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Abstrakt
V této dizertaci se zabýváme zkoumáńım spectra Schrödingerovských

operátor̊u
H = −∆ +Q(x), L2(Ω),

kde Ω ⊂ Rd je otevřená s Dirichletovskou hraničńı podmı́nkou na ∂Ω a
Q : Ω → C. Studujeme kvantovou mechaniku se samosdruženými, kvazi-
samosdruženými a nesamosdruženými pozorovatelnými H. Poruchová teorie
a spektrálńı aproximace jsou hlavńımi nástroji použitými v této práci. Aprox-
imuj́ıćı operátory se mohou lǐsit jak v potenciálu, tak v doméně. Asymp-
totické vzorce vlastńıch hodnot jsou odvozeny a jejich platnost dokázána
pro rozličné problémy se silnou vazbou Q(x, g), g → ∞ a pro diverguj́ıćı
vlastńı hodnoty, které se objevuj́ı při osekáváńı domén Schrödingerovských
operátor̊u s komplexńım potenciálem.

Abstract
This thesis is devoted to investigation of the spectra of Schrödinger op-

erators
H = −∆ +Q(x), L2(Ω)

with Ω ⊂ Rd open, Dirichlet boundary conditions at ∂Ω and Q : Ω → C.
We study quantum mechanics with self-adjoint, quasi-self-adjoint and non-
self-adjoint observables H. Perturbation theory and spectral approximations
are the main tools used in this thesis. The approximating operators may
differ in both potential and domain. Asymptotic formulae for eigenvalues
are derived and proven to be true for various problems with strong coupling
Q(x, g), g →∞ and for diverging eigenvalues occuring in domain truncations
of Schrödinger operators with complex potential.
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Introduction

In quantum mechanics, observables are described by linear operators on
infinite-dimensional Hilbert spaces, such as L2(Ω), Ω ⊂ Rd open, and the
measured values of physical quantities such as energy or momentum corre-
sponds to their spectral values. Investigation of their spectra is therefore of
major importance. Of particular interest are the spectra of the Hamiltonian

H = − d2

dx2
+Q(x), in L2(Ω) (1)

with Ω ⊂ Rd open, standing for the total energy of a quantum mechanical
system.

Only a few specific choices of Q and Ω, with suitable boundary conditions
at ∂Ω, lead to exactly solvable problem, e.g. harmonic oscillator Q(x) = x2,
Ω = Rd. In most cases we have to use other tools including perturbation
theory and other approximative methods.

In the first chapter 1 we focus on standard quantum mechanics, where the
operator (1) is considered self-adjoint. For relatively bounded perturbations
of a known problem, e.g.

− d2

dx2
+ g ln

1

x2
, L2((−1, 1)) (2)

we can use Rayleigh-Schrödinger perturbation theory, as discussed in Sec-
tion 1.1. In Section 1.2 we discus operators with strong coupling g in the
potential Q(x, g). In special cases, the potential can be linearly or quadrat-
icly approximated. In the quadratic approximation approach, after suitable
transformation we discus operators in a form

Ag = − d2

dx2
+ x2 +R(x, g), L2(Ig) (3)

with R(x, g) → 0 and Ig → R as g → ∞. In such a scenario Ag contain
asymptotically the eigenvalues

λn,g = λn + rn,g, g →∞ (4)
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with rn,g → 0 as g → ∞ and λn = 2n + 1. Similarly for linear approxima-
tion with λn being the eigenvalues of Airy operator defined on L2(R+) and
Ig → R+ as g → ∞. By writing that spectra of operators {Ag} contain
asymptotically the eigenvalues {λn,g}n we mean that

∀g > 0, ∃ng ∈ N, ∀n > ng, λn,g ∈ σ(Ag). (5)

The convergence results for eigenvalues are proven via the notion of pseu-
dospectra and its properties.

Self-adjoint operators are similar to quasi-self-adjoint operators for which
Q may be complex. This subclass of non-self-adjoint operators, discussed
in Chapter 2, have real spectra so that we can build consistent quantum
mechanics with a quasi-self-adjoint observable H. In order to do so, we
need a positive, bounded and boundedly invertible metric operator Θ which
satisfies

H∗ = ΘHΘ−1. (6)

The construction of proper metric operator is a major challenge even for one
observable, especially for unbounded operators. In this chapter we consider
quantum mechanical system with more than one observable. In such a case,
we have to examine the conditions for existence of common metric, which in
many cases may not exist at all, as demonstrated on our finite-dimensional
example.

We can choose (1) to be non-self-adjoint with Q : Rd → C. In general, the
spectrum of such problem is complex and includes extreme scenarios where
σ(H) = ∅ or σ(H) = C. Nevertheless, such models are becoming more
popular and have applications in physics. In Section 3.4, we are interested
in models

Tg = −∆ +Q1 + igQ2, L2(Ω) (7)

where Ω ⊂ Rd is open and Qi : Ω → R, i = 1, 2 and g → ∞. We use
ideas about transformation of operators already used in Chapter 1, but in
this scenario we need to use more sophisticated mathematical tools in order
to prove the convergence results. Specifically we use resolvent estimates and
norm resolvent convergence of a sequence of operators.

In chapter 4 we discus the domain truncation technique, which is very
useful to determine the spectra of operators defined on unbounded domains,
provided that for given operator such approximation is spectrally exact. In
this work we focus our attention on the so called diverging eigenvalues which
occur while applying domain truncation technique to non-self-adjoint opera-
tors, specifically (1) with Q(x) = iU(x). e.g. the imaginary oscillator

T∞ = −∆D + i|x|2 (8)

9
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Figure 1: Trajectory in C of eigenvalues of truncations Tn of T∞ from (8) for d = 3,
sn = 0.1n, n = 15, 16, . . . , 115; eigenvalues for l = 1 (red), l = 2 (pink), l = 3
(green), l = 4 (purple), l = 5 (brown) only are plotted; see (9) and Section 4.5 for
details. The numerics illustrates the spectral exactness (the clusters of eigenvalues
at the ray eiπ/4R+) as well as the eigenvalues escaping to infinity along the blue
curves, (9) for asymptotic formulas.

in L2(Ω) with Ω = Rd \B1(0) and the Dirichlet boundary condition imposed
at ∂Ω. A possible sequence of truncations are Tn = −∆D +Q in L2(Ωn) with
Ωn := Bsn(0)∩Ω, sn ↗ +∞, and Dirichlet boundary conditions at ∂Ωn, n ∈
N. The general goal is to determine the relation of spectra of {Tn} and T∞.
We are able to obtain asymptotic formulae for the diverging eigenvalues, in
particular in example (8), our results show that the truncations Tn contain
asymptotically the diverging eigenvalues

λk,n,l = (2sn)
2
3

(
νk +Ok,l

(
s
− 4

3
n

))
+ is2

n, n→∞, (9)

where {νk} are eigenvalues of the imaginary Airy operator −∂2
x+ix in L2(R+)

with Dirichlet boundary condition at 0.
Concerning notation, we write a . b to denote that, given a, b ≥ 0, there

exists a constant C > 0, independent of any relevant variable or parameter,
such that a ≤ Cb; a & b is analogous and a ≈ b means that a . b and a & b.
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Chapter 1

Perturbation methods in
quantum mechanics

As we already mentioned, we have to use perturbation theory and other ap-
proximative construction techniques in most cases of practical interest where
usually, a key attention is being paid to Hamiltonians H.

First we recall basic notions. Let H be a closed operator H ∈ C(H), then
ρ(H) := {λ ∈ C : (H − λ)−1 is bounded operator on H} denote its resolvent
set and σ(H) := C \ ρ(H) its spectra. The ε−pseudospectrum σε(H) of H
is defined as [36, Chap.4]

σε(H) = σ(H) ∪ {λ ∈ C : ‖(H − λ)−1‖ > 1

ε
}, ε > 0. (1.1)

Specifically for self-adjoint operators, which will be discussed throughout this
chapter, ε−pseudospectrum contains the spectrum σ(H) and its ε−neighbourhood,
since following equality holds [20, Sec.V.3.5]

‖(H − λ)−1‖ =
1

dist(λ, σ(H))
. (1.2)

Now, we are prepared to study the influence of perturbations.

1.1 Perturbation of potential

Alternative equivalent definition of ε−pseudospectra

σε(H) = {λ ∈ C : λ ∈ σ(H + E) for some E ∈ B(H), ‖E‖ < ε} (1.3)

describes the stability of the spectra σ(H) for self-adjoint operators with
respect to bounded perturbation, i.e. the spectra σ(H+E) of the boundedly
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perturbed operator H + E lies in ε−neighbourhood of the spectra of σ(H)
of the unperturbed operator H.

Broader concept is provided by the notion of relative boundedness of
forms [20, Sec. VI.1.6] or operators [30, Sec. X.2]. In such a scenario we can
safely apply the Rayligh-Schrödinger perturbation theory [31, Thm. XII.8].

Quantum square well with logarithmic central spike

In [42] we introduced a linearized model of non-linear logarithmic Schrödinger
equation. In particular operator Tg = T0 + gV , g ∈ R such as

Tg = − d2

dx2
+ g ln

1

x2
, (1.4)

acting on L2(I), I = (−1, 1), subject to Dirichlet boundary conditions.
The unperturbed operator T0 represents the well known problem of Laplace

operator on a bounded interval. Starting with a quadratic form

t0[f ] = ‖f ′‖2 , D(t0) = W 1,2
0 (I) , (1.5)

it can be defined via representation theorem [20, Sec. VI.2.2] as a self-adjoint
on D(T0) = W 2,2(I) ∩W 1,2

0 (I) with discrete spectrum

λ(0)
n =

[
(n+ 1)

π

2

]2

, n = 0, 1, 2 . . . , (1.6)

and eigenfuctions

ψ(0)
n (x) =

{
cos(n+ 1)π

2
x , n odd ,

sin(n+ 1)π
2
x , n even .

