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Abstrakt
Tato práce se věnuje matematickému modelování dvoufázového kompozičního proudění v porézním
prostředí s přestupem hmoty mezi fázemi. Hlavním cílem práce je zkoumání vývinu a rozpouštění
plynu v nenasycené zóně porézního prostředí s využitím laboratorních dat.

Je formulován matematický model a rovnice popisující dvoufázové proudění, transport
komponent a kinetický model přestupu hmoty mezi fázemi v porézním prostředí. Pro numerické
řešení vzniklého systému rovnic navrhneme numerickou metodu založenou na smíšené hybridní
metodě konečných prvků, kterou implementujeme sériově i paralelně a důkladně otestujeme na
úlohách se známým řešením. Spočítáme experimentální řád konvergence potvrzující první řád
přesnosti metody a diskutujeme modifikace metody pro úlohy v heterogenním porézním prostředí.
Pro paralelní variantu metody provedeme testy škálovatelnosti, které ukazují dobrou efektivitu
metody a její implementace při použití až tisíce CPU jader.

S využitím experimentálních dat ukážeme význam kinetického modelu přestupu hmoty
pro předpověď vývinu CO2 v laboratorních podmínkách. Navíc ukážeme rozdílnou dynamiku
vývinu a rozpouštění plynu a její reprezentaci v matematickém modelu. Cílem studie je ukázat
rozdíly v přestupu hmoty pro různé režimy proudění a navrhnout strategii pro další výzkum.
Numerické schéma je dále využito pro zkoumání transportu kontrastní látky v jednofázovém
případě v heterogenním porézním prostředí. V tomto případě jsou využita data z experimentů v
laboratorních podmínkách zkoumajících únik slané vody z hlubinného rezervoáru.

Abstract
This work deals with the mathematical modeling of two-phase compositional flow in porous
media with interphase mass transfer. The main goal is to investigate the gas exsolution and
dissolution in the unsaturated zone of porous media using data from the laboratory experiments.

We formulate the mathematical model and present the equations describing the two-phase flow,
component transport, and kinetic interphase mass transfer in porous media. For the numerical
solution of the resulting system, we propose a numerical method based on the mixed hybrid
finite element method (MHFEM) that is implemented both in serial and parallel, and thoroughly
benchmarked on problems with known solutions. The experimental orders of convergence are
computed confirming the first order of accuracy of the method and the necessary modification
for the problems in heterogeneous media are discussed. The scaling tests are computed for the
parallel variant of the method showing a good efficiency of the method and its implementation
up to a thousand of CPU cores.

Using the experimental data we show the importance of the kinetic mass transfer model
for the accurate predictions of multiphase CO2 evolution at the laboratory-scale. Moreover,
we demonstrate the different dynamics of the exsolution and dissolution processes and their
representation in the mathematical model. The study aims to point out the differences in the
mass transfer processes between the different flow patterns and expose strategies that should be
explored in future research. In addition, the numerical scheme is used for the investigation of the
single-phase problem of tracer transport in highly heterogeneous porous media in the laboratory
scenarios mimicking the brine leakage from a deep aquifer.
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Introduction 1
The main topic of this thesis is the mathematical modeling of two-phase compositional flow
in porous media. During the past decades, the modeling of these processes gained substantial
attention among researchers in many fields, for example, ecological, medical, petrochemical, and
industrial applications. The mathematical model can provide valuable insights that would not
be possible to obtain experimentally and allows for overcoming the limitations arising from the
temporal and spatial scale of problems. The significant advantage of the mathematical model
over the experiment is the possibility to easily modify the settings of the problem to investigate
the impact of changes in parameters and run the computational studies to the extent that would
not be possible to carry out in the experiments.

In this work, we focus on the problems related to CO2 geological sequestration which is a
promising technique that can be used to reduce the emissions of greenhouse gases [77]. However,
its employment provides many challenges, namely: selecting a suitable reservoir, evaluating the
safety on the long-term scale, and mitigating the risks of leakage. Mathematical models of possible
scenarios in the considered sites can provide valuable insights that can help in understanding
the processes occurring both during the sequestration and on the long-term scale. A complete
model comprising all the relevant processes on a large spatial and temporal scale covering the
area of hundreds of square kilometers and depths of thousands of meters for hundreds of years
would be extremely complex. As such, the model is usually divided into smaller ones focusing on
a selected phenomenon only. The main advantage of this division is the possibility of a more
detailed investigation with a higher temporal and spatial resolution than it would be possible in
the complete model.

Two such problems investigated in close collaboration with Center for Experimental Study of
Subsurface Environmental Processes, Colorado School of Mines, Golden, Colorado are considered
in this work. One is motivated by CO2 leakage from a deep aquifer and focuses on the processes
occurring in the shallow subsurface. The CO2 injected into the aquifer in the supercritical
state can reach the shallow subsurface as gas or dissolved in water. Gas can accumulate below
low-permeable features, re-dissolve into groundwater, and be transported further from the original
leakage point.

The other problem is related to a far-field brine leakage from the reservoir. The pressure
buildup as a result of sequestration can reach further from the injection point than the head of
the injected CO2 and can lead to faults in the confining layers of the aquifer. Due to increased
pressure, the brine residing originally in the aquifer can migrate to the surface.

1
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1.1 State of the art
In this work, we focus on the continuum approach to the porous media where the physical
quantities are averaged over representative volume and the processes are described by a system of
highly nonlinear partial differential equations and constitutive algebraic relations. An overview of
models ranging from a single-phase system to more complex multi-phase compositional systems
can be found, for example, in [10, 11, 62].

1.1.1 Numerical methods

Numerical methods are a necessary tool for solving the system of equations arising from the
description of two-phase compositional flow in porous media as the analytical solutions are
known for special simplified cases only that are too restrictive for most of the applications. For
the problem of two-phase flow without capillarity, the solution was found in [21]. In [76], the
semi-analytical solution of the problem including capillarity was presented for the 1D and 2D
cases of incompressible phases without gravity. This solution was expanded to comprise also the
3D case in [42].

To get at least an approximation of the solution in more complicated cases, a broad range of
methods was designed employing various spatial and temporal discretizations. For the two-phase
flow problems, finite difference methods were proposed in [32], finite volume methods in [36] and
finite elements method in [38]. The methods based on the mixed-hybrid finite element (MHFEM)
approach were proposed in [44, 66].

For more complex scenarios of two-phase compositional flow problems that to a certain extent
include thermodynamical models, the method employing the finite difference discretization was
presented in [26]. The numerical scheme based on the mixed-hybrid finite element discretization
was proposed in [65]. An alternative formulation of the thermodynamical model was used in [89].

Methods suitable for the range of problems described in this work based on various spatio-
temporal discretizations were implemented in both commercial codes such as COMSOL Multiphysics,
TOUGH3 [69] or FEFLOW [30], and open source codes such as DUNE [9].

1.1.2 Parallel approach

Serial computations with a higher spatial resolution can become too computationally expensive,
therefore, the need to speed up the computations arises. A widely used approach to parallel
implementation of numerical schemes is based on the domain decomposition [110]. The main idea
behind these methods is to split the original problem into coupled problems on smaller subdomains.
Based on the division into subdomains, the domain decomposition methods can be divided into two
main groups: with overlapping and non-overlapping subdomains. For the overlapping subdomains
methods that originate from the Schwartz alternating method, we refer to [33, 34, 35, 117]. In this
work, we employ the approach of non-overlapping subdomains, also referred to as the iterative
substructuring. Methods of this approach use the division of the degrees of freedom into the
interior and interface ones and reduce the original problem into the much smaller one formulated
on the interface [93]. For linear systems, the interface problem corresponds to the reduction of
the original system to the Schur complement system which is usually solved iteratively, without
its explicit construction. Without a preconditioner, the convergence rate of the iterative solver
deteriorates with the increasing number of subdomains [110], thus limiting the applicability of the
unpreconditioned solver for larger problems. Several types of preconditioners have been designed
to improve the convergence of the iterative solvers for this type of problems [16, 17, 18, 19].

In this work, we use the balancing domain decomposition by constraints (BDDC) precondi-
tioner that was introduced in [31] for problems with a symmetric positive definite matrix. It
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was extended to the advection-diffusion problems with nonsymmetric matrices in [114] with
the implementation based on the change of basis without forming the coarse problem explicitly.
In [118], BDDC with explicit coarse basis functions and the coarse problem was applied to the
linear system arising from the Euler equations, and the concept of adjoint coarse basis functions
was introduced. In [54], the method was applied to nonsymmetric saddle-point problems arising
from a linearization of the stationary Navier–Stokes equations and this approach was extended
in [55] to a multilevel method. Extensions of the BDDC method towards flow in porous media
include [105, 106, 119] while [108, 112] consider the mixed-hybrid finite element discretization of
the problem.

1.2 Research goals

The main goal of this work is to investigate the evolution of a two-phase mixture of gas and
water in a shallow subsurface. Due to the complexity of the problem this main topic is divided
into several tasks comprising the various aspects of the problem. The following goals of this work
are pursued:

• To formulate the mathematical model of the two-phase compositional flow in porous media
with interphase mass transfer.

• To propose a numerical method suitable for solving the system of governing equations of
such problems.

• To implement and verify the numerical method. The accuracy and convergence properties
can be explored using the benchmark problems in homogeneous porous media with a known
solution. For problems in heterogeneous porous media, where the exact solution is not
known, the reference solution available in the literature can be used.

• To implement a parallel variant of the method and demonstrate the performance on the
selected benchmark problems to ensure that the implementation preserves a good parallel
efficiency for using a higher number of CPU cores.

• To study the impact of the mass transfer models on the two-phase CO2 evolution in the
shallow subsurface using experimental data and the results of the numerical model.

• To study component transport in highly heterogeneous porous media in scenarios motivated
by brine leakage problems induced by CO2 sequestration.

1.3 Content of this thesis

The thesis is organized as follows.

• In Chapter 1, we state the motivation for our research and present the state of the art.

• In Chapter 2, we present the continuum approach to describe flow, transport, and interphase
mass transfer in porous media and formulate the mathematical model describing the
problems considered in this work.

• In Chapter 3, we propose a numerical scheme based on the MHFEM approach suitable for
solving problems described by the mathematical model presented in Chapter 2.
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• In Chapter 4, the implementation of the proposed numerical scheme in C++ is presented
focusing on the parallel implementation based on BDDC.

• In Chapter 5, the numerical scheme is benchmarked to verify the convergence properties of
the method. The problems in this work are motivated by the laboratory experiments and
focus on processes in heterogeneous porous media, therefore, the accuracy of the numerical
solution at the material interfaces is studied in detail.

• In Chapter 6, the efficiency of the parallel implementation is studied. The weak and
strong scaling tests are performed and several approaches to solving unsteady problems are
compared.

• In Chapter 7, the CO2 evolution in shallow subsurface is investigated using the experimental
data and numerical simulations, emphasizing the impact of the mass transfer model
describing the CO2 dissolution and exsolution.

• In Chapter 8, the numerical scheme is used to investigate the tracer transport in a highly
heterogeneous porous medium. This problem is motivated by the laboratory scenarios
mimicking the far-field brine leakage.

• In Chapter 9, we conclude the thesis, summarize the achieved results and propose future
research goals.

1.4 Achieved results
• We formulated a mathematical model describing the two-phase compositional flow in

porous media with the kinetic model for interphase mass transfer. This model is a result of
combining the existing models for the considered phenomena available in the literature.

• We developed a numerical method based on the mixed-hybrid finite elements spatial
discretization with semi-implicit discretization in time for both structured and unstructured
meshes in 2D and 3D. The method can deal with degenerate cases where only one of the
phases is present in certain regions and also phase appearance and disappearance as a
result of the interphase mass transfer. The numerical scheme was published in [43].

• The numerical method was implemented in C++ in both serial and parallel variants. The
serial variant is suitable for computations on rather coarse meshes, typically in parameter
sensitivity studies where many independent computations are required, while the parallel
variant of the method is needed for computations with higher spatial resolution.

• The convergence of the method was verified on a benchmark problem with a known semi-
analytical solution showing that the method is convergent with the first order of accuracy.
We also showed that the method can correctly capture the flow in heterogeneous porous
media. The scaling tests showed a good efficiency of the parallel implementation up to
a thousand of CPU cores. The convergence studies were published in [43, 102] and the
parallel implementation was published in [101, 104]

• Using the measurements from the laboratory-scale experiments, we showed that employing
the correct mass transfer model is necessary to capture the behavior observed in the
experiments. While the equilibrium approach is sufficient for the quasi-one-dimensional
cases, the kinetic model is needed in the case of a two-dimensional flow field and when larger
distances are considered. Our findings also indicate that the dynamics of the dissolution
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and exsolution processes differ and thus different transfer rate coefficients should be used
for modeling dissolution and exsolution processes. The results were published in [46, 103].

• Motivated by the laboratory experiments that focused on brine leakage from deep aquifers
induced by the CO2 sequestration, we showed that our numerical scheme is capable of
solving tracer transport problems in highly heterogeneous porous media mimicking the
geological settings of the existing site. The experimental and modeling results using a
different numerical method were published in [4].

1.5 Author’s contribution in journal papers
The author’s contribution to the impacted publications related to this thesis is given in the
following.

• Solovský, J., Fučík, R., Plampin, M. R., Illangasekare, T. H., and Mikyška, J. (2020).
Dimensional effects of inter-phase mass transfer on attenuation of structurally trapped
gaseous carbon dioxide in shallow aquifers. Journal of Computational Physics (IF 4.502),
405:109178.

. Jakub Solovský was the leading author, implemented the numerical method, and ran
all the computations. He wrote the main body of the paper.

• Solovský, J., Fučík, R., and Šístek, J. (2022). BDDC for MHFEM discretization of
unsteady two-phase flow in porous media. Computer Physics Communications (IF 5.297),
271:108199.

. Jakub Solovský was the leading author, implemented the method in parallel, and ran
all the benchmarks. He wrote the main body of the paper.

• Fučík, R., Klinkovský, J., Solovský, J., Oberhuber, T., and Mikyška, J. (2019). Mul-
tidimensional mixed–hybrid finite element method for compositional two-phase flow in
heterogeneous porous media and its parallel implementation on GPU. Computer Physics
Communications (IF 5.297), 238:165–180.

. Jakub Solovský was co-author. He implemented the method in serial and ran the
convergence benchmarks.

• Askar, A. H., Illangasekare, T. H., Trautz, A., Solovský, J., Zhang, Y., and Fučík, R. (2021).
Exploring the Impacts of Source Condition Uncertainties on Far-Field Brine Leakage Plume
Predictions in Geologic Storage of CO2: Integrating Intermediate-Scale Laboratory Testing
With Numerical Modeling. Water Resources Research (IF 6.391), 57(9):e2021WR029679.

. Jakub Solovský was co-author. He participated in collecting and analyzing the experi-
mental data. He helped with the development and verification of the mathematical
model.
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1.6 Future work
Beyond the presented thesis and the achieved results, there remain several challenging tasks that
need to be further explored. These include:

• To expand the mathematical model to comprise the effects neglected in the current model
to make it suitable for a wider range of problems. The results presented in this work
showed that even small fluctuations in temperature can significantly impact the dissolution
and exsolution processes. In the field, the temperature can change significantly in time
which is to an extent also included in this work and also within a domain, therefore, the
non-isothermal model is needed for reliable long-term predictions. Although Henry’s law
gives good results for the range of temperature and pressure considered in this work it has
limitations for higher temperature and pressure values that would be encountered in the
deeper aquifers. In addition, the employment of Henry’s law also prohibits using the model
for more complex multicomponent systems.

• To overcome the limitations of the current parallel implementation. The drop in effi-
ciency around approximately a thousand CPU cores is typical for the two-level BDDC
approach employed in this work [107]. To overcome this limitation, the multilevel ap-
proach was proposed [5, 73, 107, 113] posing additional challenges for an efficient parallel
implementation.



Mathematical model of flow
and transport in porous

media 2
In this chapter, we present the mathematical model describing two-phase flow in porous media
with component transport and interphase mass transfer. First, we define the porous medium
for the purposes of this work and the physical quantities needed to describe this medium and
the studied processes within it. Then, we formulate the governing equations for the respective
processes and comment on additional assumptions and simplifications considered in this work.
The notation used in this chapter is mainly adopted from [8, 10, 11].

2.1 Porous media

A porous medium is a body composed of a persistent solid part also called the solid matrix and
the remaining void space also called pore space or pores that can be filled with one or more fluids.
This is a rather general definition and any material consisting of void space within could be
considered a porous medium under this definition. However, the range of possible materials and
their properties would be too wide to be dealt with by a single mathematical model. Therefore,
to formulate the mathematical model of flow in porous media in the cases relevant for this work,
additional assumptions are added [28]:

1. The void space of the porous media is interconnected.

2. The dimensions of the pores are large in comparison with the mean free path length of the
fluid molecules.

3. The dimensions of the pores are small enough so that the fluid flow is governed by adhesive
forces at fluid-solid interfaces and cohesive forces at fluid-fluid interfaces in the case of a
multi-phase system.

The first assumption eliminates isolated regions where no flow can occur. The second assumption
allows for describing the fluids occupying the pores using the continuum approach, in detail
described later in Section 2.1.2. The last assumption excludes special cases such as a network of
pipes from the definition of porous media for the purposes of this work. Examples of porous
media satisfying these conditions are sand, soil, or organic tissue such as kidneys or myocardium.

In addition to the three assumptions above, in this work, we also assume that the solid matrix
is rigid and does not change over time. Generally, the solid matrix can be affected by both

7
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(a) Macroscale (∼ 10 m). (b) Microscale (∼ 10−3 m). (c) Molecular scale (∼ 10−9 m).

Figure 2.1: Three different scales the porous medium is considered at.

physical and chemical processes taking place in porous media. For example, fractures in porous
rocks can open or close as a result of applied pressure, changing the pore space configuration and
the overall pore space volume. Additionally, the products of chemical reactions can precipitate in
the pores and, as a result, can partially or even completely clog certain pores. These changes in
the solid matrix are, however, beyond the scope of this work. For details, we refer, for example,
to [53].

2.1.1 Phase

A phase is defined as a chemically homogeneous portion of the system that is separated from the
rest of the system by a definite physical boundary [10, 11]. Based on the physical properties of
the fluids within the pores, a phase can consist of one or more fluids. For example, a mixture of
gases in the system forms a single phase as the gases are always completely miscible. On the
other hand, water and oil form a two-phase system with a definite physical boundary between
water and oil.

In this work, we are interested mainly in the two-phase systems with one phase being water.
In the benchmark problems in Chapters 5 and 6, the other phase is referred to as non-aqueous
phase liquid (NAPL) representing for example oil. In the problems arising from laboratory
experiments in Chapter 7, the other phase is a gaseous CO2.

2.1.2 Continuum approach

An important characteristic of a porous medium is that it can be considered on different scales.
The three usually considered scales: macro, micro, and molecular are illustrated in Figure 2.1. In
this work, we are interested in the modeling at the macroscale illustrated in Figure 2.1a, i.e., the
dimensions of a domain of interest are in the range of meters. On this scale, we can identify the
regions consisting of materials with different physical characteristics such as average grain size or
dominant grain shape but the position of the individual solid grains cannot be determined and,
therefore, the exact configuration of the void space is not known.

Individual grains of solid material and the pore structure determined by their positions are
resolved at the microscale which is illustrated in Figure 2.1b. In addition, on this scale, we can
identify which fluid occupies a given pore and track the fluid-fluid interfaces. Dimensions of the
domain of interest are in the range of millimeters.

Magnifying even further to the molecular scale illustrated in Figure 2.1c with dimension in
the range of 10−9 m, individual fluid molecules and their interactions are resolved.

The processes in the porous medium are controlled by physical and chemical effects on all
three scales. The fluid properties such as the viscosity, diffusion coefficients, etc., are determined
on the molecular scale by the properties of the individual fluid molecules and their interactions.
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The flow through a porous medium is controlled by the configuration of the pore space at the
microscale. At the macroscale, the configuration of regions with different properties such as a
mean grain size controls the larger-scale flow patterns and can result, for example, in preferential
flow paths through the domain. At the microscale, the flow through individual pores can be
described by the Navier-Stokes equations with appropriate boundary conditions on the solid
material surface and the computational domain boundary.

At the macroscale, however, this configuration is not known and, therefore, this approach
is not suitable. Moreover, such numerical simulations in a domain with typical dimensions in
meters and with solid material grains smaller than one millimeter, which are usual dimensions
for the problems of interest, would be too computationally demanding. These limitations lead to
the introduction of a different continuum approach at the macroscale. This approach is based
on the representative elementary volume (REV) strategy [10, 11]. Instead of the microscopic
physical quantity at a given point such as the fluid velocity or which fluid is present at a given
point, an average of the microscopic quantity over the REV is considered.

The selection of a REV is the key component of this approach. It should be sufficiently large
to statistically estimate all the relevant physical quantities and small enough to be considered as
a negligible portion of the overall domain at the macroscale [12]. The main advantage of this
approach is that it leads to macroscopic equations that are independent of the exact pore space
configuration at the microscale that is not known in the applications of the macroscale model
and are formulated using only the measurable statistical properties of the porous medium and
fluids within the pores.

2.1.3 Porosity

Here, the continuum approach based on averaging over the REV is demonstrated on one of the
basic macroscopic property of the porous medium: porosity. The porosity describes the ratio of
the void space within a given volume of porous material to this total volume. To mathematically
define the porosity, first, at the microscopic level, the void space indicator function γ(x) on a
domain Ω is defined by

γ(x) =

 1 x ∈ void space,

0 x ∈ solid matrix,
∀x ∈ Ω. (2.1)

At the macroscale, the porosity at position x0 with respect to volume V is then defined by

Φ(x0) = 1
V

∫
V
γ(x)dx, (2.2)

where the volume V is a ball with a center at x0 and radius r as shown in Figure 2.2. For the
REV approach to be valid, the volume V must be selected such that the value of porosity Φ(x0)
does not depend on the exact value of r. If we study the dependency of the porosity on the value
of r, the behavior illustrated in Figure 2.3 is usually observed.

For values of r much smaller than the pore and grain sizes, the porosity is either 1 or 0 based
on whether the position x0 is located within the solid matrix or in the pore space and small
changes in r can lead to significant changes in the porosity value. As r increases beyond a certain
threshold value rmicro and V covers more pores and solid grains, the porosity becomes almost
constant. When increasing r further beyond another threshold value rmacro, the volume V can
contain larger scale heterogeneity, such as layers of different porous materials, and the porosity
can change again.
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If such values rmicro and rmacro exist, the radius for REV V can be then selected within the
range

rmicro � r � rmacro, (2.3)

otherwise, the REV cannot be established and this continuum approach cannot be used [56]. In
this work, we assume that the assumptions for the establishment of REV are satisfied and in
the following text, we present the governing equations of flow in porous media based on this
continuum approach.

Figure 2.2: Illustration of the averaging REV V (r).

Figure 2.3: Porosity Φ as a function of the averaging volume radius r.

2.2 Single-phase flow

The governing equations for a single-phase system, when pores are filled with a single fluid
or multiple completely miscible fluids, for example, a mixture of gases are summarized in this
section.

2.2.1 Mass balance

The macroscopic fluid mass conservation law is given by

∂(Φρ)
∂t

+∇ · (ρu) = f, (2.4)
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where the quantities have the following meaning:
Φ(x) [−] is the porosity of the porous medium defined in Section 2.1.3. In

the case of a heterogeneous porous medium, the porosity Φ is a
function of the position x.

ρ(t,x) [kg m−3] is the density of the fluid. For incompressible fluids, the density
is constant. For compressible fluids, the density is given by the
equation of state, for example, the ideal gas state equation.

u(t,x) [m s−1] is the macroscopic fluid velocity. At the microscopic level, the
flow occurs through pores only and the average velocity u/Φ is
observed.

f(t,x) [kg m−3 s−1] is the sink or source term.

2.2.2 Darcy’s law

At the macroscale, the momentum balance can be obtained by the local averaging [84, 116] or
homogenization [64] of the Navier-Stokes equations describing the flow at the microscale. These
procedures result in the expression

u = − 1
µ
K(∇p− ρg), (2.5)

where the quantities have the following meaning:
p(t,x) [Pa] is the fluid pressure.
g [m s−2] is the gravity vector.
K(x) [m2] is the symmetric tensor of absolute permeability characterizing the

solid matrix. In the case of a heterogeneous porous medium, tensor K
is a function of position x.

µ(t,x) [Pa s] is the dynamic viscosity of the fluid.

The one-dimensional variant of relation (2.5) was discovered experimentally by Henry Darcy
in 1856 and (2.5) is named after him as the Darcy’s law.

The Darcy’s law is valid for the slow flow of a Newtonian fluid through a porous medium
with a rigid solid matrix. The range of validity of the Darcy’s law can be given in terms of the
dimensionless Reynolds number Re [−], for the porous media defined by

Re = δ

ν
‖u‖ , (2.6)

where ‖·‖ denotes the Euclidean norm and the remaining quantities have the following meaning:
δ [m] is the representative microscopic length characterizing the pore space.

The value of δ is often selected as the mean grain diameter.
ν [m2 s−1] is the kinematic viscosity of the fluid.

The Darcy’s law is valid for flows satisfying the condition Re < 1. In some cases, the limit can
be increased up to Re < 10. This range of feasible Reynolds numbers covers most of the problems
of flow in porous media, except, for example, the flow in the vicinity of high-rate pumping wells.
For higher values of Re, the inertial effects play a more important role and can no longer be
neglected. In this case, more complex expressions than (2.5) are needed to accurately describe
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the flow, for details, see [10, 11]. However, such cases are beyond the scope of this work and we
assume that equation (2.5) is valid for all the problems considered here.

2.2.3 Hydraulic head

The Darcy’s law was in (2.5) given in terms of phase pressure p. It can be equivalently formulated
using the hydraulic (piezometric) head ψ [m] defined by

ψ = ψz + ψp, (2.7)

where the quantities have the following meaning:
ψz [m] is the elevation head characterizing the gravitational potential energy

of the fluid arising from elevation.
ψp [m] is the pressure head characterizing the energy due to pore fluid pres-

sure.

Using the hydraulic head the Darcy’s law is given by

u = −K̃∇ψ, (2.8)

where K̃ [m s−1] is the hydraulic conductivity [10] related to absolute permeability by

K = K̃
µ

ρ ‖g‖
. (2.9)

2.3 Two-phase flow
In this section, we consider the extension of the single-phase flow case described in Section 2.2: a
situation where the pore space is filled with two immiscible fluids. The phases are denoted by α
and the quantities corresponding to the given phase are distinguished by the subscript. Only the
two-phase case is considered in this work, however, the notation and the introduced physical
quantities can be also used for the description of a general, multi-phase system consisting of
three or more phases.

2.3.1 Saturation

For the formulation of the governing equations, the description of the phase distribution within
a porous medium is needed. The saturation of phase α at the macroscale is defined similarly
to the porosity in Section 2.1.3 by averaging the microscopic quantity. At the microscale, each
point of the pore space is occupied by exactly one phase. Similarly to the void space indicator
function γ(x) in (2.1), the α-phase indicator function γα(t,x) in domain Ω is defined by

γα(t,x) =

 1 x ∈ phase α at time t,

0 otherwise,
∀x ∈ Ω, (2.10)

that is, in addition to the spatial coordinate x, also a function of time t. Unlike the solid matrix
that is assumed constant in time, the distribution of phase α evolves in time.

The saturation Sα [−] at a given point x0 is then defined by using REV around this point

Sα(t,x0) =
∫
REV γα(t,x)dx∫
REV γ(x)dx . (2.11)
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The saturation Sα indicates the ratio of the volume occupied by phase α to the overall volume of
the pore space within REV. From the definition (2.11) follows the following properties of the
saturation Sα

0 ≤Sα ≤ 1,∀α ∈ J,
∑
α∈J

Sα = 1, (2.12)

where J is the index set of all phases present within volume V .

2.3.2 Mass balance

With saturation defined by (2.11), the macroscopic mass conservation of phase α is expressed by

∂(ΦSαρα)
∂t

+∇ · (ραuα) = fα, (2.13)

where the quantities have the same meaning as in (2.4), their correspondence to each phase α is
distinguished by the subscript.

2.3.3 Darcy’s law

The macroscopic velocity uα is given by the extension of the single-phase Darcy’s law

uα = − 1
µα

Kα(∇pα − ραg), (2.14)

where, in contrast to (2.5), the permeability tensor Kα depends also on the saturation of phase
α and it is assumed that it can be split into two terms

Kα = krα(Sα)K, (2.15)

where krα(Sα) [−] is the relative permeability function and the absolute permeability tensor K
is a function of the solid matrix properties only independent of the phase saturations that has
the same meaning as in the single-phase case in (2.5). The relative permeability krα represents
the fact that the flow of phase α through the pore space can be partially blocked by other
phases occupying the pores. Models for krα and their properties are in detail discussed later in
Section 2.3.6.

For clarity, the mobility λα of the phase α is introduced by

λα = krα
µα

, (2.16)

and the Darcy’s law can be then written as

uα = −λαK(∇pα − ραg). (2.17)

2.3.4 Capillarity

In addition to the forces arising from the pressure gradient governing the single-phase flow, the
sharp interface between the phases at the microscale gives rise to the capillary forces that play
an important role in the two-phase flow. The imbalance between the adhesive and cohesive
forces at the fluid-fluid interface leads to a curved shape of the interface. The imbalance between
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the forces can be quantified by the surface tension σ [J m−2]. As illustrated in Figure 2.4a, the
interaction of the adhesive (fluid-solid) and cohesive (fluid-fluid) forces results in a contact angle
θ between the solid surface and the fluid-fluid interface. This contact angle θ allows for the
classification of the two fluids at the interface. The fluid for which θ < π/2 is called the wetting
phase fluid (denoted by subscript w) and the other fluid is called the non-wetting phase fluid
(denoted by subscript n). Whether a given fluid is wetting or non-wetting depends on the two
fluids that are present at the interface. A given fluid can act as wetting in contact with one fluid
and non-wetting with the other.

(a) Contact angle θ between a solid surface and
fluid-fluid interface.

(b) 2D cross-section of the curved fluid-fluid
interface with radius r and contact angle θ for
the cylindrical pore with radius R.

Figure 2.4: Capillary effects at the microscale.

The curved interface at the microscale between the wetting (w) and non-wetting (n) phase is
the result of the discontinuity in the microscopic pressure of the non-wetting phase pmn and the
wetting phase pmw . This difference in the microscopic pressures is called microscopic capillary
pressure pmc ,

pmc = pmn − pmw ≥ 0. (2.18)
At the pore scale, it can be shown that for a cylindrical pore with radius R, illustrated in
Figure 2.4b, the capillary pressure is given by [8]

pmc = 2σ cos θ
R

. (2.19)

For most of the porous media, however, the pore shapes are more complex than cylinders.
Moreover, at the macroscale, the exact geometry of the pores is not known and the continuum
approach used does not allow for tracking the individual fluid-fluid interfaces within the pore
space. Therefore, an equation such as (2.19) is not suitable for modeling the capillary pressure
at the macroscale.

2.3.5 Macroscopic capillary pressure

To resolve the capillary pressure at the macroscale, analogically to (2.18), the macroscopic
capillary pressure is defined by the difference between the macroscopic pressures of the non-
wetting (pn) and wetting (pw) phases

pc = pn − pw ≥ 0. (2.20)

The macroscopic capillary pressure pc is in general a function of state variables such as the phase
saturation, fluid composition, temperature, and also the interface area between the fluids and



2.3. Two-phase flow 15

between the fluid and solid matrix [59]. In this work, we do not consider all these dependencies.
Instead, we use the standard approach [10, 11] for modeling the two-phase flow in porous media,
where the capillary pressure pc is assumed to be a function of the wetting phase saturation Sw
only.

The relationships between the capillary pressure pc and the wetting phase saturation Sw
are based on theoretical considerations and are given in the form of empirical models, usually
containing several parameters that are fitted to the experimental data. Two such widely used
models are discussed later. Before we list the models, we discuss the general properties of the
pc ↔ Sw relation and define additional quantities to describe the fluid distribution in porous
media needed for a more convenient form of the pc(Sw) functions.

Effective and residual saturations

When a porous medium, initially fully saturated with the wetting phase, undergoes a draining
process, the wetting phase saturation decreases and the wetting phase remains only in smaller
pores, resulting in an increase in the capillary pressure. Finally, a certain value of the wetting
phase saturation is reached and the saturation cannot be reduced by mechanical displacement
by the non-wetting phase only. However, it can be further reduced, for example, by a phase
transition such as evaporation. The amount of wetting phase that remains present in the
pores is characterized by the wetting phase residual saturation denoted by Swr. Similarly, a
certain amount of the non-wetting phase remains within a porous medium during the imbition
process and cannot be mechanically displaced by the wetting phase. Analogically, this amount is
characterized by the value of non-wetting phase residual saturation denoted by Snr.

For the description of flow in porous media, it is advantageous to exclude the fluids present
in the pores quantified by the residual saturations and define the effective saturation Seα by

Seα = Sα − Sαr
1− Snr − Swr

, (2.21)

which describes only the portion of the volume occupied by the phase that is mobile and can be
mechanically displaced from the porous medium by the other phase. By definition, the effective
saturations Seα have the same properties as the phase saturations Sα given in (2.12).

Brooks-Corey

The Brooks-Corey model [20] for capillary pressure pc as a function of the wetting phase effective
saturation Sew is given by

pc(Sew) = pdS
e
w
− 1
λBC , (2.22)

where pd [Pa] is the entry pressure of the porous medium and λBC [−] is the model parameter
characterizing the pore size distribution. The usual shape of the pc(Sew) functions for this model
is illustrated in Figure 2.5a.

van Genuchten

The van Genuchten model [47] for capillary pressure pc as a function of the wetting phase effective
saturation Sew is given by

pc(Sew) = 1
αvG

(
Sew
− 1
mvG − 1

) 1
nvG

, (2.23)

where αvG
[
Pa−1

]
is related to the entry pressure, nvG [−] is an independent parameter, and

mvG is usually selected as mvG = 1 − 1
nvG . The usual shape of the pc(Sew) functions for this

model is illustrated in Figure 2.5b.
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Figure 2.5: The Brooks-Corey and van Genuchten models for capillary pressure. The solid line
corresponds to Sand A used in benchmarks in Chapters 5 and 6 with the parameters given in
Table 5.1. The dashed lines show the influence of parameters λBC and nvG.

The significant difference between the two aforementioned models for capillary pressure is for
values Sew close to 1, i.e., porous media fully saturated by wetting phase as follows from (2.22)
and (2.23). The van Genuchten model has the following properties

lim
Sew→1−

pc(Sew) = 0, lim
Sew→1−

dpc(Sew)
dSew

= −∞, (2.24)

whereas for the Brooks-Corey model holds

lim
Sew→1−

pc(Sew) = pd, lim
Sew→1−

dpc(Sew)
dSew

= − pd
λBCS

e
w
− 1
λBC−1

. (2.25)

2.3.6 Relative permeability

The permeability tensor Kα in (2.15) is split into two terms: Kα = krα(Sα)K, where the relative
permeability krα is assumed to be a function of the phase saturation and can be considered as a
scaling factor satisfying the following condition

0 ≤ krα ≤ 1. (2.26)

In this section, we present two models for relative permeability krα. These two models are in
close relation to the two capillary pressure models presented in Section 2.3.5 that they are usually
used together.

Burdine

The Burdine model [22] is usually used together with the Brooks-Corey model for capillary
pressure and is given by

krw(Sew) = (Sew)
2+3λBC

λBC , (2.27)

krn(Sen) = (Sen)2
(

1− (1− Sen)
2+λBC

λBC

)
, (2.28)

where λBC is the parameter of the Brooks-Corey model for the capillary pressure (2.22). The
usual shapes of the krw(Sew) and krn(Sen) functions for this model are shown in Figure 2.6a.
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Figure 2.6: The Burdine and Muelaem models for relative permeability. The solid line corresponds
to Sand A used in benchmarks in Chapters 5 and 6 with the parameters given in Table 5.1. The
dashed lines show the influence of parameters λBC and nvG.

