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Abstrakt

Tato diserta£ní práce se zam¥°uje na jazyky bohatých, mocnin-prostých, uza-
v°ených a privilegovaných slov.

Ukáºeme, ºe po£et bohatých slov má subexponenciální r·st a ºe faktorová
komplexita bohatých slov je shora omezena kvazipolynomiální funkcí c1n

c2 lnn,
kde c1, c2 jsou n¥jaké konstanty. Dále odvodíme horní mez pro po£et uzav°ených
a privilegovaných slov dané délky.

V roce 1985 publikovali auto°i Restivo a Salemi p¥t otev°ených problém·,
které se týkaly mocnin-prostých slov. V této disertaci £áste£n¥ vy°e²íme dva z
t¥chto problém·. Nech´ u je doprava roz²i°itelné α-mocnin-prosté slovo a v je
doleva roz²i°itelné α-mocnin-prosté slovo nad abecedou s q písmeny, kde α > 2 a
q ≥ 3. Potom ukáºeme, ºe existuje slovo w takové, ºe uwv je rovn¥º α-mocnin-
prosté slovo nad stejnou abecedou.

Je známo, ºe pokud w je bohaté slovo, tak existuje písmeno a takové, ºe wa je
rovn¥º bohaté slovo. Odvodíme n¥kolik netriviálních výsledk· pro bohatá slova,
která lze roz²í°it na bohatá slova nejmén¥ dv¥ma r·znými zp·soby.

Pro zadaná bohatá slova u, v ukáºeme algoritmus, který rozhodne, jestli exis-
tuje bohaté slovo w takové, ºe u, v jsou faktory w.

P°edstavíme dal²í t°i výsledky, které p°ímo nesouvisí s t¥ºi²t¥m této diser-
tace. Tyto výsledky se týkají palindromické délky, de Bruijnových graf· a disekce
nekone£ných jazyk·.

Tato disertace je koncipována jako soubor devíti autorových p·vodních £lánk·
dopln¥ný integrujícím textem. Sedm z nich jiº bylo publikováno v recenzovaných
£asopisech a dva jsou v recenzním °ízení.



Abstract

This dissertation focuses on languages of rich, power-free, closed, and privileged
words.

We show that the number of rich words grows subexponentially and that
the factor complexity of rich words is bounded by a quasi-polynomial function
c1n

c2 lnn for some constants c1, c2. We derive an upper bound for the number of
closed and privileged words.

In 1985, Restivo and Salemi published �ve open problems concerning power-
free words. We solve partially two of these problems. To be speci�c, we show
that if u is a right extendable α-power-free word and v is a left extendable α-
power-free word over an alphabet with q letters, where α > 2 and q ≥ 3, then
there is a word w such that uwu is also α-power-free over the same alphabet.

It is known that if w is a rich word then there is a letter a such that wa is also
rich. We prove some nontrivial results describing rich words that can be �richly�
extended in at least two ways.

For given two rich words u, v, we show how to decide whether there is a rich
word w such that w contains u, v as factors.

Three other results are presented that are not in the main focus of the dis-
sertation. These results deal with a palindromic length, de Bruijn graphs, and a
dissection of in�nite languages.

The dissertation is formed as a collection of nine author's original articles
accompanied with an integrating text. Seven of them have already been published
in refereed journals and two articles are currently in review.
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1 Introduction

The origin of combinatorics on words, as an area of discrete mathematics, is often
associated with the study of square-free words by the Norwegian mathematician
Axel Thue at the beginning of 20th century [7]. In 1906, Axel Thue proved the
existence of in�nite square-free words on an alphabet with three letters [43]. A
word w is square-free if w does not contain a factor of the form vv, where v is
a nonempty word. Since the topic was accepted by the mathematicians as quite
natural and interesting, the article [43] gave an impulse to generalize the result
for both an arbitrary alphabet and an arbitrary power vα of the factor v, where
α > 1 is a rational number. Such words are called power-free or α-power-free.
(The formal de�nition of a power-free word will be given in Section 2.)

Up to now, power-free words remain one of the major themes in the area
of combinatorics on words. Nowadays, some other generalizations of power-free
words are being studied; for example abelian powers, pseudo squares, and reverse
powers [12, 26, 33]. We omit the de�nition of these generalizations.

Next to power-free words and all their generalizations, combinatorics on words
includes many other themes [16, 24, 25]. A full list of the themes would be quite
extensive. Instead, we restrict our attention to the topics that are relevant for
this dissertation.

In general, a lot of open problems in combinatorics on words deal with enu-
meration of some languages. A language is a set of �nite words. For a given
language L, enumeration of the language L usually means to �nd the number of
words from L of a given length. Instead of enumeration of the language L, we
say also that we enumerate words from L. Formally, we look for the function

f(L, n) = |{w | w ∈ L and |w| = n}|.

For many languages, enumeration is a hard problem. This is why we are often
satis�ed with some lower and upper bounds for f(L, n).

Factor complexity of a �nite or in�nite word w is the function f(L, n), where
L is the set of all factors of w. In our dissertation we construct upper bounds
for the function f(L, n), where L is the language of rich, closed, and privileged
words. Also we derive an upper bound for the factor complexity of rich words.

Another general problems of combinatorics on words are so-called transition
property and extendability of words. Understanding transition property and
extendability of words from a given language L helps also with enumeration of
the language L. This is how transition property and extendability �t in this
dissertation.

Given a language L and two words u, v ∈ L. Transition property deals with
following problems:

� Is there a word w such that uwv ∈ L?

� Is there a word w̄ ∈ L such that u, v are factors of w̄?
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� Construct the words w and w̄ if they exist.

Simply said, we ask for existence of a �transition� word and for examples of
transition words. Note that in case of the second problem, the occurrences of u
and v in w̄ may overlap with each other and the order of occurrences of u, v in
w̄ does not matter. In our dissertation we investigate the transition property of
power-free and rich words.

In case of extendability, we are concerned with following two problems:

� Given a language L and a word w, are there words words u1, u2, u3, u4 such
that u1w,wu2, u3wu4 ∈ L?

� Construct the words u1, u2, u3, u4 if they exist.

Analogously like in the case of transition property, one asks for both existence
and examples of the �extensions�. A factorial language is a language L such that if
w ∈ L, then all factors of w are also in L. In case of the factorial language L, it is
su�cient to consider that w ∈ L and u1, u2, u3, u4 are letters. In our dissertation,
we are mainly concerned with languages of rich and power-free words. Both these
languages are factorial.

The three mentioned topics, enumeration, transition property, and extendabil-
ity of rich and power-free words are the main topics of this dissertation. Several
other topics are included. We address these remaining topics in dedicated sec-
tions.

The dissertation has the following structure. Section 2 de�nes the basic no-
tions that the dissertation deal with. The remaining sections focus on a summary
of the results of our articles, known results and the context of the topics being
researched. The layout of sections, topics, and articles is structured as follows:

� Section 3: Enumeration

� Enumeration of rich words [[Ru02]].

� Factor complexity of rich words [[Ru03]].

� Enumeration of closed and privileged words [[Ru06]].

� Section 4: Transition Property and Extendability

� Transition property of power-free languages [[Ru07]].

� Extendability of rich words [[Ru05]].

� Transition property of rich words [[Ru04]].

� Section 5: Palindromic length [[Ru08]].

� Section 6: De Bruijn sequences and de Bruijn graphs [[Ru01]].

� Section 7: Dissection of in�nite languages [[Ru09]].

In Section 8 we suggest several topics for future research based on our results.
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2 Preliminaries

Let Aq be a �nite alphabet with q ≥ 1 letters. Given a positive integer n, let

An
q = {a1a2 . . . an | ai ∈ Aq and i ∈ {1, 2, . . . , n}}.

We de�ne that A0
q = {ε}. The element ε is called the empty word. Let A+

q =⋃
n≥1 An

q and let let A∗q = A+
q ∪{ε}. The elements of An

q are called words of length
n, where n is a nonnegative integer. The length of the word w ∈ A∗q is denoted
|w|. It is well known that |An

q | = qn, where n is a nonnegative integer.
Let A∞q denote the set of all in�nite words over the alphabet Aq; formally

A∞q = {a1a2 · · · | ai ∈ Aq and i ≥ 1}.

Given a �nite word u ∈ A∗q and a �nite or in�nite word w ∈ A∗q ∪A∞q , let uw
denote the concatenation of the words u and w. We have that εu = u, uε = u,
and εw = w.

Given a �nite word u ∈ A∗q and a �nite or in�nite word w ∈ A∗q ∪A∞q , we
say that u is a factor of w if there are w1 ∈ A∗q and w2 ∈ A∗q ∪A∞q such that
w = w1uw2. We say that u is a pre�x of w if there is w1 ∈ A∗q ∪A∞q such that
w = uw1. We say that u is a su�x of v ∈ A∗q if there is v1 ∈ A∗q such that v = v1u.

Let Fw denote the set of all factors of a �nite or in�nite word w ∈ A∗q ∪A∞q .
It follows that ε ∈ Fw and if w is �nite, then also w ∈ Fw. In addition, let
Fw(n) = Fw ∩An

q , where n is a nonnegative integer; Fw(n) is the set of all factors
of length n of the word w.

Let w = w1w2 · · ·wn−1wn ∈ An
q , where wi ∈ Aq and i ∈ {1, 2, . . . , n}. We

de�ne that wR = wnwn−1 · · ·w2w1 and εR = ε. The word wR is called reversal of
the word w. We say that a set S ⊆ A∗q of �nite words is closed under reversal if
w ∈ S implies that wR ∈ S. We de�ne that a word w ∈ A∗q ∪A∞q is closed under
reversal if the set Fw is closed under reversal. It is easy to see that if Fw(n) is
closed under reversal then Fw(j) is closed under reversal for each j ≤ n.

A word w ∈ A∗q is called a palindrome if w = wR. (It follows that the empty
word ε is a palindrome.) If w is a �nite or in�nite word, u is a palindrome, and
u ∈ Fw, then we say that w contains a palindromic factor u. A �nite word w ∈ An

q

is called rich if w contains n+1 palindromic factors (including the empty word) .
It is known that a word w of length n can contain at most n+1 palindromic factors
[15], hence rich words are those that contain the maximal number of palindromic
factors. An in�nite word v ∈ A∞q is rich if all factors of v are rich.

A nonempty word w is a border of the word u if |w| < |u| and w is both a
pre�x and a su�x of u. A word u is closed if there is a border w of u such that u
has exactly two occurrences of w. It follows that w occurs only as a pre�x and as
a su�x of u. A word u is privileged if |u| ≤ 1 or if u contains a privileged border
w that appears exactly twice in u. Obviously privileged words are a subset of
closed words.

There is a connection between rich and privileged words. It was shown that
every word w of length n contains n + 1 distinct privileged factors. If the set of
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privileged factors of w coincides with the set of palindromic factors, then w is
rich [30].

An α-power, where α ≥ 1 is a rational number, of a nonempty �nite word r
is the word rα = rr . . . rt such that |r

α|
|r| = α and t is a pre�x of r with |t| < |r| (t

may be the empty word). For example (1234)3 = 123412341234 and (1234)
7
4 =

1234123. We say that a �nite or in�nite word w is α-power-free if w has no �nite
factors that are β-powers for β ≥ α. We say that a �nite or in�nite word w is
α+-power-free if w has no factors that are β-powers for β > α, where α, β ≥ 1
are rational numbers. In some articles, it is a used convention to de�ne that if a
word w is �α-power-free� then α denotes a number or a �number with +�; see for
instance [39]. We also apply this convention in our dissertation. The power-free
words, also called repetition-free words, include well known square free (2-power-
free), overlap free (2+-power-free), and cube free words (3-power-free).

3 Enumeration

As mentioned in Introduction, in next subsections we discuss the enumeration of
rich, closed, and privileged words and the factor complexity of rich words. First
we introduce some more notation.

Let Palq ⊆ A∗q denote the set of all palindromes, let Richq ⊆ A∗q denote the
set of all �nite rich words, and let Rich∞q ⊆ A∞q denote the set of all in�nite rich
words.