(1.7)

Let

v[f ] =

∫
I
V |f |2, D(v) = {f ∈ L2(I) : V |f |2 ∈ L1(I)} , V = ln

1

x2
(1.8)

We note that V ∈ Lp(I), 1 ≤ p < ∞ since it is an even function and, for
every small ε > 0,∫ 1

0

xε| lnx|p

xε
dx ≤ ‖xε| lnx|p‖L∞

∫ 1

0

xε dx <∞. (1.9)

Recalling the embedding W 1,2(I) ↪→ L∞(I), i.e. the inequality ‖f‖∞,I ≤
C‖f‖W 1,2 , for some C > 0 and Young’s inequality, we get that, for all f ∈
Dom(t0),

|v[f ]| ≤ C‖f‖2
W 1,2‖V ‖L1 ≤ C‖V ‖L1(2‖f ′‖‖f‖+ ‖η′‖∞‖f‖2)

≤ δ‖f ′‖2 + +Cδ‖f‖2 (1.10)
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where
Cδ = δ−1‖V ‖2

L1 + ‖η′‖∞‖V ‖L1 (1.11)

with η ∈ C∞(R) such that

η(t) =

{
1 t ≥ x

0 t ≤ x− 1
(1.12)

for x ∈ R and δ > 0 can be chosen arbitrarily small. Hence D(v) ⊂ D(t0) and
v is a relatively bounded with respect to t0 with relative bound 0. Therefore
for every g ∈ R, the form

tg[f ] = t0[f ] + gv[f ], D(tg) = D(t0) = W 1,2
0 (I) (1.13)

is closed, symmetric and bounded from below, hence it defines (via the rep-
resentation theorem) the self-adjoint operator Tg, g ∈ R.

Also Tg forms an analytic family and subsequently, for g small we can
compute the eigenvalues of Tg via Rayleigh-Schrödinger perturbation theory

λn,g = λ(0)
n + gλ(1)

n + . . . . (1.14)

The first order corrections can be obtained in a closed form

λ
(1)
2p = 2 +

2

(2p+ 1)π
Si[(2p+ 1)π] , p = 0, 1, 2 . . .

λ
(1)
2q+1 = 2− 2

(2q + 2)π
Si[(2q + 2)π] , q = 0, 1, 2 . . .

(1.15)

where Si(x) =
∫ x

0
sin(t)
t

dt is sine-integral special function. Precision of the
first order corrections for g small is demonstrated in Fig.1.1.

1.2 Asymptotic regime

Yet another definition of ε−pseudospectra

λ ∈ σε(H) ⇐⇒ λ ∈ σ(H) or ∃f ∈ Dom(H) : ‖(H − λ)f‖ < ε‖f‖ (1.16)

where f are corresponding pseudomodes, or ε−pseudo-eigenvectors.
Lets have a sequence of self-adjoint operators Ag acting on a sequence

of Hilbert spaces Hg. Suppose we can construct a sequence of pseudomodes
fn,g ∈ Dom(Ag) for some known numbers {λn} (i.e. eigenvalues of a know
operator A) such as

‖(Ag − λn)fn,g‖ ≤ εg‖fn,g‖, εg > 0. (1.17)

13
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Figure 1.1: First 6 eigenvalues λn,g of Tg 1.4 depending on g computed numerically
(red) and via perturbation theory (blue) (1.14).

Latter means that λn ∈ σεg(Ag) and therefore σ(Ag)∩ [λn− εg, λn + εg] 6= ∅.
Furthermore if εg → 0 as g →∞ it follows that the eigenvalues

λn,g = λn +O(εg), g →∞ (1.18)

are asymptotically contained in σ(Ag).

1.2.1 Linear approximation of the potential

One specific scenario of such problems is a sequence of operators Ag

A(i)
g = − d2

dx2
+ x+Rg(x), in L2(Ig) (1.19)

where Ig → R+ and Rg(x) → 0 as g → ∞ and Dirichlet A
(1)
g or Neumann

A
(2)
g boundary conditions are imposed on the endpoints of the interval Ig.

In the limit, we are getting to the well know problem of Airy operator
on a half-line A

(1)
∞ (resp. A

(2)
∞ ) on L2(0,∞) with Dirichlet (resp. Neumann)

boundary condition at 0

A(1)
∞ := − d2

dx2
+ x , D(A∞) = {W 2,2(R+) : f(0) = 0, xf(x) ∈ L2(R+)} ,

A(2)
∞ := − d2

dx2
+ x , D(A∞) = {W 2,2(R+) : f ′(0) = 0, xf(x) ∈ L2(R+)} .

which possess purely discrete positive spectrum

σ(A(i)
∞ ) = {λ(i)

n }, λ(1)
n = −an, λ(2)

n = −bn (1.20)
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where an satisfy Ai(an) = 0 and bn satisfy Ai′(bn) = 0 for the Airy function

Ai(x) =
1

π

∫ ∞
0

cos

(
t3

3
+ xt

)
dt . (1.21)

Corresponding eigenfunctions of A
(i)
∞ are shifted Airy functions

ψ(i)
n (x) = Ai(x− λ(i)

n ). (1.22)

In such a setting, if for some sequence of pseudomodes f
(i)
n,g ∈ Dom(A

(i)
g ) it

holds that
‖(A(i)

g − λ(i)
n )f (i)

n,g‖ ≤ ε(i)
g ‖f (i)

n,g‖ (1.23)

such that ε
(i)
g → 0 as g →∞, we get that

λ(i)
n,g = λ(i)

n +O(ε(i)
g ), g →∞ (1.24)

lie asymptotically in the spectra of A
(i)
g .

Quantum square well with logarithmic central spike

The Example 1.1 can be investigated also in the setting of strong coupling
g � 1. In such a scenario the spectrum of Tg (1.4) is shifted upwards. We
claim that the spectrum of Tg asymptotically contains the eigenvalues

λn(g) =

{
−(2g)2/3(an +O(g−

4
3

+ε)) , odd n ,

−(2g)2/3(bn +O(g−
4
3

+ε)) , even n .
(1.25)

The potential V (x, g) = g ln( 1
x2

) is even therefore the eigenfunctions of Tg
are even or odd and we can split the problem into two cases

T (1)
g = − d2

dx2
+ g ln

1

x2
acting on L2(0, 1) with ψ(0) = 0, ψ(1) = 0 (1.26)

T (2)
g = − d2

dx2
+ g ln

1

x2
acting on L2(0, 1) with ψ′(0) = 0, ψ(1) = 0 (1.27)

The spectrum of the operator Tg is than obtained as a union of respective
spectra

σ(Tg) = σ(T (1)
g ) ∪ σ(T (2)

g ). (1.28)

Unitary transformations P : L2(0, 1) 7→ L2(0, 1) such that (Pf)(x) = f(1−x)

and Uα : L2(0, 1) 7→ L2(0, σ−1) such that (Uαf)(x) = σ−
1
2f(σx) lead us to

isospectral operators

T̃ (i)
g = σ−2Ag = σ−2

[
− d2

dx2
+ σ2g ln

1

(1− σx)2

]
(1.29)
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acting on L2((0, σ−1)). Employing further Taylor expansion of logarithmic

term and choosing σ = (2g)−
1
3 in order to get the linear term dominant we

get

A(i)
g = − d2

dx2
+ x+ σ2R1(σx, g), L2((0, (2g)

1
3 )). (1.30)

We can see that (1.30) is in the form (1.19) and in order to prove validity of
the asymptotic formula (1.24) we need to show that for some fn,g ∈ Dom(Ag)

‖(A(i)
g − λ(i)

n )f (i)
n,g‖ ≤ ε(i)

g ‖f (i)
n,g‖ (1.31)

such that ε
(i)
g → 0 as g →∞.

Let f
(i)
n,g = ψ

(i)
n φg where ψ

(i)
n are eigenfunctions of Airy operators (1.22),

φg = φ(((2g)
1
3 )−βx), β ∈ (0, 1) and φ ∈ C∞(R+) such that

φ(x) =

{
1 x ∈ [0, 1/2]

0 x ≥ 1
(1.32)

We can estimate

‖(A(i)
g − λ(i)

n )f (i)
n,g‖ ≤ ‖(−ψ(i)

n
′′ + xψ(i)

n − λ(i)
n ψ

(i)
n )φg‖+ ‖ψ(i)

n
′φ′g‖

+ ‖ψ(i)
n φ

′′
g‖+ ‖σ2R1(σx, g)ψ(i)

n φg‖.
(1.33)

The first term is equal to 0 since ψ
(i)
n , λ

(i)
n are eigenfunctions and eigenvalues

of the Airy operators. For second and third term we use the knowledge of
the asymptotic behaviour of the Airy function

‖ψ(i)
n
′φ′g‖2 ≤ (2g)−

β
3

∫ (2g)
β
3

(2g)
β
3 /2

|ψ(i)
n
′|2 . e−(2g)β (1.34)

since Ai(x) . e−x
3
2 and Ai′(x) . e−x

3
2 [28, p. 394]

‖ψ(i)
n φ

′′
g‖2 ≤ (2g)−

2β
3

∫ (2g)
β
3

(2g)
β
3 /2

|ψ(i)
n |2 . (2g)−

β
3 e−(2g)β . (1.35)

For the last term we use the Lagrange form of the remainder with ξ ∈ [0, x]

‖σ2R1(σx)ψ(i)
n φg(x)‖2 ≤ σ4

∫ (2g)
β
3

0

|R1(σx)|2|ψ(i)
n (x)|2dx

≤ 3(2g)−
8
3

∫ (2g)
β
3

0

|(1− (2g)−
1
3 ξ)2x2|2|ψ(i)

n (x)|2dx

. (2g)
4β−8

3 ‖ψ(i)
n ‖L2(R+) ∼ g−

8
3

+ 4β
3 , g →∞

(1.36)

with the choice β = 3/2ε. (1.31) therefore holds with εg = g−
4
3

+ε and (1.25)
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1.2.2 Quadratic approximation of the potential

Another scenario widely used in physics is approximation of Schrödinger
operator whose potential posses profound minimum by quantum harmonic
oscillator. Eligible sequence of operators would after suitable transformation
have a form

Ag = − d2

dx2
+ x2 +R(x, g), L2(Ig), (1.37)

where R(x, g) → 0 and Ig → R as g → ∞. Solving a problem we usually
encounter operator

Hg = − d2

dx2
+W (x, g), in L2(Jg) (1.38)

where potential W (x, g) posses minimum at some point x0 such as

W (x0, g) = 0, W ′(x0, g) = 0, W ′′(x0, g) > 0 (1.39)

Translation to x0, subtracting and absolute term W (x0, g)

Tg = − d2

dx2
+W (x+ x0, g)−W (x0, g), L2(Jg − (x0, x0)) (1.40)

and further expanding the Taylor series about 0 and scaling x→ σx,

σ =

(
1

2

d2W (x+ x0, g)

dx2

∣∣
x=0

)− 1
4

(1.41)

in order to make factor in front of the quadratic term equal to 1. We arrive
at a form

σ−2Ag = σ−2

[
− d2

dx2
+ x2 + σ2R2(σx, g)

]
. (1.42)

From transformations above, we get that

λn,g ∈ σ(Ag) ⇐⇒ σ−2λn,g +W (x0, g) ∈ σ(Hg). (1.43)

Formula for the eigenvalues λn,g ∈ σ(Ag) can be obtained in similar manner as
for the linear approximation using eigenvalues λn = 2n+1 and eigenfunctions
hn(x) of one-dimensional quantum harmonic oscillator

A = − d2

dx2
+ x2, L2(R) (1.44)

where hn(x) are normed Hermite functions.
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If we are able to construct sequence of pseudomodes fn,g ∈ Dom(Ag) such
that

‖(Ag − λn)fn,g‖ ≤ εg‖fn,g‖ (1.45)

and εg → 0. Then the eigenvalues

λn,g = 2n+ 1 +O(εg), g →∞ (1.46)

lie asymptotically in the spectra of Ag.

