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Abstrakt Pøedkládaná disertaèní práce si klade za cíl vylep¹it mikroskopické vlastnosti
celulárních modelù pohybu chodcù, pøedev¹ím se zamìøuje na individuální vlastnosti chodce
a jejich heterogenní povahu. Byla implementována vlastní varianta Floor �eld modelu
se zakomponovanými originální prvky které pøiblí¾ily model realitì. Z dùvodu kalibrace
modelu a popsání standardního chování chodcù autor navrhl a zrealizoval ètyøi evakuaèní
experimenty; analýza dat extrahovaných z kamer a dal¹ích detektorù poukázala na dosud
nepopsané jevy jejich¾ podrobná studie pøedstavuje dal¹í tì¾i¹tì této práce. Konktétnìji, po-
zorovaná heterogenita v rychlosti, agresivitì a volbì dráhy byla promítnuta do vylep¹eného
modelu, co¾ pøineslo lep¹í shodu distribuce pozorovaných velièin, pøedev¹ím evakuaèního
èasu. Pøi matematickém popisu experimentálních pozorování se autor zabýval vytvoøením
obecného konceptu hustoty zastøe¹ující rùzné metody výpoètu. Vlastnosti tìchto metod
jsou podrobnì prozkoumány a ilustovány na experimentálních datech. Kromì vyhodno-
cování vlastních experimentù se autor podílel také na realizaci a vyhodnocování dvou ex-
perimentù evakuace vlakové jednotky a organizoval dva experimenty sluèování chodeckých
proudù cílených na slo¾itìj¹í infrastrukturu. V rámci této komplexní geometrie probìhla
také validace modelu, a to nejen na vlastních datech, ale i na datech mìøených zahranièní
výzkumnou skupinou.

Abstract The presented dissertation aims to improve the microscopic properties of cel-
lular models of pedestrian movement, focusing mainly on the individual pedestrian charac-
teristics and their heterogeneous nature. A custom variant of the Floor �eld model was im-
plemented with incorporated original elements that brought the model closer to the reality.
In order to calibrate the model and describe the standard behavior of pedestrians, author
designed and performed four evacuation experiments; analysis of data extracted from cam-
eras and other detectors pointed to several undescribed phenomena { their detailed study
become another pillar of the thesis. To be more speci�c, the observed heterogeneity in
speed, aggressiveness and path selection was projected into the custom model resulting in
a better �t of the observed quantities distribution, especially the evacuation time. In the
mathematical description of experimental observations, the author dealt with the creation
of a general concept of density covering various calculation methods. The properties of
these methods are investigated in detail and illustrated on experimental data. In addition
to evaluating calibration experiments, the author also participated in the organization and
evaluation of two train unit egress experiments and he organized two merging pedestrian
streams experiments focusing to more complex infrastructure. Using such complex geome-
try, the custom model was validated on in-house measured data as well as the data measured
by a foreign research group.
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Chapter 1

Introduction

The dynamic of socio-physical systems or in particular pedestrian movement is a progressive
interdisciplinary research �eld. With respect to the process of data acquisition and consec-
utive analysis, to the development of both analytic and numerical models, to the statistical
validation and �nally to the interpretation of results, presented research combines applied
mathematics and statistics with software engineering and eve theoretical physics.

Even the initial goal was set to the model development for one speci�c situation, multiple
sub-tasks occurred an the project become much wider. To calibrate and validate any model
the reliable testing data are crucial. Unfortunately public datasets appeared too late thus
we had to introduce own experiment and develop video processing tools. Then we had
to query fundamental statistics from raw data, facing the issues with various de�nitions
of basic quantities, therefore we had to bring our own \universal" approach. Actually
analyzing all aspects of the process is a bene�cial for the thesis, it has prevented us from
misinterpretation of di�erent studies.

The author has been working on this topic since his bachelor thesis [1] where the crowd
motion is analyzed as a special case of granular system dynamics. Within this work, the
basic version of Floor Field model is introduced { the �rst brick of this thesis was placed.

In following master thesis [2], the author extends this model by several original features,
using the data from two egress experiments he organized. Model was calibrated to mimic
the free ow and congested state from macroscopic and even microscopic point of view.
The drawback of this model was the lack of individual aspects enabling to implement the
heterogeneity of pedestrians.

Therefore the dissertation has ambitions to rise the analytic background and the model
itself to another level, where individual pedestrian characteristics would a�ect the results.
To handle that, the right quantities characterizing individual features have to be de�ned,
extracted from experimental data and implemented to the model.

The strategy of research follows simple pattern to reach above mentioned goal. An un-
known phenomena is spotted in existing observations. A measurable quantity is de�ned
and evaluated on available data, if possible. Otherwise, a new experiment is designed and
realized. After quanti�cation, the model is extended to cover given feature, parameters are
calibrated on measured data and whole concept is validated.

7



8 CHAPTER 1. INTRODUCTION

Such approach was used to study the heterogeneity in free ow velocity, the di�erent ability
to push through the dense crowd and even the di�erent strategy in path selection. Even
each phenomenon required speci�c modi�cation of the model, its cellular core remained.
The crucial element is the right heterogeneity in parameters.

The whole research was conducted in cooperation with Pavel Hrabák who has contributed
mainly as a model development and calibration consultant. Fruits of this cooperation are
visible in publication list { together we have written 15 articles accepted be prestigious
journals.

The experimental data were not used only as the support for calibration of developed
model or illustrating crowd behavior. In cooperation with Milan Krbálek, we have applied
advanced statistical analysis on pedestrian headways data resulting in general conclusions
about the social forces that may a�ect the crows dynamic [18].

Even this work focuses on the one room analysis, complex geometries were engaged as
well. Two experiments focusing on merging of pedestrian streams were organized by our
group and another one was conducted at AGH Krakow under the lead of Jaroslaw Was.
Both experimental setups were implemented into our cellular model as well as into polish
social distance model and all results were compared [16, 13]. Moreover, the measurements in
Prague were supported by Peter Kielar from TU Munich who enveloped pedestrian tracking
technique using wi� in mobile phones [25].

In parallel, we are contributing to train evacuation study introduced by the Hana Naj-
manová from UCEEB CTU. Two train experiments were organized focusing on the total
evacuation time under various boundary and internal conditions. Our role was to help with
the experimental setup and mainly with the data processing and analysis [17, 20, 22].

We should mention even the systematization of fundamental de�nitions and playbooks to
apply them. This e�ort was conducted in cooperation with undergraduate students Matìj
Kotrba and Marina D¾abarjan whose bachelor and master thesis [33, 35] were supervised by
the author. The concept of density distribution that generalize standadly used pedestrian
density was developed, calibrated and analyzed in detail on experimental data.

Few years ago, Jana Vacková has joined the group to cooperate on the project \Pedestrian
reaction to changes in his/her surroundings". The leading point was set to the relation of
velocity and local density, but the detected complexity of this task lead to the design and
implementation of continuous rule based model of pedestrian movement [27, 32]. Jana is
working on this topic within her dissertation, the progress is frequently consulted.

The document will be organized as follows: In this introduction chapter, both modeling and
analytic e�ort will be summarized, including the review of published papers. The body of
research is covered by pedestrian quantities de�nition and analyses chapter, crowd motion
analysis chapter and model review, design and simulation chapters. After the conclusion
and reference sections, few more details about realized experiments will be provided.

Even the author spend a lot of time unifying 10 years of research and publications into
one compact book, a reader may found sections that di�ers by the writing style, level of
language or even in the way how the argumentation is lead. I hope such inconveniences
won't damage the experience taken.
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As mentioned above, the author had the privilege to collaborate with multiple colleagues
whose contribution should be credited. I would like to thank to my supervisors, GAMS
team members and all my student whose support or inspired my research. For this reason,
the author's plural will be used wherever appropriate.

1.1 Analytic Areas

The dynamics of pedestrian crowd is an attractive object of study for researchers from a
variety of scienti�c �elds providing a great opportunity for interdisciplinary dialogues [80,
119, 128, 130].

In general, public events with large number of participants are quite common. Well designed
infrastructure must be able to handle tra�c peaks as well as some emergency cases, e.g.
evacuation. To ful�ll this goal, many requirements should be ful�lled, each of the would
represent independent block to study. In this work (especially in chapter 3 dedicated to
analytic studies), will focus on following three:

1.1.1 Phase Transition

To achieve reasonable evacuation time, a pedestrian should be able to keep his/her preferred
free ow velocity. Any signi�cant slow down caused e.g. by the dense crowd around would
dramatically extend total evacuation time.

Therefore the key task is to determine conditions when adjust they behavior due to the
crowd and when slow down or stop. This question may be addressed both from macroscopic
perspective (analyzing the occupancy in the area and the ow through) and microscopic
(analyzing the velocity of speci�c pedestrian and the density around him).

The density-ow relation, resp. density-velocity relation are critical for pedestrian dynamic,
thus they are referred to as fundamental diagrams [123, 118]. Their shape is inuenced by
the geometry of infrastructure, by the attributes of pedestrians and even by their culture.
Therefore published researches signi�cantly di�er, as shown further.

The transition from micro to macro is natural using some mean value approximations or
distribution estimates (e.g. kernel technique). The second way is at least partially possible,
with construction of the most likely behavior of pedestrian ful�lling a number of macroscopic
observations.

Any observation approach indicates that the pedestrian system (similarly to particle sys-
tems) may occur in several states (phases). Free ow state is characterized by low density
allowing independent motion of pedestrians (could be compared to gas). On the other side
of spectrum is congested state where, similarly to crystals, are pedestrians packed into a
cluster without a possibility of independent movement. Typically the congestion is charac-
terized by low density, but is is not a rule. Highly synchronized cluster may move forward,
at least to the �rst obstacle on the route [126].

The phase transition (from congestion to free ow and vice versa) itself is not a jump
like dynamic, but more continuously (through some liquid phase). Moreover, the system
indicates signi�cant hysteresis [125], thus the point of transition is hard to identify. It
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seems bene�cial to use some indirect quantities dependent on the state, e.g. travel time
that reects the state if the system with high sensitivity.

Such complexity in the system implies various complication, thus we have decided to start
with single bottleneck and check complicated geometries later.

1.1.2 Bottleneck E�ects

Bottleneck is understand as a part of corridor when the width changes. The capacity of
bottleneck (i.e. the maximal capacity) is given not only by the minimal width, but by
the width before and even after narrowest point. As validated in [150], the important is
even the length of narrow segment. Pedestrians are capable to temporarily accept the high
density, thus the short bottleneck (e.g. the door) is less limiting than several meters long
corridor of the same width.

The state of the system in front of the bottleneck is (from mid or long term perspective)
determined by the incoming ow. In theory, any inow higher than capacity has to result
in congested state and on the other hand, any crowd should occur when the capacity is not
reached. This is the exact behavior of liquids, thus this concept is know as the hydrodynamic
approximation.

As will be shown further, the reality is more complicated. The experiments with inow
�xed near the value of bottleneck capacity detected a state where a relatively small cluster
occurred. Slightly higher inow produced slightly larger cluster, but again the cluster size
stabilized. It seems that the bottleneck capacity is a�ected even by the conditions in front
of it, i.e. the crowd size and even the gradient of crowd size.

Such dynamic motivated us to introduce the third phase of the system as \matastable
phase".

1.1.3 Complex Phenomena

Even the complex infrastructure may be considered as the system of connected bottlenecks,
several observed phenomena go beyond such simpli�ed concept. The complex geometry is
characterized by the interaction of pedestrians streams (i.e. a group of pedestrians wanking
the same direction) that includes merging, crossing of counter ow [44].

In all these cases, the synchronicity of a pedestrian stream is crucial. It is known that a
more harmonic, organized group is e�cient in motion, even the group itself is not instructed
to behave in organized manner. The rules used in collision avoidance on crossroad or in
case of counter ow, the zip rule or the counter ow oscillation at bottleneck segment are
generally known.

A pedestrian tends to apply these rules optimizing the motion of all group not only because
it is bene�cially for them self, but even because they feel a kind of connection within the
crowd. The collective behavior roots in deep instincts and its impact grows when the
situation deviates from routine, see experimental study of motion under limited visibility
[62].

As detected within our merging experiments, each bottleneck may be considered as a syn-
chronization segment, positively a�ecting the performance. Bottlenecks closer to the start-
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ing point produced higher time headways as well as their higher variance. This observation
is in agreement with previous ideas that a kind of established order in crowd limited conicts
and other e�ects comparable to physical friction.

The highly risky situations may cause panic (i.e. the state of sel�sh behavior at the edge
of rationality) when individualistic aspects prevail. It is stated that such behavior is coun-
terproductive, but it di�ers with the point of view. Imagine a strong person at the end
of the crowd in case of �re. He/she could push through the crowd (in panic), caused sev-
eral conicts and eventually save himself, even several other people may die or be injured.
Imagine the other case, when this last person does not use his potential in order to keep
the evacuation as smooth as possible. Imagine for simpli�cation that this man will be the
only victim comparing to the multiple victims in the �rst case. Even the total numbers are
better for the smooth evacuation, it would be much productive for him try to save himself.

The observation from real life catastrophes illustrates existence of both patters, stampedes
occurred many times during the Mecca pilgrimage [113] as well as the football match dis-
asters motivating organizers to improve the infrastructure. On the other hand, during the
bomb attack in London 2012 only minor part of a�ected people left the undergrounds in
panic while majority stays there to help others. The key feature determining the situation
is the immediate estimate of individual risk as well as the behavior of others.

The ability of crowd to avoid panic and to follow the evacuation guidance may be raised
by regular evacuation drills and other methods increasing the level knowledge among the
citizens/participants.

Anyway, the goal of all engineering, starting with legislative through architects to �re en-
gineers is to develop such infrastructure that would decrease the risk in case of any kind of
disaster. That would prevent the panic or at least decrease its negative impact.

1.2 Applied Models

With respect to the above mentioned ambitions of this scienti�c discipline, the practical
outcome is a prediction model of pedestrian ow. There are various kinds of models where
chosen approach di�ers with the purpose (summarized in Chapter 4). This project focused
on following sample:

1.2.1 Hand Calculation

Macroscopic ow approximation frequently called \Hand calculations" is based on iterative
process:

Ji(t) = f(Ni(t)), (1.1)

Ni(t) = Ni(t− 1)−
∑
i

Jouti (t− 1) +
∑
i

J ini (t− 1). (1.2)

where typically f(N) = min(N,C) with Ni(t) denoting the number of pedestrians in front
of the bottleneck i in time t (i.e. the occupancy) and C refers to the capacity within the
one time unit. The ow through the bottleneck is constant if there is su�cient number of
pedestrians in front of it.
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Such model is very useful for complex structure simulations described by oriented graph,
where each vertex represents one bottleneck. The value of vertex may be interpreted as
the occupancy an the value of the edge could be the free ow time distance of consecutive
bottlenecks tij . Enhancing the (1.1) by the substitution Jouti (t) = J inj (t + tij), the system
is transparent and after few technical corrections (e.g. maximal occupancy of a bottleneck)
covers all information needed.

The drawback of this method is ignoring the deviations characteristic for social systems,
nerveless the calculation is simple and the results aren't far form reality.

We have applied this approach on merging study, comparing hand calculation with exper-
imental data (section 3.5.12) and oor �eld model (section 6.5). After quick calibration,
total evacuation time and curves visualizing the progress of the evacuation were provided.

1.2.2 Cellular Automata

Cellular automata represents a model family discrete in time and space, with dynamic
implemented as a set of rules. The size of one cell mostly corresponds to the size of a
pedestrian, thus the motion is quite similar to the chessboard simulation. Based on the state
of the surrounding an agent (virtual pedestrian) chooses the most pro�table cell assessed
with respect to some probabilistic function.

The oor �eld model [45, 77, 110, 96] is the most popular representative implemented,
enhanced and used for simulations in Chapters 5 and 6.

Such approach is widely used and modi�ed for speci�c purposes, thus we can �nd models
enhanced by the other pedestrian movement anticipation, physic forces or inertial e�ects
[41, 50, 53, 69, 78].

We have focused on the improvements of individual characteristics thus we have enhanced
basic model by the concepts of heterogeneous velocity, aggressiveness and path selection
[3, 4, 14].

Heterogeneity in Time The key point to establish heterogeneity in velocity is to sep-
arate the agent's actualization frequency from the actualization frequency of the whole
model. Then, each agent could have its own frequency simulating its velocity. Then the
actualization of an agent does not happen each step but it is driven by more complex
algorithm.

The �rst approach related to the asynchronous cellular automata introduces the adaptive
model time span [5]. Global frequency is not de�ned at all, the time of the next model
update is set to the nearest agent update time (or the inow to the system or another
action in general). To keep a certain level of synchronicity, such approach requires wise
selection of individual frequencies as explained in the section 5.3.

The other method is based on the global actualization frequency cutting the timeline to
the actualization frames. All agents with their time of next update are manipulated at
once, but their time of next update is recalculated based on the exact previous values. Such
approach solves all potential issues thus it is used in most of the simulations. The only limit
is technical { the global actualization frequency shouldn't be lower than the frequency of
the fastest pedestrian.
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Conicts The velocity of agents de�nes their performance in the free ow, but its e�ects
vanishes under congestion. Analytically, we have introduced the statistics \aggressiveness"
de�ned as the linear �t slope of travel time { occupancy model (see section 3.2.1 for details.

The ability of e�cient movement is more related to the ability to win conicts, i.e. the
situation when multiple agents select the same cell. With the probability (1 − µ)), one of
the agents is selected for the motion and other stand; with the probability µ, no one moves.
Such \friction" is critical for a successful socio-physical systems.

Then the individual parameter \aggressiveness" deforms the random selection of the agent
to move from uniform distribution towards more aggressive agent [12]. Moreover, we have
generalize the parameter µ in order to decrease the friction µ with increasing di�erence of
aggressiveness among conicted pedestrians.

Path Selection Based on microscopic observations, the path selection task can be sim-
pli�ed to the decision whether an agent prefers to join the crow or it tries to overtake it.
In presented model, such choice is realized by the option to select an occupied cell. In case
and agent selected occupied cell, a bond between him and blocking agent is created [4]. Due
to the bond, the next motion of blocking agent triggers the motion of bonded agent thus
they become synchronous. Therefore a line (or the whole crow) may e�ciently move as one
pack.

In case of removing the occupied cells from the decision, an agent has to overtake blocking
person, i.e. it is realizing the other strategy. It is not needed to limit the model to binary
choice, the individually parametrized penalization of occupied cells enables the full scale
between mentioned extremes [14].

1.2.3 Agent Systems

Agent systems continuous in time and space are mostly rule based engines combining social
aspects and classical mechanics to provide microscopically reliable simulation. Within a
dissertation of Jana Vacková, we have decided to develop such model covering all observed
behavior. This model is in the calibration phase (that is interesting itself), yet several
results (and this introduction) has been published in [31, 32].

To capture the agent moving process properly [39, 104], we choose to let the pedestrians
make their own decisions in accordance with conditions in their neighborhood. There are
many bene�ts of this choice { since heterogeneity in pedestrian behavior is observable (see
section 3.2 or e.g. [119, 66]), the decision-based pedestrian model can be simply generalized
to predict the movement of many di�erent groups of people [100]. The choice behavior
during evacuation process in a building [152] and pedestrian competitiveness [56] can be
also considered. Developing of pedestrian models with simple and realistic principles [74] or
capturing rational behavior using perception and decision stages of pedestrian movement
[39] are examples of the contemporary topics.

Model, even implemented for simple room, assumes independent strategic, tactic and oper-
ational phases. Strategy is globally de�ned as \leave the room by the only door". Tactical
phase provides a set of checkpoint navigating an agent around obstacles and potentially
around the crowd. An �nally, the operational phase realize the movement from one check-
point oa another. As a rule based model, the update (on the operational) is de�ned by set
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of rules:

Blind Velocity Firstly, the pedestrian tries to �nd their new position using the optimum
(i.e. blind) direction, which is calculated as the one to the current checkpoint, and they
keep moving with the desired speed or accelerate

Collision Avoidance If the blind velocity fails, i.e. the optimal position is not available,
the pedestrian needs to change the optimal direction due to the possible collision with the
room equipment or the other pedestrians. As we still want the pedestrian to pro�t as much
as it is possible, the change of the course is minimized if there are more possibilities and
changing their course is examined primarily (it does not change the pedestrian speed which
can be still increased. If the change in the pedestrian course does not solve the conict, the
slowing down is admitted.If there is more than one admissible position after the pedestrian
slows down, the deceleration is minimized, see illustration in Figure 1.1.

Figure 1.1: Top: collision avoidance by course change - the blind velocity, searching for
admissible positions, the �nal position. Bottom: collision avoidance by slowing down - the
course change does not work, searching for positions by shortening the blind distance, the
�nal position.

Dense Crowd Behavior To avoid clogging, we allow agents to change their (social)
size used in free ow for collision avoidance up to their physical size. Such behavior is in
agreement with observations, pedestrians are able to squeeze through a space even smaller
than the shoulder distance. Finally in case an arch occurs causing a deadlock in the model,
a jump through rule is applied for appropriate pedestrian, see Figure 1.2.

Calibration Results As mentioned, this model is the calibration phase, we are working
on calibration episodes that focuses on particular parameters. So far it seem we are on the
right path - a modi�cation of parameters reects into the monitored quantities expected way
(see Figure 1.3), thus a wise choice of parametric set up should generate correct outcomes.
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Figure 1.2: Dense crowd behavior - when an arch occurs in the exit area and the solution
by crisis model rules is provided. Solid circles around pedestrians represent the pedestrian
social size which changes in time, dotted circles depict the initial size.

Figure 1.3: Calibration study: mean speed with respect to parametric settings of pedestrian
(initial) size.

1.3 Conducted Experiments

As mentioned earlier, 8 experiments organized or co-organized by the author have been
performed to support this study. Both the ambitions and the quality were increasing in
time, the �rst issue in 2012 consists only of observing prede�ned group of 30 volunteers
leaving rectangular room without any obstacles. On the other hand, latest experiments are
performed in arti�cial room or or special object, boundary conditions are controlled to get
demanded situations and the data from camera records are extracted by advanced image
processing tools. The basic information of performed experiments is summarized in Table
1.1.
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ID type date phenomena image processing

E1 leave the room 28/02/2012 crowd formation manual
E2 passing through 10/12/2012 individual FD automatic detection (basic)
E3 passing through 13/05/2013 phase transition automatic detection
E4 passing through 29/04/2014 heterogeneity automatic identi�cation
E5 multiple bottlenecks 07/03/2016 crowd merging developed semiautomatic tool
ET train evacuation /06/2015 crowd merging developed semiautomatic tool
E6 multiple bottlenecks 20/12/2016 crowd merging developed semiautomatic tool
T2 train evacuation /03/2018 heterogeneity developed semiautomatic tool

Table 1.1: Review of performed experiments.

1.3.1 Experiment 1

The �rst experiment was organized as a part of author's research project to support devel-
oped cellular automata model. To calibrate several parameters, a group consisting of 70
undergraduate students was arranged into the prede�ned formation and instructed to leave
the room (study hall of FNSPE) as fast as possible, without running or pushing each other
by the exit situated in the opposite wall. In last four runs, the running was allowed (only
volunteers instructed to be cautious participated).

This process repeated 29 times with di�erent initial shape and position, to get su�cient
amount of data. The experiment was monitored by cameras enabling rear view, side view
and view from the top of the exit. Camera records did not enable the automatic detection
of pedestrians, thus only macroscopic observations were performed. Moreover, the time
headways at the exit were recorded manually that enables numerical analysis.

Results: Even without the trajectory data we were able to bring several observations
published in [3, 4]:

� behavior is rather deterministic, participants kept their initial formation until the exit
area

� at the exit, the funnel-like shape of crowd was observed for all walking rounds. The
semicircular crowd appeared for rounds where running was allowed { these rounds
performed much more competitiveness. These observations motivated us to introduce
di�erent shapes of potential generated by the exit

� average velocity: 1.46 m/s

� the ow through the 0.6 m wide exit: (1.1 ped/s, 1.7 ped/s), lower ow at the end of
each round

Even the results were su�cient to basic calibration of designed model, we learned that
without image recognition system and some factor increasing motivation, there is no way
to get reliable microscopic data.
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1.3.2 Experiment 2 & 3

The place and participants remained the same (FNSPE study hall, second year students),
several enhancements were implemented to mimic real conditions.

First, an arti�cial room (7.8 m × 5.5 m) from paper and wooden construction was build
inside the study hall. This room had one entrance (width 2 m) and one exit (width 0.6 m),
that enabled circulation of participants.

For each of 9 E2 rounds and 11 E3 rounds, pedestrians entered the room according to
tra�c lights in front of the entrance, passed the room and leave it (as fast as possible,
without running or pushing each other). The green signal was alternated by randomly
long period of red light, intervals were generated from trimmed normal distribution (var
= 1, µ ∈ (1.3, 1.8)). Once they left the room, they moved back to the pool in front of
the entrance. This continuous process signi�cantly improved the motivation of participants
because no one could wait in front of the exit for better conditions.

Moreover, signalization device together with variable number of entering pedestrians on one
green signal enabled to control the conditions inside the room. For each round, a speci�c
parameters were set and held for few minutes, optimally to reach the steady state.

The last modi�cation improved the monitoring system. One panoramic camera was installed
on the ceiling in the middle of the experimental room. Pedestrians were equipped by red
paper hat with written number for recognition (E2) resp. white paper hat with red circle
in the middle (E3). Even though this number was not readable by automatic system,
developed image processing tool enabled to extract pedestrian trajectories. The accuracy
of detection was signi�cantly higher in E3, due to the absence of hat overlapping.

Results: These results motivated the �rst set of improvements implemented into cellular
model including spontaneous line formation, prediction of the motions in the surroundings
and asynchronous update.

Evaluation of velocity and density for each point of the trajectory enabled to assign the
space coordinates to measured quantities, thus the spatial maps of dynamic quantities were
provided [6]:

� the drop of velocity appeared 3 meters ahead of high density area

� the lowest velocity is reached 1 meter in front of the exit. Then, the velocity increased
even the density was constant

� in the crowd area, the velocity is higher near walls comparing to the inner location,
even the density is the same

Inow driven phase transition from free ow to congested state indicated the metastable
zone in the interval Jin ∈ (1.3, 1.7).

The detail analysis uncovered signi�cant di�erences among the individual paths observed
under the same conditions, but without pedestrian identi�cation it is not possible to dis-
tinguish personal preference from random element. Thus the identi�cation system has to
be introduced . . .
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1.3.3 Experiment 4

This time, the arti�cial room was equipped by three cameras, one for global overview and
two to monitor inow and outow. The central camera was used mainly for synchronization,
the automatic data processing was applied to border cameras. The exit from the room was
extended by the corridor of the same width (0.6 m) to study even post-exit behavior.

Previous experiments were a�ected by the di�erences between expected and realized inow
and by the injecting pedestrians in pairs or triplets. In the E4, three parallel entries were
build along one side, each controlled by independent signalization device.

In total 10 runs of passing through scenario were performed, the range of inow parameter
covered di�erent phases of the system, the duration of each round varied from 3 to 5 minutes.

Results: This experiment �nalized the room evacuation project. Video processing meth-
ods and inow control brought the high quality data that enabled to perform all designed
studies.

� phase transition induced by inow from free ow to congested state in band (1.35,
1.5) ped/s through meta-stable state [8]

� capacity of bottleneck inuenced by the size of the crowd [8]

� individual travel time modeled by the piece wise linear model reecting the occupancy
[11]

TT (iα) =
S

v0
+ 1{N(iα)>7}(N(iα)− 7) · slope(iα) + noise

� exit angle distribution study with respect to the occupancy and its e�ect to the travel
time [15]

� lower travel time reached by trajectories along the walls [11]

� movement synchronization evaluated from the time headways at the exit and behind
[11, 17]

� movement heterogeneity increment with occupancy [8]

� heterogeneity used for model calibration [12, 14]

1.3.4 Experiment 5 & 6

This set of experiments focused on the motion in complex geometry especially on the merg-
ing of four pedestrian streams, see details in section 3.5.12. The E4 experiment shown
that the headway distribution measured at the exit is the same for di�erent value of inow
(producing a crowd in front of the exit) and that the consecutive produced lower and lower
variance. These experiments aimed to check whether such synchronicity would be observed
even for geometry that di�ers from corridor.

To conduct these experiment, we have leveraged the geometry of stidy hall T-201, where
four stairways led to the two doors to the adjacent room with one door to the platform.
Both realizations consisted of 6 rounds, each with approximately 60 participants.
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Experiments were monitored by cameras on top of the doors and by main camera in the lec-
ture hall. The data were processed by semi-manual software. Moreover, E6 was monitored
by the beta version of wi-� technology communicating with participants mobile phones [25].

Results: Time headways distribution analysis con�rmed the role of bottleneck as a syn-
chronization unit. Consecutive exits indicated not only lower variance, but even lower mean
value, thus observed synchronization improved the performance of the evacuation [17].

Other than that, measured data were used to (successfully) validate developed model on the
complex infrastructure. Results were shared with the AGH Krakow, where similar experi-
ment was conducted, the comparison of both experimental datasets and two implemented
model was published in [16].

1.3.5 Train evacuation experiments

Two train egress experiments were organized by the UCEEB CTU, our contribution was to
help with the realization of second experiment and the overall data analysis. As described
in section 3.3, a double-deck electric unit class EPJ 671 (CityElefant) intended for passenger
service in the vicinity of city agglomerations was available for more than 10 rounds in each
experiment, covering six independent parameters to total evacuation time, namely exit
width, exit type, exit availability, heterogeneity of passengers, distribution of passengers
and time to stop e�ect [17, 20, 22].

The train was equipped by cameras focusing on all potentially signi�cant areas, but the low
ceiling disabled automatic detection thus the semi-manual software was used.

Results: The time headway analysis at the main exit up to 1.2 m wide studied the e�ect
of two pedestrian rows that may pass almost independently. Their distribution represents
the mixture of headways in one row and the phase shift between them. The pillow like
pattern indicating egress in pairs is alternated by the constant like pattern representing the
phase shift equal to the one half of period.

These time headway trends were used to explain the di�erences in total evacuation time
measured for di�erent settings. Generally we can say that a \standard headway" is the
same for all occasions, and that the performance is given by the occurrences of extremely
high headways observed for heterogeneous population (kids, old people) and for the exit to
the open terrain [17].

The other analysis focused on the individual pedestrian performance. The lower deck pas-
senger were signi�cantly prioritized due to the distance of their initial position and the exit
room. The lower deck passengers occupied this room thus the upper deck passengers had
to wait at stairs and started their evacuation later.
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1.4 (Un)related Activities

The research on the pedestrian dynamics covers a wide set of analytic, stochastic or modeling
tools thus it shouldn't be a surprise that author have applied some of them on completely
di�erent task when a chance appeared. From all such distributions, three projects wort
mentioning.

1.4.1 Analytic Activities for ©koda Auto

©koda Auto and Czech Academy of Science participated on many research activities under
TACR foundation. Author has been working on few of them.

One typical example is the estimate of road surface features from data continuously evalu-
ated by car sensors. Based on the wheel circulation velocity, the loss of the torque or the
tangential velocity, the slid detector was designed. After the calibration on the data gener-
ated within the driving test on the testing circuit with prede�ned road surface conditions,
the tool was able to identify the dangerous conditions after the �rs symptoms. Further the
project continued with the proposal of some system to warn the driver even earlier, but it
was stopped at the beginning.

The other project focused on the velocity control of self driven vehicle. Assuming the pro�le
of altitude is known as well as the known speed limits on the route, the goal on the strategic
was to propose the optimal velocity for each point of the planned trajectory. On the tactical
level, the algorithm was supposed to deliver instructions to accelerate, break or to shift o�
to follow toleration band around proposed velocity. The criteria assessing the model quality
combine the fuel consumption with the travel time.

1.4.2 Analysis of Egyptologic Data

In 2018, the cooperation with Radek Maøík (FEL ÈVUT) and the Egyptology group of
Miroslav Bárta was initiated. Through a hundred years of research, they collect dataset
summarizing thousands of historical persons of the Old kingdom of Egypt. The overall
goal of this project is to describe dynamics within the society and to study the punctuated
equilibrium observed not only in the historical empires but even in modern society.

The emphasis is put especially to analysis of titles which were possessed by individual
people and searching for mutual relationships between them. The personal data from tombs
are used as the main source of information, especially the inscription (hieroglyphs) on
false doors. Any (important) person depicted their name, titles and information about
related persons there. Veronika Dulíková (CIE, CUNI) has provided expert classi�cation to
categories are based on profession, location, linked person or privileges. Any title might be
assigned just to one category or it may be linked multiple times. Any shared title indicates
an interaction between categories or in any aspect of real life.

After initial data analysis, we have studied the join occurrence of selected title categories
[28]. As shown in Figure 1.4, even there is no title that would be shared by administrative
and priestly title categories, signi�cant number of o�cials held at least one title from each
category. Such trivial observation from mathematical perspective can be interpreted as a
proof of overlap between civil and religious government.
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Figure 1.4: Left: the number of titles in selected categories. Right: the number of people
holding a title from selected categories.

The successful proof of concept motivated us to apply more advanced methods. Decision
trees, K-medoids and t-Distributed Stochastic Neighbor Embedding algorithms applied to
the person { title { class data (as the student project of Martin Oharek and Benjamin
Páterek) brought additional information about title similarity [29, 30].

Among other studies, K-medoids algorithm was applied to arrange each person to a cluster
(interpreted as a clan) using the title { category assignment. Each person was characterized
by 69 dimensional vector, the value of each dimension was derived from the number of titles
from given category. 13 produced clusters were interpreted with Egyptologists, identifying
correspondence to di�erent ranks of administrative o�cials, priests or king's relative. To
visualize the 69 dimensional space, we used the TSNE that compressed the information
into three space coordinates. In the visualization on Figure 1.5 combines TSNE with the
color taken from the K-medoids algorithm. We can see that signi�cant portion of persons
tends to from groups and these groups were independently detected by both algorithms.
The remaining group is too complex to visualize in 3D, but even here clustering was able
to separate speci�c subpopulation.

Now we are preparing another projects focusing to larger dataset adding artifacts and
morphological information and covering larger historical period.

