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D E C L A R AT I O N

I declare that I carried out this Thesis independently and only with the cited sources, literature
and other professional sources.

Prague, March 2022
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A B S T R A K T

Tato práce se zabývá dvěma oblastmi zabývající se statickými modely schopnými urychlit opti-
malizaci reálných cílových funkcí drahých at’ už finančně nebo z hlediska časové náročnosti —
evolučními algoritmy v kombinaci s regresními náhradními modely a analýzou tvaru funkcí
pro náhradní modely v kontextu evoluční black-box optimalizace.

První část práce se soustředí na využití náhradních modelů schopných předpovídat rozdě-
lení celé cílové black-box funkce v kombinaci s evolučním algoritmem považovaným za jeden
z nejlepších v oblasti black-box optimalizace: Covariance Matrix Adaptation Evolution Stra-
tegy (CMA-ES). Z tohoto výzkumu, na který se soustředí hlavní část této práce, vznikl Doubly
Trained Surrogate CMA-ES (DTS-CMA-ES). Tento algoritmus využívá nejistotu předpovědi
gaussovského procesu k výběru části populace CMA-ESu, kterou ohodnotí drahou cílovou
funkcí, zatímco jeho střední hodnotu použije k ohodnocení zbytku populace. DTS-CMA-ES
překonává další velmi dobré optimalizační algoritmy s náhradními modely v řadě benchmar-
kových testů.

Druhá část práce se zabývá vztahy mezi přesností regrese náhradních modelů a příznaky
popisujícími tvar zkoumané black-box funkce. Tato část také studuje vlastnosti těchto příznaků
v kontextu různých transformací dat a způsobů jejich výběru. Analýza tvaru funkcí je prove-
dena na několika různých datasetech vygenerovaných z bezšumových funkcí integrovaných v
systému COmparing Continuous Optimizers.

A B S T R A C T

The thesis covers two areas concerning statistical models able to save resources or to speed-up
the optimization of an expensive or time-consuming real-world objective function — evolution-
ary computation assisted by regresion surrogate models and landscape analysis of surrogate
models in evolutionary black-box context.

The first part focuses on combining surrogate models capable to predict the whole distri-
bution of the optimized function with the Covariance Matrix Adaptation Evolution Strategy
(CMA-ES), the state-of-the-art evolutionary algorithm in continuous black-box optimization.
Such combination, described in the core part of the thesis, resulted in the Doubly Trained Sur-
rogate CMA-ES (DTS-CMA-ES). This algorithm uses the uncertainty prediction of a Gaussian
process for selecting only a part of the CMA-ES population for evaluation with the expensive
objective function while the mean prediction is used for the rest. The DTS-CMA-ES improves
upon the state-of-the-art surrogate continuous optimizers in several benchmark tests.

The second part of the thesis investigates the relationship between the predictive accuracy of
surrogate models and features of the black-box function landscape. It also studied properties of
features for landscape analysis in the context of different transformations and ways of selecting
the input data. The landscape analysis is performed on a large set of data generated using the
noiseless part of the Comparing Continuous Optimisers benchmark function testbed.
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1I N T R O D U C T I O N

1.1 motivation

Optimization of an expensive objective or fitness function plays an important role in many
engineering and research tasks. For such functions, it is sometimes difficult to find an exact
analytical formula. Instead, values for a given input are possible to be obtained only through
expensive and time-consuming measurements or experiments. Such functions can be found,
for example, in engineering design optimization (Bekasiewicz and Koziel, 2017), computational
fluid dynamics simulations (Lee et al., 2016), or in the search for optimal materials (Baerns
and Holeňa, 2009; Zaefferer et al., 2016). Those functions are called black-box, and because of
their evaluation costs, the primary criterion for assessment of the black-box optimizers is the
number of fitness function evaluations necessary to achieve the optimal value.

In order to decrease the number of evaluations of the costly black-box function and still pro-
duce reasonably good solutions, a surrogate model of the black-box function can be employed
(Ong et al., 2003). Such models are built using the previous evaluations of the black-box func-
tion, and then are used to predict the values of new points instead of the original function.

Nowadays, the Covariance Matrix Adaptation Evolution Strategy (CMA-ES) by Hansen (2006)
is one of the most robust algorithms for real-world problems and is considered to be the
state-of-the-art of continuous black-box optimization. The CMA-ES profits from its invari-
ance properties, particularly on ill-conditioned or highly multi-modal functions, or in high-
dimensional spaces when the allowable number of function evaluations per dimension is
higher than roughly several hundreds.

The CMA-ES learns some core characteristics of the fitness via perturbations of its covari-
ance matrix and the step-size. Nevertheless, the exact information from the passed evaluations
can be used more intensively via surrogate modeling. While spending extra computation time
for model construction, surrogate models have been shown to save some of the evaluations of
the original black-box function; see the research by Jin (2011) or Rios and Sahinidis (2012). Sur-
rogate models have been increasingly often used in many optimization algorithms, including
the CMA-ES. The acceleration of the CMA-ES via surrogates was shown, for example, by Kern
et al. (2006), Loshchilov et al. (2013b) or Hansen (2019) and it also constitutes one of research
objectives of this thesis.

As can be expected, different surrogate models can show differences in the performance
of the same optimizer on different data. Such performance can also change during the algo-
rithm run due to varying landscape of the black-box function in different parts of the search
space. Moreover, the predictive accuracy of individual models is strongly influenced by the
choice of their parameters. Therefore, investigation of the relationships between the settings
of individual models and the optimized black- box objective function is necessary for better
understanding of the whole surrogate modeling task.

In last few years, research into landscape analysis of objective functions (cf. the overview
by Kerschke (2017b)) has emerged in the context of algorithm selection and algorithm config-
uration. However, to our knowledge, such features have been investigated in connection with
surrogate models in the context of black-box optimization very rarely (Saini et al., 2019; Yu
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et al., 2016) and the analysis of landscape features themselves also received small attention so
far and not in the context of surrogate models (Renau et al., 2019, 2020). Therefore, these two
aspects of landcape analysis in the context of surrogate modeling constitutes the remaining
research objectives of this thesis.

1.2 main contributions

The first part of the presented contributions uses coupling surrogate models with the CMA-ES,
in order to address specific issues of black-box optimization, while preserving all the invari-
ance and robustness properties of the CMA-ES.

The second part investigates features representing the fitness landscapes, their properties
and their connection to surrogate models in different scenarios.

Evolution Control of Surrogate Models

As a new contribution to the development of surrogate models for the CMA-ES, we introduced
two novel algorithms: Surrogate CMA-ES (S-CMA-ES) and Doubly Trained Surrogate CMA-
ES (DTS-CMA-ES). The former switches between the CMA-ES iterations evaluating the
population with the original fitness and the iterations using two kinds of surrogate model.
The latter uses a surrogate model for the most promising points in every iteration, and the
selection of these points relies on the model’s ability to estimate the whole distribution of the
predicted fitness value.

s-cma-es We have employed the generation-based evolution control by Jin et al. (2001) to
evaluate points sampled by the CMA-ES. In such evolution control, the entire population
of one generation is evaluated using the original fitness or by the surrogate model built
using the original-evaluated data if the model has enough training points. Otherwise,
the next generations are sampled and evaluated with the original fitness until the num-
ber of training points is sufficient. The model employs Gaussian processes (Rasmussen
and Williams, 2006) or random forest (Breiman, 2001), both described in Section 2.3.1.
Furthermore, we have presented an adaptive improvement based on a general procedure
introduced with the s∗ACM-ES algorithm by Loshchilov et al. (2013b), in which the num-
ber of generations using the surrogate model before retraining is adjusted depending on
the performance of the last instance of the surrogate.

dts-cma-es We have developed the S-CMA-ES successor replacing the generation evolution
control by the doubly trained evolution control, which utilizes the ability of some mod-
els (e. g., Gaussian processes or random forest) to provide the distribution of predicted
points. The most promising points according to various kinds of uncertainty criteria
are then evaluated using the original black-box fitness. Similarly to S-CMA-ES, we have
also investigated an extension of DTS-CMA-ES which controls the usage of the model ac-
cording to the model’s error. The employed models cover different variants of Gaussian
processes (Rasmussen and Williams, 2006; Srijith et al., 2012a; Calandra et al., 2016), ran-
dom forests (Breiman, 2001; Chen and Guestrin, 2016), and also two kinds of polynomial
models (Kern et al., 2006; Hansen, 2019).
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Landscape analysis of Surrogate Models

One of findings from the contributions to evolution control of surrogate models stated that no
surrogate model or algorithm using the model improved the CMA-ES significantly better than
all other proposed surrogate model approaches in the benchmark expensive scenario. There-
fore, we studied the following aspects of features describing the fitness landcape in connection
with the surrogate modeling:

� connection of landcape features with surrogate models in the context of black-box opti-
mization using static settings only, where the model is selected once at the beginning of
the optimization process similarly to Saini et al. (2019),

� properties of features representing the fitness landscape in the context of the data from
actual runs of a surrogate-assisted version of the CMA-ES,

� connection of landscape features with CMA-ES assisted by surrogate models based on
GPs, RFs, and polynomials using different settings of their parameters and the criteria
for selecting points for their training in the same context as the previous point.

Contributions in the two latter points are especially crucial due to completely different prop-
erties of data from runs of a surrogate-assisted algorithm compared with generally utilized
sampling strategies as used in the first point, which imply different values of landscape fea-
tures as emphasized in Renau et al. (2020).

1.3 thesis outline

Chapter 2 introduces Evolutionary Algorithms in the context of continuous black-box opti-
mization, focusing on the state-of-the-art algorithm CMA-ES and its surrogate-assisted ver-
sions. Attention is also paid to important surrogate models. The rest of Chapter 2 is devoted
to fitness landscape analysis.

Chapter 3 states our goals in the research into the surrogate-assisted continuous black-box
evolutionary optimization.

Chapter 4 presents our contributions to the field of surrogate-assisted continuous black-box
optimization focused on the improving of the CMA-ES using particularly Gaussian processes
and random forests.

Chapter 5 extends research into surrogate modelling in evolutionary optimization to the
analysis of relationships between optimized landscapes and surrogate model prediction errors.

Chapter 6 concludes the thesis by summarizing our contributions and future directions.
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2B A C K G R O U N D

A principal challenge in many research and engineering tasks is the optimization of problems
with no information about the mathematical description of the objective function. The objec-
tive functions of such tasks are called black-box functions. For them, we are able to obtain only
values in specified points of the input space. Black-box optimization problems regularly ap-
pear in applications where the values of the objective function can be obtained only empirically
through measurements, experiments, or via computer simulations.

If the evaluation of the objective function is expensive, evolutionary optimization becomes
less useful due to a large amount of evaluations necessary to achieve the optimal value. There-
fore, surrogate regression models replacing the original expensive fitness in a part (typically, a
large majority) of the evaluated points have been in use since the early 2000s (Auger et al.,
2004; Ong et al., 2005; Ratle, 1998; Ulmer et al., 2003) (cf. also the survey paper by Jin (2011)).

Evolutionary Algorithms and its subfields have become the most successful methods for the
optimization of empirical objective functions, especially, the Covariance Matrix Adaptation Evo-
lution Strategy (CMA-ES) proposed by Hansen and Ostermeier (1996) is considered as one of
the most successful algorithms in the field of black-box optimization. It will be described
in some detail in Section 2.2.2. The investigation of combining surrogate models with the
CMA-ES resulted in various algorithms, several of which we will describe in more detail in
Section 2.3.3.

The large number of various algorithms and surrogate models suggests that choosing the
best-performing optimizer(s) out of them is a difficult and complex task. In last eleven years,
features characterizing more or less accurately fitness landscapes have been proposed (cf. the
overview by Kerschke (2017b)) to tackle tasks where the algorithm or algorithm settings with
the highest performance for an unknown optimization problem is selected, a. k. a. Algorithm
Selection or Algorithm Configuration problem, proposed by Rice (1976) (see Section 2.5).

In Section 2.1, we briefly introduce continuous black-box optimization. Section 2.2 gives
more details about evolutionary algorithms, especially, about the state-of-the-art CMA-ES. In
Section 2.3, two surrogate models and several algorithms using evolution control in combina-
tion with the CMA-ES are presented. Non-evolutionary approaches to continuous black-box
optimization are mentioned in Section 2.4. In Section 2.5, we introduce the landscape analy-
sis and discuss its applications. Finally, Section 2.6 gives a brief introduction into comparing
algorithms in black-box optimization benchmarking.

2.1 black-box optimization

Black-box optimization problems frequently appear in the real world, where the values of
a fitness or an objective function bb(x) can be obtained only empirically through experiments
or via computer simulations, but no mathematical expression is known, neither an explicit
one as a composition of known mathematical functions, nor an implicit one as a solution of
an explicit equation (e. g., a differential equation). We refer to such a function as black-box
(see Figure 1). Such an empirical evaluation is sometimes very time-consuming or expensive
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?x bb(x)

bb

Figure 1: Evaluation of the black box fitness bb in a point x.

(Baerns and Holeňa, 2009; Forrester et al., 2008): for example, in the applications of Evolution-
ary Algorithms to the optimization of chemical materials reported by Holeňa et al. (2012), the
evaluation of one generation takes several days to weeks and costs several to many thousands
of euros.

The goal of black-box optimization is to find a feasible solution xopt of some black-box
function bb : S 7→ R with the best value of bb(xopt), where S ⊂ RD. In case of minimization
we can write:

xopt = argminx∈S bb(x) . (1)

Since finding the true optimum is often unnecessary or practically impossible in the black-
box optimization context, one is often interested in an approximate solution x̂opt ∈ S called
the optimum of bb on S up to a precision ∆bb∗ which satisfies

ŷ∗ = bb(x̂opt) ∈ [bbopt, bbopt + ∆bb∗] . (2)

Considering that the value bbopt is usually unknown in black-box optimization, it is not conve-
nient to utilize the minimal achieved bb-value as a stopping criterion. On the contrary, in case
of benchmarks the bbopt is very well-known.

Because of the evaluation costs, the most important criterion for assessing optimization
methods when optimizing an expensive function is the number of fitness function evaluations
necessary to reach a reasonable fitness value (i. e., close enough to the optimal value). Thus,
we assume that evaluating the fitness represents a considerably higher cost than training a
regression model.

The absence of derivatives or explicit fitness formula of the optimized function excludes the
application of traditional optimization algorithms like successors of Newton’s method (Galán-
tai, 2000) without using any numerical estimates1. On the other hand, stochastic methods such
as Evolutionary Algorithms are considered to be the most convenient tool for global black-box
optimization. Evolutionary Algorithms are described in the following section. Special atten-
tion is devoted to the state-of-the-art algorithm CMA-ES. However, Evolutionary Algorithms
are not the only useful method for black-box optimization. Other approaches are described in
Section 2.4.

1 Methods relying on Newton’s method require direct calculations of the derivatives. The approximation of derivatives
would decrease the convergence of such methods.
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2.2 evolutionary computation

For black-box functions, the necessity to replace derivatives through their numerical estimates
turns the application of traditional methods of smooth optimization less suitable than in the
case of functions for which derivatives can be obtained explicitely. This lead to using of
derivative-free methods such as Nelder-Mead algorithm (Nelder and Mead, 1965) and Brent’s
method (Brent, 1973), both described in Section 2.4, and to stochastic optimization methods
such as Evolutionary algorithms applying the Darwin’s theory of natural selection (Darwin,
1859). The field of evolutionary computation has developed to various subfields such as Evolu-
tion Strategies (Rechenberg, 1973; Schwefel, 1965), Evolutionary programming (Fogel et al., 1966),
Genetic Algorithms (Holland, 1975), and Genetic Programming (Cramer, 1985).

In this section, we give a brief overview of Evolutionary Algorithms and its subfields. A
special attention is paid to the state-of-the-art algorithm for the single-objective continuous
black-box optimization: the Covariance Matrix Adaptation Evolution Strategy.

2.2.1 Evolutionary Algorithms

The first proposals of natural selection can be found in ancient Greece. The most widely ac-
cepted and contemporary version of this idea was formulated by the biologist and philosopher
Charles Robert Darwin. In his book On the Origin of Species by Means of Natural Selection (Dar-
win, 1859), proposes that the individuals of the same species are different from each other.
The differences are subsequently inherited by the offspring of these individuals. The survival
of strong individuals in contrast with weak individuals in the nature while preserving the
size of population is enabled through the redundancy of descendants. Afterwards, successful
individuals are better adapted to the environment.

Any type of Evolutionary Algorithm (EA) apply the following principle (Eiben and Smith,
2003): A population of individuals (candidate solutions of the task) evaluated by a fitness func-
tion representing behavior of individuals in a problem-defined environment uses evolutionary
mechanisms and operators to create a new population, i. e., the next generation. A selection
mechanism promotes individuals with greater fitness values over the worse ones to be pro-
cessed by genetic operators. A crossover operator combining two (or more) individuals (parents)
to create the offspring and a mutation operator modifying individuals by random both generate
a new generation.

During the 20th century, the Evolutionary Computation has developed in a rich variety of
different approaches. Especially, the expansion of personal computers has led to a significant
speed-up of EA research. Therefore, we list only the most widely used approaches and give
their brief introduction.

Evolutionary Programming

The idea of Evolutionary Programming (EP) is based on Lawrence Fogel’s approach of using
the simulated evolution to generate artificial intelligence (Fogel et al., 1966). Fogel utilized
evolution to improve finite-state machines predicting the series of finite-alphabet symbols gen-
erated through Markov processes and non-stationary time series. This type of prediction
requires the ability to predict new states of the environment, which is considered to be the
base of some object’s intellingence (organism, machine), and to exploit the prediction to return
an appropriate symbol as a result.
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In EP, only mutation operators are employed to perform the whole search in the input
space (Eiben and Smith, 2003). Since finite-state machines are complex structures, mutation
operators apply modifications of various machine components. For example, the modification
of the output symbol dependency on an inner state, or inner state addition.

Genetic Algorithms

Genetic Algorithms (GAs) proposed by Holland (1975) in Adaptation in Natural and Artificial
Systems are probably the most common approach of EAs. Typically, the individuals are
represented by strings over a finite alphabet, e. g., binary in Holland’s Simple Genetic Al-
gorithm (SGA). The most widely used selection operators in GA are roulette selection, where

the probability of choosing an individual with fitness bbi from population of size n in bbi
∑n

i bbi
,

and tournament selection choosing n-times the candidate solution with the best fitness function
value from random population subset of size k < n. Crossover and mutation operators differ
according to the representation used. For example, the new solutions in SGA are generated
using multi-point crossover and bit-flip mutation.

Genetic Programming

Genetic Programming (GeP) proposed by Cramer (1985) is an evolutionary optimization tech-
nique imitating artificial evolution of computer programs that perform well in a given task.
GeP can be viewed as a GA with individuals represented by variable-sized structured object,
usually trees and variation operators defined for those trees. The trees consist of functions (as
nodes) and terminals (as leaves). Terminals are typically input variables and constants. Node
functions can be not only arithmetic and algebraic functions, but also operators specified by a
given problem, e. g., conditional operators.

Genetic operators in GeP have to be carefully defined to conserve the structure of individuals
(trees). In a conventional subtree crossover operator, two randomly selected subtrees of two
parents are swapped to create two offspring. In a typical subtree mutation, a randomly selected
subtree is substituted ty a randomly generated tree.

Evolution Strategies

Evolution Strategies (ESs), introduced by Hans-Paul Schwefel (1965) and Ingo Rechenberg
(1973), represent individuals by real numbers in D-dimensional space x ∈ RD. The core of
ES are multivariate normal mutations of individuals. In each generation, a population of new
offspring x1, . . . , xλ, λ ∈N is generated as follows:

xk = m + σN (0, C), k = 1, . . . , λ , (3)

where m ∈ RD is the parent (but also a mean of the mutation distribution), σ > 0 is a mutation
step-size and C ∈ RD×D is a covariance matrix.

There are two popular selection strategies in ES differing according to the new population-
size λ and the number of parents µ. In a comma selection strategy, (µ, λ), µ < λ best offspring
are chosen to replace all the parents. In a plus selection strategy, (µ + λ), µ best individuals
from µ parents plus λ offspring are chosen to be the next generation parents. Therefore, in
(1 + 1)-ES, the parent compete with its child created through mutation. The individual with
better fitness will survive to the next generation. The (µ, κ, λ)-ES, first applied by Schwefel
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(Schwefel, 1993), is a variant of the (µ + λ)-ES where the individuals exceeding the age of κ
generations are eliminated from the selection procedure.

2.2.2 CMA-ES

The Covariance Matrix Adaptation Evolution Strategy (CMA-ES) proposed by Hansen and
Ostermeier (1996) has become one of the most successful continuous black-box optimization
algorithms. The combination of

� comparing only the ordering of function values in a particular population, not their
absolute values,

� the way how the algorithm step-size σ is adapted, and

� the way how the covariance matrix C is adapted to learn the appropriate mutation distri-
bution

makes the CMA-ES invariant to order-preserving (strictly increasing) transformations of the
objective function and to general linear transformations (scale, rotation, translation) of the
search space. Therefore, the performace of the algorithm is identical for all the possible trans-
formations of the original problem case mentioned above as for the original case (see Hansen
and Auger (2014) for details).

The (µ/µw, λ)-CMA-ES is outlined in Algorithm 1 in its weighted active CMA-ES version by
Hansen and Ros (2010). The default CMA-ES parameter values for respective phases are as
follows:

� Selection and recombination

λ = 4 + b3 ln Dc , µ =

⌊
λ

2

⌋
, (4)

wi =
ln(µ + 1

2 )− ln i

∑
µ
j=1 ln(µ + 1

2 )− ln j
i = 1, . . . , µ , (5)

µw =
1

∑
µ
i=1 w2

i
. (6)

� Step-size control

cσ =
µw + 2

D + µw + 3
, dσ = 1 + cσ + 2 max

(
0,

√
µw − 1
D + 1

− 1

)
. (7)

� Covariance matrix adaptation

cc =
4

D + 4
, c1 =

2 min
(

1, λ
6

)
(D + 1.3)2 + µw

,

cµ =
2(µw − 2 + 1

µw
)

(D + 2)2 + µw
, c− =

µw

4(D + 2)1.5 + 2µw
, (8)

α−old =
1
2

. (9)
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Algorithm 1 The (µ/µw, λ)-CMA-ES
Input: population-size λ, original fitness function bb, number of parents µ, selection and re-

combination parameters (wi)
µ
i=1, µw, step-size control parameters cσ, dσ, covariance matrix

adaptation parameters cc, cI , cµ, c−, α−old

1: initialize g = 0, σ(0) > 0, m(0) ∈ RD, C(0) = I, p(0)
σ = 0, p(0)

c = 0
2: repeat
3: xk ← m(g) + σ(g)N (0, C(g)) k = 1, . . . , λ
4: bbk ← bb(xk) k = 1, . . . , λ
5: m(g+1) ← ∑

µ
i=1 wixi:λ

6: p(g+1)
σ ← (1− cσ)p

(g)
σ +

√
cσ(2− cσ)

√
µw

(
C(g)

)− 1
2 m(g+1)−m(g)

σ(g)

7: hσ ← I

(
‖p(g+1)

σ ‖ <
√

1− (1− cσ)2(g+1)
(
1.4 + 2

D+1
)

E‖N (0, 1))‖
)

8: p(g+1)
c ← (1− cc)p

(g)
c + hσ

√
cc(2− cc)

√
µw

m(g+1)−m(g)

σ(g)

9: yi:λ ← xi:λ−m(g)

σ(g)

10: C+
µ ← ∑

µ
i=1 wiyi:λy>i:λ

11: yλ−i:λ ←

∥∥∥∥(C(g))
− 1

2 (xλ−µ+1+i:λ−m(g))
∥∥∥∥∥∥∥∥(C(g))

− 1
2 (xλ−i:λ−m(g))

∥∥∥∥ × xλ−i:λ−m(g)

σ(g)

12: C−µ ← ∑
µ−1
i=0 wi+1yλ−i:λy>λ−i:λ

13: C(g+1) ← (1− c1 − cµ + c−α−old)C
(g) + c1p(g+1)

c p(g+1)
c

>

+(cµ + c−(1− αold))C+
µ − c−C−µ

14: σ(g+1) ← σ(g) exp
(

cσ
dσ

(
‖p(g+1)

σ ‖
E‖N (0,I)‖ − 1

))
15: g← g + 1
16: until stopping criterion is met
Output: xres (resulting optimum)

Sampling & Mean Update

After generating λ new candidate solutions using mean m(g) of the mutation distribution
added to a random Gaussian mutation with covariance matrix C(g) (step 3), the new offspring
are evaluated on the fitness function bb (step 4). The new mean m(g+1) of the mutation distribu-
tion is computed as the weighted sum of µ best points from the λ ordered offspring x1, . . . , xλ

(step 5), where the symbol i : λ denotes i-th best individual on bb. The weights of better
ranked are usually chosen higher; therefore, the better the rank, the stronger the influence of
the individual on the mean.

Evolution Path

The sum of consecutive successful mutation steps of the algorithm in the search space m(g+1)−m(g)

σ(g)

is called an evolution path and it is denoted pσ (step 6). Successful steps are tracked in the

sampling space using transformation C(g)−
1
2 , which is symmetric positive definite, and of

10



course, C(g)−
1
2 C(g)−

1
2 =

(
C(g)

)−1
. Therefore, uk = C(g)−

1
2 xk

σ(g) , where xk is a sampled point

and uk is its preimage in a space of sampling. Note that, C(g)−
1
2 = B(g)D(g)−1

B(g)>, where

C(g) = B(g)D(g)2
B(g)> is an eigendecomposition of C(g), where B(g) is an orthonormal basis of

eigenvectors, and D(g) is a diagonal matrix of square roots of eigenvalues. The two remaining
evolution path elements are a decay factor cσ decreasing the impact of successful steps with
increasing generations, and µw used to normalize the variance of pσ.

Covariance Matrix Adaptation

Two parts of the adaptation of covariance matrix are rank-µ update and rank-one update
(step 13). The rank-one update computes evolution path pc in the similar way pσ is com-
puted (in step 6); however, the coordinate system is not changed (step 8). If σ increases too
quickly, hσ indicator is used to stop the update.

The rank-µ update cummulates successful steps of µ best individuals in matrix C+
µ (step 10).

The weighted active CMA-ES by Hansen and Ros (2010) utilizes µ worst individuals to de-
crease the variance of the mutation distribution in unpromising directions (Jastrebski and
Arnold, 2006) by computing C−µ (step 12).

Step-size Control

The step-size σ (step 14) is updated according to the ratio between the evolution path length
‖pσ‖ the expected length of a random evolution path. If the ratio is greater than 1, the step-size
is increasing, and decreasing otherwise.

Restart Strategies

The CMA-ES uses restart strategies to deal with multimodal fitness landscapes and to avoid
being trapped in local optima. A multi-start strategy where the population size is doubled in
each restart presented by Auger and Hansen (2005) is referred to as IPOP-CMA-ES.

The BIPOP-CMA-ES by Hansen (2009a), unlike IPOP-CMA-ES, considers two different restart
strategies. In the first one, corresponding to the IPOP-CMA-ES, the population size is doubled
in each restart irestart using a constant initial step-size σ0

large = σ0
default:

λlarge = 2irestart λdefault . (10)

In the second one, the smaller population size λsmall is computed as

λsmall =

λdefault

(
1
2

λlarge

λdefault

)U [0,1]2
 , (11)

where U [0, 1] denotes the uniform distribution in [0, 1]. The initial step-size is also randomly
drawn as

σ0
small = σ0

default × 10−2U [0,1] . (12)

The BIPOP-CMA-ES performs the first run using the default population size λdefault and the
initial step-size σ0

default. In the following restarts, the strategy with fewer function evaluations
summed over all algorithm runs is selected.
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2.3 surrogate modeling

As mentioned earlier, Evolutionary Algorithms typically need many fitness evaluations to
reach a given target. Surrogate modeling, originally from the field of smooth optimization,
is an approach to reduce the number of expensive objective function evaluations through us-
ing its regression model (Ong et al., 2003). This model, a. k. a. surrogate model, is trained on
the already available input–output value pairs (xi, yi), i = 1, . . . , N and is used instead of the
original expensive fitness to evaluate some of the points needed by the optimization algorithm.
To our knowledge, the following types of regression models were employed so far in single-
objective continuous black-box optimization:

� low degree polynomials (Auger et al., 2004; Hansen, 2019; Kern et al., 2006; Liang et al.,
2000), which are models in the spirit of traditional response surface models by Myers and
Montgomery (1995);

� artificial neural networks (ANNs), in particular multilayer perceptrons and radial basis func-
tion (RBF) networks (Bajer and Holeňa, 2010; Jin et al., 2005; Sun et al., 2017; Zhou et al.,
2007);

� support vector regression (SVR), either metric or ordinal (Loshchilov et al., 2012, 2013b;
Ulmer et al., 2004);

� Gaussian processes (GPs), a. k. a. kriging (Büche et al., 2005; Emmerich et al., 2006; Kruis-
selbrink et al., 2010; Ulmer et al., 2003).

The investigation of combining surrogate models with the CMA-ES resulted in various algo-
rithms, several of which we will describe in the following text.

Jin et al. (2001) proposed the following two evolution control strategies for the utilization
of surrogate models in the CMA-ES: individual-based strategy evaluates λ points using the
original fitness function selected out of a larger set of points evaluated by the surrogate model.
In generation-based strategy, the entire population is evaluated on the original fitness function
for η generations and on the model for the subsequent κ > η generations. The proposed
surrogate model in this paper were ANNs, as well as, a year later in a next paper also by Jin
et al. (2002).

The individual evolution control was employed by Emmerich et al. (2002) proposing the first
GP based selection strategy for the CMA-ES in Metamodel-Assisted Evolution Strategy (MA-ES).

Auger et al. (2004) have used Least-Square minimization in LS-CMA-ES to train a quadratic
model of the fitness function for covariance matrix adaptation in the CMA-ES. This surrogate
model employed automatic detection of the model inaccuracy allowing to switch between the
original CMA-ES and the surrogate model.

One year later, Gaussian Process Optimization Procedure (GPOP) by Büche et al. (2005) suggests
a different approach to surrogate modeling: in each GPOP generation, a local GP model
is constructed around the so-far-best solution and then the model is directly optimized by
the CMA-ES to find its optimum which is subsequently evaluated using the original fitness
function.

An effective combination of building local surrogate models and controlling changes in
population ranking after fitness function evaluation is incorporated in the local meta-model
CMA-ES (lmm-CMA) proposed by Kern et al. (2006) and later improved by Auger et al. (2013).
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In Kruisselbrink et al. (2010), GP was combined with the CMA-ES in order to find robust
solutions on noisy functions in Kriging metamodeling based CMA-ES. The algorithm builds a
local GP model for each offspring using the points from an archive evaluated with the original
noisy fitness function and subsequently estimates the function values without noise. The
original fitness evaluation is performed only if the archive does not contain a representative
sample set for the surrogate model construction. The covariance matrix of the CMA-ES is also
employed to transform the input space.

A different usage of regression models than the combination with the CMA-ES presents the
Sequential Model-based Algorithm Configuration (SMAC) by Hutter et al. (2011). The surrogate
models are built and used in a parameter space of algorithm settings.

The s∗ACM-ES proposed by Loshchilov et al. (2012) employs ordinal SVR to estimate the
ordering of the fitness function values.

Another surrogate-assisted approach using an ensemble of local GP models sharing the
same parameters has been proposed by Lu et al. (2013). The algorithm selects the best points
out of a larger population evaluated using the model according to one of several implemented
strategies.

In Mohammadi et al. (2015), the combination of the Efficient Global Optimization (EGO)
algorithm by Jones et al. (1998) using GP for direct optimization and the CMA-ES resulted in
the EGO-CMA algorithm.

Combination of the GP predicted mean and variance using dominance relations to order
a CMA-ES population was employed in the Surrogate-Assisted Partial Order-Based Evolutionary
Optimization Algorithm (SAPEO) by Volz et al. (2017).

Most recently, Hansen (2019) presented his linear-quadratic Global Surrogate Assisted CMA-
ES (lq-CMA-ES), using an at most quadratic polynomial to enhance CMA-ES performance.

This section presents two main strategies how to employ a surrogate model in evolutionary
algorithms (Jin, 2005). We also give some details to two regression methods for surrogate
modeling. In addition, we describe several algorithms utilizing surrogate models in connection
with the CMA-ES. At the end of this section, we briefly present few methods for the selection
of training points for the surrogate model.

2.3.1 Regression Methods for Optimization

In this section, we list two regression methods for surrogate modeling in evolutionary opti-
mization: Gaussian processes and random forests. These two model differ from other common
surrogate models through estimating the whole probability distribution of fitness values.

To combine Gaussian processes with the CMA-ES is challenging because CMA-ES invari-
ance with respect to order preserving transformations suggests ordinal regression, whereas
Gaussian process continuity suggests metric regression. In addition, research into relation-
ships of asymptotic properties of important kinds of ANN to properties of GP (Lee et al., 2018;
Matthews et al., 2018; Novak et al., 2019) have incited attempts to integrate them together (Bui
et al., 2016; Calandra et al., 2016; Cutajar et al., 2017; Hebbal et al., 2018; Hernández-Muñoz
et al., 2020; Wilson et al., 2016). Therefore, we include also a description of the ordinal variant
of GPs and a description of GPs integrating them into an ANN.
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Gaussian Processes

Gaussian process on a D-dimensional Euclidean space X ⊆ RD is a probabilistic model based
on Gaussian distributions. It is a collection of random variables GPX = ( f (x))x∈X , indexed
by the space X , such that each finite subcollection has a joint multi-dimensional normal, i. e.,
Gaussian distribution (Rasmussen and Williams, 2006).

The GP is completely specified by a mean function µ(x) : X 7→ R, typically assumed constant,
and by a covariance function κ : X ×X 7→ R such that for x, x′ ∈ X ,

E f (x) = µ, cov( f (x), f (x′)) = κ(x, x′) . (13)

Therefore, a Gaussian process is usually denoted GP(µ, κ) or GP(µ, κ(x, x′)).
The value of bb(x) is typically accessible only as a noisy observation y = f (x) + ε, where ε is

a zero-mean Gausssian noise with a variance σ2
n > 0. Then

κ(y, y′) = κ(x, x′) + σ2
nI(x = x′) , (14)

where I(p) equals 1 when a proposition p is true and 0 otherwise.

predictions Using the Gaussian process for prediction always starts with a training set of
N points in the input space X ,

XN = {xi | xi ∈ RD}N
i=1

for which the function values yN = {yi = f (xi)}N
i=1 are known.

Let us denote the probability density of the multivariate N-dimensional Gaussian distribu-
tion of yN , where yN corresponds to XN , as p(yN |XN)

2. If the mean function µ of the GP is
zero, then p(yN |XN) ∼ N (0, CN). For prediction, we consider a new, (N + 1)-st point (x∗, y∗).
The density of the extended vector yN+1 = (y1, . . . , yN , y∗) is (Büche et al., 2005)

p(yN+1 |XN+1) =
exp(− 1

2 y>N+1C−1
N+1yN+1)√

(2π)N+1 det(CN+1)
(15)

where CN+1 is the covariance matrix of the (N + 1)-dimensional Gaussian distribution. This
covariance can be written as

CN+1 =

(
CN κ(XN , x∗)

κ(x∗, XN) κ(x∗, x∗)

)
. (16)

κ(XN , x∗) = κ(x∗, XN)
> is the vector of covariances between the new point x∗ and the original

training data XN , and κ(x∗, x∗) is the value of the covariance function for the new point itself.
The term κ(x∗, x∗) is without noise since it is a prediction, not a model of a noisy observation.

In addition, one can use the same template of the covariance matrix (16) for expressing mul-
tiple, say t, testing points together. Then, κ(x∗, XN) and κ(XN , x∗) are replaced with κ(X∗, XN)
and κ(XN , X∗) respectively — the matrices of the covariance function values between a num-
ber of testing points and the training set. The scalar κ(x∗, x∗), analogously, becomes the matrix
κ(X∗, X∗), and the whole covariance matrix is

CN+t =

(
κ(XN , XN) + σ2

nIN κ(XN , X∗)
κ(X∗, XN) κ(X∗, X∗)

)
. (17)

2 Remember, that N is not the dimension of the input space X , but the number of training points in XN .
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The inverse of the extended covariance matrix C−1
N+1 can be obtained using the inverse of the

training covariance C−1
N . Further, the vector yN of bb-values of the training points is known,

and so the density of the distribution in a new point reduces to a univariate Gaussian density

p(y∗ |XN+1, yN) ∝ exp
(
−1

2
(y∗ − ŷ∗)2

(ŝ∗)2

)
(18)

with the mean and variance given by

ŷ∗ = κ(x∗, XN)C−1
N yN , (19)

(ŝ∗)2 = κ(x∗, x∗)− κ(x∗, XN)C−1
N κ(x∗, XN)

> . (20)

Further details can be found in, for example, (Rasmussen and Williams, 2006).
Abandoning the assumption µ(x) = 0, equation (19) generalizes to

ŷ∗ = µ(x∗) + κ> C−1
N (yN − µ(XN)) (21)

where the mean function is most commonly set to a constant µ(x) = mµ.
Generalizing these equations for multiple testing points, the multivariate posterior distribu-

tion of t new points X∗ is

y∗ |XN+t, yN ∼ N (ŷ∗, Σ̂∗), where (22)

ŷ∗ = κ(X∗, XN)C−1
N (yN − µ(XN)) (23)

Σ̂∗ = κ(X∗, X∗)− κ(X∗, XN)C−1
N κ(X∗, XN)

>. (24)

For the Gaussian process with a vectorized mean function µ : X t → Rt, the expression (23)
changes to

ŷ∗ = µ(X∗) + κ(X∗, XN)C−1
N (yN − µ(XN)).

From the computational perspective, the calculation of the covariance matrix CN takes
O(DN2) time, and the complexity of the likelihood calculation for hyperparameter estimation
is O(N3) due to inversion of CN . Once the C−1

N is calculated, the complexity of the prediction
is only O(N2).

covariance functions The values of the covariance matrix CN are defined by an N×N-
dimensional matrix KN of values of a covariance function κ and the noise variance σ2

n as

CN = KN + σ2
nIN , (25)

where {KN}i,j = κ(xi, xj|θ) with θ being parameters of κ, and IN is an identity matrix. A
covariance function κ describes prior assumptions on the shape of the modeled function bb and
expresses the similarity between function values in two points of the input space (Rasmussen
and Williams, 2006).

Covariance functions can not be arbitrary, in particular, their values have to form a positive
semidefinite matrix KN . The most commonly used covariances are stationary, i. e., depending
only on the distance d of the points x and x′, between which the covariance is computed. The
stationary covariance functions considered in this work include the squared exponential

κSE(d; σf , `) = σ2
f exp

(
− d2

2`2

)
, (26)
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which is suitable especially when the modeled function is rather smooth, the Matérn covariance
function for three values of the parameter ν ∈ { 1

2 , 3
2 , 5

2}

κ
1/2
Mat(d; σf , `) = σ2

f exp
(
−d
`

)
, (27)

κ
3/2
Mat(d; σf , `) = σ2

f

(
1 +

√
3d
`

)
exp

(
−
√

3d
`

)
, (28)

κ
5/2
Mat(d; σf , `) = σ2

f

(
1 +

√
5d
`

+
5d2

3`2

)
exp

(
−
√

5d
`

)
, (29)

and the rational quadratic

κRQ(d; σf , `) = σ2
f

(
1 +

d2

2`2α

)−α

, α > 0 . (30)

The parameter ` is the characteristic length-scale with which the distance of two considered
data points is compared and σ2

f is the signal variance. Here, we only consider isotropic versions
with a scalar characteristic length-scale ` > 0. A generalization through Mahalanobis distance
with a non-isotropic distance matrix is called automatic relevance determination (ARD).

While squared exponential leads to a smooth process, Matérn functions relax the assump-
tions of smoothness. The rational quadratic is an approximation of an infinite weighted sum
of squared exponentials with weights depending on the summand’s characteristic length scale
and parameter α (Rasmussen and Williams, 2006).

Stationary functions have a limited capability of capturing global structure (Bengio and Le-
cun, 2007). A classic example of a non-stationary covariance is a neural network covariance
derived by placing a Gaussian prior on the weights of a feed-forward neural network (Ras-
mussen and Williams, 2006)

κNN(x, x′) = σ2
f arcsin

(
2x̃>Px̃′√

(1 + 2x̃>Px̃′)(1 + 2x̃>Px̃′)

)
, (31)

where P ∈ R(D+1)×(D+1) is the positive definite covariance of the input-to-hidden weights
prior and x̃ = (1, x), x̃′ = (1, x′) are inputs augmented by a bias unit. The name of this
covariance function is due to the fact that for a simple ANN with D inputs connected to one
output, computing the function f (x) = err(w0 + ∑D

j=1 wjxj) with err(z) = 2√
π

∫ z
0 e−t2

dt, if
the weights are random variables and the vector (w0, w1, . . . , wD) has the distribution N (0, P),
then

E f (x) f (x′) = κNN(x, x′) . (32)

A dot product with a bias constant term σ2
0 models linear functions:

κLIN(x, x′) = σ2
0 + x>x′ . (33)

The quadratic covariance is the square of a linear covariance:

κQ(x, x′) = (σ2
0 + x>x′)2 . (34)
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Gibbs (1997) derived a squared exponential covariance function with spatially varying length-
scale

κGibbs(x, x′) = σ2
f

(
2`(x)`(x′)

`(x)2 + `(x′)2

) D
2

exp

(
− (x− x′)>(x− x′)

`(x)2 + `(x′)2

)
, (35)

where `(x) is an arbitrary positive function of x. Using variable length-scale can cause be-
haviour different than one would expect and, therefore, a positive function `(x) should be
selected carefully (see Gibbs (1997) for further details). In the present work, we used a loga-
rithm of a linear function.

Duvenaud et al. (2011) derived additive covariance function through assigning each dimen-
sion a one-dimensional base covariance function κi(xi, x′i), i = 1, . . . , D

κADD(x, x′) = σ2
f

D

∏
i=1

κi(xi, x′i) . (36)

In the case where each κi is a one-dimensional squared-exponential kernel, κADD corresponds
to the multivariate squared-exponential kernel, a. k. a. Gaussian kernel:

κADD(x, x′) = σ2
f

D

∏
i=1

κi(xi, x′i) = σ2
f

D

∏
i=1

exp

(
−
(xi − x′i)

2

2`2
i

)
= σ2

f exp

(
−

D

∑
i=1

(xi − x′i)
2

2`2
i

)
. (37)

Spectral mixture of Q components, Q ∈N (Wilson and Adams, 2013; Wilson et al., 2016):

κSM(x, x′) =
Q

∑
q=1

cq

√
(2π`2

q)
D

D

∏
j=1

exp(−2π2`2
q(xj − x′j)

2) cos(2π(µq)j(xj − x′j)) , (38)

where cq ∈ R, `q > 0,µq ∈ RD, q = 1, . . . , Q. Its name is due to the fact that the function S
defined S(s) =

√
(2π`2)D exp(−2π2`2‖s‖2) is the spectral density of κSE.

The closer the points x and x′ are, the closer the covariance function value is to 1 and the
stronger correlation between the function values f (x) and f (x′) is. Our choice of the covariance
functions was motivated by its simplicity and the possibility of finding the hyper-parameter
values by the maximum-likelihood method.

ordinal gaussian processes The situation with ordinal regression is much more dif-
ficult. If the response variable should be ordinal, but still governed by a GP, then it has
to be derived through some discretizing transformation from a latent GP behind it. Up to
our knowledge, there exist three approaches addressing that task: expectation propagation,
maximum aposteriori probability, and partial least squares combined with leave-one-out cross-
validation (Chu and Ghahramani, 2005; Srijith et al., 2012b,a). In (Srijith et al., 2012a), they
have been compared on 9 data sets from the UCI Machine learning repository (University of
California, Irvine) and their average predictive performance was similar. Therefore, we will
describe the probabilistic least squares ordinal regression (PLSOR) by Srijith et al. (2012a) because
differently to the other two approaches, it does not resort to approximation, and also due
to its comparatively easy Matlab implementability and integrability with existing Matlab GP
implementations, which will be described in detail in Section 4.5.1.

The approach consists in defining ordered non-overlapping intervals I1 = (−∞, b1], I2 =
(b1, b2], . . . , Ir = (br−1, ∞) separated by the thresholds −∞ < b1 < · · · < br−1 < ∞ in such
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a way that the values of the latent GP can be linearly mapped to them, and that to each
interval, at least one of the values y1, . . . , yn from the training data is mapped. Describing
that linear mapping of a random variable f (x) as α0 − α f (x) and introducing the auxiliary
threshold values b0 = −∞, br = ∞, the probability that a random variable f (x) with probability
distribution N (µ, σ2) is mapped to a particular interval Ik, k = 1, . . . , r, is

P( f (x) ∈ Ik) = Φ
(

bk − (α0 − αµ)√
1 + α2σ2

)
−Φ

(
bk−1 − (α0 − αµ)√

1 + α2σ2

)
=

= Φ
(

αµ + βk√
1 + α2σ2

)
−Φ

(
αµ + βk−1√

1 + α2σ2

)
, (39)

where Φ is the distribution function of the standard normal distribution N (0, 1) and βk = bk−
α0, k = 0, . . . , r. Notice that this probability depends only on the relative positions βk = bk − α0
of the thresholds with respect to the intercept α0 of the linear mapping, not on the absolute
positions of the thresholds, nor on the value of the intercept. Taking into account (39), the
PLSOR approach estimates the likelihood of a particular realization yi of the random variable
f (xi), i = 1, . . . , n as the probability that the random variable f (xi) based on the remaining
training data without (xi, yi) is mapped to the same interval Iyi = (βyi−1 + α0, βyi + α0) to
which yi is mapped. Denoting the mean of that prediction µ−i and its variance σ2

−i, computed
like the mean and variance in (19) and (20) but with the covariance function k there using
hyperparameters of the GP estimated only from the remaining training data, this leads to
the final estimated likelihood of the observed assignment of the training data to the intervals
I1, . . . , Ir:

L̂(yi ∈ Iyi , i = 1, . . . , n|{xl}n
l=1, α, β1, . . . , βr−1,θ) =

n

∏
i=1

Φ

 αµ−i + βyi√
1 + α2σ2

−i

−Φ

αµ−i + βyi−1√
1 + α2σ2

−i

 . (40)

From (40), both the hyperparameters θ and the relative positions β1, . . . , βr−1 of thresholds are
simultaneously estimated.

gp as the output layer of a neural network The approach integrating GPs into
an ANN as its output layer has been independently proposed by Calandra et al. (2016) and by
Wilson et al. (2016). It relies on the following two assumptions:

1. If nI denotes the number of the ANN input neurons, then the ANN computes a mapping
net of nI-dimensional input values into the set X on which is the GP. Consequently, the
number of neurons in the last hidden layer equals the dimension D, and the ANN maps
an input v into a point x = net(v) ∈ X , corresponding to an observation bb(x + ε)
governed by the GP (Figure 2). From the point of view of the ANN inputs, we get
GP(µ(net(v)), κ(net(v), net(v′))).

2. The GP mean µ is assumed to be a known constant, thus not contributing to the GP hyper-
parameters and independent of net.

Due to the second assumption, the GP depends only on the parameters θκ of the covariance
function. As to the ANN, it depends on the one hand on the vector θW of its weights and
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Figure 2: Schema of the integration of a GP into an ANN as its output layer.

biases, on the other hand on the network architecture, which we will treat as fixed before
network training starts.

Consider now n inputs to the neural network, v1, . . . , vn, mapped to the inputs x1 = net(v1),
. . . , xn = net(vn) of the GP, corresponding to the observations y = (y1, . . . , yn)>. Then the
log-likelihood of θ is

L(θ) = ln p(y; µ, κ, σ2
n) = (41)

= −1
2
(y− µ)>K−1(y− µ)− ln(2π)− 1

2
ln det(K), (42)

where µ is the constant assumed in 2., and

(K)i,j = κ(net(vi), net(vj)) . (43)
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Let model training, searching for the vector (θκ ,θW), be performed in the simple but, in
the context of neural networks, also the most frequent way – as gradient descent. The partial
derivatives forming ∇(θκ ,θW )L can be computed as:

∂L
∂θκ

`

=
n

∑
i,j=1

∂L
∂Ki,j

∂Ki,j

∂θκ
`

, (44)

∂L
∂θW

`

=
n

∑
i,j,k=1

∂L
∂Ki,j

∂Ki,j

∂xk

∂ net(vk)

∂θW
`

. (45)

In (44), the partial derivatives ∂L
∂Ki,j

, i, j = 1, . . . , n, are components of the matrix derivative
∂L
∂K , for which the calculations of matrix differential calculus (Magnus and Neudecker, 2007)
together with (15) and (41) yield

∂L
∂K

=
1
2

(
K−1yy>K−1 −K−1

)
. (46)

Random Forests

Random forest by Breiman (2001) is a regression model formed as an ensemble of decision trees
(Breiman, 1984). sampling strategy in the input space to the resulting landscape features and,
consequently, to their relationship with the perfomance of the considered models and their
various settings.

decision trees Since Breiman’s CART (Breiman, 1984), decision trees have been devel-
oped to a wide spectrum of variants (Criminisi et al., 2011). In this thesis, we have considered
only binary regression trees where each internal node has two outcoming edges. In such re-
gression trees, each observation x = (x1, x2, . . . , xD) ∈ RD passes through a series of binary
split functions h associated with internal nodes and arrives in the leaf node containing a predic-
tor model p. Binary split function associated with the node i determining whether x belongs to
its left or right child can be formulated as h(x, θi) ∈ {0, 1}, where θi are parameters 0 denotes
passing to the left child (L), and 1 passing to the right child (R). A predictor model p(x) ∈ R

is represented by a simple regression model (e. g., constant, linear, quadratic) utilized for the
prediction of the function value y.

A split h(x, θi) together with its parameters θi are recursively chosen to maximize the split
gain I achieved by splitting the data S to left and right nodes SL and SR. The gain is calculated
as

I = err(S)− ∑
j∈{L,R}

|Sj|
|S| err(Sj) , (47)

where split gain function err represent some error measure (see the paragraph below).
There are several stopping criteria for growing individual branches or the tree as a whole:

the tree reaches an allowed maximum number of levels or maximum number of splits, the
value of gain function decreases below the user-defined threshold, a node contains at least
the defined number of points and any additional split would violate it. To avoid over-fitting
of a decision tree, one can use tree pruning (Breiman, 1984), which reduces the complexity of
the final tree and improves predictive accuracy in general. To select the best level of pruning,
predictive accuracy can be estimated using cross-validation.
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split functions Traditional CART by Breiman (1984) is based on searching axis-parallel
hyperplanes. To find the splitting hyperplane, the value of each training point x = (x1, . . . , xD)
in dimension xd, d ∈ {1, . . . , D} is considered as threshold for the dimension d defining the
candidate hyperplane. The full-search through all dimensions is done and the splitting hyper-
plane with the highest gain is selected.

In SECRET introduced by Dobra and Gehrke (2002), the expectation-maximization algorithm
for Gaussian mixtures is utilized to find two clusters and the regression task is transformed into
classification based on assignments of points to these clusters. Splitting oblique hyperplane is
provided through linear or quadratic discriminant analysis.

Deterministic hill-climbing with effective randomization in the algorithm OC1 presented by
Murthy et al. (1994) is employed to find a most suitable linear hyperplane. Split-finding starts
with a random hyperplane or with a good axis-parallel hyperplane found similarly to CART
and deterministically perturbates the hyperplane’s direction in each axis to maximize the split
gain. Once no improvement is possible, a number of random jumps is performed as an attempt
to escape from local optima. If some random jump succeeds, deterministic perturbation is
performed again.

Hinton and Revow (1996) used the pairs of points to define a projection for splitting the input
space. For each pair of points a normal vector defining a direction is constructed. The rest of
training points is projected onto this vector and the projected values are utilized as thresholds
defining hyperplanes orthogonal to constructed normal vector. deciding to which side the
point belongs. To reduce complexity, only the threshold halfway between the defining pair can
be considered.

A nonparametric function estimation method called SUPPORT by Chaudhuri et al. (1994)
is based on the analysis of residuals after regression to find a split. At the start polynomial
regression is performed on the training data. The points under the curve (negative residuals)
present the first class, and the rest of points (positive or zero residuals) presents the second
class. Afterwards, distribution analysis is applied to find a split.

split gain functions The original computation of gain used by Breiman (1984) on
dataset S = {xi, yi}n

i=1 was through mean-squared error (MSE)

errMSE(S) =
1
n

n

∑
i=1

(yi − ŷi)
2 , (48)

where ŷi is predicted value of point xi.
Considering the fact that each leaf contains not only a constant, model predicted values can

also form the following variance gain function:

errσ2(S) =
1
n2 ∑

i
∑
j>i

(ŷi − ŷj)
2 . (49)

Criminisi et al. (2011) utilizes for gain calculations the estimate of differential entropy of an
unknown continuous distribution

errEDE(S) =
n

∑
i=1

ln |Cy(xi)| (50)
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denoting as Cy(xi) the covariance matrix of an estimated Gaussian distribution of linear model
parameters fitted to S . This function can be further simplified using approximated diagonal
covariance matrix, where the only non-zero elements are variances s2 of predicted values ŷ

errEDE(S) = 1 + ln(2π) +
1

2n

n

∑
i=1

ln s2
i . (51)

Ahmed and Gokhale (1989) derived the uniformly minimum-variance unbiased estimator of en-
tropy:

errUMVUE(S) =
1
2

ln(eπ) +
1
2

ln(|yy>|) + 1
2

ψ
(n

2

)
, (52)

where ψ is the digamma function defined as ψ(a) = d ln Γ(a)
d a .

For a non-parametric estimate of entropy, Nowozin (2012) suggests a 1-nearest neighbor esti-
mator by Beirlant et al. (1997)

errNN(S) =
1
n

n

∑
i=1

ln ρi + ln(n− 1) + γ + 2 , (53)

where ρi = minj∈{1,...,n}\{i} |yj − yi| is the distance to the nearest neighbor and γ ≈ 0.5772 is
the Euler-Mascheroni constant.

It is important to note that the errEDE and errUMVUE assume normal distribution of predicted
values. Therefore, the leaf regressor should ensure normality of its output. Thus, utilization
of those two functions in non-linear regression is limited, e. g., quadratic regression would
require functions assuming χ2-distribution.

ensemble methods As to the training of random forests, the most common approaches
to it are bagging (Breiman, 1996) and boosting (Breiman, 1998). The most popular methods for
creating ensembles of trees can be divided into two groups according to the order of learning
individual trees:

� sequential where the trees are trained sequentially considering performance of the previ-
ously built trees (e. g., boosting by Breiman (1998)),

� and paralel where the trees are generated independently in paralel (e. g., bagging by
Breiman (1996)).

In the following paragraphs, we will pay attention only to bagging and boosting method as
the main representatives of ensemble learning methods.

Bagging Parallel learning of decision trees in bagging enables exploiting the independence
between the individual trees. An important aspect of bagging are random differences between
individual trees of the ensemble. This increases robustness and improves generalization of the
prediction. There are three popular techniques of bagging: random sampling of training data
set with replacement, using only a small subset of all possible parameter values while training,
and making available only subsets of input features. Also, there’s a possibility to combine the
two of them.

For a given dataset of N points S = {(xi, yi)}N
i=1, the overall forest prediction of the bagged

forest F is provided by averaging all tree predictions.

ŷi = ∑
f∈F

f (xi) . (54)
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This form of prediction implies the larger the ensemble the greater robustness to noise.

Boosting Sequential learning of decision trees in boosting enables exploiting the dependence
between the individual trees. In recent years, the gradient tree boosting (Friedman, 2001) has
become very successful. Therefore, we will focus on this boosting method.