Mualem

The Mualem model [80] is usually used together with the van Genuchten model for capillary
pressure and is given by

krw(Sew) = (Sew)εvG
(

1−
(

1− (Sew)
1

mvG

)mvG)2

, (2.29)

krn(Sen) = (Sen)γvG
(

1− (1− Sen)
1

mvG

)2mvG

, (2.30)

where εvG = 1
2 and γvG = 1

3 are usually selected and mvG is the parameter of the van Genuchten
model for the capillary pressure (2.23). The usual shapes of the krw(Sew) and krn(Sen) functions
for this model are shown in Figure 2.6b.

2.3.7 Critical gas saturation

The relative permeability models presented in Section 2.3.6 were proposed for the case of the
flow of two immiscible fluids. However, as reported by [90, 111], the concept of mechanically
immobile residual saturation is not sufficient for modeling gas dissolution and exsolution processes,
especially in cases, where no gas is initially present in the porous medium which is the case of
scenarios studied later in Chapter 7. As observed in the experiments [90, 111], a certain threshold
value of gas saturation has to be reached during exsolution from the other phase before the gas
phase can become mobile. Such a value is referred to as the critical gas saturation denoted by
Sc.

This threshold value cannot be described by a value of residual saturation Snr. No gas
initially present in a porous medium is represented by a zero value of Snr which means the
gas phase becomes mobile immediately once developed. Increasing the value of Snr when the
gas develops to make it immobile results in the change in effective saturation Sen: residual and
effective saturations are interconnected by (2.21) and the saturation Sn in this redistribution
process between Snr and Sen must remain the same. As follows from the models presented in
Section 2.3.5, such a change in the effective saturation would result in a change in the capillary
pressure and it would mean non-uniqueness of the capillary pressure values.

To represent the behavior observed in the experiments in the model using effective saturation
and the relative permeability from Section 2.3.6, the following modification of the relative
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permeability function for the non-wetting phase was proposed in [103]

k̂rn(Sn) =

 0, if Sn < Sc,

krn(Sn−Sc1−Sc ), otherwise,
(2.31)

where krn is given by one of the models given in Section 2.3.6 and the value of critical gas
saturation Sc is determined based on the experimental data. Details about finding the value of
Sc are given later in Chapter 7 for several scenarios.

2.3.8 Fluid behavior at material interfaces

In this section, we focus on the interface between two materials with different saturation–capillary
pressure relations. The material with a lower entry pressure is referred to as the coarse one and
is denoted by superscript C. The other material is referred to as the fine one and is denoted
by superscript F . Since there are no sinks or sources assumed at the interface, the normal
component of the mass flux ραuα for each phase α is continuous across the interface.

As in [81], we assume that a mobile wetting phase is present on both sides of the interface
from which follows the continuity of wetting phase pressure pw across the interface. If the
non-wetting phase is present on both sides of the interface, non-wetting phase pressure pn is
also assumed to be continuous. From the continuity of phase pressures follows the continuity
of capillary pressure pc which is defined by (2.20) as their difference. In the typical models for
capillary pressure such as those presented in Section 2.3.5, the capillary pressure is related to the
values of saturation and the continuity of capillary pressure implicates the discontinuity in the
saturation values across the interface. The values of saturation Se,Cw and Se,Fw in the coarse and
fine sand, respectively, are for the van Genuchten model illustrated in Figure 2.7.

In the case of the Brooks-Corey model, the barrier effect can be simulated. When the
non-wetting phase is initially not present and approaches the interface from the side of the coarse
material, the following situation can occur. When the capillary pressure pCc is lower than the
entry pressure of the fine material, the non-wetting phase cannot penetrate it and accumulates
at the interface. Once the threshold value of the capillary pressure pCc = pFd is exceeded, the
non-wetting phase penetrates the fine material. The threshold pressure value at which the
non-wetting phase penetrates the fine material can be given in terms of effective wetting phase
saturation Se,∗w by

Se,∗w =
(
pCc

)−1 (
pFd

)
. (2.32)

Note that this accumulation at the interface cannot be described by the van Genuchten
model (2.23) for which the capillary pressure for a fully water-saturated porous medium is
zero.
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Figure 2.7: Discontinuity of the saturation values across the material interface for the van
Genuchten model for capillary pressure. The dotted line show the common value of pc at the
interface.

Figure 2.8: Barrier effect for the Brooks-Corey model for capillary pressure. Threshold value
Se,∗w for which the non-wetting phase can penetrate the finer sand.

2.3.9 Complete set of two-phase flow equations

To conclude this section, we present the complete set of equations describing the two-phase flow
in porous media,

∂(ΦSwρw)
∂t

+∇ · (ρwuw) = fw, (2.33)

uw = −λαK(∇pw − ρwg), (2.34)
∂(ΦSnρn)

∂t
+∇ · (ρnun) = fn, (2.35)

un = −λαK(∇pn − ρng), (2.36)
Sn + Sw = 1, (2.37)
pn − pw = pc. (2.38)

There are several possibilities for how to choose the primary unknowns of the system, usually
following from the selected numerical scheme. In this work, the capillary pressure and the pressure
of the non-wetting phase are selected as the primary unknowns. Alternatives are discussed later
in Chapter 5.
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2.4 Compositional flow
In this section, we present the governing equations for the compositional flow within the two-phase
flow conceptual framework. In general, each phase considered in Section 2.3 can consist of several
components that are transported within the phase and their mass can be exchanged between the
phases. For example, gas dissolution into water, transport of dissolved gas, and its exsolution.
Similarly to the notation of phases, the correspondence of a given quantity to some component κ
is denoted by a superscript. The amount of component κ within a phase α at a given point x0 is
described in terms of mass fraction Xκ

α [−] defined by using REV around this point

Xκ
α(t,x0) = mass of component κ in phase α in REV

mass of phase α in REV , (2.39)

and satisfying the following conditions for each phase α

0 ≤Xκ
α ≤ 1, ∀κ ∈ L,

∑
κ∈L

Xκ
α = 1, (2.40)

where L is the index set of all components of phase α.

2.4.1 Mass balance

The macroscopic mass conservation of component κ within phase α is given by

∂(ΦSαραXκ
α)

∂t
+∇ · (ραuXκ

α
) = fκα , (2.41)

where the quantities have the same meaning as in (2.13). Here, (2.41) is given for each phase α
and each component κ within that phase. The correspondence of the respective quantities to
phase and component is indicated by subscript α and superscript κ, respectively.

2.4.2 Component velocity

Component macroscopic velocity uXκ
α
in (2.41) is assumed consists of two terms

uXκ
α

= Xκ
αuα − Dκα∇Xκ

α, (2.42)

where uα is the macroscopic velocity of phase α given by the Darcy’s law (2.14) and the first
term represents the advection part of the transport. The second term Dκα∇Xκ

α represents the
effects of diffusion and dispersion. In this work, we consider the isotropic porous media only
where the tensor Dκα is given by

Dκα = ‖uα‖
(
aT I + (aL − aT )

‖uα‖2
uα ⊗ uα

)
+ ταΦSαDκ

αI, (2.43)

where the quantities have the following meaning:
aL(x) [m] is the longitudinal dispersivity [11, 98].
aT (x) [m] is the transverse dispersivity [11, 98].
τα(t,x) [−] is the tortuosity representing the impact of the pore structure

on the diffusion for which we adopt the Millington-Quirk model
τα = Φ

1
3S

7
3
α [79].

Dκ
α

[
m2 s−1] is the molecular diffusion coefficient of component κ within phase α.
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2.5 Mass transfer
The mass of components within an individual phase can be exchanged between these phases,
for example, gas can dissolve into water or, under different physical conditions, gas dissolved in
water can exsolve into the gas phase.

In this work, we focus on the approach describing the mass transfer as a non-equilibrium
process that is in (2.41) represented by the sink and source terms fκα . The interphase mass
exchange of a component also needs to be taken into account in the source or sink terms fα
in the mass balance equations (2.13) for the phases between which the mass of component is
exchanged.

2.5.1 Kinetic model

In the kinetic mass transfer model, the flux of component κ from phase α to β denoted by
Qκα→β [kg m−3 s−1] is represented by the first order equation in term of concentration difference
(Cκβ,s − Cκβ ) [75, 83]

Qκα→β = Kκ
α→βaαβ(Cκβ,s − Cκβ ), (2.44)

where the quantities have the following meaning:
Qκα→β [kg m−3 s−1] is the mass flux of component κ from phase α to β.
Kκ
α→β

[
m s−1] is the mass transfer rate coefficient.

aαβ
[
m−1] is the specific interfacial area, i.e., the interface area within a

REV, separating phases α and β.
Cκβ,s

[
kg m−3] is the saturated concentration (also called solubility limit) of

component κ in phase β.
Cκβ

[
kg m−3] is the current concentration of component κ in phase β.

The interfacial area aαβ in (2.44) is a parameter which is unknown at the macroscale.
Therefore, to employ the kinetic model (2.44) together with the governing equations presented
in this chapter, parameter aαβ needs to be estimated from the known quantities or eliminated
from the model.

An alternative approach to obtain the value of aαβ is to extend the set of governing equations
for the two-phase compositional flow in porous media with an additional equation explicitly
describing the interfacial area evolution. This approach was proposed in [57, 58, 59, 60, 82],
however, such models are beyond the scope of this work. In the following sections, we show
the two methods to deal with the value of aαβ within the available macroscopic quantities: the
approach based on the Sherwood number and the Dual-domain approach.

Sherwood number

The commonly used approach for modeling the dissolution of an immobile dense non-aqueous
phase liquid (DNAPL) sources into the surrounding water using the kinetic model (2.44) is to
lump the mass transfer coefficient Kκ

α→β and the interfacial area aαβ into a single parameter
kκα→β [s−1] called the mass transfer coefficient [68, 78, 91, 92].

In the case of DNAPL dissolution, the wetting phase (w) is water, the non-wetting phase
(n) is DNAPL, and the only considered component (κ) is DNAPL dissolved in water. The mass
transfer coefficient kκn→w is then related to the modified dimensionless Sherwood number Sh by

kκn→w = ShDm

d2
50
, (2.45)
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where the quantities have the following meaning:
Dm

[
m2 s−1] is the aqueous phase molecular diffusion coefficient.

d50 [m] is the mean size of the porous media grains.
The Sherwood number Sh is then related to the Reynolds number Re (2.6) and the non-wetting
phase saturation Sn by

Sh = α̃Reβ̃Sγ̃n, (2.46)

where α̃, β̃, γ̃ are dimensionless parameters that need to be determined using experimental data.
Relation (2.46) is not the only one considered for the scenarios of DNAPL dissolution. In [67],
various empirical relations for Sherwood number Sh can be found for different scenarios and
ranges of physical conditions such as temperature, pressure, flow velocity, etc., under which they
are valid.

Dual-domain approach

The dual-domain approach was proposed in [39] for the modeling of air sparging at the laboratory
scale using the kinetic model and is based on the dual-media formulation [6, 48, 51]. In this
case, the two-phase system with air as the non-wetting phase and water as the wetting phase is
considered. The only component κ is air dissolved in water. The main idea of the dual-domain
approach is to divide each REV into two parts: one containing smaller pores leading to high
values of the capillary pressure and almost full saturation with water, second containing larger
pores leading to lower values of capillary pressure and forming pathways for the gas flow resulting
in higher values of the gas saturation. The two domains are then coupled through the first-order
mass transfer rate (2.44). Using this approach, the product kκn→wanw can be estimated in the
form

kκn→wanw =
(

ΦSnτgDn + ΦSwτwDw

Hn
nw

)
aI−II
dI−II

, (2.47)

where the physical quantities have the following meaning:
Hn
nw [−] is the dimensionless Henry’s constant giving the solubility limit of

air in water. Details about Henry’s law are given in Section 2.5.2.
aI−II

[
m−1] is the specific interfacial area between the two parts containing

larger and smaller pores of the REV.
dI−II [m] is the diffusion distance between the two parts of REV.
Dα

[
m2 s−1] is the molecular diffusion coefficient of phase α (α ∈ {n,w}) .

The factor aI−II
dI−II

is then used as a fitting parameter.

2.5.2 Local equilibrium model

Local equilibrium models have been introduced in [68, 78, 91, 92]. The main assumption behind
these models is that the thermodynamic equilibrium is reached instantaneously instead of being
a transient process as in the case of the kinetic model (2.44).

In general, the equilibrium state can be computed using the thermodynamic principles by
finding the state with the minimal (or the maximal) selected potential, for example, the Gibbs
free energy, the Helmholtz free energy, etc., under a certain set of constrains [50, 61]. The
numerical solution of this global optimization problem is a rather challenging task itself and can
be computationally demanding. Therefore, for certain scenarios, simplified relations that are
valid under additional assumptions are used instead, for example, determining the equilibrium
state of the system in a narrow range of temperature and pressure. An example of such simplified
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relations is the Henry’s law for dilute solutions and low gas pressures. From (2.44), we assume
that for the applications of the models in numerical computations, the equilibrium model can
be considered as the kinetic model with a (hypothetical) large enough mass transfer coefficient
kκα→β, meaning that the equilibrium state is reached fast enough to be considered immediate.

It was shown that the applicability of the equilibrium model is limited and for certain
scenarios, the equilibrium model gives wrong results, for example, air sparging in [2, 39, 40].
The differences between the kinetic and equilibrium models for the scenarios of carbon dioxide
dissolution into water and exsolution from water are studied later in Chapter 7.

Henry’s law

As we stated, finding the equilibrium state using thermodynamic principles is not always needed
and the accuracy of simplified relations can be sufficient for a narrow range of physical parameters.
In this work, we are interested in carbon dioxide dissolution into and exsolution from water in
the range of temperature from 15◦C to 40◦C in the shallow subsurface with the maximal depth
of 2.5 m. Therefore, the pressure values do not change significantly and are within the validity
range of the Henry’s law. To determine the saturated concentration Cs of a gas dissolved in
water as a function of the gas pressure pg, Henry’s law [99] is employed in the form

Cs = KHpgMg, (2.48)

where the quantities have the following meaning:
KH

[
mol m−3 Pa−1

]
is the Henry’s law constant. Here, for convenience different
but equivalent formulation of the Henry’s law than in 2.5.1
is used.

Mg

[
kg mol−1

]
is the molar mass of gas.

This value of Cs is then employed in the kinetic model (2.44). The values for the Henry’s constant
KH can be found in the literature, for instance [99], for a given couple of solution and solvent at
a reference temperature.

2.5.3 Temperature effects

The full non-isothermal model capturing the energy balance and heat transfer between the fluids
and the porous medium is not considered in this work. For details about such models, we refer
for example to [25]. Although the studied scenarios were designed to be run under isothermal
conditions, this was not always fully satisfied. Our observations in Chapter 7 show that the
violation of isothermal assumptions by the ambient temperature fluctuation on a daily basis needs
to be taken into account. The changes in most of the material properties and physical quantities
within the considered range of temperature were negligible and the rate of the temperature
changes was low enough for the effects of spatial violation of the isothermal assumption not to
play an important role. However, the dependence of the solubility limit of dissolved CO2 in water
cannot be neglected in the studied scenarios. The dependency of the Henry’s law constant on
the temperature is given by the Van’t Hoff equation [99] in the form

KH(T ) = KH,ref exp
(
CH

(
1
T
− 1
Tref

))
, (2.49)
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where the quantities have the following meaning:
Tref [K] is the reference temperature.
KH,ref

[
mol m−3 Pa−1

]
is Henry’s constant at a reference temperature Tref .

T [K] is the temperature at which KH(T ) is computed.
CH [K] is the gas-specific constant whose value can be found in

literature [99].

2.6 Chapter summary
We presented the governing equations for the two-phase compositional flow with the kinetic
interphase mass transfer model needed to describe the most general case considered in this
work and stated the additional assumptions and simplifications for the model to be valid. The
mathematical model is formulated in the form of a coupled system of non-linear partial differential
equations and algebraic relations.



Numerical solution 3
Except for special cases that are too restrictive for application to engineering problems, there is no
known exact solution of the system of equations arising from the description of the two-phase flow
in porous media with component transport and interphase mass transfer presented in Chapter 2.
With numerical methods, however, one can find at least a good approximation of the solution.
In this chapter, we present a numerical scheme suitable for solving this type of problem.

The problems of flow in porous media studied in this work range from incompressible two-
phase flow in homogeneous porous media to more complex ones motivated by experiments and
studied physical phenomena, including transport and interphase mass transfer in heterogeneous
porous media. The idea to cover various problems by a single numerical solver leads to a
numerical scheme formulated for a system of equations in the coefficient form covering the most
complex case considered. For the application of this numerical scheme to a given problem, we
need to select the primary unknowns and specify which physical quantities are represented by
each coefficient in the general formulation and how they are expressed by the selected primary
unknowns. The transition to problems where some of the processes are not needed requires only
setting the corresponding coefficients to zero with no additional modifications of the scheme
needed. This approach allows for the description of the numerical scheme without specifying the
solved problem exactly. In addition, it separates the implementation of the numerical scheme
from the formulation of the solved problem.

The numerical scheme is based on the mixed-hybrid finite element (MHFEM) spatial dis-
cretization with a semi-implicit time-stepping strategy to linearize the equations. The description
of the scheme is presented in a unified form for both 2D and 3D cases. The numerical scheme can
be also used for solving 1D problems which is not considered in this work, for details, see [43].

3.1 Problem formulation

The numerical scheme presented here is designed for the solution of a system of n partial
differential equations in the coefficient form for i ∈ {1, . . . , n}

n∑
j=1

Ni,j
∂Zj
∂t

+
n∑
j=1
ui,j ·∇Zj+∇·

mi

− n∑
j=1

Di,j∇Zj +wi

+
n∑
j=1

Zjai,j

+
n∑
j=1

ri,jZj = fi, (3.1)

where Zj = Zj(x, t), j ∈ {1, . . . , n}, are the unknown functions. The problem is solved on
a spatial domain x ∈ Ω ⊂ Rd, where d ∈ {2, 3} and x = (x1, . . . , xd)T is a vector of spatial
coordinates, and time interval t ∈ [0, tfin] where tfin denotes the final time.

25
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Equation (3.1) covers the most general problem that can be solved using the numerical scheme
presented in this chapter: a system of non-linear unsteady advection-diffusion-reaction equations.
The coefficients in (3.1) have the following meaning:

• Ni,j(x, t) are scalar coefficients describing the time dependency of the problem. Setting
them to zero leads to the representation of steady problems.

• ai,j(x, t) and ui,j(x, t) are vector coefficients describing the advection terms in conservative
and non-conservative form, respectively.

• mi(x, t) and Di,j(x, t) are scalar and tensor coefficients, respectively, describing the diffusion.
The splitting of diffusion into two coefficients allows for considering vanishing diffusion
problems without special treatment of the zero diffusion regions that, for example, occurs
when a phase disappears in the case of two-phase flow [43]. In this case, only the mobility
mi becomes zero while the tensor Di,j is assumed to have eigenvalues bounded from below
by a positive constant.

• wi(x, t) are vector coefficients describing the action of external conservative forces.

• ri,j(x, t) are scalar coefficients describing the reactions.

• fi(x, t) are scalar coefficients describing the sinks and sources.

The coefficients are ∀i, j ∈ {1, . . . , n} functions of time t and spatial coordinates x, but can
also be functions of unknowns Zj . In the aforementioned description, the dependency of both
unknowns and coefficients on time t and spatial coordinates x is emphasized. In the following text,
unless stated otherwise, this dependency is assumed, but the notation (x, t) for both unknowns
and coefficients is omitted for clarity.

To allow for a compact presentation of the underlying problems the unknown functions are
gathered into vector Z = {Zj}nj=1. In addition, the coefficients in (3.1) are gathered into vectors
M = {mi}ni=1, W = {wi}ni=1, F = {fi}ni=1, and matrices N = {Ni,j}ni,j=1, U = {ui,j}ni,j=1,
A = {ai,j}ni,j=1, D = {Di,j}ni,j=1, R = {ri,j}ni,j=1.

The numerical scheme treats separately two closely related vector terms in the general
formulation (3.1): conservative flux qi and conservative velocity vi defined by

qi = mi

− n∑
j=1

Di,j∇Zj +wi

 , ∀i ∈ {1, . . . , n} , (3.2a)

and

vi = −
n∑
j=1

Di,j∇Zj +wi, ∀i ∈ {1, . . . , n} , (3.2b)

respectively. In addition, these vectors are needed for the prescription of the Neumann boundary
conditions. Furthermore, we denote the partial velocity vi,j

vi,j = −Di,j∇Zj , ∀i, j ∈ {1, . . . , n} . (3.3)

Using the notation from (3.2b) and (3.3), the conservative velocity can be assembled from partial
velocities and conservative forces as

vi =
n∑
j=1
vi,j +wi. (3.4)
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The system of differential equations (3.1) is endowed with Dirichlet or Neumann boundary
conditions or their combination on different parts of the domain boundary ∂Ω

Zi(x, t) = Zi,Dir(x, t), ∀(x, t) ∈ ∂Ωi,Dir, ∀i ∈ {1, . . . , n} , (3.5)
vi(x, t) · n(x) = vi,Neu(x, t), ∀(x, t) ∈ ∂Ωi,Neu, ∀i ∈ {1, . . . , n} , (3.6)

where n(x) is the outward unit normal to ∂Ω, Zi,Dir is the value of the Dirichlet boundary
condition for the unknown function Zi, and vi,Neu is the value of the Neumann boundary
condition for conservative velocity vi. The Neumann and Dirichlet parts of the boundary ∂Ωi,•
of ∂Ω satisfy the conditions

∂Ωi,Dir ∪ ∂Ωi,Neu = ∂Ω, ∀i ∈ {1, . . . , n} , (3.7)
∂Ωi,Dir ∩ ∂Ωi,Neu = ∅, ∀i ∈ {1, . . . , n} . (3.8)

The system (3.1) is also endowed with the initial conditions

Zi(x, 0) = Zi,0(x), ∀x ∈ Ω, ∀i ∈ {1, . . . , n} , (3.9)

where Zi,0 is the value of the initial condition for unknown Zi.

3.2 Weak formulation
To obtain a weak formulation of (3.1), we use the standard procedure for the mixed-hybrid
finite element method in detail described in [15]. We recall the functional spaces for the scalar
unknowns

H1 (Υ) =
{
v : v ∈ L2 (Υ) , ∂v

∂xq
∈ L2 (Υ) ,∀q ∈ {1, . . . , d}

}
, (3.10)

and for the vector unknowns

H(div,Υ) =
{
q : q ∈ (L2 (Υ))d ,div q ∈ L2 (Υ)

}
. (3.11)

We assume that vector coefficients and unknowns ui,j , vi,j , wi,j , ai,j belong to H(div,Ω), scalar
coefficient Ni,j , mi, ri,j , fi belong to L2 (Ω), and scalar unknowns Zj belong to H1 (Ω). Then,
we consider functions ϕ ∈ L2 (Ω) and ω ∈ H(div,Ω) and use the notation for the velocity
term (3.2b). Multiplying (3.1) by ϕ, (3.2b) by ω, and integrating over the domain Ω, we obtain
the mixed weak formulation of the problem in the form

∫
Ω

 n∑
j=1

Ni,j
∂Zj
∂t

ϕ+
∫

Ω

 n∑
j=1
ui,j · ∇Zj

ϕ+
∫

Ω

∇ ·
qi +

n∑
j=1

Zjai,j

ϕ+

∫
Ω

 n∑
j=1

ri,jZj

ϕ =
∫

Ω
fiϕ,

∀ϕ ∈ L2 (Ω) , ∀i ∈ {1, . . . , n} , (3.12)

∫
Ω
qi · ω =

∫
Ω
mi

− n∑
j=1

Di,j∇Zj +wi

 · ω,
∀ω ∈ H(div,Ω), ∀i ∈ {1, . . . , n} . (3.13)

In the following sections, we define suitable finite-dimensional subspaces of L2 (Ω), H1 (Ω), and
H(div,Ω) to obtain a discrete formulation of (3.12) and (3.13).
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3.3 Mixed-hybrid finite element method
The spatial discretization of the numerical scheme is based on the mixed-hybrid finite element
method that uses different approximations for the vector and scalar terms. Before we proceed
with the approximations, we define the feasible numerical meshes.

3.3.1 Mesh

We assume that the computational domain Ω ∈ Rd is covered by a conforming mesh consisting of
one type of elements. The set of all mesh elements is denoted by Kh. For the sake of simplicity
the following mesh types are considered only:

• Unstructured meshes with triangular and tetrahedral elements in 2D and 3D, respectively.

• Structured meshes with rectangular and cuboidal elements in 2D and 3D, respectively.

Similarly to the set of all mesh elements Kh, the set of all the mesh sides Eh is introduced,
allowing for a unified description of the numerical scheme for both 2D and 3D cases.

• In 2D, Eh consists of edges of elements K ∈ Kh, i.e., sides of triangles or rectangles based
on the mesh type.

• In 3D, Eh consists of faces of elements K ∈ Kh, i.e., faces of tetrahedrons or cuboids based
on the mesh type.

In addition, the numerical scheme requires computations over all sides of an element, for
convenience, the set of all sides of element K is denoted by EK . The number of entries in a given
set is denoted by #. In this notation, the number of elements and sides of a numerical mesh is
denoted by #Kh and #Eh, respectively.

3.3.2 Vector terms

For the approximation of the vector terms in the system (3.1), we assume that the vector functions
on each element K ∈ Kh belong to the functional space H(div,K) and these vectors are on each
element K approximated in the lowest order Raviart-Thomas-Nédélec space RTN0(K) [15].

For the expression of the vector as a linear combination of the basis vectors, a suitable base
of the RTN0(K) space is needed. The basis functions ω are selected to satisfy the following
conditions

∇ · ωK,E(x) = 1
|K|d

, ∀x ∈ K, ∀K ∈ Kh, ∀E ∈ Eh, (3.14a)

ωK,E(x) · nK,F (x) = δE,F
1

|E|d−1
, ∀x ∈ F, ∀K ∈ Kh, ∀E,F ∈ EK , (3.14b)∫

K
∇ · ωK,E(x)dx = 1, ∀K ∈ Kh, ∀E ∈ EK , (3.14c)∫

E
ωK,E(x) · nK,E(x)dx = 1, ∀K ∈ Kh, ∀E ∈ EK , (3.14d)

where the subscript K denotes the element on which the basis function is considered, the subscript
E denotes to which side of element K the basis function corresponds, and nK,F (x) is the outward
unit normal to side F of element K. The Kronecker delta symbol δE,F is defined by δE,F = 1
if E = F and δE,F = 0 otherwise. In the following sections, we provide the basis functions
satisfying the conditions (3.14) for all the mesh elements considered in this work.
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2D and 3D unstructured meshes: simplices

For the unstructured meshes that consist of triangles and tetrahedrons in 2D and 3D, respectively,
the basis functions on K ∈ Kh in a space of dimension d are selected in the form

ωK,E(x) = 1
d|K|d

(x− xE) , ∀E ∈ EK , (3.15)

where | · |d denotes the d-dimensional Lebesgue measure.

2D structured mesh: rectangles

For the 2D structured mesh, where the elements in Kh are rectangles, the basis functions on the
reference rectangle

(
hx 0

)
×
(
0 hy

)
are selected in the form

ωK,E1(x) = 1
|K|2

x1 − hx
0

 , ωK,E2(x) = 1
|K|2

x1

0

 , (3.16a)

ωK,E3(x) = 1
|K|2

 0

x2 − hy

 , ωK,E4(x) = 1
|K|2

 0

x2

 , (3.16b)

where the vector x = (x1, x2)T and the edges of the rectangle are numbered as follows: E1 is the
edge x1 = 0, E2 is the edge x1 = hx, E3 is the edge x2 = 0, E4 is the edge x2 = hy.

3D structure mesh: cuboids

For the 3D structured mesh, where the elements in Kh are cuboids, the basis functions on the
reference cuboid

(
hx 0

)
×
(
0 hy

)
×
(
0 hz

)
are selected in the form

ωK,E1(x) = 1
|K|3


x1 − hx

0

0

 , ωK,E2(x) = 1
|K|3


x1

0

0

 , (3.17a)

ωK,E3(x) = 1
|K|3


0

x2 − hy
0

 , ωK,E4(x) = 1
|K|3


0

x2

0

 , (3.17b)

ωK,E5(x) = 1
|K|3


0

0

x3 − hz

 , ωK,E6(x) = 1
|K|3


0

0

x3

 , (3.17c)

where the vector x = (x1, x2, x3)T and the faces of the cuboid are numbered as follows: E1 is
the face x1 = 0, E2 is the face x1 = hx, E3 is the face x2 = 0, E4 is the face x2 = hy, E5 is the
face x3 = 0, E6 is the face x3 = hz.

Approximation of vector terms

With the selected basis functions, all the vector coefficients in (3.1), the introduced conservative
velocity vi (3.2b), and partial velocities vi,j (3.3) are approximated in RTN0(K), ∀K ∈ Kh as
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follows

vi(x, t) |K ≈
∑
E∈EK

vi,K,E(t)ωK,E(x), (3.18a)

vi,j(x, t) |K ≈
∑
E∈EK

vi,j,K,E(t)ωK,E(x), (3.18b)

ui,j(x, t) |K ≈
∑
E∈EK

ui,j,K,E(t)ωK,E(x), (3.18c)

wi(x, t) |K ≈
∑
E∈EK

wi,K,E(t)ωK,E(x), (3.18d)

ai,j(x, t) |K ≈
∑
E∈EK

ai,j,K,E(t)ωK,E(x), (3.18e)

where vi,K,E , vi,j,K,E , ui,j,K,E , wi,K,E , and ai,j,K,E denote coefficients in the linear combination
for the corresponding vector term referred to as components.

Vector terms on each element K ∈ Kh given by (3.18) in general does not belong to H(div,Ω).
To belong to this space, the vector terms need to be continuous over internal sides E ∈ Eh in
terms of their normal traces [15]. Using the property of the basis functions of RTN0(K) (3.14d),
this continuity condition at side E common to elements K1 and K2 (E = EK1 ∩ EK2), can be
formulated in terms of balancing the corresponding components of vector terms

ui,j,K1,E + ui,j,K2,E = 0, ∀i, j ∈ {1, . . . , n} , (3.19a)
wi,K1,E + wi,K2,E = 0, ∀i ∈ {1, . . . , n} , (3.19b)

ai,j,K1,E + ai,j,K2,E = 0, ∀i, j ∈ {1, . . . , n} . (3.19c)

For the vector unknowns qi, vi, and vi,j , the continuity of the normal traces will be discussed
later in Section 3.6.

3.3.3 Scalar terms

In contrast to the vector terms, we employ the discontinuous Galerkin approach and the scalar
terms are approximated in the space of element-wise constant functions, for a given set of mesh
elements Kh denoted by D0 (Kh). Basis function ϕ(x)K on a mesh element K ∈ Kh is defined by

ϕ(x)K =

 1 x ∈ K,

0 otherwise,
(3.20)

and has the following properties∫
K
ϕ(x) = |K|d, ∀K ∈ Kh, (3.21a)

and

∇ϕ(x) = 0, ∀x ∈ K, ∀K ∈ Kh. (3.21b)
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Approximation of scalar and tensor terms

With the approximation described above, the scalar and tensor terms in (3.1) are approximated
in D0(Kh), ∀K ∈ Kh as follows

Zj(x, t) |K ≈ Zj,K(t)ϕK(x), (3.22a)
Ni,j(x, t) |K ≈ Ni,j,K(t)ϕK(x), (3.22b)
mi(x, t) |K ≈ mi,K(t)ϕK(x), (3.22c)
Di,j(x, t) |K ≈ Di,j,K(t)ϕK(x), (3.22d)
ri,j(x, t) |K ≈ ri,j,K(t)ϕK(x), (3.22e)
fi(x, t) |K ≈ fi,K(t)ϕK(x), (3.22f)

where Zj,K , Ni,j,K , mi,K , Di,j,K , ri,k,K , fi,K are for simplicity referred to as the approximation
of the corresponding term on element K ∈ Kh.

3.4 Diffusion terms
With the definition of the finite-dimensional spaces for vector and scalar terms, we first focus on
the approximation of the conservative velocity vi in RTN0(K) defined by (3.2b), ∀K ∈ Kh. The
goal is to express the components vi,K,E introduced in (3.18) as functions of scalar unknowns
Zj , j ∈ {1, . . . , n}. We start with the expression of the partial velocity vi,j defined by (3.3) and
its approximation in RTN0(K) given by (3.18b)

vi,j |K ≈
∑
E∈EK

vi,j,K,EωK,E = −Di,j,K∇Zj , (3.23)

from which we can then assemble vi using (3.4). We assume that tensors Di,j,K are either positive
definite or zero. Note that this condition is always satisfied for the two-phase compositional flow
problems in porous media.

In the case of Di,j,K being zero, the components vi,j,K,E in (3.23) must be also zero: the
right-hand side of (3.23) is zero and the projection into RTN0(K) is trivial. The following steps
are not needed and we can proceed directly to (3.31) and the following remarks.

For a symmetric positive definite tensor Di,j,K , there exists its inversion D−1
i,j,K . Multiply-

ing (3.23) by this inversion, we obtain∑
E∈EK

vi,j,K,ED−1
i,j,KωK,E = −∇Zj . (3.24)

Equation (3.24) is then multiplied by the basis function ωK,F and integrated over the element
K to obtain∑

E∈EK

vi,j,K,E

∫
K
ωTK,FD−1

i,j,KωK,E = −
∫
K
∇Zj · ωK,F , ∀F ∈ EK . (3.25)

Using the Green formula and properties of the basis functions (3.14), the right-hand side of (3.25)
is transformed into

−
∫
K
∇Zj · ωK,F =

∫
K
Zj∇ · ωK,F −

∫
EK
ZjωK,F · n = −Zj,F + Zj,K , (3.26)

where the newly introduced quantity Zj,F is the mean value of the trace of Zj over side F

Zj,F = 1
|F |d−1

∫
F
Zj . (3.27)
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Based on [15], the common value of trace (3.27) on F can be interpreted as a Lagrange multiplier
allowing for formulating the discretization of weak formulation (3.13) locally on each element
K ∈ Kh without explicitly enforcing the continuity in the terms of normal traces of vector terms
qi, vi, and vi,j .

Then, the equations (3.25) and (3.26) combined together give∑
E∈EK

vi,j,K,E

∫
K
ωK,FD−1

i,j,KωK,E = −Zj,F + Zj,K , ∀F ∈ EK . (3.28)

The integrals over K ∈ Kh of the combination of basis functions ωK,F , ωK,E and tensors
D−1
i,j,K in (3.28) form a coefficient matrix denoted by Hi,j,K = {Hi,j,K,E,F }E,F∈EK with entries

defined by
Hi,j,K,E,F =

∫
K
ωK,FD−1

i,j,KωK,E . (3.29)

Using Hi,j,K , (3.28) can be written as

Zj,K − Zj,F =
∑
E∈EK

vi,j,K,EHi,j,K,E,F , ∀F ∈ EK . (3.30)

In the case of positive definite tensor Di,j,K , matrix Hi,j,K is also positive definite and its inversion
is denoted by Bi,j,K (Bi,j,K = H−1

i,j,K). Equation (3.30) is then multiplied by matrix Bi,j,K from
the left to obtain

vi,j,K,E = Bi,j,K,EZj,K −
∑
F∈EK

Bi,j,K,E,FZj,F , ∀E ∈ EK , (3.31)

where Bi,j,K,E =
∑
F∈EK Bi,j,K,E,F is introduced to simplify the notation.