Log-anharmonic oscillator

In [41] we derived following log-anharmonic model

Hg = − d2

dx2
+ ω2x2 + g2 ln

1

x2
in L2(R). (1.47)

In what follows, we prove that there are asymptotically contained double
degenerate eigenvalues

λn,g =
√

2ω((2n+ 1) +O(g−1+ε)) + g2 + g2 ln
ω2

g2
, g →∞ (1.48)

in the spectra of Hg.
Unitary operation of translation to the minimum x0 = g

ω
and subsequent

subtraction of the absolute term g2 + g2 ln ω2

g2
get us to

Tg = − d2

dx2
+ ω2x2 + 2ωgx+ g2 ln

1

(x+ g/ω)2
− g2 ln

ω2

g2
(1.49)

acting in L2(R). Further expanding to Taylor series and scaling with σ =

(2ω2)−
1
4 we get

√
2ω

[
− d2

dx2
+ x2 + (

√
2ω)−1R2(σx)

]
, (1.50)

which corresponds with (1.42). In order to prove the asymptotic formula
(1.43), we need to construct sequence of pseudomodes fn,g. Let

fn,g(x) := hn(x)ϕg(x), (1.51)

where hn(x) are normed Hermite functions and ϕg(x) = ϕ(g−βx), β > 0 and
ϕ ∈ C∞0 (R) such that

ϕ(x) =

{
1 |x| ≤ 1,

0 |x| ≥ 2.
(1.52)

18



It follows that ϕg(x) = 0 for |x| ≥ 2gβ and ‖fn,g‖L2(R) → 1 as g →∞. Now,
we can estimate

‖(Ag − λn)fn,g‖ ≤ ‖(−h′′n + x2hn − λnhn)ϕg‖+ ‖2h′nϕ′g‖
+ ‖hnϕ′′g‖+ ‖σ2R2(σx, g)hnϕg‖,

(1.53)

The first term is equal to zero since hn and λn are eigenfuctions and eigen-
values of A (1.44). We will estimate the remaining terms via the knowledge
of the behaviour of the Hermite functions.

‖2h′nϕ′g‖2 ≤ 4g−2β

∫
R
|h′n(x)|2|ϕ′(g−βx)|2dx

≤ 8g−2β

∫ 2gβ

gβ
|h′n(x)|2dx . g−βe−δ̃ng

2β

(1.54)

since |h′n(x)| ≤ e−δnx
2
. Similarly

‖hnϕ′′g‖2 ≤ 2g−4β

∫ 2gβ

gβ
|hn(x)|2dx . g−3βe−δng

2β

. (1.55)

To estimate the last term we use the Lagrange form of the remainder and
scaling σx = y, for any constant ω ∈ R we have

‖σ2R2(σx, g)hnϕg‖2

≤ σ3/36

∫
R
|W ′′′(ξ, g)|2|y|6|hn(σ−1y)|2|ϕ(g−βσ−1y)|2dy

≤ σ3/36 (2σgβ)6 sup
|ξ|≤|2σgβ

||W ′′′(ξ, g)|2
∫
|y|≤2σgβ

|hn(σ−1y)|2dy

. σ10g6β sup
|ξ|≤|2σgβ |

∣∣∣∣ 4g2

(x+ g/ω)3

∣∣∣∣2 . g4+6β

g/ω − 2gβσ
∼ g−2+6β, g →∞

(1.56)

with the choice β = ε/3, ε > 0 we get

‖(Ag − λn)fn,g‖
‖fn,g‖

. g−1+ε. (1.57)

Finally we obtain (1.48) from (1.43).
Similarly we can perform a translation to −x0 = −g/ω, proceeding with

analogous steps we obtain second set of the same eigenvalues λn,g. Therefore
the eigenvalues (1.48) are double-degenerate.
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method: n=0 n=1 n=2 n=3 n=4
quadratic approx. 0.00141421 0.00424264 0.00707107 0.00989949 0.0127279

numerical 0.00141432 0.00424309 0.00707218 0.00990161 0.0127314

Table 1.1: A sample of the low-lying energy-level shifts εn,g = λn,g − g2 − g2 ln ω2

g2

for couplings ω = 0.001 and g = 1.

Singular model

In article [5] we considered a model

Hg = − d2

dx2
+ x+

2g√
x
, in L2(R+), (1.58)

where we can impose Dirichlet or Neumann boundary conditions at the ori-
gin. In the asymptotic scenario g →∞ specific boundary conditions do not
play significant role. We will prove that the eigenvalues

λn,g =

√
3

2
g−

1
3 ((2n+ 1) +O(g−

1
2

+ε)) + 3g
2
3 , g →∞. (1.59)

are asymptotically contained in σ(Hg).

Similarly as above, we perform translation to the minimum x0 = g
2
3 and

subtraction of the absolute term W (x0, g) = 3g
2
3 we get

Tg = − d2

dx2
+ x+

2g√
x+ g

2
3

− 2g
2
3 , in L2((−g

2
3 ,∞)) (1.60)

Scaling with σ = (3
4
)−

1
4 g

1
6 yields the required result. Construction of fn,g

proceeds in similar manner

fn,g(x) := χIghn(x)ϕg(x), (1.61)

where hn(x) are normed Hermite functions, Ig = (−g 2
3 ,∞) and ϕg(x) =

ϕ(σ−βx), β > 0 and ϕ ∈ C∞0 (R) is as in (1.52). The estimates (1.54),(1.55)
are done in analogous manner. Concerning the term with the remainder
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employing scaling σx = y we have

‖σ2R2(σx, g)hnϕg‖2

≤ σ3/36 (2σσβ)6 sup
|ξ|≤|2σσβ

||W ′′′(ξ, g)|2
∫
|y|≤2σσβ

|hn(σ−1y)|2dy

. sup

|ξ|≤|2( 3
4

)−
1
4 g

β+1
6 |

∣∣∣∣∣ g

(x+ g
2
3 )

7
2

∣∣∣∣∣
2(

3

4

)− 1
4

gβ+ 5
3

.
gβ+ 11

3

|g 2
3 − cg β+1

6 |7
∼ g−1+β → 0, g →∞

(1.62)

with the choice β = 2ε, ε > 0. Altogether we arrive at our result (1.59). In
table 1.2 we can see, that the error of the perturbative approach in compar-
ison with the numerical solution is of order 10−7 to 10−5.

method: n=0 n=1 n=2 n=3 n=4
quadratic approx. 0.0401978 0.120592 0.200985 0.281381 0.361778

numerical 0.0401977 0.120590 0.200981 0.281370 0.361757

Table 1.2: A sample of the low-lying energy-level shifts εn,g = λn,g − 3g
2
3 for

coupling g = 10000.
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Chapter 2

Quasi-self-adjoint quantum
observables

Special subclass of non-self-adjoint operators is presented by quasi-self-adjoint
operators. First discussed in [16] and later introduced in nuclear physics pa-
per [33], quasi-self-adjoint operators satisfy

H∗ = ΘHΘ−1 (2.1)

for some positive, bounded and boundedly invertible operator Θ called met-
ric. We can introduce new inner product in the underlying Hilbert space

〈·, ·〉Θ = 〈·,Θ·〉 (2.2)

quasi-self-adjoint operator H can be defined as self-adjoint with respect to
the new inner product (2.2). Moreover, H is quasi-self-adjoint if and only if
it is similar to a self-adjoint operator h, i.e.

h = ΩHΩ−1 (2.3)

where Ω is bounded and boundedly invertible operator. (2.1) follows from
(2.3) with special choice Θ := Ω∗Ω, also (2.3) follows from (2.1) with special

choice Ω := Θ
1
2 .

This can be put into a framework of three Hilbert spaces, i.e.H is quasi-
self-adjoint operator in the first Hilbert space with standard inner product,
H is self-adjoint operator in the second space with modified inner product
(2.2) and h is self-adjoint operator in the third Hilbert space, which may in
general have different underlying vector space. For further details on three-
Hilbert-space formulation of quantum mechanic see [40].