To learn a boosted forest, the model has to be trained additively. Let ŷ(t)i be the prediction
of the i-th point of the t-th tree. The t-th tree ft is obtained in the t-th iteration of the boosting
algorithm through optimization of the following regularized objective function:

L(t) =
N

∑
i=1

l
(

yi, ŷ(t−1)
i + ft(xi)

)
+ Ω( ft) , Ω( f ) = γTf +

1
2

λ
∥∥∥w f

∥∥∥2
, (55)

where l is a differentiable convex loss function l : R2 → R, Tf is the number of leaves in a
tree f , w f are weights of its individual leaves. The regularization term Ω is used to control the
complexity of model through penalization constants γ and λ. From (55) can be derived (see
Chen and Guestrin (2016) for details) that the gain of split considering splitting data S into
sets SL and SR according to the nodes where they belong will be

Lsplit =
1
2


(

∑y∈SL
g(y)

)2

∑y∈SL
h(y) + λ

+

(
∑y∈SR

g(y)
)2

∑y∈SR
h(y) + λ

−

(
∑y∈S g(y)

)2

∑y∈S h(y) + λ

− γ , (56)

where g(y) = ∂ŷ(t−1) l(y, ŷ(t−1)) and h(y) = ∂2
ŷ(t−1) l(y, ŷ(t−1)) are first and second order deriva-

tives of the loss function. Using equation (47), one can define gradient error measure of node
j:

errGrad(Sj) = −
1
2
(

∑
y∈Sj

g(y)
)2( ∑

y∈Sj

h(y) + λ
)−1 . (57)

The overall boosted forest prediction is again obtained through averaging according to (54).
In this case, however, each leaf and tree has a different weight. As another prevention of
overfitting, a technique scaling weights of recently added trees by a constant µ called shrinkage
(Friedman, 2002) can be used. Moreover, utilizing sampling strategies from bagging is also
popular.

2.3.2 Evolution Control

Evolution control (EC) determines the subset of individuals to be evaluated using the original
fitness function; the remaining individuals are evaluated by the surrogate model. Following
a terminology by Jin (2005), there are two main classes of evolution control : individual-based,
where a fraction of each population is controlled, and generation-based, where all individuals
in one generation are either evaluated using the model or using the original fitness function.

Let us denote λ to be the size of population and ε ∈ [0, 1] the fraction of controlled individu-
als in individual-based control. Thus there will be ελ individuals in controlled population. First,
an extended population α(1− ε)λ is created where α > 1 is an extension parameter. In the
next step, (1− ε)λ individuals are chosen according to specific criterion. Those individuals
are subsequently evaluated with the original fitness function. The size of λ, ε, and the crite-
rion how to select individuals to be evaluated with the original fitness function are open and
problem dependent questions (Büche et al., 2005).
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There are several posibilities how to select the individuals for the original fitness reevalua-
tion. The most straightforward selection of individuals is based on the model fitness function
values. The selection criterion can choose individuals with the best fitness of the entire ex-
tended population or cluster all individuals first and choose representatives of each cluster
afterwards. Several different strategies how to choose representatives can be applied. Another
popular criterion is using unexplored regions, which are areas where no points have been
sampled yet. Here, Gaussian processes and random forest models also provide an uncertainty
measure how the prediction of the fitness function value is precise.

Generation-based control distinguishes between two types of generations: generations where
all individuals are evaluated with the original fitness function and generations in which they
are evaluated with the model fitness. General generation control approach trains the model
in the original fitness generation after the evaluation. And this model is subsequently used
for prediction in the following generations using only model fitness evaluation. Adaptive
evolution control can be used; for example, Loshchilov et al. (2012) counts deviation between
the original and the model fitness function and then decides whether to evaluate with the
original fitness or with the model. A simpler approach is to keep the number of model fitness
generations constant, which can, however, easily slow-down the convergence of the algorithm.

2.3.3 Surrogate Versions of CMA-ES

In this section, we give some details about several surrogate-model versions of the CMA-ES
that we consider the most important.

MA-ES

To the best of our knowledge, the first combination of the CMA-ES optimizer and a Gaussian
process model was in the Metamodel-Assisted Evolution Strategy (MA-ES) proposed by Ulmer
et al. (2003). According to Jin’s terminology, the algorithm employs individual-based evolution
control (see Section 2.3.2). The algorithm pre-selects points based on one of two criteria: the
best GP mean prediction, or the Probability of Improvement (PoI)—the probability that the
considered point’s function value will drop below some value, usually the so-far achieved
optimum bbmin (see Criteria paragraph in Section 4.4). The authors have shown that the latter
criterion, which uses the GP’s prediction of uncertainty, performs better especially on multi-
modal functions like Ackley’s or Griewank. The same algorithm name was used for the GP-
surrogate evolutionary strategy (not necessarily the CMA-ES) by Emmerich et al. (2002, 2006)
who also showed superior performance of the criteria exploiting the GP uncertainty on multi-
modal functions.

LS-CMA-ES

The Least-Square CMA-ES (LS-CMA-ES), introduced by Auger et al. (2004), uses a quadratic
model approximation of the fitness trained on the recent O(n2) points. This approximation is
shown to provide a faster update of the CMA-ES covariance matrix when applied to fitness
functions similar to ellipsoid. The algorithm also automatically controls whether to use the
model for the update or not.
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GPOP

Büche et al. (2005) combined GP surrogate model for the CMA-ES in their Gaussian Process
Optimization Procedure (GPOP). It is a Bayesian optimization algorithm which additionally
restricts the search around the current best point x̂opt. In each iteration, the GPOP constructs
a GP model of the local neighborhood of x̂opt, and the CMA-ES is then used to locate the
optimum of this model for evaluation with the original fitness. The CMA-ES optimizes func-
tions defined as (ŷ(x)− αŝ(x)) where ŷ(x) and ŝ(x) are the mean and standard deviation of
the GP prediction in x respectively. The authors suggest using four different α = 0, 1, 2, 4 in
each generation: while α = 0 exploits the current best-predicted point, α = 4 explores mainly
uncertain regions of the search space.

Local Meta-model CMA-ES

An effective combination of building local surrogate models and controlling changes in pop-
ulation ranking after fitness function evaluation is incorporated in the local meta-model CMA-
ES (lmm-CMA), proposed by Kern et al. (2006) and later improved in (Auger et al., 2013;
Bouzarkouna et al., 2010, 2011).

Locally weighted regression (LWR) by Atkeson et al. (1997) is employed to build an individual
surrogate model fM for every offspring to be predicted, called query point q ∈ RD, using a set
of knn training points nearest to q according to some distance d, yielding d(q, xi), i = 1, . . . , knn.
The number knn was experimentally chosen by Kern et al. (2006) as knn = D(D + 3) + 2. The
distance d is the Mahalanobis distance associated to the covariance matrix σ2C (using the
CMA-ES step-size σ and matrix C) for all x, y ∈ RD:

d(x, y) =
√
(x− y)>(σ2C)−1(x− y) . (58)

The considered surrogate model fM is full quadratic:

fM(x̃,β) = x̃>β , (59)

where β ∈ R
D(D+1)

2 −1 and x̃ =
(

x2
1, . . . , x2

D, x1x2, . . . , xD−1xD, x1, . . . , xD, 1
)
. The following

weighted least square error is minimized w.r.t. the parameters β of the local model fM

errWLSE(q) =
knn

∑
i=1

K
(

d(xi, q)
h

)
( fM(xi,β)− yi)

2 , (60)

where K(.) is a kernel function and h is a parameter called local bandwidth. Such a distance
weighting corresponds to requiring the local model to approximate nearby points more pre-
cisely than distant points. Therefore, we can minimize (60) by solving the equation(

(WX̃)>WX̃
)
β = (WX̃)>Wy , (61)

where W = diag
√

K(d(xi, q)/h), X̃ = (x̃1, . . . , x̃knn)
>, and y = (y1, . . . , yknn)

>. The kernel
function used by Auger et al. (2013) was bi-quadratic K(ξ) = (1− ξ2)2; however, in the original
lmm-CMA (Kern et al., 2006), the kernel was chosen to be partially bi-quadratic:

K(ξ) =
{

(1− ξ2)2 if ξ < 1
0 otherwise .

(62)
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Algorithm 2 Ranking prediction in the lmm-CMA variant proposed by Auger et al. (2013)

Input: population-size λ, new population {xl}λ
l=1, original fitness function bb, archive A, min-

imal number of points for model training ninit, increment of number of points for model
training nb, number of nearest neighbors knn, quality threshold tq

1: { f (l)M}
λ
l=1 ← LWR({xl}λ

l=1, knn,A) {model building}

2: rankingµ
i ← rank µ best xl according to f (l)M(xl) {ranking}

3: yl ← bb(xl) l ∈ {ninit best ranks} {fitness evaluating}
4: A = A∪ {(xl , yl)}l∈{ninit best ranks}

5: { f (l)M}
λ
l=1 ← LWR({xl}λ

l=1, knn,A) {model building}

6: rankingµ
0 ← rank µ best xl according to f (l)M(xl) {ranking}

7: errmodel ← +∞
8: i = 0
9: while ∃l ∈ {1, . . . , λ} (xl , yl) /∈ A and errmodel > tq do

10: i← i + 1
11: yl ← bb(xl) l ∈ {nb best unevaluated} {fitness evaluating}
12: A = A∪ {(xl , yl)}l∈{nb best unevaluated}

13: { f (l)M}
λ
l=1 ← LWR({xl}λ

l=1, knn,A) {model building}

14: rankingµ
i ← rank µ best xl according to f (l)M(xl) {ranking}

15: errmodel ← ∑1≤j≤µ |rankingµ
i−1(j)− rankingµ

i (j)|
16: end while
17: if i > 2 then
18: ninit = min(λ, ninit + nb)
19: end if
20: if i < 2 then
21: ninit = max(0, ninit − nb)
22: end if
Output: rankingµ

i

In lmm-CMA, the model quality is controlled by an approximate ranking procedure by Runars-
son (2004), which suggests evaluating a portion of the best individuals on the original fitness
function bb if the ranking of the fraction of the offspring remains unchanged in two consecutive
iterations. The algorithm is using an archive A of points evaluated on the original fitness func-
tion bb. The original fitness evaluation phase of the CMA-ES is replaced by the ranking predic-
tion outlined in Algorithm 2. The shown algorithm was proposed by Auger et al. (2013), being
numerically more stable than the original by Kern et al. (2006). The standard CMA-ES itera-
tions run until the minimal number of points required to start ranking prediction equals to the
number of free parameters of one meta-model mdim + 1, where mdim = D(D + 3)/2 + 1. The
initial values of ranking prediction parameters suggested by Auger et al. (2013) are ninit = 1,
nb = max{d λ

20 , 1e}, quality threshold tq = λ2

20 , and knn = dmin{2 mdim,
√
|A|mdim}e.

In a version nlmm-CMA by Bouzarkouna et al. (2010), the condition used to stop evaluating
new points using original fitness was improved to keep the speed-up for larger populations
than the CMA-ES default.

The lmm-CMA is analysed in more detail in Section 4.8.1.
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Kriging metamodeling CMA-ES

Kruisselbrink et al. (2010) used GPs to handle robustness in optimization of noisy functions.
Their Kriging metamodeling based CMA-ES evaluates the population with the noisy original
function and then constructs a separate GP/kriging model for each such point in order to
estimate its true value without noise. The algorithm uses the CMA-ES covariance matrix C
for the transformation of the input space. Apart from a procedure for selecting training points
for the GP from an archive, the authors also suggest which points to take for an additional
expensive evaluation if there are not enough points for the GP model building. The kriging
method is shown to approximate the noisy fitness much better than two compared methods
based on a simple (re-)evaluation of the points during CMA-ES optimization.

Ensemble of Local Gaussian Process Models

The article by Lu et al. (2013) presents another surrogate-assisted CMA-ES algorithm that
employs an ensemble of local Gaussian process models. The algorithm uses the GP models
to pre-screen a larger population (λ = 25, µ = 5) and to select the best 6 points for expensive
re-evaluation according to the same criterion as Büche et al. (2005) with α = 2. Although the
results in the article seem rather promising, we were not able to reproduce them using the
provided source code.

s∗ACM-ES-k

Loshchilov et al. (2012) combined the ability of Ranking SVR (Herbrich et al., 1999) to preserve
the CMA-ES invariance properties with an adaptation of surrogate-model hyperparameter
values during the search in their s∗ACM-ES. An extension of that algorithm using a more
intensive exploitation is called s∗ACM-ES-k (Loshchilov et al., 2013b).

Ranking SVR (Herbrich et al., 1999) is a variant of SVR for ordinal regression based on large
margins between individual rank boundaries.

The s∗ACM-ES-k starts with evaluating gstart generations using the original fitness. Then it
iterates through the following steps:

1. train a surrogate model with parameters θ using the points evaluated with the original
fitness;

2. optimize the surrogate model by the CMA-ES for gm generations with population size
λ = kλλdefault and the number of parents µ = kµµdefault, where kλ, kµ ≥ 1;

3. evaluate the original function bb on the CMA-ES generated offspring using λ = λdefault
and µ = µdefault;

4. calculate the model error and subsequently the new gm using ranks of the original and
model evaluations of the last generation;

5. search the parameter space of the surrogate model by the CMA-ES to find the most con-
venient settings θnew for the next-generation model, using the model error as a fitness
function.

As a prevention against algorithm divergence, kλ > 1 is used only in the case of gm ≥ gmλ,
where gmλ denotes the number of generations suitable for effective exploitation using the
model.
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In (Loshchilov et al., 2013a), the s∗ACM-ES-k version using BIPOP-CMA-ES, called BIPOP-
s∗ACM-ES-k, and a hybrid of BIPOP-s∗ACM-ES-k, the select the easiest point (STEP) method by
Swarzberg et al. (1994) and the NEWUOA algorithm by Powell (2006), called HCMA, were
proposed.

EGO-CMA

Mohammadi et al. (2015) combined GPs and the CMA-ES in their EGO-CMA. It starts as the
EGO algorithm (see Subsection 2.4) and switches into the CMA-ES after a small number of
EGO iterations. Hence, it is not a surrogate model in the proper sense of repeatedly switching
between the evaluation with the original fitness and with the model. The core contribution of
the article lies in the sophisticated initialization of the CMA-ES covariance matrix and step-size
based on the learned parameters of the EGO’s Gaussian process. The authors show interesting
preliminary results on the 5-dimensional Sphere and Ackley functions which we were also not
able to reproduce due to the incompleteness of the provided source code.

SAPEO

Another combination of GP model and the CMA-ES algorithm is the Surrogate-Assisted Partial
Order-Based Evolutionary Optimization Algorithm (SAPEO) by Volz et al. (2017). The algorithm
uses several dominance relations that combine the GP predicted mean and variance to induce
a partial order on the points in a CMA-ES population, usually using confidence intervals. If
this partial order is able to identify the ranking of the µ best points with a given probability,
the algorithm proceeds without any further fitness evaluations. Otherwise, the SAPEO tries to
choose its another dominance relation or original-evaluates some of the points if necessary.

lq-CMA-ES

The most recent single-objective surrogate-assisted CMA-ES algorithm we are aware of is the
linear-quadratic Global Surrogate Assisted CMA-ES (lq-CMA-ES) by Hansen (2019) switching
between the linear or diagonal-quadratic or full quadratic model according to the number of
available training data.

Similarly to the previous surrogate-assisted versions of the CMA-ES, lq-CMA-ES stores al-
ready evaluated points. Nevertheless, in this case the observations are stored in a queue Q. In
each iteration, a surrogate model fM is built utilizing points from Q. Then the entire popula-
tion is evaluated using the built model. After that, a small number of model-best solutions is
selected from the population, evaluated on bb, then sorted and enqueued (the best solution is
enqueued last). When the maximum queue size is exceeded, the oldest elements are dropped.
The number of individuals selected for evaluation using the fitness is repeatedly increased
and the model repeatedly trained incorporating newly evaluated points until the Kendall’s
rank correlation coefficient τ between the model-predicted and fitness-evaluated ordering of
current population exceeds a specified constant (set to 0.85 by Hansen (2019)). The procedure
is outlined in Algorithm 3.

The resulting ordering of the current population is completely determined using the surro-
gate model only or the fitness function only considering that all points would be evaluated
by the original fitness. Thus, fitness and model values cannot be mixed in the returned order-
ing. After returning the values to the CMA-ES, the model optimum is injected to be used as
candidate direction in the following generation according to Hansen (2011).

28



Algorithm 3 Evolution control in the lq-CMA-ES by Hansen (2019)

Input: Q = {(z1, bb(z1)), . . . , (zl , bb(zl))}, l ∈ {1, . . . , max(λ, D2 + 3D + 2)} (model-training
queue), fM (model), P = {x1, . . . , xλ} (population), bb (fitness function)

1: k← b1 + max(0.02λ, 4− |Q|)c {incrementing evaluations}
2: while |P| > 0 do
3: train fM on k points from Q
4: drop the k− (λ− |P|) fM-best elements from P into Q
5: sort the newest min(k, λ) elements in Q w.r.t. their bb values
6: kτ ← max(15, min(1.2k, 0.75λ))

7: (zj)
kτ
j=1 ← the last kτ points in Q

8: if Kendall-τ ([ fM(zi)]i, [bb(zi)]i) ≥ 0.85, i ∈ {1, . . . , kτ} then
9: break while

10: end if
11: k← d1.5ke
12: end while
13: if |P| > 0 then
14: return Q, fM(x1), . . . , fM(xλ) all offset by minx∈last k elements of Q(bb(x)) −

mini=1,...,λ( fM(xi))
15: else
16: return Q, bb(x1), . . . , bb(xλ)
17: end if

The employed surrogate model switches between tree kinds of polynomial model: linear,
pure quadratic, and full quadratic. The lq-CMA-ES switches to the next polynomial model
when the number of training points exceeds the degrees of freedom of the next model plus
10%.

The lq-CMA-ES is analysed in more detail in Section 4.8.1.

2.4 other approaches to black-box optimization

Evolutionary algorithms and their surrogate-assisted versions are not the only algorithms ca-
pable to optimize black-box functions. In this section, we will briefly introduce 3 algorithms
which do not follow the CMA-ES approach.

Nelder-Mead

Nelder and Mead (1965) proposed a downhill simplex method operating only on the ranking of
the problem solutions. Therefore, the algorithm is invariant under the same order-preserving
transformations of the fitness function as the CMA-ES. As opposed to CMA-ES (and all
stochastic algorithms), the original Nelder-Mead method is strictly deterministic, i. e., it does
not sample.

The Nelder-Mead algorithm is based on the usage of (D + 1)-simplexes of solution points,
where D is the dimension of the search space. In each iteration, a new simplex point is
computed as a linear combination of the worst solution comprised in the simplex and the
center of the remaining points. The new point then updates the simplex according to its
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function value using the following operations: reflection, expansion, contraction, and multiple
contraction (see Algorithm 4). The uncorrected sample standard deviation of current simplex
fitness values σ

(
{bb(xi)}D

i=0
)

is used as the stopping criterion (step 2).
This successful optimizer has been used for decades (it is, for example, the standard part

of Matlab), but due to its deterministic nature, it is unable to escape from local optimum.
Therefore, a few restart strategies for global optimization problems have been proposed and
benchmarked (Hansen, 2009b; Luersen and Le Riche, 2004).

Brent’s method

A popular algorithm for univariate black-box optimization problems was introduced by Brent
(1973). The algorithm is a combination of root bracketing, bisection, and inverse quadratic in-
terpolation. Generally, three points bracketing a local optimum are interpolated by a quadratic
function. The minimum of the quadratic function satisfying some specific conditions is pro-
ceeded to the next iteration for interpolation. A bisection step to compute a new point is
initiated if the conditions are violated.

The algorithm is convenient for the local search in one dimension. For multidimensional
purpose it is combined with optimization methods such as line search. The strength of uni-
variate algorithms is in separable problems where the problem can be decomposed into D
univariate problems and optimize one after another in a sequence. To ensure convergence not
only on unimodal functions but also on multimodal functions, the Brent local search method
and a global search STEP algorithm by Swarzberg et al. (1994) were combined by Baudiš and
Pošík (2015) in hybrid Brent-STEP method.

Bayesian optimizers

Bayesian optimization algorithms introduced by Mockus et al. (1978) in sequential model based
optimization of expensive functions constitute a family of algorithms that use a Bayesian prob-
abilistic model of the fitness to iteratively sample new promising points from the input space.
The model has to express a probability distribution of the response variable, and this distribu-
tion is then exploited for deciding the new points. The decision which point to take for the
next iteration is based on an acquisition function that quantify the interestingness of points from
the input space. The expected improvement, probability of improvement, or a quantile of the
predictive distribution is used most often.

Great success of Bayesian optimization algorithms was brought by Jones et al. (1998) with
their Gaussian-process-based Efficient Global Optimization (EGO) algorithm. The EGO and
its derivatives find their applications especially in the very expensive scenarios where the
allowable budget of function evaluations is not more than few hundreds.

One of succesors of EGO the Sequential Model-based Algorithm Configuration (SMAC) method
introduced by Hutter et al. (2011) was originally designed to optimize algorithm parameters.
It fits surrogate models of algorithm settings in a parameter space and utilizes those models
to make decisions about which settings to investigate.

To minimize function bb : Θ 7→ R, where Θ is the space of algorithm parameters, SMAC
iterates over the following steps:

1. build a model fM based on random forest predicting a probability distribution of bb using
previously evaluated data points (θ, bb(θ)), θ ∈ Θ;
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Algorithm 4 Nelder-Mead downhill simplex method

Input: {xi}D
i=0 (initial simplex), bb (original fitness function),

α > 0 (reflection coefficient), β ∈ (0, 1) (contraction coefficient),
γ > 1 (expansion coefficient), ε (stopping-criterion constant)

1: k← 0
2: while σ

(
{bb(xi)}D

i=0
)
> ε and k < kmax do

3: h← argmaxi∈{0,...,D} bb(xi)

4: l ← argmini∈{0,...,D} bb(xi)

5: x̄← ∑D
i=0 xi

6: x′ ← (1 + α)x̄− αxh
7: if bb(x′) < bb(xl) then
8: x′′ ← (1 + γ)x̄− γxh
9: if bb(x′′) < bb(xl) then

10: xh ← x′′ {expansion}
11: else
12: xh ← x′ {reflection}
13: end if
14: else if bb(x′) > bb(xi), ∀i 6= h then
15: if bb(x′) ≤ bb(xh) then
16: xh ← x′ {reflection}
17: end if
18: x′′ ← βxh + (1− β)x̄
19: if bb(x′′) > bb(xh) then
20: xi ← xi+xl

2 i ∈ {0, . . . , D} {multiple contraction}
21: else
22: xh ← x′′ {contraction}
23: end if
24: else
25: xh ← x′ {reflection}
26: end if
27: k← k + 1
28: end while
Output: xl
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2. compute expected positive improvement E(I(θ)) = E(max{0, bbmin− bb(θ)}) for each param-
eter configuration θ ∈ Θ using the model fM, where bbmin is the lowest fuction value
evaluated so far;

3. select the most promising point θmax = argmaxθ∈Θ E(I(θ));

4. evaluate bb(θmax) and store (θmax, bb(θmax)).

To make SMAC more useful in continuous optimization, random forests were replaced by
Gaussian processes as a surrogate model in SMAC-BBOB (Hutter et al., 2013).

2.5 exploratory analysis of fitness landscapes

If we want to group investigated problems according to their similarities, it is very useful to
characterize an unknown landscape of the objective function. Following the idea that methods
often perform well on entire classes of similar problems rather than just on single problems,
Mersmann et al. (2010) have shown that such knowledge can be very helpful.

Measures quantifying the most important kinds of information about the landscape were
formulated by Mersmann et al. (2010): the degree of multi-modality, the underlying global struc-
ture, the separability, the variable scaling, the search space homogeneity, the basin size homogeneity,
whether the function’s landscapes posesses plateaus, and the local to global optima contrast. In
addition, some high-level properties can be used, which however have the disadvantages of
missing important information, and requiring knowledge about the whole problem (Kerschke,
2017b).

These issues were addressed by Mersmann et al. (2011) where the authors introduced Ex-
ploratory Landscape Analysis (ELA), which is an umbrella term for analytical, approximated and
non-predictive methods originally developed for combinatorial optimization problems (Muñoz
et al., 2015). An important step in the development of ELA was proposing six low-level easy to
compute feature sets (Mersmann et al., 2011) each containing a number of individual features.
These features are computable based on a sample of observations from the given problem, thus
eliminating the impact of missclassification by the expert. Mersmann et al. (2011) have also
shown that these low-level features relate well to the above mentioned high-level properties.

To formalize these low-level features, let us consider a sample set S of N pairs of observa-
tions in the context of continuous black-box optimization

S =
{
(xi, yi) ∈ RD ×R∪ {◦} | i = 1, . . . , N

}
, (63)

where ◦ denotes missing yi value (e. g., xi was not evaluated yet). Then the sample set can be
utilized to describe landscape properties using a landscape feature

ϕ :
⋃

N∈N

RN,D × (R∪ {◦})N,1 7→ R∪ {±∞, •} , (64)

where • denotes impossibility of feature computation.
The importance of low-level landscape features have been shown by Bischl et al. (2012) in

the algorithm selection problem or algorithm configuration problem formulated by Rice (1976) which
aims to find the best algorithm or algorithm configuration for a specific problem instance.
Considering algorithm selection problem, fitness landscape analysis aims at characterizing the
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landscape of a black-box function and deriving rules how those characteristics influence the
performance of the optimization algorithm.

A large number of various fitness landscape analysis techniques have been proposed for con-
tinuous optimization in recent years. As mentioned above, Mersmann et al. (2011) proposed
six feature sets representing different properties:

� y-Distribution set with measures related to the distribution of the objective function val-
ues,

� Levelset features capturing the relative position of each value with respect to quantiles of
all objective values,

� Meta-Model features extracting the information from linear or quadratic regression mod-
els fitted to the sampled data,

� Convexity set describing the level of function landscape convexity,

� Curvature set with gradient and Hessian approximation statistics,

� and Local Search features related to local searches conducted from sampled points.

The last three feature sets require additional objective function evaluations.
The cell-mapping (CM) approach proposed by Kerschke et al. (2014) discretizes the input

space to a user-defined number of blocks (i. e., cells) per dimension. Afterwards, the cor-
responding features are based on the relations between the cells and points within. Five
cell-mapping feature sets were defined:

� CM Angle features extract information based on the location of the best and worst obser-
vation within a cell w.r.t. the corresponding cell center,

� CM Convexity estimate convexity of representative observations from three successive
cells in each dimension,

� CM Gradient Homogeneity provide aggregated cell-wise information on the gradients be-
tween each point of a cell and its corresponding nearest neighbor,

� Generalized CM features are based on estimated transition probabilities of moving from
one cell to one of its neighboring cells,

� Barrier tree features representing the local optima by tree leaves and landscape ridges by
the branching nodes using probabilities from Generalized CM to build a so-called barrier
tree by Flamm et al. (2002).

Additionally, two extra feature set taking into account division of the input space into blocks
were proposed:

� Linear Model features by Kerschke (2017b) aggregating information about coefficients of
linear models fitted in each cell and

� SOO Tree features by Derbel et al. (2019) based on trees mapping the search trajectory of
an optimization heuristic.
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It should be noted that cell-mapping approach is less useful in higher dimensions where the
majority of cells is empty and feature computation can require a lot of time and memory.

Kerschke et al. (2015) proposed nearest better clustering (NBC) features based on the detection
of funnel structures. The calculation of such features relies on the comparison of distances
from observations to their nearest neighbors and their nearest better neighbors, which are the
nearest neighbors among the set of all observations with a better objective value.

Lunacek and Whitley (2006) proposed the set of dispersion features comparing the dispersion
among the data points and among subsets of these points from the sample set.

The information content features of a continuous landscape are derived in Information Content
of Fitness Sequences approach by Muñoz et al. (2015) as the adaptation of methods for calculat-
ing of the information content of discrete landscapes.

Features measuring the proportion of principle components needed to explain a user-defined
percentage of data’s variance were presented in principle component analysis feature set by Ker-
schke (2017b).

Kerschke (2017b) also proposed the features providing basic information about the data such
as number of points, boundaries or dimension ensembled in Basic feature set.

Kerschke et al. (2016) have shown 50D observations generated using improved latin hypercube
sampling proposed by Beachkofski and Grandhi (2002) can be enough for certain high-level
properties by means of numerical features.

A comprehensive survey of fitness landscape analysis methods can be found e. g., in (Muñoz
et al., 2015; Pitzer and Affenzeller, 2012). An implementation of previously mentioned low-
level features is available in the R-package flacco (Kerschke and Dagefoerde, 2017). A more
detailed description of feature sets used in our research can be found in Appendix A.

As Kerschke (2017a) noted, most of the low-level features provide very useful information
for analysis of problem landscapes and further research connected to it but do not provide
intuitively understandable values. Moreover, some are even stochastic and thus should be
computed multiple times and then appropriately aggregated.

Research into using fitness landscape features in connection with surrogate models is only
starting. Yu et al. (2016) utilized fitness distance correlation for automatic selection between
polynomial and RBF models and their settings as surrogates for a particle swarm optimization
algorithm. Furthermore, such features have been investigated in connection with surrogate
models in the context of black-box optimization using static settings only, where the model is
selected once at the beginning of the optimization process (Saini et al., 2019). Moreover, the
analysis of landscape features also had less attention so far than it deserves and not in the
context of surrogate models (Renau et al., 2019, 2020).

2.6 optimization benchmarking

Comparison of different optimization algorithms can be based on a number of criteria. Prac-
tical applications are interested mainly in one of the two following or their combination: the
quality of the found solution ∆bb, i. e., the minimal bb-value distance from the global optimum
bbopt, and the amount of time or other resources (energy, material, CPU time, etc.) needed
to converge. As mentioned in Section 2.1, the resources in black-box optimization are fre-
quently measured in the number of fitness function evaluations function evaluation (FE). In
addition, for comparison accross different dimensions, the number of FEs is often divided by
the dimension D of the input space FE/D.
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2.6.1 COCO framework

In the following chapters, experimental algorithm comparisons are mostly based on the COm-
paring Continuous Optimizers (COCO) platform by Hansen et al. (2009a,b, 2012, 2021) which is
quite successful in quantifying and comparing the performance of optimization algorithms in a
scientifically decent and rigorous way. Is is also known under the name Black-Box Optimization
Benchmarking (BBOB) referring to the BBOB workshop series (BBOB, 2009–2022) held mainly
on the Genetic and Evolutionary Computation Conference (GECCO) conferences. COCO provides
means to run an optimization algorithm on a set of benchmark optimization problems, stores
the information about evaluated points, post-processes the obtained information and, finally,
prepares resources to analyze the performance of the compared algorithms.

COCO provides test suites for single-objective, bi-objective, noiseless, noisy, large-scale, and
mixed-integer benchmarking (Hansen et al., 2021). In this thesis, we utilize only the single-
objective noiseless and noisy part of the framework, which comprises a set of 24 noiseless and
30 noisy benchmark functions of different difficulty (Hansen et al., 2009a,b). All benchmarks
are defined and can be evaluated over RD, while the actual search domain is given as [−5, 5]D.
In addition, the functions are defined for a number of instances, independently transforming
the objective-function landscape, particularly via bb-values scaling and translation and rotation
of the input space, resulting in a set of similar but not identical objective functions. For the
majority of functions, the global optimum xopt is after the mentioned transformations located
in [−4, 4]D. To collect ”sufficient” amount of data and make statistical analyses of results more
meaningful, Ntrial = 15 such instances are suggested to be used per each function to test the
algorithm.

The framework delivers also postprocessing of the measured results. The core measure of
an algorithm’s performance is based on the algorithm’s runtime on a single instance, i. e., the
number of evaluations it needed to reach a specified target distance to the optimum ∆bb∗. The
expected running time (ERT), the expected number of function evaluations to reach a target
function value for the first time is computed by dividing the sum of all evaluations before
the target was reached (from successful and unsuccessful runs) by the number of runs that
reached the target (Hansen et al., 2021):

ERT(bbt) =
#FEs(bbbest ≥ bbt)

# succ
, (65)

where the #FEs(bbbest ≥ bbt) is the number of FEs conducted in all trials, while the best function
value was not smaller than bbt during the trial. The # succ is the number of succesful trials.

To summarize the results from a set of benchmark problems for a fixed bbt, empirical cu-
mulative distribution function (ECDF) of runtimes (or ECDF distributions) to reach a given
single target precision valua is often used. The authors of the COCO framework favour ab-
solute runtime distributions due to possibility of meaningful aggregation of the results from
different benchmark functions, comparability accross different publications, and possibility to
distinguish between easy and difficult problems.

Moreover, the COCO postprocessing defines a number of different targets to assess different
difficulties of the benchmark function. For each function, 30–50 targets bbt = bbopt + ∆bb are
defined, either relatively according to empirical results of a reference algorithm, or equidis-
tantly in the logarithmic scale for ∆bb ∈ [100, 10−8]. See Figure 3 for such a ECDF graph from
the COCO postprocessing.
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Figure 3: COCO-generated Runtime distribution (ECDF) of BOBYQA by Powell (2009) on Rosenbrock

function f8 in 10D from (Bajer, 2018). 31 targets per dimension are based on the best-reached bb-values
of the best2009 artificial algorithm for FE/D ∈ [0.5, 100]. The best2009 is a dataset collected from the
best-achieved results per each benchmark function and dimension from all algorithms submitted to the
2009 BBOB Workshop.

2.6.2 Postprocessing of Convergence Plot

Despite the statistical interpretability of the COCO ECDF graphs, in this thesis, we often inter-
pret the performance of algorithms using median- and possibly the quartile-based convergence
graphs. The aggregation of convergence graphs of one algorithm through multiple bench-
marks is done on median logarithmic distances to the true optima that are linearly re-scaled to
[−8, 0] (Pitra et al., 2016). Such scaling is dependent only on the performance of the particular
algorithms that were comprised in the comparison. That aggregation has the advantage of
providing the results for each possible number of FEs. The resulting graphs are dependent on
decisions about the numbers of FE used, which are always made with respect to the available
evaluations budget. This is similar to the ECDF graphs from COCO postprocessing dependent
on the selection of the targets to take into consideration, and, therefore, are always relative to
some other parameters or choice of a reference algorithm.

The graphs using the mentioned interpretation, first presented in (Pitra et al., 2016), depict
the scaled best-achieved logarithms ∆log

f of median distances ∆med
f to the optimum of function

f for the respective number of function evaluations per dimension FE/D. Medians ∆med
f

(and in some graphs also 1st and 3rd quartiles) are usually calculated from 15 independent
instances for each respective algorithm, function, and dimension. The scaled logarithms of
∆med

f are calculated as

∆log
f =

log10 ∆med
f − ∆MIN

f

∆MAX
f − ∆MIN

f
log10

(
1/10−8

)
+ log10 10−8 (66)

where ∆MIN
f (∆MAX

f ) is the minimum (maximum) log10 ∆med
f found among all the compared

algorithms for the particular function f and dimension D. In this thesis the range of FE/D is
usually between 0 and 250.
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Figure 4: Convergence graphs scaled to [−8, 0] from (Bajer, 2018). The graphs use the identical data as
graph in Figure 3.
Left: linear scaling [−8.00, 4.78]→ [−8, 0], i. e., lower limit is not scaled.
Right: data cropped to 50 FE/D, linear scaling [−1.00, 4.78]→ [−8, 0].

The limits of the range [−8, 0] in which log10 ∆med
f is scaled are motivated by the following

aspects. The lower limit −8 refers to the lowest target distance 10−8 used in the COCO frame-
work. Thus, reaching this target by any of the compared algorithms does not scale the lower
limit (see example in Figure 4). The upper limit 0 was chosen for the reason of simplicity. The
examples of scaled graphs for two different FE budgets are depicted in Figure 4.

Such scaling of median log-distances enable an aggregation of their values for the same
algorithm across an arbitrary number of functions or dimensions. The results in the following
chapters utilize the aggregation by average despite the possible bias by extremely different
results on different functions or dimensions. As stated by Bajer (2018), we still consider this
kind of aggregation as the simplest and meaningful default that provide useful information
about the algorithms behaviour.
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3G O A L S

After a thorough exploration of the state-of-the-art methods for surrogate-assisted evolutionary
optimization of continuous black-box objectives, we identified two areas of interest with a high
need for research – surrogate modeling for the CMA-ES and landscape analysis in the context
of surrogate modeling for evolutionary optimization.

surrogate modeling for the cma-es Designing versions of the CMA-ES assisted by
surrogate models in order to save expensive fitness evaluations and investigating their
properties with the emphasis on models capable to predict the distribution of the opti-
mized function.

landscape analysis for surrogate modeling Investigating the features describing the
fitness landscape and their relationships to the suitability of different surrogate models
in evolutionary optimization context.
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4C O N T R I B U T I O N S T O E V O L U T I O N C O N T R O L O F S U R R O G AT E
M O D E L S

This chapter partially cites the text of the articles mentioned in the following paragraph.

In this chapter, we demonstrate the advantages of the use of regression models based on
Gaussian process and random forest in surrogate-assisted optimization, and the CMA-ES in
particular. In Section 4.1, we present our surrogate model training procedure and methods how
to select the training set. In Section 4.2, we present the Surrogate CMA-ES (S-CMA-ES), pub-
lished in (Bajer et al., 2015; Pitra et al., 2015), algorithm employing GPs and RFs in generation-
based evolution control and evaluate it together with the s∗ACM-ES, another generation-based
version of the CMA-ES. In Section 4.3, we propose self-adaptive version of the S-CMA-ES,
published in (Repický et al., 2017), in which the number of generations using the surrogate
model before retraining is adjusted depending on the performance of the last instance of the
surrogate. In the next section, we present our S-CMA-ES extension, called Doubly Trained Sur-
rogate CMA-ES (DTS-CMA-ES), published in (Bajer et al., 2019; Pitra et al., 2016, 2017a). The
algorithm combines cheap surrogate-model predictions with the objective function evaluations.
We also discuss the benefits of employing the Gaussian process uncertainty prediction, espe-
cially during the selection of points for the evaluation with a surrogate model. Our results of
comparing the metric and ordinal GPs in connection with the DTS-CMA-ES published in the
paper (Pitra et al., 2017b) are presented in Section 4.5. The investigation of the covariance func-
tion selection for the DTS-CMA-ES GP-based surrogate model, published in (Repický et al.,
2018a,b), is reported in Section 4.6. In Section 4.7, we present our study of the DTS-CMA-ES in
connection with the boosted regression forest, published in (Pitra et al., 2018a). In Section 4.8,
we asses the influence of the surrogate models and their evolution control separately through
experimental investigation of combinations of evolution controls and surrogate models in three
surrogate-assisted versions of the CMA-ES. This research including also an analysis of these
three versions was published in (Pitra et al., 2021). The investigation of the configuration of
Gaussian processes serving as surrogate models in combination with artificial neural networks
is proposed in Section 4.9 and was published in (Koza et al., 2021a,b; Růžička et al., 2021).

4.1 model training in surrogate-assisted optimization

This section provides the insight into the training of surrogate models we utilize in all our
surrogate-assisted versions of the CMA-ES: the S-CMA-ES, the DTS-CMA-ES, and their modi-
fications. The methods are used regardless the type of currently trained surrogate model. First,
we propose different methods for selection of points evaluated by the original fitness function
to form a training set for surrogate model. Second, we present our procedure for training
surrogate models.
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4.1.1 Training Sets

The quality of a surrogate model is largely determined by the selection of points stored in
some archive A where all original fitness evaluations are stored into its training set T . We
denote Nmax the given maximum number of points in a training set. Let us list methods for
training set selection (TSS) investigated in our research:

tss closest, selecting NMmax points which are closest to any point in the current population
(e. g., in (Bajer et al., 2019)),

tss cluster, clustering the points in the input space into NMmax clusters and taking the points
nearest to clusters’ centroids (e. g., in (Bajer et al., 2015)),

tss full, taking all the already evaluated points, i. e., T = A (e. g., in (Pitra et al., 2022)),

tss knn, selecting the union of the sets of k-nearest neighbors of all points for which the
fitness should be predicted, where k is user defined (e. g., in (Kern et al., 2006)),

tss nearest, selecting the union of the sets of k-nearest neighbors of all points for which the
fitness should be predicted, where k is maximal such that the total number of selected
points does not exceed a given maximum number of points NMmax (e. g., in (Bajer et al.,
2019)), and

tss recent, taking up to NMmax most recently evaluated points (e. g., in (Ulmer et al., 2003) or
Loshchilov et al. (2013b)).

All of these selection methods can be restricted to an area considered relevant for the partic-
ular generation such that no point is further from a specified position than a given maximal
distance rmax. Localizing this area around the current algorithm position (around the mean
m(g) in the CMA-ES, for example) is important for local optimizers, and especially for the TSS
cluster which is not biased towards the current population. The algorithms in this Chapter use
the Mahalanobis distance given by the CMA-ES matrix σ2C for selecting points into training
sets, similarly to, e. g., (Kruisselbrink et al., 2010).

4.1.2 Surrogate Model Training

During the model training procedure in the versions of S-CMA-ES and DTS-CMA-ES, shown
in general in Algorithm 5, a set of training points T is selected using TSS method (see Sec-
tion 4.1.1). If T contains enough points to train the model, transformations of Xtr to the σ2C
basis and ytr to zero mean and unit variance are calculated in Steps 4 and 5 before the model
hyperparameters θ are fitted. In case of a successful fitting procedure, the resulting model is
tested for constancy on an extra generated population due to the CMA-ES restraints against
stagnation.

Analogically, the predictions with such trained modelM start with the inverse transforma-
tion of the input points in Xte into the space that was used in the model training, and the
predicted bb-values ŷte and variances ste (if the surrogate model is able to provide them) are
transformed back to the original scale. Note that the surrogate models have to save not only
their settings ψ (e. g., the covariance function κ for GP models) and the corresponding trained
hyperparameters θ but also these transformations and the model’s training set.
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Algorithm 5 Generalized model training in S-CMA-ES and DTS-CMA-ES

Input: archive A, TSS method, minimal number of points required to train a model NMmin,
model settings ψ, population size λ, CMA-ES state variables m(g), σ(g), C(g)

1: M← ∅ {initialize model}
2: T = (Xtr, ytr)← select points from A using TSS method
3: if |T | ≥ NMmin then
4: Xtr ← transform Xtr into the (σ(g))2C(g) basis
5: ytr ← normalize ytr to zero mean and unit variance
6: θ ← fit the hyperparameters ofM using ψ
7: xtest

k ← m(g) + σ(g)N (0, C(g)), k = 1, . . . , λ {create testing population}
8: ytest

k ←M(xtest
k ), k = 1, . . . , λ

{evaluate testing population using model with hyperparameters θ}
9: if maxk(ytest

k )−mink(ytest
k ) < min(10−8, 0.05(max(ytr)−min(ytr)) then

10: M is considered constant⇒M is marked as not trained
11: end if
12: else
13: M is marked as not trained
14: end if
Output: M (surrogate model with hyperparameters θ)

4.2 surrogate cma-es

Our first surrogate-assisted algorithm S-CMA-ES (Bajer et al., 2015) uses the generation-based
EC: once the model is trained, it is used instead of the original fitness for several consecutive
generations gM of the CMA-ES. Then, the original fitness is used for one generation, the
model is re-trained also using the new points, and this procedure repeats (Algorithm 6). This
EC, used for example in the s∗ACM-ES, has a great advantage of simplicity and, compared to
the individual-based EC, there is no need for any special selection of points into the population
of the respective generation.

In order to avoid the false convergence of the algorithm in the BBOB toolbox, the model-
predicted values are adapted to never be lower then the so far minimum of the original function
(see the Step 12 in the pseudocode).

The main difference between the S-CMA-ES and the s∗ACM-ES is in the manner how the
CMA-ES is utilized. Considering the S-CMA-ES, the model prediction or training is performed
within each generation of the CMA-ES. On the contrary in the s∗ACM-ES, individual genera-
tions of the CMA-ES are started to optimize either original fitness, surrogate fitness, or model
itself.

4.2.1 Benchmarking S-CMA-ES using Gaussian Processes and Random Forests

In (Bajer et al., 2015), we have compared four versions of the proposed S-CMA-ES algorithm
with regular CMA-ES; Gaussian processes and random forests were used as surrogate models
with two different EC settings on the noiseless part of the COCO testing framework (Hansen
et al., 2012, 2009b).
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Algorithm 6 S-CMA-ES

Input: original fitness function bb, population size λ, initial step-size σ(0) ∈ R+, initial mean
m(0) ∈ RD, TSS method, minimal number of points required to train a model NMmin, surro-
gate model settings ψ, the number of consecutive model-evaluated generations gM

1: A ← ∅; σ(0), m(0), C(0) ← CMA-ES initialize {initialization}
2: mark g = 0 as original-fitness-evaluated
3: for generation g = 0, 1, 2, . . . until stopping conditions met do

4: xk ∼ N (m(g), σ(g)2
C(g)) for k = 1, . . . , λ {CMA-ES sampling}

5: if g is original-fitness-evaluated then
6: yk ← bb(xk) , k = 1, . . . , λ {fitness evaluation}
7: A ← A∪ {(xk, yk)}λ

k=1 {archive update}
8: M← trainModel(A, TSS, NMmin,ψ, m(g), σ(g), C(g))
9: mark (g + 1) as model-evaluated

10: else
11: ŷk ←M(xk) , k = 1, . . . , λ {model evaluation}
12: ŷk ← ŷk + max{0, miny∈A y−mink yk} , k = 1, . . . , λ

{shift values if bestM-predicted < best bb-evaluated so far}
13: if gm model generations have passed then
14: mark (g + 1) as original-fitness-evaluated
15: end if
16: end if
17: σ(g+1), m(g+1), C(g+1) ← CMA-ES update based on x1:λ, sorted acc. to y1:λ
18: end for
Output: x̂opt – point with the minimum achieved fitness from A

Experimental Setup

Four S-CMA-ES algorithms were part of this study: GP1-CMAES, GP5-CMAES, RF1-CMAES
and RF5-CMAES. Here, GP/RF denotes the type of the surrogate model, and the number of
model-evaluated generations gM follows. All considered S-CMA-ES versions used the TSS
cluster limited by range rmax = 8 (see Section 4.1.1). For the GP model, κ

5/2
Mat covariance

function (see Eq. (29)) with starting values ψ = (σ2
n , `, σ2

f ) = ln(0.01, 2, 0.5) has been used.
We have tested bagged RF comprising 100 CART trees using errMSE split gain function (see
Eq. (48)), each containing at least two training points in each leaf. All S-CMA-ES parameter
values were chosen according to preliminary testing on several functions from the COCO
framework. All the algorithms (including the CMA-ES itself) were based on the IPOP-CMA-ES
version (Matlab code v. 3.61) with the following parameters: number of restarts = 4, IncPopSize
= 2, σ(0) = 8

3 , λ = 4 + b3 ln Dc, and starting point m(0) ∼ U ([−4, 4]D). The remainder settings
were left default.

CPU Timing

In order to evaluate the CPU timing of the S-CMA-ES algorithms, we have run all the pro-
posed algorithms on the Rosenbrock function f8 until a maximum budget 50D evaluations
is reached, which was far more than the required 30 seconds. The code was run on an Intel(R)

44

https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=40 
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=40 


Algorithm 2D 5D 10D 20D

GP1-CMAES 0.2255 0.5713 0.1621 0.2272
GP5-CMAES 0.1870 0.2076 0.1184 0.1645
RF1-CMAES 0.2850 0.2470 0.1155 0.1395
RF5-CMAES 0.9870 0.8532 0.2315 0.1353

Table 1: The time in seconds per function evaluation for dimensions 2, 5, 10, 20 for the S-CMA-ES algo-
rithms.

Core(TM)2 Duo CPU E7600 @3.06GHz, 4 GB RAM with 1 processor and 2 cores. Times per
function evaluation for dimensions 2, 5, 10, 20 are registered in Table 1 for all four algorithms.

Results

Results from experiments according to Hansen et al. (2012) on all the 24 noiseless benchmark
functions given in (Hansen et al., 2009b) are presented in Figures 5, 6 and 7 and in Tables 2

and 3. The ERT, used in the figures and tables, depends on a given target function value,
bbt = bbopt + ∆bb, and is computed over all relevant trials as the number of the original FEs
executed during each trial until the best function value reached bbt, summed over all trials and
divided by the number of trials that actually reached bbt (Hansen et al., 2012) (see Section 2.6.1).

The most noticeable speedup of the surrogate-assisted S-CMA-ES can be observed for the
“GP5” version of the S-CMA-ES (GP model, gm = 5), especially in case of higher target values
bbt, i. e., in earlier parts of the optimization progress. The graphs in Figure 5 reveal that the
GP5-CMA-ES obtained the best results on nine functions ( f2, f5, f7, f10,11, f13−15, f23) in at
least 3 out of 4 dimensionalities among the four tested S-CMA-ES versions and the original
CMA-ES. This fact is also clear from the ECDFs in Figures 6 and 7 where practically all the
central parts (roughly between 10 and 100FEs/D) are dominated by the GP5 model.

However, the dominant algorithms change if we consider lower (tighter) target values or later
parts of the optimizations, which can be seen from the ECDF graphs. Here, the GP5-CMA-ES
is always outperformed by the GP1-CMA-ES (gM = 1) and often also by other algorithms: by
the original CMA-ES and, in 20D, by the RF1-CMA-ES, too.

Random forest S-CMA-ES outperforms other algorithms only rarely in 5D, usually in early
stages of the optimization (on f12,13, f16, f17, f22, and f23), but it is the best algorithm on 5-
dimensional f18. Nevertheless, the RF performance on 20D benchmarks is considerably more
balanced and the RF models can be here considered more robust than the GP models, which
start to suffer from higher dimensions (on f12 and f20).