3.1 Rich words

Let Πq(n) = |Richq ∩An
q | be the number of rich words of length n. The enumera-

tion of rich words is investigated in [44], where Vesti gives a recursive lower bound
on the number of rich words of length n, and an upper bound on the number of
binary rich words. Better lower and upper bounds can be found in [21], where
Guo, Shallit, and Shur construct for each n a large set of rich words of length n.
Consequently they prove that

Π2(n) ≥ C
√
n

p(n)
, (1)

where p(n) is a polynomial and C is a constant with C ≈ 37. As already men-
tioned in Introduction, the language of rich words is factorial. It means that any
factor of a rich word is also rich, see [20]. In particular it follows that

Πq(n) Πq(m) ≥ Πq(n+m)

for all positive integers m,n, q. Therefore, Fekete's lemma implies existence of
the limit of n

√
Πq(n) and moreover

lim
n→∞

n

√
Πq(n) = inf

{
n

√
Πq(n) : n is a positive integer

}
.
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For a �xed n0, one can �nd the number of all rich words of length n0 and obtain an
upper bound on the limit. Using a computer Rubinchik and Shur counted Π2(n)
for n ≤ 60 [35]. Since 60

√
Π2(60) < 1.605, in [21] the following upper bound is

shown: Π2(n) ≤ c1.605n for some constant c.
In the article [[Ru02]] we show that Πq(n) has a subexponential growth on

every �nite alphabet. More precisely, we prove that

lim
n→∞

n

√
Πq(n) = 1 . (2)

Our result is an argument in favor of a conjecture formulated in [21] saying that
for some in�nitely growing function g(n) we have that

Π2(n) = O
( n

g(n)

)√n
. (3)

To prove our result we use the following property of rich words [15, De�nition 4
and Proposition 3]: the longest palindromic su�x of a rich word w has exactly one
occurrence in w. We say that the longest palindromic su�x of w is unioccurrent
in w. Using this property we prove that a rich word w can be factorized into p
distinct nonempty palindromes. The crucial observation is that there is a constant
c such that p ≤ c n

lnn
, where n = |w|. We have that

lim
n→∞

c n
lnn

n
= 0.

This can be interpreted as follows: a rich word is a concatenation of a �small�
number of distinct palindromes. Since every palindrome is determined by its �rst
half, and since the language of rich words is a factorial language, we derive the
subexponential upper bound on the number of rich words.

3.2 Factor Complexity of Rich words

Given a �nite or in�nite word w ∈ A∗q ∪A∞q , we de�ne the factor complexity of
w as follows: Cw(n) = |Fw(n)|, where n is nonnegative integer. As mentioned in
Introduction, the factor complexity Cw(n) enumerates the number of factors of
length n in the word w.

It is well known that an in�nite word w ∈ A∞q is eventually periodic if and only
if there exists a positive integer k such that Cw(k) ≤ k [16]. It follows that for
any aperiodic in�nite word (not eventually periodic) it holds that Cw(n) ≥ n+ 1.
The in�nite words with factor complexity Cw(n) = n + 1 are called Sturmian,
[5, 6]. Sturmian words belong to extensively studied objects in combinatorics on
words.

An in�nite word w ∈ A∞q is called recurrent if every factor u ∈ Fw has
in�nitely many occurrences in w. The word w is called uniformly recurrent if w
is recurrent and for each factor u ∈ Fw there is an integer βu such the distance
between every two consecutive occurrences of u is bounded by βu.
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The palindromic complexity Dw(n) of the word w ∈ A∗q ∪A∞q is de�ned as

Dw(n) = |Fw(n) ∩ Palq |.

In [1], it was shown for arbitrary in�nite aperiodic word w that

Dw(n) <
16

n
Cw(n+ bn

4
c).

In [5], it is shown that if n is a positive integer and w ∈ A∞q is a uniformly
recurrent in�nite word with Fw(n) closed under reversal, then

Dw(n) + Dw(n+ 1) ≤ Cw(n+ 1)− Cw(n) + 2. (4)

In [5] the authors proved the inequality (4) for uniformly recurrent words, but
in the proof only �recurrent� is applied. Moreover, it is known that if Fw is closed
under reversal, then w is recurrent [10, Proposition 2.2]. Thus the inequality (4)
holds for every in�nite word w ∈ A∞q with Fw closed under reversal.

In [10] it was shown for rich words that the inequality (4) becomes equality;
formally for every rich word w and a positive integer n we have that

Dw(n) + Dw(n+ 1) = Cw(n+ 1)− Cw(n) + 2. (5)

The main result of our article [[Ru03]] states a quasi-polynomial upper bound
for the factor complexity of rich words; more speci�cally we show that there are
real constants c1, c2 such that for every rich word w ∈ Richq ∪Rich∞q and every
positive integer n we have that

Cw(n) ≤ c1n
c2 lnn. (6)

In addition we construct also an upper bound for the palindromic complexity of
rich words and we prove the inequality (4) for �nite words v whose set of factors
Fv(n + 1) is closed under reversal. Consequently we prove also the equality (5)
for �nite rich words w whose set of factors Fw(n + 1) is closed under reversal.
Then we apply the equality (5) to improve the upper bound for the factor and
palindromic complexity of rich words.

To prove our results we use two properties of rich words. The second one uses
the notion of a complete return. Given a word w and a factor r of w, we call the
factor r a complete return to u in w if r contains exactly two occurrences of u,
one as a pre�x and one as a su�x; it follows that the complete return is a closed
word. We state both properties as lemmas:

Lemma 1. (see [11]) A factor r of a rich word w is uniquely determined by its
longest palindromic pre�x and its longest palindromic su�x.

Some generalizations of Lemma 1 may be found in [28].

Lemma 2. (see [20]) Let w be a rich word. All complete returns to any palin-
dromic factor u in w are palindromes.
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In [[Ru03]], we de�ne a switch to be a factor of the form aub, where a, b are
distinct letters and u is a palindrome. Applying Lemma 1, we show that the
switch aub is uniquely determined by a, b and by the longest proper palindromic
pre�x of u. In addition, we prove that if the longest proper palindromic su�x of
u is �too� long, then u is periodic with a �short� period. In consequence, we have
that any switch is uniquely determined by two letters and a �short� palindrome.
This allows us to present an upper bound for the number of switches of a given
length.

Based on Lemma 2, we show that if a rich word w contains two palindromic
factors xux and yuy, where x, y are distinct letters, then w has to contain a
switch aub, where the letters a, b are not necessarily equal to the letters x, y. This
observation allows to derive an upper bound for the palindromic complexity from
the upper bound for the number of switches. From the palindromic complexity
and Lemma 1, we prove our result for the factor complexity.

3.3 Closed and Priviledged Words

Let Cloq ⊆ A∗q denote the set of all closed words and let Privq ⊆ A∗q denote the
set of all privileged words.

Privileged words have been introduced quite recently in [23]. The combinato-
rial properties privileged words have been studied in [30, 38]. One of the questions
that has been investigated was the enumeration of privileged words. In [27], it
was proved that there are constants c and n0 such that for all n > n0, we have
that

|Privq ∩An
q | ≥

cqn

n(logq n)2
. (7)

The result (7) improves the lower bound for the number of privileged words from
[17]. Since every privileged word is a closed word, the inequality (7) forms also a
lower bound for the number of closed words.

Concerning an upper bound for the number of privileged words we have found
the following open problem [29]: Give a nontrivial upper bound for the number
of privileged words of length n. We have found no answers to this open problem.

In the article [[Ru06]] we show that

|Cloq ∩An
q | ≤ c lnn

qn√
n
, (8)

where n > 1 and c is a some positive constant. Since privileged words are a
subset of closed words, the formula (8) gives also an upper bound for the number
of privileged words.

To prove our upper bound for the number of closed words, we split the lan-
guage of closed words into words with a �short� and �long� border. For a closed
word w with |w| = n, we de�ne that w has a long border if w has a border u
with |u| ≥ c ln |w| for some prede�ned constant c. We derive an upper bound for
the number of closed words with �long� border and we show the relation between
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the number of closed words with �short� and �long� borders. In consequence, we
derive the upper bound (8).

4 Transition Property and Extendability

In 1985, Restivo and Salemi presented a list of �ve problems that deal with the
question of transition property and extendability of power-free words [34]:

� Problem 1: Given an α-power-free word u, decide whether for every positive
integer n there are words w, v such that |w| = |v| = n and such that:

� uv is α-power-free,

� wu is α-power-free, and

� wuv is α-power-free.

� Problem 2: Given an α-power-free word u, construct, if it exists, an in�nite
α-power-free word having u as a pre�x.

� Problem 3: Given an arbitrary positive integer k, does there exists an α-
power-free word u such that:

� there exists a word v of length k such that uv is α-power-free and

� for every word v̄ with |v̄| > |v| we have that uv̄ is not α-power-free.

� Problem 4: Given α-power-free words u and v, decide whether there is a
transition word w, such that uwu is α-power-free.

� Problem 5: Given α-power-free words u and v, �nd a transition word w, if
it exists.

Problems 1, 2, and 3 concern extendability of power-free words. Problems 4 and
5 concern transition property of power-free words. In general, these problems
remain open. A recent survey on the progress of solving all the �ve problems can
be found in [31]; in that article Petrova and Shur construct the transition words
for cube-free words.

Although the problems are stated for power-free words, Problems 4 and 5 are
also challenging for rich words. Let us compare rich and power-free words from
the point of view of extendability. If w is a rich word, then there are letters x, y
such that wx, yw, ywx are rich [44]. Thus every rich word can be extended. This
property does not hold, in general, for power-free words. Thus Problems 1,2,
and 3 are easy for rich words. However we elaborate for rich words some related
questions concerning extendability [[Ru05]].

In next subsections we present our results related to transition property and
extendability of power-free and rich words. In addition, we compare the properties
of power-free and rich words from the point of view of transition property.
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4.1 Transition property

Problems 4 and 5 of Restivo and Salemi are addressed in our article [[Ru07]],
where we show for a wide variety of con�gurations (α, q) that for any right ex-
tendable α-power-free word u and any left extendable α-power-free word v over
an alphabet Aq there is a transition word w such that uwv is also α-power-free
over the alphabet Aq. We also construct the transition word w.

The very basic idea of our proof is that if u, v are α-power-free words and
x is a letter such that x is not a factor of both u and v, then clearly uxv is α-
power-free, provided that α ≥ 2. Note that there cannot be a factor in uxv which
is an α-power and contains x, because x has only one occurrence in uxv. Less
formally said, if u, v are α-power-free words over an alphabet with k letters, then
we construct a �transition� word w over an alphabet with k − 1 letters such that
uwv is α-power-free. The proof involves intricate observations about recurrent
factors of w.

In [28], the following open problem was stated.

� We do not know how to decide whether two rich words u and v are factors
of a same rich word w.

This problem deals with transition property of rich words. In the article [[Ru04]]
we show that if such w exists, then there is also a transition word w with a
bounded length depending on the lengths of u and v. More exactly we show
that: There are constants c1, c2 such that if w1, w2, w are rich words, m =
max {|w1|, |w2|}, and {w1, w2} ⊆ Fw, then there exists a rich word w with
{w1, w2} ⊆ Fw̄ and |w| ≤ m2k(m)+2, where k(m) = c1m

c2 lnm. The constants
c1, c2 depend on the size of the alphabet. Hence it is enough to check all rich
words of length equal to or less than m2k(m)+2 in order to decide if there is a rich
word containing factors w1, w2.

Thus using a brute force we can decide the question of existence of a transition
word and also we can construct a transition word. However this brute force
algorithm is very ine�cient and some signi�cant improvement remains as an
open question.

Comparing the quasi-polynomial upper bound for the factor complexity of
rich words (6) with the lower bound for the number of binary rich words (1)
we see that an in�nite rich word contains only a �small� share of all rich words.
Because of Lemma 1, this is not really surprising. Lemma 1 allows us to deduce
that there are �many� pairs (u, v) of �nite rich words that cannot be joined into a
common rich word. For example consider the set P = {010111i0110 | i ≥ 1}. The
set P contains words 0101110110, 01011110110, 010111110110, . . . . It is easy to
see that if u ∈ P , then u is rich, the longest palindromic pre�x of u is 010, and
the longest palindromic su�x of u is 0110. Lemma 1 implies that if w is a rich
word (�nite or in�nite) then |Fw ∩P | ≤ 1. In other words if u, v ∈ P are distinct
words, then there is no transition word w with uwv being rich.

It is interesting to note the contrast to power-free words, where an in�nite
α-power word can contain �almost� all extendable �nite α-power words [39].

19



4.2 Extendability of rich words

We say that a rich word w can be extended in at least two ways if there are two
distinct letters x, y such that wx,wy are rich. The extendability of rich words
has been investigated in [44]. The author shows that if w is a rich word, then
there is a word u with |u| ≤ 2|w| such that wu can be extended in at least two
ways. It was presented as an open question to improve the upper bound for the
length of u [44]. We address this open question in the article [[Ru05]].