22



It follows from (2.3) that the spectra of quasi-self-adjoint operator is
purely real. For pseudospectra of a similar operator it holds that

σε/κ(H) ⊆ σε(h) ⊆ σεκ (2.4)

where κ := ‖Ω‖‖Ω−1‖. For quasi-self-adjoint operators κ is finite and there-
fore for their pseudospectra we have that

σε(H) ⊂ {z ∈ C : dist(z, σ(H)) < κε}. (2.5)

2.1 Construction of metric operator

Eigenvectors {ψn}n of quasi-self-adjoint operator H with compact resolvent
form a Riesz basis, i.e. a basis that can be mapped via bounded and bound-
edly invertible linear operator to an orthonormal basis. Equivalently, if it
forms a basis and there exists C > 0 such that

∀ψ ∈ H, C−1‖ψ‖2 ≤
∞∑
k=1

|〈ψk, ψ〉|2 ≤ C‖ψ‖2. (2.6)

Eigenfunctions of an operator with compact resolvent and purely real eigen-
values form a Riesz basis if and only if the operator is quasi-self-adjoint [21,
Prop. 1.5.4]. Together with the eigenfuctions {φn}n of the adjoint operator
H∗ they form a complete biorthonormal system

(ψm, φn) = δmn,
∑
n

ψn(φn, ·) = I. (2.7)

For a diagonalizable operator H we have following spectral representation

H =
∑
n

λnψn(φn, ·) , H∗ =
∑
n

λnφn(ψn, ·) . (2.8)

and the metric operator Θ may be computed as

Θ =
∑
n

κnφn(φn, ·), (2.9)

where κn are positive and properly bounded C−1 ≤ κn ≤ C, with some
C > 0. Due care must be paid to the convergence of the series in the infinite-
dimensional cases.
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2.2 Compatibility of several quasi-Hermitian

observables

In what follows, we restrict ourselves to a finite-dimensional scenario. Let
j ∈ {1, 2, . . . , p}, then for every quasi-self-adjoint operator Aj ∈ CN×N exists
a family of admissible metrics

A∗jΘj = ΘjAj , Θj =
N∑
n

κ(j)
n φn(φn, ·),= Θ( #»κ (j)). (2.10)

If we intend to define consistent quantum mechanical picture including all
above-mentioned operators, all of them must be quasi-self-adjoint with re-
spect to the same metric

Θ1( #»κ (1)) = Θ2( #»κ (2)) = · · · = Θp(
#»κ (p)) . (2.11)

There are three possible types of solution for the set of equation 2.11. The
first, most trivial case is when the equations don’t impose any conditions on
the parameters #»κ (j). In such a case the operators commute and eigenbasis
of all the observables coincides.

If the operators don’t commute, the system of equations 2.11 restricts
the number of free parameters #»κ (j). In special case, all the parameters are
uniquely defined and we arrive at an ideal scenario presented in [33], where
there is just one common metric.

The case of interest for us is the third case of nonexistence of any solution
of the system of equations 2.11, i.e. nonexistence of a common metric for
given observables. This danger is often forgotten in the literature. In the
following examples, we will demonstrate, that even in finite dimension the
possibility of nonexistence of a common metric cannot be ignored.

Example 2.2.1. Let A,B ∈ CN×N be our desirable quasi-self-adjoint ob-
servables with metrics Θ(A) = Θ(A)( #»α) and Θ(B) = Θ(B)(

#»

β ) respectively.
From the requirements 2.11 we obtain N(N − 1)/2 independent conditions[

U( #»α) Θ(B)(
#»

β ( #»α))U †( #»α)
]
mn

= 0 ,

where U( #»α) are unitary matrices diagonalizing Θ(A)( #»α) and m = n+ 1, n+
2, . . . , N , n = 1, 2, . . . , N − 1.

N parameters of #»α are constrained by the set of the N(N−1)/2 complex
nonlinear, therefore we have N(N − 1) real algebraic equations. For N > 2
the nontrivial real and positive roots αn need not to exist at all and the
common observability is not guaranteed. The case of N = 2 was illustrated
in [27].
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2.3 Small non-Hermitian perturbation

Another way how to approach the common observability problem is to assume
the existence of the metric in advance and look for the conditions imposed
upon the observables. e.g. in standard quantum mechanics, special choice
of Θ = I is fixed in advance. We consider two observables A,B ∈ CN×N with
small non-Hermitian perturbation (only first order correction are considered)

A = A0 + εA1 + . . . , A0 = A∗0, (2.12)

B = B0 + εB1 + . . . , B0 = B∗0 . (2.13)

We assume existence of a metric in a form

Θ = I + εF + . . . , F = F ∗ (2.14)

and search for the conditions imposed upon the pair of perturbations A1, B1,
or more specifically on the Hermitian matrices R, S obtained via 2.1

A1 − A∗1 = iR , R = R∗ , B1 −B∗1 = iS , S = S∗ . (2.15)

Applying properties of symmetric and antisymmetric matrices on equations
2.1 and 2.15 we arrive to N2 real and linear equations for every observable

A #»

f = i #»r , B #»

f = i #»s , (2.16)

for which we assume the existence of common solution
#»

f (i.e. the matrix F ),
restricting the input parameters of the observables A,B presented in N ×N
matrices A,B and vectors #»r , #»s .

Example 2.3.1. In the case of N = 2, the observables A,B and the metric
operator Θ have a simple form

F =

(
x z + p

z − p y

)
, A0 =

(
a c+ d

c− d b

)
, R =

(
r

(3)
1 r

(3)
2 + r

(1)
1

r
(3)
2 − r

(1)
1 r

(3)
3

)
,

B0 =

(
ã c̃+ d̃

c̃− d̃ b̃

)
, S =

(
s

(3)
1 s

(3)
2 + s

(1)
1

s
(3)
2 − s

(1)
1 s

(3)
3

)
.

Solving the equations 2.16, we obtain three conditions on A and B for the
nontrivial common metric to exist

r̂
(3)
2 /d = r̂

(1)
1 /c = ŝ

(3)
2 /d̃ = ŝ

(1)
1 /c̃ , (2.17)
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with

r̂
(3)
2 = r

(3)
2 + (b− a)p , r̂

(1)
1 = r

(1)
1 + (b− a)z ,

ŝ
(3)
2 = s

(3)
2 + (b̃− ã)p , ŝ

(1)
1 = s

(1)
1 + (b̃− ã)z ,

where

z =
cs

(3)
1 − c̃r

(3)
1

2(cd̃− dc̃)
, p =

ds
(3)
1 − d̃r

(3)
1

2(cd̃− dc̃)
.

Therefore even in the simple case of N = 2 existence of common metric is not
guaranteed and we have to take into account the conditions (2.17) imposed
upon the observables A and B.
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Chapter 3

Spectra of non-self-adjoint
operators

Another interesting subclass of non-self-adjoint Schrödinger operators

H = −∆ +Q(x), L2(Rd) (3.1)

where Q : Rd → C, are PT -symmetric operators, satisfying

[H,PT ] = 0 (3.2)

with (Pψ)(x) := ψ(−x) is the linear parity operator and (T ψ)(x) := ψ(x)
is the antilinear time-reversal operator. Their study was initiated in [8],
where it was demonstrated that 1-dimensional Schrödinger operators with
imaginary polynomial potentials with odd power greater than 3 posses real
spectrum.

Even though many PT -symmetric operators posses real spectra and some
of them are even quasi-self-adjoint cf. Chap. 2, it is not true in general. PT -
symmetric operators often have complex spectra. Concerning the criteria for
the reality of the spectrum and PT -symmetric phase transition see e.g. [13].

Applicability of models with complex spectra was found in open sys-
tems, particularly modeling balance between gain and loss in optics [10], or
the injection and removal of particles in Bose-Einstein condensates [14]. In
the context of enhanced dissipation [17, 32] we encounter operators with a
strongly coupled ImQ such as

Tg = −∂2
x + x2 + ig(1 + |x|κ)−1, (3.3)

with κ, g > 0, which are known to satisfy Reσ(Tg) ≥ Cκ g
2

κ+2 for g > 0, see
[32]. Our results show that this bound is exhausted as g → +∞ since the
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spectra of Tg contain asymptotically the eigenvalues

λk,g = g
2

κ+2 (νk,κ + ok(1)) + ig, g → +∞, (3.4)

where {νk,κ} are eigenvalues of −∂2
x + i|x|κ in L2(R), see also Figure 3.1.

Figure 3.1: Q1(x) = x2, Q2(x) = (1 + |x|κ)−1: Real (left) and imaginary (right)
part of the eigenvalues (red) of operators Tg with κ = 3.15 and g = 5, 10, . . . , 200.
Asymptotic curves (blue) for λk,g for k = 1, 2, . . . , 5.

Gradually [39] the study of the spectra of non-self-adjoint operators and
the behaviour of complex energies had to proceed to greater depth [4]. The
former is significantly more challenging than in the case of self-adjoint op-
erators. We cannot use the ideas of Section 1.2, since (1.2) does not hold.
Instead we have following resolvent estimate [21, Prop. 1.2.3]

‖(H − λ)−1‖ ≤ 1

dist(λ,Num(H))
(3.5)

where Num(H) is the numerical range

Num(H) = {(ψ,Hψ) : ψ ∈ Dom(H), ‖ψ‖ = 1} (3.6)

H closed operator such that each connected component of C \Num(H)) has
a non-empty intersection with ρ(H).

Subsequently the ε−pseudospectrum consists not only of the spectrum
σ(H) and its ε−neighbourhood, but can contain also values very far from
the spectra as well. The definition (1.3) now describes also the possible
instability of the spectra under small bounded perturbation. In principle
even the slightest perturbation can create wild changes in the spectra.

In general, spectra of non-self-adjoint operator may consist of whole com-
plex plane or be even empty. Therefore we need to develop much more sophis-
ticated tools including estimates for the difference of resolvents in norm and
criteria for the norm resolvent convergence of a sequence of non-self-adjoint
operators.

28



3.1 Schrödinger operators with complex po-

tentials

Further we will discuss Schrödinger operators with complex potentials, sat-
isfying following assumption

Assumption 3.1.1. [34, Asm. 2.1] Let ∅ 6= Ω ⊂ Rd be open and let Q ∈
W 1,∞

loc (Ω;C) with ReQ ≥ 0 satisfy

∃ε∇ ∈ [0, εcrit), ∃M∇ ≥ 0, |∇Q| ≤ ε∇|Q|
3
2 +M∇ a.e. in Ω; (3.7)

here εcrit = 2−
√

2. �

The Dirichlet realization T of −∆ +Q in L2(Ω) can be obtained via the
form

t[f ] := ‖∇f‖2 +

∫
Ω

Q(x)|f(x)|2 dx, Dom(t) := W 1,2
0 (Ω) ∩Dom(|Q|

1
2 )

(3.8)
invoking the generalization of Lax-Milgram theorem [2]. The associated op-
erator is defined in the usual way

Dom(T ) := {f ∈ Dom(t) : ∃η ∈ L2(Ω), ∀g ∈ Dom(t), t(f, g) = 〈η, g〉},
T f := η = −∆f +Qf.

(3.9)
Operator T is m-accretive, further known properties of such operators are
summarized in [34, Thm. 2.2] based on previous works [2, 22].

3.2 Perturbation in domain and potential

For j = 1, 2, we consider the Dirichlet realizations

Tj = −∆ +Qj, L2(Ωj) (3.10)

with open Ωj ⊂ Rd introduced in the same manner as in Section 3.1. In
order to learn any information about the distance of their spectra, we need
to study the difference of their resolvents in norm ‖R1(z) − R2)(z)‖, where
Rj(z) := (Tj − z)−1, j = 1, 2 for z ∈ ρ(Tj).

