where a
global optimum has been reached.

The detailed GH results containing the best �ow allocation for the Test Case 2 are
given in Appendix B in Table B.3 for C++ and in Table B.4 for Matlab. Regardless
of a programming language, the GH method has always reached the same solution.
Therefore, the detailed GH results in Table B.3 and Table B.4 correspond to all
executions stated in Table 7.11.

Based on Tables B.3 and B.4, a comparison of the lowest total �ow allocation and
highest total �ow allocation for the respective MUXes might be performed. The
fourth MUX has the lowest total �ow allocation with a value of 82,323 B and the
�fth MUX has the highest total �ow allocation with a value of 82,640 B. The mutual
comparison reaches 82,323/82,640 ≈ 99.62%. To conclude, GH is less precise than
the DP approach being in line with the same observation in the Test Case 1.

Execution
C++ Matlab

Error Time [µs] Error Time [µs]

1 243.89 6 243.89 2,577
2 243.89 6 243.89 140
3 243.89 6 243.89 140
4 243.89 6 243.89 141
5 243.89 7 243.89 386
6 243.89 7 243.89 103
7 243.89 6 243.89 109
8 243.89 7 243.89 108
9 243.89 7 243.89 108
10 243.89 6 243.89 114

Table 7.11: Results for the Test Case 2 using GH in each execution.

With a reference to the Test Case 1, the GH computational time is again worth of
mentioning. GH is capable to keep the computational time needed for the Test Case
2 at the same level as for the Test Case 1. In order to gain a solution not being
so far away from a global one, it requires only few microseconds. It shows that a
choose of the GH approach as a real-time LB solver might be a meaningful decision.

It remains to compare the computational time of the C++ and Matlab executions
with each other. The C++ executions are signi�cantly faster than the executions in
Matlab. It corresponds with an e�cient way how C++ uses its fast memory access.
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7.4.3 Integer Linear Programming

It was already indicated in the Test Case 1, ILP might have a problem to �nd even
a feasible solution for larger test cases in the reasonable computational time. In
fact, based on the ILP model for LB as it is described in Subsection 6.5.4, ILP is
not capable to �nd a feasible solution for the Test Case 2 at all.

Therefore, it is necessary to adjust slightly the ILP model for LB to be less strictly.
The only one possibility is to relax the MUX �ow limit condition described by
Equation 6.40. Unfortunately, it is not possible to change a form of other two
conditions � Equation 6.41 and Equation 6.42 � since it would lead to a violation
how the LB problem is formulated.

As a result, the adjusted condition has the following relaxation:

n∑
j=1

f j xi j ≤ F + 10 ∀i = 1, . . . ,m. (7.1)

Then, considering the adjusted condition resulting in the less strictly ILP model of
LB, ILP is able to �nd a feasible solution and even a global optimum of the Test
Case 2. In Table 7.12, the results produced in C++ and Matlab for the Test Case
2 using ILP in each execution are shown.

Execution
C++ Matlab

Error Time [ms] Error Time [ms]

1 21.19 18,558 23.81 1,545
2 21.19 17,819 23.81 1,541
3 21.19 17,251 23.81 1,484
4 21.19 17,205 23.81 1,473
5 21.19 17,424 23.81 1,487
6 21.19 17,266 23.81 1,465
7 21.19 17,138 23.81 1,514
8 21.19 17,154 23.81 1,498
9 21.19 17,484 23.81 1,480
10 21.19 17,127 23.81 1,466

Table 7.12: Results for the Test Case 2 using ILP in each execution.

The detailed ILP results containing the best �ow allocation for the Test Case 2 are
given in Appendix B in Table B.5 for C++ and in Table B.6 for Matlab. However,
the solutions might di�er, since the implementations in both programming languages
use the intern built-up ILP solving libraries. Though, based on the ILP determinism,
every ILP execution always runs in the same way for the C++ approach and the
Matlab approach, however, both are di�erent to each other.

Therefore, the detailed ILP results in Table B.5 correspond to all C++ executions
stated in Table 7.12 and the detailed ILP results in Table B.6 correspond to all
Matlab executions stated in Table 7.12.
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Based on Table B.5, a comparison of the lowest total �ow allocation and highest total
�ow allocation for the respective MUXes generated by C++ might be performed.
The sixth MUX has the lowest total �ow allocation with a value of 82,481 B and
the fourth MUX has the highest total �ow allocation with a value of 82,504 B. The
mutual comparison reaches 82,481/82,504 ≈ 99.97%.

Based on Table B.6, a comparison of the lowest total �ow allocation and highest total
�ow allocation for the respective MUXes generated by Matlab might be performed.
The �fth MUX has the lowest total �ow allocation with a value of 82,479 B and
the second MUX has the highest total �ow allocation with a value of 82,504 B. The
mutual comparison reaches 82,479/82,504 ≈ 99.97%.

Besides di�erent implementations in both programming languages using the intern
built-up ILP solving libraries, the fact that the C++ and Matlab implementations
�nd di�erent global optima for the same ILP model of LB might be also caused by
the adjustment of TolInteger option in Matlab. A value of 0.001 is used for the
TolInteger option.

The computational time is quite low in Matlab, however, that might be an exception.
The Test Case 3 shows how long it may take to �nd a solution of the LB problem
using ILP. In addition, taking into account the higher error, ILP is not a suitable
approach for the LB problem solving.

7.4.4 Modi�ed Di�erential Evolution

The proposed MDE algorithm is partially stochastic and hence, it might produce
di�erent solutions in every execution. The parameters used for the MDE algorithm
to solve the Test Case 2 are given in Table 7.5. The presented results in the Table
7.13 have been published in [63].

Execution
C++ Matlab

Error Time [ms] Error Time [ms]

1 2.24 1,601 2.24 71,413
2 2.24 1,652 2.24 25,558
3 2.24 1,997 2.24 23,688
4 2.24 2,220 2.24 25,378
5 2.24 1,382 2.24 43,370
6 2.24 2,099 2.24 90,298
7 2.24 862 2.24 78,666
8 2.24 1,901 2.24 71,448
9 2.24 2,379 2.24 57,260
10 2.24 1,803 2.24 28,210

Table 7.13: Results for the Test Case 2 using the MDE in each execution.

In Table 7.13, the results produced in C++ and Matlab for the Test Case 2 using
the MDE in each execution are stated. The error is equal approximately to 2.24
giving a global optimum in each execution, however, the solutions might be di�erent
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� multiple global optima are possible. The detailed MDE results containing the best
�ow allocation for Test Case 2 are given in Appendix B in Table B.7 for C++ cor-
responding to Execution 7 and in Table B.8 for Matlab corresponding to Execution
3.

In both Tables B.7 and B.8, the total �ow allocated to the �rst MUX is 82,494 B and
to the remaining �ve MUXes is 82,493 B each. Therefore, the mutual comparison
reaches 82,493/82,494 ≈ 100.00%. To conclude, the MDE prepared the best possible
LB for the Test Case 2.

The computational time is very low in C++ due to the fast memory access provided
by C++ and the usage of pointers trying to avoid any copying of memory. Hence,
the MDE algorithm represents a good candidate for a real-time LB solver.
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Figure 7.2: The evolution process of the best Test Case 2 �ow allocation based on
the MDE produced in Matlab corresponding to Execution 3.

To demonstrate the behaviour of the MDE algorithm, the evolution process of the
best Test Case 2 �ow allocation based on the MDE produced in Matlab correspond-
ing to Execution 3 is shown in Figure 7.2. At the beginning of the evolution process,
it shows a fast convergence of the proposed MDE algorithm. It reached a solution
close to a global optimum after just 150 iterations.

Nevertheless, there are several short-term deteriorations of the error in evolution
which are caused by selection mechanism based on SA. The selection mechanism
sometimes selects individuals with a worse f itness value. They have chance to show
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their potential to produce a new population. However, this feature weakens at the
end of the evolution process.

Finally, a global optimum is reached after 3,400 iterations and the error is equal
approximately to 2.24.

7.4.5 Reinforcement Learning

In this subsection, the results produced by the RL approach related to the Test Case
2 are given. The proposed RL algorithm is strongly stochastic and hence, it produces
a unique solution in every execution. The parameters used for the RL algorithm
to solve the Test Case 2 are given in Table 7.7. The quality of the results depends
on smax directly controlling how well state�action pairs are learnt represented by Q
values. Therefore, the smax setup requires experience of an executor for the learning
phase.

In Table 7.14, the results produced in C++ and Matlab for the Test Case 2 using
RL in each execution are stated. The error is equal approximately to 10.44 giving a
solution close to a global optimum in each execution.

The presented results in the Table 7.14 have been published in [67]. However,
the C++ executions in the Table 7.14 are several times faster than C++ results
published in [67]. After the paper publication, the C++ implementation has been
enhanced in terms of an e�cient memory allocation and deallocation.

Execution
C++ Matlab

Error Time [ms] Error Time [ms]

1 10.44 8,180 10.44 117,253
2 10.44 8,073 10.44 117,252
3 10.44 8,093 10.44 117,106
4 10.44 8,125 10.44 119,307
5 10.44 8,104 10.44 119,113
6 10.44 8,114 10.44 117,690
7 10.44 8,052 10.44 118,236
8 7.14 8,073 10.44 118,427
9 10.82 8,095 10.44 118,242
10 9.00 8,085 10.82 117,918

Table 7.14: Results for the Test Case 2 using RL in each execution.

The detailed RL results containing the best Test Case 2 �ow allocation are stated
in Appendix B in Table B.9 for C++ corresponding to Execution 8 and in Table
B.10 for Matlab corresponding to Execution 3.

Based on Table B.9, a comparison of the lowest total �ow allocation and highest total
�ow allocation for the respective MUXes generated by C++ might be performed.
The second MUX has the lowest total �ow allocation with value of 82,489 B and
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on the other hand, the sixth has the highest total �ow allocation with a value of
82,497 B. The ratio of the �ows is 82,489/82,497 ≈ 99.99%.

Based on Table B.10, a comparison of the lowest total �ow allocation and highest
total �ow allocation for the respective MUXes generated by Matlab might be per-
formed. The third MUX has the lowest total �ow allocation with value of 82,486 B
and on the other hand, the �fth and sixth MUX have the highest total �ow allocation
with a value of 82,498 B each. The ratio of the �ows is 82,486/82,498 ≈ 99.99%.

In order to calculate an optimal solution, Matlab consumes several times more com-
putational time than a version implemented in C++. The high computational time
for Matlab comes from a type of operation required in an optimization process. In
RL, the main mathematical operations are performed on submatices of matrices,
e.g., sum of elements, minimum or maximum from elements of a submatrix. In
C++, pointers are a very e�cient way how to implement such mathematical oper-
ations. Since pointers are absent in Matlab, a submatrix must be always copied to
perform a particular mathematical operation.

However, the computational time for both C++ and Matlab is quite high, resulting
in an exclusion of the RL algorithm as a real-time LB solver. On the other hand, the
error is quite small. Therefore, the RL approach can be considered for the long-term
LB setup where no frequent changes in the �ows are expected.

On the other hand, faster and more precise algorithms have already been mentioned,
e.g., DP and MDE, and thus, there is no meaningful reason for giving a priority to
RL.

In addition, the RL approach might lead to a quite high RAM memory consumption
during execution to store values of each state, since the problems can be quite
complex.

7.5 Test Case 3 � Formulation

In this section, the Test Case 3 of the LB problem is introduced and investigated.
It consists of m = 8 MUXes with p = 15 ingoing ports each and therefore, in terms
of the number of MUXes, it corresponds to the iFDAQ full setup. However, the
iFDAQ full setup has never been in operation for the COMPASS experiment, since
it was not required by any physics program.

In Table 7.15, the �ows used in the Test Case 3 are stated. There are n = m · p =
8 · 15 = 120 �ows with values randomly generated in the range from 0 B to 10 kB.

7.6 Test Case 3 � Results

In the following subsections, the results related to the Test Case 3 are given. The
Test Case 3 is solved by DP, GH, ILP, MDE and RL, respectively. All the listed
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solution methods are implemented in C++ and Matlab. Finally, the results are
investigated with respect to the error (see Equation 6.1) and computation time.