To unify the description of the numerical scheme for both positive definite and zero tensor
Di,j,K , Bi,j,K = Θ is defined for the case of zero tensor Di,j,K .

Equation (3.31) gives the components of vi,j in the selected basis of RTN0(K) as functions
of scalar quantities Zj . Using the expression of the partial velocities (3.31), the conservative
velocity vi defined by (3.2b) is expressed as a function of the unknowns Zj . In (3.18a), the
coefficients vi,K,E are given by

vi,K,E =
n∑
j=1

Bi,j,K,EZj,K − ∑
F∈EK

Bi,j,K,E,FZj,F

+ wi,K,E ,

∀i ∈ {1, . . . , n} , ∀K ∈ Kh, ∀E ∈ EK . (3.32)

3.5 Approximation of conservation laws
In this section, we describe the complete spatio-temporal discretization of the weak formula-
tion (3.12) of the general problem (3.1). We start with the weak formulation of the problem (3.12),
employ the approximation of the scalar and vector terms given by (3.22) and (3.18), respectively.
To obtain a discrete weak formulation, we use functions ϕ from the basis of D0(Kh). Each of the
basis functions defined by (3.20) equals identity on a single element K ∈ Kh, which reduces the
integral over the whole domain Ω in (3.12) to the integrals over elements mesh elements K ∈ Kh∫

K

n∑
j=1

Ni,j
∂Zj
∂t︸ ︷︷ ︸

I1

+
∫
K

n∑
j=1
ui,j · ∇Zj︸ ︷︷ ︸
I2

+
∫
K
∇ ·

qi +
n∑
j=1

Zjai,j


︸ ︷︷ ︸

I3

+
∫
K

n∑
j=1

ri,jZj︸ ︷︷ ︸
I4

=
∫
K
fi︸ ︷︷ ︸

I5

,

∀i ∈ {1, . . . , n} , ∀K ∈ Kh. (3.33)
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The partial derivative in time is approximated by the backward Euler difference and the
temporal dependency of the other quantities is resolved by the semi-implicit approach in time in
detail discussed in the following sections. The times tk and tk+1 at which the coefficients and the
unknowns are evaluated are denoted by the corresponding superscripts k and k + 1, respectively.
For clarity, the procedure is divided into five terms as highlighted in (3.33): four on the left-hand
side and one on the right-hand side of the equation, and operations performed on each term are
explained separately for i-th equation on a given mesh element K ∈ Kh.

3.5.1 Integral I1

The first term in (3.33) describing the time dependency of the problem using coefficient N is
approximated by

∫
K

n∑
j=1

Ni,j
∂Zj
∂t
≈

n∑
j=1

Ni,j,K
d
dt

∫
K
Zj ≈

n∑
j=1

Nk
i,j,K
|K|d
∆tk

(
Zk+1
j,K − Z

k
j,K

)
, (3.34)

where:
Nk
i,j,K is the approximation of coefficient Ni,j on element K at time tk. In the case of

Ni,j independent of Z, the value from the time tk+1 is used.
Zkj,K is the approximation of Zj on element K at time tk.
Zk+1
j,K is the approximation of Zj on element K at time tk+1.

∆tk is the time step (∆tk = tk+1 − tk).

3.5.2 Integral I2

The second term in (3.33) describing the advection in the non-conservative form using coefficient
U is approximated by

∫
K

n∑
j=1
ui,j∇Zj ≈

∫
K

n∑
j=1

∑
E∈EK

ui,j,K,EωK,E∇Zj ≈
n∑
j=1

∑
E∈EK

uki,j,K,E

∫
K
ωK,E∇Zj ≈

n∑
j=1

∑
E∈EK

uki,j,K,E

(∫
EK
ZjωK,E · n−

∫
K
Zj∇ · ωK,E

)
≈

n∑
j=1

∑
E∈EK

uki,j,K,E

(
Zk,upwi,j,E − Zk+1

j,K

)
,

(3.35)

where:
uki,j,K,E is the component of ui,j on element K at time tk. In the case of ui,j independent

of Z the value from the time tk+1 is used.
Zk+1
j,K is the approximation of Zj on element K at time tk+1.

Zk,upwi,j,E is the upwinded value of Zj on side E at time tk, details of this choice are provided
in the following.

The upwind technique is used in (3.35) to ensure the numerical stability of the scheme. The
upwinded quantity Zk,upwi,j,E is introduced as follows. On the interior sides E = EK1 ∩ EK2 common
to two elements K1,K2 ∈ Kh, we assume that the advection terms are continuous over E in
terms of their normal traces, i.e., their components are balanced by (3.19)

uki,j,K1,E + aki,j,K1,E + uki,j,K2,E + aki,j,K2,E = 0, ∀i, j ∈ {1, . . . , n} . (3.36)



34 3. Numerical solution

The values of Zk,upwi,j,E are then defined by

Zk,upwi,j,E =


Zkj,K1

, if uki,j,K1,E
+ aki,j,K1,E

> 0,

Zkj,K2
, if uki,j,K2,E

+ aki,j,K2,E
> 0,

0, otherwise,

∀i, j ∈ {1, . . . , n} . (3.37)

On the boundary sides E ∈ EK1 belonging to a single element K1 ∈ Kh only, the value from
the boundary condition is used instead of (3.37) in the case of uki,j,K1,E

+ aki,j,K1,E
< 0.

At the first time step (k = 0), the values of u0
i,j,K,E + a0

i,j,K,E may not be known, therefore,
the arithmetic average of the values from the neighboring elements is used

Z0,upw
i,j,E = 1

2
(
Z0
j,K1 + Z0

j,K2

)
, ∀i, j ∈ {1, . . . , n} . (3.38)

3.5.3 Integral I3

The third term in (3.33) describing the diffusion using coefficientsM and D, the conservative
forces using coefficient W, and the advection in the conservative form using coefficient A is
approximated by

∫
K
∇ ·

mi

− n∑
j=1

Di,j,K∇Zj +wi

+
n∑
j=1

Zjai,j

 =

∫
EK

mi

− n∑
j=1

Di,j,K∇Zj +wi

+
n∑
j=1

Zjai,j

 · n ≈
∫
EK
mi

∑
E∈EK

vi,K,EωK,E · n+
∫
EK

n∑
j=1

∑
E∈EK

Zjai,j,K,EωK,E · n ≈

∑
E∈EK

mk,upw
i,E vi,K,E +

n∑
j=1

∑
E∈EK

ai,j,K,EZ
k,upw
i,j,E ≈

∑
E∈EK

mk,upw
i,E

 n∑
j=1

Bk
i,j,K,EZ

k+1
j,K −

∑
F∈EK

Bk
i,j,K,E,FZ

k+1
j,F

+ wki,K,E

+
n∑
j=1

∑
E∈EK

aki,j,K,EZ
k,upw
i,j,E ,

(3.39)
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where the coefficient vi,K,E is substituted from (3.32) and:
mk,upw
i,E is the upwinded value of mi on side E at time tk, details of this choice are provided

in the following.
Bk
i,j,K,E are the local coefficients Bi,j,K,E at time tk. In the case of Bi,j,K,E independent of

Z the value from time tk+1 is used.
Bk
i,j,K,E,F are the local coefficients Bi,j,K,E,F at time tk. In the case of Bi,j,K,E,F independent

of Z the value from time tk+1 is used.
wki,K,E is the component of wi on element K at time tk. In the case of wi independent

of Z the value from the time tk+1 is used.
aki,j,K,E is the component of ai,j on element K at time level k. In the case of ai,j

independent of Z the value from the time tk+1 is used.
Zk+1
j,K is the approximation of Zj on element K at time tk+1.

Zk+1
j,F is the approximation of trace of Zj on side F at time tk+1.

Zk,upwi,j,E is the upwinded value of Zj on side E at time tk, details of this choice are provided
in (3.37).

Similarly to (3.35), the upwind technique is used in (3.35) to ensure the stability of the scheme.
The selection of the upwinded quantities Zk,upwi,j,E is the same as in the case of the non-conservative
representation of the advection term shown in (3.37).

On the interior sides E = EK1 ∩ EK2 common to two elements K1,K2 ∈ Kh, we assume that
the velocity terms are continuous over E in terms of their normal traces, i.e., their components
are balanced

vki,K1,E + vki,K2,E = 0, ∀i ∈ {1, . . . , n} , (3.40)

for details, see Section 3.6. The newly introduced upwinded quantities mk,upw
i,E are defined by

mk,upw
i,E =


mk
i,K1

, if vki,K1,E
> 0,

mk
i,K2

, if vki,K2,E
> 0,

0, otherwise,

∀i ∈ {1, . . . , n} . (3.41)

On the boundary sides E ∈ EK1 belonging to one element K1 ∈ Kh only, the value from the
boundary condition is used instead of (3.37) in the case of vki,K1,E

< 0. At the first time step
(k = 0), the values of v0

i,K,E are not known, therefore, the arithmetic average of the values from
the neighboring elements is used

m0,upw
i,E = 1

2
(
m0
i,K1 +m0

i,K2

)
, ∀i ∈ {1, . . . , n} . (3.42)

3.5.4 Integral I4

The fourth term in (3.33) describing reactions using coefficient R is approximated by∫
K

n∑
j=1

ri,jZj ≈ |K|d
n∑
j=1

rki,j,KZ
k+1
j,K , (3.43)

where:
rki,j,K is the approximation of coefficient ri,j on element K at time tk. In the case of ri,j

independent of Z the value from the time tk+1 is used.
Zk+1
j,K is the approximation of Zj on element K at time tk+1.
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3.5.5 Integral I5

The fifth term in (3.33) describing the sinks and sources using coefficient F is approximated by∫
K
fi ≈ |K|dfki , (3.44)

where:
fki,K is the approximation of coefficient fi on element K at time tk. In the case of fi

independent of Z the value from the time tk+1 is used.
Combining all the approximations shown in equations (3.34), (3.35), (3.39), (3.43), and (3.44),

we obtain the following discretization of the original system (3.1), where the conservative velocity
unknowns are eliminated and the only remaining unknowns are scalar functions Zj at time tk+1
and their traces

n∑
j=1

Nk
i,j,K
|K|d
∆tk

(
Zk+1
j,K − Z

k
j,K

)
+

n∑
j=1

∑
E∈K

uki,j,K,E

(
Zk,upwi,j,E − Zk+1

j,K

)
+

∑
E∈EK

mk,upw
i,E

 n∑
j=1

Bk
i,j,K,EZ

k+1
j,K −

∑
F∈EK

Bk
i,j,K,E,FZ

k+1
j,F

+ wki,K,E

+
n∑
j=1

∑
E∈EK

aki,j,K,EZ
k,upw
i,j,E +

|K|d
n∑
j=1

rki,j,KZ
k+1
j,K = |K|dfki . (3.45)

3.5.6 Matrix-vector notation

On each element K ∈ Kh and ∀E ∈ EK , we gather the unknowns Zk+1
j,K and traces Zk+1

j,F into
vectors Zk+1

K =
{
Zk+1
j

}n
j=1

and Zk+1
F =

{
Zk+1
j,F

}n
j=1

, respectively. Then, (3.45) formulated
∀i ∈ {1, . . . , n} can be written in a compact form as

QKZ
k+1
K =

∑
F∈EK

RK,FZk+1
F +RK , ∀K ∈ Kh, (3.46)

where the entries of matrices QK and RK,F are given by

{QK}i,j = |K|d∆tk
Nk
i,j,K −

∑
E∈EK

uki,j,K,E +
∑
E∈EK

mk,upw
i,E Bk

i,j,K,E + |K|drki,j,K ,

∀i, j ∈ {1, . . . , n} , ∀K ∈ Kh, (3.47a)

{RK,F }i,j =
∑
E∈EK

mk,upw
i,E Bk

i,j,K,E,F , ∀i, j ∈ {1, . . . , n} , ∀F ∈ EK , ∀K ∈ Kh, (3.47b)

and the components of the vector RK are given by.

{RK}i = |K|dfki,K + |K|d∆tk

n∑
j=1

Nk
i,j,KZ

k
j,K −

∑
E∈EK

mk,upw
i,E wki,K,E−

n∑
j=1

∑
E∈EK

Zk,upwi,j,E

(
aki,j,K,E + uki,j,K,E

)
, ∀i ∈ {1, . . . , n} , ∀K ∈ Kh. (3.48)

We assume that the coefficients in (3.1) are given such that the matrix QK in (3.46) is non-singular
∀K ∈ Kh.
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3.5.7 Eliminating the cell averages

Under the assumption of non-singularity of QK , (3.46) can be multiplied by its inversion from
the left to obtain

Zk+1
K =

∑
F∈EK

Q−1
K RK,FZk+1

F + Q−1
K RK , ∀K ∈ Kh, (3.49)

which allows for expressing Zk+1
K in terms of traces Zk+1

F and, therefore, reducing the number of
unknowns at the time tk+1.

3.6 Mass balance on the interior sides
We assume that no mass is produced or lost on an interior side E common to elements K1 and
K2 (E = EK1 ∩ EK2), and the advection terms are balanced over E by (3.19)

aki,j,K1,E + aki,j,K2,E = 0, ∀i, j ∈ {1, . . . , n} , (3.50a)
uki,j,K1,E + uki,j,K2,E = 0, ∀i, j ∈ {1, . . . , n} . (3.50b)

Then, using the properties of the basis functions (3.14) the balance of the normal component of
the conservative flux qi on side E can be written in a compact form as

qk+1
i,K1,E

+ qk+1
i,K2,E

= 0. (3.51)

In addition, using the definition qi = mivi and the approximation of velocity terms given
by (3.32), mass balance given by (3.51) can be formulated in terms of Zj and their traces as

2∑
`=1

mk
i,K`,E

 n∑
j=1

Bi,j,K,EZk+1
j,K`
−

∑
F∈EK`

Bi,j,K`,E,FZ
k+1
j,F

+ wi,K`,E

 = 0. (3.52)

To ensure the stability of the numerical scheme, the single upwinded value mk,upw
i,E defined

by (3.41) is used instead of mk
i,K1,E

and mk
i,K2,E

to obtain

mk,upw
i,E

2∑
`=1

 n∑
j=1

Bi,j,K,EZk+1
j,K`
−

∑
F∈EK`

Bi,j,K`,E,FZ
k+1
j,F

+ wi,K`,E

 = 0. (3.53)

The mass balance equation (3.53) can degenerate when term mk,upw
i,E vanishes. This happens,

for example, in the two-phase flow in porous media when one of the phases is not present in
both elements sharing the side E. To avoid this situation that would otherwise require a special
treatment the following approach to deal with the value of mk,upw

i,E is used. If mk,upw
i,E 6= 0, it can

be factored out from (3.53) to obtain

2∑
`=1

 n∑
j=1

Bi,j,K,EZk+1
j,K`
−

∑
F∈EK`

Bi,j,K`,E,FZ
k+1
j,F

+ wi,K`,E

 = 0. (3.54)

For non-zero value of mk,upw
i,E , the mobility can be eliminated from (3.53) which motivates using

the same approach also for mk,upw
i,E = 0. With zero mobility, the flux qi defined by qi = mivi

satisfies the mass balance (3.51) on E and, at the same time, (3.54) is non-degenerate and can
be used to obtain information about Zk+1

j,K`
and Zk+1

j,F . Otherwise, with vanishing mobility, the
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left-hand side of (3.52) would be identically zero and could not be used to obtain any information
about the scalar unknowns, thus producing an ill-posed problem.

Overall, on the interior sides, (3.54) is used regardless of the value of mk,upw
i,E . On the

benchmark problems in Chapter 5, it is shown that this approach works and the numerical
scheme produces correct and reliable results.

In addition, values of Zk+1
j,K`

in (3.54) are expressed in terms of traces Zk+1
j,F using (3.49) and

the mass balance on each interior side is then expressed in terms of traces of Zj , j ∈ {1, . . . , n}
only, reducing the number of unknowns needed to formulate this balance equation.

3.7 Boundary conditions
The mass balance (3.52) is given for all the interior sides. To obtain the linear system for all the
unknown traces at new time tk+1, the boundary sides need to be also resolved. The form of the
equations on these sides depends on the boundary condition type. For the Dirichlet boundary
condition for the i-th equation on the side E, the value of the trace is prescribed as

Zk+1
i,E = Zk+1,Dir

i,E , (3.55)

where Zk+1,Dir
i,E is the value of the Dirichlet boundary condition on E at the time tk+1.

For the Neumann boundary condition for the i-th equation on side E, the value of vi,K,E is
prescribed using the expression (3.32)

n∑
j=1

Bi,j,K,EZk+1
j,K`
−

∑
F∈EK`

Bi,j,K`,E,FZ
k+1
j,F

+ wi,K`,E = vk+1,Neu
i,K,F , (3.56)

where vk+1,Neu
i,K,F is the value of the Neumann boundary condition on E at the time tk+1 and the

cell values Zk+1
j,K`

are given in terms of traces Zk+1
j,F using (3.49).

As a result of the mass balance formulated on the interior sides (3.54) and boundary conditions
expressions (3.55) and (3.56) for all equations i ∈ {i, . . . , n}, a single sparse linear system of
algebraic equations for the unknown traces of Zj at time tk+1 is obtained

AZk+1 = b, (3.57)

with Zk+1 = {{Zk+1
j,F }nj=1}F∈Eh . Once the system (3.57) is solved, the cell averages Zk+1

j,K at the
new time tk+1 are computed ∀j ∈ {1, . . . , n} ,∀K ∈ Kh using equation (3.49) which completes
the transition to the next time level.

3.8 Properties of matrix A

In this section, we investigate the properties of matrix A of the linear problem (3.57) obtained
by the spatio-temporal discretization of the original system of partial differential equations (3.1).

We firstly present the details of the matrix assembly and the rows and columns ordering
under which the block structure of matrix A and the role of the diagonal and off-diagonal blocks
can be explored. In the case of a single equation, we order the rows of A in the same way as
the unknowns. With this ordering, the first unknown is the trace of Z1 on the first side E1, and
the first row of the matrix expresses the mass balance on side E1, etc. In the case of a system
of equations (n > 1 in (3.1)), the ordering is selected to produce a block structure of A. The
unknowns are ordered block-wise, where the block size is the number of all sides #Eh. First, we
include all traces of Z1, then the traces of Z2, etc. The rows are then ordered analogously. First,
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we include all the mass balances for unknown Z1 that are ordered in the same way as for a single
equation, then the mass balances for unknown Z2, etc. In Figure 3.1, the structure of A for this
ordering is for a system of two equations illustrated.

In the case of a system of equations, we explore the role of the blocks of A in the original
system (3.1). The i-th diagonal block of A represents the contribution of the i-th unknown to
the mass balance for that unknown e.g. the role of unknowns Z1 in the mass balance equation
for Z1, etc. The off-diagonal blocks then represent the contribution of the remaining unknowns
to that equation (contribution to mass balance for Z1 by unknowns Z2, etc.). In other words, for
the selected ordering of rows and columns, the off-diagonal terms represent the coupling among
the equations.

a1,1 a1,2 . . . a1,NE+1 a1,NE+2 . . .


Mass balances for unknown Z1a2,1 a2,2 . . . a2,NE+1 a2,NE+2 . . .
...

... . . . ...
... . . .

aNE+1,1 aNE+1,2 . . . aNE+1,NE+1 aNE+1,NE+2 . . .
Mass balances for unknown Z2aNE+2,1 aNE+2,2 . . . aNE+2,NE+1 aNE+2,NE+2 . . .

...
... . . . ...

... . . .︸ ︷︷ ︸ ︸ ︷︷ ︸
Traces of Z1 Traces of Z2

Figure 3.1: Illustration of the structure of A = {ai,j}nNEi,j=1 in Eq. (3.57) for the system of two
equations (n = 2).

From the construction of A, we can also determine the number of possibly non-zero entries in
a row for each mesh type, i.e., the number of entries in each matrix row that are computed using
the scheme. Note that the computed value can be numerically equal to zero for certain problems.
In contrast with, for example, Lagrangian finite elements with degrees of freedom located on
element vertices, the number of non-zero entries in each row does not depend on the realization
of the given type of mesh. Each row of A expresses the mass balance equation for one unknown
on a single side E as described in Section 3.6 and the balance equation is formulated using the
traces of all unknowns on all sides of the two neighboring elements sharing this side E. This
results in the following numbers of non-zero entries in each matrix row: 5n for triangular meshes,
7n for rectangular and tetrahedral meshes, and 11n for cuboidal meshes. The sides and traces
needed to formulate the mass balance on a given side E for the triangular mesh are shown in
Figure 3.2.

The numbers listed above hold for the internal sides, where (3.54) is used. On side E, where
the Neumann boundary condition is prescribed by (3.56), the value of vi,K,E is given in terms of
traces on all the sides of the neighboring element K. This gives the following number of non-zero
entries in each matrix row: 3n for triangular meshes, 4n for rectangular and tetrahedral meshes,
and 6n for cuboidal meshes. On side E, where the Dirichlet boundary condition is prescribed
by (3.55), the value of the trace is given which results in a single non-zero entry in the matrix
row, regardless of the mesh element type and the dimension of the problem.

The alternative approach to deal with the Dirichlet boundary conditions is their elimination
from the linear system (3.57). This procedure results in a symmetric structure of A that can be
advantageous for certain linear solvers.

The symmetry or non-symmetry of A cannot be determined without specifying all the
coefficients for the problem represented by (3.1). However, for most of the problems considered
in this work, the resulting matrix A is non-symmetric. The non-symmetry can be attributed
to employing the upwind technique in (3.41) and (3.37) and to the possible non-symmetry of
the coefficient matrices N , U , A, D, and R as shown later in Chapters 5 and 7. An example of
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Figure 3.2: Mass balance on internal side E common to elements K1 and K2 in 2D and all the
sides needed to formulate the mass balance on E: E and F1, . . . F4.

a problem resulting in symmetric A is the Laplace problem used as one of the benchmarks for
parallel implementation later in Chapter 6.

3.9 Mass Lumping
Local coefficient matrices Hi,j,K introduced by (3.29) as integrals over mesh elements can be
computed using two approaches: their entries can be either computed exactly or approximated.
Surprisingly, the method selected to compute Hi,j,K has a significant impact on the accuracy of
the numerical scheme when used for solving problems in heterogeneous porous media as will be
shown later in Chapter 5.

For the exact computation of the integral, we remark that the selected basis functions of
RTN0(K) presented in Section 3.3.2 are the first-order polynomial vector functions. Therefore,
the entries of Hi,j,K are given as the integrals of second-order polynomials over K ∈ Kh. These
integrals can be computed exactly using the transformation to a reference element. This approach
is in the following referred to as the exact integration (EI ) variant of the numerical scheme.

Instead of the exact computation, the values of the integrals can be approximated. The
mass lumping approach based on the method proposed in [23] is employed and the values of
the integrals in (3.29) are computed using a quadrature rule. For all K ∈ Kh, the integral of an
arbitrary scalar function z(x) is computed as∫

K
z(x)dx ≈ |K|d

Nv

Nv∑
p=1

z(xp), (3.58)

where xp is the position vector of the p-th vertex of element K and Nv is the number of vertices
of the element K: Nv = 3 for triangle, Nv = 4 for tetrahedron and rectangle, and Nv = 6 for
cuboid. This approach is in the following referred to as the mass lumping (ML) variant of the
numerical scheme.

3.10 Computational algorithm
To summarize the description of the numerical scheme in a compact form, we present the steps
needed to initialize the scheme and proceed from time tk to time tk+1 in the form of Algorithms 1
and 2, respectively.
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Algorithm 1 Initialization of the numerical scheme.
1. Set t0 = 0, k = 0, and set ∆t to a given fixed value.

2. Using the initial conditions, set Z0
j,K , ∀K ∈ Kh and ∀j ∈ {1, ..., n}.

3. Initialize coefficients N , U ,M, D, W, A, R, and F in (3.1).

4. Set the initial upwinded values

• For the interior sides, m0,upw
i,E using (3.42) and Z0,upw

i,j,E using (3.38), ∀i, j ∈ {1, ..., n}.
• For the boundary sides, use the information from the boundary conditions.

Algorithm 2 The main computational loop of the numerical scheme. Transition from time tk
to tk+1.

1. Compute local matrices Hi,j,K defined by (3.29) using either the EI or the ML approach,
∀i, j ∈ {1, ..., n}, ∀K ∈ Kh.

2. Compute inversions of Hi,j,K to obtain Bi,j,K , ∀i, j ∈ {1, ..., n}, ∀K ∈ Kh.

3. Compute the local matrices QK and RK,F given by (3.47) and Q−1
K RK,F , ∀F ∈ EK ,

∀K ∈ Kh.

4. Compute vectors RK given by (3.48), ∀K ∈ Kh.

5. Assembly linear system (3.57) for unknown traces using the mass balance equations on the
interior sides (3.54) and boundary conditions (3.55) and (3.56).

6. Solve the linear system (3.57) to obtain traces Zk+1 at the new time level.

7. Using (3.49), compute the values of Zk+1
K from the traces Zk+1

E , ∀K ∈ Kh.

8. Using (3.32), compute the coefficients vk+1
i,K,E , ∀i ∈ {1, . . . , n}, ∀E ∈ EK , ∀K ∈ Kh.

9. Update the coefficients in (3.1) (N , U , M, D, W, A, R, F) that are functions of the
unknowns Z using the computed values of Zk+1

K and Zk+1
E .

10. Update the upwinded quantities

• For the interior sides, mk+1,upw
i,E using (3.41) and Zk+1,upw

i,j,E using (3.37),
∀i, j ∈ {1, ..., n}.

• For the boundary sides, use the information from the boundary conditions.

11. Set tk+1 = tk + ∆t and repeat the loop from Step 1 until the final time tfin is reached.
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3.11 Steady problem

The time dependency of the general problem (3.1) is described by the coefficient N . Solving a
general steady problem represented by (3.1) is a challenging task requiring a different approach
than the one presented above and as such is beyond the scope of this work. However, the
numerical scheme presented here can be easily modified for the solution of a simplified steady
linear problem in the form

∇ ·

mi

− n∑
j=1

Di,j∇Zj +wi

+
n∑
j=1

ri,jZj = fi, (3.59)

i.e., steady equation (3.1) without the advection terms. The remaining non-zero coefficients are
not functions of the unknowns Z but can depend on spatial coordinate x.

The procedure carried out with the discretization of the diffusion term in Section 3.4 is done
without introducing temporal discretization, therefore, remains the same for the steady case.

For the approximation of conservation laws, we follow the procedure presented in Section 3.5
for the weak formulation (3.12) where we omit the superscripts describing the time levels and
do not consider zero coefficients. For the selection of the upwinded value mupw

i,E , we use the
same approach that was used for the first time step in the case of an unsteady problem: for the
interior sides mupw

i,E is obtained using (3.42) and for the boundary sides, the value from boundary
condition is used. The coefficients U and A are zero, therefore, the upwinded values of Zupwi,j,E

are not needed. As a result, similarly to (3.46), we can formulate the conservation laws in a
matrix-vector notation

QKZK =
∑
F∈EK

RK,FZF +RK , (3.60)

where the entries of matrices QK and RK,F are given by

{QK}i,j =
∑
E∈EK

mupw
i,E Bi,j,K,E + |K|dri,j,K , ∀i, j ∈ {1, . . . , n} , ∀K ∈ Kh, (3.61a)

{RK,F }i,j =
∑
E∈EK

mupw
i,E Bi,j,K,E,F , ∀i, j ∈ {1, . . . , n} , ∀F ∈ EK , ∀K ∈ Kh,

(3.61b)

and the components of vector RK are given by

{RK}i = |K|dfi,K −
∑
E∈EK

mupw
i,E wi,K,E , ∀i ∈ {1, . . . , n} , ∀K ∈ Kh. (3.62)

Similarly to (3.49), under the assumption of non-singularity of QK , we obtain

ZK =
∑
F∈EK

Q−1
K RK,FZF + Q−1

K RK , ∀K ∈ Kh. (3.63)

Then, we follow the procedure described in Section 3.6 to formulate the mass balance on all sides,
include the boundary conditions and assembly matrix A. In this case, the solution of (3.57) is
the solution of the solved steady problem.

To summarize the description of the numerical scheme for the solution of a simplified steady
linear problem in a compact form, we present the steps in the form of Algorithm 3.
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Algorithm 3 Numerical scheme for a steady linear problem.
1. Set the upwinded values

• For the interior sides, mupw
i,E = 1/2 (mi,K1 +mi,K2), ∀i ∈ {1, . . . , n}.

• For the boundary sides, use the information from the boundary conditions.

2. Compute local matrices Hi,j,K defined by (3.29) using either the EI or the ML approach,
∀i, j ∈ {1, ..., n}, ∀K ∈ Kh.

3. Compute inversions of Hi,j,K to obtain Bi,j,K , ∀i, j ∈ {1, ..., n}, ∀K ∈ Kh.

4. Compute the local matrices QK and RK,F given by (3.61) and Q−1
K RK,F , ∀F ∈ EK ,

∀K ∈ Kh.

5. Compute vectors RK given by (3.62), ∀K ∈ Kh.

6. Assembly linear system (3.57) for unknown traces using the mass balance equations on the
interior sides (3.54) and boundary conditions (3.55) and (3.56).

7. Solve the linear system (3.57) to obtain traces Z.

8. Using (3.63), compute the values of ZK from the traces ZE , ∀K ∈ Kh.

9. Using (3.32), compute the coefficients vi,K,E , ∀i ∈ {1, . . . , n}, ∀E ∈ EK , ∀K ∈ Kh.

3.12 Chapter summary
In this chapter, we presented the numerical scheme based on the MHFEM spatial discretization
with semi-implicit discretization in time designed to solve a general system of coupled non-linear
advection-diffusion equations in the coefficient form covering the range of problems considered in
this work. The complete description of the scheme was published in [43] and details about the
mass lumping technique were published in [102].

The initialization of the numerical scheme and the main computational loop describing the
transition from time tk to tk+1 are summarized in Algorithms 1 and 2, respectively. The solution
of a simplified steady linear problem is summarized in Algorithm 3.





Implementation and
parallelization 4

In this chapter, the implementation of the numerical scheme in C++ is described emphasizing
the parallel implementation using MPI [100]. We focus on the implementation of the scheme for
unsteady problems summarized in the previous chapter in Algorithms 1 and 2. The modifications
for the solution of a steady problem are straightforward as the steps of Algorithm 3 summarizing
the solution of a steady problem are comprised in either Algorithm 1 or 2.

The chapter is structured as follows. We start with the description of the serial implementation
in Section 4.1. The serial implementation is usually advantageous for problems on coarse meshes
resulting in smaller sizes of matrix A in (3.57) when the solution of the linear problem (3.57)
in step 6 of Algorithm 2 is not too computationally demanding. Variants of the scheme using
both direct and iterative solvers for the linear problems (3.57) are implemented. However, for
finer meshes, matrix A in (3.57) becomes large and the solution of the linear system in step 6 of
Algorithm 2 dominates the computational time which motivates to speedup the computation by
employing more than one CPU core. When a certain size of the problem is reached, the serial
variant of the method can no longer be used due to hardware requirements and parallel methods
are essential to solving these problems.

In Section 4.2, we summarize the main ideas of the domain decomposition approach with
non-overlapping subdomains. The reduction of the original linear system 3.57 to the Schur
complement system and the iterative solution of such a system in subassembled form is described
in Section 4.3. The BDDC preconditioner for the iterative solution of the Schur complement
system is presented in Section 4.4 and its parallel implementation is described in Section 4.5.

4.1 Serial implementation

The serial implementation of the scheme following the steps of Algorithms 1 and 2 is straight-
forward. All the steps requiring the computation on mesh elements K ∈ Kh and sides E ∈ Eh
are resolved sequentially. Based on the selected linear solver, the sparse linear system matrix A
in (3.57) is assembled and stored in either the compressed sparse row (CSR) or column (CSC)
formats. The position of non-zero entries of the matrix are represented by pairs of indices NZ(A):
(i, k) ∈ NZ(A)⇔ matrix A has non-zero entry in row i and column k.

Variants of the method utilizing both a direct solver based on a suitable factorization of the
matrix A and an iterative solver based on Krylov subspaces are implemented.

In general, the discretization of (3.1) leads to non-symmetric matrix A. The direct solvers are
in this case based on the LU factorization with partial pivotation. In this work, the numerical
library UMFPACK [29] is used to solve the system with the non-symmetric matrix A stored in

45
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the CSC format. The preconditioned biconjugate gradient stabilized method (BiCGStab) [115]
summarized in Algorithm 4 is implemented as the iterative solver in this case with the incomplete
LU factorization ILU(0) as a preconditioner. The construction of ILU(0) preconditioner [97] is
summarized in Algorithm 5, the procedure follows the traditional LU decomposition but the
non-zero entries that would change the structure of the original matrix A are dropped. In contrast
to the direct solver, the CSR format is advantageous for the implementation of matrix-vector
product required by iterative methods.

In special cases, the discretization of (3.1) can lead to symmetric matrix A, for example,
for the Laplace problem later in Chapter 6. In this case, the direct solvers can employ a
simpler Cholesky decomposition instead of the LU one. In this work, the numerical library
CHOLMOD [24] is used to solve the system with the symmetric matrix A stored in the CSC
format. The preconditioned conjugate gradient method (PCG) [27] summarized in Algorithm 6
analogically with the incomplete Cholesky decomposition IC(0) [97] summarized in Algorithm 7
as a preconditioner is used for the matrix stored in the CSR format.

Algorithm 4 Preconditioned biconjugate gradient stabilized method for the solution of system
Ax = b with initial guess x0. The preconditioner is represented by matrix M−1. Adapted
from [115].

1: Compute r0 = b− Ax0, set r∗0 arbitrary such that (r0, r
∗
0) 6= 0

2: ρ0 = α = ω0 = 1
3: v0 = p0 = 0
4: for i = 0, 1, . . . until convergence do
5: ρi = (r∗0, ri−1)
6: β = ρi

ρi−1
α

ωi−1
7: pi = ri−1 + β(pi−1 − ωi−1vi−1)
8: y = M−1pi . Application of the preconditioner
9: vi = Ay

10: α = ρi
(r∗0,vi)

11: s = ri−1 − αvi
12: z = M−1si . Application of the preconditioner
13: t = Az
14: ωi = (t,s)

(t,t)
15: xi = xi−1 + αy + ωiz
16: ri = s− ωit
17: end for

Algorithm 5 Construction of incomplete LU factorization ILU(0) for matrix A = {ai,j} of rank
n̂. Adapted from [97].

1: for i = 2, . . . , n̂ do
2: for k = 1, . . . , i− 1 and (i, k) ∈ NZ(A) do
3: Compute ai,k = ai,k

ak,k

4: for j = k + 1, . . . , n̂ and for (i, j) ∈ NZ(A) do
5: Compute ai,j = ai,j − ai,kak,j
6: end for
7: end for
8: end for
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Algorithm 6 Preconditioned conjugate gradient method for the solution of system Ax = b with
initial guess x0. The preconditioner is represented by matrix M−1. Adapted from [27].

1: Compute r0 = b− Ax0, z0 = M−1r0, and p0 = z0
2: for j = 0, 1, . . . until convergence do
3: αj = (rj ,zj)

(Apj ,pj)
4: xj+1 = xj + αjpj
5: rj+1 = rj − αjApj
6: zj+1 = M−1rj+1 . Application of the preconditioner
7: βj = (rj+1,zj+1)

(rj ,zj)
8: pj+1 = zj+1 + βjpj
9: end for

Algorithm 7 Construction of incomplete Cholesky factorization IC(0) for matrix A = {ai,j} of
rank n̂. Adapted from [97].