Further we discuss not only perturbation in the potential but also per-
turbation in the domain. Let us assume that following assumption on the
domains holds
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Assumption 3.2.1. [34, Asm. 3.1] Let Ω0 := Ω1 ∪ Ω2 and suppose that Ω1

and Ω2 are such that there exists a cut-off ξ : Ω0 → [0, 1] satisfying that
χΩ1∩Ω2ξ = ξ on Ω0, |∇ξ|+ ∆ξ ∈ L∞(Ω0) and

∀f ∈ Dom(T1), ξf ∈ Dom(t2),

∀g ∈ Dom(T2), ξg ∈ Dom(t1);
(3.11)

here we understand ξf as{
ξ(x)f(x), x ∈ Ω2 ∩ Ω1,

0, x ∈ Ω2 \ Ω1,
(3.12)

and analogously for ξg. �

An illustration of a choice of suitable cut-off ξ is presented in Figure 3.2. We

Figure 3.2: The domains Ω1 (blue) and Ω2 (yellow) are taken as a part of sector
and parabola, respectively. One can construct ξ ∈ C∞(Ω0) with Ω0 := Ω1 ∪ Ω2

such that ξ = 1 on Ω4 ⊂ Ω1 ∩ Ω2 (orange) and ξ = 0 on the complement of Ω3

(green) in Ω0. Since supp ξ is bounded, the conditions (3.11) are satisfied for any
admissible Q1, Q2 (which is not the case in general for unbounded Ω1,Ω2 and
unbounded supp ξ).

introduce
ξ̃ := 1− ξ, ζ := χsupp ξ̃ (3.13)

where ξ is as in Assumption 3.2.1; see also Figure 3.2. In L2(Ω0), let Pj, P

and P̃ be the following orthogonal projections

Pjf = χΩjf, Pf = χΩ1∩Ω2f, P̃ := I − P, f ∈ L2(Ω0). (3.14)
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From regular perturbation theory [31, Chap. XII.2], [29, Thm. 2] we know
that the distance of the eigenvalues of the perturbed operator can be es-
timated by the norm of the difference of the resolvents. Therefore in this
generalized non-self-adjoint setting, we make use of the following theorem

Theorem 3.2.2. [34, Thm. 3.2] For j = 1, 2, let Ωj, Tj and ξ be as in
Assumption 3.2.1, let ζ be as in (3.13) and let Pj be as in (3.14). Then there
exists a constant K ≥ 0, depending only on ‖∇ξ‖L∞ and ε∇,j, M∇,j, such
that

‖R1(−1)P1 −R2(−1)P2‖B(L2(Ω0))

≤ K

(∥∥∥∥ ξ(Q1 −Q2)

(Q1 + 1)(Q2 + 1)

∥∥∥∥
L∞(Ω1∩Ω2)

+
2∑
j=1

∥∥∥∥ ζ

Qj + 1

∥∥∥∥
L∞(Ωj)

)
.

(3.15)

Let Tj, j = 1, 2, be as in Assumption 3.2.1 and let µ ∈ σ(T1) be an isolated
eigenvalue of finite algebraic multiplicity m ∈ N. If the norm of the difference
of resolvents estimated in Theorem 3.2.2), then σ(T2) contains exactly m
eigenvalues {µk}mk=1 in a neighborhood of µ (counting with multiplicities).
This follows by estimating the norm of difference of spectral projections (with
a suitable contour γµ)

E1 :=
1

2πi

∫
γµ

(z − T1)−1P1 dz, E2 :=
1

2πi

∫
γµ

(z − T2)−1P2 dz; (3.16)

for details see e.g. [9, Thm. 5.1], [29], [20, Chap. IV].
Our goal is to estimate the distance of µ and the average of µk

µ̂ :=
1

m

m∑
k=1

µk (3.17)

and the distance of eigenfunctions.

Theorem 3.2.3. [34, Thm. 3.4] For j = 1, 2, let Ωj, Tj and ξ be as in

Assumption 3.2.1, let ζ be as in (3.13), let Pj, P and P̃ be as in (3.14). Let
µ ∈ σ(T1) be an isolated eigenvalue of finite algebraic multiplicity m ∈ N.
Suppose further that Ωj and Qj, j = 1, 2, are such that the spectral projections
Ej, j = 1, 2, in (3.16) satisfy ‖E1 − E2‖ < 1. Then the following hold.

i) Let µ̂ be as in (3.17), then

|µ− µ̂| ≤ C1,µ max
φ∈Ran(E1)
‖φ‖=1

∥∥∥∥ ξ(Q1 −Q2)

(Q1 + 1)(Q2 + 1)
φ

∥∥∥∥+ C2,µ max
φ∈Ran(E1)
‖φ‖=1

‖ζφ‖, (3.18)

31



ii) For all ψ ∈ Ran(E1), we have

‖ψ − E2ψ‖ ≤ D1,µ max
φ∈Ran(E1)
‖φ‖=1

∥∥∥∥ ξ(Q1 −Q2)

(Q1 + 1)(Q2 + 1)
φ

∥∥∥∥+D2,µ max
φ∈Ran(E1)
‖φ‖=1

‖ζφ‖

+ ‖E2‖ max
φ2∈Ran(E2)
‖φ2‖=1

‖P̃ φ2‖,

(3.19)

3.3 Sequence of operators

We use Theorems 3.2.2 and 3.2.3 for a sequence of operators {Tn} converging
to T∞, in the setting summarized as follows.

Assumption 3.3.1. [34, Asm. 3.5] Suppose that

i) domains {Ωn}n∈N∗ ⊂ Rd are open (non-empty) and Ωn ⊂ Ω∞, n ∈ N;

ii) potentials Qn ∈ W 1,∞
loc (Ωn) with ReQn ≥ 0, n ∈ N∗, satisfy (3.7)

uniformly,

∃ε∇ ∈ [0, εcrit), ∃M∇ ≥ 0, ∀n ∈ N∗, |∇Qn| ≤ ε∇|Qn|
3
2 +M∇ a.e. in Ωn;

(3.20)

iii) operators Tn = −∆ +Qn in L2(Ωn) (introduced via forms tn, n ∈ N∗,
as in Section 3.1) and cut-offs {ξn}n∈N are such that

sup
n∈N

(‖|∇ξn|‖L∞ + ‖∆ξn‖L∞) <∞ (3.21)

and that the conditions of Assumption 3.2.1 are satisfied for Ω1, Ω2, ξ, T1, T2,
t1, t2 replaced by Ωn, Ω∞, ξn, Tn, T∞, tn, t∞, respectively, for every n ∈ N;

iv) potentials {Qn} converge in the following sense

τn :=

∥∥∥∥ ξn(Qn −Q∞)

(Qn + 1)(Q∞ + 1)

∥∥∥∥
L∞(Ωn)

+

∥∥∥∥ ζn
Qn + 1

∥∥∥∥
L∞(Ωn)

+

∥∥∥∥ ζn
Q∞ + 1

∥∥∥∥
L∞(Ω∞)

= o(1), n→∞,
(3.22)

where ξ̃n := 1− ξn, ζn := χsupp ξ̃n
, n ∈ N. �

Note that in the setting of Assumption 3.3.1, the domain Ω0 in Assump-
tion 3.2.1 corresponds to Ω∞; the projections P1, P2 in (3.14) correspond
to

Pn := χΩn·, P∞ = IL2(Ω∞), (3.23)
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respectively and the projection P in (3.14) corresponds to Pn. To formulate
the result we introduce notation {νk} for the isolated eigenvalues of T∞ with
finite algebraic multiplicities {ma(νk)},

σdisc(T∞) = {νk}, ma(νk) <∞, (3.24)

and for spectral projections of T∞ and {Tn}

Ek :=
1

2πi

∫
γk

(z − T∞)−1 dz, Ek,n :=
1

2πi

∫
γk

(z − Tn)−1Pn dz, (3.25)

where {γk} are suitable contours around {νk}. Moreover, we use notation

κn := max
φ∈RanEk
‖φ‖=1

(∥∥∥∥ ξn(Qn −Q∞)

(Qn + 1)(Q∞ + 1)
φ

∥∥∥∥+ ‖ζnφ‖
)
. (3.26)

Corollary 3.3.2. [34, Cor. 3.6] Let Assumption 3.3.1 be satisfied and let
Pn, νk, Ek, Ek,n and κn be as in (3.23), (3.24), (3.25) and (3.26). Then the
following hold as n→∞.

i) {Tn} converge to T∞ in the norm resolvent sense (hence there is no
spectral pollution): for every z ∈ ρ(T∞), there is nz > 0 such that z ∈ ρ(Tn),
n > nz, and

‖(Tn − z)−1Pn − (T∞ − z)−1‖B(L2(Ω∞)) = Oz(τn); (3.27)

ii) spectral projections converge in norm:

‖Ek,n − Ek‖B(L2(Ω∞)) = Ok(τn); (3.28)

iii) there is spectral inclusion for isolated eigenvalues with finite algebraic
multiplicities: for every νk ∈ σdisc(T∞), as n→∞, there are exactly ma(νk)

eigenvalues µ
(j)
k,n, j = 1, . . . ,ma(νk), of Tn in a neighborhood of νk (repeated

according to their algebraic multiplicities) and

|νk − µ̂k,n| = Ok (κn) , µ̂k,n :=
1

ma(νk)

ma(νk)∑
j=1

µ
(j)
k,n; (3.29)

iv) (generalized) eigenfunctions converge in norm: for very ψ ∈ Ran(Ek)

‖ψ − Ek,nψ‖ = Ok (κn) , n→∞. (3.30)

The abstract result of Corollary 3.3.2 will be applied to specific scenarios.
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3.4 Strong coupling regime

We consider a family of Dirichlet realizations of

Tg = −∆ +Q1 + igQ2, g > 0, (3.31)

in L2(Ω) where Ω is open, functions Qi, i = 1, 2, are real valued and g → +∞.
Operators with this structure arise in several contexts, in particular, in

enhanced dissipation, see Example 3.4.1, in PT -symmetric phase transitions,
see Examples 3.4.2 and 3.4.3, or when Q1 = 0 as semi-classical problems with
purely imaginary potentials, see e.g. [19, 3, 1], in particular in the context of
Bloch-Torrey equation.