Taking into consideration the sum of all �ows in Test Case 3, the best possible LB
can be reached with the total �ow allocation of 68,401 B for four MUXes each and
68,400 B for the remaining four MUXes each. Therefore, the best possible error is
equal to 2 based on Equation 6.1.

Flow [B] Flow [B] Flow [B] Flow [B]

f1 9,056 f31 7,346 f61 6,618 f91 1,182
f2 582 f32 6,000 f62 815 f92 834
f3 4,409 f33 249 f63 5,325 f93 5,374
f4 3,140 f34 458 f64 4,428 f94 245
f5 5,035 f35 5,194 f65 2,400 f95 8,219
f6 3,906 f36 7,196 f66 8,104 f96 7,350
f7 2,149 f37 667 f67 739 f97 3,354
f8 2,266 f38 2,519 f68 2,772 f98 2,485
f9 4,150 f39 3,066 f69 4,335 f99 6,642
f10 6,473 f40 9,404 f70 9,233 f100 5,575
f11 6,533 f41 2,599 f71 3,059 f101 1,421
f12 7,415 f42 2,946 f72 9,179 f102 398
f13 146 f43 7,434 f73 3,547 f103 5,577
f14 5,115 f44 6,401 f74 690 f104 3,741
f15 7,845 f45 151 f75 8,215 f105 3,043
f16 380 f46 8,114 f76 4,673 f106 4,063
f17 4,718 f47 8,088 f77 5,523 f107 8,303
f18 8,525 f48 7,084 f78 5,343 f108 6,451
f19 3,685 f49 6,835 f79 4,646 f109 6,100
f20 2,324 f50 1,888 f80 7,832 f110 9,792
f21 7,464 f51 5,232 f81 7,857 f111 1,046
f22 3,629 f52 431 f82 5,433 f112 4,540
f23 1,091 f53 1,929 f83 5,549 f113 4,533
f24 3,684 f54 2,784 f84 4,278 f114 1,408
f25 7,432 f55 9,259 f85 3,020 f115 391
f26 7,223 f56 2,438 f86 520 f116 9,104
f27 2,888 f57 925 f87 6,314 f117 7,525
f28 1,360 f58 8,885 f88 646 f118 8,968
f29 2,795 f59 7,258 f89 7,716 f119 8,360
f30 3,165 f60 2,841 f90 5,676 f120 2,491

Table 7.15: Flows in the Test Case 3.

7.6.1 Dynamic Programming

The DP determinism can be illustrated in Table 7.16 where the results produced in
C++ and Matlab for the Test Case 3 using DP in each execution are stated. The
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error is equal to 2 in all executions regardless of a programming language.

The certainty that the DP approach eventually �nds a global optimum is absolutely
crucial for the long-term LB setup where no on-the-�y changes are required.

Execution
C++ Matlab

Error Time [ms] Error Time [ms]

1 2.00 15,341 2.00 25,161
2 2.00 15,362 2.00 24,738
3 2.00 15,344 2.00 25,027
4 2.00 15,526 2.00 24,771
5 2.00 15,557 2.00 24,782
6 2.00 15,310 2.00 24,768
7 2.00 15,336 2.00 24,729
8 2.00 15,507 2.00 24,790
9 2.00 15,455 2.00 24,880
10 2.00 15,350 2.00 24,831

Table 7.16: Results for the Test Case 3 using DP in each execution.

The detailed DP results containing the best �ow allocation for the Test Case 3 are
given in Appendix C in Table C.1 for C++ and in Table C.2 for Matlab. Regardless
of a programming language, the DP method has always reached the same solution.
Therefore, the detailed DP results in Table C.1 and Table C.2 correspond to all
executions stated in Table 7.16.

In both Tables C.1 and C.2, the total �ow allocated to the �rst four MUXes is
68,401 B each and to the remaining four MUXes is 68,400 B each. Therefore, the
mutual comparison reaches 68,400/68,401 ≈ 100.00%. To conclude, DP prepared
the best possible LB for the Test Case 3.

It remains to discuss the Test Case 3 with respect to the computation time. The
C++ executions are signi�cantly faster than the executions in Matlab.

Based on the Test Case 1, Test Case 2 and Test Case 3, the DP approach is signi�cant
for the long-term LB setup planning, since a guarantee of providing the best possible
solution is priceless. On the other hand, DP is not suitable for the real-time LB
adjustments because of the high computational time being necessary for a solution
searching.

7.6.2 Greedy Heuristic

It was already mentioned, GH is probably the best candidate for a real-time LB
solver and the results of the Test Case 3 con�rm this statement.

In Table 7.17, the results produced in C++ and Matlab for the Test Case 3 using
GH in each execution are stated. The error is the same in each execution, since
GH does not use any stochastic approach and is strictly deterministic. The error is
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Execution
C++ Matlab

Error Time [µs] Error Time [µs]

1 224.22 9 224.22 3,053
2 224.22 10 224.22 184
3 224.22 10 224.22 183
4 224.22 10 224.22 182
5 224.22 10 224.22 427
6 224.22 10 224.22 136
7 224.22 10 224.22 137
8 224.22 10 224.22 164
9 224.22 9 224.22 286
10 224.22 10 224.22 150

Table 7.17: Results for the Test Case 3 using GH in each execution.

equal approximately to 224.22 which is higher in comparison with the DP approach
where a global optimum has been reached.

The detailed GH results containing the best �ow allocation for the Test Case 3 are
given in Appendix C in Table C.3 for C++ and in Table C.4 for Matlab. Regardless
of a programming language, the GH method has always reached the same solution.
Therefore, the detailed GH results in Table C.3 and Table C.4 correspond to all
executions stated in Table 7.17.

Based on Tables C.3 and C.4, a comparison of the lowest total �ow allocation and
highest total �ow allocation for the respective MUXes might be performed. The
seventh MUX has the lowest total �ow allocation with a value of 68,285 B and the
fourth MUX has the highest total �ow allocation with a value of 68,488 B. The
mutual comparison reaches 68,285/68,488 ≈ 99.70%. The error persists still at the
same level as for the Test Case 1 and Test Case 2.

In order to acquire a solution not being so far away from a global one, it requires
only few microseconds. Thus, GH is the best real-time solver of the LB problem.

7.6.3 Integer Linear Programming

The Test Case 3 veri�es how di�cult is to �nd a solution of the LB problem for ILP.
ILP usually has no problems with small test cases like the Test Case 1 where only
two MUXes are considered. As soon as test cases become larger, ILP has a problem
to provide an optimal solution of the LB problem.

It was already discussed in the Test Case 1 and Test Case 2, ILP might have problems
to �nd even a feasible solution for larger test cases in the reasonable computational
time. In fact, based on the ILP model for LB as it is described in Subsection 6.5.4,
ILP is not capable to �nd a feasible solution for the Test Case 3 at all.

Therefore, by analogy to the Test Case 2, it is again necessary to adjust slightly the
ILP model for LB to be less strictly. The relaxation has been already described in
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the Test Case 2 and it deals with Equation 6.40.

As a result, the adjusted condition has the following relaxation:

n∑
j=1

f j xi j ≤ F + 35 ∀i = 1, . . . ,m. (7.2)

Then, with the adjusted condition, ILP is able to �nd a feasible solution and even
a global optimum of the Test Case 3 considering the less strictly model. In Table
7.18, the results produced in C++ and Matlab for the Test Case 3 using ILP in each
execution are shown.

Execution
C++ Matlab

Error Time [ms] Error Time [ms]

1 194.43 52,415 134.61 96,635
2 194.43 51,483 134.61 95,542
3 194.43 50,989 134.61 95,630
4 194.43 50,941 134.61 95,556
5 194.43 50,963 134.61 95,268
6 194.43 50,910 134.61 95,714
7 194.43 49,992 134.61 95,596
8 194.43 50,041 134.61 96,168
9 194.43 50,335 134.61 95,251
10 194.43 49,927 134.61 96,264

Table 7.18: Results for the Test Case 3 using ILP in each execution.

The detailed ILP results containing the best �ow allocation for the Test Case 3 are
given in Appendix C in Table C.5 for C++ and in Table C.6 for Matlab. However,
the solutions might di�er, since the implementations in both programming languages
use the intern built-up ILP solving libraries. Though, based on ILP determinism,
every ILP execution always runs in the same way for the C++ approach and the
Matlab approach, however, both are di�erent to each other.

Therefore, the detailed ILP results in Table C.5 correspond to all C++ executions
stated in Table 7.18 and the detailed ILP results in Table C.6 correspond to all
Matlab executions stated in Table 7.18.

Based on Table C.5, a comparison of the lowest total �ow allocation and highest total
�ow allocation for the respective MUXes generated by C++ might be performed.
The eighth MUX has the lowest total �ow allocation with a value of 68,221 B and
the �rst MUX has the highest total �ow allocation with a value of 68,435 B. The
mutual comparison reaches 68,221/68,435 ≈ 99.69%.

Based on Table C.6, a comparison of the lowest total �ow allocation and highest total
�ow allocation for the respective MUXes generated by Matlab might be performed.
The fourth MUX has the lowest total �ow allocation with a value of 68,282 B and
the sixth MUX has the highest total �ow allocation with a value of 68,430 B. The
mutual comparison reaches 68,282/68,430 ≈ 99.78%.
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As it has been already observed and explained in the Test Case 1 and Test Case 2,
the C++ and Matlab implementations �nd di�erent global optima.

Finally, the computational time is quite high and therefore, ILP is not suitable for
the real-time LB solving. To conclude, the high computational time, together with
the higher error caused by the relaxation of the model, excludes the ILP approach
from any usage in production. Moreover, ILP has signi�cant problems to �nd a
feasible solution and thus, a necessity of the relaxation degrades applicability too.

7.6.4 Modi�ed Di�erential Evolution

The proposed MDE algorithm is partially stochastic and hence, it might produce
di�erent solutions in every execution. The parameters used for the MDE algorithm
to solve Test Case 3 are given in Table 7.5. The presented results in the Table 7.19
have been published in [63].

Execution
C++ Matlab

Error Time [ms] Error Time [ms]

1 15.30 6,050 2.00 87,064
2 2.00 2,507 2.00 67,601
3 2.00 1,911 2.00 104,993
4 2.00 3,266 2.00 61,987
5 2.00 2,358 2.00 94,706
6 2.00 2,659 2.00 80,280
7 2.00 5,398 4.24 151,224
8 2.00 3,153 2.00 108,325
9 2.00 2,718 2.00 37,530
10 2.00 5,100 2.00 82,067

Table 7.19: Results for the Test Case 3 using MDE in each execution.

In Table 7.19, the results for the Test Case 3 using MDE in each execution are
given for C++ and Matlab. The error is nearly always equal to 2.00 giving a global
optimum in each execution. Nevertheless, there are few executions which did not
�nd a global optimum like the others. It is caused by the stopping criterion. Here,
the maximum number of iterations is selected as the stopping criterion. In other
words, the MDE algorithm would have needed more iterations for some executions to
�nd a global optimum. Thus, fundamental experience with heuristics of an executor
is required to adjust all parameters in a right way.

The detailed MDE results containing the best �ow allocation for the Test Case 3
are given in Appendix C in Table C.7 for C++ corresponding to Execution 3 and
in Table C.8 for Matlab corresponding to Execution 9.

In both Tables C.7 and C.8, the total �ow allocated to the �rst four MUXes is
68,401 B each and to the remaining four MUXes is 68,400 B each. Therefore, the
mutual comparison reaches 68,400/68,401 ≈ 100.00%. To conclude, MDE prepared
the best possible LB for the Test Case 3.
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The computational time is very low in C++ due to the fast memory access provided
by C++ and the usage of pointers trying to avoid any copying of memory. Hence,
the MDE algorithm represents a good candidate for a real-time LB solver.

To demonstrate the behaviour of the MDE algorithm, the evolution process of the
best Test Case 3 �ow allocation produced in Matlab corresponding to Execution 9
is shown in Figure 7.3. At the beginning of the evolution process, the �gure shows
the fast convergence behavior of the proposed MDE algorithm.
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Figure 7.3: The evolution process of the best Test Case 3 �ow allocation based on
the MDE produced in Matlab corresponding to Execution 9.