We prove that if w is a �nite rich word, then there is a rich word u with
|u| ≤ |w| such that wu is a rich word that can be extended in at least two
ways. In addition we investigate also a lower bound on the length of v. Given
w ∈ Richq, let Rextq(w) ⊆ Richq denote the set of all �nite rich words such that
if u ∈ Rextq(w) then wu ∈ Richq and wu can be extended in at least two ways.
Let

ωq(w) = min{|u| | u ∈ Rextq(w)}
and let

φq(n) = max{ωq(w) | w ∈ Richq and |w| = n},
where n > 0. We prove that for each real constant c > 0 and each integer m > 0
there is n > m such that

φq(n) ≥
(

2

9
− c
)
n. (9)

The inequality (9) says that for each positive integer m and for each positive real
c, there are an integer n > m and a rich word w ∈ Richq with |w| = n such that
if u is a nonempty rich word and wu can be extended in at least two ways, then
u is longer than (2

9
− c)|w|. This can be formulated also as follows:

lim sup
n→∞

φq(n)

n
≥ 2

9
.

5 Palindromic length

The palindromic length PalLen(v) of a �nite word v is the minimal number of
palindromes whose concatenation is equal to v. In 2013, Frid, Puzynina, and
Zamboni presented the following conjecture.

Conjecture 1. (see [18]) If w is an in�nite word and k is an integer such that
PalLen(u) ≤ k for every factor u of w, then w is eventually periodic.

In [18] the conjecture was proved for in�nite words that are k-power-free for
some positive integer k. It follows that if w is an in�nite word with bounded
palindromic length, then for each positive integer j there is a nonempty factor r
such that rj is a factor of w. Conjecture 1 attracted a lot of attention and there
are quite a lot articles solving the conjecture for some classes of in�nite words or
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investigating properties of palindromic length; see for instance [2, 3, 19, 35, 36].
However the conjecture still remains open.

In the article [[Ru08]] we bring some more insight in the in�nite words with
bounded palindromic length. Let w be an in�nite word with bounded palindromic
length. We show that for each positive integer j there are palindromes a, b with
b nonempty such that (ab)j is a factor of w. Realize that (ab)ia is a palindromic
factor of w for every i < j. In this way we can say that w contains many
periodic palindromes. These results justify the following question: What is the
palindromic length of a concatenation of a su�x of b and a periodic word (ab)j

with �many� periodic palindromes? Our main result addresses this question.
In [36, Lemma 6] it was shown that if u, v are nonempty words then

|PalLen(uv)− PalLen(u)| ≤ PalLen(v).

In the article [[Ru08]] we show that if a, b are palindromes, b is nonempty, u is a
nonempty su�x of b, |ab| is the minimal period of aba, and j is a positive integer
with j ≥ 3 PalLen(u), then

PalLen(u(ab)j)− PalLen(u) ≥ 0.

The proof is based on careful observations of some symmetries in the words with
many periodic palindromes.

6 De Bruijn Sequences

In 1894, A. de Rivière formulated a question about existence of circular arrange-
ments of 2n zeros and ones in such a way that every word of length n appears
exactly once, [14]. Let B(n) denote the set of all such arrangements and let
B0(n) ⊆ B(n) denote the elements that start with n zeros. It is easy to see that
|Bn| = 2n|B0(n)|.

The question was solved in the same year by C. Flye Sainte-Marie, [37], to-
gether with presenting a formula for counting these arrangements:

|B0(n)| = 22n−1−n.

However the article was then forgotten. The topic became well known through
the article of N.G. de Bruijn, who proved the same formula for the size of B0(n),
[8]. Some time after, the article of C. Flye Sainte-Marie was rediscovered by
Stanley, and it turned out that both proofs were principally the same, [9].

Stanley formulated in 2009 the following open problem [41], [42]:

A binary de Bruijn sequence of degree n is a binary sequence a1a2 · · · a2n

(ai is 0 or 1) such that all circular factors aiai+1 · · · ai+2n−1 (taking
subscripts modulo 2n) of length n are distinct. An example of such
sequence for n = 3 is 00010111. The number of binary de Bruijn
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sequences of degree n is 22n−1
. Let B(n) denote the set of all binary

de Bruijn sequences, then we want a bijection

φ : B(n)×B(n)→ {0, 1}2n .

We solved this open problem of Stanley in the article [[Ru01]] by introducing
new suitable bijections between de Bruijn graphs. Recall that a de Bruijn graph
Hn is a directed graph with qn nodes, whose nodes correspond to the words of
length n − 1 over an alphabet Aq = {0, 1, . . . , q − 1}. A node s1s2 . . . sn−1 has q
outgoing edges to the nodes

s2 . . . sn−10, s2 . . . sn−11, . . . , s2 . . . sn−1(q − 1).

It follows that a node s1s2 . . . sn−1 has q incoming edges from nodes

0s1s2 . . . sn−2, 1s1s2 . . . sn−2, . . . , (q − 1)s1s2 . . . sn−2.

De Bruijn graphs found several interesting applications, among others in net-
working, [4], and bioinformatics, [13, 32]. A Rauzy graph is a subgraph of the
de Bruijn graph. In combinatorics of words, Rauzy graphs have been used for
computing the factor complexity of in�nite words [5, 6].

7 Dissecting of In�nite Languages

This section deals with some terms from language and automata theory that
have not been formally de�ned in this dissertation; for example regular languages,
context-free languages, deterministic �nite automaton, and context free grammar.
In case the reader is not familiar with automata and language theory, we refer to
the book [22] or any other introduction book in that �eld.

In this section we consider also the alphabet with one letter; it means that q
can be any positive integer.

An in�nite language L ⊆ A∗q is called constantly growing if there is a positive
constant c0 and a �nite set K of positive integers such that for each w ∈ L with
|w| ≥ c0 there is a word w̄ ∈ L and a constant c ∈ K such that |w̄| = |w|+ c. We
say also that L is (c0, K)-constantly growing.

Given two in�nite languages L1, L2 ⊆ A∗q, we say that L1 dissects L2 if

|L1 ∩ L2| =∞ and |(A∗q \L1) ∩ L2| =∞.

In [45], it has been proved that if L is a (c0, K)-constantly growing language
then there is a regular language M ⊆ A∗q such that M dissects L and M is
accepted by a deterministic �nite automaton with |K|+ 1 states.

In the article [[Ru09]] we de�ne a tetration function (a repeated exponentia-
tion) as follows:

exp1,α = 2α
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and
expj+1,α = 2expj,α ,

where j, α are positive integers. The tetration function is known as a fast growing
function of the argument α. If k, α are positive positive integers and L ⊆ A∗q is
an in�nite language such that for each u ∈ L there is v ∈ L with |u| < |v| ≤
expk,α |u|, then we call L a language with the growth bounded by (k, α)-tetration.

Given a context free language L, let κ(L) denote the size of the smallest
context free grammar G that generates L. We de�ne the size of a grammar to be
the total number of symbols on the right sides of all production rules.

In the article [[Ru09]] we show that if q, k are positive integers with k ≥ 2,
then there are context free languages L1, L2, . . . , L3k−3 ⊆ A∗q with κ(Li) ≤ 40k
such that: If α is a positive integer and L ⊆ A∗q is an in�nite language with the
growth bounded by (k, α)-tetration then there is a regular language M such that

M ∩
(

3k−3⋂

i=1

Li

)

dissects L and the minimal deterministic �nite automaton accepting M has at
most k + α + 3 states.

We explain the basic idea of the proof. Recall that a non-associative word on
the letter z is a �well parenthesized� word containing a given number of occur-
rences of z. For example for n = 3 occurences of z, the non-associative words
are (((zz)z)z), ((zz)(zz)), (z(z(zz))), (z((zz)z)), and ((z(zz))z). Every non-
associative word contains the pre�x (kz for some nonnegative integer k, where (k

denotes the k-th power of the opening bracket. There are non-associative words
such that k equals �approximately� log2 n. We construct three context free lan-
guages whose intersection accepts such words; we call these words balanced non-
associative words. By counting the number of opening brackets of a balanced
non-associative word with n occurrences of z we can compute a logarithm of n.
By �chaining� this construction we are able to compute a repeated logarithm of n.
This will allow us to transform the problem of dissecting of a language with the
growth bounded by (k, α)-tetration to the problem of dissecting of a constantly
growing language.

8 Future directions

Of course, in principle, it is possible to improve every result of our articles. How-
ever we suggest the following directions for future research. The selection of the
directions is based mainly on experimental data that encourage us to believe that
the future research in proposed themes would be rewarding.
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8.1 Rich words

Although we proved the subexponential upper bound (2) for the number of rich
words, the conjectured upper bound (3) remains open. One direction of the future
research is to improve the upper bound in such a way to be able to con�rm the
conjectured upper bound (3) suggested by Guo, Shallit, and Shur. One possible
approach would be to use the upper bound (6) for the factor complexity. It seems
to us possible to apply the �low� factor complexity to derive some better upper
bound for the number of rich words.

Concerning the quasi-polynomial upper bound for the factor complexity (6),
it would be interesting to know if there is a polynomial upper bound; it means if
there are positive constants c1, c2 such that Cw(n) ≤ c1n

c2 , where n > 0 and w is
a rich word.

As already mentioned in Section 4.1, the practical application of our result
from [[Ru04]] for �nding a rich word containing two given factors requires a brute
force, which turns out to be very ine�cient. To improve our result or to improve
the brute force algorithm remains as an open problem for the future research.

8.2 Power-free words

In 2009, Shur presented the following conjecture related to Problems 4 and 5 of
Restivo and Salemi [40]:

Conjecture 2. Let L be a power-free language and let e(L) ⊆ L be the set of
words of L that can be extended to a bi-in�nite word respecting the given power-
freeness. If u, v ∈ e(L) then uwv ∈ e(L) for some word w.

In 2018, Conjecture 2 was presented also in [39] in a slightly di�erent form.
We believe that our proof from [[Ru07]] could be generalized in order to con-

�rm Conjecture 2 for α-power-free words with α > 2 over an alphabet with q ≥ 3
letters.

8.3 Palindromic length

For an in�nite word w with bounded palindromic length, we identi�ed factors
u, v such that PalLen(uv) − PalLen(v) ≥ 0 [[Ru08]]. The idea for the future
development of this result is, for given positive integer k, to identify factors u, v
of w such that PalLen(u) = k and PalLen(uv)−PalLen(u) > 0. The existence of
such factors would, in consequence, allow us to prove Conjecture 1.
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Abstract

A T-net of order m is a graph with m nodes and 2m directed edges, where
every node has indegree and outdegree equal to 2. (A well known example
of T-nets are de Bruijn graphs.) Given a T-net N of order m, there is the so
called “doubling” process that creates a T-net N∗ from N with 2m nodes and
4m edges. Let |X | denote the number of Eulerian cycles in a graph X . It
is known that |N∗| = 2m−1|N|. In this paper we present a new proof of this
identity. Moreover we prove that |N| ≤ 2m−1.
Let Θ(X) denote the set of all Eulerian cycles in a graph X and S(n) the set of
all binary sequences of length n. Exploiting the new proof we construct a bi-
jection Θ(N)×S(m−1)→Θ(N∗), which allows us to solve one of Stanley’s
open questions: we find a bijection between de Bruijn sequences of order n
and S(2n−1).

1 Introduction
In 1894, A. de Rivière formulated a question about existence of circular arrange-
ments of 2n zeros and ones in such a way that every word of length n appears
exactly once, [7]. Let B0(n) denote the set of all such arrangements. (we apply the
convention that the elements of B0(n) are binary sequences that start with n zeros).
The question was solved in the same year by C. Flye Sainte-Marie, [5], together
with presenting a formula for counting these arrangements: |B0(n)| = 22n−1−n.
However the paper was then forgotten. The topic became well known through the
paper of N.G. de Bruijn, who proved the same formula for the size of B0(n), [2].
Some time after, the paper of C. Flye Sainte-Marie was rediscovered by Stanley,
and it turned out that both proofs were principally the same, [3].

∗Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, CZECH
TECHNICAL UNIVERSITY IN PRAGUE (josef.rukavicka@seznam.cz).
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Figure 1: A doubling of a de Bruijn graph: N and N∗

The proof uses a relation between B0(n) and the set of Eulerian cycles in a
certain type of T-nets: A T-net N of order m is defined as a graph with m nodes
and 2m directed edges, where every node has indegree and outdegree equal to 2 (a
T-net is often referred as a balanced digraph with indegree and outdegree of nodes
equal to 2, see for example [10]). N.G. de Bruijn defined a doubled T-net N∗ of
N. A doubled T-net N∗ of N is a T-net such that:

• each node of N∗ corresponds to an edge of N

• two nodes in N∗ are connected by an edge if their corresponding edges in
N are incident and the ending node of one edge is the starting node of the
second edge.

Remark We call two edges to be incident if they share at least one common node;
the orientation of edges does not matter.

As a result N∗ has 2m nodes and 4m edges, see an example on Figure 1. (A
doubled T-net of N is known as well as a line graph of N, [4].)

