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Abstrakt

Tato disertacni prace se zaméruje na jazyky bohatych, mocnin-prostych, uza-
virenych a privilegovanych slov.

Ukazeme, 7Ze pocet bohatych slov ma subexponencidlni rist a ze faktorova
komplexita bohatych slov je shora omezena kvazipolynomialni funkci c¢;ne™m,
kde ¢y, ¢o jsou néjaké konstanty. Déle odvodime horni mez pro pocet uzavienych
a privilegovanych slov dané délky.

V roce 1985 publikovali autoii Restivo a Salemi pét otevienych problémii,
které se tykaly mocnin-prostych slov. V této disertaci ¢aste¢né vyieSime dva z
téchto problému. Necht u je doprava rozsifitelné a-mocnin-prosté slovo a v je
doleva rozsifitelné a-mocnin-prosté slovo nad abecedou s ¢ pismeny, kde oo > 2 a
q > 3. Potom ukazeme, Ze existuje slovo w takové, ze uwv je rovnéz a-mocnin-
prosté slovo nad stejnou abecedou.

Je zndmo, 7e pokud w je bohaté slovo, tak existuje pismeno a takové, ze wa je
rovnéz bohaté slovo. Odvodime nékolik netrividlnich vysledki pro bohaté slova,
ktera 1ze rozsitit na bohata slova nejméné dvéma riznymi zpusoby.

Pro zadana bohatéa slova u, v ukdzeme algoritmus, ktery rozhodne, jestli exis-
tuje bohaté slovo w takové, ze u,v jsou faktory w.
tace. Tyto vysledky se tykaji palindromické délky, de Bruijnovych grafi a disekce
nekonec¢nych jazyki.

Tato disertace je koncipovana jako soubor deviti autorovych ptvodnich ¢lanki
doplnény integrujicim textem. Sedm z nich jiz bylo publikovano v recenzovanych
casopisech a dva jsou v recenznim fizeni.



Abstract

This dissertation focuses on languages of rich, power-free, closed, and privileged
words.

We show that the number of rich words grows subexponentially and that
the factor complexity of rich words is bounded by a quasi-polynomial function
cin®™" for some constants ci,co. We derive an upper bound for the number of
closed and privileged words.

In 1985, Restivo and Salemi published five open problems concerning power-
free words. We solve partially two of these problems. To be specific, we show
that if v is a right extendable a-power-free word and v is a left extendable a-
power-free word over an alphabet with ¢ letters, where o > 2 and ¢ > 3, then
there is a word w such that uvwu is also a-power-free over the same alphabet.

It is known that if w is a rich word then there is a letter a such that wa is also
rich. We prove some nontrivial results describing rich words that can be “richly”
extended in at least two ways.

For given two rich words u,v, we show how to decide whether there is a rich
word w such that w contains u, v as factors.

Three other results are presented that are not in the main focus of the dis-
sertation. These results deal with a palindromic length, de Bruijn graphs, and a
dissection of infinite languages.

The dissertation is formed as a collection of nine author’s original articles
accompanied with an integrating text. Seven of them have already been published
in refereed journals and two articles are currently in review.
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1 Introduction

The origin of combinatorics on words, as an area of discrete mathematics, is often
associated with the study of square-free words by the Norwegian mathematician
Axel Thue at the beginning of 20" century [7]. In 1906, Axel Thue proved the
existence of infinite square-free words on an alphabet with three letters [43]. A
word w is square-free if w does not contain a factor of the form vv, where v is
a nonempty word. Since the topic was accepted by the mathematicians as quite
natural and interesting, the article [43] gave an impulse to generalize the result
for both an arbitrary alphabet and an arbitrary power v® of the factor v, where
a > 1 is a rational number. Such words are called power-free or a-power-free.
(The formal definition of a power-free word will be given in Section 2.)

Up to now, power-free words remain one of the major themes in the area
of combinatorics on words. Nowadays, some other generalizations of power-free
words are being studied; for example abelian powers, pseudo squares, and reverse
powers [12, 26, 33]. We omit the definition of these generalizations.

Next to power-free words and all their generalizations, combinatorics on words
includes many other themes [16, 24, 25]. A full list of the themes would be quite
extensive. Instead, we restrict our attention to the topics that are relevant for
this dissertation.

In general, a lot of open problems in combinatorics on words deal with enu-
meration of some languages. A language is a set of finite words. For a given
language L, enumeration of the language L usually means to find the number of
words from L of a given length. Instead of enumeration of the language L, we
say also that we enumerate words from L. Formally, we look for the function

f(Lyn)={w|w e L and |w| = n}|.

For many languages, enumeration is a hard problem. This is why we are often
satisfied with some lower and upper bounds for f(L,n).

Factor complexity of a finite or infinite word w is the function f(L,n), where
L is the set of all factors of w. In our dissertation we construct upper bounds
for the function f(L,n), where L is the language of rich, closed, and privileged
words. Also we derive an upper bound for the factor complexity of rich words.

Another general problems of combinatorics on words are so-called transition
property and extendability of words. Understanding transition property and
extendability of words from a given language L helps also with enumeration of
the language L. This is how transition property and extendability fit in this
dissertation.

Given a language L and two words u,v € L. Transition property deals with
following problems:

e [s there a word w such that vwv € L?

e Is there a word w € L such that u, v are factors of w?
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e Construct the words w and w if they exist.

Simply said, we ask for existence of a “transition” word and for examples of
transition words. Note that in case of the second problem, the occurrences of u
and v in w may overlap with each other and the order of occurrences of u,v in
w does not matter. In our dissertation we investigate the transition property of
power-free and rich words.

In case of extendability, we are concerned with following two problems:

e Given a language L and a word w, are there words words uq, us, us, us such
that wjw, wug, ugwuy € L?

e Construct the words uq, us, us, uy if they exist.

Analogously like in the case of transition property, one asks for both existence
and examples of the “extensions”. A factorial language is a language L such that if
w € L, then all factors of w are also in L. In case of the factorial language L, it is
sufficient to consider that w € L and wuq, us, us, uys are letters. In our dissertation,
we are mainly concerned with languages of rich and power-free words. Both these
languages are factorial.

The three mentioned topics, enumeration, transition property, and extendabil-
ity of rich and power-free words are the main topics of this dissertation. Several
other topics are included. We address these remaining topics in dedicated sec-
tions.

The dissertation has the following structure. Section 2 defines the basic no-
tions that the dissertation deal with. The remaining sections focus on a summary
of the results of our articles, known results and the context of the topics being
researched. The layout of sections, topics, and articles is structured as follows:

e Section 3: Enumeration

— Enumeration of rich words [[Ru02]].
— Factor complexity of rich words [[Ru03]].

— Enumeration of closed and privileged words [[Ru06]].
e Section 4: Transition Property and Extendability

— Transition property of power-free languages [[Ru07]].
— Extendability of rich words [[Ru05]].
— Transition property of rich words [[Ru04]].

e Section 5: Palindromic length [[Ru08]].
e Section 6: De Bruijn sequences and de Bruijn graphs [[Ru01]].

e Section 7: Dissection of infinite languages [[Ru09]].

In Section 8 we suggest several topics for future research based on our results.
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2 Preliminaries

Let A, be a finite alphabet with ¢ > 1 letters. Given a positive integer n, let
Al ={aas...a, | a; € Ay and i € {1,2,...,n}}.

We define that A) = {¢}. The element € is called the empty word. Let A} =
U,n>1 Ay and let let A7 = AF U{e}. The elements of Ay are called words of length
n, where n is a nonnegative integer. The length of the word w € A} is denoted
jw|. Tt is well known that | Aj| = ¢", where n is a nonnegative integer.

Let AJ° denote the set of all infinite words over the alphabet A,; formally

Ay ={aaz---|a; € Ay and i > 1},

Given a finite word u € A} and a finite or infinite word w € AJ UA°, let uw
denote the concatenation of the words u and w. We have that eu = u, ue = u,
and ew = w.

Given a finite word u € A} and a finite or infinite word w € AjUAS, we
say that u is a factor of w if there are w; € Aj and wy € AJUAF such that
w = wyuwy. We say that u is a prefir of w if there is w; € Ay UAF such that
w = uw;. We say that u is a suffiz of v € Ay if there is v; € A} such that v = vyu.

Let F,, denote the set of all factors of a finite or infinite word w € A7 UAZ".
It follows that ¢ € F, and if w is finite, then also w € F,. In addition, let
F,(n) = F, N A7, where n is a nonnegative integer; F,,(n) is the set of all factors
of length n of the word w.

Let w = wywsy - - -w,yw, € Ay, where w; € Ay and 7 € {1,2,...,n}. We
define that w® = w,w,_1 - - - wew, and €® = e. The word w? is called reversal of
the word w. We say that a set S C A} of finite words is closed under reversal if
w € S implies that wf € S. We define that a word w € AjUAR is closed under
reversal if the set F,, is closed under reversal. It is easy to see that if F,(n) is
closed under reversal then F,,(j) is closed under reversal for each j < n.

A word w € A} is called a palindrome if w = w?. (It follows that the empty
word € is a palindrome.) If w is a finite or infinite word, u is a palindrome, and
u € F,, then we say that w contains a palindromic factor u. A finite word w € A}
is called rich if w contains n+ 1 palindromic factors (including the empty word) .
It is known that a word w of length n can contain at most n+1 palindromic factors
[15], hence rich words are those that contain the maximal number of palindromic
factors. An infinite word v € AJ® is rich if all factors of v are rich.

A nonempty word w is a border of the word u if |w| < |u| and w is both a
prefix and a suffix of u. A word u is closed if there is a border w of u such that u
has exactly two occurrences of w. It follows that w occurs only as a prefix and as
a suffix of u. A word u is privileged if |u| < 1 or if u contains a privileged border
w that appears exactly twice in u. Obviously privileged words are a subset of
closed words.

There is a connection between rich and privileged words. It was shown that
every word w of length n contains n + 1 distinct privileged factors. If the set of
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privileged factors of w coincides with the set of palindromic factors, then w is
rich [30].

An a-power, where o > 1 is a rational number, of a nonempty finite word r
is the word r® = rr...rt such that % = « and t is a prefix of r with |t| < |r| (¢
may be the empty word). For example (1234)3 = 123412341234 and (1234)7 =
1234123. We say that a finite or infinite word w is a-power-free if w has no finite
factors that are S-powers for § > «. We say that a finite or infinite word w is
at-power-free if w has no factors that are S-powers for 8 > «, where a, 3 > 1
are rational numbers. In some articles, it is a used convention to define that if a
word w is “a-power-free” then a denotes a number or a “number with +7; see for
instance [39]. We also apply this convention in our dissertation. The power-free
words, also called repetition-free words, include well known square free (2-power-
free), overlap free (2*-power-free), and cube free words (3-power-free).

3 Enumeration

As mentioned in Introduction, in next subsections we discuss the enumeration of
rich, closed, and privileged words and the factor complexity of rich words. First
we introduce some more notation.

Let Pal, € A denote the set of all palindromes, let Rich, C A} denote the
set of all finite rich words, and let Rich,® C A denote the set of all infinite rich
words.

3.1 Rich words

Let IT,(n) = [ Rich, N A} | be the number of rich words of length n. The enumera-
tion of rich words is investigated in |44], where Vesti gives a recursive lower bound
on the number of rich words of length n, and an upper bound on the number of
binary rich words. Better lower and upper bounds can be found in [21], where
Guo, Shallit, and Shur construct for each n a large set of rich words of length n.
Consequently they prove that

N (1)

where p(n) is a polynomial and C' is a constant with C' ~ 37. As already men-
tioned in Introduction, the language of rich words is factorial. It means that any
factor of a rich word is also rich, see [20]. In particular it follows that

IT,(n) Hy(m) > Ty(n +m)
for all positive integers m,n,q. Therefore, Fekete’s lemma implies existence of

the limit of {/IL,(n) and moreover

lim {/Il,(n) = inf{ /1I,(n): n is a positive integer} :

n—oo
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For a fixed ng, one can find the number of all rich words of length ng and obtain an
upper bound on the limit. Using a computer Rubinchik and Shur counted II5(n)
for n < 60 [35]. Since 4/1I5(60) < 1.605, in [21] the following upper bound is
shown: Ily(n) < ¢1.605™ for some constant c.

In the article [[Ru02]] we show that II,(n) has a subexponential growth on
every finite alphabet. More precisely, we prove that

lim {/II,(n) =1. (2)
n—o0
Our result is an argument in favor of a conjecture formulated in [21] saying that
for some infinitely growing function g(n) we have that
\/ﬁ
g(n)

(3)

To prove our result we use the following property of rich words [15, Definition 4
and Proposition 3]: the longest palindromic suffix of a rich word w has exactly one
occurrence in w. We say that the longest palindromic suffix of w is unioccurrent
in w. Using this property we prove that a rich word w can be factorized into p
distinct nonempty palindromes. The crucial observation is that there is a constant
c such that p < ¢, where n = |w|. We have that

o
lim 22 = (.
n—oo M
This can be interpreted as follows: a rich word is a concatenation of a “small”
number of distinct palindromes. Since every palindrome is determined by its first
half, and since the language of rich words is a factorial language, we derive the
subexponential upper bound on the number of rich words.

3.2 Factor Complexity of Rich words

Given a finite or infinite word w € Aj UA®, we define the factor complexity of
w as follows: Cy,(n) = |F,(n)|, where n is nonnegative integer. As mentioned in
Introduction, the factor complexity C,(n) enumerates the number of factors of
length n in the word w.

It is well known that an infinite word w € A is eventually periodic if and only
if there exists a positive integer k such that C, (k) < k [16]. It follows that for
any aperiodic infinite word (not eventually periodic) it holds that C,,(n) > n+ 1.
The infinite words with factor complexity C,(n) = n + 1 are called Sturmian,
[5, 6]. Sturmian words belong to extensively studied objects in combinatorics on
words.

An infinite word w € A® is called recurrent if every factor u € F, has
infinitely many occurrences in w. The word w is called uniformly recurrent if w
is recurrent and for each factor u € F,, there is an integer [, such the distance
between every two consecutive occurrences of u is bounded by 3,,.
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The palindromic complexity D,,(n) of the word w € A7 UAF is defined as
Dy(n) = |Fy(n) N Pal,|.
In [1], it was shown for arbitrary infinite aperiodic word w that

16 n
D, < —C, —.
() < 22 Cufn+ 1)
In [5], it is shown that if n is a positive integer and w € A;° is a uniformly

recurrent infinite word with F,(n) closed under reversal, then
Dy(n) +Dy(n+1) < Cu(n+1) — Cyu(n) + 2. (4)

In [5] the authors proved the inequality (4) for uniformly recurrent words, but
in the proof only “recurrent” is applied. Moreover, it is known that if F, is closed
under reversal, then w is recurrent [10, Proposition 2.2]. Thus the inequality (4)
holds for every infinite word w € A® with F,, closed under reversal.

In [10] it was shown for rich words that the inequality (4) becomes equality;
formally for every rich word w and a positive integer n we have that

Dy(n) + Dy(n+1) = Cu(n+1) — Cyp(n) + 2. (5)

The main result of our article [[Ru03]] states a quasi-polynomial upper bound
for the factor complexity of rich words; more specifically we show that there are
real constants cy, ¢ such that for every rich word w € Rich, URich,® and every
positive integer n we have that

Cu(n) < cn2nm, (6)

In addition we construct also an upper bound for the palindromic complexity of
rich words and we prove the inequality (4) for finite words v whose set of factors
F,(n + 1) is closed under reversal. Consequently we prove also the equality (5)
for finite rich words w whose set of factors F,(n + 1) is closed under reversal.
Then we apply the equality (5) to improve the upper bound for the factor and
palindromic complexity of rich words.

To prove our results we use two properties of rich words. The second one uses
the notion of a complete return. Given a word w and a factor r of w, we call the
factor r a complete return to u in w if r contains exactly two occurrences of u,
one as a prefix and one as a suffix; it follows that the complete return is a closed
word. We state both properties as lemmas:

Lemma 1. (see [11]) A factor r of a rich word w is uniquely determined by its
longest palindromic prefix and its longest palindromic suffiz.

Some generalizations of Lemma 1 may be found in [28§].

Lemma 2. (see [20]) Let w be a rich word. All complete returns to any palin-
dromic factor u in w are palindromes.
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In [[Ru03]], we define a switch to be a factor of the form aub, where a,b are
distinct letters and w is a palindrome. Applying Lemma 1, we show that the
switch aub is uniquely determined by a, b and by the longest proper palindromic
prefix of u. In addition, we prove that if the longest proper palindromic suffix of
u is “too” long, then w is periodic with a “short” period. In consequence, we have
that any switch is uniquely determined by two letters and a “short” palindrome.
This allows us to present an upper bound for the number of switches of a given
length.

Based on Lemma 2, we show that if a rich word w contains two palindromic
factors zux and yuy, where z,y are distinct letters, then w has to contain a
switch aub, where the letters a, b are not necessarily equal to the letters z,y. This
observation allows to derive an upper bound for the palindromic complexity from
the upper bound for the number of switches. From the palindromic complexity
and Lemma 1, we prove our result for the factor complexity.

3.3 Closed and Priviledged Words

Let Clo, € A; denote the set of all closed words and let Priv, C A denote the
set of all privileged words.

Privileged words have been introduced quite recently in [23]. The combinato-
rial properties privileged words have been studied in [30, 38|. One of the questions
that has been investigated was the enumeration of privileged words. In [27], it
was proved that there are constants ¢ and ng such that for all n > ng, we have
that

n

cq

Priv, NA" | > —— .
| Priv, 1 |2 n(logq n)?

(7)
The result (7) improves the lower bound for the number of privileged words from
[17]. Since every privileged word is a closed word, the inequality (7) forms also a
lower bound for the number of closed words.

Concerning an upper bound for the number of privileged words we have found
the following open problem [29]: Give a nontrivial upper bound for the number
of privileged words of length n. We have found no answers to this open problem.

In the article [[Ru06]] we show that

| Clog MAY | Sclnn%, (8)
where n > 1 and ¢ is a some positive constant. Since privileged words are a
subset of closed words, the formula (8) gives also an upper bound for the number
of privileged words.

To prove our upper bound for the number of closed words, we split the lan-
guage of closed words into words with a “short” and “long” border. For a closed
word w with |w| = n, we define that w has a long border if w has a border u
with |u| > ¢ln |w| for some predefined constant c¢. We derive an upper bound for
the number of closed words with “long” border and we show the relation between

17



the number of closed words with “short” and “long” borders. In consequence, we
derive the upper bound (8).

4 Transition Property and Extendability

In 1985, Restivo and Salemi presented a list of five problems that deal with the
question of transition property and extendability of power-free words [34]:

e Problem 1: Given an a-power-free word u, decide whether for every positive
integer n there are words w, v such that |w| = |v| = n and such that:

— uv is a-power-free,
— wu is a-power-free, and

— wuv is a-power-free.

e Problem 2: Given an a-power-free word u, construct, if it exists, an infinite
a-power-free word having u as a prefix.

e Problem 3: Given an arbitrary positive integer k, does there exists an a-
power-free word u such that:

— there exists a word v of length k such that uv is a-power-free and

— for every word v with || > |v| we have that uv is not a-power-free.

e Problem 4: Given a-power-free words v and v, decide whether there is a
transition word w, such that uwu is a-power-free.

e Problem 5: Given a-power-free words u and v, find a transition word w, if
it exists.

Problems 1, 2, and 3 concern extendability of power-free words. Problems 4 and
5 concern transition property of power-free words. In general, these problems
remain open. A recent survey on the progress of solving all the five problems can
be found in [31]; in that article Petrova and Shur construct the transition words
for cube-free words.

Although the problems are stated for power-free words, Problems 4 and 5 are
also challenging for rich words. Let us compare rich and power-free words from
the point of view of extendability. If w is a rich word, then there are letters x,y
such that wz, yw, ywx are rich [44]. Thus every rich word can be extended. This
property does not hold, in general, for power-free words. Thus Problems 1,2,
and 3 are easy for rich words. However we elaborate for rich words some related
questions concerning extendability [[Ru05]].

In next subsections we present our results related to transition property and
extendability of power-free and rich words. In addition, we compare the properties
of power-free and rich words from the point of view of transition property.
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4.1 Transition property

Problems 4 and 5 of Restivo and Salemi are addressed in our article [[Ru07]],
where we show for a wide variety of configurations («, ¢) that for any right ex-
tendable a-power-free word u and any left extendable a-power-free word v over
an alphabet A, there is a transition word w such that uwv is also a-power-free
over the alphabet A,. We also construct the transition word w.

The very basic idea of our proof is that if u,v are a-power-free words and
x is a letter such that x is not a factor of both u and v, then clearly uxv is a-
power-free, provided that o > 2. Note that there cannot be a factor in uxv which
is an a-power and contains x, because x has only one occurrence in uzrv. Less
formally said, if u, v are a-power-free words over an alphabet with £ letters, then
we construct a “transition” word w over an alphabet with k& — 1 letters such that
uwv is a-power-free. The proof involves intricate observations about recurrent
factors of w.

In |28], the following open problem was stated.

e We do not know how to decide whether two rich words v and v are factors
of a same rich word w.

This problem deals with transition property of rich words. In the article [[Ru04]]
we show that if such w exists, then there is also a transition word w with a
bounded length depending on the lengths of v and v. More exactly we show
that: There are constants ci,cy such that if wq,ws,w are rich words, m =
max {|wq]|, |wa|}, and {wy,wy} C F,, then there exists a rich word w with
{wy,wy} C Fg and [w| < m2¥™+2 where k(m) = c;m®™™. The constants
c1,co depend on the size of the alphabet. Hence it is enough to check all rich
words of length equal to or less than m25(™+2 in order to decide if there is a rich
word containing factors wy, ws.

Thus using a brute force we can decide the question of existence of a transition
word and also we can construct a transition word. However this brute force
algorithm is very inefficient and some significant improvement remains as an
open question.

Comparing the quasi-polynomial upper bound for the factor complexity of
rich words (6) with the lower bound for the number of binary rich words (1)
we see that an infinite rich word contains only a “small” share of all rich words.
Because of Lemma 1, this is not really surprising. Lemma 1 allows us to deduce
that there are “many” pairs (u, v) of finite rich words that cannot be joined into a
common rich word. For example consider the set P = {010111°0110 | > 1}. The
set P contains words 0101110110, 01011110110, 010111110110, .... It is easy to
see that if u € P, then w is rich, the longest palindromic prefix of u is 010, and
the longest palindromic suffix of w is 0110. Lemma 1 implies that if w is a rich
word (finite or infinite) then | F,, NP| < 1. In other words if u,v € P are distinct
words, then there is no transition word w with uwwv being rich.

It is interesting to note the contrast to power-free words, where an infinite
a-power word can contain “almost” all extendable finite a-power words [39].
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4.2 Extendability of rich words

We say that a rich word w can be extended in at least two ways if there are two
distinct letters z,y such that wzx,wy are rich. The extendability of rich words
has been investigated in [44]. The author shows that if w is a rich word, then
there is a word u with |u| < 2|w| such that wu can be extended in at least two
ways. It was presented as an open question to improve the upper bound for the
length of u [44]. We address this open question in the article [[Ru05]].

We prove that if w is a finite rich word, then there is a rich word u with
lu| < |w| such that wu is a rich word that can be extended in at least two
ways. In addition we investigate also a lower bound on the length of v. Given
w € Rich,, let Rext,(w) C Rich, denote the set of all finite rich words such that
if u € Rext,(w) then wu € Rich, and wu can be extended in at least two ways.
Let

wg(w) = min{|u| | v € Rext,(w)}

and let
¢,(n) = max{wy(w) | w € Rich, and [w| = n},

where n > 0. We prove that for each real constant ¢ > 0 and each integer m > 0

there is n > m such that )
¢ (n) > <§ — c) n. 9)

The inequality (9) says that for each positive integer m and for each positive real
¢, there are an integer n > m and a rich word w € Rich, with |w| = n such that
if u is a nonempty rich word and wu can be extended in at least two ways, then

u is longer than (2 — ¢)|w|. This can be formulated also as follows:

0
im sup ——

n—00 n

2
> —.
-9

5 Palindromic length

The palindromic length PalLen(v) of a finite word v is the minimal number of
palindromes whose concatenation is equal to v. In 2013, Frid, Puzynina, and
Zamboni presented the following conjecture.

Conjecture 1. (see [18]) If w is an infinite word and k is an integer such that
PalLen(u) < k for every factor u of w, then w is eventually periodic.

In [18] the conjecture was proved for infinite words that are k-power-free for
some positive integer k. It follows that if w is an infinite word with bounded
palindromic length, then for each positive integer j there is a nonempty factor r
such that 77 is a factor of w. Conjecture 1 attracted a lot of attention and there
are quite a lot articles solving the conjecture for some classes of infinite words or
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investigating properties of palindromic length; see for instance |2, 3, 19, 35, 36].
However the conjecture still remains open.

In the article [[Ru08]] we bring some more insight in the infinite words with
bounded palindromic length. Let w be an infinite word with bounded palindromic
length. We show that for each positive integer j there are palindromes a, b with
b nonempty such that (ab)’ is a factor of w. Realize that (ab)’a is a palindromic
factor of w for every ¢ < j. In this way we can say that w contains many
periodic palindromes. These results justify the following question: What is the
palindromic length of a concatenation of a suffix of b and a periodic word (ab)’
with “many” periodic palindromes? Our main result addresses this question.

In [36, Lemma 6] it was shown that if v, v are nonempty words then

|PalLen(uv) — PalLen(u)| < PalLen(v).

In the article [[Ru08]] we show that if a,b are palindromes, b is nonempty, u is a
nonempty suffix of b, |ab| is the minimal period of aba, and j is a positive integer
with j > 3 PalLen(u), then

PalLen(u(ab)’) — PalLen(u) > 0.

The proof is based on careful observations of some symmetries in the words with
many periodic palindromes.

6 De Bruijn Sequences

In 1894, A. de Riviére formulated a question about existence of circular arrange-
ments of 2" zeros and ones in such a way that every word of length n appears
exactly once, [14]. Let B(n) denote the set of all such arrangements and let
By(n) C B(n) denote the elements that start with n zeros. It is easy to see that
[Bal = 2% Bo(m)|.

The question was solved in the same year by C. Flye Sainte-Marie, [37], to-
gether with presenting a formula for counting these arrangements:

|Bo(n)] = 22"

However the article was then forgotten. The topic became well known through

the article of N.G. de Bruijn, who proved the same formula for the size of By(n),

[8]. Some time after, the article of C. Flye Sainte-Marie was rediscovered by

Stanley, and it turned out that both proofs were principally the same, [9].
Stanley formulated in 2009 the following open problem [41], [42]:

A binary de Bruijn sequence of degree n is a binary sequence ajas - - - agn
(a; is 0 or 1) such that all circular factors a;a;y1---a;on 1 (taking
subscripts modulo 2") of length n are distinct. An example of such
sequence for n = 3 is 00010111. The number of binary de Bruijn
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sequences of degree n is 22" . Let B(n) denote the set of all binary
de Bruijn sequences, then we want a bijection

¢ : B(n) x B(n) — {0,1}*".

We solved this open problem of Stanley in the article [[Ru01]] by introducing
new suitable bijections between de Bruijn graphs. Recall that a de Bruijn graph
H, is a directed graph with ¢" nodes, whose nodes correspond to the words of
length n — 1 over an alphabet A, = {0,1,...,¢ —1}. A node sys2...5,_; has ¢
outgoing edges to the nodes

So.. .Sn,l(), So .. .Snfll, .y SS9 .Sn,1<q — 1)
It follows that a node syss...5,_1 has ¢ incoming edges from nodes
05182 ... Sp—2, 181S9...8p_2, ..., (¢ —1)s182...8,_2.

De Bruijn graphs found several interesting applications, among others in net-
working, [4], and bioinformatics, [13, 32]. A Rauzy graph is a subgraph of the
de Bruijn graph. In combinatorics of words, Rauzy graphs have been used for
computing the factor complexity of infinite words [5, 6].

7 Dissecting of Infinite Languages

This section deals with some terms from language and automata theory that
have not been formally defined in this dissertation; for example regular languages,
context-free languages, deterministic finite automaton, and context free grammar.
In case the reader is not familiar with automata and language theory, we refer to
the book [22]| or any other introduction book in that field.

In this section we consider also the alphabet with one letter; it means that ¢
can be any positive integer.

An infinite language L C AJ is called constantly growing if there is a positive
constant ¢y and a finite set K of positive integers such that for each w € L with
|w| > ¢y there is a word w € L and a constant ¢ € K such that |w| = |w|+c. We
say also that L is (cg, K)-constantly growing.

Given two infinite languages L, Ly C AZ, we say that L, dissects Lq if

|L1ﬂL2| = 0 and |(AZ\L1)DL2| = Q.

In [45], it has been proved that if L is a (¢q, K)-constantly growing language
then there is a regular language M C AJ such that M dissects L and M is
accepted by a deterministic finite automaton with |K|+ 1 states.

In the article [[Ru09]] we define a tetration function (a repeated exponentia-
tion) as follows:

expl’a =2¢
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and

. o
eXpJJrLa — 9°XP

?

where 7, o are positive integers. The tetration function is known as a fast growing
function of the argument a. If k,a are positive positive integers and L C A is
an infinite language such that for each u € L there is v € L with |u| < |v| <
exp®® |ul, then we call L a language with the growth bounded by (k,a)-tetration.

Given a context free language L, let x(L) denote the size of the smallest
context free grammar G that generates L. We define the size of a grammar to be
the total number of symbols on the right sides of all production rules.

In the article [[Ru09]] we show that if ¢, k are positive integers with k > 2,
then there are context free languages Ly, Lo, ..., La;—3 € A with x(L;) < 40k
such that: If o is a positive integer and L C A is an infinite language with the
growth bounded by (k, a)-tetration then there is a regular language M such that

3k—3
Mn < ﬂ Li>
=1

dissects L and the minimal deterministic finite automaton accepting M has at
most k + o + 3 states.

We explain the basic idea of the proof. Recall that a non-associative word on
the letter z is a “well parenthesized” word containing a given number of occur-
rences of z. For example for n = 3 occurences of z, the non-associative words
are (((22)2)z2), ((z2)(z2)), (2(2(22))), (2((22)2)), and ((2(z2))z). Every non-
associative word contains the prefix (*z for some nonnegative integer k, where (*
denotes the k-th power of the opening bracket. There are non-associative words
such that k equals “approximately” log, n. We construct three context free lan-
guages whose intersection accepts such words; we call these words balanced non-
associative words. By counting the number of opening brackets of a balanced
non-associative word with n occurrences of z we can compute a logarithm of n.
By “chaining” this construction we are able to compute a repeated logarithm of n.
This will allow us to transform the problem of dissecting of a language with the
growth bounded by (k, a)-tetration to the problem of dissecting of a constantly
growing language.

8 Future directions

Of course, in principle, it is possible to improve every result of our articles. How-
ever we suggest the following directions for future research. The selection of the
directions is based mainly on experimental data that encourage us to believe that
the future research in proposed themes would be rewarding.
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8.1 Rich words

Although we proved the subexponential upper bound (2) for the number of rich
words, the conjectured upper bound (3) remains open. One direction of the future
research is to improve the upper bound in such a way to be able to confirm the
conjectured upper bound (3) suggested by Guo, Shallit, and Shur. One possible
approach would be to use the upper bound (6) for the factor complexity. It seems
to us possible to apply the “low” factor complexity to derive some better upper
bound for the number of rich words.

Concerning the quasi-polynomial upper bound for the factor complexity (6),
it would be interesting to know if there is a polynomial upper bound; it means if
there are positive constants ¢y, ¢y such that C,(n) < ¢;n®, where n > 0 and w is
a rich word.

As already mentioned in Section 4.1, the practical application of our result
from [[Ru04]] for finding a rich word containing two given factors requires a brute
force, which turns out to be very inefficient. To improve our result or to improve
the brute force algorithm remains as an open problem for the future research.

8.2 Power-free words

In 2009, Shur presented the following conjecture related to Problems 4 and 5 of
Restivo and Salemi [40]:

Conjecture 2. Let L be a power-free language and let e(L) C L be the set of
words of L that can be extended to a bi-infinite word respecting the given power-
freeness. If u,v € e(L) then uwv € e(L) for some word w.

In 2018, Conjecture 2 was presented also in [39] in a slightly different form.

We believe that our proof from [[Ru07]] could be generalized in order to con-
firm Conjecture 2 for a-power-free words with o > 2 over an alphabet with ¢ > 3
letters.

8.3 Palindromic length

For an infinite word w with bounded palindromic length, we identified factors
u,v such that PalLen(uv) — PalLen(v) > 0 [[Ru08]]. The idea for the future
development of this result is, for given positive integer k, to identify factors u,v
of w such that PalLen(u) = k and PalLen(uv) — PalLen(u) > 0. The existence of
such factors would, in consequence, allow us to prove Conjecture 1.
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Abstract

A T-net of order m is a graph with m nodes and 2m directed edges, where

every node has indegree and outdegree equal to 2. (A well known example
of T-nets are de Bruijn graphs.) Given a T-net N of order m, there is the so
called “doubling” process that creates a T-net N* from N with 2m nodes and
4m edges. Let |X| denote the number of Eulerian cycles in a graph X. It
is known that |[N*| = 2"~ |N|. In this paper we present a new proof of this
identity. Moreover we prove that [N| < 2"~ 1.
Let ®(X) denote the set of all Eulerian cycles in a graph X and S(n) the set of
all binary sequences of length n. Exploiting the new proof we construct a bi-
jection @(N) x S(m— 1) — O(N*), which allows us to solve one of Stanley’s
open questions: we find a bijection between de Bruijn sequences of order n
and §(2"1).