Nevertheless, there are many short-term deteriorations of error in evolution which
are caused by selection mechanism based on Simulated Annealing (SA). It sometimes
selects individuals with a worse f itness value. They have chance to show their
potential to produce next population. However, this feature weakens at the end of
the evolution process. Finally, a global optimum is reached after 4,900 iterations
and the error is equal to 2.00.

7.6.5 Reinforcement Learning

The last results of the Test Case 3 to be discussed are produced by the RL approach.
In Table 7.20, the results produced in C++ and Matlab for the Test Case 3 using
RL in each execution are stated. In almost each execution, a unique solution is
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retrieved giving very precise LB with the small error. The parameters used for the
RL approach to solve Test Case 3 are given in Table 7.7.

The presented results in the Table 7.20 have been published in [67]. However,
the C++ executions in the Table 7.14 are several times faster than C++ results
published in [67]. After the paper publication, the C++ implementation has been
enhanced in terms of an e�cient memory allocation and deallocation.

Execution
C++ Matlab

Error Time [ms] Error Time [ms]

1 11.31 14,279 11.66 206,358
2 5.10 14,133 5.29 203,017
3 7.87 13,911 6.48 203,287
4 11.14 14,195 11.22 204,427
5 6.93 14,331 6.32 207,476
6 5.10 14,365 11.22 208,410
7 11.49 13,980 2.45 204,824
8 6.63 14,008 6.16 205,160
9 5.29 13,998 11.49 204,299
10 7.07 14,028 11.14 204,525

Table 7.20: Results for the Test Case 3 using RL in each execution.

The detailed RL results containing the best �ow allocation for the Test Case 3 are
stated in Appendix C in Table C.9 for C++ corresponding to Execution 2 and in
Table C.10 for Matlab corresponding to Execution 7.

Based on Table C.9, a comparison of the lowest total �ow allocation and highest total
�ow allocation for the respective MUXes generated by C++ might be performed.
The sixth MUX has the lowest total �ow allocation with a value of 68,398 B and the
eighth has the highest total �ow allocation with a value of 68,404 B. The mutual
comparison reaches 68,398/68,404 ≈ 99.99%.

Based on Table C.10, a comparison of the lowest total �ow allocation and highest
total �ow allocation for the respective MUXes generated by Matlab might be per-
formed. The fourth MUX has the lowest total �ow allocation with a value of 68,399 B
and the �rst, third, �fth, sixth and seventh have the highest total �ow allocation
with a value of 68,401 B. The mutual comparison reaches 68,399/68,401 ≈ 100.00%.

All aspects related to RL have already been mentioned in the Test Case 2. More
precise and faster algorithms have been proposed � like DP and MDE � for the LB
problem solving. Moreover, a consumption of RAM memory needed for RL is quite
high.

7.7 Summary based on Numerical Results

Test cases have been discussed in an extensive way. It is useful to put all observations
to a single table and draw conclusions based on them.
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In Table 7.21, the overview of main features � the accuracy and computational time
� is shown. Moreover, there are also the real-time and long-term LB �ags indicating
which method is suitable for real-time and long-term LB.

Method Accuracy Time Real-time LB Long-term LB

DP ∼ 100.00% 4 x
GH > 99.60% 1 x
ILP > 99.60% 5
MDE ∼ 100.00% 2 x x
RL ∼ 100.00% 3

Table 7.21: Summary based on numerical results.

The accuracy is shown based on a comparison of the lowest total �ow allocation and
highest total �ow allocation for the respective MUXes. Following the results of the
C++ implementation, the computational time column orders methods based on the
computational time needed in executions where 1 is equal to the fastest method and
5 is equal to the slowest method.

Based on the summary in Table 7.21, DP, the MDE and RL are best candidates for
the long-term LB setup solving. However, RL is generally considered to generate
results with the higher error than DP and the MDE and thus, RL is excluded. MDE
is faster than DP, however, DP has a �ag in the long-term LB column too, since it
may be considered as an alternative to the faster MDE.

Real-time LB has only two possibilities � GH and the MDE. However, GH is rather
being applicable for real-time LB than the MDE, since the computational time of
GH takes only few microseconds and does not increase together with the size of a
given test case. Moreover, the GH accuracy is still kept above 99.60%.
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Conclusion

The iFDAQ was successfully deployed and commissioned in 2014, allowed to success-
fully take data for nominal Drell-Yan conditions during the Run 2015 and followed
by runs dedicated to DVCS in 2016 and 2017, and to Drell-Yan again in 2018.

Firstly, the DIALOG library has been presented. The DIALOG library is a new
communication library for iFDAQ of the COMPASS experiment at CERN. It is a
replacement for the DIM library. The DIALOG library provides e�cient and re-
liable IPCs across di�erent platforms. Its communication mechanism is based on
the publish/subscribe method and allows for asynchronous communications, task
parallelism and multiple destination updates. Its characteristics of e�ciency and re-
liability have considerably improved the performance and robustness of the complete
iFDAQ. It was fully incorporated to all processes in the Run 2016.

The DIALOG is responsible for basically all communications inside the iFDAQ, in
this environment it makes available around 100 services provided by 30 servers.

The DIALOG Online Monitoring API provides an easy use interface for the moni-
toring of whole communication system. Its general implementation enables a devel-
opment of various monitoring tools. The DIALOG GUI is found to be very useful
not only for monitoring of the system state, but also to determine which services
are available at a given time. Furthermore, the DIALOG POST Daemon and the
DIALOG WebSockets Daemon establish a connection between any desktop applica-
tion and any web application. That makes any communication system based on the
DIALOG library less dependent in terms of an operating system and environment.

Moreover, the e�ciency measurement has shown the performance of the DIALOG
library is signi�cantly better than the DIM library. It uses and saturates the network
bandwidth in a more e�cient way.

Secondly, the DAQ Debugger has been implemented. The DAQ Debugger has been
incorporated to all processes of the iFDAQ in August 2016 and since then, it helps
with the error detection. It does not a�ect the process performance and does not
increase load on readout engine computers.

Based on crash reports created by the DAQ Debugger, all remaining software issues
in the iFDAQ have been identi�ed and �xed. Since October 2017, the iFDAQ is
stable and without any single crash. The DAQ Debugger ful�lled initial demands
and purpose.

The improved iFDAQ stability gave an opportunity to introduce the continuously
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running mode to the iFDAQ. Without any stops, the iFDAQ runs 24/7 regardless
of nights, weekends or bank holidays for most of the calendar year. It helped to
collect more physics data in the Run 2017 and 2018.

This thesis has introduced the LB problem of the iFDAQ of the COMPASS ex-
periment at CERN. NP-completeness of the LB problem makes optimization more
challenging. Five approaches how to deal with such a problem have been proposed.

The �rst way is based on DP. It is partially inspired by Knapsack problem using
DP. Moreover, it introduces a third dimension to keep a proper number of ports in
one MUX.

GH is the second approach. The algorithm has been implemented for the LB problem
solving and it is partially inspired by greedy algorithm for the Partition problem. It
is generalized to m ∈ N partitions and it does not consider �full� partitions (p ∈ N
integers have been already allocated to the partition) anymore.

The next approach is based on ILP. The general form of ILP opened up a new
possibility to use some standard solvers for the LB problem. Thus, a standard
MATLAB function intlinprog and the powerful COIN-OR project written in C++
based both on branch-and-cut method have been used.

The fourth approach is based on a GA. The proposed MDE has new crossover and
mutation operator and its selection mechanism is inspired by SA.

Finally, the last approach, RL refers to a kind of machine learning method in which
an agent receives a delayed reward in the next time step to evaluate its previous
action. The RL algorithm runs in order to learn and retrieve �ow allocation for the
i-th MUX, move to the (i + 1)-th MUX, etc. In this manner, it allocates �ows to all
m MUXes.

Finally, all mentioned approaches solving the LP problem have been evaluated using
three test cases � the Test Case 1, Test Case 2 and Test Case 3. Based on the results,
the GH approach is the most suitable method for the real-time LB solving due to the
small computational time and reasonable error. For the long-term LB setup purpose,
DP and MDE match the requirements in terms of the best error and ability to �nd
a global optimum.

Due to iFDAQ versatility and scalability, the iFDAQ is also suitable for other high-
energy physics experiments. Recently, it has been chosen by the second experiment
at the SPS which is searching for light dark matter � the experiment NA64.

Nowadays, the COMPASS typical data rate is 1500 MB/s during spill which is col-
lected from more than 100 front-end modules. The maximum aggregated throughput
of the designed system is 1.5 GB/s, but taking into account accelerator duty cycle
and signi�cant local memory resources, it has a safety margin of 200-300% and possi-
bility of future improvements. Thus, it ful�lled initial demands and its development
continues.
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A.1 Dynamic Programming

MUX1 MUX2

# Flow [B] # Flow [B]

1 f3 1,948 1 f1 9,282
2 f7 7,764 2 f2 5,176
3 f8 9,480 3 f4 123
4 f9 7,989 4 f5 9,577
5 f10 565 5 f6 5,930
6 f11 6,287 6 f13 3,815
7 f12 466 7 f14 1,360
8 f16 1,474 8 f15 5,205
9 f18 4,930 9 f17 2,531
10 f19 507 10 f22 6,070
11 f20 1,993 11 f23 1,241
12 f21 8,273 12 f26 3,319
13 f24 9,620 13 f27 9,036
14 f25 9,052 14 f29 5,057
15 f28 2,712 15 f30 5,338
Σ 73,060 Σ 73,060

Table A.1: The best Test Case 1 �ow allocation produced in C++ using DP.

MUX1 MUX2

# Flow [B] # Flow [B]

1 f3 1,948 1 f1 9,282
2 f7 7,764 2 f2 5,176
3 f8 9,480 3 f4 123
4 f9 7,989 4 f5 9,577
5 f10 565 5 f6 5,930
6 f11 6,287 6 f13 3,815
7 f12 466 7 f14 1,360
8 f16 1,474 8 f15 5,205
9 f18 4,930 9 f17 2,531
10 f19 507 10 f22 6,070
11 f20 1,993 11 f23 1,241
12 f21 8,273 12 f26 3,319
13 f24 9,620 13 f27 9,036
14 f25 9,052 14 f29 5,057
15 f28 2,712 15 f30 5,338
Σ 73,060 Σ 73,060

Table A.2: The best Test Case 1 �ow allocation produced in Matlab using DP.

185



A.2 Greedy Heuristic

MUX1 MUX2

# Flow [B] # Flow [B]

1 f24 9,620 1 f5 9,577
2 f1 9,282 2 f8 9,480
3 f25 9,052 3 f27 9,036
4 f21 8,273 4 f9 7,989
5 f11 6,287 5 f7 7,764
6 f22 6,070 6 f6 5,930
7 f30 5,338 7 f15 5,205
8 f2 5,176 8 f29 5,057
9 f18 4,930 9 f13 3,815
10 f28 2,712 10 f26 3,319
11 f17 2,531 11 f20 1,993
12 f16 1,474 12 f3 1,948
13 f14 1,360 13 f23 1,241
14 f10 565 14 f19 507
15 f12 466 15 f4 123
Σ 73,136 Σ 72,984

Table A.3: The best Test Case 1 �ow allocation produced in C++ using GH.

MUX1 MUX2

# Flow [B] # Flow [B]

1 f24 9,620 1 f5 9,577
2 f1 9,282 2 f8 9,480
3 f25 9,052 3 f27 9,036
4 f21 8,273 4 f9 7,989
5 f11 6,287 5 f7 7,764
6 f22 6,070 6 f6 5,930
7 f30 5,338 7 f15 5,205
8 f2 5,176 8 f29 5,057
9 f18 4,930 9 f13 3,815
10 f28 2,712 10 f26 3,319
11 f17 2,531 11 f20 1,993
12 f16 1,474 12 f3 1,948
13 f14 1,360 13 f23 1,241
14 f10 565 14 f19 507
15 f12 466 15 f4 123
Σ 73,136 Σ 72,984

Table A.4: The best Test Case 1 �ow allocation produced in Matlab using GH.
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A.3 Integer Linear Programming

MUX1 MUX2

# Flow [B] # Flow [B]

1 f3 1,948 1 f1 9,282
2 f6 5,930 2 f2 5,176
3 f9 7,989 3 f4 123
4 f11 6,287 4 f5 9,577
5 f15 5,205 5 f7 7,764
6 f16 1,474 6 f8 9,480
7 f17 2,531 7 f10 565
8 f20 1,993 8 f12 466
9 f21 8,273 9 f13 3,815
10 f22 6,070 10 f14 1,360
11 f23 1,241 11 f18 4,930
12 f25 9,052 12 f19 507
13 f26 3,319 13 f24 9,620
14 f27 9,036 14 f29 5,057
15 f28 2,712 15 f30 5,338
Σ 73,060 Σ 73,060

Table A.5: The best Test Case 1 �ow allocation produced in C++ using ILP.