1.4.3 Medical Data Analysis

A brief cooperation with Oaks consulting was established in summer 2019 to analyze medical
data related to the lungs cancer treatment. Within one year of collaboration, we have
helped to build the data model storing the information about patient diagnosis, prescribed
treatments and their results formulated as a time to progression, where progression might be
the cancer grow, propagation or death. Based on that it was possible to compare treatments
applied in di�erent phases and to check that a cure follows guidelines.

With Jana Vacková we have used Kaplan-Meier estimate of survival curves comparing the
proportion of events in time or hazard curve development, see Figure 1.6. This approach
is capable to detect di�erences among treatments in arbitrary time after the application.
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Figure 1.5: Left: the number of titles in selected categories. Right: the number of people
holding a title from selected categories.

With assumption of similar diagnosis (and after consultation with a medical specialist), the
recommendation to prefer given treatment might be formulated.

Figure 1.6: The Kaplan-Mayer estimate of survival probability for two selected lungs cancer
treatments.

The other project over described data was solved within the master thesis of Martin Oharek
[34]. Combining random forest and neural networks, we have proposed a treatment based
on detected diagnosis clusters. As tested on toy datasets, even on these data was shown that
developed classi�cation algorithm performs better than high end classi�cation tools. This
project would detect any treatment that does not meet the expectations, but unfortunately
the partner decided to continue only with internal employees.
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De�nitions

There are wide spectrum of quantities that may be used to express a feature of pedes-
trian movement, mostly taken from di�erent scienti�c branches and adjusted for speci�c
conditions. In this section, time based quantities together with density and ow will be in-
troduced as de�nitions presented here were (partially) invented and deeply analyzed during
the whole research process. Other quantities will be de�ned where needed.

2.1 Time Based Quantities

As one of the purposes of pedestrian modeling is to prevent fatal outcomes of critical
situations, the time required to evacuate a facility is the natural quantity to evaluate. Safety
engineers distinguish ASET (available safety egress time) consisting of RSET (required
safety time) and safety margin. Furthermore the RSET consists of preliminary steps (�re
detection, alarm activation or the interpretation of the situation) and action steps (preparing
for evacuation and movement).

In this work, we are focusing mainly on the egress itself, participants of the experiments are
prepared to move on the signal, thus the travel time from their initial position to the exit
is evaluated. To be more speci�c, the travel time TT (i) assigned to path i ∈ I is de�ned as

TT (i) = Tout(i)− Tin(i) , (2.1)

where Tout is the exit time and Tin stands for entry or the time when the movement was
initiated.

Another quantity inuencing the path's properties is the mean occupation of the room
denoting average number of pedestrians in the room. The mean occupancy N(i) assigned
to path i is de�ned as time average of the actual occupancy N(t), i.e.

N(i) =
1

TT (i)

∫ Tout(i)

Tin(i)
N(t)dt . (2.2)

Here we note that the integral in the de�nition above is rather formal, since the camera
records are limited by the frame-rate, and technically the average occupancy is calculated
using a sum. On the other hand, this representation enables to calculate the mean occu-
pancy even for event driven updates or records.

23
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To compare the travel time measured under di�erent conditions, scaling based on mean
occupancy is introduced. For each occupancy bin (N − 1, N ], N ∈ 1 . . . Nmax, the mean
travel time TTN is de�ned as

TTN = average
{
TT (i) | i ∈ I, N(i) ∈ (N − 1, N ]

}
. (2.3)

Then the relative travel time TTR(i) for each path i ∈ I is de�ned

TTR(i) =
TT (i)

TTN
. (2.4)

Let us denote by TTR,α the set of all relative travel times of paths corresponding to pedes-
trian α, i.e.

TTR,α = {TTR(i) | i ∈ Iα} . (2.5)

To unify all path records, we scale real time to the normalized one

tN (i) =
t(i)− Tin(i)

TT (i)
. (2.6)

The value of normalized time (denoted globally as tN ) is in the interval 〈0, 1〉 where tN = 0
and tN = 1 corresponds for each pedestrian to the entry and exit time, respectively.

2.2 Internal Variables

Historically the description of pedestrian dynamics is based on point approximation where
the position (~xα) of a pedestrian α is de�ned by the center of the head or it is derived from
shoulders' position. Using this simpli�cation, quantities de�ned in classical physics may be
used on both, microscopic and macroscopic level. As usual, we will start with density ρ and
ow J :

ρ =
N

|A|
, J =

∆N

∆t
, (2.7)

where N is the number of particles (pedestrians, cars, . . . ) in given area A, respectively
number of particles passing given cross-section in time unit ∆t [119].

Such approach can be used in socio-physical systems only when the system itself is large
enough to neglect inaccuracy caused by point approximation on borders. As a limit we can
consider area larger than 20 m2 or the time interval larger than 5 s.

This restriction does not a�ect many practical application, but microscopical analysis and
individual approach require more detail methods respecting physical and even psychical re-
quirements to personal space. The real body mass or e.g. social zones should be considered.

Moreover, there are other phenomena to consider, namely the personal space overlapping
or irregular body shape, changeable in time.

With respect to all mentioned ideas, it seems logical to convert from point approximation
to the distribution approach, where each particle can be considered as a source of individual
density.
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2.2.1 Pedestrian Distribution

As the density distribution p(~x) over the area A where is placed N pedestrians, we will
understand any non-negative function which ful�lls∫

A
p(~x)d~x = N. (2.8)

Obviously some functions are more appropriate than others. The right distributions should
reect the localization of particles, but it is not clear how to do it.

The kernel estimate approach seems suitable place to start with. Assuming each pedes-
trian is a source of some density distribution, we can construct density distribution form
individual components:

p(~x) =
N∑
α=1

pα(~x), (2.9)

where pα(~x) is the individual density generated by pedestrian α.

Such distribution has to ful�ll common requirement
∫
∞ pα(~x)d~x = 1 that can be interpret

as the maximal contribution. With respect to further research directions, it is bene�cial to
de�ne the support of distribution Aα set of of all points where the individual distribution
function is strictly positive, i.e.

Aα = {~x ∈ A|pα(~x) > 0}. (2.10)

In the other words, pedestrian α contributes only to area Aα:∫
Aα

pα(~x)d~x = 1. (2.11)

Furthermore let us de�ne the contribution of pedestrian α to area A:

Nα
A =

∫
A
pα(~x)d~x. (2.12)

Here should be notes that the occupancy in any area A does not have to be an integer {
the \partial presence" is a feature of presented approach. Then the occupancy in area A
consists of individual contributions, i.e.

, NA =

N∑
α=1

Nα
A. (2.13)

The properties of density distributions are driven by the applied kernel, the most relevant
are listed bellow:

1. Point approximation
pα(~x) = δx,xα , (2.14)

where: ∫
A
δ~x, ~xαd~x =

{
1 when ~xα ∈ A,
0 otherwise.

(2.15)

Obviously original de�nition is a special case of presented general approach.
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2. Constant distribution

pα(~x) =

{ 1
|Aα| when ~x ∈ Aα,
0 otherwise.

(2.16)

Cylindrical variant

pα(~x) =

{
1
r2π

when ||~x− ~xα|| < r,
0 otherwise,

(2.17)

where a circular neighborhood with radius r is assigned to each pedestrian. The
density distribution is constant over the whole neighborhood.

3. Voronoi distribution [129] is a special case of constant distribution using adaptive
neighborhood. So called Voronoi diagram split the area into pedestrian related cells
the way that each point of the area is assigned to nearest pedestrian. To evaluate
the density it is su�cient to express the volume of Voronoi cell |Aα| =

∫
Aα
d~x. By

de�nition the cells do not overlap thus each pedestrian has ell de�ned individual space.

4. Conic distribution

pα(~x) =

{
3
r3π

(r − ||~x− ~xα| |) when ||~x− ~xα|| < r,
0 otherwise,

(2.18)

here 3
r3π

is the normalization constant.

Even here a pedestrian is represented by circular area, but the value of distribution
linearly grows from zero at the edge to the maximum in the center. With increasing
\blur" parameter r, pedestrian becomes more foggy. On the other hand in case the
blur tends to zero, the distribution moves toward point approximation.

5. Gaussian distribution

pα(~x) =
1

2π ·
√

Σ
e−

1
2

(~x− ~xα)TΣ(~x− ~xα), (2.19)

with covariance matrix Σ = σ ·
(

1 0
0 1

)
. Parameter σ plays role of \blur" { even

the support Aα is limited only by the boundaries of the hole area A.

2.3 Density

Applying above mentioned ideas to the basic density (2.7), we can derive individual density
formula just by generalization:

ρB =
N

|B|
=

∫
B p(~x) d~x

|B|
=

∫
B

∑N
α=1 pα(~x) d~x

|B|
=

N∑
α=1

∫
B pα(~x) d~x

|B|
. (2.20)

Please note that we have switched notation related to area from A denoting \whole area"
or \whole pedestrian support" to B related to the \detector" or the \area that a pedestrian
perceives".

In this paper, we consider several shape of detectors as well as the individual approach.
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2.3.1 Detector Approach

The most simple approach starts with rectangular detector area B, thus equation 2.20 might
be applied straight forwardly.

It happens quite often that the area is de�ned only vaguely, one may be interested in the
\density in front of the exit" or \density inside the corridor". In such case, we have to
de�ne it our self. Rather than placing a rectangle in front of the exit, we may use the agent
based de�nition of the area.

Assuming we have selected a set of pedestrians to de�ne the area (e.g. pedestrians that
are close to the exit or pedestrians with their head inside an area). Then, we can de�ne
detector area Bα = ∪Nα=1Aα.

Moreover, lets assume other pedestrians do not contribute to B. As all pedestrians inside
contributes by all their volume, the relation (2.20) may be signi�cantly simplify:

ρv =
N

| ∪Nα=1 Aα|
, (2.21)

that is quite similar to (2.7), but the produced density is smoother due to the smooth
changes of B.

Furthermore, if Aα is disjunctive Aα ∩Aβ = ∅ ∀α 6= β (e.g. Voronoi approach), then:

|A| = | ∪Nα=1 Aα| =
∑
α

|Aα|. (2.22)

Applying to (2.21) we can get:

ρv =
N∑
α |Aα|

=
1

1
N

∑
α |Aα|

=
1

〈Aα〉N
. (2.23)

Under such constraints to the density kernel, standard density ρ in area B may be approx-
imated by ρv calculated over area Bα. Instead of evaluating the pedestrian contribution to
given area, the task is transformed to measuring the area covered by them. Such approach
has bene�ts from implementation perspective, there is no need to construct the distribution
at all.

Finally, it remains to asses methods how to select the set of pedestrians to approximate
desired area (denoting A0). There are to approaches to consider, see illustration in Figure
2.1:

a) all pedestrians with head in A0 are incorporated { referred to as Ain

b) all pedestrians interfering by their Aα to A0 are incorporated { referred to as Aout

Any of mentioned methods have its bene�ts as will be illustrated in next sections. In general,
area Ain is smaller and better approximates the density ρ, when the amount of pedestrian
is high enough. On the other hand in case if low density, area Ain may be frequently empty.
Area Aout expanding target area thus the chance of empty area is lower. But this approach
incorporates pedestrians at the edge that have larger personal space, thus the density could
be underestimated.
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Figure 2.1: Illustration of several Voronoi based methods.

Therefore the choice of A0 and method of approximation depend always on the conditions
in the pedestrian system. Following sections will discuss the di�erences between methods
and propose appropriate parameters.

2.3.2 Individual Approach

Quite interesting is the research studying the individual perception of density, i.e. the
density \around" given pedestrian. Simple but the frequently used variant is the density
calculated according to 2.20 over the circular neighborhood

Bα = {~x ∈ A|‖~x− ~xα‖ ≤ R}. (2.24)

Parameter R de�nes the range of pedestrian perception.

For purposes of pedestrian perception analysis it is bene�cial to remove pedestrian itself:

ρBα =: ρα :=
N∑

β=1,β 6=α

∫
B pβ(~x) d~x

|B|
. (2.25)

More fancy shapes might be proposed { very popular idea occurring during theoretical
conferences discussions is the elliptical shape with pedestrian sitting in the focus and the
eccentricity dynamically adjusted with respect to the velocity. The point of this idea is to
highlight the are in front of the pedestrian.

In this study, we have implemented alternative approach limiting Bα to the wedge shape.
Pedestrian is sitting at the vertex and the axis of the wedge is oriented toward the direction
of motion.

There is not metrics to decide which density is better than the other one. In following sec-
tions, the calibration process and measurable features of selected approaches are analyzed.

2.4 Density Detector-base Features

In this section, the analysis provided in [33] will be summarized. The di�erences between
density evaluation methods will be illustrated on experimental data E4.
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Lets consider several detectors virtually placed around exit as visualized in Figure 2.2. For
each of them, we will evaluate density using above mentioned methods and check either the
absolute values and trends or the stability in time.

Figure 2.2: Placement of virtual detectors.

Namely, we will study standard density (refer to as ρstand) calculated according to (3.4),
for which we need to know just the count of pedestrians in the detector.

Then, we will evaluate Voronoi density1 within distribution approach (2.16), i.e. integrated
over exact detector area (refer to as ρex). This exact approach will be compared with
pedestrian area approximation (2.23) using both cases: pedestrian with head in the detector
area ρin and then all pedestrians whose cell overlap the detector ρout.

Finally, conic approach (2.18) ρkuz will be evaluated. In this case, only exact case makes
sense as pedestrian supports Aα do overlap.

Mentioned methods will be assessed with respect to the trend of measured values and the
smoothness expressed by the mean di�erences between consecutive values ∆ρ:

∆ρ =

∑n
i=2 |ρ(ti)− ρ(ti−1)|

n
, (2.26)

where n is the length of time series produced by each experimental round.

2.4.1 Density in Front of the Exit

Detector D0 was designed to cover almost all monitoring area, thus the densities tend
to jump any time, when a pedestrian entered the room (as shown in Figure 2.3). We
should notice as well that Voronoi approach underestimates the density with respect to the
standard or conic method.

In case of relatively small D1, ρkuz and ρex are almost smooth (remaining jumps may be
driven by data issues), but the other methods remained jump-like (depicted on Figure 2.4).
It is coded in their nature, any time a pedestrian leave the detector, the value signi�cantly

1From practical purposes, the maximal size of pedestrian cell was limited to radius 1.5 m .
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Figure 2.3: Results of di�erent density evaluation methods in detector D0, E4, run 6, 50 { 55
sec.

moves. Voronoi methods are more smooth than standard approach, but even there some
jumps may appear as new voronoi cell is incorporated to detector.

Figure 2.4: Results of di�erent density evaluation methods in detector D1, E4, run 6, 50 { 55
sec.

Jumpy behavior may be signi�cantly improved by �ltering. There are large amount of
methods, but we can keep it simple. In this work, we will use central rolling average
accumulating data 2 seconds before and 2 seconds after the event.

Even from large time frame view, mentioned approaches perform di�erently. As illustrated
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in Figure 2.5, the highest values were reached by ρstand, followed by ρkuz and ρex. On the
other hand, lowest values ere generated by voronoi approximation ρin and ρout. Even the
time series are shifted, the trend is the same.

Figure 2.5: Results of di�erent density evaluation methods in detector D1, E4, run 6.

Such shift is undesirable, even for approxamative methods { the value should be close
to ρstand. To ful�ll this requirement, pedestrian should be distributed around the detector
similarly as they are distributed inside. When the conditions changes at the edge of detector,
voronoi approximations fails.

With respect to the positions of D0 and D1, this requirement is hard to ful�ll { detectors
are in the way toward the exit, capturing all passing pedestrians. But the situation at its
edges is di�erent, the density there is lower.

Figure 2.6 summarizes the performance of investigated methods for di�erent modes of the
system, starting with free ow and ending with congestion. Density evaluation methods
performs similarly for all high density rounds. Comparing free ow and high density rounds,
only ρout signi�cantly di�ers.

In free ow case, higher density is reached when a detector can extend its size to incorporate
approaching pedestrian. Lets imagine empty detector and a pedestrian one meter far.
Method ρout extends detector size because voronoi cell overlap the detector area. Therefore
measured value is large comparing to zeros produced by other methods. The same e�ect
causes increase of values measured at the end of experiment. Even when the last pedestrian
passed the detector, ρout extension may track him/her a bit longer producing non zero
value.

On the other hand, in crowd situations, extension of detector incorporates large voronoi
cells of pedestrians at edges of crowd. These cells decrease the value of density produced
by the group of pedestrian crowded in the middle of detector.

Table 2.1 enumerates ∆ρ criterion (2.26):
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Figure 2.6: Di�erent density evaluation methods in detector D0 within four experimental
rounds.

Round 2 3 4 5 6 7 8 9 10 11

ρstand 7.0 9.5 9.7 8.6 9.3 10.0 9.8 9.6 9.2 10.0
ρin 6.8 8.1 9.5 6.2 9.4 9.2 8.6 8.0 8.5 8.9
ρout 6.4 6.3 6.4 5.7 7.0 7.8 6.8 6.6 7.2 6.4
ρex 4.9 5.6 5.4 5.6 5.1 4.9 5.0 4.9 5.0 5.2
ρkuz 6.1 5.7 5.5 6.9 4.8 4.5 4.9 4.8 4.8 5.1

Table 2.1: [10−3 ped/m2] ∆ρ measured in D0 during all experiment rounds.

Focusing on ρstand, it is obviously the least smooth method. That con�rms our expectations
and verify proposed approaches.

The smoothness of Voronoi methods di�ers with the applied approach. ρex performs better
than other two, due to the �xed detector position. Incoming pedestrian's contribution
slowly increases as he/she is approaching. Conversely approximative approaches instantly
adapts its size to cover all voronoi cell once it ful�lls acceptance criterion. ρout performs
better than ρin, due to the larger area more robust to sudden changes.

Conic approach ρkuz performs similarly to ρex, they di�er with the level of congestion. In
free ow cases (rounds 2 and 5), ρkuz is signi�cantly worse than ρex. Results in rounds 3
and 4 are almost same and in other rounds (with dense crowd situation), ρkuz seems to be
the smoothest method

Furthermore, the Table 2.1 illustrates the impact of crowd size to the smoothness of meth-
ods. While ρstand and ρin behave more jumpy with increased density, ρkuz becomes more
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stable. Methods ρout and especially ρex are not sensitive to the state of the system.

To conclude, we can recommend to use ρex for the free ow systems and ρkuz for crowd
systems.

Detector D1 is smaller, designed to focus on the are in front of the exit. Therefore it
measured higher values of density, but the trends are almost the same, see Figure 2.7.

Figure 2.7: Di�erent density evaluation methods in detector D1 within four experimental
rounds.

On the other side, the di�erences in smoothness ∆ρ summarized in Table 2.2 are more
dramatic.

Round 2 3 4 5 6 7 8 9 10 11

ρstand 12.8 17.4 16.8 16.0 17.1 18.4 16.9 17.1 17.4 18.1
ρin 7.4 12.9 13.6 8.7 14.0 13.8 13.3 12.6 13.9 14.0
ρout 6.4 8.1 8.7 5.9 9.3 10.3 8.1 8.4 8.7 9.2
ρex 4.9 5.6 5.4 5.6 5.5 5.7 5.5 5.9 5.9 5.8
ρkuz 5.4 4.0 3.9 4.9 3.8 3.8 3.9 4.1 4.1 4.0

Table 2.2: [10−3 ped/m2] ∆ρ measured in D1 during all experiment rounds.

Density evaluation methods ρstand, ρin and ρout are the most sensitive to the number of
pedestrians inside the detector. As the detector D1 is much smaller, jumps in measured
values are higher. Both ρex and ρkuz don't su�er by jumps he a pedestrian approaches the
detector area, thus the data quality is the same as before.
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Moreover, ρkuz is even smoother. Front edge of D0 copied the border of monitored area thus
pedestrians appeared in D0 instantly. In case of D1, pedestrian's distribution is modeled
su�ciently around the detector therefore the entry of new pedestrian to the detector is as
smooth as the de�nition 2.18 allows.

To summarize these observations, distribution approaches ρkuz and ρex present good �t to
ρstand and minimize jumps in measured values. They are bene�cial especially when the
detector is surrounded by monitored area. Exact Voronoi method is appropriate for low
densities while conic kernels are better in crowd situations.

2.4.2 Density at the Exit and Behind

Detectors dedicated to the Exit (D2) and consecutive corridor (D3, D4) are speci�c by
the area 0.06 m2. Due to such small size, these detectors are empty most of the time,
thus standard approach without smoothing is not applicable at all (Figure 2.8). Voronoi
approach ρin produces zero value any time ρstand does. Voronoi methods ρex and ρout
together with ρkuz can handle empty detector area thus they perform much better.

Figure 2.8: Standard and Voronoi based density evaluation methods in detector D2 within
round 6.

After smoothing (still central rolling average, smoothing period 8 second) the di�erences
among approaches described in previous section can be observed (Figure 2.9).

In this case, exact and conic approach overestimate the standard method, but it does not
mean they are wrong. Presence of one pedestrian in area 0.06 m2 produces a density
16.6ped/m2. Smoothing in time cuts the peak and �ll gaps between pedestrians, but the
number of non-zero values is dependent on pedestrians velocity { therefore the behavior
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Figure 2.9: Di�erent density evaluation methods after smoothing in detector D2 within
round 6.

of this estimate varies with the mode in the corridor. Distribution approaches smooth the
data over the are by de�nition, thus they are more reliable by nature of the situation.

From the smoothness perspective ∆ρ (summarized in Tables 2.3, 2.4 and 2.5), we can
observe dramatically worse performance of ρstand. As expected, this method produces ten
times worse values than other approaches.

Other methods have not change much comparing to large detectors in front of the exit.
Only ρout relatively improves and beats exact voronoi method. As the detector is small, it
is bene�cial to extend detector area to all voronoi cells of overlapping pedestrians.

Moving from D2 through D3 toward D4, criterion ∆ρ produces gradually worse values
for approach for ρkuz. This is more technological issue than a feature of the method {
pedestrians leave scene soon after they leave the detectors. That time, they still partially
contribute to the density in the detector. This contribution suddenly vanishes, causing a
jump in the density time series.

Round 2 3 4 5 6 7 8 9 10 11

ρstand 65.4 83.9 80.5 80.5 76.5 78.3 75.7 75.3 77.5 80.4
ρin 2.0 8.6 7.8 4.5 9.0 9.2 8.2 8.5 9.2 10.3
ρout 2.4 3.1 3.1 3.6 3.1 3.1 3.2 3.2 3.3 3.6
ρex 4.6 4.9 4.8 6.1 5.0 4.9 5.0 4.8 5.2 5.5
ρkuz 1.6 1.2 1.2 1.2 1.1 1.2 1.3 1.2 1.3 1.3

Table 2.3: [10−2 ped/m2] ∆ρ measured in D2 during all experiment rounds.

In general we can conclude that it is not appropriate to use standard approach for small
detectors. Conic distribution approach is again a good choice, especially hen the detector is
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Round 2 3 4 5 6 7 8 9 10 11

ρstand 64.6 81.2 77.7 78.3 72.5 69.5 68.8 67.6 67.3 67.5
ρin 3.8 7.8 7.0 7.0 7.7 7.2 6.2 6.9 6.6 7.1
ρout 2.4 3.3 3.3 3.1 3.2 3.3 2.9 3.1 3.3 3.5
ρex 4.0 5.0 5.1 4.6 4.9 4.9 4.4 5.0 5.0 5.2
ρkuz 2.9 2.5 2.5 2.4 2.3 2.4 2.6 2.4 2.7 2.7

Table 2.4: [10−2 ped/m2] ∆ρ measured in D3 during all experiment rounds.

Round 2 3 4 5 6 7 8 9 10 11

ρstand 52.2 68.9 69.8 72.5 60.1 62.0 52.9 50.7 49.0 52.3
ρin 3.6 5.8 5.7 5.9 5.2 5.4 4.4 4.4 4.4 4.3
ρout 3.3 4.9 4.5 4.8 4.4 4.6 4.0 4.3 4.2 4.4
ρex 6.3 7.8 7.6 7.7 7.3 7.5 6.7 7.2 7.4 7.4
ρkuz 7.2 9.1 8.8 8.8 8.3 8.4 8.0 8.1 8.2 8.5

Table 2.5: [10−2 ped/m2] ∆ρ measured in D4 during all experiment rounds.

far enough from the edge of monitored area. Voronoi approaches can produce good results
as well, ρout produces reliable results.

2.5 Individual Density Features

Lets imagine for now that a detector is not �xed in given area, but it can move. E.g. we can
consider a pedestrian (more precisely a neighborhood around a pedestrian) as the density
detector.

Let us start with a trivial observation illustrated the trend of conic density approach on
one selected path, Figure 2.10. The overall trend of four density curves is similar, but
the features corresponding to speci�c set of parameters are visible. Short range densities
(r = 0.5 m) present lower values in crowd approaching phase and they are more sensitive
to temporal approach of another pedestrian as seen in interval (247, 248) s when a density
increase is followed by a drop. Small radius densities (R = 0.2 m) are characteristic by
high frequency uctuations { pedestrian mass is more concentrated, therefore even a small
deviation in distance to the other pedestrian brings a change in density.

From the smoothness perspective, we can pick long range large radius variant (yellow) as
the best option.

Similarly to the corridor research studying the dependency of ow on the density inside,
we should select the best method evaluating density using more than smoothness. The
reection of natural velocity { density relation would play role of a accuracy criterion.

Within the master thesis of Marina Dzabarjan [35], we have analyzed Conic and Gaussian
distribution method together with Voronoi approach and developed concept of minimal
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Figure 2.10: Velocity and four densities with di�erent blur R and range r parameters. First
drop of velocity (1.5 m/s to 1 m/s) at the beginning of avoiding the crowd is followed by
continuous decrease of velocity (1 m/s to 0.2 m/s) while joining the crowd, meanwhile the
density increases from 0.5 ped/m2 up to 3ped/m2 based on parameters.

distance. Moreover, the e�ect of narrowing of the detector along the moving direction was
analyzed as one of the studied parameter.

Assuming a pedestrian α reacts to the conditions is his surrounding ωα described by den-
sity ρωα) by his velocity vα, we could measure strength of this relation using the Pearson
correlation coe�cient

R(ρωα , vα) =
Cov (ρωα , vα)√

Var (ρωα) Var (vα)
. (2.27)

2.5.1 Perception Angle

The �rs experiment focuses on the determining the best setting of the perception angle for
the nearest pedestrian density approximation.

As seen in the Figure 2.11, measured values cover all spectrum of possible correlation values.
The velocity model is obviously too complex to be explained just by the distance to the
nearest pedestrian, but the trend of mean values ful�lls the expectation.

First, the mean value of correlation is positive, i.e. velocity tends to increase with increasing
distance to the nearest pedestrian. Moreover, the correlation is highest in the perception
angle band 〈120◦, 160◦〉 that is in agreement with the human eye angle of vision [67].

Unfortunately the absolute value of correlation is low, lower than measured values for other
density evaluation methods (as will be shown in next sections). This method could be more
successful in corridors than in the fully 2D motion in the room, thus we will stick with more
standard methods.
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Figure 2.11: Mean value and boxplot of correlation coe�cient between velocity and the
distance to the nearest pedestrian evaluated for di�erent perception angles.

2.5.2 Individual Density Parametric Study

Both distribution approaches have similar trend of correlation with respect to the both,
radius and range parameters as illustrated in the Figure 2.12. Extra short range and
extra short range parametric set performs worse than a symmetric ridge around one meter.
This circle of optimal setting reaches the velocity { density correlation values around -0.5,
indicating relatively strong negative correlation.

Figure 2.12: Mean velocity - density correlation evaluated for various parameters of density,
whole trajectory. Left: Conic density, Right: Gauss density.

Correlation considering all trajectory may mix several phases of motion. To make a closer
look, lets split the trajectory into three parts. The trajectory was cut at the distance 1.5
m to the exit and then right at the exit line.

Figure 2.13 visualizes three completely di�erent pro�les. In the �rst section covering typi-
cally free ow mode, the maximal correlation is reached in the large range part of parametric
space. Obviously the short range density parametric setup is not appropriate in the low
density areas, medium and long range settings don't di�er much.

The second section is the most similar to the whole trajectory picture. The optimal ridge
has slightly di�erent shape, but still the medium radius and range seems to the the best
choice. Here should be noted that the value of correlation is lower comparing to the whole
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Figure 2.13: Mean velocity - density correlation evaluated for various parameters of conic
density. Left: Free ow area, Middle: Crowd area, Right: Corridor behind the exit.

trajectory, approximately by 20 points. The correlation between velocity and density is
carried by the whole trajectory { all pedestrians started in low density area, walking with
relatively large velocity. At the exit area and behind, most of them signi�cantly slowed down
due to the high density. Cutting the trajectory to pieces, this information is depreciated
and the correlation is based on more local velocity-density changes. These changes are less
stable, therefore the mean value of correlation is lower.

The third section completed the shift from long range to short range parametrization.
Optimal values moved below 0.5 m that indicates hard body approximation combined with
nearest pedestrian neighborhood. Interestingly even here the point approximation brought
worse correlation, but not that much as in case of other sections.

Finally, the same analysis was performed for Voronoi method. This approach is parametrized
just by the radius as the size of pedestrian area is de�ned by Voronoi cell. Even for this
method, correlation curves indicates the same behavior as the conic approach, see the Figure
2.14. The correlation of whole trajectory and second sector are optimized by medium range
set up, while starting area prefers long range and corridor short range setup. The absolute
values are similar, whole trajectory reached -0.5 and the sections move around -0.3.

Figure 2.14: Mean velocity - density correlation evaluated for various parameters of voronoi
density. Curves are related to the whole trajectory, free ow sector, crowd area and Corridor
behind the exit.
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2.5.3 Factors A�ecting Correlation

Previous section worked with averaged velocity-density correlation over all trajectories.
Naturally, trajectory signi�cantly di�ers thus it worth's analyzing possible factors a�ecting
the value. To avoid combining too many information, followed analysis was performed just
for the second sector of trajectory.

We will consider three possible factors, all of them designed as categorical variables:

� TTR de�ning fast trajectories (TTR < 0.8), regular (0.8 <= TTR < 1.2) and slow
(1.2 <= TTR)

� trajectory shape: straight (no crossing of 1.5 m distance of entrance - exit axis) vs
peripheral

� occupancy: low (0-12), medium (12-19), high (19-30), extra high (30+)

Such design produces 24 categories of trajectories, their coding is de�ned in Table 2.6

Trajectory straight peripheral

Occupancy 0-12 12-19 19-30 30+ 0-12 12-19 19-30 30+

Fast groups 1 2 3 4 5 6 7 8
Regular groups 9 10 11 12 13 14 15 16
Slow groups 17 18 19 20 21 22 23 24

Table 2.6: Indexation of parametric groups based on trajectory, occupancy and travel time.

The inuence of factors is visualized in Figure 2.15. The sequences of four, respectively eight
similar groups is well visible. Repeatable patters indicates strong e�ects of all proposed
factors.

First, we should distinguish straight and peripheral trajectories. Peripheral trajectories
are characteristic by lower level of correlation. While the peripheral trajectories does not
change with occupancy, straight trajectories increase negative correlation with increased
occupancy. And �nally, higher correlation is frequently reached by slower passing's, for all
types of trajectories.

To go even more deep with the analysis why pedestrians behave this way, please see section
3.4. In this chapter, we will continue with the analysis of de�ned quantities.
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Figure 2.15: Boxplot of velocity - density correlation evaluated for groups of trajectories as
de�ned in Table 2.6.

2.6 Flow

The dynamic quantity \Flow" J is always related to the given cross-section, a virtual barrier
splitting analyzed area A into two parts. Let us denote the area in front of the cross-section
as A1 and the area behind as A2, when the front and rear area is de�ned with respect to
the sense of movement. The ow from front area to rear area will be considered as positive.

The pedestrian ow is by nature vector quantity with value and direction. Its coordinates
are de�ned as the value of ow through the cross-section orthogonal to given direction:

~J = (Jx, Jy, . . . ). (2.28)

In this work, we are interested in the ow through linear cross-section and, more over, the
ow can be considered as unidirectional. Thus we can identify J := Jx and work only with
the value of ow.

Assuming the area A is closed (there is no ow through the border), the increase of occu-
pancy in A1 has to be the same the decrease of occupancy in A2 and vice versa. Therefore
for the evaluation of the (scalar) ow, we will use the increase of occupancy in A2.

Even it is quite frequent to evaluate the ow through the area A instead the cross-section,
such term is not well de�ned. We will always evaluate the ow through the the cross-section,
possibly de�ned by border(s) of A.

Similarly to the density, even ow can be de�ned applying pedestrian distribution 2.20 to
fundamental de�nition 2.7:

J =
∆NA2

∆t
=
NA2(t+ ∆t)−NA2(t)

∆t
=

∫
A2

∑
α pα(x, t+ ∆t)− pα(x, t) dx

∆t
(2.29)
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that in case of actual ow, i.e. when ∆t→ 0, gives:

Jakt(t) = lim
∆t→0

∫
A2

∑
α pα(x, t+ ∆t)− pα(x, t)dx

∆t
=

∫
A2

∑
α

p′α(x, t)dx . (2.30)

Again, the performance of method is de�ned by the shape of kernel:

Conic & Gauss distribution Event the complex distribution are well applicable, just
the kernel (2.18), resp. (2.19) would be injected to (2.29).

Constant distribution (e.g. cylindrical, voronoi) Using the linear relation between
area and density (2.16) the equation (2.29) may be rewritten with the pedestrian support
in front and behind the cross-section:

J(t) =

∑
αN

α
A2

(t+ ∆t)−Nα
A2

(t)

∆t
=

∑
α

Nα
A2

(t+ ∆t)

Nα
A

−
Nα
A2

(t)

Nα
A

∆t

=

∑
α

A2
α(t+ ∆t)

Aα(t+ ∆t)
− A2

α(t)

Aα(t)

∆t
,

(2.31)

where A2
α = Aα ∩A2 refer to as pedestrian support if front and behind the cross-section.