1 Introduction

In 1894, A. de Riviere formulated a question about existence of circular arrange-
ments of 2" zeros and ones in such a way that every word of length n appears
exactly once, [7]. Let By(n) denote the set of all such arrangements. (we apply the
convention that the elements of By(n) are binary sequences that start with n zeros).
The question was solved in the same year by C. Flye Sainte-Marie, [5], together
with presenting a formula for counting these arrangements: |By(n)| = 22",
However the paper was then forgotten. The topic became well known through the
paper of N.G. de Bruijn, who proved the same formula for the size of By(n), [2].
Some time after, the paper of C. Flye Sainte-Marie was rediscovered by Stanley,
and it turned out that both proofs were principally the same, [3].
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The proof uses a relation between By(n) and the set of Eulerian cycles in a
certain type of T-nets: A T-net N of order m is defined as a graph with m nodes
and 2m directed edges, where every node has indegree and outdegree equal to 2 (a
T-net is often referred as a balanced digraph with indegree and outdegree of nodes
equal to 2, see for example [10]). N.G. de Bruijn defined a doubled T-net N* of
N. A doubled T-net N* of N is a T-net such that:

e cach node of N* corresponds to an edge of N

e two nodes in N* are connected by an edge if their corresponding edges in
N are incident and the ending node of one edge is the starting node of the
second edge.

Remark We call two edges to be incident if they share at least one common node;
the orientation of edges does not matter.

As a result N* has 2m nodes and 4m edges, see an example on Figure 1. (A
doubled T-net of N is known as well as a line graph of N, [4].)

Let ®(X) be the set of all Eulerian cycles in X and let |X| = |®(X)| denote the
number of Eulerian cycles in X, where X is a graph. It was proved inductively that
IN*| = 2"~!|N|. Moreover N.G. de Bruijn constructed a T-net (nowadays called
a de Bruijn graph) whose Eulerian cycles are in bijection with the elements of
By(n).

A de Bruijn graph H, of order n is a T-net of order 2", whose nodes correspond
to the binary words of length n — 1. A node 515> ...s,— has two outgoing edges to
the nodes s>...s,_10 and s>...s,_11. It follows that a node sys>...s,_1 has two
incoming edges from nodes Osys3 . ..5s,-2 and ls;s;...s,—2. Given an edge e going
from the node 515, ...s5,—1 to the node s, ...s,—15,, then the edge e corresponds to
the word s1s7...5,_15, of length n, which implies the natural bijection between
Eulerian cycles ©(H,) and binary sequences Bo(n), [2]. That is why we will write
Bo(n) = O(H,).



De Bruijn graphs found several interesting applications, among others in net-
working, [1], and bioinformatics, [6], [8].

The important property of de Bruijn graphs is that a doubled T-net of a de
Bruijn graph of order n is a de Bruijn graph of order n+ 1, see an example on
Figure 1 of the de Bruijn graph of order 3 (H3 = N) and of order 4 (Hs = N*).
Since |Bo(2)| = 1 (Bo(2) = {0011}) it has been derived that |Bo(n)| = 22" ",
[11, [2], [3].

There is also another proof using matrix representation of graphs, [10]. Yet it
was an open question of Stanley, [9], [10], if there was a bijective proof:

Let B(n) be the set of all binary de Bruijn sequences of order n, and
let S(n) be the set of all binary sequences of length n. Find an explicit
bijection B(n) x B(n) — S(2").

This open question was solved in 2009, [4], [10].

Remark In the open question of Stanley, B(n) denotes the de Bruijn sequences
that do not necessarily start with n zeros like in the case of By. B(n) contains all 2"
“circular rotations” of all sequences from By(n); formally, given s = sys2...5m €
By(n), then sisit1...5m58152...8-1 € B(n), where 1 <i <2". It is easy to see
that all these 2" “circular rotations” are distinct binary sequences. It follows that
|B(n)| = 2"|Bo(n)|. Hence it is enough to find a bijection Bg(n) — S(2"~! —n) to
solve this open question.

In this paper we present a new proof of the identity |[N*| = 2”"~!|N|, which allows
us to prove that |[N| < 2"~! and to construct a bijection v : @(N) x S(m —1) —
O(N*) and consequently to present another solution to the Stanley’s open ques-
tion: We define p(€) = 0011 (recall that B(2) = {0011}) and let p, : S(2"~! —
n) — Bo(n) be a map defined as p,(s) = v(pn—1(s),$), where € is the binary se-
quence of length 0, n > 2, s = 55, s € S(2" 2 — (n— 1)), and § € S(2" 2 — 1).

Proposition 1.1 The map p,, is a bijection.

Proof Note that § € S22 — (n— 1)) and [Bo(n —1)| =20 D=1 —(n—1) =
2"=2 — (n—1); thus s is a valid input for the function p,_; and p,_1(s) € Bo(n —
1) = ©(H,_1). In addition, H,_1 has m = 2"~2 nodes and § € S(2"~%2 — 1) has
the length m — 1, hence it makes sense to define p,,(s) = v(p,—1(s),5). Because v
is a bijection, see Proposition 3.1, it is easy to see by induction on n that p, is a
bijection as well.

Remark Less formally said, the bijection p,(s) splits the binary sequence s into
two subsequences s and §. Then the bijection p,— is applied to s, the result of
which is a de Bruijn sequence p from By(n — 1) (and thus an Eulerian cycle in
H,_1). Then the bijection v is applied to p and §. The result is a de Bruijn
sequence from Boy(n).



Figure 2: A node replacing by 4 nodes and 4 edges
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Figure 3: A removing solid edges and fusion of nodes

2 A double and quadruple of a T-net

Let Y be a set of graphs; we define ®(Y) = Uyey ®(X) (the union of sets of
Eulerian cycles in graphs from Y) and |Y| = Y ycy |X| (the sum of the numbers of
Eulerian cycles). Let U (X) denote the set of nodes of a graph X.

We present a new way of constructing a doubled T-net, which will enable us
to show a new non-inductive proof of the identity |[N*| = 2"~!|N| and to prove
‘ N‘ < 2m—l .

We introduce a quadruple of N denoted by N: The quadruple N arises from
N by replacing every node a € U(N) by 4 nodes and 4 edges as depicted on the
Figure 2. Let I'(a) denote the set of these 4 nodes and I1(a) denote the set of
these 4 edges that have replaced the node a. The edges from I1(a) are dashed
on the figures and we will distinguish dashed and solid edges as follows: In a
graph containing at least one dashed edge, we define a dashed Eulerian cycle to
be a cycle that traverses all dashed edges exactly once and all solid edges exactly
twice, see Figure 4. In a graph without dashed edges, we define a dashed Eulerian
cycle to be the same as an “ordinary” Eulerian cycle.

Remark Note that a quadruple N is not a T-net, since the indegree and outdegree
are not always equal to 2. But since the solid edges can be traversed twice, we
can consider them as parallel edges (two edges that are incident to the same two
nodes). Then it would be possible to regard N as a T-net.

By removing solid edges and “fusing” their incident nodes into one node in
N (as depicted on Figure 3), we obtain a doubled T-net N* of N. And the reverse
process yields & from N*: turn all edges from solid to dashed and then replace
every node by two nodes connected by one solid edge, where one node has two
outgoing dashed edges and one incoming solid edge and the second node two
incoming edges and one outgoing solid edge. Thus we have a natural bijection
between dashed Eulerian cycles in N and N*. See an example on Figure 4.



Figure 4: An example of N, N, and N*
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Remark If all edges in a graph are solid or if all edges in a graph are dashed,
then it makes no difference if they are solid or dashed. A dashed Eulerian cycle
traverses in that case just once every edge.

Fix an order on nodes U (N). As a result we have a bijection ¢ : {1,2,...,m} —
U(N). Giveni € {1,2,...,m}, let us denote the edges from I1(¢(i)) by t,u,v,z,
in such a way that ¢ and v are not incident edges; it follows that u and z are not
incident as well.

Let Wy = {N}, we define W; = {w,w | w € Wi_1}, where i € {1,2,...,m} and w,
w are defined as follows: We construct the graph w by removing edges ¢, v from w
and by changing the edges u,z from dashed to solid (thus allowing the edges u,z
to be traversed twice). Similarly we construct w from w by removing edges u,z
and by changing 7, v from dashed to solid, where 7,u,v,z € II(¢(i)).

The crucial observation is:

Proposition 2.1 Let w € W;, where i € {0,1,...,m—2}. Then |w| = 2|w|+2|w|.

Remark The following proof is basically identical to the one in [2], where the
author constructed two graphs dj,d, from a graph d and proved that |d| = 2|d | +
2|dy|

Proof Given a dashed Eulerian cycle g in w, then split g in four paths A,B,C,D
and edges 7,u,v,z € TI(¢(i)). We will count the number of dashed Eulerian cy-
cles in w,w that are composed from all 4 paths A,B,C,B and that differ only in
their connections on edges ¢,u,v,z. Exploiting the N.G. de Bruijn’s notation, all
possible cases are depicted on Figures 5 and 6.

e In case I, the graph w contains 4 dashed Eulerian cycles: AtBzDuCv,
AtCuBzDv, AtCvDuBz, AzDuBtCv; whereas the graphs w and w have to-
gether 2 dashed Eulerian cycles: AzDuCuBz, AtBtCvDv. Thus |w| = 4 and
[l+w| = 2.
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e In case I, the graph w contains 4 dashed Eulerian cycles: AtCuDvBz,
AtDuCvBz, AzBtCuDv, AzBtDuCv; whereas the graph w has 2 dashed Eule-
rian cycles: AtCvBtDv, AtDvBtCv. The graph w is disconnected and there-
fore w has 0 dashed Eulerian cycles. Thus |w| =4 and |w|+)%| = 2. In case
11, it is possible the A = B or C = D. In such a case, |w| =2 and |w|+|w| = 1.

This ends the proof.

We define A= {w | w € W,, and w is connected}. The Figure 7 shows an example
of all iterations and construction of graphs in A from the graph N, where N is a de
Bruijn graph of order 3. The order of nodes from N is 00 < 10 < 01 < 11. Most
of the disconnected graphs are ommited.

Remark In the previous proof in case II, it can happen that A = B or C = D.
Note in the iteration step i = m (when constructing W,, from W,,_;) it holds that
A = B and C = D, because all nodes have indegree and outdegree equal to 1 with
exception of nodes I'(¢(m — 1)). Hence |Wy,_;| = |W,,|. It follows as well that
every connected graph w € W,,_1 has exactly one dashed Eulerian cycle. That is
why in the Proposition 2.1 we consider i € {0,1,...,m—2}.

Corollary 2.1 2|W;_i| = |W;| and |W,,—1| = |[W,,|, where i € {1,2,...,m—1}.
Proposition 2.2 2"~ !|A| = [N*| = |N|.

Proof The only graphs in W,, that contain a dashed Eulerian cycle are connected
graphs, it means only graphs from A. On the other hand every graph w € A
contains exactly one dashed Eulerian cycle, since every node has indegree and
outdegree equal to 1. The proposition follows then from Corollary 2.1, because
|N| = |Wo| (recall that Wy = {N'}).

Proposition 2.3 There is a bijection between ®(N) and O(A) and O(W,,_1) and
O(Wy).

Proof Given a connected graph w € W,,_;, then just one graph of w and w is
connected. Let us say it is w. Recall that there is exactly one dashed Eulerian
cycle AtCuCvAz in w (A = B and C = D, see Figure 6). Then A¢Cv is the only
dashed Eulerian cycle in w € A C W,,. This shows a bijection between ®(W,,,_1)
and ®(W,,) and ©(A).

Let p = p1p2 ... pam be the only dashed Eulerian cycle in w € A, where p; are
edges of w. Without loss of generality suppose that p; € I1(a) for some a € U(N)
(it means that p; is a dashed edge in N). It follows that all p; with i odd are
dashed edges in N all p; with i even are edges from N (they are solid edges in
N); in consequence the path p = papa. .. pa, is a dashed Eulerian cycle in N. A
turning the dashed Eulerian cycle in w into the dashed Eulerian cycle p in N is
schematically depicted on Figure 8. Thus we have a bijection between ®(N) and
©(A). This ends the proof.
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Figure 7: Constructing the set A from N



Figure 8: Converting a dashed Eulerian cycle from A into a dashed Eulerian cycle
in N

)

Corollary 2.2 Let N be a T-net of order m. Then |N| < 2"~! dashed Eulerian
cycles.

Proof The set W,,_; contains 2"~ graphs and recall that every connected graph
w € W, has exactly one dashed Eulerian cycle. The result follows then from
[Win—1| = [Wy,| and A C W,

3 Bijection of binary sequences and de Bruijn se-
quences

Given i € {1,2,...,m}, in the previous section we agreed that the edges from
I1(¢ (7)) are denoted by 7,u,v,z, in such a way that z and v are not incident edges
(and consequently that u and z are not incident as well). For this section we need
that these edges are ordered, hence let us suppose that it holds < u < v < z. This
will allow us to identify “uniquely” the edges.

Let us look again on the Figure 5. We can identify the path A as the path
between incident nodes of the edge z that do not contain edges 7, u,v. In a similar
way we can identify B,C, D.

On the Figure 6 we can not distinguish A from B and C from D only by edges
t,u,v,z. If A # B, then let & be the first node where A and B differ. The node &
has two outgoing dashed edges, let us say they are #,z. We use this difference to
distinguish A and B. Let us define A to be the path that follows the edge # from &
and B the path that follows the edge z from §. Again in a similarly way we can
distinguish C from D. Hence let us suppose we have an “algorithm” that splits
a dashed Eulerian cycle p € ®(W;) into the paths A, B,C,D and edges ,u,v,z €
I1(¢(i)) for given N, i (recall that the nodes of N are ordered and thus i determines
the node ¢ (i) € U(N)). We introduce the function wy; : (p, &) — @(W;_;), where

e N is a T-net of order m



e ic{l,....om—1}
o pcOW)
e ac{0,1}

Remark Less formally said, the function @ transform a dashed Eulerian cycle
p € O(W;) into a dashed Eulerian cycle p € ®(W;_,) for given N, i, .

Given N and i, we define for the case I (Figure 5):
oy ,i(AzDuCuBz,0) = AtBzDuCv
oy i(AzDuCuBz, 1) = AtCuBzDv
wy,i(AtBtCvDv,0) = AtCvDuBz
wy ;(AtBtCvDv, 1) = AzDuBtCv
For the case II (Figure 6), where A # B and C # D:
wy,i(AtCvBtDv,0) = AtCuDvBz
wy i(AtCvBtDv, 1) = AzBtCuDv
wy,i(AtDvBtCv,0) = AtDuCvBz
y i(AtDvBtCv, 1) = AzBtDuCv
For the case Il where A = B and C # D:
wy,i(AtCvAtDv,0) = AtCuDvAz
oy i(AtCvAtDv, 1) = AtDuCvAz
For the case II where A # B and C = D:
wy,i(AtCvBtCv,0) = AtCuCvBz
wy,i(AtCvBrCv, 1) = AzBtCuCv
Now, when we fixed an order on edges at the beginning of this section, it is nec-
essary to distinguish another alternative of the case II, namely the paths A, B can
be paths between incident nodes of the edge ¢ that do not contain edges u, v,z and
C, D can be paths between incident nodes of the edge v that do not contain edges
t,u,z, let us denote it as case III, see Figure 9. We define @ in a similar way as for
the case II:
For the case III (Figure 9), where A # B and C # D:
oy i(AuCzBuDz,0) = AuCvDzBt
oy ,i(AuCzBuDz, 1) = AtBuCvDz
oy i(AuDzBuCz,0) = AuDvCzBt
oy i(AuDzBuCz, 1) = AtBuDvCz
For the case III where A = B and C # D:
oy i(AuCzAuDz,0) = AuCvDzAt
oy i(AuCzAuDz, 1) = AuDvCzAt
For the case Il where A # B and C = D:
oy ,i(AuCzBuCz,0) = AuCvCzBt
oy i(AuCzBuCz, 1) = AtBuCvCz

10
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Figure 9: Edges replacement. Case III

Remark The previous definition of ay ;(p, o) can be modified with regard to the
reader’s needs, including the way of recognition of paths A,B,C,D. It matters
only that wy ; is injective. Our definition is just one possible way.

Remark To understand correctly the definition of ®, recall that when comparing
two dashed Eulerian cycles, it does not matter which edge is written as the first
one. For example the paths ArCuDvAz and AzAtCuDyv are an identical dashed
Eulerian cycle.

Let S(n) denote the set of all binary sequences of length n.

Proposition 3.1 Let N be a T-net of order m, s = sis3...5m—1 € S(m—1) be a
binary sequence, and p € ®(N). We define p = p"~! and Pl = ani(pysi),
where i € {1,2,...,m—1}. Then the map v : O(N) x S(m — 1) — O(N*) defined
as v(p,s) = p® is a bijection.

Proof Recall that there is a bijection between ®(N) and @(W,,_), see Proposi-
tion 2.3; hence we can suppose that p € W,,_;.

The definition of the function @ implies that wy ;(p, &) = @y i(p, &) if and only
if p=p and oo = . It follows that v is injective. In addition we proved that
IN| = |W,,_1| and that 2~ 1|N| = |N| = |W,|. In consequence V is surjective and
thus bijective.
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Abstract. Any finite word w of length n contains at most n+ 1 distinct
palindromic factors. If the bound n + 1 is reached, the word w is called
rich. The number of rich words of length n over an alphabet of cardinality
q is denoted Ry(n). For binary alphabet, Rubinchik and Shur deduced
that Ra(n) < ¢1.605™ for some constant c. In addition, Guo, Shallit and
Shur conjectured that the number of rich words grows slightly slower
than nV™. We prove that lim {/Ry(n) = 1 for any g, i.e. Ry(n) has a

subexponential growth on any alphabet.

Keywords: Rich words - Enumeration - Palindromes - Palindromic fac-
torization

1 Introduction

The study of palindromes is a frequent topic and many diverse results may be
found. In recent years, a number of articles deal with so-called rich words, or
also words having palindromic defect 0. They are words having the maximum
number of palindromic factors. As noted by [6], a finite word w contains at most
|w| + 1 distinct palindromic factors with |w| being the length of w. The rich
words are exactly those that attain this bound. It is known that on a binary
alphabet the set of rich words contains factors of Sturmian words, factors of
complementary symmetric Rote words, factors of the period-doubling word, etc.,
see [1,4,6,13]. On a multiliteral alphabet, the set of rich words contains for
example factors of Arnoux—Rauzy words and factors of words coding symmetric
interval exchanges.

Rich words can be characterized using various properties, see for instance
[2,5,8]. The concept of rich words can also be generalized to respect so-called
pseudopalindromes, see [10]. In this paper we focus on an unsolved question of
computing the number of rich words of length n over an alphabet with ¢ > 1
letters. This number is denoted Rg4(n).

This question is investigated in [15], where J. Vesti gives a recursive lower
bound on the number of rich words of length n, and an upper bound on the
number of binary rich words. Both these estimates seem to be very rough. In [9],
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346 J. Rukavicka

C. Guo, J. Shallit and A.M. Shur construct for each n a large set of rich words of
length n. Their construction gives, currently, the best lower bound on the number
of binary rich words, namely Ry(n) > %7 where p(n) is a polynomial and the
constant C' ~ 37. On the other hand, the best known upper bound is exponential.
As mentioned in [9], a calculation performed recently by M. Rubinchik provides
the upper bound Ry(n) < ¢1.605™ for some constant ¢, see [11].

Our main result stated as Theorem 10 shows that Ry(n) has a subexponential

growth on any alphabet. More precisely, we prove that

lim {/Rq(n)=1.

n—oo
In [14], Shur calls languages with the above property small. Our result is an
argument in favor of a conjecture formulated in [9] saying that for some infinitely
growing function g(n) the following holds true Ry(n) = O(%)

To derive our result we consider a specific factorization of a rich word into dis-
tinct rich palindromes, here called UPS-factorization (Unioccurrent Palindromic
Suffix factorization), see Definition 2. Let us mention that another palindromic
factorizations have already been studied, see [3,7]: Minimal (minimal number
of palindromes), mazimal (every palindrome cannot be extended on the given
position) and diverse (all palindromes are distinct). Note that only the minimal
palindromic factorization has to exist for every word.

The article is organized as follows: Sect. 2 recalls notation and known results.
In Sect. 3 we study a relevant property of UPS-factorization. The last section is
devoted to the proof of our main result.

2 Preliminaries

Let us start with a couple of definitions: Let A be an alphabet of ¢ letters,
where ¢ > 1 and ¢ € N (N denotes the set of nonnegative integers). A finite
sequence ujus - - - U, with u; € A is a finite word. Its length is n and is denoted
|uius - - u,| = n. Let A™ denote the set of words of length n. We define that A°
contains just the empty word. It is clear that the size of A™ is equal to ¢".
Given u = ujug---u, € A” and v = Vv --- v, € AF with 0 < k < n, we say
that v is a factor of w if there exists ¢ such that 0 <4, i+ k <n and u;41 = v1,
Ui+2 = V25 - oy Uitk = Vk-

A word u = uyug - - - uy, is called a palindrome if uius -« Uy = UpUp_1 - - Uz.
The empty word is considered to be a palindrome and a factor of any word.

A word u of length n is called rich if u has n+1 distinct palindromic factors.
Clearly, © = ujus - --u, is rich if and only if its reversal upu,—1---u; is rich
as well.

Any factor of a rich word is rich as well, see [8]. In other words, the language
of rich words is factorial. In particular it means that Ry(n)R4(m) < Rq(n + m)
for any m,n,q € N. Therefore, the Fekete’s lemma implies existence of the limit
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of {/R4(n) and moreover

lim {/ Ry(n) = inf { Y/ Ry(n):n e N}.

For a fixed ng, one can find the number of all rich words of length ny and obtain
an upper bound on the limit. Using a computer Rubinchik counted Ry(n) for
n < 60, (see the sequence A216264 in OEIS). As %/R5(60) < 1.605, he obtained
the upper bound given in Introduction.

As shown in [8], any rich word u over an alphabet A is richly prolongable,
i.e., there exist letters a,b € A such that aub is also rich. Thus a rich word
is a factor of an arbitrarily long rich word. But the question whether two rich
words can appear simultaneously as factors of a longer rich word may have a
negative answer. It means that the language of rich words is not recurrent. This
fact makes the enumeration of rich words hard.

3 Factorization of Rich Words into Rich Palindromes

Let us recall one important property of rich words [6, Definition 4 and Proposi-
tion 3]: The longest palindromic suffix of a rich word w has exactly one occurrence
in w (we say that the longest palindromic suffix of w is unioccurrent in w). It
implies that w = w™MWw,, where wy is a palindrome which is not a factor of w).
Since every factor of a rich word is a rich word as well, it follows that w(®) is
a rich word and thus w®) = w<2)w2, where ws is a palindrome which is not a
factor of w®). Obviously w; # ws. We can repeat the process until w® is the
empty word for some p € N, p > 1. We express these ideas by the following
lemma:

Lemma 1. Let w be a rich word. There exist distinct non-empty palindromes
Wy, Wy, ..., w, such that

W = WpWp—_1 - - - wowy and wy is the longest palindromic suffic of

wpwp—1---w; fori=1,2,....p. (1)

Definition 2. We define UPS-factorization (Unioccurrent Palindromic Suffiz
factorization) to be the factorization of a rich word w into the form (1).

Since the w; in the factorization (1) are non-empty, it is clear that p < n =
|w|. From the fact that the palindromes w; in the factorization (1) are distinct
we can derive a better upper bound on p. The aim of this section is to prove the
following theorem:

Theorem 3. There is a constant ¢ > 1 such that for any rich word w of length
n the number p of palindromes in the UPS-factorization of w = wpwp_1 - - - waw
satisfies

p<c—. (2)
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Before proving the theorem, we show two auxiliary lemmas:

Lemma 4. Let q,n,t € N such that

t
> il > n. (3)
1=1

The number p of palindromes in the UPS-factorization w = wpwp_1 - - - wawy of
any rich word w with n = |w| satisfies

t
p < Zq(%] (4)
i=1

Proof. Let f1, f2, f3,... be an infinite sequence of all non-empty palindromes
over an alphabet A with ¢ = |A| letters, where the palindromes are
ordered in such a way that ¢ < j implies that |f;| < |f;]. Therefore, the
palindromes fi,..., f; are of length 1, the palindromes fqi1,..., foq are of
length 2, etc. Since wi,...,w, are distinct non-empty palindromes we have

P_L1fil < 3P lwi| = n. The number of palindromes of length i over the

alphabet A with ¢ letters is equal to qF%T (just consider that the “first half”
of a palindrome determines its second half). The number 25:1 iq'31 equals the
length of a word obtained as concatenation of all palindromes of length less than
or equal to t. Since Y-, |fi| <n < 3i_ 4q3], it follows that the number of
palindromes p is less than or equal to the number of all palindromes of length
at most ¢; this explains the inequality (4).

Lemma 5. Let N € N, z € R, z > 1 such that N(z — 1) > 2. We have

NzN N NaN
<Y it < . (5)
2(x—1) P (x—1)
Proof. The sum of the first N terms of a geometric series with the quotient x is
. N+1
equal to Zivzl == ;71_ L. Taking the derivative of this formula with respect

to « with > 1 we obtain: Zf\;l izt = %# = ]Xfi] + % It
follows that the right inequality of (5) holds for all N € N and = > 1. The
condition N(z — 1) > 2 implies that $N(2 — 1) < N(2z — 1) — 1, which explains

the left inequality of (5).

We can start the proof of Theorem 3:

Proof (Proof of Theorem 3). Let t € N be a minimal nonnegative integer such
that the inequality (3) in Lemma 4 holds. It means that:

n>§iqﬂiﬂ >t liq% —qéiiq% > (t—1)q2 (6)
= = = 1 )
i=1 i=1 i=1 2(qz = 1)
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where for the last inequality we exploited (5) with N =¢—1 and z = q%, If
q > 9, then the condition N(z — 1) = (t — 1)(¢2 — 1) > 2 is fulfilled (it is the
condition from Lemma 5) for any ¢ > 2. Hence let us suppose that ¢ > 9 and
t > 2. From (6) we obtain:

Sl

q 2n in
T < —<—.
q§—1 t—1 t

(M)

it+1

Since t is such that the inequality (3) holds and ¢ < ¢"2 for any ¢ € N and
q > 2, we can write:

<t-i§1<t ¢+1_2qt*1< ¢ b 2t 8
n,;w ,;q ¢ TS s (8)

We apply the logarithm on the previous inequality:
Inn < 2tlng. (9)

An upper bound on the number of palindromes p in UPS-factorization follows
from (4), (7), and (9):

IN

t t t

i i 2 4n 3 n

< 31 < e 397 870 < 38Ing. 10
p_;:lq _;:1(1 q . <q < ¢*8lngy— (10)

[
~

The previous inequality requires that ¢ > 9 and ¢ > 2. If £ = 1 then we can easily
derive from (3) that n < ¢ and consequently p < n < ¢. Thus the inequality p <
q%S In g% holds as well for this case. Since every rich word over an alphabet with
the cardinality ¢ < 9 is also a rich word over the alphabet with the cardinality 9,
the estimate (2) in Theorem 3 holds if we set the constant ¢ as follows: ¢ =
3 3
max{8¢2 Ing,8-92 In9}.
Remark 6. Note that in [12] it is shown that most of palindromic factors of a

random word of length n are of length close to In(n) (compare to Theorem 3).

4 Rich Words Form a Small Language

Recall the definition of a small language; the aim of this section is to show that
the set of rich words forms a small language, see Theorem 10.

We present a recurrent inequality for Rq(n). To ease our notation we omit
the specification of the cardinality of alphabet and write R(n) instead of Ry(n).

Let us define n
o= [e ],
Inn

where c is the constant from Theorem 3 and n > 2.
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Theorem 7. Ifn > 2, then

Kn

ny N9 Tp
3 a)eqE)-eqE) w
N1,M2,...,Mp>1
n1+n2+ +np=n
Proof. Given p,ni,ng,...,ny, let R(n1,na,...,n,) denote the number of rich
words with UPS-factorization w = wpwp—1... w1, where |w;] = n; for
i=1,2,...,p. Note that any palindrome w; is uniquely determined by its prefix
of length [%:]; obviously this prefix is rich. Hence the number of words that
appear in the UPS-factorization as w; cannot be larger than R([%1). It follows
that R(n1,nz,...,np) < R([B1R([%])... R([%2]). The sum of this result
over all possible p (see Theorem 3) and ny,no, ..., n, completes the proof.

Proposition 8. Let h > 1, K > 1 and 5, = O (IL) If I'(n) is a sequence of
positive integers such that I'(n) < K% h i (;—") then lim /T'(n) < V.

Bn

Proof. For any constant o we have lim o =1, Moreover, lim (L> =1,
n—oo n—oo Bn

n+8n Bn . .
Let us suppose that I'(n) = K@h 7 (%) . Using these two equalities
Bn

we obtain lim K% p™5" (%)T = lim h3h% = Vh. Since Y/ I'(n) <

n—oo s n n—oo
K55 (52) 7, we conelude that lim ¢/T(n) < V.
" n— o0

Next, we show that R(n) satisfies the conditions of Proposition 8 with 3,, = k.

Proposition 9. Ifh > 1 and K > 1, then R(n) < K h™%* (ﬂ)”".

Kn

Proof. For any integers p,n1,...,n, > 1, the assumption 1mphes that R([%-1)

R([%))---R([%2]) < K”h ”lh"%“mh"”% < KPh™3". Using (11) we
obtain:
R(n) < K*»h™™" Z > 1. (12)
p=1 nina,..np>1
n1+ng+-4np=n
The sum

o Z 1

ni+nz+-+np=n
n1,M2,...,np>1
can be interpreted as the number of ways how to distribute n coins between p
people in such a way that everyone has at least one coin. That is why S,, = (Zj)
It is known (see Appendix for a proof) that

L L
Z (N) < (%) , forany L, N € Z* and L < N. (13)

- v)
1=0

From (12) we can write: R(n) < K"nh nten (ﬂ) "

Kn
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The main theorem of this article is a simple consequence of the previous
proposition.

Theorem 10. Let R(n) denote the number of rich words of length n over an
alphabet with q letters. We have lim {/R(n) = 1.

Proof. Let us suppose that lim,, o {/R(n) = A > 1. Let ¢ > 0 be such that
A+ € < A2. The definition of a limit implies that there is ng such that {/R(n) <
A+e for any n > ng, i.e. R(n) < (A+¢€)™. Let K = max{R(1), R(2),...,R(no)}.
It holds for any n € N that R(n) < K (X + €)". Using Propositions 8 and 9 we
obtain nlinolo {/R(n) < v/A+ e < A, and this is a contradiction to our assumption

that lim {/R(n) = A > 1, it follows that A = 1 (obviously A > 1 since it holds
n—oo

that R(n+1) > R(n) > 1 for all n > 0).
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Appendix
For the reader’s convenience, we provide a proof of the well-known inequality we

used in the proof of Proposition 9.

Lemma 11. 25:0 ) < (%)L, where L < N and L,N € Z" (Z* denotes
the set of positive integers).

Proof. Consider = € (0,1]. The binomial theorem states that

N

1+ =" (]Z)xk > kZLO (Z)mk

k=0
By dividing by the factor 2¥ we obtain
XL: N L < (1 +a)N
k - ozl
k=0
Since x € (0,1] and k — L <0, then z*~% > 1, it follows that
LN (14a)N
3 (V) < et
k zL
k=0

Let us substitute z = % € (0,1] and let us use the inequality 1 + = < €%, that
holds for all z > 0:

(1+az)Y N ewN eN\ "
I S T (I :
z o (§)
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UPPER BOUND FOR PALINDROMIC AND FACTOR
COMPLEXITY OF RICH WORDS*

JOSEF RUKAVICKA!

Abstract. A finite word w of length n contains at most n+ 1 distinct
palindromic factors. If the bound n+1 is attained, the word w is called
rich. An infinite word w is called rich if every finite factor of w is rich.
Let w be a word (finite or infinite) over an alphabet with ¢ > 1
letters, let Fac,, (n) be the set of factors of length n of the word w, and
let Pal,, (n) C Facy,(n) be the set of palindromic factors of length n of
the word w.
‘We present several upper bounds for | Fac,,(n)| and | Pal, (n)|, where
w is a rich word. Let § = m In particular we show that
| Fac, (n)| < (4¢%n)° ™2 +2,
In 2007, Balazi, Masakova, and Pelantova showed that
| Paly (n)| + | Palw(n + 1)| < |Facy(n + 1)| — | Facw(n)| + 2,

where w is an infinite word whose set of factors is closed under reversal.
We prove this inequality for every finite word v with |v| > n + 1 and
Fac,(n + 1) closed under reversal.