MUX1 MUX2

# Flow [B] # Flow [B]

1 f3 1,948 1 f1 9,282
2 f5 9,577 2 f2 5,176
3 f6 5,930 3 f4 123
4 f8 9,480 4 f7 7,764
5 f12 466 5 f9 7,989
6 f13 3,815 6 f10 565
7 f16 1,474 7 f11 6,287
8 f18 4,930 8 f14 1,360
9 f19 507 9 f15 5,205
10 f20 1,993 10 f17 2,531
11 f21 8,273 11 f22 6,070
12 f23 1,241 12 f24 9,620
13 f25 9,052 13 f26 3,319
14 f27 9,036 14 f28 2,712
15 f30 5,338 15 f29 5,057
Σ 73,060 Σ 73,060

Table A.6: The best Test Case 1 �ow allocation produced in Matlab using ILP.
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A.4 Modi�ed Di�erential Evolution

MUX1 MUX2

# Flow [B] # Flow [B]

1 f6 5,930 1 f9 7,989
2 f16 1,474 2 f27 9,036
3 f22 6,070 3 f15 5,205
4 f7 7,764 4 f1 9,282
5 f25 9,052 5 f20 1,993
6 f3 1,948 6 f19 507
7 f5 9,577 7 f21 8,273
8 f2 5,176 8 f26 3,319
9 f23 1,241 9 f11 6,287
10 f14 1,360 10 f4 123
11 f13 3,815 11 f30 5,338
12 f17 2,531 12 f12 466
13 f8 9,480 13 f10 565
14 f28 2,712 14 f24 9,620
15 f18 4,930 15 f29 5,057
Σ 73,060 Σ 73,060

Table A.7: The best Test Case 1 �ow allocation produced in C++ using the MDE.

MUX1 MUX2

# Flow [B] # Flow [B]

1 f22 6,070 1 f7 7,764
2 f11 6,287 2 f8 9,480
3 f12 466 3 f24 9,620
4 f28 2,712 4 f21 8,273
5 f27 9,036 5 f30 5,338
6 f20 1,993 6 f4 123
7 f19 507 7 f10 565
8 f25 9,052 8 f16 1,474
9 f5 9,577 9 f2 5,176
10 f1 9,282 10 f9 7,989
11 f23 1,241 11 f15 5,205
12 f29 5,057 12 f13 3,815
13 f6 5,930 13 f14 1,360
14 f17 2,531 14 f18 4,930
15 f26 3,319 15 f3 1,948
Σ 73,060 Σ 73,060

Table A.8: The best Test Case 1 �ow allocation produced in Matlab using the MDE.
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A.5 Reinforcement Learning

MUX1 MUX2

# Flow [B] # Flow [B]

1 f24 9,620 1 f1 9,282
2 f5 9,577 2 f9 7,989
3 f8 9,480 3 f11 6,287
4 f25 9,052 4 f22 6,070
5 f27 9,036 5 f6 5,930
6 f21 8,273 6 f30 5,338
7 f7 7,764 7 f15 5,205
8 f13 3,815 8 f2 5,176
9 f3 1,948 9 f29 5,057
10 f16 1,474 10 f18 4,930
11 f14 1,360 11 f26 3,319
12 f10 565 12 f28 2,712
13 f19 507 13 f17 2,531
14 f12 466 14 f20 1,993
15 f4 123 15 f23 1,241
Σ 73,060 Σ 73,060

Table A.9: The best Test Case 1 �ow allocation produced in C++ using RL.

MUX1 MUX2

# Flow [B] # Flow [B]

1 f24 9,620 1 f1 9,282
2 f5 9,577 2 f9 7,989
3 f8 9,480 3 f11 6,287
4 f25 9,052 4 f22 6,070
5 f27 9,036 5 f6 5,930
6 f21 8,273 6 f30 5,338
7 f7 7,764 7 f15 5,205
8 f13 3,815 8 f2 5,176
9 f3 1,948 9 f29 5,057
10 f16 1,474 10 f18 4,930
11 f14 1,360 11 f26 3,319
12 f10 565 12 f28 2,712
13 f19 507 13 f17 2,531
14 f12 466 14 f20 1,993
15 f4 123 15 f23 1,241
Σ 73,060 Σ 73,060

Table A.10: The best Test Case 1 �ow allocation produced in Matlab using RL.
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B.1 Dynamic Programming

MUX1 MUX2 MUX3

# Flow [B] # Flow [B] # Flow [B]

1 f5 8,109 1 f1 668 1 f2 7,870
2 f7 8,998 2 f3 5,280 2 f16 1,485
3 f10 714 3 f4 4,988 3 f23 5,028
4 f13 1,757 4 f6 2,825 4 f33 9,037
5 f14 5,267 5 f9 7,151 5 f38 7,950
6 f15 5,767 6 f11 3,501 6 f41 3,097
7 f19 7,647 7 f17 6,757 7 f44 2,354
8 f20 8,204 8 f18 6,429 8 f53 6,683
9 f21 4,149 9 f34 9,894 9 f54 8,703
10 f22 7,720 10 f40 6,721 10 f55 854
11 f27 4,504 11 f43 8,043 11 f58 5,745
12 f29 7,065 12 f45 5,015 12 f60 4,753
13 f32 2,783 13 f46 7,160 13 f65 3,429
14 f37 5,743 14 f48 2,743 14 f74 5,637
15 f39 4,067 15 f49 5,318 15 f80 9,868
Σ 82,494 Σ 82,493 Σ 82,493

MUX4 MUX5 MUX6

# Flow [B] # Flow [B] # Flow [B]

1 f25 8,007 1 f8 6,853 1 f12 9,164
2 f26 7,766 2 f35 9,854 2 f24 7,313
3 f30 8,789 3 f42 3,876 3 f28 6,632
4 f36 3,235 4 f47 4,619 4 f31 9,136
5 f50 6,399 5 f61 8,159 5 f52 1,422
6 f51 2,806 6 f62 9,293 6 f59 9,333
7 f56 9,920 7 f64 9,692 7 f67 7,589
8 f57 710 8 f66 4,021 8 f69 2,341
9 f63 5,795 9 f68 3,579 9 f72 9,034
10 f77 8,753 10 f70 425 10 f79 3,606
11 f78 4,977 11 f71 4,370 11 f81 7,468
12 f83 1,710 12 f73 7,278 12 f82 2,028
13 f85 5,921 13 f75 6,888 13 f86 64
14 f87 4,079 14 f76 2,345 14 f88 4,727
15 f89 3,626 15 f84 1,241 15 f90 2,636
Σ 82,493 Σ 82,493 Σ 82,493

Table B.1: The best Test Case 2 �ow allocation produced in C++ using DP.

193



MUX1 MUX2 MUX3

# Flow [B] # Flow [B] # Flow [B]

1 f5 8,109 1 f1 668 1 f2 7,870
2 f7 8,998 2 f3 5,280 2 f16 1,485
3 f10 714 3 f4 4,988 3 f23 5,028
4 f13 1,757 4 f6 2,825 4 f33 9,037
5 f14 5,267 5 f9 7,151 5 f38 7,950
6 f15 5,767 6 f11 3,501 6 f41 3,097
7 f19 7,647 7 f17 6,757 7 f44 2,354
8 f20 8,204 8 f18 6,429 8 f53 6,683
9 f21 4,149 9 f34 9,894 9 f54 8,703
10 f22 7,720 10 f40 6,721 10 f55 854
11 f27 4,504 11 f43 8,043 11 f58 5,745
12 f29 7,065 12 f45 5,015 12 f60 4,753
13 f32 2,783 13 f46 7,160 13 f65 3,429
14 f37 5,743 14 f48 2,743 14 f74 5,637
15 f39 4,067 15 f49 5,318 15 f80 9,868
Σ 82,494 Σ 82,493 Σ 82,493

MUX4 MUX5 MUX6

# Flow [B] # Flow [B] # Flow [B]

1 f25 8,007 1 f8 6,853 1 f12 9,164
2 f26 7,766 2 f35 9,854 2 f24 7,313
3 f30 8,789 3 f42 3,876 3 f28 6,632
4 f36 3,235 4 f47 4,619 4 f31 9,136
5 f50 6,399 5 f61 8,159 5 f52 1,422
6 f51 2,806 6 f62 9,293 6 f59 9,333
7 f56 9,920 7 f64 9,692 7 f67 7,589
8 f57 710 8 f66 4,021 8 f69 2,341
9 f63 5,795 9 f68 3,579 9 f72 9,034
10 f77 8,753 10 f70 425 10 f79 3,606
11 f78 4,977 11 f71 4,370 11 f81 7,468
12 f83 1,710 12 f73 7,278 12 f82 2,028
13 f85 5,921 13 f75 6,888 13 f86 64
14 f87 4,079 14 f76 2,345 14 f88 4,727
15 f89 3,626 15 f84 1,241 15 f90 2,636
Σ 82,493 Σ 82,493 Σ 82,493

Table B.2: The best Test Case 2 �ow allocation produced in Matlab using DP.
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B.2 Greedy Heuristic

MUX1 MUX2 MUX3

# Flow [B] # Flow [B] # Flow [B]

1 f56 9,920 1 f34 9,894 1 f80 9,868
2 f7 8,998 2 f72 9,034 2 f33 9,037
3 f20 8,204 3 f61 8,159 3 f54 8,703
4 f38 7,950 4 f43 8,043 4 f26 7,766
5 f19 7,647 5 f81 7,468 5 f46 7,160
6 f40 6,721 6 f29 7,065 6 f9 7,151
7 f53 6,683 7 f85 5,921 7 f63 5,795
8 f3 5,280 8 f58 5,745 8 f15 5,767
9 f4 4,988 9 f23 5,028 9 f14 5,267
10 f27 4,504 10 f88 4,727 10 f87 4,079
11 f89 3,626 11 f68 3,579 11 f39 4,067
12 f11 3,501 12 f41 3,097 12 f36 3,235
13 f76 2,345 13 f90 2,636 13 f44 2,354
14 f16 1,485 14 f84 1,241 14 f13 1,757
15 f57 710 15 f55 854 15 f70 425
Σ 82,562 Σ 82,491 Σ 82,431

MUX4 MUX5 MUX6

# Flow [B] # Flow [B] # Flow [B]

1 f35 9,854 1 f64 9,692 1 f59 9,333
2 f31 9,136 2 f12 9,164 2 f62 9,293
3 f5 8,109 3 f77 8,753 3 f30 8,789
4 f25 8,007 4 f22 7,720 4 f2 7,870
5 f67 7,589 5 f73 7,278 5 f24 7,313
6 f17 6,757 6 f8 6,853 6 f75 6,888
7 f28 6,632 7 f18 6,429 7 f50 6,399
8 f49 5,318 8 f74 5,637 8 f37 5,743
9 f45 5,015 9 f78 4,977 9 f60 4,753
10 f71 4,370 10 f21 4,149 10 f47 4,619
11 f42 3,876 11 f66 4,021 11 f79 3,606
12 f6 2,825 12 f51 2,806 12 f65 3,429
13 f48 2,743 13 f32 2,783 13 f69 2,341
14 f82 2,028 14 f83 1,710 14 f52 1,422
15 f86 64 15 f1 668 15 f10 714
Σ 82,323 Σ 82,640 Σ 82,512

Table B.3: The best Test Case 2 �ow allocation produced in C++ using GH.
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MUX1 MUX2 MUX3