Here should be noted that Voronoi ow may be a�ected be a�ected by several technical
issues that should be prevented on the implementation level:

� voronoi cell doesn't have to be compact. Imagine a point behind the obstacle may
be assigned to the cell of pedestrian in front of it just due to the shortest Euclidean
distance, even there are other pedestrians closer with respect to \walk distance".
Such detached part of cell used to be unstable in time, thus it should be avoided by
modifying the voronoi cell assignment.

� voronoi cell is de�ned in the context of other pedestrians. It can happen that a
fraction of voronoi cell in front of the cross-section increase even pedestrian is moving
forward, just because of some random movement in the crowd. Such behavior could
cause repeatedly addition of partial ow. This issue can be prevented by normalizing
a ow contribution from one pedestrian to 1 ped.

Point approximation Applying Dirac kernel (2.15), the ow calculated from pedestrian
distribution returns back to standard shape:

J =

∑
α

∫
A2
pα(x, t+ ∆t)− pα(x, t)dx

∆t
=

∑
α

∫
A2
δx,xα(t+ ∆t)− δx,xα(t)dx

∆t

=

∑
α Ipass(t, t+ ∆t)

∆t

(2.32)

where Ipass(t, t+ ∆t) stands for identi�er of pedestrian's passing the cross-section in given
time interval.
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Therefore the mean value of ow in measured interval ful�lls 〈t1, t2) fundamental expecta-
tions

J̄(t1, t2) =

∑
α Ipass(t1, t2)

t2 − t1
, (2.33)

with the drawback in badly de�ned actual ow

lim
∆t→0

J =

{
inf ∃α : tα ∈ 〈t, t+ ∆t)
0 otherwise,

(2.34)

that is useless in practical applications.

From known times of passing the cross-section, it is possible to de�ne actual ow using
following transformation of ow:

J(t1, t2) =

∑
α Ipass(t1, t2)

t2 − t1
=

1

(t2 − t1)∑
α Ipass(t1, t2)

=
1

〈∆tα〉t
, (2.35)

where ∆tα is the time distance of pedestrian α to his/her predecessor. The mean value of
ow is therefore proportional to inverse value of mean time distance.

But even this approach does not de�ne actual ow { in case of time interval shorter than
time distance it is not clear how to execute the mean value. We can de�ne actual ow using
wisely selected time distance ∆t(t) relevant in time t:

J(t) =
1

∆t(t)
. (2.36)

The most simple method would use the time distance of nearest passing pedestrian

∆t(t) = ∆tα, α = argmin(|t− tα|). (2.37)

Such approach generates jump in measured values in times of switch from one nearest
pedestrian to another. Therefore the smooth approach keeping focus on actual values is
accomplished by linear interpolation on the time distance level, i.e.

∆t(t) =
|t− tα| ·∆tα + |t− tα+1| ·∆tα+1

|t− tα|+ |t− tα+1|

=
|t− tα| ·∆tα + |t− tα+1| ·∆tα+1

∆tα+1
, α = argmin(tα − t)| tα ≤ t.

(2.38)

It may be bene�cial to use higher level of interpolation, but it would shift the actual picture
toward the mean value.

2.7 Flow Detector-based Features

To compare performance of presented methods, we will again calculate ow on the E4 data
through the detectors de�ned in 2.2, through their front edge to be more speci�c.

Two distribution and two passing-times approaches will be analyzed:
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1. Standard method (referred to as Jstand) calculated by (2.32). With respect to the
time interval ∆t = 1/48 s equal to the frame rate, each entering pedestrian generates
ow 48 ped/s in the time of his/her �rst detection

2. Voronoi approach denoted as Jvor calculated by (2.31). For each voronoi cell in the
detector it is evaluated the fraction of cell area inside vs. outside the detector

3. Distribution approach with conic kernel referred to as Jkuz

4. Time headway approach denoted as Jroz calculated by (2.37). Each measured time,
the ow is equal to the inverse value of time headway of nearest pedestrian

Again, the quality will be assessed by the smoothness criterion ∆J de�ned as mean di�erence
of consecutive values:

∆J =

∑n
i=2 |J(ti)− J(ti−1)|

n
, (2.39)

where n is the number of measured data points. Note that this value is extracted from
non-smoothed values.

Moreover, we will check the agreement with macroscopic mean value. For each round, mean
ow Jmacro is calculated using (3.4) from the time interval between the �rst and the last
pedestrian an the total number of pedestrians. Values are summarized in Table 2.7.

Round 2 3 4 5 6 7 8 9 10 11

Jmacro 0.91 1.21 1.16 1.14 1.10 1.13 1.08 1.09 1.11 1.17

Table 2.7: [ped/s] Macroscopic ow is all rounds of E4.

2.7.1 Flow in front of the Exit

Detector D0 is characteristic by the jumpy results of all methods, see Figure 2.16. We
should distinguish jumps implicated by de�nition, i.e. Jstand method and jumps caused by
sudden entry of new pedestrian to analyzed area a�ecting mainly Jkuz a Jvor. The reason
is the same as in case of density { the front side of detector D0 matches the border of
monitored area, thus all pedestrian cell appears instantly inside the detector, there is no
bene�t of distribution approach.

Consequently the ow of pedestrians leaving the detector is rather smooth, as visualized
in Figure 2.17. Anyway, to get applicable results for D0 in the whole timeline, smoothing
is needed. Central rolling correlation over time window 4 s completely removed jumps and
uncovered very good �t among all methods, as illustrated in Figure 2.18.

Even in term of the macroscopic �t criterion summarized in Table 2.8, all ow evaluation
methods produced mean value closed to macroscopic measurements. Only in the case of
round with the lowest density, the errors reaches 3%. Otherwise the di�erence does not
exceed 1%.

The second criterion ∆J measuring smoothness of produced data (Table 2.9) con�rms the
observation that only Jroz is not a�ected by the position of detector. Moreover, even the
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Figure 2.16: Non-smoothed results of all analyzed methods, detector D0, round 6.

Figure 2.17: Non-smoothed results of distribution approaches, detector 0, short time interval
without any pedestrian entry.

distribution approaches were a�ected by mentioned issue, they better results than standard
approach, mainly in more dense rounds.

Detector D1 is supposed to bring more smooth results due to its position inside the room.
Comparison of distribution approaches on both, short (Figure 2.19) and long (Figure 2.20)
time scale con�rms the expectations, but even here jumps occurred.

After smoothing (visualized in 2.21), apparent di�erence appears between trends in time-
based and distribution approaches. In case of standard of headway based ow, a pedestrian
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Figure 2.18: Smoothed results of all analyzed methods, detector D0, round 6.

Round 2 3 4 5 6 7 8 9 10 11

Jmacro 0.91 1.21 1.16 1.14 1.10 1.13 1.08 1.09 1.11 1.17

Jstand 0.94 1.20 1.15 1.15 1.09 1.12 1.08 1.08 1.11 1.16
Jroz 0.93 1.20 1.15 1.14 1.09 1.12 1.07 1.08 1.11 1.16
Jvor 0.94 1.21 1.16 1.15 1.10 1.13 1.08 1.09 1.12 1.17
Jkuz 0.94 1.21 1.16 1.16 1.10 1.13 1.07 1.09 1.12 1.17

Table 2.8: [ped/s] Mean value of ow of all analyzed method, detector D0.

Round 2 3 4 5 6 7 8 9 10 11

Jstand 4.65 7.16 7.48 5.99 7.23 8.15 7.96 7.26 7.11 7.83
Jroz 1.98 2.74 2.59 2.61 2.63 2.71 2.66 2.45 2.64 2.93
Jvor 4.05 4.96 4.86 4.73 4.61 4.48 4.36 4.44 4.54 4.61
Jkuz 4.38 4.70 4.64 5.36 4.07 3.98 4.01 4.06 4.10 4.29

Table 2.9: [10−3 ped/s] Criterion ∆J evaluated for all analyzed method, detector D0.

is detected at once, after coming to the detector area. Distribution approaches Jvor and Jkuz
contributes to the detector ow continuously since pedestrian support touches the detector
edge until it is fully incorporated into the detector area. Therefore signi�cant portion of
the ow may be delayed, especially in the crowd situations. Such behavior is rather a
feature than a bug { it was a goal to develop a method blurring pedestrian ow in time and
moreover, the mean value is still conserved as showed in Table 2.10. On the other hand in
case the goal is just to approximate Jstand by some smoother method as close as possible,
Jroz is the best idea.
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Figure 2.19: Distribution based ow evaluation methods in detector D0 (left) and D1 (right)
within short interval round 6.

Figure 2.20: Distribution based ow evaluation methods in detector D0 (upper) and D1
(lower) within round 6.

From the smoothing criterion ∆J , situation illustrated in Table 2.11 become more complex.
Standard approach is several times worse, but remaining three methods bring competitive
results. Results of Voronoi method are stable no matter the density, while headway based
approach is getting worse Jroz and conic approach is getting better with increasing density.

To conclude, conic distribution approach is again the best one if the detector is well inside
the resoled area. Otherwise, headway based method produced satis�ed results no matter
the condition are.
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Figure 2.21: Smoothed results of all analyzed methods, detector D1, round 6.

Round 2 3 4 5 6 7 8 9 10 11

Jmacro 0.91 1.21 1.16 1.14 1.10 1.13 1.08 1.09 1.11 1.17

Jstand 0.94 1.21 1.16 1.15 1.10 1.13 1.08 1.09 1.12 1.17
Jroz 0.93 1.21 1.16 1.15 1.09 1.13 1.07 1.09 1.11 1.17
Jvor 0.94 1.21 1.16 1.15 1.10 1.13 1.08 1.09 1.12 1.17
Jkuz 0.94 1.21 1.16 1.16 1.10 1.13 1.07 1.09 1.12 1.17

Table 2.10: [ped/s] Mean value of ow of all analyzed method, detector D1.

Round 2 3 4 5 6 7 8 9 10 11

Jstand 4.77 7.18 6.61 5.84 7.24 7.91 7.17 7.05 7.23 7.27
Jroz 1.83 2.71 2.72 2.45 2.59 2.82 2.55 2.45 2.60 2.92
Jvor 2.49 2.68 2.63 2.74 2.56 2.68 2.62 2.88 2.64 2.64
Jkuz 2.36 1.99 2.00 2.56 1.80 1.83 1.84 2.02 1.85 1.96

Table 2.11: [10−3 ped/s] Criterion ∆J evaluated for all analyzed method, detector D1.

2.7.2 Flow at the Exit and Behind

Small detectors in the corridor brings smooth and stable data, as visualized in overview in
Figure2.22. Putting aside standard method, there are only few events causing high values.

In case of headway approach, high values are caused by passing two pedestrians with min-
imal distance. Even with the exit width equal to 0.6 m, the lowest headway reached 0.06 s
producing the ow over 16 ped/s.
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Distribution approaches Jvor a Jkuz were a�ected by data issues, it happened several times
that a pedestrian were not detected for few seconds. Then, sudden appearance causes
instantly high ow.

Figure 2.22: Non-smoothed results of all analyzed methods, detector D2, round 6.

Due to the high data quality, the consecutive smoothing was applied over shorter time
window, only 4 seconds were used (see Figure 2.23). Final curves have very similar trends,
mean values are almost the same (Table 2.12).

Figure 2.23: Smoothed results of all analyzed methods, detector D2, round 6.

The smoothness criterion just con�rmed the observation indicating that standard method
is signi�cantly worse than other three. In case of detector D2, the conic method is the best
for all rounds but the �rst one (Table 2.13.
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Round 2 3 4 5 6 7 8 9 10 11

Jmacro 0.91 1.21 1.16 1.14 1.10 1.13 1.08 1.09 1.11 1.17

Jstand 0.94 1.21 1.16 1.15 1.10 1.13 1.08 1.09 1.12 1.16
Jroz 0.93 1.21 1.16 1.15 1.10 1.13 1.07 1.09 1.11 1.16
Jvor 0.94 1.21 1.16 1.15 1.10 1.13 1.08 1.09 1.12 1.17
Jkuz 0.94 1.21 1.16 1.16 1.10 1.13 1.07 1.09 1.12 1.17

Table 2.12: [ped/s] Mean value of ow of all analyzed method, detector D2.

Similarly to the density case, the distribution approaches su�er from worse data quality at
the edge of monitored area, therefore for detector 3 (Table 2.14) and mainly for detector 4
(Table 2.15), it would be better to use headway approach.

Round 2 3 4 5 6 7 8 9 10 11

Jstand 9.52 12.1 11.6 11.7 11.1 11.2 10.8 10.9 10.8 11.3
Jroz 2.88 2.38 2.41 2.38 2.82 2.99 2.82 2.82 2.99 3.13
Jvor 4.92 3.60 3.79 4.86 3.58 3.62 3.64 3.58 3.69 4.04
Jkuz 3.45 2.11 2.34 2.30 2.34 2.60 2.59 2.59 2.81 2.83

Table 2.13: [10−3 ped/s] Criterion ∆J evaluated for all analyzed method, detector D2.

Round 2 3 4 5 6 7 8 9 10 11

Jstand 9.40 11.8 11.6 11.1 10.7 10.3 9.78 9.54 9.46 9.70
Jroz 2.70 2.31 2.31 2.14 2.52 2.85 2.72 2.71 3.05 2.86
Jvor 3.59 3.59 3.56 3.35 3.51 3.63 3.66 3.69 3.93 3.81
Jkuz 3.24 2.29 2.41 2.24 2.39 2.80 2.78 2.75 3.08 3.08

Table 2.14: [10−3 ped/s] Criterion ∆J evaluated for all analyzed method, detector D3.

Round 2 3 4 5 6 7 8 9 10 11

Jstand 8.78 10.3 11.2 11.1 9.15 9.46 8.48 8.31 7.88 8.27
Jroz 2.44 2.68 2.68 2.23 2.37 2.54 2.55 2.41 2.61 2.59
Jvor 4.38 6.16 5.78 5.79 5.74 5.76 5.33 5.40 5.41 5.85
Jkuz 5.77 6.45 6.23 5.93 5.99 6.26 6.15 6.17 6.34 6.64

Table 2.15: [10−3 ped/s] Criterion ∆J evaluated for all analyzed method, detector D4.

To conclude, headway approach Jroz is suitable for all investigated cases. This method can
be alternated by conic distribution approach Jkuz for detectors surrounded by monitored
area. Distribution methods may diverge from standard methodology, but this di�erence is
well explained and it may be more appropriate for some interpretation.



Chapter 3

Crowd Motion

The description and analysis of pedestrian behavior will be illustrated on several rather
simple situations, where individual phenomena visibility is better.

First sections are based on \passing through a room" situation. The data from several
experimental trials supports topics \phase transition", \heterogeneity" and \local behav-
ior". Then, more complex geometry covering the join of pedestrian streams will be used to
demonstrate the e�ect of synchronization. At the end, the evacuation of double deck rail
car unit was realized focusing on features a�ecting the travel time.

Studied situations were simulated by developed cellular automata model, where innovative
approaches were implemented to reproduce observed behavior.

3.1 Phase Transition

From the safety engineering perspective, the prediction of \the state" of any part of infras-
tructure with respect to the boundary conditions given by inow and outow is the most
crucial question. The term state refers to the set of observables, generally we can meet free
ow state and the congestion on the other side of the scale, however the exact de�nition of
this states is not uni�ed in the literature so far. The conditions of phase transition or the
existence of other states between is the subjects of this section.

All rounds of the experiments performed to support this study started with an empty room,
therefore the free ow phase was observed every time. Controlled inow rate Jin constant
for all round covered the interval both below and above expected capacity of the exit,
therefore phase congestion was observed as well.

3.1.1 Bottleneck Capacity

The term capacity Jc de�ned as the maximal ow through given bottleneck is supposed
be determined by its width denoted as d. To get better insight, we may use the concept
J = 1/〈δT 〉, the ow is determined by mean time headway. For the narrow bottleneck
(pedestrians go in line), the time headway is given by the space headway and velocity
δT = v · δL. This two quantities are linked together v = v(δL).

51
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The empiric relation
Jc = 1.9 · d (3.1)

proposed as average of many experimental studies [105, 107, 106, 94, 123] (see Figure 3.1)
neglects all other e�ects as the motivation or heterogeneity of humans and the geometry of
the exit.

Figure 3.1: The values of ow with respect to the bottleneck width. Taken from [123].

As shown further, with higher motivation, pedestrian could go faster even when the space
headway is relatively low. The potential contacts between them (that they try to avoid
under normal condition) are less relevant in case of emergency situation.

3.1.2 States of the System

From the most macroscopic perspective, there are only two possible scenarios with respect
to the inow rate:

� Jin < Jc Initially empty room stays empty, pedestrians walk freely, there is no crowd
in front the exit, Jout = Jin

� Jin > Jc Initially empty room is �lled by people, pedestrians stands in the crowd
in front the exit, the size of cluster linearly grows with time (the growing speed is
expressed by di�erence Jin − Jc), Jout = Jc

The presence of these modes is well observable on microscopic level as well. The histogram
of velocity evaluated for leave the room experiment in E2 (Fig. 3.2) visualizes two local
maxims: The high peak on value 0.5 m/s corresponds to the congestion, while the wide
peak on value 2 m/s is linked to the free ow. The histogram of density does not exhibit two
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Figure 3.2: The histogram of velocity (left) and density (right).

Figure 3.3: The occupancy of the experimental room in time, measured during E4.

modes, indicating that density changes smoothly. A pedestrian keeps his optimal velocity,
until it the density around reaches critical value. Then, he must slow down or stop.

This approximation simpli�es the pedestrians to granular matter, ignoring their ability to
adapt behavior to the conditions around. In realized experiment E4, we observed more
complex development of occupancy than expected, as visualized in Figure 3.3.

3.1.3 Steady State

As the experiment always started with the empty room, the beginning of all rounds is the
same. The occupancy in the room increased according to the inow { outow balance and
the system becomes stabilize. In the language of mathematics, the system variables do not
change in time. Finally, the inow is stopped thus the occupancy drops to zero.
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For microscopical analysis (and not only), the conclusions related to some state should be
derived only over the steady state data. That means in case of E4 to make the cut o�
illustrated in Table 3.1.

Round 2 3 4 5 6 7 8 9 10 11

Beginning [s] 40 100 110 80 100 80 50 70 100 120
End [s] 200 220 250 230 250 220 120 120 120 180

Table 3.1: Steady state intervals in E4.

Obviously the impact of evaluating stats over steady state is the most signi�cant in the
most crowded rounds, i.e. in the rounds with the highest inow as visualized in Table 3.2.

Round 2 3 4 5 6 7 8 9 10 11

ρkuz (whole round) 0.86 2.31 2.19 1.54 2.57 2.66 2.40 2.48 2.50 2.70
ρkuz (steady state) 0.78 2.49 2.59 1.66 2.91 2.92 2.69 2.90 3.01 3.00
α [ped/s] 1.20 1.50 1.50 1.35 1.65 1.95 2.25 2.25 2.40 1.94

Table 3.2: Mean conic density ρkuz for all runs of D0 evaluated for the all round (upward)
and steady state (downward) and the inow to the system.

3.1.4 Free Flow

The �rst two runs represent the free ow state, the occupancy in the room uctuated around
seven, resp. nine pedestrians. Even the free ow steady state occupancy depends on the
inow, these values express the average number of pedestrians enter the room during the
passing of one person:

Nff =
T̄ T

∆tin
= TT · Jin, (3.2)

where T̄ T refers to mean travel time and ∆tin to pedestrians headway at the entrance, the
relation uses the ow de�nition (2.35). In the E4 free ow case, T̄ T = 7 s, therefore the
Nff = 7 ped for Jin = 0.99 ped/s, resp. Nff = 9 ped for Jin = 1.22 ped/s.

The equation was derived using the fact, that the outow in free ow state is equal to
the inow. The phase of increasing occupancy is quite short, takes only few second until
the �rst pedestrian reaches the exit. Then, the frequency of entering is the same as the
frequency of leaving that brings equilibrium, i.e. steady state.

3.1.5 Congestion

The last 5 runs are classi�ed as congestion, the crowd accumulates in front of the bottleneck.
As the inow exceeds outow, the number of people would �ll all room (or, in experimental
case, all participants entered and the round had to be �nished). The trend of occupancy
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extends the free ow relation by the di�erence of inow and outow:

Ncon = (Jin − Jout) · t (3.3)

where Jout is assumed to be equal to Jc.

This assumption should be further discussed, because both, records of occupancy �tted
to (3.1.5) and direct outow measurement presented in Figure 3.4 indicate more complex
behavior of outow than presented hydrodynamic approximation.

Figure 3.4: The relation of outow and inow measured for each round of E4.

As seen in the Figure 3.4, the inow-outow trend deviated from identity since the value
exceeds 1.3 ped/s (add speci�c ow). If this value expresses the capacity of the exit, the
outow should level, but this is not observed yet. The outow grows until the inow reaches
1.6 ped/s, then the value stabilizes at 1.4 ped/s.

Outow measured within E4 hits the interval measured by the other research groups dealing
with the same exit width (d = 0.6 m), namely Kretz [94], Muir [105] and Müller [106], see
Table 3.3. The empiric relation 3.1 predicts the ow equal to 1.14 ped/s, slightly over Kretz
values.

Study Jc [ped/s]

Kretz [94] 1.1
Muir [105] 1.4
Müller [106] 1.5

Table 3.3: Mean ow corresponding to exit width 0.6 m referenced in selected publications.

As we can see, the values in table signi�cantly di�ers as the experimental conditions were
not uni�ed. The lower limit near 1.1 ped/s corresponds to the long corridor in front of the
exit, while the upper bound around 1.5 was reached by di�erent geometry more similar to
E4 - a room with the exit as the bottleneck.

Moreover, Müller [106] started the experiment with dense crowd, the density in all room
reaches 5 ped/m2.. In the article [107] proposes that the outow is more inuenced by the
initial density than the bottleneck width.
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3.1.6 Metastable State

Aside the discussions about the precise value of capacity with respect to the geometry or
initial conditions, the non-linear part of inow-outow curve visualize in 3.4 indicates that
the whole concept of (static) capacity as a product of hydrodynamic approach should be
reviewed.

The observed non-linearity suggests that \dynamic capacity" (de�ned as the maximal con-
gested ow under given conditions, i.e. Jc(ρ)) moves with number of pedestrians in the
cluster.

Therefore the phase transition from free ow to congested state driven by the inow is not
jump-like, but the system passes through relatively long transition interval. As the behavior
of crowd in this transition interval di�ers to the both free ow and congestion phase, we
propose to de�ne \metastable phase".

In this state, observed when inow is between low and high capacity limits, occupation
uctuates and all characteristics less stable. In the range of inow close to the static
capacity, small crowd in front of the exit increases the motivation of pedestrian, which
increases the ow through the exit and therefore the cluster stops growing.

This phenomena was observed in detail during rounds 3, 4 and 6. As seen in Figure 3.3, the
occupancy increased up to 20 resp. 30 pedestrian, that corresponds to 15 resp. 25 people
in the crowd in front of the exit. After that, the occupancy levels or even decreases and
after while eventually starts growing again. This behavior indicates the high sensitivity to
uctuations of the inow as well as to other internal or external factors.

While all pedestrians walk in free ow and (almost) all pedestrians stay at congestion, the
metastable state supports individual behavior. More fast and aggressive people still walk
rather fast, but others stay and spend much more time by passing. Therefore it is still walk
or stay on the individual level, but the projection to crowd level produce described complex
behavior and veri�es the need of adding metastable state into the system classi�cation.

3.1.7 Fundamental Diagram

So far, the inow was used as the only variable explaining the ow through a room. The
deviations from hydrodynamic approach motivate us to analyze the e�ects of intern vari-
ables as occupancy, density or density distribution. These quantities obviously a�ect both,
macroscopic behavior expressed by the ow and individual velocity representing microscopic
feature.

The essential characteristic of pedestrian movement represents the fundamental diagram,
the dependence of the ow on the density (J = J(ρ)) or the velocity on the density (v =
v(ρ)), see [70] or [126].

In theory, the motion of mass of people might be modeled similarly to a uid matter { at
least the same fundamental dependence can be derived from the basic de�nitions (2.7) for
the one-directional movement in the corridor:

J =
N

T
=
N

A

A

T
= ρ

l b

T
= ρbv, (3.4)

where b is the width of the corridor. The speci�c ow Js = J/b = ρv reects the ow
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standardized to unit of width.

As seen in Figure 3.5, the shape of fundamental diagram di�ers with respect to the ex-
perimental condition or to the setting of simulation. Regardless to these di�erences, the
extreme values of speci�c ow and densities for one dimensional motion are estimated (see
[118], [119]):

� Jmax ∈ (1.2, 1.8) (ms)−1,

� ρmax ∈ (1.75, 7) m−2 (the density which maximizes the ow),

� ρ0 ∈ (3.8, 10) m−2 (the density which disables the movement).

Figure 3.5: The visualization of several fundamental diagrams (taken from [118]). Lines
represent modeled data, points refer to experimental values.

Juelich group organized many pedestrian ow experiments and classi�ed di�erent geometry
into three groups [151]:

� open: the length bottleneck is low, the width of area behind and in front is much
higher than bottleneck width. The example is the door.

� semi-closed: the area in front of the bottleneck is wide, but the width behind cor-
responds with the bottleneck width. The example is the beginning of a hallway

� closed: both the width in front and behind the bottleneck corresponds to the bot-
tleneck width. The example is the corridor itself, considering any cross-section as a
bottleneck.
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Open geometries achieve highest ow as the discomfort caused by the short interval of
narrow bottleneck is more acceptable than permanently narrow corridor. Anyway it seems
that the geometry itself adds a lot of variance into the fundamental diagram curves.

Our experiments may be characterized as semi-closed, thus we can expect rather higher
ow for given density. During the experiment E4, we have evaluated density using mul-
tiple methods (see section 2.3). For standard density, voronoi exact density and conic
density evaluation approaches there are matching ow evaluation techniques. Generated
fundamental diagrams are visualized on Figure 3.6. Standard approach density and ow
was smoothed using rolling average with central 8 s window, distribution approaches are
visualized in raw form.

Figure 3.6: Fundamental diagrams evaluated in D2, round 2 of experiment E4.

From the microscopic perspective, the same relation may be expressed by the relation of
velocity and individual density, visualizing the density areas where pedestrians are able to
walk freely or they have to adjust their velocity to the conditions around.

Apparently, velocity should decreases with the increasing density. This trend is well visible
for all studied publications, see Figure 3.7. Presented curves di�er just by maximal values
of density or velocity. Expect of SFPE [108] where velocity decreases linearly, the trend is
characterized by a density interval, where the decrease of velocity slow down.

Or data from E4 (detector D2) copies this trend as shown in Figure 3.8. With maximal
density around 5 ped/m2 for voronoi approach (2.23) or 4 ped/m2 for conic approach (2.18)
and steep velocity decrease until the density reached 2 ped/m2, or data corresponds to the
WM and Older results. The di�erence between our data and selected publications roots
in the maximal velocity. Volunteers participated in conducted experiment we motivated to
walk fast to he exit when they have a change.

The three dimensional fundamental diagram evaluated for leave the room experiment E2
(�g. 3.9) clearly describes this dependency adding the information of the frequency of
occurrence.
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Figure 3.7: Velocity { density fundamental diagram evaluated in selected models: [117]
(PM), [141] (WM) and [108] (SPFE), and experimental studies: [111] (Older) and [72]
(Helbing). Taken from [124].

Figure 3.8: Velocity { density fundamental diagram evaluated in D2, round 6 of E4. One
point represents one passing through the detector. The pedestrian velocity is averaged over
the period that a pedestrian spend in the detector, the detector density is averaged over
the same interval. Left: Voronoi approach, right: conic approach.

As mentioned above, pedestrian may walk freely or they must adjust their velocity. The
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Figure 3.9: The three dimensional fundamental diagram, E2.

free ow occurs until the density reaches 0.3 ped/m2, participants walked with velocity 1.5
{ 2.5 m/s. The high variation of velocity in this area of densities demonstrates individual
aspect of the movement.

Conversely, when density exceeded 0.5 pedestrians/m2, congestion appeared. In this state,
the velocity uctuates between 0 and 0.7 m/s, with slowly decreasing trend and low variance.
The highest observable density in E2 reached 3 ped/m2.

The transition from free ow phase to congestion was observed for the density interval 0.3 {
0.5 ped/m2. The width of this range indicates individual perception of near by conditions.
While some pedestrian are able to walk freely even the density reaches 0.5 m/s, others are
slowing down much earlier.

Here we note that the described microscopic phase transition is not related to the phase
transition detected at the exit. This density driven individual phase relates only to personal
preferences, without any reference to geometry or the reason for individual conditions. On
the other hand previously mentioned inow driven transition describes global features at
some speci�c geometry.

The only common observation refers to foggy transition between phases instead of sharp
jump. This behavior is typical for socio-physical systems where people's decision making
process with elements of uncertainty or randomness appears.

3.1.8 Spacial Distribution

The motivation of pedestrians is (aside the geometry of the room) the most important factor
de�ning the shape if crowd in front of the bottleneck.

As we observed during E1, when the motivation to leave the room is low, pedestrians keep



3.1. PHASE TRANSITION 61

the initial shape. Generally a queue with one line or multiple lines was observed.

When the motivation is higher, crowd is formed into a funnel-like shape (Figure 3.10), where
the number of queue lines rapidly increases with increasing distance to the exit. Again, the
width of the funnel depends on motivation, the funnel become more width as more people
try to overtake the others.

Figure 3.10: The shapes of crowd observed during E1.

The �nal shape of a crowd in competing situations is a semi-circle, but the occupancy inside
the crowd doesn't have to be uniform. As presented by the density pro�le form E2 (Figure
3.11), the transition from free ow to congested state mentioned in previous section is rather
smooth.

Moreover, four critical checkpoints indicate the velocity adjustments well before the real
density increment:

� 6 m to the exit: the velocity begin to decrease

� 4 m to the exit: the density begin to increase

� 3 m to the exit: velocity reaches the minimum

� 1 m to the exit: density reaches the maximum

Figure 3.11: The distribution of velocity and density and in the room.

Nonetheless the speci�c values are related to the experimental set-up, we may generalize
three phenomena:
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1. The density in crowd is not homogeneous, the dense center is surrounded by area with
linearly decreasing density towards the edge.

2. Pedestrians slow down much earlier than the density rises, in anticipation to the future
conditions.

3. The deceleration of pedestrian is rather gradual, even people are physically able to
stop almost immediately.

All e�ects should be taken into account for modeling.

3.2 Heterogeneity

From microscopic (individual) perspective, the travel time is the most crucial quantity
describing the performance of an infrastructure. As is shown in this section, the travel time
reached by di�erent pedestrians dramatically di�ers due to many individual features.

3.2.1 Travel Time Analysis

This section focuses on the properties of the travel time (2.1). Our aim is to show that the
travel time is mainly inuenced by the size of the clogging in front of the exit represented
by the mean occupancy (2.2). The data was taken from E4.

For each path i ∈ I, the pair (N(i), TT (i)) is plotted in Figure 3.12. The mean travel time
TTN increases almost linearly with increasing occupancy N .

Figure 3.12: Travel time { occupancy relation, mean, top 10% and bottom 10% quantiles
highlighted. E4

This linear increase of mean travel time TT is accompanied with increasing variance of the
measured travel-time, which is not proportional to the absolute value of the mean. Indeed,
comparing the relative travel time (2.3) of free ow (N ≤ 7) to the relative travel time
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corresponding to regime involving interactions (N > 7), we can observe signi�cant increase
of variability, as shown in Figure 3.13.

Figure 3.13: Histograms of relative travel time, data �ltered over di�erent modes. E4

This fact motivated us to investigate the dependence from the individual pedestrians α ∈ A
perspective. In Figure 3.14, box-plots of TTR related to all individuals (2.5) are plotted,
the participants are ordered according to the average of their relative travel time.

Figure 3.14: Boxplot of TT for each pedestrian, ordered by mean value. Colored squares
represent gender (red { women, green { men). E4

From this graph it is evident that the increasing variance in TT is caused by heterogeneity
of individual properties of individual participants. This motivates us to handle the TT −N
dependence separately for each participant.

Let us now consider one arbitrary but �xed pedestrian α. We assume that the relation
between TT (i) and N(i) for i ∈ Iα can be expressed by means of piece-wise linear model

TT (i) = aα + 1{N(i)>7}(N(i)− 7) · bα + noise , (3.5)

where the intercept aα can be understood as aα = S/v0,α , S being the distance between
entrance and exit, v0,α desired free-ow velocity. The parameters aα and bα are unique for
each participant. The factor (N − 7) has been derived from the data in order to distinguish
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situation without and with interactions. From the analysis it follows that for N ≤ 7, the
pedestrians are scattered in the room without signi�cant interaction. The situation N > 7
is accompanied with positive number of pedestrians in the clogging in front of the exit.
Three representatives are visualized in Figure 3.15.

Figure 3.15: Dependency of TT to occupancy. Three pedestrians with evaluated linear
model were highlighted. E4

The inverse of the slope bα can be interpreted as the ability of pedestrian α to push trough
the crowd in order to reach lower travel time. The lower the slope is, the less inuenced by
the number of pedestrians in the clogging the travel-time of the pedestrian is.

Here should be noticed that the value of intercept and slope are not correlated. In other
words, the free ow velocity and the ability to go through dense crowd are two di�erent
features. We have frequently observed slow pedestrians succeed in crowd situations and
vice verse.

The correctness of the linear model has been checked using the R2 statistics. The average
R2 statistics is 0.688 with the minimum 0.386 and maximum 0.936. The low values of R2

statistics were obtained for pedestrians with low value of the slope bα, which is expected,
since low slope means that the dependence of TT on N is not signi�cant.

3.2.2 Route Choice

Let us make deeper look at the factors explaining the variety of slopes of the linear de-
pendence of TT on N . An important aspect inuencing the TT is the choice of the route,
more speci�cally, whether the participant pushes through the crowd or rather tries to walk
around the crowd.

The route choice di�erences and patterns are visualized in Figure 3.16. Upper row visualizes
all trajectories with given properties in one plot. To avoid optical illusion, we introduce the
term path density, illustrating, how many trajectories passed through given area (3.6).