We focus here on the case when Ω is (typically) unbounded and |Q2|
has a global minimum inside of Ω, see Assumption 3.4.1 for details. As an
application of Corollary 3.3.2, we describe some of the diverging eigenvalues
as g → +∞. We show how Theorem 3.4.3 can be implemented and indicate
its possible further extensions.

Assumption 3.4.1. [34, Asm. 7.1.] Let Ω ⊂ Rd be open with 0 ∈ Ω, let
BR(0) ⊂ Ω for some R > 0 and let Q1 ∈ C1(Ω;R) with Q1 ≥ 0, Q2 ∈
C1(Ω \ {0};R). Suppose further that

i) for some ε > 0, the condition (3.7) is satisfied with Ω replaced by
Ω \Bε(0) and Q replaced separately by Q1 and by Q2;

ii) Q2(0) = 0 and |Q2| attains the global minimum at 0, i.e. for every
δ > 0

inf
x∈Ω\Bδ(0)

|Q2(x)| > 0; (3.32)

iii) there exists Q∞ ∈ C(Rd)∩C1(Rd \ {0};R) with min|x|=1 |Q∞(x)| > 0
such that for some κ > 0

Q∞(tx) = tκQ∞(x), x ∈ Rd, t > 0,

Q2(x)−Q∞(x) = |x|κh0(x), h0(x) = o(1), |x| → 0,

|∇Q2(x)−∇Q∞(x)| = |x|κ−1h1(x), h1(x) = o(1), |x| → 0,

(3.33)

and the discrete spectrum of S∞ := −∆ + iQ∞ in L2(Rd) is non-empty. �

Example 3.4.2. Typical examples of S∞ in Assumption 3.4.1 in one dimen-
sion are

− ∂2
x + ixn, n ∈ N \ {1}, −∂2

x + i|x|κ, κ > 0. (3.34)
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The spectra of the former for n = 2k + 1, k ∈ N, are real, see [35], and the
spectra of the remaining operators with even potential can be obtained by
complex scaling (after possibly reducing the problem to Dirichlet/Neumann
operators in L2(R+)). A typical case in more dimensions is an imaginary
oscillator with potential i〈Ax, x〉Rd and a positive definite matrix A. �

Theorem 3.4.3. [34, Thm. 7.3.] Let Assumption 3.4.1 be satisfied and let
Tg, g > 0, be as in (3.31). Then the spectra of Tg contain asymptotically the
eigenvalues (with k ∈ N and j ∈ {1, . . . ,ma(νk)})

λ
(j)
k,g = g

2
2+κ

(
νk + ρ

(j)
k,g

)
, g → +∞, (3.35)

where {νk} = σdisc(S∞) and, as g → +∞, ρ
(j)
k,g = oj,k(1) and for any β ∈

(0, 1),

1

ma(νk)

∣∣∣∣∣∣
ma(νk)∑
j=1

ρ
(j)
k,g

∣∣∣∣∣∣ = Ok

g−min{2,κ(1−β)}
2+κ + sup

|y|≤g−
β

2+κ

|h0(y)|

 . (3.36)

3.4.1 Enhanced dissipation

For operators Tg, sufficient conditions for the divergence of the real parts of
all eigenvalues of Tg as g → +∞ were found cf. [15, 17, 32]. In [32], the
specific operator

Tg = −∂2
x + x2 + ig(1 + |x|κ)−1, (3.37)

in L2(R) and with κ > 0 was analyzed and an estimate on the divergence rate

of the real part of eigenvalues Reσ(Tg) & g
2

κ+2 was proved, cf. [32, Thm. 1.2].
Similar problem and result was also established in [17, Thm. 1.9].

Note that the conjugated and shifted operator T ∗g + ig satisfies Assump-
tion 3.4.1 with Q2(x) = |x|κ/(1 + |x|κ), Q∞(x) = |x|κ and h0(x) = −Q2(x).
Therefore by Theorem 3.4.3, spectra of Tg contain asymptotically the eigen-
values

λk,g = g
2

κ+2 (νk + ρk,g) + ig, g → +∞, (3.38)

where {νk} are the eigenvalues of operator in (3.34) with the potential i|x|κ.
The remainder decays as ρk,g = O(g

−κ
2(2+κ) ) for κ ∈ (0, 4) and ρk,g = O(g

−2
2+κ )

for κ ≥ 4. This result shows that the estimate in [32, Thm. 1.2] is optimal
(see Figure 3.1).
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3.4.2 PT -symmetric phase transitions I

Let Ω = R, Q1 be even, Q2 odd and such that Assumption 3.4.1 is sat-
isfied. The operators Tg in (3.31) with such Q1, Q2 have the antilinear
PT -symmetry and so the spectra of Tg consists of complex conjugate pairs.
The spectrum of T0 is real due to the self-adjointness, however, as g →∞, a
graduate appearance of complex conjugated (non-real) spectral points pairs,
called PT -symmetric phase transitions, was observed in many examples,
see e.g. [38] for one of the first works.

For Q1(x) = x2, upper estimates on the number of non-real eigenvalues
are given in [24] and precise spectral analysis of the double δ potential (with
a fixed b > 0)

− ∂2
x + x2 + ig(δ(x− b)− δ(x+ b)) (3.39)

is performed in [26, 6]. In particular it is showed in [6] that the number of
non-real eigenvalues of (3.39) diverges as g → +∞.

We consider here

Tg = −∂2
x + x2 + igx3e−x

2

, (3.40)

in L2(R) which can be viewed as a ”smooth version” of (3.39). In this case,
we can apply Theorem 3.4.3 in three stationary points of Q2(x) = x3e−x

2
,

namely, x0 = 0, x1 = −
√

3/2 and x2 = −x1.
The operator Tg satisfies Assumption 3.4.1 with Q1(x) = x2, Q2(x) =

x3e−x
2
, Q∞(x) = x3, κ = 3, h0(x) = e−x

2 − 1. Therefore the eigenvalues

λ
(x0)
k,g = g

2
5 (νk +Ok(g−

6
25 )), g → +∞, (3.41)

where νk are (real) eigenvalues of the imaginary cubic oscillator (the potential
ix3), cf. Example 3.4.2, lie asymptotically in the spectra of Tg.

Further sets of eigenvalues can be obtained by applying the Theorem 3.4.3
to the operator T̃g − ig(3/(2e))

3
2 , where T̃g is the operator obtained from Tg

by the translation x 7→ x + x1. It satisfies the Assumption 3.4.1 with κ = 2
and

Q1(x) = (x+ x1)2, Q2(x) = (x+ x1)3e−(x+x1)2 + ( 3
2e

)
3
2 ,

Q∞(x) = ( 27
2e3

)
1
2x2, h0(x) =

Q2(x)

x2
− ( 27

2e3
)
1
2 .

(3.42)

Therefore the eigenvalues

λ
(x1)
k,g = g

1
2 (νk +Ok(g−

1
8 ))− ig(2e)−

1
2 + 3

2
, g → +∞, (3.43)

where νk = ( 27
2e3

)
1
4 eiπ

4 (2k+ 1), k ∈ N0, lie asymptotically in the spectra of Tg.
Analogous steps can be implemented on the conjugate operator T ∗g and we

obtain the second set of eigenvalues λ
(x2)
k,g = λ

(x1)
k,g , cf. Figure 3.3.
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Figure 3.3: Q1(x) = x2, Q2(x) = x3e−x
2
: Real (left) and imaginary (right) part of

the eigenvalues (red) of operators Tg with g = 5, 10, . . . , 500. Asymptotic curves

(blue) λ
(x1)
k,g , λ

(x2)
k,g and (green) λ

(x0)
k,g for k = 1, 2, . . . , 5.

3.4.3 PT -symmetric phase transitions II

PT -symmetric phase transitions were studied in [12] for operators in L2(R)
with polynomial potentials

− ∂2
x +

x2M

2M
+ ig

xM−1

M − 1
, M ∈ 2N, (3.44)

and the eventual transition of each eigenvalue was established, see [12, Thm. 1.1]
for precise claims.

For M ≥ 4, Theorem 3.4.3 used for the stationary point of Q2 at x0 = 0
yields that spectra of operators (3.44) contain asymptotically the eigenvalues

λ
(x0)
k,g,M = g−

2
M+1 (νk,M +O(g−

2
M+1 )), g → +∞, (3.45)

where νk,M = ( 1
M−1

)
2

M+1µk,M , and {µk,M}k are (positive) eigenvalues of

−∂2
x + ixM−1, see Example 3.4.2. Notice that the leading term of the asymp-

totic expansion of these eigenvalues is real and also that no such sequence is
obtained for M = 2 when Q2(x) = x since the spectrum of imaginary Airy
operator is empty. Nonetheless, the (diverging) non-real eigenvalues found
in [12] are clearly visible in Figure 3.4 for M = 2 and in similar plots for
higher M . To obtain asymptotics of these we use other stationary points of
the potential outside real axis.

Consider first a simpler shifted oscillator −∂2
x + x2 + 2igx where The-

orem 3.4.3 is not applicable for the stationary point x0 = 0 directly ei-
ther. Nevertheless, writing x2 + 2igx = (x+ ig)2 + g2 and the complex shift
x 7→ x − ig, i.e. to the complex stationary point x1 = −ig, reveals the well-
known diverging eigenvalues {2k+1+g2}k∈N0 . Notice that the complex shift
leaves the spectrum invariant by an argument similar to complex scaling.

37



0 10 20 30 40 50
g

20

40

60

80

100
Re(λn)

10 20 30 40 50
g

-100

-50

50

100
Im(λn)

Figure 3.4: Q1(x) = x4/4, Q2(x) = x: Real (left) and imaginary (right) part of
the eigenvalues (red) of operators Tg in (3.48) with g = 5, 10, . . . , 500. Asymptotic

curves (blue) for λ
(x2)
k,g , λ

(x3)
k,g with k = 1, 2, . . . , 5.

Namely, the shift x 7→ x+ θ generates a holomorphic family (in θ) of opera-
tors of type A since the operator domains are constant, moreover, for θ ∈ R,
the spectra stay clearly invariant (such shifts induce a unitary transform).