1: for k = 1, . . . , n̂− 1 do
2: Compute ak,k = √ak,k
3: for j = k + 1, . . . , n̂ and (j, k) ∈ NZ(A) do
4: Compute aj,k = aj,k

ak,k
5: end for
6: for j = k + 1, . . . , n̂ and for (j, k) ∈ NZ(A) do
7: for i = j, . . . , n̂ and (i, j) ∈ NZ(A) do
8: Compute ai,j = ai,j − ai,kaj,k
9: end for

10: end for
11: end for
12: an̂,n̂ = √an̂,n̂

4.1.1 Preconditioners

In general, a preconditioner is a form of transforming the original problem into an equivalent one
with the same solution and which should be easier to solve by the selected iterative method [97].
Employing the preconditioner described by a matrix M from left is formally equivalent to solving
a modified problem

M−1AZ = M−1b, (4.1)

instead of the original (3.57). The action of M−1 requires a solution of a linear system with
matrix M, therefore, one of the desired properties of M is that the solution of such a problem is
inexpensive.

For the ILU(0) and IC(0) preconditioners considered in this work, M is constructed in a
factorized form M = LU and M = LLT , respectively, where L is a lower triangular matrix and U
is an upper triangular matrix. Positions and values of the non-zero entries of the matrices are
given in Algorithms 5 and 7 for ILU(0) and IC(0), respectively. The application of preconditioner
in Algorithms 4 and 6 then requires the solution of two linear systems with triangular matrices
which can be done by the backward and forward substitutions.
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4.2 Domain Decomposition

The parallel approach used in this work is based on the domain decomposition method with
non-overlapping subdomains [110]. The decomposition into subdomains is advantageous both
for the local computations on elements K ∈ Kh such as steps 1 - 4 of Algorithm 2 and also
for the solution of the linear system (3.57) in step 6. The local computations on K ∈ Kh are
independent, therefore, the efficient parallelization is straightforward. On the other hand, the
parallelization of the linear solver is a more demanding task.

The description of the parallel implementation is divided into two blocks. One block contains
the initialization of the scheme summarized in Algorithm 1, the preparatory steps to assembly
matrix A, and updating the information when the solution is obtained summarized Algorithm 2
except for steps 5 and 6. The other block contains the remaining two steps: the assembly of A
and the solution of (3.57).

The first block starts with a decomposition of a computational domain Ω into N non-
overlapping subdomains denoted Ωi, i ∈ {1, . . . , n}. The division of the numerical mesh is
carried out such that each mesh element K ∈ Kh belongs to exactly one subdomain Ωi. The
MHFEM-based scheme uses values located on also on mesh sides and each interior side belongs
to exactly two elements. Sides E ∈ Eh common to two elements belonging into two different
subdomains need to be duplicated in the corresponding subdomains.

For optimal parallel performance, the subdomains should contain approximately the same
number of mesh elements and, as a result, approximately the same number of degrees of freedom.
Another desired property of the decomposition is to minimize the number of sides common to two
different subdomains. The set of all sides shared by two different subdomains is, in the context of
this chapter, referred to as the interface. The values corresponding to the sides on the interface
are needed in both subdomains and need to be transferred between the subdomains during the
computation. Thus, limiting their number reduces the communication between subdomains
during the computation.

Finding the decomposition satisfying these conditions can be a challenging task, especially
for unstructured meshes. In this work, a graph partitioning-based algorithm provided by the
METIS library [70] is used to obtain such decomposition for unstructured meshes. However, for
structured meshes consisting of rectangular elements on the rectangular domain and cuboidal
elements on the cuboidal domain in 2D and 3D, respectively, the division into a certain number
of rectangular or cuboidal subdomains can be obtained by overlay of the original mesh with a
coarse grid. All the mesh elements laying in a single coarse grid cell then form one subdomain.

The aforementioned divisions of the structured meshes satisfy the desired properties and
both approaches for structured meshes are compared later in Chapter 6 where the differences
resulting from these two decompositions are discussed.

Once the division into subdomains is obtained, each subdomain is mapped to a single MPI
process. This process then handles the corresponding part of the computational mesh and all the
quantities required by the numerical scheme belonging to this subdomain. The implementation of
the steps of Algorithms 1 and 2 that do not require the information from the other subdomains is
straightforward as these steps are done independently by each MPI process with no communication
needed.

4.2.1 Upwind

The communication between the processes is needed for the computation of the upwinded
quantities m0,upw

i,E and Z0,upw
i,j,E during the initialization of the scheme in step 4 of Algorithm 1

and for the update of mk,upw
i,E and Zk,upwi,j,E at each time step in step 10 of Algorithm 2 when the
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upwinded quantity is computed on the interface side E. For these sides, only one of the two
values located on elements K1 and K2 required by (3.37) or (3.41) is available for the given
process. The type of communication and the structure of data transferred in these steps is the
same, therefore, the unified description for both upwind procedures is presented in this section.

It would be too demanding to request individual values from other processes just in time when
needed by evaluation of (3.37) or (3.41) on a given side and, in the case of an unsteady problem,
the type of this communication (sending or receiving), can change during the computation as the
sign of uki,j,K•,E + aki,j,K•,E or vki,K•,E can change between the time steps. Instead, at the start
of each step, a process creates an array of values that could be needed by other processes and
an array of values that will be received from other processes. These arrays of values are then
exchanged between the processes using the MPI operations Isend and Ireceive. The values
from other processes are stored in an artificial array and the operations (3.37) or (3.41) are done
locally using this array when the values from the other subdomains are required. Note that the
type of this communication remains the same during the whole computation regardless of the
sign of the coefficients uki,j,K•,E + aki,j,K•,E and vki,K•,E .

4.3 Schur complement system

In the following sections, we focus on the remaining steps 5 and 6 of Algorithm 2: the assembly
of A and the solution of linear system AZ = b given by (3.57)

We start with the description of the iterative substructuring. Although it is quite a standard
procedure in the domain decomposition literature (see e.g. [110]) we recall it briefly for clarity.

Based on the decomposition into N non-overlapping subdomains Ωi, i ∈ {1, . . . , N}, the
unknowns in the system (3.57) which are located on the mesh sides are divided into two groups:
those located at the interior sides (and possibly the sides forming a physical boundary of
computational domain Ω) and those located at the interface sides denoted by superscript I and
Γ, respectively. In the following, all quantities corresponding to subdomain Ωi are denoted by
subscript i, i ∈ {1, . . . , N}.

The equations and unknowns in (3.57) are formally reordered: first the interior unknowns,
then the interface ones, to obtain the following block partitioning of matrix AAII AIΓ

AΓI AΓΓ

Zk+1,I

Zk+1,Γ

 =

bI
bΓ

 , (4.2)

where AII corresponds to the interior sides of the subdomains, AΓΓ corresponds to the interface
sides, and AIΓ and AΓI represent the coupling between these two parts.

The interior degrees of freedom Zk+1,I in (4.2) are eliminated to obtain the reduced system
for the Schur complement S of the interior unknowns only [110]

SZk+1,Γ = b̂, (4.3a)

S = AΓΓ − AΓI
(
AII

)−1
AIΓ, (4.3b)

b̂ = bΓ − AΓI
(
AII

)−1
bI . (4.3c)

When the system (4.3a) is solved, the interior unknowns Zk+1,I are recovered using

Zk+1,I =
(
AII

)−1 (
bI − AIΓZk+1,Γ

)
. (4.4)
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Note that AII is a block diagonal matrix with blocks corresponding to individual subdomains.
The main advantage of this approach is that the reduced system (4.3a) is typically much

smaller than the original one (3.57) and the elimination of the interior degrees of freedom and
their recovery from the interface ones once the Schur complement system is solved can be done
independently on each subdomain, i.e., in parallel. Explicit construction of (4.3a) would be too
computationally and memory demanding. Instead, the action of

(
AII

)−1
on vector in (4.3b),

(4.3c), and (4.4) is obtained as the solution of a linear system with matrix AII .

4.3.1 Subassembled form of matrix S

In this section, we show the subassembled form of matrix S defined in (4.3b) which is convenient
for performing the operations with Schur complement in parallel.

On the subdomain Ωi, the local part of the matrix A in (3.57) denoted by Ai is assembled
following the same procedure as for the overall matrix A, here, using only the sides of Ωi. From
these local matrices Ai, the complete matrix A can be formally assembled as

A =
N∑
i=1

RTΩ,iAiRΩ,i, (4.5)

where RΩ,i is the rectangular matrix consisting of ones and zeros, which represents the restriction
of the vector of all degrees of freedom to those located at the i-th subdomain.

Similarly to (4.2) for the complete system, the unknowns in each subdomain Ωi are divided
into two groups: those located at the interior sides and possibly the physical boundary of Ω and
those located at the intersection of the subdomain boundary with the interface.

We can reorder the equations and unknowns in each local matrix Ai similarly to (4.2): first
the interior unknowns, then the interface ones to obtain a block partitioning of Ai in the form

Ai =

AIIi AIΓi
AΓI
i AΓΓ

i

 , ∀i ∈ {1, . . . , N} , (4.6)

with the same meaning of the superscripts I and Γ as in (4.2), here related to the subdomain Ωi.
To obtain the local Schur complement matrix Si, the interior degrees of freedom are eliminated
locally

Si = AΓΓ
i − AΓI

i

(
AIIi

)−1
AIΓi , ∀i ∈ {1, . . . , N} . (4.7)

Schur complement S is then formally assembled as

S =
N∑
i=1

RTi SiRi, (4.8)

where Ri is the rectangular matrix consisting of ones and zeros, which represents the restriction
of the vector of all interface degrees of freedom to those located at the i-th subdomain.

Neither the assembled Schur complement matrix S nor the local matrices Si are constructed
explicitly. Instead, only the assembly procedure (4.8) and the definition of local parts (4.7) are
repeatedly used, as described in detail by Algorithm 8, where the action of the matrix S on a
vector x is evaluated to obtain y = Sx.

In this work, PCG and BiCGStab are used for the solution of system (4.3a) in the symmetric
and non-symmetric case, respectively. Therefore, the matrix-vector multiplication with the
matrix S in the subassembled form described in Algorithm 8 is the only operation needed with
this matrix for employing these methods as follows from the summary of these two methods in
Algorithms 4 and 6.
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Algorithm 8 Action of S on vector x.
Set y = 0 and repeat for each subdomain i ∈ {1, . . . , N}:

1. Extract the part of x corresponding to the interface of the i-th subdomain to obtain xi
(xi = Rix).

2. Multiply ci = AIΓi xi.

3. Solve AIIi ti = ci.

4. Multiply zi = AΓI
i ti.

5. Multiply and subtract yi = AΓΓ
i xi − zi.

6. Extend yi by zeros (RTi yi) and add the result to y (y =
∑N
i=1 RTi yi).

4.4 BDDC preconditioner

Without preconditioning, however, the convergence rate of the iterative solver for the Schur
complement system (4.3a) deteriorates with the increasing number of subdomains [110]. Therefore,
the applicability of unpreconditioned iterative methods for the solution of the Schur complement
system, in this work BiCGStab and CG, is limited and not suitable for a larger number of
subdomains.

The traditional preconditioners such as the diagonal Jacobi or incomplete factorizations, such
as, ILU(0) employed for BiCGStab in the serial implementation in Section 4.1 cannot be used
because the Schur complement matrix is not explicitly assembled. Consequently, preconditioners
tailored to the solution of the Schur complement system in a subassembled form have to be used.

The Balancing Domain Decomposition by Constraints (BDDC) is one of such method. BDDC
was introduced in [31] for problems with the symmetric positive definite matrix. Its extension
to the advection-diffusion problems with non-symmetric matrices was presented in [114], with
the implementation based on the change of basis without considering an explicit coarse problem.
BDDC with an explicit coarse problem was applied to Euler equations in [118], where the
concept of adjoint coarse basis functions was also introduced. In [54], the method was applied to
non-symmetric saddle-point problems arising from a linearization of the stationary Navier–Stokes
equations and [55] extended this approach to a multilevel method. The BDDC method was
extended towards the flow in porous media in [105, 106, 119] and its application to hybrid finite
element discretization includes [108, 112].

The key idea behind the BDDC method is choosing suitable coarse degrees of freedom. The
choice of the coarse degrees of freedom depends on the selected spatial discretization and the
dimension of the problem. For the MHFEM-based methods, the two types of coarse degrees of
freedom are usually considered:

• Value at a given interface side referred to as a corner.

• Average over a given set of boundary sides: usually, all the sides common to the two
neighboring subdomains are selected.

The solution is then found in the space of functions defined at the interface that are continuous in
the chosen coarse degrees of freedom. Note that for different spatial discretizations, for example,
Lagrangian finite elements with degrees of freedom located on element vertices, the classification
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of the coarse degrees of freedom to faces, edges, and vertices [71] is possible and slightly different
choices of coarse degrees of freedom are usually adopted.

In this work, the averages over sets of interface sides common to two subdomains are selected
as coarse degrees of freedom for both 2D and 3D problems. From the MHFEM formulation
in Chapter 3, it follows that each interface side belongs to exactly two subdomains. These
averages are selected independently for each primary unknown Zj of the original system 3.57,
j ∈ {1, . . . , n}, therefore, for each part of the interface common to two subdomains, there are n
coarse degrees of freedom. The results presented later in Chapters 6, 7, and 8 indicate that this
choice is sufficient for the problems considered in this work.

To complete the selection of coarse degrees of freedom we refer to [109] for the strategy to
select corners for the MHFEM formulation and to [74, 107] for the adaptive selection of coarse
degrees of freedom which are beyond the scope of this work.

The action of the BDDC preconditioner on a vector x to obtain the preconditioned vector u
consists of two steps: a local and a global (coarse) correction.

4.4.1 Local correction

The local corrections do not require information from other subdomains and can therefore
be performed simultaneously for all subdomains. They are the same for both symmetric and
non-symmetric matrices.

First, the local part of the vector corresponding to the i-th subdomain is extracted from the
original vector x and weighted as

xi = WiRix, ∀i ∈ {1, . . . , N} , (4.9)

where Wi is the weight matrix. Here, the diagonal matrix Wi = 1
2I is used. Note that for

highly varying material properties between the subdomains, more advanced choices are needed to
take into account these differences [108], however, as indicated by the results presented later in
Chapters 6, 7, and 8, the choice Wi = 1

2I is sufficient for the problems considered in this work.
On each subdomain Ωi, the following problem is solved with a vector xi (4.9) as a part of

the right-hand side
AIIi AIΓi Θ

AΓI
i AΓΓ

i CTi
Θ Ci Θ



y

ui

λ

 =


0

xi

0

 , ∀i ∈ {1, . . . , N} , (4.10)

where Θ denotes a zero matrix of appropriate dimensions and the matrix Ci defines the coarse
degrees of freedom. The number of rows of Ci is the same as the number of coarse degrees of
freedom corresponding to Ωi. Corners are represented by rows with a single one in the column
corresponding to the selected degree of freedom in Ai. Averages over parts of the subdomain
boundary for a given primary unknown are represented by a row of ones on the positions of the
averaged sides and unknowns in Ai. Vector ui obtained as a part of the solution of (4.10) is the
local part of the preconditioned vector. This local part is then combined with the global (coarse)
correction described in the following section.

4.4.2 Coarse correction

The coarse correction requires information from all subdomains, moreover, the coarse correction
for non-symmetric matrices requires additional steps in comparison with the symmetric case. To
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compute the global part of the preconditioned vector, the coarse basis functions Φi are needed as
the solution of the following system with multiple right-hand sides

AIIi AIΓi Θ

AΓI
i AΓΓ

i CTi
Θ Ci Θ



Yi
Φi

Λi

 =


Θ

Θ

I

 , ∀i ∈ {1, . . . , N} , (4.11)

which is solved on each subdomain Ωi.
The coarse basis functions are sufficient for symmetric matrix A. However, for the case of

the non-symmetric matrices, which are encountered in most of the problems considered in this
work, also the adjoint coarse basis functions Φ∗i are needed [54, 114, 118]. The adjoint coarse
basis functions are found as the solution of the following system with multiple right-hand sides

AIIi
T AΓI

i
T Θ

AIΓi
T AΓΓ

i
T CTi

Θ Ci Θ



Y∗i
Φ∗i
Λ∗i

 =


Θ

Θ

I

 , ∀i ∈ {1, . . . , N} , (4.12)

which is again solved on each subdomain Ωi.
Note that for symmetric matrix A, satisfying A = AT and as a result also Ai = ATi for each

subdomain Ωi, equations (4.11) and (4.12) are the same and as a result, the basis functions Φi

and adjoint basis functions Φ∗i are identical. To unify the description of the BDDC method for
symmetric and non-symmetric matrices in the following text, both the coarse and adjoint coarse
basis functions are used even if they are identical for symmetric matrices A.

As a side product of computing coarse basis functions and adjoint coarse basis functions
in (4.11) and (4.12) we also obtain the local parts of the coarse problem matrix SCi , defined by

SCi = Φ∗i
TSiΦi, ∀i ∈ {1, . . . , N} . (4.13)

To find the expression of SCi as a part of the solution of (4.11), we start with the linear
systems for the basis functions (4.11) and (4.12) that are formally equivalent to the following
systems Si CTi

Ci Θ

Φi

Λi

 =

Θ

I

 , (4.14a)

respectively STi CTi
Ci Θ

Φ∗i
Λ∗i

 =

Θ

I

 . (4.14b)

From the multiplication of the block partitioned matrices in (4.14) it follows

CiΦi = CiΦ∗i = I. (4.15)

To obtain the expression of SCi , both sides of (4.14a) are multiplied by
(
Φ∗Ti Λ∗Ti

)
from the

left, while (4.14b) is multiplied by
(
ΦT
i ΛTi

)
from the left. The identity (4.15) is then employed

and as a result, the following expressions are obtained

Φ∗i
TSiΦi = −Λi, (4.16a)
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ΦT
i STi Φ∗i = −Λ∗i . (4.16b)

Transposing (4.16a), we obtain the following expression

Λi = −Φ∗Ti SiΦi = Λ∗Ti , (4.17)

from which, the local part of the coarse problem matrix SCi is obtained as a part of the solution
of the problem for the coarse basis and adjoint coarse basis functions as,

SCi = Φ∗i
TSiΦi = −Λi ∀i ∈ {1, . . . , N} . (4.18)

Then, the matrix of the coarse problem SC is assembled from these local parts as

SC =
N∑
i=i

RTCiSCiRCi , (4.19)

where RCi is the rectangular matrix consisting of ones and zeros, which represents the restriction
of the vector of coarse degrees of freedom to those located at the i-th subdomain.

The right-hand side vector of the coarse problem is then constructed

xC =
N∑
i=1

RCi
TΦ∗i

Txi, (4.20)

and the coarse problem
SCuC = xC , (4.21)

is solved. From the solution of (4.21) the part corresponding to the subdomain Ωi is obtained

uCi = ΦiRCiuC , ∀i ∈ {1, . . . , N} . (4.22)

Finally, the global and local parts of the vectors are weighted and combined to the precondi-
tioned vector u as

u =
N∑
i=1

RTi Wi(ui + uCi). (4.23)

4.4.3 Algorithm summary

To summarize the description of the preconditioner, the steps needed to obtain its action on a
vector x are in the compact form presented in Algorithm 9.

4.5 Parallel implementation of BDDC
In this section, the parallel implementation of the iterative solver for the Schur complement
system in a subassembled form with the BDDC preconditioner, i.e., the implementation of the
steps 5 and 6 of Algorithm 2, is presented.

In this work, the Schur complement system (4.3a) is solved by the Krylov subspaces-based
BiCGStab [115] or PCG [27] iterative solvers in the case of non-symmetric or symmetric matrices,
respectively. Both methods are similar in terms of operations needed and involve an initialization
step (Section 4.5.1), matrix-vector multiplications with matrix S (Section 4.5.2), scalar products
(Section 4.5.3), and applications of the BDDC preconditioner (Section 4.5.4). The differences
in the methods such as the additional set of vectors required by BiCGStab do not affect the
implementation of these main operations, therefore, the implementation of both methods is
described together.
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Algorithm 9 Application of the BDDC preconditioner on the vector x.
Start with the vector x and perform the following steps on each subdomain Ωi, i ∈ {1, . . . , N}:

1. Extract and weight the local part of the vector xi using (4.9).

2. Compute the local correction ui as the solution of (4.10).

3. Compute the coarse basis functions Φi and obtain a local part of the coarse matrix SCi
using (4.11).

4. In the case of non-symmetric matrix, compute adjoint coarse basis functions Φ∗i using (4.12)

Using the data from all subdomains, perform the following steps:

1. Assemble the coarse problem matrix SC using (4.19) and the right-hand side xC using (4.20).

2. Compute the coarse correction uC as the solution of (4.21).

On each subdomain Ωi, i ∈ {1, . . . , N}, perform the following steps:

1. Obtain uCi using (4.22).

2. Combine local ui and coarse uCi corrections to obtain u using (4.23).

4.5.1 Initialization

For the iterative solution, the assembled matrix A is not needed, instead, the method requires
the assembly of the local parts Ai as described in Section 4.3. Therefore, in step 5 of Algorithm 2
each process assembles the corresponding local matrix Ai using the same approach that was
described in Section 3.6 for the complete matrix A restricted to the its subdomain only. The
construction of Ai requires only values that are already available to the process, therefore, Ai
can be assembled in parallel and no communication is needed.

During each iteration of the solver (PCG or BiCGStab), the solutions of several linear systems
with the same matrices are needed on each subdomain. To perform these solutions efficiently, the
factorizations of the matrices are pre-computed before the actual iterations start. The solutions
of these systems during the iterations are then performed by backward and forward substitutions
for various right-hand sides. For symmetric matrices, the Cholesky factorizations are computed
using the numerical library CHOLMOD [24]. For non-symmetric matrices, the LU factorizations
with partial pivoting are computed using the numerical library UMFPACK [29].

The factorization of AIIi is required to compute the action of matrix the Si during each
iteration as described in Algorithm 8. The factorization of matrices in (4.10) is required to
construct the coarse basis functions for the coarse corrections and to compute the local corrections
in the application of the preconditioner.

With the matrices in (4.10) factorized, coarse basis functions Φi are computed by solving (4.11)
with multiple right-hand sides. The adjoint coarse basis functions Φ∗i needed for the non-symmetric
matrices are computed using the same factorization since UMFPACK allows to efficiently solve
the system with the transposed matrix once the LU factorization of the original matrix is
available [29]. As a side product of the computations of these functions, each process also obtains
a local part of the coarse matrix SCi defined by (4.17) as discussed in Section 4.4.2.

Matrix SC is then assembled from these local parts. In contrast to the Schur complement
matrix S, this is done explicitly. Here, the coarse matrix is assembled by each process and the
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resulting linear systems with matrix SC are solved redundantly by each process. This approach
is advantageous for a small to moderate number of processes where matrix SC is small. Solving
the coarse problem redundantly, however, becomes the bottleneck for the scalability of the
method for a large number of processes, since the matrix becomes too large to be efficiently
stored and factorized in serial. This limitation was overcome by the introduction of multilevel
BDDC methods in [5, 73, 107, 113] where the coarse problem is not solved exactly and only an
approximation of the solution obtained by BDDC is used, nevertheless, this approach is beyond
the scope of this work.

The assembled matrix SC is sparse and its structure is determined by the choice of coarse
degrees of freedom, however, for a small number of processes (at most 32 for the problems
considered in this work), the matrix is too small to benefit from the sparse format and it is
convenient to store it in a dense format. The usage of the sparsity pattern becomes advantageous
for a moderate number of processes (over 32). In this case, matrix SC is stored in the compressed
sparse column (CSC) format required by CHOLMOD or UMFPACK. This reduces the memory require-
ments to store the matrix and also the solution of the sparse coarse problem of this size is faster
than the solution of the same problem stored as a dense matrix. For the assembly of SC , the local
parts SCi are stored in local copies of SC in the positions determined by the coarse degrees of
freedom by each process. The assembled SC is then obtained using the MPI operation Allreduce
performed on these local copies of SC . In the case of a matrix stored in the CSC format, the
operation is performed with the array of matrix entries only as the structure of the matrix is
known from the decomposition into subdomains and the choice of coarse degrees of freedom at
the start of the computation. Each process obtains its copy of SC and as the final step of the
initialization, each process constructs the decomposition (LU or Cholesky) of the matrix SC .

4.5.2 Matrix-vector product

For the computation of the matrix-vector product with matrix S, we follow the steps of Algorithm 8.
The step 1 is actually not needed, because, at the beginning of the matrix-vector product
computation, each process knows only the part of the vector corresponding to the unknowns
at the subdomain interface mapped to this process. Steps 2–5 use only the data known to the
process and are done in parallel by each process independently, and moreover, the factorization of
matrices AIIi is known from the initialization step described in Section 4.5.1. The communication
is needed in step 6 only, where each subdomain needs the values from all the neighboring
subdomains to assemble the final vector. This communication is realized by the combination of
MPI operations Isend and Ireceive, where each process sends and receives the values of the
corresponding part of the interface from the neighboring subdomain. The exchanged values are
then added to their own part of the vector to obtain the final result. In fact, steps 1 and 6 of
Algorithm 8 are naturally merged together.

4.5.3 Scalar product

For the computation of the scalar product, first, each process computes the scalar product of
the parts of the vector mapped to this process. Then, these local (partial) products are added
together and the sum is distributed back to all processes by the MPI operation Allreduce. In this
operation, every entry of the vector is processed twice because each part of the interface in the
MHFEM discretization employed in this work belongs to exactly two neighboring subdomains.
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4.5.4 BDDC preconditioner

The application of the preconditioner consists of two steps: local and coarse correction. We start
with the coarse correction. The factorization of SC is already known by each process from the
initialization step and the right-hand side of (4.21) is assembled from the local parts computed
by each process using (4.20). The MPI operation Iallreduce is used on the local parts extended
by zeros to the size of the full vector of the coarse right-hand side.

The communication needed to obtain the coarse vector xC is overlapped with the computation
of the local corrections ui obtained as a solution of (4.10) (see e.g. [5]).

When the vector xC is assembled, each process then solves the coarse problem (4.21) and
computes the part of the solution uC corresponding to its subdomain by (4.22). Based on the
number of subdomains, the solution of the coarse problem (4.21) is carried out as a solution of a
dense or sparse linear system depending on the pre-computed factorization in the initialization
step.

The final combination of the local and coarse corrections in (4.23) is similar to the computation
of the matrix-vector product in Section 4.5.2: each process exchanges values with neighboring
subdomains by the MPI operations Isend and Ireceive and adds the received values to its own
copy of u to obtain the final preconditioned vector u.

4.6 Chapter summary
We presented both serial and parallel implementations of the numerical scheme proposed in
Chapter 3. The serial implementation can be used together with a direct or iterative solver for
the resulting linear system that needs to be solved at each time step. The serial implementation
was published in [43] where also different methods for solving the linear system were tested. The
parallel implementation based on iterative substructuring and iterative solution of the Schur
complement system with the BDDC preconditioner was published in [104].





Verification of numerical
scheme 5

In this chapter, the numerical scheme presented in Chapter 3 is verified using benchmark
problems of the two-phase flow in porous media for which the solution is known. We are
interested in the accuracy and convergence properties of the numerical scheme only. Therefore,
the serial implementation of the numerical scheme is employed. The computational times and the
performance of the parallel implementation described in Chapter 4 are investigated separately in
Chapter 6.

Two benchmark problems: one in homogeneous and one in heterogeneous porous media are
considered in Sections 5.1 and 5.2, respectively.

The benchmark problem in a homogeneous porous medium is the McWhorter-Sunada problem
in 2D and its extension into 3D. The 2D problem and its solution were originally proposed
in [76] and the improved method to find the solution was presented in [45]. The generalization
into an arbitrary spatial dimension d was done in [42]. Both the original problem and its
3D generalization represent a simplified scenario of a point injection of fluid into a (partially)
saturated porous media without gravity, under the assumption of incompressible phases, and
radially symmetric domains.

The benchmark problem in a heterogeneous porous medium was proposed in [62] to demon-
strate the barrier effect for the two-phase systems at the interface between coarse and fine
sands. The physically correct numerical solution of the flow through the material interface is
important for the application of the numerical scheme to the scenarios arising from the laboratory
experiments in heterogeneous porous media described later in Chapters 7 and 8.

5.1 Homogeneous benchmark problem

The generalized McWhorter-Sunada problem is a problem of two-phase flow in a porous medium
for which the semi-analytical solution can be found under the assumption of incompressible
phases and neglected gravity in a radially symmetric domain [42, 45, 76]

The equations describing the two-phase flow in porous media are summarized in Section 2.3.9
in the form of a system of two partial differential equations (n = 2 in (3.1)) and an algebraic
relation between the phase saturation and the capillary pressure. The representation of this
problem in the general coefficient formulation (3.1) depends on the choice of the primary unknowns.
In this chapter, the capillary pressure and the non-wetting phase pressure are selected as the
primary unknowns, i.e., Z1 = pc and Z2 = pn. All the remaining quantities are computed from
these two primary unknowns using the relations presented in Section 2.3. For such choice of
the primary variables, the McWhorter-Sunada problem is represented by the following non-zero

59
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coefficients in (3.1),

N =

−Φρw dSwdpc 0

−Φρn dSwdpc 0

 , M =

ρw λwλt
ρn

λn
λt

 , D =

λtK −λtK

0 λtK

 . (5.1)

Note that a different choice of the primary variables are possible, for example, phase pressures,
i.e., Z1 = pw, Z2 = pn were used in [43]. However, the phase saturations Sα are in general not
feasible as the primary unknowns as the saturation values may become discontinuous over the
material interfaces in the case of heterogeneous media as discussed in Section 2.3.8.

The semi-analytical solutions for the original and generalized McWhorter-Sunada problems
can be found for the following problem formulation. We assume a radial symmetry of the solution
domain in the entire R2 and R3. The initial saturation of the non-wetting phase is denoted by
Si and in this work, Si = 0.05 is prescribed. Additionally, we assume a point source Q

[
md s−1

]
of the non-wetting phase located at the origin in the form

Q(t) = Adt
d−2
2 , (5.2)

where d is the dimension of the problem (d ∈ {2, 3}) and Ad
[
m3s−

d
2
]
is an arbitrary positive

constant. Note that for d = 2, the source term is constant in time. Here, the values A2 =
10−5 m2s−1 and A3 = 10−7 m3s−

3
2 are selected for the 2D and 3D case, respectively.

For the numerical solution of this problem, we take advantage of the radial symmetry of the
domain and consider only the first quadrant and octant in 2D and 3D, respectively. Additionally,
we consider a domain of finite length and choose the final time of the computation such that
the head of the solution does not reach the boundary representing infinity. In 2D and 3D, the
computational domain is a square with a 1 meter long side and a cube with a 1 meter long edge,
respectively. One vertex of the domain is located at the origin, where the source is prescribed and
the domain boundaries are aligned with the coordinate axis. The computational domains and
the boundary conditions representing the radial symmetry and infinity are shown in Figures 5.2
and 5.3 for the 2D and 3D case, respectively. The final time of the computation tfin = 20000 s
is selected for both 2D and 3D cases. The numerical solutions at the final time are shown in
Figures 5.2 and 5.3 for the 2D and 3D cases, respectively

Additionally, the point source at the origin needs to be approximated in the numerical scheme.
The numerical method employed here cannot deal with prescribing a flux in one point of the
mesh, therefore, the point source is approximated using the boundary condition by prescribing
the flux through all the sides (edges, faces) adjacent to the source point. The selection of the
sides on which the boundary condition is prescribed is illustrated in Figure 5.1 for the triangular
mesh in 2D and tetrahedral mesh in 3D. The values of the Neumann boundary condition are
computed so that the total volume injected through the selected boundary sides is the same as
the amount given by (5.2).

The porous medium for all the computations in this section is Sand A with the properties
given in Table 5.1. The computations are carried out for both Brooks-Corey and van Genuchten
models for the capillary pressure coupled with the corresponding Burdine and Mualem models
for the relative permeability. The wetting phase is water and the non-wetting phase is NAPL.
The fluid properties are given in Table 5.1.

5.1.1 Computational study setup

The convergence study is carried out both in 2D and 3D on both structured and unstructured
meshes. On all meshes, both the EI and ML variants of the scheme which were introduced in
Section 3.9 are compared to demonstrate the differences in the accuracy of these two approaches.
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Sand
φ K Srw Srn pd λBC αvG nvG

[−] [m2] [−] [−] [Pa] [−] [Pa]−1 [−]

Sand A 0.343 5.168 · 10−12 0.04 0 4605.8 2.857 1.71 · 10−4 6.64

Fluid
ρ µ[

kg m−3] [
Pa s−1]

Water 1000 1 · 10−4

NAPL 1400 1 · 10−4

Table 5.1: Sand and fluid properties for McWhorter-Sunada problem in Section 5.1. Adapted
from [43].

(a) 2D. (b) 3D.

Figure 5.1: Approximation of the point source at the origin. The sides on which the Neumann
boundary condition is prescribed are shown in red.

For each case listed above, the study is carried out on five meshes numbered from 1 to 5.
For the purposes of the convergence study, the meshes are characterized by the mesh size h,
defined as the largest ball diameter circumscribed around mesh elements. The meshes from 1
to 5 are generated to approximately halve the value of h between two consecutive meshes and
their properties are given in Table 5.2 where, in addition to the mesh size h, the number of
elements and the number of sides for each mesh are presented. The degrees of freedom in the
MHFEM-based numerical scheme employed here are located on the mesh sides, therefore the
total number of degrees of freedom (# DOF) for the given mesh is twice the number of sides.
All the unstructured meshes were generated by COMSOL Multiphysics version 3.5a.

With a single exception, the convergence study was carried out using the serial implementation
of the numerical scheme presented in Section 4.1 and the computations were performed on a PC
equipped with Intel Core i7-5820K, 3.6 GHz processor, and 32 GB RAM. The BiCGStab with
the ILU(0) preconditioner was used as the linear solver for the resulting system (3.57) in step 6
of Algorithm 2. The iterations are terminated when the relative norm of the residual is lower
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(a) Boundary conditions. (b) Numerical solution.

Figure 5.2: Boundary conditions and numerical solution (values of saturation Sn) for the 2D
McWhorter-Sunada problem. Dashed lines represent infinity, solid lines represent the radial
symmetry of the problem.

than a given tolerance ε wwwAZk+1
q − b

www
‖b‖

< ε, (5.3)

where Zk+1
q is the solution obtained in q-th iteration. The value of ε = 10−15 is selected for the

serial implementation in this section.
The only exception was the 3D cuboidal mesh number 5, where due to the memory require-

ments, the parallel implementation presented in Chapter 4 had to be used and the computations
were carried out on the Helios cluster at the Czech Technical University in Prague, Czech
Republic. The computational nodes of Helios were equipped with two 16-core AMD EPYC
7281, 2.1GHz processors and 128 GB RAM. The iterations are terminated when the relative
norm of the residual of the Schur complement system (4.3a) is lower than a given tolerance ε

wwwSZΓ,k+1
q − b̂

wwwwwwb̂www < ε, (5.4)

where ZΓ,k+1
q is the solution for the degrees of freedom located on the interface obtained in q-th

iteration. The value of ε = 10−9 is selected in this case.
The computations were carried out with a fixed time step, the values of ∆t are listed in

Table 5.2 individually for each of the capillary pressure models considered. These time steps
were selected to minimize the error of the numerical solution defined in Section 5.1.2 on the given
mesh for the selected capillary pressure model [72].
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(a) Boundary conditions. (b) Numerical solution.

Figure 5.3: Boundary conditions and numerical solution (values of saturation Sn) for the 3D
extension of the McWhorter-Sunada problem. Rear faces represent infinity, front faces represent
the radial symmetry of the problem.

5.1.2 Tools for numerical analysis

For the analysis of the numerical scheme, the numerical solution on a given mesh at the final
time of the computation tfin = 20000 s is compared to the semi-analytical solution and the
error is computed. Here, we present the tools needed for this comparison. The quantity selected
for comparison is the non-wetting phase saturation Sn, which is the primary unknown of the
semi-analytical solution [42].