More precisely, let the whole area A of the room be arti�cially divided to disjoint sub-areas
Aj covering the room, i.e., A =

⋃
j Aj . The path-density %(Aj) [path/m2] of the sub-area
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Aj is then de�ned as

%(Aj) =
|W (Aj)|
|Aj |

, W (Aj) = {i ∈ I | ∃t ∈ Ti ; (xi(t), yi(t)) ∈ Aj} , (3.6)

where | · | refers to the number of elements of a �nite set or a size of a continuous set. The
path density is given in lower row of Figure 3.16.

Figure 3.16: Paths (�rst row) and path density (second row) visualized for two di�erent
conditions metastable cluster (N ∈ [25, 35]) and congested crowd N ∈ [35, 50]. For both
tra�c modes, trajectories of slow and fast pedestrians are compared. Here we note that the
density was evaluated on a grid 0.2 m × 0.2 m, each trajectory contributed to any segment
maximally ones. The darker color, the higher density. Data from E4 were used.

For purpose of the discussion, paths related to free-ow were excluded. The remaining paths
were divided into four groups according to mean occupancy N and travel-time TT . Two
tra�c modes are distinguished: metastable cluster for N ∈ [25, 35] and congested crowd
N ∈ [35, 50]. Path are then further divided to slow and fast.

Following observations can be drawn from the graphs. In metastable regime, the crowd
size enabled to some participants to run around the crowd, which led to signi�cantly lower
travel time. However, in the congested regime, the crowd size caused that the running-
around strategy was not so e�cient and several fast participants pushed through the crowd
in order to reach low travel time. Further, we can see that fast participants preferred the
right-hand side of the room. This can be caused by the asymmetry of experiment outside
the room or imprinted behavior.

Now we can question whether the slope of the linear model (3.5) is determined by the ability
to push through the crowd, or rather by the willingness of participants to run around the
crowd. Deeper insight to this question gives the study of the exit angle ϑ(i).
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3.2.3 Angle Analysis

The exit angle ϑ(i) de�ned in Figure 3.17 has been investigated mainly using data from ex-
periment E4. The conclusions were supported by data from congested regime of experiment
E2.

Figure 3.17: Illustration of exit angle de�nition. Since the moment of joining the crowd is
automatically hard to recognize, the angle while passing a semicircle with center in the exit
~e and radius of 1.5 m was used. Direct trajectory from the entrance to the exit has the
angle ϑ ∼ 0 deg, trajectories along the walls have ϑ ∼ ±80 deg, positive sign refers to right
side from the ow direction.

In this section two occupancy regimes are considered: without clogging in front of the exit
(referred to as free-ow) and with clogging in front of the exit (referred to as congestion).
The free-ow is characterized by the low occupancy N ≤ 15, under which the interactions
are present, but do not su�ciently a�ect the route-choice. The congestion is characterized
by high occupancy N > 15, under which a signi�cant clogging in front of the exit is formed,
which motivates some participants to run around the crowd. (Compare this division with the
division for purposes of the linear model, where the presence of interactions was important).

The frequency of path with given angles is depicted in Figure 3.18 for two regimes separately.
As expected, in free-ow regime the exit angles ϑ(i) diverge from 0◦ only rarely, 90 % of the
angles are in the interval (−45◦,+45◦), which corresponds to the straight route between the
entrance and the exit. In congested regime, the angles from the whole range (−90◦,+90◦)
are distributed almost uniformly.

The e�ect of exit angle to travel time are illustrated using boxplots in Figure 3.19. From
these graphs we may conclude that in average the path approaching the exit under higher
angle (in absolute value) reached lower travel time. In the language of relative travel time,
the di�erence between the worst and the best angle reaches 50%. Observed asymmetry of
the average travel-time may be related to the shape of the corridor behind the exit.

Very similar situation was observed during the experiment E2, where the design was the
same, only the corridor behind the exit was missing. This modi�cation may caused no
observable preference of left or right side. In this experiment the paths with high |ϑ(i)|
(related to motion along the walls) were even more frequent (see Figure 3.20). Here we note
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Figure 3.18: Histograms of measured exit angles. Left: free ow N ≤ 15. Right: congestion
N > 15. Data from E4.

Figure 3.19: Dependency of TT to exit angle sampled by 10 deg. E4

that the data of E2 stem from one round with rather high occupancy and therefore all the
paths were measured in congestion regime.

Similarly to the travel-time analysis, the dependence of chosen angle ϑ and mean occupancy
N has been investigated. At �rst instance, the individual linear model for each participant
α has been tested. We assume that for all path i ∈ Iα the absolute value of ϑ(i) is given
by linear model

|ϑ(i)| = ϑα,0 +N(i) · cα + noise , (3.7)

where ϑα,0 can be interpreted as participant's preferred deviation from straight direction
(ϑα,0 ≥ 0), cα is the slope of anticipated dependence.

Studying the R2 statistics expressing, how much the use of the linear model decreases the
variance in ϑ(i), we found out that for majority of participants the value of the statistics is
rather low (R2 < 0.3). The visualization is provided in Figure 3.21.
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Figure 3.20: Study of TT with respect to exit angle, data from high density phase. E2

Figure 3.21: Linear model ϑ { occupancy for selected representatives of di�erent strategy
groups.

The linear model corresponds well to data related to participants with consistent strat-
egy, i.e., preferring overtaking the crowd (ped 4) or preferring straight movement (pushing
through the crowd { ped 71). Nevertheless, many participants tried to follow both strategies
(ped 2). For those the linear model gives nonsensical results.

3.2.4 Strategy Classi�cation

The previous section shows that in contrast to TT -N dependence the linear model fails to
characterize the dependence of chosen angle on the mean occupancy. In this section we try
to explain the relation between N(i), ϑ(i), and TT (i) with respect to chosen strategy. The
study presented in this section is based on data from experiment E4.

Firstly, let us put information of all trajectories to one overview graph presented in Fig-
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ure 3.22. Each trajectory i ∈ I is represented by one point, x-axis shows the average
occupancy N(i), y-axis the exit angle ϑ(i), the color reects the travel time TT (i).

Figure 3.22: Travel time visualized with respect to average occupancy and exit angle. Each
point represents one path.

This graph supports the hypothesis that the trajectories leading around the crowd are
\faster" then those going directly towards the exit. This e�ect is getting stronger while the
mean occupancy N increases. Further, the clustering of the data justi�es the division to
free-ow and congested regime using the boarder N = 15 pedestrians.

Let us look closer on individual participants. We assume that there are two possible route-
choices to be followed: walking straight towards the exit regardless to the size of the clogging
and walking around the crowd once the clogging gets bigger. In both route-choices, the
pedestrians travel time TT is (1) or is not (0) signi�cantly a�ected by the mean occupancy
N . Therefore, the pedestrians strategy (and performance) can be described by a triplet

Strategyα =
(
directα, aroundα, preferredα

)
, (3.8)

where direct and around are boolean variables denoting whether the participant's travel time
is signi�cantly a�ected by the occupancy, while walking directly or around respectively, or
not. The variable preferred ∈ {direct, around,both} denotes the preferred route-choice of
the participant.

The possible strategies can be then interpreted as follows:

� (1,1,?) Slow in crowd regardless to route-choice.

� (1,0,?) Slow while pushing through, but fast while walking around the crowd.

� (0,0,?) Fast regardless to route-choice.

The frequency of observed strategies is given in Table 3.4. The classi�cation has been
performed by naked eye.

Representative ϑ − N − TT graphs are provided for illustration in Figure 3.23. Graphs
belonging to the pedestrians with combined strategies are depicted in Figure 3.24.
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Type Path Count

0, 1 { 0

0, 0 direct 3 }
17around 9

both 5

1, 0 direct 6 }
19around 9

both 4

1, 1 direct 22 }
39around 10

both 7

Table 3.4: Number of participants using strategies
(
directα, aroundα,preferredα

)
. Data

from E4.

Figure 3.23: ϑ −N − TT graphs for three representatives of studied strategies. Colormap
reects TT and is the same as in Figure 3.22

From the provided graphs and table we can draw following conclusions.

� Approximately one half of participants can be considered as non-aggressive in the
sense that they do not push or walk around the crowd in order to reach low travel
time.

� Approximately one quarter of participants can be considered as aggressive in the sense
that they push through or walk around the crowd e�ectively to reach low travel time.

� Approximately one quarter of participants cannot push e�ectively through the crowd,
but is successive in reaching lower travel time while walking around.

The concept of aggressiveness as pedestrian's property �ts well presented observations. We
found out many tokens of aggressive behavior from the camera records as pushing, rude
overtaking or blocking each other.



3.3. EVACUATION OF TRAIN 71

Figure 3.24: ϑ−N −TT graphs for three representatives of combined strategies. Colormap
reects TT and is the same as in Figure 3.22

As will be demonstrated in following chapter, this study is applicable in the �eld of micro-
scopic simulations of pedestrian ow. The introduction of heterogeneity as the ability to
win conicts and reaction to the occupancy enables to reproduce some patterns observable
in pedestrian egress experiments, as e.g. line formation, running around the crowd, getting
trapped in the clogging close to the exit door.

The description of pedestrian strategy using boolean triplet categorizes participants into 12
strategy groups. More smooth approach using the coe�cient of \aggressiveness" instead of
boolean identi�ers would describe pedestrian's performance in detail, the usage depends on
application. As will be shown in simulation section, the essential is just the existence of
heterogeneous groups. The shape of heterogeneity is not that important.

3.3 Evacuation of Train

While pedestrian motion in simple geometries with bottlenecks [19], counter-ow [44] or
even complex city infrastructure [150], has been studied, the �eld of train unit evacuation
su�ers from the lack of data.

There are several di�culties that complicate optimization of train evacuation. Mainly the
geometry of trains is mostly given, each inch adding to corridor width decreases the comfort
of seats. The number of the exit is limited as well, therefore the total evacuation time is
strictly controlled when a new train unit is developed.

This project focuses on a double-deck electric unit class EPJ 671 (CityElefant) intended for
passenger service in the vicinity of city agglomerations. The aims is to quantify the e�ect
of six independent parameters to total evacuation time, namely exit width, exit type, exit
availability, heterogeneity of passengers, distribution of passengers and time to stop e�ect.

To handle this task, two train egress experiment were organized within the cooperation of
CTU and VÚKV a.s. (Research Institute of Railway Rolling Stock), each covering three
parameters { see details in articles [17, 20, 21, 22]. Concerning both experiment, more than
130 volunteers participated the evacuation and more than 10 organizers were engaged.
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Train units were equipped by wide angle cameras covering most of the experiment area,
see snapshots in Figure 3.25. The passing times of each pedestrian through the critical
bottlenecks (illustrated in Figure 3.26) were extracted manually.

Figure 3.25: Illustration of both experiments.

Such data enables not only to evaluate total evacuation time, but the progress of occupancy
in all sections and the time headways [18] as well. This article summarizes this \microscopic"
point of view, trying to explain observed total evacuation times by means of individual
behavior [11].

Figure 3.26: Layout of the �rst experiment.

3.3.1 Time Headways

To handle the microscopic behavior, the time headways were evaluated at the main exit.
Here should be noted that the main exit width varies form 0.6 m to 1.34 m, which enables
independent motion of two pedestrian lines. In this case, the headway itself does not carry
all information. The mutual orientation of such lines is expressed as the \phase shift", see
illustration in Figure 3.27.

When people are moving side by side, the phase shift is equal to zero. This phase is detected
by the saw-like pattern (the side by side walkers have time headways are close to zero, while
the next pair keeps the distance).
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Figure 3.27: Top: Time headway de�nition in narrow corridor. Bottom: Two possible
settings of lines { The right one is almost synchronous (phase shift close to zero) while the
left one is asynchronous (phase shift close to π/2).

On the other hand, when the lines are shifted by half of the period, the distance to the
predecessor is the same as to the follower. In this case, constant trend is observed.

As any of line behavior is spontaneous, phase shift between lines evolves dynamically. The
line motion may be temporally synchronous, but due to the random people behavior, the
asynchronism can occur instantly.

It should be noted that the phase shift itself has no e�ect to the ow or total evacuation
time. The understanding of this e�ect is needed to read the charts correctly as the time
shift dynamics represents most of the variance in the data.

In the next sections, the time development of pedestrian headways will be used to explain
the total travel time. Following charts would combine several type of trends. Aside of
mentioned uctuations of time shift, the time headway is a�ected by situation in front of
the bottleneck. To evaluate e�ects of di�erent settings, we have to compare corresponding
phases of the evacuation. Generally one can distinguish:

1. initial phase { the fastest participants are egressing, the queue (crowd) has not been
formed yet in front of the exit. The outow does not reach the capacity, therefore
time headways are relatively high

2. stable phase { the core of the passengers is leaving. They have formed a queue (crowd)
thus the outow uctuates around the capacity. The time headways are relatively low

3. closing phase { the last passengers are egressing. The pool of remaining people does
not saturate the capacity thus the time headways are higher again

First, the phase transition (driven by the time time development) itself may explain the
value of total evacuation time. Second, the evaluation of headway statistics just in given
phase will help to focus on relevant data.
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3.3.2 Egress Experiment 1

The �rst train experiment simulating an emergency egress was organized in June 2015. It
involved 56 volunteers at the age of 21 to 51 years (18 women, 38 men) and focused on
three binomial parameters:

� occupancy distribution: both decks (A) / lower deck only (B)

� exit availability: both sides (1) / one side only (2)

� time to stop e�ect: no delay (I) / 50 s delay (II)

Time to stop e�ect simulates the situation when the evacuation starts in the moving train.
It may take several minutes to stop the train from operational velocity, thus the passengers
may prepare for evacuation, move closer the exit or at least leave area a�ected by �re.

For purposes of this study, only (A) settings were processed. The exit availability a�ects
the size of crowd in front of the exit as the number of participants is the same in both cases.
The time to stop represents potential delay between start of evacuation and opening the
door simulating the time needed to stop the train.

The Table 3.5 summarizes the macroscopic quantities selected to quantify each evacuation
trial: the total evacuation time de�ned as the leaving time of the last participant (Tfirst),
the total number of participants passing through given exit (N) and the time of �rst passing
Tfirst as the scenarios di�ers by the door-opening time. From these quantities, mean ow
and mean headway may be extracted by simple formulas

Jmean =
N

tLast − tfirst
, dtmean =

tLast − tfirst
N − 1

. (3.9)

The evacuation time obviously di�ers with the scenario, but the mechanism is hardly visible.

Scenario Tfirst [s] Tlast [s] N [peds] Jmean [ped/s] dtmean [s/ped]

A-1-I 7.61 28.52 28 1.36 0.75
A-1-II 52.64 69.67 28 1.64 0.61
A-2-I 11.70 46.98 56 1.59 0.63
A-2-II 52.42 87.82 56 1.59 0.63

Table 3.5: Macroscopic results of Experiment E1. Values were averaged over two trials and
two main exits, where available.

Applying the headway approach, we can get more detail insight, see the the progress of one
round visualized in Figure 3.28. The headway time series may be characterized by the three
statistics:

� mean headway value within main phase

� mean headway within tail phase

� proportion of phases
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Figure 3.28: The time development of time headways in scenario A-2-II trial 1. The green
line visualize mean headway value within main phase, yellow line the mean headway within
tail phase and red dotted lines represents the phase separation.

Scenario main phase mean [s/ped] tail mean [s/ped] tail prop [%]

A-1-I 0.64 1.35 17
A-1-II 0.50 1.14 19
A-2-I 0.51 1.16 19
A-2-II 0.43 1.07 31

Table 3.6: Microscopic results of Experiment E1. Values were averaged over two trials and
two main exits, where available.

Initial phase randomly a�ects all trials, thus data from this phase was not used for further
analysis.

Averaging these features among the scenarios (Table 3.6) brings numbers su�cient to un-
derstand the e�ect of settings:

� A-1-I was low in both main phase and the tail

� A-1-II was faster in both phases by 20% relatively to A-1-I (e�ect of waiting)

� A-2-I waster in both phases by 20% relatively to A-1-I (e�ect of bigger crowd)

� A-2-II was faster in both phases by 30% relatively to A-1-I (combination of previous
e�ects), the macroscopic performance is worse due to the higher proportion of tail
phase

The combination of close doors and one exit available in scenario A-2-II caused that lower
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deck passengers �lled the exit room, thus they blocked the door and the upper deck passen-
gers had to wait at the stairs. When this room was available again, upper deck passengers
started the evacuation, but due the bottlenecks inside the train, only one half of exit ca-
pacity was used. This caused higher proportion of tail phase which signi�cantly increased
travel time. The performance of pedestrians was better than during other scenarios thus
the overall observation was in line with the others.

As seen from Table 3.6, combining lowest mean time headways with lowest tail proportion
could bring more e�cient evacuation. In case the upper deck and lower deck passengers
would be balanced and therefore the tail proportion would be 19%, the scenario A-2-II, the
total evacuation time could be lower by 5 s.

3.3.3 Egress Experiment 2

In March 2018, the second experiment extending the parametric space by:

� heterogeneity of passengers: high school students / population sample (B)

� exit width: 0.60 m { 1.34 m

� exit type: platform / stairs / terrain

It involved 90 volunteers at the age of 1 to 70 years. This time, di�erent scenario took place
in each half of train (Figure 3.29) and with respect to larger set of parametric combinations
(30), only one trial was realized for each.

Figure 3.29: Layout of the second experiment.

Macroscopic observation visualized in Figure 3.30 will be statistically decomposed in detail
within another study. For now one can say that the evacuation time decreases with increas-
ing exit width almost linearly, young students are a bit faster than regular the population
sample and jump to the terrain makes the evacuation slower than platform and even stairs
approach.
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Figure 3.30: Evacuation time with respect to all parameters, experiment.

Again, headway analysis brings more light to the mechanism behind the evacuation time
dynamics. This time, crowd size and the waiting time are not a factor, the motivation is
the same for all trials. On the other, the changeable exit width dramatically a�ects the
possibility of independent passing of two lines and the exit type and heterogeneity could
a�ect the mean time headway.

The headway charts visualized in Figure 3.31 con�rms the expected behavior yet quite
interesting way. It seems that the headways do not hold arbitrary values, but they exist
within several classes with low variation (0 s, 1 s, 3 s and 4 s).

A few classic patters were detected { constant trend along 1 s indicates one line motion,
saw like patter alternating 1 s and 0 s class corresponds to two line motion with no phase
shift as described in previous sections.

Then, the phase transition from one line to two lines motion induced by the exit width
variation is driven by more frequent 0 s class rather than continuously decreasing headway.
This is obvious in case of homogeneous group egressing to terrain and applicable for other
trials as well.

Moreover, the negative e�ects of less e�cient exit types a�ects the headways the same fash-
ion { instead of systematically higher headways, one can observe more frequent headways
from class 2 s, 3 s or even higher. This indicates the situation that a pedestrian needs
several time units to leave the train. Such behavior was detected mainly for heterogeneous
group and jump-to-terrain exit type.

Similarly to egress experiment 1, the behavior of all trials changes when all lower deck
pedestrians leave. Characteristically higher headways of tail phase are again explainable by
higher probability of 2 s or 3 s classes rather that by systematic shift.
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Figure 3.31: Headway study, second experiment.

This observation is common for all trials of egress experiment 2. Instead of mean headway,
each trial may be characterized by proportion of headway classes. As seen in Figure 3.31,
such representation would corresponds to the headway charts much better than averaging
applied in egress experiment 1.

3.3.4 Conclusions

This section illustrates the microscopical analysis of pedestrian headways used to explain
the impact of scenario parameters to the evacuation time.

First, each round was split to the main phase and tail phase. The tail phase is characterized
by signi�cantly higher headways related to the main phase cased by the lack of participants
in front of the exit. It is shown that the proportion of this phases strongly inuences the
evacuation time.

Moreover, headways inside the phases depends to the scenarios as well as the motivation
of pedestrians di�ers with the motivation. On the other hand, the scenario with the lowest
headways reached the highest proportion of tail phase, which decreased the total perfor-
mance. Assuming a scenario combining low headways and low proportion of tail phase, the
total evacuation time could be 10% lower than observed.

These observation was common for both experiments, even several features di�ers. While
the �rst one indicated independent line motion in lines, moving in pairs is rather observed
in the second one. To be more speci�c, the higher ow observed for wider door or more
e�cient exit type is related more to frequent observation of short headway rather then lower



3.4. LOCAL BEHAVIOR 79

median headway value.

In general, the total evacuation time di�ers with the probability of consecutive egress of
two pedestrians or, on the other end of the scale, with the probability that one pedestrian
would need more time steps to leave. That explain the worst performance of heterogeneous
group egressing to the terrain. In this case the high evacuation time is caused by the special
assistance needed for several participants delaying the evacuation by seconds.

3.4 Local Behavior

In previous section, the performance of one path was evaluated with respect to the state in
the room averaged over the passing time. Even the quantities as travel time or exit angle
were individualized and explained by the occupation, we are still far from really microscopic
study of the speci�c pedestrian's motion in given moment. Such approach (presented in
[23, 27, 26]) will be build in following section.

To reach this goal, we have to use language of actual velocity, direction and individual
density. As mentioned in section 2.2.1, the density distribution is characterized by the
kernel selection { we will work with the conic one (2.18) which has several desired features
as decreasing trend with increasing distance, limited support and independence of one
pedestrian to the others.

But as shown upwards, the correlation between velocity and density di�ers from expecta-
tions.

3.4.1 Broken Velocity-density Paradigm

Theoretically (and even in measurement [124] the relation of velocity and density is evident:
pedestrians walk by their optimal velocity whenever they are able to. With increasing
density, it is more and more demanding to keep the desired velocity. Thus, pedestrians
have to slow down and even stop when the motion is impossible due to the dense crowd
around. From this perspective, we expect to observe strong negative correlation between
velocity and density during all phases of the pedestrian movement.

However, the velocity-density study shows very di�erent results. The selected trajectory
illustrated in the Figure 3.32 is characteristic by long slowing down interval caused by
overtaking the crowd { the velocity decreases at the beginning from 1.5 m/s to 1 m/s
(Figure 3.33). Avoiding the crowd phase is followed by joining the crowd and continuous
decrease in velocity from 1 m/s to 0.2 m/s, meanwhile the density increases from 0.5 ped/m2

up to 3 ped/m2 based on parameters, especially the range. Then, the density levels but the
velocity increases as the pedestrian approaches the exit { and this is something unexpected.

To see the source of positive or negative correlation, it is bene�cial to study rolling cor-
relation for segments of each trajectory Rt(ρωα , vα) and Rt(vα, vβ) { rolling window with
memory time τ = 1.5 s and τ = 2.5 s respectively enables to obtain this point of view.

In the language of rolling correlation (see Figure 3.34), three phases of movement are ob-
served. There is a strong positive correlation between velocity and long-range density in
free ow area, which can be explained by competitiveness between pedestrians { the occur-
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Figure 3.32: Trajectory 1240.

Figure 3.33: Velocity and four densities with di�erent blur R and range r parameters. First
drop of velocity (1.5 m/s to 1 m/s) at the beginning of avoiding the crowd is followed by
continuous decrease of velocity (1 m/s to 0.2 m/s) while joining the crowd, meanwhile the
density increases from 0.5 ped/m2 up to 3 ped/m2 based on parameters. Timestamps are
placed at the positions corresponding to the spots of the chosen path in Figure 3.32.

rence of another pedestrian motivates the pedestrian to move faster, and this phenomenon
is more noticeable in long-range density.

Strong negative correlation between velocity and all densities in avoiding and joining the
crowd phase corresponds to adjusting velocity to higher density. The decrease in velocity
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Figure 3.34: Pearson rolling correlation coe�cient of densities for four blur R and range
r combinations and velocity (memory time τ = 1.56 s). Timestamps are placed at the
positions corresponding to the spots of the chosen path in Figure 3.32.

�ts the increasing trend of long-range densities better because of the fact that pedestrians
decelerate few seconds before the �rst contact with the crowd and only the long-range
densities cover this distance.

The correlation peak near t = 248 s illustrates the di�erences between various parametric
choices. As shown in Figure 2.10, short-range densities are a�ected by temporary increased
distance to another pedestrian decreasing the density. And as the velocity is still decreasing,
the result is mentioned peak of rolling correlation to neutral or even positive zone for the
short-range case.1

From long-range perspective, the density is decreased only slightly and the e�ect is more
signi�cant for low blur models { due to the sensitiveness of the correlation. Such stability
of long-range density models with high blur is very useful to bridge insigni�cant deviations
of pedestrian paths - this is the reason why we use these values of parameters in the further
text.

The positive correlation of velocity and all densities in the cluster area indicates that the
mechanism of motion in the crowd signi�cantly di�ers from the previous phases, and there-
fore the density (even the individual one) cannot be used to predict the actual velocity of
any pedestrian. We have to introduce di�erent concept to describe the movement in this
phase - see next sessions.

The very last part of the examined path reverts to the negative trend. In the exit area, the
density drops due to the empty space in a forthcoming corridor and the pedestrian starts
to walk faster which is in an agreement with the expected negative correlation.

Generally the individual density inside the crowd is rather constant. The crowd edge area

1The detail analysis shows that the long term decrease of velocity stops and for 0.2 s velocity almost
levels. This indicates that pedestrian reacted to the density uctuation the expected way - still the negative
correlation should be observed. The mentioned neutral/positive peak is cause by asynchronicity between
velocity and short range / small radius densities, what is another reason not to use them.
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where the density increase from almost zero to the maximal value lengths only several
meters as shown in the session 3.1.8. The slight increasing trend toward the exist may be
observed, but the scale is not signi�cant.

That implies that the future steps of any pedestrian are not predictable by their reaction
to the surroundings as has been discussed earlier. Obviously pedestrians need a space to
move to, but they do not have to see a space to start movement. They can move because
their predecessor moves - that will provide the space to �nish a step.

The positive correlation observed in the experiment is just a coincidence - the velocity deep
in the crowd is de�nitely not higher because of the density is higher. The correlation it self
does not imply causality.

3.4.2 Follower-leader Concept

In the crowd, a pedestrian often copies the movement of their predecessor standing close
ahead { the ow motion is usually carried by just one line, while the others barely move.
While one half of crowd stands, the second moves just because someone ahead was able to
make several steps. The situation is the same as in case of queues, but the structure is more
chaotic { usually several people try to follow the one who moves.

For such system, a follow the leader model similar to vehicular tra�c [119, 134] may be
much more successful that velocity { density causality. Unfortunately crowd represent much
more complex system that an ordinary road, therefore to de�ne leaders and followers is no
straight forward task.

Let us denote the pedestrian α and his predecessor β. Pedestrian β is labeled as a leader for
pedestrian α in a time point when α approaches β at a speci�c distance (0.75 m) ful�lling
the assumption that β is closer to the exit than α (β is in the α �eld of vision).

It is worth noting that a leader for one pedestrian can be at the same point in time a
follower of another. For instance, if there is one linear queue of ten pedestrians (pedestrian
one is the closest to the exit), our concept sees it as nine leaders (pedestrians one to nine)
and nine followers (pedestrian two to ten). Representing this multi-chaotic queue by a
graph structure, we would obtain a tree, where the root (at the exit) has no leader, the
pedestrians in the body of the tree are the both, leaders and followers, and �nally the leaves
are pure followers. Such tree creates branches any time two or more pedestrians follow one
predecessor { that means a queue splits.

This approach is not related to controlled evacuation models, where leaders are often de�ned
in advance and have a special role during an evacuation. Although the leader and the
follower have the same goal, there does not have to be any psychological link between them
in this concept - a pedestrian becomes a leader not by his own will, but due to the existence
of a follower.

We will go back to mentioned path 1240 (Figure 3.32). Let us highlighted the point where
this pedestrian α becomes a follower in the chart of velocity and density. As seen in Figure
3.35, this spot corresponds to the densest area and the point when his velocity drops almost
to zero { just before the pedestrian adapts to new conditions.

The Figure 3.36 visualizes the velocity-density correlation Rt(ρωα , vα) together with the
follower-leader velocity correlation Rt(vα, vβ). As discussed in previous paragraphs, the
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Figure 3.35: Trend of velocity and long range large radius density of path 1240 3.32. The
spot represent the �rst approach of pedestrian α to a leader β.

positive correlation between the individual density and the velocity in the crowd area is
just a coincidence. On the contrary, the correlation between velocities reects the situation
better.

Figure 3.36: Trend of velocity and long range large radius density of path 1240 3.32. The
spot represent the �rst approach of pedestrian α to a leader β.

Short time after the spot, Rt(ρωα , vα) is negative as pedestrians competes to the exit po-
sition. Pedestrian β won the conict and pedestrian β started to follow. Since that time
correlation turns positive as their velocities perfectly �t.
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3.4.3 Generalization

So far, we deal just with one trajectory. In this section, we will replicate investigated
phenomena for all pedestrians who passed the room under conditions with free ow at
the beginning and congestion at the end. All trajectories were scaled using normalized
travel time (2.6) and both, the velocity { density correlation and follower { leader velocity
correlation were evaluated.

Figure 3.37: Correlation between individual density and velocity for each pedestrian corre-
sponding to travel time ∈ (7, 15) s and mean occupancy ∈ (7, 15) ped.

Figure 3.38: Correlation between follower and leader velocities for each pedestrian corre-
sponding to travel time ∈ (7, 15) s and mean occupancy ∈ (7, 15) ped.

The results for Rt(ρωα , vα) (Figure 3.37) are in compliance with the preceding text. Ex-
pected negative value of mean velocity-density correlation scaled in the normalized time
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was observed for tN between 0.2 and 0.6, i.e. in the joining the crowd phase. This negative
correlation completely turns positive when the most paths is fully joined the crowd for tN
between 0.5 and 0.7.

The positive value of mean correlation Rt(vα, vβ) (Figure 3.38) in the �rst part of records
agrees with the fact that every pedestrian and their leader come to the crowd from free ow
where they are a�ected by the same conditions. The middle part, the phase of joining the
crowd, is averaged to zero value which turns into strictly positive correlation in the crowd
area.

Although there are many paths with the signi�cant value of follower-leader velocity corre-
lation in all phases, the mean value shows a trend just in the crowd area, i.e. in the phase
where velocity-density relation fails. This fact indicates that the follower-leader relation is
not stable in time, averaging brings the values close to zero.

Obviously neither follower-leader velocity nor velocity-density approach itself fully explains
pedestrian behavior. However, together they cover all path in complement.

3.4.4 Flow Conservation Law

In previous sections, the velocity { density driving force was replaced by follower{leader
concept corresponding better to the observations in the crowd area. However, it does not
explain positive Rt(ρωα , vα) observed due to the increasing velocity with decreasing distance
to the exit. To solve this, we have to start with fundamentals.

The corollary of the ow conservation law can be derived directly from hydrodynamic
approximation (3.4) assuming non-turbulent ow. If we consider semi-circular cross-sections
(see Figure 3.39), every pedestrian crosses each separating curve just once.

Figure 3.39: Illustration for the ow conservation law.

The absolute ow through all these cross-sections has to be the same. For any selected pair
of them (denoted with indexes 1,2), following equality must be ful�lled

ρ1v1d1 = ρ2v2d2, (3.10)
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therefore
v1

v2
=
d2

d1
· ρ1

ρ2
. (3.11)

As we shown, the density in the crowd is almost constant (only slightly increasing towards
the exit), thus ρ2/ρ1 ≈ 1. Moreover, length of a semicircular cross-section d = πr. Applying
these to (3.11), the relation between the velocity and the distance to the exit becomes
evident:

v1

v2
≈ r2

r1
. (3.12)

In other words, the mean velocity linearly decrease with increasing distance to the exit ans
linearly grows the number of people sharing the ow, i.e. the capacity of the bottleneck.

To conclude this research we should not say that the velocity { density was replaced by
the ow conservation law. We just showed that there are two independent factors limiting
pedestrian ow and naturally more severe one is applied.

In the bottleneck crowd situation, the ow conservation law prevails. No matter the velocity-
density relation further the exit may enable higher velocity, the value is overridden by this
stricter limit as many pedestrians share the ow produced by on pedestrian just passing
the exit.

3.5 Time Headway Analysis

As shown in previous sections, time headways play an important role to evaluate pedestrian
ow and in general to understand crowd dynamics.

In this section, we will check the headway distribution measured during the E4 by di�erent
detectors [33], introduce advanced statistics characterizing crowd from physical perspective
[18] and extend the data set to more complex geometries [17].

3.5.1 Detectors in front of the Exit

Recalling the detector placement in E4 (Figure 2.2), detectors D1 and D0 are large enough
to enable passing of multiple participants. The input to the system was realized by three
independent entrances simulating geometric distribution.

Such design brought conditions to observe headway values close to zero as well as large
gaps exceeding �ve seconds, see histograms in Figure 3.40. Charts indicate exponential-like
behavior, but statistical tests summarized in Table 3.7 rejects this hypothesis for half of
performed runs.

In case of D0, we can't reject the exponential hypothesis for �ve rounds. Putting aside
round eight with high number of out-layers, the high p-value of tests is related to high
pedestrian inow. This observation was replicated even for D1, where four rounds weren't
rejected. Again, the rounds with rejected exponential hypothesis belong to the low inow
cases.
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Figure 3.40: Comparison of time headways of selected rounds measured in detectors D0
(left) and D1 (right).

The crucial feature to reject this hypothesis is the proportion of super-low headways. In
general, this proportion is lower in D0 case as this detector is closer to the exit and the
crowd interaction e�ects occur. On the other hand we have observed even a switch in the
di�erent direction for round 8.

3.5.2 Detector at the Exit

Headways at the exit are frequently studied (e.g. [63, 94]) as they described the critical
moment of egress process.
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Round D0 D1

Test Lillierfors K{S Chi2 Lillierfors K{S Chi2

2 < 0.001 0.002 0.011 < 0.001 < 0.001 < 0.001
3 0.003 0.036 0.009 0.002 0.024 0.004
4 < 0.001 0.004 < 0.001 0.004 0.040 0.055

5 < 0.001 0.004 < 0.001 < 0.001 < 0.001 < 0.001
6 0.111 0.293 0.080 0.041 0.164 0.504

7 0.226 0.443 0.232 0.419 0.647 0.341

8 0.009 0.069 0.333 0.500 0.716 0.501

9 0.262 0.484 0.071 < 0.001 0.017 0.138

10 0.500 0.742 0.182 0.500 0.713 0.646

11 0.141 0.339 0.058 0.500 0.745 0.466

Table 3.7: p-values of evaluated tests verifying exponential hypothesis.