For operators (3.44), we first rescale x 7→ g2M/(M+1)x to obtain

1

g
2

M+1

[
−∂2

x + g2

(
x2M

2M
+ i

xM−1

M − 1

)]
(3.46)

The stationary points of the potential read

x0 = 0, xk = ei 4k−1
2(M+1)

π, k = 1, . . . ,M + 1. (3.47)

In particular for M = 2, besides x0 = 0, which was already covered above,
we have x1 = i, x2 = ei 7

6
π and x3 = ei 11

6
π. The shift to x3 leads to the operator

Tg =
1

g
2
3

(
−∂2

x +
g2

4

[
x2(x+

√
3)2 − ix2(2x+ 3

√
3)
]

+
3

4
g2eiπ

3

)
(3.48)

which is not directly covered by Theorem 3.4.3 as g2 multiplies the whole
potential. Nonetheless, Theorem 3.4.3 can be generalized in a straightfor-
ward way if the real part of the potential is non-negative and it yields that
eigenvalues

λ
(x3)
k,g =

√
3

2
g

1
3 (νk +Ok(g−

1
6 )) +

3

4
ei 5π

3 g
4
3 , λ

(x2)
k,g = λ

(x3)
k,g , g → +∞, (3.49)

where νk = eiπ
6 (2k + 1), k ∈ N0, lie asymptotically in the spectra of Tg,

see Figure 3.4 for illustration. The shift to x1 gives the potential with the
quadratic term −3x2/2 which does not correspond to a suitable limit opera-
tor.
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The situation is more complicated for M > 2, there are more stationary
points and in general the real part of the potential after the shift is not non-
negative (although bounded from below). Moreover, numerics suggests that
only two stationary points lead to diverging eigenvalues. Namely the points

for k = M
2

+ 1 and k = M + 1, i.e. ei 2M+3
2M+2 and ei 4M+3

2M+2 (the points where the
shifted potential has a global extreme of imaginary part).
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Chapter 4

Domain truncations of
Schrödinger operators

It was established in [9] that for potentials Q with ReQ ≥ 0, |Q(x)| → +∞ as
|x| → ∞ and satisfying suitable regularity conditions, the domain truncation
approximation technique is spectrally exact, i.e. all eigenvalues of T∞ =
−∆ + Q(x) acting on L2(Ω) are approximated by eigenvalues of truncated
operators Tn = −∆ +Q(x) acting on L2(Ωn) where {Ωn} exhausts Ω in the
limit n → ∞, and there is no pollution (there are no finite accumulation
points of eigenvalues of {Tn} which are not eigenvalues of T∞), see e.g. [11].

We apply Corollary 3.3.2 to domain truncations of a given Schrödinger
operator with the underlying initial domain Rd to bounded expanding do-
mains {Ωn}. It is easy to verify that the results can be reformulated for other
initial domains like exterior domains in Rd, cones in Rd etc.

Assumption 4.0.1. Let Ω∞ := Rd, let {Ωn} ⊂ Rd be bounded and open
sets and let there exist a sequence {rn} ⊂ (0,∞) such that rn ↗ +∞ and

Brn+2(0) ⊂ Ωn, n ∈ N. (4.1)

Let Q∞ satisfy Assumption 3.1.1 (with Q := Q∞) and suppose in addition
that

lim
R→∞

ess inf
|x|>R,x∈Ω

|Q∞(x)| = +∞. (4.2)

�

Theorem 4.0.2. Let Assumption 4.0.1 be satisfied and let Tn be the Dirichlet
realizations of −∆ +Q in L2(Ωn), n ∈ N∗, respectively. Then the statements
of Corollary 3.3.2 hold with {νk} := σ(T∞) and

τn =
∥∥χ̃Brn (0)|Q|−1

∥∥
L∞

, κn = max
φ∈RanEk
‖φ‖=1

‖χ̃Brn (0)φ‖L2 , n ∈ N. (4.3)
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Our results are applicable for truncations of operators T without com-
pact resolvent to suitable unbounded domains. Roughly speaking, one can
truncate the parts of domain where the potential Q is unbounded as x→∞.

4.1 Diverging eigenvalues in domain trunca-

tions

Even though domain truncation is spectrally exact, it does not exclude pos-
sible existence of further eigenvalues in the spectra of truncated operators,
provided they escape to infinity as n → ∞. This phenomenom of diverging
eigenvalues is common on certain types of open domains with corners (such
as bounded interval) and dominant imaginary part of the potential Q.

To identify the diverging eigenvalues, a combination of suitable unitary
transforms (translation and scaling) is performed, following the ideas in [7,
Thm. 3.1]. This procedure explained in the model case in Example 4.1.1
reveals a suitable limiting operator and hence asymptotic formulas for di-
verging eigenvalues.

Example 4.1.1 (Imaginary Airy operator). Consider Ωn := (−sn, sn) with
some {sn} ⊂ R+ with sn ↗ +∞ and

Tn = −∂2
x + ix, Dom(Sn) = W 2,2(Ωn) ∩W 1,2

0 (Ωn). (4.4)

The translation x 7→ x− sn leads to unitarily equivalent operators

−∂2
x + ix− isn =: Sn − isn, Dom(Sn) = W 2,2(Σn) ∩W 1,2

0 (Σn), (4.5)

where Σn = (0, 2sn). Theorem 4.0.2 implies that Sn converges to SA =
−∂2

x + ix in L2(R+) in the norm resolvent convergence sense, hence the ap-
proximation is spectrally exact and so the spectra of Sn contain asymptot-
ically the eigenvalues {νk + ρk,n}k where σ(SA) = {νk} = {e−i 2π

3 ak}, where
ak satisfy Ai(ak) = 0 as in Section 1.2.1, and with some ck > 0 we have

ρk,n = Ok(exp(−cks3/2
n )) as n → ∞. Thus, by spectral mapping and (4.5),

we obtain that spectra of Tn contain asymptotically the eigenvalues

λk,n = (νk + ρk,n)− isn, k ∈ N. (4.6)

A second set of diverging eigenvalues of Tn can be obtained by two trans-
formations x 7→ x + sn and x 7→ −x. Isospectral partner of (4.4) in L2(Σn)
then takes the form −∂2

x − ix + isn, which is the adjoint operator of (4.5).
Hence its spectrum contains asymptotically the conjugate eigenvalues {λk,n}.

In summary, the spectrum of Tn contains asymptotically the complex
conjugated eigenvalues {λk,n, λk,n}, cf. Figure 4.1. �
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Figure 4.1: Real (left) and imaginary (right) parts of eigenvalues of domain trun-
cations of imaginary Airy operator −∂2

x + ix in L2(R) to L2((−sn, sn)), sn = 0.1n,
n = 5, 6, . . . , 100; subject to Dirichlet boundary conditions. Six asymptotic curves
(blue) to which the eigenvalues converge; see Example 4.1.1.

In one dimensional case and when Q is imaginary, we give explicit condi-
tions on Q which guarantee the occurence of diverging eigenvalues. To avoid
working with conditions at −∞ we express Q in a specific way in terms of a
new function U , namely as

Q(x) = −iU(−x), x ∈ R. (4.7)

Assumption 4.1.2. Let U ∈ C1(R;R) ∩ C2((x0,∞)) with a sufficiently
large x0 > 0 as below satisfy the condition (3.7) on R with an abitrarily
small ε∇ > 0 (where we replace Q by U). Let Ωn = (−sn, tn) with sn ↗ +∞
and

lim
n→∞

(sn + tn)σ−1
n = +∞, (4.8)

where σn := |U(sn)|− 1
3 . Suppose further that

i) U is eventually increasing and unbounded at +∞:

U ′(x) > 0, x > x0, lim
x→+∞

U(x) = +∞; (4.9)

ii) U has controlled derivatives: there is ν ≥ −1 such that

U ′(x) . U(x)xν , |U ′′(x)| . U ′(x)xν , x > x0, (4.10)

iii) U grows sufficiently fast at +∞:

Υ(x) :=
xν

U ′(x)
1
3

→ 0, x→ +∞ (4.11)
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iv) U is relatively smaller on (−∞, x0): there exists δ0 ∈ (0, 1) such that

sup
y∈(sn−x0,sn+tn)

U(sn − y) ≤ (1− δ0)U(sn), n→∞. (4.12)

�

By Gronwalls inequality, (4.10) implies that for all sufficiently large x > 0

U(x) .

{
xγ, ν = −1,

exp(γxν+1), ν > −1.
(4.13)

with some γ > 0. Moreover, there exist constants c1, c2 > 0 such that for all
sufficiently large x > 0 and for all |δ| ≤ 1

4
|x|−ν , we have

c1U
(j)(x) ≤ U (j)(x+ δ) ≤ c2U

(j)(x), j = 0, 1; (4.14)

for details see [23, Sec. 3.1] and [25, Sec. 2].

Theorem 4.1.3. [34, Thm. 5.7] Let Assumption 4.1.2 be satisfied, let Q, U
be as in (4.7) and let

σn = U ′(sn)−
1
3 . (4.15)

Then the spectra of Dirichlet realizations Tn = −∂2
x + Q in L2(Ωn), n ∈ N,

contain asymptotically as n→∞ the eigenvalues

λk,n = U ′(sn)
2
3 (νk + ρk,n)− iU(sn), ρk,n = Ok

(
Υ(sn) + exp(−ckr

3
2
n )
)
,

(4.16)
where rn = (sn + tn)σ−1

n − 2.

In the next step, we determine a class of admissible perturbations of U
as in Assumption 4.1.2.

Proposition 4.1.4. [34, Prop. 5.8] Let Assumption 4.1.2 be satisfied. Sup-
pose that U1 ∈ L∞loc(R;C), U ′1 ∈ L∞loc((x1,∞);C) for some x1 > 0 and (using
notation of Assumption 4.1.2),

U ′1(x) = o(U ′(x)), x→ +∞, ‖U1‖L∞((−tn,sn)) = o(U(sn)), (4.17)

Then, with σn as in (4.15), the claim of Theorem 4.1.3 remains valid with

λk,n = U ′(sn)
2
3

(
νk + ρ′k,n

)
− iU(sn)− U1(sn),

ρ′k,n = Ok
(
Υ(sn) + ι′n + exp(−ckr

3
2
n )
)
.

(4.18)

In particular if the support of U1 is bounded, then

ι′n = O(U(sn)−1Υ(sn)sν−1
n ), n→∞. (4.19)
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4.2 Odd imaginary potentials

Let U : R→ R be odd and satisfy Assumption 4.1.2; note that (4.12) holds
automatically if the previous conditions are satisfied. We consider Dirichlet
realizations Tn = −∂2

x + iU in L2((−sn, sn)) with sn ↗ +∞. Since U is odd,
(4.7) corresponds to the relation Q = iU , thus by Theorem 4.1.3, the spectra
of Tn contain asymptotically the eigenvalues {λk,n}k in (4.16). Due to the
antilinear symmetry of Tn (x 7→ −x together with complex conjugation, the
so-called PT -symmetry), the spectra of Tn contain also {λk,n}k.