4.2.2 Comparison of IPOP and BIPOP versions of S-CMA-ES

In (Pitra et al., 2015), we have systematically compared the original CMA-ES, the surrogate-
assisted S-CMA-ES using GP and RF continuous regression models with s∗ACM-ES-k algo-
rithm based on ordinal regression by Ranking SVR. These four algorithms (CMA-ES, GP-CMA-
ES, RF-CMA-ES, s∗ACM-ES) are tested in their IPOP version (based on the IPOP-CMA-ES by
Auger and Hansen (2005)) and in the bi-population restart strategy version (based on the
BIPOP-CMA-ES and its derivatives by Hansen (2009a)).
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Figure 5: Expected running time (ERT in number of f -evaluations as log10 value) divided by dimension
versus dimension. The target function value is chosen such that the bestGECCO2009 artificial algorithm
just failed to achieve an ERT of 10× D. Different symbols correspond to different algorithms given in
the legend of f1 and f24. Light symbols give the maximum number of function evaluations from the
longest trial divided by dimension. Black stars indicate a statistically better result compared to all other
algorithms with p < 0.01 and Bonferroni correction number of dimensions (six). Legend: ◦:CMA-ES,
O:GP1-CMAES, ?:GP5-CMAES, 2:RF1-CMAES, 4:RF5-CMAES
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Figure 6: Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/D) for all functions and subgroups in 5D. The targets are chosen from
10[−8..2] such that the bestGECCO2009 artificial algorithm just not reached them within a given budget of
k × D, with k ∈ {0.5, 1.2, 3, 10, 50}. The “best 2009” curve corresponds to the best ERT observed during
BBOB 2009 for each selected target.
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Figure 7: Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/D) for all functions and subgroups in 20D. The targets are chosen from
10[−8..2] such that the bestGECCO2009 artificial algorithm just not reached them within a given budget of
k × D, with k ∈ {0.5, 1.2, 3, 10, 50}. The “best 2009” curve corresponds to the best ERT observed during
BBOB 2009 for each selected target.
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#FEs/D 0.5 1.2 3 10 50 #succ
f1 2.5e+1:4.8 1.6e+1:7.6 1.0e-8:12 1.0e-8:12 1.0e-8:12 15/15

CMA-ES 2.8(4) 2.9(4) 59(7) 59(8) 59(9) 45/45

GP1-CMA2.5(2) 2.2(2) 36(4)?2 36(5)?2 36(5)?2
15/15

GP5-CMA2.3(2) 2.1(1) 92(69) 92(79) 92(84) 11/15

RF1-CMA 3.7(1) 3.0(2) 1520(1624) 1520(2062) 1520(696) 1/15

RF5-CMA 2.2(3) 2.4(2) ∞ ∞ ∞ 1252 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f2 1.6e+6:2.9 4.0e+5:11 4.0e+4:15 6.3e+2:58 1.0e-8:95 15/15

CMA-ES 2.5(5) 1.5(2) 5.4(2) 9.2(5) ∞ 1258 0/45

GP1-CMA2.1(1.0) 1.9(1) 4.0(2) 5.8(4) ∞ 1258 0/15

GP5-CMA2.5(2) 1.7(2) 3.2(1) 2.7(1)? 94(191)?3
2/15

RF1-CMA 2.9(3) 2.7(2) 6.8(6) 51(46) ∞ 1258 0/15

RF5-CMA 2.1(1) 7.1(4) 25(31) ∞ ∞ 1260 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f3 1.6e+2:4.1 1.0e+2:15 6.3e+1:23 2.5e+1:73 1.0e+1:716 15/15

CMA-ES 3.2(2) 1.8(2) 2.6(2) 3.1(1) 1.1(0.6) 37/45

GP1-CMA2.8(4) 1.5(2) 2.3(1.0) 2.5(1) 1.6(0.8) 11/15

GP5-CMA3.0(3) 1.3(0.6) 1.6(1) 2.2(2) 2.6(2) 8/15

RF1-CMA 1.9(3) 1.6(1) 2.2(0.2) 2.4(1) 3.0(4) 6/15

RF5-CMA 3.4(3) 1.6(0.9) 4.6(10) 14(3) 6.1(6) 4/15

#FEs/D 0.5 1.2 3 10 50 #succ
f4 2.5e+2:2.6 1.6e+2:10 1.0e+2:19 4.0e+1:65 1.6e+1:434 15/15

CMA-ES 3.5(4) 2.4(3) 2.8(1) 2.5(0.9) 1.1(1.0)? 43/45

GP1-CMA2.7(2) 2.4(3) 2.6(2) 5.1(10) 3.2(3) 9/15

GP5-CMA1.6(1) 1.6(3) 3.0(1) 5.2(7) 7.5(8) 5/15

RF1-CMA 2.4(2) 1.9(2) 2.5(2) 7.9(10) 12(11) 3/15

RF5-CMA 2.7(3) 1.9(3) 4.9(11) 31(29) ∞ 1252 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f5 6.3e+1:4.0 4.0e+1:10 1.0e-8:10 1.0e-8:10 1.0e-8:10 15/15

CMA-ES 2.4(3) 1.9(1) 23(18) 23(15) 23(15) 45/45

GP1-CMA2.0(1) 1.5(0.8) 26(5) 26(37) 26(36) 15/15

GP5-CMA3.0(1) 1.7(0.1) 6.4(3) 6.4(4) 6.4(3) 15/15

RF1-CMA 2.3(1) 1.7(0.4) 45(47) 45(50) 45(32) 15/15

RF5-CMA 2.8(3) 1.9(1.0) 137(110) 137(185) 137(185) 10/15

#FEs/D 0.5 1.2 3 10 50 #succ
f6 1.0e+5:3.0 2.5e+4:8.4 1.0e+2:16 2.5e+1:54 2.5e-1:254 15/15

CMA-ES 3.9(4) 2.0(3) 3.2(4) 3.0(2) 2.1(0.3)?6
45/45

GP1-CMA2.2(2) 1.4(1) 2.3(2) 2.2(4) 74(46) 1/15

GP5-CMA3.0(2) 1.8(1) 2.8(7) 3.7(8) ∞ 1260 0/15

RF1-CMA 3.0(2) 2.0(1) 4.5(5) 8.5(4) ∞ 1258 0/15

RF5-CMA 3.6(4) 2.4(1) 19(39) 154(36) ∞ 1260 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f7 1.6e+2:4.2 1.0e+2:6.2 2.5e+1:20 4.0e+0:54 1.0e+0:324 15/15

CMA-ES 2.6(1) 3.1(4) 3.4(2) 3.8(2) 1.7(2) 43/45

GP1-CMA1.7(2) 2.0(2) 2.1(1) 4.7(7) 1.4(1) 15/15

GP5-CMA2.2(2) 2.5(2) 1.9(0.8) 1.2(0.7)? 0.82(0.7) 15/15

RF1-CMA 1.9(2) 2.6(2) 2.7(2) 15(27) 10(6) 5/15

RF5-CMA 2.5(3) 2.7(2) 5.3(9) 33(41) 17(17) 3/15

#FEs/D 0.5 1.2 3 10 50 #succ
f8 1.0e+4:4.6 6.3e+3:6.8 1.0e+3:18 6.3e+1:54 1.6e+0:258 15/15

CMA-ES 3.0(3) 2.8(1) 2.7(2) 3.2(5) 4.1(4) 37/45

GP1-CMA2.8(4) 2.2(2) 2.3(1) 2.1(1) 7.2(3) 8/15

GP5-CMA2.1(1) 1.9(1) 1.9(2) 2.5(1) 70(99) 1/15

RF1-CMA 2.6(2) 2.3(1) 3.1(2) 7.8(8) 36(38) 2/15

RF5-CMA 2.3(2) 2.0(2) 2.8(4) 56(31) ∞ 1252 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f9 2.5e+1:20 1.6e+1:26 1.0e+1:35 4.0e+0:62 1.6e-2:256 15/15

CMA-ES 10(3) 8.0(5) 7.0(4) 7.3(3) 44(55) 5/45

GP1-CMA 12(12) 10(13) 8.2(8) 14(36) ∞ 1258 0/15

GP5-CMA 15(6) 14(18) 13(9) 27(24) 70(90) 1/15

RF1-CMA 38(59) 36(36) 30(48) 48(36) ∞ 1258 0/15

RF5-CMA 106(47) 126(132) 257(486) ∞ ∞ 1252 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f10 2.5e+6:2.9 6.3e+5:7.0 2.5e+5:17 6.3e+3:54 2.5e+1:297 15/15

CMA-ES 1.9(1) 2.0(2) 1.5(2) 4.4(2) 4.4(6) 32/45

GP1-CMA1.2(1) 0.94(1) 0.85(0.8) 2.9(2) 2.0(0.9) 15/15

GP5-CMA2.4(2) 1.6(2) 1.0(1) 1.6(0.7) 0.95(0.2)?3
15/15

RF1-CMA 3.2(2) 2.3(1) 1.6(1) 10(2) 63(33) 1/15

RF5-CMA 2.7(3) 1.7(1.0) 4.5(0.8) 43(46) ∞ 1260 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f11 1.0e+6:3.0 6.3e+4:6.2 6.3e+2:16 6.3e+1:74 6.3e-1:298 15/15

CMA-ES 2.0(2) 2.6(1) 4.7(3) 4.4(3) 63(123) 3/45

GP1-CMA1.4(0.2) 2.4(2) 4.5(3) 2.3(2) 5.1(5) 11/15

GP5-CMA1.5(1) 2.5(2) 2.9(2) 1.9(1.0) 2.3(0.3)?2
14/15

RF1-CMA 2.2(1) 2.6(3) 3.9(2) 5.1(10) ∞ 1258 0/15

RF5-CMA 2.2(3) 2.3(2) 3.0(2) 11(11) ∞ 1260 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f12 4.0e+7:3.6 1.6e+7:7.6 4.0e+6:19 1.6e+4:52 1.0e+0:268 15/15

CMA-ES 2.2(3) 2.5(3) 2.8(1) 4.6(1) 9.3(8) 18/45

GP1-CMA2.0(2) 2.5(2) 1.9(1) 3.7(2) 6.2(12) 8/15

GP5-CMA3.1(3) 2.9(3) 3.0(2) 21(19) 8.5(7) 6/15

RF1-CMA 2.1(2) 3.2(6) 3.2(0.8) 5.1(5) 22(15) 3/15

RF5-CMA 1.9(2) 1.7(1) 5.6(10) 117(102) ∞ 1260 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f13 1.0e+3:2.8 6.3e+2:8.4 4.0e+2:17 6.3e+1:52 6.3e-2:264 15/15

CMA-ES 2.9(3) 2.1(1) 2.9(2) 4.1(1) 13(10) 16/45

GP1-CMA2.3(2) 1.6(1) 2.0(1) 2.3(0.7) 70(79) 1/15

GP5-CMA3.2(3) 2.1(2) 1.6(0.8) 1.4(0.8)?2 11(7) 5/15

RF1-CMA 3.2(3) 2.0(0.8) 2.4(1) 8.1(7) 69(82) 1/15

RF5-CMA 3.5(4) 2.2(0.9) 2.1(2) 35(35) ∞ 1252 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f14 1.6e+1:3.0 1.0e+1:10 6.3e+0:15 2.5e-1:53 1.0e-5:251 15/15

CMA-ES 3.5(4) 1.9(1) 2.1(2) 3.3(1) 20(15)?2
11/45

GP1-CMA3.2(5) 1.6(2) 1.9(0.9) 2.2(0.9) ∞ 1258 0/15

GP5-CMA4.0(3) 1.8(2) 1.5(0.9) 1.6(0.5) ∞ 1260 0/15

RF1-CMA 3.2(2) 2.1(1) 2.8(1) 4.2(2) ∞ 1258 0/15

RF5-CMA 2.8(2) 1.2(1) 2.0(3) 81(38) ∞ 1260 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f15 1.6e+2:3.0 1.0e+2:13 6.3e+1:24 4.0e+1:55 1.6e+1:289 5/5

CMA-ES 2.6(2) 1.4(2) 1.8(1) 1.9(1.0) 1.5(2) 43/45

GP1-CMA4.6(5) 1.9(1) 1.9(1) 1.4(0.4) 1.2(1.0) 15/15

GP5-CMA3.5(4) 1.6(1) 1.6(0.6) 1.1(0.4) 3.0(4) 11/15

RF1-CMA 5.4(3) 2.2(2) 2.4(1) 1.7(1) 1.3(0.4) 14/15

RF5-CMA 3.5(4) 1.6(0.9) 2.4(3) 7.0(8) 5.7(4) 8/15

#FEs/D 0.5 1.2 3 10 50 #succ
f16 4.0e+1:4.8 2.5e+1:16 1.6e+1:46 1.0e+1:120 4.0e+0:334 15/15

CMA-ES 1.4(0.9) 1.3(1) 1.7(2) 1.8(1.0) 1.9(2) 40/45

GP1-CMA1.6(1) 1.3(2) 0.90(0.6) 1.2(2) 1.4(2) 13/15

GP5-CMA2.0(2) 1.5(1) 2.7(4) 1.3(0.2) 1.9(3) 13/15

RF1-CMA 1.3(1) 0.90(0.8) 1.3(0.6) 1.8(1) 2.1(3) 11/15

RF5-CMA 2.5(1) 1.3(1) 1.1(1) 1.7(5) 3.2(3) 9/15

#FEs/D 0.5 1.2 3 10 50 #succ
f17 1.0e+1:5.2 6.3e+0:26 4.0e+0:57 2.5e+0:110 6.3e-1:412 15/15

CMA-ES 3.2(3) 1.7(1) 1.5(1.0) 1.2(1) 0.72(1) 44/45

GP1-CMA4.5(4) 1.6(0.8) 1.1(0.5) 0.78(0.3) 0.45(0.2) 15/15

GP5-CMA3.6(5) 1.6(2) 1.6(1) 1.8(4) 2.5(2) 10/15

RF1-CMA 3.0(2) 2.2(2) 3.3(6) 3.9(9) 4.1(9) 7/15

RF5-CMA 4.8(7) 8.6(15) 9.0(10) 10(11) 22(17) 2/15

#FEs/D 0.5 1.2 3 10 50 #succ
f18 6.3e+1:3.4 4.0e+1:7.2 2.5e+1:20 1.6e+1:58 1.6e+0:318 15/15

CMA-ES 2.7(4) 2.6(5) 2.0(1) 1.4(0.5) 1.1(0.5) 44/45

GP1-CMA2.4(5) 3.6(3) 2.1(2) 1.2(0.6) 1.2(2) 14/15

GP5-CMA1.7(0.3) 3.0(3) 5.2(6) 2.1(6) 5.8(8) 7/15

RF1-CMA 1.5(3) 1.7(2) 1.3(0.8) 0.89(0.7) 2.2(3) 11/15

RF5-CMA 2.2(3) 3.0(2) 9.5(10) 7.6(8) 29(44) 2/15

#FEs/D 0.5 1.2 3 10 50 #succ
f19 1.6e-1:172 1.0e-1:242 6.3e-2:675 4.0e-2:3078 2.5e-2:4946 15/15

CMA-ES ∞ ∞ ∞ ∞ ∞ 1258 0/45

GP1-CMA ∞ ∞ ∞ ∞ ∞ 1260 0/15

GP5-CMA ∞ ∞ ∞ ∞ ∞ 1262 0/15

RF1-CMA ∞ ∞ ∞ ∞ ∞ 1258 0/15

RF5-CMA ∞ ∞ ∞ ∞ ∞ 1262 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f20 6.3e+3:5.1 4.0e+3:8.4 4.0e+1:15 2.5e+0:69 1.0e+0:851 15/15

CMA-ES 2.5(2) 2.1(3) 3.7(3) 3.1(2) 13(15) 5/45

GP1-CMA1.9(2) 1.8(1) 3.0(2) 4.2(3) 11(12) 2/15

GP5-CMA2.5(2) 1.8(2) 2.1(0.5) 2.1(2) ∞ 1260 0/15

RF1-CMA 2.9(4) 2.4(2) 3.9(2) 5.6(5) ∞ 1258 0/15

RF5-CMA 2.5(3) 1.8(1) 25(29) 20(24) ∞ 1260 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f21 4.0e+1:3.9 2.5e+1:11 1.6e+1:31 6.3e+0:73 1.6e+0:347 5/5

CMA-ES 2.2(4) 1.7(2) 1.5(2) 7.3(18) 10(19) 13/45

GP1-CMA1.1(1) 1.4(2) 0.99(0.8) 4.7(5) 4.9(11) 7/15

GP5-CMA2.5(3) 1.7(1) 0.89(0.5) 1.4(3) 4.7(3) 8/15

RF1-CMA 2.0(2) 1.8(2) 1.4(2) 4.1(1) 4.8(5) 7/15

RF5-CMA 1.8(0.9) 2.6(2) 2.9(7) 7.5(8) 10(10) 5/15

#FEs/D 0.5 1.2 3 10 50 #succ
f22 6.3e+1:3.6 4.0e+1:15 2.5e+1:32 1.0e+1:71 1.6e+0:341 5/5

CMA-ES 3.4(3) 2.3(1) 1.7(1) 5.5(6) 8.9(15) 14/45

GP1-CMA2.6(3) 1.4(1) 1.2(0.8) 3.6(9) 10(12) 4/15

GP5-CMA2.9(3) 7.5(7) 4.6(6) 4.3(3) 11(8) 4/15

RF1-CMA 3.1(2) 2.0(2) 1.3(0.9) 5.5(0.5) 3.2(4) 9/15

RF5-CMA 2.1(2) 4.7(1.0) 2.9(13) 7.3(8) 24(39) 2/15

#FEs/D 0.5 1.2 3 10 50 #succ
f23 1.0e+1:3.0 6.3e+0:9.0 4.0e+0:33 2.5e+0:84 1.0e+0:518 15/15

CMA-ES 2.5(2) 2.0(3) 3.1(3) 5.2(9) 26(55) 4/45

GP1-CMA1.9(2) 2.7(3) 3.2(4) 6.5(4) 4.9(4) 6/15

GP5-CMA2.4(1) 2.0(1) 2.4(2) 3.0(5) 2.2(1) 11/15

RF1-CMA 1.8(2) 2.0(4) 3.0(3) 8.7(10) ∞ 1260 0/15

RF5-CMA 2.4(2) 1.5(0.9) 3.3(3) 4.0(4) ∞ 1288 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f24 6.3e+1:15 4.0e+1:37 4.0e+1:37 2.5e+1:118 1.6e+1:692 15/15

CMA-ES 2.3(2) 2.4(1) 2.4(1) 2.3(1) 1.6(2) 33/45

GP1-CMA1.7(1.0) 1.7(0.6) 1.7(1) 1.3(0.7) 1.1(0.5) 13/15

GP5-CMA1.5(0.9) 1.1(0.4) 1.1(0.5) 2.5(6) 1.6(2) 9/15

RF1-CMA 1.9(2) 2.4(1) 2.4(1) 2.4(6) 1.9(2) 9/15

RF5-CMA 1.8(1) 3.6(11) 3.6(6) 4.1(7) 2.9(2) 7/15

Table 2: Expected running time (ERT in number of function evaluations) divided by the respective best
ERT measured during BBOB-2009 in dimension 5. The ERT and in braces, as dispersion measure, the
half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-
length based target, the corresponding best ERT (preceded by the target ∆bb-value in italics) in the first
row. #succ is the number of trials that reached the target value of the last column. The median number of
conducted function evaluations is additionally given in italics, if the target in the last column was never
reached. Entries, succeeded by a star, are statistically significantly better (according to the rank-sum test)
when compared to all other algorithms of the table, with p = 0.05 or p = 10−k when the number k
following the star is larger than 1, with Bonferroni correction by the number of instances.
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#FEs/D 0.5 1.2 3 10 50 #succ
f1 6.3e+1:24 4.0e+1:42 1.0e-8:43 1.0e-8:43 1.0e-8:43 15/15

CMA-ES 4.9(1) 4.5(1) 64(3) 64(3) 64(4) 45/45

GP1-CMA3.9(1) 3.1(0.6) 58(5)?2 58(9)?2 58(6)?2
15/15

GP5-CMA2.9(0.3) 2.0(0.2)? ∞ ∞ ∞ 5034 0/15

RF1-CMA 3.9(2) 3.5(0.5) 73(15) 73(19) 73(9) 15/15

RF5-CMA 3.7(2) 3.0(1) ∞ ∞ ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f2 4.0e+6:29 2.5e+6:42 1.0e+5:65 1.0e+4:207 1.0e-8:412 15/15

CMA-ES 1.0(0.9) 1.3(0.9) 14(5) 11(2) ∞ 5006 0/45

GP1-CMA1.5(1) 1.6(1) 8.9(2) 8.0(3) ∞ 5006 0/15

GP5-CMA0.90(0.7) 1.3(1.0) 5.4(2)?2 3.9(0.7)?3 ∞ 5006 0/15

RF1-CMA 1.1(0.6) 1.2(0.6) 11(5) 29(12) ∞ 5006 0/15

RF5-CMA 1.2(0.7) 1.3(1.0) 184(350) ∞ ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f3 6.3e+2:33 4.0e+2:44 1.6e+2:109 1.0e+2:255 2.5e+1:3277 15/15

CMA-ES 2.0(1) 4.0(1) 7.5(3) 7.2(2) 7.8(6) 8/45

GP1-CMA2.3(0.8) 3.2(1) 5.9(2) 4.2(1.0) 22(30) 1/15

GP5-CMA1.9(0.7) 2.9(0.6) 15(15) 43(50) ∞ 5034 0/15

RF1-CMA 2.0(1) 3.7(1) 6.4(1) 4.0(0.5) 22(23) 1/15

RF5-CMA 1.7(0.4) 2.6(0.6) 18(47) 82(104) ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f4 6.3e+2:22 4.0e+2:91 2.5e+2:250 1.6e+2:332 6.3e+1:1927 15/15

CMA-ES 7.7(3) 3.4(0.9) 2.4(0.5) 4.1(0.8) 2.4(2)?6
30/45

GP1-CMA9.2(4) 4.5(4) 11(11) 42(26) 39(34) 1/15

GP5-CMA7.5(3) 5.5(5) 13(15) 215(227) ∞ 5022 0/15

RF1-CMA 8.1(4) 3.4(1) 2.5(0.6) 7.7(8) ∞ 5006 0/15

RF5-CMA 8.9(5) 13(2) 57(120) ∞ ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f5 2.5e+2:19 1.6e+2:34 1.0e-8:41 1.0e-8:41 1.0e-8:41 15/15

CMA-ES 1.6(2) 1.9(1) 33(13) 33(13) 33(14) 45/45

GP1-CMA1.6(1) 1.9(0.3) 92(239) 92(66) 92(78) 11/15

GP5-CMA1.7(1) 1.7(0.0) 4.8(1)?4 4.8(2)?4 4.8(1)?4
15/15

RF1-CMA 1.8(1) 2.3(1) 50(20) 50(29) 50(34) 15/15

RF5-CMA 2.0(0.9) 2.0(0.6) 265(232) 265(308) 265(294) 6/15

#FEs/D 0.5 1.2 3 10 50 #succ
f6 2.5e+5:16 6.3e+4:43 1.6e+4:62 1.6e+2:353 1.6e+1:1078 15/15

CMA-ES 3.0(2) 2.4(2) 2.7(1) 2.0(0.5) 1.5(0.2)?4
45/45

GP1-CMA2.8(1) 2.0(0.9) 2.0(0.6) 1.7(0.7) 4.2(5) 11/15

GP5-CMA2.6(1) 1.6(0.5) 1.5(0.3) 19(21) ∞ 5024 0/15

RF1-CMA 2.7(1) 2.1(0.8) 2.3(1) 2.9(1) 66(91) 1/15

RF5-CMA 2.1(0.9) 1.6(1) 1.8(0.3) 32(56) ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f7 1.0e+3:11 4.0e+2:39 2.5e+2:74 6.3e+1:319 1.0e+1:1351 15/15

CMA-ES 1.7(2) 2.4(0.6) 2.6(0.7) 1.7(0.5) 1.1(0.3) 45/45

GP1-CMA2.1(2) 2.2(1) 1.7(0.4) 0.92(0.3) 3.0(3) 10/15

GP5-CMA2.4(2) 1.8(0.4) 1.3(0.3) 0.58(0.1)?2
1.6(1) 14/15

RF1-CMA 2.0(2) 2.6(1) 2.3(0.9) 1.5(0.9) 54(123) 1/15

RF5-CMA 1.8(2) 1.9(0.9) 1.8(0.2) 7.0(7) ∞ 5034 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f8 4.0e+4:19 2.5e+4:35 4.0e+3:67 2.5e+2:231 1.6e+1:1470 15/15

CMA-ES 6.5(2) 4.7(2) 4.5(0.7) 3.0(0.7) 3.6(3) 31/45

GP1-CMA5.5(1) 3.4(1) 3.1(0.6) 2.3(1) 3.0(1) 12/15

GP5-CMA4.4(0.6) 2.6(0.2)? 2.2(0.5)?2
11(11) 8.2(5) 5/15

RF1-CMA 5.8(1) 4.0(0.7) 4.0(1) 2.7(1) 25(41) 2/15

RF5-CMA 5.8(2) 3.7(2) 4.2(2) 96(158) ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f9 1.0e+2:357 6.3e+1:560 4.0e+1:684 2.5e+1:756 1.0e+1:1716 15/15

CMA-ES 2.9(0.5) 2.5(3) 2.2(2) 2.2(2) ∞ 5006 0/45

GP1-CMA 2.1(0.9) 1.6(0.4) 1.4(0.4) 1.5(0.2) ∞ 5006 0/15

GP5-CMA12(15) 12(32) 13(30) 12(17) ∞ 5020 0/15

RF1-CMA 3.8(1) 5.8(7) 5.3(4) 5.8(9) ∞ 5006 0/15

RF5-CMA ∞ ∞ ∞ ∞ ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f10 1.6e+6:15 1.0e+6:27 4.0e+5:70 6.3e+4:231 4.0e+3:1015 15/15

CMA-ES 5.6(3) 5.5(4) 5.1(1) 4.8(0.8) 3.2(1) 45/45

GP1-CMA5.4(4) 5.4(3) 4.2(1) 3.5(1) 2.3(0.6) 15/15

GP5-CMA4.8(3) 3.6(1) 3.1(0.5) 2.0(0.5)?2 1.1(0.4)?3
15/15

RF1-CMA 5.9(4) 5.3(3) 4.1(1) 3.9(2) 74(89) 1/15

RF5-CMA 5.1(3) 5.2(3) 10(19) 145(87) ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f11 4.0e+4:11 2.5e+3:27 1.6e+2:313 1.0e+2:481 1.0e+1:1002 15/15

CMA-ES 1.7(1) 2.3(3) 36(47) 151(143) ∞ 5006 0/45

GP1-CMA1.3(1) 1.8(2) 14(6) 15(13) ∞ 5006 0/15

GP5-CMA1.8(1) 2.3(1) 5.2(4) 17(17) ∞ 5008 0/15

RF1-CMA 1.5(2) 3.2(3) 8.6(0.7) 12(6) ∞ 5006 0/15

RF5-CMA 1.9(2) 2.8(2) 105(116) 146(276) ∞ 5008 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f12 1.0e+8:23 6.3e+7:39 2.5e+7:76 4.0e+6:209 1.0e+1:1042 15/15

CMA-ES 5.5(2) 4.9(1.0) 3.8(0.6) 2.4(0.5) 3.4(2) 35/45

GP1-CMA 4.7(3) 3.9(3) 3.7(0.8) 2.8(0.9) 2.4(2) 13/15

GP5-CMA18(6) 22(39) 38(45) 74(66) 21(26) 3/15

RF1-CMA 3.9(2) 3.9(1) 3.1(0.6) 1.8(0.3)?2
3.0(1) 12/15

RF5-CMA 5.2(3) 4.6(3) 9.4(3) 39(30) ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f13 1.6e+3:28 1.0e+3:64 6.3e+2:79 4.0e+1:211 2.5e+0:1724 15/15

CMA-ES 3.5(2) 4.0(1) 5.3(1) 7.6(5) 6.4(9) 16/45

GP1-CMA2.5(0.8) 2.4(0.3) 2.9(0.5) 49(86) 42(89) 1/15

GP5-CMA2.4(0.6) 1.5(0.3)?4 1.6(0.2)?4 2.9(0.8)?2 4.5(6) 7/15

RF1-CMA 3.2(0.8) 3.0(0.9) 3.9(0.8) 7.1(4) 7.3(9) 5/15

RF5-CMA 3.4(1) 3.0(0.6) 4.2(1) 343(208) ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f14 2.5e+1:15 1.6e+1:42 1.0e+1:75 1.6e+0:219 6.3e-4:1106 15/15

CMA-ES 9.1(3) 4.9(2) 4.0(1) 2.9(0.4) 4.0(1) 44/45

GP1-CMA7.9(3) 3.9(2) 3.0(2) 2.3(0.9) 4.6(1) 13/15

GP5-CMA5.7(1) 2.6(0.6) 2.1(0.3) 1.7(0.5) 67(59) 1/15

RF1-CMA 7.1(4) 4.4(0.5) 3.5(0.8) 3.1(0.9) 33(25) 2/15

RF5-CMA 6.5(4) 3.9(2) 3.7(2) 153(172) ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f15 6.3e+2:15 4.0e+2:67 2.5e+2:292 1.6e+2:846 1.0e+2:1671 15/15

CMA-ES 3.6(3) 1.9(1) 0.81(0.3) 0.78(0.3) 0.64(0.2) 15/15

GP1-CMA3.7(2) 1.5(0.3) 0.60(0.4) 2.2(5) 3.9(5) 7/15

GP5-CMA4.5(3) 2.2(0.7) 0.93(0.2) 0.92(0.1) 0.70(0.2) 15/15

RF1-CMA 3.6(2) 1.9(0.8) 0.95(0.4) 1.7(0.4) 6.5(9) 5/15

#FEs/D 0.5 1.2 3 10 50 #succ
f16 4.0e+1:26 2.5e+1:127 1.6e+1:540 1.6e+1:540 1.0e+1:1384 15/15

CMA-ES 3.3(3) 10(5) 3.2(0.9) 3.2(1) 1.4(0.4) 45/45

GP1-CMA3.3(3) 4.3(2) 1.4(0.3) 1.4(0.3) 0.90(1.0) 14/15

GP5-CMA3.4(2) 1.6(0.4) 0.54(0.1)?2 0.54(0.2)?2 0.57(0.4) 15/15

RF1-CMA 2.8(4) 4.6(2) 1.6(0.5) 1.6(0.5) 0.79(0.2) 15/15

RF5-CMA 4.2(2) 2.2(1) 0.83(0.2) 0.83(0.2) 1.0(1) 13/15

#FEs/D 0.5 1.2 3 10 50 #succ
f17 1.6e+1:11 1.0e+1:63 6.3e+0:305 4.0e+0:468 1.0e+0:1030 15/15

CMA-ES 3.3(2) 2.2(1.0) 0.96(0.6) 1.0(0.5) 1.0(0.2) 45/45

GP1-CMA2.4(3) 1.4(0.6) 0.73(0.2) 0.79(0.2) 3.4(5) 10/15

GP5-CMA3.3(3) 1.6(0.7) 0.79(0.4) 0.87(0.3) 11(15) 5/15

RF1-CMA 3.1(3) 1.9(1) 0.78(0.3) 0.83(0.3) 4.2(6) 9/15

RF5-CMA 4.0(0.7) 2.7(1) 3.6(0.6) 17(16) ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f18 4.0e+1:116 2.5e+1:252 1.6e+1:430 1.0e+1:621 4.0e+0:1090 15/15

CMA-ES 1.1(0.8) 1.2(0.2) 1.1(0.3) 1.1(0.5) 1.2(1) 44/45

GP1-CMA0.81(0.4) 0.84(0.3) 0.85(0.3) 0.93(0.2) 5.2(7) 8/15

GP5-CMA0.95(0.9) 0.85(0.6) 1.7(4) 2.8(4) 19(22) 3/15

RF1-CMA 0.87(0.4) 0.82(0.2) 0.87(0.3) 1.0(0.3) 10(15) 5/15

RF5-CMA 1.3(0.3) 2.7(11) 5.4(0.6) 53(40) ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f19 1.6e-1:2.5e5 1.0e-1:3.4e5 6.3e-2:3.4e5 4.0e-2:3.4e5 2.5e-2:3.4e5 3/15

CMA-ES ∞ ∞ ∞ ∞ ∞ 5008 0/45

GP1-CMA ∞ ∞ ∞ ∞ ∞ 5006 0/15

GP5-CMA ∞ ∞ ∞ ∞ ∞ 5020 0/15

RF1-CMA ∞ ∞ ∞ ∞ ∞ 5008 0/15

RF5-CMA ∞ ∞ ∞ ∞ ∞ 5034 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f20 1.6e+4:38 1.0e+4:42 2.5e+2:62 2.5e+0:250 1.6e+0:2536 15/15

CMA-ES 3.3(1) 4.0(1) 5.9(1) 5.8(1) 11(7) 7/45

GP1-CMA2.8(0.7) 3.2(1) 3.6(0.6) 4.0(0.6) ∞ 5006 0/15

GP5-CMA2.3(0.7) 2.2(0.6)? 2.5(0.4)?3
284(483) ∞ 5022 0/15

RF1-CMA 3.5(0.6) 3.9(0.5) 5.2(1) 3.4(0.6) 6.1(5) 4/15

RF5-CMA 2.6(0.6) 2.9(0.8) 6.6(3) 134(179) ∞ 5006 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f21 6.3e+1:36 4.0e+1:77 4.0e+1:77 1.6e+1:456 4.0e+0:1094 15/15

CMA-ES 5.9(3) 7.5(19) 7.5(2) 4.3(8) 8.8(7) 17/45

GP1-CMA3.8(0.9) 6.3(1) 6.3(0.9) 1.8(5) 3.4(6) 10/15

GP5-CMA3.2(0.8) 2.9(0.7) 2.9(0.6) 1.8(2) 7.7(4) 6/15

RF1-CMA 5.2(2) 3.7(1) 3.7(0.9) 5.5(11) 8.0(4) 6/15

RF5-CMA 7.6(2) 6.1(3) 6.1(5) 8.7(11) 14(11) 4/15

#FEs/D 0.5 1.2 3 10 50 #succ
f22 6.3e+1:45 4.0e+1:68 4.0e+1:68 1.6e+1:231 6.3e+0:1219 15/15

CMA-ES 4.8(2) 10(17) 10(35) 17(30) 9.2(11) 15/45

GP1-CMA12(29) 17(17) 17(35) 12(37) 2.7(6) 10/15

GP5-CMA 2.5(1)? 3.6(12)?2 3.6(7)?2
4.8(7) 2.0(4) 11/15

RF1-CMA 4.6(2) 5.2(4) 5.2(3) 4.6(2) 3.0(5) 10/15

RF5-CMA 5.8(2) 11(4) 11(4) 11(1) 5.7(7) 7/15

#FEs/D 0.5 1.2 3 10 50 #succ
f23 6.3e+0:29 4.0e+0:118 2.5e+0:306 2.5e+0:306 1.0e+0:1614 15/15

CMA-ES 1.4(0.8) 6.9(7) 115(150) 115(217) ∞ 5020 0/45

GP1-CMA2.1(2) 6.4(6) 5.8(2) 5.8(0.6) 1.6(0.7) 14/15

GP5-CMA2.2(3) 2.9(1) 1.9(0.2)?2 1.9(2)?2 0.84(0.8) 15/15

RF1-CMA 1.3(1) 3.4(3) 244(267) 244(197) ∞ 5010 0/15

RF5-CMA 1.8(4) 4.5(4) 113(109) 113(122) ∞ 5086 0/15

#FEs/D 0.5 1.2 3 10 50 #succ
f24 2.5e+2:208 1.6e+2:918 1.0e+2:6628 6.3e+1:9885 4.0e+1:31629 15/15

CMA-ES 1.3(0.2) 1.7(0.9) 3.6(2) 3.2(3) 3.6(3) 2/45

GP1-CMA0.83(0.2) 0.84(0.6) 0.20(0.0) 0.24(0.0) 0.38(0.6) 5/15

GP5-CMA0.51(0.1)?2
↓4 0.86(3) 0.37(0.4) 0.32(0.4) 1.1(0.9) 2/15

RF1-CMA 1.3(0.2) 2.0(2) 0.50(0.4) 0.52(0.4) ∞ 5006 0/7

RF5-CMA 2.2(1) 4.1(5) 11(13) ∞ ∞ 5034 0/15

Table 3: Expected running time (ERT in number of function evaluations) divided by the respective best
ERT measured during BBOB-2009 in dimension 20. The ERT and in braces, as dispersion measure, the
half difference between 90 and 10%-tile of bootstrapped run lengths appear for each algorithm and run-
length based target, the corresponding best ERT (preceded by the target ∆bb-value in italics) in the first
row. #succ is the number of trials that reached the target value of the last column. The median number of
conducted function evaluations is additionally given in italics, if the target in the last column was never
reached. Entries, succeeded by a star, are statistically significantly better (according to the rank-sum test)
when compared to all other algorithms of the table, with p = 0.05 or p = 10−k when the number k
following the star is larger than 1, with Bonferroni correction by the number of instances.
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Experimental setup

The experimental evaluation was performed through the noiseless part of the COCO frame-
work (Hansen et al., 2012, 2009b) in dimensions 2, 5, 10, and 20 in 15 different instances,
meaning that 1440 optimization runs were called for each of the eight considered algorithms.
The following paragraphs summarize the parameters of the algorithms.

cma-es . The original CMA-ES was employed in its IPOP-CMA-ES version (Matlab code
v. 3.61) using settings identical to Bajer et al. (2015) described in Section 4.2.1.

s∗
acm-es . We have used Loshchilov’s GECCO 2013 Matlab code xacmes.m (Loshchilov et al.,

2013a) in its s∗ACM-ES version, setting the parameters CMAactive = 1, newRestartRules = 0
and withSurr = 1, modelType = 1, withModelEnsembles = 0, withModelOptimization = 1,
hyper_lambda = 20, λMult = 1, µMult = 1 and ΛminIter = 4.

s-cma-es : gp5-cma-es and rf5-cma-es . The number after the GP/RF in the names of
the algorithms denotes the number of model-evaluated generations gM, which are evaluated
by the model in row. The remaining parameters were used identical to (Bajer et al., 2015)
described in Section 4.2.1.

bipop version of the algorithms . The bi-population versions BIPOP-CMA-ES and
BIPOP-s∗ACM-ES use the same Loshchilov’s Matlab code xacmes.m with the parameter BIPOP
= 1. The BIPOP-GP5-CMA-ES and BIPOP-RF5-CMA-ES algorithms are constructed in the
same manner as the S-CMA-ES was transformed from the CMA-ES – by integration of the
Algorithm 6 into every generation of the BIPOP-CMA-ES.

Results

The performance of the algorithms is compared in the graphs placed in Figures 8–10 (see ECDF
graphs in Section 2.6.1). As we can see in Figure 8, the 24 functions can be roughly divided
into two groups according to the algorithm which performed the best (at least in 10D and
20D). The first group of functions where the CMA-ES performed best consists of functions f1,
f3, f4, f6, and f20 while on functions f2, f5, f7, f10,11, f13−16, f18, f21, and f23,24, GP5-CMA-ES
is usually better. The usage of the BIPOP versions generally leads to no improvement or even
to performance decrease.

We can see that our GP5-CMA-ES usually outperforms the other algorithms when we con-
sider the evaluations budget FEs ≤ 101.5D, i. e., FEs ≤ 150 for 5D and FEs ≤ 600 for 20D.
However, as the number of the considered original evaluations rises, the original CMA-ES or
the s∗ACM-ES usually performs better. This fact can be summarized that our GP5-CMA-ES
is more convenient for the applications where a very low number of function evaluations is
available, such as in (Baerns and Holeňa, 2009).

4.2.3 Conclusion

This section investigated two surrogate models based on Gaussian processes and random
forests, which have partly similar properties (e. g., they inherently provide estimation of the
prediction error). The two models were used as surrogate models for the CMA-ES, resulting
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Figure 8: Expected running time (ERT in number of f -evaluations as log10 value) divided by dimension
versus dimension. The target function value is chosen such that the bestGECCO2009 artificial algorithm
just failed to achieve an ERT of 10×D. Different symbols correspond to different algorithms given in the
legend of f1 and f24. Light symbols give the maximum number of function evaluations from the longest
trial divided by dimension. Black stars indicate a statistically better result compared to all other algo-
rithms with p < 0.01 and Bonferroni correction number of dimensions (six). Legend: ◦:CMA-ES, O:GP1-
CMAES, ?:GP5-CMAES, 2:RF1-CMAES, 4:RF5-CMAES, ♦:GP5-CMAES, 9:RF5-CMAES, D:saACMES
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Figure 9: Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension (FEvals/D) for all functions and subgroups in 5D. The targets are chosen from
10[−8..2] such that the bestGECCO2009 artificial algorithm just not reached them within a given budget of
k × D, with k ∈ {0.5, 1.2, 3, 10, 50}. The “best 2009” curve corresponds to the best ERT observed during
BBOB 2009 for each selected target.
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Figure 10: Bootstrapped empirical cumulative distribution of the number of objective function evalua-
tions divided by dimension (FEvals/D) for all functions and subgroups in 20D. The targets are chosen
from 10[−8..2] such that the bestGECCO2009 artificial algorithm just not reached them within a given bud-
get of k × D, with k ∈ {0.5, 1.2, 3, 10, 50}. The “best 2009” curve corresponds to the best ERT observed
during BBOB 2009 for each selected target.
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in the S-CMA-ES algorithm and comparing its speed-up using different settings against the
CMA-ES without the surrogate model. Both the S-CMA-ES models mostly outperform the
CMA-ES in initial phases of the optimization process. However, the speed-up is decreasing
with the increasing number of evaluations. Gaussian processes outperformed random forests
both in measuring the regression capabilities and using the models in the CMA-ES. On the
other hand, the CMA-ES with random forests surrogate still exhibit speed-up on some bench-
marks compared to the non-surrogate version.

The comparison of both surrogate-assisted versions with s∗ACM-ES-k algorithm based on
ordinal regression by Ranking SVR, and the original CMA-ES, all in their IPOP and BIPOP
versions has shown that Gaussian process S-CMA-ES usually outperforms the ordinal-based
s∗ACM-ES-k in early stages of the algorithm search, especially on multimodal functions. The
BIPOP versions of the algorithms did not increase the performance of appropriate IPOP ver-
sions except the Linear slope function f5.

4.3 adaptive surrogate-cma-es

In (Repický et al., 2017), we have presented an adaptive improvement for S-CMA-ES based
on a general procedure introduced by Loshchilov et al. (2012) with the s∗ACM-ES algorithm,
in which the number of generations using the surrogate model before retraining is adjusted
depending on the performance of the last instance of the surrogate. We have evaluated three
algorithms differing in the measure of the surrogate model’s performance on the COCO/BBOB
framework.

4.3.1 Adaptive Evolution Control for Surrogate CMA-ES

The generation-based evolution strategy optimizes the fitness function and the surrogate model
thereof in certain proportion. On problem areas that can be approximated well, a surrogate-
assisted optimization might benefit from frequent utilization of the model, while on areas that
are hard for the surrogate to approximate, frequent utilization of the model might degenerate
the performance due to the model’s inaccuracy.

Adaptation of the number of model evaluated generations gM (in addition to other surrogate
model parameters that we have not investigated in (Repický et al., 2017)) depending on the
previous model’s error has been proposed in s∗ACM-ES by Loshchilov et al. (2012).

Let g be a generation that is marked as original-fitness-evaluated, and a newly-trained sur-
rogate model M. If M is the first surrogate trained so far, put gM = 1. Otherwise, an
error ε of a previous surrogate model Mlast is estimated on the newly evaluated population
(x(g+1)

1 , . . . , x(g+1)
λ ) (see Algorithm 7). The error ε is then mapped into a number of consecutive

generations gM, gM ∈ [0, gmax
M ], for which the surrogateM will be used (see Algorithm 8).

We investigated three approaches for expressing surrogate model error. As the CMA-ES
depends primarily on the ranking of candidate solutions, the first two approaches, Kendall cor-
relation coefficient and Rank difference are based on ranking. The third one, previously proposed
by Loshchilov et al. (2013c), uses Kullback-Leibler divergence a. k. a. information gain to measure a
difference between a multivariate normal distribution estimated from the fitness values y and
a multivariate normal distribution estimated for the predicted values ŷ.
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Algorithm 7 Model error estimation in adaptive S-CMA-ES
Input: error type err ∈ {errKendall, errRDE, errKL}, CMA-ES generation number g, a newly

sampled population x(g+1)
1 , . . . , x(g+1)

λ , fitness values and model predictions in generation g
y, ŷ, CMA-ES variables m(g), σ(g), C(g), maximal error so far εmax

1: if err = errKendall then
2: τ ← Kendall(y, ŷ)
3: ε ← 1

2 (1− τ)
4: else if err = errRDE then
5: ε ← errRDE(y, ŷ)
6: else if err = errKL then
7: (m(g+1), σ(g+1), C(g+1))← CMA-ES update ((x(g+1)

1 , . . . , x(g+1)
λ ), y, m(g+1), σ(g+1), C(g+1))

8: (m(g+1)
M , σ(g+1), C(g+1)

M )← CMA-ES update ((x(g+1)
1 , . . . , x(g+1)

λ ), ŷ, m(g+1), σ(g+1), C(g+1))

9: ε ← errKL(N (m(g+1)
M , σ

(g+1)
M

2
C(g+1)
M )‖N (m(g+1), σ(g+1)2

C(g+1)))
10: if ε > εmax then
11: εmax ← ε
12: end if
13: ε ← ε

εmax
{normalize in proportion to the historical maximum}

14: end if
Output: estimated error value ε ∈ [0, 1]

kendall rank correlation coefficient Kendall rank correlation coefficient τ mea-
sures similarity between two different orderings of the same set. Let y = (bb (x1) , . . . , bb (xλ))

and ŷ =
(
Mlast(x1), . . . ,Mlast(xλ)

)
be the sequences of the fitness values and the predicted

values of a population x1, . . . , xλ, respectively. A pair of indices (i, j), such that i 6= j, i, j ∈
{1, . . . , λ}, is said to be concordant, if both yi < yj and ŷi < ŷj or if both yi > yj and ŷi > ŷj.
A discordant pair (i, j), i 6= j, i, j ∈ {1, . . . , λ} is one fulfilling that both yi < yj and ŷi > ŷj or
both yi > yj and ŷi < ŷj. Let nc and dc denote the number of concordant and discordant pairs
of indices from {1, . . . , λ}, respectively. The Kendall correlation coefficient τ between vectors
y and ŷ is defined as:

τ =
2

λ(λ− 1)
(nc − nd).

In the corresponding branch of Algorithm 7, the value τ is decreasingly scaled into interval
[0, 1].

ranking difference error In accordance with most of the model-assessment methods
for the CMA-ES surrogates, we have also used the difference in ranking of the fitness values
in a population as a measure of model quality. We have proposed a normalized version of the
error measure used by Kern et al. (2006), which we call the ranking difference error (RDE). We
denote as ranking a function ρ : Rλ → {1, . . . , λ}λ which maps each element in a vector y ∈ Rλ

to its rank, i. e., (ρ(y))i ≤ (ρ(y))j whenever (y)i ≤ (y)j. The RDE is defined for two vectors
of fitness values y∗1 , y∗2 . We assume the second vector y∗2 to be a more accurate prediction: y∗2
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Figure 11: Model error transfer functions in adaptive S-CMA-ES

might contain more original-evaluated bb-values, or the y∗2 ’s model training set could be larger.
The RDE is then calculated as

errRDE(y∗1 , y∗2) =
∑i:(ρ(y∗2))i≤µ |(ρ(y∗2))i − (ρ(y∗1))i|

maxπ ∈Permutations of (1,...,λ) ∑i:π(i)≤µ | i− π(i)| ∈ [0, 1] . (67)

The larger the difference in rankings of these two bb-values vectors, the more the CMA-ES
would be fooled if it got the less accurate bb-values prediction y∗1 instead of y∗2 .

kullback-leibler divergence Kullback-Leibler divergence from a continuous random
variable Q with probability density function q to a continuous random variable P with proba-
bility density function p is defined as:

errKL(P‖Q) =
∫ ∞

−∞
p(x) ln

p(x)
q(x)

dx . (68)

For two multivariate normal distributions N1(µ1, Σ1) and N2(µ2, Σ2) with the same dimension
D, the Kullback-Leibler divergence from N2 to N1 is:

errKL(N1‖N2) =
1
2

(
Tr(Σ−1

2 Σ1) + ln
(
|Σ2|
|Σ1|

)
+ (µ2 − µ1)

TΣ−1
2 (µ2 − µ1)− k

)
. (69)

The algorithm of model error estimation (see pseudocode in Algorithm 7) in generation g
computes Kullback-Leibler divergence from a CMA-estimated multivariate normal distribu-

tion N (m(g+1), σ(g+1)2
C(g+1)) w. r. t. fitness values y to a CMA-estimated multivariate normal

distribution N (m(g+1)
M , σ

(g+1)
M

2
C(g+1)
M ) w. r. t. predicted values ŷ. The result is normalized by

the historical maximum (Step 13).

adjusting the number of model generations The model of dependence of the num-
ber of consecutive model generations gM on the model error (Algorithm 8) is almost identical
to the approach used by Loshchilov et al. (2012). The history of surrogate model errors ε is
exponentially smoothed with a rate ru (Step 1). The error is truncated at a threshold εT so that
resulting gM = gmax

M for all values ε ≥ εT (Step 3). In contrast to Loshchilov et al. (2012), we
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Algorithm 8 Updating the number of model generations in adaptive S-CMA-ES
Input: estimation of surrogate model error ε ∈ [0, 1]), a threshold at which the error is trun-

cated to 1 εT ∈ [0, 1], transfer function γ : [0, 1] → [0, 1], error update rate ru, model error
from the previous iteration εlast, upper bound for admissible number of model generations
gmax
M

1: ε ← (1− ru)εlast + ruε {exponential smoothing}
2: εlast ← ε
3: ε ← 1

εT
min {ε, εT} {truncation to 1}

4: gM ← round(γ(1− ε)gmax
M ) {scaling into the admissible interval}

Output: gM — updated number of model-evaluated generations

consider two different transfer functions T1, T2 : [0, 1] → [0, 1] (plotted in Figure 11) that scale
the error into the admissible interval [0, gmax

M ]:

T1(x) = x (70)

T2(x; k) =

(
x− 1

2

) (
1 + 1

k

)
∣∣∣2(x− 1

2

)∣∣∣+ 1
k

+
1
2

, k > 0. (71)

Both functions are defined on [0, 1], moreover, Ti(0) = 0 and Ti(1) = 1 for i = 1, 2. Transfer
function T2 is a simple sigmoid function defined to be slightly less sensitive near the edges
than in the middle. More control can thus be achieved in the regions of low and high error
values. The parameter k determines the steepness of the sigmoid curve.

4.3.2 Comparison of Adaptive and Static Versions of S-CMA-ES

In this section, we show the comparison of the three S-CMA-ES versions adjusting gM using
three surrogate model error measures on the noiseless part of the COCO/BBOB framework
presented in (Repický et al., 2017). We restrict our attention to S-CMA-ES with Gaussian
processes, since they outperformed random forest-based surrogates in (Bajer et al., 2015).

Experimental Setup

We have evaluated the proposed adaptive generation-based evolution control for the S-CMA-ES
with three different surrogate model error measures on the noiseless part of the COCO/BBOB
framework (Hansen et al., 2009b, 2012) and compared with the S-CMA-ES and CMA-ES on
instances 1− 5 and 41− 50 in dimensions 2, 3, 5, 10, and 20. Each trial was terminated when
the bbopt was reached within a small tolerance ∆bbt = 10−8 or when a budget of 250 FE/D was
depleted. The algorithms’ settings are summarized in the following paragraphs.

cma-es The CMA-ES results in BBOB format were downloaded from the BBOB 2010 work-
shop archive 1. The CMA-ES used in those experiments was in version 3.40β and utilized an
IPOP restart strategy (Auger and Hansen, 2005). The default parameter values employed in
the CMA-ES were identical to Bajer et al. (2015) described in Section 4.2.1.

1 http://coco.gforge.inria.fr/data-archive/bbob/2010/
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Table 4: Discretization of the aS-CMA-ES parameters.

Parameter Discretization

γ T1 (70), T2 (71)
εT 0.5, 0.9
gM 5, 10, 20
ru 0.2, 0.5, 0.8

s-cma-es The S-CMA-ES was tested with two numbers of model-evaluated generations,
gM = 1 (GP-1) and gM = 5 (GP-5). All other S-CMA-ES settings were left as described in
Section 4.2.1. If not mentioned otherwise, the corresponding settings of adaptive versions of
the S-CMA-ES are as just stated.

In order to find the most promising settings for each considered surrogate error measure,
a full factorial experiment was conducted on one half of the noiseless testbed, namely on
functions fi for i ∈ {2, 3, 6, 8, 12, 13, 15, 17, 18, 21, 23, 24}. The discretization of continuous pa-
rameters (γ, εT, gmax

M , ru) is reported in Table 4. All possible combinations of the parameters
were ranked on the 12 selected functions according to the lowest achieved ∆bbmed (see Results
in this Section) for different numbers of function evaluations FE/D = 25, 50, 125, 250. The best
settings were chosen according to the highest sum of 1st rank counts. Ties were resolved accord-
ing to the lowest sum of ranks. All of the best settings included maximum model-evaluated
generations gmax

M = 5. The remainder of the winning values is summarized in the following
paragraphs.

kendall correlation coefficient (ada-kendall) Transfer function γ = T2, error
threshold εT = 0.5 and update rate ru = 0.2.

ranking difference error (ada-rd) The same, except transfer function was γ = T1.

kullback-leibler divergence (ada-kl) Transfer function γ = T2, error threshold
εT = 0.9 and update rate ru = 0.5.

CPU Timing

Table 5: The time in seconds per function evaluation for the Adaptive S-CMA-ES.

Algorithm 2D 3D 5D 10D 20D

ADA-KL 0.38 0.26 0.34 0.69 3.36
ADA-Kendall 0.47 0.45 0.61 1.29 6.27
ADA-RD 0.57 0.60 0.71 1.63 7.90

In order to assess computational costs other than the number of function evaluations, we
calculate CPU timing per function evaluation for each algorithm and each dimensionality. Each
experiment was divided into jobs by dimensionalities, functions and instances. All jobs were

59

https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=10 
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=15 
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=30 
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=40 
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=60 
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=65 
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=75 
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=85 
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=90 
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=105 
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=115 
https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=120 


Table 6: Mean ranks of the CMA-ES, the S-CMA-ES and all aS-CMA-ES versions over the BBOB and
the Iman-Davenport variant of the Friedman test for the 10 considered combinations of dimensionalities
and evaluation budgets. The lowest value is highlighted in bold. Statistically significant results at the
significance level α = 0.05 are marked by an asterisk.

Dim 2D 3D 5D 10D 20D
#FEs⁄#FET

1⁄3 1
1⁄3 1

1⁄3 1
1⁄3 1

1⁄3 1

CMA-ES 4.04 4.25 4.25 3.96 4.38 3.58 4.67 3.83 4.58 4.42
GP-1 3.38 3.94 4.21 3.62 3.92 4.02 3.69 3.92 3.54 3.27
GP-5 3.54 3.12 2.83 4.08 3.81 4.35 4.25 4.42 4.23 4.52
ADA-KL 3.23 2.85 3.29 3.44 3.69 3.73 3.60 4.04 3.15 3.65
ADA-Ken 3.98 3.46 3.25 2.90 2.90 2.96 2.27 2.40 2.33 2.23
ADA-RD 2.83 3.38 3.17 3.00 2.31 2.35 2.52 2.40 3.17 2.92

FF 1.48 1.89 2.52∗ 1.67 4.47∗ 4.13∗ 7.82∗ 6.50∗ 5.35∗ 6.62∗

run in a single thread on the Czech national grid MetaCentrum. The average time per function
evaluation for each algorithm and each tested dimensionality is summarized in Table 5.

Results

We test the difference in algorithms’ convergence for significance on the whole noiseless
testbed with the non-parametric Friedman test (Demšar, 2006). The algorithms are ranked
on each BBOB function with respect to medians of log-scaled minimal distance ∆bb from the
function optimum, denoted as ∆bbmed, at a fixed budget of function evaluations.

To account for different optimization scenarios, the test is conducted separately for all con-
sidered dimensionalities of the input space and two function evaluation budgets, a higher and
a lower one. Let #FET be the smallest number of function evaluations at which at least one
algorithm reached the target, i. e., satisfied ∆bbmed ≤ ∆bbt, or #FET = 250D if the target has
not been reached. We set the higher budget for the tests to #FET and the lower budget to #FET

3 .
Mean ranks from the Friedman test are given in Table 6. The critical value for the Friedman

test is 2.29.
The mean ranks differ significantly for all tested scenarios except for both tested numbers

of function evaluations in 2D and the higher tested number of function evaluations in 3D.
Starting from 5D upwards, the lowest mean rank is achieved either by ADA-Kendall or ADA-
RD at both tested #FEs.

In order to show pairwise differences, we perform a pairwise N×N comparison of the algo-
rithms’ average ranks by the post-hoc Friedman test with the Bergmann-Hommel correction of
the family-wise error (García and Herrera, 2008) in cases when the null hypothesis of equal al-
gorithms’ performance was rejected. To better illustrate algorithms differences, we also count
the number of benchmark functions at which one algorithm achieved a higher rank than the
other. The pairwise score and the statistical significance of the pairwise mean rank differences
are reported in Table 7. In the post-hoc test, ADA-Kendall significantly outperforms both the
CMA-ES and GP-5 in 10D and 20D. It also significantly outperforms GP-1 in 10D at the higher
tested #FEs.
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Figure 12: Average control frequency (the ratio of the number of total original-fitness-evaluated genera-
tions to the number of total model-evaluated generations) in aS-CMA-ES measured in 15 trials of each
algorithm on f8 in 20D.

For illustration, the average control frequency given by the ratio of the number of total
original-fitness-evaluated generations to the number of total model-evaluated generations with-
in one trial, for data from 15 trials on Rosenbrock’s function f8 in 20D is given in Figure 12.
The algorithm ADA-KL led to generally lower control frequencies than its competitors, which
might explain its slightly inferior performance. Similar results were observed for the remaining
functions and dimensionalities.

The cases when ADA-Kendall and ADA-RD were able to switch between more exploitation-
oriented and more data-gathering-oriented behaviour can be studied on the results from
COCO’s postprocessing. GP-5 outperforms both GP-1 and the CMA-ES on the lower and mid-
dle parts of the empirical distribution functions basically for all dimensionalities (Figure 13).
On the other hand, GP-1 outperforms GP-5 especially in later phases of the search (Figure 13).

The ability of ADA-Kendall and ADA-RD to switch to a less-exploitation mode when appro-
priate is eminent on the ECDFs plots in 20D (see Section 2.6.1), especially, on the moderate and
the all-function groups (top right and bottom right on Figure 13), with exception of the well
structured multimodal group (middle right), when they fail in the middle part and the weakly
structured multimodal group (bottom left), when they fail towards the end of the search.

4.3.3 Conclusion

We have implemented several modifications of the S-CMA-ESconsidering three measures of
surrogate model error according to which an adequate number of upcoming model-evaluated
generations could be estimated online. We have compared three resulting algorithms on the
COCO/BBOB framework with the S-CMA-ES parametrized by two different numbers of con-
secutive model-evaluated generations. The presented results summarize the performance of
all compared algorithms on the whole noiseless part of the BBOB framework or its function
groups. We have found two error measures, the Kendall rank correlation and the ranking
difference error, that significantly outperformed the S-CMA-ES used with a higher number of
model-evaluated generations, especially in higher dimensionalities of the input space. How-
ever, both of these algorithms provided only a minor improvement of the S-CMA-ES used with
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Table 7: A pairwise comparison of the algorithms in 2D, 3D, 5D, 10D and 20D over the BBOB for 2 differ-
ent evaluation budgets. The comparison is based on medians over runs on 15 instances for each of all the
24 functions. The number of wins of i-th algorithm against j-th algorithm over all benchmark functions is
given in i-th row and j-th column. The asterisk marks the row algorithm achieving a significantly lower
value of the objective function than the column algorithm according to the Friedman post-hoc test with
the Bergmann-Hommel correction at family-wise significance level α = 0.05.

2D CMA-ES GP-1 GP-5 ADA-KL ADA-Ken ADA-RD
#FEs⁄#FET

1⁄3 1
1⁄3 1

1⁄3 1
1⁄3 1

1⁄3 1
1⁄3 1

CMA-ES — — 8 8 11 8 10 7 11 10 7 9

GP-1 16 16 — — 12 9 13 8 13 9 9 6

GP-5 13 16 12 15 — — 11 10 14 13 9 14

ADA-KL 14 17 11 15 13 13 — — 16 14 12 15

ADA-Ken 13 14 11 15 10 10 8 9 — — 7 11

ADA-RD 17 15 15 17 15 9 12 9 17 12 — —

3D CMA-ES GP-1 GP-5 ADA-KL ADA-Ken ADA-RD
#FEs⁄#FET

1⁄3 1
1⁄3 1

1⁄3 1
1⁄3 1

1⁄3 1
1⁄3 1

CMA-ES — — 11 9 7 13 8 10 9 9 7 8

GP-1 13 15 — — 7 14 7 11 6 8 10 9

GP-5 17 11 17 10 — — 15 9 13 6 14 9

ADA-KL 16 14 17 13 9 15 — — 13 11 10 9

ADA-Ken 15 15 18 16 11 17 11 13 — — 11 12

ADA-RD 17 16 14 15 10 14 14 15 13 10 — —

5D CMA-ES GP-1 GP-5 ADA-KL ADA-Ken ADA-RD
#FEs⁄#FET

1⁄3 1
1⁄3 1

1⁄3 1
1⁄3 1

1⁄3 1
1⁄3 1

CMA-ES — — 8 12 11 14 11 14 7 10 2 8

GP-1 16 12 — — 11 12 11 12 9 7 3 4

GP-5 13 10 13 12 — — 10 6 9 5 8 7

ADA-KL 13 10 13 11 14 18 — — 7 10 8 5

ADA-Ken 17 14 15 17 15 19 17 14 — — 10 9

ADA-RD 22
∗

16 21
∗

20
∗

16
∗

17
∗

16 19 14 14 — —

10D CMA-ES GP-1 GP-5 ADA-KL ADA-Ken ADA-RD
#FEs⁄#FET

1⁄3 1
1⁄3 1

1⁄3 1
1⁄3 1

1⁄3 1
1⁄3 1

CMA-ES — — 7 12 13 14 10 14 1 8 1 4

GP-1 17 12 — — 15 15 14 14 4 5 5 4

GP-5 11 10 9 9 — — 8 11 6 4 8 5

ADA-KL 14 10 10 10 16 13 — — 8 5 9 8

ADA-Ken 23
∗

16
∗

20 19
∗

18
∗

20
∗

16 19
∗ — — 13 12

ADA-RD 23
∗

20
∗

19 20
∗

16
∗

19
∗

15 15
∗

11 12 — —

20D CMA-ES GP-1 GP-5 ADA-KL ADA-Ken ADA-RD
#FEs⁄#FET

1⁄3 1
1⁄3 1

1⁄3 1
1⁄3 1

1⁄3 1
1⁄3 1

CMA-ES — — 7 5 11 12 9 13 4 3 3 5

GP-1 17 19 — — 14 17 12 16 7 6 9 8

GP-5 13 12 10 7 — — 4 5 6 5 10 6

ADA-KL 15 11 12 8 20 19 — — 9 8 13 10

ADA-Ken 20
∗

21
∗

17 18 18
∗

19
∗

15 16 — — 17 17

ADA-RD 21 19
∗

15 16 14 18
∗

11 14 7 7 — —
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Figure 13: Bootstrapped empirical cumulative distribution of the number of objective function evaluations
divided by dimension FE/D for all functions and subgroups in 20D. The targets are chosen from 10[−8..2]

such that the best algorithm from BBOB 2009 just not reached them within a given budget of k × D, with
31 different values of k chosen equidistant in logscale within the interval {0.5, . . . , 50}. The “best 2009”
curve corresponds to the best average running time observed during BBOB 2009 for each selected target.
Legend: ◦: CMA-ES, ♦: GP1, ?: GP5, O: ADA-KL, 9: ADA-Kendall, 4: ADA-RD
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a lower number of model-evaluated generations and in some tested scenarios fell behind both
tested settings of the S-CMA-ES.