In the E4, the exit width was �xed to 0.6 m, thus only one pedestrian could pass in given
moment. Extremely low probability of time headways below 0.3 s are therefore the no-go
requirement for any considered distribution.

The importance of initial distribution decreases with increasing distance from entrances and
with increasing density. In case crowd occurs in front of the exit, the system behaves as
(chaotic) queue with multiple pedestrians eligible to exit.

Histograms from Figure 3.41 ful�lls these theoretical expectations, accumulating the head-
ways around the value 0.7 s. Even the round 5 characterized by low inow follows this
criteria, but the shape of the distribution di�er as a kind of entry exponential distribution
persisted. The di�erences between low and high inow rounds make the selection of optimal
distribution complicated.

In this section, we will evaluate the �t of 16 distribution to our data using the Bayes
information criteria:

BIC = k ln(n)− 2 ln(L), (3.13)

where L is the maximize likelihood function value of model M , i.e. L = p(x|θ,M), and
θ are parameters eligible to optimizing process. Variable x denotes the headway values, n
stands for the number of headways and k refers to the number of parameters.

The results are summarized in Table 3.8. The di�erence in BIC grater than 6 points is
considered as signi�cant, greater by 10 points as noticeable [75]. From this perspective,
log-logistic distribution de�ned as

f(x|µ, σ) =
1

σ

1

x

ez

(1 + ez)2
; x ≥ 0, (3.14)

where

z =
ln(x)− µ

σ
(3.15)

is signi�cantly better than other distributions for all rounds but rounds 2, 9 and 10 where
GEV (generalized extreme value) distribution is slightly better.
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Figure 3.41: Time headway histograms of selected rounds measured in detector D2.

Distribution 2 3 4 5 6 7 8 9 10 11

Loglogistic 209 36 115 31 202 242 147 166 157 169
GEV 195 59 132 45 221 247 154 168 159 183
Student 248 57 115 42 222 246 172 179 167 191
Lognormal 217 60 216 70 246 310 163 202 198 188
Inverse Gauss 218 66 347 79 279 397 176 261 262 197
Gamma 252 71 164 121 238 267 157 179 171 195
Logistic 304 85 154 127 257 270 180 193 181 229
Weibull 288 135 202 237 281 285 171 190 180 228
Normal 364 142 211 294 321 324 196 223 209 10,3
Exponential 349 445 503 451 491 458 263 270 259 362
Extreme value 506 347 410 657 544 521 288 342 301 434

Table 3.8: Values of BIC for several distributions evaluated for time headways measured in
detector D2.

Four distributions with the best �t are visualized in Figure 3.42. Student distribution
does not ful�ll the requirement of low probability near zero headway value, thus it can be
eliminated. Other three candidates seems suitable for applications [76].

According to χ2 test results summarized in 3.9, we may reject the hypothesis that heay-
ways correspond to log{logistic distribution for all low inow rounds. On the other hand,
rounds with dense crowd at the exit produced p-value far from rejecting threshold, thus
this distribution seems to be strong candidate for high density situation.
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Figure 3.42: Time headway histogram measured in detector D2 for round 10 together with
four best �tted distributions.

Round 2 3 4 5 6 7 8 9 10 11

D2 0.006 0.001 0.002 0.863 0.460 0.206 0.022 0.853 0.237 0.001

Table 3.9: P{value of χ2 test evaluated for the log-logistic distribution �t on the D2 headway
values.

3.5.3 Reection of Territorial Social Forces

Generally, the main goal of this study fully published in [18] is to �nd a theoretical elucida-
tion of time headway distribution. Quantities detected for various experimental/empirical
systems may then lead (similar to [86, 87]) to a quantitative adjustment of interaction
forces in the social force models. More speci�cally, the main objectives of this work can be
established as follows.

� We aim to report on a series of original pedestrian experiments arranged for revealing
quantitative properties of microstructure in one-dimensional pedestrians tra�c. Be-
sides headway distributions we will also analyze advanced statistical properties (e.g.
statistical rigidity [89]).

� We aim to con�rm/reject the hypothesis that statistical properties of pedestrian ows
are similar to those detected in vehicular tra�c (see [88, 92, 91, 120]). Furthermore,
we aim to compare levels of synchronization in both systems.

� We intend to introduce relevant mathematical predictions for experimental/empirical
headway distributions and the associated statistical rigidity (similar to [43]).
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� Using mathematical estimations for headway distribution and analytically derived
rigidity we intend to improve the existing knowledge of distance dependence of inter-
action forces acting between pedestrians (published in [73]).

3.5.4 Link between Headways and Force

In typical social force based models (like in [62, 61]) the acceleration equation includes four
basic types of forces: 1) acceleration term describing tendency to reach the desired area
as soon as possible (with a certain desired velocity); 2) interaction term describing the
psychological tendency of two pedestrians keeping su�cient distance between one another;
3) repulsive term describing interaction with borders/walls/obstacles; 4) uctuation term
arising from accidental or deliberate deviations from the usual rules of motion.

As evident, global detection and validation of all acceleration/deceleration factors is not
realistic because of the complexity of the system investigated. For this reason, it is necessary
to restrict the issue of crowd dynamics to minor tasks only. One of the possibilities to
do so is to formulate a simpli�ed version of pedestrian ow where some of the above-
mentioned e�ects are suppressed. Therefore, for the purpose of this work we take into
consideration unidirectional one-lane ows of walkers whose movement can be classi�ed
as non-panic, i.e. comfortable and safe movement of people through a narrow corridor.
Such restriction is convenient and, at the same time, essential for completion of the afore-
mentioned tasks. Thus, proceeding in a similar way to [64, 73, 71, 132] we have performed
several experiments (see section 3.5.6) suitable for revealing statistical distributions of time
gaps between walkers.

Let us denote by tj the passage time of jth pedestrian, j ∈ {0, 1, . . . , N}. Then we can
de�ne the re-scaled time headway as

τj =
N(tj − tj−1)

tN − t0
. (3.16)

Thus we obtain a set {τj : j = 1, 2, . . . , N} of all successive (re-scaled) headways with an
average value equal to one. This set represents the fundamental subject of our investigations.

The scaling procedure is introduced for several obvious reasons. Firstly, the re-scaling to
the unit mean headway allows to compare data from various sources/countries/situations
without any substantial loss of generality. Secondly, such a procedure is well established in
the physics of tra�c (e.g. [89, 92]), where it is applied to analytic predictions of vehicular
microstructure. Thirdly, it is well known from Random Matrix Theory [103] that the scaling
procedure (as a signi�cant part of the general procedure called unfolding { see [93]) reveals
a universality in the spectra of random matrices. Besides others, such approach has been
useful in �nding a relation between vehicular samples (or public transport samples) and
certain classes of random matrices (see [93, 84, 85, 38].

Choosing an appropriate division of a time axis ∆τ , one can de�ne the empirical/experimental
histogram function

H(τ |∆τ ) :=
|{j : bτ/∆τc 6 τj/∆τ < dτ/∆τe}|

N
, (3.17)

as an estimation of the probability density function of the time headway distribution. Here
b c, d e stand for the oor/ceiling functions respectively, and | | stands for cardinality. For
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greater clarity, if necessary, the graphical representation of the histogram function (step
function) may be replaced by a scatter chart depicting point-set {(∆τ/2 + k∆τ ;H(∆τ/2 +
k∆τ |∆τ ) ∈ R2 : k = 0, 1, . . .}.

For unidirectional ows in a narrower corridor (where overtaking is improbable/prohibited)
one can expect that the most decisive dynamic factor is the territorial social force reecting a
repulsive e�ect between private spheres of two persons. Such territorial e�ect (see [127]) can
be expressed by a mathematical formula/graph (similar to [64, 73]), which is the desired
output. Since these territorial forces inuence decision-making of walkers, their action
must be reected in the headway distribution. Thus, there exists a direct link between the
territorial forces and microstructure of pedestrian crowds. This link is de�nitely intricate,
however, a simpli�ed conception can be obtained (in analogy with [86, 87, 92]) by the
following considerations.

In one-dimensional ows private spheres are reduced to private intervals, which allows to
introduce repulsive forces in a simpli�ed form fj,k(sj,k), where sj,k is the distance between
walkers (jth and kth). Although this force (measuring how jth person is inuenced by kth
person) is not known, some of its properties are expectable:

1) f(0+) = +∞ due to impossibility of overtaking

2) there exists s0 > 0 so that for all s > s0 it holds that f(s) = 0

2b) lims→0+ f(s) = 0

3) in all cases fj,k(s) = 0 for all s and all k = j, j + 1, j + 2, . . .

4) in all cases fj,j−1(s)� fj,j−2(s) for all s

Thus, such behavior can be classi�ed as short-ranged because the dominant force is initiated
by a predecessor.

For correctness, let us remark that all these considerations are valid for the afore-mentioned
one-lane unidirectional scenarios only. Velocity di�erences are not considered. For purposes
of analytic derivations (instead of individual formulas for every fj,k(s)) we use the common
force description: f(s).

For taking into account accidental deviations we introduce a stochastic variant of the en-
semble, where the level of stochasticity is regulated by the coe�cient of resistivity β ≥ 0.
This parameter reects the global state of the system determined by the density of walkers,
corridor width, initial arrangement of walkers, and so on. Such a simplistic approach brings
a signi�cant pro�t: analytic derivation of associated headway distribution.

As proven in [86, 87] and generalized in [89, 90] the headway distribution (abbreviated by
THD) of such an ensemble reads

℘(τ |β) = AΘ(τ)e−βφ(τ)e−Dτ , (3.18)

where

φ(τ) = −
∫ τ

0
f(s) ds, (3.19)

Θ(x) is Heaviside's unit-step function, and A,D are constants for proper normalization and
scaling. It is worth noting that although the one-parametric probability density (3.18) has
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been derived for thermal equilibrium of particle gas with symmetrical interactions the papers
[92, 91, 133] justi�ed the possibility of approximating some driven many-particle systems
by Hamiltonian systems. Indeed, the paper [133] proves that analytic gap distributions like
(3.18) can be derived from a simple non-isotropic thermodynamic model of driven particles.

Thus, detection of empirical/experimental headways and relevant statistical estimations of
associated THD may lead to calibration of the force model used. This will be the subject of
the following sections. The importance of the knowledge of THD for the model calibration
is summarized in article [98]. The time headway distribution in pedestrian bottleneck ow
has been studied in [43] and [94]. However, the stress of these studies was given to the
estimation of statistical model parameters.

3.5.5 Principal Attribute of Socio-physical Headway Distributions

Alternatively, one can view the detection of headway distributions from a more theoretical
perspective. Omitting the detailed empirical background or theoretical models of pedestrian
ows we now aim to reveal functional restrictions resulting from a purely mathematical point
of view, i.e. the goal is to detect certain principal attributes of socio-physical headway
distributions. From such a perspective we are dealing with an ensemble of particles whose
mutual interactions are short/middle-ranged (for the correct explanation please see the
note at page 2 in [92]), which means that distant particles are not interacting in any way.
Mathematically, these systems may be identi�ed as quasi-poissonian and it can then be
proven rigorously (see the Appendix in the paper [18]) that associated headway distributions
necessarily belong to class B of balanced distribution ([92, 93, 91]). Therefore any socio-
physical headway distribution ful�lls the criteria for balanced distribution. A probability
density function g(x) is called balanced if there exists ω > 0 so that

∀κ ∈ (0, ω) : lim
x→+∞

g(x)eκx = 0, (3.20)

and
∀κ > ω : lim

x→+∞
g(x)eκx = +∞. (3.21)

The number ω is then called the balancing index and denoted by inb(g). Representatives of
the set B are, for example, exponential distribution, Erlang distribution, Gamma distribu-
tion, and generalized inverse Gaussian distribution. Contrariwise, log-normal distribution
or normal distribution does not belong to B.

To conclude, theoretically-based predictions for socio-physical headway distributions should
show a balanced tail. This is, as justi�ed above, a general property of all quasi-poissonian
ensembles. Therefore, any proposal for functions estimating empirical headway distributions
in tra�c/pedestrian systems must comply with the above-mentioned criterion (the balancing
criterion).

3.5.6 Scenarios of Experiments and Description of Empirical Measure-
ments

The presented study is based on four independent data collections: three experimental
and one empirical. Although some measurements were not primarily designed for the time
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headway studies, the layout of the monitored areas and recording methods allowed to collect
the time headway data according to the above mentioned restrictions, i.e., unidirectional,
one-lane ow without overtaking. It is worth noting that the one-lane non-overtaking ow
was achieved by di�erent means: It was not possible in the passing-through experiment and
Kretz bottleneck experiment due to the narrow corridor. It was forbidden in the following-
walkers experiment. It was extremely rare in the shopping center observation due to quite
narrow corridor and social conventions. The detailed description of scenarios follows below.

The Passing-through Experiment

Time headways measured during E4 at three spots of the outow corridor were used as pri-
mary data source. Detectors were placed directly at the exit (Detector 1), 1 m downstream
from the exit (Detector 2), and 2 m downstream from the exit (Detector 3). As mentioned
in previous analysis and will be shown below, the bottleneck acts like a synchronization ele-
ment because in the corridor (downstream from the exit) the territorial social force prevails
against the acceleration force pushing pedestrian towards and through the exit in order that
they may escape the uncomfortable zone.

This experiment is further referred to as First, Second, and Third Detector.

The Following-walkers Experiment (Walkers on the Line)

The following-walkers experiment was performed in January 2015 at the Brno University of
Technology (Faculty of Civil Engineering). Twenty two pedestrians were instructed to walk
in a linear formation, each pedestrian following their predecessor. It means that pedestrians
walked in a line, following the leader, who was choosing the path. Time headways have
been extracted from the video records at a given cross-section. From the essence of the
experiment it is obvious that motivation of pedestrians to move forward was lower than in
the passing-through experiment. Therefore, the level of synchronization was higher because
the territorial social force dominated over the acceleration term.

This experiment is further referred to as Walkers on the line.

Shopping Center Observation

The data observed empirically have been provided by Pavel Køiváò, who recorded the ow
in a shopping center in Pardubice. Operators of the center built corridors in the lobby
due to reconstructions underway in the central part of the lobby. Furthermore, the visitors
were instructed to choose the given corridor for the given direction of motion and follow
the one-way signs. This situation was recorded for several days. Nevertheless, for the
purpose of this article, only rush hours records have been used in order to assure constant
ow of pedestrians, which motivated the visitors to keep the ordered walking direction. To
eliminate the inuence of pedestrians entering or leaving the pedestrian stream, a virtual
detector for time headway measurements was placed at a signi�cant distance from entrances
to individual shops.

This observation is further referred to as Empirical Headways.
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Pedestrian Flows through a Bottleneck

The fourth data sample was provided by Tobias Kretz. The ow through bottlenecks
of various width has been studied in [94] in order to provide a dependence between the
bottleneck width and pedestrian ow through it. This article makes use of data related
only to ow through bottlenecks 40, 50, and 60 cm in width.

This experiment is further referred to as Kretz et al.

Data Processing

Previously mentioned experiments have been recorded on camera. The video footage has
been processed autocratically using image recognition techniques (First { Third Detector)
or manually (Walkers on the line, Empirical Headways, Kretz et al.). For further analysis,
the time series (tj)

N
j=0 of crossings of certain virtual detector have been used. For each run

of the experiment, the crossing times have been transformed to sequences of scaled time
headways (τj)

N
j=0 (see Eq. (3.16) and discussion below). The scaling to mean value equal

to one enables the comparison of the interaction essence in di�erent data samples.

The scaled sequences (for given experiment) have been aggregated to one sequence, which
was used for further statistical analysis (headway distribution, spectral rigidity). This
procedure is justi�ed by the assumption that the successive headways can be considered as
independent. This is discussed in more detail in section 3.5.10. This procedure enabled to
gain su�cient amount of information even from experiments with low number of pedestrians
and low number of records in individual runs of the experiment.

A preliminary analysis of THD is visualized in �gure 3.43. Besides headways gauged espe-
cially for this paper we also plot (for illustration) THD analyzed from previous researches
published in [71, 132, 94]. It is of note to point to the incompatibility between the histogram
(shown in �gure 3.43) plotted for data obtained by Jezbera et.al. [71] and histograms plotted
for other sources. According to the authors of the article [71], this conspicuous discrepancy
can be attributed to an inaccurate measurement method.

3.5.7 Analytic Estimations of Territorial Social Forces

Following the general strategy presented in section 3.5.4, we intend to examine elementary
estimations - if any - for territorial social forces f(s) for which the analytically-determined
headway distributions correspond to empirical/experimental histogram functions. Actually,
attempts to estimate the force action are not entirely new. In the articles [94, 43, 64, 73] their
authors investigate either headway distribution or suggest statistical distribution models or
suggest distance dependence of the interaction forces. On the contrary, our paper presents
a theoretically-substantiated link between territorial social forces and distribution of time
gaps.

First, we suggest (with respect to the previous considerations) two natural choices for a
force description: logarithmic and hyperbolic potential. The logarithmic potential φ(s) =
− log(s) corresponds to repulsion decreasing with the distance according to f(s) = s−1.
The corresponding quantities are further marked with subscript L. The hyperbolic potential
φ(s) = s−1 results in a stronger repulsion force f(s) = s−2. The corresponding quantities
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Figure 3.43: The experimental/empirical headway distributions. The signs represent the
probability density of scaled time gaps among neighboring walkers passing a detector.
As announced in the legend, the bars, stems, and hexagrams correspond to researches
published in [71, 132, 94], respectively. The other signs display headway distributions
analyzed from original experiments presented in this paper. Analogous trends in headway
distribution has been also detected in [43].

are marked with subscript H. The associated headway distributions read

℘L(τ |β) = Θ(τ)
(β + 1)β+1

Γ(β + 1)
τβe−(β+1)τ ; (3.22)

℘H(τ |β) = AΘ(τ)e−
β
τ
−Dτ ; (3.23)

where

D = β +
3− e−

√
β

2
; A−1 = 2

√
β

D
K1

(
2
√
Dβ
)
.

Here K1(x) stands for Macdonald's function of the �rst order. Note that both distributions
belong to the family of balanced distributions discussed in section 3.5.5. We remark that
distribution (3.22) has already been found in [43] being a suitable candidate for a time
headway distribution of pedestrian groups.

Practically, in �gure 3.44 the PDFs (3.22) and (3.23) are plotted against the empiri-
cally/experimentally obtained data of time headways. Parameter β of the considered distri-
bution families has been estimated by means of the minimum-distance estimation method
i.e., β̂ = argminβ∈[0,∞)%̃(β). In �gure 3.44 it is evident that the empirical/experimental
headways are very convincingly described by both approximations (see also table 3.10). In
fact (as seen if comparing the last two columns in table 3.10 and if calculating distance
% between both estimations), it is hard to distinguish between the approaches proposed
because both curves (calibrated to data) are extremely close. A smaller amount of data
precludes recognition of more detailed nuances in THD. Therefore, the THD analysis seems
to be insu�cient to make a decision between logarithmic and hyperbolic potentials.
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Detector # Mean Headway [ms] β̂L β̂H %̃(β̂L) %̃(β̂H)

First detector 2452 739 13.87 6.51 0.0628 0.0637
Second detector 2440 745 21.82 10.43 0.114 0.1004
Third detector 2531 761 17.01 8.02 0.1022 0.0829
Walkers on the line 316 708 23.65 11.46 0.0391 0.0553
Empirical headways 1406 858 23.56 11.37 0.0202 0.0379
Kretz et al. 901 1140/980/870 27.55 13.28 0.0374 0.033

Table 3.10: Quantitative summary of pedestrian experiments and minimum distance esti-
mations.

3.5.8 Statistical Rigidity and Compressibility

Although analyzing and estimating headway distributions is a natural way to inspect the
microstructure of pedestrian crowds, the formal background of such investigations is dis-
putable. Measurements, data processing, and automatic evaluation techniques are burdened
by systematic errors and extensive inaccuracies.

Therefore, we search for any logical alternative which should be a) directly measurable; b)
less prone to inaccuracies; c) mathematically well-established. So a natural candidate then
seems to be statistical rigidity de�ned/studied in [89, 88, 92, 71, 90, 103]. In pedestrian
dynamics statistical rigidity represents (formally speaking) a variance of pedestrian ux
(see also [71]). Obviously, pedestrian ow is understood to be the number of pedestrians
passing any �xed point during a given time interval. Therefore, the fundamental quantity
for ux enumeration is a random variable N(T ) representing number of pedestrians crossing
a detector during a time interval T. Statistical nature of N(T ) generates uctuations of in-
dividual realizations of N(T ). They are standardly described by a quantity called statistical
rigidity de�ned by

∆(T ) =
∞∑
k=0

(k − T )2 P[N(T ) = k], (3.24)

where P[N(T ) = k] stands for probability that number of pedestrians detected during T
is exactly equal to k. We also add that 〈N(T )〉 = T, which is because the mean headway
(as explained in the previous sections) is strictly set to one. Formula (3.24) represents a
pseudo-variance of N(T ) around the average value 〈N(T )〉. Since in the particles/agents
interaction systems condition 〈N(T )〉 = E(N(T )) is not usually met, the quantity (3.24)
is not a standard variance. For systems with uncorrelated subsequent headways (see also
section 3.5.10) there exists (see [92]) a direct link between headway distribution (or its
Laplace image G(s) = L[g]) and rigidity. According to appendix 2 published in [18], it
holds that

L[∆(T )] =
2

s3
+

(s− 2)G(s) + 2sG′(s) + (s+ 2)G2(s)

s2(G(s)− 1)2
. (3.25)

According to [89, 90, 92], the rigidity satis�es a condition ∆(T ) = χT + µ+O(T−1), and,
therefore, it can be (extremely accurately) approximated by the linear function ∆(T ) ≈
χT + µ for T � 0. For both above-mentioned headway distributions the relevant asymp-
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Figure 3.44: Analytical estimations of empirical/experimental headway distributions.
Black curve visualizes a graph of the function (3.23) enumerated for the parameter β̂H
estimated by MDE (see table 3.10). Blue (dash-dotted) curve displays a course of the
theoretical prediction (3.22) with the estimated parameter β̂L. Histograms represent dis-
tributions subjected to estimations (see legend). Signs (showing headway distributions
measured for rest experiments { see �gure 3.43) are drawn for clarity.

totical behavior has been derived in [92, 89]. It holds (after applying (3.25)) that

∆L(T ) ≈ T

β + 1
+
β (β + 2)

6(β + 1)2
; (3.26)
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∆H(T ) ≈ 2 +
√
Dβ

2D(1 +
√
Dβ)

T +
6
√
Dβ +Dβ(21 + 4Dβ + 16

√
Dβ)

24(1 +
√
Dβ)4

. (3.27)

Slope χ of this linear asymptote is usually referred to as compressibility, whose speci�c value
(lying between 0 and 1) corresponds to the level of synchronization between mutual posi-
tions of elements (pedestrians, vehicles). For systems, where interactions between agents
are weak, one can expect a low level of synchronization, i.e. χ ≈ 1. However, if the agent's
interactions are more intensive, the level of synchronization increases and, therefore, com-
pressibility decreases. The rigidity analysis applied to all data sources available is shown in
�gure 3.45. The graphical outputs show interesting distinctions between various pedestrian
data as well as distinctions between vehicular and pedestrian tra�c. In some of the investi-
gated systems (shopping center data, Kretz data) compressibility is rapidly subdued, which
corresponds to a stronger force action and/or lower level of randomness between walkers.

Moreover, �gure 3.45 provides an interesting comparison between pedestrian and vehicular
streams. Although the basic interaction principles are the same in both systems, di�erent
levels of uctuations are responsible for signi�cantly di�erent values of compressibility. At
�rst sight, this is a surprising �nding because a wrong maneuver of a driver has much
more serious consequences than of a walker. Therefore, one can expect increased vigilance
of drivers, which intuitively should lead to a more systematic arrangement of vehicles.
However, this study de�nitely refutes such behavior. Since, however, compressibility χ is
strictly decreasing with resistivity β the �gure 3.45 demonstrates that pedestrian systems
(contrary to vehicular systems) are much more resistant to statistical uctuations, which
means that ensembles of walkers are substantially closer to deterministic systems than
vehicular systems. This observation can be explained by the fact that maneuvering of
drivers is, as expected, much more variable than the maneuvering of walkers, which is due
to a larger variance of speeds. Also, driving a vehicle is not so natural for humans as
ordinary walking.

3.5.9 Compressibility-based Estimations

Owing to the fact that tests of statistical rigidity are, without any doubt, more compelling
(not burdened by inaccuracies) than those using headways, we use statistical rigidity as
the main instrument for making a decision which potentials (logarithmic/hyperbolic) or
balanced distributions (3.22)/(3.23) are more suitable for statistical description of crowd
microstructure. Thus, estimating the compressibility of pedestrian data (using simple linear
regression applied to linear tails in graphs of statistical rigidity) we calculate values

β̂L =
1

χ
− 1, (3.28)

β̂H = β̂H(χ) & 2 +

√
β̂HD(β̂H) = 2χD(β̂H)

(
1 +

√
β̂HD(β̂H)

)
(3.29)

of estimated values β̂L and β̂H for both potentials. Knowing β̂L, β̂H we then calculate the
statistical distance

%L/H :=

(∫ ∞
0

(∫ x

0
(℘(y|β̂L/H)−H(y|∆τ )) dy

)2

dx

)1/2

(3.30)
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between the estimated theoretical distribution and empirical/experimental time headway
distribution. Values %L and %H (expressed for six data sources) can then be used for �nal
decision which of the two considered potentials (or distribution models) is more suitable
for theoretical estimations of territorial social interactions acting inside a group of moving
individuals.
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Figure 3.45: Statistical rigidity in empirical/experimental data. Graphs of the statistical
rigidity analyzed for all available pedestrian data (see legend for details). The gray zone
shows a region of vehicular rigidities, i.e. empirical statistical rigidity detected for vehicular
tra�c is usually (according to [89, 92, 88, 90]) a curve lying in this zone.

As quanti�ed in table 3.11 in all cases (except for shopping center observations) the sta-
tistical distance %L (assuming gamma-distributed headways) is greater than %H (assuming
GIG-distributed headways). It seems therefore that force description based on hyperbolical
repulsion is closer to reality than the description using a logarithmical potential. The same
conclusion has been drawn (in [86, 88, 92]) for vehicular streams as well. Relatively high
values of these distances con�rm the expected premise that statistical analysis of pedestrian
headways is less informative, which is a logical consequence of the fact that digital process-
ing (automatic detection) of gaps between walkers is quite inaccurate. On the other hand,
calculations of statistical rigidity (based on counting walkers passing by a given point at a
given time interval) are more accurate, by an order of magnitude.

3.5.10 Assumption of Statistical Independence for Headways

Note that all the previous considerations (i.e. predominantly analytical derivations for
statistical rigidity) are valid only under the assumption that the neighboring spacings are
independent. Therefore, it is essential (for practical applications) to test whether such a
premise is reasonable or not. Thus, we test if statistical rigidity of the analyzed data sources
is or is not inuenced by random changes of the order of headways. Since randomly shu�ed
headways (analyzed for systems with short- or middle-ranged cooperation) are independent.
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Detector χ β̂L β̂H %L %H α

D1 0.118 7.475 3.547 0.2006 0.1869 0.01928
D2 0.098 9.220 4.445 0.2647 0.2417 0.00572
D3 0.103 8.756 4.205 0.2135 0.1886 0.01065
Line 0.097 9.265 4.467 0.2676 0.2600 0.05790
SC 0.044 21.861 10.851 0.0394 0.0450 0.00248
Kretz 0.044 21.678 10.747 0.0904 0.0799 0.01154

Table 3.11: Summary of compressibility-based estimations.

A slight deviation is detected for walkers on the line, which is caused by insu�cient length
of data sample (compare the numbers in the second column of table 3.10).

To be speci�c, let us consider vector ~τ = (τ1, τ2, . . . , τN ) of successive headways arranged
in the original order (chronologically with respect to the time of measurement). Let π
be a randomly generated permutation of {1, 2, . . . , N}. Then ~κ = (κ1,κ2, . . . ,κN ) :=
(τπ(1), τπ(2), . . . , τπ(N)) is the vector of randomly shu�ed headways, where all statistical links
between successive headways κk, κk+1 have been broken by the afore-mentioned randomiza-
tion. It is well known (from Random Matrix Theory) that vectors of dependent headways
show a signi�cant deviation from the formula derived for independent headways. Therefore,
an angular deviation between linear asymptotes χ~τT+µ~τ ≈ ∆~τ and χ~κT+µ~κ ≈ ∆~κ reects
a certain measure of dependence in ~τ . Practically, such deviation can be quanti�ed by

α = |χ~τ − χ~κ|. (3.31)

If α > α0, where α0 is a normal deviation (here we consider α0 ≈ 0.02); then the de-
tected deviation is statistically signi�cant and the analyzed headways can be classi�ed as
dependent. The last column of table 3.11 summarizes numerical outputs of the method
proposed.

3.5.11 Conclusions

At �rst, we have shown that statistical distribution of time gaps between neighboring pedes-
trians can be convincingly described by some probability density belonging to a family of
balanced distributions (e.g. gamma distribution or GIG distribution). This knowledge gen-
eralizes the recent results published in [43], and, in practice, it can be used for quantitative
assessments of pedestrian models or for predictions of corridor capacities.

By introducing a stochastic force-based scheme (controlled by coe�cient of statistical resis-
tivity β) we relate the detected headway distribution with the associated force description.
In other words, we estimate the territorial social forces (and their dependence on distances
between walkers) by making the use of knowledge of spatio-temporal arrangement of indi-
viduals in pedestrian groups.

Useful information about the statistical nature of systems investigated is obtained by cal-
culation of coe�cient β quantifying measure of statistical resistivity, i.e. measuring the
nearness to deterministic arrangement of pedestrian locations.
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A deeper insight into the pedestrian ow microstructure is made possible by a thorough
analysis of statistical rigidity. The e�ciency of an instrument of statistical rigidity is ap-
parent when comparing the compressibility among all systems observed. Indeed, although
the time headway distributions in all systems are relatively close, a course of the rigidity
reveals mutual nuances. They are caused by di�erent levels of compressibility. As far as the
passing-through experiment is concerned, �gure 3.45 shows that compressibility χ depends
on the location of the detector, which indicates changes in pedestrian synchronization in the
course of time. This supports the idea that with time pedestrian headways evolve so that
compressibility decreases. The level of synchronization for walkers in a line in a free area is
visibly larger than in corridors with a boundary. Stronger synchronization is detected for
empirical ows measured in a narrow corridor and for passage through a door.

Both methods, however, su�er from relatively inaccurate detection of time gaps between
individuals, which is a well-known problem of crowd modeling.

Moreover, new interesting knowledge has been obtained by comparing of compressibility
between vehicular and pedestrian streams. It follows from �gure 3.45 that synchronization
of walkers is much more intensive than that of cars. The e�ect is the same for statistical
resistivity. Such di�erence is given by the fact that vehicular ows allow (due to larger
variances of speed) a greater uctuation level than pedestrian ows. Thus, the suggested
approach allows to di�erentiate between various agent's systems using a set of headways
only, which is a great bene�t.

From the practical point of view, the suggested methodology based on tests of statistical
rigidity seems to be a suitable instrument for theoretical validations of various pedestrian
models. The low values of compressibility reveals that the repulsion force between pedes-
trians has hard-core-like nature. This should be taken into account in model formulation,
which means that the potential generated by the model agent should be very high in the
close neighborhood of the agents and should vanish very fast with distance to the agent.
The compressibility value could be then used for proper parameters calibration.

3.5.12 Synchronization E�ects

In the E4 experiment, we have analyzed the ow at di�erent spots in the room (in the free
ow area, in the crowd, at the exit, in the corridor behind the exit) and even the total
ow was the same (law of conservation the ow), we have observed signi�cant di�erences
in micro-structure analyzed from time headways perspective (2.35).

This section extends previous microscopic studies to more complex scenarios of multiple con-
secutive bottlenecks with merging of pedestrian streams. The analyzed data were acquired
in two types of experiments conducted at CTU: double-deck rail car egress experiments
and laboratory egress experiments where four groups merged at two levels of bottlenecks to
egress at one general exit.

To describe the phenomena of synchronization and the structure of crowd, the time-headway
distribution is examined at each bottleneck. The gradual synchronization of time-headways
is shown to appear in the network of rooms connected by doors. On the contrary, the train
egress shows rather spontaneous lane formation in the corridor-like structure leading to a
synchronized two-lane ow.

Provided results can be used in the �eld of hand-calculations as presented in our study [24]
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or in building evacuation time study [118]. The arrival and service times de�ning behavior
of such model are usually random variables with some \handy" distribution which meets
the criteria that the mean value is equal to inverse maximal ow of the bottleneck according
to equation (2.35). The de�nition of such distribution of the arrivals and service times is
the subject of the following part of this section.

Observations

As proposed by [51], pedestrians in the E2-4 experiments [8] were entering the system ac-
cording to the exponential distribution with the mean value corresponding to the desired
inow. From the queuing principle we assumed the time-headways to be distributed accord-
ing to the exponential-like distribution with the mean value corresponding to the bottleneck
outow capacity.

Unexpectedly, we have observed [9] that the exponential-like distribution changes signi�-
cantly as described in Figure 3.46. The low values of the time-headways have low probability,
the main part of the probability density function is narrowly placed around the mean value.
Most of the pedestrians kept the same speci�c distance to the predecessors.

Figure 3.46: Synchronization of the headways within one bottleneck (left part of Fig-
ure 3.47). Histogram estimations of the probability density function of time-headways
measured at three detectors: 1 { pedestrians joining the crowed, 2 { exit door, 3 { corridor
behind the exit.

This observation motivated us to revise the concept of random arrivals. An additional
experiments involving ow through multiple consecutive bottlenecks during the egress of a
lecture hall were organized (denoted as E56). The experimental set-up consisted of 7 rooms
connected in a way to create a binary-tree-like structure: four bottlenecks lead to two rooms
which lead to one common room in front of the main exit as depicted in Figure 3.47. The
time-headways have been aggregated for each level of the tree.