1991 Mathematics Subject Classification. 68R15.

1. INTRODUCTION

The field of combinatorics on words includes the study of palindromes and
rich words. In recent years there have appeared several articles concerning this
topic [3,5,8,17]. Recall that a palindrome is a word that is equal to its reversal,
such as “noon” and “level”. A word is called rich if it contains the maximal number

* Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech
Technical University in Prague.
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of palindromic factors. It is known that a word of length n can contain at most
n+1 palindromic factors, including the empty word [8]. An infinite word w is rich
if every finite factor of w is rich.

Rich words possess various properties; see, for instance, [4,7,9]. We will use
two of them. The first uses the notion of a complete return. Given a word w and a
factor r of w, we call the factor r a complete return to u in w if r contains exactly
two occurrences of u, one as a prefix and one as a suffix. A property of rich words
is that all complete returns to any palindromic factor » in w are palindromes [9].

The second property of rich words that we use says that a factor r of a rich
word w is uniquely determined by its longest palindromic prefix and its longest
palindromic suffix [7]. Some generalizations of this property may be found in [12].

In the current article we present upper bounds for the palindromic and factor
complexity of rich words. In other words, this means that we derive upper bounds
for the number of palindromes and factors of given length in a rich word w. There
are already some related results; see below.

We start with some results that hold for arbitrary (not only rich) words.

Let us define Fac,(n) to be the set of factors of length n of the word w,
let Pal,,(n) be the set of palindromic factors of length n of w, and let Fac,, =
U;>0 Facw(f), where w is a finite or infinite word. Let w? denote the reversal
of w = wyws - - - wyp_ 1wy, where w; are letters; formally w’ = wpw,_1 - - wow;.
We say that a set S of finite words is closed under reversal if w € S implies that
wl e S.

It is clear that | Pal,, (n)| < | Fac,(n)|. Some less obvious inequalities are known.
One of the interesting inequalities is the following one [2,4]. If w is an infinite word
with Fac,, closed under reversal then

| Pal,(n)| + | Pal(w,n + 1)| < |Facy(n + 1) — | Fac, (n)| + 2. (1)

In [2| the authors proved the inequality (1) for uniformly recurrent words, but
in the proof only “recurrent” is applied. It is known that if Fac,, is closed under
reversal, then w is recurrent [6, Proposition 2.2]. In Section 3 we generalize (1)
for every finite word v with Fac,(n + 1) closed under reversal, which allows us to
improve our upper bound from Section 2 for the factor complexity of finite rich
words.

In [1], another inequality has been proven for infinite non-ultimately periodic
words: | Pal,,(n)] < 18| Fac,(n + [2])].

In [14], the authors show that a random word of length n contains, on expec-
tation, ©(y/n) distinct palindromic factors.

Now, let us focus on rich words.

Let II(n) denote the number of rich words of length n. If w is a rich word then
obviously | Fac,(n)| < II(n). Hence the number of rich words forms the upper
bound for the palindromic and factor complexity of rich words. The number of
rich words was investigated in [19], where the author gives a recursive lower bound
on the number of rich words of length n, and an upper bound on the number of
binary rich words. Better results can be found in [10]. The authors of [10] construct
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for each n a large set of rich words of length n. Their construction gives, currently,
the best lower bound on the number of binary rich words, namely

TN (2)

where p(n) is a polynomial and the constant C =~ 37.

Every factor of a rich word is also rich [9]. In other words, the language of rich
words is factorial. In particular, this means that II(n)II(m) > II(n + m) for all
m,n € N. Therefore, Fekete’s lemma implies the existence of the limit of {/II(n),
and moreover [10]:

nlgr;o VII(n) = inf{ VII(n): n e N} .
For a fixed ng, one can find the number of all rich words of length ny and obtain an
upper bound on the limit. Using a computer Rubinchik counted II(n) for n < 60;
see the sequence https://oeis.org/A216264. As %/II(60) < 1.605, he obtained
an upper bound for the binary alphabet: II(n) < ¢1.605™ for some constant c [10].

In [15], the author shows that II(n) has a subexponential growth on every finite
alphabet. Formally nlgrolo {/II(n) = 1. This result is an argument in favor of a

conjecture formulated in [10] saying that for some infinitely growing function g(n)
the following holds for a binary alphabet:

n \vre
I(n) = 0(@) .

As already mentioned, we construct upper bounds for palindromic and factor
complexity of rich words. The proof uses the following idea. Let u be a palindromic
factor of a rich word w on the alphabet A, such that aub is factor of w, where
a,b € Aand a # b. Let Ipp(w) and lps(w) denote the longest palindromic prefix
and suffix of w respectively. Then lpp(aub) and lps(aub) uniquely determine the
factor aub in w [7]. Let Ipps(w) denote the longest proper palindromic suffix of w.
We show that a, b and lpps(u) also uniquely determine aub. In addition, we observe
that either |lpps(u)| < %|u| or u contains a palindromic factor @ that uniquely
determines u and |u| < |u|. We obtain a “short” palindrome and letters a, b that
uniquely determine the “long” palindrome w in the case when aub is a factor of w.
In these “short” palindromes there are again other “shorter” palindromes, and so
on. As a consequence we present an upper bound for the number of factors of the
form aub with |aub| = n. The property of rich words that all complete returns
to any palindromic factor u in w are palindromes [9] allows us to prove that if w
contains the factors zuz and yuy, where z,y € A and z # y, then w must contain
a factor of the form aub, where a,b € A and a # b. This property demonstrates
the relation between the factors aub and palindromic factors xuxz. Due to this we
derive an upper bound for the palindromic complexity of rich words. With the
upper bound for palindromic complexity, the property that each factor is uniquely
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determined by its longest palindromic prefix and suffix [7], and the inequality (1)
we obtain several upper bounds on palindromic and factor complexity. The main
result of the current article is the following theorem.

Theorem 1.1. If § = m, w is a finite or infinite rich word over an
alphabet with q > 1 letters, and n is a positive integer then

‘ Fan(n)‘ < (4q2n)61n 2n+2.

The main result is a quasi-polynomial upper bound for factor complexity of rich
words. This is much less than the lower bound on the number of rich words; recall
(2). Thus an infinite rich word can contain only a small share of all finite rich words.
This contrasts with power-free languages, where an infinite word can contain all
extendable finite words with the same power-freeness restriction [13, 16, 18].

2. PALINDROMIC AND FACTOR COMPLEXITY OF RICH WORDS

Consider an alphabet A with ¢ letters, where ¢ > 1. Let AT = Uj>0 AJ denote

the set of all nonempty words over A, where A7 is the set of words of length 7.
Let € denote the empty word, let A* = A+ U {e}, and let

A% = {wywows --- | w; € A and i > 0}

be the set of infinite words.

Let R, C A" be the set of rich words of length n > 0. Let R = Uj>0 R; and
R* = RT U {e}. In addition, we define R® C A to be the set of infinite rich
words. Let R = Rt U R*.

Let Ips(w) and lpp(w) be the longest palindromic suffix and the longest palin-
dromic prefix of a word w € A* respectively. Additionally, we introduce lpps(w) to
be the longest proper palindromic suffix and Ippp(w) to be the longest proper palin-
dromic prefix, where |w| > 1; proper means that Ipps(w) # w and lppp(w) # w.
For a word w with |w| <1 we define lppp(w) = lpps(w) = e.

Let w = wiwsy---w, be a word, where w; € A. We define w[i] = w; and
wli, j] = wyw;q1 - wj, where 0 <4 < j < n.

Moreover we define the following notation:

e P, C A™: the set of palindromes of length n > 0.
P = Uj>o Py (the set of all nonempty palindromes).
Fac,,: the set of factors of the word w € A* U A,
Fac,(n) = {u | u € Fac,, and |u] =n} (the set of factors of length n).
Pal,, = (PT U{¢}) N Fac,, (the set of palindromic factors).
Pal,,(n) = Fac,,(n) NP, (the set of palindromic factors of length n).

Definition 2.1. Let trim(w) = w2, |w| — 1], where w € A* and |w| > 2. For
|w| < 2 we define trim(w) = €. If S is a set of words, then

trim(S) = {trim(v) | v € S}.
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Remark 2.2. The function trim(w) removes the first and last letter from w.
Ezample 2.3. Suppose that A = {0,1,2,3,4,5}.
e trim(01123501) = 112350.
o trim({12213,112,2,344}) = {221,1,¢,4}.
We will deal a lot with the words of the form aub, where u is a palindrome and
a, b are distinct letters. Hence we introduce some more notation for them.

Definition 2.4. Given w € R and n > 2, let

Swy,(n) = {aub | aub € Fac,(n) and u € Pal,(n — 2)
and a,b € A and a # b}.
If n < 2 then we define Sw.,(0) = Swy, (1) = Swy,(2) = 0.
Let Swiy(n) = Uyubeswa (n) 1 (8 @), (u,0)}, where a,b € A. Let aub € Swy,(n),

where a,b € A. We call the word aub a u-switch of w. Alternatively we say that
w contains a u-switch.

Remark 2.5. Note that a pair (u,a) € Sw,(n) if and only if there exists b € A
such that aub € Swy,(n) or bua € Swy,(n).

Ezample 2.6. If A ={0,1,2,3,4,5,6} and
w = 5112211311001131133114111146

then:

Sw,,(8) = {51122113,31133114, 14111146}

trim(Sw,,(8)) = {112211, 113311, 411114}.

Sw,(8) = {(112211,3), (112211, 5), (113311, 3), (113311, 4),

(411114, 1), (411114, 6)}.

e w does not contain 110011-switch. Formally 110011 ¢ trim(Sw,,(8)).

Remark 2.7. The idea of a u-switch is inspired by the next lemma. If a rich word
w contains palindromes aua, bub, where a,b € A, a # b, and |aua| = |bub| = n,
then w contains a u-switch of length n. The u-switch “switches” from a to b. Note
that aua,bub € Fac,, does not imply that aub € Fac,, or bua € Fac,,. It may be,
for example, that auc, cub € Fac,,. Nonetheless (u,a), (u,b) € Swy,(n).

Lemma 2.8. Suppose w € R and suppose u € Pal,(n — 2), where n > 2. If
a,b1,by € A, {a,b1,b2}| > 1, and aua, byuby € Facy,(n) then (u,a) € Swy,(n).

Remark 2.9. The condition [{a,b1,b2}| > 1 in Lemma 2.8 means that at least one
letter is different from the others.

Proof. Let r be a factor of w such that aua is unioccurrent in r and trim(r) is a
complete return to v in w. Since aua and byuby are factors of w, it is obvious that
such r exists. Clearly there are x1,x2,y1,y2 € A such that zjuxs is a prefix of r
and yyuys is a suffix of 7. The complete return trim(r) to u is a palindrome [9].
Hence x5 = y;. Since aua is unioccurrent in r, it follows that o = y; = a, z1 # ys,
and a € {z1,y2}. In consequence we have that (u,a) € Sw,,(n). O
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To clarify the previous proof, let us consider the following two examples. For
both examples suppose that A = {1,2,3,4,5,6}.

Ezample 2.10. Let w = 321234321252126. Let aua = 32123 and byuby; = 52126.
Then r = 32123432125 and trim(r) = 212343212 is a complete return to 212.
Therefore (212,3) € Sw,,(5). Note that byubs is not a factor of r.

Ezample 2.11. Let w = 321234321252. Let aua = 32123 and zuy = bjuby =
32125. Then r = 32123432125 and trim(r) = 212343212 is a complete return to
212. Therefore (212,3) € Sw,,(5). Note that byubs is a factor of r.

We show that the number of palindromic factors and the number of u-switches
are related.

Proposition 2.12. If w € R and n > 2 then
2| Swy,(n)| + | Paly,(n — 2)| > | Pal,(n)].

Proof. Let w(w,n) = {aua|(u,a) € Sw,(n)}. Less formally said, w(w,n) is a set
of palindromes of length n such that if w contains a u-switch aub then aua, bub €
w(w,n). Obviously we have that

|w(w, n)| < 2[Swy(n)]. ®3)

Let
Pal,,(n) = {v | v € Pal,(n) and trim(v) € trim(Sw.,(n))}
and
Pélm(n) = {v | v € Pal,(n) and trim(v) € trim(Sw,,(n))}.
Obviously Pal,, (n) = Paly(n) U Pal,(n) and Paly(n) N Pal,(n) = 0. It follows
that
[Falu ()] + [Pl (n)] = | Palu(n). )
Suppose v € Pal,,(n) and let u = trim(v).

)
e If v € Pal,(n) then w contains a u-switch. From Lemma 2.8 it follows
that v € w(w, n); this and (3) imply that

[Pal, (n)] < |w(w,n)| < 2| Swy(n)). (5)
e If v ¢ Pal,(n) then w does not contain a u-switch. We have that u €
Pal,,(n — 2) \ trim(Sw,,(n)). Obviously if ¢ € Pal,,(n — 2) \ trim(Sw,,(n)),
a,b € A, and w has palindromic factors ata and btb, then a = b since w

does not contain a t-switch. It follows that
|Pal,,(n)| < |Pal,(n — 2)|. (6)
The proposition follows from (4), (5), and (6). O

To clarify the previous proof, let us consider the following example.
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Ezample 2.13. If A={0,1,2,3,4,5,6,7,8} and

w = 2110112333211011454110116110116778776

then
. Sww( ) = {2110114, 4110116},
o Pal,(7) = {1233321, 2110112, 1145411, 6110116, 6778776},
e Pal,(7) = {2110112, 6110116},
o Pal,(7) = {1233321, 1145411, 6778776},
o Pal,(5) = {23332, 11011, 14541, 77877},
o 2|Sw,(7)| + | Pal,(5)| > | Pal,(7)|, and
o 4+4>5.

In the next proposition we show that if a,b are different letters and aub is a
switch of a rich word w then the longest proper palindromic suffix 7 of u and the
letters a, b uniquely determine the palindromic factor u € Pal,,.

Proposition 2.14. If w € R, u,v € Pal,, lpps(u) = lpps(v), a,b € A, a # b, and
aub, avb € Fac,, then u =wv.

Proof. 1t is known that if r,¢ are two factors of a rich word w and lps(r) =
Ips(t) and lpp(r) = lpp(¢), then r = ¢ [7]. We will identify a wu-switch by the
longest proper palindromic suffix of w and two distinct letters a,b instead of by
the functions Ips and Ipp.

Given a u-switch aub where a # b, a,b € A, we know that lps(aub) and lpp(aub)
uniquely determine the factor aub in w. We will prove that for given a,b € A,
a # b, n > 0, and a palindrome r there is at most one palindrome u € Pal,, such
that lpps(u) = r and aub € Swy,(|aub|).

Suppose, to get a contradiction, that there are u,v € Pal,, u # v, a,b € A,
a # b such that lps(aub) = bpb, lps(avd) = bsb, lpp(audb) = azxa, lpp(avd) = aya,
Ipps(u) = Ipps(v) = r, and aub, avb € Uj>0 Sw., (7). This implies that p, s, z,y are
prefixes of r. Thus if « # y, then |z| # |y|. Without loss of generality, let |z| < |y].
Since y is a prefix of r, either ya is a prefix of » or r = y. Consequently aya is a
prefix of both aub and avb, and this contradicts the assumption that lpp(aub) =
aza; aya is a prefix of aub and |aya| > |azal. Analogously if p # s. It follows that
z =y and p = s. Therefore Ipp(aub) = lpp(avbd) and lps(audb) = lps(avb), which
would imply that u = v, which is a contradiction.

Hence we conclude that a,b € A, a # b, and a palindrome r determine at most
one palindrome u € Pal,, such that Ipps(u) = r and u € trim(Swy,(|u| +2)). O

In the following we derive an upper bound for the number of u-switches. We
need one more definition to be able to partition the set Sw,,(n) into subsets based
on the longest proper palindromic suffix.

Definition 2.15. Givenw € R, r € R* and n > 0, let

Tw(n,r) ={u|u € Swy(n) and lpps(trim(u)) = r}.
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Remark 2.16. The set Y., (n,r) contains switches avb of length n of the word w
such that the longest proper palindromic suffix of v equals to r, where a,b are
letters. Obviously U,.cpa, Yw(n,r) = Swy(n) and Ty (n,r) N Ty(n,7) = 0 if
r#ET.

A simple corollary of the previous proposition is that the size of the set T, (n, )
is limited by the constant g(q — 1). Recall that g is the size of the alphabet A.

Corollary 2.17. If w,r € R and n > 0 then | Y, (n,7)| < ¢(q — 1).
Proof. From Proposition 2.14 it follows that

Cu(n.r)] < [{(a.b) | a,be A and a # b}| = qlg — 1).

In other words, |Y,,(n, )| is equal or smaller that the number of pairs of distinct
letters (a,b). O

We define T',(n) = max{| Sw,,(i)| | 0 <i < n}, where w € R and n > 0.
Furthermore we define I'y,(n) = max{q, ', (n)}.

Remark 2.18. We defined I',(n) as the maximum from the set of sizes of Swy, (i),
where 0 < ¢ < n. In addition, we defined that T'y,(n) > ¢. This is just for
practical reason to make the formulas easier; since we look for upper bounds, this
simplification is justified. The function I',,(n) will allow us to present another
relation between the number of palindromic factors of length n and the number of
u-switches without using Pal,, (n — 2).

Lemma 2.19. If w € R and n > 0 then
nl'y(n) > | Pal,(n)|.

Proof. We define two functions ¢ and ¢ as follows. If n is even then @(n) = 2,
otherwise ¢(n) = 1. Let ¢(n) = {2+ ¢(n),4 + ¢(n),...,n}. For example $(8) =
{4,6,8} and ¢(9) = {3,5,7,9}.

Proposition 2.12 states that

2| Swuy(n)| + | Paly (n — 2)| > [ Paly (n)]. (7)
It follows that
2| Swy(n — 2)| + | Pal,(n — 4)| > | Paly,(n — 2)|. (8)
From (7) and (8):
2| Swy, (n)] + 2| Swyy (n — 2)| + Pal,(n — 4)| > | Pal,(n)]. 9)

In general (7) implies that

2| Swy, (n — )| + | Paly, (n — 2i)| > | Pal,(n — ). (10)
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Then by iterative applying of (10) to (9) we obtain that

> 2[Swu(5)] + | Paly(6(n))] > | Paly(n)| (11)
JEP(n)

We have that |Pal, (¢(n))| < ¢; just consider that | Pal,(¢(n))| is the number
of palindromes of length 1 or 2. Recall that I'y,(n) > |Swy,(j)| for 2 < j < n and
realize that |¢(n)| < 252. Tt follows from (11) that (n — 1)T'y(n) +¢ > | Pal,(n)|.
It is easy to see that nI'y,(n) > (n — 1)’y (n) + g for n > 0, since T',,(n) > ¢. This
completes the proof. O

We will need to cope with the longest proper palindromic suffixes that are “too
long”. We show that if the longest proper palindromic suffix lpps(v) is longer the
half of the length of v, then v contains a “short” palindromic factor, that uniquely
determines v. We will use the two following lemmas from [11]:

Lemma 2.20. (see [11, Lemma 1]) Suppose p is a period of a nonempty palin-
drome w; then there are palindromes a and b such that |ab] = p, b # €, and
w = (ab)ia for some non-negative integer j.

Lemma 2.21. (see [11, Lemma 2]) Suppose w is a palindrome and u is its proper
suffiz-palindrome or prefiz-palindrome; then the number |w| — |u| is a period of w.

Let u,v € PT such that v is a suffix of v and |u| < |v|. Lemma 2.21 implies
that v is periodic with period p = |v| — |u|. Lemma 2.20 implies that there are
palindromes a, b such that b is nonempty and p = |ab| and v = (ab)?a for some
non-negative integer j. We define p(u,v) = (a,b) and p(u,v) = aba € PT.

The next lemma is an obvious consequence of Lemma 2.20 and Lemma, 2.21. It
says that v is uniquely determined by the palindrome p(u,v) and by the lengths
of v and v.

Lemma 2.22. If uy,uz,v1,v2 € PT, |vg| = |val, [u1| = |ual, Ju1| < |vi], w1 is a
suffiz of v1, ug is a suffic of ve, and p(u1,v1) = p(ug,vs) then v1 = ve.

Proof. Let p(u1,v1) = (a1,b1) and let p(ug,v2) = (az,b2). Let p = |v1]| — |uz| =
|vg| — |uz|. Since p(ur,v1) = p(uz,v2), from Lemma 2.20 and Lemma 2.21 we have
that p= \a1b1| = |(12b2‘. Also it follows that Clel = a2b2 and a1b1a1 = agb2a2. In
consequence we get that a; = ag and by = be. This ends the proof. O

In the next lemma we consider a palindromic suffix u of a palindrome v, which
is longer than the half of v. For this case we show an upper bound for the length
of the palindrome p(u, v).

Lemma 2.23. If u,v € PT, u is a suffiv of v, and $|v| < |u| < |v| then

p(u,0) < 121,

Proof. Let (a,b) = p(u,v). It is easy to verify that 1|v| < |u| < |v| implies that
j > 2, where v = (ab)’a.



10 TITLE WILL BE SET BY THE PUBLISHER

Let ¢ be a positive real constant such that |aba| = c|(ab)’a|. For given a,b it is
clear that c¢ decreases as j increases. Since j > 1 it follows that ¢ is maximal for

. . labal _ 2]a|+]|b]
j=2. Thus ¢ < Tababal = 3lal+20]" The lemma follows. d

We derive an upper bound for the number of u-switches.

Proposition 2.24. If w € R and n > 2 then

Fu(o) < 2025 Tu(151).

Proof. We partition the set Sw,,(n) into sets A,(w,n), Ajpps(w, n) as follows. Let
avb € Swy(n) be a v-switch, where a,b € A. If |v| < |lpps(v)| then avb €
A, (w,n) otherwise avb € Ajpps(w,n). Obviously A, (w,n) N Ajpps(w,n) = 0 and

Swy(n) = Ap(w,n) U Apps(w, n). (12)

Let us investigate the sizes of A,(w,n) and Ajpps(w, n).

o If avb € A,(w,n) then let u = lpps(v). We have that p(u,v), |u|, and
|v] uniquely determine the palindrome v; see Lemma 2.22. In addition,
lp(u,v)| < ]’%ﬂ"\, see Lemma 2.23. Realize that |[v| = n — 2; then the
number of all palindromic factors of w of length < [@'\ multiplied by
[252] (the number of different values of |u|) must be bigger or equal to
the size of trim(A,(w,n)). Realize that the set trim(A,(w,n)) contains
palindromes of length n — 2. Since (@] < [ 2] we have that

2n
o H)

[ trim (A (w,m))| < [=5=1 D | Palu(5)]- (13)

Jj=1

Since a, b are distinct letters it follows that
|Ap(w,n))| < q(g — )| trim(A, (w, n))|. (14)
o If avb € Apps(w,n) then |Ipps(v)| < i|v| = 252, Obviously we have that
Ajpps(w,n) = U Y. (n,r), where S = {r | r € Pal,, and |r| < %72} (15)
res
Since [%52] < [ 2] we have from Corollary 2.17 and (15) that

3]
[Aipps| < qlg—1) }  [Paly(4)]- (16)
j=1

[NE
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It follows from (12), (13), (14), and (16) that

122)
Z | Pal,, (5 (17)

[Swi(n)] < 2¢(g —1)f

From Lemma 2.19 we know that |Pal,(j)| < jTw(j). Therefore we have that

L5 5 2n 2n 2n
j=1 j=1

To simplify the formulas, we apply that ¢(¢ — 1) < ¢% and that [”T_Q] < 27" From
(17) and (18):

2n 2n

S w < 2 Fw o

Swam)] < 202y (2

From Definition of I'y,(n) and (19) we get that

)- (19)

2n
).

This ends the proof. d

'y (n) = max{g, max{| Sw,(j)| | 0 < j < n}} < 2¢> ( 3 )51" (=

We will need the following lemma in the proof of Corollary 2.26.

Lemma 2.25. If 3 > 1 is a real constant then [[" < nzllTﬂ, where k = |12 |,

j=1 ﬁj Inp
Proof.
"no o onnon n o n nk 20
— ... B L
J il e e T 20

We have that

k
16 =p628° - 815 = pimd = p=57 (21)
j=1
k n nk n g
Then from (20) and (21): []75, & < itz = puc .
Since gF+1 > n:
k
k nn
(%) < (%) = (n%)k < n2%s . This completes the proof. a
B =2 n2
In order to simplify the notation let o = ; and let 6 = 21na = m

Based on Proposition 2.24 we will derive a non- recurrent upper bound for ', (n).

Corollary 2.26. If w € R, and n > 2 then

Tw(n) < q(2¢*n)o1m™,
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Proof. Proposition 2.24 states that

Lu(n) < 26%(2) Lo (=), (22)

VZEJJ = [/ﬁnﬁzJ ’

where /31, B2 > 1 are real constants. Then the inequality (22) implies that

Note that

n n n

—]) < 2(]2(W)3FM(LWJ)~ (23)

Lo \_ Y

From (22) and (23):
Tu(n) < 272N 2) < 22502035 Tu(l 25 ) <
20°(5)20%( 2502025 Tu(l 5 ) < -+ <

(24)
Lixa n
2 3
I1 2¢°(;)° | Tw(@)
j=1
Realize that "
———>1land ——— <1.
ollzy =7 M0 (e =
Knowing that I',,(2) = ¢ and using Lemma 2.25 we obtain from (24):
Inn Inn 3 3lnn
I'y(n) < (2¢%)m= <nm> I'w(2) < q(2¢°n) 2=,
This ends the proof. d

From Lemma 2.19 and Corollary 2.26 it follows easily:
Corollary 2.27. If w € R and n > 0 then

| Pal,,(n)| < ng(2¢*n)®™".

Remark 2.28. Although Corollary 2.26 requires n > 2, it is easy to verify that
Corollary 2.27 holds also for n = {1,2}. That is why we define n > 0 in Corollary
2.27.

We can simply apply the upper bound for the palindromic complexity to con-
struct an upper bound for the factor complexity:

Corollary 2.29. If w € R and n > 0 then

| Facy, (n)] < ntq?(2¢°n)2™n,
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Proof. We apply again the property of rich words that every factor is determined
by its longest palindromic prefix and its longest palindromic suffix [7]. If there are
at most ¢ palindromic factors in w of length < n, then clearly there can be at most
#2 different factors of length n. Let Pal, (k) = max{| Pal,(j)| | 0 < j < k}. From
Corollary 2.27 we can deduce that

t< Z | Pal,, (i)] < nPaly,(n) < n?q(2¢>n)'8".
i=1

The corollary follows. O

3. RICH WORDS CLOSED UNDER REVERSAL

We can improve our upper bound for the factor complexity if we use the in-
equality (1). This inequality was shown for infinite words whose set of factors is
closed under reversal. The next lemma and proposition generalize the existing
proof for finite words w € AT with Fac,(n + 1) closed under reversal.

First we introduce an alphabet B and an infinite word x(w). Let B = AU{x,y}
be an alphabet such that z,y &€ A; it follows that |B| = |A| + 2. Given w € AT,
let k(w) = (wrwly)> € B>,

We show that x(w) preserves richness.

Lemma 3.1. If w € AT is rich then k(w) € B™ is also rich.

Proof. We have that wz is rich, because w is rich and lps(wz) = x, which is a
unioccurrent palindrome in wz and wzw® is a palindromic closure of the rich
word wx, which preserves richness [9]. As well wxw®y is rich, because y is a
unioccurrent palindrome in wzw!y. Suppose that (wxw®y)7 is rich, where j is a
positive integer. We prove that (wzwfy)i*? is rich.

We have that Ips(wzw®y)! = y(wrwPy)’~! and thus (wrwfy)wrw? is a
palindromic closure which is rich. Realize that Ips(wzwfy)?*! = y(wrwfy)’ and
y(wrwry)7 is unioccurrent in y(wrwfy)7+1. Thus y(wrwPy)I T is rich. It follows
that all prefixes of x(w) are rich. Since all factors of rich words are rich, we proved
that all factors of x(w) are rich. Consequently x(w) is rich. This completes the
proof. O

R

The following proposition generalizes the inequality (1) for finite words. It is
known that for rich infinite words whose set of factors is closed under reversal, the
inequality may be replaced with equality; this result has been proved in [6]. We
prove also the equality for finite rich words.

Proposition 3.2. If w € AT, Fac,(n + 1) is closed under reversal, |w| > n+ 1,
and n > 0 then

| Pal,,(n)| + | Pal,(n + 1)| < |Facy,(n + 1) — | Facy, (n)] + 2.
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If w is also rich then the inequality becomes equality, formally:
| Pal,, (n)| + | Pal,(n + 1)| = | Facy,(n + 1)| — | Facy, (n)] + 2.

Proof. Let t = k(w) and let k € {n,n + 1}. Clearly if Fac,(n + 1) is closed under
reversal and 7 < n that Fac,(7) is also closed under reversal. Thus we have that

Fact (k) = Facy, (k) U {uav | u,v € A* and u is a suffix of w and
v is a prefix of w® and |uzv| = k}U
{uyv | u,v € A* and u is a suffix of w® and

v is a prefix of w and |uyv| = k}.

The formula (25) says that the set of factors of ¢ having length k contains:

e the set of factors of w of length k,
e the set of factors of ¢ containing one occurrence of z, and
o the set of factors of ¢ containing one occurrence of y.

It is easy to see that there are no other factors in Fac;(k). Moreover for every

1€40,1,2,...,k — 1} there are unique u € Fac, (i) and v € Fac,,(k —¢ — 1) such
that uzv € Faci(k) (uyv € Facy(k)). It follows that

| Facy (k)| = | Facy, (k)| + 2k. (26)

Obviously ¢ contains exactly two palindromes 71,72 such that ri,79 are not

factors of w and |r1| = |re| € {n,n + 1}. In addition r; = uru®® and ry = vyo®

for some words u,v. Formally

Pal,(n 4 1) U Pal,(n) = Pal,(n + 1) U Pal,(n) U {uzu, vyof | u is a suffix of w and

v is a suffix of w™ and |uzu| = Jvyv®| € {n,n +1}}
It follows that
| Pal;(n + 1)| + | Pal;(n)| = | Pal,(n + 1)| + | Paly,(n)| + 2. (27)

Clearly Fac; is closed under reversal; realize that ¢ has infinitely many palindromic
prefixes. Consequently (1) holds for ¢. Then from (1), (26), and (27) we have that

| Pal;(n)| + | Pali(n + 1)| < |Faci(n 4 1)| — | Faci(n)| + 2
and
| Pal, (n)|+|Paly(n+1)|+2 < |Facy (n+1)|+2(n+1) — | Fac, (n)| —2n+2. (28)
It follows from (28) that

| Pal,(n)| 4+ | Paly,(n + 1)| < |Facy(n + 1)| — | Facy, (n)] + 2.
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If w is rich then Lemma 3.1 implies that ¢ is rich. Then it follows from [6], (26),
and (27) that

| Pal;(n)| + | Pali(n + 1)| = | Fact(n 4+ 1)| — | Fact(n)| + 2
and
| Paly,(n)| 4| Paly,(n+1)|+2 = | Facy, (n+1)| +2(n+1) — | Fac, (n)| —2n+2. (29)
It follows from (29) that
| Paly, (n)| 4 | Pal,(n + 1)| = | Facy(n + 1)| — | Facy, (n)] + 2.

This completes the proof. a

Based on Proposition 3.2 we can present a new relation for palindromic and
factor complexity.

Proposition 3.3. Let Pal, (k) = max{|Pal,(j)| | 0 < j < k}. Ifw € R is a rich
word such that Fac,,(n + 1) is closed under reversal, |w| > n+ 1, and n > 0, then

| Facy, (n)| < 2(n — 1)Paly(n) — 2(n — 1) +q.
Proof. Proposition 3.2 states for rich words that
| Pal,(n)| 4+ | Paly,(n + 1)] — 2 = | Facy,(n + 1)| — | Facy,(n)|- (30)

Since Fac,(n + 1) closed under reversal, we have that Fac, (i) is closed under
reversal for i < n + 1. We can sum (30) over all lengths i < n:

i(| Pal,, (¢)| + | Pal, (i + 1)| — 2) = i(| Facy, (i + 1)| — | Facy, (2)])- (31)

The sums from (31) may be expressed as follows:

n—1
Z(| Fac,, (i + 1)| — | Facy (i)]) = Facy, (2) — Facy, (1) + Facy, (3) — Facy, (2)
i=1
+Fac, (4) — Facy (3) + - - - + Facy(n — 1) — Facy, (n — 2) (32
+ Fac,(n) — Facy (n — 1) = Facy, (n) — Facy,(1).
n—1

Z(| Pal,, (i)| + | Pal, (i + 1)] — 2) < (n — 1)(Paly(n — 1) 4 Pal,(n) — 2). (33)
From (31), (32), and (33) we get:

Facy(n) — Facy (1) < (n — 1)(Paly(n — 1) + Paly,(n) — 2).
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It follows that
Facy,(n) < (n— 1)(2Paly, (n) — 2) + Fac,(1).
This can be reformulated as:
Facy(n) < 2(n — 1)Paly(n) — 2(n — 1) 4 Facy(1).
Since Fac,, (1) = ¢ it follows that
Facy,(n) < 2(n — 1)PAalw(n) —2(n—1)+gq.