Error of the numerical solution

The semi-analytical solution of the McWhorter-Sunada problem is found under the assumption
of radial symmetry. To compute the error, this semi-analytical solution denoted by g is projected
onto the numerical mesh using linear interpolation. The value of the semi-analytical solution
at a given point of the numerical mesh, which is needed for the comparison with the numerical
solution, is determined by its distance from the origin. The numerical solution on the mesh with
size h, denoted by gh, and obtained by the scheme proposed in Chapter 3, is an element-wise
constant function and no additional interpolation is used.

For the purposes of the comparison, the semi-analytical solution is available in the form
of uniformly distributed 10 000 samples at given distances from the origin. The resolution is
selected much higher than the spatial resolution of the finest mesh used in this study limiting
the impact of the interpolation errors arising from the projection of the semi-analytical solution
to the mesh.

The error of the numerical solution on a mesh with the element size h is denoted by ||Eh,g||p
and is defined as the p-norm of the difference between the semi-analytical solution g and the
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Mesh ID h [m] # Elements # Sides # DOF ∆tBC [s] ∆tvG [s]

2D41 6.71 · 10−2 242 383 766 454.55 36.36

2D42 3.49 · 10−2 944 1 456 2 912 145.99 15.49

2D43 1.64 · 10−2 3 714 5 651 11 302 44.64 4.64

2D44 8.73 · 10−3 14 788 22 342 44 684 13.44 1.35

2D45 4.23 · 10−3 59 336 89 324 178 648 5.00 0.50

2D�
1 9.43 · 10−2 225 480 960 253.16 317.00

2D�
2 4.71 · 10−2 900 1 860 3 720 90.50 80.00

2D�
3 2.36 · 10−2 3 600 7 320 14 640 31.90 19.96

2D�
4 1.18 · 10−2 14 400 58 080 116 160 10.62 5.02

2D�
5 5.89 · 10−3 57 600 115 680 231 1360 3.57 1.26

3D41 2.13 · 10−1 1 312 2 937 5 874 833.33 152.67

3D42 1.27 · 10−1 3 697 7 773 15 546 571.43 125.79

3D43 6.29 · 10−2 29 673 60 839 121 678 232.56 60.24

3D44 3.48 · 10−2 240 372 486 875 973 750 101.01 43.86

3D45 1.84 · 10−2 1 939 413 3 903 609 7 807 218 25.00 20.00

3D�
1 1.15 · 10−1 3 375 10 800 21 600 333.33 235.29

3D�
2 5.77 · 10−2 27 000 83 700 167 400 131.58 58.82

3D�
3 2.89 · 10−2 216 000 658 800 1 317 600 53.48 14.71

3D�
4 1.44 · 10−2 1 728 000 5 227 200 10 454 400 22.10 3.68

3D�
5 7.22 · 10−3 13 824 000 41 644 800 83 289 600 10.50 1.5

Table 5.2: Mesh properties for the benchmarks described in Section 5.1 and the time steps
for the given mesh and model of the capillary pressure. Subscripts BC and vG stand for the
Brooks-Corey and van Genuchten capillary pressure models, respectively.

numerical solution gh in the computational domain Ω

‖Eh,g‖p =
(∫

Ω
|g − gh|p

) 1
p

, (5.5)

where the values of p ∈ {1, 2} are considered. For the computation of the integral over domain Ω
in (5.5), the integral is broken into integrals over the individual mesh elements

(∫
Ω
|g − gh|p

) 1
p

=

 ∑
K∈Kh

∫
K
|g − gh|p

 1
p

, (5.6)

and the integrals on each element K ∈ Kh are evaluated using the 7-point Gauss-Lobatto [1]
quadrature rule.
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Experimental order of convergence

At a given time t, we assume that the error of the numerical solution can be expressed in the
form

‖Eh,g‖p = Ctime,g,pτ + Cspace,g,ph
OCg,p , (5.7)

where h denotes the mesh element size and τ denotes the time step. Ctime,g,p and Cspace,g,p are
positive constants, OCg,p is the order of convergence of the numerical scheme in the p-norm. We
assume that a time step τ is a function of mesh resolution h: here, it is selected to minimize the
value of the error of the numerical solution ‖Eh,g‖p given by (5.5) and the values for individual
meshes are listed in Table 5.2. Therefore, the order of convergence is investigated as a function
of mesh element size h.

The theoretical value of the order of convergence OCg,p of the numerical scheme introduced
in (5.7) is approximated by the experimental order of convergence denoted by EOCg,p [37]. The
experimental order of convergence EOCg,p computed using two numerical solutions gh1 and gh2
on two meshes with element sizes h1 and h2 in the p-norm is defined by

EOCg, p =
ln ‖Eh1,g‖p − ln ‖Eh2,g‖p

ln h1 − ln h2
, (5.8)

which follows from (5.7) after eliminating the constants Cspace,g,p and Ctime,g,p.

5.1.3 Results

The results for the EI variant of the method are shown in Tables 5.3 and 5.5 for 2D and 3D
meshes, respectively. The results for the ML variant of the method are shown in Tables 5.3
and 5.5 for 2D and 3D meshes, respectively.

The results for the EI variant of the method presented here indicate that the numerical
scheme is convergent with the first order of accuracy for all the considered mesh types and there is
no significant difference in the convergence rate between the 2D and 3D cases. These convergence
results justify the modification of the mass balance equation (3.52) where the mobility term is
eliminated and the mass balance is formulated in terms of velocities only (3.54) as was described
in Section 3.6.

The comparison of the two methods to compute the local coefficient matrices Hi,j,K shows
that employing the ML variant of the method slightly increases the error of the numerical solution
in comparison with the EI variant and the experimental order of convergence remains almost the
same. Based on these results, both the EI and ML variants of the scheme can be reliably used
for the solution of problems in homogeneous porous media.
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Brooks-Corey van Genuchten
Id. ‖Eh,Sn‖1 EOCSn,1 ‖Eh,Sn‖2 EOCSn,2 ‖Eh,Sn‖1 EOCSn,1 ‖Eh,Sn‖2 EOCSn,2

2D41 1.45 · 10−2
0.92 3.17 · 10−2

0.78 1.42 · 10−2
0.98 2.12 · 10−2

0.94
2D42 7.94 · 10−3

0.78 1.91 · 10−2
0.60 7.51 · 10−3

0.86 1.15 · 10−2
0.84

2D43 4.40 · 10−3
0.95 1.21 · 10−2

0.69 3.93 · 10−3
1.05 6.11 · 10−3

1.03
2D44 2.41 · 10−3

0.85 7.84 · 10−3
0.66 2.03 · 10−3

0.90 3.19 · 10−3
0.89

2D45 1.30 · 10−3 4.85 · 10−3 1.06 · 10−3 1.68 · 10−3

2D�
1 1.52 · 10−2

0.80 3.26 · 10−2
0.65 1.41 · 10−2

0.84 2.17 · 10−2
0.81

2D�
2 8.75 · 10−3

0.82 2.08 · 10−2
0.62 7.88 · 10−3

0.87 1.24 · 10−2
0.86

2D�
3 4.97 · 10−3

0.85 1.35 · 10−2
0.60 4.31 · 10−3

0.88 6.83 · 10−3
0.88

2D�
4 2.76 · 10−3

0.87 8.93 · 10−3
0.63 2.34 · 10−3

0.86 3.72 · 10−3
0.85

2D�
5 1.51 · 10−3 5.79 · 10−3 1.29 · 10−3 2.06 · 10−3

Table 5.3: Errors of the numerical solution and experimental orders of convergence in 2D for the
benchmark problem described in Section 5.1. EI variant of the method.

Brooks-Corey van Genuchten
Id. ‖Eh,Sn‖1 EOCSn,1 ‖Eh,Sn‖2 EOCSn,2 ‖Eh,Sn‖1 EOCSn,1 ‖Eh,Sn‖2 EOCSn,2

2D41 1.48 · 10−2
0.91 3.22 · 10−2

0.76 1.44 · 10−2
0.98 2.16 · 10−2

0.95
2D42 8.17 · 10−3

0.77 1.96 · 10−2
0.59 7.59 · 10−3

0.86 1.17 · 10−2
0.85

2D43 4.56 · 10−3
0.96 1.25 · 10−2

0.69 3.95 · 10−3
1.04 6.15 · 10−3

1.04
2D44 2.49 · 10−3

0.86 8.10 · 10−3
0.68 2.04 · 10−3

0.90 3.20 · 10−3
0.89

2D45 1.33 · 10−3 4.96 · 10−3 1.06 · 10−3 1.68 · 10−3

2D�
1 1.61 · 10−2

0.82 3.44 · 10−2
0.61 2.15 · 10−2

1.21 3.23 · 10−2
1.13

2D�
2 9.16 · 10−3

0.84 2.25 · 10−2
0.62 9.26 · 10−3

1.04 1.47 · 10−2
1.02

2D�
3 5.14 · 10−3

0.86 1.46 · 10−2
0.63 4.52 · 10−3

0.96 7.28 · 10−3
0.96

2D�
4 2.84 · 10−3

0.88 9.49 · 10−3
0.65 2.32 · 10−3

0.92 3.74 · 10−3
0.92

2D�
5 1.54 · 10−3 6.02 · 10−3 1.22 · 10−3 1.98 · 10−3

Table 5.4: Errors of the numerical solution and experimental orders of convergence in 2D for the
benchmark problem described in Section 5.1. ML variant of the method.
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Brooks-Corey van Genuchten
Id. ‖Eh,Sn‖1 EOCSn,1 ‖Eh,Sn‖2 EOCSn,2 ‖Eh,Sn‖1 EOCSn,1 ‖Eh,Sn‖2 EOCSn,2

3D41 1.12 · 10−2
0.69 3.38 · 10−2

0.60 1.21 · 10−2
0.77 2.43 · 10−2

0.73
3D42 7.82 · 10−3

0.84 2.47 · 10−2
0.72 8.13 · 10−3

0.93 1.66 · 10−2
0.90

3D43 4.35 · 10−3
1.03 1.49 · 10−2

0.92 4.25 · 10−3
1.14 8.84 · 10−3

1.12
3D44 2.37 · 10−3

0.82 8.63 · 10−3
0.79 2.17 · 10−3

1.04 4.56 · 10−3
1.02

3D45 1.41 · 10−3 5.23 · 10−3 1.12 · 10−3 2.39 · 10−3

3D�
1 8.28 · 10−3

0.83 2.59 · 10−2
0.70 8.15 · 10−3

0.88 1.64 · 10−2
0.86

3D�
2 4.67 · 10−3

0.84 1.59 · 10−2
0.69 4.42 · 10−3

0.90 9.06 · 10−3
0.89

3D�
3 2.60 · 10−3

0.86 9.87 · 10−3
0.69 2.36 · 10−3

0.93 4.90 · 10−3
0.92

3D�
4 1.44 · 10−3

0.84 6.12 · 10−3
0.61 1.24 · 10−3

0.96 2.58 · 10−3
0.92

3D�
5 8.05 · 10−4 4.01 · 10−3 6.40 · 10−3 1.37 · 10−3

Table 5.5: Errors of the numerical solution and experimental orders of convergence in 3D for the
benchmark problem described in Section 5.1. EI variant of the method.

Brooks-Corey van Genuchten
Id. ‖Eh,Sn‖1 EOCSn,1 ‖Eh,Sn‖2 EOCSn,2 ‖Eh,Sn‖1 EOCSn,1 ‖Eh,Sn‖2 EOCSn,2

3D41 1.13 · 10−2
0.67 3.46 · 10−2

0.61 1.22 · 10−2
0.77 2.49 · 10−2

0.74
3D42 7.96 · 10−3

0.82 2.52 · 10−2
0.72 8.22 · 10−3

0.93 1.70 · 10−2
0.91

3D43 4.50 · 10−3
1.01 1.53 · 10−2

0.92 4.30 · 10−3
1.13 8.97 · 10−3

1.12
3D44 2.47 · 10−3

0.83 8.64 · 10−3
0.79 2.20 · 10−3

1.04 4.63 · 10−3
1.02

3D45 1.44 · 10−3 5.26 · 10−3 1.15 · 10−3 2.41 · 10−3

3D�
1 9.03 · 10−3

0.84 2.68 · 10−2
0.65 8.97 · 10−3

0.95 1.75 · 10−2
0.89

3D�
2 5.05 · 10−3

0.85 1.71 · 10−2
0.65 4.66 · 10−3

0.94 9.47 · 10−3
0.91

3D�
3 2.80 · 10−3

0.87 1.09 · 10−3
0.67 2.43 · 10−3

0.95 5.05 · 10−3
0.93

3D�
4 1.53 · 10−3

0.86 6.84 · 10−3
0.67 1.25 · 10−3

0.95 2.63 · 10−3
0.91

3D�
5 8.47 · 10−4 4.31 · 10−3 6.49 · 10−4 1.40 · 10−3

Table 5.6: Errors of the numerical solution and experimental orders of convergence in 3D for the
benchmark problem described in Section 5.1. ML variant of the method.
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5.2 Heterogeneous benchmark problem
In this section, the numerical scheme is benchmarked using the problem of two-phase flow in
a heterogeneous porous medium. The problem was originally proposed in [62] to demonstrate
the barrier effect of two-phase flow in a heterogeneous porous medium that was discussed in
Section 2.3.8. In the case of the flow of the non-wetting phase from coarse to fine sand, the
entry pressure for the fine sand needs to be reached before the non-wetting phase can penetrate
the fine sand region. For this problem, there is no known way to find the exact solution that
could be used as a reference for the error and experimental order of convergence computations
similarly to the homogeneous case discussed in Section 5.1. Nevertheless, we are interested in
investigating whether the method can correctly capture the flow across material interfaces and
visually compare the numerical solution to the results reported in the literature obtained by a
different numerical method that is in agreement with the experimental observations [62].

The problem setup is shown in Figure 5.4 and consists of three layers of sand: the middle
one (Sand C) is finer than the remaining two (Sand B), initially fully saturated with water.
NAPL is injected along the upper boundary with a given flux and both fluids are assumed
to be incompressible. The origin of the coordinate system is selected in the top left corner of
the domain and the gravity acts in the y direction. The sand and fluid properties are given in
Table 5.7. The following boundary conditions are prescribed

Γ1 : un · n = −3.57 · 10−5 m s−1, uw · n = 0, (5.9)
Γ2 ∪ Γ4 : un · n = 0, uw · n = 0, (5.10)
Γ3 : Sw = 1, pn = 2 · 105 + 4905 Pa. (5.11)

Figure 5.4: Computational domain (left) and the coarsest triangular mesh consisting of 1506
elements (right) for the benchmark problem in heterogeneous porous media described in Sec-
tion 5.2.

Similarly to the McWhorter-Sunada problem in Section 5.1, the capillary pressure and the
non-wetting phase pressure are selected as the primary unknowns in (3.1) i.e., Z1 = pc and
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Sand
φ K Srw Srn pd λBC

[−] [m2] [−] [−] [Pa] [−]

Sand B 0.4 5.04 · 10−10 0.08 0 370 3.86

Sand C 0.343 5.168 · 10−12 0.04 0 4605.8 2.857

Fluid
ρ µ[

kg m−3] [
Pa s−1]

Water 1000 1 · 10−4

NAPL 1400 1 · 10−4

Table 5.7: Sand and fluid properties for the benchmark problem in heterogeneous porous media
described in Section 5.2. Adapted from [62].

Mesh ID h [m] # Elements # Sides # DOF ∆t [s]

1 1.34 · 10−2 1 506 2 310 4 620 2

2 6.99 · 10−3 5 886 8 930 17 860 1

3 3.45 · 10−3 23 308 35 162 70 324 0.5

Table 5.8: Mesh properties for the heterogeneous benchmark problem described in Section 5.2
and time steps for each mesh.

Z2 = pn. In addition to the McWhorter-Sunada problem, this problem includes the effects of
gravity. For the aforementioned choice of the primary variables, the problem is represented by
the following non-zero coefficients in the general formulation (3.1)

N =

−Φρw dSwdpc 0

−Φρn dSwdpc 0

 , M =

ρw λwλt
ρn

λn
λt

 , D =

λtK −λtK

0 λtK

 , W =

−ρwλtKg
ρnλtKg

 . (5.12)

The reference numerical solution taken from [41] was obtained using the vertex-centered finite
volume method in 1D on a very fine mesh and is in a good match with the results provided in
[62]. Solving the problem in 1D allows for obtaining high spatial resolution and the 1D solution
is sufficient for the comparison as the problem configuration shown in Figure 5.4 is essentially
one-dimensional in the direction of the y axis.

The solutions are compared at time t = 1650 s. A single cross-section through the center of
the 2D domain is not suitable for the comparison between the 1D and 2D cases because these
results are significantly affected by the alignment of the triangular mesh and the cross-section
line. Therefore, to demonstrate the behavior of the solution in the vicinity of the interfaces, the
superposed values from all elements of the 2D mesh are taken into account, with the y coordinate
of their center as the 1D coordinate. To ensure that the observed artifacts are not caused by
the mesh, the problem was solved on three meshes with properties given in Table 5.8. All these
meshes were generated by Gmsh [49] and the computations were performed on a PC equipped
with Intel Core i7-5820K, 3.6 GHz processor and 32 GB RAM.
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5.2.1 Results

Numerical results for the EI variant of the method are compared to the 1D reference solution
in Figures 5.5a, 5.5c, and 5.5e. The oscillations appear at both sand interfaces, and are more
apparent in the case of flow from the fine to coarse sand. These oscillations are present on several
mesh refinements, therefore, they cannot be attributed to the mesh properties. On all meshes,
the 2D numerical solution significantly differs from the reference 1D solution. This indicates that
the EI variant of the numerical method presented in Chapter 3 cannot correctly capture the flow
through the material interfaces and, therefore, it is not suitable for simulating the two-phase
flow in heterogeneous porous media.

Numerical results for the ML variant of the method are shown in Figures 5.5b, 5.5d, and 5.5f.
In comparison with the EI variant, the oscillations at both material interfaces are significantly
reduced and the numerical solution is in a good match with the reference solution. This indicates
that the ML variant of the numerical method is necessary to correctly capture the flow through
material interfaces and as such, it is employed in the rest of this work for solving problems in
heterogeneous porous media.

The application of the MHFEM-based solver to this problem was studied also in [41], where
a similar behavior at material interfaces was observed. The approach proposed to eliminate the
oscillations in [41] required to explicitly formulate the barrier effect condition as described in
Section 2.3.8. The advantage of the approach of employing the mass-lumping technique used
here is that no special treatment of the interface sides is needed. Additionally, this simplifies the
implementation of the numerical scheme, especially in the case of more complex geometries and
cases when the changes in flow direction occur frequently.
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Figure 5.5: Comparison between the reference 1D solution and the EI and ML variants of the
method on various meshes for the superposed solution of the benchmark problem in heterogeneous
porous media described in Section 5.2.
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5.3 Chapter summary
In this chapter, we verified the numerical scheme on benchmark problems of two-phase flow in
porous media with a known solution.

In the homogeneous porous medium, the generalization of the McWhorter-Sunada problem
in 2D and 3D with the semi-analytical solution was used. We performed a convergence study
and showed that the numerical method is convergent with the first order of accuracy. These
results hold for both approaches to computing the local mesh coefficients: exact integration and
the mass lumping techniques, the latter leading to slightly larger errors of the numerical solution.
The results of this convergence study for the EI variant of the method were published in [43].
This variant of the method is used in this work in the case of a homogeneous medium later in
Chapter 6.

In the heterogeneous porous medium, we showed that using the exact integration approach
to compute the entries of the local coefficient matrices leads to non-physical oscillations on the
material interfaces. These oscillations are eliminated using the mass lumping technique. This
variant of the numerical scheme gives good results without the need of modifying the general
formulation of the numerical scheme to explicitly take into account the capillary barrier effects
that was proposed earlier in [41]. The results of employing the mass-lumping technique on
unstructured meshes were published in [102]. The ML variant of the method is used in the rest
of this work when the problems in heterogeneous porous media are solved later in Chapters 7
and 8.
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In this chapter, the performance of the parallel implementation presented in Chapter 4 is
investigated. The serial implementation was used so far and we were interested mainly in the
accuracy and convergence properties of the method and not in the computational times. However,
for finer meshes, the serial computations become more time-consuming and problems of a certain
size cannot be solved by the serial variant of the method on the available hardware. To overcome
these limitations and speed up the computation on finer meshes, a parallel implementation based
on the domain decomposition method is used as described in Chapter 4. The main goal in this
chapter is to demonstrate that the parallel implementation preserves a good efficiency for the
increasing number of CPU cores used. For this demonstration, both weak and strong scaling
tests are carried out.

The results presented in this chapter are divided into two parts. Firstly, the parallel
implementation is verified on the Laplace problem both in 2D and 3D in Section 6.2.

Then, the performance of the parallel implementation is demonstrated on the McWhorter-
Sunada problem as in Section 5.1. The MHFEM discretization of this unsteady problem leads to
the solution of a linear problem with a non-symmetric matrix at each time step. Therefore, in
contrast with the Laplace problem, a sequence of linear problems needs to be solved to obtain a
solution at a given time. The performance of the solver is studied on a solution of a single linear
system in Section 6.3 referred to as the steady problem, where the matrix A obtained at a single
selected time step is considered. This setting for suitable meshes allows for the comparison with
the Laplace problem resulting in symmetric matrix A.

Furthermore, various approaches to the solution of the whole sequence of linear problems
needed to obtain the solution at a given time, referred to as the unsteady problem, are studied
in Section 6.4. Here, we focus on using the information about the solution and preconditioner
from previous time steps to speed up the solution of the linear problem at the current time step.

6.1 Computations setup
The benchmark problems used in this chapter are considered both in 2D and 3D on structured
and unstructured meshes. The numbers of elements and sides for all the meshes used in this
chapter are shown in Table 6.1.

The meshes are numbered from 1 to 9 for all the cases considered. For the MHFEM
discretization employed here, the resulting linear problem is formulated using traces of the
unknown functions, therefore, the degrees of freedom are located on the mesh sides and the
number of sides of each mesh controls the size of the linear problem. Note that there is one degree
of freedom per side for the Laplace problem and two per side for the McWhorter-Sunada problem.
To allow for comparison among the meshes, each mesh is generated to get approximately the

73
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same number of sides for both structured and unstructured cases, and for the scaling tests, the
number of sides is approximately doubled between successive meshes. All the unstructured
meshes are generated by Gmsh [49].

The weak and strong scaling tests for steady problems comprising the Laplace problem and
single time step of the McWhorter-Sunada problem were performed on the Salomon cluster at the
IT4Innovations National Supercomputing Center in Ostrava, Czech Republic. The computational
nodes of Salomon were equipped with two 12-core Intel Xeon E5-2680v3, 2.5 GHz processors and
128 GB RAM. The computations of the unsteady problems were run on the Helios cluster at
the Czech Technical University in Prague, Czech Republic. The computational nodes of Helios
were equipped with two 16-core AMD EPYC 7281, 2.1GHz processors and 128 GB RAM.

Id 1 2 3 4 5 6 7 8 9

2D unstructured

# Elements 227 454 903 1 806 3 611 7 222 14 437 28 878 57 743

# Sides∗ 341 682 1 699 2 710 5 419 10 836 21 661 43 324 86 624

2D structured

# Elements 171 346 686 1 383 2 742 5 532 10 811 21 623 43 244

# Sides∗ 344 693 1 373 2 768 5 488 11 069 21 628 43 254 86 501

3D unstructured

# Elements 164 305 684 1 345 2 593 5 262 10 528 21 314 42 666

# Sides∗ 337 625 1 392 2 730 5 247 10 629 21 220 42 890 85 762

3D structured

# Elements 111 216 1 334 885 1 728 3 512 7 078 14 172 28 094

# Sides∗ 339 659 1 334 2 682 5 227 10 605 21 344 42 693 84 561

∗ The number of degrees of freedom is equal to the # Sides for the Laplace problem, whereas it
is 2× # Sides for the two-phase flow problem.
Table 6.1: Number (in thousands) of elements and sides for all the meshes used in the parallel
benchmarks in Chapter 6.

As the problems in homogeneous media are considered only, the EI variant of the method is
used in this chapter. The iterations of the linear solver are terminated when the relative norm of
the residual of the Schur complement system (4.3a) is lower than a given tolerance ε

wwwSZΓ,k+1
q − b̂

wwwwwwb̂www < ε, (6.1)

where ZΓ,k+1
q is the solution for the degrees of freedom located on the interface obtained in q-th

iteration. The value of ε = 10−9 is selected.
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6.1.1 Metrics to evaluate the parallel performance

Here, we recall that one-by-one mapping is used, where each subdomain is assigned to one MPI
process which is mapped to a single CPU core, see Section 4.2. The performance in the weak
and strong scaling test tests is evaluated using the following metrics.

For the weak scaling test, the size of the local problem, i.e., the number of degrees of freedom
per subdomain, is kept constant while the number of subdomains increases, i.e., the mesh number
p+ 1 is divided into twice as many subdomains than the mesh number p. The efficiency Effm
for the weak scaling test using m cores is defined by

Effm =
tnref
tm
· 100%, (6.2)

where tnref is the reference computational time using nref cores and tm is the computational
time using m cores. Here, nref = 24 is selected which corresponds to a single fully allocated node
of Salomon. In the ideal case, the efficiency is 100%, i.e., the computational time of the twice
larger problem divided into twice as many subdomains remains the same as the computational
time of the original problem.

For the strong scaling test, the size of the overall problem is kept constant while the number
of subdomains increases, i.e., a selected fixed mesh is divided into an increasing number of
subdomains. The speed-up Spm for the strong scaling test using m cores is defined by

Spm =
tnref
tm

, (6.3)

where tnref is the reference computational time using nref cores and tm is the computational time
using m cores. Here, in contrast to the weak scaling test, the value of nref is not the same for all
the problems. It is selected as the lowest feasible number of cores on which the computation
for the given problem can be run. The following values are selected nref = 24, nref = 48, and
nref = 96 for the Laplace problem, 2D McWhorter-Sunada problem, and 3D McWhorter-Sunada
problem, respectively. Computations using a lower number of cores cannot be run due to the
memory requirements of the linear solvers for the local problems. In the ideal case, the speed-up
using m cores is m

nref
, i.e., the computational time using twice as many CPU cores is half of

the original one. The case of a speed-up higher than the optimal value is called the superlinear
speed-up.

6.2 Symmetric case
The Laplace problem used as the verification for the parallel implementation consists of a single
elliptic partial differential equation (n = 1) for the unknown function Z1 in the form

∆Z1(x) = 0, ∀x ∈ Ω, (6.4)

and is represented by the following non-zero coefficients in the general formulation of the
problem (3.1),

M =
(
1
)
, D =

(
I
)
. (6.5)

This standard steady problem discretized by MHFEM results in a solution of a single sparse
linear system with a symmetric matrix that needs to be solved to obtain the solution. Application
of the BDDC method to linear problems with a symmetric positive definite matrix is largely
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studied in the domain decomposition literature, for example [110]. The scaling tests of the
implementation for this problem are presented here to verify that the implementation works
according to expectations. More importantly, the computational times for the symmetric problems
are used as reference ones to demonstrate the difference in complexity between the symmetric
and non-symmetric problems of the same size arising from the discretization of different systems
of governing equations.

The computational domains are a square with a 1 meter long side and a cube with a 1 meter
long edge in 2D and 3D cases, respectively, with the following boundary conditions. In 2D,
on three edges, the zero Dirichlet boundary condition Z1 = 0 is prescribed. On the remaining
edge, the Dirichlet boundary condition Z1 = 1 is prescribed. In 3D, on five faces, the zero
Dirichlet boundary condition Z1 = 0 is prescribed. On the remaining face, the Dirichlet boundary
condition Z1 = 1 is prescribed. These boundary conditions in 2D and 3D are illustrated in
Figures 6.1 and 6.2, respectively, where also the numerical solutions of the Laplace problem with
these boundary conditions are shown.

(a) Boundary conditions. (b) Numerical solution.

Figure 6.1: Boundary conditions and numerical solution for the 2D Laplace problem considered
in Section 6.2.

The problem is solved in 2D and 3D on both structured and unstructured meshes using all
the meshes numbered from 1 to 9 in Table 6.1. The PCG iterative solver for the symmetric Schur
complement matrix starts from the zero initial vector for all the computations in this section.

6.2.1 Weak scaling test

The number of subdomains in the weak scaling tests for each mesh is selected to get approximately
57 thousand degrees of freedom per subdomain. In addition to the overall computational time
and the total number of PCG iterations needed for the convergence of the linear solver, we
measure the times required to set up the BDDC method and to perform the PCG iterations
separately. For the symmetric matrix A, the setup comprises the following steps:
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(a) Boundary conditions. (b) Numerical solution.

Figure 6.2: Boundary conditions and numerical solution for the 3D Laplace problem considered
in Section 6.2.

1. Factorization of AIIi needed to compute the action of the Schur complement matrix Si in
Algorithm 8.

2. Factorization of the matrices in (4.10) used for the local corrections.

3. Computation of the coarse basis functions Φi in (4.11).

4. Assembly and factorization of the coarse problem matrix SC in (4.19).

The computational times and the total number of iterations for the 2D unstructured, 3D
unstructured, 2D structured, and 3D structured meshes are shown in Tables 6.2, 6.3, 6.4, and
6.5, respectively. In the case of structured meshes, both the division obtained by METIS and the
structured division are considered.

The results presented here indicate that the implementation of the BDDC method applied to
the linear problem with a symmetric matrix preserves a good efficiency of up to 768 subdomains
and starts to deteriorate for 1536 subdomains. The number of PCG iterations is similar for the
given size of the linear problem regardless of the mesh type and dimension of the problem. For
all cases, there is an increase in the number of iterations with the first few mesh refinements and
then the number of iterations remains almost constant.

6.2.2 Strong scaling test

A strong scaling test is performed on an unstructured mesh number 6 with approximately 11
million of unknowns both in 2D and 3D. The reference computation is run on a division into
24 subdomains which corresponds to one fully allocated node of the Salomon cluster. The local
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Mesh Id 1 2 3 4 5 6 7 8 9

Subdomains 6 12 24 48 96 192 384 768 1536

Setup [s] 0.52 0.55 0.63 0.64 0.60 0.92 0.97 1.03 1.47

Iterative solution [s] 0.16 0.30 0.29 0.46 0.55 0.70 0.92 1.13 1.36

Solution total [s] 0.68 0.85 0.92 1.11 1.15 1.57 1.89 2.17 2.83

#PCG Iterations [-] 15 18 18 20 20 20 20 21 22

Efficiency Eff [%] 136 109 100 83 80 59 49 42 33

Table 6.2: 2D symmetric problem. Weak scaling test on unstructured meshes.

Mesh Id 1 2 3 4 5 6 7 8 9

Subdomains 6 12 24 48 96 192 384 768 1536

Setup [s] 2.80 3.73 4.57 4.73 4.61 4.87 4.92 5.80 7.55

Iterative solution [s] 0.52 0.56 0.74 0.97 1.25 1.51 1.74 2.03 16.94

Solution total [s] 3.31 4.29 5.31 5.70 5.86 6.38 6.67 7.82 24.49

#PCG Iterations [-] 17 17 19 19 19 21 22 23 23

Efficiency Eff [%] 160 124 100 93 91 83 80 68 22

Table 6.3: 3D symmetric problem. Weak scaling test on unstructured meshes.

matrices for the divisions into fewer subdomains become too large to be factorized by the CHOLMOD
library due to excessive memory requirements.

Similarly to the weak scaling test in Section 6.2.1, we are interested in the computational
times, the total number of PCG iterations, and the speed-up. The results are shown in Tables 6.6
and 6.7 for the 2D and 3D cases, respectively.

These results show a superlinear speed-up for the initial mesh refinements and, then, the
speed-up significantly drops for 1536 subdomains.

This effect is mainly caused by the nonlinear complexity of the direct solvers. For a smaller
number of subdomains, the local problems that are solved independently in parallel are large in
comparison with the coarse problem and their solution takes most of the overall computational
time. However, with the increasing number of subdomains, the local problems become smaller,
and eventually the coarse problem that is solved in serial dominates. The number of PCG
iterations remains almost constant for all cases during the whole strong scaling test.

The results presented in this section tend to confirm the previous observations, e.g., [107]
that the scalability of the two-level BDDC method significantly worsens around a thousand
subdomains/cores, motivating the use of the three-level BDDC method for higher core-counts.
A detailed discussion of the results is provided together with the non-symmetric case later in
Section 6.3.
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Rectangles

Mesh Id 1 2 3 4 5 6 7 8 9

Subdomains 6 12 24 48 96 192 384 768 1536

Setup [s] 0.56 0.68 0.64 0.75 0.76 0.93 0.88 1.34 1.53

Iterative solution [s] 0.15 0.29 0.38 0.54 0.62 0.73 0.78 1.17 1.24

Solution total [s] 0.71 0.97 1.02 1.29 1.37 1.66 1.67 2.51 2.77

#PCG Iterations [-] 8 13 18 19 19 19 19 19 19

Efficiency Eff [%] 143 105 100 79 74 61 61 41 37

METIS

Mesh Id 1 2 3 4 5 6 7 8 9

Subdomains 6 12 24 48 96 192 384 768 1536

Setup [s] 0.49 0.61 0.64 0.71 0.74 0.84 0.81 0.88 1.28

Iterative solution [s] 0.21 0.35 0.39 0.54 0.63 0.72 0.93 1.06 1.31

Solution total [s] 0.70 0.98 1.03 1.26 1.37 1.56 1.74 1.95 2.59

#PCG Iterations [-] 16 17 19 21 20 20 20 20 21

Efficiency Eff [%] 147 105 100 82 76 66 60 53 40

Table 6.4: 2D symmetric problem. Weak scaling test on structured meshes.

6.3 Non-symmetric case: a steady problem

The generalization of the McWhorter-Sunada problem is used as the benchmark problem, with
its MHFEM discretization resulting in the linear system with a non-symmetric matrix in (3.57).
The problem is the same as the one used for the convergence study in Chapter 5. For a detailed
description of the problem, material properties, computational domain, and boundary conditions,
see Section 5.1.

In this section, we focus on a single time step of the problem and demonstrate the efficiency
of the BDDC solver for a single non-symmetric matrix. All the results presented in this section
are for the linear system obtained at the first time step of the McWhorter-Sunada problem and
the BiCGStab iterations starting from the zero initial vector.

In Section 6.4, where the complete unsteady problem is solved, we demonstrate that the
restriction to the first time step done in this section is justifiable to show the performance of
the BDDC solver and that the linear problem at the first time step is a good representation of
the linear problems arising during the solution of the unsteady McWhorter-Sunada problem.
From the reference computation done in Section 6.4, it follows that the complexity of the linear
problems at each time step remains almost the same as the problem at the first time step.

6.3.1 Weak scaling test

For non-symmetric matrices, we also start with a weak scaling test. The underlying McWhorter-
Sunada problem consists of a system of two equations, therefore, there are two degrees of freedom
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Cuboids

Mesh Id 1 2 3 4 5 6 7 8 9

Subdomains 6 12 24 48 96 192 384 768 1536

Setup [s] 4.36 7.65 7.55 8.34 7.96 7.76 8.48 9.25 8.25

Iterative solution [s] 0.45 0.77 1.07 1.20 1.35 1.63 1.83 2.17 2.12

Solution total [s] 4.81 8.43 8.62 9.55 9.32 9.39 10.31 11.43 10.71

#PCG Iterations [-] 12 13 18 18 19 22 21 21 23

Efficiency Eff [%] 179 102 100 90 92 92 84 75 80

METIS

Mesh Id 1 2 3 4 5 6 7 8 9

Subdomains 6 12 24 48 96 192 384 768 1536

Setup [s] 5.91 8.87 8.93 10.49 10.58 11.63 12.58 14.49 15.7

Iterative solution [s] 0.58 0.99 1.11 1.32 1.60 1.86 2.29 2.72 18.49

Solution total [s] 6.49 9.87 10.18 11.81 12.18 13.50 14.87 16.24 34.19

#PCG Iterations [-] 15 16 18 18 20 20 23 24 23

Efficiency Eff [%] 157 103 100 86 84 75 68 63 30

Table 6.5: 3D symmetric problem. Weak scaling test on structured meshes.