4.4 doubly trained s-cma-es

The DTS-CMA-ES (Pitra et al., 2016) is the S-CMA-ES successor replacing the generation evo-
lution control by the doubly trained evolution control, which utilizes the ability of Gaussian
processes to provide the distribution of predicted points.

doubly trained evolution control In the generation-based EC, the whole popula-
tion is always original-evaluated at once which makes the exploitation of the surrogate model
predictive uncertainty difficult. Additionally, the CMA-ES can drift outside the region where
any archive points are stored. These two facts led us to employ another evolution control. How-
ever, the other common choice, individual-based EC, can modify the distribution N (m, σ2C)
of the CMA-ES population due to non-uniform selection of the λ promising points from the
larger set of model-evaluated points.

Although Loshchilov et al. (2010) suggested subsampling the points according to the pre-
dicted fitness mapped onto a Gaussian distribution and Hansen (2011) has later given restric-
tions on injecting external points into the CMA-ES population, we have proposed another
solution called doubly trained EC in (Pitra et al., 2016). Each generation of this EC can be
summarized in the following steps:

(1) sample a new population of size λ (standard CMA-ES offspring),
(2) train the first surrogate model on the original-evaluated points from the archive A,
(3) select dαλe point(s) wrt. a criterion C, which is based on the first model’s prediction,
(4) evaluate these point(s) with the original fitness,
(5) re-train the surrogate model also using these new point(s), and
(6) predict the fitness for the non-original evaluated points with this second model.

The algorithm is partially similar to the evolution control of the lmm-CMA, but the lmm-CMA
always selects the points with the best-predicted fitness (in step 3) and retrains the model gen-
erally more times than twice (it cycles steps 3–5).

The key characteristics of the doubly trained EC are the following. First, due to step 1,
the population is always a sample from the CMA-ES distribution N

(
m, σ2C

)
, similarly to the

generation-based EC. Second, in step 3, the Gaussian process estimation of uncertainty can be
utilized for the selection of a typically low number of original-evaluated points, see below for
possible criteria and the description of the parameter α. Third, the estimated fitness values in
step 6, which are returned to the CMA-ES, are predicted using the model trained on as recent
points as possible. Finally, evaluating at least a small number of points in each generation
using the original fitness maintains at least a decent number of points in the training set near
the current CMA-ES distribution mean.

Employing the doubly trained EC in the CMA-ES results in the DTS-CMA-ES (Pitra et al.,
2016) whose pseudocode is shown in Algorithm 9. The algorithm is parametrized by the
parameter α(0) — the initial value of the ratio of original-evaluated points in a population, by
the criterion C for the selection of these points, and by the surrogate model and its parameters.
Furthermore, a user can let the ratio α adapt throughout the algorithm run, which requires an
additional set of parameters — see Algorithm 10 and the corresponding paragraph below.

The DTS-CMA-ES is analysed in more detail from the EC point of view in Section 4.8.1.
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Algorithm 9 DTS-CMA-ES

Input: original fitness function bb, step-size σ(0) ∈ R+, initial mean m(0) ∈ RD, initial ratio of
original-evaluated points α(0), criterion for the selection of original-evaluated points C,
self-adaptation parameters β, ε(0), εmin, εmax, αmin, αmax (see Alg. 10),
training set selection method TSS, surrogate model parameters ψ (see Alg. 5)

1: A ← ∅; σ(0), m(0), C(0) ← CMA-ES initialize {initialization}
2: for generation g = 0, 1, 2, . . . until stopping conditions met do

3: xk ∼ N (m(g), σ(g)2
C(g)) for k = 1, . . . , λ {CMA-ES sampling}

4: M1 ← trainModel(A, TSS, NMmin,ψ, m(g), σ(g), C(g)) {1st model training}
5: (ŷ, s2)←M1([x1, . . . , xλ]) {model-fitness evaluation}
6: Xorig ← select dα(g)λe best points according to the criterion C

7: yorig ← bb(Xorig) {original-fitness evaluation}
8: A = A∪ {(Xorig, yorig)} {archive update}
9: M2 ← trainModel(A, TSS, NMmin,ψ, m(g), σ(g), C(g)) {2nd model training}

10: y←M2([x1, . . . , xλ]) {2nd model prediction}
11: (y)k ← (yorig)i for all original-evaluated (yorig)i ∈ yorig {fitness replace}
12: (α(g+1), ε(g+1))← selfAdaptation(ε(g), ŷ, y; β, εmin, εmax, αmin, αmax) {Alg. 10}
13: sorted x1:λ ← sort x1, . . . , xλ based on (y1, . . . , yλ)

> {population sort}
14: σ(g+1), m(g+1), C(g+1) ← CMA-ES update based on x1:λ
15: end for
16: x̂opt ← xk from A corresponding to the minimal yk
Output: x̂opt – point with the minimum achieved fitness

criteria for the selection of original-evaluated points . While the surrogate
algorithms assisted by models not based on Gaussian processes select points for the original
evaluation mostly according to the predicted fitness, the Gaussian process surrogates, which
for any point x predict the whole Gaussian distribution N (ŷ(x), (ŝ(x))2), offer more options
when used with the individual-based or doubly trained evolution control. The following cri-
teria are considered in the DTS-CMA-ES. Whereas the first four are defined for any point of
the input space and have been used in Bayesian optimization for decades, the last one, expected
ranking difference error (ERDE), is our new contribution directly exploiting the DTS-CMA-ES’
Gaussian processes prediction and is defined only for the points from the considered popula-
tion.

� GP predictive mean. The GP mean prediction ŷ(x) is the maximum-likelihood estimate of
the original fitness. This criterion is defined as its negative value

CM(x) = − ŷ(x) . (72)

� GP predictive standard deviation. Choosing the points with the highest uncertainty leads
to the criterion

CSTD(x) = ŝ(x) .

� Expected Improvement (EI). If ymin stands for the minimum fitness in the considered
training set y1, . . . , yN , the EI criterion is

CEI(x) = E((ymin − b̂b(x))I(b̂b(x) < ymin) | y1, . . . , yN) , where (73)
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I(bb(x) < ymin) =

{
1 for b̂b(x) < ymin
0 for b̂b(x) ≥ ymin

.

� Probability of Improvement (PoI). The PoI express the probability of finding lower fitness
than some threshold T

CPoI(x, T) = P(bb(x) ≤ T | y1, . . . , yN) = Φ
(

T − ŷ(x)
ŝ(x)

)
(74)

where Φ is the distribution function of N (0, 1). As T, the value T = ymin or a slightly
higher value is usually chosen, see, e. g., (Jones, 2001) for an evaluation of these thresh-
olds. This criterion was shown to provide higher speed up than EI when used with the
DTS-CMA-ES.

� Expected ranking difference error ERDE. The goal of this criterion is to select the points
from the current population for which the expected RDE would decrease most after
adding them to the GP training set. It is a ranking counterpart of the GP predictive
standard deviation criterion since it selects the points for which the model is least certain.
In DTS-CMA-ES, the errRDE has been used as an error measure2.

The trained Gaussian processM1 estimates the fitness distribution for each point in the
population as N (ŷk, (ŝk)

2), where ŷk and ŝk are given from equations (19) and (20).

For each point x∗k ∈ {x1, . . . , xλ} in the considered population, let us denote X−k the pop-
ulation with the k-th point removed and ŷ−k =M1(X−k) the vector of the corresponding
mean predictions of the first DTS-CMA-ES model. The ERDE criterion is the expected
contribution of x∗k to the ranking error

CERDE(x∗k , X−k) = E[errRDE(ŷ−k, ŷ+
−k)] =

∫ ∞

−∞
errRDE(ŷ−k, ŷ+

−k) ϕ(yk) dyk (75)

where ŷ+
−k = M+

1 (X−k) is the vector of mean predictions of a GP M+
1 . This process

M+
1 is identical to the first model M1 except that the k-th point (x∗k , yk) is addition-

ally incorporated into its training set, say to its end, which becomes (XN+, yN+) =
([XN x∗k ], (y

>
N yk)

>); particularly, M+
1 uses the same hyperparameters as M1. The ex-

pectation is calculated over normally distributed yk ∼ N (ŷk, (ŝk)
2) with density ϕ(yk),

where ŷk and (ŝk)
2 are defined using the first DTS-CMA-ES modelM1 by equations (19)

and (20).

The vector of predicted means ŷ+
−k is given by (23) as

ŷ+
−k = κ(X−k, XN+) C−1

N+ yN+ .

For the matrix A = κ(X−k, XN+)C−1
N+ that is for a considered x∗k constant, the value of

each element of ŷ+
−k depends only on yk as

(ŷ+
−k)i = (A)i,1...N yN + yk (A)i,N+1 .

2 errRDE could be replaced by arbitrary error measure between bb-values vectors which only depends on ranks of the
elements of these vectors.
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Algorithm 10 selfAdaptation(ε(g), ŷ, y; β, εmin, εmax, αmin, αmax)

Input: smoothed error from the last generation ε(g),
vector of the first model prediction ŷ,
vector of the second model prediction with original evaluations y,
update rate β, minimum and maximum ranking error: εmin, εmax,
min. and max. ratio of original-evaluated points: αmin, αmax

1: εRDE ← errRDE(ŷ, y) {estimation of the model’s error}
2: ε(g+1) ← (1− β)ε(g) + βεRDE {exponential smoothing of the error}

3: α(g+1) ← αmin + max{0, min{1, ε(g+1)−εmin
εmax−εmin

}} · (αmax − αmin) {update of α}

Output: α(g+1) – ratio of original-evaluted points for the next generation,
ε(g+1) – new smoothed error

Further, the integral (75) over yk can be calculated as the sum of sub-integrals Jp over the
intervals Ip = [lp, up], p = 1, . . . , ( 1

2 (λ− 1)(λ− 2) + 1) defined such that the ranking of
ŷ+
−k is constant. The intervals Ip’s can be derived from the mutual comparisons

(ŷ+
−k)i ≤ (ŷ+

−k)j for i 6= j, i, j = 1, . . . , (λ− 1) (76)

where the interval boundaries u1 = l2 ≤ u2 = l3 ≤ . . . ≤ up−1 = lp are the points for
which the equalities (76) arise. As the rankings are on each Ip constant, the sub-integrals
simplify to

Jp = errRDE(ŷ−k, ŷ+
−k) (Φ(up)−Φ(lp))

where Φ is the distribution function of N (ŷk, (ŝk)
2).

As the matrix C−1
N+1 and hence also A can be calculated in O(N3) steps, the complexity

of calculating ERDE for each point is O(N3 + λ2N) which enables efficient computation
of this criterion even for moderately large λ.

4.4.1 Self-adaptation of the original-evaluated points ratio α

Whereas the speed-up of all surrogate-assisted algorithms is based on the model’s ability to
estimate fitness, the models can mislead the optimization algorithm when their error is high.
Similarly to the lmm-CMA and s∗ACM-ES, such an adverse effect can be controlled by raising
the number of original-evaluated points if necessary. In (Pitra et al., 2017a), we have investi-
gated the usage of the model according to the model’s error: The DTS-CMA-ES measures the
ranking difference error of the model and raises the original-evaluated points ratio α if the
model error gets higher. The details are summarized in Algorithm 10: first, the errRDE of the
last model is exponentially smoothed with the update rate β, and the ratio α is then calculated
as the result of a linear transfer function that is defined by the bounds on the smoothed error
εmin, εmax and on the resulting ratio αmin, αmax.

Having analyzed the errRDE error measures on the COCO testbed, we observed that the
measured RDE error ε(g) depends on the ratio α and the dimension D:

εmin = f εmin(α, D), εmax = f εmax(α, D). (77)

Especially dependence on α is not surprising: from the definition of errRDE (67) follows that
the more reevaluated points, the higher number of summands in nominator of (67) and hence
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the higher errRDE value. Due to mutual dependence of the parameters ε and α, the calculation
of α in each generation is performed iteratively until convergence of α:

(1) calculate error thresholds εmin, εmax using the last used ratio α – either from the previous
iteration, or from the previous generation (see Equation (77))

(2) calculate new ratio α using newly calculated εmin, εmax (see Step 3)

In our implementation, the functions f εmin and f εmin are results of multiple linear regression –
see paragraph Linear Models for the details.

Experimental Setup for Evaluation of DTS Self-adaptivity

In (Pitra et al., 2017a), we compared the performances of the DTS-CMA-ES using selfAdap-
tation to adjust α (aDTS) to the original DTS-CMA-ES (Pitra et al., 2016) using fixed α, the
CMA-ES (Hansen, 2006), and two other surrogate-assisted versions of the CMA-ES, the lmm-
CMA (Auger et al., 2013; Kern et al., 2006) and the s∗ACM-ES (Loshchilov et al., 2013a), on the
noiseless part of the COCO framework (Hansen et al., 2009b, 2012).

The considered algorithms were evaluated using the 24 noiseless COCO single-objective
benchmarks Hansen et al. (2012, 2009b) in dimensions D = 2, 3, 5 and 10 on 15 different
instances per function. The functions were divided into three groups according to the difficulty
of their modeling with a GP model, where two groups were used for tuning aDTS parameters
and the remaining group was utilized to test the results of that tuning. The method of dividing
the functions into those groups will be described below in connection with the aDTS settings.
The experiment stopping criteria were reaching either the maximum budget of 250 function
evaluations per dimension ( FE/D), or reaching the target distance from the function optimum
∆ fT = 10−8. The following paragraphs summarize the parameters of the compared algorithms.

cma-es The original CMA-ES was tested in its IPOP-CMA-ES version (Matlab code v. 3.61)
using settings identical to (Bajer et al., 2015) described in Section 4.2.1.

lmm-cma The lmm-CMA was employed in its improved version published by Auger et al.
(2013). The results have been downloaded from the COCO/BBOB results data archive 3 in its
GECCO 2013 settings.

s∗
acm-es We have used the bi-population version of the s∗ACM-ES, the BIPOP-s∗ACM-ES-k

by Loshchilov et al. (2013a). Similarly to the lmm-CMA, the algorithm results have also been
downloaded from the COCO/BBOB results data archive4.

static dts-cma-es The original DTS-CMA-ES was tested using the overall best settings
from (Pitra et al., 2016): the prediction variance CSTD of Gaussian process model as the uncer-
tainty criterion, the population size λ = 8 + b6 ln Dc, and the ratio of points evaluated by the
original fitness α = 0.05. The results of the DTS-CMA-ES are slightly different from results
in (Pitra et al., 2016, 2017c) due to a correction of a bug in the original version which was
affecting the selection of points to be evaluated by the original fitness using an uncertainty
criterion.

3 http://coco.gforge.inria.fr/data-archive/2013/lmm-CMA-ES_auger_noiseless.tgz
4 http://coco.gforge.inria.fr/data-archive/2013/BIPOP-saACM-k_loshchilov_noiseless.tgz
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adaptive dts-cma-es The aDTS was tested with multiple settings of parameters. First,
the linear regression models of lower and upper bounds for the error measure εmin, εmax were
identified via measuring errRDE on datasets from DTS-CMA-ES runs on the COCO/BBOB
benchmarks.

As a first step, we figured out six BBOB functions which are the easiest and six which are the
hardest to regress by our Gaussian process model based on the errRDE measured on 1250 inde-
pendent testsets per function in each dimension: 10 sets of λ points in each of 25 equidistantly
selected generations from the DTS-CMA-ES runs on the first 5 instances, see Table 8 for these
sets of functions and their respective errors. The functions which were not identified as easiest
or hardest form the test function set.

linear models Using the same 25 DTS-CMA-ES “snapshots” on each of 5 instances,
we calculated medians (Q2) and the third quartiles (Q3) of measured errRDE on populations
from both groups of easiest and hardest functions, where we used five different proportions
of original-evaluated points α = {0.04, 0.25, 0.5, 0.75, 1.00} which were available for retrained
models and thus also for measuring models’ errors ε(g). These quartiles were regressed by
multiple linear regression models using stepwise regression from a full quadratic model of
the ratio α and dimension D or its logarithm ln(D) (decision whether to use ln(D) or D was
according to the root mean-squared error (RMSE) of the final stepwise models); the stepwise
regression was removing terms with the highest p-value > 0.05. The coefficients εQ2

min and εQ3
min

of the lower thresholds were estimated on the data from easiest functions and the coefficients
εQ2

max and εQ3
max of the higher thresholds on the data from hardest functions, which resulted in

the following models:

εQ2
min(α,D) = (1 ln(D) α α ln(D) α2) · b1 , (78)

εQ3
min(α,D) = (1 D α αD α2) · b2 , (79)

εQ2
max(α,D) = (1 D α αD α2) · b3 , (80)

εQ3
max(α,D) = (1 ln(D) α α ln(D) α2) · b4 , (81)

where

b1 = (0.11 −0.0092 −0.13 0.044 0.14)> , (82)

b2 = (0.17 −0.00067 −0.095 0.0087 0.15)> , (83)

b3 = (0.18 −0.0027 0.44 0.0032 −0.14)> , (84)

b4 = (0.35 −0.047 0.44 0.044 −0.19)> . (85)

For the remaining investigations, three different values of exponential smoothing update
rate were used for comparison β = {0.3, 0.4, 0.5}. The minimal and maximal values of α were
set to αmin = 0.04 and αmax = 1.0 because lower α values than 0.04 would yield to less than
one original-evaluated point per generation, and the aDTS has to be able to spend the whole
populations for the original evaluations in order to work well on functions where GP model is
poor (e. g., on Attractive sector function f6). The initial error and original ratio values were
set to ε(0) = 0.05 and α(0) = 0.05. The rest of aDTS parameters were left the same as in the
original DTS-CMA-ES settings.
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Results of DTS-CMA-ES adaptivity validation

The results in Figures 15, 17, and 18 and in Table 10 show the effect of adaptivity implemented
in the DTS-CMA-ES (see Section 2.6.2 for explanation of convergence graphs).

We have tested the statistical significance of differences in algorithms’ performance on 12

COCO/BBOB test functions in 10D for separately two evaluation budgets using the Iman and
Davenport’s improvement of the Friedman test (Demšar, 2006). Let #FET be the smallest num-
ber of function evaluations on which at least one algorithm reached the target, i. e., satisfied
∆med

f ≤ ∆ fT , or #FET = 250D if no algorithm reached the target within 250D evaluations.

The algorithms are ranked on each COCO/BBOB test function with respect to ∆med
f at a given

budget of function evaluations. The null hypothesis of equal performance of all algorithms is
rejected at a higher function evaluation budget #FEs = #FET (p < 10−3), as well as at a lower
budget #FEs = #FET

3 (p < 10−3).
We test pairwise differences in performance utilizing the post-hoc Friedman test (García

and Herrera, 2008) with the Bergmann-Hommel correction controlling the family-wise error
in cases when the null hypothesis of equal algorithms’ performance was rejected. To illustrate
algorithms’ differences, the numbers of test functions at which one algorithm achieved a higher
rank than the other are reported in Table 10. The table also contains the pairwise statistical
significances.

We have compared the performances of aDTS using twelve settings differing in εmin, εmax,
and β. Table 9 illustrates the counts of the 1st ranks of the compared settings according to
the lowest achieved ∆med

f for 25, 50, 100, and 200 FE/D respectively. The counts are summed
across the testing sets of benchmark functions in each individual dimension.

Although the algorithm is rather robust to exact setting of smoothing update rate, we have
found that the lower the β, the better the performance is usually observed (see Table 9), and
thus the following experiments use the rate β = 0.3.

When comparing the convergence rate, the performance of aDTS with εQ2
min is noticeable

lower especially on Rosenbrock’s functions f8, f9 and Different powers f14 where the
errRDE error often exceeds the lower error threshold even if a lower number of original-
evaluated points would be sufficient for higher speedup of the CMA-ES. The adaptive control,
on the other hand, helps especially on the Attractive sector f6, which has the optimum in
a point without continues derivatives and is therefore hard-to-regress by GPs, or on Shaffers’
functions f17, f18 where the aDTS is probably able to adapt to multimodal neighbourhood
around function’s optimum and performs best of all the compared algorithms. Within the bud-
get of 250 FE/D, the aDTS (especially with εQ2

min) is also able to find one of the best fitness value
on regularly multimodal Rastrigin functions f3, f4 or f15 where the GP model apparently
does not prevent the original CMA-ES from exploiting the global structure of a function.

Conclusion

Results of parameter tunning show that lower values of the exponential smoothing rate β
provide better results. On the other hand, different combinations of slower and more rapid
update behaviours bring better CMA-ES speedup for different kinds of functions, and choice
of this parameter could depend on the experimenter’s domain knowledge. We found that
the adaptive approach speeds up the CMA-ES more than three other surrogate CMA-ES algo-
rithms, namely DTS-CMA-ES, s∗ACM-ES, and lmm-CMA, on several functions after roughly
150 FE/D.
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Figure 14: Algorithm comparison on 6 easy and 6 hard to regress COCO/BBOB noiseless functions in 5D.
εmin, εmax: minimal and maximal error, Q2, Q3: median and third quartile.
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Figure 15: Algorithm comparison on 12 test function from the COCO/BBOB testbed in 5D. εmin, εmax:
minimal and maximal error, Q2, Q3: median and third quartile.
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Figure 16: Algorithm comparison on 6 easy and 6 hard to regress COCO/BBOB noiseless functions in
10D. εmin, εmax: minimal and maximal error, Q2, Q3: median and third quartile.
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Figure 17: Algorithm comparison on 12 test function from the COCO/BBOB testbed in 10D. εmin, εmax:
minimal and maximal error, Q2, Q3: median and third quartile.
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Table 8: The easiest (1.–6.) and the hardest (19.–24.) to regress six COCO/BBOB functions by the Gaus-
sian process used in the DTS-CMA-ES (columns f ) according to the corresponding medians of errRDE
measured in 25 generations from 5 instances on independent testsets of size λ = 8 + b6 log Dc using
µ = bλ/2c.

2D 3D 5D 10D 20D

f errRDE f errRDE f errRDE f errRDE f errRDE

1. 5 0.00 5 0.00 5 0.00 5 0.04 5 0.04

2. 1 0.08 1 0.11 1 0.16 1 0.18 1 0.08

3. 2 0.10 2 0.13 10 0.18 10 0.26 24 0.18

4. 10 0.10 10 0.14 2 0.21 8 0.27 15 0.19

5. 11 0.10 9 0.16 11 0.23 2 0.27 19 0.20

6. 8 0.14 8 0.18 9 0.24 9 0.29 3 0.21

19. 18 0.46 23 0.43 24 0.41 21 0.40 18 0.38

20. 20 0.52 15 0.43 4 0.44 16 0.41 23 0.47

21. 24 0.53 24 0.49 23 0.45 23 0.47 6 0.48

22. 6 0.54 20 0.51 6 0.51 6 0.50 21 0.51

23. 7 0.54 6 0.52 20 0.54 20 0.54 20 0.52

24. 19 0.54 7 0.54 7 0.56 7 0.57 7 0.56

Table 9: Counts of the 1st ranks from 12 benchmark test functions from the BBOB/COCO testbed accord-
ing to the lowest achieved ∆med

f for different FE/D = {25, 50, 100, 200} and dimensions D = {2, 3, 5, 10}.
Ties of the 1st ranks are counted for all respective algorithms. The ties often occure when ∆ fT = 10−8 is
reached (mostly on f1 and f5).

2D 3D 5D 10D ∑

FE/D 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200 25 50 100 200

εQ2
min, εQ2

max, β = 0.3 1 0 0 2 1 2 2 3 0 0 0 0 0 0 0 1 2 2 2 6

εQ2
min, εQ2

max, β = 0.4 0 0 0 2 1 0 0 3 0 0 0 0 0 0 0 0 1 0 0 5

εQ2
min, εQ2

max, β = 0.5 2 0 0 3 0 0 0 3 0 0 0 0 0 0 0 1 2 0 0 7

εQ2
min, εQ3

max, β = 0.3 2 0 1 4 1 0 0 3 0 0 2 2 0 0 0 2 3 0 3 11

εQ2
min, εQ3

max, β = 0.4 0 0 1 4 0 0 0 4 0 1 2 3 0 0 3 4 0 1 6 15

εQ2
min, εQ3

max, β = 0.5 1 0 0 3 0 0 0 4 0 0 0 3 0 0 0 1 1 0 0 11

εQ3
min, εQ2

max, β = 0.3 1 0 3 4 4 5 5 5 5 3 3 5 7 6 3 4 17 14 14 18
εQ3

min, εQ2
max, β = 0.4 1 4 1 4 1 0 1 4 5 4 0 4 1 2 3 2 8 10 5 14

εQ3
min, εQ2

max, β = 0.5 1 3 1 5 0 2 2 3 1 0 1 2 3 0 0 1 5 5 4 11

εQ3
min, εQ3

max, β = 0.3 0 2 2 4 1 3 3 3 0 3 3 4 0 1 2 1 1 9 10 12

εQ3
min, εQ3

max, β = 0.4 0 2 3 4 3 0 3 4 1 1 0 4 0 2 0 1 4 5 6 13

εQ3
min, εQ3

max, β = 0.5 3 1 2 3 0 0 1 3 0 0 1 2 1 1 1 2 4 2 5 10
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Figure 18: Algorithm comparison using averaged ∆log
f values on 12 test functions from the COCO/BBOB

testbed in 5D and 10D. εmin, εmax: minimal and maximal error, Q2, Q3: median and third quartile.

Table 10: A pairwise comparison of the algorithms on 12 test functions in 10D over the COCO/BBOB
for different evaluation budgets. The number of wins of i-th algorithm against j-th algorithm over all
benchmark functions is given in i-th row and j-th column. The asterisk marks the row algorithm be-
ing significantly better than the column algorithm according to the Friedman post-hoc test with the
Bergmann-Hommel correction at family-wise significance level α = 0.05.
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4.4.2 Configuration of the Gaussian Process Models

This section provides the implementation details of the training of and predicting with the
Gaussian processes we have proposed in (Bajer et al., 2019) as well as the evaluation of their
parameter settings.
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Table 11: Bounds and starting values for hyperparameters MLE; yN is a vector of the bb-values from the
GP training set and ∆y = max yN − min yN .

hyperparameter starting value lower bound upper bound

mµ median bb-value med yN min yN − 2∆y max yN + 2∆y
σ2

f 0.5 exp(−2) exp(25)
` 2 exp(−2) exp(25)
σ2

n 10−2 10−6 10

Table 12: Parameters of the GP surrogate models. The maximum distance rmax is derived using the
Mahalanobis distance given by the covariance matrix σ2C. Qχ2 (0.99, D) is the 0.99-quantile of the χ2

D

distribution, and therefore
√

Qχ2 (0.99, D) is the 0.99-quantile of the norm of a D-dimensional normally
distributed random vector.

parameter considered values

training set selection method TSS TSS closest, TSS cluster, TSS nearest, TSS recent

maximum distance rmax 2
√

Qχ2 (0.99, D), 4
√

Qχ2 (0.99, D)

NMmax 10 · D, 15 · D, 20 · D
covariance function κ κSE, κ

3/2
Mat, κ

5/2
Mat

The estimation of the GP model hyperparameters in Step 6 of the Algorithm 5 is performed
using maximum likelihood estimation (MLE). It is started at and bounded by values obtained
from brief experiments, see Table 11 for the exact values. The GP models employed in our
algorithms make use of the GPML 4.0—a toolbox which accompanied the book of Rasmussen
and Williams (2006). The only modifications are using the Matlab fmincon optimizer or the
CMA-ES for the MLE of the GP hyperparameters and slight modifications in error handling
in the case of numerical instabilities. The CMA-ES is used instead of fmincon if fmincon fails
due to an infeasible starting point or numerical problems.

Evaluation of GP model parameters

Because we are not aware of any systematic comparison of different parameter settings of
the GP surrogate models for the CMA-ES in literature, we provide such evaluation on the
data from the COCO benchmark functions. Table 12 lists all the tested parameters with their
considered values for four TSS methods using the rmax denotes the maximum distance between
m(g) and the points to be selected from A. The minimum training set size NMmin was 3 · D in
all our GP models studied in (Bajer et al., 2019).

As training and testing datasets for this comparison, three generations from the first half and
three generations from the second half of optimization runs of the DTS-CMA-ES (α = 0.05),
limited to 250 FE/D, were recorded on the first five instances of 24 noiseless COCO functions
in dimensions 2, 3, 5, 10, and 20. For each recorded generation, the CMA-ES state variables,
archive A and populations (as testing sets) were saved.

Figure 19 depicts the third quartiles of errRDE/rsucc where rsucc denotes the ratio of successful
trainings of the second modelM2. Both the errors and ratios were taken for each model setting
of the full-factorial design of the parameters from Table 12 across 15 repetitions (5 instances
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Figure 19: The third quartiles from sets of 15 values of errRDE/rsucc. Results for Linear slope f5 (often
equal to zero) were omitted for better visibility of other results. Two columns per each COCO function
belong to the first and second half of optimization runs respectively. Solid horizontal lines separate
different TSS methods in the order TSS recent, TSS nearest, TSS cluster, and TSS closest, dashed lines
separate sectors with smaller and larger maximum distance rmax. Three triples of settings within each
sector represent raising values of NMmax and three covariance functions κSE, κ

3/2
Mat, and κ

5/2
Mat within each

triple.

× 3 generations) per each half of the optimization run on each function in each dimension.
The same results concerning the influence of the individual parameters are summarized over
functions via the n-way ANOVA in Table 13.

Not surprisingly, the highest error errRDE/rsucc is visible on the Attractive sector f6 func-
tion. This benchmark has its optimum in a point without continuous derivatives and with
different slopes in different directions which is, therefore, very hard to regress by GPs. On the
contrary, the lowest errors (in lower dimensions often equal to 0) were always achieved on the
Linear slope f5 whose results were omitted from the heatmaps for better color scaling of the
remaining functions. Low errors were measured in higher dimensions on the Sphere function
f1; relatively high errors in lower dimensions on f1 are probably due to a fast decrease of the
CMA-ES step-size σ, which results in the low number of points in the training sets.

Let us look more closely at the effects of individual surrogate model parameters.
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Table 13: GP surrogate model parameters. Results from the combination of n-way ANOVA analysis
without interactions and the posthoc Tukey–Kramer’s comparison tests of the effects of four parameters
on the mean of errRDE/rsucc. The table shows the values of the parameters sorted according to the
corresponding regressed errRDE/rsucc (shown left) for the respective combinations of dimension and half
of the optimization run. Values with the mean response according to Tukey–Kramer significantly higher
than the respective lowest mean response are marked with ↓. Stars after the values sign the statistical
significance of rejecting the ANOVA test hypotheses that the effects of the respective parameters on
the mean responses of errRDE/rsucc are negligible. Significant results of Tukey–Kramer’s comparisons
between the values of the respective parameters are marked in the gray lines of each block (1 = best
value, 2 = second etc.). Stars ?/??/??? sign the p-value lower than 0.05/0.01/0.001 for the respective
tests.

dim part of run trainset selection rmax NMmax covariance function

2D i

0.40 TSS nearest 0.41 2 0.40 20 · D 0.40 κ
5/2
Mat

0.41 TSS recent 0.41 4 0.41 15 · D 0.41 κ
3/2
Mat

0.41 TSS cluster 0.41 10 · D 0.41 κSE
0.41 TSS recent

2D ii

0.42 TSS nearest 0.42 2?? 0.42 20 · D 0.42 κSE

0.42 TSS recent 0.42 4 ↓ 0.42 15 · D 0.42 κ
5/2
Mat

0.42 TSS cluster 0.42 10 · D 0.42 κ
3/2
Mat

0.42 TSS recent
1<?? 2

3D i

0.38 TSS recent 0.38 4 0.38 15 · D 0.38 κ
3/2
Mat

0.38 TSS nearest 0.39 2 0.38 10 · D 0.38 κ
5/2
Mat

0.38 TSS cluster 0.38 20 · D 0.39 κSE
0.39 TSS recent

3D ii

0.38 TSS recent??? 0.39 2 0.39 15 · D 0.39 κ
3/2
Mat

0.39 TSS nearest??? 0.39 4 0.39 10 · D 0.39 κ
5/2
Mat

0.39 TSS cluster ↓ 0.39 20 · D 0.40 κSE
0.40 TSS recent ↓
1<? 3, 1<??? 4, 2<? 4

5D i

0.34 TSS nearest??? 0.34 2??? 0.34 10 · D 0.34 κ
3/2
Mat

???

0.34 TSS recent??? 0.35 4 ↓ 0.34 15 · D 0.34 κ
5/2
Mat

???

0.34 TSS cluster??? 0.34 20 · D 0.35 κSE↓

0.35 TSS recent ↓
1<??? 4, 2<? 4, 3<? 4 1<??? 2 1<??? 3, 2<??? 3

5D ii

0.35 TSS nearest??? 0.35 2?? 0.35 15 · D 0.35 κ
5/2
Mat

???

0.35 TSS recent??? 0.36 4↓ 0.35 10 · D 0.35 κ
3/2
Mat

???

0.35 TSS cluster??? 0.35 20 · D 0.36 κSE↓

0.37 TSS recent ↓
1<??? 4, 2<??? 4, 3<?? 4 1<?? 2 1<?? 3, 2<?? 3

10D i

0.34 TSS nearest??? 0.33 4??? 0.34 20 · D 0.33 κ
5/2
Mat

???

0.34 TSS recent??? 0.35 2↓ 0.34 15 · D 0.34 κSE↓

0.34 TSS cluster ↓ 0.34 10 · D 0.35 κ
3/2
Mat↓

0.35 TSS recent ↓
1<? 3, 1<??? 4, 2<?? 4 1<??? 2 1<?? 2, 1<??? 3

10D ii

0.32 TSS nearest??? 0.32 4??? 0.33 20 · D 0.33 κ
5/2
Mat

???

0.33 TSS recent ↓ 0.34 2↓ 0.33 15 · D 0.34 κSE↓

0.34 TSS cluster ↓ 0.34 10 · D 0.34 κ
3/2
Mat↓

0.34 TSS recent ↓
1<?? 2, 1<??? 3, 1<??? 4 1<??? 2 1<??? 2, 1<??? 3

20D i

0.35 TSS nearest??? 0.34 4??? 0.35 20 · D??? 0.34 κ
5/2
Mat

???

0.36 TSS recent ↓ 0.37 2↓ 0.35 15 · D??? 0.34 κ
3/2
Mat↓

0.36 TSS cluster ↓ 0.36 10 · D ↓ 0.39 κSE↓

0.36 TSS recent ↓
1<? 2, 1<??? 3, 1<??? 4 1<??? 2 1<??? 3, 2<?? 3 1<? 2, 1<??? 3, 2<??? 3

20D ii

0.34 TSS nearest??? 0.33 4??? 0.34 20 · D??? 0.32 κ
5/2
Mat

???

0.35 TSS recent ↓ 0.36 2↓ 0.35 15 · D??? 0.34 κ
3/2
Mat↓

0.35 TSS recent ↓ 0.36 10 · D ↓ 0.38 κSE↓

0.36 TSS cluster ↓
1<? 2, 1<??? 3, 1<??? 4, 2<? 4 1<??? 2 1<??? 3, 2<??? 3 1<??? 2, 1<??? 3, 2<??? 3
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� The dependence of the model error on the maximum radius of the training set rmax
seems to be problem-dependent in low dimensions (in 2D and 5D—lower errors can
be observed for smaller radius, for example, on the Rastrigin’s functions f3 and f15
or on the multimodal Gallagher’s Gaussians f21 and f22). Rather surprising are the
significantly lower errors for smaller radius in the 5D, but Table 13 shows that larger
radius yields significantly lower error in the 10D and 20D spaces.

� The model error appears not to depend on the number of training points NMmax (with
the exception of 20D where both 20 · D and 15 · D points are significantly better than
10 · D points). This insignificance is, however, affected by the number of points that are
available for the training sets: the number of these points is often lower than 10 · D.

� Further, the choice of the covariance function has shown to be insignificant for 2D and
3D, but starting from 5D, the Matérn functions have shown to be significantly better
and starting from 10D even more specifically with the parameter ν = 5/2. Results in
Figure 19 reveal that even though the squared exponential covariance exhibits in few
cases the best performance (e. g., f9 in 2D), it is more often susceptible to training failure
or high errRDE, as can be seen, for example, on f21 and f23 in 10D or on several functions
in 20D.

� Finally, the TSS method of choice according to Table 13 is TSS nearest—taking the k near-
est neighbors to each of the points in the population in a range rmax, in lower dimensions
closely followed by TSS recent—taking up to NMmax most recent points.

For the experiments in Section 4.4.3, the surrogate model settings performing significantly
best in 10D and 20D were chosen for all dimensions: TSS = TSS nearest, rmax = 4

√
Qχ2(0.99, D),

NMmax = 20 · D, κ = κ
5/2
Mat.

Fixed hyperparameter values

In addition to the evaluation of GP model parameters, we performed a brief investigation
of inferring the values of two GP hyperparameters ` and mµ from the DTS-CMA-ES state
variables instead of their MLE.

Because the DTS-CMA-ES surrogate model already transforms the input coordinates into
the space where the Euclidean distance equals to the Mahalanobis distance

d(x1, x2) =
√
(x1 − x2)σ−2C−1(x1 − x2)

in the original space, a natural value for the length-scale parameter ` would be for the squared-
exponential covariance κSE (26) the constant ` = 1 as it then corresponds to a simple exponen-
tial kernel

κ(x1, x2) = σ2
f exp (−d(x1, x2)/2) (86)

in the transformed space, proposed for RBF kernels by Loshchilov et al. (2010). Likewise,
a common recommendation for the GP mean function is to use constantly zero µ(x) = 0
(Rasmussen and Williams, 2006). Note that the surrogate models standardize the bb-values to
zero mean regardless the mean function (step 5 in Algorithm 5).

Table 14 shows the third quartiles of errRDE/rsucc for independently set ` = 1 or µ(x) = 0
for two covariance functions, measured on the same datasets as in the previous evaluation—
on the 2× 15 populations of points per each COCO function and considered dimension. As
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Table 14: Means and standard deviations of the third quartiles of errRDE/rsucc for MLE and fixed hy-
perparameter values of the DTS-CMA-ES GP models. The third quartiles are from 2× 15 independent
datasets per function and dimension, and the means and standard deviations are averaged across 2× 23
data (24 COCO functions without Linear slope f5 in the first and second half of optimization run) for
each respective dimension. The higher the mean, the darker the color of the corresponding background
is used.

cov. fun. µ(x) ` 2D 3D 5D 10D 20D

κ
5/2
Mat ML estimate ML estimate 0.41 ±0.07 0.39 ±0.07 0.33 ±0.06 0.31 ±0.08 0.31 ±0.12

κ
5/2
Mat ML estimate ` = 1 0.41 ±0.06 0.39 ±0.07 0.38 ±0.07 0.42 ±0.06 0.45 ±0.08

κ
5/2
Mat mµ = 0 ML estimate 0.45 ±0.08 0.42 ±0.08 0.37 ±0.09 0.33 ±0.08 0.33 ±0.11

κ
5/2
Mat mµ = 0 ` = 1 0.40 ±0.06 0.39 ±0.07 0.39 ±0.07 0.44 ±0.06 0.49 ±0.07

κSE ML estimate ML estimate 0.41 ±0.07 0.39 ±0.07 0.35 ±0.05 0.32 ±0.08 0.37 ±0.13

κSE ML estimate ` = 1 0.41 ±0.06 0.40 ±0.07 0.39 ±0.07 0.42 ±0.06 0.47 ±0.09

κSE mµ = 0 ML estimate 0.45 ±0.09 0.44 ±0.09 0.39 ±0.08 0.36 ±0.10 0.58 ±0.34

κSE mµ = 0 ` = 1 0.41 ±0.06 0.41 ±0.07 0.40 ±0.07 0.44 ±0.06 0.51 ±0.09

can be seen, using the fixed lengthscale ` = 1 provides practically the same results as MLE `
for D = 2, 3, but is harmful in higher dimensions 10D and 20D where fitting the lengthscale
seems to be essential for a good GP prediction. On the other hand, using the constant mean
function µ(x) = 0 in connection with the Matérn covariance in higher dimensions does not
dramatically deteriorate the prediction, but provides worse results in low-dimensional spaces.

Conclusion

In summary, the ability of Gaussian processes to predict the right ranking varies to a large
extent with a problem at hand. On the contrary, a particular type of covariance function or some
of the training set parameters, such as the algorithm of selection points from the archive or the
maximum radius for this selection, might be preferred, especially in higher dimensions.

4.4.3 Evaluation of Gaussian Process Based CMA-ES Algorithms

In (Bajer et al., 2019), we have thoroughly compared the DTS-CMA-ES, most of GP-assisted
CMA-ES versions with each other as well as with a few other important black-box optimization
methods on the COCO benchmarks. All the algorithms and experiments proposed by the
authors are implemented in Matlab5.

DTS-CMA-ES Implementation and Parameter Settings

The implementation of the DTS-CMA-ES is based on the IPOP-CMA-ES in the Matlab version
3.62β. For the COCO benchmarks, the initial mean is uniformly sampled from [−4, 4]D, the

5 The source code is available on Github https://github.com/bajeluk/surrogate-cmaes
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initial step-size σ(0) = 8
3 and the number of IPOP restarts is limited to 50. Changes in the

CMA-ES code are rather subtle: the doubly trained EC is employed just after the CMA-ES new
population sampling (step 3 in Algorithm 9), and the EC returns to the CMA-ES a mix of the
original and GP model fitness, scaled such that none of the predicted fitness is lower than the
so-far minimum original bb-value in A.

Both the GP model trainings in the DTS-CMA-ES (steps 4 and 9) can fail, usually either due
to numerical errors in Cholesky matrix decomposition during GP hyperparameter estimation
(used for the GP covariance matrix inversion), or the model is over-fitted in such a way that
it returns a constant almost everywhere. If training the first model M1 fails and there is no
successfully trained model at most two generations old, the algorithm proceeds as the standard
CMA-ES: the whole population is evaluated with the original fitness. If training the second
model M2 fails, the first model is used for the final prediction, too, and the self-adaptation
step is skipped.

ratio of original-evaluated points α The ratio of original-evaluated points should
inversely depend on the model error and can be either set fixed or can be adapted by the
DTS-CMA-ES. For the evaluations budget of roughly 50− 200 FE/D, the experimentally dis-
covered fixed value α = 0.05 has shown to achieve one of the best results on the COCO testbed
((Pitra et al., 2016), updated results are provided later in this section). The self-adaptation
setting is, on the other hand, better for larger evaluation budgets and for harder-to-regress
functions, and its setting is described below.

population size Replacing the exact fitness values with values returned by a surrogate
model introduces an uncertainty of which the CMA-ES is not aware. The CMA-ES updates are
then too rapid with respect to the number of original FE/D, and especially the step-size σ(g) is
shrunk too fast. As a result, the CMA-ES is often trapped in a local optimum. As the goal of our
work is not a precise fine-tuning of the CMA-ES internal constants, we use the population size
λ = 8+ b6 ln Dc that is doubled compared to the default. This enlargement results in adequate
CMA-ES updates and the convergence rate of the DTS-CMA-ES is considerably improved
(Pitra et al., 2016).

criteria for the selection of original-evaluated points Figure 20 shows ag-
gregated results of all five mentioned criteria, separately for selected unimodal and multimodal
COCO benchmarks. These graphs confirm both theoretical expectations and the previous in-
vestigations, e. g., in (Ulmer et al., 2003). Selecting the original-evaluated points based on the
best GP predictive mean (CM) works most exploitative: it leads the algorithm towards the near-
est local optimum. It thus works well on the unimodal functions, but it provides the worst
results on the multimodal benchmarks.

Similarly, the CEI is in comparison with the CPoI less localized and thus more explorative. The
CPoI performs considerably better on the unimodal functions while the CEI and also the CSTD
have superior results on the multimodal functions where the CPoI still performs adequately.
CERDE has been shown neither the best nor the worst; it performs similarly to or slightly better
than the CSTD on the unimodal functions, but considerably worse in the case of the multimodal
benchmarks.

Altogether, the best average results on the whole COCO benchmark set is provided by the
CPoI, which is used with the threshold T = bbmin − 0.05(bbmax − bbmin) in the rest of this work.
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multimodal COCO functions f3,4, f15−24

0 50 100 150 200 250
Number of evaluations / D

-8

-6

-4

-2

0

flo
g

 5-D

0 50 100 150 200 250
Number of evaluations / D

-8

-6

-4

-2

0
 20-D

Figure 20: Criteria for the selection of original-evaluated points (CM, CSTD, CEI, CPoI, CERDE) in the
α = 0.05/DTS-CMA-ES. The log10 of the median best bb-value distances to the optima were linearly
scaled to [−8, 0] and averaged (solid lines) over the selected unimodal (first row) and multimodal (second
row) benchmarks separately. The first and third quartiles from the respective sets of medians are denoted
with dotted lines.

However, it can be replaced with the CEI or CSTD when some a priori knowledge about the
multimodality of the fitness is available.

self-adaptation parameter setting The specific behavior of the proposed α-self-
adaptation is determined by the following set of parameters whose values we have investigated
in (Pitra et al., 2017a) – see Section 4.4.1.

� β – exponential smoothing update rate (a. k. a. learning rate) moderates vivid α oscil-
lations. In Pitra et al. (2017a), we recommend β = 0.3, which is used in the following
experiments, too, and which performs very similarly to the value β = 0.2, the value used
in the s∗ACM-ES (Loshchilov et al., 2013b). The DTS-CMA-ES has shown to be rather
robust with respect to the exact setting of this parameter.

� αmin, αmax – minimum and maximum bounds for the ratio α—should be set to enable
the self-adaptation to adequately react on a broad set of problems. The used minimum
bound αmin = 0.04 corresponds to one evaluated point per generation in D = 2, . . . , 20,
and the maximum bound should be set to αmax = 1.0 for the possibility of disabling the
surrogate modeling completely on the fitness landscapes where the GPs are not able to
satisfyingly predict the population ranking.
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� εmin, εmax – lower and upper saturation bounds on the exponentially smoothed errRDE
error for the linear transfer function. These parameters determine the self-adaptive be-
havior to a large extent and should change with both the dimension D of the problem
and the actual used ratio α(g+1). We have used the proposed set of multiple linear regres-
sion models εQ2

min and εQ3
max from Equations (78) and (81), respectively, which are most

capable of adapting to changing GP ranking error. Because the calculation of the values
εmin, εmax and the calculation of the resulting ratio α(g+1) (step 3 in Algorithm 10) are
mutually dependent, they are alternately repeated in a cycle until convergence or 500
iterations.

Experimental Settings of Compared Algorithms

This section comprises the settings of the algorithms we assessed in (Bajer et al., 2019). The six
algorithms based on the CMA-ES and a GP model: the S-CMA-ES, the DTS-CMA-ES in both
the fixed and self-adaptive version, the MA-ES, GPOP, and SAPEO. For the sake of compar-
ison with other state-of-the-art black-box optimizers, we took into considerations the results
of the standard IPOP-CMA-ES with both the recommended and the doubled population size,
two other surrogate-assisted CMA-ES algorithms lmm-CMA and s∗ACM-ES, the SMAC algo-
rithm as a representative of Bayesian optimization algorithms, and two local-search numerical
optimization algorithms based on a trust region method: the BOBYQA algorithm by Powell
(2009) and the interior-point method (Byrd et al., 2000) from the Matlab fmincon function.

Whereas the detailed parameter setting of the DTS-CMA-ES can be found above, the list of
the settings of the remaining algorithms follows.

s-cma-es : population size λ = 4 + b3 ln Dc, model life-length gM = 5, Gaussian process
surrogate model: TSS cluster, rmax = 10, Nmax = 15 · D, κ

5/2
Mat.

ma-es : population size λ = 10, parent number µ = 2, number of training points 2λ, ex-
tended population size λPre = 3λ, predictive mean as pre-selection criterion, our Matlab
implementation based on the implementation of the S-CMA-ES.

gpop : population size λ = 10, parent number µ = 2, training set size parameters NC = NR =
5D, input space termination tolerance 10−8, minimum fitness change for 10 last iterations
unless restart 10−9, perturbation size m = 1, our GPML-based Matlab implementation
using the Gaussian processes from the S-CMA-ES.

sapeo : the COCO/BBOB results have been kindly provided by the algorithm’s authors; vari-
ant ucp-2: sample-size 2λ, using three increasingly risky dominance relations.

cma-es : the IPOP-CMA-ES version (Matlab code 3.62β) with single (4 + b3 ln Dc) and dou-
bled (8 + b6 ln Dc) population size, 50 IPOP restarts, σ(0) = 8

3 , other settings were left
default.

lmm-cma , s∗
acm-es , smac : results downloaded from the COCO/BBOB results archive, the

BIPOP-s∗ACM-ES-k by Loshchilov et al. (2013a) used for the s∗ACM-ES, SMAC results are
only up to 100 FE/D; initializations of the lmm-CMA and SMAC are rather disputable
on f19.

bobyqa , fmincon: both algorithms initialized from a new uniformly sampled point every
fifth restart, otherwise used in their default settings, Dlib C++ implementation of BOBYQA,
fmincon with the interior-point algorithm from Matlab 2017a.

84

https://numbbo.github.io/gforge/downloads/download16.00/bbobdocfunctions.pdf#page=95 


Validation results

This section assesses the performance of all the algorithms mentioned in the previous section.
The performances are presented by the graphs in Figures 21–25

6. The numbers of COCO
functions for which one algorithm is better than each of the others are presented in Table 15.
Table 16 shows average ranks of the individual algorithms over all COCO functions and the
Iman-Davenport statistic FF with the corresponding p-value of the test where the null hypoth-
esis would mean equally distributed performance of all algorithms. Not surprisingly, the test
rejects this hypothesis in both 5D and 20D.

The graphs in Figures 21–24 document the differences between the GP/CMA-ES algorithms.
They depict the best-achieved logarithmic median distances to the benchmarks’ optima ∆log

f
for the respective numbers of FE/D. These medians (and in the case of the GP/CMA-ES
algorithms also the first and third quartiles) are from 15 independent instances for each re-
spective algorithm, function and dimension. The results of the GP/CMA-ES algorithms are
represented by thick lines and the reference algorithms use thinner lines to see whether some
better algorithm than any of the GP/CMA-ES exists (see Section 2.6.2 for detailed explanation
of convergence graphs).

In addition, comparison of the same set of 13 algorithms, based on the COCO-provided
ECDF graphs (see Section 2.6.1), is depicted in Figures 26–28. Algorithm performance for low
numbers of FE/D is emphasized due to the logarithmic scale of the horizontal axis, and the
results for 10D are included, too.

s-cma-es A noticeable pattern among our algorithms is, with few exceptions in 20D, that
the S-CMA-ES almost always converges to the optimum at the same rate or slower than both
versions of DTS-CMA-ES. It might be at least partly because the generation-based evolution
control of the S-CMA-ES is not able to exploit the GP models uncertainty, and, therefore, we
will point our attention to the DTS-CMA-ES.

dts-cma-es The fixed (α = 0.05) version of the DTS-CMA-ES converges fastest out of the
six GP/CMA-ES algorithms particularly on the subset f8−14 of the unimodal functions (which
are more or less after some transformation similar to the Rosenbrock’s function f8) and also
on the highly multimodal functions f19−21,23,24, often functions without any global structure.
While some of the non-GP algorithms s∗ACM-ES, lmm-CMA, BOBYQA or fmincon perform
similarly or better on the first part of functions ( f8−14), the performance on the multimodal
functions ( f19−21,23,24) is often the best out of all compared algorithms. These results are prob-
ably because the fixed DTS-CMA-ES is able to descend to the functions’ optima regardless of
the relatively high model error which forces the adaptive algorithms to spend more original
evaluations than necessary. On the other hand, the limitations of GP models can be seen on
the non-smooth functions f6 or f13 where the GP is not able to regress the fitness around the
optimum and where other algorithms perform better.

The self-adaptive DTS-CMA-ES is mostly the second or the third GP/CMA-ES algorithm on
the functions where the fixed DTS-CMA-ES succeeds (see the previous paragraph). However,
the self-adaptation improves the fixed DTS-CMA-ES behavior on the multimodal functions
with a global structure, especially on the Rastrigin functions f3,4,15 and Shaffers functions
f17,18 where the self-adaptive DTS-CMA-ES is usually the best of all 13 algorithms. A closer

6 Additional results are on the author’s webpage http://bajeluk.matfyz.cz/gpcomparison2017
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look at the convergence graphs reveals that the self-adaptive DTS-CMA-ES indeed speeds up
the 2-population IPOP-CMA-ES on these functions, approximately by the factor of 2.

ma-es Our implementation of the MA-ES most often occupies the worse half of the GP-
based algorithm ranking, even on the unimodal functions for which the (2, 10) setting was,
according to its authors, mainly aimed. The results are often very similar to or slightly better
than the results of the IPOP-CMA-ES, which signifies that the proposed individual-based EC
is not able to adequately speed up the CMA-ES compared to the EC of the other surrogate
algorithms. However, the results on the Attractive sector f6 are rather surprising because
the MA-ES’ model does not mislead the search even though the function is not smooth in the
optimum and thus very hard to regress by GPs.

gpop, smac Although the GPOP belongs to Bayesian optimization algorithms, it descends
much closer to the global optima than SMAC. For very few FE/D, SMAC is slightly faster but
very soon traps in some local optima. The GPOP is often the slowest or the second slowest
GP/CMA-ES algorithm on the noiseless COCO set (in 20D on f3,4, f6,7, f10−16, f19−24), but it
is the fastest during initial generations on the Sphere f1 and Ellipsoidal f2, where the GP
is able to regress the function well even with a very small number of training points. The
GPOP is the second on the Schaffers’ functions f17,18 (rather surprisingly only in 20D, it is
the slowest in 5D).

s∗
acm-es The BIPOP-s∗ACM-ES’ convergence speed is often similar or slightly worse than

the self-adaptive DTS-CMA-ES in 5D. In 20D, however, the s∗ACM-ES converges much faster
compared to the other algorithms, and it is the best or the second among all 13 algorithms on
the unimodal functions f2, f7,8, f10−14. It probably profits from its ranking surrogate model
and, therefore, from the invariance to monotonous transformations of the fitness. A consid-
erably faster convergence is clearly visible especially on the ill-conditioned or non-smooth
unimodal functions.

sapeo The SAPEO algorithm usually converges at a similar rate as the MA-ES or the
IPOP-CMA-ES. Nonetheless, its performance is considerably better than the MA-ES on func-
tions f9, f11, f14, f19, f22, and it is the best algorithm on f6 and f16 in 20D, where it obviously
adapts well to the fitness. Hence, the concept of uncertainty propagation is rather promising,
especially considering the GP model was trained only on 2λ points.

lmm-cma The quadratic-model-based lmm-CMA ranks on most benchmarks somewhere
between or very close to the fixed and self-adaptive DTS-CMA-ES ( f2−4, f8−12, f14−18, f21,22)
which conforms with the average results in Figure 25 where it is very close to the self-adaptive
DTS-CMA-ES. This similarity in terms of the results is in accordance with the fact that both
algorithms use a metric (i. e., not a rank-based) surrogate model as well as a similar kind of
adaptivity.

bobyqa and fmincon The BOBYQA is the best optimizer (out of all 13 compared) in the
very beginning of the optimization, i. e., up to roughly 15− 20 FE/D. Later, the behavior of
both the BOBYQA and fmincon dramatically changes with the benchmark at hand. They are
rather successful on the unimodal functions—BOBYQA on f1, f5, f8,9, and fmincon on the
ill-conditioned f10−14 and also on f1,2 and f6 in 5D. Moreover, they are in few cases able to
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Table 15: A pairwise comparison of the algorithms in 5D and 20D in terms of the number of wins of
the row algorithm against the column algorithm over all noiseless COCO functions for two evaluations
budgets. The budget (a) “1” denotes the smallest number of FE/D at which any of the algorithms reached
the target bbt = bbopt + 10−8 on the respective function, or 250 FE/D if the target was not reached, and
(b) “1/3” is one third of the budget “1”. The asterisk marks the row algorithm achieving a significantly
lower value of the objective function than the column algorithm (on medians over 15 instances from 24

functions) according to the Friedman post-hoc test with the Shaffer correction at the family-wise level
0.05 (Demšar, 2006; García and Herrera, 2008).
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1⁄3 1

1⁄3 1

S-CMA-ES — — 1 3 8 6 11 10 15 12 8 8 11 11 12 7 9 5 11 4 11 11 18 16 13 10

0.05 DTS 23 21 — — 13 14 18 17 18
∗

18 17 16 19
∗

18 17
∗

14 15 6 17 14 19 17 20
∗

19
∗

17 13

adp. DTS 16 18
∗

9 10 — — 20 21 20
∗

21
∗

17 18 22
∗

21 23
∗

21 15 9 17 12 17 13 20
∗

20
∗

16 11

MA-ES 13 14 6 7 4 3 — — 15 15 8 3 18 11 17 9 8 4 6 6 12 11 16 18 12 11

GPOP 9 12 6 6 4 3 9 9 — — 9 7 11 10 13 7 6 5 7 6 9 6 16 17 14 9

SAPEO 16 16 7 8 7 6 16 21 15 17 — — 21 21 20 16 11 11 9 10 15 12 20 20
∗

16 11

CMA-ES 13 13 5 6 2 3 6 13 13 14 3 3 — — 19 12 6 9 4 6 11 11 14 17 12 9

CMA-ES 2pop 12 17 7 10 1 3 7 15 11 17 4 8 5 12 — — 5 8 5 10 8 13 14 19 12 9

s∗ACM-ES 15 19
∗

9 18 9 15 16 20 18 19
∗

13 13 18 15 19 16 — — 10 13 16 17 17 21
∗

16 15

lmm-CMA 13 20 7 10 7 12 18 18 17 18 15 14 20 18 19 14 14 11 — — 18 18 17
∗

20
∗

13 10

BOBYQA 13 13 5 7 7 11 12 13 15 18 9 12 13 13 16 11 8 7 6 6 — — 15 17 13 13

SMAC 6 8 4 5 4 4 8 6 8 7 4 4 10 7 10 5 7 3 6 3 9 7 — — 11 10

fmincon 11 14 7 11 8 13 12 13 10 15 8 13 12 15 12 15 8 9 11 14 11 11 13 14 — —

successfully solve the multimodal benchmarks—BOBYQA adequately f19−24, and fmincon is
one of the best in 20D on f21,22. But not surprisingly, these algorithms otherwise often stuck
in local optima and on several benchmarks rank worse than the standard IPOP-CMA-ES.