This completes the proof. (]

Proposition 3.3 and Lemma 2.27 imply an improvement to our upper bound for
the factor complexity for rich words with Fac,,(n + 1) closed under reversal:

Corollary 3.4. If w € R with Fac,,(n+1) closed under reversal, |w| > n+1, and
n > 0, then:
| Facy (n)| < 2(n — 1)ng(2¢*n)’'2"™ — 2(n — 1) +q.
Since the palindromic closure of finite rich words is closed under reversal, we
can improve the upper bound for factor complexity for finite rich words.

Corollary 3.5. If w € R and n > 0 then
| Facy (n)] < 2(2n — 1)2nq(4¢%n)° 12" — 2(2n — 1) + q.

Proof. Palindromic closure @ of a word w € R preserves richness. Furthermore
Facy is closed under reversal, Fac,, C Facy, and |w]| < 2|w| [9]. Hence we can
apply Corollary 3.4, where we replace n with 2n. |

Theorem 1.1 in the introduction presents a “simple” (although a somewhat
worse) upper bound for the factor complexity. Here follows the proof.

Proof of Theorem 1.1. Note that for n > 0 we have that
2(2n — 1)2nq(4¢*n)° 2" — 2(2n — 1) + ¢ < 8n2q(4¢°n)° ™2™ < (4¢°n)° 20 +2,

The theorem follows from Corollary 3.5. O
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Abstract. A finite word w with |w| = n contains at most n 4 1 distinct
palindromic factors. If the bound n 4 1 is attained, the word w is called
rich. Let F(w) be the set of factors of the word w. It is known that
there are pairs of rich words that cannot be factors of a same rich word.
However it is an open question how to decide for a given pair of rich
words u, v if there is a rich word w such that {u,v} C F(w). We present
a response to this open question:

If w1, we,w are rich words, m = max {|wi1], |wz|}, and {wi, w2} C
F(w) then there exists also a rich word @ such that {w;,w2} C F(w)
and |@] < m2*™ 2 where k(m) = (¢ + 1)m?(4¢'°m)'°52™ and ¢ is the
size of the alphabet. Hence it is enough to check all rich words of length
equal or lower to m2F(™*2 in order to decide if there is a rich word
containing factors w1, wa.

1 Introduction

In the last years there have appeared several articles dealing with rich words;
see, for instance, [1-3,5]. Recall that a palindrome is a word that reads the same
forwards and backwards, for example “noon” and “level”. If a word w of length
n contains n + 1 distinct palindromic factors then the word w is called rich. It
is known that a word of length n can contain at most n + 1 palindromic factors
including the empty word. The notion of a rich word has been extended also to
infinite words. An infinite word is called rich if its every finite factor is rich [3,4].

Let lps(w) and lpp(w) denote the longest palindromic suffix and the longest
palindromic prefix of a word w, respectively. The authors of [1] showed the
following property of rich words:

Proposition 1. Ifr,t are two factors of a rich word w such that lps(r) = lps(t)
and lpp(r) = lpp(t), then r =t.

Two related open questions can be found:

— In [5]: Is the condition in Proposition 1 sufficient for two rich words u and v
to be factors of the same rich word?

© Springer Nature Switzerland AG 2019
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— In [3]: We do not know how to decide whether two rich words u and v are
factors of a same rich word w.

In the current article we present a response to the question from [3] in the
following form: We prove that if wq, ws, w are rich words, m = max {|w1|, |w2|},
and {wy, w2} C F(w) then there exists a rich word @ such that {wq,ws} C F(w)
and |w| < m2F(™+2 where k(m) = (¢ + 1)m?(4¢'°m)'°82™ and ¢ is the size of
the alphabet. Thus it is enough to check all rich words of length equal or lower
to m2k(m)+2 iy order to decide if there is a rich word containing factors wi, ws.
However it is a rather theoretic way how to check the existence of such a word,
since the number of words needed to be checked grows “pretty rapidly” with the
length of the factors in question.

We describe the basic ideas of the proof. If w is a rich word, then let a be
a letter such that lps(wa) = alpps(w)a, where lpps denotes the longest proper
palindromic suffix. It is known and easy to show that wa is a rich word [5, Proof
of Theorem 2.1]. Thus every rich word w can be richly extended to a word wa.
We will call wa a standard extension of w. If there is a letter b such that a #£ b
and wb is also a rich word, then we call the longest palindromic suffix of wb a
flexed palindrome; the explication of the terminology is that wb is not a standard
extension of w, hence wb is “flexed” from the standard extension. We define a set
I' of pairs of rich words (w,r), where r is a flexed palindrome of w, the longest
palindromic prefix of w does not contain the factor r, and |r| > || for each flexed
palindrome 7 of w. If (w,r) € I', wy is the prefix of w with |wq| = |r| — 1 and wy
is the suffix of w with |wy| = |r| — 1 then we construct a rich word w possessing
the following properties:

— The word wy is a prefix of w and the word ws is a suffix of w.

— The number of occurrences of 7 in w is strictly smaller than the number of
occurrences of r in w.

— The set of flexed palindromes of w is a subset of the set of flexed palindromes
of w.

Iterative applying of this construction will allow us for a given rich word w with
a prefix wy and a suffix wy to construct a rich word ¢ containing factors wy, we
and having no flexed palindrome longer than m, where m = max{|w:|, |wsz|}.

Another important, but simple, observation is that if w is a rich word with
prefix u such that the number of flexed palindromes in w is less than k£ and u
has exactly one occurrence in w then there is an upper bound for the length of
w. We show this upper bound as a function of k£ and consequently we derive an
upper bound for the length of ¢.

2 Preliminaries

Let A be a finite alphabet with ¢ = | A |. The elements of A will be called letters.
Let € denote the empty word.

Let A™ be the set of all finite words over A including the empty word and let
A™ C A" be the set of all words of length n.
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Let R C A™ denote the set of all rich words.

Let F(w) C A" denote the set of all factors of w € A*; we state explicitly that
e,w € F(w). Let F(S) = U,cg F(v), where S C A™.

Let Fp(w) C F(w) be set of all palindromic factors of w € A*.

Let Prf(w) and Suf(w) be the set of all prefixes and all suffixes of w € A*
respectively; we define that {¢,w} C Prf(w) N Suf(w).

Let w® denote the reversal of w € A*; formally if w = wiws ... w; then w
Wy ... wowy, where w; € A and i € {1,2,...,k}. In addition we define that

ERZG.

R:

Let lps(w) and lpp(w) denote the longest palindromic suffix and the longest
palindromic prefix of w € A™ respectively. We define that Ips(e) = Ipp(e) = e.
Let lpps(w) and lppp(w) denote the longest proper palindromic suffix and the
longest proper palindromic prefix of w € A* respectively, where |w| > 2.

Let trim(w) = v, where v,w € A*, z,y € A, w = zvy, and |w| > 2.

Let rtrim(w) = v, where v,w € A*, y € A, w = vy, and |w| > 1.

Let ltrim(w) = v, where v,w € A*, z € A, w = zv, and |w| > 1.

Ezample 2. If A = {1,2,3,4,5} and w = 124135, then trim(w) = 2413,
Itrim(w) = 24135, and rtrim(w) = 12413.

Let pc(w) be the palindromic closure of w € A*; formally pc(w) = uvu®, where
w = uv and v = Ips(w). Note that pc(w) is a palindrome.

Let MinLenWord(U) and MaxLenWord(U) be the shortest and the longest word
from the set U respectively, where either U C Prf(w) or U C Suf(w) for some
w € A*. If U = () then we define MinLenWord(U) = € and MaxLenWord(U) = e.

Let lep(wy,wz) be the longest common prefix of words wy,ws € A*; formally
lep(wy, way) = MaxLenWord (Prf(wy) N Prf(ws)).

Let les(wq, ws) be the longest common suffix of words wy,we € A*; formally
les(wy, we) = MaxLenWord(Suf (w;) N Suf(ws)).

Let occur(u,v) be the number of occurrences of v in u, where u,v € A* and
|v| > 0; formally occur(u,v) = [{w | w € Suf(u) and v € Prf(w)}|. We call a
factor v unioccurrent in w if occur(u,v) = 1.

Recall the notion of a complete return [2]: Given a word w and factors r,u €
F(w), we call the factor r a complete return to w in w if r contains exactly two
occurrences of u, one as a prefix and one as a suffix.

We list some known properties of rich words that we use in our article. All
of them can be found, for instance, in [2].

Proposition 3. If w,u € R, |w| > 1, |u| > 1, and u € F(w) then all complete
returns to u in w are palindromes.

Proposition 4. If w € R and p € F(w) then p,p® € R.

Proposition 5. A word w is rich if and only if every prefix p € Prf(w) has a
unioccurrent palindromic suffiz.
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3 Standard Extensions and Flexed Palindromes

We start with a formal definition of a standard extension and a flexed palindrome
introduced at the beginning of the article.

Definition 6. Let j > 0 be a nonnegative integer, w € R, and |w| > 2. We
define StdExt(w, j) as follows:

- StdExt(w,0) = w.

— StdExt(w, 1) = wa such that lps(wa) = alpps(w)a and a € A.

- StdExt(w, j) = StdExt(StdExt(w, j — 1), 1), where j > 1.

Let StdExt(w) = {StdExt(w,j) | 7 > 0}. If p € StdExt(w) then we call p a
standard extension of w.

Let T(w) = {lps(ud) | ub € Prf(w) and b € A and ub # StdExt(u,1)}. If r €
T(w) then we call r a flexed palindrome of w.

For a given rich word w € R having a flexed palindrome r we define a standard
palindromic replacement of r to be the longest palindromic suffix of a standard
extension of a prefix p of w such that lps(px) = r, where pz is a prefix of w
and x € A. The idea is that we can “replace” r with the standard palindromic
replacement.

Definition 7. Let stdPalRep(w,r) = Ips(StdExt(p,1)), where w,r € R, r €
T(w), pr € Prf(w), x € A, and lps(pz) =r.
We call stdPalRep(w, ) a standard palindromic replacement of r in w.

Ezample 8. If A = {0,1} and w = 110101100110011 then 001100 € T(w),
Ips(1101011001100) = 001100, StdExt(110101100110,1) = 1101011001101, and
stdPalRep(w, 001100) = Ips(1101011001101) = 1011001101.

We show that the length of a flexed palindrome r is less than the length of the
standard palindromic replacement stdPalRep(w, ).

Lemma 9. If uz,uy € R, z,y € A, x # y, and ux = StdExt(u,1) then
[ Ips(ux)| > [Ips(uy)|.

Proof. Let yty = lps(uy). From the definition of a standard extension we have
Ips(ux) = xvz, where v = Ipps(u) and hence t € Suf(v). Since y # x we have
also yt € Suf(v). The lemma follows.

An obvious corollary is that a flexed palindrome of w is not a prefix of w.
Corollary 10. If w,r € R and r € T(w) then r ¢ Prf(w).

In [5] the standard extension has been used to prove that each rich word w can
be extended “richly”; this means that there is a € A such that wa is rich.

Lemma 11. Ifw € R and |w| > 2 then StdExt(w) C R.
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Proof. Obviously it is enough to prove that StdExt(w,1) € R, since for every
t € StdExt(w) \ {w} there is a rich word ¢ such that ¢ = StdExt(¢, 1).

Let xpx = lps(StdExt(w, 1)), where 2 € A. Proposition 5 implies that we
need to prove that xpz is unioccurrent in StdExt(w,1). Realize that p is unioc-
current in w, hence zpz is unioccurrent in StdExt(w, 1).

To simplify the proofs of the paper we introduce a function MaxStdExt(u, v) to
be the longest prefix z of u such that z is also a standard extension of v:

Definition 12. Let MaxStdExt(u,v) = MaxLenWord({StdExt(v) N Prf(u)}),
where u € R and v € Prf(u). We call MaxStdExt(u,v) ¢ maximal standard
extension of v in u.

The next lemma shows that if a rich word contains factors ypx and ypy,
where p is a palindrome, p is not a prefix of w, x,y are distinct letters, and ypz
“occurs” before ypy in w then ypy is a flexed palindrome.

Lemma 13. If w,v,p € R, v € Prf(w), p € Pri(w), z,y € A, x # vy, ypr €
Suf(v), ypy ¢ F(v), and ypy € F(w) then ypy € T(w).

Proof. Let v be such that vy € Prf(w), ypy € Suf(vy), and occur(vy, ypy) = 1.
Let u = lps(v). Because p ¢ Prf(w) it follows that u = lpps(v) = Ips(v) and
thus there is z € A such that zu € Suf(v). Obviously v € Prf(v) and hence
occur(v,p) > 1. Then Proposition 5 implies that occur(u,p) > 1. It follows that
yp € Suf(u) N Prf(u), z # y, and Lemma 9 implies that ypy € T(w). The word
w with is its factors is depicted on Fig. 1. This completes the proof.

u = Ips(v)

N

DEEEN

Vv

Py Ple Y]

\

Fig. 1. Structure of the word w for Lemma 13.

4 Removing Flexed Points

We define formally the set I" mentioned in the introduction. An element (w,r)
of the set I" represents a rich word w for which we are able to construct a
new rich word w such that w does not contain the flexed palindrome r, but w
have certain common prefixes and suffixes with w. We require that r is one of
the longest flexed palindromes of w and that r is not a factor of the longest
palindromic prefix of w. In addition we require that |r| > 2 so that the standard
extension of rtrim(r) would be defined.
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Definition 14. Let I" be a set defined as follows: (w,r) € I if

1. w,r € R and |r| > 2 and r € T(w) and
2. r ¢ F(lpp(w)) and
3. |r| > |F| for each 7 € T(w).

Given (w,r) € I', we need to express w as a concatenation of its factors
having some special properties. For this reason we define a function parse(w,r):

Definition 15. If (w,r) € I' then let parse(w,r) = (v, z,t), where

- v,2,t € R and vzt = w and
— r € Suf(v) and occur(w,r) = occur(v,r) and
- vz = MaxStdExt(vzt, v).

Remark 16. The prefix v is the shortest prefix of w that contains all occurrences
of r. The prefix vz is the maximal standard extension of v in w, and ¢ is such
that vzt = w. It is easy to see that v, z, ¢ exist and are uniquely determined for
(w,r) eI

The next simple lemma is necessary for the following definition of a reduced
prefiz.

Lemma 17. Let (w,r) € I, let (v,z,t) = parse(w,r), and let v be such that
v =0lps(v).

— If occur(vr,r) > 1 then there is a word g such that grz € Prf(v) and
occur(grz,r) < occur(v,r)

~ If occur(vr,r) =1 then U # () and r & F(U), where
U= {u|u e Prf(pc(vrtrim(r))) and ltrim(r)z € Suf(u)}.

Proof. Tt follows from Property 2 of Definition 14 that there is h € Prf(w) such
that w = hz® Ips(v)zt. Note that Ips(v) # v since r € T(w) and thus r € Prf(w),
see Corollary 10. It is clear that r € Prf(Ips(v)) N Suf(lps(v)). This implies that
hzfr € Prf(w). Note that v = hz®. We distinguish two cases as stated in the
Lemma:

— occur(or,r) > 1: Let g be the complete return to r in v such that g €
Suf(hz®r). Clearly rz € Prf(g) and 2z%r € Suf(g), since r ¢ F(ltrim(r)z);
recall » € Suf(v) and occur(v,r) = occur(vzt,r). Let g be such that
Gg = hz"r.

— If occur(vr,r) = 1: Let & = stdPalRep(hzfir,r). Clearly lps(hzfr) = r and
@ # r. Because z®rtrim(r) € Suf(hz® rtrim(r)), then obviously U # ) and
r ¢ F(U).

The word w with is its factors is depicted on Fig. 2. This completes the proof.
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For an element (w,r) € I' we define a function rdcPrf(w, ) (the reduced prefix),
which is a prefix of the palindromic closure of some prefix of w. In Theorem 28 we
show that the concatenation of rdcPrf(w, r) and t is a rich word having a strictly
smaller number of occurrences of r than in w, where (v, z,t) = parse(w, r). This
reducing of occurrences of r is the key for removing all “long” flexed palindromes
as explained in the introduction.

Definition 18. If w,r € I' and (v,z,t) = parse(w,r) then let rdcPrf(w,r)
be defined as follows. Following the motation and the proof of Lemma 17 we
distinguish two cases:

— occur(vr,r) > 1: We define rdcPrf(w,r) = grz.
— occur(vr,r) = 1: We define rdcPrf(w, ) = MinLenWord(U).

We call rdcPrf(w,r) the reduced prefiz of w by r.

Figure 2 depicts the factors of the word w used for construction of the reduced
prefix of w.

Remark 19. Note in Definition 18 in the second case, where occur(or,r) = 1, it
may happen that the reduced prefix rdcPrf(w, ) is not a prefix of w. However it
is a prefix of a palindromic closure of hz® rtrim(r), hence the number of flexed
palindromes remains the same; formally | T(hz® rtrim(r)))| = | T(rdcPrf(w,7))|.
Realize that pc(t) € StdExt(¢) for each ¢t € R and [¢| > 2.

In the first case, where occur(vr,r) > 1, the reduced prefix rdcPrf(w,r) is
always a prefix of w.

rlzl Rl r |r thl h Rl r z|t |

Ql

v Ips(v),

h Ips(v)

Fig. 2. Construction of the reduced prefix. Case 1 and 2.

To clarify the definition of the reduced prefix rdcPrf(w,r) we present below
two examples representing those two cases in the definition. For both examples
we consider that A = {1,2,3,4,5,6,7,8,9}.

Ezample 20. If w = 123999322399932442399932255223993 and r = 999
then v = 1239993223999324423999, = = 322, t = 55223993, lps(v) =
999324423999, h = 1239993, w = hzR Ips(v)zt, g = 9993223999 € Suf(hzfir) =
Suf(1239993223999), g = 123, and rdcPrf(w,r) = 123999322.
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Example 21. If w = 123999599932239949 and r = 999 then v =
1239995999, z = 32, t = 239949, lps(v) = 9995999, h = 1, w =
hz®lps(v)zt, StdExt(hzfrtrim(r),1) = StdExt(12399,1) = 123993, u =
stdPalRep(123999,999) = 3993, pc(12399) = 12399321, U = {1239932}, and
rdcPrf(w, r) = 1239932.

Using the reduced prefix we can now define the word rdeWrd(w,r) (a reduced
word):

Definition 22. Let rdcWrd(w,r) = rdcPrf(w, r)t, where (v, z,t) = parse(w,r)
and (w,r) € I'. We call rdcWrd(w, r) the reduced word of w by r.

We show that the reduced word rdcWrd(w,r) and w have the same prefix and
suffix of length |r| — 1.

Lemma 23. If (w,r) € I' and v = rdcWrd(w, r) then |lep(u,w)| > |r| — 1 and
|les(u, w)| > |r| — 1.

Proof. From the construction of the reduce prefix and the reduced word, it is
easy to see that rtrim(r) € F(lep(u,v)) and ltrim(r) € F(les(u,v)). The lemma
follows.

As already mentioned the reduced prefix rdcPrf(w, r) is not necessarily a prefix
of w. In such a case rdcPrf(w,r) € Prf(pc(vrtrim(r))), see Definition 18. We
show that every palindrome from the set F(rdcPrf(w, r))\F (v rtrim(r))) contains
as a factor the standard palindromic replacement @ of r in w and we show that
@ is not a factor of w. This will be important when proving richness of the word
rdcWrd(w, r).

Let F(w,r) = {u | v € F(w)and r ¢ F(u)} C F(w), where w,r € A".
The set F(w,r) contains factors of w that do not contain the factor r. Let
Fp(w,r) =F,(w) NF(w,r).

Proposition 24. If (w,r) € I', (v,z,t) = parse(w,r), u = rdcPrf(w,r), u =
stdPalRep(w,r), and v is such that v = vlps(v) then Fp(u,u) C Fp(v rtrim(r))
and u & Fp(w).

Proof. From the properties of the palindromic closure it is easy to see that
Fp(pe(f),lps(f)) € Fy(f) for each f € R. It means that every palindromic
factor of pc(f) that is not a factor of f contains the factor lps(f). It follows that
Fp(u,u) C Fp(rtrim(v)).

We show that occur(w,u) = 0. Let u = xtx and r = ypy, where z,y € A.
Obviously x # y. Lemma 9 implies that |a| > |r|. It follows that py € Prf(¢),
and yp € Suf(t). Thus zty € F(w). Lemma 13 implies that © € Fp(w) if and
only if 4 € T(w). Since |a| > |r|, this would be a contradiction to Property 3 of
Definition 14. Hence u ¢ F,(w). This completes the proof.

We define a set Mergeable which contains 3-tuples (d, g, t) of rich words such
that, among other properties, dg and gt are rich. Later we prove that the “merge”
dgt of dg and gt is also rich. Let flt(p) = ANPrf(p) be the first letter of a word
p € A* with [p| > 1.
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Definition 25. We define a set Mergeable as follows: (d, g,t) € Mergeable if

1' d)gata dgagta dgﬂt<t) € R and
2. 1ps(dgflt(t)) € T(dgflt(t)) and
3. lps(gp) & F(dg) for each p € Pri(t) with |p| > 1.

Let (d,g,t) € Mergeable. The following proposition shows that dgt is a rich
word. This will allow us from a rich word of the form dgwgt to construct a rich
word dgt. In other words this will allow us to remove the factor w from a rich
word, and thus to reduce the number of occurrences of flexed palindromes.

Proposition 26. If (d,g,t) € Mergeable then

- dgt € R and
— Ips(dgp) = 1ps(gp) for each p € Prf(t) with |p| > 1.

Proof. From Definition 25 it follows immediately that the Proposition holds for
(d, g,t(t)).

Suppose that the Proposition holds for (d, g,p), where p € Prf(¢t) with 1 <
|| < |t|. We show that the Proposition holds for (d,g,p) and (h,g,p), where
p € Prf(t) with |p| = [p|+1. From the property that a finite rich word w of length
n has n+1 palindromic factors it follows that | F,(w)| = | Fp(rtrim(w))|+1. This
and Property 3 of Definition 25 imply that lps(gp) € F(Ips(dgp)). Consequently
Ips(gp) = Ips(dgp) and dgp € R, see Proposition 5. This completes the proof.

We prove that the set of flexed palindromes of the word dgt that are not factors
of prefix dg, where (d, g,t) € Mergeable, does not depend on the prefix d.

Proposition 27. If (d,g,t),(h,g,t) € Mergeable, |d| > 1, and |h| > 1 then
T(dgt) \ T(dg) = T(hgt) \ T(hg).

Proof. To get a contradiction, suppose that there is p € Prf(¢t) with [p| > 1 such
that Ips(dgp) € T(dgp) and lps(hgp) & T(hgp). If [p| > 1 then [lps(dgp)| <
| Ips(dg rtrim(p))| and trim(Ips(hgp)) = lps(hgrtrim(p)), which is a contradic-
tion, because lps(dgrtrim(p)) = lps(hgrtrim(p)) = lps(g rtrim(p)), see Proposi-
tion 26. If |p| = 1 the proposition holds because of Property 2 of Definition 25.
This completes the proof.

The main theorem of the paper states that the reduced word rdeWrd(w, )
is rich, where (w,r) € I'. In addition the theorem asserts that the set of flexed
palindromes of rdcWrd(w, ) is a subset of the set of flexed palindromes of the
word w, the number of occurrences of r is strictly smaller in rdcWrd(w, r) than
in w, and the longest common prefix and suffix of rdcWrd(w, r) and w are longer
than [r| — 1.

Theorem 28. If (w,r) € I' then

- rdeWrd(w, r) € R and T(rdeWrd(w, 7)) C T(w) and
— occur(rdeWrd(w, r),r) < occur(w,r) and
— | lep(rdeWrd(w, r), w)| > |r| = 1 and |les(rdeWrd(w, r), w)| > |r| — 1.
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Proof. Recall that rdcWrd(w,r) = ut, where (v,z,t) = parse(w,r) and u =
rdePrf(w, r). If |t| = 0 then rdcWrd(w,r) € R and T(rdcWrd(w, 7)) C T(w).

Let d be such that rdcPrf(w,r) = dltrim(r)z. If |t| > 0 then we are going
to show that (d,ltrim(r)z,t) € Mergeable. Obviously dltrim(r)z, ltrim(r)zt € R;
recall that ltrim(r)zt € Suf(w). We need to show that Property 3 of Definition 25
is satisfied: Because vz = MaxStdExt(vzt,v) it follows that lps(vz flt(t)) € T(w).
This and occur(ltrim(r)zt,r) = 0 imply that |Ips(vzp)| < |ltrim(r)zp| for each
p € Prf(t) with |p| > 1. In consequence lps(ltrim(r)zp) = lps(vzp). Proposi-
tion 24 and occur(vzp, Ips(vzp)) = 1 imply that lps(vzp) &€ F(dltrim(r)z). The
other properties of Definition 25 are clearly also fulfilled. Hence (d, ltrim(r)z,t) €
Mergeable. Thus from Proposition 26 we get that dltrim(r)zt € R.

Let w be such that w = w ltrim(r)zt. Obviously (w, ltrim(r)z,t) € Mergeable.
Then Proposition 27 asserts that T(rdeWrd(w,r)) C T(w).

The fact that occur(ut, ) < occur(w,r) follows Lemma 17 and Definition 18.
Note that occur(rdePrf(w,r),r) < occur(w,r).

The properties |lep(rdeWrd(w, r), w)| > |r| — 1 and |les(rdeWrd(w, r), w)| >
|r| — 1 follow from Lemma 23.

This completes the proof.

Two more examples will illuminate the construction of rdcWrd(w, ). The exam-
ples are again based on the two cases of Definition 18. For both example we
consider that A = {1,2,3,4,5,6,7,8}.

Example 29. If w = 12145656547745656545656547874 and r = 656 then
v = 12145656547745656545656, z = 547, t = 874, Ips(v) = 656545656,
u = rdcPrf(w, r) = 12145656547, and rdcWrd(w, ) = ut = 12145656547874.

Example 30. If w = 12145656547874 and r = 656 then v = 12145656, z = 54,
t = 7874, lps(v) = 656, u = rdcPrf(w,r) = 12145654, and rdcWrd(w, ) = ut =
121456547874.

For a finite set S, we can consider that the set S is well-ordered. No matter
how, we just need a function that selects one element from S. Let the function
selectFirst(S) returns the first element of S. If S is an empty set, then we define
selectFirst(S) = e.

If a rich word w has a factor u, then the palindromic closure of w is rich and
contains the factor u®*. Hence for us when constructing a rich word containing
given factors, it does not matter if w contains u or u®. We introduce the notion
of a reverse-unioccurrent factor. Moreover we define a function ruo(w,u,v) (a
reverse-unioccurrence of u,v in w) which returns a factor of w such that u, v are
reverse-unioccurrent in this factor; in addition we require u or u’ to be a prefix
and v or v% to be a suffix of ruo(w,u, v).

Definition 31. If [{u,u®} N F(w)| = 1 then we say that a word u is reverse-
unioccurrent in w, where w,u € R.

If wy,we,w € R, wy,wy € F(w), and there is t € Prf(w) such that wy € F(t)
and {wq, wEINF(t) = 0 then let M(w, w1, ws) C F(w) such thatt € M(w, w1, ws)
if:
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— t € F(w) and wy,ws are reverse-unioccurrent in t and

— {wi, wfy N Prf(t) # 0 and {wa, wi} N Suf(t) # 0.
Let ruo(w, wy, wy) = selectFirst(M(w, wy, ws)).

Remark 32. 1t is not difficult to see that the function ruo(r,wq,ws) is well
defined and the set M(w, w1y, ws) is nonempty.

We define the function elmWrd(w,w;,ws) (eliminated word) that constructs
a rich word from w by “eliminating all” flexed palindromes longer than m =
max{|wi|, |ws|} and keeping the prefix w; and the suffix wo of w.

Definition 33. Let maxFlxPal(w) = {r | (w,r) € I'}. If w,wy,wy € R, m =
max{|wi|, |ws|}, w1 € Prf(w), and we € Suf(w), then let elmWrd(w, w1, w2) be
the result of the following procedure:

01 INPUT: w,m,w_1,w_2;

02 res: = ruo(w,w_1,w_2);

03 r := selectFirst(maxFlxPal(res));
04 WHILE r is longer than m

05 DO
06 res := rdcWrd(res,r);
07 res := ruo(res,w_1,w_2);

08 r := selectFirst(maxFlxPal(res));
09 END-DO;
10 RETURN res;

The calls of the function ruo on the lines 02 and 07 guarantee that w,wsy are
reverse-unioccurrent in the word res and that {w;,wf} N Prf(res) # 0 and
{wa, wl}NSuf(res) # 0. Realize that it is not guaranteed that wq, wy are reverse-
unioccurrent in rdcWrd(res, r), even if wq,wy are reverse-unioccurrent in res.

Clearly, the facts that ¢ is reverse-unioccurrent in a rich word ¢ and ¢ € Prf(¢)
imply that Ipp(t) € Prf(f); realize that if d € F(Ipp(#)) then d® € F(Ipp(t)) also,
since palindromes are closed under reversal. Thus if r is a flexed palindrome of
t longer than the prefix ¢, then r is not a factor of Ipp(¢) and hence r satisfies
Property 2 of Definition 14.

Let r = selectFirst(maxFlxPal(w)). The call of the function rdcWrd(res, r)
on the line 06 contains valid parameters, since if r # € and |r| > m then (w,r) €
rI.

In addition, because |r| > max{|w;|,|wz|}, Theorem 28 asserts that
{wy, wl} N Prf(rdcWrd(res, 7)) # 0 and {wq, wd} N Suf(rdeWrd(res,r)) # 0;
consequently {w1,wf} N Prf(res) # 0 and {wy, wk} N Suf(res) # () on the line
06.

Moreover Theorem 28 implies that the procedure finishes after a finite
number of iterations, because occur(rdcWrd(w,r),r) < occur(w,r) and
T(rdcWrd(w,r)) € T(w). The number of iterations is bounded by the number
>_reT(w) Occur(w, 7). Note that several occurrences of r may be “eliminated” in
one iteration. Hence we proved the following lemma:
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Lemma 34. If w € R, wy € Prf(w), we € Suf(w), m = max{|w:|, |wa|}, and
t = elmWrd(w, wy,wsy) then

— t € R and for each r € T(t) we have |r| < m and
— {wy, wEy N Prf(t) # 0 and {wq, wk} N Suf(t) # 0.

5 Words with Limited Number of Flexed Points

What is the maximal length of a word u such that w is reverse-unioccurrent in
u, w is a prefix of u, and u has a given maximal number of flexed palindromes?
The proposition below answers this question.

Proposition 35. Ifu,w € R, |u| > 1, |v] > 1, w € Prf(u), | T(u) \ T(w)| <k,
k+1

|w| < m, and w is reverse-unioccurrent in u then |u| < m2k+1.

Proof. Obviously |pc(u)| < 2|ul, pc(u) € StdExt(u), and w is not reverse-
unioccurrent in pc(u), since w* € Suf(pc(w)). It follows that if vy, vy € Prf(a)
such that vy is reverse-unioccurrent in @, vy € Prf(vq), |T(v2) \ T(v1)| = 1,
and lps(va) € T(vg) then |rtrim(ve)| < 2|v1|, since rtrim(vs) € StdExt(v1) and
pc(vy) € StdExt(vy) also. This implies that |vs| < 2|v1|. The proposition follows.

Remark 36. The proof asserts that if v, vy are two prefixes of a word u such
that the longest palindromic suffix of vs is the only flexed palindrome in v, which
is not a factor of v, then vy is at most twice longer than v; on condition that
vy is reverse-unioccurrent in ltrim(wvy). Less formally it means that the length
of a word can grow at most twice before the next flexed palindrome appears.
Note that for £ = 1 we have |u| < 2m, which makes sense, since the palindromic
closure of a word v is at most twice longer than wu.

In [4] the author showed an upper bound for the number of palindromic
factors of given length in a rich word. Recall that ¢ = | A |[.

Proposition 37 ([4], Corollary 2.23]). Ifw € R and n > 0 then
|Fp(w) NA™ | < (¢+ 1)n(4q'On)loe2",

Proposition 37 implies an upper bound for the number of flexed palindromes:

Lemma 38. I[fw e R, n >0, and AS" = U;L:O A7 then
| T(w) VAS™ | < (g + 1)n?(4¢"n) 52",
Proof. Just realize that Z;L:l(q +1)5(4q'%5)0829 < (q + 1)n?(4¢'On)los2m,

From Lemmas 34, 38 and Proposition 35 we obtain the result of the article:

Corollary 39. Ifw,w;,ws are rich words, wy,ws € F(w), m = max {|w1|, |wa|}
then there exists also a rich word o such that wy, ws € F(w) and |@| < m2FM+2,
where k(m) = (q + 1)m?(4¢'%m)los2m,
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Proof. Without loss of generality, suppose that there is ¢ € Prf(w) such that
wy € Prf(f) and {wq, wd} NF () = ). Then the function ruo(w,ws,ws) is well-
defined. Let ¢ € ruo(w,wq,ws). Consider the word g = elmWrd(¢, w1, ws). Let
k(m) = (q+1)m?(4¢'%m)'°82™ Lemma 38 and Proposition 35 imply that |g| >
m2FM+1 Lemma 34 implies that g € R, {wy, wl} NF(g) # 0, and {ws, wh} N
F(g) # 0. Let w = pc(g). It follows that wq,ws € F(w). Because |pc(g)| < 2|g],
the corollary follows.
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1

A word is called a palindrome if it is equal to its reversal. Two examples of
palindromes are “noon” and “level”. It is known that a word w can contain
at most |w| + 1 distinct palindromic factors, including the empty word [2].
If the bound |w| + 1 is attained, the word w is called rich. Quite many
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articles investigated the properties of rich words in recent years, for example
[1, 2, 3, 4, 5]. Some of the properties of rich words are stated in the next
section; see Propositions 2.1, 2.2, and 2.3.