Subdomains 24 48 96 192 384 768 1536

Setup [s] 13.64 4.63 1.74 0.92 0.41 0.20 0.31

Iterations [s] 3.39 1.72 0.98 0.70 0.72 0.76 0.89

Solution total [s] 17.05 6.35 2.72 1.57 1.14 0.97 1.20

#PCG Iterations [-] 21 22 21 20 20 19 19

Speed-up Sp [-] 1.00
2.68 6.26 10.87 15.00 17.64 14.25
(2) (4) (8) (16) (32) (64)

Table 6.6: 2D symmetric problem. Strong scaling test on unstructured mesh number 6. The
optimal speed-up values are given in parentheses.

corresponding to each side. To obtain the same sizes of matrix A as for the Laplace problem, the
meshes 1 to 8 are used only. Each mesh is divided into twice as many subdomains as for the
same mesh in the Laplace problem to get approximately 57 thousand degrees of freedom per
subdomain and, therefore, comparable sizes of the local problems.

Similarly to the symmetric case, in addition to the overall computational times and the total
number of BiCGStab iterations, the computational times needed to set up the BDDC method,
and to perform the BiCGStab iterations are measured separately. For the non-symmetric matrix
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Subdomains 24 48 96 192 384 768 1536

Setup [s] 225.20 65.73 17.67 4.66 3.42 1.19 2.10

Iterations [s] 12.33 5.08 2.44 1.53 1.38 1.37 14.03

Solution total [s] 237.53 70.80 20.11 6.37 4.59 2.55 16.12

#PCG Iterations [-] 22 21 21 21 21 22 21

Speed-up Sp [-] 1.00
3.35 11.81 37.27 51.77 93.02 14.73
(2) (4) (8) (16) (32) (64)

Table 6.7: 3D symmetric problem. Strong scaling test on unstructured mesh number 6. The
optimal speed-up values are given in parentheses.

A, the setup comprises the following steps:

1. Factorization of AIIi needed to compute the action of the Schur complement matrix Si in
Algorithm 8.

2. Factorization of the matrices in (4.10) used for the local corrections.

3. Computation of the coarse basis functions Φi in (4.11) and the adjoint coarse basis functions
Φ∗i in (4.12).

4. Assembly and factorization of the coarse problem matrix SC in (4.19).

The computational times and total number of iterations for the 2D unstructured, 3D unstruc-
tured, 2D structured, and 3D structured meshes are shown in Tables 6.8, 6.9, 6.10, and 6.11,
respectively. In contrast to the unstructured meshes where only the division obtained by METIS
is used for the structured meshes, we also consider the regular division into rectangular (2D)
or cuboidal (3D) subdomains and compare the computational times and the total number of
iterations for these two approaches in the same way as for the symmetric problem.

Mesh Id 1 2 3 4 5 6 7 8

Subdomains 12 24 48 96 192 384 768 1536

Setup [s] 5.75 6.43 6.42 6.58 6.70 6.91 7.69 7.59

Iterative solution [s] 0.70 0.80 0.86 1.10 1.26 1.42 2.14 14.03

Solution total [s] 6.47 7.24 7.30 7.69 8.00 8.33 9.85 21.63

#BiCGStab Iterations 10 10 11 11 12 11 12 11

Efficiency Eff [%] 112 100 99 94 91 87 74 33

Table 6.8: 2D non-symmetric problem. Weak scaling test on unstructured meshes.

The results presented here indicate that the efficiency of the implementation of the BDDC
method applied to a problem with a non-symmetric matrix is comparable to the symmetric case.
Good efficiency is preserved up to 768 subdomains and starts to deteriorate for 1536 subdomains.
The numbers of BiCGStab iterations are similar for the given size of the linear problem regardless
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Mesh Id 1 2 3 4 5 6 7 8

Subdomains 12 24 48 96 192 384 768 1536

Setup [s] 14.18 13.32 17.01 16.67 16.30 17.43 20.19 25.85

Iterative solution [s] 1.74 2.00 2.36 2.83 3.08 3.81 13.12 21.21

Solution total [s] 15.95 15.37 19.41 19.53 19.42 21.27 33.36 47.12

#BiCGStab Iterations 10 12 11 12 13 13 14 13

Efficiency Eff [%] 96 100 79 79 79 72 46 33

Table 6.9: 3D non-symmetric problem. Weak scaling test on unstructured meshes.

Rectangles

Mesh Id 1 2 3 4 5 6 7 8

Subdomains 12 24 48 96 192 384 768 1536

Setup [s] 8.30 10.16 10.92 10.92 9.72 11.19 10.71 13.27

Iterative solution [s] 1.51 1.11 1.08 1.42 1.45 1.69 1.83 2.15

Solution total [s] 9.84 11.29 12.03 12.35 11.18 12.28 12.57 15.45

#BiCGStab Iterations 9 11 11 12 11 11 11 11

Efficiency Eff [%] 115 100 94 91 101 92 90 73

METIS

Mesh Id 1 2 3 4 5 6 7 8

Subdomains 12 24 48 96 192 384 768 1536

Setup [s] 8.40 8.42 9.27 9.35 9.79 10.01 10.20 10.95

Iterative solution [s] 0.78 0.87 1.01 1.18 1.33 1.63 1.83 17.91

Solution total [s] 9.20 9.31 10.28 10.55 11.14 11.66 12.06 28.88

#BiCGStab Iterations [-] 9 10 10 10 10 11 11 11

Efficiency Eff [%] 101 100 91 88 84 80 77 32

Table 6.10: 2D non-symmetric problem. Weak scaling test on structured meshes.

of the mesh type and dimension of the problem. For all the cases, there is an increase in the
number of iterations with the first few mesh refinements and then the number of iterations
remains almost constant. The differences in the total number of iterations between the coarsest
and the finest meshes are smaller than for the symmetric case.

The computational times for the problems with non-symmetric matrices are significantly
longer than for the symmetric matrices of the same size. The weak scaling tests are designed to
result in approximately the same size of local matrices for both symmetric and non-symmetric
cases. However, for the McWhorter-Sunada problem, the matrices have twice as many non-zero



6.3. Non-symmetric case: a steady problem 83

Cuboids

Mesh Id 1 2 3 4 5 6 7 8

Subdomains 12 24 48 96 192 384 768 1536

Setup [s] 24.33 23.42 25.27 24.85 23.77 26.31 25.57 30.81

Iterative solution [s] 3.02 3.55 3.51 4.03 5.15 5.48 5.22 28.44

Solution total [s] 27.44 27.03 28.89 28.99 28.97 34.02 30.90 59.29

#BiCGStab Iterations 9 11 10 11 14 12 12 14

Efficiency Eff [%] 98 100 94 93 93 79 87 46

METIS

Mesh Id 1 2 3 4 5 6 7 8

Subdomains 12 24 48 96 192 384 768 1536

Setup [s] 23.57 23.24 26.15 26.64 26.60 29.52 32.70 38.43

Iterative solution [s] 2.69 3.12 3.77 4.21 4.87 6.62 14.64 29.15

Solution total [s] 26.33 26.44 29.96 30.90 31.51 36.13 47.40 67.67

#BiCGStab Iterations [-] 9 10 11 11 12 14 14 16

Efficiency Eff [%] 100 100 88 86 84 73 56 39

Table 6.11: 3D non-symmetric problem. Weak scaling test on structured meshes.

entries on each line as for the Laplace problem due to being described by the system of two
equations in the general formulation (3.1). In addition to the number of non-zero entries, both
the local and coarse matrices are also non-symmetric. Therefore, the LU factorization needs to
be used instead of the faster Cholesky factorization during the initialization step described in
Section 4.5.1. Moreover, the non-symmetry of matrix A requires the computation of the adjoint
coarse basis functions in the setup of the BDDC method.

For the 2D meshes, except for the finest one, the solution on structured meshes is slower
than on the unstructured ones for the same number of degrees of freedom. For the structured
meshes, the computations for the division produced by METIS are slightly faster than for the
regular division. For the finest mesh with a significant drop in efficiency for all 2D meshes, the
solution on the structured mesh becomes faster than on the unstructured one and the regular
division of the structured mesh is faster than the METIS division.

Similarly to the symmetric case in Section 6.2, the solution of the 3D problem is significantly
slower than the 2D one. The difference can be attributed to different structures of the matrices
resulting from discretization in 2D and 3D and different numbers of non-zero entries in each
matrix row that affect both the factorization of the matrices in the setup of the method and
the backward and forward substitutions needed in each linear solver iteration. For the problem
consisting of n equations in (3.1), in the 2D case, there are 5n non-zero entries for triangular
meshes and 7n non-zero entries for rectangular meshes. In the 3D case, there are 7n non-zero
entries for tetrahedral meshes and 11n non-zero entries for cuboidal meshes. Comparing Tables 6.8
and 6.9, the computation is about 3 times more costly in 3D than in 2D.

In contrast to the 2D case, in the 3D case, the difference between the structured and
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unstructured meshes is more significant, favoring the unstructured meshes for the same number
of degrees of freedom. Additionally, for the same structured mesh, the computational time for
the regular division into cuboidal subdomains is shorter than for the division produced by METIS.
This difference, similarly to the symmetric matrices, can be attributed to differences in the
sizes of the interface and the size of the coarse problem. The mesh division produced by METIS
minimizes the size of the interface, therefore, reduces MPI data transfers between the subdomains.
However, it results in a geometrically more complex interface and, therefore, a significantly larger
coarse problem, especially in 3D. The sizes of the coarse problems for the McWhorter-Sunada
problem are shown in Table 6.12.

Subdomains 12 24 48 96 192 384 768 1536

Cuboids 40 92 208 448 944 1984 4096 8384

METIS 74 108 434 958 2174 4572 9706 20272

Table 6.12: Coarse problem size for the 3D McWhorter-Sunada problem on structured meshes.

6.3.2 Strong scaling test

The strong scaling test for the non-symmetric matrix is performed also on the unstructured
mesh number 6, both in 2D and 3D. The reference computations are run on a division into 48
subdomains in 2D and 96 subdomains in 3D which correspond to two and four fully allocated
nodes, respectively.

The computational times separately for the BDDC setup and BiCGStab iterations, total
number of iterations, and speed-up are shown in Tables 6.13 and 6.14 for the 2D and 3D cases,
respectively.

Subdomains 48 96 192 384 768 1536

Setup [s] 83.93 33.56 15.66 6.91 3.55 2.31

Iterations [s] 9.67 4.34 2.44 1.40 1.13 13.57

Solution total [s] 93.73 37.96 18.12 8.33 4.69 15.83

#BiCGStab Iterations [-] 13 12 12 11 11 11

Speed-up Sp [-] 1.00
2.47 5.17 11.25 19.99 5.92
(2) (4) (8) (16) (32)

Table 6.13: 2D non-symmetric strong scaling test on unstructured mesh number 6. The optimal
speed-up values are given in parentheses.

The results in Tables 6.13 and 6.14 again suggest a superlinear speed-up for the first few
increases in the number of subdomains due to the non-linear complexity of the UMFPACK solver
together with the fact that for a small number of subdomains, the solution of the local problems
dominates the overall computational time. With the increasing number of subdomains, the local
problems become smaller and more time is spent on the solution of the coarse problem that is
not parallelized in the implementation. As a result, the efficiency gradually decreases. From the
comparison of the computational times for the division into 768 and 1536 subdomains, it can be
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Subdomains 96 192 384 768 1536

Setup [s] 140.98 43.18 17.42 10.45 12.78

Iterations [s] 20.71 8.38 3.79 10.40 15.90

Solution total [s] 162.14 51.72 21.27 20.87 28.69

#BiCGStab Iterations [-] 14 13 13 13 14

Speed-up Sp [-] 1.00
3.13 7.62 7.77 5.65
(2) (4) (8) (16)

Table 6.14: 3D non-symmetric strong scaling test on unstructured mesh number 6. The optimal
speed-up values are given in parentheses.

seen that for a large number of subdomains, the computational time even starts to increase as
the serial solution of the coarse problem becomes the dominant step of the solution. Similarly to
the symmetric case, regardless of the computational times, the number of BiCGStab iterations
remains almost constant for all the divisions into subdomains.

6.4 Non-symmetric case: an unsteady problem

In this section, the application of the BDDC method to the solution of a sequence of linear
problems arising at each time step of the solution of the unsteady McWhorter-Sunada benchmark
problem is investigated.

The performance of the BDDC method on a such single problem was studied in Section 6.3
where we stated that the first time step problem is a good representation of the complete sequence
of problems. Here, several approaches to the solution of the whole sequence are compared. We
start with the solution of each problem of the sequence as an independent one and proceed to
use more information both about the iterative solution and the matrix A from the previous time
steps.

The computations in this section are run on 3D mesh number 6 with properties given in
Table 6.1 divided into 384 subdomains which is the same division that was used for the scaling
tests in Section 6.3 with the final time tfin = 20000 s. The final time is the same as in the
convergence study in Section 5.1.1, however, because of a different mesh resolution and purpose
of this study, a fixed time step ∆t = 10 s is selected. Note that the computational times for the
first time step in this section differ from those given in Section 6.3, because the computations
were run on the Helios cluster while the scaling tests were run on the Salomon cluster.

6.4.1 Reference computation

The first approach to the solution of the sequence of linear problems resulting from the semi-
implicit time discretization of the unsteady problem is to solve them as independent ones. In
this approach at each time step, matrix A is assembled, its the preconditioner is computed and
the BiCGStab iterations start from the zero initial vector. This is the same procedure that was
used for the solution of the first time step problem in Section 6.3.

The computational times and the numbers of BiCGStab iterations at each time step for this
approach are shown in Figure 6.3 and the overall computational time is shown in Table 6.15.
The results in Figure 6.3 show that the time needed to set up the BDDC method varies only
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slightly during all time steps (less than 3%). The BiCGStab method in most of the time steps
converges in 13 iterations with a minimum of 12 and a maximum of 14 iterations. This small
fluctuation in the number of iterations results in a slightly higher variance (less than 10%) in the
computational times of the BiCGStab iterations.

In the following sections, we show how the performance of the method presented in this
reference computation can be improved using the information from previous time steps. Both
the iterative solution and the information about A from the previous time steps can be used and
these approaches are discussed in Section 6.4.2 and Section 6.4.3, respectively.

The results of this reference computation of the sequence of independent problems justify the
approach taken in Section 6.3 to demonstrate the performance of the BDDC solver. The results
presented in Figure 6.3 show that the first time step is a good representation of the complete
unsteady problem as the complexity of the linear problems arising during the computation varies
only slightly.
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Figure 6.3: Computational times for setup, iterative solution, and overall solution (top), and
number of BiCGStab iterations (bottom) for each time step (∆t = 10 s) of the unsteady problem.
Iterations start from the zero initial vector and the preconditioner is computed in each time step.
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6.4.2 Initial vector from previous time step

In this section, the solution from the previous time step is used as the initial vector for the
BiCGStab iterations at the current time step in contrast with the reference computation in
Section 6.4.1 where the BiCGStab iterations started from the zero initial vector. The only
exception is the first time step where the zero initial vector is still used. We assume that
the solutions of the McWhorter-Sunada problem in two consecutive time steps do not differ
significantly and, therefore, the solution from the previous time step could be a good initial guess
of the solution at the current time step.

Results for this approach are shown in Figure 6.4. The number of the BiCGStab iterations
at all the time steps after the first one is significantly reduced in comparison with the case of
BiCGStab iterations starting from the zero initial vector shown in Figure 6.3. The summary of
results in Table 6.15 shows that the overall number of iterations is reduced by more than 50 %,
however, the reduction in the computational time is only about 15 %. This disparity follows from
the properties of the BDDC method for this problem, where most of the computational time is
spent to set up the BDDC method as indicated by the detailed overview of computational times
in Section 6.3.
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Figure 6.4: Computational times for setup, iterative solution, and overall solution (top), and
number of BiCGStab iterations (bottom) for each time step (∆t = 10 s) of the unsteady problem.
Iterations start from the solution from the previous time level and the preconditioner is computed
in each time step.
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6.4.3 Reusing the preconditioner

As shown in Section 6.4.2, using the solution from the previous time step as the initial vector
reduces the number of iterations, however, the iterations are not the most time-consuming
operation of the solution. To achieve a more significant reduction in the computation time, we
focus on the setup of the BDDC method which takes larger portion of the overall computational
time.

The steps needed to set up the BDDC method are described in Section 4.5.1. The factorization
of AIIi at each time step cannot be eliminated as the action of the Schur complement matrix
needs to be computed exactly, however, we can avoid computing the preconditioner at each time
step. Under the assumption of matrices A not changing significantly between the consecutive
time steps, the same preconditioner can be used for several time steps without a significant
reduction in preconditioner quality, instead of computing it at each time step. The quality of the
preconditioner is evaluated using simple heuristics based on the number of BiCGStab iterations
required at the given time step. The preconditioner is used until the number of iterations exceeds
a given trigger value. The trigger values of 5, 10, 15, 20, and 25 are tested and the results are
compared.

The overall computational times, the total number of BiCGStab iterations, and the number
of preconditioner computations in Table 6.15 show that reusing the preconditioner can for certain
trigger values significantly reduce the overall computational time. Although the lowest number of
BiCGStab iterations is reached for the preconditioner computed at each time step, the shortest
overall computational time is reached for the trigger value of 10, reducing the time of the reference
computation by more than 40 %. For this trigger value, only 68 preconditioner computations
are needed in comparison with 2000 for the reference computation in Section 6.4.1. Savings on
the preconditioner computations are larger than the additional time spent on approximately
50 % more BiCGStab iterations required. However, for higher trigger values, the overall
computational time starts to increase. For the trigger value of 25, the time needed for the
additional BiCGStab iterations overweights the savings of only seven preconditioner computations
and the computational time is even longer than for the case of the preconditioner updated in
each time step.

In Figure 6.5, the detailed results for the trigger value of 10 show that the time needed to
set up the method at the time steps when the preconditioner is updated is significantly larger
than at the time steps when the already computed preconditioner is reused. The factorization of
matrices AIIi still needs to be done during the setup of the BDDC method at each time step,
therefore, the time needed for the setup is never reduced to zero. The numbers of iterations in
Figure 6.5 show a drop to a value of 4 up to time t = 650 s. This drop, observed only at the
beginning of the computation, can be attributed to the fact that the head of the solution in this
time interval is located only within the interior of a single subdomain and the interface degrees
of freedom are almost unaffected.

6.5 Chapter summary

The weak and strong scaling tests presented in this chapter show that for both the standard
problem with a symmetric matrix and also the more complex problem with a non-symmetric
matrix the parallel implementation preserves good efficiency for division up to 768 domains for
both 2D and 3D problems on structured and unstructured meshes. The efficiency of the BDDC
method then deteriorates when the number of subdomains is increased to 1536. The drop in
efficiency is more significant in 3D. The scaling tests for the symmetric matrices tend to confirm
the previous results reported e.g. in [107] that the efficient application of the two-level BDDC
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Figure 6.5: Computational times for setup, iterative solution, and overall solution (top), and
number of BiCGStab iterations (bottom) for each time step (∆t = 10 s) of the unsteady problem.
Iterations starting from the previous time level and with preconditioner used until the number of
BiCGStab iterations exceeds 10 (dashed line).

method is limited to approximately a thousand subdomains and the performance significantly
worsens with increasing the number of subdomains further. The results for the non-symmetric
matrices show that the performance of the BDDC method for the non-symmetric problem is
comparable to the performance on standard problems with a symmetric matrix.

For all the problems considered here, the superlinear speed-up is observed in the strong scaling
test for the first few increases in the number of subdomains. Obtaining the speed-up higher than
the optimal value can be attributed to the nonlinear complexity of the direct solvers used for
the local problems together with the fact that the local problems are the most computationally
demanding part of the problem for the lower number of subdomains.

For the same number of degrees of freedom, the computations in 2D are significantly faster
than in 3D. The difference between 2D and 3D problems is caused by the different matrix
structures for the 2D and 3D problems and also by more non-zero entries in each matrix row in
the case of 3D problems. The non-symmetry of the matrices adds additional complexity. The
LU factorization needs to be used instead of the faster Cholesky one for both local and coarse
problems and also adjoint coarse basis functions are needed. The selected benchmark problem
resulting in a non-symmetric matrix also arises from the system of two equations and, therefore,
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Method
Computational #BiCGStab #Preconditioner

time [min] iterations computations

Zero initial vector 387 26 006 2 000

Previous time step as initial vector 327 10 848 2 000

Reused preconditioner (5) 293 11 340 1 164

Reused preconditioner (10) 247 15 737 68

Reused preconditioner (15) 283 21 856 29

Reused preconditioner (20) 293 27 443 16

Reused preconditioner (25) 329 36 609 7

Table 6.15: Overall computational times, total number of iterations, and number of preconditioner
computations for the McWhorter-Sunada problem in 3D on mesh 6 for time t ∈ [0, 20000] seconds
and various approaches to the solution of an unsteady problem with time step ∆t = 10 s.

leads to twice as many non-zero entries in each matrix row. As a result, for the same number of
degrees of freedom, the computations for this non-symmetric case are about three times slower
than for the symmetric one.

In addition to the scaling tests on a single matrix demonstrating the properties of the BDDC
method we also presented the application of the BDDC method to the sequence of linear problems
arising from the spatio-temporal discretization of an unsteady problem of two-phase flow in porous
media. In the reference approach of the problems solved as independent ones, the complexity of
the problem varies only slightly: the computational time and the number of iterations remain
almost the same for all the problems of the sequence. The computational time of this simple
approach can be significantly reduced using the information from the previous time steps.

The total number of iterations is reduced by more than 50% using the solution from the
previous time step as the initial vector for the BiCGStab iterations. However, a more significant
reduction in the computational time is achieved by using the same preconditioner for several
consecutive time steps, until the number of iterations exceeds a given trigger value instead of
computing it at each time step. Although it leads to an increase in the total number of BiCGStab
iterations, the savings of not computing the preconditioner at each time step overweight the
losses caused by additional BiCGStab iterations. These two approaches combined result in up to
40% reduction of the computational time for the trigger value of 10 iterations for the selected
benchmark problem.

Results from this chapter were published in [104].



Effects of mass transfer on
attenuation of leaked carbon

dioxide in shallow aquifers 7
In the case of leakage of the sequestered CO2 from a deep aquifer, it is important to understand
the processes controlling the transport of CO2 to the surface. Due to the scale of the problem
and significantly different conditions between the deep aquifer and the shallow subsurface, this
complex problem is usually divided into simpler local ones. This division allows for focusing on
certain processes in more detail than would be possible for the complete problem.

In this chapter, we focus on the shallow subsurface and study the transport and phase
transitions of CO2. Under the conditions in shallow aquifers, the originally supercritical CO2
injected into the deep aquifer can reach the shallow zone dissolved in water. As the hydrostatic
pressure decreases, the solubility limit of CO2 in water also decreases and the CO2 originally
dissolved in water can evolve as an independent gaseous phase. Gas can accumulate under
low-permeable layers forming temporal reservoirs [63] and when the water flow regime changes
and clean water enters this reservoir, the entrapped gas can dissolve back into water and is
transported away from the accumulation zone.

The processes related to the multiphase CO2 evolution were thoroughly studied in recent
years. However, there is still a gap in understanding of these processes in particular in the
interactions between water and gas within the pores. This work is aimed to help to fill that gap
using the data from highly controlled laboratory experiments and confront them with the results
of a numerical model which employs various conceptualizations of mass transfer.

The experiments in this chapter are described in chronological order to explain the limitations
of earlier experiments and the motivation for more complex experiments.

1. Experiment A, in detail described in Section 7.2, was carried out in a rather small 2D tank
with a two-dimensional flow field. Only three saturation sensors were installed in the tank
and the distances between the injection port and the sensors were small to observe the
dynamic of exsolution and dissolution processes. These limitations lead to the need to
carry out larger-scale and more complex experiments.

2. Experiment B, in detail described in Section 7.3, consisted of a high but narrow rectangular
column. The height of the column allowed for the installation of more saturation sensors
and larger distances between the injection port and the sensors to better study the dynamics
of exsolution and dissolution processes. However, due to the dimensions of the tank, the
flow field was predominantly one-dimensional in a vertical direction, which is not the case
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of the flow expected in the field in the shallow subsurface. Based on the flow field, this
experiment is also referred to as the quasi-1D case.

3. Experiment C, in detail described in Section 7.4, consisted of a large 2D tank. In contrast to
the column in Experiment B, the dimensions of the tank and position of low permeable layers
allowed for a complex two-dimensional flow field which is a more accurate representation
of the flow regime in the field. Moreover, the distances between the injection port and
saturation sensors were larger than in Experiment A and more sensors were used allowing
for a more detailed study of the dynamics of the exsolution and dissolution processes under
these flow conditions.

All three experiments consisted of the following three main stages:

1. Once the stationary flow field was established in the heterogeneously packed sand tank,
the injection of CO2-saturated water started through a selected port. The concentration
of dissolved gas was higher than the saturated concentration in the tank allowing for the
evolution of the gas phase within the tank.

2. The injection of CO2-saturated water stopped and the evolution of both dissolved and
gaseous CO2 was observed. Emphasis was given to the accumulation of gaseous CO2 under
low-permeable sand layers set up in the tank.

3. Clean water was kept flowing through the tank and the dissolution of accumulated CO2
was observed. In some experiments, the additional injection of clean water was introduced.

7.1 Model formulation

We investigate a two-phase compositional system consisting of gaseous CO2 and water with
dissolved CO2. For clarity and to emphasize that the non-wetting phase is gas and the wetting
phase is liquid, we use the subscripts g and `, respectively, and refer to the phases as gas and
liquid instead of the general notation of the wetting and non-wetting phases introduced in
Section 2.3. For the purpose of this study, the liquid phase consists of two components: pure
water and dissolved CO2, gaseous phase consists of a single component: CO2. The physical
properties of the fluids are given in Table 7.1.

Similarly to the benchmark problems in Chapter 5, the capillary pressure and the gas phase
pressure are selected as the primary unknowns for the two-phase flow: Z1 = pc, Z2 = pg. In
addition to these two unknowns, the mass fraction of CO2 dissolved in water is selected as the
third primary unknown in this compositional system: Z3 = X. For simplicity, we omit the
superscript κ and subscript ` in the equation for the component transport (2.41) as only one
component is tracked in the wetting phase only.

The governing equations of this system are then represented by the following non-zero
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coefficients in the general formulation (3.1)

N =


−φρ` dS`dpc

0 0

−φρg dS`dpc
φSg

dρg
dpg

0

0 0 φS`ρ`

 , U =


0 0 0

0 0 0

0 0 ρ`u`

 , (7.1)

M =


ρ`
λ`
λt

ρg
λg
λt

ρ`

 , D =


λtK −λtK 0

0 λtK 0

0 0 τ`ΦS`D`I

 , (7.2)

W =


−λtρ`Kg

λtρgKg

0

 , F =


−f`
fg

fX −Xf`

 . (7.3)

The dissolution and exsolution of CO2 are represented by the kinetic mass transfer model
that was in the general form given by (2.44), here for CO2 the mass transfer is considered as

− fg = f` = fX = k(Cs −Xρ`), (7.4)

where k is the effective mass transfer coefficient introduced in Section 2.5.1. Cs is the saturated
concentration of CO2 given by Henry’s law computed using parameters given in Table 7.2,
see Section 2.5.2 for details. Its dependence on temperature will be discussed for individual
experiments in the corresponding sections. The current concentration of the dissolved CO2
required by (2.44) is computed from primary unknown as C = Xρ`. In this study, we do not
use the empirical relations for coefficient k in terms of dimensionless quantities discussed in
Section 2.5.1 as the goal of this work is not to validate the model with the selected relation. We
consider the lumped mass transfer coefficient k as a parameter and demonstrate the impact of
changes in this coefficient on the numerical results and compare it experimentally.

Two studied processes: gas exsolution and dissolution are represented by (7.4). In each mesh
element, only one of these two processes can take place at a given time based on the sign of fX ,
i.e., whether the current concentration is higher or lower than the saturated concentration Cs.
In addition, we conceptualize that the mass transfer coefficient k can be generally different for
the exsolution and dissolution processes and the coefficients are then denoted by kexs and kdis,
respectively.

The case of Cs = Xρ`, i.e., fX = 0, corresponds to the equilibrium state. In the kinetic
model, this state is reached after a certain time that is controlled by the mass transfer coefficient
k. In the equilibrium model, this state is assumed to be reached immediately. As was proposed
in Section 2.5.2, we represent the equilibrium model in the computations by selecting a high
enough mass transfer coefficient k. The equilibrium and kinetic models for various mass transfer
coefficients are compared for the experiments investigated in this chapter and the differences for
various dimensions of the problem and flow field patterns are discussed.

7.1.1 Dispersion

The tensor Dκα in (2.43) describes diffusion and dispersion that both control the transport of
the dissolved component. However, for scenarios considered in this work, dispersion is not the
driving mechanism of the studied processes. In addition, the experiments were not designed to
investigate the impact of mechanical dispersion. Therefore, to avoid introducing an additional
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Fluid
ρ µ M[

kg m−3] [
Pa s−1] [

kg mol−1
]

Water (H2O) 997.78 9.72 · 10−4 1.802 · 104

Carbon dioxide (CO2) 1.98 1.48 · 10−5 4.401 · 104

Table 7.1: Fluid properties for the experiments in Chapters 7 and 8.

Solute Solvent
Tref KH,ref CH

[K]
[
mol m3 Pa−1

]
[K]

Carbon dioxide (CO2) Water (H2O) 298.15 3.35 · 10−4 2400

Table 7.2: Henry’s law constants for the experiments in Chapter 7. Adapted from [99].

uncertainty, we decided to omit the dispersion in our model, i.e., aL = aT = 0 in (2.43) is
set for all the computations in this chapter. The free molecular diffusion of CO2 in water is
D = 1.92 · 10−9 m2 s−1.

7.1.2 Implementation remarks

The main objective of this chapter requires running many independent computations with
different parameters for which, the serial implementation of the numerical scheme described in
Chapter 4 is used. These computations were run on a PC equipped with Intel Core i7-5820K,
3.6 GHz processor, and 32 GB RAM. The only exception is the larger-scale experiment in
Section 7.4 where the results obtained on a rather coarse mesh used for the parameter sensitivity
study are compared to the computations on finer meshes where the parallel implementation
described in Chapter 4 is employed. These computations were run on the Helios cluster at the
Czech Technical University in Prague, Czech Republic. The computational nodes of Helios
are equipped with two 16-core AMD EPYC 7281, 2.1GHz processors and 128 GB RAM. As
the problems in heterogeneous porous media are solved in this chapter, the ML variant of the
numerical method is employed. All computational meshes used in this chapter were generated by
Gmsh [49].

7.2 Experiment A

We start with the first experiment of the three carried out to study the CO2 evolution in a
subsurface. The design of this experiment was presented in [87], however, the data from this
paper are not used here. This study uses the data from the subsequent experiments carried out
using the same sand tank with different settings described here in detail.

The main goal of the computational study is to find the optimal values of mass transfer
coefficients for exsolution and dissolution kexs and kdis, respectively. Moreover, we want to
demonstrate the impact of changes in the mass transfer coefficients on the results and show that
when a certain value of coefficients is reached, increasing it over this value has a negligible effect.
This can be viewed as the transition from kinetic to the local equilibrium model.
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7.2.1 Experiment and model setup

The setup of Experiment A and the unstructured triangular mesh used in the computations
are shown in Figure 7.1. The mesh properties are given in Table 7.3. The left- and right-hand
sides of the tank are connected to constant head devices, their positions control the background
flow through the tank. 3.81 cm wide layers in the vicinity of the connections to these constant
head devices are filled with gravel (Granusil #8) to uniformly distribute the hydraulic head
along the vertical boundary of the tank. The rest of the tank is packed with coarser (Granusil
#20/30) and finer (Granusil #110/250) sands, the finer one forming a low-permeable zone in
the upper part of the tank, allowing for a vertical flow along both sides. The properties of
gravel and both types of Granusil sand are given in Table 7.4. Three gas saturation sensors
(Ports A, B, and C) are installed below the fine sand block to measure the accumulation of gas
and two CO2-saturated water injection ports (Ports E, F) are installed in the lower part of the
tank. Moreover, the temperature sensor was installed in port D, however, for Experiment A, the
temperature fluctuations both during and between individual experiment runs were negligible.
Therefore, the system is considered isothermal and the value of saturated concentration Cs is
computed for the constant temperature of 25◦C.

Two setups are selected for comparison with the numerical results in this section. In the first
experiment run, the constant head devices on both sides were positioned at the same height.
This configuration results in a negligible background flow through the tank and therefore, this
setup is referred to as the static case. In this setup, the water saturated with CO2 was injected
into the tank through port E for 23.5 hours with the injection rate of 2 ml min−1. Then clean
water was injected through the same port for 23 hours with the injection rate of 4 ml min−1.

In the second experiment run, the hydraulic head on the right-hand side of the tank was
positioned 0.5 cm higher than on the left-hand side resulting in background flow from right to
left. The water flow rate at the outflow was measured. These measured values were used to
calibrate the boundary conditions in the model to match the outflow rate. In this setup, water
saturated with CO2 was injected into the tank through port F for 47.4 hours with the injection
rate of 2 ml min−1. Then the clean water was injected through port E for 30 hours with the
injection rate of 4 ml min−1.

In both cases, the injected water was saturated by CO2 at the overpressure value of 10 kPa.

Initial and boundary conditions

Initially, the tank was filled with pure water: X = 0, pc = pd, and pg = pc + p`, where
the hydrostatic profile for p` is prescribed. The following boundary conditions were used:

ΓS ,
ΓE ,
ΓN

For both static and background flow cases, zero Neumann boundary conditions are
prescribed for all the unknowns.

Γ3,
Γ4,
Γ5,
Γ6

pc = pd and pg = pc + p` with hydrostatic profile for p` are prescribed. In the case
of the background flow, the values of p` on the right-hand side (Γ3, Γ4) are increased
by 5 Pa from the hydrostatic profile. This value was selected to match the measured
outflow rate through the left-hand side outflow segments Γ5 and Γ6. When the part of
the boundary serves as an inflow or outflow values X = 0 or ∇X ·n = 0 are prescribed
for the dissolved gas mass fraction, respectively.
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Mesh ID h [m] # Elements # Sides # DOF ∆t [s]

1 5.55 · 10−3 5 494 8 211 24 633 5

Table 7.3: Mesh properties for Experiment A described in Section 7.2.

Γ1,
Γ2

When the port is not active, a zero Neumann boundary condition is prescribed for
all the unknowns. When water is injected through the port, the Neumann boundary
condition for u` is prescribed to match the overall inflow rate through the port and
ug · n = 0 is prescribed for gas. In the case of CO2-saturated water, the Dirichlet
boundary condition for X is prescribed. Its value is computed from the overpressure
value of 10 kPa and temperature 25 ◦C. In the case of clean water, X = 0 is prescribed.

All computations are run with a fixed time step ∆t = 5 s.
The critical gas saturation introduced in Section 2.3.7 can play an important role in correctly

capturing the behavior of the exsolved gas in the initially fully water-saturated porous media.
However, the setup of Experiment A with all the gas saturation sensors installed directly below
the low-permeable layer does not allow for investigating the impact of the critical gas saturation
Sc on the results. All computations in this section were carried out with the value of Sc = 0.2
which is in agreement with the following experiment in Section 7.3 with more saturation sensors
positioned further away from the low-permeable regions where the detailed discussion about
finding the value of Sc is provided.