Although it is not the prime criterion for the comparison of black-box optimizers, we also
provide the average CPU time per one original function evaluation for the algorithms that we
have benchmarked in Table 17.

4.4.4 Conclusion

This section re-investigates the employment of Gaussian processes in the CMA-ES. The pre-
sented algorithm DTS-CMA-ES differs from the lmm-CMA and s∗ACM-ES not only in the
regression model, but, more importantly, it uses Gaussian process uncertainty prediction for
selecting points in its evolution control. The selection that does not use uncertainty performs
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Figure 21: Medians (solid) and 1st/3rd quartiles (dotted) of the distances to the optima of 12 noiseless
COCO benchmarks f1−12 in 5D for 13 black-box optimizers with the emphasis on the six Gaussian
process/CMA-ES algorithms. Medians/quartiles were calculated across 15 independent instances for
each algorithm and are shown in the log10 scale.
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Figure 22: Medians (solid) and 1st/3rd quartiles (dotted) of the distances to the optima of 24 noiseless
COCO benchmarks f13−24 in 5D for 13 black-box optimizers with the emphasis on the six Gaussian
process/CMA-ES algorithms. Medians/quartiles were calculated across 15 independent instances for
each algorithm and are shown in the log10 scale.
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Figure 23: Medians (solid) and 1st/3rd quartiles (dotted) of the distances to the optima of 12 noiseless
COCO benchmarks f1−12 in 20D for 13 black-box optimizers with the emphasis on the six Gaussian
process/CMA-ES algorithms. Medians/quartiles were calculated across 15 independent instances for
each algorithm and are shown in the log10 scale.
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Figure 24: Medians (solid) and 1st/3rd quartiles (dotted) of the distances to the optima of 12 noiseless
COCO benchmarks f13−24 in 20D for 13 black-box optimizers with the emphasis on the six Gaussian
process/CMA-ES algorithms. Medians/quartiles were calculated across 15 independent instances for
each algorithm and are shown in the log10 scale.
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Figure 25: Median distances to the benchmarks’ optima averaged over all 24 noiseless COCO functions in
dimensions 2, 5, 10, 20. The log10 of the median distances were linearly scaled to [−8, 0] for each function
before calculating the averages.

Table 16: Mean rank of each algorithm over the COCO and the Iman-Davenport statistic for the 4 consid-
ered combinations of dimensionalities and evaluation budgets. The Iman-Davenport statistic FF with the
corresponding p-value of the test of equal performance of all algorithms are in the last two rows. See the
caption of Table 15 for explanations of the budgets 1/3 and 1.

Dim 5D 20D

FE/D budget 1⁄3 1
1⁄3 1

S-CMA-ES 8.12 8.54 7.67 8.71
0.05 DTS 3.73 3.21 4.10 5.23
adp. DTS 4.77 3.83 4.10 4.85
MA-ES 6.88 7.25 7.38 8.33
GPOP 7.21 8.67 8.29 8.96
SAPEO 7.04 7.25 5.79 5.96
CMA-ES 8.50 8.62 8.50 8.17
CMA-ES 2pop 9.79 8.25 9.21 7.12
s∗ACM-ES 8.25 7.17 5.67 4.62

lmm-CMA 4.98 5.06 5.56 5.35
BOBYQA 6.21 6.58 7.50 7.12
SMAC 8.06 9.56 9.35 10.10
fmincon 7.46 7.00 7.88 6.46

FF 5.41 7.42 6.07 5.87
p-val 3.00 · 10−08 7.75 · 10−12 1.93 · 10−09 4.37 · 10−09

on average worst. In addition, uncertainty has been shown to help more on the multimodal
benchmarks.
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Table 17: The CPU time in seconds per one original function evaluation: averaged results over all 24

noiseless COCO functions measured on the computers of the Czech national computational grid Meta-
Centrum (single-threaded jobs on mostly Intel Xeon-based computers, ranging from 2.0 to 3.5 GHz with
8.9 to 33.9 SPECfp2006 performance per core).

Algorithm 2D 3D 5D 10D 20D

S-CMA-ES 2.5e−1 1.5e−1 1.7e−1 2.6e−1 1.1
0.05/2pop DTS-CMA-ES 7.3e−1 6.0e−1 7.5e−1 1.7 1.3e+1
adaptive DTS-CMA-ES 5.0e−1 2.7e−1 2.9e−1 9.1e−1 5.6
MA-ES 2.1e−2 4.5e−2 4.8e−2 4.6e−2 7.1e−2
GPOP 9.4e−1 1.2 1.8 3.4 1.2e+1
CMA-ES 2pop 3.2e−3 2.2e−3 1.4e−3 8.4e−4 6.1e−4
BOBYQA 1.8e−3 1.3e−3 9.5e−4 6.2e−4 5.3e−4
fmincon 2.8e−3 1.7e−3 1.1e−3 6.8e−4 4.5e−4

The section also provides an evaluation of different parameter settings. The selection of the
k nearest neighbor points as training sets in a specified range for surrogates performed best, a
selection method rather rarely encountered in literature. Other parameter settings, used in the
experiments due to their good performance, are rather expectable (e. g., a large radius for the
selection of training set, the Matérn covariance function, etc.).

The self-adaptive version of the DTS-CMA-ES uses a similar adaptation mechanism of the
number of points for the evaluation with the original fitness as the lmm-CMA. This adaptive
version also performs similar to the lmm-CMA on many noiseless COCO benchmark functions,
which suggests a hypothesis that the self-adaptation decides the algorithm performance to a
great extent. Less importantly, the self-adaptive DTS-CMA-ES is the best out of 13 compared
algorithms on at least two benchmarks.

The last part of this section empirically compares the available implementations of the algo-
rithms combining the Gaussian processes and the CMA-ES with the CMA-ES itself and five
other state-of-the-art black box optimizers. The fastest convergence rate in terms of the orig-
inal fitness evaluations out of the six compared GP/CMA-ES algorithms was reached by the
DTS-CMA-ES with the fixed parameter α = 0.05. This DTS-CMA-ES variant represents an
algorithm of choice for multimodal functions with weak global structure and is very eligible
for unimodal landscapes, too, especially in lower dimensions. The self-adaptive version, on
the other hand, excels on the globally decreasing multimodal functions where it outperforms
other compared algorithms.

Competitive results on a relatively broad spectrum of the noiseless COCO benchmarks were
also provided by the two non-GP surrogate-assisted CMA-ES algorithms. Since the s∗ACM-ES
uses a ranking surrogate model, it is valuable especially for functions without continuous
derivatives in the optima. It also provides impressive results in 20D where it represents the best
choice for many unimodal functions while still providing average results on the multimodal
ones. It is worth mentioning that the versions without and with the self-adaptation were placed
the 1st and 2nd respectively in the two single-objective tracks of the Black Box Optimization
Competition at the conference GECCO 2017

7.

7 The detailed results can be found on the competition’s webpage https://www.ini.rub.de/PEOPLE/glasmtbl/

projects/bbcomp/
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Algorithm 11 Ordinal GP model training

Input: (xi, yi)
N
i=1 — training points,

r — the number of bins for clustering,
θ0 — initial values of latent GP hyperparameters θ,
α0, {β0

j }
r−1
j=1 — initial values of PLSOR hyperparameters α, {β j}r−1

j=1

1: {yord
i }

N
i=1 ← cluster({yi}N

i=1, r)
2: (α, {β j}r−1

j=1 ,θ)∗ ← arg max
α,{β j}r−1

j=1 ,θ

log L̂({yord
i }

N
i=1|{xi}N

i=1, α, {β j}r−1
j=1 ,θ) (see Eq. (40))

Output: (α, {β j}r−1
j=1 ,θ)∗ — trained model hyperparameters

To conclude, the surrogate-model-based CMA-ES algorithms constitute state-of-the-art opti-
mizers for black-box optimization problems. In particular, the Gaussian processes have been
shown to be a very competitive (if not the best) surrogate models, especially for multimodal
moderately-dimensional objective functions.

4.5 comparison of ordinal and metric gaussian process regression

In this section, we present an approach of using a Gaussian process as an ordinal surrogate
model for the CMA-ES from (Pitra et al., 2017b). Although the continuity of Gaussian pro-
cesses suggests the already presented metric regression, the CMA-ES, due to its invariance
with respect to order preserving transformations, might perform better when used with ordi-
nal regression models, similarly to the s∗ACM-ES by Loshchilov et al. (2013b) which uses the
ordinal Support vector regression. Since a few approaches to the ordinal Gaussian process
regression have appeared recently (see Section 2.3.1), we decided to compare PLSOR method
also described in Section 2.3.1 with the metric GP regression model, particularly the perfor-
mance of the models when used as surrogates for the CMA-ES. Because this is (up to our
knowledge) the first time the ordinal GP regression is used for surrogate modelling, we have
investigated also the suitability of several different settings of the employed ordinal regression
method to this end.

The next section sketches some details of our implementation of ordinal GP regression, and,
in Section 4.5.2, which is the core part of this investigation, the results of testing both kinds of
GP regression in connection with the CMA-ES on the noiseless part of the COCO platform are
reported using the COCO-provided graphs.

4.5.1 Implementation of Ordinal GP

The ordinal GP model-building phase, depicted in Algorithm 11, starts with clustering the in-
put data (xi, yi)

N
i=1 transformed by the generalized model training procedure (see Section 4.1.2)

to intervals I1, . . . , Ir. After that, the hyperparameters are selected to maximize the likelihood
(40) via leave-one-out cross-validation (Rasmussen and Williams, 2006, p. 111).

The ordinal GP model prediction procedure is depicted in Algorithm 12. The prediction
of the ordinal class qi of a point xi is calculated as the expectation of the ordinal class values
of xi with respect to the probability distribution defined for x = xi according to (39). The
output of the GP model is the ordered set of CMA-ES generated population {xi:λ}λ

i=1, where
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Figure 26: Bootstrapped empirical cumulative distribution of the number of objective FE/D for all
functions and subgroups in 5D. The targets are chosen from 10[−8..2] such that the best algorithm from
BBOB 2009 just not reached them within a given budget of k × D, with 31 different values of k chosen
equidistant in logscale within the interval {0.5, . . . , 100}. The “best 2009” curve corresponds to the best
expected runtime (ERT) observed during BBOB 2009 for each selected target. The ERT depends on a given
target function value, bbt = bbopt +∆bb, and is computed over all relevant trials as the number of function
evaluations executed during each trial while the best function value did not reach bbt, summed over all
trials and divided by the number of trials that actually reached bbt (Hansen et al., 2012).
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Figure 27: Bootstrapped empirical cumulative distribution of the number of objective FE/D for all
functions and subgroups in 10D. The targets are chosen from 10[−8..2] such that the best algorithm from
BBOB 2009 just not reached them within a given budget of k × D, with 31 different values of k chosen
equidistant in logscale within the interval {0.5, . . . , 100}. The “best 2009” curve corresponds to the best
expected runtime (ERT) observed during BBOB 2009 for each selected target. The ERT depends on a given
target function value, bbt = bbopt +∆bb, and is computed over all relevant trials as the number of function
evaluations executed during each trial while the best function value did not reach bbt, summed over all
trials and divided by the number of trials that actually reached bbt (Hansen et al., 2012).
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Figure 28: Bootstrapped empirical cumulative distribution of the number of objective FE/D for all
functions and subgroups in 20D. The targets are chosen from 10[−8..2] such that the best algorithm from
BBOB 2009 just not reached them within a given budget of k × D, with 31 different values of k chosen
equidistant in logscale within the interval {0.5, . . . , 100}. The “best 2009” curve corresponds to the best
expected runtime (ERT) observed during BBOB 2009 for each selected target. The ERT depends on a given
target function value, bbt = bbopt +∆bb, and is computed over all relevant trials as the number of function
evaluations executed during each trial while the best function value did not reach bbt, summed over all
trials and divided by the number of trials that actually reached bbt (Hansen et al., 2012).
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Algorithm 12 Ordinal GP model prediction

Input: {xi}λ
i=1 — population of points,

θ — trained latent GP hyperparameters,
α, {β j}r−1

j=1 — trained PLSOR hyperparameters

1: pk
i ← P(bb(xi) ∈ Ik|xi, α, {β j}r−1

j=1 ,θ), ∀k = 1, . . . , r, ∀i = 1, . . . , λ (see Eq. (39))

2: qi ← ∑r
k=1 pk

i k ∀i = 1, . . . , λ
3: {xi:λ}λ

i=1 ← order {xi}λ
i=1 according to q1:λ ≤ q2:λ ≤ · · · ≤ qλ:λ

Output: {xi:λ}λ
i=1 — ordered population

the index i:λ denotes the index of the i-th point ranked, according to the expected order w.r.t.
the probability distribution (39).

4.5.2 Experiments on the COCO platform

Validation of Our PLSOR Implementation

In order to validate at least experimentally that our PLSOR implementation conforms with
the results of already published framework, our code was benchmarked on a collection of
9 datasets from the UCI machine learning repository, similarly to the previous approaches to
ordinal regression with Gaussian processes (Chu and Ghahramani, 2005; Srijith et al., 2012a).

A 20-fold cross-validation was used and the response variables were discretized into either
5 or 10 ordinal categories by equal frequency binning. The PLSOR performance was measured
with the zero-one error (ZOE), i. e., the ratio of incorrect test predictions to the number of the
test data,

errZOE =
1
t

t

∑
i=1

I (yi 6= ŷi) , (87)

where I(·) is the indicator function.
Table 18 compares ZOE means and standard deviations on the 5-categories versions of the

benchmark datasets with the results reported in (Srijith et al., 2012a).
We observe that our implementation is clearly worse only on two datasets, Diabetes and

Wisconsin. On the remaining datasets, it slightly exceeds or comes very close to the referential
results. According to the Wilcoxon signed-ranks test, the differences between both implemen-
tations for 5- and 10-categories versions are not significant (p = 0.16, 0.34 respectively). The
validation was performed with the squared exponential covariance κSE with initial parameter
values and other implementation choices matching those given in (Srijith et al., 2012a) when
possible.

Predictive Accuracy of Metric and Ordinal GP Regression

As our primary interest is in using Gaussian processes as surrogate models for the CMA-ES, we
tested the proposed models on datasets corresponding to the 24 noiseless COCO benchmarks
while comparing the models’ capabilities to predict the ordering of a new population.

The training datasets were collected for each function fi, i ∈ {1, 2, . . . , 24} and for dimen-
sions D ∈ {2, 5, 10} from 10 snapshots of the DTS-CMA-ES archive A (i. e., the set of so-far
originally-evaluated points). These snapshots were taken equidistantly throughout CMA-ES
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Table 18: Validation of the PLSOR implementation on the 5 categories versions of the benchmark datasets.
Mean and standard deviations of the zero-one error over 20 cross-validation sets reproduced from (Srijith
et al., 2012a) (middle column) and values for our implementation (right column). The lower mean values
are highlighted in bold.

Data ZOE (original (Srijith et al., 2012a)) ZOE (our implementation)

Diabetes 0.48± 0.11 0.57± 0.11
Pyrimidine 0.39± 0.09 0.36± 0.07
Triazines 0.54± 0.03 0.54± 0.03
Wisconsin 0.66± 0.03 0.68± 0.05
Machine 0.18± 0.03 0.19± 0.04
AutoMPG 0.26± 0.02 0.26± 0.02
Boston 0.25± 0.03 0.25± 0.03
Stocks 0.11± 0.02 0.11± 0.02
Abalone 0.22± 0.03 0.22± 0.04

generations and each testing dataset was sampled using a simple combination of the CMA-ES
state variables (m, σ, C), which assures equal distribution of its training and test part.

We have compared DTS-CMA-ES’ metric GP models with 14 settings of the PLSOR. These
settings differ with respect to:

1. covariance function – κSE (used in (Srijith et al., 2012a)) and κ
5/2
Mat;

2. type of obtaining ordinal from continuous bb-value – quantile clustering, agglomerative
hierarchical clustering, or direct ordering of bb-values (no clustering);

3. the number of clusters in 2. – µ, λ or 2λ.

The results for D = 5 are presented in Table 19. As can be seen, the PLSOR models in general
produce a higher ZOE than the metric GP. An exception is the datasets for the Attractive

sector function f6 where standard continuous regression models fail to regress a sharp edge
where the true optimum of the function is located and ordinal models seem to benefit from
their invariance w.r.t. the smoothness of the corresponding function.

Metric and Ordinal GP Surrogate Models for the CMA-ES

Based on the off-line model testing, three well-performing ordinal GP models were chosen for
the COCO noiseless benchmarking in connection with the DTS-CMA-ES algorithm:

� Ord-N-DTS, N denotes no clustering at all,

� Ord-Q-DTS, Q stands for quantile-based clustering, and

� Ord-H-DTS, H is hierarchical agglomerative clustering.

The number of ordinal classes for clustering was set the same as the population size λ. The
ordinal DTS-CMA-ES versions were tested using the function values as a criterion for choosing
the points for original fitness function re-evaluation. The DTS-CMA-ES with both ordinal
and metric models was used in the version very similar to the version published in (Pitra
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et al., 2016). The remaining parameters were left the same as in this original DTS-CMA-ES
settings, too: the GP prediction variance as the uncertainty criterion, the population size λ =
8 + b6 ln Dc, and the ratio of originally-evaluated points α = 0.05.

The original CMA-ES was employed in its IPOP-CMA-ES version (Matlab code v. 3.61) using
settings identical to Bajer et al. (2015) described in Section 4.2.1.

The results in Figure 29 show the effect of using the PLSOR models instead of the metric GP
in the DTS-CMA-ES optimizer on all the 24 noiseless COCO benchmarks (Hansen et al., 2009b,
2016) (see ECDF graphs in more detail in Section 2.6.1). The experiments were conducted
with the maximum budget of 100 FE/D in dimensions D = 2, 3, 5, 10. Experiments in higher
dimensions were not performed due to immense computational requirements. More detailed
results can be found on an authors’ webpage8.

The effect of different clustering methods seems not to be important (see Figure 29). The
ordinal DTS-CMA-ES outperforms the metric version only on several (mostly multi-modal)
functions in lower dimensions (on f6, f16−19, and f21−22), whereas the original DTS-CMA-ES
is dominant on the remaining tested functions and in higher dimensions.

We have tested the statistical significance of performance differences in 5D using the Iman
and Davenport’s improvement of the Friedman test (Demšar, 2006). The test is conducted
separately for two function evaluation budgets, where the maximum number of FE/D is only
100, compared to the previous chapter. The algorithms are ranked on each COCO function
with respect to ∆bbmed at a given budget of function evaluations. The null hypothesis of equal
performance of all algorithms is rejected at a higher function evaluation budget “1” (p < 10−3),
as well as at a lower budget “1/3” (p < 10−3) (see caption of Table 15 for the definition of these
budgets; 250 FE/D is replaced with 100 FE/D here).

We test pairwise differences in performance of the algorithms using the post-hoc Friedman
test (García and Herrera, 2008) with a control of the family-wise error: Bergmann-Hommel
procedure corrects the significance level per each logically consistent family of hypotheses.
The results of these multiple comparisons are reported in Table 20. There is no significant
effect of clustering on ordinal regression DTS performance in 5D at significance level α = 0.05.
On the other hand, the metric regression DTS significantly outperforms the ordinal regression
DTS at both tested budgets of function evaluations.

CPU Timing

In order to evaluate the CPU timing of the algorithms, we have run the Ord-Q-DTS on the
COCO test suite with restarts for a maximum budget equal to 100 FE/D. The MATLAB code
was run in a single thread on the MetaCentrum grid with CPUs from the Intel Xeon family.
The time per one function evaluation on f8 for dimensions 2, 3, 5, 10 equals 4.15, 6.48, 12.48,
and 13.95 seconds respectively.

4.5.3 Conclusion

In this section, we have compared the ordinal GP regression model using PLSOR implementa-
tion with the metric GP regression model used in the DTS-CMA-ES. The comparison of our
implementation of the PLSOR method reproduced the published results on the UCI datasets,
but the use of the PLSOR models as surrogates for the CMA-ES was not shown as straight-
forward on the COCO benchmark: the performance of the PLSOR models is considerably

8 https://jdgregorian.github.io/surrogate-cmaes-pages/supp/gecco2017bbob/
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Figure 29: Bootstrapped empirical cumulative distribution of the number of objective function evalua-
tions divided by dimension (FEvals/D) for all functions and subgroups in 5D. The targets are chosen
from 10[−8..2] such that the bestGECCO2009 artificial algorithm just not reached them within a given bud-
get of k × D, with k ∈ {0.5, 1.2, 3, 10, 50}. The “best 2009” curve corresponds to the best ERT observed
during BBOB 2009 for each selected target.
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Table 20: A pairwise comparison of the algorithms in 5D on the COCO noiseless functions for different
evaluation budgets. The number of wins of i-th algorithm against j-th algorithm over all benchmark func-
tions is given in i-th row and j-th column. The asterisk marks the row algorithm achieving a significantly
lower value of the objective function than the column algorithm (on medians over 15 instances taken
from all 24 functions) according to the Friedman post-hoc test with the Bergmann-Hommel correction
at the family-wise significance level α = 0.05. The double asterisk marks additional significant results
at the same significance level according to the Friedman test with more powerful Bergmann-Hommel
correction of family-wise error. The Bergmann-Hommel procedure rejects more hypotheses, as it exploits
logical relations between them.
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Figure 30: Comparison of optimization algorithms on the Attractive sector function f6 in 2D and 5D.

lower than the standard GP models with few exceptions, especially on the Attractive sector

function f6 (see Figure 30).

4.6 automated selection of covariance function for gaussian process sur-
rogate models

A principal choice in specifying a Gaussian process model is the choice of the covariance
function, which largely embodies the prior assumptions about the modeled function. Several
methods for learning the form of covariance function have been proposed:

� Learning a composite expression of kernel functions for support vector machines by
genetic programming was explored in (Gagné et al., 2006).
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� Hierarchical kernel learning (Bach, 2009) and Additive Gaussian processes (Duvenaud
et al., 2011) are algorithms for determining kernels composed of lower-dimensional ker-
nels.

� The goal of Automatic Statistician project (Lloyd et al., 2014) is automatic statistical anal-
ysis of given data with output in natural language.

� The algorithm of structure discovery in GP models (Duvenaud et al., 2013) is a greedy
search in the space of composite covariance functions generated by operators of addition
and multiplication recursively applied to basis covariance functions.

Up to our knowledge, structure discovery in GP surrogate models for continuous black-box
optimization has not yet been investigated. As a first step towards this goal, in (Repický et al.,
2018a,b), we performed selection of the best GP model from a model population that we tried
to design large enough to capture structure of typical continuous black-box function but still
small enough for model selection to be computationaly feasible. The main hypothesis behind
this research is that a GP with a composite form of its covariance function may result in a more
accurate approximation of the objective function and, consequently, better performance of the
model-assisted optimization algorithm.

Hierarchical Model

When the GP covariance function family is given, model selection for GP regression is usually
performed by maximum marginal likelihood estimate θ̂MLE = arg maxθ ln p(yN |XN ,θ), where
p(yN |XN ,θ) is a marginal likelihood from (15), which is a non-convex optimization problem.

From a Bayesian perspective, especially if the number of hyperparameters is large or if
number of observations N is small, it might be more appropriate to do inference with the
marginal posterior distribution of hyperparameters

p(θ |XN , yN) =
p(yN |XN ,θ)p(θ)

p(yN |XN)
, (88)

where p(yN |XN ,θ) is the marginal likelihood (15), now playing the role of the likelihood, and
p(θ) is a hyper-prior. Simulations from p(θ |XN , yN) can be obtained by Bayesian computation
methods, such as Markov chain Monte Carlo.

4.6.1 Model Selection

If the probability of the true value of the fitness function conditioned on the GP prior is low, the
performance of the model will be poor. For example, a GP with a neural network covariance
κNN (see Equation (31)) fits data from a jump function better compared to a GP with a squared
exponential (more on in Section 2.3.1). Searching over GP models with different covariances
thus can be viewed as an automated construction of suitable priors. We select the model from
a finite set according to a criterion of predictive performance, since this approach can easily be
embedded into a combinatorial search algorithm, such as in (Duvenaud et al., 2013).

Performance Criteria

We would like to select the surrogate model based on an estimation of out-of-sample predictive
accuracy.
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An attractive estimate of the out-of-sample predictive accuracy is cross-validation based on
some partitioning of the data set into multiple data sets called folds. An efficient algorithm
for hyperparameter optimization with leave-one-out cross-validation has been developed by
Sundararajan and Keerthi (2001). However, choosing among multiple GP models by cross-
validation in each generation of the evolutionary optimization can be considered prohibitive
from the computational perspective.

In the remainder of this subsection, we follow the exposition of model comparison from
Bayesian perspective given in (Gelman et al., 2014). We denote by q the true distribution from
which data yN are sampled and we suppress conditioning on XN for simplicity.

A general measure of fit of a probabilistic model yN to data is the log likelihood or log
predictive density ln p(yN | θ) = ln ∏N

i=1 p(yi | θ). The quantity −2 ln p(y | θ) is called deviance.
The Akaike information criterion (AIC) (Akaike, 1973) and the related Bayes information crite-

rion (BIC) (Schwarz, 1978) are based on the expected log predictive density conditioned on a
maximum likelihood estimate θ̂MLE,

elpdθ̂ = Eq(ln p(ỹN | θ̂MLE)) , (89)

where the expectation is taken over all possible data sets ỹN . Since expectation (89) cannot be
computed exactly, it is estimated from sample yN . The AIC and Bayes information criterion
(BIC) compensate for bias towards overfitting by substracting a correction term, the number of
parameters nθ and 1

2 nθ ln N, respectively.
More precisely, the AIC is written as:

AIC = −2 ln p(yN | θ̂MLE) + 2nθ . (90)

The closely related BIC is based on approximation of marginal likelihood and uses a bias
correction that is dependent on the sample size:

BIC = −2 ln p(yN | θ̂MLE) + nθ ln N . (91)

Compared to AIC, the BIC tends to favor models with lower number of parameters for nθ ≥ 8.
For hierarchical Bayesian models, such as (88), it is not always entirely clear, what the pa-

rameters of the model are, since the likelihood can factorize in different ways. The deviance
information criterion (DIC) (Spiegelhalter et al., 2002) is still based on deviance, conditioned
on a Bayes estimate θ̂Bayes, but the effective number of parameters pDIC depends on data. We
define the DIC for the marginal likelihood (15), focusing on hyperparameters θ, although it
could be defined for the likelihood p(yN | bb,θ), focusing on both bb and θ.

The original definition of pDIC is the difference between posterior mean of the deviance and
the deviance conditioned on posterior mean of parameters under focus (Spiegelhalter et al.,
2002). We use the following definition of the effective number of parameters (see (Gelman
et al., 2014)):

pDIC = 2varpost(ln p(yN | θ)) , (92)

which can be estimated by the sample variance of a posterior sample. Using the effective
number of parameters, the DIC is

DIC = −2 ln p(yN | θ̂Bayes) + 2pDIC . (93)

A probabilistic model is called regular if its parameters are identifiable and its Fisher in-
formation matrix is positive definite for all parameter values. The model is called singular
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otherwise. The information criteria defined above assume regularity. Watanabe (2007) proved
that many machine learning models are singular and proposed the the Widely applicable infor-
mation criterion (WAIC) (Watanabe, 2010) that works also for singular models. The WAIC is
based on estimation of the expected log pointwise predictive density

elppd =
N

∑
i=1

Eq(ln ppost(ỹi)) =
N

∑
i=1

Eq

(
ln
∫

p(ỹi | yN ,θ)p(θ | yN)dθ
)

. (94)

The estimation of elppd from the sample is biased, so again, an effective number of parameters
must be added as a correction. We use the following definition of the WAIC (see (Gelman et al.,
2014)):

WAIC = −
N

∑
i=1

ln ppost(yi) +
N

∑
i=1

varpost(ln p(yi | θ)) , (95)

that is the negative log pointwise predictive density corrected for bias by pointwise posterior
variance of log predictive density.

The pointwise predictive density ppost(yi | yN ,θ) for the GP model (15) is computed by inte-
grating Gaussian likelihood over the marginal posterior GP at ith training point:

p(yi | yN ,θ) =
∫

p(yi | yN , bbi,θ)p(bbi | yN ,θ) dbbi

= ϕ(yi | b̂bi, σ2
n + var(bbi)) ,

where ϕ denotes the Gaussian density and b̂bi, var(bbi) represent ŷ∗, Σ̂∗ in (22) respectively.

4.6.2 Experimental Evaluation

In this section, we describe preliminary experimental evaluation of DTS-CMA-ES that uses a
GP model with an automated selection of covariance function. Since GPs are a nonparametric
model, we opt for the WAIC, which require a sample from distribution (88). We use Metropolis-
Hastings Markov chain Monte Carlo with an adaptive proposal distribution (Haario et al.,
2006)9.

Algorithm 9 is updated in the following way10:

1. In steps 4 and 9, all GPs from a user defined portfolio are trained.

2. The predictive accuracy of all models is evaluated using the specified information crite-
rion.

3. The model with the lowest WAIC is used for prediction (steps 5 and 10).

Experimental Setup

The proposed algorithm implemented in MATLAB was evaluated on the noiseless part of
the COCO/BBOB framework (Hansen et al., 2009b, 2012) and compared with the original
DTS-CMA-ES using a GP surrogate according to Algorithm 9 and the original CMA-ES itself.
We run the algorithm on 5 instances (1− 5) as opposed to 15 recommended instances for the
reason of increased computational demands of the modified algorithm. For the same reason,
we have performed evaluation only in 10D with the budget of 250 FE/D.

9 Using MATLAB implementation available at http://helios.fmi.fi/~lainema/dram/
10 The source codes are available at https://github.com/repjak/surrogate-cmaes/tree/modelsel
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Figure 31: Medians (solid) and 1st/3rd quartiles (dotted) of the distances to the optima against the
number of function evaluations on the Step Ellipsoid COCO function f7 in 10D for the CMA-ES, the
DTS-CMA-ES, and the DTS-CMA-ES with the adaptive covariance selection according to AIC and BIC:
AIC-DTS, BIC-DTS. The medians and quartiles were calculated from 15 independent runs on different
function instances. Distances to optima are shown in the log10 scale (see Section 2.6.2 for details).

cma-es The CMA-ES results in BBOB format were downloaded from the BBOB 2010 work-
shop archive11.

dts-cma-es If not stated otherwise, the DTS-CMA-ES was employed in its overall best
adaptive settings from (Bajer et al., 2019) (see Section 4.4).

dts-cma-es with ic We have employed the following information criteria: AIC, BIC, and
WAIC. The DIC (93) values were also computed during the run together with WAIC for
information, but not taken into any algorithm decision due to high computational demands.
The selection was performed among the following covariance functions: κLIN, κQ, κSE, κNN,
κADD, and two composite covariances κSE+Q and κSE+NN. The hyper-priors are chosen as
follows: log-normal with mean ln(0.01) and variance 2 for σ2

n ; and log-tν=4 with mean 0 for all
other hyperpameters.

Results

The results are shown in Figures 31 and 32 and Table 21. Figures 31 and 32 gives the scaled
best-achieved logarithms ∆log

f of median distances to the functions optimum for the respective

number of FE/D (see Section 2.6.2). Medians and the 1st and 3rd quartiles are calculated from
5 independent instances in case of the algorithm with covariance selection according to the
WAIC and from 15 independent instances otherwise.

AIC and BIC optimization results did not show an improvement on the DTS-CMA-ES with
no clear difference between them. Nevertheless, a promising result has been obtained on the
Step ellipsoid function f7, characterized by plateaus lying on a quadratic structure, especially

11 http://coco.gforge.inria.fr/data-archive/bbob/2010/
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Table 21: Average model ranks on the noiseless part of the COCO testbed in 10D for DIC and WAIC
predictive performance criteria selecting covariance function for the DTS-CMA-ES. The lowest values for
the considered combination of COCO function and performance criterion are in bold.

Criterion WAIC DIC

Model κSE κNN κLIN κQ κADD κSE+NN κSE+Q κSE κNN κLIN κQ κADD κSE+NN κSE+Q

f1 3.64 4.01 6.94 4.17 2.73 3.25 3.27 5.57 4.68 6.65 3.11 1.55 4.07 2.37
f2 3.07 3.05 6.96 5.41 4.35 2.48 2.67 5.38 4.85 6.78 3.99 1.45 3.71 1.84
f3 2.94 3.20 6.75 5.99 4.14 2.45 2.53 4.37 4.63 6.74 5.40 1.40 3.11 2.36
f4 3.00 3.20 6.87 5.73 4.11 2.52 2.57 4.49 4.67 6.76 5.21 1.30 3.27 2.30
f5 3.69 3.60 6.78 4.41 2.69 3.28 3.56 6.75 4.16 4.71 3.25 3.48 3.00 2.66

f6 3.03 3.09 6.99 5.95 3.99 2.46 2.50 4.18 4.62 6.92 5.92 1.86 2.80 1.69
f7 3.15 3.09 6.92 5.86 3.91 2.49 2.58 4.35 4.87 6.90 5.37 1.54 2.99 1.98
f8 2.83 3.12 6.97 5.76 4.15 2.50 2.66 4.78 4.57 6.83 5.21 1.32 3.27 2.02
f9 2.86 3.14 6.97 5.69 4.14 2.63 2.57 4.86 4.57 6.79 5.05 1.32 3.37 2.04

f10 3.00 3.16 6.96 5.43 4.31 2.52 2.62 5.39 4.82 6.76 3.95 1.53 3.79 1.75
f11 3.01 3.09 6.97 5.53 4.24 2.57 2.60 5.21 5.17 6.80 3.66 2.14 3.87 1.16
f12 3.16 3.28 6.93 4.37 4.96 2.64 2.66 5.46 4.65 6.66 3.57 1.46 3.94 2.27
f13 2.93 2.98 6.98 5.83 4.42 2.37 2.50 4.87 4.47 6.88 5.23 1.24 3.06 2.25
f14 3.29 2.96 7.00 5.90 3.63 2.59 2.64 4.26 4.84 6.99 5.64 1.43 3.04 1.81

f15 2.86 3.28 6.73 5.95 4.13 2.58 2.47 4.25 4.69 6.80 5.58 1.48 2.92 2.28
f16 2.53 3.59 6.46 6.50 4.16 2.41 2.36 3.69 4.69 6.78 6.10 1.80 2.44 2.51
f17 3.25 3.05 6.86 6.09 3.52 2.58 2.65 4.03 4.69 6.90 5.95 1.36 2.80 2.26
f18 3.17 3.05 6.88 6.10 3.65 2.55 2.60 3.98 4.70 6.88 6.00 1.42 2.74 2.28
f19 2.60 3.52 6.42 6.54 4.20 2.32 2.39 3.69 4.67 6.75 6.13 1.45 2.52 2.78

f20 2.98 3.37 6.94 5.55 4.01 2.62 2.51 4.46 4.73 6.81 5.22 1.30 3.26 2.21
f21 3.14 3.21 6.87 5.07 4.61 2.59 2.51 4.91 4.65 6.76 4.56 1.34 3.47 2.31
f22 3.11 3.22 6.88 5.00 4.57 2.58 2.63 5.06 4.60 6.73 4.31 1.41 3.51 2.37
f23 2.47 3.77 6.35 6.58 4.28 2.34 2.21 3.50 4.76 6.68 6.15 1.74 2.47 2.70
f24 2.73 3.53 6.44 6.51 4.06 2.38 2.34 3.76 4.68 6.77 6.11 1.42 2.53 2.73

in multi-dimensional variants (see Figure 31). The most frequently selected kernel for this func-
tion under both AIC and BIC has been the sum of the squared exponential and the quadratic
kernel, which provides an intuitive interpretation of the function.

We observe that in most cases, the WAIC-based algorithm mostly barely outperforms the
pure CMA-ES, which suggests the chosen model is generally weak and the adaptivity mech-
anism basically turns off using the surrogate model. The functions where the WAIC variant
outperforms the DTS-CMA-ES ( f21 and f22) are multi-modal and the interquartile range is
large.

In order to obtain the notion of DIC results, we compare the rank of each model under
WAIC and DIC. Table 21 summarizes the average ranks over all model selections performed
on each benchmark function. We observe that the DIC often prefers the additive model, while
the WAIC is more balanced in this respect. Surprisingly the linear covariance κLIN has been
very rarely selected even on the Linear slope function f5 under both information criteria. A
similar observation holds for the quadratic kernel κQ and the quadratic functions Sphere f1
and Ellipsoid f2.
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Figure 32: Medians (solid) and 1st/3rd quartiles (dotted) of the distances to the optima of 24 COCO/BBOB
benchmarks in 10D for algorithms DTS-CMA-ES (green, denoted aDTS-CMA-ES), DTS-CMA-ES with
WAIC-based model selection (red) and CMA-ES (blue). The medians and quartiles for WAIC variant
were calculated from 5 independent instances. In all other cases, 15 indepenent instances were used.
Distances to optima are shown in the log10 scale (see Section 2.6.2).
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4.6.3 Conclusion

In this section, we presented an algorithm for selecting a GP model using Bayesian model
comparison techniques. Preliminary experiments for the model selection plugged into the
DTS-CMA-ES algorithm were conducted on the COCO/BBOB testbed. Due to the small num-
ber of experiments performed so far, it is difficult to draw any serious conclusions. The first
obtained results may indicate improper convergence of the Markov chain Monte Carlo sampler
or that more sophisticated covariance functions may be needed.

One direction of future research, beside analyzing and repairing aforementioned deficien-
cies, is an extension of the proposed algorithm into a combinatorial search over kernels in
flavor of (Duvenaud et al., 2013; Gagné et al., 2006), which is challenging due to computational
costs related to the need of repeated surrogate model retraining.

One possible direction of research is a co-evolution of an ensemble of covariance functions
alongside the population of candidate solutions to the black-box objective function. Other
related research area is applying surrogate modeling to high-dimensional problems using al-
gorithms for variable selection via multiple kernel learning (Bach, 2009; Duvenaud et al., 2011).

4.7 boosted regression forest for the dts-cma-es

In (Pitra et al., 2018a), we have studied the DTS-CMA-ES in connection with the boosted
regression forest (see Boosting in Section 2.3.1), another regression model capable to estimate
the distribution. Results of testing regression forest and Gaussian processes, the former in 20

different settings, as a surrogate models in the DTS-CMA-ES on the set of noiseless benchmarks
are reported in the following text.

4.7.1 Evaluation of Boosted Regression Forest for the DTS-CMA-ES

In this section, we compare the performances of the DTS-CMA-ES using the RFs as a surrogate
model in several different settings to the original DTS-CMA-ES version, the original CMA-ES,
and the lmm-CMA on the noiseless part of the COCO platform (Hansen et al., 2009b, 2012).

Experimental setup

The considered algorithms were compared on 24 noiseless single-objective continuous bench-
mark functions from the COCO testbed (Hansen et al., 2009b, 2012) in dimensions D = 2, 3, 5,
and 10 on 15 different instances per function. Each algorithm had a budget of 250D function
evaluations to reach the target distance ∆ fT = 10−8 from the function optimum. The parameter
settings of the tested algorithms are summarized in the following paragraphs.

The original CMA-ES was employed in its IPOP-CMA-ES version (Matlab code v. 3.61) using
settings identical to (Bajer et al., 2015) described in Section 4.2.1.

The lmm-CMA was utilized in its improved version published by Auger et al. (2013). The
results have been downloaded from the COCO results data archive12 in its GECCO 2013 set-
tings.

12 http://coco.gforge.inria.fr/data-archive/2013/lmm-CMA-ES_auger_noiseless.tgz
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Table 22: Experimental settings of RF: norig – number of originally-evaluated points , ntree – number of
trees in RF, Nt, nD – number of tree points and dimensions. Split methods and norig are selected using
full-factorial design, ntree, Nt, and nD are sampled.

parameter values

norig {d0.05λe, d0.1λe, d0.2λe, d0.4λe}
split {CART, SECRET, OC1, SUPPORT, PAIR}

ntree {64, 128, 256, 512, 1024}
Nt d{0.25, 0.5, 0.75, 1} · Ne
nD d{0.25, 0.5, 0.75, 1} · De

The original DTS-CMA-ES was tested using the overall best settings from (Bajer et al., 2019)
(see Section 4.4.3): the PoI as the uncertainty criterion, the population size λ = 8 + b6 ln Dc,
and the number of originally-evaluated points norig = d0.05λe.

Considering decision tree settings, the five splitting methods from the following algoritms
were employed: CART (Breiman, 1984), SECRET (Dobra and Gehrke, 2002), OC1 (Murthy
et al., 1994), SUPPORT (Chaudhuri et al., 1994), and decision tree splitting method based on
pairs of points (PAIR) (Hinton and Revow, 1996). Due to the different properties of individual
splitting methods, the number of err evaluations was limited to 10D per node to restrict the
algorithms which test a great number of hyperplanes. For the same reason, the number of
tresholds generated by a projection of points to a hyperplane was set to 10 quantile-based
values in CART, OC1, and to a median value in PAIR, and the searching an initial axis-aligned
hyperplane in OC1 was limited to d 10D

3 e err evaluations.
The RFs as a surrogate model were tested using the gradient boosting ensemble method.

The maximum tree depth was set to 8, in accordance with (Chen and Guestrin, 2016). In
addition, the number of trees ntree, the number of points Nt bootstrapped out of N archive
points, and the number of randomly subsampled dimensions used for training the individual
tree nD were sampled from the values in Table 22.

The DTS-CMA-ES in combination with RFs was tested with the following settings: the PoI
as the uncertainty criterion, the population size λ = 8+ b6 ln Dc, and the number of originally-
evaluated points norig with 4 different values d0.05λe, d0.1λe, d0.2λe, and d0.4λe. The rest
of DTS-CMA-ES parameters have been taken identical to the overall best settings from (Bajer
et al., 2019) (see Section 4.4.3).

Results

Result from experiments are presented in Figures 33–36 and also in Table 23 (see Section 2.6.2
for detailed explanation of convergence graphs).

We compare the statistical significance of differences in algorithms’ performance on 24

COCO functions in 5D for separately two evaluation budgets utilizing the Iman and Dav-
enport’s improvement of the Friedman test (Demšar, 2006). Let #FET be the smallest number
of FEs on which at least one algorithm reached the target distance, i. e., satisfied ∆med

f ≤ ∆ fT ,
or #FET = 250D if no algorithm reached the target within 250D evaluations. The algorithms
are ranked on each function with respect to ∆med

f at a given budget of FEs. The null hypothe-
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sis of equal performance of all algorithms is rejected for the higher function evaluation budget
#FEs = #FET (p < 10−3), as well as for the lower budget #FEs = #FET

3 (p < 10−3).
We test pairwise differences in performance utilizing the post-hoc test to the Friedman test

(García and Herrera, 2008) with the Bergmann-Hommel correction controlling the family-wise
error. The numbers of functions at which one algorithm achieved a higher rank than the other
are enlisted in Table 23. The table also contains the pairwise statistical significances.

The graphs in Figures 34 and 35 summarize the performance of five different split algo-
rithms and four norig values from twenty different settings respectively. We found that the
convergence of DTS-CMA-ES is quite similar regardless the split algorithm with slightly better
results of SECRET and SUPPORT – the algorithms utilizing classification methods to find the
splitting hyperplane between previously created clusters of training points. The results also
show that lower norig values provide better performance in the initial phase of the optimiza-
tion run and higher values are more successful starting from the 100− 150 FE/D. Due to the
presented results, the following comparisons contain the performances of the DTS-CMA-ES
with norig = d0.4λe in combination with RF using SECRET and SUPPORT as split algorithms.

As can be seen in Figures 33 and 36, the performance of RFs is considerably worse than the
performance of GPs in combination with the DTS-CMA-ES and better than the performance
of the original CMA-ES. RF model provides faster convergence from approximitely 100 FE/D
on the regularly multimodal Rastrigin functions ( f3, f4, and f15) where the RF apparently
does not prevent the original CMA-ES from exploiting the global structure of a function. The
performance of RF-DTS-CMA-ES is noticably lower especially on the Ellipsoid ( f1, f2, f7, and
f10), Rosenbrock ( f8, f9), and ill-conditioned functions ( f11−14), where smooth models are
much more convenient for regression. On the other hand, RFs help the CMA-ES to convergence
especially on the multimodal functions f16−19, where the performance of RF-DTS-CMA-ES is
the best of all compared algorithms.

4.7.2 Conclusion

In this section, we have compared the RF model using gradient boosting as the ensemble
method with the GP regression model, both used as surrogate models in the DTS-CMA-ES
algorithm. Different methods of space splitting in regression trees were investigated.

The split algorithms SECRET and SUPPORT based on the classification of the input points
provide slightly better performance as to the CMA-ES convergence than the other algorithms
tested. Moreover, the performance of DTS-CMA-ES using RFs differs according to the number
of originally-evaluated points: the lower their number, the sooner the algorithm converges, pos-
sibly to a local optimum, which makes convergence to the global one more difficult. We found
that the RF model usually reduces the number of fitness evaluations required by the CMA-ES,
especially on multi-modal functions, where the provided speed-up was the best among all
compared algorithms for a number of evaluations higher than approximitely 110 FE/D.

4.8 interaction between model and its ec in surrogate-assisted cma-es

Each surrogate modelling method has two complementary aspects: the employed regression
model and its evolution control (Jin et al., 2001, 2002; Büche et al., 2005; Loshchilov et al., 2012;
Na et al., 2012; Bajer et al., 2019; Chugh et al., 2019; Pitra et al., 2019b). However, EC is typically
tightly interconnected with the way how the regression model is trained and subsequently
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Figure 33: Medians (solid) and 1st/3rd quartiles (dotted) of the distances to the optima of 24 noise-
less COCO benchmarks in 5D for algorithms CMA-ES, DTS-CMA-ES, lmm-CMA, and 2 RF settings of
DTS-CMA-ES. Medians/quartiles were calculated across 15 independent instances for each algorithm
and are shown in the log10 scale.
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Figure 34: Scaled median distances ∆log
f of decision tree split algorithms averaged over all 24 COCO func-

tions in 2D, 3D, 5D, and 10D for algorithms CART, SECRET, OC1, PAIR, and SUPPORT in combination
with the DTS-CMA-ES and all tested numbers of originally-evaluated points.
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Figure 35: Scaled median distances ∆log
f of the DTS-CMA-ES with RFs comparing different numbers of

originally-evaluated points averaged over all 24 COCO functions in 2D, 3D, 5D, and 10D for values
d0.05λe, d0.1λe, d0.2λe, and d0.4λe summarized accross all tested splitting algorithms.
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Table 23: A pairwise comparison of the algorithms in 5D over the COCO for different evaluation budgets.
The number of wins of i-th algorithm against j-th algorithm over all benchmark functions is given in i-th
row and j-th column. The asterisk marks the row algorithm being significantly better than the column
algorithm according to the Friedman post-hoc test with the Bergmann-Hommel correction at family-wise
significance level α = 0.05.

5D SECRET 0.4 DTS SUPPORT 0.4
DTS

CMA-ES DTS-CMA-ES lmm-CMA

#FEs⁄#FET
1⁄3 1

1⁄3 1
1⁄3 1

1⁄3 1
1⁄3 1
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∗
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∗
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Figure 36: Scaled median distances ∆log
f averaged over all 24 COCO functions in 2D, 3D, 5D, and 10D

for algorithms CMA-ES, DTS-CMA-ES, lmm-CMA, and 2 RF settings of DTS-CMA-ES.

used to predict the values of the true objective function. Therefore, it is very difficult to
understand what impact on the performance of a particular surrogate modelling method has
the choice of the employed regression model, and what impact has its EC. To contribute to
such understanding was the aim of the research reported in (Pitra et al., 2021).
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Among the most successful of CMA-ES surrogate variants, we have selected three that we
view, according to their published descriptions, as paying most attention to EC: the lmm-CMA
(Kern et al., 2006; Auger et al., 2013), the DTS-CMA-ES (Pitra et al., 2016; Bajer et al., 2019),
and the lq-CMA-ES (Hansen, 2019) (see Sections 2.3.3 and 4.4). We have analysed what exactly
constitutes the EC of each of those methods, relying apart from the published descriptions
also on their publicly available implementations. That allowed us to subsequently implement
all possible combinations of the regression models employed in them with the three specific
ECs, and to compare the models and their EC separately. The experiments were performed
on the noiseless and noisy benchmarks of the COCO platform and a real-world simulation
benchmark by Wu et al. (2016).

4.8.1 Analysis of the EC in Important Surrogate-Assisted CMA-ES Variants

In this section, three algorithms that we consider most important among the surrogate-assisted
CMA-ES variants will be analysed. Each of them has been originally proposed as a whole,
addressing simultaneously both components of surrogate modelling:

1. The employed model, the purpose of which is to construct a regression approximation
of the true black-box objective function (bb).

2. The EC, the purpose of which is to select points in which points the bb should be evalu-
ated, and in which using the regression approximation is sufficient.

We analysed which parts of the algorithm concern the employed model and which concern
its EC. That analysis enabled us an implementation of all combinations of the three models
employed in the described algorithms with the three specific ECs for an experimental investi-
gation of interactions between the model and its EC.

The analysis is facilitated by the fact that all three algorithms share several key properties
and concepts. In particular, the population x1, . . . , xλ ∈ RD, the parent number µ, the concept
of an archive A of points evaluated by the bb, and the concept of a ranking function ρ : Rm →
Π(m), with Π(m) denoting the set of permutations of {1, . . . , m}, e. g., in case of increasing
ranking (∀y ∈ Rm)(ρ(y))i < (ρ(y))j ⇒ yi ≤ yj.

Algorithm lmm-CMA

In the local-metamodel-CMA, a specific full quadratic model f j : RD → R is trained for
xj, j = 1, . . . , λ (Auger et al., 2013),

f j(x) = (x− xj)
>Aj(x− xj) + (x− xj)

>bj + cj with Aj ∈ RD×D, bj ∈ RD, cj ∈ R . (96)

The model f j is trained on the set Nk(xj;A) of a given number k of nearest neighbours of xj
with respect to a given archive A,

Nk(xj;A) ⊂ A, |Nk(xj;A)| = k , (∀x ∈ Nk(xj;A))(∀x′ ∈ A \ Nk(xj;A)) d(x, xj) ≤ d(x′, xj) .
(97)

As the distance d in (97), the Mahalanobis distance for σ2C is used:

dσ2C(x, y) =
√
(x− y)>σ−2C−1(x− y) = ‖M(x− y)‖ , with M =

1
σ

D−
1
2 B> , (98)
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Algorithm 13 Using the surrogate model in lmm-CMA

Input: population x1, . . . , xλ ∈ RD, number of parents µ, archive A with |A|≥D(D+3)/2+2
1: Set ε0 = +∞, εmax = λ2/20, i = 0, k = min(D(D + 3) + 2, d

√
|A|(D(D + 3)/2 + 1)e),

niter = dλ/20e, ninit = 1 (if the model is used 1st time in the current CMA-ES run)
2: Train f j on Nk(xj;A) for j = 1, . . . , λ according to (96)
3: Set P = {xj|(ρ( f1(x1), . . . , fλ(xλ)))j > ninit}
4: Evaluate bb(xj) for xj 6∈ P not yet bb-evaluated
5: Update A to A∪ {xj|(ρ( f1(x1), . . . , fλ(xλ)))j ≤ ninit}
6: Update Nk(xj;A) according to (97)
7: Train f j on Nk(xj;A) for j ∈ P according to (96)
8: Define f 0(xj) = f j(xj) for xj ∈ P , f 0(xj) = bb(xj) for xj 6∈ P
9: while P¬bb 6= ∅ & εi > εmax do

10: Set i = i + 1 and update P to {xPj |(ρ( f (xP ))j > niter}
11: Evaluate bb(xj) for xj 6∈ P not yet bb-evaluated
12: Update A to A∪ {xj|ρ( f (xP ))j ≤ niter}
13: Update Nk(xj;A) according to (97)
14: Train f j on Nk(xj;A) for xj ∈ P according to (96)
15: Define f i(xj) = f j(xj) for xj ∈ P , f i(xj) = bb(xj) for xj 6∈ P
16: εi = ∑j:(ρ( f i))j≤µ |(ρ( f i)j − ρ( f i−1))j|
17: end while
18: Update f i(xj) to f i(xj)−minxj′∈P f i(xj′) + minxj′ 6∈P f i(xj′), xj ∈ P

19: Update ninit =

{
max(0, ninit − niter) for i = 1
min(λ, ninit + niter) for i ≥ 3

Output: f i(x1), . . . , f i(xλ), ninit

where ‖ · ‖ denotes the Euclidean norm, and M is the matrix of the linear Mahalanobis decor-
relation transformation for σ2C, in which D denotes the diagonal matrix of the eigenvalues of
C and B the matrix of its orthonormal eigenvectors. Due to (98), it is advantageous to express
(96) in terms of Mahalanobis-transformed x− xj,

f j(x) = (M(x− xj))
>AM

j (M(x− xj)) + (M(x− xj))
>bM

j ) + cj , (99)

which corresponds to Aj = M>AM
j M and bj = M>bM

j .
The algorithm lmm-CMA employs f1, . . . , fλ to find an evaluation of the population x1, . . . , xλ,

as described in Algorithm 13. It uses the notation

P¬bb = {xj|j = 1, . . . , λ & xj has not yet been evaluated by bb}

and for a population subsets P , the notation

P = {xP1 , . . . , xP|P|} , f (xP ) = ( f1(xP1 ), . . . , f|P|(x
P
|P|)) .