In [3] it was proved that if w is rich then there is a letter x such that
wz is also rich. In [5] it was proved that if w is rich then there is a word
u and two distinct letters x,y such that |u| < 2|w| and wux, wuy are rich.
Concerning this result, the author of [5] formulated an open question:

e Let w be a rich word. How long is the shortest u such that wu can
always be extended in at least two ways?

In the current article we improve the result from [5] and as such, to some
extent, we answer to the open question. Let R denote the set of all rich
words. We say that a rich word w can be extended in at least two ways if
there are two distinct letters x,y such that wzx,wy are rich. Given w € R,
let K(w) denote the set of all words such that if u € K(w) then wu € R and
wu can be extended in at least two ways; K(w) contains the empty word if
w can be extended in at least two ways. Let w(w) = min{|u| | v € K(w)}
and let ¢(n) = max{w(w) | w € R and |w| = n}, where n > 0. The result
from [5] can be presented as ¢(n) < 2n.

We show that ¢(n) < n. It is natural to ask how good this bound is. The
rich word wu is called a unique rich extension of w if there is no proper prefix
@ of u such that wi can be extended in at least two ways. In Remark 2.4 in [5]
there is an example which shows that there are w,,, u,, € R such that w,u,, is a
unique rich extension of w, and |u,| = n, where n > 1. However in the given
example the length of w,, grows significantly more rapidly than the length of
U, as n tends towards infinity. This could suggest that lim, ... @ = 0; we
show that this suggestion is false. We prove that for each real constant ¢ > 0
and each integer m > 0 there is n > m such that ¢(n) > (2 — c)n.

We explain the idea of the proof. Let w® denote the reversal of the word
w. We construct rich words h,, = u,v%tv,, where n > 3 such that

1. The word t is the longest palindromic suffix of u,v%t.

2. For every factor xpy of tv, we have that xpx is a factor of w,, where
x,y are distinct letters and p is a palindrome.

3. 2| by | < |hnss |.



Let vz be a prefix of v,, where = is a letter. Let y be a letter distinct
from z and let ypy be the longest palindromic suffix of u,v®tvy. Property 1
implies that ypy is a suffix of yvFtvy, since v7tv is the longest palindromic
suffix of unvftﬁ. Property 2 implies that ypy is not unioccurrent in u"vftﬁy.
In consequence u,vEtvy is not rich; see Proposition 2.3. Hence there is no
proper prefix v of v, such that u,v%tv can be extended in at least two ways.
It follows that |v,| < w(u,vt). Property 3 implies that for each m > 0 there
is n such that |k, | > m.

We will see that to find u, for given v, is quite straightforward. The
crucial part of our construction is the word v,. To be specific, the word v,
that we will present contains only a “small” number of factors xpy defined
in Property 2. As a result the length of u, grows almost linearly with the
length of v, as n tends towards infinity.

2 Preliminaries

Consider an alphabet A with g letters, where ¢ > 1. Let AT denote the
set of all nonempty words over A. Let ¢ denote the empty word, and let
A* = AT U {e}. We have that R C A™.

Let F(w) be the set of all factors of the word w € A*; we define that
e,w € F(w). Let Prf(w) and Suf(w) be the set of all prefixes and all suffixes
of w € A* respectively; we define that {e, w} C Prf(w) N Suf (w).

Let SufU(v, u) = U,epup (o Suf(vt), where v,u € A", The set SufU(v, u)
is the union of sets of suffixes of v, where t is a nonempty prefix of u.

We define yet the reversal that we have already used in the introduction:
Let w® denote the reversal of w € A*; formally if w = wyws...wy then
w? =wy, ... wawy, where w; € A and i € {1,2,...,k}.

Let Ips(w) and lpp(w) denote the longest palindromic suffix and the
longest palindromic prefix of w € A* respectively. We define that Ips(e) =
Ipp(e) = €. Let lpps(w) and lppp(w) denote the longest proper palindromic
suffix and the longest proper palindromic prefix of w € A* respectively, where
|w| > 1. If |w| = 1 then we define lppp(w) = Ipps(w) = e.

Let rtrim(w) = v, where v,w € A*, y € A, w = vy, and |w| > 1. Let
ltrim(w) = v , where v,w € A*, v € A, w = av, and |w| > 1. The functions
rtrim(w) and ltrim(w) remove the last and the first letter of w respectively.

Let occur(u,v) be the number of occurrences of v in u, where u,v € A%;
formally occur(u,v) = |[{w | w € Suf(u) and v € Prf(w)}|. We call a factor



v unioccurrent in u if occur(u,v) = 1.

We list some known properties of rich words that we use in our article.
All of them can be found, for instance, in [3]. Recall the notion of a complete
return [3]: Given a word w and factors r,u € F(w), we call the factor r a
complete return to u in w if r contains exactly two occurrences of u, one as
a prefix and one as a suffix.

Proposition 2.1. If w,u € RNAT, u € F(w), and u is a palindrome then
all complete returns to u in w are palindromes.

Proposition 2.2. If w € R and p € F(w) then p, p® € R.

Proposition 2.3. A word w is rich if and only if every prefix p € Prf(w)
has a unioccurrent palindromic suffiz.

From Proposition 2.2 and Proposition 2.3 we have an obvious corollary.

Corollary 2.4. A word w is rich if and only if every suffix p € Suf(w) has
a unioccurrent palindromic prefix.

3 Standard Extension

We define a left standard extension and a right standard extension of a rich
word. The construction of a standard extension has already been used in [5].
The name “standard extension” has been introduced later in [4]. Here we use
a different notation and we distinguish a left and a right standard extension.

Definition 3.1. Let j > 0 be a nonnegative integer, w € R, and |w| > 1.
We define ER? (w), EL? (w) as follows:

e ER(w) = EL"(w) = w.

e EL(w) = EL(w) = 2w, where x € A is such that Ippp(w)z € Prf(w).

ER(w) = ER(w) = wx, where v € A is such that xlpps(w) € Suf(w).
EL/ (w) = EL(EL/ "} (w)), where j > 1.

e ER/(w) = ER(ER/ ! (w), where j > 1.



Let EL,(w) = {EL/(w) | j > 0}. We call p € ELy(w) a left standard
extension of w. Let ERy(w) = {ER?(w) | j > 0}. We call p € ER,(w) a
right standard extension of w.

Remark 3.2. 1t is easy to see that ER/(w) = (EL/(w®))® and EL/(w) =
(ER? (w?))E, where j > 0.

If z € A then ER(x) = EL(z) = x, since lppp(z) = Ipps(z) = e.
Ezample 3.3. Let A = {0,1,2,3} and w = 010200330. Then we have:

e Ippp(w) = 010 and lpps(w) = 0330.

e ER(w) = 0102003300, ER?*(w) = 01020033002,
ER?(w) = 010200330020, ER*(w) = 0102003300201,
ER®(w) = 01020033002010, ER®(w) = 010200330020102,
ER"(w) = 0102003300201020.

e EL(w) = 2010200330, EL(w)? = 02010200330,
EL(w)? = 002010200330, EL(w)* = 3002010200330,
EL(w)? = 33002010200330, EL(w)® = 033002010200330,
EL(w)% = 0033002010200330, EL(w)” = 20033002010200330.

A left and a right standard extension of a rich word w is rich. In con-
sequence, every rich word w can be extended to rich words wx, yw for some
letters x, y; this has already been proved in [3, 4, 5].

Lemma 3.4. Ifw € R and |w| > 1 then ER,(w) UEL,(w) C R.

Proof. Since ELY (w) = (ER’(w®))® and since for every t € ER,(w) \ {w}
there is a rich word ¢ € ER,(w) such that ¢ = ER(¢), it is enough to prove
that ER(w) € R.

Let xpz = lps(ER(w)), where x € A. Because w € R, Proposition 2.3
implies that we need to prove that zpz is unioccurrent in ER (w). Realize that
p = lpps(w); it means that p is either unioccurrent in w or w is a complete
return to p. In either case xpzx is unioccurrent in ER(w). This completes the
proof. O

4 A unique rich extension

We formally define a unique rich extension mentioned in the introduction.
In addition we define a flexed point of a rich word.

5



Definition 4.1. Ifu,v € RNAT, v € Prf(u), and
Prf(rtrim(u)) N {vt | t € w(v)} =0

then we call w a unique rich extension of v.
Given v € R with |v] > 1, let

T(v) = {ux | ux € Prf(v) and x € A and uzx # ER(u)}.
We call w € T(v) a flezed point of v.

Remark 4.2. Note that if x € A and ux is a flexed point of a rich word v
then u can be extended in at least two ways. A similar notion of a “flexed
palindrome” has been used in [4].

Example 4.3. Let A ={0,1,2}.

e The rich word 00101 can be extended in at least two ways, because
001010, 001011, and 001012 are rich.

e The rich word 20010110 cannot be extended in at least two ways be-
cause 200101100 and 200101102 are not rich. Only the right standard
extension 200101101 is rich. Hence 200101101 is a unique rich extension
of 20010110.

e Ifw =201011011101111011111001 then w1111 is unique rich extension
of w; this example is a modification of the example in Remark 2.4 in

[5].
e If w=2010110111011110111 then the set of flexed points of w is:

T(w) = {20,201,20101,201011,2010110111,
20101101110111,201011011101111}.

There is a connection between a unique rich extension and a right stan-
dard extension.

Lemma 4.4. If u is a unique rich extension of w then u € ER,(w).

Proof. Suppose there is 4z € Prf(u) such that « € ER,(w), v € A, and
ax € ER,(w). Then obviously @ can be extended in at least two ways, since
both #x and ER(u) are rich. Hence u cannot be a unique rich extension of
w. The lemma follows. |



To simplify the formulation of next lemmas and propositions concerning
a unique rich extension we define an auxiliary set I' as follows: (v, o,u) € T if
vPu is a unique rich extension of vv and lpps(vd) = ¥, where v, v,u € RNA™.

We show that if wu is unique rich extension of w, then lpps(w) is unioc-
current in lpps(w)u.

Proposition 4.5. If (v,7,u) € T then occur(vu,v) = 1.

Proof. The proposition follows from the proof of Theorem 2.1 in [5]. The
author shows that a rich word w can be extended into a rich word ww in
such a way that a” is a suffix of ww, where a™ is the largest power of some
letter @ € A. Tt is proved that ww can be extended in at least two ways. In
both cases distinguished in the proof of Theorem 2.1 in [5] it is easy to see
that occur(Ipps(w)w, lpps(w)) = 1. The proposition follows. O

We present two simple properties of a unique rich extension.
Lemma 4.6. Let (v,7,u) €T.

1. If |u| < |v| then u® € Suf(v).

2. If |u| > |v| then v € Prf(u).

Proof. Obviously viv® € ER,(v?). Lemma 4.4 implies that vou € ER,(v).
The lemma follows. O

The next proposition discusses words of the form vouz, where vouz is
unique rich extension of v, x is a letter, v is the longest proper palindromic
suffix of vo, and vux is a flexed point of vux. The proposition asserts that
there are words ¢y, t, such that v = t,t5, zu’ is a proper suffix of t,, and vt¥
is a flexed point of vtf. In particular it implies that |v| > |uz|.

Proposition 4.7. If (v,0,ux) € T and vux € T(vuzx) then there exist ty,ts €
R such that

e V= tltg,
o zuf € Suf(ltrim(ty)), and

o utl € T(vtd).



Proof. Let w = lpps(tu) and let y € A be such that yw € Suf(ou). Since
vuz € T(vux) we have that z # y.

Obviously ywy € F(vtu) because vvuz is a unique rich extension of vo
and thus vouy € R. Hence the palindromic suffix ywy of vouy is not unioc-
current in vouy, see Proposition 2.3.

We have that w is unioccurrent in vu and o ¢ F(w), since w = lpps(tu)
and ¥ is unioccurrent in vu, see Proposition 4.5. It follows that there are
1,19 € F(v) such that v = t1ts, ywy € Pri(tyvux) and ywy is unioccurrent
in ty0ux. Thus Ipp(ytatuzr) = ywy.

From the fact that o ¢ F(w) follows that ywy € Prf(t20). Lemma 4.6
implies that |t] > |uz| and zuf* € Suf(ltrim(ty)). Just consider that |ts] <
|uz| would imply that ywy € F(vux).

Since zufv € Suf(ty9), w € Suf(vu), ywy € Prf(ty0), and = # y it follows
that occur(to?, w) > 1; hence Proposition 2.1 implies that lppp(ltrim(¢27)) #
w. It follows that t0 # EL(ltrim(¢y0)). Consequently vt # ER(rtrim(ot%))
and thus ot € T(vt£). This completes the proof. O

We step to the main result of this section. The theorem says that if vou
is a unique rich extension of vv and v is the longest proper palindromic suffix
of vo then u is not longer than v7.

Theorem 4.8. If (v,7,u) € T then |u| < |v|.

Proof. Let (v,v,u) € T'. If |u|+|1pps(?)| < |9| then clearly |u| < |v5|. For the
rest of the proof suppose that |u| + | 1Ipps(9)| > |o]. We show that the set of
flexed points T(ou) is nonempty. Let © = hlpps(v). Proposition 4.5 implies
that hf* € Prf(u), because occur(hlpps(9)hft, v) = 2. Since |u| + | Ipps(v)| >
|7] it follows that there are @ € R and x € A such that az € Prf(u) and
vuxr # ER(v1); just realize that hlpps(v)hft € ER.(h1pps(v)). We showed
that T(vu) \ Prf(v) # 0.

Without lost of generality, suppose that vux is the longest flexed point
from the set T(ou) \ Prf(¢) and suppose that |u| > |v|. Proposition 4.7
asserts that there are #,t, € R such that v = tty, 0t € T(vth), and
ruft € Suf(Itrim(ty)). If |u| > |v|, then vt§ € Prf(vu), see Lemma 4.6. This
is a contradiction, since we supposed that vuz is the longest flexed point of
tu. We conclude that |u| < |v|. This completes the proof. O

The simple corollary is that if wu is a unique rich extension of w then u
is not longer than w.



Corollary 4.9. If n > 1 then ¢(n) < n.

Proof. The corollary is obvious for n € {1,2}. If wu is a unique rich extension
of w, lw| > 2, and |u| > 1 then there is clearly (v, ?,u) € T such that w = v7.
Then the corollary follows from Theorem 4.8. O

5 Construction of a Uniquely Extensible Rich
Word 1

Definition 5.1. We call a word xpy a switch if z,y € A, = # y, and
p € A" is a palindrome. Let sw(v) = {w | w € F(v) and w is a switch}. Let
swSuf (v, u) = sw(vu) N SufU(v, u), where v,u € A*.

Given S C A", let

rde(S) ={w|we S andw & U F(u)}.
ueS\{w}

We call rde(S) a reduction of S.

Suppose xpy is a switch, let spc(apy) = xzpx, where x,y € A. We call
spe(zpy) a switch palindromic closure of the switch xpy. If B C A" is a set
of switches then we define spc(B) = rdc(J,cpispc(w)}).

Remark 5.2. Note that if zpy is a switch, then p can be the empty word.

The set swSuf(v,u) is a set of switches that are suffixes of v for all
nonempty prefixes % of w.

The reduction rde(S) of the set S is a subset of S and contains only
elements that are not proper factors of other elements of S.

The switch palindromic closure of a set B is a reduction of the union of
all switch palindromic closures of switches from the set B.

Ezxample 5.3. Let A ={0,1,2}, v = 0100110, and u = 12. Then we have:
o sw(vu) = {01,10, 100,110,011, 001, 010011, 001101, 12, 012, 11012}.

o swSuf(v, u) = (sw(vl) N Suf(vl)) U (sw(v12) N Suf(vl2)) =
(001101} U {12,012, 11012}.

e spc(001101) = 001100, spe(12) = 11, spe(012) = 010,
spe(11012) = 11011.



e spc(swSuf(v, u)) = rde({001100,11,010,11011}) =
{001100,010,110011}.

The following proposition clarifies the importance of switches for a unique
rich extension of rich words. The proposition says that if

o wul*tu is a rich word and

e ¥ is the longest palindromic suffix of wuf% and
e 1 is a factor of w for every letter and

e for every switch ¢ which is a suffix of wu®vu for some u € Prf(u) we
have that spc(t) is a factor of w

R R

then wu"vu is unique rich extension of wu™?.

Proposition 5.4. If w,u,v € AT, wuf'vu € R, Ips(wulv) = v, ANF(w) =
A, and spe(swSuf (wu'v,u)) C F(w) then wuflvu is a unique rich extension
of wu®v.

Proof. We show that there is no prefix az € Prf(u) Nw(wu®v), where z € A.

Suppose that there is ax € Prf(u) Nw(wul®). Let y € A be such that x # y
and wufvuy € R. Let t = Ips(wufviiy). We distinguish two cases:

e ¢t € A. The assumptions of the proposition guarantee that ¢ € F(w).
e t = yty for some palindrome ¢. Clearly ytz € swSuf (wu?v,u) and the

assumptions of the proposition guarantee that ¢t = spc(ytz) = yty €
F(w).
It follows that the longest palindromic suffix ¢ is not unioccurrent, hence
wulpiy is not rich; see Proposition 2.3. This completes the proof. (]
Given a factor u of a word w, for us it will not be important if u or u® is
unioccurrent in w. For this purpose we define a special notion.

Definition 5.5. If >~ c(, ,r occur(w,v) = 1 then we say that the word u is
reverse-unioccurrent in w, where w,u € A,

Remark 5.6. The notion of reverse-unioccurrence has also been used in [4].

We show that if the switch ytz is a suffix of the word wx and ytx is
reverse-unioccurrent in wz then wz is a flexed point of wz.

10



Lemma 5.7. If w,wz € R, x,y € A, ytx € Suf(wz) Nsw(wz), and ytz is
reverse-unioccurrent in wz then wx € T(wz).

Proof. Suppose that wr € ER,(w). If u = lpps(w) then [¢t| < |u| and
t € Prf(u) N Suf(u). It follows that zux € Suf(wz) and ty € Prf(u), since
yt € Suf(u). Consequently zty € Prf(zu), which is a contradiction, because
xty is reverse-unioccurrent in wx. The lemma follows. (I

There is an obvious corollary of Lemma 5.7 saying that if ¢ is a switch of
w, then there is a flexed point v of w such that either ¢ or t¥ is a suffix of v.

Corollary 5.8. If w € R, t € sw(w) then there is v € T(w) such that
{t,t7} N Suf(v) # 0.

Proof. If w € R and t € sw(w), then there is obviously u € Prf(w) such that
{t,t%} N Suf(u) # 0 and t is reverse-unioccurrent in u. Then Lemma 5.7
implies that © ¢ ER,(rtrim(u)). This completes the proof. O

In order to construct a word with a prefix containing all switch palin-
dromic closures of its switches we introduce two functions ewp and elpp.

Definition 5.9. If w,t € RNAT and t is a palindrome then we define
Ywt = {u|u € Prf(w) and |u] > |lppp(w)| and rtrim(t) € Suf(u)}.

If £t # 0 then let @,y denote the shortest element of £, and let m,; be
such that T, = 1ppp (W) Ty ¢
Let x = Prf(t) N A and let

2(Twe)Fw  if Xy # 0 and t & F(vfw)
w otherwise.

ewp(w,t) = {

In addition we define

ewp(w, t1,ta, ..., tm) = ewp(...(ewp(ewp(w,t1),t2),...), tm),

where w is a nonempty rich word and ty,ts, ..., t,, are rich nonempty palin-
dromes.

Given w € AY and x € A, let maxPow(w,x) = k such that z* € F(w)
and r*+1 & F(w).

Suppose w € R, y € A, and k = maxPow(w,y). Let elpp,(w) =
ewp(uw, y*+1).

11



Remark 5.10. The notation “ewp” stands for “extension with prefix”. It is
clear that (m,)fw is a left standard extension of w that has as a prefix
ltrim(t).

The notation “maxPow” stands for “maximal power”. If z ¢ F(w) then
maxPow(w, z) = 0.

The notation “elpp” stands for “extension with letter power prefix”. The
function elpp, (w) is the word yu where u is a left standard extension of w
such that y (w) is a prefix. If maxPow(w,y) = 0 then elpp,(w) = yw.

Ezxample 5.11. Let A = {0,1,2}, w = 2020111010111010, ¢; = 11011, and
to = 20201. Then we have:

maxPow

o rtrim(¢;) = 1101, ltrim(¢;) = 1011, lpp(w) = 202.
o Y, 4 = {202011101,202011101011101}, 0y, = 011101.
e ewp(w,t;) =11011102020111010111010.
e Let v = ewp(w, ). Then 0,4, = 102020
o ewp(w, t1,tz) = ewp(v, t3) = 202020111011102020111010111010.
e maxPow(w, 1) = 3, maxPow(w, 2) = 1, and maxPow(w,0) = 1.
o elpp, (w) = ewp(w, 1111) = 111102020111010111010.
o clppy(w) = ewp(w, 22) = 22020111010111010.
o clpp,(w) = ewp(w, 00) = 002020111010111010.
We prove that ewp(w, t), elpp,(w) € R are rich words.
Lemma 5.12. If w,t € RNAT and y € A then ewp(w, t), elpp,(w) € R.

Proof. Because elpp(w) = ewp, (w, y**+1) it suffices to prove that ewp(w,t) €
R. From the definition of ewp(w,t) it is clear that we need to verify only
the case where ©,,; # 00 and t ¢ F(v®w). Obviously (7, )" w € R, since
(Twt)w € EL,(w), see Lemma 3.4. Let x = Prf(t)NA. Then lpp(zvfw) = ¢
and since ¢t ¢ F(vfw) we have occur(zvfw,t) = 1. Hence Corollary 2.4
implies that zvw € R. O
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6 Construction of a Uniquely Extensible Rich
Word 11

In this section we consider that {0,1} C A. Let g, = g,_,01"0g,_,, where
g, = land n > 1. For n,k > 2 we show that the words 0% g, are rich and
that 0%g, ,01,0%g, ;01" are the only flexed points of 0% g, that are not
flexed points of 0 g, ;. Let T,, = T(0%g,) \ T(0*Fg,_,).

Proposition 6.1. Ifn,k > 2 then 0%g, € R and
TTL = {Ok gn—1 017 Ok gn—1 Oln}

Proof. Obviously 0¥g, € R. Suppose that 0¥g, , € R, where n > 2. We
show that 0%g, € R. We have that 0*g, = 0Fg, ;01"0g,_;. Note that
Ips(0fg, 1) = g,_1. It follows that 0*g, ;0 = ER(0*g,_;) and hence
0%g, 0 € R. Tt is easy to see that

Ips(0* g, 01) = Ips(0* g, ,01"7'0g, ,01) = 10g, 01

and that occur(0 g, _, 01,10g,_,01) = 1. Hence we have 0% g, , 01 € R; see
Proposition 2.3. It follows that 0% g, ,01""! € ER,(0Fg, ,01) C R. Also
we have that 0¥g__, 01 # ER(0*g, ,0) and thus 0¥g, 01 € T,.

Obviously occur(0*g,_; 01", 1") = 1. Since 1" is a palindrome we have
that 0%g, ,01" € R; see Proposition 2.3. Since g, ,01"0g,_; is a palin-
drome we have that lps(0%g,_,01"t) = t#1"¢ for each t € Prf(0g,_,).
This implies that 0%g, 01"t € ER,(0*g, ,01") C R and in particular
0%g, € ER,(0Fg,_,01") C R. Clearly 0¥g, ;01" # ER(0*g,_; 01""!) and
thus 0% g, ;01" € T,,.

Consequently for each n,k > 2, we conclude that 0*g, € R and T,
{Ok gnfl 017 Ok gnfl Oln}'

D O

We present all switches of 0 g, Let S, = (sw(()’“ g,) \sw(()’“ gnil))
UweT" Suf(w), where n > 3.

Proposition 6.2. If k> 2 and n > 3 then
S, ={00g, ,01,01"'0g, ,01"01"}.

Proof. Proposition 6.1 states that T, = {0%g,_,01,0%g, ;01"}. We will
consider the switches that are suffixes of the flexed points from T,,:
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e For 0%g, ,01: Let t = Ips(0*g,_;0). Obviously t = 0g,_; 0. Since
occur(t, 1"1) = 1 it follows that ¢ is the only palindromic suffix of
0%g, ;0 which contains the factor 1"~!. Consequently each palin-
dromic suffix of 0¥ g, _, 0 which is not equal to ¢ is a factor of 0 g, ,0 €
Suf(t). Thus 00g,,_, 01 is the only switch of £ = 00g,_, 01 which is not
a switch of 0g, ,0€ F(0%g, ;).

e For 0%g, ,01™ Let t € Suf(0fg, ,01") Nsw(0*g,). Since 1" €
Suf(00g,_, 01") it follows that || > n 4+ 1. For |t = n + 1 there
is the switch 01". For |t| > n + 1 we have that 1"~! € Suf(rtrim(¢)) N
Prf(ltrim(¢)) and because occur(00g,_, 01", 1"71) = 2 it follows that
there is only one switch with |t| > n + 1; namely = 01""!0g,_, 01"

The proposition follows. (N
Proposition 6.2 and Corollary 5.8 allow us to list all switches of 0% g,,.

Corollary 6.3. If n > 3 then

k
sw(0%g,) = [ J{00"1} U {01,10,00101, 11010, 01011 }U

i=1

( J{0og, ,01,01" "0g, ,01",1"0g, ,01"'0,01",1"0}.
=3

Proof. Proposition 6.2 states that S,, = {00g,_,01,01""'0g, ,01",01"} for
n > 3. We may easily check that

e (00g,_,01)*=10g,_,00 ¢ F(0*g,),
e (01" '0g, ,01"" = 1"0g, ,01"'0 € F(0*g,), and
e (00g, 01)® & F(0kg,,) for all m > 2.

Obviously sw(0% g,) = U, {0071}U{01, 10,001, 00101,01011}; recall that
0% g, = 0¥101101. Note that (01011)%® = 11010 € F(g3), (00'1)® = 10°0 ¢
F(g,,), and (00101)% = 10100 ¢ F(g,,) for all i, m > 1. Corollary 5.8 asserts
for every switch ¢ of w that there is a flexed points @ € T(w) such that
{t,t%} N Suf(w) # 0. The corollary follows. 0

Let 7 > 2. We define:

14



o i, =00g 00,

o s, =0 10g, 01510,
e a3; =10g; ,01/, and
o ;=17

The next obvious corollary of Corollary 6.3 presents the switch palin-
dromic closures of all switches of the word 0% g,,.

Corollary 6.4. If k > 2 and n > 3 then

spe(sw(0%g,)) = {0¥,00100, 11011, 01010, ay ,, }U
U{Oq,j, Q25 043,;‘}
=3

Proof. Corollary 6.3 lists all switches of the word 0¥g,. For every switch
t € sw(0F g,) we may easily verify that there is v € spc(sw(0¥ g,,)) such that
spc(t) € F(v). This completes the proof. O

Remark 6.5. Note that the palindromes oy ; are factors of au, for j < n.
This is the difference to palindromes «; ;, where 4 € {1,2,3}. For this reason
the palindrome a4 ; is not involved in the union formula from i = 3 to n.

The next deﬁrgtion defines a \yord h,,. Later we show that h,, is a unique
rich extension of h,,, where h,, = h,, ltrim(g,,).

Definition 6.6. Let n > 3. We define:

o k(j,w) = elppylewp(w, on j, @ j, 35, 5)), where w € RNA" and
3<j<n.

e h,,=kx(n000g,00g,).

h,; = k(j, by j+1), where 3 < j <n.

Suppose that A is totally ordered, let o(A) = x1x9. .. Ty, where z; €
AN{0,1}, 2 < 2441, 1 <@ <m, and m = |A| —2.

e I, = o(A) ewp(h,3,00100, 11011, 01010).
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Remark 6.7. The function (j, w) extends the word w to a word ww in such
a way that ww contains the switch palindromic closures of switches o j, as j,
azj, a4 . In addition the longest palindromic prefix of ww is 0F for some
k> 0.

The word h,, 3 is constructed by iterative applying of the function x(j, w)
starting with the word 000g, 00 g,.

The word h,, contains the switch palindromic closures of all switches of
the word 00g,. The suffix of h,, is the word 000g, 00g,. As a result h,, has
the form wrtrim(g, )1001 ltrim(g,) for some u € A*. It is the form used in
Proposition 5.4. The prefix o(A) of h,, is there to assert that u contains all
letters. The order of the letters does not matter.

We show that h,, is a rich word.
Lemma 6.8. Ifn > 3 then h, € R.

Proof. Lemma 5.12 says that both ewp(w, ), elppy(w) € R, where w,t €
R. Proposition 2.2 and Proposition 6.1 imply that rtrim(e; ;) € R, since
rtrim(e ;) € F(00g;) € F(00g,), where i € {1,2,3,4} and 3 < j < n.
Because «;, = ER(rtrim(e;,)) we have that a;, € R, see Lemma 3.4.
Hence (j,w) € R.

Proposition 6.1 asserts that 0¥g, € R. Also it is easy to see that
000¢g, 00g, € R; just consider that 00g, 00g, € ER,(00g,,),

occur(000g, 00g,,000) =1, and lpp(000g, 00g, ) = 000,

see Corollary 2.4. In consequence h,; € R for 3 < j < n. We have that
ewp(h, 3,00100,11011,01010) € R, because 00100,01010, 11011 € R.

Obviously o(A) € R. Moreover it is easy to verify that if wy, ws € R and
F(w;) NF(wq) = € then wywy € R. Hence

o(A) ewp(h,,.3,00100,11011,01010) € R .
We conclude that h,, € R. O

Proposition 6.9. Let h,, be such that h, = h, ltrim(g,). If n > 2 then h,
18 a unique rich extension of h,.

Proof. Obviously there is w € R such that h, = wrtrim(g,)1001 ltrim(g,, ).
Corollary 6.4 lists the elements of spc(sw(0%g,)). The construction of h,
guarantees that all these elements are factors of w; formally «; ; € F(w) for
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all i € {1,2,3,4} and 3 < j < n. For 00g,0 = 001011010 we can see that
sw(001011010) = {01, 10,001, 011, 110,00101, 01011, 11010}. It follows that
spe(sw(001011010)) = {00100,01010,000,111,11011}. Obviously we have
that {00100, 01010,000,111,11011} C F(w).

Since o(A) € Prf(h,) we have that A € F(w). It is easy to check that
Ips(w rtrim(g,,)1001) = 1001. Hence we have

wrtrim(g,)1001 Itrim(g,,) € ER,(w rtrim(g,)1001).
Thus Proposition 5.4 implies that h,, is a unique rich extension of h,,. O

Let p(n) = |g,|, where n > 1. Since g, = g,_;01"0g,_;, we have
2p(n) < p(n+ 1) and consequently p(n) < szp(n + k), where k > 0.

We derive an upper bound for length of h,. We start with an upper
bound for |x(j, w)|.

Proposition 6.10. If j,k > 2, w € R, w = 0* g;w € R, Ipp(w) = 0% and
a;; € F(w) forie {1,2,3} then |k(j,w)| < |w|+ 7p(j — 1) + 5k + 55 + 10.

Proof. Let t; = ewp(w, a1;), to = ewp(t1, aa;), t3 = ewp(t2, a3 ), and ¢4 =
ewp(ts, o ;). Clearly k(j,w) = elppy(ts). It is easy to see that:

o 1 =00g; ,0Fg;w; Ipp(t) = ay; = 00g;_, 00.

ty =017"10g; ,017710g; , 08 2t;
lpp(tg) = Qg,; = Olj_IO gj*Q Olj_l().

t3 = 170 gj*? 0].]0 gj*l Ok gj*l Ok gj*? tg, lpp(td) = Q3 = 170 gj*? 0].]

If ay; € F(w) then ¢4 = ¢35 and lpp(t4) = lpp(ts) else t4 = 1t3 and
Ipp(ts) = gy = 1F

If ay; € F(w) then (j,w) = 00 g, , 0t4 else
k(j,w) =00"g; ,0170g;_, 0ty

In either case we have Ipp(r(j, w)) = 01,

It follows that:

o |ta] = [w[+p( 1) +2
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to] = [ta] + (k —2) +2p(j —2) +2(j = 1) +4 = w[+ 6+ p(j — 1) +
20(j —2) + (k — 2) +2(j — 1).