Let Θ(X) be the set of all Eulerian cycles in X and let |X |= |Θ(X)| denote the
number of Eulerian cycles in X , where X is a graph. It was proved inductively that
|N∗| = 2m−1|N|. Moreover N.G. de Bruijn constructed a T-net (nowadays called
a de Bruijn graph) whose Eulerian cycles are in bijection with the elements of
B0(n).

A de Bruijn graph Hn of order n is a T-net of order 2n, whose nodes correspond
to the binary words of length n−1. A node s1s2 . . .sn−1 has two outgoing edges to
the nodes s2 . . .sn−10 and s2 . . .sn−11. It follows that a node s1s2 . . .sn−1 has two
incoming edges from nodes 0s1s2 . . .sn−2 and 1s1s2 . . .sn−2. Given an edge e going
from the node s1s2 . . .sn−1 to the node s2 . . .sn−1sn, then the edge e corresponds to
the word s1s2 . . .sn−1sn of length n, which implies the natural bijection between
Eulerian cycles Θ(Hn) and binary sequences B0(n), [2]. That is why we will write
B0(n)≡Θ(Hn).
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De Bruijn graphs found several interesting applications, among others in net-
working, [1], and bioinformatics, [6], [8].

The important property of de Bruijn graphs is that a doubled T-net of a de
Bruijn graph of order n is a de Bruijn graph of order n+ 1, see an example on
Figure 1 of the de Bruijn graph of order 3 (H3 = N) and of order 4 (H4 = N∗).
Since |B0(2)| = 1 (B0(2) = {0011}) it has been derived that |B0(n)| = 22n−1−n,
[1], [2], [3].

There is also another proof using matrix representation of graphs, [10]. Yet it
was an open question of Stanley, [9], [10], if there was a bijective proof:

Let B(n) be the set of all binary de Bruijn sequences of order n, and
let S(n) be the set of all binary sequences of length n. Find an explicit
bijection B(n)×B(n)→ S(2n).

This open question was solved in 2009, [4], [10].

Remark In the open question of Stanley, B(n) denotes the de Bruijn sequences
that do not necessarily start with n zeros like in the case of B0. B(n) contains all 2n

“circular rotations” of all sequences from B0(n); formally, given s = s1s2 . . .s2n ∈
B0(n), then sisi+1 . . .s2ns1s2 . . .si−1 ∈ B(n), where 1 ≤ i ≤ 2n. It is easy to see
that all these 2n “circular rotations” are distinct binary sequences. It follows that
|B(n)|= 2n|B0(n)|. Hence it is enough to find a bijection B0(n)→ S(2n−1−n) to
solve this open question.

In this paper we present a new proof of the identity |N∗|= 2m−1|N|, which allows
us to prove that |N| ≤ 2m−1 and to construct a bijection ν : Θ(N)× S(m− 1)→
Θ(N∗) and consequently to present another solution to the Stanley’s open ques-
tion: We define ρ2(ε) = 0011 (recall that B0(2) = {0011}) and let ρn : S(2n−1−
n)→ B0(n) be a map defined as ρn(s) = ν(ρn−1(ṡ), s̈), where ε is the binary se-
quence of length 0, n > 2, s = ṡs̈, ṡ ∈ S(2n−2− (n−1)), and s̈ ∈ S(2n−2−1).

Proposition 1.1 The map ρn is a bijection.

Proof Note that ṡ ∈ S(2n−2 − (n− 1)) and |B0(n− 1)| = 2(n−1)−1 − (n− 1) =
2n−2− (n−1); thus ṡ is a valid input for the function ρn−1 and ρn−1(ṡ) ∈ B0(n−
1) ≡ Θ(Hn−1). In addition, Hn−1 has m = 2n−2 nodes and s̈ ∈ S(2n−2− 1) has
the length m−1, hence it makes sense to define ρn(s) = ν(ρn−1(ṡ), s̈). Because ν
is a bijection, see Proposition 3.1, it is easy to see by induction on n that ρn is a
bijection as well.

Remark Less formally said, the bijection ρn(s) splits the binary sequence s into
two subsequences ṡ and s̈. Then the bijection ρn−1 is applied to ṡ, the result of
which is a de Bruijn sequence p from B0(n− 1) (and thus an Eulerian cycle in
Hn−1). Then the bijection ν is applied to p and s̈. The result is a de Bruijn
sequence from B0(n).
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Figure 2: A node replacing by 4 nodes and 4 edges

Figure 3: A removing solid edges and fusion of nodes

2 A double and quadruple of a T-net
Let Y be a set of graphs; we define Θ(Y ) =

⋃
X∈Y Θ(X) (the union of sets of

Eulerian cycles in graphs from Y ) and |Y |= ∑X∈Y |X | (the sum of the numbers of
Eulerian cycles). Let U(X) denote the set of nodes of a graph X .

We present a new way of constructing a doubled T-net, which will enable us
to show a new non-inductive proof of the identity |N∗| = 2m−1|N| and to prove
|N| ≤ 2m−1.

We introduce a quadruple of N denoted by N̂: The quadruple N̂ arises from
N by replacing every node a ∈U(N) by 4 nodes and 4 edges as depicted on the
Figure 2. Let Γ(a) denote the set of these 4 nodes and Π(a) denote the set of
these 4 edges that have replaced the node a. The edges from Π(a) are dashed
on the figures and we will distinguish dashed and solid edges as follows: In a
graph containing at least one dashed edge, we define a dashed Eulerian cycle to
be a cycle that traverses all dashed edges exactly once and all solid edges exactly
twice, see Figure 4. In a graph without dashed edges, we define a dashed Eulerian
cycle to be the same as an “ordinary” Eulerian cycle.

Remark Note that a quadruple N̂ is not a T-net, since the indegree and outdegree
are not always equal to 2. But since the solid edges can be traversed twice, we
can consider them as parallel edges (two edges that are incident to the same two
nodes). Then it would be possible to regard N̂ as a T-net.

By removing solid edges and “fusing” their incident nodes into one node in
N̂ (as depicted on Figure 3), we obtain a doubled T-net N∗ of N. And the reverse
process yields N̂ from N∗: turn all edges from solid to dashed and then replace
every node by two nodes connected by one solid edge, where one node has two
outgoing dashed edges and one incoming solid edge and the second node two
incoming edges and one outgoing solid edge. Thus we have a natural bijection
between dashed Eulerian cycles in N̂ and N∗. See an example on Figure 4.
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Figure 4: An example of N, N̂, and N∗

Remark If all edges in a graph are solid or if all edges in a graph are dashed,
then it makes no difference if they are solid or dashed. A dashed Eulerian cycle
traverses in that case just once every edge.

Fix an order on nodes U(N). As a result we have a bijection φ : {1,2, . . . ,m} →
U(N). Given i ∈ {1,2, . . . ,m}, let us denote the edges from Π(φ(i)) by t,u,v,z,
in such a way that t and v are not incident edges; it follows that u and z are not
incident as well.
Let W0 = {N̂}, we define Wi = {ẇ, ẅ | w ∈Wi−1}, where i ∈ {1,2, . . . ,m} and ẇ,
ẅ are defined as follows: We construct the graph ẇ by removing edges t,v from w
and by changing the edges u,z from dashed to solid (thus allowing the edges u,z
to be traversed twice). Similarly we construct ẅ from w by removing edges u,z
and by changing t,v from dashed to solid, where t,u,v,z ∈Π(φ(i)).

The crucial observation is:

Proposition 2.1 Let w ∈Wi, where i ∈ {0,1, . . . ,m−2}. Then |w|= 2|ẇ|+2|ẅ|.

Remark The following proof is basically identical to the one in [2], where the
author constructed two graphs d1,d2 from a graph d and proved that |d|= 2|d1|+
2|d2|

Proof Given a dashed Eulerian cycle g in w, then split g in four paths A,B,C,D
and edges t,u,v,z ∈ Π(φ(i)). We will count the number of dashed Eulerian cy-
cles in ẇ, ẅ that are composed from all 4 paths A,B,C,B and that differ only in
their connections on edges t,u,v,z. Exploiting the N.G. de Bruijn’s notation, all
possible cases are depicted on Figures 5 and 6.

• In case I, the graph w contains 4 dashed Eulerian cycles: AtBzDuCv,
AtCuBzDv, AtCvDuBz, AzDuBtCv; whereas the graphs ẇ and ẅ have to-
gether 2 dashed Eulerian cycles: AzDuCuBz, AtBtCvDv. Thus |w|= 4 and
|ẇ|+|ẅ|= 2.
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• In case II, the graph w contains 4 dashed Eulerian cycles: AtCuDvBz,
AtDuCvBz, AzBtCuDv, AzBtDuCv; whereas the graph ẅ has 2 dashed Eule-
rian cycles: AtCvBtDv, AtDvBtCv. The graph ẇ is disconnected and there-
fore ẇ has 0 dashed Eulerian cycles. Thus |w|= 4 and |ẇ|+|ẅ|= 2. In case
II, it is possible the A = B or C = D. In such a case, |w|= 2 and |ẇ|+|ẅ|= 1.

This ends the proof.

We define ∆ = {w | w ∈Wm and w is connected}. The Figure 7 shows an example
of all iterations and construction of graphs in ∆ from the graph N̂, where N is a de
Bruijn graph of order 3. The order of nodes from N is 00 < 10 < 01 < 11. Most
of the disconnected graphs are ommited.

Remark In the previous proof in case II, it can happen that A = B or C = D.
Note in the iteration step i = m (when constructing Wm from Wm−1) it holds that
A = B and C = D, because all nodes have indegree and outdegree equal to 1 with
exception of nodes Γ(φ(m− 1)). Hence |Wm−1| = |Wm|. It follows as well that
every connected graph w ∈Wm−1 has exactly one dashed Eulerian cycle. That is
why in the Proposition 2.1 we consider i ∈ {0,1, . . . ,m−2}.

Corollary 2.1 2|Wi−1|= |Wi| and |Wm−1|= |Wm|, where i ∈ {1,2, . . . ,m−1}.

Proposition 2.2 2m−1|∆|= |N∗|= |N̂|.

Proof The only graphs in Wm that contain a dashed Eulerian cycle are connected
graphs, it means only graphs from ∆. On the other hand every graph w ∈ ∆
contains exactly one dashed Eulerian cycle, since every node has indegree and
outdegree equal to 1. The proposition follows then from Corollary 2.1, because
|N̂|= |W0| (recall that W0 = {N̂}).

Proposition 2.3 There is a bijection between Θ(N) and Θ(∆) and Θ(Wm−1) and
Θ(Wm).

Proof Given a connected graph w ∈Wm−1, then just one graph of ẇ and ẅ is
connected. Let us say it is ẇ. Recall that there is exactly one dashed Eulerian
cycle AtCuCvAz in w (A = B and C = D, see Figure 6). Then AtCv is the only
dashed Eulerian cycle in ẇ ∈ ∆ ⊂Wm. This shows a bijection between Θ(Wm−1)
and Θ(Wm) and Θ(∆).

Let p̄ = p1 p2 . . . p4m be the only dashed Eulerian cycle in w ∈ ∆, where pi are
edges of w. Without loss of generality suppose that p1 ∈Π(a) for some a ∈U(N)
(it means that p1 is a dashed edge in N̂). It follows that all pi with i odd are
dashed edges in N̂ all pi with i even are edges from N (they are solid edges in
N̂); in consequence the path p = p2 p4 . . . p4m is a dashed Eulerian cycle in N. A
turning the dashed Eulerian cycle in w into the dashed Eulerian cycle p in N is
schematically depicted on Figure 8. Thus we have a bijection between Θ(N) and
Θ(∆). This ends the proof.
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Figure 8: Converting a dashed Eulerian cycle from ∆ into a dashed Eulerian cycle
in N

Corollary 2.2 Let N be a T-net of order m. Then |N| ≤ 2m−1 dashed Eulerian
cycles.

Proof The set Wm−1 contains 2m−1 graphs and recall that every connected graph
w ∈Wm−1 has exactly one dashed Eulerian cycle. The result follows then from
|Wm−1|= |Wm| and ∆⊆Wm.

3 Bijection of binary sequences and de Bruijn se-
quences

Given i ∈ {1,2, . . . ,m}, in the previous section we agreed that the edges from
Π(φ(i)) are denoted by t,u,v,z, in such a way that t and v are not incident edges
(and consequently that u and z are not incident as well). For this section we need
that these edges are ordered, hence let us suppose that it holds t < u < v < z. This
will allow us to identify “uniquely” the edges.

Let us look again on the Figure 5. We can identify the path A as the path
between incident nodes of the edge z that do not contain edges t,u,v. In a similar
way we can identify B,C,D.