Observe that all points are first evaluated by a model, and the decisions which of them to
evaluate by the true objective function, are made in the lines 4, 8, 11, and 15, depending on
the line 19. Hence, we will take the lines 4, 8, 11, 15, and 19 as concerning the EC, and the
remaining parts of the algorithm as concerning the employed model.
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Algorithm 14 Using the surrogate model in DTS-CMA-ES

Input: population x1, . . . , xλ ∈ RD, number of parents µ, archive A, step-size σ and matrix
C from the CMA-ES distribution, C – selection criterion for evaluation by the bb, radius
rmax > 0, self-adaptation parametres β, εmin, εmax, αmin, αmax ∈ (0, 1)

1: Set α = ε = 0.05 for the 1st model usage in the current CMA-ES run
2: Train a GP f1 on TkA , estimating hyperparameters through MLE (15)
3: Evaluate bb(xj) for xj not yet bb-evaluated and such that (ρ(C(x1), . . . ,C(xλ)))j ≤ dαλe
4: Update A to A∪ {xj|(ρ(C(x))j ≤ dαλe}
5: Train a GP f2 on TkA , estimating hyperparameters through MLE (15)
6: Update f2(xj) to bb(xj) for xj such that ρ(C(x))j ≤ dαλe
7: Update ε to (1− β)ε + βerrRDE( f1(x), f2(x))
8: Update α to αmin + max(0, min(1, ε−εmin

εmax−εmin
))

9: Update f2(xj) to f2(xj)−min{ f2(xj′)|ρ(C(x))j′ > dαλe}+ min{ f2(xj′)|ρ(C(x))j′ ≤ dαλe}
for j fulfilling ρ(C(x))j > dαλe

Output: f2(x1), . . . , f2(xλ), ε, α

Algorithm DTS-CMA-ES

The surrogate model in the DTS-CMA-ES (Bajer et al., 2019) is a GP using κ
5/2
Mat covariance

function and according to a comparison of three such covariance functions published in (Bajer
et al., 2019) (see Section 4.4.2), it led to the best performance of the DTS-CMA-ES. Due to
the invariance of the CMA-ES with respect to monotonous transformations, that performance
was measured using the RDE of GP predictions with respect to values of the true objective
function, considering µ best components (see Equation (67)). For the selection of bb-evaluated
points, we employed two criteria: CM and CPoI (see Equations (72) and (74) respectively). To
have an ordering consistent with the function values criterion employed in the algorithms
lmm-CMA and lq-CMA-ES, we used −CM and 1− CPoI instead which entails an increasing
ordering, i. e., the first value is the lowest.

The algorithm DTS-CMA-ES employs two consecutively trained GPs to find an evalua-
tion of the population x1, . . . , xλ, as described in Algorithm 14. It uses the notation fi(x) =
( fi(x1), . . . , fi(xλ)), i = 1, 2, C(x) = (C(x1), . . . ,C(xj)) for an ordering C, and kA = max{h|| Th | ≤
Nmax}, where Nmax ∈N, Nmax ≥ λ and

Th =
λ⋃

j=1

{x ∈ Nh(xj;A)|dσ2C(x, xj) < rmax} for h = 1, . . . , |A| . (100)

The decisions which points should be evaluated by the true objective function and which
by the GP f2, are made in the lines 3 and 6 depending on adjustments in the lines 1 and 7.
Therefore, we will take the lines 1, 3, 6 and 7 as concerning the EC, and the remaining parts of
the algorithm as concerning the employed model.

Algorithm lq-CMA-ES

The algorithm lq-CMA-ES is similar to the lmm-CMA in employing a quadratic surrogate
model and in repeatedly evaluating within a single CMA-ES generation additional parts of the
population with the bb unless the performance of the current surrogate model is satisfactory.
However, it differs from the lmm-CMA in several important respects:
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1. Whereas surrogate models in the lmm-CMA are always full quadratic, the lq-CMA-ES
admits also pure quadratic or linear models. The employed kind of model depends on
the number of bb-evaluated points available for model training, which gradually increases
if the performance of the surrogate model is not satisfactory. More precisely, if k bb-
evaluated points are available to train the respective model fk, then the kind of fk is

� full quadratic if k/1.1 ≥ D(D + 3)/2 + 1,

� pure quadratic if 2D + 1 ≤ k/1.1 < D(D + 3)/2 + 1,

� linear if D + 1 ≤ k/1.1 < 2D + 1.

2. Training points are taken from a queue Q ⊂ A. New points and their bb-evaluations are
appended to its end, causing points at its beginning to be dropped if its length would
otherwise exceed a given limit.

3. bb-evaluations are used to assess the performance of the surrogate model, by means of the
Kendall’s rank correlation coefficient τ between those evaluations and model predictions.
They are not returned to the CMA-ES unless no satisfactory model was found before
the whole population was bb-evaluated, then the bb values are returned for the whole
population. Otherwise, predictions by the model are returned instead, even for points
that have been bb-evaluated.

How the algorithm lq-CMA-ES finds an evaluation of the population x1, . . . , xλ is described
in Algorithm 15. It uses the notation y1, . . . , y|Q| for the elements of Q in its current ordering
and the notation

τkQ = τ(( fkQ(yj))
kQ

j=|Q|−Lk+1, (bb(yj))
kQ

j=|Q|−Lk+1) , (101)

where Lk is the number of last elements of Q used to assess with τ the performance of fk and
it is defined in (Hansen, 2019) as Lk = max(15, min(1.2k, 0.75λ)).

The decisions which points should be evaluated by the true objective function and which by
the fkQ , are made in the lines 4, 13, and 19–23, and they depend on decisions made in the lines
5–7 and 14–16. Therefore, we will take the lines 4–7, 13–16, and 19–23 as concerning the EC,
and the remaining parts of the algorithm as concerning the employed model.

Using an Evolution Control for Another Model

Observe that in all three above algorithms, the EC interacts with the population x1, . . . , xλ

evaluated by the model by means of some ordering:

1. In the algorithm lmm-CMA, the population or its subset P is ordered according to the
ordering f j(xj).

2. In the algorithm DTS-CMA-ES, the population is ordered according to the ordering
ρC(xj), considering a criterion C for the selection of points to be evaluated by the bb.

3. In the algorithm lq-CMA-ES, the population or its subset P is ordered according to the
ordering fkQ(xj).

This suggests a straightforward way how to combine the EC of one of these three algorithms
(Algorithm A) with the model employed in another (Algorithm B): to evaluate the population
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Algorithm 15 Using the surrogate model in lq-CMA-ES

Input: population x1, . . . , xλ ∈ RD, archive A fulfilling |A| ≥ 1.1(D + 1), queue Q ⊂ A
1: Set kQ = b1 + max(0.02λ, 4− |Q|)c
2: Train fkQ on the kQ last points from Q
3: Set P = {xj|(ρ( fkQ(x1), . . . , fkQ(xλ)))j > kQ}
4: Evaluate bb(xj) for xj 6∈ P not yet bb-evaluated and append those xj to Q
5: if |Q| > max(λ, D(D + 3) + 2) then
6: Drop first |Q| −max(λ, D(D + 3) + 2) elements from Q
7: end if
8: Reorder the last min(kQ, λ) elements of Q decreasingly with respect to their bb values
9: while P 6= ∅ & τkQ < 0.85 do

10: Update kQ to 1.5kQ

11: Train fkQ on the kQ last points from Q
12: Update P to {xj|(ρ( fkQ(xP1 ), . . . , fkQ(xP|P|)))j > kQ + |P| − λ}
13: Evaluate bb(xj) for xj 6∈ P not yet bb-evaluated and append those xj to Q
14: if |Q| > max(λ, D(D + 3) + 2) then
15: Drop first |Q| −max(λ, D(D + 3) + 2) elements from Q
16: end if
17: Reorder the last min(kQ, λ) elements of Q decreasingly with respect to their bb values
18: end while
19: if P = ∅ then
20: Return Q, bb(x1), . . . , bb(xλ)
21: else
22: Return Q, fkQ(xj)−minλ

j′=1 fkQ(xj′) + minλ
j′=1 bb(xj′), j = 1, . . . , λ

23: end if
Output: Q, model- or bb-evaluated population x1, . . . , xλ

or its subset P by the model employed in Algorithm B and to order it by the ordering consid-
ered in Algorithm B instead of the ordering originally considered in Algorithm A. We used
this approach to implement all possible combinations of the models employed in the above
three algorithms with the EC strategies encountered in them. Moreover, the GP model em-
ployed in DTS-CMA-ES was used with the two criteria CM and CPoI. Hence, altogether 12 such
combinations have been implemented.

4.8.2 Experimental Investigation of Interactions between Model and Its Control

The core of this section lies in a systematic comparison of the three mentioned approaches to
surrogate model usage with the CMA-ES in combination with four surrogate models. We have
tested the EC methods from the lmm-CMA, DTS-CMA-ES, and lq-CMA-ES in combination
with the locally-weighted quadratic models, GP using function values, GP using PoI, and
global linear-quadratic models.
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Experimental Set-up

We have performed experimental evaluation on the 24 noiseless f1−24 and 30 noisy f101−130
single-objective COCO benchmarks (Hansen et al., 2009a,b, 2012) in dimensions 2, 3, 5, 10,
and 20, considering always 15 instances of each function. Moreover, we have also evaluated
the benchmark fsim simulating energy landscape based on a layout of wave energy converters
presented by Wu et al. (2016) for 1, 2, 5, 6, 8, and 10 buoys, i. e., in dimensions 2, 4, 10, 12, 16,
and 20, on all 24 combinations of the following simulation settings: simulation frequencies 1
and 2, buoy radiuses 2.0, 2.5, 3.2, and search space sizes [10, 10], [25, 25], [50, 50], and [100, 100].
Each algorithm had a budget of 250 FE/D to reach the target distance ∆ fT = 10−8 from the
function optimum. The parameters of the tested algorithms are summarized in the following
paragraphs.

base cma-es The base CMA-ES identical for all surrogate-assisted combinations was em-
ployed in its IPOP-CMA-ES version (Matlab code v. 3.62β) with the following settings: number
of restarts = 50, IncPopSize = 2, σ(0) = 8

3 , λ = 8 + b6 ln Dc, initial point m(0) ∼ U [−4, 4]D.
The remaining settings were left default.

lmm-cma The lmm-CMA evolution control and locally-weighted quadratic regression model
were used in its improved version published by Auger et al. (2013).

dts-cma-es The DTS-CMA-ES evolution control and the GP model were utilized in the
default settings of its adaptive version (Bajer et al., 2019).

lq-cma-es The lq-CMA-ES evolution control and linear-quadratic model were used in the
version published by Hansen (2019).

We use a budget-dependent quality measure of the compared algorithms, strongly influ-
enced by the concept of target precision values used in the COCO framework (Hansen et al.,
2021). In particular, we measure the subset of target precision values achievable by the as-
sessed algorithm at the considered budget within an apriori selected set of target precision
values. To select a set incorporating all possible target values of tested benchmarks, we have
symmetrically doubled on the logarithmic scale the default set [10−8, 102] utilized in (Hansen
et al., 2021), which yields the interval [10−13, 107]. The subset of achievable target precision val-
ues is measured with a measure that we denote ∆µ

f : the Lebesgue measure of the logarithmic
transformation of this set, normalized to yield the maximal value 1 if all target precision val-
ues from [10−13, 107] are achievable. We consider two evaluation budgets (1⁄5 of the full budget
and the full budget, i. e., 50 FE/D and 250 FE/D) and 12 groups of functions ( f1−5, f6−9, f10−14,
f15−19, f20−24, f1−24, f101−106, f107−121, f122−130, f101−130, fsim, and f1−24,101−130,sim).

Investigation on the Noiseless COCO Benchmarks

Results from experiments on the noiseless part of the COCO platform Hansen et al. (2009b) are
presented in Figures 1–36 and in Tables 1–36 in online available Supplementary material

13.
In the paper, we report only summary of the results in Table 24 and the performances on few
selected functions in Figure 37. In this Figure, we show the dependence of the scaled best-

13 https://raw.githubusercontent.com/jdgregorian/surrogate-cmaes-pages/gh-pages/supp/gecco2021/supp_mat.

pdf
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Table 24: A pairwise comparison of the evolution controls, models, and their combinations in 2D, 3D,
5D, 10D and 20D over the noiseless COCO benchmarks for different evaluation budgets. The percentage
of wins of i-th algorithm against j-th algorithm over all benchmark instances is given in the i-th row and
j-th column. The numbers in bold mark the row algorithm being significantly better than the column
algorithm according to the two-sided Wilcoxon signed rank test with the Holm correction at family-wise
significance level α = 0.05.

2− 20D
DTEC+
GPM
M

DTEC+
GPPoI
M

DTEC+
lqM

DTEC+
lmmM

lqEC+

GPM
M

lqEC+

GPPoI
M

lqEC+
lqM

lqEC+
lmmM

lmmEC+
GPM
M

lmmEC+
GPPoI
M

lmmEC+
lqM

lmmEC+
lmmM

#FEs/D 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250

DTEC+GPM
M — — 33 44 66 58 44 54 43 55 39 52 48 47 53 55 59 54 55 47 67 66 64 49

DTEC+GPPoI
M 67 56 — — 77 62 59 58 60 63 54 59 63 51 69 60 72 60 70 53 77 67 74 55

DTEC+lqM 35 42 23 39 — — 30 48 34 49.7 27 46 32 39 37 49 44 49.6 40 43 51 62 45 45
DTEC+lmmM 56 46 41 42 70 52 — — 50 53 45 49 52 44 61 53 62 51 61 44 73 59 69 45
lqEC+GPM

M 57 45 40 37 66 50.3 50 47 — — 45 45 53 40 57 47 62 47 59 41 67 56 64 42
lqEC+GPPoI

M 61 48 46 41 73 54 55 51 55 55 — — 58 44 61 51 68 52 65 45 72 59 68 46
lqEC+lqM 52 53 37 49 68 61 48 56 47 60 42 56 — — 56 61 60 58 58 52 71 70 64 54
lqEC+lmmM 47 45 31 40 63 51 39 47 43 53 39 50 44 39 — — 56 51 54 46 65 59 63 46
lmmEC+GPM

M 41 46 28 40 56 50.4 38 49 38 53 32 48 40 42 44 49 — — 49.7 41 60 60 58 46
lmmEC+GPPoI

M 45 53 30 47 60 57 39 56 41 59 35 55 42 48 46 54 50.3 60 — — 60 67 57 53
lmmEC+lqM 33 34 23 33 49 39 27 41 33 44 28 41 29 30 35 41 40 40 40 33 — — 47 36
lmmEC+lmmM 36 51 26 45 55 55 31 55 36 58 32 54 36 46 37 54 42 54 43 47 53 64 — —

2− 20D DTEC lqEC lmmEC

#FEs/D 50 250 50 250 50 250

DTEC — — 46 49.9 61 53
lqEC 54 50.1 — — 65 52
lmmEC 39 47 35 48 — —

2− 20D GPM
M GPPoI

M lqM lmmM

#FEs/D 50 250 50 250 50 250 50 250

GPM
M — — 45 43 59 53 53 49

GPPoI
M 55 57 — — 61 57 59 53

lqM 41 47 39 43 — — 44 48
lmmM 47 51 41 47 56 52 — —

achieved logarithms ∆log
f of median distances ∆med

f to the optimal fitness value on the number
of fitness evaluations divided by the dimension. Medians ∆med

f , 1st, and 3rd quartiles are
calculated from 15 (24 for fsim) independent instances for each respective algorithm, function,
and dimension (see Section 2.6.2 for more detailed explanation of convergence graphs).

We tested pairwise differences in performance measured with ∆µ
f for all EC methods (de-

noted according to the original algorithm lmmEC, DTEC, lqEC), surrogate models (denoted
lmmM, GPM

M, GPPoI
M , lqM), and their combinations on the noisy and noiseless part of COCO

framework and the simulation benchmark using the non-parametric two-sided Wilcoxon signed
rank test with the Holm correction for the family-wise error. To better illustrate the differ-
ences between individual settings, we also count the percentage of instances at which one
combination/EC/model had the ∆µ

f higher than the other. The pairwise score and the statisti-
cal significance of the pairwise differences are summarized in Table 24.

The two most successful combinations on the noiseless functions were DTEC+GPM
M and

lqEC+lqM. Other ECs in combination with lqM possibly could not handle the simplicity of
this model and provided the worst performance among all compared combinations except few
functions in 20D, e. g., on the Attractive sector function f6. The performance of combina-
tions during the optimization of Attractive sector function f6 scales differently for differ-
ent combinations. For example, the DTEC+GPM

M improves from being the worst combination
in 2D to being the best in 20D, and also the performance of lmmEC combinations improves
with dimension, whereas the performance of the DTEC+lmmM, DTEC+GPPoI

M , lqEC+GPM
M,

and DTEC+GPPoI
M on f6 decreases with dimension. The lqEC in combination with GP models
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Figure 37: Medians (solid) and 1st/3rd quartiles (dotted) of the distances to the optima of 10 function
selected from 24 noiseless, 30 noisy COCO, and the simulation benchmark in 10D for all compared EC —
model combinations. The log10 of medians/quartiles were calculated across 15 (24 for fsim) independent
function instances for each combination and linearly scaled to [−8, 0].
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Table 25: A pairwise comparison of the evolution controls, models, and their combinations in 2D, 3D,
5D, 10D and 20D over the noisy COCO benchmarks for different evaluation budgets. The percentage of
wins of i-th algorithm against j-th algorithm over all benchmark instances is given in the i-th row and
j-th column. The numbers in bold mark the row algorithm being significantly better than the column
algorithm according to the two-sided Wilcoxon signed rank test with the Holm correction at family-wise
significance level α = 0.05.

2− 20D
DTEC+
GPM
M

DTEC+
GPPoI
M

DTEC+
lqM

DTEC+
lmmM

lqEC+

GPM
M

lqEC+

GPPoI
M

lqEC+
lqM

lqEC+
lmmM

lmmEC+
GPM
M

lmmEC+
GPPoI
M

lmmEC+
lqM

lmmEC+
lmmM

#FEs/D 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250

DTEC+GPM
M — — 50.1 48 58 46 49 59 54 60 52 58 48 41 53 52 52 56 49.7 51 60 53 54 52

DTEC+GPPoI
M 49.9 52 — — 59 49 49 62 54 61 52 61 49.7 45 54 55 53 58 52 53 60 56 54 55

DTEC+lqM 42 54 41 51 — — 42 61 48 65 46 62 40 47 48 56 45 60 43 56 51 58 46 58
DTEC+lmmM 51 41 51 38 58 39 — — 55 51 54 49 48 34 56 44 53 49 52 43 59 43 56 45
lqEC+GPM

M 46 40 46 39 52 35 45 49 — — 47 49.8 44 34 49 45 48 47 48 41 54 43 49 42
lqEC+GPPoI

M 48 42 48 39 54 38 46 51 53 50.2 — — 46 34 52 46 51 48 49 43 56 43 51 44
lqEC+lqM 52 59 50.3 55 60 53 52 66 56 66 54 66 — — 56 59 55 62 53 58 61 61 57 59
lqEC+lmmM 47 48 46 45 52 44 44 56 51 55 48 54 44 41 — — 49 53 48 49 55 49 51 50.1
lmmEC+GPM

M 48 44 47 42 55 40 47 51 52 53 49 52 45 38 51 47 — — 49.5 45 56 46 54 48
lmmEC+GPPoI

M 50.3 49 48 47 57 44 48 57 52 59 51 57 47 42 52 51 50.5 55 — — 58 51 55 52
lmmEC+lqM 40 47 40 44 49 42 41 57 46 57 44 57 39 39 45 51 44 54 42 49 — — 46 49.7
lmmEC+lmmM 46 48 46 45 54 42 44 55 51 58 49 56 43 41 49 49.9 46 52 45 48 54 50.3 — —

2− 20D DTEC lqEC lmmEC

#FEs/D 50 250 50 250 50 250

DTEC — — 50.4 53 53 53
lqEC 49.6 47 — — 52 50.2
lmmEC 47 47 48 49.8 — —

2− 20D GPM
M GPPoI

M lqM lmmM

#FEs/D 50 250 50 250 50 250 50 250

GPM
M — — 49 47 53 42 51 50.4

GPPoI
M 51 53 — — 54 45 52 53

lqM 47 58 46 55 — — 48 57
lmmM 49 49.6 48 47 52 43 — —

was very successful on most of the functions, mainly on multi-modal with weak global

structure and Griewank-Rosenbrock function, whereas the lmmEC with GP models was
in general worse, though better on the functions f6, Step-ellipsoid f7, and both Schaffers

f17,18.
The EC providing the significantly better results than the other algorithms on the noiseless

part of the COCO was the lqEC especially in lower dimensions. On the contrary, the lmmEC
provided the overall worst performance, yielding better results only for the 250 FE/D budget
on multi-modal functions f15−19 in 10 and 20D. Also the DTEC has shown very good results
in higher dimensions.

Among the models, the GPPoI
M achieved the best result over all models. Moreover, both

GP models have shown better results in higher dimensions than polynomial models, espe-
cially on Rosenbrock functions f8,9. An exception was only weak performance in the lower
dimensions on the separable functions f1−5. On the other hand, in the higher dimensions on
separable functions, all models were outperformed by the overall worst lqM. The lmmM scales
with increasing dimension worse then the others, from being the best especially for 50 FE/D
in 2D to being the worst results in 20D.

Investigation on the Noisy COCO Benchmarks

Results on the noisy benchmarks from the COCO platform (Hansen et al., 2009a) are reported
in Tables 37–60 and in Figures 37–60 in Supplementary material. Their summary is in
Table 25 and three examples in 10D are in Figure 37.
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Table 26: A pairwise comparison of the evolution controls, models, and their combinations in 2D, 4D,
10D, 12D, 16D and 20D over the simulation benchmark for different evaluation budgets. The percentage
of wins of i-th algorithm against j-th algorithm over all benchmark instances is given in the i-th row and
j-th column. The numbers in bold mark the row algorithm being significantly better than the column
algorithm according to the two-sided Wilcoxon signed rank test with the Holm correction at family-wise
significance level α = 0.05.

2− 20D
DTEC+
GPM
M

DTEC+
GPPoI
M

DTEC+
lqM

DTEC+
lmmM

lqEC+

GPM
M

lqEC+

GPPoI
M

lqEC+
lqM

lqEC+
lmmM

lmmEC+
GPM
M

lmmEC+
GPPoI
M

lmmEC+
lqM

lmmEC+
lmmM

#FEs/D 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250 50 250

DTEC+GPM
M — — 50.3 52 65 63 47 46 65 58 64 57 63 41 57 54 37 41 36 40 50.3 39 49 36

DTEC+GPPoI
M 49.7 48 — — 66 62 52 40 64 58 70 56 65 39 60 54 43 35 42 40 50 36 50 37

DTEC+lqM 35 37 34 38 — — 33 35 51 48 54 51 45 32 37 46 26 31 31 32 30 27 34 30
DTEC+lmmM 53 54 48 60 67 65 — — 64 64 66 62 60 50 55 61 38 47 41 47 51 37 49 44
lqEC+GPM

M 35 42 36 42 49 52 36 36 — — 52 44 46 36 37 44 28 32 34 32 37 28 35 31
lqEC+GPPoI

M 36 43 30 44 46 49 34 38 48 56 — — 42 43 40 51 28 41 34 39 38 39 40 40
lqEC+lqM 37 59 35 61 55 68 40 50 54 64 58 57 — — 40 62 27 41 33 41 38 39 36 42
lqEC+lmmM 43 46 40 46 63 54 45 39 63 56 60 49 60 38 — — 36 37 37 38 43 32 42 39
lmmEC+GPM

M 63 59 57 65 74 69 62 53 72 68 72 59 73 59 64 63 — — 48 50 65 46 61 49.7
lmmEC+GPPoI

M 64 60 58 60 69 68 59 53 66 68 66 61 67 59 63 62 52 50 — — 64 42 56 51
lmmEC+lqM 49.7 61 50 64 70 73 49 63 63 72 62 61 62 61 57 68 35 54 36 58 — — 44 54
lmmEC+lmmM 51 64 50 63 66 70 51 56 65 69 60 60 64 58 58 61 39 50.3 44 49 56 46 — —

2− 20D DTEC lqEC lmmEC

#FEs/D 50 250 50 250 50 250

DTEC — — 58 50.5 39 38
lqEC 42 49.5 — — 35 37
lmmEC 61 62 65 63 — —

2− 20D GPM
M GPPoI

M lqM lmmM

#FEs/D 50 250 50 250 50 250 50 250

GPM
M — — 50.1 49 59 49 49 47

GPPoI
M 49.9 51 — — 59 49.9 50.1 47

lqM 41 51 41 50.1 — — 39 50
lmmM 51 53 49.9 53 61 50 — —

The most successful combination on the noisy functions was lqEC+lqM thanks to its adaptiv-
ity and perhaps also due to the more simple model. GP models combinations with the DTEC
provide very good results especially in higher dimensions, unlike their weak combinations
with the lqEC, which has fast convergence only for the low budget on functions with moder-
ate noise f101−106. On the other hand, the DTEC+lqM was dominant mainly while spending
the full evaluation budget of 250 FE/D. The lmmEC+lmmM has an overall weak performance
except for very good results on Different Powers with Gaussian noise f119.

On functions with moderate noise f101−106, the lower dimensions are dominated by the
lqEC, but it is gradually outperformed by the DTEC as the dimension grows. lmmEC overall
weak performance especially when spending larger amounts of FEs is beaten only on func-
tions with severe noise f107−121 in dimensions 10 and 20.

Among the models, very good results are achieved by the GPPoI
M , whereas the performance of

the lmmM is again decreasing as the dimension grows. Moreover, the fact that the performance
of GPM

M is significantly worse than that of GPPoI
M indicates that taking into account uncertainty

can be profitable on the noisy functions. Good result of the lqM at the end of the optimization
process show that a simple model can deal with the noise more effectively than more complex
ones if a sufficient budget is available.

Investigation on a Simulation Benchmark

The optimization of the simulation benchmark fsim (Wu et al., 2016) was very time-consuming
for all the tested combinations, especially in higher dimensions. Summarized results can be
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seen in Table 26 and ∆log
f dependencies are depicted in 10D in Figure 37. The results in lower

dimensions (Tables 61–63 and Figures 61–63 in Supplementary material) show very few
differences between the compared combinations. On the other hand, the higher dimensions are
more convenient for lmmEC (cf. Tables 64–67 and Figures 64–67 in Supplementary material).
Also the lmmM has provided very good overall results not only in the original lmm-CMA
version, but also in the DTEC+lmmM combination. This might suggest that the lmmM is more
convenient for real-world based simulation. On the other hand, the landscape of the tested
benchmark can be easy to approximate for such a model.

4.8.3 Conclusion

We analysed three successful surrogate-assisted versions of the CMA-ES: the lmm-CMA, the
DTS-CMA-ES, and the lq-CMA-ES, to separate the employed surrogate model and its evolution
control. We implemented and assessed the performance of all the 12 combinations of the two
quadratic, two GP models and three evolution controls on the noiseless and noisy parts of the
COCO framework and on the buoy placement simulation benchmark in the expensive settings
with a budget 250 FE/D.

We have found significant differences as to the performance of different evolution controls,
models, and their combinations. The important finding was that both the model and the
evolution control has significant influence on the convergence speed. The combinations orig-
inally designed together in the DTS-CMA-ES and lq-CMA-ES have provided the overall best
results. However, mixing evolution controls of these two with other models shows that the
evolution control itself may play the dominant role especially in the case of the lq-CMA-ES,
the EC of which proved high performance with all the tested models. On the other hand, the
linear-quadratic model mostly failed in combination with the remaining evolution controls,
possibly because they were not designed for a global model. However, its simplicity played an
important role in noisy cases where the linear-quadratic model ignores most of the noise if a
sufficient budget is available.

The success of Gaussian process model using probability of improvement on noisy bench-
marks indicates the role of surrogate models taking into consideration uncertainty. The per-
formance of the otherwise worst lmmEC on the simulation benchmark suggests that more
experiments on real-world problems are needed.

4.9 combining gaussian processes with neural networks for the cma-es

The importance of GPs in machine learning incited attempts to integrate them with the lead-
ing learning paradigm of the last decades – neural learning, including deep learning. The
attractiveness of this research direction is further supported by recent theoretical results con-
cerning relationships of asymptotic properties of important kinds of ANNs to properties of
GPs (Lee et al., 2018; Matthews et al., 2018; Novak et al., 2019). The integration of GP with
neural learning has been proposed on two different levels:

1. Proper integration of an ANN with a GP, in which the GP forms the final output layer of
the ANN (Calandra et al., 2016; Wilson et al., 2016).
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2. Only a transfer of the layered structure, which is a crucial feature, to the GP context, leading
to the concept of deep GPs (Bui et al., 2016; Cutajar et al., 2017; Hebbal et al., 2018;
Hernández-Muñoz et al., 2020).

The recalled research into the integration of GPs with neural learning has used regression
data (Bui et al., 2016; Calandra et al., 2016; Cutajar et al., 2017; Hernández-Muñoz et al., 2020;
Wilson et al., 2016), mostly from the UCI Machine Learning Repository (University of Califor-
nia, Irvine), but also data concerning locomotion of walking bipedal robots (Calandra et al.,
2016), and face patches and hadwritten digits (Wilson et al., 2016). In (Cutajar et al., 2017;
Hernández-Muñoz et al., 2020), also classification data were used. However, we are aware
of only one application of such an integration, in particular of deep GPs, to two very easy 1-
and 2-dimensional optimization problems (Hebbal et al., 2018). Hence, there is a gap between
the importance of GPs in Bayesian optimization and missing investigations of the suitability
of integrated GP-ANN models for surrogate modeling in black-box optimization. That gap
motivated the research reported in this section summarizing our papers concerning this topic
(Koza et al., 2021a,b; Růžička et al., 2021).

We have performed this novel kind of investigation of GP-ANN (see paragraph GP as the
Output Layer of ANN in Section 2.3.1) integration to the DTS-CMA-ES on the noiseless part
of the COCO framework (Hansen et al., 2009b, 2021).

4.9.1 Using Past Experience for GP Configuration

The covariance function of a GP is crucial for modeling relationships between observations
corresponding to different points in the input space. This problem consists in the fact that
although the quality of the GP depends solely on its predictions and the true values of the
black-box objective function, to obtain the prediction needs in addition a complete run of an
optimizer, which is typically much more demanding. The problem is particularly serious when
combing GPs and ANNs because then separate runs are needed for all considered combina-
tions of GP covariance functions with the considered ANN topologies. That motivated the
research we reported in (Koza et al., 2021a,b), in which we have investigated 10 GP configura-
tions, differing primarily through the choice of the covariance function: Instead of running the
optimizer specifically for the configuration task, we used comprehensive data from previous
runs of the DTS-CMA-ES on the noiseless part of the COCO framework (Hansen et al., 2009b,
2021).

Employed Data from DTS-CMA-ES Runs

As a dataset to compare different configurations of the combined GP-ANN model, we used
recorded DTS-CMA-ES runs from previous experiments. This allowed us to effectively evalu-
ate the surrogate model on its own without having to perform the whole optimization. Our
open-source Matlab implementation of DTS-CMA-ES, used to obtain the data, is available at
(Bajer and Pitra, 2014). We have utilized Gaussian processes with 8 different covariance func-
tions (κLIN, κQ, κRQ, κSE, κ

5/2
Mat, κNN, κGibbs, and composite κSE+Q) implemented using the GPML

Toolbox (Rasmussen and Nickisch). The optimization runs were collected on the noiseless part
of the COCO platform (Hansen et al., 2009b, 2021) in dimensions 2, 3, 5, 10, and 20 in 5 dif-
ferent instances. Therefore, for each combination of benchmark function and dimension, 40

runs are available. More important than the number of runs, however, is the number of their
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generations because data from each generation apart from the first can be used for testing all
those surrogate models that could be trained with data from the previous generations. The
number of generations in a particular run of DTS-CMA-ES algorithm is unknown before the
run and depends on the objective function and its particular instance. We have omitted the
Linear slope function f5, which is easy to optimize, and the recorded runs did not provide
enough data samples to train and evaluate the surrogate models. This resulted in total number
of 4600 available runs. The benchmarks and their total numbers of available generations for
individual dimensions are listed in Table 27.

Due to the way how the DTS-CMA-ES works (see Section 4.4), the collected sequences have
several specific properties:

1. The first GP (M1(x))x∈X trained after the g-th generation of the CMA-ES has as train-
ing data only pairs (x, bb(x)) in which the true value bb(x) was obtained before the g-th
generation. It does not depend on the results of the CMA-ES in the g-th and later gener-
ations.

2. The second GP (M2(x))x∈X trained after the g-th generation of the CMA-ES has as
training data pairs (x, bb(x)) in which the true value bb(x) was obtained before the g-th
generation, as well as the pairs (a, bb(a)) in which a is one of the points a1, . . . , adα(g)λe
selected with active learning among the points x1, . . . , xλ generated in the g-th generation.
It does not depend on the results of the CMA-ES in the g + 1-st and later generations.

3. The CMA-ES in the g + 1-st generation depends on the values bb(a) in the points a ∈
{a1, . . . , adα(g)λe} selected with active learning and on the valuesM2(x) for x ∈ {x1, . . . ,
xλ} \ {a1, . . . , adα(g)λe}. Due to 2., it indirectly depends also on (x, bb(x)) with x generated
in an earlier than g-th generation.

Experimental Setup of Empirical Investigation of GP Configurations

In the experiments described below, we used two different libraries implementing Gaussian
processes. For those without an ANN, we used Matlab’s toolbox GPML (Rasmussen and
Nickisch) that accompanies the book by Rasmussen and Williams (2006). Except the spectral
mixture kernel κSM, which was implemented in Python using GPyTorch library as well as the
combination of GP and ANN (Gardner et al., 2019).

We have compared six surrogate models combining neural networks with Gaussian pro-
cesses using the following covariances: κLIN, κQ, κRQ, κSE, κ

5/2
Mat, and κSE+Q. Then we have

compared the winning ANN-GP combination and Gaussian processes with nine different co-
variance functions: κLIN, κQ, κRQ, κSE, κ

5/2
Mat, κNN, κGibbs, κSE+Q, and κSM. As to the combination

ANN-GP, we decided to train it on the same set of training data T in step 2 of Algorithm 5

using TSS nearest in area of maximal range rmax as was used in steps 4 and 9 of Algorithm 9

(Bajer et al., 2019). Due to the rmax limitation, this set is rather restricted and allows training
only a rather restricted ANN. Therefore, we decided to use a multilayer perceptron with a sin-
gle hidden layer, thus a topology (nI , nH , nO), where nI is the dimension of the training data,
i. e., nI ∈ {2, 3, 5, 10, 20}, and

nH = nO =


2 if nI = 2,
3 if nI = 3, 5,
5 if nI = 10, 20.

(102)
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Table 27: Noiseless benchmark functions of the COCO platform and the number of available generations
of DTS-CMA-ES runs for each of them in each considered dimension.

Number of available generations

COCO function 2D 3D 5D 10D 20D

Separable

f1 Sphere 4689 6910 11463 17385 25296
f2 Separable Ellipsoid 6609 9613 15171 25994 55714
f3 Separable Rastrigin 7688 11308 17382 27482 42660
f4 Büche-Rastrigin 8855 13447 22203 31483 49673

Moderately Ill-Conditioned

f6 Attractive Sector 16577 25200 38150 45119 72795
f7 Step Ellipsoid 7103 9816 24112 34090 56340
f8 Rosenbrock 7306 11916 21191 32730 71754
f9 Rotated Rosenbrock 7687 12716 24084 35299 71017

Highly Ill-Conditioned

f10 Ellipsoid with High Conditioning 6691 9548 15867 25327 59469
f11 Discus 6999 9657 15877 25478 45181
f12 Bent Cigar 10369 18059 28651 34605 56528
f13 Sharp Ridge 7760 11129 20346 30581 48154
f14 Different Powers 6653 10273 17693 31590 61960

Multi-modal with Global Structure

f15 Non-separable Rastrigin 7855 11476 19374 28986 44446
f16 Weierstrass 9294 13617 24158 27628 40969
f17 Schaffers F7 9031 13960 24244 34514 56247
f18 Ill-Conditioned Schaffers F7 9598 13404 25802 31609 53836
f19 Composite Griewank-Rosenbrock 9147 16268 24456 34171 53536

Multi-modal Weakly Structured

f20 Schwefel 9081 13676 24219 33753 53104
f21 Gallagher’s Gaussian 101-me Points 7645 12199 18208 25366 43186
f22 Gallagher’s Gaussian 21-hi Points 7629 11086 17881 26626 44971
f23 Katsuura 8751 11233 17435 25030 37366
f24 Lunacek bi-Rastrigin 8983 13966 19405 29762 44420
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Table 28: Statistical comparison of six ANN-GP models using different covariance functions accross data
from noiseless COCO functions. It shows for how many functions (23 in total) was the covariance in a
row significantly better than the one in a column.

κLIN κQ κRQ κSE κ
5/2
Mat κSE+Q Σ

κLIN – 20 19 21 20 20 100

κQ 0 – 3 2 3 16 24

κRQ 1 5 – 1 1 13 21

κSE 2 6 1 – 1 14 24

κ
5/2
Mat 2 6 2 0 – 13 23

κSE+Q 2 1 2 0 1 – 6

Table 29: Statistical comparison of six ANN-GP models using different covariance functions accross data
from noiseless COCO functions. It shows for how many combinations of input dimension and a specific
function group (25 in total) was the covariance in a row significantly better than the one in a column.

κLIN κQ κRQ κSE κ
5/2
Mat κSE+Q Σ

κLIN – 25 23 21 20 24 113

κQ 0 – 4 0 3 16 23

κRQ 0 4 – 2 1 13 20

κSE 0 4 5 – 5 13 27

κ
5/2
Mat 0 2 3 1 – 9 15

κSE+Q 0 0 0 0 0 – 0

As the activation function for both the hidden and output layer, we chose a logistic sigmoid.
We trained the weights and biases of the neural network together with the parameters of

the Gaussian process as proposed by Wilson et al. (2016) and outlined in paragraph GP as the
Output Layer of ANN in Section 2.3.1. As a loss function, we used the Gaussian log-likelihood
and optimized the parameters with Adam (Kingma and Ba, 2015) for a maximum of 1000
iterations. We also kept a 10% validation set out of the training data to monitor overfitting,
and we selected the model with the lowest L2 validation error during the training.

Results of GP Configuration Investigation

We evaluated six different models on every generation of samples listed in Table 27. The uti-
lized metric was errRDE, which shows how precise the model is in ordering of the predicted
values. A Non-parametric Friedman test was conducted on the values of errRDE across all
results for particular functions and function types, and for a particular combination of dimen-
sions and function types. If the null hypothesis of the equality of all six considered methods
was declined, the Wilcoxon signed-rank test was performed for all pairs of covariance func-
tions, and its results were corrected for multiple hypotheses testing using the Holm method.
We summarized the results of statistical testing on six ANN-GP combinations in Tables 28 and
29. The results show that the combined model performs best with the simplest linear kernel
and therefore, only the κLIN is used in the following comparisons.

The results of comparison between 9 GP models and 1 ANN-GP model are presented first
in a function-method view in Table 30, then in a dimension-method view in Table 31. The
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interpretation of the results in both tables is the same. Similarly to previous comparison, a
non-parametric Friedman test was conducted on values of errRDE across all results for partic-
ular functions and function types in Table 30, and for a particular combination of dimensions
and function types in Table 31. If the null hypothesis of the equality of all ten considered meth-
ods was declined, a post hoc test was performed, and its results were corrected for multiple
hypotheses testing using the Holm method. In the tables, we highlight bold those methods
that are not significantly different from the method achieving the lowest errRDE. Additionally,
the number n ∈ N of other methods that achieved a significantly worse errRDE is reported
using the ∗n notation.

If we look closely at the results in Table 30, we can see that the lowest values of the average
errRDE are achieved using the κRQ in most cases. Specifically, the rational quadratic covariance
κRQ performs best on 16 functions, Matérn 5/2 κ

5/2
Mat on 3, squared exponential κSE on 2, and

quadratic κQ on 2 functions out of the total number of 23. Interestingly, the two functions on
which the κQ is the best performing are Attractive sector function f6 and Step ellipsoid

f7, which are both based on quadratic functions Finck et al. (2009). This suggests that the
quadratic kernel can indeed adequately capture the functions with the global structure of
quadratic polynomial. On the other hand, the κ

5/2
Mat is the best performing on functions f20, f23,

and f24, which are highly multimodal and therefore hard to optimize.
Similar results can also be seen in Table 31, where the values of errRDE are grouped by the

input space dimension. The κRQ is the best in the 18 cases, κ
5/2
Mat in 4, κQ in 2, and κSE in 1 case.

Again κSE was the best when solving highly multimodal weakly structured functions. We
also analyzed the correlation between the dimensionality of the problem and the resulting
average errRDE for every considered method. For this purpose, we computed Pearson’s and
Spearman’s correlation coefficients. Both coefficients detected a statistically significant positive
correlation in the linear, quadratic, Gibbs, and spectral mixture covariances. The correlation
of κSE was found significant only by the Pearson’s coefficient. Interestingly, both methods
discovered a significant negative correlation for the neural network covariance function κNN.

However, it is important to note here that the best three covariances: κRQ, κSE, and κ
5/2
Mat are

statistically equivalent in all cases according to the Friedman-posthoc test with Holm correc-
tion.

Finally, the combination ANN-GP with the linear covariance was statistically equivalent to
the best-performing covariance on six different functions. In those cases, it performed better
than just GP with the linear kernel. However, in the rest of the benchmark functions, the linear
covariance function produced better results without the ANN.

4.9.2 Conclusion

We found out that if we compare the combined ANN-GP with GP both with linear covariance
function, the neural extensions can bring better results in some cases. However, using more
complex covariance functions with GP is still better. Unfortunately, the results with other
covariances in combination with ANN ended up much worse.

The results in Tables 30 and 31 reveal that the lowest errRDE values are most often achieved
using the covariance functions rational quadratic, squared exponential, and Matérn 5/2. More-
over, these three covariance functions are always equivalent, in the sense that among the errRDE
values achieved with them, no pair has been found significantly different by the performed
Friedman-posthoc test with Holm correction for simultaneous hypotheses testing. Occasion-
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Table 30: Comparison of average errRDE values for different surrogate models depending on a particular
benchmark function. There are nine different covariance functions for Gaussian processes and the ANN-
GP combination with a linear kernel. Those methods that were not significantly different from the best
performing are marked in bold. The number in the upper index indicates the number of methods that
performed significantly worse.

GP ANN

function κLIN κQ κRQ κSE κ
5/2
Mat κNN κGibbs κSE+Q κSM κLIN

Se
pa

ra
bl

e
Fu

nc
ti

on
s

f1 .238 .193 .056∗6 .063∗6 .070∗4 .168 .130∗1 .161 .225 .242
f2 .231 .181 .096∗5 .098∗5 .099∗5 .187 .153∗2 .222 .280 .128∗2

f3 .236 .185∗1 .142∗5 .147∗4 .160∗4 .185∗1 .202∗1 .224 .503 .300
f4 .251 .170∗2 .134∗6 .160∗3 .153∗4 .189∗1 .213∗1 .224 .471 .352

all .239 .182∗2 .107∗7 .117∗7 .121∗7 .182∗1 .175∗4 .208 .370 .256

M
od

er
at

e
co

nd
it

io
ni

ng

f6 .209∗2 .138∗5 .203∗3 .215∗2 .208∗2 .199∗3 .246 .254 .440 .351
f7 .231∗1 .185∗3 .194∗2 .224∗1 .206∗1 .192∗3 .249 .243 .438 .200∗2

f8 .231 .183 .129∗4 .138∗3 .143∗2 .182 .184∗1 .198 .187∗1 .307
f9 .206 .179 .128∗4 .140∗3 .140∗3 .175 .170∗3 .167∗1 .263 .307

all .219∗1 .171∗4 .163∗5 .179∗4 .174∗4 .187∗3 .212∗2 .216 .342 .291

H
ig

h
co

nd
it

io
ni

ng
an

d
un

im
od

al

f10 .235 .179 .095∗5 .101∗5 .099∗5 .182 .141∗1 .209 .295 .142∗1

f11 .243 .152∗1 .105∗4 .114∗4 .115∗4 .196 .144∗2 .241 .357 .147∗2

f12 .183 .166∗2 .145∗4 .153∗3 .151∗3 .196 .187∗2 .236 .290 .257
f13 .231 .202 .116∗4 .208∗1 .220∗1 .169∗1 .177∗1 .210 .375 .198∗1

f14 .234 .211 .140∗5 .165∗4 .162∗4 .187∗2 .204∗2 .227 .310 .289

all .225∗1 .182∗2 .120∗7 .148∗6 .149∗6 .186∗2 .171∗5 .224 .326 .205∗2

M
ul

ti
-m

od
al

ad
eq

ua
te

gl
ob

al
st

ru
ct

ur
e

f15 .242 .172∗3 .144∗4 .141∗4 .173∗2 .182∗2 .200∗1 .215 .488 .316
f16 .221∗1 .189∗2 .172∗3 .169∗3 .173∗3 .185∗2 .207∗2 .234 .492 .551
f17 .242 .199∗2 .160∗5 .211∗2 .185∗2 .189∗2 .227∗1 .245 .463 .391
f18 .259 .203∗2 .157∗4 .207∗2 .182∗4 .191∗2 .210∗2 .245 .480 .380
f19 .232∗1 .206∗2 .143∗5 .154∗4 .148∗4 .200∗2 .249 .217∗1 .537 .397

all .239∗2 .194∗4 .155∗7 .177∗5 .172∗5 .189∗4 .218∗2 .231∗2 .493 .408

M
ul

ti
-m

od
al

w
ea

k
gl

ob
al

st
ru

ct
ur

e

f20 .237 .164∗3 .161∗2 .174∗1 .155∗4 .191 .218 .216 .383 .210∗1

f21 .214 .197∗1 .145∗4 .170∗2 .152∗4 .184∗2 .169∗2 .206 .372 .389
f22 .203 .215 .128∗6 .155∗3 .145∗5 .192 .160∗2 .224 .391 .347
f23 .237 .208∗1 .168∗3 .156∗3 .147∗3 .213∗1 .210∗1 .206∗1 .543 .589
f24 .229 .209∗1 .144∗3 .127∗4 .118∗4 .197∗1 .217 .220 .545 .446

all .224∗2 .199∗2 .149∗7 .156∗7 .144∗7 .195∗2 .195∗2 .214∗2 .442 .397
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Table 31: Comparison of average errRDE values for different surrogate models depending on the type of
benchmark function and the input space dimension. There are nine different covariance functions for
Gaussian processes and the ANN-GP combination with a linear kernel. Those methods that were not
significantly different from the best performing are marked in bold. The number in the upper index
indicates the number of methods that performed significantly worse.

function GP ANN

group κLIN κQ κRQ κSE κ
5/2
Mat κNN κGibbs κSE+Q κSM κLIN

2D

SEP .172 .162 .097∗5 .106∗4 .110∗4 .179 .135∗1 .198 .280 .252
MOD .160∗2 .154∗2 .174∗2 .167∗2 .201 .189 .182∗1 .194 .286 .341
HC .157∗2 .177 .129∗4 .135∗4 .147∗3 .212 .142∗4 .222 .227 .204

MMA .187∗2 .179∗2 .155∗3 .170∗2 .179∗2 .200∗2 .195∗2 .231 .437 .416
MMW .184∗2 .182∗2 .137∗3 .140∗4 .148∗3 .205 .169∗2 .221 .414 .443

all .172∗3 .172∗3 .139∗6 .144∗6 .157∗4 .198∗2 .165∗4 .215∗1 .333 .334

3D

SEP .204 .175∗1 .114∗5 .117∗5 .123∗5 .196 .163∗1 .218 .378 .258
MOD .201 .160∗3 .172∗3 .177∗3 .173∗3 .198 .187∗1 .226 .342 .313
HC .210 .173∗1 .132∗4 .141∗3 .143∗3 .199 .149∗3 .234 .264 .174∗1

MMA .227 .198∗2 .159∗4 .164∗4 .180∗3 .193∗2 .201∗2 .232 .458 .353
MMW .215 .197∗1 .148∗4 .155∗2 .145∗5 .208 .204∗1 .213∗1 .427 .387

all .214∗1 .182∗4 .145∗7 .153∗6 .154∗6 .199∗1 .180∗4 .223∗1 .360 .278∗1

5D

SEP .241 .189∗1 .111∗7 .118∗5 .121∗5 .193 .171∗1 .226 .421 .270
MOD .249 .174∗3 .157∗5 .168∗3 .159∗4 .195∗1 .205 .224 .387 .297
HC .241 .180∗1 .119∗6 .136∗3 .136∗3 .185∗1 .148∗3 .240 .337 .202∗1

MMA .251 .189∗2 .149∗5 .167∗4 .169∗4 .183∗2 .206∗2 .240 .478 .373
MMW .241 .205∗1 .140∗4 .143∗4 .136∗6 .202∗1 .185∗2 .209 .459 .363

all .247∗1 .185∗4 .136∗7 .148∗7 .146∗7 .190∗4 .177∗4 .229∗1 .403 .289∗1

10D

SEP .271 .203∗1 .123∗4 .117∗5 .127∗4 .188∗1 .183∗1 .216 .456 .293
MOD .256 .195∗2 .151∗5 .167∗4 .155∗5 .192∗2 .243 .228 .407 .298
HC .264 .198∗1 .111∗5 .159∗1 .156∗2 .179∗1 .166∗1 .230 .412 .206∗1

MMA .274 .204∗2 .159∗5 .175∗4 .162∗4 .187∗3 .224∗1 .233 .538 .422
MMW .246 .206 .139∗5 .146∗4 .131∗6 .183∗2 .211 .215 .454 .363

all .264∗1 .200∗3 .138∗7 .155∗6 .149∗6 .185∗4 .205∗3 .226∗1 .443 .313∗1

20D

SEP .288 .196 .109∗4 .132∗4 .120∗4 .168∗3 .250 .188 .445 .348
MOD .228 .197∗1 .143∗2 .173 .145∗2 .174∗2 .245 .206 .523 .353
HC .253 .184 .111∗1 .171 .164∗1 .155 .249 .197 .471 .255

MMA .258 .201∗2 .155∗4 .206∗2 .170∗2 .184∗2 .266 .220 .596 .480
MMW .234 .204 .181 .198 .160 .179 .205 .213 .538 .436

all .249 .194∗3 .140∗6 .180∗4 .156∗5 .169∗4 .244 .203∗2 .513 .375
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ally, they are also equivalent to other configurations, e. g., to the covariance functions linear or
quadratic, or even to the combination ANN-GP. In addition, we have also shown in (Růžička
et al., 2021), statistical equivalency of rational quadratic, squared exponential, and Matérn
5/2, in the sense that for no function, no group of functions, no dimension, and no function-
dimension combination, none of these covariance functions was significantly better than the
other in ANN-GP surrogate model for the DTS-CMA-ES running on the entire noiseless part
of the COCO platform. To our knowledge, the comparison of GP covariance functions pre-
sented in (Koza et al., 2021b) is the first in the context of optimization data. Therefore, it
is not surprising that the conclusions drawn from it are not identical to conclusions drawn
from comparisons performed with other kinds of data (Calandra et al., 2016; Duvenaud, 2014;
Kronberger and Kommenda, 2013; Wilson and Adams, 2013; Wilson et al., 2016).
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5C O N T R I B U T I O N S T O L A N D S C A P E A N A LY S I S O F S U R R O G AT E
M O D E L S

This chapter partially cites the text of the articles (Pitra et al., 2018b) and (Pitra et al., 2022).

Our research of surrogate modeling in evolutionary black-box optimization context has
shown that no surrogate model or algorithm using the model improved the CMA-ES signifi-
cantly better than all other proposed surrogate model approaches in the benchmark expensive
scenario (Bajer et al., 2019; Pitra et al., 2017c). This finding was furthermore supported in (Pitra
et al., 2021), where we have shown that different surrogate models, their controls, and their
combinations can show significant differences in the performance of the same optimizer on
different data. Moreover, the predictive accuracy of individual models is strongly influenced
by the choice of their parameters. Therefore, in this chapter we investigate the relationships
between the settings of individual models and the optimized data for better understanding of
the whole surrogate modeling task.

In Section 5.1, we study the connection between two surrogate models in 29 different settings
and features describing fitness landscapes (see Section 2.5). We provide the research in static
settings, published in (Pitra et al., 2018b), where the perfomance of surrogate models on fitness
is measured on the fixed number of function evaluations sampled for each problem instance
(Saini et al., 2019). In Section 5.2, we present the investigation of landscape feature properties
in connection with surrogate models on the data from the actual runs of the surrogate-assisted
version of the CMA-ES, published in (Pitra et al., 2022). The properties of the utilized data are
completely different from the sampled data in the previous section implying different values of
landscape features as emphasized in (Renau et al., 2020). In final Section 5.3, we investigate the
relationships of the landscape features to four kinds of surrogate models in different settings
using three TSS methods for training data selection in the same context as the previous section.
The investigation was published in (Pitra et al., 2022).

5.1 relationships of surrogate models to fitness landscapes in expensive

optimization

In this section, we present the study, published in (Pitra et al., 2018b), investigating the rela-
tions between the two surrogate models capable to predict the whole distribution of function
values – Gaussian processes (Rasmussen and Williams, 2006) and random forests (Breiman,
2001) – and the properties of fitness landscapes. Considering that the motivation of such inves-
tigation consists in saving function evaluations during the run of the optimization algorithm
on the expensive continuous black-box function, we construct the models using the budget
50D evaluations of all 24 functions from the noiseless part of COCO benchmark set (Hansen
et al., 2009b). Thus, the research is conducted in static settings, where the performance of a
surrogate model is measured in connection with the entire landscape of the fitness function,
i. e., similarly to (Saini et al., 2019). Furthermore, due the to a limited amount of function eval-
uations, we use 11 sets of landscape feature that do not require additional function evaluations
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(unlike e. g., the features related to local searches conducted from sampled points (Mersmann
et al., 2011)) and don’t have low reliability in high dimensions, where the input space is sparse
(unlike e. g., Generalized Cell-Mapping features (Kerschke et al., 2014)). We perform a statisti-
cal analysis of the relationships between the predictive performance of various settings of the
considered surogate models and the landscape features calculated on individual benchmarks.

5.1.1 Experimental Investigation of Landscape Analysis for random forests and Gaussian processes

In this section, the performance of RF and GP surrogate models with various settings is inves-
tigated in the context of fitness landscape features of the datasets generated from sampling on
noiseless benchmark functions.

Data

The considered experiments were performed1 on the set of all 24 noiseless functions from the
COCO framework (Hansen et al., 2009b) in dimensions D = {2, 5, 10} using random sampling
from 15 different instances per function. The datasets consisting of 50D points for each instance
per function were generated by a random improved Latin Hypercube design (Beachkofski and
Grandhi, 2002) covering the input space [−5, 5]D. Such sample of evaluations has been shown
sufficient for certain high-level properties by means of numerical features by Kerschke et al.
(2016), which can be convenient especially in lower dimensions, where the initial phase of
optimization run takes part within such budget of expensive evaluations. The overall predic-
tive performance of the surrogate models was tested through 5-fold cross-validation on the
generated datasets.

Experimental Setup

gaussian process model The GP regression model was employed using constant mean
µ(x) = mean(y), where y are the training values, and 7 different isotropic covariance func-
tions: κRQ, κSE, κ

1/2
Mat, κ

3/2
Mat, κ

5/2
Mat, κNN, and κADD. κRQ and κSE were also used in ARD versions

(κARD
RQ and κARD

SE ). The hyperparameters were optimized with MATLAB’s fmincon using 5 opti-
mization trials, except for the additive covariance function κADD, which was optimized with
only 3 trials due to its relatively high complexity.

The neural network covariance (31) was specified with isotropic distance measure P = `−2I.
The additive kernel (37) used one-dimensional squared exponential (26) as the basis.

The rest of initial values for hyperparameters, together with their bounds are reported Ta-
ble 32. The initial values for repeated optimization trials were sampled by Latin Hypercube
design.

random forest model The RF models were tested using the full-factorial desing on
the ensemble method, splitting method and error gain functions err of the decision tree. In
addition, the number of trees ntree, the number of points Nt, and the number of dimensions
used for training the individual tree nD were sampled from the values in Table 33. Thus, the RF
experimental part sampled RF models from 1600 different settings. Bagging (Breiman, 1996)
and boosting (Chen and Guestrin, 2016) were tested as ensemble methods (see paragraphs
Bagging and Boosting in Section 2.3.1).

1 the source code is freely available at https://github.com/bajeluk/surrogate-cmaes/tree/meta
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Table 32: Experimental settings of GP. σn and ` apply to all covariances. σf applies to all except the

κADD, in which σ
(r)
f scales each degree r ∈ R, R = {1, 2, 3, 5, 7, 10} ∩ {1, . . . , D} of interaction separately.

σ
(r)
f and its upper bound were initialized proportionally to (D

r ).

GP hyperparam initial value constrains

σn 1e−2 [1e−3, 1e1]
` std(X) [1e−2, 1e2]
σf

std(y)√
2

[1e−2, 1e6]

Table 33: Experimental settings of RF: ntree – number of trees in RF, Nt, nD – number of points and
dimensions for training individual tree, N – number of available training points, D – input space dimen-
sion. Split methods and error gain functions err are tested using full-factorial design, ntree, Nt, and nD
are sampled.