[ts] = |ta] +20(j —2) +2p(j — 1)+ 2k +3+2j = |w|+9+3p(j — 1) +
4p(j—2)+ (k—2) +2k+2(j — 1) + 25.

[ts] < Jts] + 1.

|k(j,w)| < [tal +k+4+p(G —1) +p(j —2)+J = [w|+ 14+ 4p(j —
1) +5p(j —2) + (k—2) + 3k +2(j — 1) + 3.

Since 2p(j—2) < p(j—1) we have |k(j, w)| < |w|+T7p(j —1)+4k+55+10. O

The main theorem of the section presents an upper bound for the length
of h,.

Theorem 6.11. Ifn > 2 then |h, | < Hp(n)+(n—3)(5n+22)+3n+20+|A|.
Proof. Proposition 6.10 implies for j =n, k =3 and w = 000g,, 00 g,, that
[hyo | = |K(n,w)| < |w|+Tp(n —1) +4 %3+ 5n+ 10. (1)
For n — 1 and n — 2 we have:
o [hyn1|=]6(n—1hyn)| <|hpn|+T7p(n—2)+4%4+5(n—1)+10.
o |hyno|=1]6(n—2),hnp 1| <|hpn1|+7p(n—3)+4%5+5(n—2)+10.
And generally for n — i

[ hypoi | < |hppoiv1| +Tp(n—i—1)+4(i+3)+5n—1)+10=
|hn7n,i+1|+7p(n—i—1)+5n—i+22< (2)
| hn,nfiwtl | + 7p(n — 17— 1) + 5n + 22.

Realize that p(n — i — 1) < 5+ p(n), [w| = 2p(n) + 5, and S i < 5. It
follows from (1) and (2) that:

n—3 n—3

1
|y | < 2p(n)+5+7p(n)zﬁ+(5n+22)21 <
=1 =1 (3)
11

Ep(n) +(n—3)(bn+22) + 5.
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Obviously lpp(h,3) = 0" and 0" g, 0 € Prf(h, 3).

Let t; = ewp(h,3,00100), t3 = ewp(t;,11011). We have that h, =
o(A) ewp(ta,01010). We can verify that ¢; = 001h, 3, t, = 1101101072,

and L, = 0(A)01010710"10t,.
Using (3) we get:

|hy, | < [hys| +]001] 4 11011010 72| + [01010"10™10] + |A] <

11
2

This completes the proof.

—p(n) + (n—3)(5n +22) +3n + 20 4 |A].

|

Theorem 6.11 and Proposition 6.9 have the following corollary to the

lower bound for ¢(n).

Corollary 6.12. For each real constant ¢ > 0 and each integer m > 0 there

is n > m such that ¢(n) > (2 — c)n.

Proof. Proposition 6.9 implies that w(|h,|) <|g,|—1= p(n) — 1. It follows

that ¢(|h,[) > p(n) — 1 and

o)) > L |

From Theorem 6.11 and Proposition 6.9 we have that

p(n) —1 p(n) —1 p(n) —1

)1 _
Bal bl —pm) =1

N|©

Since p(n) > 2" this implies that

-1 2
p(ﬁn < 9 forn >3
and
i P —1 2
n—ro0 |}_1n| 9

The corollary follows from (4),(5), and (6).
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Peltomdki (2016) presented the following open problem: “Give a nontrivial upper bound
for B(n)”, where B(n) denotes the number of privileged words of length n. Let D(n) denote
Keywords: the number of closed words of length n. Let ¢ > 1 be the size of the alphabet. We show

Closed words that there is a positive real constant ¢ such that
Privileged words

Upper bound
Combinatorial problems

qﬂ
D(n) <clnn—, wheren > 1.
(m = NG

Privileged words are a subset of closed words, hence we show also an upper bound for the
number of privileged words.
© 2020 Elsevier B.V. All rights reserved.

1. Introduction

A non-empty word w is a border of the word u if |w| < |u| and w is both a prefix and a suffix of u. A border w of the
word u is the maximal border of u if for every border w of u we have that |w| < |w|. A word u with the border w is closed
if u has exactly two occurrences of w. It follows that w occurs only as a prefix and as a suffix of u. A word u is privileged
if |u| <1 or if u contains a privileged border w that appears exactly twice in u. Obviously privileged words are a subset of
closed words.

The properties of closed and privileged words have been studied in recent years [2], [5], [6]. One of the questions that
has been investigated is the enumerationnof privileged words. In [3], it was proved that there are constants ¢ and ng such
cq

that for all n > ng, there are at least oz, 2 privileged words of length n. This improves the lower bound for the number
q

of privileged words from [1]. Since every privileged word is a closed word, the result from [3] forms also a lower bound for
the number of closed words.

Concerning an upper bound for the number of privileged words we have found only the following open problem [4]:
“Give a nontrivial upper bound for B(n)”, where B(n) denotes the number of privileged words of length n. Also in [4], the
author presents an idea how to improve the lower bound from [3]. On the other hand, in [4], there is no explicit suggestion
how to approach the problem of determining the upper bound.

In the current article we construct an upper bound for the number of closed words of length n. Since the privileged
words are a subset of closed words, we present also a response to the open problem from [4].

E-mail address: josef.rukavicka@seznam.cz.

https://doi.org/10.1016/.ip.2020.105917
0020-0190/© 2020 Elsevier B.V. All rights reserved.
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We explain in outline our proof. Let A be an alphabet with q > 1 letters, let A™ denote the set of all words of length m,
and let A* = Usz A™, It is known that |A™ | = q™. Let A,y (n) denote the number of words of length n that do not contain
the factor w € A*. Let w(n, m) be the maximal value of Ay, (n) for all w of length m; formally

w(n, m) = max{Ay () | w e A"}.
Let D(n) denote the set of all closed words of length n and let I5(p, m) denote the set of all closed words of length n having
a maximal border of length m. Let D(n) = |D(n)| and D(n, m) = |D(n, m)|.
Obviously f)(n) = U'r;;]] D(n,m) and D(n,m) N ﬁ(n, m) = (@}, where m # m. We show that if 2m > n then D(n,m) < qr%1
and if 2m <n then D(n, m) < q™u(n —2m, m); see Lemma 2.5. It follows that

n—1 3] n—1
D)= D(m,m) <> ¢"um-2mm+ Y g2l 1)
m=1 m=1 m=|.%l+1

Let N denote the set of positive integers. Let w(n) = ﬁ(lnn —Inlnn). Let IT denote the set of all functions 7 (n) : N —

N such that 7 (n) € IT if and only if 1 < 7 (n) < max{1,w(n)} and w(n) <z (n+ 1) for all n € N. We apply the function
max, because w(n) < 1 for some small n.

The key observation in our article is that the number of words of length n that do not contain some “short” factor of

length (n) € IT has the same growth rate as the number of words of length n — LH‘I—ZJ. Formally said, for each m(n) € I

_lnn
there is a positive real constant c¢ such that w(n, 7 (n)) < cq" Ing ; see Theorem 2.3. This observation allows us to show that
there are real positive constants cq, ¢z such that

12 12
Y q"um-2mm)<cilnn Y q"u@m—2m.m). )

m=1 m=|cz Inn|
In consequence we may count only closed words having a maximal border longer than c; Inn in order to find an upper
bound for D(n).
Applying that p(n — 2m, m) < q"~2™ for n > 2m, we derive from (1) and (2) our result for the number of closed words.

2. Upper bound for the number of closed words

We present an upper bound for the number of words of length n that avoid some factor of length m; it means an upper
bound for wu(n, m).

Lemma 2.1.Ifn,m € N then

1\ 2]
M(n,m)fq”(l—q—m) .

Proof. Given w € A", let Uy, be a set of words u = uquy...ux_qux € A*, where |u|=n, |u;]=m, w#u; forall 1 <i <k,
and |ug| =n mod m. It follows that |ug| <m = |w| and thus uy # w. Obviously

; 1L
Unwl= (@™ = Dlmlg" ™4™ = g" (1——m) :
q

Note that |A™ \{w}| =q™ — 1. It is clear that the set of words of length n not containing the factor w is a subset of Uy .
The lemma follows. O

For the proof of Theorem 2.3 we need the following limit.

Proposition 2.2. We have that

. Inn\"
limn{l——) =e
n—oo n

Proof. Let

1 n
y:limn(1—ﬂ) . 3)
n— 00 n
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From (3) we have that

Inn\" 1
Iny= lim ln|:n(l—¥> ]: lim [lnn+nln(1—%>]. 4)
n—oo n—oo

Let us consider the second term on the right side of (4):

l /

) Inn _In (1 - %)
limnln(1—- — | = lim —— =

n—o00 n n—o00 (H)/
—n(=h) (5)

. (1*'"7") . n(1—Inn)
lim ———— = lim ——————

n— o0 n—oco Nn—Inn

2
Since limy_s o0 ﬁ =1, it follows from (4) and (5) that
n(1 —Inn)
n—Inn
It follows that y = e. This completes the proof. O

lny:nlim [lnn—i— ]:nlim [Inn+1—Inn]=1.
—00 — 00

Let R™ denote the set of positive real numbers.
Let 8= ﬁ € R™. The following theorem states that the number of words of length n avoiding some given “short” factor

(of length shorter than 77 (n) € IT) has the same growth rate as the number of all words of length n — g 1nn.

Theorem 2.3. If 7w (n) € I then there is a constant c € R such that for all n € N we have that

paoam)
qnfﬂ Inn —

Proof. From Lemma 2.1 we have that
1 )Lﬁ]

pwm,wm) T (1 —F® 1 \lzw!
n—p1Inn = n—pgInn =n|1- 7 (n) ' (6)
q q q

Realize that g#"" =n.
Obviously there is np € N such that ¢"™ < L for all n > ng; recall that 77 (n) < w(n)
infinity. Consequently for all n > ng we have that

’ 1 ”< ’ Inn\" ;
n _W <n —T . ()

Proposition 2.2 and (7) imply that

1 n
limn(1-— <e. (8)
n—00 qﬂ(")

Clearly limp— oo (f(n))ﬁ < e for each function f(n) such that f(n) >0 and limp_  f(n) <e; recall that 7t (n) > 1. Then
the theorem follows from (6) and (8). This completes the proof. O

1

= m(lnn —Inlnn) as n tends to

Let h(n) = | BInn]|. We present Theorem 2.3 in a slightly different manner that will be more useful for us in the following.

Corollary 2.4. If 7 (n) € I1 then there is a constant ¢ € R™ such that for all n € N we have that

pn—2xm, @) _
qn—h(n) -

Proof. Let 7t (n) € I1 be a function such that 77 (n) < m(n). It is easy to verify that u(n — 27 (n), 7 (n)) < u(n, 7 (n)), since
the number of words of length n avoiding some factor of length 7 (n) is bigger or equal to the number of words of length
n — 27 (n) avoiding some factor of length 7 (n) <7 (n).

Obviously h(n) = L}g—ZJ < {E—Z = g1nn. In consequence we have that g™ > gn—#lnn,

The corollary follows from Theorem 2.3. This completes the proof. O
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We show an upper bound for D(n, m) for the cases where 2m > n and 2m <n.

Lemma 2.5. Suppose n,m € N,

e If2m>nthen D(n,m) <q'%1.
e If2m <n then D(n,m) < q™u(n — 2m, m).

Proof. If 2m > n, w € A*, and |w| =m then there is obviously at most one word u with |u| =n having a prefix and a
suffix w; the prefix w and the suffix w would overlap with each other. If such u exists then the first half of u uniquely
determines the second half of u. It follows that D(n,m) < qr%l

Let F(w) denote the set of all factors of w € A*. If n > 2m then let

Z(n,m) = {wuw | u e A" 2™ and w € A™ and w ¢ F(u)}.

If n > 2m then ﬁ(n, m) C Z(n, m). It is easy to see that

|Z(n,m)| < |A™|u(n — 2m, m).

This completes the proof. O

Let & > 1 be a real constant and h(n) = max{1, L%w(n)j}. Again we use the function max to guarantee that h(n) > 1 for
small n.

Remark 2.6. The functioAn h(n) defines the maximal length of a “short” border of a closed word. In the proof of Theorem 2.9
the closed words from D(n, m) will be enumerated differently for m < h(n) and for m > h(n).

The next auxiliary lemma shows an upper bound for q*h(")”;(”), that we will use in the proof of Proposition 2.8.
Lemma 2.7. There is a constant ¢; € R such that for all n € N we have that
g+ Clqﬁ(%*ﬂl“"_
Proof. Let
. - 1 /1
y= lim (=h(n) + h(n) — — | — — 1) Inn).
n—o0 Ing \ k

We have that

1 1 1 1
y=lim [(—| —Inn|+ (Inn—Inlnn) | — — | ——=1)Inn
n— 00 Ing Kk Inq Ing \ x
| 1 1 1 1
= lim n —1+—-)——(——-1)Ilnn— Inlnn ®
n—oo \ Inq K Ing \ k kIng

= —0Q.

This implies that
g~hm+hm)

lim —————— =¢Y =q~* =0.

1 1
()

The lemma follows. O

The next proposition shows an upper bound for the number of closed words of length n having a maximal border of
length < 37.

Proposition 2.8. There is a constant ¢ € R such that

b

i

n
qmu(n —2m,m) < clnnq—, wheren > 1.

N

m=1
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Proof. Since j(n —2m, m) < q"~2™ we have that

51 hm)—1 K2l
Y q"um—2mm)< Y q"um-2mm+ Y q"q¢"" (10)
m=1 m=1 m:ﬂ(n)

Corollary 2.4 implies that (n — 2m, m) < cq" "™ for some constant ¢ € R™. It follows that

h(m)—1 h(n)
> g um—2mm) <y q"cq ™

m=1 m=1

<hmg" Vg ™.

(11)

Lemma 2.7 and (11) imply that

h(n)—1 . _ n—}"—"(l—l)
> q"un —2m.m) < cih(nyeg" ma T, (12)
m=1
where c; is some real positive constant.
It is easy to verify that

(Inn—Inlnn)+1

g < g = q(inmys g 7w ", (13)

Thus using (13)

71 21 n—h(n) ! 1 n—#ﬂq Inn
Z qmqnfzm <q" Z g < f < q( nn?l q - . (14)
m=h(n) m=h(n) q q

Obviously h(n) < 22 . Hence taking x = 2, we get from (10), (12), and (14) that

kIng"

3
3 ¢ —2m,m) < cimycq" T

m=1

i

Inn

1 g1

mn  qnn)zq 2Ma
+—

1—q!

1
2 (15)
<q”‘ﬁl“" (ClC Inn + q(lnn)z)

2lng  1—q7!

1
<q" 7 "¢y Inn + c3(Inn) 2),

1
for some constants ¢, c3 € R™. Since /n =q?ma " the proposition follows from (15). O
We show an upper bound for D(n).

Theorem 2.9. There is a constant ¢ € R* such that

n
D(n) < clnnq—, wheren > 1.

Jn
Proof. We have that

n—1

n—1 l71
D) =Y Dm,m=)» Dm,m+ Y D@m). (16)
m=1 m=1

m=[51+1
From Lemma 2.5 and (16) we get that
31 n—1

D < ) q"um—2mm+ Y gl (17)

m=1 m=[51+1
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Realize that

and

Then it follows that from (17), and Proposition 2.8 that there are constants ¢, c3 € Rt such that

K2l n—1
Y q"un—2mm= Y q?land
m=1 meTg1+1

M3
D) <c3 ) q"pu(n—2m,m). (18)

m=1

The theorem follows from (18), and Proposition 2.8. O

Remark 2.10. Note that some of the constants c,c1, c2, c3, that we used in our results and in particular in Theorem 2.9,
depend on q.
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Abstract. In 1985, Restivo and Salemi presented a list of five problems
concerning power free languages. Problem 4 states: Given a-power-free
words u and v, decide whether there is a transition from u to v. Problem
5 states: Given a-power-free words u and v, find a transition word w, if
it exists.

Let X denote an alphabet with k letters. Let Ly . denote the a-power
free language over the alphabet X, where « is a rational number or a
rational “number with +”. If a is a “number with +” then suppose k > 3
and o > 2. If a is “only” a number then suppose £k = 3 and o > 2 or
k > 3 and o > 2. We show that: If u € Ly o is a right extendable word
in Lo and v € Ly o is a left extendable word in L o then there is a
(transition) word w such that uwv € L, o. We also show a construction
of the word w.

Keywords: Power free languages - Transition property - Dejean’s
conjecture

1 Introduction

The power free words are one of the major themes in the area of combinatorics

on words. An a-power of a word r is the word r®* = rr...rt such that % =«

and ¢ is a prefix of r, where o > 1 is a rational number. For example (1234)3 =
123412341234 and (1234)% = 1234123. We say that a finite or infinite word w
is a-power free if w has no factors that are S-powers for 8 > « and we say
that a finite or infinite word w is a"-power free if w has no factors that are
B-powers for 3 > «, where «, 8 > 1 are rational numbers. In the following, when
we write “a-power free” then a denotes a number or a “number with +”. The
power free words, also called repetitions free words, include well known square
free (2-power free), overlap free (27-power free), and cube free words (3-power
free). Two surveys on the topic of power free words can be found in [8] and [13].

One of the questions being researched is the construction of infinite power
free words. We define the repetition threshold RT(k) to be the infimum of all
rational numbers « such that there exists an infinite a-power-free word over an
alphabet with k letters. Dejean’s conjecture states that RT(2) = 2, RT(3) = I,

© Springer Nature Switzerland AG 2020
N. Jonoska and D. Savchuk (Eds.): DLT 2020, LNCS 12086, pp. 294-303, 2020.
https://doi.org/10.1007/978-3-030-48516-0_22
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RT(4) = I, and RT(k) = ;%5 for each k > 4 [3]. Dejean’s conjecture has been
proved with the aid of several articles [1-3,5,6,9].

It is easy to see that a-power free words form a factorial language [13]; it
means that all factors of a a-power free word are also a-power free words. Then
Dejean’s conjecture implies that there are infinitely many finite a-power free
words over Xy, where av > RT (k).

In [10], Restivo and Salemi presented a list of five problems that deal with the
question of extendability of power free words. In the current paper we investigate

Problem 4 and Problem 5:

— Problem 4: Given a-power-free words u and v, decide whether there is a
transition word w, such that wwu is a-power free.

— Problem 5: Given a-power-free words u and v, find a transition word w, if it
exists.

A recent survey on the progress of solving all the five problems can be found
in [7]; in particular, the problems 4 and 5 are solved for some overlap free (2%-
power free) binary words. In addition, in [7] the authors prove that: For every
pair (u,v) of cube free words (3-power free) over an alphabet with & letters, if
u can be infinitely extended to the right and v can be infinitely extended to the
left respecting the cube-freeness property, then there exists a “transition” word
w over the same alphabet such that uwwv is cube free.

In 2009, a conjecture related to Problems 4 and Problem 5 of Restivo and
Salemi appeared in [12]:

Congecture 1. [12, Conjecture 1] Let L be a power-free language and let e(L) C L
be the set of words of L that can be extended to a bi-infinite word respecting
the given power-freeness. If u, v € e(L) then uwv € e(L) for some word w.

In 2018, Conjecture 1 was presented also in [11] in a slightly different form.
Let N denote the set of natural numbers and let Q denote the set of rational
numbers.

Definition 1. Let

Y ={(k,a) | keNand « € Q and k =3 and a > 2}
U{(k,a) |k eNand a € Q and k > 3 and o > 2}
U{(k,a™) k€N and a € Q and k > 3 and o > 2}.

Remark 1. The definition of 1" says that: If (k,a) € T and « is a “number with
+” then k > 3 and a > 2. If (k,) € T and « is “just” a number then k = 3
and o >2or k>3 and o > 2.

Let L be a language. A finite word w € L is called left extendable (resp., right
extendable) in L if for every n € N there is a word u € L with |u| = n such that
uw € L (resp., wu € L).

In the current article we improve the results addressing Problems 4 and
Problem 5 of Restivo and Salemi from [7] as follows. Let X} denote an alphabet



296 J. Rukavicka

with £ letters. Let Ly, o, denote the a-power free language over the alphabet Y.
We show that if (k,a) € T, u € Lj o is a right extendable word in Ly ., and
v € Lo is a left extendable word in Ly , then there is a word w such that
uwv € Ly o. We also show a construction of the word w.

We sketch briefly our construction of a “transition” word. Let u be a right
extendable a-power free word and let v be a left extendable a-power free word
over Xy with k > 2 letters. Let u be a right infinite a-power free word having u
as a prefix and let ¥ be a left infinite a-power free word having v as a suffix. Let
x be a letter that is recurrent in both u and v. We show that we may suppose
that w and v have a common recurrent letter. Let ¢ be a right infinite a-power
free word over X \ {z}. Let ¢ be a left infinite a-power free word such that the
set of factors of ¢ is a subset of the set of recurrent factors of t. We show that
such ¢ exists. We identify a prefix uxg of 4 such that g is a prefix of ¢ and axt
is a right infinite a-power free word. Analogously we identify a suffix gxv of ©
such that g is a suffix of ¢ and tx? is a left infinite a-power free word. Moreover
our construction guarantees that u is a prefix of @t and v is a suffix of tz0.
Then we find a prefix hp of ¢ such that pzv is a suffix of tzv and such that both
h and p are “sufficiently long”. Then we show that uxhpzv is an a-power free
word having u as a prefix and v as a suffix.

The very basic idea of our proof is that if u, v are a-power free words and z is
a letter such that x is not a factor of both u and v, then clearly uzv is a-power
free on condition that o > 2. Just note that there cannot be a factor in uxv
which is an a-power and contains x, because x has only one occurrence in uzv.
Our constructed words uxt, txv, and axhprtd have “long” factors which does not
contain a letter x. This will allow us to apply a similar approach to show that
the constructed words do not contain square factor rr such that r contains the
letter x.

Another key observation is that if £ > 3 and o > RT(k — 1) then there is an
infinite a-power free word w over Xy \ {z}, where = € X} This is an implication
of Dejean’s conjecture. Less formally said, if u,v are a-power free words over
an alphabet with k letters, then we construct a “transition” word w over an
alphabet with k£ — 1 letters such that uwv is a-power free.

Dejean’s conjecture imposes also the limit to possible improvement of our
construction. The construction cannot be used for RT(k) < a < RT(k — 1),
where k& > 3, because every infinite (or “sufficiently long”) word w over an
alphabet with & — 1 letters contains a factor which is an a-power. Also for
k =2 and « > 1 our technique fails. On the other hand, based on our research,
it seems that our technique, with some adjustments, could be applied also for
RT(k—1) < a <2 and k > 3. Moreover it seems to be possible to generalize our
technique to bi-infinite words and consequently to prove Conjecture 1 for k > 3
and a > RT(k —1).

2 Preliminaries

Recall that X;, denotes an alphabet with k letters. Let € denote the empty word.
Let X7 denote the set of all finite words over X, including the empty word €, let
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ES’R denote the set of all right infinite words over X}, and let ES’L denote the
set of all left infinite words over X}. Let EEI = EE’L U EE’R. We call w € E}f an
infinite word.

Let occur(w,t) denote the number of occurrences of the nonempty factor
t € X3\ {e} in the word w € X7 UXY. If w € XY and occur(w, t) = oo, then we
call t a recurrent factor in w.

Let F(w) denote the set of all finite factors of a finite or infinite word w €
Yy U XN, The set F(w) contains the empty word and if w is finite then also
w € F(w). Let F,.(w) C F(w) denote the set of all recurrent nonempty factors
of we XV,

Let Prf(w) C F(w) denote the set of all prefixes of w € X} U ES’R and let
Suf(w) C F(w) denote the set of all suffixes of w € X} U ES’L. We define that
e € Prf(w) N Suf(w) and if w is finite then also w € Prf(w) N Suf(w).

We have that Ly, o € X}. Let Lﬁa (- EE’ denote the set of all infinite a-power
free words over Xj. Obviously Lga ={w € IV | F(w) C Ly o }. In addition we
define Lg’f’ = Lf,j(1 OEE’R and Lf’é = Ll;ja ﬁE,Ij’L; it means the sets of right
infinite and left infinite a-power free words.

3 Power Free Languages

Let (k,a) € T and let u,v be a-power free words. The first lemma says that uv
is a-power free if there are no word r and no nonempty prefix v of v such that
rr is a suffix of v and rr is longer than v.

Lemma 1. Suppose (k,a) €T, uw € Ly o, and v € Ly, o ULE”f. Let

I ={(r,v) | r € X; \ {e} and v € Prf(v) \ {€} and
rr € Suf(uv) and |rr| > |0]}.

If IT = 0 then uv € Ly o U Lil”f’.

Proof. Suppose that uv is not a-power free. Since u is a-power free, then there
aret € X} and x € X}, such that tx € Prf(v), ut € Ly o and utx & Ly, . It means
that there is r € Suf(utx) such that 7% € Suf(utz) for some 8 > a or 8 > « if
« is a “number with +”; recall Definition 1 of 7". Because a > 2, this implies
that rr € Suf(r?). If follows that (tz,r) € II. We proved that uv & Ly, ULE’S
implies that IT # (). The lemma follows. ‘0

The following technical set I'(k,«) of 5-tuples (wy,ws,x,g,t) will simplify
our propositions.

Definition 2. Given (k,a) € T, we define that (wy,ws,x,g,t) € I'(k,a) if

1. wi,wq,g € X7,
2. x € Xy,
3. wiwaxg € L o,
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4o te Ll

5. occur(t, ) = 0,

6. g € Prf(t),

7. occur(wazgy, xgy) = 1, where y € Xy, is such that gy € Prf(t), and
8. occur(ws, z) > occur(wi, ).

Remark 2. Less formally said, the 5-tuple (wy,ws, z, g,t) is in I'(k, ) if wywazg
is a-power free word over X, t is a right infinite a-power free word over Xy, ¢
has no occurrence of z (thus ¢ is a word over X} \ {z}), ¢ is a prefix of ¢, zgy
has only one occurrence in wexgy, where y is a letter such that gy is a prefix
of ¢, and the number of occurrences of x in wy is bigger than the number of
occurrences of x in wy, where w1, ws, g are finite words and x is a letter.

The next proposition shows that if (wq,ws,z,g,t) is from the set I'(k, )
then wywqxt is a right infinite a-power free word, where (k, «) is from the set 7.

Proposition 1. If (k,a) € T and (wy,ws,x,9,t) € I'(k,a) then wiwsxt €
N,R

Lk,a .

Proof. Lemma 1 implies that it suffices to show that there are no u € Prf(t)

with |u| > |g| and no r € X} \ {€} such that rr € Suf(wiwezu) and |rr| > |ul.

Recall that wywexg is an a-power free word, hence we consider |u| > |g|. To

get a contradiction, suppose that such r,u exist. We distinguish the following

distinct cases.

— If |r| < |u| then: Since u € Prf(t) C Ly, it follows that zu € Suf(r?) and
hence z € F(r?). It is clear that occur(r?,z) > 1 if and only if occur(r,z) > 1.
Since x ¢ F(u) and thus  ¢€ F(r), this is a contradiction.

~ If |r| > |u| and rr € Suf(wexu) then: Let y € Xy be such that gy € Prf(t).
Since |u| > |g| we have that gy € Prf(u) and zgy € Prf(zu). Since |r| > |u]
we have that gy € F(r). In consequence occur(rr, zgy) > 2. But Property 7
of Definition 2 states that occur(wazgy, xgy) = 1. Since rr € Suf(wazu), this
is a contradiction.

— If |r| > |u| and rr & Suf(wazu) and r € Suf(wezu) then:

Let w11, W12, W13, W21, W € E;: be such that W1 = W11W12W13, W2 = W21W22,
W1oW13We1 = T, WigWizWaxu = 77, and wiswey = xu; see Figure below.

ru

w11 | W12 | W13 | W21 'LUQQ‘I"U

r r

It follows that wooxu = 7 and wey = wio. It is easy to see that wiswg; =
zu. From occur(u,z) = 0 we have that occur(ws,z) = occur(wsg,x)
and occur(wiz,z) = 1. From wes = wis it follows that occur(wi,z) >
occur(ws, x). This is a contradiction to Property 8 of Definition 2.
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— If |r| > |u| and rr & Suf(wazu) and r & Suf(wezu) then: Let wyy, w2, wis €
X be such that wy = wiiwigwiz, wiz = r and wigwezu = 7; see Figure
below.

w11 | W12 w13"w2‘x‘u

T T

It follows that
occur(wia, x) = occur(wss, x) + occur(ws, ) + occur(zu, ).
This is a contradiction to Property 8 of Definition 2.

We proved that the assumption of existence of r,u leads to a contradiction.
Thus we proved that for each prefix u € Prf(t) we have that wywezu € L 4.
The proposition follows. a

We prove that if (k,«) € T then there is a right infinite a-power free word over
2k—1. In the introduction we showed that this observation could be deduced
from Dejean’s conjecture. Here additionally, to be able to address Problem 5
from the list of Restivo and Salemi, we present in the proof also examples of
such words.

Lemma 2. If (k,«a) €T then the set Lg’ﬁ . s not empty.

Proof. 1f k = 3 then |X)_1| = 2. It is well known that the Thue Morse word is a
right infinite 2*-power free word over an alphabet with 2 letters [11]. It follows
that the Thue Morse word is a-power free for each a > 2.

If £ > 3 then | X%_1| > 3. It is well known that there are infinite 2-power free
words over an alphabet with 3 letters [11]. Suppose 0,1,2 € Y. An example is
the fixed point of the morphism € defined by #(0) = 012, §(1) = 02, and §(2) =1
[11]. If an infinite word ¢ is 2-power free then obviously ¢ is a-power free and
at-power free for each o > 2.

This completes the proof. a

We define the sets of extendable words.
Definition 3. Let L C X}. We define

lext(L) = {w € L | w is left extendable in L}

and
rext(L) = {w € L | w is right extendable in L}.

If u € lext(L) then let lext(u, L) be the set of all left infinite words u such that
Suf(u) C L and u € Suf(u). Analogously if u € rext(L) then let rext(u,L) be the
set of all right infinite words u such that Prf(u) C L and u € Prf(a).
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We show the sets lext(u, L) and rext(v, L) are nonempty for left extendable and
right extendable words.

Lemma 3. IfL C X} and u € lext(L) (resp., v € rext(L)) then lext(u,L) # ()
(resp., rext(v,L) # 0).

Proof. Realize that u € lext(L) (resp., v € rext(L)) implies that there are
infinitely many finite words in L having u as a suffix (resp., v as a prefix).
Then the lemma follows from Konig’s Infinity Lemma [4,8]. 0

The next proposition proves that if (k,«) € 7', w is a right extendable a-power
free word, w is a right infinite a-power free word having the letter x as a recurrent
factor and having w as a prefix, and ¢ is a right infinite a-power free word over
Y \{x}, then there are finite words w1y, wa, g such that the 5-tuple (wy, ws, x, g, t)
is in the set I'(k,«) and w is a prefix of wiwaxg.

Proposition 2. If (k,a) € T, w € rext(Li,q), @ € rext(w, Ly ), * € Fp(w) N
X, t e Lg’f, and occur(t,x) = 0 then there are finite words w1, ws,g such that
(w1, wa,x,g9,t) € I'(k,) and w € Prf(wiwazg).

Proof. Let w = F(w) N Prf(zt) be the set of factors of w that are also prefixes
of the word xt. Based on the size of the set w we construct the words wy, ws, g
and we show that (wy,ws,z,g,t) € I'(k, o) and wywazg € Prf(w) C Ly o. The
Properties 1, 2, 3, 4, 5, and 6 of Definition 2 are easy to verify. Hence we explicitly
prove only properties 7 and 8 and that w € Prf(wjwaxg).

— If w is an infinite set. It follows that Prf(xt) = w. Let g € Prf(¢) be such that
|g| = |wl; recall that ¢ is infinite and hence such g exists. Let wy € Prf(w) be
such that wozg € Prf(w) and occur(wazg, zg) = 1. Let wy = e.

Property 7 of Definition 2 follows from occur(wsxg,zg) = 1. Property 8 of
Definition 2 is obvious, because w; is the empty word. Since |g| = |w| and
w € Prf(w) we have that w € Prf(wjwsxg).

— If w is a finite set. Let @ = w N F,.(w) be the set of prefixes of x¢ that are
recurrent in w. Since z is recurrent in w we have that x € @ and thus @ is
not empty. Let g € Prf(t) be such that xg is the longest element in @w. Let
wy € Prf(w) be the shortest prefix of w such that if u € w\@ is a non-recurrent
prefix of zt in w then occur(wy,u) = occur(w,u). Such wy obviously exists,
because w is a finite set and non-recurrent factors have only a finite number of
occurrences. Let ws be the shortest factor of w such that wiwazg € Pri(w),
occur(wy, ) < occur(ws, z), and w € Prf(wjwaxg). Since xg is recurrent in
w and w € Prf(w) it is clear such wy exists.

We show that Property 7 of Definition 2 holds. Let y € X be such that
gy € Prf(t). Suppose that occur(wszg,zgy) > 0. It would imply that zgy
is recurrent in w, since all occurrences of non-recurrent words from w are
in wy. But we defined g to be the longest recurrent word w. Hence it is
contradiction to our assumption that occur(wyzg, xgy) > 0.