# Flow [B] # Flow [B] # Flow [B]

1 f56 9,920 1 f34 9,894 1 f80 9,868
2 f7 8,998 2 f72 9,034 2 f33 9,037
3 f20 8,204 3 f61 8,159 3 f54 8,703
4 f38 7,950 4 f43 8,043 4 f26 7,766
5 f19 7,647 5 f81 7,468 5 f46 7,160
6 f40 6,721 6 f29 7,065 6 f9 7,151
7 f53 6,683 7 f85 5,921 7 f63 5,795
8 f3 5,280 8 f58 5,745 8 f15 5,767
9 f4 4,988 9 f23 5,028 9 f14 5,267
10 f27 4,504 10 f88 4,727 10 f87 4,079
11 f89 3,626 11 f68 3,579 11 f39 4,067
12 f11 3,501 12 f41 3,097 12 f36 3,235
13 f76 2,345 13 f90 2,636 13 f44 2,354
14 f16 1,485 14 f84 1,241 14 f13 1,757
15 f57 710 15 f55 854 15 f70 425
Σ 82,562 Σ 82,491 Σ 82,431

MUX4 MUX5 MUX6

# Flow [B] # Flow [B] # Flow [B]

1 f35 9,854 1 f64 9,692 1 f59 9,333
2 f31 9,136 2 f12 9,164 2 f62 9,293
3 f5 8,109 3 f77 8,753 3 f30 8,789
4 f25 8,007 4 f22 7,720 4 f2 7,870
5 f67 7,589 5 f73 7,278 5 f24 7,313
6 f17 6,757 6 f8 6,853 6 f75 6,888
7 f28 6,632 7 f18 6,429 7 f50 6,399
8 f49 5,318 8 f74 5,637 8 f37 5,743
9 f45 5,015 9 f78 4,977 9 f60 4,753
10 f71 4,370 10 f21 4,149 10 f47 4,619
11 f42 3,876 11 f66 4,021 11 f79 3,606
12 f6 2,825 12 f51 2,806 12 f65 3,429
13 f48 2,743 13 f32 2,783 13 f69 2,341
14 f82 2,028 14 f83 1,710 14 f52 1,422
15 f86 64 15 f1 668 15 f10 714
Σ 82,323 Σ 82,640 Σ 82,512

Table B.4: The best Test Case 2 �ow allocation produced in Matlab using GH.
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B.3 Integer Linear Programming

MUX1 MUX2 MUX3

# Flow [B] # Flow [B] # Flow [B]

1 f21 4,149 1 f1 668 1 f9 7,151
2 f22 7,720 2 f2 7,870 2 f11 3,501
3 f27 4,504 3 f7 8,998 3 f19 7,647
4 f32 2,783 4 f16 1,485 4 f28 6,632
5 f33 9,037 5 f30 8,789 5 f35 9,854
6 f37 5,743 6 f34 9,894 6 f40 6,721
7 f38 7,950 7 f56 9,920 7 f43 8,043
8 f49 5,318 8 f57 710 8 f53 6,683
9 f68 3,579 9 f60 4,753 9 f63 5,795
10 f71 4,370 10 f61 8,159 10 f69 2,341
11 f72 9,034 11 f65 3,429 11 f73 7,278
12 f74 5,637 12 f67 7,589 12 f84 1,241
13 f78 4,977 13 f70 425 13 f85 5,921
14 f79 3,606 14 f76 2,345 14 f86 64
15 f87 4,079 15 f81 7,468 15 f89 3,626
Σ 82,486 Σ 82,502 Σ 82,498

MUX4 MUX5 MUX6

# Flow [B] # Flow [B] # Flow [B]

1 f4 4,988 1 f8 6,853 1 f3 5,280
2 f5 8,109 2 f10 714 2 f6 2,825
3 f12 9,164 3 f13 1,757 3 f14 5,267
4 f31 9,136 4 f15 5,767 4 f18 6,429
5 f39 4,067 5 f17 6,757 5 f23 5,028
6 f41 3,097 6 f20 8,204 6 f24 7,313
7 f42 3,876 7 f25 8,007 7 f45 5,015
8 f44 2,354 8 f26 7,766 8 f46 7,160
9 f47 4,619 9 f29 7,065 9 f50 6,399
10 f48 2,743 10 f36 3,235 10 f51 2,806
11 f55 854 11 f54 8,703 11 f52 1,422
12 f58 5,745 12 f62 9,293 12 f75 6,888
13 f59 9,333 13 f66 4,021 13 f77 8,753
14 f64 9,692 14 f83 1,710 14 f80 9,868
15 f88 4,727 15 f90 2,636 15 f82 2,028
Σ 82,504 Σ 82,488 Σ 82,481

Table B.5: The best Test Case 2 �ow allocation produced in C++ using ILP.
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MUX1 MUX2 MUX3

# Flow [B] # Flow [B] # Flow [B]

1 f21 4,149 1 f3 5,280 1 f4 4,988
2 f23 5,028 2 f5 8,109 2 f13 1,757
3 f34 9,894 3 f8 6,853 3 f14 5,267
4 f37 5,743 4 f9 7,151 4 f17 6,757
5 f42 3,876 5 f15 5,767 5 f32 2,783
6 f45 5,015 6 f16 1,485 6 f35 9,854
7 f46 7,160 7 f18 6,429 7 f36 3,235
8 f49 5,318 8 f22 7,720 8 f41 3,097
9 f56 9,920 9 f28 6,632 9 f44 2,354
10 f57 710 10 f38 7,950 10 f48 2,743
11 f58 5,745 11 f47 4,619 11 f59 9,333
12 f60 4,753 12 f50 6,399 12 f63 5,795
13 f74 5,637 13 f70 425 13 f64 9,692
14 f85 5,921 14 f79 3,606 14 f78 4,977
15 f89 3,626 15 f87 4,079 15 f80 9,868
Σ 82,495 Σ 82,504 Σ 82,500

MUX4 MUX5 MUX6

# Flow [B] # Flow [B] # Flow [B]

1 f1 668 1 f7 8,998 1 f19 7,647
2 f2 7,870 2 f12 9,164 2 f20 8,204
3 f6 2,825 3 f24 7,313 3 f25 8,007
4 f10 714 4 f31 9,136 4 f27 4,504
5 f11 3,501 5 f33 9,037 5 f43 8,043
6 f26 7,766 6 f39 4,067 6 f51 2,806
7 f29 7,065 7 f52 1,422 7 f53 6,683
8 f30 8,789 8 f61 8,159 8 f54 8,703
9 f40 6,721 9 f62 9,293 9 f65 3,429
10 f55 854 10 f66 4,021 10 f69 2,341
11 f67 7,589 11 f68 3,579 11 f73 7,278
12 f72 9,034 12 f71 4,370 12 f76 2,345
13 f75 6,888 13 f84 1,241 13 f77 8,753
14 f81 7,468 14 f86 64 14 f82 2,028
15 f88 4,727 15 f90 2,636 15 f83 1,710
Σ 82,479 Σ 82,500 Σ 82,481

Table B.6: The best Test Case 2 �ow allocation produced in Matlab using ILP.
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B.4 Modi�ed Di�erential Evolution

MUX1 MUX2 MUX3

# Flow [B] # Flow [B] # Flow [B]

1 f15 5,767 1 f24 7,313 1 f2 7,870
2 f59 9,333 2 f3 5,280 2 f12 9,164
3 f88 4,727 3 f8 6,853 3 f74 5,637
4 f65 3,429 4 f42 3,876 4 f44 2,354
5 f61 8,159 5 f39 4,067 5 f7 8,998
6 f52 1,422 6 f40 6,721 6 f67 7,589
7 f60 4,753 7 f76 2,345 7 f5 8,109
8 f56 9,920 8 f35 9,854 8 f79 3,606
9 f73 7,278 9 f31 9,136 9 f25 8,007
10 f28 6,632 10 f19 7,647 10 f13 1,757
11 f47 4,619 11 f41 3,097 11 f36 3,235
12 f14 5,267 12 f38 7,950 12 f55 854
13 f50 6,399 13 f11 3,501 13 f78 4,977
14 f87 4,079 14 f6 2,825 14 f17 6,757
15 f57 710 15 f82 2,028 15 f68 3,579
Σ 82,494 Σ 82,493 Σ 82,493

MUX4 MUX5 MUX6

# Flow [B] # Flow [B] # Flow [B]

1 f34 9,894 1 f48 2,743 1 f54 8,703
2 f45 5,015 2 f49 5,318 2 f21 4,149
3 f53 6,683 3 f69 2,341 3 f81 7,468
4 f62 9,293 4 f46 7,160 4 f23 5,028
5 f10 714 5 f4 4,988 5 f66 4,021
6 f89 3,626 6 f86 64 6 f83 1,710
7 f63 5,795 7 f85 5,921 7 f1 668
8 f84 1,241 8 f29 7,065 8 f71 4,370
9 f43 8,043 9 f37 5,743 9 f58 5,745
10 f9 7,151 10 f70 425 10 f16 1,485
11 f20 8,204 11 f18 6,429 11 f26 7,766
12 f90 2,636 12 f22 7,720 12 f32 2,783
13 f75 6,888 13 f77 8,753 13 f33 9,037
14 f51 2,806 14 f72 9,034 14 f64 9,692
15 f27 4,504 15 f30 8,789 15 f80 9,868
Σ 82,493 Σ 82,493 Σ 82,493

Table B.7: The best Test Case 2 �ow allocation produced in C++ using the MDE.
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MUX1 MUX2 MUX3

# Flow [B] # Flow [B] # Flow [B]

1 f50 6,399 1 f67 7,589 1 f32 2,783
2 f21 4,149 2 f53 6,683 2 f39 4,067
3 f80 9,868 3 f86 64 3 f56 9,920
4 f9 7,151 4 f83 1,710 4 f87 4,079
5 f41 3,097 5 f12 9,164 5 f30 8,789
6 f79 3,606 6 f48 2,743 6 f43 8,043
7 f55 854 7 f14 5,267 7 f33 9,037
8 f28 6,632 8 f8 6,853 8 f1 668
9 f20 8,204 9 f77 8,753 9 f63 5,795
10 f19 7,647 10 f76 2,345 10 f36 3,235
11 f74 5,637 11 f47 4,619 11 f84 1,241
12 f10 714 12 f5 8,109 12 f6 2,825
13 f71 4,370 13 f3 5,280 13 f17 6,757
14 f75 6,888 14 f62 9,293 14 f85 5,921
15 f73 7,278 15 f66 4,021 15 f59 9,333
Σ 82,494 Σ 82,493 Σ 82,493

MUX4 MUX5 MUX6

# Flow [B] # Flow [B] # Flow [B]

1 f42 3,876 1 f46 7,160 1 f60 4,753
2 f57 710 2 f13 1,757 2 f15 5,767
3 f7 8,998 3 f11 3,501 3 f65 3,429
4 f72 9,034 4 f88 4,727 4 f31 9,136
5 f27 4,504 5 f78 4,977 5 f70 425
6 f64 9,692 6 f81 7,468 6 f29 7,065
7 f58 5,745 7 f44 2,354 7 f26 7,766
8 f82 2,028 8 f51 2,806 8 f69 2,341
9 f38 7,950 9 f34 9,894 9 f35 9,854
10 f18 6,429 10 f25 8,007 10 f37 5,743
11 f90 2,636 11 f45 5,015 11 f49 5,318
12 f23 5,028 12 f2 7,870 12 f89 3,626
13 f40 6,721 13 f61 8,159 13 f4 4,988
14 f52 1,422 14 f24 7,313 14 f68 3,579
15 f22 7,720 15 f16 1,485 15 f54 8,703
Σ 82,493 Σ 82,493 Σ 82,493

Table B.8: The best Test Case 2 �ow allocation produced in Matlab using the MDE.
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B.5 Reinforcement Learning