RF parameter bagging boosting

err {errMSE, errσ2 , errNN} errGrad
split {CART, SECRET, OC1, SUPPORT, PAIR}

ntree {64, 128, 256, 512, 1024}
Nt d{0.25, 0.5, 0.75, 1} · Ne
nD d{0.25, 0.5, 0.75, 1} · De

Decision trees in bagged RF were employed with the following error gain functions MSE
errMSE, variance of predicted y-values errσ2 , and nearest-neighbor entropy estimator errNN
were employed as error gain functions (see Equations (48), (49), and (51) respectively). In
bagged RF, cross-validation pruning (Breiman, 1984) was utilized to optimize the tree structure.
In addition, the following five regression models were used in leaves: constant, linear, linear
with interactions, pure quadratic (quadratic without interactions), and full quadratic. The
model providing the best fit according to the MSE loss function was always selected for the
relevant leaf and appropriate data. In boosted RF, the maximum tree depth was set to 8, in
accordance with (Chen and Guestrin, 2016).

Considering decision tree settings regardless the ensemble method, the five splitting meth-
ods from the following algoritms were employed (see paragraph Split methods in Section 2.3.1):
CART (Breiman, 1984), SECRET (Dobra and Gehrke, 2002), OC1 (Murthy et al., 1994), SUPPORT
(Chaudhuri et al., 1994), and a method from (Hinton and Revow, 1996) (PAIR). The remaining
decision tree parameters have been taken identical to settings from (Pitra et al., 2018a).

The 91 calculated landscape features were from the following 11 feature sets (Kerschke,
2017b) (see definitions in Appendix A):

Basic ΦBasic, Levelset ΦLvl,
CM Angle ΦCM−Angl, Meta-Model ΦMM,
CM Convexity ΦCM−Conv, Nearest Better Clustering ΦNBC,
CM Gradient Homogeneity ΦCM−Grad, PCA ΦPCA,
Dispersion ΦDis, y-Distribution Φy−D.
Information Content ΦInf,
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Feature sets requiring additional evaluations of the objective function (Convexity, Local Search,
and Curvature) and cell-mapping feature sets with high computational or memory require-
ments in higher dimension or with the condition on the number of points in each cell (Gener-
alized CM, Barrier Trees, and Linear Model) were omitted. SOO Tree features were published by
Derbel et al. (2019) a year after our research published in (Pitra et al., 2018b), thus, they could
not be taken into considerations.

Analysis of Results

We analyze relationships between the MSE of 29 different setting of GP or RF as described
in the previous subsection and 79 landscape features, which were those from the 91 features
mentioned in the previous subsection that didn’t yield constant over all tested combinations
of COCO noiseless functions and their instances for any for the tested GP or RF settings.

correlation analysis We begin the analysis of results by a simple correlation analysis
using the Spearman correlation coefficient between the MSE of the considered models. The
reason for using this coefficient rather than the more common Pearson correlation coefficient
is that the Pearson correlation coefficient quantifies linear dependence between both variables,
whereas the Spearman correlation coefficient quantifies general monotone dependence.

No single landscape feature was found to be discriminative for surrogate model perfor-
mance, although certain features from ΦBasic, ΦInf, ΦMM, and ΦPCA are positively (or nega-
tively) correlated with all considered models, which indicates the landscape to be difficult (or
easy) for fitting any of them.

influence of landscape features on model performance We have performed a
multivariate statistical analysis using a classification trees.

For each of the 1080 different combinations of 3 dimensions, 24 noiseless functions and 15

their instances, the values of the 79 above mentioned non-constant landscape features were
recorded. They were then classified into 29 classes according to which of the 29 considered
settings of GP and RF was evaluated for the respective combination of dimension and noiseless
function and achieved the lowest MSE among all evaluated settings. The classification tree
trained on those data is the MATLAB implementation of the CART (Breiman, 1984). The
resulting classification tree is depicted in Figure 38. It reveals that the most accurate model
was nearly always either a GP or a boosted RF. Most frequently, the highest accuracy was
achieved by a GP with the squared exponential covariance function κSE.

Features describing the global structure of the objective function landscape were detected as
most distinctive

As most distinctive features were detected those describing the global structure of the ob-
jective function landscape, two CM features (ϕ

CM-Angl
y_best2worst_std and ϕCM-Conv

convex_soft), three ΦMM fea-
tures (ϕMM

lin_w_interact_adj_r2, ϕMM
quad_simple_adj_r2, and ϕMM

quad_w_interact_adj_r2), and two ΦNBC fea-
tures (ϕNBC

nb_std_ratio, ϕNBC
nb_mean_ratio). Global structure of the landscape can possibly influence

the performance of a particular model. Very interesting is the discovered importance of basic
features such as dimension ϕdim or extreme values of the objective function ϕobjective_min. In
addition, skewness ϕ

y-D
skewness and the kurtosis ϕ

y-D
kurtosis also had influence on surrogate model

performance. The last mentioned observations may suggest that only a set of simple features
can provide valuable information about the model performance.
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Figure 38: Classification tree demonstrating the influence of landscape features on model performance.
Light blue: Gaussian processes. Light pink: Random forests. The RF models use the notation

RFensemble method

∣∣∣split method
error gain , where bag = bagging, gb = gradient boosting, and Grad = gradient error

gain. The GP models use the notation GP | covariance function .
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5.1.2 Conclusion

This section investigated the relationships between two surrogate model types and features
describing landscape of continuous fitness in static settings where the data are once sampled
before the run of any single-objective black-box optimizer. The relationships between the
performances of GP and RF surrogates with various settings and 11 landscape feature sets
were analysed.

The results suggest that clear relationships between the performance of the 29 compared
settings of GP and RF models and the considered features are not easy to derive. The features
describing global properties of the landscape are highly influential on surrogate model settings
performance. On the other hand, simple features can also provide important knowledge.

5.2 landscape features investigation

Our research in (Pitra et al., 2018b) and especially in (Pitra et al., 2019b), suggested that the in-
vestigation into properties of landscape features in the surrogate modeling context could bring
more understanding into the entire problematics. Moreover, the analysis of landscape features
also had less attention so far than it deserves only in the context of black-box optimization us-
ing static settings only, where the model is selected once at the beginning of the optimization
process, and particularly not in the context of surrogate models (Renau et al., 2019, 2020).

In this section, we study properties of features representing the fitness landscape in the
context of the data from actual runs of a surrogate-assisted version of the CMA-ES on the
noiseless part of the COCO benchmark function testbed (Hansen et al., 2021), i. e., using data
not presampled and respecting distribution and evaluation strategy of such CMA-ES version
at the same time. From the large number of available features, we select a small number of
representatives for subsequent research presented in Section 5.3, based on their robustness to
sampling and similarity to other features.

First, we state the problem and research question connected with the relations between
surrogate models and landscape features. Then, we present our set of new landscape features
based on the CMA-ES state variables. Afterwards, we investigate the properties of landscape
features in the context of the training set selection methods and select the most convenient
features for the research in the next section.

5.2.1 Problem Statement

The problem can be formalized as follows: In a generation g of a surrogate-assisted version
of the CMA-ES, a set of surrogate models M with settings ψ are trained utilizing particular
choices of the training set T . The training set T is selected out of an archive A (T ⊂ A)
containing all points in which the fitness has been evaluated so far, using some TSS method
(see Section 4.1.1). Afterwards, M is tested on the set of points sampled using the CMA-ES

distribution Xte =
{

xk
∣∣xk ∼ N

(
m(g), σ(g)2

C(g)), k = 1, . . . , α
}

, where α ∈ N depends on the
evolution control.

The research question connected to this problem is:

What relationships between the suitability of different models for predicting the
fitness and the considered landscape features do the testing results indicate?
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5.2.2 CMA-ES Landscape Features

To utilize additional information comprised in CMA-ES state variables, we have proposed a
set of features based on the CMA-ES in (Pitra et al., 2019b).

In each CMA-ES generation g during the fitness evaluation step (Step 4), the following
additional features ϕ are obtained on the set of points X = {xi}N

i=1:

� Generation number ϕCMA
generation = g indicates the phase of the optimization process.

� Step-size ϕCMA
step_size = σ(g) provides an information about the extent of the approximated

region.

� Number of restarts ϕCMA
restart = n(g)

r performed till generation g may indicate landscape
difficulty.

� Mahalanobis mean distance of the CMA-ES mean m(g) to the sample mean µX of X

ϕCMA
mean_dist(X) =

√
(m(g) − µX)>C−1

X (m(g) − µX) , (103)

where CX is the sample covariance of X. This feature indicates suitability of X for model
training from the point of view of the current state of the CMA-ES algorithm.

� Square of the pc evolution path length ϕCMA
evopath_c_norm =

∥∥p(g)
c
∥∥2 is the only possible non-

zero eigenvalue of rank-one update covariance matrix p(g+1)
c p(g+1)

c
>

(see Subsection 2.2.2).
That feature providing information about the correlations between consecutive CMA-ES
steps indicates a similarity of function landscapes among subsequent generations.

� pσ evolution path ratio, i. e., the ratio between the evolution path length
∥∥p(g)

σ

∥∥ and the
expected length of a random evolution path used to update step-size. It provides a useful
information about distribution changes:

ϕCMA
evopath_s_norm =

∥∥p(g)
σ

∥∥
E ‖N (0, I)‖ =

∥∥p(g)
σ

∥∥ Γ
(

D
2

)
√

2 Γ
(

D+1
2

) . (104)

� CMA similarity likelihood. The log-likelihood of the set of points X with respect to the
CMA-ES distribution may also serve as a measure of its suitability for training

ϕCMA
cma_lik(X) =− N

2

(
D ln 2πσ(g)2

+ ln det C(g)
)

− 1
2 ∑

x∈X

(
x−m(g)

σ(g)

)>
C(g)−1

(
x−m(g)

σ(g)

)
. (105)

For the completeness of feature definitions in Appendix A, we list CMA features also in
Section A.5.
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5.2.3 Experimental Investigation of Landscape Features

Based on the studies in (Bajer et al., 2019) and (Pitra et al., 2021), we have selected the
DTS-CMA-ES as a successful representative of surrogate-assisted CMA-ES algorithms.

Investigation Settings

To investigate landscape features in the context of surrogate-assisted optimization, from the
model point of view, we have decided to generate a large set of data using actual runs of
an optimization algorithm on well-known benchmarks (similarly to (Renau et al., 2020; Saini
et al., 2019)), more precisely, we have created 100 new runs from each performed run through
CMA-ES distribution smoothing. In detail, we have generated2 a dataset D of sample sets
using independent runs of the 8 model settings from (Pitra et al., 2019b) for the DTS-CMA-ES
algorithm (Bajer et al., 2019; Pitra et al., 2016) on the 24 noiseless single-objective benchmark
functions from the COCO framework (Hansen et al., 2009b, 2021). All runs were performed
in dimensions 2, 3, 5, 10, and 20 on instances 11−15. The algorithm runs were terminated
if the target fitness value 10−8 was reached or the budget of 250 function evaluations per
dimension was depleted. Taking into account the double model training in DTS-CMA-ES (see
Algorithm 9) and a large number of resulting datasets (120000), we have extracted archives A
and testing sets Xte only from the first model training. The DTS-CMA-ES was employed in the
overall best non-adaptive settings from (Bajer et al., 2019). To obtain 100 comparable archives
and testing sets for landscape features investigation, we have generated a new collection of
sample sets D100, where points for new archives and new populations are created using the
weighted sum of original archive distributions from D. The g-th generated dataset uses the
weight vector w(g) = 1

9 (0, . . . , 0
g−3

, 1
g−2

, 2
g−1

, 3
g
, 2

g+1
, 1

g+2
, 0

g+3
, . . . , 0)>, which provides distribution

smoothing across the available generations3. The data from well-known benchmarks were also
used by Saini et al. (2019) and Renau et al. (2020).

From TSS methods in Subsection 4.1.1, we have selected the following three to be investi-
gated: TSS full, TSS nearest, and TSS knn. Because each of these methods results in a different
training set T using identical A, we have performed all the feature investigations for each TSS
method separately. By combining the two basic sample sets for feature calculation A and T with
a population P consisting of the points without a known value of the original fitness to be eval-
uated by the surrogate model, we have obtained two new sets AP = A∪ P and TP = T ∪ P .
Step 4 of Algorithm 5 performing the transformation into the σ2C basis could also influence
the landscape features. Thus, we have utilized either transformed and non-transformed sets
for feature calculations, resulting in 8 different sample sets (4 in case of TSS full due to T = A):
A, A> , AP , A>P , T , T > , TP , T >P , where > denotes transformation into the σ2C basis.

2 Source codes covering all mentioned datasets generation and experiments are available on https://github.com/

bajeluk/surrogate-cmaes/tree/meta.
3 The weighted sum of the original archive distributions satisfies ∑

gmax
n=0 w(g)

n N
(
m(n), C(n)) =

N
(

∑
gmax
n=0 w(g)

n m(n), ∑
gmax
n=0 (w

(g)
n )2C(n)), where gmax is the maximal generation reached by the considered origi-

nal archive and m(n) and C(n) are the mean and covariance matrix in CMA-ES generation n.
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From each generated run in D100, we have uniformly selected 100 generations. In each such
generations, we have computed all features from the following feature sets for all 3 considered
TSS methods on all sample sets:

Basic ΦBasic, Levelset ΦLvl,
CMA features ΦCMA, Meta-Model ΦMM,
Dispersion ΦDis, Nearest Better Clustering ΦNBC,
Information Content ΦInf, y-Distribution Φy−D.

These sets do not require additional evaluations of the objective function and can be com-
puted even in higher dimensions. (unlike e. g., Convexity or CM features). Some features were
not computed due to the following reasons (see Appendix A for feature definitions): From
ΦBasic, we have used only ϕdim and ϕobs because the remaining ones were constant on the
whole D100 dataset. ϕdim is identical regardless the sample set. ϕobs and all features from
Φy−D were not computed in the σ2C basis because it does not influence their resulting values.
The feature ϕMM

lin_simple_intercept ∈ ΦMM was excluded because it is useless if fitness normal-
ization is performed (see Step 5 in Algorithm 5). The remaining features from ΦMM, all the
features from ΦNBC, and all three features from Φy−D were not computed on sample sets with
P because it also does not influence their resulting values.

For the rest of the paper, we will consider features which are independent of the sample set
(i. e., ϕdim and 5 ΦCMA features) as a part of A-based features only. This results in the total
numbers of landscape features equal to 197 for TSS full (all were A-based) and 388 for TSS
nearest and TSS knn (from which 191 features were T -based).

Feature Analysis Process and Its Results

The results of experiments concerning landscape features are presented in Tables 34–40.
First, we have investigated the impossibility of feature calculation (i. e., the feature value •)

for each feature. Such information can be valuable and we will consider it as a valid output
of any feature. On the other hand, large amount of • values on the tested dataset suggests
low usability of the respective feature. Therefore, we have excluded features resulting in •
in more than 25% of all measured values, which were for all TSS methods the feature ϕInf

eps_s

on AP , A>P , TP , and T >P and for the TSS knn also the features ϕDis
ratio_mean_02, ϕDis

ratio_median_02,
ϕDis
diff_mean_02, ϕDis

diff_median_02 on T , T > , TP , and T >P , as well as ϕMM
quad_w_interact_adj_r2 on T and

T > . This decreased the numbers of features to 195 for TSS full, 384 for TSS nearest, and 366 for
TSS knn. Many features are difficult to calculate using low numbers of points. Therefore, for
each feature we have measured the minimal number of points N• in a particular combination
of feature and sample set, for which the calculation resulted in • in at most 1% of cases. All
measured values can be found in Tables 34–39. For the calculation of most of the features,
the CMA-ES default population size value in 2D: N• = 4 + b3 ln 2c = 6, or initial point
plus doubled default population size in 2D: N• = 1 + 2(4 + b3 ln 2c) = 13 was sufficient
in all sample sets indexed with P . Considering sample-set-independent features, no points
are needed, because the values concern the CMA-ES iteration or CMA-ES run as a whole,
not particular points. As can be seen from Tables 34–39, the dispersion features ΦDis require
more points to be computable (ϕ 6= •) as the quantile of function values used for splitting
the sample set decreases (see Appendix A.6 for quantile values). ϕMM

lin_w_interact_adj_r2 and
ϕMM
quad_w_interact_adj_r2 have also high values of N•, which is plausible taking into account their

descriptions (see Appendix A.9).
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Table 34: TSS full features (A = T for TSS full) from feature sets ΦBasic, ΦCMA, ΦDis, and Φy−D. Features
are grouped according to their feature sets (separated by horizontal lines). Features with less than 25% of
values equal to • and robustness greater than 0.9, are in gray. N• denotes the lowest measured number
of points from which at most 1% of feature calculations resulted in • (N• = 0 for sample set independent
ϕ). The (Di, Dj) column shows the pairs of feature dimensions for which the two-sided Wilcoxon signed
rank test with the Bonferroni-Holm correction does not reject the hypothesis of equality of median feature
values, at the family-wise level 0.05 for each individual feature.

A A> AP A>P
N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj)

ϕdim 0 100.00 0 100.00 0 100.00 0 100.00

ϕobs 1 100.00 1 100.00 13 100.00 13 100.00

ϕCMA
generation 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
step_size 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
restart 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
cma_mean_dist 6 70.11 6 56.83 13 63.61 13 54.12

ϕCMA
evopath_c_norm 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
evopath_s_norm 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
cma_lik 1 99.75 1 99.96 13 99.75 13 99.96

ϕDis
ratio_mean_02 71 57.69 (2, 5),

(3, 10),
(3, 20)

71 62.33 (2, 5),
(5, 20)

86 57.36 (2, 5),
(3, 20)

86 62.16

ϕDis
ratio_median_02 71 65.95 (3, 5) 71 69.28 86 65.41 86 69.60

ϕDis
diff_mean_02 71 47.75 71 99.52 86 48.77 86 99.52

ϕDis
diff_median_02 71 50.21 71 99.44 86 51.44 86 99.45

ϕDis
ratio_mean_05 27 55.22 (5, 20) 27 60.59 42 54.76 (5, 20) 42 60.32

ϕDis
ratio_median_05 27 59.80 27 64.43 42 59.66 (5, 20) 42 64.57

ϕDis
diff_mean_05 27 47.99 27 99.49 42 49.16 42 99.49

ϕDis
diff_median_05 27 51.16 27 99.46 42 52.88 42 99.48

ϕDis
ratio_mean_10 12 54.63 (5, 20) 12 59.33 25 54.06 (5, 20) 25 58.71

ϕDis
ratio_median_10 12 58.29 12 62.38 (2, 3) 25 57.80 25 61.82

ϕDis
diff_mean_10 12 49.70 12 99.52 25 50.88 25 99.52

ϕDis
diff_median_10 12 53.51 12 99.48 25 55.53 25 99.49

ϕDis
ratio_mean_25 6 54.80 6 58.86 15 53.87 15 58.06

ϕDis
ratio_median_25 6 56.21 6 59.74 15 54.91 15 58.26

ϕDis
diff_mean_25 6 53.78 6 99.55 15 55.29 15 99.55

ϕDis
diff_median_25 6 57.40 6 99.49 15 60.24 15 99.50

ϕ
y-D
skewness 6 36.71 − − − − − − − − −

ϕ
y-D
kurtosis 6 63.06 − − − − − − − − −

ϕ
y-D
number_of_peaks 6 32.34 − − − − − − − − −

To increase comparability of investigated features, we normalize all the features to interval
[0, 1] using sigmoid function

ϕnorm(x) =
1

1 + e−k(ϕ−ϕ0)
, k = 2 ln

99
Q0.99 −Q0.01

, ϕ0 =
Q0.01 + Q0.99

2
, (106)

where Q0.01 and Q0.99 are 0.01 and 0.99 quantiles of feature ϕ on the whole D100 dataset
considering values ϕ ∈ R ∪ {±∞}. The normalization is derived to map feature quantiles to
0.01 and 0.99, i. e., ϕnorm(Q0.01) = 0.01 and ϕnorm(Q0.99) = 0.99. Such normalization maps
infinity values to 0 and 1 and increases comparability of features with large differences in
possible values (e. g., ϕCMA

step_size ∈ [1.5 · 10−10, 1.4 · 1015], whereas ϕNBC
nb_cor ∈ [−1, 1]).
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Table 35: TSS full features (A = T for TSS full) from feature sets ΦLvl, ΦMM, ΦInf, and ΦNBC. Features
are grouped according to their feature sets (separated by horizontal lines). Features with less than 25% of
values equal to • and robustness greater than 0.9, are in gray. N• denotes the lowest measured number
of points from which at most 1% of feature calculations resulted in • (N• = 0 for sample set independent
ϕ). The (Di, Dj) column shows the pairs of feature dimensions for which the two-sided Wilcoxon signed
rank test with the Bonferroni-Holm correction does not reject the hypothesis of equality of median feature
values, at the family-wise level 0.05 for each individual feature.

A A> AP A>P
N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj)

ϕLvl
mmce_lda_10 6 39.47 6 39.47 13 53.01 13 53.01

ϕLvl
mmce_qda_10 6 69.30 6 69.88 13 65.30 13 65.91

ϕLvl
mmce_mda_10 6 28.07 6 28.14 13 27.38 13 27.64

ϕLvl
lda_qda_10 6 80.09 6 80.12 18 92.37 18 92.38

ϕLvl
lda_mda_10 6 44.32 6 42.71 13 46.42 13 48.00

ϕLvl
qda_mda_10 6 81.14 6 80.51 13 78.27 13 77.33

ϕLvl
mmce_lda_25 6 32.64 6 32.64 13 54.19 13 54.19

ϕLvl
mmce_qda_25 6 62.01 6 62.41 13 56.49 13 56.69

ϕLvl
mmce_mda_25 6 22.86 6 22.63 13 27.03 13 26.99

ϕLvl
lda_qda_25 6 76.25 6 76.29 (3, 5) 15 94.13 15 94.12

ϕLvl
lda_mda_25 6 32.07 (3, 20) 6 27.68 (3, 10),

(10, 20)
13 22.86 13 20.39

ϕLvl
qda_mda_25 6 77.24 6 77.68 13 63.08 13 63.11

ϕLvl
mmce_lda_50 6 22.40 6 22.39 13 18.46 13 18.46

ϕLvl
mmce_qda_50 6 48.24 6 49.46 13 32.88 13 33.15

ϕLvl
mmce_mda_50 6 20.13 6 19.60 13 38.52 13 37.58

ϕLvl
lda_qda_50 6 69.22 (10, 20) 6 69.24 (10, 20) 15 84.45 15 84.41

ϕLvl
lda_mda_50 6 36.05 6 30.90 13 6.80 (5, 20) 13 4.51

ϕLvl
qda_mda_50 6 42.65 (3, 20) 6 40.68 13 21.96 (5, 20) 13 22.47 (3, 5),

(5, 20)

ϕMM
lin_simple_adj_r2 6 19.64 6 19.62 − − − − − −

ϕMM
lin_simple_coef_min 6 51.95 6 85.41 − − − − − −

ϕMM
lin_simple_coef_max 6 29.73 6 77.68 − − − − − −

ϕMM
lin_simple_coef_max_by_min 6 27.78 6 69.78 − − − − − −

ϕMM
lin_w_interact_adj_r2 100 44.77 100 43.89 − − − − − −

ϕMM
quad_simple_adj_r2 6 50.23 6 52.16 − − − − − −

ϕMM
quad_simple_cond 6 46.45 6 95.21 − − − − − −

ϕMM
quad_w_interact_adj_r2 629 82.50 531 77.81 − − − − − −

ϕInf
h_max 6 14.46 (3, 5) 6 33.83 13 35.74 13 35.42

ϕInf
eps_s 6 6.59 6 34.65 3056 26.05 3196 54.56

ϕInf
eps_max 6 64.93 6 84.99 13 65.17 13 84.18

ϕInf
m0 6 1.30 6 3.88 − − − − − −

ϕInf
eps_ratio 6 27.67 6 44.91 − − − − − −

ϕNBC
nb_std_ratio 6 31.11 6 18.27 − − − − − −

ϕNBC
nb_mean_ratio 6 38.98 6 32.96 − − − − − −

ϕNBC
nb_cor 6 45.94 6 32.39 − − − − − −

ϕNBC
dist_ratio 6 55.23 6 50.78 − − − − − −

ϕNBC
nb_fitness_cor 6 77.17 6 77.13 − − − − − −
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Table 36: TSS nearest features from feature sets ΦBasic, ΦCMA, ΦDis, and Φy−D (only T -based and sample
set indepent,A-based are identical to TSS full in Table 34). Features are grouped according to their feature
sets (separated by horizontal lines). Features with less than 25% of values equal to • and robustness
greater than 0.9, are in gray. N• denotes the lowest measured number of points from which at most 1%
of feature calculations resulted in • (N• = 0 for sample set independent ϕ). The (Di, Dj) column shows
the pairs of feature dimensions for which the two-sided Wilcoxon signed rank test with the Bonferroni-
Holm correction does not reject the hypothesis of equality of median feature values, at the family-wise
level 0.05 for each individual feature.

T T > TP T >P
N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj)

ϕdim 0 100.00 0 100.00 0 100.00 0 100.00

ϕobs 1 100.00 1 100.00 13 100.00 13 100.00

ϕCMA
generation 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
step_size 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
restart 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
cma_mean_dist 6 70.11 6 56.83 13 63.61 13 54.12

ϕCMA
evopath_c_norm 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
evopath_s_norm 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
cma_lik 1 99.75 1 99.96 13 99.75 13 99.96

ϕDis
ratio_mean_02 71 57.69 (2, 5),

(3, 10),
(3, 20)

71 62.33 (2, 5),
(5, 20)

86 57.36 (2, 5),
(3, 20)

86 62.16

ϕDis
ratio_median_02 71 65.95 (3, 5) 71 69.28 86 65.41 86 69.60

ϕDis
diff_mean_02 71 47.75 71 99.52 86 48.77 86 99.52

ϕDis
diff_median_02 71 50.21 71 99.44 86 51.44 86 99.45

ϕDis
ratio_mean_05 27 55.22 (5, 20) 27 60.59 42 54.76 (5, 20) 42 60.32

ϕDis
ratio_median_05 27 59.80 27 64.43 42 59.66 (5, 20) 42 64.57

ϕDis
diff_mean_05 27 47.99 27 99.49 42 49.16 42 99.49

ϕDis
diff_median_05 27 51.16 27 99.46 42 52.88 42 99.48

ϕDis
ratio_mean_10 12 54.63 (5, 20) 12 59.33 25 54.06 (5, 20) 25 58.71

ϕDis
ratio_median_10 12 58.29 12 62.38 (2, 3) 25 57.80 25 61.82

ϕDis
diff_mean_10 12 49.70 12 99.52 25 50.88 25 99.52

ϕDis
diff_median_10 12 53.51 12 99.48 25 55.53 25 99.49

ϕDis
ratio_mean_25 6 54.80 6 58.86 15 53.87 15 58.06

ϕDis
ratio_median_25 6 56.21 6 59.74 15 54.91 15 58.26

ϕDis
diff_mean_25 6 53.78 6 99.55 15 55.29 15 99.55

ϕDis
diff_median_25 6 57.40 6 99.49 15 60.24 15 99.50

ϕ
y-D
skewness 6 36.71 − − − − − − − − −

ϕ
y-D
kurtosis 6 63.06 − − − − − − − − −

ϕ
y-D
number_of_peaks 6 32.34 − − − − − − − − −

We have tested the dependency of individual features on the dimension using feature me-
dians from 100 samples for each distribution from D100. The Friedman’s test rejected the
hypothesis that the feature medians are independent of the dimension for all features at the
family-wise significance level 0.05 using the Bonferroni-Holm correction. Moreover, for most
of the features, the subsequently performed pairwise tests rejected the hypothesis of equality
of feature medians for all pairs od dimensions. There were only several features from ΦDis and
ΦLvl for which the hypothesis was not rejected for some pairs of dimensions (see Tables 34–39).
Therefore, the influence of the dimension on the vast majority of features is essential.

Any analysis of the influence of multiple landscape features on the predictive error of surro-
gate models requires high robustness of features against random sampling of points. To have
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Table 37: TSS nearest features from feature sets ΦLvl, ΦMM, ΦInf, and ΦNBC (only T -based and sample set
indepent, A-based are identical to TSS full in Table 35). Features are grouped according to their feature
sets (separated by horizontal lines). Features with less than 25% of values equal to • and robustness
greater than 0.9, are in gray. N• denotes the lowest measured number of points from which at most 1%
of feature calculations resulted in • (N• = 0 for sample set independent ϕ). The (Di, Dj) column shows
the pairs of feature dimensions for which the two-sided Wilcoxon signed rank test with the Bonferroni-
Holm correction does not reject the hypothesis of equality of median feature values, at the family-wise
level 0.05 for each individual feature.

T T > TP T >P
N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj)

ϕLvl
mmce_lda_10 6 39.47 6 39.47 13 53.01 13 53.01

ϕLvl
mmce_qda_10 6 69.30 6 69.88 13 65.30 13 65.91

ϕLvl
mmce_mda_10 6 28.07 6 28.14 13 27.38 13 27.64

ϕLvl
lda_qda_10 6 80.09 6 80.12 18 92.37 18 92.38

ϕLvl
lda_mda_10 6 44.32 6 42.71 13 46.42 13 48.00

ϕLvl
qda_mda_10 6 81.14 6 80.51 13 78.27 13 77.33

ϕLvl
mmce_lda_25 6 32.64 6 32.64 13 54.19 13 54.19

ϕLvl
mmce_qda_25 6 62.01 6 62.41 13 56.49 13 56.69

ϕLvl
mmce_mda_25 6 22.86 6 22.63 13 27.03 13 26.99

ϕLvl
lda_qda_25 6 76.25 6 76.29 (3, 5) 15 94.13 15 94.12

ϕLvl
lda_mda_25 6 32.07 (3, 20) 6 27.68 (3, 10),

(10, 20)
13 22.86 13 20.39

ϕLvl
qda_mda_25 6 77.24 6 77.68 13 63.08 13 63.11

ϕLvl
mmce_lda_50 6 22.40 6 22.39 13 18.46 13 18.46

ϕLvl
mmce_qda_50 6 48.24 6 49.46 13 32.88 13 33.15

ϕLvl
mmce_mda_50 6 20.13 6 19.60 13 38.52 13 37.58

ϕLvl
lda_qda_50 6 69.22 (10, 20) 6 69.24 (10, 20) 15 84.45 15 84.41

ϕLvl
lda_mda_50 6 36.05 6 30.90 13 6.80 (5, 20) 13 4.51

ϕLvl
qda_mda_50 6 42.65 (3, 20) 6 40.68 13 21.96 (5, 20) 13 22.47 (3, 5),

(5, 20)

ϕMM
lin_simple_adj_r2 6 19.64 6 19.62 − − − − − −

ϕMM
lin_simple_coef_min 6 51.95 6 85.41 − − − − − −

ϕMM
lin_simple_coef_max 6 29.73 6 77.68 − − − − − −

ϕMM
lin_simple_coef_max_by_min 6 27.78 6 69.78 − − − − − −

ϕMM
lin_w_interact_adj_r2 100 44.77 100 43.89 − − − − − −

ϕMM
quad_simple_adj_r2 6 50.23 6 52.16 − − − − − −

ϕMM
quad_simple_cond 6 46.45 6 95.21 − − − − − −

ϕMM
quad_w_interact_adj_r2 629 82.50 531 77.81 − − − − − −

ϕInf
h_max 6 14.46 (3, 5) 6 33.83 13 35.74 13 35.42

ϕInf
eps_s 6 6.59 6 34.65 3056 26.05 3196 54.56

ϕInf
eps_max 6 64.93 6 84.99 13 65.17 13 84.18

ϕInf
m0 6 1.30 6 3.88 − − − − − −

ϕInf
eps_ratio 6 27.67 6 44.91 − − − − − −

ϕNBC
nb_std_ratio 6 31.11 6 18.27 − − − − − −

ϕNBC
nb_mean_ratio 6 38.98 6 32.96 − − − − − −

ϕNBC
nb_cor 6 45.94 6 32.39 − − − − − −

ϕNBC
dist_ratio 6 55.23 6 50.78 − − − − − −

ϕNBC
nb_fitness_cor 6 77.17 6 77.13 − − − − − −
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Table 38: TSS knn features from feature sets ΦBasic, ΦCMA, ΦDis, and Φy−D (only T -based and sample set
indepent, A-based are identical to TSS full in Table 34). Features are grouped according to their feature
sets (separated by horizontal lines). Features with less than 25% of values equal to • and robustness
greater than 0.9, are in gray. N• denotes the lowest measured number of points from which at most 1%
of feature calculations resulted in • (N• = 0 for sample set independent ϕ). The (Di, Dj) column shows
the pairs of feature dimensions for which the two-sided Wilcoxon signed rank test with the Bonferroni-
Holm correction does not reject the hypothesis of equality of median feature values, at the family-wise
level 0.05 for each individual feature.

T T > TP T >P
N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj)

ϕdim 0 100.00 0 100.00 0 100.00 0 100.00

ϕobs 1 92.16 1 92.16 13 92.26 13 92.26

ϕCMA
generation 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
step_size 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
restart 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
cma_mean_dist 6 78.64 6 98.40 13 93.96 13 98.71

ϕCMA
evopath_c_norm 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
evopath_s_norm 0 100.00 0 100.00 0 100.00 0 100.00

ϕCMA
cma_lik 1 98.81 1 99.95 13 98.80 13 99.96

ϕDis
ratio_mean_02 74 30.53 74 23.95 109 29.18 109 23.33

ϕDis
ratio_median_02 74 34.49 (5, 10) 74 25.97 109 32.08 109 24.94

ϕDis
diff_mean_02 74 50.17 74 96.75 109 50.99 109 96.76

ϕDis
diff_median_02 74 49.55 74 95.54 109 50.37 109 95.47

ϕDis
ratio_mean_05 30 28.43 30 21.63 53 26.56 53 21.19

ϕDis
ratio_median_05 30 35.85 30 24.73 (3, 10) 53 31.45 (2, 20) 53 23.58

ϕDis
diff_mean_05 30 55.94 30 96.80 53 56.94 53 96.85

ϕDis
diff_median_05 30 55.11 30 95.80 53 56.23 53 95.82

ϕDis
ratio_mean_10 15 25.57 (2, 3),

(2, 10),
(3, 10),
(5, 10)

15 19.13 28 24.33 (5, 10) 28 18.97

ϕDis
ratio_median_10 15 32.86 15 21.96 28 29.68 28 21.49

ϕDis
diff_mean_10 15 58.33 15 96.96 28 59.42 28 97.02

ϕDis
diff_median_10 15 57.49 15 96.09 28 58.85 28 96.16

ϕDis
ratio_mean_25 6 19.39 6 14.96 15 19.01 15 14.16

ϕDis
ratio_median_25 6 23.38 6 15.76 (3, 5) 15 24.08 15 16.25

ϕDis
diff_mean_25 6 62.31 6 97.06 15 62.72 15 97.12

ϕDis
diff_median_25 6 61.67 6 96.27 15 62.60 15 96.36

ϕ
y-D
skewness 6 30.49 − − − − − − − − −

ϕ
y-D
kurtosis 6 72.61 − − − − − − − − −

ϕ
y-D
number_of_peaks 6 26.63 − − − − − − − − −

a robust set of k independent features, which return identical values for input in 95% cases,
we would like all features to be identical in 100 k

√
0.95% cases. Thus, for our dataset D100 with

100 samples for each distribution even a small k requires all values to be identical, which is
almost impossible to achieve for most of the investigated features. Therefore, we define feature
robustness as a proportion of cases for which the difference between the 1st and 100th percentile
calculated after standardization on samples from the same CMA-ES distribution is ≤ 0.05. Ta-
ble 40 lists numbers of features achieving different levels of robustness. We have selected the
robustness ≥ 0.9 to be used for subsequent analyses. The robustness calculated for individual
features is listed in Tables 34–39. The chosen level of robustness excluded from further com-
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Table 39: TSS knn features from feature sets ΦLvl, ΦMM, ΦInf, and ΦNBC (only T -based, A-based are
identical to TSS full in Table 35). Features are grouped according to their feature sets (separated by
horizontal lines). Features with less than 25% of values equal to • and robustness greater than 0.9, are in
gray. N• denotes the lowest measured number of points from which at most 1% of feature calculations
resulted in • (N• = 0 for sample set independent ϕ). The (Di, Dj) column shows the pairs of feature
dimensions for which the two-sided Wilcoxon signed rank test with the Bonferroni-Holm correction
does not reject the hypothesis of equality of median feature values, at the family-wise level 0.05 for each
individual feature.

T T > TP T >P
N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj) N• rob.(%) (Di , Dj)

ϕLvl
mmce_lda_10 6 11.39 6 11.39 13 9.63 13 9.93

ϕLvl
mmce_qda_10 6 67.83 6 69.40 13 69.58 13 70.79 (3, 5)

ϕLvl
mmce_mda_10 6 21.15 6 20.32 13 19.93 13 19.25

ϕLvl
lda_qda_10 23 67.38 23 67.38 37 70.31 37 70.32

ϕLvl
lda_mda_10 6 15.74 6 13.69 13 22.17 13 20.80

ϕLvl
qda_mda_10 6 57.54 6 56.51 13 55.10 13 55.06

ϕLvl
mmce_lda_25 6 9.73 6 9.63 13 15.42 (3, 20) 13 15.65 (3, 20)

ϕLvl
mmce_qda_25 6 37.27 6 38.00 13 36.70 13 37.25

ϕLvl
mmce_mda_25 6 17.79 6 16.60 13 15.60 13 14.90

ϕLvl
lda_qda_25 6 73.93 (5, 10) 6 73.87 (5, 10) 18 89.97 18 89.95

ϕLvl
lda_mda_25 6 8.97 6 6.33 13 4.46 13 2.95

ϕLvl
qda_mda_25 6 47.47 6 49.72 13 35.90 13 39.50 (2, 10),

(3, 5)
ϕLvl
mmce_lda_50 6 17.46 6 16.62 13 7.86 13 7.88

ϕLvl
mmce_qda_50 6 34.21 6 34.32 13 23.54 13 27.64

ϕLvl
mmce_mda_50 6 24.08 6 20.56 13 20.74 13 19.07 (2, 3)

ϕLvl
lda_qda_50 6 41.38 6 41.37 18 73.19 18 73.01

ϕLvl
lda_mda_50 6 26.79 6 32.00 13 2.70 (5, 10) 13 2.30

ϕLvl
qda_mda_50 6 17.30 6 24.22 13 5.95 13 7.69 (5, 20)

ϕMM
lin_simple_adj_r2 6 15.67 6 15.63 − − − − − −

ϕMM
lin_simple_coef_min 6 97.40 6 63.93 − − − − − −

ϕMM
lin_simple_coef_max 6 98.12 (2, 3) 6 87.04 − − − − − −

ϕMM
lin_simple_coef_max_by_min 6 34.41 6 45.65 − − − − − −

ϕMM
lin_w_interact_adj_r2 100 37.50 100 30.25 − − − − − −

ϕMM
quad_simple_adj_r2 6 41.50 6 37.91 − − − − − −

ϕMM
quad_simple_cond 6 92.55 6 87.21 − − − − − −

ϕMM
quad_w_interact_adj_r2 688 69.48 632 60.02 − − − − − −

ϕInf
h_max 6 1.94 6 1.57 (3, 5) 13 31.85 13 38.67

ϕInf
eps_s 6 38.77 6 3.58 2424 66.99 2485 70.18 (5, 10)

ϕInf
eps_max 6 97.84 6 59.04 13 97.70 13 58.95

ϕInf
m0 6 0.84 6 0.44 − − − − − −

ϕInf
eps_ratio 6 17.19 6 5.59 − − − − − −

ϕNBC
nb_std_ratio 6 20.10 6 14.20 − − − − − −

ϕNBC
nb_mean_ratio 6 36.38 6 30.42 − − − − − −

ϕNBC
nb_cor 6 28.49 6 26.50 − − − − − −

ϕNBC
dist_ratio 6 41.24 6 26.53 − − − − − −

ϕNBC
nb_fitness_cor 6 45.12 6 45.14 − − − − − −
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Table 40: Proportion of features for individual TSS with robustness greater or equal to the threshold in
the first column. The proportions in brackets represent T -based features for given TSS (TSS full has only
A-based). The numbers in bold in the grey row are utilized for the following process.

threshold TSS full TSS nearest TSS knn

0.5 125/195 244/384 (119/189) 188/366 (63/171)
0.6 82/195 158/384 ( 76/189) 131/366 (49/171)
0.7 54/195 102/384 ( 48/189) 93/366 (39/171)
0.8 43/195 80/384 ( 37/189) 73/366 (30/171)
0.9 33/195 60/384 ( 27/189) 59/366 (26/171)
0.99 28/195 50/384 ( 22/189) 30/366 ( 2/171)

putations all features from ΦNBC and Φy−D for every TSS and all features from ΦInf for TSS
full and TSS nearest. Both ΦNBC and Φy−D are rather sensitive to the input data, where the
influence of non-uniform sampling of data is probably not negligible. Features from ΦInf have
very varied robustness. Whereas ϕInf

eps_max provides high robustness around 0.85 on sample
sets in the σ2C basis (up to 0.97 for TSS knn), computations of ϕInf

m0 and ϕInf
eps_s resulted in the

robustness 0.004 and 0.016, respectively, which were the two lowest among all features. The
majority of ΦCMA features provided high robustness caused mainly due to the independence
of most of the features on the sample set. Features from ΦLvl based on quadratic discriminant
analysis (qda) showed nearly double robustness compared to the rest of ΦLvl features. Trans-
formation into the σ2C basis increased robustness of specific types of features from ΦDis and
ΦMM. In particular, it increased the robustness of difference-based features from ΦDis to more
than 0.99 and also of features based on model coefficients from ΦMM. TSS knn is more sample
dependent, therefore, the number of points in a sample set can vary. This also decreases the
robustness of some ratio-based features from ΦDis or ΦLvl. On the other hand, coefficients
of simple models from ΦMM show robustness over 0.99 and ϕCMA

cma_mean_dist mostly over 0.9. A
noticeable dependence of robustness on which of the sets A, T , or P is used was not observed.

The large number of features suggests that for the purpose of investigation of their relation-
ships to surrogate models, they should be clustered into a smaller number of groups of similar
features. To this end, we have performed agglomerative hierarchical clustering according to
the highest similarity 1 − ρSW(ϕi, ϕj), where ρSW is the correlation by Schweizer and Wolff
(1981) and ϕi, ϕj are the vectors of all medians from D100 for the features i and j. To compen-
sate for the ordering-dependency of agglomerative hierarchical clustering, we have performed
5 runs of clustering for each TSS method to find the optimal number of clusters. The number
of clusters exceeding a threshold 0.9 for ρSW, averaged over all 15 runs, was 14. We have sub-
sequently used that number as the value of k for subsequent k-medoids clustering using again
Schweizer-Wolff correlation as a similarity. The features that are medoids of those 14 clusters
are listed in Table 41. Even such a small number of feature representatives can be sufficient
for achieving excellent performance in a subsequent investigation (Hoos et al., 2018; Renau
et al., 2021). A majority of clusters contain features from the same feature set. Sometimes, the
whole cluster is composed of the same features calculated only on different sample sets (e. g.,
ϕLvl
lda_qda_25 on AP and A>P ), which suggests that the influence of feature calculation on various

sample sets might be negligible in those clusters. On the other hand, feature clusters for TSS
knn often all share the base sample set (A or T ), or the same transformation even if the features
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Table 41: Results of a medoid clustering into 14 clusters of the features for individual TSS methods,
according to their Schweizer-Wolf correlation. The clusters are noted by numbers and separated by
horizontal lines. Their medoid representatives are in gray.

TSS full TSS nearest TSS knn

1

ϕLvl
lda_qda_10(AP ) 1 ϕCMA

step_size

1

ϕCMA
step_size

ϕLvl
lda_qda_10(A>P )

2

ϕLvl
lda_qda_10(AP ) ϕCMA

cma_lik(A)
2 ϕCMA

step_size ϕLvl
lda_qda_10(A>P ) ϕDis

diff_mean_05(A>)

3

ϕCMA
cma_lik(A) ϕLvl

lda_qda_10(TP ) ϕDis
diff_median_05(A>)

ϕDis
diff_mean_10(A>) ϕLvl

lda_qda_10(T >P ) ϕDis
diff_mean_10(A>)

ϕDis
diff_mean_25(A>)

3

ϕDis
diff_mean_05(A>) ϕDis

diff_median_10(A>)
ϕCMA
cma_lik(AP ) ϕDis

diff_median_05(A>) ϕDis
diff_mean_25(A>)

ϕDis
diff_mean_10(A>P ) ϕDis

diff_mean_05(A>P ) ϕDis
diff_median_25(A>)

ϕDis
diff_mean_25(A>P ) ϕDis

diff_median_05(A>P ) ϕCMA
cma_lik(AP )

4

ϕDis
diff_mean_05(A>) ϕDis

diff_mean_05(T >) ϕDis
diff_mean_05(A>P )

ϕDis
diff_median_05(A>) ϕDis

diff_median_05(T >) ϕDis
diff_median_05(A>P )

ϕDis
diff_mean_05(A>P ) ϕDis

diff_mean_05(T >P ) ϕDis
diff_mean_10(A>P )

ϕDis
diff_median_05(A>P ) ϕDis

diff_median_05(T >P ) ϕDis
diff_median_10(A>P )

5

ϕDis
diff_median_10(A>)

4

ϕCMA
cma_lik(A) ϕDis

diff_mean_25(A>P )
ϕDis
diff_median_25(A>) ϕDis

diff_mean_10(A>) ϕDis
diff_median_25(A>P )

ϕDis
diff_median_10(A>P ) ϕDis

diff_mean_25(A>) ϕMM
lin_simple_coef_max(T )

ϕDis
diff_median_25(A>P ) ϕCMA

cma_lik(AP ) ϕCMA
cma_mean_dist(T >)

6

ϕDis
diff_mean_02(A>) ϕDis

diff_mean_10(A>P ) ϕCMA
cma_mean_dist(T >P )

ϕDis
diff_median_02(A>) ϕDis

diff_mean_25(A>P )

2

ϕCMA
cma_lik(A>)

ϕDis
diff_mean_02(A>P ) ϕCMA

cma_lik(T ) ϕCMA
cma_lik(A>P )

ϕDis
diff_median_02(A>P ) ϕDis

diff_mean_10(T >) ϕCMA
cma_lik(T >)

7 ϕCMA
restart ϕDis

diff_mean_25(T >) ϕCMA
cma_lik(T >P )

8

ϕCMA
cma_lik(A>) ϕCMA

cma_lik(TP )
3

ϕCMA
cma_lik(T )

ϕCMA
cma_lik(A>P ) ϕDis

diff_mean_10(T >P ) ϕCMA
cma_lik(TP )

9 ϕCMA
evopath_s_norm ϕDis

diff_mean_25(T >P )
4

ϕLvl
lda_qda_10(AP )

10 ϕCMA
evopath_c_norm

5

ϕDis
diff_median_10(A>) ϕLvl

lda_qda_10(A>P )

11

ϕLvl
lda_qda_25(AP ) ϕDis

diff_median_25(A>)

5

ϕDis
diff_mean_05(T >)

ϕLvl
lda_qda_25(A>P ) ϕDis

diff_median_10(A>P ) ϕDis
diff_median_05(T >)

12 ϕdim ϕDis
diff_median_25(A>P ) ϕDis

diff_mean_05(T >P )

13

ϕobs(A) ϕDis
diff_median_10(T >) ϕDis

diff_median_05(T >P )

ϕCMA
generation ϕDis

diff_median_25(T >) 6 ϕCMA
evopath_s_norm

ϕobs(AP ) ϕDis
diff_median_10(T >P )

7

ϕLvl
lda_qda_25(AP )

14 ϕMM
quad_simple_cond(A>) ϕDis

diff_median_25(T >P ) ϕLvl
lda_qda_25(A>P )
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Table 41: (continue)

TSS nearest TSS knn

6 ϕCMA
evopath_c_norm

8

ϕMM
lin_simple_coef_min(T )

7

ϕobs(A) ϕInf
eps_max(T )

ϕCMA
generation ϕInf

eps_max(TP )
ϕobs(AP ) 9 ϕMM

quad_simple_cond(T )
ϕobs(T ) 10 ϕCMA

restart

ϕobs(TP )

11

ϕDis
diff_mean_10(T >)

8

ϕCMA
cma_lik(A>) ϕDis

diff_median_10(T >)
ϕCMA
cma_lik(A>P ) ϕDis

diff_mean_25(T >)
ϕCMA
cma_lik(T >) ϕDis

diff_median_25(T >)
ϕCMA
cma_lik(T >P ) ϕDis

diff_mean_10(T >P )

9 ϕCMA
evopath_s_norm ϕDis

diff_median_10(T >P )

10 ϕdim ϕDis
diff_mean_25(T >P )

11

ϕLvl
lda_qda_25(AP ) ϕDis

diff_median_25(T >P )

ϕLvl
lda_qda_25(A>P )

12

ϕobs(A)
ϕLvl
lda_qda_25(TP ) ϕCMA

generation

ϕLvl
lda_qda_25(T >P ) ϕMM

quad_simple_cond(A>)
12 ϕCMA

restart ϕobs(AP )

13

ϕDis
diff_mean_02(A>) ϕobs(T )

ϕDis
diff_median_02(A>) ϕobs(TP )

ϕDis
diff_mean_02(A>P )

13

ϕdim

ϕDis
diff_median_02(A>P ) ϕCMA

evopath_c_norm

ϕDis
diff_mean_02(T >) ϕCMA

cma_mean_dist(TP )
ϕDis
diff_median_02(T >)

14

ϕDis
diff_mean_02(A>)

ϕDis
diff_mean_02(T >P ) ϕDis

diff_median_02(A>)
ϕDis
diff_median_02(T >P ) ϕDis

diff_mean_02(A>P )

14

ϕMM
quad_simple_cond(A>) ϕDis

diff_median_02(A>P )
ϕMM
quad_simple_cond(T >)

are not from the same set of features. Considering the large numbers of available features, it is
worth noticing that most of medoids are identical or at least very similar for all TSS methods.
TSS full and TSS nearest medoids share identical features, where only 4 (ϕobs, ϕDis

diff_median_02,
ϕLvl
lda_qda_25, ϕMM

quad_simple_cond) differ in the sample set (A vs. T , A> vs. T > , AP vs. TP , and A>
vs. T > respectively). Notice that sample sets differ only in using A or T . Moreover, 10 out
of 14 representatives (ϕdim, ϕobs, ϕCMA

evopath_s_norm, ϕCMA
restart, ϕCMA

cma_lik, ϕDis
diff_median_02, ϕDis

diff_mean_05,
ϕLvl
lda_qda_10, ϕLvl

lda_qda_25, ϕMM
quad_simple_cond) are the same for all considered TSS methods, whereas

sample sets utilized for feature calculation sometimes differ. Such similarity can indicate great
importance of those features for characterizing the fitness landscape in the CMA-ES surrogate
modeling context.
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5.2.4 Conclusion

This section has presented an investigation of properties of features describing the fitness land-
scape in the context of surrogate-assisted evolutionary optimization by the CMA-ES for expen-
sive continuous black-box tasks. Three sets of 14 landscape features were selected as valuable
characteristics of the fitness landscape according to their properties, especially according to
their robustness and similarity to other features. Up to our knowledge, this analysis of land-
scape feature properties in connection with surrogate models in evolutionary optimization,
published in (Pitra et al., 2022), is first of its kind.

Most of the landscape features were designed to be calculated on some initial sample set
from the more or less uniform distribution covering the whole search space to easily identify
the optimized function and/or the algorithm with the highest performance on such function.
In this section, we have operated on a more local level using only data from the actual runs of
the optimization algorithm generated in each generation using Gaussian distribution, i. e., data
completely different from the original design of those features. Therefore, the low number
of robust and mostly similar features confirms the findings of Renau et al. (2020) that the
distribution of the initial design has a notable impact on landscape analysis. The landscape
features investigated in this section are in metalearning known as metafeatures.

The selected representatives of feature clusters are utilized in the following section to inves-
tigate the relationships between surrogate models and landscape features in the context of the
identical problem defined in Section 5.2.1.

5.3 landscape analysis for surrogate models in the evolutionary black-box

context

Following the research of landscape feature properties in the surrogate modeling context de-
scribed in the previous section, we proceed by subsequential investigation of the relationships
between the selected feature representatives and performances of surrogate models with var-
ious settings utilized during the run of the evolutionary optimizer on the black-box fitness
function.

We have recently presented basic investigation in connection with landscape features of
CMA-ES assisted by a surrogate model based on Gaussian processes in (Pitra et al., 2019b). In
this section, we substantially more thoroughly investigate the relationships between selected
representatives of landscape features and the error of several kinds of surrogate models using
different settings of their parameters and the criteria for selecting points for their training.
Such study, presented in (Pitra et al., 2022) is crucial due to completely different properties of
data from runs of a surrogate-assisted algorithm compared with generally utilized sampling
strategies, which imply different values of landscape features as emphasized in Renau et al.
(2020).

5.3.1 Relationships of Landscape Features and Surrogate Models

To investigate the relationships between surrogate model errors and 14 landscape features
selected for each of 3 TSS methods in the previous section, we have utilized 4 surrogate mod-
els: GPs, RFs, and two polynomial models from successful surrogate-assisted versions of the
CMA-ES — lq model from lq-CMA-ES and lmm model from lmm-CMA (see Section 4.8.1 for
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analysis of surrogate models and ECs utilized in these two algorithms). We have used the
former two models in 8 and 9 different settings respectively. In (Saini et al., 2019), only ΦMM
features were utilized to investigate connection with several surrogate models in default set-
tings in static scenario only, where the model is selected once for a specific problem at the
beginning of the optimization process.

Experimental Settings

data We have split the datasetD constructed in Section 5.2.3 into validation and testing
parts (Dval andDtest) on the covariance function level uniformly at random (considering fol-
lowing levels of D: dimension, function, instance, covariance function). More specifically, for
each dimension, function, and instance in D, we have uniformly selected runs using 7 covari-
ance functions to Dtest and 1 covariance to Dval. In each of those runs, data from 25 uniformly
selected generations were used.

error measures The two error measures utilized in our research each follow different
aspects of model precision: The mean-squared error errMSE (48) measures how much the
model differs directly from the objective function landscape. On the other hand, the ranking
difference error errRDE (67) reflects that the CMA-ES state variables are adjusted according to
the ordering of µ best points from the current population due to the invariance of the CMA-ES
with respect to monotonous transformations.

tss methods To select point for surrogate model training, two TSS methods were utilized:
TSS full and TSS nearest. Considering the fact that TSS knn is the original TSS method of
the lmm model from Kern et al. (2006), we also employ it but only in connection with this
particular model.

lmm model The regression model from lmm-CMA was used in its improved version pub-
lished by Auger et al. (2013). The lmm model operates in the σ2C basis in its own way, thus, the
transformation step during training (step 4 in Algorithm 5) is not performed for this model.

lq model The linear-quadratic model was used in the version published by Hansen (2019).
The original version utilizes all data without any transformation, therefore, the input data for
lq model are not transformed for TSS full.

gp model The GP regression model was employed in the version we have published in (Ba-
jer et al., 2019) using 8 different covariance functions: κLIN, κQ, κSE, κ

5/2
Mat, κRQ, κNN, κGibbs, and

one example of composite function κSE+Q (see covariance functions in Section 2.3.1).

rf model The five splitting methods for decision tree from the following algoritms were
employed: CART (Breiman, 1984), SECRET (Dobra and Gehrke, 2002), OC1 (Murthy et al.,
1994), SUPPORT (Chaudhuri et al., 1994), and PAIR (Hinton and Revow, 1996). The settings of
RF model for each combination of split method and error measure were found experimentally
using latin-hypercube design on 100 out of 400 combinations of the number of trees in RF
ntree ∈ {26, 27, 28, 29, 210}, the number of points bootstrapped out of N training points Nt ∈
d{1/4, 1/2, 3/4, 1} · Ne, and the number of randomly subsampled dimensions used for training
the individual tree nD ∈ d{1/4, 1/2, 3/4, 1} · De. The maximum tree depth was set to 8, in
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Table 42: Experimental settings of RF for 5 splitting methods found using latin-hypercube design on
100 out of 400 combinations of the number of trees in RF ntree ∈ {26, 27, 28, 29, 210}, the number of
points bootstrapped out of N training points Nt ∈ d{1/4, 1/2, 3/4, 1} · Ne, and the number of randomly
subsampled dimensions used for training the individual tree nD ∈ d{1/4, 1/2, 3/4, 1} · De. The winning
settings on the validation dataset Dval are shown in the format [ntree, Nt, nD] (in case of Nt and nD are
shown only the multipliers of N and D respectively).