Property 8 of Definition 2 and w € Prf(wjwexg) are obvious from the con-
struction of ws.
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This completes the proof. O

We define the reversal w’ of a finite or infinite word w = 2ru E}f as
follows: If w € Xy and w = wiws ... wy,, where w; € X, and 1 <7 < m, then
wh = W Wy—1 ... wowy. If w € ES’L and w = ...wow;, where w; € X} and
i € N, then wf® = wjwy--- € ZE’R. Analogously if w € ES’R and w = wiws ...,
where w; € X, and i € N, then wf = ... wow; € ES’L.

Proposition 1 allows one to construct a right infinite a-power free word with
a given prefix. The next simple corollary shows that in the same way we can

construct a left infinite a-power free word with a given suffix.

Corollary 1. If (k,a) € T, w € lext(Ly.q), @ € lext(w, L o), © € F.(@0) N 2,
t € Lg”fl, and occur(t,x) = 0 then there are finite words wy,ws,g such that

(Wl wl x, gft tF) € ['(k,a), w € Suf(grwaw;), and trwaw; € Lg’i.

Proof. Let u € Xf U X}. Realize that u € Ly ULy, if and only if uf €
LioU Lga. Then the corollary follows from Proposition 1 and Proposition 2. O

Given k£ € N and a right infinite word ¢ € ZE’R, let @(t) be the set of all

left infinite words t € ES’L such that F(t) C F,(t). It means that all factors of
t € &(t) are recurrent factors of t. We show that the set &(¢) is not empty.

Lemma 4. Ifk € N and t € X,"" then &(t) # 0.

Proof. Since t is an infinite word, the set of recurrent factors of ¢ is not empty. Let
g be a recurrent nonempty factor of t; g may be a letter. Obviously thereis x € X,
such that xg is also recurrent in ¢. This implies that the set {h | hg € F,.(t)} is
infinite. The lemma follows from Ko6nig’s Infinity Lemma [4,8]. ]

The next lemma shows that if u is a right extendable a-power free word
then for each letter x there is a right infinite c-power free word @ such that z is
recurrent in u and wu is a prefix of u.

Lemma 5. If (k,a) € T, u € rext(Lga), and x € Xy then there is u €
rext(u, Ly o) such that x € Fy.(a).

Proof. Let w € rext(u, L o); Lemma 3 implies that rext(u, L o) is not empty.
If x € F,(w) then we are done. Suppose that z ¢ F,.(w). Let y € F,.(w) N Xj.
Clearly = # y. Proposition 2 implies that there is (w1, ws,y,g,t) € I'(k, ) such
that u € Prf(w;wayg). The proof of Lemma 2 implies that we can choose ¢ in such
a way that x is recurrent in ¢. Then wiwqyt € rext(u, Ly o) and x € F,.(wiwayt).
This completes the proof. a

The next proposition shows that if u is left extendable and v is right extend-
able then there are finite words #, v, a letter x, a right infinite word ¢, and a
left infinite word ¢ such that axt,txv are infinite a-power free words, ¢ has no
occurrence of x, every factor of ¢ is a recurrent factor in ¢, u is a prefix of uxt,
and v is a suffix of tz0.
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Proposition 3. If (k,a) € T, u € rext(Ly,o), and v € lext(Ly o) then there are
wv e X, v e X, te EE’R, and t € EE’L such that txt € LI,j:f, txd € Lg)’i,
occur(t,z) =0, F(t) CF,(t), u € Prf(axt), and v € Suf(tzv).

Proof. Let u € rext(u, Ly o) and v € lext(v, Ly o) be such that F,.(a) N F,.(7) N
Y # (. Lemma 5 implies that such @, v exist. Let z € F.(a) N F.(0) N . It
means that the letter x is recurrent in both % and .

Let ¢ be a right infinite a-power free word over Xy \ {x}. Lemma 2 asserts
that such ¢ exists. Let ¢ € &(t); Lemma 4 shows that ®(t) # 0. It is easy to see
that ¢t € Ll,j’i, because F(t) C F,.(t) and t € Li’f.

Proposition 2 and Corollary 1 imply that there are uq,us2, g,v1,v2,9 € Li o
such that

- (Ul,UQ,.’E g, ) (kv )7

= (vff, vt 2, g%, t7) € I'(k, ),

— u € Prf(ujuszg), and

— v® € Prf(vFofagh); it follows that v € Suf(gzvavy).

Proposition 1 implies that uluth,vavézfo € Lg’f. It follows that tzvov; €
Lg’i. Let @ = ujus and 9 = vovy. This completes the proof. O
The main theorem of the article shows that if u is a right extendable a-power free
word and v is a left extendable a-power free word then there is a word w such
that uwv is a-power free. The proof of the theorem shows also a construction of
the word w.

Theorem 1. If (k,a) € T, u € rext(Ly,), and v € lext(Ly o) then there is
w € Ly o such that vwv € Ly, 4.

Proof. Let @, 0,x,t,t be as in Proposition 3. Let p € Suf(f) be the shortest suffix
such that |p| > max{|ux|, |z0], |ul, |v|}. Let h € Prf(t) be the shortest prefix such
that hp € Prf(t) and |h| > |p|; such h exists, because p is a recurrent factor of ¢;
see Proposition 3. We show that dxhpzv € Ly 4.

We have that axhp € Ly o, since hp € Prf(t) and Proposition 3 states that
urt € L % Lemma 1 implies that it suffices to show that there are no g € Prf (0)
and no r 6 X7\ {€} such that rr € Suf(azhpxg) and |rr| > |zg|. To get a
contradiction, suppose there are such r, g. We distinguish the following cases.

— If |r| < |xg| then rr € Suf(pxg), because |p| > |z0| and xg € Prf(xv). This is
a contradiction, since pzv € Suf(tzv) and tzv € szi? see Proposition 3.

— If |r| > |zg| then |r| < i|azhpag|, otherwise rr cannot be a suffix of azhpzg.
Because |h| > |p| > max{|ux|,|z0|} we have that r € Suf(hpzg). Since
occur(hp,xz) = 0, |h| > |p| > |z?|, and xg € Suf(r) it follows that there are
words hi, hy such that axhprg = txhihoprg, r = hoprg and r € Suf(tdxhy).
It follows that xg € Suf(dzh,) and because occur(hy,z) = 0 we have that
|hi] < |g|. Since |p| > |uxz| we get that |hopxg| > |uxg| > |uxh|; hence
|r| > |txhy|. This is a contradiction.
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We conclude that there is no word r and no prefix g € Prf(v) such that rr €
Suf(axhpzg). Hence txhpzv € Lj . Due to the construction of p and h we have
that u € Prf(azhpat) and v € Suf(azhprv). This completes the proof. O

Acknowledgments. The author acknowledges support by the Czech Science Foun-
dation grant GACR 13-03538S and by the Grant Agency of the Czech Technical Uni-
versity in Prague, grant No. SGS14/205/OHK4/3T/14.

References

10.

11.

12.

13.

. Carpi, A.: On Dejean’s conjecture over largealphabets. Theor. Comput. Sci. 385,

137-151 (2007)

Currie, J., Rampersad, N.: A proof of Dejean’s conjecture. Math. Comp. 80, 1063—
1070 (2011)

Dejean, F.: Sur un théoreme de Thue. J. Comb. Theor. Series A 13, 90-99 (1972)
Konig, D.: Sur les correspondances multivoques des ensembles. Fundamenta Math.
8, 114-134 (1926)

Ollagnier, J.M.: Proof of Dejean’s conjecture for alphabets with 5, 6, 7, 8, 9, 10
and 11 letters. Theor. Comput. Sci. 95, 187-205 (1992)

Pansiot, J.-J.: A propos d’une conjecture de F. Dejean sur les répétitions dans les
mots. Discrete Appl. Math. 7, 297-311 (1984)

Petrova, E.A., Shur, A.M.: Transition property for cube-free words. In: van Bevern,
R., Kucherov, G. (eds.) CSR 2019. LNCS, vol. 11532, pp. 311-324. Springer, Cham
(2019). https://doi.org/10.1007/978-3-030-19955-5_27

Rampersad, N.: Overlap-free words and generalizations. A thesis, University of
Waterloo (2007)

Rao, M.: Last cases of Dejean’s conjecture. Theor. Comput. Sci. 412, 3010-3018
(2011). Combinatorics on Words (WORDS 2009)

Restivo, A., Salemi, S.: Some decision results on nonrepetitive words. In: Apos-
tolico, A., Galil, Z. (eds.) Combinatorial Algorithms on Words, pp. 289-295.
Springer, Heidelberg (1985). https://doi.org/10.1007/978-3-642-82456-2_20
Shallit, J., Shur, A.: Subword complexity and power avoidance. Theor. Comput.
Sci. 792, 96-116 (2019). Special issue in honor of the 70th birthday of Prof. Woj-
ciech Rytter

Shur, A.M.: Two-sided bounds for the growth rates of power-free languages. In:
Diekert, V., Nowotka, D. (eds.) DLT 2009. LNCS, vol. 5583, pp. 466—477. Springer,
Heidelberg (2009). https://doi.org/10.1007/978-3-642-02737-6_38

Shur, A.M.: Growth properties of power-free languages. In: Mauri, G., Leporati, A.
(eds.) DLT 2011. LNCS, vol. 6795, pp. 28—43. Springer, Heidelberg (2011). https://
doi.org/10.1007/978-3-642-22321-1_3






Article [[Ru08]]: Palindromic Length of Words with
Many Periodic Palindromes

130



®

Check for
updates

Palindromic Length of Words with Many
Periodic Palindromes

Josef Rukavicka(®

Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering,
Czech Technical University in Prague, Prague, Czech Republic
josef .rukavicka@seznam.cz

Abstract. The palindromic length PL(v) of a finite word v is the min-
imal number of palindromes whose concatenation is equal to v. In 2013,
Frid, Puzynina, and Zamboni conjectured that: If w is an infinite word
and k is an integer such that PL(u) < k for every factor u of w then w
is ultimately periodic.

Suppose that w is an infinite word and k is an integer such PL(u) < k
for every factor u of w. Let £2(w, k) be the set of all factors u of w that
have more than {/k—1'|u| palindromic prefixes. We show that 2(w, k)
is an infinite set and we show that for each positive integer j there are
palindromes a,b and a word u € £2(w, k) such that (ab)? is a factor of
u and b is nonempty. Note that (ab)’ is a periodic word and (ab)‘a is a
palindrome for each ¢ < j. These results justify the following question:
What is the palindromic length of a concatenation of a suffix of b and a
periodic word (ab)? with “many” periodic palindromes?

It is known that if u, v are nonempty words then |PL(uv) — PL(u)| <
PL(v). The main result of our article shows that if a, b are palindromes, b
is nonempty, u is a nonempty suffix of b, |ab| is the minimal period of aba,
and j is a positive integer with j > 3PL(u) then PL(u(ab)’) —PL(u) > 0.

1 Introduction

In 2013, Frid, Puzynina, and Zamboni introduced a palindromic length of a finite
word [6]. Recall that the word u = z125 ...z, of length n is called a palindrome

if zyz9... 2, = x,...2221, where x; are letters and ¢ € {1,2,...,n}. The
palindromic length PL(u) of the word w is defined as the minimal number k
such that v = ujus...u; and u; are palindromes, where j € {1,2,...,k}; note

that the palindromes u; are not necessarily distinct. Let e denote the empty
word. We define that PL(e) = 0.

In general, the factorization of a finite word into the minimal number of
palindromes is not unique; for example PL(011001) = 3 and the word 011001
can be factorized in two ways: 011001 = (0110)(0)(1) = (0)(1)(1001).

The authors of [6] conjectured that:

Conjecture 1. If w is an infinite word and P is an integer such that PL(u) < P
for every factor u of w then w is ultimately periodic.
© Springer Nature Switzerland AG 2020
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So far, Conjecture 1 remains open. We call an infinite word that satisfies the
condition from Conjecture 1 a word with a bounded palindromic length. Note
that there are infinite periodic words that do not have a bounded palindromic
length; for example (012)°°. Hence the converse of Conjecture 1 does not hold.

In [6] the conjecture was proved for infinite words that are k-power free for
some positive integer k. It follows that if w is an infinite word with a bounded
palindromic length, then for each positive integer j there is a nonempty factor
r such that 77 is a factor of w.

In [11], another variation of Conjecture 1 was considered:

Conjecture 2. Every aperiodic (not ultimately periodic) infinite word has pre-
fixes of arbitrarily high palindromic length.

In [11], the author proved that Conjecture 1 and Conjecture 2 are equivalent.
More precisely, it was proved that if every prefix of an infinite word w is a
concatenation of at most n palindromes then every factor of w is a concatenation
of at most 2n palindromes. It follows that Conjecture 2 remains also open.

In [7] Conjecture 1 and Conjecture 2 have been proved for all Sturmian words.
The properties of the palindromic length of Sturmian words have been investi-
gated also in [2]. In [1], the authors study the palindromic length of factors of
fixed points of primitive morphisms. In [8], the lower bounds for the palindromic
length of prefixes of infinite words can be found.

In [4], a left and right greedy palindromic length have been introduced as a
variant to the palindromic length. It is shown that if the left (or right) greedy
palindromic lengths of prefixes of an infinite word w is bounded, then w is
ultimately periodic.

In addition, algorithms for computing the palindromic length were researched
[3,5,10]. In [10], the authors present a linear time online algorithm for computing
the palindromic length.

In the current paper we investigate infinite words with a bounded palindromic
length. Let k be a positive integer, let w be an infinite word such that & > PL(¢)
for every factor ¢ of w, and let 2(w, k) be the set of all factors u of w that have
more than {/k~!|u| palindromic prefixes. We show that £2(w, k) is an infinite
set and we show that for each positive integer j there are palindromes a,b and
a word u € £2(w, k) such that (ab)’ is a factor of u and b is nonempty. Note
that (ab)’ is a periodic word and (ab)’a is a palindrome for each i < j. In this
sense we can consider that w has infinitely many periodic palindromes with an
arbitrarily high exponent j.

The existence of infinitely many periodic palindromes in w is not surprising.
It can be deduced also from the result in [6], which says, as mentioned above,
that if w is an infinite word with a bounded palindromic length, then for each
positive integer j there is a nonempty factor r such that 7 is a factor of w.

These results justify the following question: What is the palindromic length
of a concatenation of a suffix of b and a periodic word (ab)’ with “many” periodic
palindromes?

It is known that if u,v are nonempty words then |PL(uv) — PL(u)| < PL(v)
[11]. Less formally said, it means that by concatenating a word v to a word u the
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change of the palindromic length is at most equal to the palindromic length of v.
The main result of our article shows that if a, b are palindromes, b is nonempty,
u is a nonempty suffix of b, |ab| is the minimal period of aba, and j is a positive
integer with j > 3PL(u) then PL(u(ab)’) — PL(u) > 0.

The results of our article should shed some light on infinite words for which
Conjecture 1 and Conjecture 2 remain open. For the moment, for given factor
u, we identified factors v such that PL(uv) — PL(v) > 0. The idea for the future
development of this result is, for given k£ € N, to identify factors u,v such that
PL(u) = k and PL(uv) — PL(u) > 0. The existence of such factors would, in
consequence, allow us to prove the Conjecture 1 and Conjecture 2.

2 Preliminaries

Let N denote the set of all positive integers, let Ng = N U {0} denote the set
of all nonnegative integers, let R denote the set of all real numbers, and let R*
denote the set of all positive real numbers.

Let A denote a finite alphabet with |[A| > 2 letters. Let AT denote the set
of all finite nonempty words over the alphabet A and let A* = AT U {e}; recall
that e denotes the empty word. Let AN denote the set of all right infinite words.

Let n € N and let w = wiws...w, € A* (or w = wiws--- € AV),
where w; € A and ¢ € {1,2,...,n} (or i € {1,2,...}). We denote by
wlt,j] = wywiyr ... w; the factor of w starting at position ¢ € N and ending

at position j € N, where ¢,j e Nand ¢ <j<n

We call the word v € A* a factor of the word w € A* UAN if there are words
a € A* and b € A* U AN such that w = avb. Given a word w € A* U AN, we
denote by Fac(w) the set of all factors of w. It follows that € € Fac(w) and if
w € A* then also w € Fac(w).

We call the word v € A* a prefiz of the word w € A* U AV if there is
t € A*UAN such that w = vt. Given a word w € A* UAN, we denote by Prf(w)
the set of all prefixes of w. It follows that ¢ € Prf(w) and if w € A* then also
w € Pr(w).

We call the word v € A* a suffiz of the word w € A* if there is t € A* such
that w = tv. Given a word w € A*, we denote by Suf(w) the set of all suffixes
of w. It follows that e, w € Suf(w).

Let w = wqwa...w, € AT, where w; € A and i € {1,2,...,n}. Let wh
denote the reversal of the word w € A%; it means w® = wpwp_1 ... waws.
In addition we define that the reversal of the empty word is the empty word;
formally € = e.

Realize that w € A* is a palindrome if and only if w® = w. Let Pal C A*
denote the set of all palindromes over the alphabet A. We define that € € Pal.
Let Palt = Pal\ {€} be the set of all nonempty palindromes.

Given w € A*UAN, let PalPrf(w) = PalNPrf(w) be the set of all palindromic
prefixes of w.
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Given w € A", let MPF(w) denote the set of all k-tuples of palindromes
whose concatenation is equal to w and k = PL(w); formally

MPF(w) = {(t1,t2,...,tx) | K = PL(w) and t1ts ...t = w and
ti,ta,...,t, € PalT}.

We call a k-tuple (¢1,t2,...,t;) € MPF(w) a minimal palindromic factorization
of w.

Let Q denote the set of all rational numbers. We say that the word w € A7 is
a periodic word, if there are o € Q, r € Prf(w)\{e}, and 7 € Prf(r)\{r} such that
% = «; note that 7 is uniquely determined by r. We
write w = 7 and the period of w is equal to |r|. For example 12341 = (1234)%
and 12341234123 = (1234) .

Given w € AT, let

a>1,w=rr...rr, and

Period(w) = {(r,a) | r* = w and r € Prf(w) \ {e} and a € Q and o > 1}.
The set Period(w) contains all couples (r, ) such that r* = w. Let
MinPer(w) = min{|r| | (r, @) € Period(w)} € N.

The positive integer MinPer(w) is the minimal period of the word w. The word
w € AT has a period § € Q if there is a couple (r,a) € Period(w) such that
|r| = 4.

We will deal a lot with periodic palindromes. The two following known lem-
mas will be useful for us.

Lemma 1 (see [9, Lemma 1]). Suppose p is a period of a nonempty palindrome
w; then there are palindromes a and b such that |ab] = p, b # €, and w = (ab)*a.

Lemma 2 (see [9, Lemma 2]). Suppose w is a palindrome and u is its proper
suffiz-palindrome or prefiz-palindrome; then the number |w| — |u| is a period of
w.

3 Periodic Palindromic Factors

We start the section with a definition of a set of real non-decreasing functions
that diverge as n tends towards the infinity.
Let A denote the set of all functions ¢ such that

- ¢(n): N>R,
- ¢(n) < ¢(n+1), and
— lim,, 00 ¢(n) = 0.

Let k €N, let 7(n, k) = Vk=In € A, let w € AV, and let

Qw, k) = {t € Fac(w) | [PalPrf(t)] > (|¢], k)}.
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The definition says that the set £2(w, k) contains a factor ¢ of w if the number
of palindromic prefixes of ¢ is larger than or equal to 7(|¢t|, k) = {/k~1|¢].

The next proposition asserts that if w is an infinite word with a bounded
palindromic length, then the set of factors that have more than 7(n, k) palin-
dromic prefixes is infinite, where n is the length of the factor in question and
k > PL(t) for each factor ¢ of w.

Proposition 1. If w € AN, k € N and k > max{PL(t) | t € Fac(w)} then
[2(w, k)| = oo.

Proof. Suppose that |[2(w, k)| < oo and let
K = max{|PalPrf(t)| | t € 2(w, k)}.

Less formally said, the value K is the maximal value from the set of numbers of
palindromic prefixes of factors ¢ of w that have more than 7(|t|, k) palindromic
prefixes. Clearly K < oo, because of the assumption |2(w, k)| < oo.

Let p € Prf(w) be the shortest prefix of w such that 7(|p|, k) > K. Since
lim,, 00 7(n, k) = 00, it is clear that such prefix p exists.

To get a contradiction suppose that |PalPrf(t)|] > 7(|p|, k) for some ¢ €
Fac(p). Since 7(Jt|, k) < 7(|p|, k) and thus |PalPrf(t)| > 7(|t|, k), it follows that
t € 2(w,k) and consequently |PalPrf(¢)] < K. It is a contradiction, because
K < 7(|p|, k). Hence we have that

|[PalPrf(t)| < 7(|p|, k) for each t € Fac(p). (1)
Let n,j € N and let

O(n,j) = {(v1,v2,...,v;) | v; € Pal” and i € {1,2,...,5} and

|vivs ... vj| < nand vive...v; € Pri(w)}.

The set O(n, j) contains j-tuples of nonempty palindromes whose concatenation
is of length smaller than or equal to n and also the concatenation is a prefix of
w.

Thus from (1) we get that

Ol )l < (r(lpl, k)’ (2)

The Eq.(2) follows from the fact that each factor of p has at most 7(|p|, k)
palindromic prefixes. In consequence there are at most (7(|p|, k))? of j-tuples of
palindromes.

Let O(|pl,7) = Uf>0 O(|pl, j)- Since 7(n, k) < 7(n + 1,k) we have from (2)
that

O(Ipl £)) < KOw. b < k(o] )" <k (VET0) =lpl.  (®)

The inequality (3) says that the number of prefixes of p having the form
v1V2 ... v;, where j <k and v; € Pal™ is smaller than the length of p. But p has
[p| nonempty prefixes. It is a contradiction. Since {J, ¢py¢(,) MPF(r) € O(|pl, k)
we conclude that 2(w, k) is an infinite set.
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Remark 1. In the proof of Proposition 1, we used the idea that the number of
prefixes of a word of length n that are a concatenation of at most k palindromes
is smaller than n. This idea was used also in Theorem 1 in [6].

We show that if ' is an infinite set of words r such that the number of
nonempty palindromic prefixes of r grows more than In|r| as |r| tends towards
infinity then for each positive integer j there are palindromes a,b and a word
t € X such that (ab)’ is a prefix of ¢ and b is nonempty. Realize that (ab)ia is a
palindrome for each j € Ny. This means that 3 contains infinitely many words
that have a periodic palindromic prefix of arbitrarily high exponent j.

Proposition 2. If ¥ C A*, |X| = o0, ¢(n) € A, lim,, (¢(n) —Inn) = oo,
and |PalPrf(t) \ {e}| > &(|t|) for each t € X then for each j € N there are
palindromes a € Pal, b € Pal™ and a word t € X such that (ab)? € Prf(t).

Proof. Given t € X, let u(t,i) be the lengths of all palindromic prefixes of ¢
such that u(¢,1) = 1 (a letter is a palindrome) and u(t,i) < u(t,i 4+ 1), where
i€ {1,2,...,h}. For example if t = 0100010111, then p(t,1) = 0] =1, u(¢,2) =
|010] = 3, u(t,3) = [0100010| = 7. Let hy = |PalPrf(¢) \ {€}|; the integer h; is
the number of nonempty palindromic prefixes of ¢. Let ¢ € {1,2,...,hy — 1}. It
is clear that

. o Mt 1)
pu(tyi+1) = p(t, Z)w- (4)
From (4) we have that
:U’(t7 ht) lu‘(t7 ht - 1) [,L(t, ht - 2) :u’(t7 2) _ M(t> ht) S ‘tl (5)

gt he = 1) p(t by = 2) p(t, b = 3) palt 1)

Suppose that there is @ € R such that o > 1 and for each ¢t € X and for each
i€{l,2,...,hy — 1} we have that % > a. It follows from (5) that

a =t < h <t (6)
Let ¢ = 1~ € R*. Then [t| = ac™[*|. Since hy > $(t|) we get that

=l ge(th—1  gélh)—1

i ach

_ odth—1—clt| (7)

Because lim,,_, o (¢(n) — Inn) = oo the Eq. (7) implies that there is ng such that
for each ¢t € X' with |t| > ng we have that

ht—1
alt S pellh—1—claltl 5 q (8)

It
From (6) and (8) we have that o™~ < |t| and “7;(1

diction. We conclude there is no such a. In consequence, for_each 3 € Rt with
B > 1thereist € Y and i € {1,2,...,hy — 1} such that % <.

> 1, which is a contra-
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Let j € N, let
1
7§3+16R+, (9)

let t € ¥, and i € {1,2,...,h:} be such that % <~.Letd = % <7
Let u,v € Prf(t) be such that |u| = p(¢,4) and |v| = p(t,i+ 1). Then v is a
periodic palindrome with a period |v| — |u| = wp(t, i+ 1) — u(t, i) = p(t,9)d —
w(t,i) = p(t,4)(6 — 1); see Lemma 2. Lemma 1 implies that there are a € Pal
and b € Pal™ such that (ab)*a = v for some k € N. From Lemma 1 we have

also that |ab| is the period of v. Thus
Jabl = u(t, 1)(5 — 1) < p(t, )y — 1), (10)

From (9) and (10) it follows that
. N
labl < p(t, )0y = 1) < ult, D)= (11)

Note that v = (ab)*a and u € Prf((ab)¥). Since u(t,i) = |u| we get that

H\Elt[,f) < k. From (11) we have that

p(t, i)

| <
)= |ab

<k.

Thus for arbitrary j € N we found ¢,a, b,k such that (ab)* € Prf(¢) and j < k.
The proposition follows.

A corollary of Proposition 1 and Proposition 2 says that if w is an infinite
word with a bounded palindromic length then for each positive integer j there
are palindromes a, b such that (ab)’ is a factor of w and ab is a nonempty word.

Corollary 1. If w € AN, k € N, and k > max{PL(t) | t € Fac(w)} then for
each j € N there are a € Pal and b € Pal™ such that (ab)? € Fac(w).

Proof. Just take X = 2(w, k). Obviously lim, .o (7(n,k) —Inn) = co. Then
Proposition 2 implies the corollary.

4 Palindromic Length of Concatenation

In this section we present some known results about the palindromic length of
concatenation of two words.

The first lemma shows the very basic property of the palindromic length that
the palindromic length of concatenation of two words x and y is smaller than or
equal to the sum of palindromic length of x and y. We omit the proof.

Lemma 3. Ifz,y € A* then PL(zy) < PL(z) + PL(y).
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An another basic property says that if (¢1, o, ...,t;) € MPF(w) is a minimal
palindromic factorization of the word w then the palindromic length of the factor
titiy1...t; is equal to j — i+ 1 for each 4,5 € {1,2,...,k} and ¢ < j. We omit
the proof.

Lemma 4. Ifw € AT, k = PL(w), and (t1,t2,...,t;) € MPF(w) then for each
i,j €{1,2,...,k} with i <j we have that PL(t;tiy1...t;) = j—i+ 1.

The following result has been proved in [11]. It says that if z;, y are words then
the palindromic length of y is the maximal absolute difference of palindromic
lengths of = and zy; i.e. |[PL(z) — PL(zy)| < PL(y).

Lemma 5 (see [11, Lemma 6]). If z,y € A* then

- PL(y) < PL(z) + PL(zy) and
- PL(z) < PL(y) + PL(zy).

We have two following immediate corollaries of Lemma 5.

Corollary 2. If z,y € A* and y € Pal then |PL(zy) — PL(z)| < 1.

Proof. 1t is enough to consider y in Lemma 5 to be a palindrome. Thus we have
PL(y) =1 if y # € or PL(y) = 0 if y = e. The corollary follows.

Corollary 3. If z,y € A* and zy € Pal then |PL(z) — PL(y)| < 1.

Proof. 1f x = y® then PL(z) — PL(y) = 0, because clearly PL(y) = PL(y%).
Suppose that z # y'. It follows that || # |y|, since zy € Pal. Without loss of
generality suppose that || > |y|. Let Z be such that « = y®z. Then 2y = y*Zy.
Thus z € Pal™. Corollary 2 implies that |PL(y"%) — PL(y)| < 1. The corollary
follows.

5 Concatenation of Periodic Palindromes

To simplify the notation of the next two lemmas and the theorem we define an
auxiliary set A. Let A be the set of all 4-tuples (u,d, v, n) such that

-~ dePal",

— v € Pal,

— u € Suf(d) \ {e},

- néeN,

|dv| = MinPer(dvd), and
n > 3PL(u).

Remark 2. The set A contains all 4-tuples (u, v,d, n) such that d is a nonempty
palindrome, v is a palindrome (possibly empty), w is a nonempty suffix of d,
|dv| is the minimal period of the word dvd, and n is a positive integer such that
n > 3PL(u). It follows that n > 3, since u is nonempty and thus PL(u) > 1.
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Lemma 6. If (u,v,d,n) € A, r € Fac(u(vd)™), and |r| > 3lvd| then dvd €
Fac(r).

Proof. Let w = u(vd)", let p € Prf(r) be such that |p| = 3|vd|, and let i,j €
{1,2,...,|w|} be such that p = w[i,j]. Let @ € Prf(d) be such that d = wu.
Note that |uva| = |vd| and thus (uva, §) € Period(w), where § = ‘lifl_b‘ > 1.
Let k € Nyg and w € Suf(w) be such that @ = (wvit)fw, i > |(uwva)¥|,
and i < |(uw@)*T!]. Obviously such k and w exist. Let 4 = ¢ — k|uvd| and
Jj = j — kluva|. It is easy to see that p = wli, j].
We distinguish:

—Ifie{1,2,...,|ul} then p = tvdvduvt for some t € Suf(u) and for ¢ such that
d = tt.

—Ifie{|jul+1,|ul+2,...,|uv|} then p = tdvdvdt for some t € Suf(v) and for
t such that v = #t.

—Ifi € {Juv| + 1, |uv| + 2,...,|uv| + |u|} then p = tvdvdvt for some t € Suf(d)
and for ¢ such that d = .

In all three cases one can see that dvd € Fac(p). It is easy to see that if dvd €
Fac(p) then dvd € Fac(r) for each r € Fac(w) with p € Prf(r). The lemma
follows.

Remark 3. Note in the previous proof that with the condition |r| > |(vd)?|
it would be possible that dvd ¢ Fac(p). In the cases 1 and 3 we would have
p = tvdvt. That is why the condition |r| > |(vd)?| is necessary. For this reason
in the definition of A we state that n > 3PL(u).

The next lemma shows that if (u,v,d,n) € A, k is the palindromic length of
u, and (t1,t2,...,t;) € MPF(u(vd)™) is a minimal palindromic factorization of
u(vd)™ then there is j € {1,2,...,k} such that ¢; is a palindrome having the
factor dvd in the “center” of t;; formally ¢; = pd(vd)?p™ for some positive
integer « and for some proper suffix p of dv.

Lemma 7. If (u,v,d,n) € A, w = u(vd)", k = PL(w), and (t1,t2,...,tx) €
MPF (w) then there are j € {1,2...,k}, p € Suf(dv)\ {dv}, and v € N such that
t; = pd(vd)'pF.

Proof. Suppose that [¢;] < 3|vd| for each i € {1,2,...,k}. It follows that
|t1t2 Ce tk‘ < 3k|’Ud|

Since u(vd)” = tyty...tp and n > 3k > 3 it is a contradiction. It follows
that there is j such that [t;] > |(vd)3|. Lemma 6 asserts that dvd € Fac(t;).
Then clearly there are v € N and p1,ps € A* such that p; € Suf(dv) \ {dv},
p2 € Pri(vd) \ {vd}, and t; = p1d(vd)?ps.

To get a contradiction suppose that p; # plf. Without loss of generality
suppose that |p1| > |pa|. It follows that ps € Prf(pft). Obviously p1d(vd)p¥ €
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Pal. Thus we have two palindromes p;d(vd)”pf® and p1d(vd)¥p,. Lemma 2 implies
that pyd(vd)"plt is periodic with a period

§ = |p1d(vd)"pfl| — [p1d(vd) p2| = |p1| — [p2l.

Clearly § < |dv|. This is a contradiction to the condition |dv| = MinPer(dvd),
see Definition of A. We conclude that p; = p&. The lemma follows.

We step to the main theorem of the article.

Theorem 1. If (u,v,d,n) € A, m = PL(u), and w = u(vd)" then PL(w) >
m.

Proof. Let (t1,ta,...,tr) € MPF(w). Lemma 7 asserts that there are v € N,
j€{1,2,...,k}, and p € Suf(dv) \ {dv} such that t; = pd(vd)7pT.

Let a € Prf(w) and b € Suf(w) be such that w = at;b. Realize that a =
tita...tj—1 and b = tj 1t;49...t;. Note that a or b can be the empty word;
then j = 1 or j = k respectively. Lemma 4 implies that

PL(w) = PL(tth . t]‘71) + PL(tj) + PL(tj+1tj+2 S tk) =

12
PL(a) + PL(t;) + PL(b). (12)
We distinguish three distinct cases.

1. u ¢ Prf(a): This case is depicted in Table1l. Let us € Suf(u) be such that
u = aug. Let p € Suf(d) be such that pus = d. It follows that ul'p® = d
and pfipft = vd.