MUX1 MUX2 MUX3

# Flow [B] # Flow [B] # Flow [B]

1 f34 9,894 1 f56 9,920 1 f54 8,703
2 f80 9,868 2 f33 9,037 2 f61 8,159
3 f35 9,854 3 f72 9,034 3 f43 8,043
4 f64 9,692 4 f7 8,998 4 f25 8,007
5 f59 9,333 5 f30 8,789 5 f38 7,950
6 f62 9,293 6 f77 8,753 6 f2 7,870
7 f12 9,164 7 f20 8,204 7 f22 7,720
8 f31 9,136 8 f26 7,766 8 f73 7,278
9 f6 2,825 9 f76 2,345 9 f41 3,097
10 f55 854 10 f82 2,028 10 f51 2,806
11 f10 714 11 f13 1,757 11 f32 2,783
12 f57 710 12 f83 1,710 12 f48 2,743
13 f1 668 13 f16 1,485 13 f90 2,636
14 f70 425 14 f52 1,422 14 f44 2,354
15 f86 64 15 f84 1,241 15 f69 2,341
Σ 82,494 Σ 82,489 Σ 82,490

MUX4 MUX5 MUX6

# Flow [B] # Flow [B] # Flow [B]

1 f5 8,109 1 f29 7,065 1 f18 6,429
2 f19 7,647 2 f75 6,888 2 f50 6,399
3 f67 7,589 3 f8 6,853 3 f85 5,921
4 f81 7,468 4 f17 6,757 4 f63 5,795
5 f24 7,313 5 f40 6,721 5 f15 5,767
6 f46 7,160 6 f53 6,683 6 f58 5,745
7 f9 7,151 7 f28 6,632 7 f37 5,743
8 f45 5,015 8 f23 5,028 8 f74 5,637
9 f39 4,067 9 f60 4,753 9 f49 5,318
10 f89 3,626 10 f47 4,619 10 f3 5,280
11 f79 3,606 11 f71 4,370 11 f14 5,267
12 f68 3,579 12 f21 4,149 12 f4 4,988
13 f11 3,501 13 f87 4,079 13 f78 4,977
14 f65 3,429 14 f66 4,021 14 f88 4,727
15 f36 3,235 15 f42 3,876 15 f27 4,504
Σ 82,495 Σ 82,494 Σ 82,497

Table B.9: The best Test Case 2 �ow allocation produced in C++ using RL.
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MUX1 MUX2 MUX3

# Flow [B] # Flow [B] # Flow [B]

1 f34 9,894 1 f56 9,920 1 f7 8,998
2 f80 9,868 2 f33 9,037 2 f20 8,204
3 f35 9,854 3 f72 9,034 3 f43 8,043
4 f64 9,692 4 f30 8,789 4 f25 8,007
5 f59 9,333 5 f77 8,753 5 f38 7,950
6 f62 9,293 6 f54 8,703 6 f2 7,870
7 f12 9,164 7 f61 8,159 7 f26 7,766
8 f31 9,136 8 f5 8,109 8 f75 6,888
9 f6 2,825 9 f76 2,345 9 f41 3,097
10 f55 854 10 f82 2,028 10 f51 2,806
11 f10 714 11 f13 1,757 11 f32 2,783
12 f57 710 12 f83 1,710 12 f48 2,743
13 f1 668 13 f16 1,485 13 f90 2,636
14 f70 425 14 f52 1,422 14 f44 2,354
15 f86 64 15 f84 1,241 15 f69 2,341
Σ 82,494 Σ 82,492 Σ 82,486

MUX4 MUX5 MUX6

# Flow [B] # Flow [B] # Flow [B]

1 f22 7,720 1 f29 7,065 1 f73 7,278
2 f19 7,647 2 f8 6,853 2 f28 6,632
3 f67 7,589 3 f17 6,757 3 f63 5,795
4 f81 7,468 4 f40 6,721 4 f15 5,767
5 f24 7,313 5 f53 6,683 5 f58 5,745
6 f46 7,160 6 f18 6,429 6 f37 5,743
7 f9 7,151 7 f50 6,399 7 f74 5,637
8 f49 5,318 8 f85 5,921 8 f3 5,280
9 f21 4,149 9 f60 4,753 9 f14 5,267
10 f89 3,626 10 f27 4,504 10 f23 5,028
11 f79 3,606 11 f71 4,370 11 f45 5,015
12 f68 3,579 12 f87 4,079 12 f4 4,988
13 f11 3,501 13 f39 4,067 13 f78 4,977
14 f65 3,429 14 f66 4,021 14 f88 4,727
15 f36 3,235 15 f42 3,876 15 f47 4,619
Σ 82,491 Σ 82,498 Σ 82,498

Table B.10: The best Test Case 2 �ow allocation produced in Matlab using RL.

202



Appendix C

Test Case 3 � Detailed Results
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C.1 Dynamic Programming

MUX1 MUX2 MUX3 MUX4

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f2 582 1 f8 2,266 1 f4 3,140 1 f16 380
2 f3 4,409 2 f9 4,150 2 f19 3,685 2 f23 1,091
3 f7 2,149 3 f24 3,684 3 f32 6,000 3 f29 2,795
4 f15 7,845 4 f25 7,432 4 f33 249 4 f61 6,618
5 f17 4,718 5 f39 3,066 5 f35 5,194 5 f69 4,335
6 f27 2,888 6 f53 1,929 6 f36 7,196 6 f72 9,179
7 f30 3,165 7 f58 8,885 7 f44 6,401 7 f79 4,646
8 f31 7,346 8 f60 2,841 8 f46 8,114 8 f82 5,433
9 f45 151 9 f71 3,059 9 f49 6,835 9 f89 7,716
10 f47 8,088 10 f74 690 10 f54 2,784 10 f100 5,575
11 f48 7,084 11 f80 7,832 11 f57 925 11 f106 4,063
12 f52 431 12 f95 8,219 12 f59 7,258 12 f108 6,451
13 f63 5,325 13 f96 7,350 13 f76 4,673 13 f111 1,046
14 f64 4,428 14 f101 1,421 14 f83 5,549 14 f112 4,540
15 f110 9,792 15 f103 5,577 15 f102 398 15 f113 4,533
Σ 68,401 Σ 68,401 Σ 68,401 Σ 68,401

MUX5 MUX6 MUX7 MUX8

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f1 9,056 1 f5 5,035 1 f26 7,223 1 f12 7,415
2 f34 458 2 f6 3,906 2 f56 2,438 2 f28 1,360
3 f38 2,519 3 f10 6,473 3 f65 2,400 3 f37 667
4 f41 2,599 4 f11 6,533 4 f67 739 4 f40 9,404
5 f50 1,888 5 f13 146 5 f73 3,547 5 f43 7,434
6 f51 5,232 6 f14 5,115 6 f81 7,857 6 f84 4,278
7 f62 815 7 f18 8,525 7 f90 5,676 7 f85 3,020
8 f66 8,104 8 f20 2,324 8 f93 5,374 8 f87 6,314
9 f68 2,772 9 f21 7,464 9 f94 245 9 f88 646
10 f70 9,233 10 f22 3,629 10 f97 3,354 10 f92 834
11 f75 8,215 11 f42 2,946 11 f104 3,741 11 f98 2,485
12 f77 5,523 12 f55 9,259 12 f105 3,043 12 f99 6,642
13 f115 391 13 f78 5,343 13 f107 8,303 13 f114 1,408
14 f116 9,104 14 f86 520 14 f109 6,100 14 f117 7,525
15 f120 2,491 15 f91 1,182 15 f119 8,360 15 f118 8,968
Σ 68,400 Σ 68,400 Σ 68,400 Σ 68,400

Table C.1: The best Test Case 3 �ow allocation produced in C++ using DP.
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MUX1 MUX2 MUX3 MUX4

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f2 582 1 f8 2,266 1 f4 3,140 1 f16 380
2 f3 4,409 2 f9 4,150 2 f19 3,685 2 f23 1,091
3 f7 2,149 3 f24 3,684 3 f32 6,000 3 f29 2,795
4 f15 7,845 4 f25 7,432 4 f33 249 4 f61 6,618
5 f17 4,718 5 f39 3,066 5 f35 5,194 5 f69 4,335
6 f27 2,888 6 f53 1,929 6 f36 7,196 6 f72 9,179
7 f30 3,165 7 f58 8,885 7 f44 6,401 7 f79 4,646
8 f31 7,346 8 f60 2,841 8 f46 8,114 8 f82 5,433
9 f45 151 9 f71 3,059 9 f49 6,835 9 f89 7,716
10 f47 8,088 10 f74 690 10 f54 2,784 10 f100 5,575
11 f48 7,084 11 f80 7,832 11 f57 925 11 f106 4,063
12 f52 431 12 f95 8,219 12 f59 7,258 12 f108 6,451
13 f63 5,325 13 f96 7,350 13 f76 4,673 13 f111 1,046
14 f64 4,428 14 f101 1,421 14 f83 5,549 14 f112 4,540
15 f110 9,792 15 f103 5,577 15 f102 398 15 f113 4,533
Σ 68,401 Σ 68,401 Σ 68,401 Σ 68,401

MUX5 MUX6 MUX7 MUX8

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f1 9,056 1 f5 5,035 1 f26 7,223 1 f12 7,415
2 f34 458 2 f6 3,906 2 f56 2,438 2 f28 1,360
3 f38 2,519 3 f10 6,473 3 f65 2,400 3 f37 667
4 f41 2,599 4 f11 6,533 4 f67 739 4 f40 9,404
5 f50 1,888 5 f13 146 5 f73 3,547 5 f43 7,434
6 f51 5,232 6 f14 5,115 6 f81 7,857 6 f84 4,278
7 f62 815 7 f18 8,525 7 f90 5,676 7 f85 3,020
8 f66 8,104 8 f20 2,324 8 f93 5,374 8 f87 6,314
9 f68 2,772 9 f21 7,464 9 f94 245 9 f88 646
10 f70 9,233 10 f22 3,629 10 f97 3,354 10 f92 834
11 f75 8,215 11 f42 2,946 11 f104 3,741 11 f98 2,485
12 f77 5,523 12 f55 9,259 12 f105 3,043 12 f99 6,642
13 f115 391 13 f78 5,343 13 f107 8,303 13 f114 1,408
14 f116 9,104 14 f86 520 14 f109 6,100 14 f117 7,525
15 f120 2,491 15 f91 1,182 15 f119 8,360 15 f118 8,968
Σ 68,400 Σ 68,400 Σ 68,400 Σ 68,400

Table C.2: The best Test Case 3 �ow allocation produced in Matlab using DP.
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C.2 Greedy Heuristic

MUX1 MUX2 MUX3 MUX4

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f110 9,792 1 f40 9,404 1 f55 9,259 1 f70 9,233
2 f66 8,104 2 f46 8,114 2 f75 8,215 2 f95 8,219
3 f43 7,434 3 f89 7,716 3 f15 7,845 3 f47 8,088
4 f36 7,196 4 f12 7,415 4 f59 7,258 4 f48 7,084
5 f49 6,835 5 f108 6,451 5 f11 6,533 5 f10 6,473
6 f82 5,433 6 f103 5,577 6 f100 5,575 6 f90 5,676
7 f14 5,115 7 f93 5,374 7 f78 5,343 7 f35 5,194
8 f79 4,646 8 f69 4,335 8 f64 4,428 8 f113 4,533
9 f73 3,547 9 f106 4,063 9 f104 3,741 9 f22 3,629
10 f97 3,354 10 f85 3,020 10 f71 3,059 10 f30 3,165
11 f41 2,599 11 f38 2,519 11 f60 2,841 11 f29 2,795
12 f65 2,400 12 f56 2,438 12 f7 2,149 12 f8 2,266
13 f92 834 13 f111 1,046 13 f28 1,360 13 f91 1,182
14 f62 815 14 f88 646 14 f34 458 14 f86 520
15 f16 380 15 f94 245 15 f102 398 15 f52 431
Σ 68,484 Σ 68,363 Σ 68,462 Σ 68,488