Corresponding histograms are visualized in Figure 3.48. Exponential distribution is not
detected in any level. Moreover, the results of the analysis show that the variance of the
time-headway distribution decreases as the level of the tree decreases (we consider the level
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Figure 3.47: Schematic description of laboratory experiments. Left: positions of detectors
illustrating the synchronization e�ect of a particular bottleneck. Right: schema of the
experimental setup used in the study hall egress through tree-shape structure of bottlenecks
experiment.

decreasing in the direction of the pedestrian ow). Hence, we conclude that the bottlenecks
act as a synchronization element in the pedestrian ow.

Figure 3.48: Synchronization of headways in consecutive bottlenecks. The histogram esti-
mations of the probability density function for time-headways are plotted for three levels
of the experiment. The door widths were 750 mm in level 1 and 700 mm in levels 2 and 3

For the train egress experiment, the time-headway histograms for bottlenecks No. 1, 3, and 4
(see Figure 3.26) are plotted in Figure 3.49. Since the distribution of time-headways related
to exit No. 4 seems to be signi�cantly wider than the one corresponding to bottlenecks No.
1 and 3, we can �rst wrongly interpret an opposite trend. The right interpretation lies in
the width of the bottleneck. The width of No. 4 (1300 mm) is approximately twice width
comparing to the previous bottlenecks No. 1 (650 mm) and No. 3 (840 mm).

Obviously the time headway distribution is much more similar to exponential than in case
of E56 (possibly due to the lower density in front). Moreover, the wider the exit is the more
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Figure 3.49: Time-headway distribution in the train experiment. The histogram estimations
of probability density functions are plotted for bottlenecks No. 1, 3, and 4. The wider
distribution at No. 4 can be clearly seen.

exponential (less normal) the distribution is.

The exit No. 4 is su�ciently wide to enable the egress of two passengers almost simulta-
neously. The time-headway distribution corresponding to the exit No. 4 can be therefore
considered as a mixture of two distributions, �rst related to the headways between pairs
and second related to the headways between pedestrians in a pair.

To summarize, in the case of narrow bottlenecks where more than one pedestrian can pass
at the same time only rarely, the synchronization of pedestrians is reected in the decrease
of the time-headway variance, i.e., pedestrians are consecutively adopting the motion of
their predecessor. In the case of wide bottleneck as in the train study, the synchronization
of the motion is reected in the pair-like movement (i.e., alternation of extremely short and
relatively high time-headways) and the spontaneous formation of two lanes.
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Chapter 4

Review of Present Models and

Theory

Modeling of crowd motion or, more general, any kind of tra�c is an important part of
urbanity planning process. From the engineering perspective, there are just few features
that must a model ful�ll: reliability, simple calibration, reasonable calculation demands and
ability to return desired quantities. Di�erent model types are more appropriate for di�erent
requested outputs [122], but usually there are multiple ways how to achieve them.

The spectrum of desired model outputs may be quite wide. On the macroscopic level, we
are mostly interested in ow. Such variable is a�ected by the pedestrian density (number
of people in given area), geometry and pedestrian mindset (motivation, knowledge of given
facility and cultural aspects). The total evacuation time is another crucial quantity from
engineering perspective, it may be replaced by the evacuation time of desired sub-population
(all clients, 98% of all people, . . .).

In more detail, we may focus on trajectory level producing individual evacuation time,
local densities, velocity distribution in space and many more fancy features. From scien-
ti�c perspective such microscopic research brings additional information and more precise
derivation of macroscopic quantities. Moreover, microscopic observation may explain why
the system generates given pattern.

On the other hand, microscopic models always require more computational power, their
validation is more demanding and they are di�cult to calibrate or to correctly set up
initial and boundary conditions. That's why engineers prefer to use simple, well known
models, even they might be outdated. The transition to modern approach requires special
motivation, thus the scienti�c state of the art is quite ahead on engineering . . as always.

4.1 Related Models

Historically there are multiple research streams, each of them dominated some period in
past, based on fashion and available computational capacity:

� Hand calculations. Applying queuing theory or \physical" mechanics, we can an-
swer many elemental questions. E.g. from given inow and bottleneck capacity (max-
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imal ow), one can predict whether the evacuation will be smooth or whether a
congestion would appear.

� Grid models. These models discrete in space and time are using simple movements
rules. Reasonable discretization allows even microscopic approach, as will be shown
later on implemented cellular automata model.

� Force based models. The interaction agents α and infrastructure β may be de�ned
as the set of social forces, e.g.

mẍ = m(ẋ− voptα ) +
∑
β

fαβ +
∑
b

Fαb, (4.1)

where vopt is the preferred velocity, fαβ refers to agent interaction and Fαb to inter-
action with infrastructure. Similarly to classic mechanics, the resolution of this large
set of equations provides detail movement description. This approach successful in
simple geometries, but too demanding for large scale simulations.

� Thermodynamic models. Similarly to their physical precursors, placed agents into
thermal pool (with given temperature) to simulate movement in stochastic environ-
ment. The interaction of agents is de�ned by reaction potential that impacts total
energy H. The probability density of states of the system is then evaluated as

P (~x, ~̇x) ∝ e−
1
kT
·H(~x,~̇x), (4.2)

where k stands for Boltzmann constant. Such model is used to predict the behavior
of steady state, e.g. space or time headways may be analytically derived.

� Agent based models. The most modern approach is based on intelligent agent mov-
ing in continuous space and time according prede�ned rules. This approach combines
advantages of all above mentioned approaches yet it may be di�cult to calibrate.

� Data driven models. Another quite new approach based on machine learning tech-
nology. With su�ciently large database, model could predict the next movements
based on some smart mix of historical trajectories. Unfortunately the ability to pro-
cess situation that is not in database is questionable.

This work is focused on a cellular automata model, partially in comparison with agent based
model. Both were implemented on microscopical level but they have quite di�erent rules
as they are facing di�erent challenges given by di�erent spatial limits.

4.2 Principles of Cellular Automata

Crowd dynamics models based on cellular automata have some signi�cant advantages over
the other kinds of pedestrian movement models { their simplicity. Movement of occupants
is modeled by set of fairly simple rules[109]. Moreover, one can easily establish su�cient
balance between e�ciency and accuracy, that makes CA-based models suitable e.g to large
scale data{driven simulation e.g. [135]. However, the usage of CA based models is connected
with a number of issues, related mostly with coarse discretization of space and time [10].
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4.2.1 Original CA concept

The base element of a cellular automata model is a cell (i.e. cellular automaton), which is
described by his state and actualization rules respecting the state of his surrounding. These
rules are constant in whole area and do not depend on time. To be more precise, CA model
is de�ned by the set (State, Neighborhood, Rulebook).

The surrounding of a cell x might be quite general, but usually consist of nearest cells y:

d(x, y) < C, (4.3)

where d(x, y) is distance from x to y (the distance should incorporate bypassing the obsta-
cles). Constant C is the range of a surrounding, usually it is a small natural number. Here
we note that the cell itself is usually considered as a part of its surroundings.

The most commons are Von Neumann's surrounding using only orthogonal directions and
Moore's surroundings adding diagonal directions, see Figure 4.1 for illustration.

Figure 4.1: The illustrations of surroundings used for pedestrians movement modeling: A)
Von Neumann's surrounding with the distance one and two, B) Moore's surrounding with
the distance one and two.

As there are usually two states of a cell, the rule book uses binary coding to de�ne the state
of neighborhood and the de�nition of the next state. See Figure 4.2 for illustration of one
rule in 1D system, for more details see e.g. [143].

4.2.2 CA Models of Pedestrian Motion

Applying CA to modeling of pedestrian motion, several things should be speci�ed the state
of a cell is vacant or occupied (by one agent, lets avoid obstacles for simplicity ). As
the pedestrian can't freely appear or disappear, the number of occupied cells is constant
(putting aside the entry and exit cell with special rules for now).

This restriction limits the rule system { it has to ful�ll the condition that update of one
cell (A) from occupied to vacant must be followed by update of some vacant cell (B) to the
state occupied. Such situation is interpreted as the motion of an agent from cell A to cell
B.

That cased the modi�cation of general CA concept to state where agents move in the lattice.
The actualization rules of agents may be much more complicated than deterministic pattern
matching on nearest neighborhood. Moreover, di�erent types of agents and cells can occur
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Figure 4.2: The illustrations of rule 30. In 1D system with nearest neighbor surroundings,
there is only 8 con�guration. For each of them, we have to de�ne whether given cell would be
occupied or empty. With �xed orientation, it is simple to interpret this 8 bits as a binary
code representing number. I.e. the 8 digit binary code of the number 30 is 00011110,
indicating that con�guration 0, 5, 6 and 7 would generate empty cell while con�guration 1,
2, 3 and 4 stands for occupied cell.

in the system, each type may have special actualization rules. Due to these facts, the term
\agent system" is often used in literature instead.

Generally, we can distinguish two kinds of surroundings { target surrounding and reaction
surrounding. The target surrounding is a set of cells, which an agent can reach in one step.
It is connected to the length of the step. The reaction surrounding consists of cells, which
a�ect the decision of given agent.

It is bene�cial to de�ne both surroundings small to keep decision rules simple and com-
putational demands low. Usually agent can reach only nearest cell an even the reaction
surrounding used to consist of several cells. Therefore the information about the distant
object (as exits) must be coded in all cells to incorporate it to the decision process.

The cellular automata are categorized by the process of actualization to parallel and se-
quential. In case of parallel update, the actualization of all cells runs simultaneously, this
can cause conicts. This phenomenon is wanted, it is an instrument how a model produces
collisions. The sequential update means, that the cells are updated sequentially, in strictly
given order or randomly.

4.3 Review of Floor Field Models

Modeling of pedestrian movement using cellular automata is a young branch of study. One
of the �rst articles [49] published in 2000 presents elemental decision making process. The
track of each agent is determined by checkpoints, which an agent follows. During his journey,
he reacts to his surrounding { he selects empty cells and adapts his velocity with respect to
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local density.

Two years later, the group from the University of Köln presented an article [77], introducing
the concept of Floor �eld model. This model was modi�ed [109], [53], today, the F.A.S.T.
model (Floor �eld and Agent-based Simulation Tool model [95], [96]) represents the top
simulation tool.

This model was used to simulate some speci�c phenomena, e.g. [97] deals with the pedes-
trian behavior in counterow, [51] studies the motion through multiple bottleneck, [54]
deals with the inuence of the inow to the system or [79] investigates the impact of the
bottleneck width to the outow.

Some other works were presented together with Floor �eld model to supplement it. We
talk about the inuence of physical forces [65] and the prediction to avoid conict in the
counterow [131] or [59]. These principles will be described further.

Many other models simulate pedestrian movement and uncover untouched phenomena, e.g.
article [57] deals with the modeling of obstacles, articles [145], [146] and [147] propose
alternative methods for discretization and article [121] talks about the symmetry. Similarly
to the tra�c models, the follow-the-leader approach can be used, see [58]. Agent's behavior
may be di�erentiate according to speci�c role, group a�liation [40] or cognitive abilities
[42].

To model the pedestrian movement, the proxemics theory and social distance approach can
be also used, see [136] or [138]. [83] and [82] model the evacuation with respect to the local
Guidelines, this work includes complex geometry with stairways.

The work [149] concerns with the evacuation of a complex building. It describes the dif-
ferent ways how to manage the numeric simulations for individuals parts (oors, buildings)
e�ectively.

4.4 Floor Field Model

Floor �eld model [45] is a cellular automaton inspired by the chemotaxis of ants. The ants
mark their trace by the pheromones to guide others to the food. The model codes analogi-
cally the paths of each pedestrian, this phenomenon provides the long{range interaction.

The whole family of models utilizes di�erent oor �elds(FF) to store any information needed
for the decision process. Vast majority of them uses static FF - i.e. gradient potential �eld
that lead occupants to points of attraction. Other types of �elds models di�erent aspects
of pedestrians behavior: dynamic FF - is responsible for mimicking the following others
behavior, wall FF and proxemics FF describes repulsive forces from obstacles and other
pedestrians respectively, anticipation FF introduces in advance collision avoidance, while
force FF introduce pushing behavior for CA based models. Superposition of chosen set of
mentioned �elds is used as main factor that drive pedestrian movement. For details see [119]
and references therein.

In this work, we have analyzed the model as de�ned in the dissertation of Tobias Kretz [96].
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4.4.1 De�nition

The space is divided by rectangular lattice into square cells with dimensions 0.4 m× 0.4 m.
The time is also discrete, the actualization runs parallel for all pedestrians.

The actualization progress in three substeps:

1. the selection of an exit

2. the selection of target cell

3. the movement towards the chosen cell

Selection of an Exit

Each step begins with the choice of the exit, which become a target during subsequent
decision. The probability, that agent α chooses the exit E is given by equation:

pαE = N
1 + δα,EkE(α)

d(α,E)2
, (4.4)

where δα,E is the indicator that agent α has chosen the exit E last time (it is equal to 1 in
case he did and it is equal to 0 if he did not). The coe�cient kE(α) is persistence of agent
α to exit E, d(α,E) is the distance and N the normalization constant.

The distance d(x,E) of cell x towards the exit E is given by Dijskra's algorithm on discrete
lattice. This algorithm enumerates the minimal number of steps to reach the exit E from
every cells in a lattice, with respect to the geometry of building and obstacles.

Selection of Target Cell

During the decision process, the pro�tability of each cell in a surroundings of given agent
is evaluated.

The \complete" surroundings (see Figure 4.3), which is used in this model, is determined
by maximal velocity (vmax) of an agent. It is de�ned as a set of cells, which can an agent
reach using maximally (vmax) steps in von Neuman's or Moore's surrounding (see Figure
4.1). The way of alternation of von Neuman's or Moore's surrounding is elected so that the
motion keep spherical symmetry.

The probability that an agent chooses the cell i is given by equation:

pi = N · (1− ni) · eks·Siekd·Die−kI ·Fie−kw·Wiekp·Ni , (4.5)

where N is the normalization constant and ni is the occupation number (ni = 1 . . . occupied
cell, ni = 0 . . . empty cell), which express the fact that agent is allowed to select only empty
cell.

In the latest articles, the expression (1− ni) is substituted by (1−Φ · ni), where Φ ∈ 〈0, 1〉
is the weight of occupation. With this modi�cation, an agent can select even an occupied
cell, this concept is used in this project.

Each exponent describes the inuence of one �eld:
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Figure 4.3: One quarter of complete surroundings with respect to maximal velocity (up to 5
cell/step). An agent can reach the cell with number equal or less than its maximal velocity.

� the static oor �eld S ensures the motivation of an agent to move towards the exit.
The value Si is determined by the distance to the exit. To support the randomness
in decision process, the values in static �eld are rounded to integer values

� the dynamic oor �eld D contains the vector information about the motion of others,
it enables modeling of herding behavior

� the inertia e�ects I reects the physical possibilities of pedestrians. E.g. pedestrians
change the velocity rather than turn

� the repulsive e�ects of walls W , which is given by the distance of nearest wall

� the inuence of nearby agents N { agent prefers a places with lower local density

The coe�cients kX describes the sensitivity of an agent to �eld X. These \weights" express
the relative importance of given �elds and their value presents the individual parameters of
each agent.

Movement towards Chosen Cell

When all agents have chosen the target cells, the phase of movement begins. Two di�erent
approaches are presented:

� jumping to the target cell is a simple, but not realistic method. An agent is putted into
the target cell even if there is not a free path. When two or more agents try to move
to the same cell, conict happens. In this case, one pedestrian is chosen randomly to
move and others stay. But with probability µ (friction coe�cient), conict remains
unsolved and no one moves.

� motion cell by cell better corresponds to the real behavior. Sequentially (in given order
or random), each agent tries to reach his chosen cell in vmax steps. This journey runs
deterministically { in each substep, an agent chooses from his nearest neighborhood
the unoccupied cell closest to the target cell. It is suggested to keep trajectories of
agents to uncover the conicts from crossing paths. The cell, which was once occupied,
remains blocked until the end of actualization.



114 CHAPTER 4. REVIEW OF PRESENT MODELS AND THEORY

4.4.2 Discussion

The essential impact to the behavior of this model has the maximal velocity. As seen in
Figure 4.3, the neighborhood keeps the spherical symmetry up from the vmax = 5. It
con�rms the simulations presented in Figure 4.4.

Figure 4.4: The comparison of simulation with di�erent maximal velocities to test the
symmetry. Left: vmax = 1, right: vmax = 5. (taken from [96])

The maximal velocity also inuences the value of the time span. One step contains vmax
substeps, thus when one substep consumes 0.2 s, the time span is equal vmax·0.2 s . Therefore
higher maximal velocity implies lower frequency of decision.

The inuence of dynamical �eld is well observed during the simulation of guided evacuation.
It is a situation of two groups with di�erent level of knowledge of the environment. First
group (guides) is characterized by large kS , low kD and high inuence on dynamic �eld. On
the other hand, the followers has low kS , large kD and low inuence on dynamic �eld. The
evacuation of 1000 person from labyrinth runs faster by 35% in case there are 100 leaders
(the comparison of average 95 quantile).

The e�ects of wall repulsion and inertial forces are illustrated in Figure 4.5. As seen, the
snaphshot with both e�ects looks high realistic.

The usage of this model illustrates Figure 4.6, where a simulation of an infrastructure is
presented. The signi�cant congestion was uncovered even in unexpected places.
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Figure 4.5: The inuence of wall repulsion and inertia forces repulsions. First slide: without
these e�ects, second slide: e�ect of inertia, third slide: e�ect of wall repulsion. (taken from
[96])

Figure 4.6: The visualization of egress simulation. Left: the actual velocity of agents (red
{ standing, green { movement with vmax. Right: a signi�cant congestion (red value { 20%
under high dense conditions). (taken from [96])

4.5 Related Models

In this section, models which supplement F.A.S.T. model are presented.

4.5.1 Physical Forces in Floor Field Model

The \Swarm force model" [65] enhances the oor �eld model with model of propagation of
physical forces.

Force is generated by \pushing" the agents, which causes the creation of force bosons. These
virtual particles are stored to the force �eld, where they can propagate and inuence the
agents. The force �eld represents both, the magnitude and the direction of force.
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First, it is necessary to modify the decision making process. The equation (4.5) does not
allow the selection of an occupied cell. This model proposes to change it, the selection of
occupied cell is possible, but with probability penalization. The probability that an agent
selects the cell i is following:

pi = N · (1− Φi) · eks·Siekd·Di , (4.6)

the exponential part corresponds with the de�nition of F.A.S.T. model, the constant Φi is
a vacancy factor (Φi = 0 . . . empty cell, Φi = 0.5 . . . occupied cell). Index i ∈ {1, 2, 3, 4}
refers to the four nearest cells, which only are allowed to be a target for decision.

If an agent selects an occupied cell, the e�ect of pushing appears. Such agent stays in his
cell and drops several force bosons (their number is determined by the capacity for pushing).
Each time step, force bosons propagate to the surroundings (the simulation of inter-personal
contacts). The force is dissipated when it reaches empty cell or a wall.

The force �eld inuenced the model by two ways:

� in case that the number of force bosons reaches some threshold (three times larger
than the capacity for pushing), the decision making process disappears and agent
choose the cell in the direction of the force.

� when the total number of bosons in one occupied cell reaches even higher threshold
(ϕ), an agent becomes injured. Injured agent cannot move and stays in his actual cell
as an obstacle until the end of simulation.

4.5.2 Anticipation in Floor Field Model

The anticipation is de�ned as \the ability of avoiding collisions with other pedestrians
considering their future walking way" (see [131]). To avoid conict with other agents, it is
necessary to:

1. predict the movement and �nd the areas of conict

2. change the velocity or direction to avoid the predicted conict

To predict the movement, the e�ort to reach the target the shortest way is expected. Thus,
an agent should walk along the gradient of static oor �eld. Further we de�ne nearest dA
cells (dA ∈ N is a parameter of this model) on this virtual path as the reserved cells.

To store the information about reserved cells, a vector anticipation oor �eld (AFF) is
de�ned. It keeps the number of agents, which head to the given cell, with respect to
their direction (def.: A

(n)
i is the value of AFF in cell i from direction n ∈ {1, 2, 3, 4}

). Then, during decision process, an agent reacts to the agents from di�erent direction:

E
(m)
i =

∑
n6=mA

(n)
i (m refers to his direction).

The equation (4.6), which determines the probability of selection the cell i in standard oor
�eld model, is supplemented by anticipation:

pi = N · (1− Φi) · eks·Siekd·Die−kA·E
(m)
i , (4.7)
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where kA is the sensitivity to the anticipation.

Here we note, that the process of reserving the cells runs before each decision making
processes and the information is valid only through one step of the algorithm.

4.5.3 Real{Coded Cellular Automata

The cellular automata models limit the direction of agents to several possible values. Con-
trarily the real{coded model (see [145, 146, 147]), developed originally for lattice gas au-
tomata, solves this problem by special actualization rules.

The position of agent i (denote xi) is still discrete, but the magnitude of velocity (vi) and
its direction are continuously distributed.

The update process runs according to following four rules, which are applied to randomly
chosen agent:

1. the streaming process: new (continuous) position x′i = xi + vi of agent i is calculated.

2. the re-position on the grid: to set the agent to a matrix, the distance to four nearest
cell is counted. The selection of new (grid) position runs randomly, the probabilities
linearly depend on the distances to each cell.

3. the solution of conict: in case, that his next (grid) position is occupied, agent i stays
on position xi. Instead of motion, he changes his direction (he randomly turns by
45◦).

4. adjusting the direction: due to the re-position, it is necessary to set the direction
towards the exit again.

The decision making process presented in this work is quite simple, but it can be modi�ed up
to the style of FF model. The idea of partial continuous movement eliminates the greatest
trouble of cellular automata.
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Chapter 5

Designed Model

The model used for this study comes out from the Floor-Field cellular model with several
modi�cations introduced in [5, 4] and studied in more detail in [7], here extended by the
aggressiveness element [12]. The playground of the model is represented by the rectangular
two-dimensional matrix consisting of cells that may be either occupied by one agent or
empty. Agents are moving along the lattice by hopping from their current cell to any
neighboring cell.

Even the desired velocity of each agent may be di�erent (in agreement with [41]), the
timespan of model is set to 0.3 s giving the free ow velocity up to 6 m/s. The pedestrian
update is parallel, each pedestrian pick up desired cell based on calculated pro�tability and
some random element. The pro�tability used to be composed of the distance to the exit,
occupancy, conict anticipation and other quantities.

Similarly to the latest models [81] or [37], pedestrians are allowed to choose an occupied
cell. In such case, agent has to wait until the blocking agent moves or until next decision.
This speci�cation supports the ability pedestrians to hold formations.

In contrast to large scale simulations presented in [121] or [149], the goal of this work is to
model essential phenomena of pedestrian motion, therefore one rectangular room with one
exit and one entry is more convenient.

Following sections are dedicated to basic model elements and the simulations are summa-
rized in consecutive chapter.

5.1 Space Elements

The base element of the model is the lattice L of square cell with edge from 0.4 to 0.5 m
long. Each cell is identi�ed by vector of position ~x = (xr, xc), where xr corresponds to rows
and xc corresponds to columns.

Special type of cell is the exit, an agent leaves the model by entering there. The exit is
considered as always empty, but only one agent can enter during one step of algorithm, here
is no di�erence from ordinary cells.

The entry is realized by a cell (or cells) in front of the wall that can generate a pedestrian.
For most of following studies, the entrance follows a desired distribution pin. Each step, an

119
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algorithm decides whether new pedestrian should be generated. In that case, new pedestrian
is added to the entrance queue and any timestep when the entrance is empty, one pedestrian
from this queue entered the room.

Another type of cell is a wall or an obstacles. These cells are excluded from the movement
or decision process, model keeps them just for visualization.

In presented model, the motion is limited to the agent's surrounding. We use the Moore's
neighborhood (see Figure 5.1) for both, decision making and movement. More precisely, an
agent in the cell ~x can choose to jump to the cell ~y ∈ N (~x) de�ned as

N (~x) =

{
~y ∈ L; max

j=1,2
|xj − yj | ≤ R

}
(5.1)

where R stand for the range of neighborhood. Moore's neighborhood was selected due to
the ability to make diagonal steps, with all consequences that will be discussed in next
sections.

Figure 5.1: Moore's neighborhood (with range R = 1) of cell ~x, with indexation used.

Even the range of model used in this project is set to R = 1, i.e. nearest neighborhood, the
real horizon of pedestrian vision is larger. Cells from neighborhood have coded information
about the exit position and motion of near by agents, as described further.

5.2 Decision Process

Decision process forms the �rst part of agents actualization. Each active agent chooses
desired position from reachable cells of its surrounding (i.e. excluding walls or obstacles)
and this decision is noted. If an agent chooses empty cell, it is added to waiting list of this
cell. If it chooses cell occupied by an other agent, a bond to this blocker is created, the
original agent becomes \bonded". Whole process is visualized in Figure 5.2.

Agents choose their target cells ~y from N (~x) stochastically according to probabilistic distri-
bution P (~y | ~x; state of N (~x)) that reects the \attractiveness" of the cell ~y to the agent.
When situation is clear, we will use the notation p(x, y) =: pi where i is the index ~y in the
neighborhood of ~x, as de�ned in Figure 5.1.

Analogically to the Floor Field model, part of the \attractiveness" is expressed by the
static potential �eld U : L → R that assigns value U(~x) to every cell ~x in the sense that
the agent is attracted to the cell with lower potential. Commonly, the potential �eld is
generated by the exit and is static over time. The probability of hopping from ~x to ~y
ful�lls pi ∝ exp{−kUUi}, where kU ∈ 〈0, inf〉 stands for the parameter of sensitivity to the
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Figure 5.2: Diagram of decision process of one agent. The process of bond annulations
precedes the decision, which is in detail described in Figure 5.3. If the cell with higher
potential (referred to as the best) is empty and occupation is not predicted, agent chooses
it. Consequences of decision depend on the state of target cell. If it is empty, agent is added
to waiting list. Otherwise, it is bonded to the agent who is blocking him.

potential. The potential itself is de�ned as scaled negative distance to the exit.

U(~x) = −F · r(~e, ~x) , (5.2)

where r(~e, ~x) is Euclidean distance:

r(~e, ~x) =
√

(er − xr)2 + (ec − xc)2 . (5.3)

Linear relation ensures that the probability distribution that an agent pick given cell from
his surrounding generated by attractiveness does not change with the distance of the agent
to the exit. Nonetheless, for speci�c purposes, an arbitrary shape of potential may be
implemented, see section 6.1.

As the probability depends on the product of \force" and sensitivity pi ∝ exp{−kUU(y)} =
exp{−kU · F · r(~e, ~y)}, we will further consider F = 1 as default and modify only kU .

The decision starts by �nding the cell with the highest potential (denoted m):

m = argmaxi∈{0...7}Ui , (5.4)

where the indexes refer to the cells from the surrounding (see Figure 5.1).

The calculation of probability p̄i that an agent will choose given cell from his surrounding
depends on the state of the cell m. If both, the prediction and occupation number of this
cell is equal to zero, the agent chooses m deterministically, otherwise the probability of
motion to cell i may be interpreted as the pro�tability of this cell (5.9).

The probabilistic choice of the target cell is further inuenced by the occupancy of neigh-
boring cells (O~x(~y) = Oi). Note that the value of occupation is relative in the way that the
cell where agent α stands is occupied for everyone but agent α. The possibility to select
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An occupied cell is considered to be less attractive, nevertheless, it is meaningful to allow
the choice of an occupied cell while the principle of bonds is present (explanation of the
principle of bonds follows below). This principle is related to the parameter of sensitivity
to occupation kO, which combines two strategies: to stay in line and wait for the motion of
the predecessor (kO = 0), or to try to run around the crowd (kO = 1).

The decision process may be inuenced by the predicted state of considered cells. To
describe this inuence, let us �rst de�ne the term movement prediction. In the essence,
agent α is predicted to move in the same direction as he did in his previous step, i.e, we
de�ne the predicted position of an agent as

~xPα (t+ 1) :=

{
2~x(t)− ~x(t− 1) if 2~x(t)− ~x(t− 1) ∈ L ,
~x(t) otherwise .

(5.5)

This allows us to de�ne the dynamical �eld η(~y, t) of the occupancy prediction of the cell ~y
from the point of view of agent α sitting in ~x as

ηP~x (~x, t) :=

{
0 if {∀β 6= α | ~yPβ (t+ 1) = ~x} = ∅ ,
1 otherwise .

(5.6)

Us usual, the coe�cient of sensitivity to predicted occupancy is referred to as kη.

Furthermore, the movement in diagonal direction is penalized in order to suppress the zig-
zag motion in free ow regime and support the symmetry of the motion with respect to
the lattice orientation. The diagonal steps deforms the probability distribution of deviation
from straight trajectory. When the straight direction to the goal follows diagonal steps,
potential deviations would be orthogonal, i.e. shorter steps. Such steps would be much
less bene�cial thus the probability of these deviations would be low. In contrary when
the straight direction to the goal follows orthogonal steps, potential diagonal deviation
would move pedestrian further. Even the straight step would bring a pedestrian closer
than diagonal deviations, the di�erence would not be signi�cant, see illustration further on
Figure 6.8. To compensate this issue, we have to adjust pro�tability metric by diagonal
penalization.

D(~x, ~y) =

{
C . . . i ∈ {1, 3, 5, 7}
1 . . . i ∈ {0, 2, 4, 6} ,

(5.7)

C is the global constant.

This leads to the �nal form of decision process:

p̄i =

{
δim . . . nm = rm = 0

P (~y | ~x) . . . otherwise .
(5.8)

Expression δij represents Kronecker delta, which is equal 1 if i = j and 0 otherwise. The
probability Pi = P (~y | ~x) is de�ned as:

P (~y | ~x) =
exp

{
− kSS(~y)

}(
1− kOO~x(~y)

)(
1− kηη~x(~y)

)(
1−D(~~x, ~~y)

)∑
~z∈N (~x) exp

{
− kSS(~z)

}(
1− kOO~x(~z)

)(
1− kηη~x(~z)

)(
1−D(~x, ~z)

) . (5.9)

The visualization of decision process for several speci�c settings is provided in Figure 5.3.
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Figure 5.3: Example illustrating principle of the decision process. Sub�gure A visualizes
wider surrounding of an agent in cell ~x. Integer numbers represent agents and dashed arrows
their predicted movement. The probability distribution pi given by (5.9) is determined by
potential, occupation and conict prediction. The sub�gure B visualizes these parameters.
The darker color the higher potential (closer to exit), hatched area means penalization in
stated category. The �nal cell attractiveness strongly depends on coe�cients of sensitivity
to stated parameters. While potential represent static conditions, occupation and predic-
tion of conict reect agent strategy. Final probabilities for di�erent settings of sensitivity
parameters kO, kη are shown in sub�gure C. For each of them, 2000 decisions were divided
into the cells according to (5.9). Di�erent strategies lead to di�erent distribution of the
probability. \Blind" agent responds only to potential; \present", resp. \future" variant
excludes occupied, resp. predicted cells. The variant \ultra cautious" accepts only posi-
tion, which is empty and also predicted to be empty. Presented model uses the variant
\reasonable", which corresponds to the observations. The sensitivity to potential kU = 3.

It is worth noting that the site ~x belongs to the neighborhood N (~x), therefore the equa-
tion (5.9) applies to P (~x | ~x) as well. It is obvious that this process is fully parallel for active
agents { the decision of agents does not inuence the result. At the end of this phase, the
time of agent's next actualization is calculated from his frequency (5.12). Even the equations
and techniques are far from physics, the de�ned probability and whole updating scheme is
not to far from gradient-driven motion in potential �eld.

5.3 Time

Aside the decision process, the study focuses on the inuence of updating scheme. Updating
schemes used in this work are inspired by the asynchronous cellular automata schemes
presented in [46]. We use similar approach to the \clocked" scheme, i.e., every agent has
assigned it's own timer which ticks at di�erent rates for di�erent agents. Furthermore, when
the principle of bounds is incorporated (kO = 1), the timer is inuenced by the motion of
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other agents, as will be mentioned below and is discussed in [5].

The time interval between events can be irregular, both globally and even focusing on single
agent. Therefore it is appropriate to de�ne a function generating the next actualization time
of each agent. One can start with simple form:

tn+1 = tn + f−1
j , (5.10)

where fj is the actualization frequency of agent j, the sequence {tn}inf
n=1 is evaluated for

each pedestrian. This time is written to the timeline, as illustrates Figure 5.4.

Figure 5.4: Example illustrating principle of timeline. Black color of circles (agents time)
and squares (global time) represents active objects, gray color indicates the time of next
activity of each element. Three agents with di�erent frequencies (0.8−1, 1.2−1, 1.6−1) be-
came to move in time t = 0. For all of them, next actualization time is calculated according
to the equation (5.12) and the time of nearest event in timeline is actualized (arrow). Time
moves to t = 0.8, only agent 1 is active, he makes a step and his next actualization time
is counted. After actualization of time (t = 1.2), only agent 2 moves. Next global time is
t = 1.6, where agents 1 and 3 are active, the subsequent events are solved analogically.

Used updating scheme combines the advantages of fully-parallel update approach leading to
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necessary conicts and the asynchronous clocked scheme [46] enabling the agents to move
at di�erent rates. This general concept will be called the adaptive time span.

There is a speci�c time sequence (ti,n)n∈N0
unique for every agent. This sequence determines

the moments when agent i is activated to actualize his position according to above mentioned
rules. Looking at the system as a whole, the system state is actualized at times (tm)m∈N0

,
where

tm+1 := min
j∈N̂
{tj,n | tj,n > tm , n ∈ N0} . (5.11)

This equations means that the time of next actualization is chosen as the nearest event
de�ned by the updating sequences of all agents.

A common example of such concept is that the sequence ti,n is driven by the Poisson process,
i.e., the increments ti,n+1 − ti,n are exponentially distributed. The principle used in our
model comes out of the idea that each agent has its own desired frequency of actualization
fi characterized by the desired time increment τi = f−1

i . This leads, in an ideal case
without correlations between agents, to the sequence tj,n = nτj . As will be shown below,
the presented conict solution changes this sequence slightly due to the adaptation to the
movement of agents in the neighborhood. Similar idea is considered in [142] to simulate
heterogeneous system with two kinds of agents.