On the Figure 6 we can not distinguish A from B and C from D only by edges
t,u,v,z. If A 6= B, then let δ be the first node where A and B differ. The node δ
has two outgoing dashed edges, let us say they are t,z. We use this difference to
distinguish A and B. Let us define A to be the path that follows the edge t from δ
and B the path that follows the edge z from δ . Again in a similarly way we can
distinguish C from D. Hence let us suppose we have an “algorithm” that splits
a dashed Eulerian cycle p ∈ Θ(Wi) into the paths A,B,C,D and edges t,u,v,z ∈
Π(φ(i)) for given N, i (recall that the nodes of N are ordered and thus i determines
the node φ(i)∈U(N)). We introduce the function ωN,i : (p,α)→Θ(Wi−1), where

• N is a T-net of order m
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• i ∈ {1, . . . ,m−1}

• p ∈Θ(Wi)

• α ∈ {0,1}

Remark Less formally said, the function ω transform a dashed Eulerian cycle
p ∈Θ(Wi) into a dashed Eulerian cycle p̄ ∈Θ(Wi−1) for given N, i,α .

Given N and i, we define for the case I (Figure 5):
ωN,i(AzDuCuBz,0) = AtBzDuCv
ωN,i(AzDuCuBz,1) = AtCuBzDv
ωN,i(AtBtCvDv,0) = AtCvDuBz
ωN,i(AtBtCvDv,1) = AzDuBtCv
For the case II (Figure 6), where A 6= B and C 6= D:
ωN,i(AtCvBtDv,0) = AtCuDvBz
ωN,i(AtCvBtDv,1) = AzBtCuDv
ωN,i(AtDvBtCv,0) = AtDuCvBz
ωN,i(AtDvBtCv,1) = AzBtDuCv
For the case II where A = B and C 6= D:
ωN,i(AtCvAtDv,0) = AtCuDvAz
ωN,i(AtCvAtDv,1) = AtDuCvAz
For the case II where A 6= B and C = D:
ωN,i(AtCvBtCv,0) = AtCuCvBz
ωN,i(AtCvBtCv,1) = AzBtCuCv
Now, when we fixed an order on edges at the beginning of this section, it is nec-
essary to distinguish another alternative of the case II, namely the paths A,B can
be paths between incident nodes of the edge t that do not contain edges u,v,z and
C,D can be paths between incident nodes of the edge v that do not contain edges
t,u,z, let us denote it as case III, see Figure 9. We define ω in a similar way as for
the case II:

For the case III (Figure 9), where A 6= B and C 6= D:
ωN,i(AuCzBuDz,0) = AuCvDzBt
ωN,i(AuCzBuDz,1) = AtBuCvDz
ωN,i(AuDzBuCz,0) = AuDvCzBt
ωN,i(AuDzBuCz,1) = AtBuDvCz
For the case III where A = B and C 6= D:
ωN,i(AuCzAuDz,0) = AuCvDzAt
ωN,i(AuCzAuDz,1) = AuDvCzAt
For the case III where A 6= B and C = D:
ωN,i(AuCzBuCz,0) = AuCvCzBt
ωN,i(AuCzBuCz,1) = AtBuCvCz
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Remark The previous definition of ωN,i(p,α) can be modified with regard to the
reader’s needs, including the way of recognition of paths A,B,C,D. It matters
only that ωN,i is injective. Our definition is just one possible way.

Remark To understand correctly the definition of ω , recall that when comparing
two dashed Eulerian cycles, it does not matter which edge is written as the first
one. For example the paths AtCuDvAz and AzAtCuDv are an identical dashed
Eulerian cycle.

Let S(n) denote the set of all binary sequences of length n.

Proposition 3.1 Let N be a T-net of order m, s = s1s2 . . .sm−1 ∈ S(m− 1) be a
binary sequence, and p ∈ Θ(N). We define p = pm−1 and pi−1 = ωN,i(pi,si),
where i ∈ {1,2, . . . ,m−1}. Then the map ν : Θ(N)×S(m−1)→ Θ(N∗) defined
as ν(p,s) = p0 is a bijection.

Proof Recall that there is a bijection between Θ(N) and Θ(Wm−1), see Proposi-
tion 2.3; hence we can suppose that p ∈Wm−1.
The definition of the function ω implies that ωN,i(p,α) = ωN,i(p̄, ᾱ) if and only
if p = p̄ and α = ᾱ . It follows that ν is injective. In addition we proved that
|N| = |Wm−1| and that 2m−1|N| = |N̂| = |W0|. In consequence ν is surjective and
thus bijective.
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Abstract. Any finite word w of length n contains at most n+1 distinct
palindromic factors. If the bound n + 1 is reached, the word w is called
rich. The number of rich words of length n over an alphabet of cardinality
q is denoted Rq(n). For binary alphabet, Rubinchik and Shur deduced
that R2(n) ≤ c1.605n for some constant c. In addition, Guo, Shallit and
Shur conjectured that the number of rich words grows slightly slower
than n

√
n. We prove that lim

n→∞

n
√

Rq(n) = 1 for any q, i.e. Rq(n) has a

subexponential growth on any alphabet.

Keywords: Rich words · Enumeration · Palindromes · Palindromic fac-
torization

1 Introduction

The study of palindromes is a frequent topic and many diverse results may be
found. In recent years, a number of articles deal with so-called rich words, or
also words having palindromic defect 0. They are words having the maximum
number of palindromic factors. As noted by [6], a finite word w contains at most
|w| + 1 distinct palindromic factors with |w| being the length of w. The rich
words are exactly those that attain this bound. It is known that on a binary
alphabet the set of rich words contains factors of Sturmian words, factors of
complementary symmetric Rote words, factors of the period-doubling word, etc.,
see [1,4,6,13]. On a multiliteral alphabet, the set of rich words contains for
example factors of Arnoux—Rauzy words and factors of words coding symmetric
interval exchanges.

Rich words can be characterized using various properties, see for instance
[2,5,8]. The concept of rich words can also be generalized to respect so-called
pseudopalindromes, see [10]. In this paper we focus on an unsolved question of
computing the number of rich words of length n over an alphabet with q > 1
letters. This number is denoted Rq(n).

This question is investigated in [15], where J. Vesti gives a recursive lower
bound on the number of rich words of length n, and an upper bound on the
number of binary rich words. Both these estimates seem to be very rough. In [9],
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C. Guo, J. Shallit and A.M. Shur construct for each n a large set of rich words of
length n. Their construction gives, currently, the best lower bound on the number

of binary rich words, namely R2(n) ≥ C
√

n

p(n) , where p(n) is a polynomial and the

constant C ≈ 37. On the other hand, the best known upper bound is exponential.
As mentioned in [9], a calculation performed recently by M. Rubinchik provides
the upper bound R2(n) ≤ c1.605n for some constant c, see [11].

Our main result stated as Theorem 10 shows that Rq(n) has a subexponential
growth on any alphabet. More precisely, we prove that

lim
n→∞

n

√

Rq(n) = 1 .

In [14], Shur calls languages with the above property small. Our result is an
argument in favor of a conjecture formulated in [9] saying that for some infinitely

growing function g(n) the following holds true R2(n) = O
(

n
g(n)

)

√
n

.

To derive our result we consider a specific factorization of a rich word into dis-
tinct rich palindromes, here called UPS-factorization (Unioccurrent Palindromic
Suffix factorization), see Definition 2. Let us mention that another palindromic
factorizations have already been studied, see [3,7]: Minimal (minimal number
of palindromes), maximal (every palindrome cannot be extended on the given
position) and diverse (all palindromes are distinct). Note that only the minimal
palindromic factorization has to exist for every word.

The article is organized as follows: Sect. 2 recalls notation and known results.
In Sect. 3 we study a relevant property of UPS-factorization. The last section is
devoted to the proof of our main result.

2 Preliminaries

Let us start with a couple of definitions: Let A be an alphabet of q letters,
where q > 1 and q ∈ N (N denotes the set of nonnegative integers). A finite
sequence u1u2 · · · un with ui ∈ A is a finite word. Its length is n and is denoted
|u1u2 · · ·un| = n. Let An denote the set of words of length n. We define that A0

contains just the empty word. It is clear that the size of An is equal to qn.
Given u = u1u2 · · · un ∈ An and v = v1v2 · · · vk ∈ Ak with 0 ≤ k ≤ n, we say
that v is a factor of u if there exists i such that 0 ≤ i, i + k ≤ n and ui+1 = v1,
ui+2 = v2, . . . , ui+k = vk.

A word u = u1u2 · · · un is called a palindrome if u1u2 · · · un = unun−1 · · · u1.
The empty word is considered to be a palindrome and a factor of any word.

A word u of length n is called rich if u has n+1 distinct palindromic factors.
Clearly, u = u1u2 · · · un is rich if and only if its reversal unun−1 · · · u1 is rich
as well.

Any factor of a rich word is rich as well, see [8]. In other words, the language
of rich words is factorial. In particular it means that Rq(n)Rq(m) ≤ Rq(n + m)
for any m,n, q ∈ N. Therefore, the Fekete’s lemma implies existence of the limit
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of n
√

Rq(n) and moreover

lim
n→∞

n

√

Rq(n) = inf

{

n

√

Rq(n) : n ∈ N

}

.

For a fixed n0, one can find the number of all rich words of length n0 and obtain
an upper bound on the limit. Using a computer Rubinchik counted R2(n) for
n ≤ 60, (see the sequence A216264 in OEIS). As 60

√

R2(60) < 1.605, he obtained
the upper bound given in Introduction.

As shown in [8], any rich word u over an alphabet A is richly prolongable,
i.e., there exist letters a, b ∈ A such that aub is also rich. Thus a rich word
is a factor of an arbitrarily long rich word. But the question whether two rich
words can appear simultaneously as factors of a longer rich word may have a
negative answer. It means that the language of rich words is not recurrent. This
fact makes the enumeration of rich words hard.

3 Factorization of Rich Words into Rich Palindromes

Let us recall one important property of rich words [6, Definition 4 and Proposi-
tion 3]: The longest palindromic suffix of a rich word w has exactly one occurrence
in w (we say that the longest palindromic suffix of w is unioccurrent in w). It
implies that w = w(1)w1, where w1 is a palindrome which is not a factor of w(1).
Since every factor of a rich word is a rich word as well, it follows that w(1) is
a rich word and thus w(1) = w(2)w2, where w2 is a palindrome which is not a
factor of w(2). Obviously w1 �= w2. We can repeat the process until w(p) is the
empty word for some p ∈ N, p ≥ 1. We express these ideas by the following
lemma:

Lemma 1. Let w be a rich word. There exist distinct non-empty palindromes
w1, w2, . . . , wp such that

w = wpwp−1 · · · w2w1 and wi is the longest palindromic suffix of

wpwp−1 · · · wi for i = 1, 2, . . . , p. (1)

Definition 2. We define UPS-factorization (Unioccurrent Palindromic Suffix
factorization) to be the factorization of a rich word w into the form (1).

Since the wi in the factorization (1) are non-empty, it is clear that p ≤ n =
|w|. From the fact that the palindromes wi in the factorization (1) are distinct
we can derive a better upper bound on p. The aim of this section is to prove the
following theorem:

Theorem 3. There is a constant c > 1 such that for any rich word w of length
n the number p of palindromes in the UPS-factorization of w = wpwp−1 · · · w2w1

satisfies

p ≤ c
n

lnn
. (2)
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Before proving the theorem, we show two auxiliary lemmas:

Lemma 4. Let q, n, t ∈ N such that

t
∑

i=1

iq⌈ i
2
⌉ ≥ n. (3)

The number p of palindromes in the UPS-factorization w = wpwp−1 · · · w2w1 of
any rich word w with n = |w| satisfies

p ≤
t

∑

i=1

q⌈ i
2
⌉. (4)

Proof. Let f1, f2, f3, . . . be an infinite sequence of all non-empty palindromes
over an alphabet A with q = |A| letters, where the palindromes are
ordered in such a way that i < j implies that |fi| ≤ |fj |. Therefore, the
palindromes f1, . . . , fq are of length 1, the palindromes fq+1, . . . , f2q are of
length 2, etc. Since w1, . . . , wp are distinct non-empty palindromes we have
∑p

i=1 |fi| ≤
∑p

i=1 |wi| = n. The number of palindromes of length i over the

alphabet A with q letters is equal to q⌈ i
2
⌉ (just consider that the “first half”

of a palindrome determines its second half). The number
∑t

i=1 iq⌈ i
2
⌉ equals the

length of a word obtained as concatenation of all palindromes of length less than
or equal to t. Since

∑p

i=1 |fi| ≤ n ≤
∑t

i=1 iq⌈ i
2
⌉, it follows that the number of

palindromes p is less than or equal to the number of all palindromes of length
at most t; this explains the inequality (4).