Then we have that uld = ulp?(vd)? = d(vd)? € Pal™ for some 8 € Ny.
Hence PL(ufpT(vd)?) = 1. In consequence PL(uz) > PL(b) — 1 and

PL(b) > PL(us) — 1, (13)

since PL(uf') = PL(uz) and ul'b € Pal™; see Corollary 3.
Lemma 3 implies that

PL(a) + PL(u2) > PL(u). (14)
From (12), (13), and (14) we have that

PL(w) = PL(a) + PL(t;) + PL(b) > PL(a) + 1 + PL(uy) — 1 > PL(u).

Table 1. Case 1: The structure of the word w with u ¢ Prf(a).

alp |dwd) p" 5" (vd)’]
‘a‘ug‘v‘d(vd)7 ‘@‘u?‘ﬁR‘(vd)’@‘
‘ u ‘ (vd)7 1 ‘ v ‘ d ‘ (vd)? ‘

=l

atj




Palindromic Length of Words 177

2. u € Prf(a) and p € Suf(v): This case is depicted in Table 2. Let p € Prf(v) be
such that pp = v. Note that if p = v then p = ¢, and if p = € then p = v.
It is easy to verify that b = pfid(vd)? for some 3 € Ny and a = u(vd)*p for
some a € Ny.
Let @ be such that a = ua. We have that @ = (vd)*p and b = pid(vd)?. It
follows that either @ = bf*d(vd)® or b = a*d(vd)® for some § € Ny.
Since d(vd)® € Pal, Corollary 2 implies that

|PL(a) — PL(b)| < 1. (15)
It follows from Lemma 5 that
PL(a) + PL(a) > PL(u). (16)
From (12), (15), and (16) we have that

PL(w) = PL(a) + PL(t;) + PL(b) > PL(a) + 1+ PL(a) — 1 > PL(u).

Table 2. Case 2: The structure of the word w with u € Prf(a) and p € Suf(v).

a tj b ‘
u| (vd)™ |5 p d(vd) p® | 5" d(vd)”|
|

a | o | ]

3. u € Prf(a) and p & Suf(v): This case is depicted in Table 3. Since p € Suf(vd)\
{vd} and p & Suf(v) it follows that p € Suf(dv) \ (Suf(v) U {dv}).

Table 3. Case 3: The structure of the word w with u € Prf(a) and p ¢ Suf(v).

a tj b ‘
u v(dv)® B p|d(vd)” | pt | " | (vd)” |
| |a | d ||

Let p € Prf(d) be such that pp = dv and consequently pp® = wvd. Then
a = u(vd)*p for some a € Ny and b = p(vd)? for some 3 € N.

Let a be such that a = ua. We have that a = v(dv)®p. It follows that either
a = b (vd)’v or b = af*(vd)v for some § € Ny.

The rest of the proof of Case 3 is analogue to Case 2: Since v(dv)® € Pal,
Corollary 2 implies that

IPL(a) — PL(b)| < 1. (17)
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It follows from Lemma 5 that
PL(a) + PL(a) > PL(u). (18)
From (12), (17), and (18) we have that
PL(w) = PL(a) + PL(t;) + PL(b) > PL(a) + 1+ PL(a) — 1 > PL(u).

We proved for each case that PL(w) > PL(u). Since obviously for each u and
each p one of the three cases applies, this completes the proof.
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Abstract

Let exp®® denote a tetration function defined as follows: exph® =
2% and expFthe = 2eXPk'a, where k,a are positive integers. Let A,
denote an alphabet with n letters. If L C A} is an infinite language
such that for each u € L there is v € L with |u| < |v| < exp*® |u| then
we call L a language with the growth bounded by (k, a)-tetration.

Given two infinite languages L1, Ly € A}, we say that Ly dissects
Ly if |[Ly N Ly| = oo and [(A}, \L1) N La| = co.

Given a context free language L, let (L) denote the size of the
smallest context free grammar G that generates L. We define the size
of a grammar to be the total number of symbols on the right sides of
all production rules.

Given positive integers n, k with k& > 2, we show that there are
context free languages L1, Lo, ..., L3x—3 C A¥ with (L;) < 40k such
that if « is a positive integer and L C A is an infinite language with
the growth bounded by (k, a)-tetration then there is a regular language

M such that M N (ﬂf’ifg Li) dissects L and the minimal deterministic
finite automaton accepting M has at most k& + a + 3 states.
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1 Introduction

In the theory of formal languages, the regular and the context free languages
constitute a fundamental concept that attracted a lot of attention in the
past several decades. Recall that every regular language is accepted by some
deterministic finite automaton and every context free language is accepted
by some pushdown automaton.

In contrast to regular languages, the context free languages are closed
neither under intersection nor under complement. The intersection of context
free languages have been systematically studied in [4, 6, 9, 10, 11]. Let CFLy,
denote the family of all languages such that for each L € CFL; there are
k context free languages Li, Lo, ..., Ly with L = ﬂle L;. For each k, it
has been shown that there is a language L € CFLg.; such that L ¢ CFLy.
Thus the k-intersections of context free languages form an infinite hierarchy
in the family of all formal languages lying between context free and context
sensitive languages [6].

One of the topics in the theory of formal languages that has been studied
is the dissection of infinite languages. Let A, be an alphabet with n letters,
and let Ly, Ly C A’ be infinite languages. We say that L, dissects Lo if
|Ly N Lo| = oo and [(A)\L;) N Lg| = co. Let C be a family of languages.
We say that a language L, € A} is C-dissectible if there is Lo € C such
that Lo dissects L;. Let REG denote the family of regular languages. In
[12] the REG-dissectibility has been investigated. Several families of REG-
dissectible languages have been presented. Moreover it has been shown that
there are infinite languages that cannot be dissected with a regular language.
Also some open questions for REG-dissectibility can be found in [12]. For
example it is not known if the complement of a context free languages is
REG-dissectible.

There is a related longstanding open question in [1]: Given two context
free languages L1, Ly C A such that L; C Ly and Ls \ L; is an infinite
language, is there a context free language L3 such that Ly C Lo, Ly C Lg,
and both the languages Ls \ L; and Ly \ L3 are infinite? This question was
mentioned also in [12].

Some other results concerning the dissection of infinite languages may
be found in [5]. A similar topic is the constructing of minimal covers of
languages [2]. Recall that a language L1 C A is called C-immune if there is
no infinite language Ly C Ly such that Ly € C. The immunity is also related
to the dissection of languages; some results on this theme can be found in



[3, 7, 11].

Let N denote the set of all positive integers. An infinite language L C A”
is called constantly growing, if there is a constant ¢y € N and a finite set
K C N such that for each w € L with |w| > ¢y there is a word @ € L and
a constant ¢ € K such that |@] = |w| + ¢. We say also that L is (cg, K)-
constantly growing. In [12], it has been proved that every constantly growing
language L is REG-dissectible.

We define a tetration function (a repeated exponentiation) as follows:
exph® = 2% and exp/™® = 299" where j € N. The tetration function is
known as a fast growing function. If k,a are positive positive integers and
L C A} is an infinite language such that for each u € L there is v € L with
|u| < |v| < exp®® |u| then we call L a language with the growth bounded by
(k, a)-tetration.

Let L C A’ be an infinite language with the growth bounded by (k, «)-
tetration, where k > 2. In the current article we show that there are:

e an alphabet Yo with | Xor_1| =2k — 1,
e an erasing alphabetical homomorphism v : 3, _; — A7,
e a nonerasing alphabetical homomorphism 7 : Ay — AJ, and

e 3k — 3 context free languages L1, Lo, ..., Lgx—3 C X%, _,

such that the homomorphic image v(N*;* L;) dissects the homomorphic

image 7(L). Thus we may say that the languages with the growth bounded
by a (k, a)-tetration are CFLg;_s-dissectible.

We sketch the basic ideas of our proof. Recall that a non-associative
word on the letter z is a “well parenthesized” word containing a given num-
ber of occurrences of z. It is known that the number of non-associative
words containing n + 1 occurrences of z is equal to the n-th Catalan num-
ber [8]. For example for n = 3 we have 5 distinct non-associative words:
(((22)2)2), ((2)(2), (2(2(22))), (2((22)2)), and ((2(22))2). Every non-
associative word contains the prefix (¥z for some k& € N, where (¥ denotes
the k-th power of the opening bracket. It is easy to verify that there are
non-associative words such that k equals “approximately” log,n. We con-
struct three context free languages whose intersection accepts such words;
we call these words balanced non-associative words. By counting the number
of opening brackets of a balanced non-associative word with n occurrences
of z we can compute a logarithm of n.



Let loggl)n = log, n and loggjﬂ)n = log(Qj) (log,n). Our construction

can be “chained” so that we construct 3k — 3 context free languages, whose
intersection accepts words with n occurrences of z and a prefix 27z, where
j is equal “approximately” to logék) n and z # x. If L is a language with
the growth bounded by a (k, a)-tetration then the language L = {27 | j =
flogék) |w|] and w € L} is constantly growing. Less formally said, by means
of intersection of 3k — 3 context free languages we transform the challenge
of dissecting a language with the growth bounded by (k, «)-tetration to the
challenge of dissecting a constantly growing language. This approach allows
us to prove our result.

2 Preliminaries

Let RT denote the set of all positive real numbers.

Let By = {1, 29, ..., 2%} be an ordered alphabet (set) of k distinct open-
ing brackets, and let By = {y1,vs,..., %} be an ordered alphabet (set) of k
distinct closing brackets. We define the alphabet Yo, = B U(By \ {y1)})-
The alphabet o1 contains all opening brackets B and all the closing
brackets without the the first one By, \ {y}. It follows that | Yoy | = 2k — 1.

Let € denote the empty word. Given a finite alphabet S, let ST denote the
set of all finite nonempty words over the alphabet S and let S* = ST U {e}.

Let Fac(w) denote the set of all factors a word w € S*. We define that
e,w € Fac(w); i.e. the empty word and the word w are factors of w. Let
Pref(w) C Fac(w) denote the set of all prefixes of w € S*. We define that
e,w € Pref(w). Let Suf(w) C Fac(w) denote the set of all suffixes of w € S*.
We define that €,w € Suf(w). Given a finite alphabet S, let occur(w,?)
denote the number of occurrences of the nonempty factor ¢ € S* in the word
w € S*; formally occur(w,t) = [{v € Suf(w) | t € Pref(v)}|.

Given two finite alphabets Si,S2, a homomorphism from Sy to S5 is a
function 7 : S; — S3 such 7(ab) = 7(a)7(b), where a,b € Sf. It follows
that in order to define a homomorphism 7, it suffices to define 7(z) for every
z € Sy; such definition “naturally” extends to every word a € S;". We say that
T is a nonerasing alphabetical homomorphism if 7(z) € Sy for every z € 5.
We say that 7 is an erasing alphabetical homomorphism if 7(z) € Sy U {e}
for every z € S and there is at least one z € Sy such that 7(z) = e.



3 Balanced non-associative words

Suppose k,m € N, where k,m > 2, and kK > m. To simplify the notation
we define © = x,,, Yy = ym, and z = x,,_1; it means that x denotes the
m-th opening bracket, y denotes the m-th closing bracket, and z denotes the
m — 1-th opening bracket.

Let pgm @ X5,_; — X5,_; be an erasing alphabetical homomorphism
defined as follows:

Given a language L C X3, ;. we define the language pgm(L) = {pgm(w) |
w € L}.

Remark 3.1. For given k,m the erasing alphabetical homomorphism fiy,
sends all opening and closing brackets from By and By to the empty string
with the exception of x, y, and z.

Let Nawy,,,, C 35, be the context free language generated by the fol-
lowing context free grammar, where S is a start non-terminal symbol, N is
a non-terminal symbol, and xz,y, z, a are terminal symbols (the letters from

Yok-1)-
e S—>NazNSSNyN|NzNzNyN|NzNzNzNyN;,
e N — aN |¢ where a € Yo \{z,v, 2}.

We call the words from Nawy,, non-associative words over the opening
bracket x, the closing bracket y, and the letter z.

Remark 3.2. Let M = pym(Nawy,,). To understand the definition of
Nawy, .., note that the language M is generated by the context free gram-
mar defined by: S — xSSy | xzy | xzzy. To see this, just remove the
non-terminal symbol N in the definition of Nawy,,,. The usage of the non-
terminal symbol N allows to “insert” between any two letters of a word from
tem(Nawg ) the words from K = (Zor—1 \{z,y, 2})*; the set K contains
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words from X3, _, that have no occurrence of x,y,z. It means that if w =
WiWs ... Wy € figm(Nawy ), then towitiwats . .. ty,_1wpt, € Nawy,, where
w; € {z,y,2} and t; € K.

The reason for the name “non-associative words” is the obvious similarity
between the words from M and the “standard non-associative words” men-
tioned in the introduction section. Our definition guarantees that wixzywy €
M if and only if wizzzyws € M for every wy,wq € {x, z,y}*.

Recall that a pushdown automaton is a 6-tuple (Q, A, T', go, S, d), where
e () is a set of states,

e A is an input alphabet,

I" is a stack alphabet,

e ¢p € Q is an input state,

S € I is the initial symbol of the stack,
e §:(QxAXT)— (Q,I') is a transition function.

We define that a pushdown automaton accepts a word by the empty stack,
hence we do not need to define the set of final states. Given a pushdown
automaton g, let AL(g) C A* denotes the language accepted by g.

Let Ak = AL(grm) C 35,_; denote the context free language accepted
by the pushdown automaton gg, = (Q, Xak-1,T, ¢s, S, 0), where:

L4 Q = {C]SM]B?C]O: qz, qr}a

o I'={S, X},

e )(q,a,u) = (q,u), where ¢ € Q, u € T, and a € Xop_1 \{z, v, 2},
o 6(qs,z,u) — (qp,u), where u € T,

e (gs, z,u) = (gs,u), where u € T,

e 4(gs,y,u) = (gs,u), where u € T,

e d(qp,x,u) = (¢, uXX), where u € T,

e 6(qp,2z,u) — (gs,u), where u € T,
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e 4(qB,y,u) = (gs,u), where u € T

e 5(qo,xz,u) = (G, u), where u € T',

e 5(qo, z,u) — (qo,u), where u € T,

® 5(qo,y,u) = (qo,u), where u € T,
1) = (¢e, uX), where u € T,

® (s, 2, X) = (o €),

¢ 5(¢s,% ) = (g, X), where u € T,

® (s, y,u) = (qo,u), where v € T, and

(
(
(
(
® 3(qu w0
(
(
(
(

e (¢, a,u) = (g, u), where r € Yoy and u € T.

Remark 3.3. Note in the definition of gy, that the letters from Yo,y \{x,y, 2}
change neither the state of gy, nor the stack. Hence to illuminate the be-
havior of gim, we can consider only words over the alphabet {x,y, z}. Then
it 1s easy to see that the pushdown automaton gy, pushes XX on the stack
on the first occurrence of xx. For every other occurrence of xx the pushdown
automaton gy, pushes X on the stack. Once reached the state q,, then for
every occurrence of xz one X is removed from the stack. The state q, works
as a refuse state. Note that after reaching the state g, the stack is not empty,
the stack cannot be changed, and no other state can be reached from q.. The
states qs and qp enable to recognize the first occurrence of xx. Once the
states q, are reached, the states qs and qg can not be reached any more.

Thus the pushdown automaton g, accepts all words, where the number
of occurrences of xz after the first occurrence of xx is exactly one more than
the number of occurrences of xx. Formally, if w € piym(X5,_,) then we define
w as follows:

o Ifoccur(w,zx) =0 then w = e.

o Ifoccur(w,zx) > 1 then let w € Suf(w) be such that xx € Pref(w) and
occur(w, xx) = occur(w, xx).

Clearly w is uniquely defined. Then we have that w € pym(Apm) if and
only if w = € or occur(w, zx) + 1 = occur(w, zz). It follows that the words
without any occurrence of xx are accepted. In the following we will consider
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the words from the intersection U = Ay, N Nawy, ,,. Note that there are only
two nonempty words xzy,xzzy € U, that have no occurrence of xx.

Recall that a “standard” non-associative word can be represented as a full
binary rooted tree graph, where every inner node represents a corresponding
pair of brackets and every leaf represents the letter z [8]. It is known that the
number of inner nodes plus one is equal to the number of leaves in a full binary
rooted tree graph. In the case of non-associative words from Nawy, ,,, let the
leaves represent the factors xzy and xzzy. Then the number of occurrences
of vz is equal to the number of leaves and the number of occurrences of xx is
equal to the number of inner nodes. Hence the intersection M NNawy, , con-
tains non-associative words that have no “unnecessary” brackets; for example
xzzy, xx22yy, rerzzyyy € Nawy ,, vzzy € M and xxzzyy, xxezzyyy € M.

Let Baly,,, C 37, _; be the context free language generated by the follow-
ing context free grammar, where S is a start non-terminal symbol, N, K, V, P
are non-terminal symbols, and z, y, z, a are terminal symbols (the letters from
Yok—1)-

e S— KVP,
e Vo VV | NzN|NzTzN |¢,

T - NyNTNzN |,

K — KK |NzN |¢,

e P— PP|NyN|e¢,

e N — aN|e¢ where a € ¥g1 \{z,y, 2}
We call the words from Baly, ,,, balanced words.

Remark 3.4. Let M = pym(Balg,,). It is easy to see that the words from
the language M contains no factor of the form zy‘x’z, where i,j are distinct
positive integers; hence the name “balanced” words. The non-terminal sym-
bols K, P enable that if w € M then w has a prefiz 2 and a suffiz 3y’ for all
i,j € NU{0}.

The non-terminal symbol N in the definition of Baly ,, has the same pur-
pose like in the definition of Nawy, .



Let
Qk,m = Nawk,m n Balkm ﬂAk,m.

We call the words from €, ,,, balanced non-associative words over the opening
bracket x, the closing bracket y, and a letter z.

Let Qpm(n) = {w € Q. | occur(w, z) = n}, where n € N. The set
2 m(n) contains the balanced non-associative words having exactly n occur-
rences of the letter z.

Given a word w € ¥3;,_; and a € Xo_1, let

height (w, a) = max{j | &’ € Fac(w)}.

The height of a word w is the maximal power of the letter a, that is a factor
of w. We show that if w € g 1 (€%,m) and h is the height the opening bracket
r in w then 2" is a prefix of w and y" is a suffix of w.

Lemma 3.5. Ifw € pigm(Qpm) and h = height(w, z) then 2" € Pref(w) and
y" € Suf(w).

Proof. Note that figm(Qpm) € Qpm. Since Q. C Nawy, ., there is heN
such that 2"z € Pref(w). To get a contradiction suppose that i < h. Because
Qim C Baly,, it follows that w = zhw; zy"a" 2w, for some w; € Fac(w) with
z € Pref(w;2) and wy € Suf(w).

Consider the prefix r = z'w;zy". Obviously w2z € tem(Balg ). It

is easy to see that if v € py»(Balg,,), & Pref(v), and y ¢ Suf(v) then
oceur(v, z) = occur(v,y). Thus occur(w;z,z) = occur(w;z,y). It follows
that occur(r, z) < occur(r,y).

This is a contradiction, since for every prefix v € Pref(w) of a non-
associative word w € Nawy,, we have that occur(v,z) > occur(v,y). We
conclude that h = h and 2" € Pref(w). In an analog way we can show that
y" € Suf(w). This completes the proof. O

For a word w € pigm(Q%m), we show the relation between the height of
w and the number of occurrences of 7 in w.

Proposition 3.6. If w € iy m(Qm) and h = height(w, ) then
oh—1 < occur(w, z) < ok

Proof. We prove the proposition for all A by induction:



o If h =0 then w=c¢.
o If h =1 then w € {xzzy, x2y}.
o If h =2 then w € {xxzyxzyy, xr22yT2YY, TLZYTZZYY, TXZZYTZZYY }.

Thus the proposition holds for A < 2. Since €, C Agm, clearly we have
that if h > 2 then w = zwjway, where wy, we € g m(Qpm). Suppose the
proposition holds for all A < h. We prove the proposition holds for h.

Let hy = height(w;,z) and hy = height(ws, ). Lemma 3.5 implies
that " € Pref(w;), y™ € Suf(w;), 2" € Pref(wy), and y"2 € Suf(w,).
Since w € puy.m(Baly,y,) it follows that hy = he. Because 2 € Pref(w)
we have that 2™*! € Pref(w). Clearly occur(w,z™*') = 1; note that
oceur(wiwy, z"1+1) = 0. Thus hy + 1 = h. For we assumed that the proposi-
tion holds for all A < h, we can derive that

occur(w, z) = occur(wy, ) + occur(wy, z) < 2M 4 2M = oM+l — gh

and
occur(w, z) = oceur(wy, z) + occur(wsy, ) > 2M 71 4 2M 7l = ol — gh=1
This completes the proof. 1

Proposition 3.6 have the following obvious corollary.
Corollary 3.7. If n € N, w € pig 1 (Qm(n)), and h = height(w, x) then
logon < h <1+logyn.

Given w,u,v € X3, ,, let replace(w, v, u) denote the word built from w
by replacing the first occurrence of v in w by w. Formally, if occur(w,v) = 0
then replace(w,v,u) = w. If occur(w,v) = j > 0 and w = wyvw,, where
oceur(vwsg, v) = j then replace(w, v, 1) = wyuws.

We prove that the set of balanced non-associative words €2 ,,(n) having
n occurrences of z is nonempty for each n € N.

Lemma 3.8. Ifn € N then Q. (n) # 0.
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Proof. If n = 1 then xzy € Qpn(1). Given n € N with n > 1, let j €
N be such that 227! < n < 2/, Obviously such j exists and is uniquely
determined. Let w; = zzzy. Let wip; = zww;y. Clearly occur(w;, z) = 27
and w; € Q,,(27). Note that occur(w;, xzzy) = 2971, Let w;o = w; and
w; ;11 = replace(w;,;, zzzy, xzy), where i € NU {0} and ¢ < 277! Let a =
27 —n. Then one can easily verify that occur(wjq, 2) = n and w; 4 € Qg m(n).

Less formally said, we construct a balanced non-associative word w; hav-
ing 271 occurrences of zzzy and then we replace a given number of oc-
currences of xzzy with the factor xzy to achieve the required number of
occurrences of z. This completes the proof. [ O

4 Intersection of balanced non-associative words

Let Q% = N _, Q. and let Q4 (n) = {w € Q | occur(w, z1) = n}. We show
that for all positive integers n, k with k& > 2 there is a word w € £, such that
w has n occurrences of the opening bracket x;.

Proposition 4.1. If k,n € N and k > 2 then Qi(n) # 0.

Proof. Let h(1) = n. Let w; € pug;(.;(h(i—1)) and let h(:) = height(w;, x;),
where i € {2,3,4,...,k}. Lemma 3.8 implies that such w; exist.

Let vg = we. Let vj4q = replace(vj,x?m,wjﬂ), where j € N and j > 2.
Lemma 3.5 implies that 2") € Pref(v;). Note that puy.;(v; + 1) = . ;(v)).
Then it is quite straightforward to see that v, € Q and occur(vg, z1) = n.
Less formally said, with every iteration we construct a non-associative word
by “well parenthesizing” the prefix x?(i) with the opening bracket x;,; and

the closing bracket y; 1. This completes the proof. O O
To clarify the proof of Proposition 4.1, let us see the following example.

Example 4.2. Let n =23 and k = 4. To make the example easy to read, we
define By = {z,(,[,<} and By = {2,),],>}. It means that x, = z, x5 =
T3 = [, Ty =<,T1 = Z, To :), T3 :}, and Ty =>.

To fit the example into the width of the page, we define auziliary words
uy and usy:

o ur = 2)(2))((2)(2))(((2)(2))((2)(2))))
o up = ((((2)(22))((22)(22)))(((22)(22))((22)(22)))))-

11



Then we have that
o h(1) = 23; wy = (((((wmauz; h(2) = 5; ws = [[[(LIAIA];
o 1(3) = 3; wy =<<[[><[[>>; h(4) = 2; va = wy; vg = [[[({[N[O[((TJwrus;
o vy =<< [>< [[>> ([IIQIONurus.

This ends the example.

We define two technical functions loggj 't and log[Qj] t for all j € N and

t € RT as follows:

. logg) t = log, t and logéjﬂ)t = loggj) (logy t).
. log[gl] t=1+log,t and log[QjH]t = log[zj] (14 log,t).
It is a simple exercise to prove the following lemma. We omit the proof.

Lemma 4.3. If j € N then for each t € R* with t > 1 we have that
loe@ + < 10el ¢ < 4 ()
g3 t <logy't < j+logs t.

Using the function loggk) t we present an upper and a lower bound for the
height of words from €.

Proposition 4.4. Ifk € N and k > 2 then for eachw € Qy, h = height(w, z),
and n = occur(w, x1) we have

logg€> n<h<k+ logék> n.
Proof. 1t follows from Corollary 3.7 that logék)n <h< log[Qk] n. Then the
proposition follows from Lemma 4.3. [ O
5 Dissection by a regular language

In [12] it was shown that every constantly growing language can be dissected
by some regular language.

Lemma 5.1. (see [12, Lemma 3.3]) Every infinite constantly growing lan-
guage is REG-dissectible.
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From the proof of Lemma 3.3 in [12] we can formulate the following
Lemma.

Lemma 5.2. Ifn,cg e N, K CN, |K| < oo, c=max{j € K}, and L C A,
is a (co, K)-constantly growing language then there are jy,j2 € {0,1,2,...,c}
such that jy # jo and both sets Hy, Hy are infinite, where

H={w|weLand|wl=j (modc+1)}andiec {1,2}.

6 Tetration

Recall that a deterministic finite automaton ¢ is 5-tuple (Q, A, qo, 6, F'), where
Q is the set of states, A is an input alphabet, ¢q is the initial state,  is a
transition function, and F is the set of accepting states. Let AL(g) denote
the language accepted by g; AL(g) is a regular language.

We prove that if L C € is an infinite language of balanced non-associative
words with the number of occurrences of x; “bounded” by (k, o)-tetration
then L can be dissected by a regular language.

Proposition 6.1. If k,a € N, k> 2, and L C Qy is an infinite language
such that for each wy € L there is wy € L with occur(wy, z1) < occur(ws, o)
and occur (wy, 11) < expoccur(wy, x1) then there is a reqular language R
such that R dissects L and the minimal deterministic finite automaton ac-
cepting R has at most k + « + 3 states.

Proof. Let wy,wy € L be such that
ny < exp®ny, (1)
where n; = occur(ws, x1) and ny = occur(ws, 7).
Let hy = height (s, x(w1), 21) and hg = height (g 1 (w2), z1). Proposition
4.4 implies that
log(zk> ny < hy and hy < k + logék) Ny (2)
From (1) and (2) we have that

hy < k+ loggk) ng < k+ logék>(expk’a ny). (3)

13



Realize that log,(exp”®) = exp/ =1 and that if a,b € R* and a,b > 2
then a + b < ab. Then we have that

log(])(expj’“ ny) = logé )(expj L 1 logyny) < loggj_n(expj’l’a log, n1).
From (4) it follows that W
log;k) (exp™@ny) < log,(exp™® log(k 2 ny) =a-+ log(Qk) ny. (5)
From (2), (3), and (5) we have that
h2§k+a+log§’“>n1§k+a+h14 (6)

The equation (6) says that for each u € L there is v € L with |u| < |v| and
height (pur,1(v), 21) < k + o + height (p x (u), 7x).

Lemma 5.2 implies that there are distinct non-negative integers j;, jo <
k + « such that both H;, Hy are infinite sets, where

H; ={v|ve L and height(ux(v),zx) =j; (mod k+a+1)} and i € {1,2}.

Let ¢ = k+a. Consider the deterministic finite automaton g = (Q, X2x_1, qo, 0, F),
where

L4 Q = {QO7 q1y---,4c;a, QT}7
0(g,z) = (q), where ¢ € Q and x € Xop_1 \{zk, p_1},

® 6(qi, x1) = (Git1 mod c+1);

* (g5, 2e-1) = (4a);

® 5(gis wp—1) — (qr), where i # ji,

e i(q,z) — (q), where q € {qa,¢,} and = € {zy, xx_1}, and
o F={qg a}

The deterministic finite automaton g implements the modulo operation on
the prefix of the form z}. The input letter € Yor_1 \{xk, 24x—1} does not
change the state. The input letter x; changes the state from ¢; to ¢; 11 mod ct1-
If the input letter equals z;_; then the state changes either to accept ¢, or
refuse ¢.. Realize that if w € pg (%), a € {yr, 2x-1}, and zxa € Fac(w)
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then a = xp_1, hence we do not need any “special” transition rule for the
letter yx. Once in the state ¢, or ¢, no other states can be reached. The
states ¢j, and ¢, are the accepting states. It is easy to see that AL(g) = H;
and in consequence the regular language R = AL(g) dissects L.

This completes the proof. O O

Given n € N, let A, be some alphabet with n letters. Let Ay = By = {z1}
be the alphabet with the “first” opening bracket. Let L C A’ be an infinite
language with a growing bounded by (k, a)-tetration. Let v : X35, ;| — A; be
an erasing alphabetical homomorphism defined by v(z;) = x1 and v(a) = €,
where a € Yo \{z1}. Let m : A’ — A; be a nonerasing alphabetical
homomorphism defined by m(a) = x; for all a € A,. Note that if w € A
then |w| = |7 (w)].

We show that there 3k — 3 context free languages Ly, Lo, ..., L3—3 C
35— such that the homomorphic image U(ﬂfk L;) dissects the homomorphic
image 7(L).

Theorem 6.2. Ifn,a,k € N, k> 2, L C A’ is an infinite language with the
growth bounded by (k, a)—tetratiqn then there are 3k —3 context free languages
Ly, Ly, ..., La_5 such that ’U(ﬂfk73 L;) dissects w(L).

Proof. Recall that the language ) is an intersection of 3k — 3 context free
languages:

k
Slk: = ﬂ (Nawk,m N Balk,m mA/\k,m) .
m=2
Let us denote these languages Ly, Lo, . . ., L3

Let 7(L) = {m(w) | w € L} C A} and let L = {w € Q, | v(w) € n(L)} C
), . Note that L contains w € ), if and only if there is @ € L such that
the number of occurrences of x; in w is equal to the length of w; formally
oceur(w, x1) = |w|.

Since L is a language with the growth bounded by (k, «)-tetration, we
have that for each w; € L there is wy € L with occur(wy, z1) < exp®® occur(wy, 7).
Then Proposition 6.1 implies that there is a regular language R that dissects
L. Tt is well known that intersection of a regular language and a context free
language is a context free language. Hence let L1 = L; N R and let L; = f/j
for all j > 2 and j < 3k —3. Then ﬂfi;g L; dissects L. The theorem follows.
O O

15



Acknowledgments

This work was supported by the Grant Agency of the Czech Technical Uni-
versity in Prague, grant No. SGS20/183/OHK4/3T/14.

References

[1]

2]

3]

4]

[5]

[6]

19]

W. BUCHER, A density problem for context-free languages, Bull. Eur.
Assoc. Theor. Comput. Sci. EATCS 10, (1980).

M. DOMARATZKI, J. SHALLIT, AND S. YU, Minimal covers of formal
languages, in Developments in Language Theory, 2001.

P. FLAJOLET AND J. M. STEYAERT, On sets having only hard sub-
sets, in Automata, Languages and Programming, J. Loeckx, ed., Berlin,
Heidelberg, 1974, Springer Berlin Heidelberg, pp. 446-457.

S. GINSBURG AND S. GREIBACH, Deterministic contezt free languages,
Information and Control, 9 (1966), pp. 620 — 648.

J. JULIE, J. BASKAR BABUJEE, AND V. MASILAMANI, Dissecting
power of certain matriz languages, in Theoretical Computer Science and
Discrete Mathematics, S. Arumugam, J. Bagga, L. W. Beineke, and
B. Panda, eds., Cham, 2017, Springer International Publishing, pp. 98—
105.

L. Liu AND P. WEINER, An infinite hierarchy of intersections of
context-free languages, Math. Systems Theory 7, 185-192., (1973).

E. L. PosT, Recursively enumerable sets of positive integers and their
decision problems, Bull. Amer. Math. Soc., 50 (1944), pp. 284-316.

R. P. STANLEY AND S. FOMIN, Enumerative Combinatorics, vol. 2
of Cambridge Studies in Advanced Mathematics, Cambridge University
Press, 1999.

D. WOTSCHKE, The Boolean Closures of the Deterministic and Nonde-
terministic Context-Free Languages, Springer Berlin Heidelberg, Berlin,
Heidelberg, 1973, pp. 113-121.

16



[10]

[11]

[12]

D. WOTSCHKE, Nondeterminism and boolean operations in pda’s, Jour-
nal of Computer and System Sciences, 16 (1978), pp. 456 — 461.

T. YAMAKAMI, Intersection and union hierarchies of deterministic
context-free languages and pumping lemmas, in Language and Automata
Theory and Applications, A. Leporati, C. Martin-Vide, D. Shapira,
and C. Zandron, eds., Cham, 2020, Springer International Publishing,
pp. 341-353.

T. YAMAKAMI AND Y. KATO, The dissecting power of reqular lan-
guages, Information Processing Letters, 113 (2013), pp. 116 — 122.

17