MUX5 MUX6 MUX7 MUX8

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f72 9,179 1 f116 9,104 1 f1 9,056 1 f118 8,968
2 f107 8,303 2 f119 8,360 2 f18 8,525 2 f58 8,885
3 f80 7,832 3 f81 7,857 3 f117 7,525 3 f21 7,464
4 f96 7,350 4 f26 7,223 4 f25 7,432 4 f31 7,346
5 f87 6,314 5 f61 6,618 5 f99 6,642 5 f44 6,401
6 f109 6,100 6 f83 5,549 6 f77 5,523 6 f32 6,000
7 f17 4,718 7 f51 5,232 7 f63 5,325 7 f5 5,035
8 f76 4,673 8 f112 4,540 8 f3 4,409 8 f84 4,278
9 f19 3,685 9 f24 3,684 9 f6 3,906 9 f9 4,150
10 f4 3,140 10 f39 3,066 10 f105 3,043 10 f42 2,946
11 f54 2,784 11 f27 2,888 11 f68 2,772 11 f120 2,491
12 f20 2,324 12 f53 1,929 12 f50 1,888 12 f98 2,485
13 f23 1,091 13 f114 1,408 13 f101 1,421 13 f57 925
14 f2 582 14 f74 690 14 f37 667 14 f67 739
15 f115 391 15 f13 146 15 f45 151 15 f33 249
Σ 68,466 Σ 68,294 Σ 68,285 Σ 68,362

Table C.3: The best Test Case 3 �ow allocation produced in C++ using GH.
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MUX1 MUX2 MUX3 MUX4

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f110 9,792 1 f40 9,404 1 f55 9,259 1 f70 9,233
2 f66 8,104 2 f46 8,114 2 f75 8,215 2 f95 8,219
3 f43 7,434 3 f89 7,716 3 f15 7,845 3 f47 8,088
4 f36 7,196 4 f12 7,415 4 f59 7,258 4 f48 7,084
5 f49 6,835 5 f108 6,451 5 f11 6,533 5 f10 6,473
6 f82 5,433 6 f103 5,577 6 f100 5,575 6 f90 5,676
7 f14 5,115 7 f93 5,374 7 f78 5,343 7 f35 5,194
8 f79 4,646 8 f69 4,335 8 f64 4,428 8 f113 4,533
9 f73 3,547 9 f106 4,063 9 f104 3,741 9 f22 3,629
10 f97 3,354 10 f85 3,020 10 f71 3,059 10 f30 3,165
11 f41 2,599 11 f38 2,519 11 f60 2,841 11 f29 2,795
12 f65 2,400 12 f56 2,438 12 f7 2,149 12 f8 2,266
13 f92 834 13 f111 1,046 13 f28 1,360 13 f91 1,182
14 f62 815 14 f88 646 14 f34 458 14 f86 520
15 f16 380 15 f94 245 15 f102 398 15 f52 431
Σ 68,484 Σ 68,363 Σ 68,462 Σ 68,488

MUX5 MUX6 MUX7 MUX8

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f72 9,179 1 f116 9,104 1 f1 9,056 1 f118 8,968
2 f107 8,303 2 f119 8,360 2 f18 8,525 2 f58 8,885
3 f80 7,832 3 f81 7,857 3 f117 7,525 3 f21 7,464
4 f96 7,350 4 f26 7,223 4 f25 7,432 4 f31 7,346
5 f87 6,314 5 f61 6,618 5 f99 6,642 5 f44 6,401
6 f109 6,100 6 f83 5,549 6 f77 5,523 6 f32 6,000
7 f17 4,718 7 f51 5,232 7 f63 5,325 7 f5 5,035
8 f76 4,673 8 f112 4,540 8 f3 4,409 8 f84 4,278
9 f19 3,685 9 f24 3,684 9 f6 3,906 9 f9 4,150
10 f4 3,140 10 f39 3,066 10 f105 3,043 10 f42 2,946
11 f54 2,784 11 f27 2,888 11 f68 2,772 11 f120 2,491
12 f20 2,324 12 f53 1,929 12 f50 1,888 12 f98 2,485
13 f23 1,091 13 f114 1,408 13 f101 1,421 13 f57 925
14 f2 582 14 f74 690 14 f37 667 14 f67 739
15 f115 391 15 f13 146 15 f45 151 15 f33 249
Σ 68,466 Σ 68,294 Σ 68,285 Σ 68,362

Table C.4: The best Test Case 3 �ow allocation produced in Matlab using GH.
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C.3 Integer Linear Programming

MUX1 MUX2 MUX3 MUX4

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f4 3,140 1 f1 9,056 1 f21 7,464 1 f2 582
2 f7 2,149 2 f6 3,906 2 f25 7,432 2 f10 6,473
3 f8 2,266 3 f19 3,685 3 f32 6,000 3 f11 6,533
4 f12 7,415 4 f38 2,519 4 f34 458 4 f26 7,223
5 f16 380 5 f51 5,232 5 f37 667 5 f29 2,795
6 f18 8,525 6 f54 2,784 6 f43 7,434 6 f30 3,165
7 f27 2,888 7 f58 8,885 7 f44 6,401 7 f31 7,346
8 f28 1,360 8 f64 4,428 8 f57 925 8 f39 3,066
9 f40 9,404 9 f68 2,772 9 f70 9,233 9 f41 2,599
10 f66 8,104 10 f80 7,832 10 f87 6,314 10 f42 2,946
11 f71 3,059 11 f85 3,020 11 f92 834 11 f59 7,258
12 f75 8,215 12 f97 3,354 12 f96 7,350 12 f61 6,618
13 f81 7,857 13 f105 3,043 13 f102 398 13 f99 6,642
14 f91 1,182 14 f115 391 14 f108 6,451 14 f101 1,421
15 f120 2,491 15 f117 7,525 15 f111 1,046 15 f104 3,741
Σ 68,435 Σ 68,432 Σ 68,407 Σ 68,408

MUX5 MUX6 MUX7 MUX8

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f15 7,845 1 f9 4,150 1 f3 4,409 1 f13 146
2 f23 1,091 2 f20 2,324 2 f5 5,035 2 f33 249
3 f36 7,196 3 f22 3,629 3 f14 5,115 3 f45 151
4 f47 8,088 4 f48 7,084 4 f17 4,718 4 f46 8,114
5 f50 1,888 5 f52 431 5 f24 3,684 5 f49 6,835
6 f53 1,929 6 f55 9,259 6 f35 5,194 6 f56 2,438
7 f65 2,400 7 f62 815 7 f60 2,841 7 f74 690
8 f67 739 8 f72 9,179 8 f63 5,325 8 f77 5,523
9 f86 520 9 f73 3,547 9 f69 4,335 9 f78 5,343
10 f89 7,716 10 f84 4,278 10 f76 4,673 10 f82 5,433
11 f98 2,485 11 f88 646 11 f79 4,646 11 f83 5,549
12 f112 4,540 12 f94 245 12 f93 5,374 12 f90 5,676
13 f113 4,533 13 f100 5,575 13 f103 5,577 13 f95 8,219
14 f116 9,104 14 f107 8,303 14 f109 6,100 14 f106 4,063
15 f119 8,360 15 f118 8,968 15 f114 1,408 15 f110 9,792
Σ 68,434 Σ 68,433 Σ 68,434 Σ 68,221

Table C.5: The best Test Case 3 �ow allocation produced in C++ using ILP.
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MUX1 MUX2 MUX3 MUX4

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f6 3,906 1 f3 4,409 1 f16 380 1 f23 1,091
2 f9 4,150 2 f4 3,140 2 f33 249 2 f28 1,360
3 f10 6,473 3 f14 5,115 3 f38 2,519 3 f41 2,599
4 f17 4,718 4 f15 7,845 4 f42 2,946 4 f44 6,401
5 f18 8,525 5 f39 3,066 5 f48 7,084 5 f50 1,888
6 f19 3,685 6 f40 9,404 6 f49 6,835 6 f55 9,259
7 f22 3,629 7 f52 431 7 f54 2,784 7 f70 9,233
8 f24 3,684 8 f62 815 8 f60 2,841 8 f72 9,179
9 f56 2,438 9 f69 4,335 9 f63 5,325 9 f82 5,433
10 f73 3,547 10 f71 3,059 10 f77 5,523 10 f86 520
11 f84 4,278 11 f74 690 11 f81 7,857 11 f87 6,314
12 f95 8,219 12 f76 4,673 12 f93 5,374 12 f108 6,451
13 f97 3,354 13 f79 4,646 13 f99 6,642 13 f109 6,100
14 f104 3,741 14 f80 7,832 14 f112 4,540 14 f111 1,046
15 f106 4,063 15 f118 8,968 15 f117 7,525 15 f114 1,408
Σ 68,410 Σ 68,428 Σ 68,424 Σ 68,282

MUX5 MUX6 MUX7 MUX8

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f5 5,035 1 f2 582 1 f1 9,056 1 f12 7,415
2 f7 2,149 2 f27 2,888 2 f46 8,114 2 f13 146
3 f8 2,266 3 f30 3,165 3 f47 8,088 3 f20 2,324
4 f11 6,533 4 f32 6,000 4 f57 925 4 f21 7,464
5 f35 5,194 5 f37 667 5 f58 8,885 5 f25 7,432
6 f36 7,196 6 f53 1,929 6 f67 739 6 f26 7,223
7 f51 5,232 7 f61 6,618 7 f75 8,215 7 f29 2,795
8 f64 4,428 8 f66 8,104 8 f85 3,020 8 f31 7,346
9 f78 5,343 9 f68 2,772 9 f92 834 9 f34 458
10 f88 646 10 f83 5,549 10 f94 245 10 f43 7,434
11 f90 5,676 11 f89 7,716 11 f101 1,421 11 f45 151
12 f100 5,575 12 f98 2,485 12 f102 398 12 f59 7,258
13 f103 5,577 13 f116 9,104 13 f107 8,303 13 f65 2,400
14 f105 3,043 14 f119 8,360 14 f110 9,792 14 f91 1,182
15 f113 4,533 15 f120 2,491 15 f115 391 15 f96 7,350
Σ 68,426 Σ 68,430 Σ 68,426 Σ 68,378

Table C.6: The best Test Case 3 �ow allocation produced in Matlab using ILP.
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C.4 Modi�ed Di�erential Evolution

MUX1 MUX2 MUX3 MUX4

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f52 431 1 f99 6,642 1 f40 9,404 1 f111 1,046
2 f116 9,104 2 f113 4,533 2 f4 3,140 2 f5 5,035
3 f65 2,400 3 f71 3,059 3 f64 4,428 3 f49 6,835
4 f77 5,523 4 f83 5,549 4 f2 582 4 f59 7,258
5 f35 5,194 5 f54 2,784 5 f103 5,577 5 f117 7,525
6 f19 3,685 6 f94 245 6 f45 151 6 f1 9,056
7 f10 6,473 7 f93 5,374 7 f75 8,215 7 f87 6,314
8 f66 8,104 8 f120 2,491 8 f78 5,343 8 f39 3,066
9 f69 4,335 9 f104 3,741 9 f68 2,772 9 f16 380
10 f41 2,599 10 f15 7,845 10 f76 4,673 10 f89 7,716
11 f79 4,646 11 f70 9,233 11 f34 458 11 f91 1,182
12 f23 1,091 12 f46 8,114 12 f18 8,525 12 f106 4,063
13 f8 2,266 13 f63 5,325 13 f58 8,885 13 f73 3,547
14 f80 7,832 14 f86 520 14 f82 5,433 14 f51 5,232
15 f17 4,718 15 f42 2,946 15 f62 815 15 f13 146
Σ 68,401 Σ 68,401 Σ 68,401 Σ 68,401

MUX5 MUX6 MUX7 MUX8

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f88 646 1 f27 2,888 1 f60 2,841 1 f96 7,350
2 f84 4,278 2 f21 7,464 2 f36 7,196 2 f119 8,360
3 f81 7,857 3 f47 8,088 3 f20 2,324 3 f37 667
4 f6 3,906 4 f56 2,438 4 f11 6,533 4 f61 6,618
5 f90 5,676 5 f22 3,629 5 f112 4,540 5 f110 9,792
6 f24 3,684 6 f55 9,259 6 f25 7,432 6 f29 2,795
7 f95 8,219 7 f32 6,000 7 f105 3,043 7 f108 6,451
8 f3 4,409 8 f115 391 8 f74 690 8 f28 1,360
9 f109 6,100 9 f114 1,408 9 f98 2,485 9 f85 3,020
10 f92 834 10 f100 5,575 10 f12 7,415 10 f33 249
11 f53 1,929 11 f107 8,303 11 f67 739 11 f57 925
12 f102 398 12 f38 2,519 12 f101 1,421 12 f14 5,115
13 f31 7,346 13 f7 2,149 13 f26 7,223 13 f72 9,179
14 f9 4,150 14 f50 1,888 14 f48 7,084 14 f30 3,165
15 f118 8,968 15 f44 6,401 15 f43 7,434 15 f97 3,354
Σ 68,400 Σ 68,400 Σ 68,400 Σ 68,400