Lemma 5. Let N ∈ N, x ∈ R, x > 1 such that N(x − 1) ≥ 2. We have

NxN

2(x − 1)
≤

N
∑

i=1

ixi−1 ≤ NxN

(x − 1)
. (5)

Proof. The sum of the first N terms of a geometric series with the quotient x is

equal to
∑N

i=1 xi = xN+1−x
x−1 . Taking the derivative of this formula with respect

to x with x > 1 we obtain:
∑N

i=1 ixi−1 = xN (N(x−1)−1)+1
(x−1)2 = NxN

x−1 + 1−xN

(x−1)2 . It

follows that the right inequality of (5) holds for all N ∈ N and x > 1. The
condition N(x − 1) ≥ 2 implies that 1

2N(x − 1) ≤ N(x − 1) − 1, which explains
the left inequality of (5).

We can start the proof of Theorem 3:

Proof (Proof of Theorem 3). Let t ∈ N be a minimal nonnegative integer such
that the inequality (3) in Lemma 4 holds. It means that:

n >

t−1
∑

i=1

iq⌈ i
2
⌉ ≥

t−1
∑

i=1

iq
i
2 = q

1
2

t−1
∑

i=1

iq
i−1

2 ≥ (t − 1)q
t
2

2(q
1
2 − 1)

, (6)
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where for the last inequality we exploited (5) with N = t − 1 and x = q
1
2 . If

q ≥ 9, then the condition N(x − 1) = (t − 1)(q
1
2 − 1) ≥ 2 is fulfilled (it is the

condition from Lemma 5) for any t ≥ 2. Hence let us suppose that q ≥ 9 and
t ≥ 2. From (6) we obtain:

q
t
2

q
1
2 − 1

≤ 2n

t − 1
≤ 4n

t
. (7)

Since t is such that the inequality (3) holds and i ≤ q
i+1

2 for any i ∈ N and
q ≥ 2, we can write:

n ≤
t

∑

i=1

iq
i+1

2 ≤
t

∑

i=1

qi+1 = q2 qt − 1

q − 1
≤ q2

q − 1
qt ≤ q2t. (8)

We apply the logarithm on the previous inequality:

lnn ≤ 2t ln q. (9)

An upper bound on the number of palindromes p in UPS-factorization follows
from (4), (7), and (9):

p ≤
t

∑

i=1

q⌈ i
2
⌉ ≤

t
∑

i=1

q
i+1

2 ≤ q
3
2

q
t
2

q
1
2 − 1

≤ q
3
2
4n

t
≤ q

3
2 8 ln q

n

lnn
. (10)

The previous inequality requires that q ≥ 9 and t ≥ 2. If t = 1 then we can easily
derive from (3) that n ≤ q and consequently p ≤ n ≤ q. Thus the inequality p ≤
q

3
2 8 ln q n

ln n
holds as well for this case. Since every rich word over an alphabet with

the cardinality q < 9 is also a rich word over the alphabet with the cardinality 9,
the estimate (2) in Theorem 3 holds if we set the constant c as follows: c =

max{8q
3
2 ln q, 8 · 9

3
2 ln 9}.

Remark 6. Note that in [12] it is shown that most of palindromic factors of a
random word of length n are of length close to ln(n) (compare to Theorem 3).

4 Rich Words Form a Small Language

Recall the definition of a small language; the aim of this section is to show that
the set of rich words forms a small language, see Theorem 10.

We present a recurrent inequality for Rq(n). To ease our notation we omit
the specification of the cardinality of alphabet and write R(n) instead of Rq(n).

Let us define
κn =

⌈

c
n

lnn

⌉

,

where c is the constant from Theorem 3 and n ≥ 2.
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Theorem 7. If n ≥ 2, then

R(n) ≤
κn
∑

p=1

∑

n1,n2,...,np≥1
n1+n2+···+np=n

R
(⌈n1

2

⌉)

R
(⌈n2

2

⌉)

. . . R
(⌈np

2

⌉)

. (11)

Proof. Given p, n1, n2, . . . , np, let R(n1, n2, . . . , np) denote the number of rich
words with UPS-factorization w = wpwp−1 . . . w1, where |wi| = ni for
i = 1, 2, . . . , p. Note that any palindrome wi is uniquely determined by its prefix
of length ⌈ni

2 ⌉; obviously this prefix is rich. Hence the number of words that
appear in the UPS-factorization as wi cannot be larger than R(⌈ni

2 ⌉). It follows
that R(n1, n2, . . . , np) ≤ R(⌈n1

2 ⌉)R(⌈n2

2 ⌉) . . . R(⌈np

2 ⌉). The sum of this result
over all possible p (see Theorem 3) and n1, n2, . . . , np completes the proof.

Proposition 8. Let h > 1, K ≥ 1 and βn = Θ
(

n
ln n

)

If Γ (n) is a sequence of

positive integers such that Γ (n) ≤ Kβnh
n+βn

2

(

en
βn

)βn

, then lim
n→∞

n
√

Γ (n) ≤
√

h.

Proof. For any constant α we have lim
n→∞

α
βn
n = 1. Moreover, lim

n→∞

(

n
βn

)

βn
n

= 1.

Let us suppose that Γ (n) = Kβnh
n+βn

2

(

en
βn

)βn

. Using these two equalities

we obtain lim
n→∞

K
βn
n h

n+βn
2n

(

en
βn

)

βn
n

= lim
n→∞

h
1
2 h

βn
2n =

√
h. Since n

√

Γ (n) ≤

K
βn
n h

n+βn
2n

(

en
βn

)

βn
n

, we conclude that lim
n→∞

n
√

Γ (n) ≤
√

h.

Next, we show that R(n) satisfies the conditions of Proposition 8 with βn = κn.

Proposition 9. If h > 1 and K ≥ 1, then R(n) ≤ Kκnh
n+κn

2

(

en
κn

)κn

.

Proof. For any integers p, n1, . . . , np ≥ 1, the assumption implies that R(⌈n1

2 ⌉)
R(⌈n2

2 ⌉) · · · R(⌈np

2 ⌉) ≤ Kph
n1+1

2 h
n2+1

2 · · · h
np+1

2 ≤ Kph
n+p

2 . Using (11) we
obtain:

R(n) ≤ Kκnh
n+κn

2

κn
∑

p=1

∑

n1,n2,...,np≥1
n1+n2+···+np=n

1. (12)

The sum
Sn =

∑

n1+n2+···+np=n
n1,n2,...,np≥1

1

can be interpreted as the number of ways how to distribute n coins between p

people in such a way that everyone has at least one coin. That is why Sn =
(

n−1
p−1

)

.

It is known (see Appendix for a proof) that

L
∑

i=0

(

N

i

)

≤
(

eN

L

)L

, for any L,N ∈ Z
+ and L ≤ N . (13)

From (12) we can write: R(n) ≤ Kκnh
n+κn

2

(

en
κn

)κn

.
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The main theorem of this article is a simple consequence of the previous
proposition.

Theorem 10. Let R(n) denote the number of rich words of length n over an
alphabet with q letters. We have lim

n→∞
n
√

R(n) = 1.

Proof. Let us suppose that limn→∞
n
√

R(n) = λ > 1. Let ǫ > 0 be such that

λ+ ǫ < λ2. The definition of a limit implies that there is n0 such that n
√

R(n) <

λ+ ǫ for any n > n0, i.e. R(n) < (λ+ ǫ)n. Let K = max{R(1), R(2), . . . , R(n0)}.
It holds for any n ∈ N that R(n) ≤ K(λ + ǫ)n. Using Propositions 8 and 9 we
obtain lim

n→∞
n
√

R(n) ≤
√

λ + ǫ < λ, and this is a contradiction to our assumption

that lim
n→∞

n
√

R(n) = λ > 1, it follows that λ = 1 (obviously λ ≥ 1 since it holds

that R(n + 1) ≥ R(n) ≥ 1 for all n > 0).
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Appendix

For the reader’s convenience, we provide a proof of the well-known inequality we
used in the proof of Proposition 9.

Lemma 11.
∑L

k=0

(

N
k

)

≤
(

eN
L

)L
, where L ≤ N and L,N ∈ Z

+ (Z+ denotes
the set of positive integers).

Proof. Consider x ∈ (0, 1]. The binomial theorem states that

(1 + x)N =

N
∑

k=0

(

N

k

)

xk ≥
L

∑

k=0

(

N

k

)

xk.

By dividing by the factor xL we obtain

L
∑

k=0

(

N

k

)

xk−L ≤ (1 + x)N

xL
.

Since x ∈ (0, 1] and k − L ≤ 0, then xk−L ≥ 1, it follows that

L
∑

k=0

(

N

k

)

≤ (1 + x)N

xL
.

Let us substitute x = L
N

∈ (0, 1] and let us use the inequality 1 + x < ex, that
holds for all x > 0:

(1 + x)N

xL
≤ exN

xL
=

e
L
N

N

( L
N

)L
=

(

eN

L

)L

.
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10. Pelantová, E., Starosta, Š.: Palindromic richness for languages invariant under
more symmetries. Theor. Comput. Sci. 518, 42–63 (2014)

11. Rubinchik, M., Shur, A.M.: EERTREE: an efficient data structure for processing
palindromes in strings. In: Lipták, Z., Smyth, W.F. (eds.) IWOCA 2015. LNCS,
vol. 9538, pp. 321–333. Springer, Cham (2016). doi:10.1007/978-3-319-29516-9 27

12. Rubinchik, M., Shur, A.M.: The number of distinct subpalindromes in random
words. Fund. Inf. 145, 371–384 (2016)

13. Schaeffer, L., Shallit, J.: Closed, palindromic, rich, privileged, trapezoidal, and
balanced words in automatic sequences. Electr. J. Comb. 23, P1.25 (2016)

14. Shur, A.M.: Growth properties of power-free languages. Comput. Sci. Rev. 6, 187–
208 (2012)

15. Vesti, J.: Extensions of rich words. Theor. Comput. Sci. 548, 14–24 (2014)

josef.rukavicka@seznam.cz





Article [[Ru03]]: Upper Bound for Palindromic and

Factor Complexity of Rich Words

54



Theoretical Informatics and Applications Will be set by the publisher

Informatique Théorique et Applications

UPPER BOUND FOR PALINDROMIC AND FACTOR

COMPLEXITY OF RICH WORDS
∗

Josef Rukavicka1

Abstract. A �nite word w of length n contains at most n+1 distinct
palindromic factors. If the bound n+1 is attained, the word w is called
rich. An in�nite word w is called rich if every �nite factor of w is rich.

Let w be a word (�nite or in�nite) over an alphabet with q > 1
letters, let Facw(n) be the set of factors of length n of the word w, and
let Palw(n) ⊆ Facw(n) be the set of palindromic factors of length n of
the word w.

We present several upper bounds for |Facw(n)| and |Palw(n)|, where
w is a rich word. Let δ = 3

2(ln 3−ln 2)
. In particular we show that

|Facw(n)| ≤ (4q2n)δ ln 2n+2.

In 2007, Baláºi, Masáková, and Pelantová showed that

|Palw(n)|+ |Palw(n+ 1)| ≤ |Facw(n+ 1)| − |Facw(n)|+ 2,

where w is an in�nite word whose set of factors is closed under reversal.
We prove this inequality for every �nite word v with |v| ≥ n + 1 and
Facv(n+ 1) closed under reversal.

1991 Mathematics Subject Classi�cation. 68R15.

1. Introduction

The �eld of combinatorics on words includes the study of palindromes and
rich words. In recent years there have appeared several articles concerning this
topic [3, 5, 8, 17]. Recall that a palindrome is a word that is equal to its reversal,
such as �noon� and �level�. A word is called rich if it contains the maximal number

∗ Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering, Czech
Technical University in Prague.
1 josef.rukavicka@seznam.cz

c© EDP Sciences 1999
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of palindromic factors. It is known that a word of length n can contain at most
n+1 palindromic factors, including the empty word [8]. An in�nite word w is rich
if every �nite factor of w is rich.

Rich words possess various properties; see, for instance, [4, 7, 9]. We will use
two of them. The �rst uses the notion of a complete return. Given a word w and a
factor r of w, we call the factor r a complete return to u in w if r contains exactly
two occurrences of u, one as a pre�x and one as a su�x. A property of rich words
is that all complete returns to any palindromic factor u in w are palindromes [9].

The second property of rich words that we use says that a factor r of a rich
word w is uniquely determined by its longest palindromic pre�x and its longest
palindromic su�x [7]. Some generalizations of this property may be found in [12].