TSS method error CART SECRET OC1 PAIR SUPPORT

TSS full
MSE [210, 1, 3/4] [28, 1/4, 1/2] [27, 1, 1] [27, 1, 3/4] [27, 1, 1/4]
RDE [26, 3/4, 1] [28, 3/4, 1] [27, 1, 1] [210, 3/4, 1] [26, 3/4, 1]

TSS nearest
MSE [28, 1, 3/4] [29, 1/2, 1] [27, 1, 1] [27, 1, 3/4] [210, 1/4, 1]
RDE [210, 3/4, 1] [28, 3/4, 1] [27, 1, 1] [210, 3/4, 1] [26, 3/4, 1]

Table 43: Percentages of cases when the model did not provide usable prediction (model not trained, its
prediction failed, or prediction is constant). SCRT = SECRET, SUPP = SUPPORT.

GP RF lmm lq

TSS Gibbs LIN Mat NN Q RQ SE SE+Q CART
MSE

CART
RDE

SCRT
MSE

SCRT
RDE

OC1 PAIR
MSE

PAIR
RDE

SUPP
MSE

SUPP
RDE

full 50.3 8.4 26.7 7.6 22.1 5.3 8.5 3.3 5.2 9.6 2.3 20.4 17.9 18.8 2.3 7.0 23.6 8.8 2.5
nearest 40.9 29.5 27.8 24.1 19.8 4.5 7.6 3.1 23.0 22.7 23.4 23.3 23.4 22.9 23.0 23.7 23.1 10.3 2.4
knn — — — — — — — — — — — — — — — — — 5.5 —

accordance with (Chen and Guestrin, 2016). The remaining decision tree parameters have been
taken identical to settings from (Pitra et al., 2018a) described in Section 4.7.1. The 9 winning
settings on the validation dataset Dval are shown in Table 42. Preliminary testing showed that
RFs performance in connection with the DTS-CMA-ES is higher when the input data are not
transformed to the σ2C basis. Thus, the transformation step is omitted during model training
for both TSS.

Experimental Results

The results of analysing relationships between landscape features and two error measures for
selected surrogate models with the appropriate settings are presented in Figures 39–41 and
Tables 43–50.

We have summed up the cases when the model did not provide the prediction, i. e., the error
value is not available, in Table 43. Such cases can occur when hyperparameters fitting fails,
fitness prediction fails, or the model is considered constant (Steps 6, 8, and 10 in Algorithm 5

respectively). The numbers more or less confirm that more complex methods are more likely
to fail. Whereas the lq model, the most simple model among all tested, provided predictions
in almost 98% of all cases, where the missing results can be attributed to constant predictions,
the GP model with Gibbs covariance function provided only 55% of the required predictions.
Generally, the models were able to provide predictions more often when using TSS full op-
posite to TSS nearest, probably due to the locality of the training set, considering that it is
easier to train a constant model on a smaller area, where the differences between objective
values are more likely negligible. The TSS knn was the most successful selection method for
lmm, probably because it was designed directly for this model. In the following investigation,
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the cases where the error values were missing for a particular model, were excluded from all
comparisons involving that model.

We have tested the statistical significance of the errMSE and errRDE differences for 19 sur-
rogate model settings using TSS full and TSS nearest methods and also the lmm surrogate
model utilizing TSS knn, i. e., 39 different combinations of model settings ψ and TSS methods
(ψ, TSS), on all available sample sets using the Friedman test (Demšar, 2006). The resulting
p-values of the two Friedman tests, one for each error measure, are below the smallest double
precision number. A pairwise comparison of the model settings with respect to errMSE and
errRDE revealed significant differences among the vast majority of pairs of model settings ac-
cording to the non-parametric two-sided Wilcoxon signed rank test with the Holm correction
for the family-wise error. To better illustrate the differences between individual settings, we
also count the percentage of cases at which one setting had the error lower than the other. The
pairwise score and the statistical significance of the pairwise differences are summarized in Ta-
bles 44 and 45. Results of statistical tests confirmed that the obtained errMSE and errRDE values
are sufficiently diverse for further investigation of model settings suitability. The best overall
results were provided by GPs with all covariances except κLIN. Especially, GP using κSE+Q as a
covariance function in TSS nearest significantly outperformed all other (ψ, TSS) combinations.
The polynomial models using TSS nearest take the second place in such comparison, being
outperformed only by the GP models mentioned above. Generally, models using TSS nearest
provided better results than when using TSS full (in case of lmm also better than TSS knn).
The percentages of errRDE show smaller differences in precision than errMSE due to the larger
probability of error equality on the limited number of possible errRDE values compared to the
infinite number of possible errMSE values.

To compare the convenience of individual features as descriptors of areas where the surro-
gate model M with a particular (ψ, TSS) combination has the best performance, we use the
Kolmogorov-Smirnov test (KS test) testing the equality of the distribution of values of individ-
ual features calculated on the whole Dtest and on only those sample sets from Dtest for which
the (ψ, TSS) combination leads to the lowest error (errMSE or errRDE) among all tested combi-
nations. The hypothesis of distribution equality is tested at the family-wise significance level
α = 0.05 after the Holm correction. The resulting p-values summarized in Tables 46–50 and
visualised in color in Figure 39 show significant differences in distribution among combina-
tions of model settings and TSS method (ψ, TSS) for the vast majority of considered features.
Features from ΦDis and ϕCMA

step_size provided the most significant differences for almost all mod-
els. For the GP models and the sample set leading to the lowest errMSE, the p-values were
often even below the smallest double precision number. These features also provided very low
p-values for lmm and lq model. The only exception is ϕDis

diff_median_02(T >) providing notably
higher p-values for all model settings. Moreover, features calculated on T -based sample sets
for TSS nearest provided in most cases higher p-values than when calculated on A-based.

To perform a multivariate statistical analysis we have built two classification trees: one for
TSS full and one for TSS nearest. The data for each TSS method described by 14 features
selected in Section 5.2 were divided into 19 classes according to which of the 19 considered
surrogate model settings achieved the lowest errRDE. In case of a tie, the model with the lowest
errMSE among models with the lowest errRDE was the chosen one. The classification tree trained
on those data is the MATLAB implementation of the CART (Breiman, 1984), where the minimal
number of cases in leaf was set to 5000, the twoing rule was used as a splitting criterion,
ϕdim was considered as a discrete variable and the remaining 13 features were considered as
continuous. The resulting classification trees are depicted in Figures 40 and 41.
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Figure 39: The visualisation of the p-values of the Kolmogorov-Smirnov test comparing the equality
of probability distributions of individual features on all data and on those data on which a particular
model setting scored best. Non-red colored squares denote KS test results rejecting the equality of both
distributions with the Holm correction at the family-wise significance level α = 0.05, otherwise, p-values
are visualised as red squares. TSS knn was employed only in connection with lmm model.
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From the model point of view, differences of RF model settings are much lower than the
rest of settings for all the tested features. This might suggest the lower ability to distinguish
between the individual RF settings maybe due to the low performance of these settings on
the dataset. The p-values for the errMSE and the errRDE also differ notably mainly due to
the different ranges of values of these two error measures. As its consequence, p-values for
errMSE more clearly suggest the distinctive power of individual features on model precision,
regardless the fact that errRDE is more convenient for CMA-ES related problems. Overall, the
results of the KS test have shown that there is no tested landscape feature representative for
which the selection of the covariance function would be negligible for the vast majority of
model settings.

The most successful kind of models are GPs, present in most of the leaves proving the lead-
ing role shown in pairwise comparisons of model setting errors. On the other hand, Gibbs and
Matérn 5/2 covariances of the GP models constitute the winning GP settings regardless the fact
that both provided the lowest numbers of predictions (see Table 43). This is probably caused
by the removal of cases where predictions of any model setting were missing. The winning
model setting of RF is OC1 method being the most often selected leaf of the classification tree
for TSS full method. The polynomial models are not present in the resulting classification tree
for TSS nearest. The feature ϕDis

diff_mean_25(A>P ) plays possibly the most important role in the
classification tree for TSS full, being in the root node as well as in 4 other nodes, and also very
important in the TSS nearest classification tree, where it is in the root node. This confirms
the very strong decisive role of ΦDis features indicated in the results of KS test. Basic features
ϕdim and ϕobs in few nodes provide the decisions resulting in GP model if both feature values
are small and in RF model otherwise. Such dependency coincides with the better ability of
RF models to preserve the prediction quality with the growing dimension than the ability of
GP models. Features from the ΦLvl are also very important at least in connection with the
TSS nearest. The ΦCMA features are present only in very few nodes. We can observe the
connection between the feature ϕMM

quad_simple_cond(A>) and the lq model in the classification tree
for TSS full showing the possible ability of ΦMM features to detect convenience of polynomial
model usage.

5.3.2 Conclusion

This section has presented an investigation of relationships between the prediction error of the
surrogate models, their settings, and features describing the fitness landscape during evolution-
ary optimization by the CMA-ES state-of-the-art optimizer for expensive continuous black-box
tasks. Four models in 39 different settings for the DTS-CMA-ES, were compared using three
sets of 14 landscape features selected according to their properties. We analysed errMSE and
errRDE dependence of various models and model settings on the features calculated using three
TSS extracted from DTS-CMA-ES runs on noiseless benchmarks from the COCO framework.
Up to our knowledge, this analysis of landscape feature properties and their connection to
surrogate models in evolutionary optimization is more profound than any other published so
far.

The statistical analysis has shown significant differences in the error values among all 39

model settings using different TSS methods for both errMSE and errRDE. The GP model set-
tings provided the highest perfomance followed by polynomial models. Most of the investi-
gated features had distributions on sample sets with particular model settings achieving the
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Figure 41: Classification tree analysing the influence of landscape features on the most suitable model
and its setting using TSS nearest.

lowest error values significantly different from the overall distribution of all data for both error
measures and all 3 TSS methods. Finally, the overall results have shown the dispersion features
ΦDis as highly influential on the model settings error values, followed by features based on
CMA-ES state variables ΦCMA, features describing the similarity of fitness function to some
simple model ΦMM, features splitting space according to the black-box function values ΦLvl,
and simple features such as dimension and number of observations.
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Table 46: The p-values of the Kolmogorov-Smirnov (KS) test comparing the equality of probability dis-
tributions of individual TSS knn feature representatives on all data and on those data on which the lmm
model setting scored best in errMSE and errRDE. The p-values are after the Holm correction and they are
shown only if the KS test rejects the equality of both distributions at the family-wise significance level
α = 0.05. Zeros indicate p-values below the smallest double precision number. SCRT = SECRET, SUPP =
SUPPORT.
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MSE 5.2e-32 9.2e-08 1.6e-63 1.9e-75 1.2e-78 3e-267 0 0 8.3e-126 7.4e-161 0 1.1e-23 2.8e-60 2e-25

RDE 9.5e-45 1.2e-28 2.8e-67 1.4e-196 1.6e-46 0 0 0 2.8e-188 4.9e-209 0 9.2e-14 7.4e-119 6.6e-319

Table 47: The p-values of the Kolmogorov-Smirnov (KS) test comparing the equality of probability distri-
butions of individual TSS full feature representatives on all data and on those data on which a particular
model setting scored best in errMSE. The p-values are after the Holm correction and they are shown
only if the KS test rejects the equality of both distributions at the family-wise significance level α = 0.05,
non-rejecting the equality hypothesis is indicated with —. Zeros indicate p-values below the smallest
double precision number. SCRT = SECRET, SUPP = SUPPORT.

M GP RF lmm lq

settings Gibbs LIN Mat NN Q RQ SE+Q SECART
MSE

CART
RDE

OC1 PAIR
MSE

PAIR
RDE

SCRT
MSE

SCRT
RDE

SUPP
MSE

SUPP
RDE

ϕdim 2e-101 — 3.2e-2 1.3e-3 2.9e-5 1.7e-23 2.8e-13 — 1.3e-59 1.9e-16 — — 2.4e-2 3.9e-2 1.5e-3 1.0e-16 7.4e-3 4e-115 7.8e-46

ϕobs(A) 1.8e-40 — 1.0e-7 1.7e-7 7.0e-29 5.9e-36 1.6e-21 — 2.6e-43 1.7e-7 8.4e-11 — 2.3e-10 1.1e-6 6.0e-15 1.4e-10 — 3.2e-14 3e-259

ϕCMA
evopath_c_norm 3.5e-7 3.5e-8 7.9e-37 — 2.6e-69 7.6e-62 9.1e-30 2.1e-10 9.9e-20 3.7e-18 4.5e-4 — 1.2e-8 9.3e-8 7.0e-18 2.2e-10 4.3e-24 1e-216 5e-307

ϕCMA
evopath_s_norm 1.3e-88 2.1e-3 9.7e-10 1.5e-25 3.3e-48 6.0e-33 9.2e-17 7.4e-15 5.1e-18 7.0e-13 6.9e-14 2.7e-6 2.6e-5 3.9e-5 1.3e-10 2.1e-14 6.3e-11 1.3e-16 1.1e-13

ϕCMA
restart 7e-105 1.5e-7 9.7e-20 2.3e-61 7e-273 5e-193 3e-137 3.5e-46 3.3e-21 8.2e-18 1.7e-60 — 2.0e-4 4.1e-9 8.7e-98 5.5e-14 5.1e-37 1.9e-12 2.2e-15

ϕCMA
step_size 0 5.2e-19 1.5e-62 2e-123 1e-267 9e-183 6.1e-90 5.4e-79 5.0e-53 1.5e-57 1.1e-58 2.0e-20 3.4e-48 2.2e-47 2.5e-79 5.6e-46 8.4e-85 1.3e-28 9e-194

ϕCMA
cma_lik(A>P ) 1.5e-37 1.8e-2 8.2e-7 2.7e-14 2.9e-30 2.8e-33 3.8e-8 6.6e-14 1.7e-9 7.8e-9 4.3e-8 2.0e-3 2.2e-6 1.6e-5 9.3e-14 9.7e-8 4.5e-12 6.0e-34 1.5e-22

ϕDis
diff_median_02(A> ) 0 2.7e-30 3e-103 3e-159 0 0 4e-160 2e-112 3.9e-94 7e-110 1.1e-91 6.1e-7 8.3e-50 2.3e-38 3.8e-89 5.9e-62 6e-107 3e-103 6e-250

ϕDis
diff_median_10(A> ) 0 1.9e-35 1e-126 9e-173 0 0 3e-166 2e-130 2.8e-89 4e-118 5.0e-93 4.7e-11 1.8e-62 5.6e-53 2.4e-90 1.4e-61 4e-125 2.5e-82 0

ϕDis
diff_mean_05(A>P ) 0 1.6e-35 5e-132 7e-188 0 0 1e-185 7e-138 6e-115 2e-133 1e-104 3.1e-9 3.0e-68 5.8e-55 7e-102 6.5e-81 5e-129 2.0e-81 0

ϕDis
diff_mean_25(A>P ) 0 6.2e-40 3e-157 6e-186 0 0 2e-181 4e-142 3e-102 8e-130 7e-102 3.9e-10 4.9e-77 7.2e-60 1.1e-99 1.7e-79 1e-128 1e-103 0

ϕLvl
lda_qda_10(AP ) 9.7e-29 1.7e-5 8.2e-18 3.4e-19 1.6e-22 4.4e-5 7.8e-25 1.5e-4 5.4e-4 5.4e-12 1.7e-10 — 1.0e-11 1.1e-7 1.7e-35 2.5e-3 1.7e-9 2.0e-56 0

ϕLvl
lda_qda_25(AP ) 6.9e-30 5.7e-33 6.2e-31 6.1e-8 3.8e-9 1.2e-12 2.6e-16 2.0e-29 7.2e-14 1.2e-23 3.1e-13 1.5e-6 1.6e-44 9.8e-33 3.9e-27 1.3e-14 1.2e-17 3.8e-14 3e-181

ϕMM
quad_simple_cond(A> ) 7.6e-83 1.4e-9 3.5e-25 8.7e-13 2e-145 1.7e-96 2.9e-46 2.3e-34 8.3e-11 1.1e-11 3.9e-16 — 5.2e-5 5.5e-3 7.3e-8 3.0e-7 1.9e-13 7e-235 1e-127
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Table 48: The p-values of the Kolmogorov-Smirnov (KS) test comparing the equality of probability distri-
butions of individual TSS full feature representatives on all data and on those data on which a particular
model setting scored best in errRDE. The p-values are after the Holm correction and they are shown
only if the KS test rejects the equality of both distributions at the family-wise significance level α = 0.05,
non-rejecting the equality hypothesis is indicated with —. Zeros indicate p-values below the smallest
double precision number. SCRT = SECRET, SUPP = SUPPORT.

M GP RF lmm lq

settings Gibbs LIN Mat NN Q RQ SE+Q SECART
MSE

CART
RDE

OC1 PAIR
MSE

PAIR
RDE

SCRT
MSE

SCRT
RDE

SUPP
MSE

SUPP
RDE

ϕdim 6e-112 3e-182 4.8e-30 4.8e-18 3.0e-14 1.6e-25 2.5e-14 2.2e-8 — 2.8e-12 1.2e-10 1.1e-17 1.1e-26 1.9e-15 1.5e-22 6.6e-5 1.3e-25 1.5e-17 4.1e-72

ϕobs(A) 2e-286 2e-152 6e-308 5e-103 3e-232 4e-111 8e-175 7e-179 1.5e-17 2.5e-8 1.9e-2 1.4e-4 6.1e-26 4.0e-20 6.4e-5 5.5e-5 7.1e-6 4e-120 4e-280

ϕCMA
evopath_c_norm 2.6e-56 0 0 3e-131 6e-295 7e-152 1e-170 7e-140 6.9e-4 9.5e-6 2.2e-3 1.2e-4 — — 3.9e-6 1.4e-7 1.1e-3 1e-172 8e-309

ϕCMA
evopath_s_norm 5.6e-69 8.8e-27 5.5e-4 3.1e-62 9.8e-13 6.1e-25 3.7e-16 9.0e-20 4.3e-11 7.3e-4 3.9e-2 — 1.4e-11 1.7e-5 1.3e-8 9.6e-4 3.3e-7 4.9e-27 1.7e-21

ϕCMA
restart 4.3e-2 2.2e-77 1.7e-59 3.5e-6 3.1e-9 1.5e-7 2.2e-25 6.6e-37 5.1e-31 1.1e-4 3.8e-2 — 2.0e-2 — 3.3e-8 1.0e-4 — 1.7e-54 7e-138

ϕCMA
step_size 0 3e-234 1e-227 0 0 0 0 0 5.3e-75 2.3e-23 1.8e-4 5.5e-6 1.3e-68 2.7e-48 2.4e-23 5.0e-40 3.3e-17 8.7e-36 4.7e-87

ϕCMA
cma_lik(A>P ) 6.3e-65 9.4e-19 1.3e-53 1.4e-36 2.1e-74 1.3e-48 1.3e-46 5.4e-38 — — — — 7.8e-4 5.3e-3 4.2e-4 4.5e-2 5.8e-9 2.1e-46 5.1e-42

ϕDis
diff_median_02(A> ) 0 9e-234 0 0 0 0 0 0 1.2e-88 1.7e-23 1.0e-7 — 2.7e-72 7.0e-57 9.6e-15 1.8e-37 3.3e-15 2e-104 5e-110

ϕDis
diff_median_10(A> ) 0 0 0 0 0 0 0 0 4.8e-88 3.6e-21 1.3e-9 7.6e-6 1.0e-93 3.3e-79 1.8e-13 1.1e-43 1.6e-12 3.8e-76 1e-130

ϕDis
diff_mean_05(A>P ) 0 0 0 0 0 0 0 0 5.2e-98 4.2e-22 1.2e-9 8.6e-4 1.9e-93 4.7e-71 1.7e-8 3.6e-47 1.1e-8 2.9e-66 1e-128

ϕDis
diff_mean_25(A>P ) 0 0 0 0 0 0 0 0 1.3e-93 1.3e-20 5.5e-11 6.1e-4 2e-103 2.8e-86 5.5e-9 2.0e-44 3.6e-8 1e-106 5e-201

ϕLvl
lda_qda_10(AP ) 6e-221 1e-268 0 1e-105 0 4e-167 2e-241 8e-223 6.8e-6 5.2e-4 1.7e-2 1.2e-7 3.5e-5 2.5e-9 5.1e-4 1.7e-2 — 4e-129 0

ϕLvl
lda_qda_25(AP ) 1.6e-54 2.0e-40 3.4e-90 7.7e-24 1.3e-74 1.4e-35 6.3e-45 1.0e-51 5.2e-5 1.2e-3 5.2e-10 1.8e-18 3.0e-36 5.1e-33 3.3e-3 7.5e-5 1.1e-7 5.5e-25 4.8e-53

ϕMM
quad_simple_cond(A> ) 1e-190 8.5e-68 6e-220 2.1e-64 0 2e-177 3e-180 4e-148 7.1e-5 1.6e-3 — 8.8e-3 4.3e-9 6.0e-6 2.6e-4 2.0e-3 3.5e-2 0 0

Table 49: The p-values of the Kolmogorov-Smirnov (KS) test comparing the equality of probability dis-
tributions of individual TSS nearest feature representatives on all data and on those data on which a
particular model setting scored best in errMSE. The p-values are after the Holm correction and they are
shown only if the KS test rejects the equality of both distributions at the family-wise significance level
α = 0.05, non-rejecting the equality hypothesis is indicated with —. Zeros indicate p-values below the
smallest double precision number. SCRT = SECRET, SUPP = SUPPORT.

M GP RF lmm lq

settings Gibbs LIN Mat NN Q RQ SE+Q SECART
MSE

CART
RDE

OC1 PAIR
MSE

PAIR
RDE

SCRT
MSE

SCRT
RDE

SUPP
MSE

SUPP
RDE

ϕdim 0 — 1.9e-7 8.2e-19 3.8e-3 1.8e-9 5.5e-81 7.9e-3 9.7e-30 5.7e-14 2.9e-3 7.2e-3 2.9e-10 4.4e-7 2.5e-13 — 1.5e-2 6.7e-36 1.5e-77

ϕobs(T ) 0 5.0e-3 6.1e-6 6.0e-20 6.2e-6 2.2e-9 3.7e-50 1.5e-6 4.5e-35 4.7e-22 2.1e-9 2.0e-5 8.2e-13 2.2e-6 2.3e-24 9.3e-3 3.4e-11 2e-124 2.7e-12

ϕCMA
evopath_c_norm 5e-131 6.1e-5 1.9e-46 1.1e-7 7.0e-32 5.2e-18 1.6e-33 1.5e-80 3.5e-26 7.9e-19 3.8e-23 5.5e-12 2.7e-19 2.2e-17 7.4e-19 4.7e-30 9.2e-13 2.6e-61 1e-183

ϕCMA
evopath_s_norm 3.2e-25 2.1e-2 1.7e-3 7.9e-10 2.8e-4 2.5e-20 6.2e-21 1.0e-4 3.2e-9 1.1e-5 2.9e-7 1.4e-5 1.6e-7 8.8e-7 1.6e-6 4.6e-6 3.9e-5 1.7e-56 8.3e-7

ϕCMA
restart 2.4e-69 2.5e-4 — 1.7e-2 1.2e-3 2.3e-75 3.8e-42 1.0e-45 2.6e-2 — 3.2e-2 — 3.3e-2 — — 7.9e-4 2.5e-4 1.1e-42 7.0e-64

ϕCMA
step_size 8e-311 2.5e-5 2.4e-21 1.3e-4 1.6e-27 0 0 6e-178 6.3e-13 1.6e-14 6.6e-29 3.1e-8 2.1e-16 1.9e-9 9.7e-25 1.7e-34 6.3e-29 2e-136 2.0e-78

ϕCMA
cma_lik(A>P ) 8.2e-60 — 6.1e-9 2.0e-4 1.1e-28 3e-182 1e-202 6e-180 1.0e-6 1.2e-4 1.2e-15 2.6e-7 1.9e-5 1.1e-6 1.4e-11 1.6e-10 2.8e-10 5.1e-83 3.7e-22

ϕDis
diff_median_10(A> ) 3e-146 1.9e-10 4.9e-37 7.4e-16 5.2e-57 0 0 0 3.8e-23 1.6e-22 3.8e-38 4.6e-18 5.0e-26 7.3e-23 1.3e-32 1.5e-60 5.9e-45 0 2.7e-14

ϕDis
diff_mean_05(A>P ) 5e-192 2.4e-10 4.3e-38 4.6e-15 1e-100 0 0 0 6.3e-34 1.6e-25 9.3e-52 9.9e-27 5.7e-31 5.8e-35 5.2e-43 1.7e-73 2.2e-51 0 2.3e-19

ϕDis
diff_mean_25(A>P ) 4e-197 3.7e-11 6.3e-47 5.8e-18 8e-101 0 0 0 5.8e-31 2.3e-25 5.2e-50 9.3e-26 2.0e-30 5.4e-35 1.3e-40 1.0e-79 8.4e-50 0 9.6e-43

ϕDis
diff_median_02(T > ) 1.2e-26 1.9e-14 5.6e-7 2.0e-33 4.8e-21 2e-208 7e-228 3e-106 — — 6.3e-5 2.5e-3 — — 1.6e-4 — 5.0e-9 2.7e-81 2.1e-28

ϕLvl
lda_qda_10(AP ) 4.1e-35 2.2e-2 3.8e-16 1.4e-20 — 2.4e-76 8e-143 6.8e-66 1.8e-4 1.3e-5 3.9e-5 2.0e-7 3.4e-5 2.5e-6 1.2e-2 2.1e-14 6.2e-4 1.3e-21 4e-150

ϕLvl
lda_qda_25(TP ) 9.5e-15 3.2e-11 — 8.0e-14 2.9e-5 1.4e-15 5.7e-23 2.7e-22 1.1e-4 2.6e-5 6.1e-15 8.9e-15 1.6e-4 2.4e-12 9.7e-13 4.5e-16 3.7e-12 9e-123 9.8e-57

ϕMM
quad_simple_cond(T > ) 8.8e-96 — 6.8e-6 1.9e-10 3.3e-38 4e-111 2e-118 3.0e-90 2.2e-11 1.7e-8 5.2e-8 5.6e-4 2.7e-9 7.4e-3 9.1e-8 1.3e-4 4.4e-5 2.5e-20 3.6e-3
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Table 50: The p-values of the Kolmogorov-Smirnov (KS) test comparing the equality of probability dis-
tributions of individual TSS nearest feature representatives on all data and on those data on which a
particular model setting scored best in errRDE. The p-values are after the Holm correction and they are
shown only if the KS test rejects the equality of both distributions at the family-wise significance level
α = 0.05, non-rejecting the equality hypothesis is indicated with —. Zeros indicate p-values below the
smallest double precision number. SCRT = SECRET, SUPP = SUPPORT.

M GP RF lmm lq

settings Gibbs LIN Mat NN Q RQ SE+Q SECART
MSE

CART
RDE

OC1 PAIR
MSE

PAIR
RDE

SCRT
MSE

SCRT
RDE

SUPP
MSE

SUPP
RDE

ϕdim 0 2e-189 1.2e-31 1.5e-28 9.2e-32 2.6e-15 7.0e-10 5.6e-44 9.5e-7 2.3e-10 2.2e-34 2.4e-26 8.3e-11 1.5e-24 1.4e-8 4.3e-59 2.0e-29 7.8e-54 2.7e-7

ϕobs(T ) 0 9.3e-50 1.2e-11 4.7e-16 7.0e-54 1.7e-15 1.5e-12 3.1e-48 2.1e-5 8.1e-5 7.5e-20 4.4e-16 7.3e-5 5.3e-16 9.8e-5 6.6e-37 1.0e-15 4.8e-58 1.2e-28

ϕCMA
evopath_c_norm 2e-171 0 0 1e-132 6.0e-83 5e-159 4e-202 2e-284 3.3e-2 3.3e-2 2.2e-5 — 3.4e-2 1.5e-2 1.9e-3 4.2e-12 4.9e-5 3e-202 4.5e-13

ϕCMA
evopath_s_norm 1.0e-67 6.7e-34 1.0e-17 2.6e-45 4.1e-12 1.1e-9 5.8e-17 7.7e-10 5.3e-3 2.7e-3 1.4e-3 1.3e-3 2.1e-2 6.0e-6 — 7.3e-5 1.5e-4 2.2e-71 1.5e-59

ϕCMA
restart 4.0e-93 2.9e-91 1.9e-83 7.1e-43 1e-146 2e-280 0 2e-322 1.1e-2 — 1.6e-3 3.2e-4 3.5e-4 1.9e-4 4.4e-2 5.7e-7 3.4e-2 2e-196 3e-270

ϕCMA
step_size 0 1e-236 0 2e-285 7e-234 8.6e-80 3e-139 2.8e-72 1.0e-22 5.3e-22 1.7e-19 3.5e-20 2.5e-17 9.8e-27 2.5e-16 3.9e-22 1.6e-20 2e-191 9e-138

ϕCMA
cma_lik(A>P ) 6.9e-64 2.1e-14 1.4e-50 2.5e-31 2.5e-86 6.3e-71 5.2e-95 1.3e-86 4.3e-8 1.9e-8 9.0e-11 6.4e-11 2.1e-8 7.3e-13 1.0e-9 2.0e-11 3.4e-7 5.2e-72 3.4e-12

ϕDis
diff_median_10(A> ) 1e-214 0 0 0 3e-307 0 0 0 1.2e-23 4.5e-24 1.5e-15 3.9e-27 1.2e-15 5.9e-28 3.8e-16 1.5e-15 4.6e-16 0 5e-225

ϕDis
diff_mean_05(A>P ) 1e-191 0 0 0 0 0 0 0 2.6e-22 8.3e-21 9.9e-20 1.6e-29 3.8e-15 1.9e-29 3.8e-19 9.5e-15 4.9e-14 0 0

ϕDis
diff_mean_25(A>P ) 6e-197 0 0 0 0 0 0 0 2.6e-22 2.7e-21 1.7e-20 1.3e-30 9.8e-15 9.5e-31 3.6e-19 2.7e-15 5.0e-14 0 2e-317

ϕDis
diff_median_02(T > ) 1.0e-22 8e-132 9.6e-62 2.9e-84 1e-107 5e-262 0 4e-256 — 1.3e-3 — 1.2e-3 1.1e-3 5.3e-3 1.7e-2 3.4e-5 9.7e-6 6e-200 1e-215

ϕLvl
lda_qda_10(AP ) 8.2e-52 3e-266 0 2e-116 9e-130 2.1e-26 1.4e-19 6.8e-31 7.1e-3 2.4e-5 3.5e-3 1.7e-5 8.8e-6 2.8e-4 — 1.7e-3 1.3e-2 1.8e-49 5e-107

ϕLvl
lda_qda_25(TP ) 6.8e-88 8.2e-12 1.0e-22 2.3e-17 1.2e-42 2e-268 9e-231 1e-186 4.0e-6 1.4e-3 5.1e-7 1.3e-10 6.1e-5 7.5e-10 2.7e-9 2.2e-11 2.5e-8 7e-146 8.2e-85

ϕMM
quad_simple_cond(T > ) 3.4e-30 3.9e-71 4.2e-27 1.7e-22 3.3e-58 1.1e-46 9.8e-55 4.2e-55 2.4e-4 6.2e-4 — 1.2e-3 3.5e-3 6.8e-4 — — — 1.1e-21 6.0e-16
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6C O N C L U S I O N S

In this thesis, we have explored many approaches to surrogate modeling in continuous evolu-
tionary optimization of expensive black-box problems. What have we learned about surrogate-
assisted optimization, and what are the most promising direction for future research? This
final chapter seeks to answer these questions.

6.1 summary of contributions

Contributions in this thesis were structured into two parts in order to represent two aspects
of my research into surrogate-assisted evolutionary black-box optimization that contributed to
the stated goals: Designing a version of the CMA-ES assisted by a surrogate model capable to
predict the entire distribution of the optimized fitness and Investigating the features describing
the fitness landscape and their relationships to surrogate models. As described within this work, we
have made valuable progress in each of these categories with the most important ones among
them being summarized below.

surrogate modeling for the cma-es In Chapter 4, we have first shown that the ap-
proach based on Gaussian processes and random forests can be efficiently used to build sur-
rogates models for surrogate-assisted CMA-ES in the black-box scenario, when the landscape
of the objective function is unknown. We have used the two models in combination with
the CMA-ES in two evolution control schemes: generation and doubly trained evolution con-
trols resulting in the S-CMA-ES and DTS-CMA-ES algorithms. The S-CMA-ES mostly outper-
form the CMA-ES in initial phases of the optimization process. For its adaptive version, we
have found two error measures, the Kendall rank correlation and the ranking difference error,
that significantly outperformed the non-adptive version used with a higher number of model-
evaluated generations, especially in higher dimensionalities of the input space. Our doubly
trained evolution control utilized in the DTS-CMA-ES improved the performance of the orig-
inal algorithm even more by using the ability of Gaussian processes and random forests to
predict the entire distribution of the optimized function. The DTS-CMA-ES variant with GPs
represents an algorithm of choice for multimodal functions with weak global structure and is
very eligible for unimodal landscapes, too, especially in lower dimensions. Its self-adaptive
version, on the other hand, excels on the globally decreasing multimodal functions where
it outperforms wast majority of surrogate-assisted algorithms. In our research into the con-
nection between the surrogate model and its control in the surrogate-assisted evolutionary
optimizer, we have found significant differences as to the performance of different evolution
controls, models, and their combinations. The important finding was that both the model and
the evolution control has significant influence on the convergence speed.

Throughout the Chapter 4, we have provided multiple evaluations of different parameter
settings for GP models. The selection of the k nearest neighbor points as training sets in a
specified range for surrogates performed best. We have also shown statistical equivalence of
rational quadratic, squared exponential, and Matérn 5/2, in the sense that for no function, no
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group of functions, no dimension, and no function-dimension combination, none of these co-
variance functions was significantly better than the other on the data from the noiseless part
of the COCO platform. We have compared the ordinal GP regression model with the met-
ric GP regression model used in the DTS-CMA-ES. The performance of the ordinal models
was considerably lower than the standard GP models with few exceptions (e. g., the Attrac-
tive sector function). Up to our knowledge, we have also presented the first comparison of
GP covariance functions in combination with ANN in the context of optimization data. Con-
sidering automated selection of a GP model, our presented algorithm using Bayesian model
comparison techniques tested only on preliminary experiments has shown the need for more
sophisticated covariance functions. However, due to the small number of experiments per-
formed so far, it is difficult to draw any serious conclusions. Gaussian processes outperformed
random forests both with respect to predictive accuracy and in using the models in connection
with the CMA-ES. On the other hand, we found that also the RF model usually reduces the
number of fitness evaluations required by the CMA-ES, especially on multi-modal functions.
The split algorithms for decision trees in RF based on the classification of the input points
provide slightly better performance as to the CMA-ES convergence than the other algorithms
tested.

landscape analysis for surrogate modeling In Chapter 5, we have investigated
the landscape features and surrogate models in the context of evolutionary black-box opti-
mizer in two different scenarios. In our research into the static scenario, utilized e. g., in (Saini
et al., 2019), where the model is selected once for a specific problem at the beginning of the
optimization process, we have shown that the features describing global properties of the land-
scape are highly influential on surrogate model settings performance. On the other hand, the
research have also suggested the difficulties of derivation of clear relationships between the
performance of the compared settings of GP and RF models and the considered features. This
lead us to more intensive investigation in the properties of the landscape features. We have
selected three sets of 14 landscape features as valuable characteristics of the fitness landscape
according to their properties, especially according to their robustness and similarity to other
features. Up to our knowledge, this analysis of landscape feature properties in connection with
surrogate models in evolutionary optimization is first of its kind especially in the dynamic sce-
nario, where we consider the changes of the model performance between generations as the
CMA-ES searches the optimimum of the investigated landscape. Our contribution to land-
scape features was also a set of new features based on the CMA-ES state variables. In the
dynamic scenario, we have also shown significant differences in the error values among 39

model settings using different methods for selection of traning point on two error measures.
Most of the investigated features had distributions on sample sets with particular model set-
tings achieving the lowest error values significantly different from the overall distribution of
all data for both error measures and all 3 TSS methods. The overall results have shown the
dispersion features as highly influential on the model settings error values as well as plenty of
other features including even simple features such as dimension and number of observations.

6.2 future directions

According to the experimental results, different surrogate CMA-ES algorithms or their vari-
ants perform best on different fitness landscapes, but the mechanism of selecting the best-
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performing setting or smarter adaptation to the fitness at hand is still an open issue. Such
adaptivity should select the appropriate evolution control parameters as well as the most con-
venient surrogate model and its parameters, and, in particular, it should decide whether to
use the metric-based (probably Gaussian processes) or the ranking-based (e. g., ranking SVR)
model. Besides, the parameters of the CMA-ES itself are problem-dependent, too. In fact,
CMA-ES variants more suitable for expensive problems have been already proposed (Belkhir
et al., 2017; Loshchilov, 2017), and they can be obviously combined with surrogate models.

The research supporting such adaptivity considering surrogate models and their settings is
part of this thesis. The issues of the first attempts in Section 4.6 should be fixed the research
extended, e. g., into a combinatorial search over kernels in flavor of (Duvenaud et al., 2013;
Gagné et al., 2006), a co-evolution of an ensemble of covariance functions alongside the pop-
ulation of candidate solutions to the black-box objective function, or application of surrogate
modeling to high-dimensional problems using algorithms for variable selection via multiple
kernel learning (Bach, 2009; Duvenaud et al., 2011).

The results of our research into relationships of landscape features and surrogate models
could definitely be utilized to design a metalearning-based system (Kerschke et al., 2019; Saini
et al., 2019) for selection of surrogate models in surrogate-assisted evolutionary optimization
algorithms context. Although some initial steps towards such system have already been made
(see (Dvořák et al., 2020; Pitra et al., 2019a)), this research field is one of the most important
ones to address in the near future.

Considering the results of the connection of the GP and ANN, the reconsideration of the
approach employed in GPyTorch – training the ANN and the GP forming the combined surro-
gate model together by means of likelihood maximization — is on hand. Whereas maximum
likelihood is indeed the commonly used objective function for GP learning (Rasmussen and
Williams, 2006), successful and efficient ANN learning algorithms typically rely on other ob-
jectives (Goodfellow et al., 2016). Therefore, the investigation of a cyclic interleaving of a
GP-learning phase with an ANN-learning phase, where the length of the latter will depend on
the relationship of its success to the success of the former, could bring interesting results. As
to the metalearning-based system, an ANN-GP model with a deep neural network could be
trained on data from many optimization runs, and then the model used in a new run of the
same optimizer may possibly be obtained through additional learning restricted only to the
GP and the last 1-2 layers of the ANN.
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Information Technologies - Applications and Theory (ITAT 2021), Hotel Hel’pa, Nízke Tatry and Muránska
planina, Slovakia, September 24-28, 2021, volume 2962 of CEUR Workshop Proceedings, pages 29–38. CEUR-
WS.org, 2021a. URL http://ceur-ws.org/Vol-2962/paper27.pdf.
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Z. Pitra, L. Bajer, J. Repický, and M. Holeňa. Overview of surrogate-model versions of covariance matrix
adaptation evolution strategy. In Proceedings of the Genetic and Evolutionary Computation Conference
Companion, GECCO ’17, pages 1622–1629, New York, NY, USA, 2017c. ACM. doi: 10.1145/3067695.
3082539.
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AL A N D S C A P E F E AT U R E S D E F I N I T I O N S

Let us consider an input set of N points X = {xi| xi ∈ X}N
i=1, where X is the input space defined as

follows
X =×D

j=1[lj, uj], lj, uj ∈ R, lj < uj .

Then we can define a sample set S of N pairs of observations

S = {(xi, yi) | xi ∈ X, yi ∈ R∪ {◦}, i = 1, . . . , N} ,

where ◦ denotes missing yi value (e. g., xi was not evaluated yet). The yi values can be gathered to a set
y = {yi}N

i=1. The input space X can be further discretized into K blocks (cells) per dimension, such that

C =

{
Cm1,...,mD

∣∣∣∣∣ Cm1,...,mD =×D
j=1

[
lj + (mj − 1)

uj − lj

K
, lj + mj

uj − lj

K

]
, mi ∈ {1, . . . , K}, i = 1, . . . , D

}
.

The following features were reimplemented in Matlab according to the R-package flacco by Kerschke
and Dagefoerde (2017). In the words of Kerschke (2017a), “It is important to notice that, independent
of the research domain, most of these features do not provide intuitively understandable numbers. Therefore, we
strongly recommend not to interpret them on their own. Moreover, some of them are stochastic and hence should
be evaluated multiple times on an instance and afterwards be aggregated in a reasonable manner. Nevertheless,
they definitely provide information that can be of great importance to scientific models, such as machine learning
algorithms in general or algorithm selectors in particular.” Following the remark about stochasticity, we have
fixed random seeds which are not fixed in the original implementation to always return the same values
for identical input.

a.1 basic features ΦBasic

Kerschke and Dagefoerde (2017) summarized the following features providing obvious information about
the input space:

� Dimension of the input space ϕdim = D.

� Number of observations ϕobs = N.

� Minimum and maximum of lower bounds ϕlower_min = mini∈D li, ϕlower_max = maxi∈D li.

� Minimum and maximum of upper bounds ϕupper_min = mini∈D ui, ϕupper_max = maxi∈D ui.

� Minimum and maximum of y values ϕobjective_min = mini∈N yi, ϕobjective_max = maxi∈N yi.

� Minimum and maximum of cell blocks per dimension ϕblocks_min, ϕblocks_max.

� Total number of cells ϕcells_total.

� Number of filled cells ϕcells_filled.

� Binary flag stating whether the objective function should be minimized ϕminimize_fun.

a.2 cm angle features ΦCM−Angl

CM Angle features by Kerschke et al. (2014) extract information based on the location of the best and
worst point of the cell C ∈ C considering the cell center.
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Let us denote the cell center zcenter
C ∈ C, the best point within the cell xbest

C ∈ X, where (xbest
C , ybest

C ) ∈ S ,
ybest
C = min{y|(x, y) ∈ S & x ∈ C}, and the worst point within the cell xworst

C ∈ X, where (xworst
C , yworst

C ) ∈
S , yworst

C = max{y|(x, y) ∈ S & x ∈ C}.
The set of all distances from a cell center to the best point within the cell:

Dctr2best = {dist(xbest
C , zcenter

C ) | xbest
C , zcenter

C ∈ C, ∀C ∈ C} . (107)

The set of all distances from a cell center to the worst point within the cell:

Dctr2worst = {dist(xworst
C , zcenter

C ) | xworst
C , zcenter

C ∈ C, ∀C ∈ C} . (108)

The set of all angles between the best, the worst, and the cell-center point within the cell:

Dangle =

{∣∣∣∣ arccos
(xbest
C − zcenter

C ) · (xworst
C − zcenter

C )

‖xbest
C − zcenter

C ‖‖xworst
C − zcenter

C ‖

∣∣∣∣
∣∣∣∣∣ C ∈ C

}
. (109)

The set of all differences between the best and the worst objective values per the cell normalized by
the difference between overall best and worst objectives

Dbest2worst =

{
yworst
C − ybest

C
max y−min y

∣∣∣∣ ∀C ∈ C
}

. (110)

� Mean and standart deviation of distances from cell center to the best point within the cell
ϕ

CM-Angl
dist_ctr2best_mean(S ) = mean Dctr2best and ϕ

CM-Angl
dist_ctr2best_std(S ) = std Dctr2best.

� Mean and standart deviation of distances from cell center to the worst point within the cell
ϕ

CM-Angl
dist_ctr2worst_mean(S ) = mean Dctr2worst and ϕ

CM-Angl
dist_ctr2worst_std(S ) = std Dctr2worst.

� Mean and standart deviation of angles between the best, the worst, and the cell-center point
within the cell ϕ

CM-Angl
angle_mean(S ) = mean Dangle and ϕ

CM-Angl
angle_std(S ) = std Dangle.

� Mean and standart deviation of differences between the best and the worst objective value per
cell normalized by the difference between overall best and worst objectives ϕ

CM-Angl
y_best2worst_mean(S ) =

mean Dbest2worst and ϕ
CM-Angl
y_best2worst_std(S ) = std Dbest2worst.

a.3 cm convexity features ΦCM−Conv

CM Convexity features by Kerschke et al. (2014) aggregate the (estimated) convexity based on representa-
tive observations of successive cells. Each cell is represented by the sample observation (xC , yC ), xC ∈ C,
that is located closest to the corresponding cell center. Let us define a block of three successive cells in
one dimension [CL, CC, CR] ∈ B, where B is a set of all possible blocks on C.

� Estimated probability of soft concavity ϕCM-Conv
concave_soft(S ) =

∣∣∣∣{[CL,CC,CR] | yCC>
yCL

+yCR
2

}∣∣∣∣
|B| .

� Estimated probability of hard concavity ϕCM-Conv
concave_hard(S ) =

|{[CL,CC,CR] | yCC>max{yCL ,yCR}}|
|B| .

� Estimated probability of soft convexity ϕCM-Conv
convex_soft(S ) =

∣∣∣∣{[CL,CC,CR] | yCC<
yCL

+yCR
2

}∣∣∣∣
|B| .

� Estimated probability of hard convexity ϕCM-Conv
convex_hard(S ) =

|{[CL,CC,CR] | yCC<min{yCL ,yCR}}|
|B| .
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a.4 cm gradient homogeneity features ΦCM−Grad

CM Gradient homogeneity features by Kerschke et al. (2014) aggregate the cell-wise information on the
gradients between each point of a cell and its corresponding nearest neighbor. For each point in cell
xi ∈ C, i = 1, . . . , NC , the gradient towards its nearest neighbor is normalized and pointed towards the
one of neighbors with better y-value. The normalized sum of gradients in cell C is than

GHC =

∥∥∥∑NC
i,j=1(2I(yi > yj)− 1) xi−xj

dist(xi ,xj)

∥∥∥
NC

. (111)

� Mean and standard deviation of homogeneity gradients accross all cells ϕCM-Grad
grad_mean(S ) =

meanC∈C GHC and ϕCM-Grad
grad_std (S ) = stdC∈C GHC .

a.5 cma features ΦCMA

In each CMA-ES generation g during the fitness evaluation step (Algorithm 1, Step 4), we have defined
the following features in Pitra et al. (2019b) for the set of points X:

� Generation number ϕCMA
generation = g indicates the phase of the optimization process.

� Step-size ϕCMA
step_size = σ(g) provides an information about the extent of the approximated region.

� Number of restarts ϕCMA
restart = n(g)

r performed till generation g may indicate landscape difficulty.

� Mahalanobis mean distance of the CMA-ES mean m(g) to the sample mean µX of X

ϕCMA
mean_dist(X) =

√
(m(g) − µX)>C−1

X (m(g) − µX) , (112)

where CX is the sample covariance of X. This feature indicates suitability of X for model training
from the point of view of the current state of the CMA-ES algorithm.

� Square of the pc evolution path length ϕCMA
evopath_c_norm =

∥∥p(g)
c
∥∥2 is the only possible non-zero

eigenvalue of rank-one update covariance matrix p(g+1)
c p(g+1)

c
>

(see Section 2.2.2). That feature pro-
viding information about the correlations between consecutive CMA-ES steps indicates a similarity
of function landscapes among subsequent generations.

� pσ evolution path ratio, i. e., the ratio between the evolution path length
∥∥p(g)

σ

∥∥ and the expected
length of a random evolution path used to update step-size. It provides a useful information about
distribution changes:

ϕCMA
evopath_s_norm =

∥∥p(g)
σ

∥∥
E ‖N (0, I)‖ =

∥∥p(g)
σ

∥∥ Γ
(

D
2

)
√

2 Γ
(

D+1
2

) . (113)

� CMA similarity likelihood. The log-likelihood of the set of points X with respect to the CMA-ES
distribution may also serve as a measure of its suitability for training

ϕCMA
cma_lik(X) =− N

2

(
D ln 2πσ(g)2

+ ln det C(g)
)

− 1
2 ∑

x∈X

(
x−m(g)

σ(g)

)>
C(g)−1

(
x−m(g)

σ(g)

)
. (114)
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a.6 dispersion features ΦDis

The dispersion features by Lunacek and Whitley (2006) compare the dispersion among observations from
S and among a subset of these points. The subsets are created based on tresholds using the quantiles
0.02, 0.05, 0.1, and 0.25 of the objective values y.

The set of all distances within the set S :

Dall = {dist(xi, xj) | i, j = 1, . . . , N} . (115)

The quantile subset of all distances:

Dquantile = {dist(xi, xj) | yi, yj <= Qquantile(y), } . (116)

� Ratio of the quantile subset and all points median distances

ϕDis
ratio_median_[quantile](S ) =

median Dquantile

median Dall
. (117)

� Ratio of the quantile subset and all points mean distances

ϕDis
ratio_mean_[quantile](S ) =

mean Dquantile

mean Dall
. (118)

� Difference between the quantile subset and all points median distances

ϕDis
diff_median_[quantile](S ) = median Dquantile −median Dall . (119)

� Difference between the quantile subset and all points mean distances

ϕDis
diff_mean_[quantile](S ) = mean Dquantile −mean Dall . (120)

a.7 information content features ΦInf

The Information Content of Fitness Sequences by Muñoz et al. (2015) approach is based on a symbol
sequence Ψ = {ψ1, . . . , ψN−1}, where

ψi =


1̄ , if yi+1−yi

‖xi+1−xi‖ < −ε ,

0 , if
∣∣∣ yi+1−yi
‖xi+1−xi‖

∣∣∣ ≤ ε ,

1 , if yi+1−yi
‖xi+1−xi‖ > ε .

(121)

The sequence considers observations from a sample set S as a random walk accross the objective land-
scape and depends on the information sensitivity parameter ε > 0.

The symbol sequence Ψ is aggregated by the information content H(ε) = −∑i 6=j pij log6 pij, where pij
is the probability of having the “block” ψiψj, where ψi, ψj ∈ {1̄, 0, 1}, within the sequence. Note that the
base of the logarithm was set to six as this equals the number of possible blocks ψiψj for which ψi 6= ψj,
i. e., ψiψj ∈ {1̄0, 01̄, 1̄1, 11̄, 01, 10}.

Another aggregation of the information is the so-called partial information content M(ε) = |Ψ′|/(N−
1), where Ψ′ is the symbol sequence of alternating 1̄’s and 1’s, which is derived from Ψ by removing all
0 and repeated symbols.

When we do consider ◦ as a valid state of y, the sequence Ψ consists of ψi ∈ {1̄, 0, 1, N̄}, where ψi = N̄,
if yi+1 = ◦ or yi = ◦. Thus, H(ε) = −∑i 6=j pij log12 pij due to the increased number of possible ψiψj
blocks, i. e., ψiψj ∈ {1̄0, 01̄, 1̄1, 11̄, 01, 10, N̄1̄, 1̄N̄, N̄0, 0N̄, N̄1, 1N̄}. Therefore, features based on Ψ′ can be
utilized only when ◦ state is not present in y.

Based on sequences Ψ and Ψ′ the following features can be defined according to Muñoz et al. (2015):
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� Maximum information content ϕInf
h_max(S ) = maxε H(ε).

� Settling sensitivity ϕInf
eps_s(S ) = log10 min(ε|H(ε) < s), where default s = 0.05 (see (Muñoz et al.,

2015)).

� Maximum sensitivity ϕInf
eps_max(S ) = arg maxε H(ε).

� Initial partial information ϕInf
m0 (S ) = M(ε = 0).

� Ratio of partial information sensitivity ϕInf
eps_ratio(S ) = log10 max(ε|M(ε) > rϕInf

m0 (S ))), where
default r = 0.5 (see also (Muñoz et al., 2015)).

a.8 levelset features ΦLvl

In Levelset features by Mersmann et al. (2011), the sample set S is split into two classes by a specific
treshold calculated using the quantiles 0.1, 0.25, and 0.5. Linear, quadratic, and mixture discriminant
analysis (lda, qda, and mda) are used to predict whether the objective values y fall below or exceed the
calculated threshold. The extracted features are based on the distribution of the resulting cross-validated
mean misclassification errors of each classifier.

� Mean misclassification error of appropriate discriminant analysis method using defined quantile

ϕLvl
mmce_[method]_[quantile](S ).

� Ratio between mean misclassification errors of two discriminant analysis methods using a given
quantile ϕLvl

[method1]_[method2]_[quantile](S ).

a.9 metamodel features ΦMM

To calculate metamodel features by Mersmann et al. (2011), linear and quadratic regression models (lin
and quad) with or without interactions are fitted to a sample set S . The adjusted coefficient of determi-
nation R2 and features reflecting the size relations of the model coefficients are extracted:

� Adjusted R2 of a simple model ϕMM
[model]_simple_adj_r2(S ).

� Adjusted R2 of a model with interactions ϕMM
[model]_w_interact_adj_r2(S ).

� Intercept of a simple linear model ϕMM
lin_simple_intercept(S ).

� Minimal absolute value of linear model coefficients ϕMM
lin_simple_coef_min(S ).

� Maximal absolute value of linear model coefficients ϕMM
lin_simple_coef_max(S ).

� Ratio of maximal and minimal absolute value of linear model coefficients
ϕMM
lin_simple_coef_max_by_min(S ).

� Ratio of maximal and minimal absolute value of quadratic model coefficients
ϕMM
quad_simple_cond(S ).

a.10 nearest better clustering features ΦNBC

Nearest better clustering features by Kerschke et al. (2015) extract information based on the comparison
of the sets of distances from all observations towards their nearest neighbors (Dnn) and their nearest
better neighbors (Dnb).

The distance to the nearest neighbor of a search point xi, i = 1, . . . , N from a set of points X:

dnn(xi, X) = min(dist(xi, xj)|xj ∈ X, i 6= j) . (122)

The distance to the nearest better neighbor:

dnb(xi, X) = min(dist(xi, xj)|yj < yi, xj ∈ X)) . (123)
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The set of all nearest neighbor distances within the set X:

Dnn = {dnn(xi, X)|i = 1, . . . , N} . (124)

The set of all nearest better distances:

Dnb = {dnb(xi, X)|i = 1, . . . , N} . (125)

The features are defined as follows:

� Ratio of the standard deviations between the Dnn and Dnb ϕNBC
nb_std_ratio(S ) =

std Dnn
std Dnb

.

� Ratio of the means between the Dnn and Dnb ϕNBC
nb_mean_ratio(S ) =

mean Dnn
mean Dnb

.

� Correlation between the distances of the nearest neighbors and nearest better neighbors
ϕNBC
nb_cor(S ) = corr(Dnn, Dnb).

� Coefficient of variation of the distance ratios ϕNBC
dist_ratio(S ) = stdW

meanW , where W ={
dnn(x,X)
dnb(x,X)

∣∣∣x ∈ X
}

.

� Correlation between the fitness value, and the count of observations to whom the current ob-
servation is the nearest better neighbor ϕNBC

nb_fitness_cor(S ) = − corr({deg−(xi), yi|i = 1, . . . , N}),
where deg−(xi) is the indegree of xi in the nearest better graph (the number of points for which a
certain point is the nearest better point).

a.11 pca features ΦPCA

The features from Kerschke (2017a) extract information from a principal component analysis, which is
performed while including and excluding the objective values y and that are based on the covariance, as
well as correlation matrix, respectively.

� Proportion of principal components that are needed to explain 90% of the X’s variance
ϕPCA
pca_cov_x(X).

� Proportion of principal components that are needed to explain 90% of the X’s correlation
ϕPCA
pca_corr_x(X).

� Proportion of principal components that are needed to explain 90% of the [X, y]’s variance
ϕPCA
pca_cov_init(S ).

� Proportion of principal components that are needed to explain 90% of the [X, y]’s correlation
ϕPCA
pca_corr_init(S ).

� Percentage of variation that is explained by the first principal component using covariance of X
ϕPCA
pca_pc1_cov_x(X).

� Percentage of variation that is explained by the first principal component using correlation of X
ϕPCA
pca_pc1_corr_x(X).

� Percentage of variation that is explained by the first principal component using covariance of
[X, y] ϕPCA

pca_pc1_cov_init(S ).
� Percentage of variation that is explained by the first principal component using correlation of

[X, y] ϕPCA
pca_pc1_corr_init(S ).

a.12 y-distribution features Φy−D

The y-distribution features from Mersmann et al. (2011) compute the basic statistics of the fitness values y.

� Skewness and kurtosis of y values ϕ
y-D
skewness(y) and ϕ

y-D
kurtosis(y).

� Number of peaks of the kernel-based estimation of the density of y-distribution ϕ
y-D
number_of_peaks(y),

where the peak is defined according to Kerschke and Dagefoerde (2017).
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