In particular, U(x) = sgn(x)|x|α with α > 0, satisfies Assumption 4.1.2
with ν = −1 and a possible lack of differentiability of U at 0 can be treated
by splitting U = ηU + (1− η)U with η ∈ C∞0 ((−2, 2)) and η = 1 on (−1, 1).
Notice that U1 = ηU satisfies assumptions of Proposition 4.1.4. Hence we
obtain

λk,n = α
2
3 s

2(α−1)
3

n

(
νk +Ok

(
s
− 2+α

3
n

))
− isαn, (4.20)

and their complex conjugates; see Figures 4.1 and 4.2 for illustration in two
well-known special cases (the imaginary Airy operator and imaginary cubic
oscillator).
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Figure 4.2: Q(x) = ix3: Real (left) and imaginary (right) part of the eigenvalues
(red) of truncated operators Tn, defined on L2((−sn, sn)) with sn = 0.1n, n =
5, 6, . . . , 60. Asymptotic curves (blue) for λk,n, λk,n with first corrections for k =
1, 2, . . . , 5.

In Figure 4.2 we plot the asymptotic curves taking into account the first
correction with ψk(y) = Ai(e

iπ
6 y + µk)

R1,n,k =
〈(iσ2

n(U(sn)− U(sn − σny)− iy)ψk, ψ
∗
k〉L2(R+)

〈ψk, ψ∗k〉L2(R+)

, (4.21)
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Specifically for α = 3

R
(1)
1,n,k =

(i(−3−
1
3 s
− 5

3
n y2 + 3

1
3 s
− 10

3
n y3)ψk, ψ

∗
k)L2(R+)

(ψk, ψ∗k)L2(R+)

, R
(2)
1,n,k = R

(1)
1,n,k (4.22)

The corrected asymptotic formula then holds

λ
(1)
k,n = 3

2
3 s

4
3
nνk − is3

n + i3
1
3 s
− 1

3
n Ra

k − is−2
n Rb

k + s
4
3
n r̃k,n, λ

(2)
k,n = λ

(1)
k,n, (4.23)

where

Ra
k =

∫∞
0
y2ψ2

kdy∫∞
0
ψ2
kdy

, Rb
k =

∫∞
0
y3ψk

2
dy∫∞

0
ψ2
kdy

. (4.24)

The case α = 2j + 1, j ∈ N was thoroughly studied in [18], diverging eigen-
values were described by means of spectral scaling graphs, using the methods
of analytic WKB and Stokes graph analysis.

4.3 Even imaginary potentials

Let V : R → R be an even and with V ′(x) > 0 for x > 0 and consider
Dirichlet realizations Tn = −∂2

x + iV in L2((−sn, sn)) with sn ↗ +∞. Theo-
rem 4.1.3 is not directly applicable because of the condition (4.12). Nonethe-
less, due to the symmetry of V , eigenfunctions of Tn satisfy either Dirichlet
or Neumann boundary conditions at 0. Therefore we can split the spectral
problem and analyze separately the spectra of

TDD
n = −∂2

x + iV (x), Dom(TDD
n ) = W 2,2((−sn, 0)) ∩W 1,2

0 ((−sn, 0)),

TDN
n = −∂2

x + iV (x), Dom(TDN
n ) = {f ∈ W 2,2((−sn, 0)) : f ′(0) = f(−sn) = 0}.

Introducing U := V χR+ , we obtain that (TDD
n )∗ = −∂2

x + Q in L2((−sn, 0))
with Q(x) = −iU(−x) as in (4.7).

We assume that this U satisfies Assumption 4.1.2, possibly with pertur-
bations as in Example 4.2, and notice that (4.12) is satisfied automatically.
Then Theorem 4.1.3 yields that the spectra of TDD

n contain asymptotically
the eigenvalues

λDD
k,n = V ′(sn)

2
3

(
νk + ρDD

k,n

)
+ iV (sn), n→∞. (4.25)

It is not difficult to see that the claim of Theorem 4.1.3 holds also for
Neumann boundary conditions at the endpoints as well as for the com-
binations of Dirichlet and Neumann boundary conditions. Depending on
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the boundary condition at 0, the limiting operator is Dirichlet or Neuman
imaginary Airy operator in L2(R+), in the Neumann case with eigenvalues

{ν ′k} = {ei( 2ω
3
−π)µ′k} where {µ′k} are zeros of Ai′. Thus we obtain that the

spectra of TND
n contain asymptotically the eigenvalues

λDN
k,n = V ′(sn)

2
3

(
νk + ρND

k,n

)
+ iV (sn), n→∞. (4.26)

These two sets of eigenvalues have the same main asymptotic terms, however,
the corresponding eigenfunctions of Tn are very different (odd and even).

4.4 Imaginary exponential potential with non-

empty essential spectrum

Consider the operator T = −∂2
x + iex and its truncations Tn to (−∞, sn)

with sn ↗ +∞. Defining U(x) := ex and Q(x) := −iU(−x) as in (4.7), we
obtain that T ∗n is unitarily equivalent via the reflection x 7→ −x to −∂2

x +Q
in L2((−sn,∞)). This U satisfies Assumption 4.1.2 with tn = +∞ and
ν = 0, thus by Theorem 4.1.3, the spectra of Tn contain asymptotically the
eigenvalues

λk,n = e
2
3
sn
(
νk +Ok

(
e−

1
3
sn
))

+ iesn , n→∞. (4.27)

In fact, since Assumption 4.1.2 is satisfied also with tn = sn, the eigenval-
ues (4.27), with possibly different remainders, are asymptotically contained
in the spectra of operators Tn = −∂2

x + iex subject to Dirichlet boundary
conditions in L2((−sn, sn)); spectra of these are illustrated in Figure 4.3.
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Figure 4.3: U(x) = iex: Real (left) and imaginary (right) part of the eigenvalues
(red) of truncated operators Tn, defined on L2((−sn, sn)) with sn = 0.1n, n =
5, 6, . . . , 60. Asymptotic curves (blue) for λk,n with first correction for k = 1, 2, 3.
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4.5 Radially symmetric potentials on annuli

Consider the exterior domain Ω = Rd \ B1(0), a radial potential V : Ω →
C satisfying Assumption 3.1.1 (with Q replaced by V ) and the Dirichlet
realization of T = −∆ + V in L2(Ω). Consider also the truncated operators
Tn = −∆ + V in L2(Ωn) with Ωn = Ω ∩ Bsn(0) and sn ↗ +∞, subject to
Dirichlet boundary conditions both on ∂B1(0) and ∂Bsn(0). Truncations of
a specific problem of this type were originally considered in [11] and it was
shown in [9, Sec. 6] that such domain truncation is spectrally exact, see also
Theorem 4.0.2. Our aim here is to investigate the diverging eigenvalues.

We transform Tn in spherical coordinates with r ∈ (1, sn), Θ ∈ Sd−1,
employ the usual unitary transform in the radial part (see e.g. [37, Chap. 18])

L2(R+; rd−1dr)→ L2(R+, dr) : h(r) 7→ r(d−1)/2h(r), (4.28)

and use the spherical harmonics {Yl,j}N(l,d)
j=1 , l ∈ N0, N(l, d) = (2l+d−2)(l+d−3)!

l!(d−2)!

in d−1 dimensions, which satisfy −∆Sd−1Yl,j(Θ) = l(l+d−2)Yl,j(Θ). Thereby
we obtain a decomposition of Tn to one dimensional operators

Tn,l := −∂2
r + iU(r) + U1(r), Dom(Tn,l) := W 2,2((1, sn)) ∩W 1,2

0 ((1, sn)),
(4.29)

where U(r) = V (x) for |x| = r and

U1(r) =
(d− 1)(d− 3) + 4l(l + d− 2)

4r2
. (4.30)

Similarly as in Examples 4.3, 4.4, T ∗n,l is unitarily equivalent via the reflection
r 7→ −r to −∂2

r +Q in L2((−sn,−1)) with Q(r) = −iU(−r)− U1(−r).
We suppose that Uχ[1,+∞] satisfies Assumption 4.1.2 (with perturbations

as in Example 4.2) and note that U1 satisfies conditions of Proposition 4.1.4.
Then Theorem 4.1.3 and Proposition 4.1.4 yield that the spectra of Tn,l in
(4.29) contain asymptotically the eigenvalues

λk,n,l = U ′(sn)
2
3 (νk + ρk,n,l) + iU(sn)− U1(sn), n→∞. (4.31)

In particular for V (x) = i|x|2 with x ∈ Rd \ B1(0); a similar potential was
originally considered in [11, Sec. 3.1]. From (4.31) we obtain that the spectral
of the one dimensional operators Tn,l, see (4.29), contain asymptotically the
eigenvalues

λk,n,l = (2sn)
2
3

(
νk +Ok,l

(
s
− 4

3
n

))
+ is2

n, n→∞; (4.32)

Figures 4.4 and 1 illustrate this result.
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Figure 4.4: V (x) = i|x|2: Real (left) and imaginary (right) part of the eigenvalues
of truncated operators Tn,l with d = 3 and l = 1, . . . , 5 (red, pink, green, purple,
brown), defined on L2((1, sn)) with sn = 0.1n, n = 15, 16, . . . , 115. Asymptotic
curves (blue) for λk,n with the first correction for k = 1, 2, . . . , 6.
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Summary

In this thesis we studied spectral properties of Schrödinger operators. An
overview of quantum mechanics with quasi-self-adjoint and non-self-adjoint
operators was presented. Particularly the consistent interpretation of quan-
tum mechanics in the case of quasi-self-adjoint observables was discussed and
the crucial issue of noncompatibility of several quasi-self-adjoint observables
was demonstrated

The most significant result is represented by explicit asymptotic formu-
lae for eigenvalues derived and proven in three main settings. First, the
linear and quadratic approximation of self-adjoint operators in Section 1.2,
second, operators with strong coupling of imaginary part of the potential in
enhanced dissipation and PT -symmetric phase transition in Section 3.4 and
last description of diverging eigenvalues occurring in domain truncation of
Schrödinger operators with complex potentials in Chapter 4.
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