As mentioned in previous section, agent may move to orthogonal or diagonal direction, thus
there are two possible lengths of step. By diagonal step, agent moves

√
2 further than by

orthogonal one. To conserve the pedestrian velocity, we have to compensate it by adjusting
time consumption of these steps { they will take

√
2 times longer.

To hold agents on stable level of synchronization, we used approximation
√

2 ≈ 3/2 that
keeps all pedestrians in discrete (semi-integer) steps. Time unit was cut to half and an
agent moves each second or third tick, with respect to the type of step it realized. That
leads to the updating function in shape

tn+1 = tn + f−1
j +

1

2
Id · f−1

j , (5.12)

where Id is the identi�er of diagonal movement. The e�ect of rational approximation is
visualized in Figure 5.5.

Figure 5.5: Illustration of adaptive time span with the rational approximation of
√

2 (top)
and without it (bottom).

Assuming heterogeneous population where fj really di�ers among pedestrians, completely
asynchronous update would mitigate all conicts, thus we de�ned di�erent approach. Each
pedestrian still has its own tn+1, but the model clock are ticking by prede�ned period τ . All
agents with their tn+1 within given tick are updated at once, but their tn+2 is calculated from
previous tn+1, see schema on Figure 5.10. The time steps would be still independent but
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from the purpose of model dynamics all events within one time frame would be considered
as concurrent.

In language of symbols, let us denote A(t) = {j ∈ N̂ | ∃n ∈ N0, tj,n = t} the set of active
agents at time t. Let us consider the situation that agent i creates a bond (i → ~x) at
ti,n, because ~x is occupied by agent j. As times evolves, two possibilities may occur.
Firstly, agent j stays in ~x until ti,n + τi. In this case, the bond (i → ~x) is canceled, the
actualization time of i is set to ti,n+1 := ti,n + τi and the decision process of i at ti,n+1

goes according to above mentioned rules. Secondly, agent j moves from ~x within the time
interval (ti,n, ti,n + τi). In that case we set

ti,n+1 := min{t ∈ (ti,n, ti,n + τi) | ξj(t) 6= ~x} and ξ∗i (ti,n+1) := ~x. (5.13)

Here should be noted that the model period must be shorter that than the period of fastest
agent.

This concept is quite robust, thus it might be used to even more complex dynamics. So far,
we have imagined constant actualization frequency for any agent. This assumption may
be released, the algorithm enables variable actualization frequency that may react to envi-
ronmental parameters (type of surface, visibility, . . . ) as well as to dynamic features (local
pedestrian density, fatigue, . . . ). But we haven't use this option due to the demanding
calibration. As discussed in analytic chapters, the velocity-density relation is still quite un-
known and de�nitely it depends on a lot variables. Rather than pick up the most promising
curve and (possibly) calibrate model to inappropriate situation, we have decided to reach
desired behavior by other way. But it doesn't mean that dynamic actualization frequency
is bad idea in general.

For various studies two cases are distinguished: homogeneous and heterogeneous. In the
homogeneous case, all agents have the same own period τ = 0.3 s (1.33 ms−1 in free ow);
in heterogeneous case two kinds of agents are considered: faster agents with τ1 = 0.3 s and
slower agents with τ2 = 0.4 s (1.00 ms−1 in free ow) with the ratio of occurrence 50%.
Then the value of model clock τ = 0.3 s corresponds to the synchronous update (slower
agents \miss" one of four steps) and τ = 0.05 corresponds to the asynchronous update.

5.4 Dynamics

For each timeframe written on above mentioned timeline, the updating scheme can be
described by following loop:

1. Cleaning of exits

2. Selection of active agents in given time frame

3. Decision process of active agents

4. Conicts solution and motion

5. Bond evaluation and motion

6. Input of new agents
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While the �rst three items are trivial from model dynamic perspective, conicts and bonds
(visualized in Figure 5.6) are more interesting.

Figure 5.6: Diagram of conicts solution in one cell and the subsequent motion. The �rst
question is: How many agents are in the waiting list. If there is just one agent, he moves
directly. In case that there are more agents, conict happens. With probability µ, the
conict disables the motion. Otherwise, one of the agents is chosen randomly to move. His
motion can cause motion of agents bounded to him. Again, possible conict must be solved
before motion. This sequence is repeated until there is not bounded agent or until conict
stops the movement.

The critical essence of parallel updating scheme is inevitable accompanied by conicts,
when more agents decide to enter the same cell. In such case, one of the agents is usually
chosen at random to win the conict. There are more approaches, how the randomness is
executed, e.g. uniformly, or proportionally to the hopping probabilities [45]. Important role
in models of pedestrian evacuation play the unresolved conicts, i.e., the aim to attempt the
same cell leads to the blocking of the motion. This is captured by the friction parameter
µ denoting the probability that none of the agent wins the conict. An improvement is
given by the friction function [148], which raises the friction according to the number of
conicting agents.

For purposes of this work, we introduce the choice of the winning agent based on his ability
to win conicts represented by an additional parameter γ ∈ [0, 1], which is referred to as
the aggressiveness. Similar heterogeneity in agents behavior has been used in [144], where
the \aggressiveness" has been represented by the willingness to overtake.

The conict is always won by agents with highest γ among conicting agents. If there are
two or more agents with the highest γ, the friction parameter µ plays a role. In this article we
assume that the higher is the aggressiveness γ, the less should be the probability that none
of the agents wins the conict. Therefore, the conict is not solved with probability µ(1−γ)
(none of the agents move). With complement probability 1− µ(1− γ) the conict resolves



128 CHAPTER 5. DESIGNED MODEL

to the motion of one of the agents. This agent is chosen randomly with equal probability
from all agents involved in the conict having the highest γ. The conict solution among
heterogeneous group of agents is depicted in Figure 5.7.

Figure 5.7: Conict solution for γ1 < γ2. Left: More aggressive wins the conict over two
less aggressive. Right: The conict of two more aggressive can resolve by the blocking of
the movement.

The bonds principle is closely related to the possibility of choosing an occupied cell (kO 6= 1).
If an agent chooses as his target cell an occupied cell then the bond to the blocking agent
is created. The bound holds until the blocker moves or until the blocked agent is activated.
In the case of the earlier movement of the blocker (i.e., if the blocker moves within the
algorithm step before the activation of the blocked agent), the blocked agent follows the
blocking agent immediately outside his activation step, see illustration on Figure 5.8. This
principal supports the motion in lines and is further discussed in [4] or [5].

The set of bonded person works like waiting list { more than one agent induces conict,
which is solved according to previous rule. Chosen agent moves and other bonds are can-
celed. Again, if the chosen agent was a blocker, another agent can move. So the model can
come to deep recursion, which is limited by number of agents. The principle of waiting lists

Figure 5.8: Choice of the target cell with respect to sensitivity to occupancy. Left: kO = 0,
bond is created. In case blocking agent moves, blocked agent moves as well. Otherwise,
they stay. Right: kO = 1, motion to second most attractive cell. Rear agent moves anyway.
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and bonds is illustrated in Figure 5.9.

Figure 5.9: Example illustrating principle of waiting lists and bounds during one step. First
slide shows agent's position at the beginning of the step. Second slide displays decision of
all agents { triangled arrows represents waiting lists and squared arrows represents bounds
(synchronization is expected). The process of decision is not discussed in this illustration
(see �gure 5.3). Only waiting list of cell [2,5] contains just one agent, so he can move. Two
agents target to cell [3,5], therefore conict happens. According to the depicted situation,
conict did not disable the movement. Agent (3) is chosen randomly to move { third slide.
Agents (2,4) are bonded to agent (3), his motion causes their action. The conict is not
blocking, agent (2) was chosen randomly { fourth slide. Again, two agents are bonded to
him, but according to a draw, their conict blocks the movement. Agent (1) stays, thus
agent (8) remains bonded to him { �fth slide.

Figure 5.10 illustrates how bounds inuence the activity of agents. The principle of bounds
participates in agents synchronization. Faster agents may be blocked by slower ones, hence
they have to wait until their movement. From macroscopic perspective it could look like
homogeneous group. Moreover, when a blocker and a blocked agent have the same actual-
ization frequency, their following movement will be synchronized.
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Figure 5.10: Example illustrating the timeline with bonds. This situation describes the
cross of three agents. Agent 1 is fast (f1 = 0.8−1), agents 2 and 3 are two times slower,
f2,3 = 1.6−1. The movement of agents 1 and 3 is synchronized, agent 2 is ahead. It is
visualized in �rst slide (time t = 1.4), where only agent 2 is actualized. In time t = 1.6,
both agents, 1 and 3, chooses the cell occupied by agent 2 and make bounds. Agent 1 is
fast and he is actualized again in time t = 2.4: the bond is broken, he chooses empty cell
and moves there. Agent 2 moves in time t = 3, therefore bonded agent 3 jumps to this
displaced cell. He makes a move out of his step, his next actualization time is recalculated
by (5.12) with respect to actual time. This phenomenon leads to synchronization of agents
2 and 3.

5.5 Discussion

Proposed model contains many �xed or optional parameters (see Table 5.1), their inuence
will be discussed further.

Model has three coe�cients of sensitivity: to potential, occupation and prediction number.
The value of this triplet needs to be assessed.

The e�ect of sensitivity to occupation is the best observable { in case that an agent could
never choose occupied cell (kO = 1), model would not approximate the state of congestion,
when whole group moves without any gaps between agents. On the other hand it is obvious,
that when person decides between two equal cells and one is occupied, he chooses the empty
one with much more probability.

The sensitivity to potential inuences the stochasticity of decision. The higher the value is,
the higher is the probability of choosing the cells in the exit direction.

The e�ect of sensitivity to prediction number can be observed only indirectly, prediction
reduces the number of conicts.

The friction coe�cient, which simulates conicts, plays an interesting role mainly under
high density situations. In case of congestion, almost all agent's actualizations are accom-
panied by a conict. When the density is low, there are only a few conicts and therefore
this parameter is not important. The dependence of evacuation time on this coe�cient is
visualized on �gure 5.11.

The friction e�ect interacts with two other principles, which were implemented to the model.
Adaptive time span and dynamic timeline allow asynchronized motion of agents. But this
freedom reduces the number of conicts { conict happens only if more agents actualize in
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Quantity Default value Description

L Edge 0.4 m Lattice
~x = (xr, xc) Position of cell
N (~x) Moore Neighborhood
R 1 Range of neighborhood
pin Exponential Entrance probability
P (~y | ~x) =: pi Hopping probability
p̄i Cell selection formula
U(~x) Spherical Static potential
kU 3 Sensitivity to potential
F 1 Force of the exit
r(~e, ~x) Euclidean Distance to the exit
O~x(~y) =: Oi Boolean Occupancy of cell
kO 0.2 Sensitivity to occupancy
~xPα (t+ 1) Predicted position
ηP~x (~x, t) Boolean Prediction number
kη 0.7 Sensitivity to prediction
D(~x, ~y) Boolean Diagonal motion
C 0.2 Diagonal probability penalization
τ 0.3 s Model period
τi = f−1

i 0.25 { 0.4 s Agents period / frequency
τDi 0.5 τi Diagonal time penalization
µ 0.9 Friction parameter
γi 0 { 1 Aggressiveness of agent

Table 5.1: Parameter values and description

Figure 5.11: The dependency of evacuation time on the friction coe�cient µ. A crowd of
30 agent were arranged along the wall 10 m far from doors on the opposite side, simulating
the experiment E1, setting A. The values of parameters are following: C = 0.2, kU = 3,
kO = 0.2, kη = 0.7.
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the same time. Due to the di�erent velocity of agents and diagonal penalization, certain
degree of asynchronization is necessary and therefore this e�ect must be reected.

The second conict element is the principle of bounds, especially its e�ect in congested
state. When an agent moves, it enables consequently motion of all line, which is bounded
to him. Due to this phenomenon, the motion is more frequent than one could expect with
given values of parameters.

The principle of bonds plays important role for synchronization of movement. As mentioned
in section 5.3, two asynchronous agents with the same actualization frequency became syn-
chronous, after successful motion of both participants of bond. Paradoxically, the principle
of bonds is resolving conicts, but also it participates on increasing of their number.

The elimination of asymmetry in the model caused signi�cant intervention to the decision
process { the probability of choosing a diagonal cell is penalized by multiplication constant
C = 0.2 (thus 80% penalization). But the exponential function in the equation (5.9) strongly
bene�ts the diagonal cell, which allow

√
2 times longer step. The step length a�ects the

potential in the argument of exponential, therefore this penalization only compensates such
bene�t.

At the end, the potential modi�cation to complex geometry should be discussed. First,
the distance must be modi�ed to respect convex shape of room, e.g. the distance �eld
generated by Dijskra's algorithm in [96]. This approach enables also an e�ective avoidance
of obstacles. Second, the connection between rooms could be modeled by oriented graph,
an multilevel approach for tra�c is described in [68].



Chapter 6

Simulations

The purpose of this chapter is to demonstrate several mechanisms developed to support
microscopical aspects of pedestrian movement in cellular models. Each section focuses on
some model feature, it illustrates the e�ect of proposed improvements and discuss paramet-
ric setup.

We will start with initial calibration and discuss the symmetry { these studies are based
on two simple experiments E1 and E2. Then we will move to more advanced simulations
covering heterogeneity, phase transition or complex geometry supported by experiments E3,
E4, E5, E6.

The purpose of this work is not to recommend an optimal set of parameters, but (we believe)
it gives to the reader all information to decide what set of parameters he/she should use
to reproduce desired behavior. The values of model parameters has been setting up and
modi�ed for years. With changes in simulation design, some features were highlighted or
suppressed, thus there is no standard method describing calibration of our model in general.
Actually, there are no standards to calibrate any model, we could �nd just several test cases
that a model should ful�ll. This course was set even by government authorities in several
European countries [153].

The detail process of model calibration for a continuous rule based mode has been developed
just now in cooperation with Jana Vacková. It is based on independent calibration episodes
where each episode focuses on small group of set of parameters [32].

6.1 Initial Calibration

When the model was implemented, we have organized simple \leave the room" experiment.
In each of 29 experimental rounds, 30 of 70 participants took prede�ned positions at one
side of a room and on a signal, the walked out through the door at opposite side.

During this process, following phenomena were observed (see left part of Figure 6.1):

1. Pedestrians hold the lines and wait rather than walking around the crowd, thus oc-
cupation is not important, but the prediction and bounding principle is signi�cant

2. Pedestrians are not forced to form a cluster near exit; multi-line (chaotic) queue is

133
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formed instead

3. The movement is relatively deterministic

Figure 6.1: Visualization of progress of one round, pedestrians walked (left) and run (right).
Pictures A come from frontal camera, 9 s after initialization, when �rst person approaches
the exit and 15 s after initialization, when compact cluster is developed. Sub�gures B
project previous pictures to lattice representation and sub�gures C represent corresponding
realization of the simulation.

In the simulation we have considered homogeneous synchronous update, τi∀i ∈ N̂ = τ =
0.31 s. The other quantities were set with respect to the shape of the crowd, lack of
overtaking and low value of conict, as shown in Table 6.1

potential occupation movement friction diag. pen. time unit

kU kO kM µ c TU
3 0.2 0.7 0.9 0.2 0.31 s

Table 6.1: Values of parameters used for the cooperative simulation
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Furthermore, considering the essence of the experiment, moral barriers connected to social
conventions avoided the participants to create semi-spherical cluster in front of the exit,
which is expected in panic-like situations (see e.g. [62], [119], etc.). The participants were
not motivated to leave the room earlier than others, therefore there has not been observed
any drastic �ght at the door. As shown in Figure 6.2, the spontaneous development of lines
was observed instead.

Figure 6.2: Spontaneous line formation in front of the exit observed during experiments.

Later in the experiment, the running was allowed thus the mood among participants turned
to be more competitive1. We observed much more examples of overtaking and conicts,
the spherical shape of cluster formed near the exit. In that case, sensitivity to occupation
become more relevant, the recommended values of the sensitivity parameters should be
changed: Table 6.2

potential occupation movement friction diag. pen. time unit

kU kO kM µ c TU
3 0.9 0.9 0.9 0.2 0.31 s

Table 6.2: Values of parameters used for the competitive simulation

Here we note that the friction parameter seems to be extremely high, but his inuence is
weakened by the concept of bonds. Unresolved conicts serve mostly as the means enabling
to switch between lines in the chaotic queue in front of the exit.

Usually the potential U(~x) is de�ned in the spherical form U(~x) = |~x−~e‖2, where ‖.‖2 is the
euclidean norm and ~e is the position of the exit cell mostly set to ~e = (0, 0). The cooperative
\movement in lines" inspired us to deform the spherical form of potential iso-value curves
[3, 14] to shape

%(~e, ~x) =

√
10(eline − xline)

2

ecolumn − xcolumn
+ (ecolumn − xcolumn)2 . (6.1)

1For this part of the experiment, we chose just few of participants, all volunteered. We have instructed
to behave carefully even within this competitive setup. Anyway, the were not able to obey the rule to avoid
physical conict, thus only several rounds of this setup was executed.
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visualizes by the iso-value curves presented in Figure 6.3. Such potential optimizes the
reproduction of observed funnel-like shape of crowd by the simulations, but it brings another
(hardly calibrated) set of parameters. As the overtaking and line formation can be controlled
by sensitivity parameters, we will used the standard spherical potential in all simulations
described further.

Figure 6.3: Demonstration of suggested potential.

Here we note that the equation (6.1) is applicable to de�ne the required potential modi�ca-
tion only for normal conditions without obstacles, where the average direction of pedestrian
cloud center towards exit is in the positive x direction. The generalization to more complex
geometries requires more detailed experimental study and further discussion.

6.2 Symmetry

The independence of the motion to the lattice is obvious natural requirement. The travel
time should be the same as the distance is the same no matter whether an agent moves
north, south, east or west. Such requirement was tested on the travel time dependence on
the motion-grid angle as visualized in 6.4. The correct result is \independence".

As de�ned in previous chapter, we try to reach the symmetry using hopping probability
penalization and agent's period penalization.

6.2.1 Probability Penalization

Applying diagonal penalization to decision probability, we could reach the same travel time
for all desired angles even without time penalization, see 6.5.

Symmetry of the movement is inuenced by the strength of exit (or sensitivity to potential).
By increasing the strength the behavior becomes more deterministic, agents tend strongly
to follow the shortest path. It implies that constant value of diagonal penalization cannot
remove asymmetry in general. Fortunately it is necessary to remove the asymmetry just for
reasonable interval of strength parameter. Model must by symmetric in areas corresponding
to \real motion", and it is neither perfectly deterministic nor chaotic.

During testing, we determined the optimal value of diagonal penalization C = 0.15. This
value assures that the number of steps does not depend on angle in area of used strength
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Figure 6.4: Design of testing the symmetry. The euclidean distance of points 1 { 6 to the
target is the same (20 cells), hence the time distance must be equal.

Figure 6.5: Inuence of diagonal penalization coe�cient to travel time. 100 000 simulations
ran for 5 initial positions according to Figure 6.4, 10 cells far from attractor (position labels:
1 { circle, 3 { square, 4 { triangle, 5 { diamond, 6 { star), the strength of exit was set to
kO = 0.2, kη = 0.7, kU = 1, F = 2. Lower value of coe�cient corresponds to higher
penalization.

of the exit (see the graph in Figure 6.6). The model uses strength from interval F ∈ 〈2, 3〉,
where value F = 2 corresponds to chaotic behavior and the value F = 3 represents almost
deterministic movement. The chaoticity was assessed with respect to the number of random
deviations.

This solution has unfortunately crucial disadvantage: In case of diagonal direction to target
cell, one diagonal step is, with some level of randomness, followed by a pair of horizontal and
vertical steps. On average, three time steps are used to travel 2 ·

√
2 ≈ 3 distance units, that

is ok. But the alternations of diagonal and orthogonal steps cause a rough trajectory with
frequent changes of actual direction. That is in conict with observed straight movement.
As our goal is to model even microscopic features, we have to introduce another approach.
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Figure 6.6: Travel time with respect to strength of attractor, the hopping probability of
diagonal movement is penalized (C = 0.15). Marks represent di�erent angles, see Figure 6.4
{ labels ×,4, ◦ represent starting position 1,4,6. For each of them, 10 000 simulations were
performed for di�erent strengths. The values of other parameters are following: kO = 0.2,
kη = 0.7, kU = 1.

6.2.2 Time Penalization

Another idea is to release strict time management and adjust time consumption of a step
with respect to the step length. It brings several complication, but as already explained in
section 5.3, this approach has multiple bene�ts.

As seen in Figure 6.7, the evacuation time after applying τDi = 0.5 is still relatively di�erent
for di�erent angles. The minimal time does not drop under 20 s as expected with respect
to the distance, but the time for \orthogonal" directions is too high.

The �gure 6.8 illustrates the most likely deviations from straight direction for both, orthog-
onal and diagonal movement. It is evident that the deviations are less pro�table in case of
diagonal direction, due to the higher di�erence of the distance to the exit. Therefore the
probability of deviations is higher for orthogonal movement that cause higher travel time.

Even time penalization does not decrease the asymmetry to the required level, it seems
optimal solution should combine both approaches.

6.2.3 Synthesis

As a �nal solution, we have calibrated probability penalization for values of the strength of
the exit F ∈ 〈1, 4〉 with activated time penalization. The dependency of travel time to the
strength of attractor was evaluated for multiple values of C, as seen in the Figure 6.9, the
asymmetry vanished for the probability penalization set to C = 0.2.

Here we should note that this value di�ers from the value of penalization introduced in
previous section. It is natural as �rst approach normalized the system without the time
penalization.
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Figure 6.7: The graph of evacuation time (measured in real time) with respect to the
strength of the exit. The inuence of time penalization was included, in contrary to prob-
ability penalization (C = 1). Markers represent di�erent angles, see Figure 6.4 { labels ×,
4, resp. ◦ represent starting position 1, 4 resp. 6. For each of them, 10 000 simulations
were performed. The values of other parameters are following: kO = 0.2, kη = 0.7, kU = 1.

Figure 6.8: Most likely deviations from straight direction. Gray color represents the best
cell, squared cells illustrate given deviations.

6.3 Heterogeneity in Parameters

One of the most important observation from our experimental study E4 is the fact that
the pedestrian di�ers. It does not sound like a big surprise, but the dramatic di�erences of
evacuation time among the participants passing the room in the same time deserves to be
reected in the model.

6.3.1 Heterogeneity in Velocity and Aggressiveness

The e�ect of the aggressiveness has been studied by means of the simulation in paper [12].
Results stressed in this article come from the simulations with parameters given by Table 6.3.
The values of τi and γi are distributed among agents uniformly and independently on each
other.
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Figure 6.9: Evacuation time with respect to the strength of exit. The inuence of both time
penalization and probability penalization (C = 0.2) was included. The marks represent
di�erent angles, see Figure 6.4 { labels ×,4, ◦ represent starting position 1,4,6. For each
of them, 10 000 simulations were performed. The values of other parameters are following:
kO = 0.2, kη = 0.7, kU = 1.

kS kO kD h µ τ γ
3.5 1 0.7 0.1 s 0.5 {.25, .4} {0, 1}

Table 6.3: Values of parameters used for simulation of aggressiveness Only.

The simulation set-up has been designed according to the experiment, i.e., the room of the
size 7.2 m × 4.4 m has been modeled by the rectangular lattice 18 sites long and 11 sites
wide. The size of one cell therefore corresponds to 0.4 m × 0.4 m. The exit is placed in
the middle of the shorter wall, the open boundary is modeled by a multiple entrance on
the opposite wall. New agents are entering the lattice stochastically with the mean inow
rate α [pedestrians/second]. The inow rate is a controlled parameter. For more detailed
description of the simulation we refer the reader to [7].

It has been shown that such system evinces the boundary induced phase transition from
the free ow (low number of agents in the lattice) to the congestion regime (high number
of pedestrians in the lattice) via the transient phase (number of pedestrians uctuating
between the low and high value). Therefore, wise choice of di�erent inow rates α covering
the all three phases, enables us to study the dependence of the travel time TT on the average
number of agents in the lattice Nmean. When simulating with parameters from Table 6.3,
the correct choice of inow rate is α ∈ [1, 3].

Figure 6.10 shows the dependence of the travel time TT = Tout − Tin on the average
number of agents in the lattice Nmean calculated according to (2.2). Measured data con-
sisting of pairs (Nmean, TT ) are aggregated over simulations for inow rate values α ∈
{1, 1.5, 1.8, 2.0, 2.3, 2.7, 3.0}; for each inow α twenty runs of the simulation have been per-
formed. Each run simulates 1000 s of the introduced scenario starting with empty room.
Agents were distributed into four groups according their own period τ and aggressiveness γ,
namely \fast aggressive" (τ = 0.25, γ = 1), \fast calm" (τ = 0.25, γ = 0), \slow aggressive"
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(τ = 0.4, γ = 1), and \slow calm" (τ = 0.4, γ = 0).

Figure 6.10: Dependence of the mean travel time TT on the average occupancy Nmean for
each group of agents. Gray lines represent the quantiles of the travel time regardless to the
groups. Top: heterogeneity in both, γ and τ . Bottom left: heterogeneity in τ . Bottom
right: heterogeneity in γ.

In the graph of the Figure 6.10 we can see the average travel time for each group calculated
with respect to the occupancy of the room. It is evident that for low occupancy up to 10
agents in the room the mean travel time for each group levels at a value corresponding to
the free ow velocity given by the own updating period. For the occupancy above 20 agents
in the lattice, the linear growth of the mean travel time with respect to Nmean is obvious.
Furthermore, the average travel time for fast-calm corresponds to the travel time of slow
aggressive. The Figure 6.10 shows two auxiliary graphs presenting the dependence of TT
on Nmean for systems with homogeneity in γ (left) or in τ (right). From the graphs we
can conclude that the heterogeneity in aggressiveness γ reproduces the desired variance in
the slope of the graph without the non-realistic high variance in free ow generated by the
heterogeneity of own updating frequency.

The inuence is even more evident from the graph in Figure 6.11 representing a plot of
all travel time entries with respect to the time of the exiting Tout. Right graph shows the
box-plots of the travel time for four groups measured after 500 s from the initiation, i.e.,
in the steady phase of the system. We can see that in this view, the aggressiveness plays
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Figure 6.11: Left: Development of travel time TT in time for one run of the simulation. The
value TT is plotted against the time of the exit Tout to ensure that values corresponding
to the same time stem from similar conditions near the exit. Inow rate α = 3 ped/s. The
agent group is indicated by the color. Right: Box-plots of the travel time for entries with
Tin > 500 s (i.e. in the steady state).

more important role that the desired velocity of agents.

6.3.2 Heterogeneity in Sensitivity to Occupation

Main goal of this section is to append the heterogeneity in the sensitivity of occupation to
the arrangement presented in previous section. As summarizes in the article [14] we focus
on the heterogeneity in free-ow velocity (represented by own frequency), aggressiveness,
and sensitivity to occupation.

Experimental Setup

In order to have comparable results to the experiment, the parameters have been calibrated
to give similar values of important macroscopic quantities as free ow velocity (1.57 m/s in
experiment) and maximal outow (1.4 ped/s in experiment). The used set of parameters is
given in Table 6.4.

The free ow simulation (without interactions) is directly inuenced by kU , C and τi. The
diagonal penalization C together with time penalization of diagonal motion have been tested
in previous research. The values of kS and τi have been chosen to agree with the mean and
variance of the free-ow velocity. Here we note that the pedestrians in the experiment
walked relatively fast (1.57 m/s), which motivated us to set the algorithm step τ = 0.2 s of
real time to balance signi�cant decrease of velocity in congested regime.

The motion of agents in crowd is inuenced by parameters µ, γi, and kO. These parameters
have been calibrated to �t the maximal outow from the exit in congested situation, i.e,
the exit capacity (1.4 ped/s). The signi�cant decrease of velocity in crowd is modeled by
means of relatively high friction µ = .9. Here we note that such high friction is necessary
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Parameter Value Range Description

∆m [cm] 0.4 Lattice constant
kU 3.5 [0,∞) Sensitivity to potential
C 0.7 [0, 1] Penalization of diag. motion
µ 0.9 [0, 1] Friction parameter
τ [s] 0.2 (0,∞) Length of one time step
τi [s] 0.2 (0,∞) Homogeneous own period

{0.15, 0.4} Heterogeneous own period
γi 0.14 [0, 1] Homogeneous aggressiveness

{0, 1} Heterogeneous aggressiveness
kO 0.9 [0, 1] Homog. sensitivity to occupation

{0.1, 0.95} Heter. sensitivity to occupation

Table 6.4: Parameter values and description

Figure 6.12: The box-plots of outow Jout from the congested room (N = 50) measured
for 20 runs of the simulation experiment for each parameter set. The box gives information
about .25, .5, and .75 quantile.

to compensate the conict solution mechanism related to aggressiveness and the motion in
lines related to the sensitivity to occupation.

Our goal is to illustrate the e�ects of heterogeneity in chosen parameters. Therefore, the
values of outow had not been calibrated directly to the value 1.4 m/s, but su�ciently
close to it, see Figure 6.12. Such approach enables to �t the homogeneous and heteroge-
neous values of each parameter independently and therefore can be used in all considered
scenarios { 1: hom (homogeneous in all parameters), 2: tau (heterogeneous in velocity), 3:
agr (heterogeneous in aggressiveness), 4: obs (heterogeneous in sensitivity to occupation),
5: agr,obs (heterogeneous in aggressiveness and occupation independently), 6: agr+obs
(heterogeneous in aggressiveness and occupation with dependence, i.e., there are only two
groups of agents: aggressive more sensitive to occupation and non-aggressive less sensitive
to occupation).

The simulation was performed for system with periodic boundaries, i.e., the egress of an
agent causes the entrance of another one (contrary to [12], where open boundaries were
used giving the same results). The properties of agents (τi, γi, kO) were drawn from uni-
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form distribution on the groups of parameters. For each set of parameters the simulations
were executed for the occupancy N ∈ {1, 3, 5, 7, 10, 12, 14, 17, 20, 30, 40, 45, 50, 75, 100}. The
simulation was carried on until 1000 agents walked through the exit and it was repeated 20
times. All quantities are averaged.

Simulation Results

In Table 6.5 the measured values of free ow velocity v0 (velocity for agents under the
occupancy N ≤ 4), maximal outow Jout, and average travel-time TTN for all 6 settings
are compared to the experimental values. From the values we can see that the average
travel-time is slightly, but not signi�cantly, overestimated by the model. The lower free-ow
velocity in case (2: tau) is caused by the heterogeneity in velocity; This set of parameters
does not allow to �t both, the free-ow velocity and the outow. The reason lies in the
synchronous update with τ = 0.2 s. As will be discussed below, the heterogeneity in velocity
de�ned by the own frequency is not desirable for the presented model with respect to the
performed experiment.

Exp. 1:hom 2:tau 3:agr 4:obs 5:agr,obs 6:agr+obs

v0 [m/s] 1.57 1.11 1.57 1.57 1.57 1.57 1.57
Jout [ped/s] 1.40 1.42 1.39 1.37 1.38 1.35 1.30
TT 45 [s] 24.31 30.74 30.76 30.72 31.17 32.01 33.05
TT 100 [s] { 67.74 66.83 67.84 67.52 67.63 70.59

Table 6.5: Average quantities measured for di�erent parameter settings.

The main stress is given to the travel-time study and dependence on the average occupancy
Nmean, which reects the heterogeneity in the reaction to the crowd. The TT −Nmean plots
for studied parameter sets are given in Figure 6.13. In the graphs the mean travel time is
plotted according by groups with the same parameters, the overall mean and quantiles are
present for completeness. From the graphs it is evident that the model is able to mimic the
piece-wise linear dependence (3.5) of TT on Nmean, which is present in the experimental
study. The break-point of the model is in agreement with the experimental observation at
the value N = 7.

We can see quite good agreement with the experiment regarding the trend of the dependence
of TT on the occupancy not only in average but also in the minimal and maximal measured
values, see Figure 3.15. Due to to signi�cantly lower volume of data from the experiment
it is reasonable to compare the 0.1 and 0.9 quantiles. Here we note that the lower average
TT in experiment (24.31 s) than produced by the model (approx. 30 s) is caused by the
small volume of data related to N ≈ 45 in the experiment { such crowded conditions were
kept for relatively short time due to the small number of participants (75).

We can see that the di�erences in the slope of the linear dependence can be observed
in all heterogeneous scenarios. Nevertheless, for further studies we have neglected the
heterogeneity in the own updating period τi, related to velocity. Even the homogeneous
setting of free-ow velocity can reproduce variances in the free-ow travel-time in su�cient
manner due to the stochastic nature of Floor-Field model. Therefore, another heterogeneity
in the parameter τi is redundant. On the other hand, the concept can be used in case of
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evident heterogeneity where the desired velocity signi�cantly di�ers [80, 128].

The heterogeneity in aggressiveness parameter γi becomes evident in occupancy N ∈
(10, 50), the e�ect does not rise signi�cantly for higher occupancy, see sub-�gure 3. Comple-
mentary evinces itself the heterogeneity in sensitivity to occupancy kO (sub-�gure) 4, which
becomes most evident for occupancy N > 50. Interesting results brings the combination of
these two parameters. The scenario 5 shows that the heterogeneity in γi and kO combines
both e�ects from 3 and 4 in superposition manner. The scenario 6 (aggressiveness and
occupancy are dependent) shows the highest di�erence in the slope of TT .

Here we note that the sensitivity to occupation should be interpreted as the willingness
to join an existing queue in order to move along this queue. It is therefore reasonable to
suppose that the aggressive behavior is related to the willingness to overtake, i.e., kO → 1.

For further comparison let us focus on the distribution of the relative travel time TTR. In
Figure 6.14 we can see the histograms of TTR for scenarios 1, 3, and 6, i.e., with increasing
heterogeneity. We can make a conclusion that with increasing heterogeneity the relative
frequency of low values of TTR (�rst bin) increases. Similarly, the modus of the distribution
is closer to lower values for higher heterogeneity (bins 4, 3, 2).