Figure 7.1: Setup of Experiment A described in Section 7.2 adapted from [87] and the computa-
tional domain. The properties of the numerical mesh are given in Table 7.3.

7.2.2 Discussion of results

The comparison of CO2 saturation values Sg in Ports A, B, and C between the numerical results
for the selected values of k and experimental data for the static and background flow experiments
are shown in Figure 7.2. These numerical results for various values of k show that the best
match with experimental data is obtained for rather large values of k in the range of 0.1 to
0.5 s−1. In addition, the simulated results almost do not change when the value of the mass
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Sand
φ K Srw Srn pd λBC

[−] [m2] [−] [−] [Pa] [−]

Granusil #8 0.41 1.00× 10−9 0.084 0 600 4.725

Granusil #20/30 0.32 2.30× 10−10 0.084 0 1200 7.33

Granusil #110/250 0.35 6.36× 10−14 0.170 0 8027 5.35

Table 7.4: Sand properties for Experiment A in Section 7.2. Adapted from [85, 88].

transfer coefficient exceeds a certain threshold value that corresponds to the best match with the
experimental data. This indicates that the exsolution and dissolution processes are in the case of
Experiment A fast enough that can be represented by the (near-) equilibrium approach and these
findings are the same for both static and background flow cases. The comparison of the water
velocity along the horizontal cross-section through the tank at the level of the injection port in
Figure 7.5 shows that the flow fields in the tank are similar and the results of the study indicate
that the flow regimes in this experiment do not significantly affect the CO2 mass transfer rates.

The distribution of CO2 saturation Sg and the mass fraction of dissolved CO2 in water X in
the whole tank for the value of k = 0.5 s−1 in selected times are shown in Figures 7.3 and 7.4
for the static and background flow experiments, respectively. The block of fine sand works as an
obstacle to the flow and the gaseous CO2 accumulates below this block, spreads laterally, and
eventually, due to the buoyancy, rises to the top of the tank along the low-permeable region.

The comparison of measured data and numerical results indicates that the mass transfer
in both these scenarios can be modeled using the equilibrium or near equilibrium approach.
However, Experiment A provided only a limited number of measurements in the tank, all of
them located very close to the heterogeneity. Therefore, we cannot draw a general conclusion
using only this experiment and more complex experiments with more sensors located also in the
regions of the tank further from the heterogeneity are needed. This limitation of Experiment A
motivated to carry out Experiment B and Experiment C which are investigated in the following
Sections 7.3 and 7.4, respectively.

7.3 Experiment B
In this section, a quasi-1D rectangular column packed with a layer of fine sand with dimensions
and heterogeneity configuration leading to a predominantly vertical flow field is considered. The
main goal of the study carried out for this column experiment is similar to Experiment A in
Section 7.2: to find the optimal values of the mass transfer coefficients kexs, kdis for the exsolution
and dissolution, respectively. In addition, we are also interested in the value of critical gas
saturation Sc that in this experiment plays an important role.

7.3.1 Experiment and model setup

Six experiments were carried out using the same sand tank with the layer of sand mimicking the
apex of an anticlinal geological feature. The shape of individual sand regions, positions at which
the gas saturation was measured, and the numerical mesh are shown in Figure 7.6. Properties of
the sands are summarized in Table 7.8 and the mesh parameters are listed in Table 7.7. The
mesh was rather coarse with local refinement in the vicinity of the material interface. The
spatial resolution of the mesh was selected to allow for many computations with various model
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Figure 7.2: Gas saturation for Experiment A described in Section 7.2 for (a) the static case and
(b) the case with a background flow.

parameters in a reasonable time, and at the same time, to capture the effects investigated in this
setup. This configuration remained the same for all six column experiments.

Each column experiment consisted of CO2-saturated water injection through the port located
at the bottom of the tank for a given period of time with a constant injection rate. A portion
of the dissolved CO2 exsolved into the gas phase, migrated upwards, accumulated under the
coarse-fine sand interface, and eventually penetrated the fine sand region. The injection of
CO2-saturated water was followed by the injection of clean water through the same port with
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Gas saturation Sg, static case time 1 h Mass fraction X , static case time 1 h

Gas saturation Sg, static case time 10 h Mass fraction X , static case time 10 h

Gas saturation Sg, static case time 20 h Mass fraction X , static case time 20 h

Figure 7.3: Spatial distribution of Sg (left) and X (right) for Experiment A described in
Section 7.2: the static case at 1 h, 10 h, and 20 h (from top to bottom), computed using
k = 0.5 s−1 and Sc = 0.2.

varying flow rates. The gaseous CO2 present in the tank dissolved into the water and was
transported upwards. The experiment ended when no gas was present in the tank.
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Gas saturation Sg, background flow time 1 h Mass fraction X , background flow time 1 h

Gas saturation Sg, background flow time 10 h Mass fraction X , background flow time 10 h

Gas saturation Sg, background flow time 20 h Mass fraction X , background flow time 20 h

Figure 7.4: Spatial distribution of Sg (left) and X (right) for Experiment A described in
Section 7.2: the background flow case at 1 h, 10 h, and 20 h (from top to bottom), computed
using k = 0.5 s−1 and Sc = 0.2.

The experiments varied in:

• the concentration of dissolved CO2 characterized by the overpressure at which the water
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(b) Start of the clean water injection.

Figure 7.5: Water velocity profile over the x-axis at the level of the injection port for Experiment
A described in Section 7.2. The positions of the injection ports are depicted using the dashed
and dotted lines.

was saturated by CO2,

• the inflow rates of both CO2-saturated and clean water,

• the length of injection periods for individual flow rates.

The two-letter notation of the experiments is introduced. The first letter characterizes the
overpressure at which the water was saturated with CO2: L = low (12 kPa), M = medium
(20 kPa), and H = high (30 kPa). The second letter denotes the flow rate of the CO2-saturated
water in the first stage of the experiment: S = slow (4 ml min−1) and F = fast (40 ml min−1).
The settings of these six experiments is summarized in Tables 7.5 and 7.6. Similarly to Experiment
A, the temperature was monitored during the experiments. The readings show only very small
fluctuations during all the experiments. Therefore, the constant temperature of 21 ◦C was
assumed for the whole Experiment B. The final time tfin of each computation is selected the
same as the final time of the corresponding experiment as listed in Table 7.5.

Initial and boundary conditions

The initial conditions are the same for all six experiments: X = 0, pc = pd, and pg = pc + p`,
where the hydrostatic pressure profile for p` was prescribed. These conditions represent the setup
at the start of the experiment: the tank contains only pure water with no flow through the tank.
The following boundary conditions were prescribed:

Γin During the CO2-saturated water injection, the Neumann boundary condition for the
water inflow velocity u` and the Dirichlet boundary condition for the CO2 mass
fraction X computed from the values in Table 7.5 are prescribed. During the clean
water injection, the Neumann boundary condition for the water inflow velocity u`
computed to correspond to the injection schedule given in Table 7.6 for each experiment
together with the Dirichlet boundary condition X = 0 are prescribed. The one-minute
breaks between the individual injections, i.e., rows in Table 7.6, needed to set up the
next injection in the experiment, are represented by the no-flow Neumann boundary
conditions for all the primary unknowns similarly to Γb. The injection port acts as a
wall during these breaks.
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Γw,
Γb

Zero Neumann boundary condition is prescribed for both phases as well as for the
dissolved CO2.

Γt The Dirichlet boundary conditions for both phases pc = pd, pg = pref , and ∇X ·n = 0
for the dissolved gas are prescribed with pref = 82 kPa as the reference atmospheric
pressure in the laboratory.

The computations were carried out with constant time steps: ∆tL = 5 s, ∆tM = 2 s, and
∆tH = 1 s in the case of low, medium, and high overpressure experiments, respectively.

Id.
Overpressure Inflow rate Injection period Experiment duration

[kPa]
[
ml min−1] [h] [h]

B-LS 12 4 104.80 150

B-LF 12 40 10.67 70

B-MS 20 4 92.62 186

B-MF 20 40 10.45 73

B-HS 30 4 98.76 212

B-HF 30 40 10.20 76

Table 7.5: Settings of Experiment B described in Section 7.3. The material properties are listed
in Table 7.8. The experiment duration in the last column is selected as the final time tfin of the
simulations.

For the purpose of this study, each column experiment was divided into three stages: exsolution,
accumulation, and dissolution. This division into consecutive and almost independent stages
allowed for splitting the problem of finding the values of the unknown model parameters kexs,
kdis, and Sc into separate tasks. The stages are not completely isolated as the exsolution and
accumulation both occur during the CO2-saturated water injection and dissolution and exsolution
processes can take place at the same time in different positions in the column. But, in each stage,
the selected process is dominant and can be used to determine one of the model parameters as
will be discussed in detail in the following text.

7.3.2 Stage 1: exsolution

During the exsolution stage, the CO2-saturated water is injected into the tank, CO2 exsolves, and
the gas phase appears in the tank. The height at which the gas is detected differs between the
experiments. For the medium and high overpressure experiments, the gaseous CO2 appears at
the bottom of the column and is detected in Ports 22 - 24. For the low overpressure experiments,
the gaseous CO2 first appears approximately in the middle of the column height close to the
heterogeneity.

When the gas is detected, the gas saturation grows and, after a certain period of time, the
measured saturation values start to oscillate around a constant value in the ports at the bottom
of the tank as shown in Figure 7.7. These fluctuations that are more significant for the slow
experiment runs are caused by the changes in the gas distribution at the pore scale and for the
slow experiment runs, there is more time for this diffusive redistribution to occur.
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Id. B-LS B-LF B-MS B-MF B-HS B-HF

duration [h] 12.15 12.44 2.80 14.34 2.87 15.70
inflow rate [ml min−1] 6 8 32 6 32 6

duration [h] 2.53 2.58 16.83 2.35 14.53 3.03
inflow rate [ml min−1] 32 32 6 32 8 32

duration [h] 2.80 3.28 2.67 2.62 2.7 2.98
inflow rate [ml min−1] 32 32 32 32 32 32

duration [h] 3.15 2.25 3.07 2.95 2.67 3.22
inflow rate [ml min−1] 32 32 32 32 32 32

duration [h] 15.57 14.91 2.3 16.67 2.78 15.67
inflow rate [ml min−1] 6 6 32 6 32 6

duration [h] 2.98 2.93 15.95 3.17 12.68 2.6
inflow rate [ml min−1] 32 32 6 32 8 32

duration [h] 5.60 2.45 3.17 3.65 3.93 2.57
inflow rate [ml min−1] 16 32 32 32 32 32

duration [h] - 2.92 3.02 16.47 2.73 1.7
inflow rate [ml min−1] - 32 32 6 32 32

duration [h] - 14.6 1.82 - 3.30 2.87
inflow rate [ml min−1] - 6 32 - 32 32

duration [h] - - 15.28 - 14.733 12.183
inflow rate [ml min−1] - - 6 - 6 8

duration [h] - - 3.28 - 4.40 2.05
inflow rate [ml min−1] - - 32 - 16 32

duration [h] - - 3.30 - 44.92 -
inflow rate [ml min−1] - - 32 - 2 -

duration [h] - - 1.17 - - -
inflow rate [ml min−1] - - 32 - - -

duration [h] - - 17.22 - - -
inflow rate [ml min−1] - - 6 - - -

Table 7.6: Clean water injection schedule for Experiment B described in Section 7.3.

Mesh ID h [m] # Elements # Sides # DOF ∆tL [s] ∆tM [s] ∆tH [s]

1 3.02 · 10−2 2 552 3 915 11 745 5 2 1

Table 7.7: Mesh properties for Experiment B described in Section 7.3.
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Figure 7.6: Configuration of Experiment B described in Section 7.3 and the triangular mesh used
in the numerical simulations with parameters given in Table 7.7.

Sand
φ K Srw Srn pd λBC

[−] [m2] [−] [−] [Pa] [−]

Accusand #20/30 0.32 2.3 · 10−10 0.084 0 1200 7.33

Accusand #50/70 0.34 3.0 · 10−11 0.207 0 3400 16.9

Table 7.8: Sand properties for Experiment B in Section 7.3. Adapted from [85, 88].

These plateau values around which the measured values fluctuate represent the fraction of the
gas phase that remains immobile in the porous media and can be directly interpreted as the value
of critical saturation Sc. The measured values for the medium and high overpressure experiments
are consistent and the value of the critical gas saturation is estimated to be Sc = 0.25. This
value is also in agreement with the value reported in [90].

The impact of the value of Sc on the numerical results for experiment HS is demonstrated in
Figure 7.8, where the results of the computations for the critical gas saturation values 0.05, 0.1,
0.15, 0.2, 0.25, 0.3 are compared. This comparison indicates that the value Sc = 0.25 selected
based on the measured data is a sufficiently good approximation of the experimental data.

Note that the procedure to obtain the value of the critical gas saturation directly from
the experimental data described above requires the non-zero gas saturation detected in the
homogeneous region where the amount of trapped gas is controlled by its value. Therefore, it
cannot be used for the low overpressure experiments B-LF and B-LS because, in these runs, CO2
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Figure 7.7: Medium and high overpressure Experiment B described in Section 7.3, measured gas
saturation and highlighted value of critical gas saturation Sc = 0.25.

exsolves in the middle section of the tank close to the layer of the fine sand where the capillary
barrier effect is responsible for the gas trapping and the gas saturation values much higher than
0.25 are detected.

7.3.3 Stage 2: accumulation

The accumulation stage of the experiments partially overlaps with the exsolution one. The
injection of the CO2-saturated water continues and gaseous CO2 that exceeds the value of Sc
migrates upwards and accumulates below the layer of fine sand that acts as a capillary barrier.
As a result of differences in the entry pressures, the gas saturation reaches up to almost 0.9
which is the highest value detected in Port 14 directly below the fine sand layer. Due to high gas
saturation values reached in Port 14, readings from this port are selected to demonstrate the
dynamics of the CO2 exsolution and accumulation processes in this section.

For each of the six experiment runs, a sensitivity study was carried out to determine the value
of kexs to match the experimental data. As the goal was not only to find the optimal value of kexs
but also to demonstrate the exsolution dynamics for a wide range of mass transfer coefficients,
the computations were run for a series of values of kexs with a selected step of 0.01 [s−1].

From these computations, the optimal values of kexs were selected to best fit the measured
values of gas saturation Sg in all the ports during the accumulation stage. This best fit to the
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Figure 7.8: Experiment B-HS described in Section 7.3, gas saturation Sg for various values of
critical gas saturation and for large mass transfer rate coefficients kexs = kdis = 5 s−1.

experimental data is considered in terms of the sum of Euclidean norms of the difference between
the computed and the measured value of Sg for all the ports.

The results of this procedure indicate that rather large values of kexs are needed to result
in enough dissolved CO2 to exsolve in the tank to match the experimental data. In addition,
a certain threshold value of kexs denoted by k∗exs exists for which the amount of exsolved CO2
does not change when the kexs is increased over this threshold, i.e., the numerical results are
the same for k∗exs and for all kexs > k∗exs. For the HS experiment, this behavior is illustrated in
Figure 7.9 and similar effects can be observed also in the remaining column experiments for the
same threshold value of k∗exs = 5 s−1. These findings on the exsolution dynamics indicate that a
near-equilibrium rather than a rate-limited mass transfer is observed in the exsolution stage of
all column experiments.
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Figure 7.9: Experiment B-HS described in Section 7.3, gas saturation in Port 14 for various
values of mass transfer coefficient for exsolution kexs.

7.3.4 Stage 3: dissolution

The CO2-saturated water injection is followed by clean water injection in the dissolution stage of
the experiment. During this injection (with the schedule for each experiment given in Table 7.6)
the gaseous CO2 present in the tank dissolves into the clean water and is transported upwards.
The dynamics of the dissolution process observed on the measured values of the gas saturation Sg
in the ports show that the process is, similarly to the exsolution, rapid. The analogous parameter
sensitivity study for the mass transfer coefficient for dissolution kdis was carried out to find its
optimal values. The only difference from the study presented in Section 7.3.3 was that the time
period of the clean water injection was considered for the comparison between the measured and
computed values of Sg.

The findings of this study are similar to the exsolution one. A substantially large values of
kdis > k∗dis with k∗dis = 5 s−1 as the threshold value are needed to capture the dissolution rate
observed in the experiments. For the B-HS experiment, the dynamics of the dissolution process
for various values of kdis (both higher and lower than the threshold value k∗dis) is illustrated in
Figure 7.10 using Port 14. The same behavior is again observed for all the column experiments
indicating that the CO2 dissolution can be also considered as the near-equilibrium process.

7.3.5 Discussion of results

The best match with the experimental data was obtained for the the following parameters:
Sc = 0.25, kexs = kdis = 5 s−1. The overall comparison between the experimental data and
numerical results for all six column experiments are shown in Figure 7.11 - 7.13.

After the calibration to match the measured gas saturation data in all the ports, the model
can be used to obtain more information about the multiphase CO2 evolution both by comparing
the numerical results to the experimental data but also by comparing the numerical results for
the different setups listed in Table 7.5.

First, in Figure 7.14 we compare the gas saturation profiles along the vertical axis of the
tank at the end of the injection period of each experiment. The shapes of the saturation profiles
indicate that the overpressure at which the water was saturated by CO2 is the main controlling
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Figure 7.10: Experiment B-HS described in Section 7.3, gas saturation in Port 14 for various
values of mass transfer coefficient for dissolution kdis.

parameter of the depth at which the CO2 first exsolves and the flow rate has a negligible role as
the vertical profiles are very similar for both slow (4 ml min−1) and fast (40 ml min−1) inflow
rates.

The accumulation of gaseous CO2 below the fine sand layer observed in Port 14 located in
the vicinity of the material interface is shown in Figures 7.11, 7.12, and 7.13 where high gas
saturation values are detected. In this region, the gas saturation values are not determined by
the value of the critical gas saturation as in the case of the ports at the bottom of the tank,
instead, the capillary barrier described in Section 2.3.8 plays the key role [86] and enough gaseous
CO2 must be present in the tank to accumulate to the amount observed in the experiments.

The impact of the flow transition from fine to coarse sand can be observed in Port 8 located in
the vicinity of this type of material interface. In this case, both numerical results and measured
values of the gas saturation do not show accumulation to the extent observed in Port 14. Instead,
a behavior similar to the ports at the bottom of the tank investigated in the exsolution stage in
Section 7.3.2 is observed: after the initial growth, the gas saturation fluctuates around a certain
value determined by the value of the critical gas saturation Sc. The measured value indicates that
its value for the fine sand is the same as for the coarse one obtained in Stage 1 in Section 7.3.2.

The computed water flow velocities along the vertical axis of the tank are shown in Figure 7.15a
for the selected times of B-HS and B-HF experiments. The vertical profiles at the start of the
experiment when the tank is filled with water only are shown in Figure 7.15a. The slow and
fast experiments with the CO2-saturated water injection rates of 4 ml min−1 and 40 ml min−1,
respectively, cover the ranges of injection rates observed in the experiments. The high overpressure
experiments were selected for this demonstration because of the highest amount of gas dissolved
in the water and, consequently, the highest amount of exsolved gas present in the tank limiting
the water flow. Therefore, for these two experiments, there will be the largest difference in
velocities between the start of the experiment and the end of the CO2-saturated water injection
which is shown in Figure 7.15b. The comparison between the start and end of the CO2-saturated
water injection shows a significant drop in velocity magnitude in regions with high gas saturation.
While the injection rate of the CO2-saturated water remained constant, the injection rate of the
clean water varied according to the schedule given in Table 7.6. However, the first clean water
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injection of B-HS and B-HF experiments: 32 ml min−1 and 6 ml min−1, respectively, covers the
range of flow rates observed during the clean water injection for all the experiments. The only
exception is the end of the HS experiment, however, there was almost no gas present in the
tank at this stage of the experiment. The velocities at the start of the clean water injection for
these two experiments are shown in Figure 7.15c. The corresponding gas saturation profiles are
the same as for the end of the CO2-saturated water injection shown in Figure 7.14. The x-axis
range is chosen with respect to the velocity magnitude in the tank, therefore, the highest velocity
magnitude in the vicinity of the injection port is out of the range in Figure 7.15, the maximal
value of 13.16 m day−1 is reached during the 40 ml min−1 injection rate.
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Figure 7.11: Low overpressure column experiments B-LS and B-LF described in Section 7.3, gas
saturation Sg in selected ports.

Similarly to Experiment A, the computational study in the quasi-1D case showed that the
numerical model is capable to capture the dynamics of the exsolution and dissolution processes
observed in the experiments.

The optimal values of kexs and kdis were determined to be the same and equal (or larger) to
the threshold value of 5 s−1, for which further increase of the coefficients has a negligible effect
on the numerical results.

Small negative values of gas saturation were measured during the experiment. Although
the negative values were obtained for all the experiments when there was no gas present in the
vicinity of the gas saturation sensor, due to various ranges on the plots showing the saturation
values, they are apparent only in the case when no gas is detected by the sensor for the whole
duration of the experiment, for example, Port 24 in the low overpressure experiments. These
negative saturation values are attributed to the post-processing calibration technique with the
error of the gas saturation measurements of approximately ±0.05. The negative readings reported
here are within the measurement error.



110
7. Effects of mass transfer on attenuation of leaked carbon dioxide in shallow

aquifers

0

0, 1

0, 2

G
as

sa
tu
ra
ti
on

S
g
[−

]

0 50 100 150
time t [h]

Numerical results Experimental data

(a) Slow rate, Port 8
(top of the fine sand layer).

0

0, 25

0, 5

0, 75

G
as

sa
tu
ra
ti
on

S
g
[−

]

0 50 100 150
time t [h]

Numerical results Experimental data

(b) Slow rate, Port 14
(below the fine sand layer).

0

0, 1

0, 2

G
as

sa
tu
ra
ti
on

S
g
[−

]

0 50 100 150
time t [h]

Numerical results Experimental data

(c) Slow rate, Port 24
(bottom of the column).

0

0, 1

0, 2

0, 3

0, 4

G
as

sa
tu
ra
ti
on

S
g
[−

]

0 10 20 30 40 50 60
time t [h]

Numerical results Experimental data

(d) Fast rate, Port 8
(top of the fine sand layer).

0

0, 25

0, 5

0, 75

G
as

sa
tu
ra
ti
on

S
g
[−

]

0 10 20 30 40 50 60
time t [h]

Numerical results Experimental data

(e) Fast rate, Port 14
(below the fine sand layer).

0

0, 025

0, 05

G
as

sa
tu
ra
ti
on

S
g
[−

]

0 10 20 30 40 50 60
time t [h]

Numerical results Experimental data

(f) Fast rate, Port 24
(bottom of the column).

Figure 7.12: Medium overpressure column experiments B-MS and B-MF described in Section 7.3,
gas saturation Sg in selected ports.
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Figure 7.13: High overpressure column experiments B-HS and B-HF described in Section 7.3,
gas saturation Sg in selected ports.
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Figure 7.14: Gas saturation distribution over the y-axis (tank height) of the tank at the end
of the injection period for Experiment B described in Section 7.3. The material interfaces are
depicted using the dashed lines.

7.4 Experiment C

In this experiment, the multiphase CO2 evolution is investigated in the larger laboratory-scale
tank with the two different packing configurations allowing for a two-dimensional flow field. For
more details about Experiment C, see [88]. Similarly to the previous experiments, the optimal
values of the model parameters are determined using the measured gas saturation data, and then,
the numerical results are used to obtain more information about the CO2 evolution that would
be possible from the experimental data only. The main goal is to demonstrate the difference in
the dynamics of the exsolution and dissolution processes between the case of the larger-scale
two-dimensional flow field and the previous two experiments presented in Sections 7.2 and 7.3. In
one of the runs of Experiment C, the isothermal assumption was violated allowing for studying
the effects of varying temperature on the CO2 evolution.

In addition to the computational study to find the optimal parameter values for this larger-
scale problem, we also consider high-resolution computations. Once the optimal values of the
model parameters are determined, the computation for these parameters is run on two finer
meshes and the results are compared to the coarse mesh used for the sensitivity study.

7.4.1 Experiment and model setup

The dimensions of the sand regions, the positions of the gas saturation sensors, and the numerical
mesh used for the parameter sensitivity study are shown in Figure 7.16. The mesh parameters
are listed in Table 7.9. The mesh resolution is selected to allow for running many simulations
with different parameters in a reasonable time, and at the same time, the resolution is sufficient
to capture the CO2 mass transfer and transport processes. The gravel and clay layers are for
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Figure 7.15: Water velocity profile over the y-axis (tank height) in the middle of the tank for the
B-HS and B-HF experiments described in Section 7.3. The material interfaces are depicted using
the dashed lines.

simplicity not included in the model and the interior of the tank is considered only. The main
role of these blocks is to uniformly distribute the pressure and split the outflow into several parts.
In the model, the same settings are obtained by prescribing suitable boundary conditions.

The experiment started by connecting constant head devices to the inflow and outflow sides
of the tank and positioning them to establish a lateral background flow of water through the tank.
Once the flow in the tank was established, water saturated with CO2 at 13 kPa overpressure was
injected through the port at the bottom of the tank with the injection rate of 11.2 ml min−1 for
a certain period of time.

The dissolved CO2 plume spread in the tank and its shape was controlled by the combination
of the background flow and the injection rate. The overpressure was high enough for a portion of
CO2 to exsolve and migrate through the tank as a gas phase. After the injection of CO2-saturated
water stopped, the experiment continued with the background flow only. The gas present in the
tank dissolved into the clean water and, together with the original dissolved CO2 plume, it was
transported further to the outflow side of the tank.

Experiment C consisted of two runs, which differed in the type of the fine sand and the length
of the injection period. In the low contrast experiment run, the fine sand was Accusand #40/50
which was only slightly finer than the surrounding coarse sand Granusil #20/30. In the high
contrast experiment run, the fine sand was Unimin #110/250 which is much finer than the one
used in the rest of the tank. Parameters of these three types of sand are listed in Table 7.10.
The CO2-saturated water injection period lasted for 1.88 days in the high contrast experiment
and for 2.43 days in the low contrast experiment. In this study, we consider only the first ten
days of both experiments where the dynamics of the dissolution and exsolution processes can be
investigated. Positions of the injection port and the gas saturation sensors were the same for
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Mesh ID h [m] # Elements # Sides∗ # DOF ∆t [s]

Coarse 3.48 · 10−2 5 638 8 578 25 734 5

Medium 7.41 · 10−3 134 640 202 551 607 653 10

Fine 3.54 · 10−3 534 984 803 656 2 410 968 4

Table 7.9: Mesh properties for Experiment C described in Section 7.4.

both experiments and the background water flow through the tank was very similar for both
runs.

In addition to the differences in the setup, these two experiments differed in the ambient
temperature during the experiment runs. For the duration of the low contrast experiment, the
temperature was almost constant. The difference between the lowest and highest temperature
during the 10 days of the experiment considered in this work was less than 2 ◦C as shown in
Figure 7.17. However, temperature fluctuations on a daily basis were observed during the high
contrast experiment. These fluctuations shown in Figure 7.17 were caused by the air conditioning
issues in the CESEP experimental facility and the difference between the lowest and highest
temperature within a day exceeded 10 ◦C.

The fluctuations in the temperature were not planned for the experiments that were supposed
to be run as isothermal. Therefore, the tank was not insulated and the heat fluxes and thermal
conductivity of the materials were not measured. Hence, due to the lack of information needed to
specify the material properties and prescribe the appropriate initial and boundary conditions, the
energy balance equation is not included in the mathematical model. Instead, a simplified approach
is employed, where only the temporal violation of the isothermal assumption is considered, i.e.,
at a given time, the temperature is considered constant in the whole tank. This assumption is
justifiable because the tank is narrow compared to its other dimensions and its walls are not
insulated. The only parameter that is considered as a function of temperature is the saturated
concentration of CO2 dissolved in water Cs given by (2.49).

Sand
φ K Srw Srn pd λBC

[−] [m2] [−] [−] [Pa] [−]

Granusil #20/30 0.41 1.21× 10−10 0.10 0 1580 5.79

Accusand #40/50 0.42 5.23× 10−11 0.07 0 1940 4.09

Unimin #110/250 0.35 6.39× 10−14 0.17 0 8100 5.35

Table 7.10: Sand properties for Experiment C in Section 7.4. Adapted form [85, 88].

Initial and boundary conditions

The initial conditions are given as follows. At the start of the computation, the tank contains
only pure water with no background flow: X = 0, pc = pd, and pg = pc+p` where the hydrostatic
profile for p` was prescribed. For both low and high contrast experiments, the final time is
tfin = 10 days and the fixed time step ∆t = 5 s is used.

The following boundary conditions are prescribed:
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Γw,
Γb

No-flow boundary condition is prescribed for both phases and for the dissolved CO2
mass fraction.

Γin No-flow condition for the gas phase is prescribed for the whole duration of the experi-
ment. When the CO2-saturated water is injected, the Neumann boundary condition
for water velocity is prescribed with u` computed to match the injection rate and the
Dirichlet boundary condition for X is prescribed computed from the overpressure and
temperature as described in Section 7.4.1. For the rest of the experiment, the no-flow
boundary condition is prescribed also for water and the dissolved CO2 mass fraction.

Γit,
Γib

X = 0, pc = pd, and pg = pc + p` where the hydrostatic profile for water pressure
p` corresponding to the constant head device on the left-hand side of the tank are
prescribed.

Γot,
Γoc,
Γob

The Neumann boundary conditions for the water velocities are prescribed with u`
given by the outflow rates measured in [88]. For the other two unknowns, ∇X · n = 0
and the no-flow boundary condition for the gas phase are prescribed. This approach
was selected to reproduce the flow field in the tank and the water outflow rates that in
the experiment varied although the water head was kept constant. This effect can be
attributed to the partial clogging of the outflow during the experiment.

Γt The gas pressure pg = pref is kept constant, where pref = 82 kPa is the reference
atmospheric pressure in the laboratory, ∇X ·n = 0, and the no-flow boundary condition
for water are prescribed.

Experiment C is for the purpose of the computational study divided into two stages: 1) exsolu-
tion and 2) dissolution. The design of the experiment allowed for almost isolating the dissolution
and exsolution processes and, therefore, the unknown mass transfer coefficients kexs and kdis can
be determined independently.

7.4.2 Critical gas saturation

In contrast to Experiment B described in Section 7.3, there is no separate stage that can be used
to determine the critical gas saturation Sc. There are no gas saturation sensors in the vicinity of
the injection port and higher gas saturation values comparable to the lower ports in Experiment
B are detected in the ports directly below the low permeable layer only, where the amount of
CO2 is controlled by the capillary barrier effect rather than the value of critical gas saturation.
Overall, the amount of gas present in the tank is lower as indicated also by the measured gas
saturation in the lower homogeneous section of the tank, where the maximal values around 0.1 are
detected which indicates that the role of the critical gas saturation is not as significant as in the
case of the column experiment. The critical gas saturation gives a threshold value above which
the gas phase becomes mobile. However, in this experiment, the main mechanism controlling
the gas evolution in a given place is the flow of water with dissolved CO2 and exsolution at the
position rather than the flow of mobile gas. Therefore, the only conclusion that can be drawn
about the value of critical gas saturation Sg in this case is that the value is at least 0.1.



116
7. Effects of mass transfer on attenuation of leaked carbon dioxide in shallow

aquifers

7.4.3 Stage 1: exsolution

The exsolution stage covers the injection of CO2-saturated water into the tank and the exsolution
of CO2 in the vicinity of the injection port. The rest of CO2 that remains dissolved in water is
transported by the background flow in the downstream direction and can exsolve further away
from the injection port. The gas phase is well detected in Ports D4, D6, E4, and F3 as shown in
Figure 7.18.

In this section, we focus on the low contrast experiment, where the temperature fluctuations
were negligible and, therefore, the isothermal model is used. The procedure to find the optimal
value of the mass transfer coefficient kexs and to demonstrate the behavior for a wide range of
values was similar to the one used in Experiment B. Numerical realizations were computed for a
series of values of kexs in this case with a selected step of 0.001 [s−1]. Then, in all the ports, the
computed values of Sg were compared to the measured ones and the difference between them
was evaluated using the Euclidean norm.

For this experiment, a different behavior than for the previous two is observed. When the
value of kexs increases, the amount of gas detected in downstream ports decreases. For values of
kexs comparable to those in the previous experiments representing the near-equilibrium approach,
CO2 exsolves rapidly in the vicinity of the injection port and migrates upwards as can be seen
in the computed values in Port D4 in Figure 7.19. As a result, less CO2 remains dissolved
in water flowing downstream and little or almost no gas is detected in the downstream ports
as shown in Figure 7.19 for the selected Ports E4 and F5. The lower amount of gas present
in the downstream section of the tank can be also seen in Figure 7.20 where the comparison
between the gas saturation results for the near-equilibrium: kexs = 0.1 s−1 and rate-limited
kinetic: kexs = 0.005 s−1 models is shown for a section of the tank around the injection port.

For both experiments, the optimal value of kexs = 0.005 s−1 that minimized the difference
between experimental and computed values of Sg was determined. The necessary modifications
of the model for the high contrast experiment are discussed later in Section 7.4.4. In contrast to
Experiment A and Experiment B, significantly lower values, far from the values representing the
local equilibrium approach of the mass transfer coefficients, must be used in order to capture the
gas evolution correctly as illustrated in Figure 7.19.

7.4.4 Thermal effects

In Section 7.4.3, the low contrast experiment was investigated using the isothermal model because
the temperature fluctuations during the experiment run were negligible. However, for the high
contrast experiment, the temperature fluctuations were more significant and, without taking into
account the influence of temperature, it is impossible to find a suitable value of mass transfer
coefficient for exsolution kexs to match the experimental data.

The difference between the isothermal approach with saturated concentration Cs computed for
the averaged temperature of 19 ◦C that is the same for both experiments and the non-isothermal
approach when Cs is computed using the measured temperature value is illustrated in Figures 7.21
and 7.22 for low and high contrast experiments, respectively.

When the constant temperature is used, the gas distribution appears to be similar for both
low and high contrast experiments. The amount of gas present in the tank is not high enough
for the more significant barrier effect of the fine sand in the high contrast experiment to play
an important role. Since the temperature fluctuations in the low contrast experiment shown in
Figure 7.17 were small, the results in Figure 7.21 confirm that the difference between a constant
and varying temperature is small and thus justifies the isothermal approach. However, there is a
significant difference between the constant and varying temperature results for the high contrast
experiment shown in Figure 7.22. In the case of varying temperature, there is more gas present
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in the tank and the barrier effect of the fine sand layer plays a more important role. In addition,
there is a larger downstream spreading of the gas plume. Therefore, the varying temperature
model is considered to match the experimental data for the high contrast experiment.

7.4.5 Stage 2: dissolution

The mass transfer coefficient for the dissolution was found using an analogous procedure. Based
on the findings of the exsolution process, the saturated concentration Cs was considered to be
a function of temperature in the case of the high contrast experiment. The optimal value of
kdis = 0.002 s−1 was obtained for both low and high contrast experiments. The comparison of
numerical results and experimental data for the selected ports shown in Figure 7.18 indicates
that the numerical model is capable of capturing the gas saturation evolution sufficiently well.

7.4.6 Discussion of results

The water flow velocity profiles along the horizontal cross-sections at the level of the injection
port (y = 0.1 m) and below the fine sand layer (y = 0.7 m) in the selected times are shown in
Figure 7.23. In contrast to the column experiment, there were not that significant changes in the
flow rates, therefore, the profiles at the start of the experiment and after 48 hours, when the gas
accumulation below the fine sand layer is observed, are selected for comparison. Gas saturation
Sg at these times is shown in Figures 7.20 and 7.22 for the low and high contrast experiments,
respectively.