Table C.7: The best Test Case 3 �ow allocation produced in C++ using the MDE.
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MUX1 MUX2 MUX3 MUX4

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f81 7,857 1 f13 146 1 f5 5,035 1 f41 2,599
2 f108 6,451 2 f58 8,885 2 f20 2,324 2 f72 9,179
3 f67 739 3 f8 2,266 3 f36 7,196 3 f94 245
4 f49 6,835 4 f106 4,063 4 f52 431 4 f93 5,374
5 f26 7,223 5 f119 8,360 5 f2 582 5 f22 3,629
6 f76 4,673 6 f98 2,485 6 f77 5,523 6 f9 4,150
7 f100 5,575 7 f23 1,091 7 f59 7,258 7 f86 520
8 f68 2,772 8 f38 2,519 8 f15 7,845 8 f39 3,066
9 f55 9,259 9 f27 2,888 9 f12 7,415 9 f117 7,525
10 f60 2,841 10 f89 7,716 10 f3 4,409 10 f116 9,104
11 f4 3,140 11 f63 5,325 11 f91 1,182 11 f80 7,832
12 f88 646 12 f61 6,618 12 f99 6,642 12 f11 6,533
13 f31 7,346 13 f118 8,968 13 f112 4,540 13 f42 2,946
14 f33 249 14 f6 3,906 14 f24 3,684 14 f84 4,278
15 f29 2,795 15 f30 3,165 15 f69 4,335 15 f101 1,421
Σ 68,401 Σ 68,401 Σ 68,401 Σ 68,401

MUX5 MUX6 MUX7 MUX8

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f87 6,314 1 f75 8,215 1 f45 151 1 f74 690
2 f18 8,525 2 f62 815 2 f47 8,088 2 f115 391
3 f1 9,056 3 f97 3,354 3 f103 5,577 3 f83 5,549
4 f34 458 4 f70 9,233 4 f79 4,646 4 f25 7,432
5 f65 2,400 5 f92 834 5 f17 4,718 5 f85 3,020
6 f46 8,114 6 f43 7,434 6 f113 4,533 6 f95 8,219
7 f102 398 7 f28 1,360 7 f10 6,473 7 f37 667
8 f56 2,438 8 f35 5,194 8 f14 5,115 8 f48 7,084
9 f7 2,149 9 f90 5,676 9 f73 3,547 9 f53 1,929
10 f120 2,491 10 f109 6,100 10 f66 8,104 10 f96 7,350
11 f50 1,888 11 f44 6,401 11 f64 4,428 11 f110 9,792
12 f107 8,303 12 f104 3,741 12 f51 5,232 12 f111 1,046
13 f78 5,343 13 f19 3,685 13 f16 380 13 f105 3,043
14 f21 7,464 14 f57 925 14 f114 1,408 14 f54 2,784
15 f71 3,059 15 f82 5,433 15 f32 6,000 15 f40 9,404
Σ 68,400 Σ 68,400 Σ 68,400 Σ 68,400

Table C.8: The best Test Case 3 �ow allocation produced in Matlab using the MDE.
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C.5 Reinforcement Learning

MUX1 MUX2 MUX3 MUX4

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f110 9,792 1 f58 8,885 1 f66 8,104 1 f116 9,104
2 f40 9,404 2 f18 8,525 2 f47 8,088 2 f81 7,857
3 f55 9,259 3 f119 8,360 3 f15 7,845 3 f43 7,434
4 f70 9,233 4 f107 8,303 4 f80 7,832 4 f96 7,350
5 f72 9,179 5 f95 8,219 5 f89 7,716 5 f59 7,258
6 f1 9,056 6 f75 8,215 6 f117 7,525 6 f26 7,223
7 f118 8,968 7 f46 8,114 7 f21 7,464 7 f108 6,451
8 f101 1,421 8 f90 5,676 8 f25 7,432 8 f65 2,400
9 f86 520 9 f92 834 9 f91 1,182 9 f20 2,324
10 f102 398 10 f67 739 10 f23 1,091 10 f8 2,266
11 f16 380 11 f37 667 11 f111 1,046 11 f7 2,149
12 f33 249 12 f2 582 12 f57 925 12 f53 1,929
13 f94 245 13 f34 458 13 f62 815 13 f50 1,888
14 f45 151 14 f52 431 14 f74 690 14 f114 1,408
15 f13 146 15 f115 391 15 f88 646 15 f28 1,360
Σ 68,401 Σ 68,399 Σ 68,401 Σ 68,401

MUX5 MUX6 MUX7 MUX8

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f12 7,415 1 f61 6,618 1 f11 6,533 1 f10 6,473
2 f31 7,346 2 f44 6,401 2 f83 5,549 2 f35 5,194
3 f36 7,196 3 f87 6,314 3 f77 5,523 3 f5 5,035
4 f48 7,084 4 f109 6,100 4 f82 5,433 4 f76 4,673
5 f49 6,835 5 f32 6,000 5 f93 5,374 5 f79 4,646
6 f99 6,642 6 f103 5,577 6 f78 5,343 6 f112 4,540
7 f17 4,718 7 f100 5,575 7 f63 5,325 7 f113 4,533
8 f39 3,066 8 f51 5,232 8 f14 5,115 8 f64 4,428
9 f29 2,795 9 f71 3,059 9 f19 3,685 9 f3 4,409
10 f68 2,772 10 f105 3,043 10 f24 3,684 10 f69 4,335
11 f41 2,599 11 f85 3,020 11 f22 3,629 11 f84 4,278
12 f38 2,519 12 f42 2,946 12 f73 3,547 12 f9 4,150
13 f120 2,491 13 f27 2,888 13 f97 3,354 13 f106 4,063
14 f98 2,485 14 f60 2,841 14 f30 3,165 14 f6 3,906
15 f56 2,438 15 f54 2,784 15 f4 3,140 15 f104 3,741
Σ 68,401 Σ 68,398 Σ 68,399 Σ 68,404

Table C.9: The best Test Case 3 �ow allocation produced in C++ using RL.
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MUX1 MUX2 MUX3 MUX4

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f110 9,792 1 f116 9,104 1 f75 8,215 1 f80 7,832
2 f40 9,404 2 f58 8,885 2 f66 8,104 2 f43 7,434
3 f55 9,259 3 f18 8,525 3 f81 7,857 3 f25 7,432
4 f70 9,233 4 f119 8,360 4 f15 7,845 4 f31 7,346
5 f72 9,179 5 f107 8,303 5 f89 7,716 5 f59 7,258
6 f1 9,056 6 f95 8,219 6 f117 7,525 6 f26 7,223
7 f118 8,968 7 f46 8,114 7 f21 7,464 7 f36 7,196
8 f101 1,421 8 f17 4,718 8 f96 7,350 8 f97 3,354
9 f86 520 9 f57 925 9 f91 1,182 9 f20 2,324
10 f102 398 10 f67 739 10 f23 1,091 10 f8 2,266
11 f16 380 11 f88 646 11 f111 1,046 11 f7 2,149
12 f33 249 12 f2 582 12 f92 834 12 f53 1,929
13 f94 245 13 f34 458 13 f62 815 13 f50 1,888
14 f45 151 14 f52 431 14 f74 690 14 f114 1,408
15 f13 146 15 f115 391 15 f37 667 15 f28 1,360
Σ 68,401 Σ 68,400 Σ 68,401 Σ 68,399

MUX5 MUX6 MUX7 MUX8

# Flow [B] # Flow [B] # Flow [B] # Flow [B]

1 f47 8,088 1 f11 6,533 1 f90 5,676 1 f100 5,575
2 f12 7,415 2 f10 6,473 2 f103 5,577 2 f78 5,343
3 f48 7,084 3 f108 6,451 3 f83 5,549 3 f51 5,232
4 f49 6,835 4 f44 6,401 4 f77 5,523 4 f35 5,194
5 f99 6,642 5 f87 6,314 5 f82 5,433 5 f76 4,673
6 f61 6,618 6 f109 6,100 6 f93 5,374 6 f112 4,540
7 f14 5,115 7 f32 6,000 7 f63 5,325 7 f113 4,533
8 f27 2,888 8 f73 3,547 8 f5 5,035 8 f64 4,428
9 f54 2,784 9 f30 3,165 9 f79 4,646 9 f3 4,409
10 f41 2,599 10 f105 3,043 10 f19 3,685 10 f69 4,335
11 f38 2,519 11 f85 3,020 11 f24 3,684 11 f84 4,278
12 f120 2,491 12 f42 2,946 12 f22 3,629 12 f9 4,150
13 f98 2,485 13 f60 2,841 13 f4 3,140 13 f106 4,063
14 f56 2,438 14 f29 2,795 14 f39 3,066 14 f6 3,906
15 f65 2,400 15 f68 2,772 15 f71 3,059 15 f104 3,741
Σ 68,401 Σ 68,401 Σ 68,401 Σ 68,400

Table C.10: The best Test Case 3 �ow allocation produced in Matlab using RL.

214


	List of Abbreviations
	Nomenclature
	Introduction
	The COMPASS Experiment
	The iFDAQ Architecture
	Hardware Part
	Software Part

	The Inter-Process Communication
	The DIM Library
	Design Requirements
	The Motivation for the DIALOG Library Implementation

	The Communication Library DIALOG
	Description
	Integration
	Robustness
	Implementation
	Scenarios

	The DIALOG Online Monitoring API
	The DIALOG GUI
	The DIALOG POST Daemon
	The DIALOG WebSockets Daemon

	Tests

	The iFDAQ Debugging
	Conventional Debugging
	The Motivation for the DAQ Debugger Implementation
	The state-of-the-art error reporting tools
	DAQ Debugger
	Description
	Integration
	Implementation
	Scenarios

	The iFDAQ Stability

	The Continuously Running iFDAQ
	The Proper Timing and Synchronization
	The Continuously Running Mode
	The Logic in the Master Process
	The Logic in the Slave-readout Process
	Contribution of the Continuously Running Mode

	Load Balancing
	Problem Formulation
	Problem Complexity
	Dynamic Programming
	Fibonacci Numbers
	The Knapsack Problem
	The Load Balancing Problem

	Greedy Heuristic
	The Partition Problem
	The Load Balancing Problem

	Integer Linear Programming
	Branch and Bound Method
	Cutting Plane Method
	Branch and Cut Method
	The Load Balancing Problem

	Genetic Algorithm
	Differential Evolution
	Modified Differential Evolution

	Reinforcement Learning
	Single-Stage Decision Making Problem
	Multi-Stage Decision Making Problem
	RL Algorithm for the LB Problem using  –greedy Strategy
	Policy Retrieval
	Complete Algorithm


	Load Balancing – Numerical Results
	Test Case 1 – Formulation
	Test Case 1 – Results
	Dynamic Programming
	Greedy Heuristic
	Integer Linear Programming
	Modified Differential Evolution
	Reinforcement Learning

	Test Case 2 – Formulation
	Test Case 2 – Results
	Dynamic Programming
	Greedy Heuristic
	Integer Linear Programming
	Modified Differential Evolution
	Reinforcement Learning

	Test Case 3 – Formulation
	Test Case 3 – Results
	Dynamic Programming
	Greedy Heuristic
	Integer Linear Programming
	Modified Differential Evolution
	Reinforcement Learning

	Summary based on Numerical Results

	Conclusion
	Acknowledgement
	Bibliography
	List of Figures
	List of Tables
	List of Algorithms and Listings
	List of Publications
	Appendix
	Test Case 1 – Detailed Results
	Dynamic Programming
	Greedy Heuristic
	Integer Linear Programming
	Modified Differential Evolution
	Reinforcement Learning

	Test Case 2 – Detailed Results
	Dynamic Programming
	Greedy Heuristic
	Integer Linear Programming
	Modified Differential Evolution
	Reinforcement Learning

	Test Case 3 – Detailed Results
	Dynamic Programming
	Greedy Heuristic
	Integer Linear Programming
	Modified Differential Evolution
	Reinforcement Learning