Looking at the histograms of TTR related to heterogeneous scenarios, we conclude that the
�nal distribution can be considered as a mixture of two uni-modal distribution corresponding
to two groups of agents, which seems to be the case of the experiment as well.

Although some di�erences between scenarios 3 and 6 are evident, they might be considered
as marginal in comparison with the homogeneous case 1. Let us therefore focus on another
aspect observed during the experiment { the path choice. In Figure 6.15 we can see the
snapshots from the simulation showing a representing situation of the simulation. In sce-
nario 3, the more aggressive agents are more successful in pushing through the crowd, but
they do not evince any preference in path-choice. In scenario 6, the aggressive agents prefer
walking around the crowd and hopping to the exit from the left or right. As a consequence,
less aggressive agents standing in lines remain often trapped few cell away from the exit, as
often observed during the experiment.

Summary and Conclusions

In this section we have shown that the heterogeneity in the ability to win conicts is nec-
essary to reproduce experimentally observed behavior in cellular models. Such property
can be useful for proper modeling of an evacuation of a complex structure, where the het-
erogeneity in the ability to win conicts is expected. In such cases a group of people can
remain trapped within the facility for unjusti�able long time, although the average ows
and evacuation times ful�ll the expectations.

The introduced aspects of heterogeneity can be summarized as follows:

1. Velocity: The heterogeneity in velocity causes undesired bi-modal histogram in the
free-ow regime. The observed heterogeneity in pedestrian sample can be su�ciently
modeled by the stochastic nature of the decisions, the variance in the travel time
is then related to the number of deviations from the direct path. Nevertheless, the
concept can be used in dramatically heterogeneous scenario where the average speed
of one group of pedestrians is two times higher than the average velocity of other
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Figure 6.13: Average travel against mean occupancy plotted by groups. Black line represents
the mean over all entries, gray lines correspond to 0.1, 0.5, and 0.9 quantiles. Colors
distinguish individual groups, the values of heterogeneous parameters are given in legends.
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Figure 6.14: normalized histograms of relative travel-time TTR for scenarios 1: hom, 3: agr,
and 6: agr+obs.

Figure 6.15: Snapshots from the simulation of scenarios 1: hom, 3: agr, and 6: agr+obs
approximately 60 s after initiation. By red dots are marked more aggressive pedestrians.

group. Here we note that this conclusion is valid for models with parallel (or partially
parallel) update enabling the presented conict solution. In case of asynchronous
update the heterogeneity in desired speed plays important role, as e.g. in [140].

2. Aggressiveness: This conict-solution method, where the conict is won by the
agent with higher value of aggressiveness, seems to be very e�cient to reproduce the
high variance of the TT in the congested regime. In combination with the hetero-
geneity of the velocity we are able to simulate a situation when slower agent is more
aggressive than a fast one. It is important to note that the term aggressiveness may
be a little bit misleading, since it corresponds to the ability to win conicts, which
may be given by some rules of preference as well.

3. Sensitivity to Occupancy: This aspect inuences mainly the space usage by the
agent in given conditions. The lower the sensitivity is, the higher is the average TT
for the agent, since he waits in lines and can be overtaken and trapped in front of the
exit. This parameter plays very important role in combination with the parameter of
aggressiveness.
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6.4 Phase transition

6.4.1 First Insight

The above mentioned model has been used to simulate the phase transition analogically
to [54], where a situation of a rectangular room with one entrance and one exit has been
introduced. The phase transition occurs due to the change of the inow parameter α. In
[54], the situation was studied by means of simple Floor Field model with aggressiveness
parameter ζ. In this section, we present the experiment \passing through", which was
inspired by the setting mentioned above.

Within E3, eight inow settings have been considered. The setting is characterized by the
number of entering pedestrians ns and the mean value of time headway µs. From these
the average inow current Jin can be calculated as Jin = ns/µs pedestrians per second.
As we have used the time unit corresponding to 0.31 s as the algorithm step, we de�ne
αexp = Jin · 0.31 pedestrians per model time unit (TU). This value gives the average inow
rate per time step, which is used for simulations. That means αexp should represent the
probability of the injection of new pedestrian to the system within one TU . Experimentally
measured values are given in Table 6.6.

setting µs ns Jin αexp observed state

1 1.78 2 1.12 0.35 free ow
2 1.68 2 1.19 0.37 free ow
3 1.59 2 1.26 0.39 free ow
4 1.43 2 1.40 0.43 temporary cluster
5 1.85 3 1.62 0.50 stable cluster
6 1.72 3 1.74 0.54 congestion
7 1.66 3 1.81 0.56 congestion
8 1.57 3 1.91 0.59 congestion

Table 6.6: Experimental setting: inow rates

As seen from Table 6.6, the settings were classi�ed according to macroscopic observations:
free ow regime, congested regime, and meta-stable regime. In the free ow regime (settings
1, 2, and 3) pedestrians walked freely through the room and did not block each other in front
of the bottleneck. In meta-stable regime, occasional conict in front of the exit resulted to
a small cluster formation, which melted after short time period (setting 4) or stabilized, but
uctuated around 5 pedestrians in the cluster (setting 5). By increasing the inow rate,
the competition at the door signi�cantly blocks the motion and rapidly increases size of the
stable cluster which �lls in signi�cant part of the room (settings 6, 7, and 8).

Analogical observation was made by the simulations using the model described in previous
section. The transition from free regime to the stable congestion was observed at the inow
rate αsim ∈ 〈0.42, 0.46〉 pedestrians per second, which corresponds to the experimental
observation. At the critical values of αsim, the creation and melting of the temporary
cluster was highly supported by the asynchronous update and bounds principle.

These observations motivated us to investigate the phase transition in detail.
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6.4.2 Detailed Observation

The study [10] focuses on the critical behavior, where the increasing inow of pedestrians
leads to the clogging inside the room and signi�cant drop of the ow. Consider a rather
small rectangular room with one small exit and one multiple entrance. Pedestrians are
entering the room with known (or given) intensity α [pedestrians/second] in order to pass
through and walk out of the exit. Such scenario has been investigated in [52] by means of
a simple version of Floor-Field model [77, 96] with friction function [148]. Similarly to the
well known one-dimensional TASEP model [48], a boundary induced phase transition from
free ow to congested regime has been observed as well as the metastable transient state at
the transition point between those two phases.

This article introduces a transformation of the presented modi�cations into the language of
CA with isochronous steps. By means of the numerical calculations of the CA, the inuence
of bonds, asynchronous update, and heterogeneity to the inow induced phase transition
from free ow to congestion is studied and compared to the experiments.

The existence of the so called low and high density phase in dependence on the boundary
parameters is a typical feature of cellular models based on hopping of particles. In this
section we aim to investigate the transition from the low to the high density in stated
models. As shown e.g. in [52], the transition is very sensitive to model parameters and
divides the parametric space into phases.

The parameter kU has been set to the value kU = 3.5 to balance the deterministic motion
in free ow and stochastic behavior in the congested cluster (see [4] or [5]). As will be
explained in detail below, for purposes of this article two values of kO have been chosen:
kO = 1 corresponding to the situation that occupied cells are excluded from the decision
process and kO = 0 incorporating the possibility of choosing an occupied cell, which is
closely related to the principle of bounds. Analogically, kD = 1 corresponds to the von
Neumann neighborhood and kD = 0.7 corresponds to the Moore neighborhood with certain
diagonal movement penalization [4].

Phases Classi�cation

The term density refers to the ratio of occupied cells to the number of all cells in the lattice.
Let us in the following denote the number of occupied cells in time t as

Nt =
∑
x∈L

1{τt(x)>0} , (6.2)

where 1 is the identi�er of the event. The number of occupied cells (referred to as the
occupancy) will in the following play the role of the density, since the number of cells of the
CA remains constant.

One way to study such system is to investigate its' steady-state properties. Since the
process is assumed to be ergodic, steady state occupancy corresponds to the long time
average denoted as N∞. The intuitive look at the open boundary system suggests that the
steady-state occupancy increases linearly with the inow alpha until it reaches the capacity
of the exit, which leads to the complete �lling of the room. This jump in the N∞ − α
diagram may be understood as the transition from the free ow (linear dependence) to the
congested regime (�lled room).
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We aim to investigate such transition based on the observation of system with rather low
number of cells observed in a �nite time horizon, since it corresponds to the measured
experiments. In such case, the transition is rather smooth than jump-like.

To classify the phases properly, we use the sample average occupation 〈Nt〉 = 1
K

∑K
k=1Nt;k

averaging the actual occupation Nt over K = 30 trajectories of the stochastic model.

Classi�cation of the phases is then as follows:

1. Free ow : Low inow leads to the absence of interactions near the exit. Only a
temporary increase of the number of occupied cells may occur in front of the exit. Nt

levels at low value N∞. The steady-state occupancy N∞ increases linearly with α.

2. Congestion: The inow α exceeds the exit capacity and individuals �ll-in almost the
whole lattice. Nt stabilizes, levels around high value N∞. The steady-state occupancy
N∞ is independent on α.

3. Transient phase: Individual trajectories of the model can correspond to both above
mentioned phases. The variance of Nt is high in the sense of the sample variance as
well as in the time variance along one trajectory.

Representative trajectories corresponding to individual phases are depicted in Figure 6.16.

Figure 6.16: Time evolution of the average occupancy 〈Nt〉 (black line), minimal and maxi-
mal occupancy minkNt;k, resp. maxkNt;k (gray lines), in comparison to individual samples:
above the average (�), oscillating (•), and below the average (�). h = 0.3, kO = 0, homo-
geneous. Free ow (left), transition (middle), congestion (right).

Simulation and Considered Settings

The model has been studied by means of computer simulation for 18 di�erent settings of
model parameters in order to investigate their inuence on the boundary induced phase
transition. Investigated features are: time-step length τ , i.e., synchronism of the update;
principle of bonds, i.e., possibility of choosing the occupied cell represented by parameter
kO; and heterogeneity of the own frequency τi. Other parameters have been �xed.

Based on the previous studies [52, 5] the �xed parameters have been set to following values:
µ = 0.7 { high friction to slow down the motion within the crowd, kS = 3.5 { to balance the



6.4. PHASE TRANSITION 151

Figure 6.17: The room with parameters a = 7.2 m, b = 4.4 m, c = 1.3 m; d = 0.5 m is
modeled by the rectangular lattice 11×18 cells, i.e., w = 5, l = 18.

deterministic and fully probabilistic choice of the target cell, kD = 0.7 { due to symmetry
analyses.

The time-step length has been chosen from the set τ =: h ∈ {0.1, 0.2, 0.3} s, i.e., from the
asynchronous to synchronous update (mean value of τi is 0.3 s). The occupancy parameter
kO ∈ {0, 0.5, 1}, 0 means that occupation does not inuence the probability (5.9), 1 means
that the occupied cell is never chosen as a target cell. Homogeneous sample is characterized
by the uniform own frequency τi = 0.3 s, heterogeneous sample consists of individuals with
own frequencies τi ∈ {0.2, 0.4} s.

All simulations started with empty room, i.e., all cells are unoccupied at the beginning.

As mentioned above, we focus on the simulation of passing through a room with the entrance
on one side and the exit on the opposite side. To match the experiments described in [5]
and [6], the room was equipped with one exit of the width corresponding to one cell and
three entrances placed on the opposite wall to the exit, as illustrated in Figure 6.17. The
inow is controlled by the inow parameter α, which determines the number of pedestrians
coming to the entrance per one second (i.e., if the room capacity is reached, agents are
accumulated in front of the entrance). For purposes of the simulation, the room 7.2 m long
and 4.4 m wide has been chosen. The cellular model used for the simulation is described
below.

To simulate and control the randomized inow of pedestrians into the room, geometric
distribution was used. The number of steps between the input of two consecutive agents to
one entrance Ij is given stochastically by the geometric distribution, i.e., the probability of
another agent coming to the row in front of the entrance Ij is

p(k) = (αh/3)(1− αh/3)k−1 , (6.3)

where h is the length of the algorithm step, which depends on the used updating scheme,
as described below.

Simulation Results

For each settings 15 scenarios corresponding to di�erent values of inow rate α ∈ [0.5, 3]
have been investigated by means of the computer simulation. The statistics is based on the
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sample average over K = 30 trajectories of each scenario. The dependence of the steady-
state occupancy N∞ on the inow rate α is depicted in Figure 6.18 for 9 settings with
homogeneous own frequency (As follows from the graphs in Figure 6.20, the heterogeneity
has only marginal inuence to the phase transition).

Figure 6.18: The dependence of N∞ (�) and N150 (◦) on the inow α in comparison to the
experimental results (�) from 150 s of the measurement.

For completeness the graphs are accompanied by the average occupancy N150 in time
t = 150 s in order to compare the simulation to the experimental results. Due to time
demanding nature of the experiment, each run of the experiment was stopped after the
number of pedestrian inside the room stabilized (in free ow or transition regime) or when
the pedestrians were not able to enter the room according to given inow rate (in congestion
regime { majority of volunteers was inside the room). Therefore, 150 s seems to be good
reference point for all runs of the experiment, for more detail see [8, 11].

Crucial feature in the phase transition is the critical inow αc corresponding to the tran-
sient state at the border between the free ow phase and congestion phase. To detect the
transition by means of the simulation we have used the properties of the time of the �rst
pass over the steady-state occupancy, de�ned as

Tk = inf{t ∈ [0,+∞) | Nt;k ≥ N∞} . (6.4)

From the mechanism of the phase transition it follows that the average time of the �rst
pass 〈T 〉 = 1

KTk increases with α in free ow and decreases with α in the congestion phase.
Therefore, the critical inow αc is determined by the change of these trends, as depicted in
Figure 6.19.

In Figure 6.20, the values of steady-state occupancy N∞ and critical inow rate αc are
plotted according to considered settings. From these observations, several conclusions can
be drawn:
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Figure 6.19: Determination of αc by means of the time to the �rst pass of Nt;k over the value
N∞. Highest average 〈T 〉 and highest variance of T correspond to the upper estimation of
the critical inow αc. Example for h = 0.3, kO = 0, homogeneous.

Figure 6.20: Comparison of individual settings according to investigated parameter. Left
column of the same color corresponds to the homogeneous, right to the heterogeneous
setting.

1. The Heterogeneity of the individuals does not have signi�cant inuence to the phase
transition.

2. The principle of bonds inuences mainly the steady-state occupancy N∞, but has
not signi�cant inuence to the critical inow rate αc. The more signi�cant are the
bonds in the model (decreasing kO), the lower is the maximal occupancy. This can
be interpreted in the way that individuals prefer standing in lines and have not such
e�ort to �ll the empty but disadvantageous cells.

3. The length of the time-step h inuences mainly the critical inow rate αc, but does not
signi�cantly inuence the maximal occupation. The more asynchronous the update
is (lower h), the higher is the critical inow, i.e., the higher is the outow from the
room, which corresponds to the room capacity. It is worth noting that the value of
critical inow αc is highly inuenced by the update rules for the exit cell E. In the
original article [7], the exit cell has been emptied immediately after it was entered
by the egressing individual. This leads to unrealistic high outow for asynchronous
update. Nevertheless, this feature may be used for smoother modeling of the varying
exit width than is allowed by the size of the lattice cells.
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Heterogenous Homogenous
HET: τ1 = 0.3 s HOM: τ = 0.3 s

τ2 = 0.4 s

No bounds Bounds
F: kD = 1.0 O: kD = 0.0

Moore von Neumann
M: kO = 0.7 N: kD = 1.0

Synchronous Asynchronous
S: h = 0.3 A: h = 0.05

High friction Low friction
H: µ = 0.7 L: µ = 0.2

Table 6.7: Numbering of speci�c settings and given parameters. In the following �gures, the
setting is identi�ed by the corresponding position as shown in the right part of the table,
odd numbers represent high friction. Therefore, setting 11 means heterogeneity, bounds,
asynchronous update, Moore neighborhood, and high friction.

6.4.3 Parametric Study

In [52] the transition from low density to high density phase in dependence on inow pa-
rameter α has been investigated with respect to the friction function parameter ζ. In this
section (published in [7]) we focus on such dependence on the model type classi�ed according
to Table 6.7. The investigation is far from complete parameter investigation or validation.
We aim above all to point out characteristic features and mechanism of the transition.

We distinguish 32 combinations of di�erent representative settings according to Hetero-
geneity/Homogeneity; With/Without bounds; Moore/von Neumann neighborhood; Syn-
chronous/Asynchronous update; High/Low friction. The numbering of given settings to-
gether with speci�c values of parameters is given in Table 6.7.

As we aim to investigate the system in the steady state, we have let the model to evolve for
a long period. By the free ow setting we understand such set of parameters under which
the room does not become over�lled by the agents. The congested setting is characterized
by the creation of stable cluster in front of the exit, which size grows to the capacity of
the room. By the transition from the free ow to the congestion phase we understand the
change from free ow to congestion setting by increasing inow parameter α.

Results

For each of the 32 settings, simulations with variety of inow parameters α have been
performed. Three basic characteristics have been measured in the steady state: travel time,
room occupancy and real inow into the room. By the travel time we understand the time
an agent spent in the room, i.e., from the time of the entrance (which is di�erent from the
time of coming to the row in front of the exit) to the time of leaving the room through the
exit; room occupancy denotes the average number of agents inside the room, and the real
inow stands for the number of pedestrians entering the room per second. This quantity
corresponds in the steady state to the average ow.
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Figure 6.21: Travel time with respect to α. The graph position corresponds to Table 6.7.
Blue diamonds represent µ = 0.7 and red squares µ = 0.2

Figure 6.22: Occupancy with respect to α. The graph position corresponds to Table 6.7.
Blue diamonds represent µ = 0.7 and red squares µ = 0.2

From the simulation results in Figures 6.21 and 6.22, several conclusions can be made:
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� Appropriate values of saturation inow αS are added to the graphs. We can read that
the \capacity" of the room is not necessarily close to the number of cells 11×18 = 198.
When the bonds principle is implemented (row 2 and 4, numbers 9-16 and 26-32), the
maximal number of pedestrians is signi�cantly lower. This can be explained by the
possibility of choosing an occupied cell. Agents partially stand in lines and only several
of them are trying to run over the crowd.

� Another important aspect is the shape of the curves near the saturation point. In
the majority of the settings the average travel time levels before the saturation point
(number of pedestrians increases linearly). The change of the curves towards the
saturation value is sharp, jump-like. In settings with bonds and asynchronous updates
(numbers 11/12, 15/16, 27/28, and 31/32) is the transition much smoother with
respect to inow α. The travel time increases slightly before the saturation point and
smoothly reaches the maximum corresponding to the saturation. This phenomenon
is more obvious in the case of Moore neighborhood (columns 1 and 2), as expected.
the smooth shape of the travel time curve in the case of bounds can be explained by
the motion in lines which is supported by this principle. Agents are rather waiting
in lines then walk around each other. In the higher inow case (2.0 < α < 4.0) leads
to slight increase of the travel time, but suppresses the overall delay caused by the
friction.

� From the observations it follows that the heterogeneity of the system does not qual-
itatively nor quantitatively inuence the system on the macroscopic bases captured
by the travel time, occupancy, or saturation point. This is mainly caused by two as-
pects. Firstly, the macroscopic quantities are compared by means of aggregated data,
which suppresses the heterogeneity nature. Secondly, the heterogeneity in the setting
is given by the 50-50 distribution of velocities τ1 and τ2 keeping the decision process
intact (there are no aggressive pedestrians etc.). Nevertheless, in microscopic point
of view does the heterogeneity inuence the histograms of travel time in the free ow
with α� αS as shown in Figure 6.23.

� The friction parameter inuences mainly the behavior of the system with synchronous
updates. Although the value µ = 0.7 seems to be unrealistic (values between 0.2 and
0.3 are commonly used as e.g. in [78]), in the settings incorporating bonds and/or
asynchronous update the number of conicts is suppressed, therefore it is important
to increase the friction to maintain the ratio of conicts per time unit.

In Figure 6.24 four representatives are compared with two sets of experimental data. In
agreement with [5], the transition from free ow to stable cluster was observed at inow
rate α ∈ (1.3, 1.6) ped/s.

Conclusion

Three characteristics have been used as the indicator of the saturation point and shape of
the transition: average travel time, average occupancy of the room and average inow. The
analyses of the settings 11/12, 15/16, 27/28, and 31/32 (bounds and asynchronous update)
shows that the transition does not have to be sharp and jump-like. In the mentioned settings
the transition is rather smooth with respect to the inow α.
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Figure 6.23: Travel time histograms for free ow α = 0.4 ped/s.

Figure 6.24: Comparison of selected settings with experiments (yellow circles and orange
squares).

From the evaluation of experiments it follows that setting with higher friction corresponds
better to the identi�ed saturation point αS ≈ 1.4 ped/s when principle of bounds is im-
plemented. Furthermore, the synchronous update leads to better correspondence as well,
as can be shown in Figure 6.24, where synchronous settings 25/26 are compared to asyn-
chronous settings 27/28. The asynchronous update signi�cantly suppresses the conicts
and therefore increases the maximal outow from the room which leads to unrealistic high
value of the saturation α ≈ 4 ped/s.

From the above mentioned analysis supported by the simple observation of the microscopic
motion we conclude that the synchronous update with bounds, high friction, and Moore
neighborhood is in the best correspondence with performed experiments.
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6.5 Merge Simulations: Comparison with Social Distances
Model

In this section [13], simulation results from two advanced CA based crowd dynamics models,
namely Social Distances Model [140] and Floor Field model with Bonds Principle (further
referred as Bonds Floor Field Model) [4] are investigated using experimental data. Two
experiments regarding pedestrian egress from simple network of rooms with multiple con-
secutive bottlenecks was executed in Prague and Krakow. Simulation results comparison is
the basis for discussion about models properties.

6.5.1 Experiment

This study leans over data from two conducted experiments, which focus on the egress of a
group of pedestrians from a small network of rooms with multiple consecutive bottlenecks.
In both experiments several groups of university students were instructed to egress the
classrooms and leave the monitored part of the facility using one exit. The experimental
layout is schematically depicted in Figure 6.25.

Figure 6.25: Schema of the experiment PRG (left), KRK (right). Arrows indicate the
direction of motion.

Important characteristic of the experiments is joining of pedestrian streams, i.e., pedestrians
from more entrances walked towards one exit. Key quantity used for the comparison of the
models with experiment is the cumulative ow Jcum

j (t) through each exit denoting at each
time t the number of pedestrian, who passed through the exit j until time t.

PRG experiment was conducted in Prague in the lecture hall of the Czech Technical
University with help of 54 students. In the lecture hall, four staircases (exits 1-4) lead to
two gathering places. Two exits 5 and 6 lead from the gathering points to the vestibule
with one exit 7. The widths of the bottlenecks are 70 cm for exits 5 and 6, 75 cm for exit
7. The egress was repeated three times, the evacuation time was between 40 and 42 s. See
E6 in intro or appendix for details.

KRK experiment was conducted in Krakow on one oor of the AGH University. Three
rooms (exits 1-3) lead to a common hallway, which leads through exit 6 to the staircase hall.
Similarly, two rooms (exits 4 and 5) lead to a hallway attached to the staircase hall on the
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opposite side. The staircase hall leads to the stairs through exit 8, the stairs go downwards
one oor leading to another hall through exit 9. The widths of the bottlenecks are 75 cm
for exits 6 and 7, 177 cm for exits 8 and 9. The egress was repeated two times, 54 and 51
participants took place in this runs, respectively. In the �rst run the streams from exits 6
and 7 did not merge - corridor before exit 6 is longer than corresponding corridor before
exit 7. Therefore, in the second run the part related to exit 7 was delayed by 11 seconds in
order to obtain the merging behavior. The total evacuation time was 61 and 62 s.

6.5.2 Cellular Models

Two advanced CA models have been used to simulate the above mentioned experiments.
The �rst one has been de�ned investigated on previous 50 pages, the second one was devel-
oped in AGH Krakow.

The main concept behind Social Distances Model (SDM) is incorporation of proxemics
theory into CA crowd dynamics models. It is achieved by use of smaller cells - squares 25 x
25 cm2, and elliptical representation of pedestrians with axis equals to 45 and 27 cm [137].
One cell can be occupied by one pedestrian and the center of cell coincides with the center
of a pedestrian on the cell. Eight di�erent orientations of pedestrian is allowed (0°, 45°, 90°,
135°, 180°, 225°, 270°and 315°).

It is worth noting, that with such a representation, the size of pedestrian is over 52% bigger
(953,775 cm2) that the size of the cell (625 cm2). Therefore, according to its orientation
pedestrians occupying adjacent cells can overlap. Here the compressibility parameter is
introduced. It indicates pedestrians tolerance for high density (overlapping with another
pedestrian). It, de�nes allowed and forbidden positions on the grid according to neighbors
position and orientation. Low value of compresibility parameter bring the situation when
pedestrians wants to keep their personal space, while high values allow pedestrians to get
closer.

Figure 6.26: Discretization of space of the KRK experiment for the Social Distances Model.

What is interesting, our recent research[115] shows that tolerance for close neighbors depend
on its position according to pedestrian. Neighbors on the sides can be ignored, even if they
are relatively close, while the ones in front of (behind) are strongly avoided. However, it is
not yet implemented in model.

SDM is based on typical Floor Field Model. Two kinds of oor �eld are included into
the model: static FF which de�nes POIs, as well as dynamic FF which take into account

2Typical cells in CA models are 40 x 40 cm.
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proxemics issues. Additional parameters are added in order to model wall avoidance and
inertia e�ect.

Pedestrian can have the di�erent desired speed. Desired speed is related with the number
of steps that can be made in each second of simulation - from 1 to 8 steps. Thus, desired
speed vary from 0.25ms up to 2ms . The distribution of desired speed is the main calibration
parameter for this model.

Detailed algorithm of oor �eld calculation and motion rules de�nition is provided in [140]
Taking into account massive evacuation we proposed a dedicated version of the model [139].

Figure 6.27: Pedestrians occurrence frequency during single simulation of KRK experiment
using SDM. The hotter the color the more time given cell was visited.

6.5.3 Comparison with Experimental Data

Both models have been applied to the geometries related to the above mentioned experi-
ments. The aim was to study, whether the models can reproduce same cumulative outow
from the main exit given that the inow through the border/leaves exits (1-4 or 1-5) is
known. Agents representing pedestrians are entering the system through the leaves exits in
the same times as measured in the experiment.

Bonds FF and Experiment

For the simulation by means of the FF model with Bonds Principle we have chosen the
homogeneous set of parameters noted in Table 6.4 calibrated for the simulation of one room
with open boundaries.

In comparison to the above mention study, the value of the friction µ has been changed
from 0.9 to 0.8 in order to reect the fact that the widths of the bottlenecks related to
exits 5 and 6 (PRG) and 6 and 7 (KRK) were higher than in the previous experiment (The
exits are modeled by one cell corridors of the width 40 cm. Since it was impossible for two
pedestrians to pass simultaneously in the experiment, the width is rather improved by lower
friction then two cells corridor.). Secondly, in the case of KRK experiment, the own period
of pedestrians τi has been changed from 0.2 s to 0.25 s, because the free ow velocity of
pedestrians in the KRK experiment was lower than in the PRG experiment.

In Figure 6.28 you can see the comparison of cumulative ow from the experiment with
several realisations of the stochastic Bonds FF model (BFF) for the PRG experiment (left)
and the KRK experiment (right). We can see good agreement of the model data with the
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Figure 6.28: Comparison of cumulative ow from the experiments (black circles) and the
BFF model (red lines). Left is the PRG experiment, �rst run, exit 7. Right is the KRK
experiment, second run, exits 8 and 9.

experiment. It is worth noting that the model produces faster evacuation for the KRK
experiment when considering the motion from exit 8 to exit 9, i.e., on the stairs. Here the
model is not able reect the slow-down of pedestrians while walking on stairs.

Social Distances Model and Experiment

Both experiments are modeled as non-competitive egress [140]. Moreover, since non sig-
ni�cant clogs are present the compressibility parameter is set to 0 - ellipses that represent
pedestrians can not overlap. The main parameter used for calibration is the desired max-
imal speed vmax and its standard deviation σ. For both experiments the best results was
obtained for vmax = 1.25 m/s. For Prague experiment deviation was set to σ = 0.25 m/s,
while for Krakow experiment we use σ = 0.1 m/s.

In Figure 6.29 one can see comparison of experimental results with ten runs of its simulation.
Good agreement between data and results can be observed. One can notice the inuence of
deviation σ parameter - the spread of results is much higher for Prague experiment than for
Krakow one. On the other hand, simulation results for Krakow are slightly shifted - egress
in simulation is always faster than in real data. This phenomenon can be explained mainly
by discretization of pedestrians velocity.

6.5.4 Summary and Conclusions

Two advanced CA models of crowd dynamics, Social Distances Model (SDM) and Bonds
Floor Field Model (BFF), have been used for the simulation of an egress of simple network
of rooms. The simulations have been compared to the measured data from two original
experiments organized in Prague and Krakow.

The goal is to simulate the egress from a complex facility through a common exit given that
the occupation ow from primary rooms (lecture halls, class rooms) is known or can be
anticipated su�ciently precise. The performed experiments were designed correspondingly
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Figure 6.29: Comparison of cumulative ow from the experiments (black circles) and the
SDM model (red lines). Left is the PRG experiment, �rst run, exit 7. Right is the KRK
experiment, second run, exit 9.

to such anticipation. As the main comparison tool the cumulative outow from the main
exit has been used. By the cumulative outow we understand the number of egressed
pedestrians over time.

As shown in Section 6.5.3, the simulation results are in good agreement with the measured
experimental data. Nevertheless, the stochastic nature of the models causes some variances
in the individual trajectories of the simulation.

In Bonds Floor Field model, the stochasticity is caused mainly by the mechanism of conict
solution related to the situation when more agents are entering the same cell. This happens
mostly in the cluster in front of the exit and therefore the conict solution directly inuences
the exit capacity.

The stochasticity in Social Distances Model is contrarily caused by the deviation of the de-
sired velocity related mainly to the motion in free ow. Such stochasticity can be controlled
by appropriate choice of agents properties. Presented simulations for di�erent experiments
show the inuence of parameter calibration (e.g. desired velocity and its standard devia-
tion).

An important question to be answered is, whether the variance in evacuation times can be
observed in reality. Such information can be helpful for appropriate choice of the model
parameters. This is the goal of our further study, which requires to conduct the same
experiment in various conditions, at di�erent time, with di�erent group of pedestrians.

6.6 Summary

Calibration and veri�cation of the model was performed using experimental data obtained
from in-house realized scenarios and, moreover, the experimental from Germany and Poland
were available as well. It is not that complicated to calibrate parametrized model to �t
few macroscopic quantities, but the satis�ed match on microscopic features is much more
complicated task.
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Modi�cations described in previous chapters helped to �nd a set of parameters with rea-
sonable level of heterogeneity that model results �ts experimental observations not only in
mean value but even on the distribution level. Such agreement is important in order to
simulate the behavior of slowest pedestrians that are the most vulnerable during critical
situations.

The data from Krakow validated the exibility of the model, i.e. the ability to use the
model for di�erent arrangement and the set of participants that were used for calibration.
The results turned to be positive, only minor adjustments caused by slower participants
were needed to reach the �t between model and Krakow experiment.

As mentioned in the introduction, the fundamental model outcome is the predicted type of
steady state. Except known congestion state and free ow, developed model has reproduced
even metastable state described in the analytic chapter. As illustrated in previous sections,
this state is metastable, but still observable in long term horizon.



164 CHAPTER 6. SIMULATIONS



Chapter 7

Summary

The assignment of this thesis focused mainly on the improvements of the cellular automata
model in order to support the individualistic features. The combination of conducted ex-
periments, data analysis and model enhancements veri�ed in previous project enriched the
model by the heterogeneity in velocity, aggressiveness and path selection. All these features
were presented on prestigious conferences and published in impacted magazines. In paral-
lel, the analytic conclusions were presented and published as well, mainly the heterogeneity,
phase transition or time headway analysis.

Described success on the main rail opened the door for international cooperation on related
projects. In cooperation with AGH Krakow and technical support from TU Munich, we
have realized experimental and model analysis of merging of pedestrian streams. These
results con�rmed that both, cellular model and experimental knowledge base established in
the main project is robust enough to handle complex infrastructure.

The second large follow up focused on the train evacuation. We were invited by the UCEEB
CTU to help with the data analysis of train evacuation experiment. Originally simple task
was extended to three years project included organizing another train evacuation exper-
iment, providing micro and macroscopic data analysis and developing sensitivity model.
The data from this project exposed another level of heterogeneity among the pedestri-
ans/passengers and highlighted the need of individual data analysis to explain engineering
level observations.

From academical perspective the project ful�lled its purposes. The author learned and
applied multiple advanced techniques including image processing, statistical analysis or
object programming as well as the leadership, project planning or presenting the results.
All these skills were used even for unrelated projects brought to the attention from di�erent
academic directions. More over, the author was supervising three master students and he
was providing courses for undergraduates related to this topic. Presented research was
established within the department and was used even for propagation of the faculty to the
public.

Even this project (including previous degrees) consumed ten years of research and the author
had a support of more than ten colleagues, there are many interesting pedestrian question
left unanswered. Several times we have touched the velocity - density paradigm that ob-
viously works only under speci�c conditions, but this work just summarized experimental
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observations and left complex analysis to someone else.

In general, we have shown the possibilities how apply the cellular model, how to improve it
and how to bypass its weaknesses. But at some point we had to admit that other models
may be appropriate in some speci�c situations. E.g. continuous agent based model that
has been developed now within our research group bene�ts from its cellular ancestor. It has
the ambition to mimic pedestrian behavior even better than presented model, but it seems
the calibration costs would be high. The other pole is occupied by the hand calculation
technique known for years that are able to answer engineering questions with the reliability
that is frequently su�cient.

The main impact of this project seems to be the illustration that a microscopic analysis can
uncover important information that vanishes in total or averaged numbers. In this thesis,
such observations were highlighted and, moreover, the methods how to enhance any cellular
model were proposed. Ultimately, any safety engineering institution may use it (similarly
to may other proposals from scienti�c community) and build it to the applied methodology.
The number of publications and citations indicate that some impact was already reached.
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