In the current article we present upper bounds for the palindromic and factor
complexity of rich words. In other words, this means that we derive upper bounds
for the number of palindromes and factors of given length in a rich word w. There
are already some related results; see below.

We start with some results that hold for arbitrary (not only rich) words.
Let us de�ne Facw(n) to be the set of factors of length n of the word w,

let Palw(n) be the set of palindromic factors of length n of w, and let Facw =⋃
j≥0 Facw(j), where w is a �nite or in�nite word. Let wR denote the reversal

of w = w1w2 · · ·wn−1wn, where wi are letters; formally wR = wnwn−1 · · ·w2w1.
We say that a set S of �nite words is closed under reversal if w ∈ S implies that
wR ∈ S.

It is clear that |Palw(n)| ≤ |Facw(n)|. Some less obvious inequalities are known.
One of the interesting inequalities is the following one [2,4]. If w is an in�nite word
with Facw closed under reversal then

|Palw(n)|+ |Pal(w, n+ 1)| ≤ |Facw(n+ 1)| − |Facw(n)|+ 2. (1)

In [2] the authors proved the inequality (1) for uniformly recurrent words, but
in the proof only �recurrent� is applied. It is known that if Facw is closed under
reversal, then w is recurrent [6, Proposition 2.2]. In Section 3 we generalize (1)
for every �nite word v with Facv(n+ 1) closed under reversal, which allows us to
improve our upper bound from Section 2 for the factor complexity of �nite rich
words.

In [1], another inequality has been proven for in�nite non-ultimately periodic
words: |Palw(n)| < 16

n |Facw(n+ bn4 c)|.
In [14], the authors show that a random word of length n contains, on expec-

tation, Θ(
√
n) distinct palindromic factors.

Now, let us focus on rich words.
Let Π(n) denote the number of rich words of length n. If w is a rich word then

obviously |Facw(n)| ≤ Π(n). Hence the number of rich words forms the upper
bound for the palindromic and factor complexity of rich words. The number of
rich words was investigated in [19], where the author gives a recursive lower bound
on the number of rich words of length n, and an upper bound on the number of
binary rich words. Better results can be found in [10]. The authors of [10] construct
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for each n a large set of rich words of length n. Their construction gives, currently,
the best lower bound on the number of binary rich words, namely

Π(n) ≥ C
√
n

p(n)
, (2)

where p(n) is a polynomial and the constant C ≈ 37.
Every factor of a rich word is also rich [9]. In other words, the language of rich
words is factorial. In particular, this means that Π(n)Π(m) ≥ Π(n + m) for all
m,n ∈ N. Therefore, Fekete's lemma implies the existence of the limit of n

√
Π(n),

and moreover [10]:

lim
n→∞

n
√

Π(n) = inf
{

n
√

Π(n) : n ∈ N
}
.

For a �xed n0, one can �nd the number of all rich words of length n0 and obtain an
upper bound on the limit. Using a computer Rubinchik counted Π(n) for n ≤ 60;
see the sequence https://oeis.org/A216264. As 60

√
Π(60) < 1.605, he obtained

an upper bound for the binary alphabet: Π(n) < c1.605n for some constant c [10].
In [15], the author shows that Π(n) has a subexponential growth on every �nite

alphabet. Formally lim
n→∞

n
√

Π(n) = 1. This result is an argument in favor of a

conjecture formulated in [10] saying that for some in�nitely growing function g(n)
the following holds for a binary alphabet:

Π(n) = O
( n

g(n)

)√n
.

As already mentioned, we construct upper bounds for palindromic and factor
complexity of rich words. The proof uses the following idea. Let u be a palindromic
factor of a rich word w on the alphabet A, such that aub is factor of w, where
a, b ∈ A and a 6= b. Let lpp(w) and lps(w) denote the longest palindromic pre�x
and su�x of w respectively. Then lpp(aub) and lps(aub) uniquely determine the
factor aub in w [7]. Let lpps(w) denote the longest proper palindromic su�x of w.
We show that a, b and lpps(u) also uniquely determine aub. In addition, we observe
that either | lpps(u)| ≤ 1

2 |u| or u contains a palindromic factor ū that uniquely
determines u and |ū| ≤ 1

2 |u|. We obtain a �short� palindrome and letters a, b that
uniquely determine the �long� palindrome u in the case when aub is a factor of w.
In these �short� palindromes there are again other �shorter� palindromes, and so
on. As a consequence we present an upper bound for the number of factors of the
form aub with |aub| = n. The property of rich words that all complete returns
to any palindromic factor u in w are palindromes [9] allows us to prove that if w
contains the factors xux and yuy, where x, y ∈ A and x 6= y, then w must contain
a factor of the form aub, where a, b ∈ A and a 6= b. This property demonstrates
the relation between the factors aub and palindromic factors xux. Due to this we
derive an upper bound for the palindromic complexity of rich words. With the
upper bound for palindromic complexity, the property that each factor is uniquely
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determined by its longest palindromic pre�x and su�x [7], and the inequality (1)
we obtain several upper bounds on palindromic and factor complexity. The main
result of the current article is the following theorem.

Theorem 1.1. If δ = 3
2(ln 3−ln 2) , w is a �nite or in�nite rich word over an

alphabet with q > 1 letters, and n is a positive integer then

|Facw(n)| ≤ (4q2n)δ ln 2n+2.

The main result is a quasi-polynomial upper bound for factor complexity of rich
words. This is much less than the lower bound on the number of rich words; recall
(2). Thus an in�nite rich word can contain only a small share of all �nite rich words.
This contrasts with power-free languages, where an in�nite word can contain all
extendable �nite words with the same power-freeness restriction [13,16,18].

2. Palindromic and factor complexity of rich words

Consider an alphabet A with q letters, where q > 1. Let A+ =
⋃
j>0A

j denote
the set of all nonempty words over A, where Aj is the set of words of length j.

Let ε denote the empty word, let A∗ = A+ ∪ {ε}, and let

A∞ = {w1w2w3 · · · | wi ∈ A and i > 0}

be the set of in�nite words.
Let Rn ⊆ An be the set of rich words of length n ≥ 0. Let R+ =

⋃
j>0Rj and

R∗ = R+ ∪ {ε}. In addition, we de�ne R∞ ⊆ A∞ to be the set of in�nite rich
words. Let R = R+ ∪R∞.

Let lps(w) and lpp(w) be the longest palindromic su�x and the longest palin-
dromic pre�x of a word w ∈ A∗ respectively. Additionally, we introduce lpps(w) to
be the longest proper palindromic su�x and lppp(w) to be the longest proper palin-
dromic pre�x, where |w| > 1; proper means that lpps(w) 6= w and lppp(w) 6= w.
For a word w with |w| ≤ 1 we de�ne lppp(w) = lpps(w) = ε.

Let w = w1w2 · · ·wn be a word, where wi ∈ A. We de�ne w[i] = wi and
w[i, j] = wiwi+1 · · ·wj , where 0 < i ≤ j ≤ n.

Moreover we de�ne the following notation:
• Pn ⊂ An: the set of palindromes of length n ≥ 0.
• P+ =

⋃
j>0 Pj (the set of all nonempty palindromes).

• Facw: the set of factors of the word w ∈ A∗ ∪A∞.
• Facw(n) = {u | u ∈ Facw and |u| = n} (the set of factors of length n).
• Palw = (P+ ∪{ε}) ∩ Facw (the set of palindromic factors).
• Palw(n) = Facw(n) ∩ Pn (the set of palindromic factors of length n).

De�nition 2.1. Let trim(w) = w[2, |w| − 1], where w ∈ A∗ and |w| > 2. For
|w| ≤ 2 we de�ne trim(w) = ε. If S is a set of words, then

trim(S) = {trim(v) | v ∈ S}.
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Remark 2.2. The function trim(w) removes the �rst and last letter from w.

Example 2.3. Suppose that A = {0, 1, 2, 3, 4, 5}.
• trim(01123501) = 112350.
• trim({12213, 112, 2, 344}) = {221, 1, ε, 4}.

We will deal a lot with the words of the form aub, where u is a palindrome and
a, b are distinct letters. Hence we introduce some more notation for them.

De�nition 2.4. Given w ∈ R and n > 2, let

Sww(n) = {aub | aub ∈ Facw(n) and u ∈ Palw(n− 2)

and a, b ∈ A and a 6= b}.

If n ≤ 2 then we de�ne Sww(0) = Sww(1) = Sww(2) = ∅.
Let S̄ww(n) =

⋃
aub∈Sww(n){(u, a), (u, b)}, where a, b ∈ A. Let aub ∈ Sww(n),

where a, b ∈ A. We call the word aub a u-switch of w. Alternatively we say that
w contains a u-switch.

Remark 2.5. Note that a pair (u, a) ∈ S̄ww(n) if and only if there exists b ∈ A
such that aub ∈ Sww(n) or bua ∈ Sww(n).

Example 2.6. If A = {0, 1, 2, 3, 4, 5, 6} and

w = 5112211311001131133114111146

then:
• Sww(8) = {51122113, 31133114, 14111146}.
• trim(Sww(8)) = {112211, 113311, 411114}.
• S̄ww(8) = {(112211, 3), (112211, 5), (113311, 3), (113311, 4),

(411114, 1), (411114, 6)}.
• w does not contain 110011-switch. Formally 110011 6∈ trim(Sww(8)).

Remark 2.7. The idea of a u-switch is inspired by the next lemma. If a rich word
w contains palindromes aua, bub, where a, b ∈ A, a 6= b, and |aua| = |bub| = n,
then w contains a u-switch of length n. The u-switch �switches� from a to b. Note
that aua, bub ∈ Facw does not imply that aub ∈ Facw or bua ∈ Facw. It may be,
for example, that auc, cub ∈ Facw. Nonetheless (u, a), (u, b) ∈ S̄ww(n).

Lemma 2.8. Suppose w ∈ R and suppose u ∈ Palw(n − 2), where n > 2. If
a, b1, b2 ∈ A, |{a, b1, b2}| > 1, and aua, b1ub2 ∈ Facw(n) then (u, a) ∈ S̄ww(n).

Remark 2.9. The condition |{a, b1, b2}| > 1 in Lemma 2.8 means that at least one
letter is di�erent from the others.

Proof. Let r be a factor of w such that aua is unioccurrent in r and trim(r) is a
complete return to u in w. Since aua and b1ub2 are factors of w, it is obvious that
such r exists. Clearly there are x1, x2, y1, y2 ∈ A such that x1ux2 is a pre�x of r
and y1uy2 is a su�x of r. The complete return trim(r) to u is a palindrome [9].
Hence x2 = y1. Since aua is unioccurrent in r, it follows that x2 = y1 = a, x1 6= y2,
and a ∈ {x1, y2}. In consequence we have that (u, a) ∈ S̄ww(n). �



6 TITLE WILL BE SET BY THE PUBLISHER

To clarify the previous proof, let us consider the following two examples. For
both examples suppose that A = {1, 2, 3, 4, 5, 6}.
Example 2.10. Let w = 321234321252126. Let aua = 32123 and b1ub2 = 52126.
Then r = 32123432125 and trim(r) = 212343212 is a complete return to 212.
Therefore (212, 3) ∈ S̄ww(5). Note that b1ub2 is not a factor of r.

Example 2.11. Let w = 321234321252. Let aua = 32123 and xuy = b1ub2 =
32125. Then r = 32123432125 and trim(r) = 212343212 is a complete return to
212. Therefore (212, 3) ∈ S̄ww(5). Note that b1ub2 is a factor of r.

We show that the number of palindromic factors and the number of u-switches
are related.

Proposition 2.12. If w ∈ R and n > 2 then

2|Sww(n)|+ |Palw(n− 2)| ≥ |Palw(n)|.

Proof. Let ω(w, n) = {aua|(u, a) ∈ S̄ww(n)}. Less formally said, ω(w, n) is a set
of palindromes of length n such that if w contains a u-switch aub then aua, bub ∈
ω(w, n). Obviously we have that

|ω(w, n)| ≤ 2|Sww(n)|. (3)

Let
P̃alw(n) = {v | v ∈ Palw(n) and trim(v) ∈ trim(Sww(n))}

and
Ṗalw(n) = {v | v ∈ Palw(n) and trim(v) 6∈ trim(Sww(n))}.

Obviously Palw(n) = P̃alw(n) ∪ Ṗalw(n) and P̃alw(n) ∩ Ṗalw(n) = ∅. It follows
that

|P̃alw(n)|+ |Ṗalw(n)| = |Palw(n)|. (4)
Suppose v ∈ Palw(n) and let u = trim(v).