At the start of the experiment, the velocity profiles are similar for both runs and it can be
seen that the type of fine sand does not have a significant impact on the flow field in these zones
of the tank. After 48 hours, the water velocity below the heterogeneity is lower for the high
contrast experiment than for the low contrast one, which can be attributed to a more significant
gas accumulation. The difference at the level of the injection port is caused by a slightly different
length of the injection period. For the low contrast experiment, the CO2-saturated water is
still injected after 48 hours, however, in the case of the high contrast experiment, the injection
already stopped. The y-axis range is chosen with respect to the velocity magnitude in the tank,
therefore, the maximal value of 2.85 m day−1 in the vicinity of the injection port is out of the
range in Figure 7.23.

The numerical results show that the equilibrium mass transfer model is not sufficient for
the scenarios of Experiment C. Its employment leads to overprediction of the exsolution rate in
the vicinity of the injection port where the two-dimensional flow field is present. The kinetic
model with the specific values of mass transfer coefficients is needed to capture the gas saturation
evolution observed in the experiment. In addition, the optimal values of coefficients kexs and
kdis found for this experiment indicate that the exsolution is approximately 2.5 times faster than
the dissolution. These findings tend to confirm that the exsolution and dissolution processes
differ and emphasize the importance of employing the kinetic mass transfer model that can take
this difference into account. In general, the mass transfer rate coefficients kexs and kdis are quite
low in comparison with the previous two experiments which, together with numerical results for
higher coefficient values, mean that the mass transfer is rate-limited in this case. However, due
to the available experimental data, it is beyond the scope of this work to rigorously investigate
the mass transfer coefficients and establish a suitable expression as a function of flow and porous
media properties such as relations proposed in Section 2.5.1. Further research is needed to extend
the understanding of the multiphase evolution of fluids in porous media.
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(a) Low contrast, Port D4.
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(b) High contrast, Port D4.
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(c) Low contrast, Port D6.
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(d) High contrast, Port D6.
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(e) Low contrast, Port E4.
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(f) High contrast, Port E4.
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(g) Low contrast, Port F3.
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(h) High contrast, Port F3.

Figure 7.18: Experiment C described in Section 7.4, gas saturation Sg, selected ports for the low
and high contrast cases.
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Figure 7.19: Experiment C described in Section 7.4, gas saturation Sg, various values of the mass
transfer coefficient for exsolution.

7.4.7 High resolution computation

For the computations on the medium and fine mesh with properties given in Table 7.9, the
following strategy proposed to solve the unsteady problems in Section 6.4.3 was employed: the
solution from the previous time step was used as the initial vector for the BiCGStab iterations at
the current time step and the preconditioner was reused until the trigger value of 10 iterations
was exceeded.

The medium and fine meshes were divided into subdomains to get approximately 38 thousand
degrees of freedom per subdomain. This corresponds to 16 and 64 subdomains for medium
and fine mesh, respectively. In contrast to the sensitivity study, where for higher mass transfer
coefficients kdis and kexs shorter time steps were enforced, here the computations for the
coefficients kexs = 0.005 s−1 and kdis = 0.002 s−1 are carried out with longer time steps:
∆t = 10 s and ∆t = 4 s for medium and coarse mesh, respectively. Computation times, total
number of BiCGStab iterations, and the number of preconditioner computations for both low
and high contrast experiments are shown in Table 7.11.

The comparison of numerical results on all three meshes considered for this problem is shown
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(a) Equilibrium model, t = 24 h. (b) Kinetic model, t = 24 h.

(c) Equilibrium model, t = 36 h. (d) Kinetic model, t = 36 h.

(e) Equilibrium model, t = 42 h. (f) Kinetic model, t = 42 h.

(g) Equilibrium model, t = 48 h. (h) Kinetic model, t = 48 h.

Figure 7.20: The gas saturation evolution using the near equilibrium (left) and rate-limited
kinetic (right) mass transfer models for the low contrast Experiment C described in Section 7.4.
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(a) Constant temperature, t = 24 h. (b) Variable temperature, t = 24 h.

(c) Constant temperature, t = 36 h. (d) Variable temperature, t = 36 h.

(e) Constant temperature, t = 42 h. (f) Variable temperature, t = 42 h.

(g) Constant temperature, t = 48 h. (h) Variable temperature, t = 48 h.

Figure 7.21: Gas saturation Sg, comparison of isothermal (left) and non-isothermal (right) models
for low contrast Experiment C described in Section 7.4.
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(a) Constant temperature, t = 24 h. (b) Variable temperature, t = 24 h.

(c) Constant temperature, t = 36 h. (d) Variable temperature, t = 36 h.

(e) Constant temperature, t = 42 h. (f) Variable temperature, t = 42 h.

(g) Constant temperature, t = 48 h. (h) Variable temperature, t = 48 h.

Figure 7.22: Gas saturation Sg, comparison of isothermal (left) and non-isothermal (right) models
for high contrast Experiment C described in Section 7.4.
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Figure 7.23: Water velocity profile over the x-axis at the level of the injection port (y = 0.1
m) and below the fine sand layer (y = 0.7 m) for Experiment C described in Section 7.4. The
position of the injection port is depicted using the dashed line.

Mesh resolution Medium Fine

Experiment Low contrast High contrast Low contrast High contrast

# Subdomains 16 64

# Time steps 86 400 (∆t = 10 s) 216 000 (∆t = 4 s)

# BiCGStab iterations 570 177 490 202 1 380 437 1 129 254

Avg. per time step 6.6 5.7 6.4 5.2

# Preconditioner computations 23 21 51 48

Computational time [h] 16.9 21.0 49.3 62.8

Table 7.11: Statistics for high-resolution computations for Experiment C described in Section 7.4.

in Figures 7.24 and 7.25 for low and high contrast experiments, respectively.
The results for finer meshes do not differ significantly which indicates the numerical conver-

gence of the solution. This justifies the approach taken to the parameter sensitivity study. The
coarse mesh is sufficient to capture the studied effects and the computations are less demanding
that the high-resolution ones.

The results presented in Table 7.11 show that reusing the preconditioner is advantageous in
this case. The average number of BiCGStab iterations at a single time step varies between 5 and
7 for the considered mesh resolutions and time steps. Only a few preconditioner computations
are required in comparison with the overall number of time steps in each computation. The
longer computational times for the high contrast experiment can be attributed to the difference
in material properties and different gas evolution dynamics.

7.5 Chapter summary

The results presented in this chapter show that the mathematical model is able to adequately
capture important processes of the multiphase CO2 evolution observed in the experiments. The
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(c) Port E4.
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(d) Port F3.
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Figure 7.24: Low contrast Experiment C described in Section 7.4, numerical results for gas
saturation Sg in selected ports for various mesh resolutions and experimental data.
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(c) Port E4.
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(d) Port F3.
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Figure 7.25: High contrast experiment C described in Section 7.4, numerical results for gas
saturation Sg in selected ports for various mesh resolutions and experimental data.
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kinetic mass transfer model was able to reproduce the near-equilibrium behavior observed in
small-scale Experiment A and quasi-1D Experiment B as well as the rate-limited exsolution and
dissolution processes observed in Experiment C. In addition, the numerical results presented here
indicate that in the larger scale Experiment C the dynamics of the exsolution and dissolution
processes differ, and the computations using the kinetic model can be used to quantify this
difference. Although the study of the impact of temperature changes was not the original goal of
the experiments used in this chapter, the model was also able to demonstrate the importance of
temperature in the multiphase CO2 evolution when compared with experimental data and it
indicates that larger temperature fluctuations cannot be neglected.

In all experiments, the model captured the accumulation of the exsolved gas below the layers
of fine sand and confirmed that heterogeneity plays an important role in the multiphase CO2
evolution. The impact of even this simple one-layer heterogeneity in the experiment suggests
the need for future study of these effects on more complex heterogeneous systems that can be
observed in the shallow subsurface.

The difference between the quasi-1D and 2D cases where the equilibrium and rate-limited
approaches, respectively, resulted in the best match with experimental data can be possibly
attributed to the different flow rates of water through the partially gas-occupied regions. However,
the velocity profiles shown in Figures 7.5, 7.15, and 7.23 indicate that the velocity magnitude
would not be the key factor responsible for the fundamentally different results among the
experiments. The flow velocity magnitude in the vicinity of the injection ports and the other
zones of the tank are comparable.

In the quasi-1D column experiment, water is forced through the gas accumulation, and the
dynamic inter-phase contact is therefore likely fast enough that equilibrium mass transfer is
applicable. In the 2D case, however, the water flow paths can more easily avoid the gas phase,
meaning slower contact with the gas phase, and thus slower dissolution that was observed in
Experiment C. The disparity between the numerical results and experimental data when the
equilibrium approach was employed for Experiment C was more apparent in the ports further
from the injection port. Although the two-dimensional flow field was created in Experiment A,
the size of the tank, and short distances between the injection port and gas saturation sensors
did not allow for observation of such effects for this experiment. Further investigation and
experimental data for more configurations are needed to rigorously test these findings.

Moreover, in this chapter, we focused on quasi-1D and 2D cases only. The results showing
fundamental differences between these two cases indicate that an analogous study in 3D seems
to be necessary for understanding the gas evolution in the 3D laboratory and also field-scale
scenarios.

The computations on finer meshes than the one used for the parameter sensitivity study
justify the selected mesh resolution: the results using finer meshes do not differ significantly from
those obtained using rather coarse mesh and indicate the numerical convergence of the solution
when the mesh is refined. The computations on these finer meshes demonstrated the capabilities
of the parallel implementation of the numerical scheme and showed the advantage of reusing the
preconditioner in the solution of unsteady problems suggested and tested for simpler benchmark
problem in Chapter 6.

The results presented in this chapter were published in [46, 103].
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One of the possible locations for the CO2 sequestrations are deep aquifers originally occupied by
brine. Once the sequestration starts, the supercritical CO2 is injected through one or more wells
which results in a significant increase in the pressure in the aquifer and overlying layers that
reach much further from the injection region than the head of the injected supercritical CO2. In
addition, this pressure buildup is almost immediate in comparison with the flow and transport of
CO2 in porous materials forming the aquifer [13, 14]

This increased pressure can result in mechanical changes in the confining layer of the aquifer.
Existing faults can open and form permeable pathways between the aquifer and the overlying
layers allowing for leakage of the residing brine. It is also possible for new faults and fractures
to appear. Due to the increased pressure in the aquifer, the brine originally residing in the
aquifer tends to migrate to the surface [95, 96] where due to its high salinity can pose a risk of
contaminating freshwater sources in the shallower layers [52, 94].

In the field, due to the scale of the considered problem, there are uncertainties about the
subsurface material properties and the exact geological settings of the aquifer and overlying
layers. In the laboratory experiments, the original scenario of brine leakage is considered on a
much smaller scale. The main advantage of this approach is that the material properties are
known and the high-resolution network of sensors can be installed to obtain more information
than would be possible in the field.

In this chapter, we present the mathematical model describing the experiment and its
simplifications, that are possible due to low tracer concentrations, to speed up the computations.
We demonstrate that the simplifications are justifiable and present the results of the mathematical
model for the scenarios considered in the laboratory experiments. In addition, we investigate the
impact of uncertainties in the parameters of the site on the plume propagation prediction.

8.1 Experiments and goals of the study

A detailed description of the experiment is given in [4], here we summarize the features important
for the numerical simulations presented in this chapter. As illustrated in Figure 8.1, the tank is
packed in a highly heterogeneous configuration mimicking the geology of the field site and is
divided into three zones representing the following regions:

• The first zone represents the deep aquifer selected for the CO2 sequestration. The flow
in this region is considered predominantly horizontal as the aquifer is sealed from the top
with an originally impermeable confining layer.

127
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• The second zone represents the geological layers overlying the aquifer. The flow field in
this region is considered predominantly vertical as a result of increased pressure in the
deep aquifer caused by the injected supercritical CO2.

• These two zones are separated by an inclined impermeable wall with drilled holes filled
with gravel representing the confining layer and fractures through which the residing brine
leaks from the aquifer.

• The third zone represents the shallow subsurface with a complex flow field for example
affected by wells, precipitation, and atmospheric effects.

The experiment allows for creating various flow patterns in the tank by modifying the inflow
and outflow boundary conditions. In addition, the six holes in the wall separating the first and
second zones allow for studying the brine leakage through different fractures under the selected
flow regime controlled by the boundary conditions.

The sodium bromide (NaBr) is selected as a tracer in these experiments. The bromide ions
are initially not present in the water used in the experiments and even very low concentrations
can be detected by ion chromatography allowing for accurate tracking of the leaked plume. To
help visualize the plume location, the fluorescein dye (ACROS-Organics 17,324-5000) was added
to the water with dissolved NaBr. The limits on the range of feasible tracer concentration arise
from the design of the experiment. Instead of mimicking the vertical orientation of the field site,
the experiment is carried out in the horizontal orientation as shown in Figure 8.1. Therefore,
quite low tracer concentrations are needed to eliminate the gravitational effects such as, in
particular, the sinking of the tracer plume that is caused by the higher density of water with
dissolved sodium bromide. For details, see [4].

The position and shape of the sand regions in the tank and the notation of the parts of the
boundary where the various inflow and outflow conditions can be set up are shown in Figure 8.1.
The tracer injection ports numbered one to six from top to bottom are located 5 cm in front of
the corresponding fracture. The diameter of the injection port is 5 mm.

Figure 8.1: Setup of the experiment described in Section 8.1.

The hydraulic properties of the sands used in this experiment are given in Table 8.1.
Similarly to [4], three configurations are considered to represent the three experiments carried

out using this tank. The experiments differ in the flow field within the tank controlled by the
constant head devices with selected hydraulic heads ψ [cm] on the inflow and outflow sides of
the tank or by a pump connected to one of the tank outflows with a selected pumping rate
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Sand
φ K

[−] [m2]

Granusil #16 0.397 5.01 · 10−10

Granusil #20 0.410 1.91 · 10−10

Granusil #20/30 0.406 1.07 · 10−10

Accusand #40/50 0.334 4.72 · 10−11

Granusil #70 0.413 1.27 · 10−11

Silica #110 0.340 5.79 · 10−12

Gravel 0.330 1.00 · 10−8

Table 8.1: Sand properties for experiments in Chapter 8. Adapted form [4].

Fluid
ρ µ M[

kg m−3] [
Pa s−1] [

kg mol−1
]

Water (H2O) 997.78 9.72 · 10−4 1.802 · 104

Table 8.2: Fluid properties for the experiments in Chapters 7 and 8.

Tracer
ρ M[

kg m−3] [
kg mol−1

]
Sodium bromide (NaBr) 2180 1.029 · 105

Table 8.3: Tracer properties for the experiment Chapter 8.

q
[
ml min−1]. In addition to the flow field, the experiments differ in the position of the injection

port, tracer injection rate, and its concentration. The settings of these three experiments are
summarized in Table 8.4.

The main goal of this study is to show the capabilities of the numerical model and its
implementation to capture the tracer transport in heterogeneous porous media and to obtain
results comparable to those presented in [4] where the numerical solution was obtained by
FEFLOW [30].

8.2 Problem formulation

The primary unknown for the single-phase flow equation is pressure: Z1 = p and the primary
unknown for the component transport is the mass fraction of the dissolved tracer: Z2 = X.
Similarly to Section 7.1, we for simplicity omit the subscript and superscript of X as only one
phase and one component are tracked here. For this choice of primary variables, the problem is
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Experiment

Boundary condition 1 2 3

Γ1 ψ = 165.44 cm ψ = 165.44 cm ψ = 165.10 cm

Γ2 ψ = 164.47 cm ψ = 164.47 cm q = 0 ml min−1

Γ3 ψ = 161.15 cm ψ = 161.15 cm q = 8.3 ml min−1

Γ4 ψ = 150.50 cm ψ = 150.50 cm ψ = 157.90 cm

Settings

Active fracture 3 1 6

Injection rate [ml min−1] 7.75 7.90 7.90

Tracer concentration [mg l−1] 42.40 54.45 85.00

Experiment duration [days] 6 4.5 7

Table 8.4: Configuration of the three experiments described in Section 8.1, the following notation
was used: ψ is the hydraulic head, q is the volumetric flow rate.

represented by the following non-zero coefficients in (3.1)

N =

0 Φ dρ
dX

0 Φρ

 ,U =

0 0

0 ρu

 ,M =

 ρ
µ

ρ

 ,D =

K 0

0 τΦD

 ,
W =

ρKg
0

 ,F =

 f

fX −Xf

 . (8.1)

In general, the water density is a function of dissolved tracer mass fraction X given by

ρ(X) =
(1−X

ρw
+ X

ρX

)−1
, (8.2)

where ρw is a density of water and ρX is density of tracer (NaBr), values are provided in Tables 8.2
and 8.3, respectively. However the amount of dissolved tracer considered in the experiments
investigated in this chapter is very low, therefore, we assume that the term dρ

dX in coefficient N
in the formulation of the problem (8.1) can be neglected and a simplified problem with dρ

dX = 0
can be solved instead of the original one similarly to [4].

Under the assumption of dρ
dX = 0, the equation for Z1 represented by (8.1) is a steady one

and the original problem can be split into two simpler ones. First, the equation for Z1 is solved.
As a result, we obtain pressure and velocity fields that, under the assumption of constant density,
do not change over time. This problem is further referred to as the pressure equation. Then only
the unsteady equation for Z2 is solved at each time step using the obtained velocity field. This
problem is further referred to as the transport equation. To confirm that this simplification does
not affect the numerical results and to demonstrate the reduction in computational time, we
compare both approaches on a selected artificial scenario adapted from [3] in Section 8.4.
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Mesh ID h [m] # Elements # Sides # DOF ∆t [s]

1 1.38 · 10−2 34 956 52 784 105 568 60

Table 8.5: Mesh properties used to investigate the density effects in Section 8.4. Note that the
number of degrees of freedom is given for the most general formulation of the problem with
variable density.

8.3 Parallel computation setup

All the computations presented in this chapter were carried out using the parallel implementation
of the numerical scheme presented in Chapter 4. As the problems in highly heterogeneous
porous media are solved, the ML variant of the numerical scheme is used. For the most general
formulation of the problem described in Section 8.2 (with variable density), matrix A of the linear
problem is updated at each time step and, therefore, the strategy proposed to solve unsteady
problems in Section 6.4.3 was employed: the solution from the previous time step was used as
the initial vector for the BiCGStab iterations at the current time step and the preconditioner
was reused until the trigger value of 10 iterations was exceeded.

The solution strategy is further adapted for the simplified case of constant density. For the
solution of the pressure equation, the approach described in Section 6.3 is employed. For the
solution of the unsteady transport equation, the approach described in Section 6.4 is further
tailored. In this case, matrix A of the linear problem is constant. Therefore, the whole setup of
the BDDC method including the LU factorizations of the local matrices Ai needed to compute
the action of the Schur complement matrix S is done at the first time step only. Overall, only
the right-hand side of the linear problem is updated at each time step.

The computations were run on the Helios cluster at the Czech Technical University in
Prague, Czech Republic. The computational nodes of Helios are equipped with two 16-core
AMD EPYC 7281, 2.1GHz processors, and 128 GB RAM. All the computational meshes used in
this chapter were generated by Gmsh [49].

8.4 Variable density effects

To verify the negligible effect of the tracer concentrations used in the experiments on the water
density, we investigate the artificial problem adapted from [3]. The configuration of the problem
is illustrated in Figure 8.2. We consider a three-layer horizontal system with the same porous
materials that were used for the laboratory experiment. The tracer is injected through the port
with diameter 0.5 mm on the left-hand side of the first region with a constant injection rate
2 ml min−1 and the tracer concentration values C of 50, 100, 500, and 1000 mg l−1 are tested.
The injection into the domain is in the model represented by a source term in the area of the
port.

The top and bottom boundaries of the domain are impermeable walls with zero Neumann
boundary conditions for both primary unknowns. On the left-hand side vertical boundary,
X = 0 and the hydrostatic profile for p corresponding to hydraulic head of ψ = 120 cm are
prescribed. On the right-hand side vertical boundary, ∇X · n = 0 and the hydrostatic profile for
p corresponding to hydraulic head of ψ = 115 cm are prescribed.

The computations are run on a triangular mesh with parameters listed in Table 8.5 divided
into four subdomains. The fixed time step ∆t = 60 s is selected and the results are shown at
time tfin = 30 days.

To study the impact of the tracer concentration on the water density and the resulting plume
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Figure 8.2: Setup of the artificial scenario to investigate the density effects in Section 8.4.

shape and location, the numerical results in the three vertical cross-sections through the centers
of the sand regions: a,b,c in Figure 8.2 denoted by the red lines are compared. The results
for both constant and variable water density are shown in Figure 8.3 for the four considered
tracer concentrations. Under the assumption of constant density, the concentration profiles are
symmetric along the horizontal axis of the domain as is expected for this problem configuration.
For the variable density and the tracer concentrations of 50 mg l−1 and 100 mg l−1, the vertical
profiles are almost the same as for the constant density. This justifies the assumption of constant
density for similar settings in the experiment. When the tracer concentration increases, the
impact on the location of the plume is more significant. The density of water containing tracer is
higher than the density of the clean water and the plume is sinking towards the bottom boundary
of the domain.

To quantify the error caused by neglecting the effect of the tracer concentration on water
density, we compute the y-coordinate of the center of mass of the plume along the cross-sections.
In the case of constant density, its value is 0.5 m for all tracer concentrations. The error of
constant density approach EC for tracer concentration C is then given by

EC = |0.5− yc|0.5 · 100%, (8.3)

where yC is the coordinate of the center of mass for tracer concentration C. For the variable
density, the coordinates of the center of mass and the errors of the constant density approach
are shown in Table 8.6. The results show that for a given tracer concentration, the errors are
very similar for all the cross-sections. For the concentration of 100 mg l−1, the errors are lower
than 1.5 % which is acceptable with respect to the accuracy of the instrumentation used in the
experiments.

The computation times vary only slightly between the various tracer concentrations for both
approaches. The computation with the varying density is almost seven times more computationally
demanding, than the computation with constant density with the computational times of 2 hours
41 minutes and of 24 minutes, respectively.

The total number of iterations and the number of preconditioner computations are similar
for both constant and varying densities. In the case of varying density, the preconditioner is
computed at the first time step only and the linear solver converges in 4 BiCGStab iterations.
In the following time steps, the preconditioner from the first time step is used and the linear
solver converges in 1 iteration. In the case of constant density, the linear solver for the pressure
equation converges in 4 BiCGStab iterations. At the first time step of the transport problem,
the preconditioner is computed and the linear solver converges in 4 BiCGStab iterations. At the
following time steps, this preconditioner is reused and the linear solver converges in 1 iteration.
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Figure 8.3: Concentration profiles for variable (solid lines) and constant (dashed lines) densities
along vertical cross-sections for selected tracer concentrations in the artificial scenario described
in Section 8.4.

Tracer concentration [mg l−1]
a b c

yC [m] Error yC [m] Error yC [m] Error

50 0.497 0.62 % 0.497 0.63 % 0.497 0.60 %

100 0.494 1.24 % 0.494 1.27 % 0.494 1.21%

500 0.469 6.20 % 0.469 6.61 % 0.470 6.38 %

1000 0.441 11.87 % 0.440 12.09 % 0.442 11.58 %

Table 8.6: Center of mass along the cross-sections and the error of the constant density approach
for the artificial problem described in Section 8.4.
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Mesh ID h [m] # Elements # Sides # DOF ∆t [s]

1 2.89 · 10−3 1 253 468 1 882 852 1 882 852 2.5

Table 8.7: Mesh properties used to compute the scenarios described in Section 8.1. Note that
the number of degrees of freedom is given for the split pressure and transport problems.

8.5 Experiments

The computation for all three experiment settings described in Section 8.1 are run in parallel
on the mesh with properties given in Table 8.7. The injection into the domain is in the model
represented by the source term in the area of the port.

The tracer concentrations are low enough for the constant density approach to be valid and
the problem is decomposed into the pressure and transport problems as described in Section 8.4.
The mesh is divided into 32 subdomains resulting in approximately 59 thousand degrees of
freedom per subdomain for both pressure and transport equations. Computations of the transport
problem for all three experiments are run with a fixed time step ∆t = 2.5 s.

The shape and location of the tracer plume at a selected times obtained by using the material
properties listed in Table 8.1 are shown in Figures 8.5, 8.6, and 8.7 for Experiments 1,2, and
3, respectively. However, these results differ significantly from the tracer plumes observed in
the experiments reported in [4]. These differences can be attributed to the uncertainties in the
material properties and the settings of the experiments. Moreover, the properties of certain
features of the experiment can change between the time of packing the tank with sand and
running the experiment [4].

Originally, the holes in the impermeable layer representing the fractures in the confining layer
of the aquifer were filled with gravel resulting in high permeability. However, sand before the
fracture can be pushed into the fracture by the flowing water partially clogging it and reducing
its permeability. This effect is more significant in the upper fractures where higher water flow
velocities were observed. The changes in the fracture permeability have a significant effect on
the flow field in the vicinity of the fractures and the confining layer. The impact on the flow
field is more significant in the experiments with a hydraulic head set up also on the boundary Γ2
which allows water outflow. The visualization of the flow field from the top boundary Γ1 through
the set of fractures for the high permeable and partially clogged fractures are for Experiment 1
shown in Figure 8.4.

In addition to the fracture clogging, there is a discrepancy between the permeability measured
using one-dimensional column laboratory testing and the permeability of the sand packed in the
larger two-dimensional tank [7]. Moreover, small heterogeneity affecting the flow field in the
tank can arise from the packing of the neighboring regions of different sands and partial mixing
of these two materials at the interface. With the available equipment, we cannot quantify this
mixing of porous materials and, therefore, these heterogeneities at the interfaces between the
sand regions are not represented in the model.

To match the experiments, the material properties were calibrated using the measured
experimental data. A detailed description of the calibration procedure is provided in [4].

The results for these modified settings are shown in Figures 8.5, 8.6, and 8.7 for Experiments
1,2, and 3, respectively, where significant differences in the shape and location of the plume can
be observed. The results in these figures are in agreement with the shapes and location of the
plumes observed in [4].

The total number of iterations for all three experiments is shown in Table 8.8. Because of the
selected strategy for the numerical solution, we separately show the number of iterations for the
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(a) High-permeable fractures. (b) Clogged fractures.

Figure 8.4: Streamlines from the top boundary Γ1. Impact of the fractures clogging on the flow
field for Experiment 1 described in Section 8.1. Color scale corresponds to the sand type, see
Figure 8.1.

Experiment
1 2 3

Material properties Measured Calibrated Measured Calibrated Measured Calibrated

Steady pressure equation

# Iterations 55 48 53 46 57 51

Time [s] 3.6 3.5 3.6 3.5 3.6 3.5

Unsteady transport equation

Avg. # iterations 1.75 1.74 1.95 1.97 1.96 1.86

Min. # iterations 1 1 1 1 1 1

Max. # iterations 3 3 3 3 3 3

Time [h] 14.5 14.3 11.3 11.0 17.4 17.0

Table 8.8: Number of iterations and the computational times for experiments described in
Section 8.1.

pressure and transport problems. The results in Table 8.8 show that the number of iterations
for the pressure problem is significantly higher than those for the transport problems, where
the BiCGStab solver converges on average in less than two iterations. The higher number of
iterations for the steady pressure problem in comparison with benchmark problems in Chapter 6
can be attributed to highly varying material properties within the computational domain, in
particular sand permeability. Overall, the changes in the material properties (before and after
calibration), boundary conditions, tracer concentration, and injection rate have a small effect on
the number of iterations. The difference in the overall computational time is caused mainly by
the different duration of the experiments.
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(a) t = 1 day. Properties listed in Table 8.1. (b) t = 1 day. Calibrated material properties.

(c) t = 2 days. Properties listed in Table 8.1. (d) t = 2 days. Calibrated material properties.

(e) t = 3 days. Properties listed in Table 8.1. (f) t = 3 days. Calibrated material properties.

(g) t = 4 days. Properties listed in Table 8.1. (h) t = 4 days. Calibrated material properties.

(i) t = 5 days. Properties listed in Table 8.1. (j) t = 5 days. Calibrated material properties.

(k) t = 6 days. Properties listed in Table 8.1. (l) t = 6 days. Calibrated material properties.

Figure 8.5: Numerical results of tracer concentration for material properties given in Table 8.1
and material properties calibrated to experimental data in Experiment 1 described in Section 8.1.

8.6 Chapter summary
In this chapter, the application of the numerical scheme to the transport in highly heterogeneous
porous media was tested on a laboratory experiment mimicking the brine leakage from a deep
aquifer.

Firstly, in an artificial scenario, we verified that the dependency of the water density on the
tracer concentration can be neglected for the considered range of concentrations. This reduces
the complexity of the problem as the problem can be decomposed into steady pressure and
unsteady transport effectively halving the size of the linear systems. In addition, the matrix
arising from the discretization of the transport problem is constant over time.

On the settings representing the laboratory experiments, we demonstrated the impact of
uncertainties in the material properties and settings of the experiments on the results. The
clogging of the holes in the impermeable layers representing the fractures in the confining layer of
the aquifer resulting in varying permeability of the fractures significantly affects the flow field in
the vicinity of the confining layers and the fractures. In addition, the differences in the hydraulic
conductivity of the sands measured in the one-dimensional column and packed in the 2D tank
affect the location and shape of the tracer plume. The results presented in this chapter obtained
using the MHFEM numerical scheme described in Chapter 3 are in agreement with [4] where
FEFLOW [30] was used.
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(a) t = 1 day. Properties listed in Table 8.1. (b) t = 1 day. Calibrated material properties.

(c) t = 2 days. Properties listed in Table 8.1. (d) t = 2 days. Calibrated material properties.

(e) t = 3 days. Properties listed in Table 8.1. (f) t = 3 days. Calibrated material properties.

(g) t = 4 days. Properties listed in Table 8.1. (h) t = 4 days. Calibrated material properties.

(i) t = 4.5 days. Properties listed in Table 8.1. (j) t = 4.5 days. Calibrated material properties.

Figure 8.6: Numerical results of tracer concentration for material properties given in Table 8.1
and material properties calibrated to experimental data in Experiment 2 described in Section 8.1.
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(a) t = 1 day. Properties listed in Table 8.1. (b) t = 1 day. Calibrated material properties.

(c) t = 2 days. Properties listed in Table 8.1. (d) t = 2 days. Calibrated material properties.

(e) t = 3 days. Properties listed in Table 8.1. (f) t = 3 days. Calibrated material properties.

(g) t = 4 days. Properties listed in Table 8.1. (h) t = 4 days. Calibrated material properties.

(i) t = 5 days. Properties listed in Table 8.1. (j) t = 5 days. Calibrated material properties.

(k) t = 6 days. Properties listed in Table 8.1. (l) t = 6 days. Calibrated material properties.

(m) t = 7 days. Properties listed in Table 8.1. (n) t = 7 days. Calibrated material properties.

Figure 8.7: Numerical results of tracer concentration for material properties given in Table 8.1
and material properties calibrated to experimental data in Experiment 3 described in Section 8.1.
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We formulated the mathematical model describing the two-phase compositional flow in porous
media with kinetic interphase mass transfer. We proposed and implemented a suitable numerical
method for solving these problems and used it to investigate the processes in porous media. A
detailed description of the results is provided in the following sections.

9.1 Numerical solution and implementation

The problems solved in this work range from a steady Laplace problem to a two-phase composi-
tional flow with mass transfer. Therefore, the numerical scheme based on the MHFEM spatial
discretization designed for solving the general system of coupled non-linear advection-diffusion-
reaction equations was proposed in Chapter 3. In this form, all the problems considered in this
work can be represented and this approach allows for separating the formulation of the problem,
such as governing equations and boundary conditions, from the implementation of the numerical
solver. Two variants of the scheme are considered based on the method used to compute the
local coefficients on each element: exact integration and the mass lumping technique.

In the case of a homogeneous porous medium, the convergence of the method is verified on a
benchmark problem with a known semi-analytical solution showing that both variants of the
method are of the first order of accuracy with only slight differences in the errors. In the case of
a heterogeneous porous medium, the exact integration leads to non-physical oscillations at the
material interfaces and the mass lumping variant of the method is used to eliminate this effect.

The method is implemented both in serial and in parallel. The parallel approach is based
on the BDDC method. The scaling tests of the implementation show a good parallel efficiency
up to a thousand CPU cores. The limitation on the number of CPU cores that can be used
efficiently arises from the selected two-level BDDC approach and can be avoided by employing
the multi-level BDDC method which is beyond the scope of this work.

To speed up the solution of the transient problems using the BDDC method, we propose
to use the solution from the previous time step as the initial vector for the linear solver in the
current time step and reuse the BDDC preconditioner for several time steps until the number of
linear solver iterations exceeds a given trigger value. For the benchmark problems, this leads up
to a 40 % reduction in the computational time.

9.2 Carbon dioxide evolution in shallow subsurface

The developed numerical method was employed in the investigation of the mass transfer models
in the two-phase systems consisting of water and CO2 in the shallow subsurface. We used the
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data from three laboratory experiments that focused on multiphase CO2 evolution under various
conditions. In the case of quasi-1D column experiments, the simpler local equilibrium model gives
results that match the experimental data which is in agreement with the previous work of [90]
for similar settings. However, for the more complex two-dimensional flow field, the equilibrium
model leads to over-prediction of gas exsolution and the kinetic model is necessary to match the
experimental data.

In addition, the results tend to confirm our hypothesis that the difference in the dynamics
of the exsolution and dissolution processes plays a significant role and needs to be represented
in the model by selecting different mass transfer coefficients for the corresponding processes to
get an agreement with the gas evolution observed in the experiment. Although the experiments
were designed as isothermal, the problems with air conditioning in the laboratory allowed us to
study the impact of temperature on the multiphase CO2 evolution. The results indicate that
temperature plays an important role and even the temperature fluctuations in the range of 10◦C
cannot be neglected.

We thoroughly investigated the mass transfer processes in the setting of the three experiments
considered in this work. However, many processes that were not the main driving mechanisms in
the studied scenarios were simplified, for example, the dependence of the physical quantities on
temperature, or neglected, for example, the mechanical dispersion.

9.3 Tracer transport

The numerical scheme was used for the computations of the single-phase tracer transport problems
in a highly heterogeneous porous medium. These scenarios were inspired by the problem of
brine leakage from a deep aquifer mimicked on the laboratory scale. Firstly, in the artificial
scenario, we investigated the impact of the tracer concentration on the water density and the
possibility to simplify the governing equations of the problem by assuming the water density
independent of the tracer concentration. The numerical results justify this assumption for the
concentrations used in the experiments allowing for a significant speedup of the computations by
decoupling the pressure and transport equations. The results for the settings of the laboratory
experiments demonstrate the capabilities of the numerical scheme presented in this work to solve
problems in highly heterogeneous porous media. The shape and the location of the tracer plume
are in agreement with the experiments and the numerical results obtained by FEFLOW presented
in [4]. Moreover, we demonstrated the impact of the uncertainties in both material properties
and settings of the experiments on the numerical results.

9.4 Future work

The limitations of the presented numerical method are the first order of accuracy only and the
performance of the parallel implementation is limited by the selected two-level BDDC approach.
The future goal is to design a method of a higher order of accuracy and improve the parallel
performance for a higher number of CPU cores by implementing the multi-level BDDC method.

In the current mathematical model, some of the processes are considered in the simplified
form only or neglected completely. We plan to expand the mathematical model to comprise these
processes and use the data from additional experiments to study their impact on the evolution of
multi-phase compositional systems in the shallow subsurface. In this work, we demonstrated the
fundamental difference in the mass transfer and transport processes between the quasi-1D and
2D cases. Hence, a question arises about the nature of these processes in 3D and their relation
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to the simpler 2D and 1D cases. The results presented here indicate that such a study seems to
be necessary for understanding the gas evolution in 3D on both laboratory and field scales.
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