• If v ∈ P̃alw(n) then w contains a u-switch. From Lemma 2.8 it follows
that v ∈ ω(w, n); this and (3) imply that

|P̃alw(n)| ≤ |ω(w, n)| ≤ 2|Sww(n)|. (5)

• If v 6∈ P̃alw(n) then w does not contain a u-switch. We have that u ∈
Palw(n− 2) \ trim(Sww(n)). Obviously if t ∈ Palw(n− 2) \ trim(Sww(n)),
a, b ∈ A, and w has palindromic factors ata and btb, then a = b since w
does not contain a t-switch. It follows that

|Ṗalw(n)| ≤ |Palw(n− 2)|. (6)

The proposition follows from (4), (5), and (6). �

To clarify the previous proof, let us consider the following example.
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Example 2.13. If A = {0, 1, 2, 3, 4, 5, 6, 7, 8} and

w = 2110112333211011454110116110116778776

then
• Sww(7) = {2110114, 4110116},
• Palw(7) = {1233321, 2110112, 1145411, 6110116, 6778776},
• P̃alw(7) = {2110112, 6110116},
• Ṗalw(7) = {1233321, 1145411, 6778776},
• Palw(5) = {23332, 11011, 14541, 77877},
• 2|Sww(7)|+ |Palw(5)| ≥ |Palw(7)|, and
• 4 + 4 > 5.

In the next proposition we show that if a, b are di�erent letters and aub is a
switch of a rich word w then the longest proper palindromic su�x r of u and the
letters a, b uniquely determine the palindromic factor u ∈ Palw.

Proposition 2.14. If w ∈ R, u, v ∈ Palw, lpps(u) = lpps(v), a, b ∈ A, a 6= b, and
aub, avb ∈ Facw then u = v.

Proof. It is known that if r, t are two factors of a rich word w and lps(r) =
lps(t) and lpp(r) = lpp(t), then r = t [7]. We will identify a u-switch by the
longest proper palindromic su�x of u and two distinct letters a, b instead of by
the functions lps and lpp.

Given a u-switch aub where a 6= b, a, b ∈ A, we know that lps(aub) and lpp(aub)
uniquely determine the factor aub in w. We will prove that for given a, b ∈ A,
a 6= b, n ≥ 0, and a palindrome r there is at most one palindrome u ∈ Palw such
that lpps(u) = r and aub ∈ Sww(|aub|).

Suppose, to get a contradiction, that there are u, v ∈ Palw, u 6= v, a, b ∈ A,
a 6= b such that lps(aub) = bpb, lps(avb) = bsb, lpp(aub) = axa, lpp(avb) = aya,
lpps(u) = lpps(v) = r, and aub, avb ∈ ⋃j>0 Sww(j). This implies that p, s, x, y are
pre�xes of r. Thus if x 6= y, then |x| 6= |y|. Without loss of generality, let |x| < |y|.
Since y is a pre�x of r, either ya is a pre�x of r or r = y. Consequently aya is a
pre�x of both aub and avb, and this contradicts the assumption that lpp(aub) =
axa; aya is a pre�x of aub and |aya| > |axa|. Analogously if p 6= s. It follows that
x = y and p = s. Therefore lpp(aub) = lpp(avb) and lps(aub) = lps(avb), which
would imply that u = v, which is a contradiction.

Hence we conclude that a, b ∈ A, a 6= b, and a palindrome r determine at most
one palindrome u ∈ Palw such that lpps(u) = r and u ∈ trim(Sww(|u|+ 2)). �

In the following we derive an upper bound for the number of u-switches. We
need one more de�nition to be able to partition the set Sww(n) into subsets based
on the longest proper palindromic su�x.

De�nition 2.15. Given w ∈ R, r ∈ R+ and n ≥ 0, let

Υw(n, r) = {u | u ∈ Sww(n) and lpps(trim(u)) = r}.
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Remark 2.16. The set Υw(n, r) contains switches avb of length n of the word w
such that the longest proper palindromic su�x of v equals to r, where a, b are
letters. Obviously

⋃
r∈Palw Υw(n, r) = Sww(n) and Υw(n, r) ∩ Υw(n, r̄) = ∅ if

r 6= r̄.

A simple corollary of the previous proposition is that the size of the set Υw(n, r)
is limited by the constant q(q − 1). Recall that q is the size of the alphabet A.

Corollary 2.17. If w, r ∈ R and n ≥ 0 then |Υw(n, r)| ≤ q(q − 1).

Proof. From Proposition 2.14 it follows that

|Υw(n, r)| ≤ |{(a, b) | a, b ∈ A and a 6= b}| = q(q − 1).

In other words, |Υw(n, r)| is equal or smaller that the number of pairs of distinct
letters (a, b). �

We de�ne Γ̄w(n) = max{|Sww(i)| | 0 ≤ i ≤ n}, where w ∈ R and n ≥ 0.
Furthermore we de�ne Γw(n) = max{q, Γ̄w(n)}.
Remark 2.18. We de�ned Γw(n) as the maximum from the set of sizes of Sww(i),
where 0 ≤ i ≤ n. In addition, we de�ned that Γw(n) ≥ q. This is just for
practical reason to make the formulas easier; since we look for upper bounds, this
simpli�cation is justi�ed. The function Γw(n) will allow us to present another
relation between the number of palindromic factors of length n and the number of
u-switches without using Palw(n− 2).

Lemma 2.19. If w ∈ R and n > 0 then

nΓw(n) ≥ |Palw(n)|.

Proof. We de�ne two functions φ̄ and φ as follows. If n is even then φ̄(n) = 2,
otherwise φ̄(n) = 1. Let φ(n) = {2 + φ̄(n), 4 + φ̄(n), . . . , n}. For example φ(8) =
{4, 6, 8} and φ(9) = {3, 5, 7, 9}.

Proposition 2.12 states that

2|Sww(n)|+ |Palw(n− 2)| ≥ |Palw(n)|. (7)

It follows that

2|Sww(n− 2)|+ |Palw(n− 4)| ≥ |Palw(n− 2)|. (8)

From (7) and (8):

2|Sww(n)|+ 2|Sww(n− 2)|+ Palw(n− 4)| ≥ |Palw(n)|. (9)

In general (7) implies that

2|Sww(n− i)|+ |Palw(n− 2i)| ≥ |Palw(n− i)|. (10)
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Then by iterative applying of (10) to (9) we obtain that
∑

j∈φ(n)
2|Sww(j)|+ |Palw(φ̄(n))| ≥ |Palw(n)| (11)

We have that |Palw(φ̄(n))| ≤ q; just consider that |Palw(φ̄(n))| is the number
of palindromes of length 1 or 2. Recall that Γw(n) ≥ | Sww(j)| for 2 < j < n and
realize that |φ(n)| ≤ n−1

2 . It follows from (11) that (n− 1)Γw(n) + q ≥ |Palw(n)|.
It is easy to see that nΓw(n) ≥ (n− 1)Γw(n) + q for n > 0, since Γw(n) ≥ q. This
completes the proof. �

We will need to cope with the longest proper palindromic su�xes that are �too
long�. We show that if the longest proper palindromic su�x lpps(v) is longer the
half of the length of v, then v contains a �short� palindromic factor, that uniquely
determines v. We will use the two following lemmas from [11]:

Lemma 2.20. (see [11, Lemma 1]) Suppose p is a period of a nonempty palin-
drome w; then there are palindromes a and b such that |ab| = p, b 6= ε, and
w = (ab)ja for some non-negative integer j.

Lemma 2.21. (see [11, Lemma 2]) Suppose w is a palindrome and u is its proper
su�x-palindrome or pre�x-palindrome; then the number |w| − |u| is a period of w.

Let u, v ∈ P+ such that u is a su�x of v and |u| < |v|. Lemma 2.21 implies
that v is periodic with period p = |v| − |u|. Lemma 2.20 implies that there are
palindromes a, b such that b is nonempty and p = |ab| and v = (ab)ja for some
non-negative integer j. We de�ne ρ̄(u, v) = (a, b) and ρ(u, v) = aba ∈ P+.

The next lemma is an obvious consequence of Lemma 2.20 and Lemma 2.21. It
says that v is uniquely determined by the palindrome ρ(u, v) and by the lengths
of u and v.

Lemma 2.22. If u1, u2, v1, v2 ∈ P+, |v1| = |v2|, |u1| = |u2|, |u1| < |v1|, u1 is a
su�x of v1, u2 is a su�x of v2, and ρ(u1, v1) = ρ(u2, v2) then v1 = v2.

Proof. Let ρ̄(u1, v1) = (a1, b1) and let ρ(u2, v2) = (a2, b2). Let p = |v1| − |u1| =
|v2|− |u2|. Since ρ(u1, v1) = ρ(u2, v2), from Lemma 2.20 and Lemma 2.21 we have
that p = |a1b1| = |a2b2|. Also it follows that a1b1 = a2b2 and a1b1a1 = a2b2a2. In
consequence we get that a1 = a2 and b1 = b2. This ends the proof. �

In the next lemma we consider a palindromic su�x u of a palindrome v, which
is longer than the half of v. For this case we show an upper bound for the length
of the palindrome ρ(u, v).

Lemma 2.23. If u, v ∈ P+, u is a su�x of v, and 1
2 |v| ≤ |u| < |v| then

ρ(u, v) ≤ d2
3
|v|e.

Proof. Let (a, b) = ρ̄(u, v). It is easy to verify that 1
2 |v| ≤ |u| < |v| implies that

j ≥ 2, where v = (ab)ja.
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Let c be a positive real constant such that |aba| = c|(ab)ja|. For given a, b it is
clear that c decreases as j increases. Since j > 1 it follows that c is maximal for
j = 2. Thus c ≤ |aba|

|ababa| = 2|a|+|b|
3|a|+2|b| . The lemma follows. �

We derive an upper bound for the number of u-switches.

Proposition 2.24. If w ∈ R and n > 2 then

Γw(n) ≤ 2q2(
2n

3
)3Γw(b2n

3
c).

Proof. We partition the set Sww(n) into sets ∆ρ(w, n),∆lpps(w, n) as follows. Let
avb ∈ Sww(n) be a v-switch, where a, b ∈ A. If 1

2 |v| ≤ | lpps(v)| then avb ∈
∆ρ(w, n) otherwise avb ∈ ∆lpps(w, n). Obviously ∆ρ(w, n) ∩∆lpps(w, n) = ∅ and

Sww(n) = ∆ρ(w, n) ∪∆lpps(w, n). (12)

Let us investigate the sizes of ∆ρ(w, n) and ∆lpps(w, n).

• If avb ∈ ∆ρ(w, n) then let u = lpps(v). We have that ρ(u, v), |u|, and
|v| uniquely determine the palindrome v; see Lemma 2.22. In addition,
|ρ(u, v)| ≤ d 2|v|3 e; see Lemma 2.23. Realize that |v| = n − 2; then the
number of all palindromic factors of w of length ≤ d 2(n−2)3 e multiplied by
dn−22 e (the number of di�erent values of |u|) must be bigger or equal to
the size of trim(∆ρ(w, n)). Realize that the set trim(∆ρ(w, n)) contains
palindromes of length n− 2. Since d 2(n−2)3 e ≤ b2n3 c we have that

| trim(∆ρ(w, n))| ≤ dn− 2

2
e
b 2n3 c∑

j=1

|Palw(j)|. (13)

Since a, b are distinct letters it follows that

|∆ρ(w, n))| ≤ q(q − 1)| trim(∆ρ(w, n))|. (14)

• If avb ∈ ∆lpps(w, n) then | lpps(v)| < 1
2 |v| = n−2

2 . Obviously we have that

∆lpps(w, n) =
⋃

r∈S
Υw(n, r), where S = {r | r ∈ Palw and |r| < n− 2

2
}. (15)

Since dn−22 e ≤ bn2 c we have from Corollary 2.17 and (15) that

|∆lpps| ≤ q(q − 1)

bn2 c∑

j=1

|Palw(j)|. (16)
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It follows from (12), (13), (14), and (16) that

|Sww(n)| ≤ 2q(q − 1)dn− 2

2
e
b 2n3 c∑

j=1

|Palw(j)|. (17)

From Lemma 2.19 we know that |Palw(j)| ≤ jΓw(j). Therefore we have that

b 2n3 c∑

j=1

|Palw(j)| ≤
b 2n3 c∑

j=1

jΓw(j) ≤ 2n

3

2n

3
Γw(b2n

3
c). (18)

To simplify the formulas, we apply that q(q− 1) < q2 and that dn−22 e ≤ 2n
3 . From

(17) and (18):

|Sww(n)| ≤ 2q2(
2n

3
)3Γw(b2n

3
c). (19)

From De�nition of Γw(n) and (19) we get that

Γw(n) = max{q,max{|Sww(j)| | 0 ≤ j ≤ n}} ≤ 2q2(
2n

3
)3Γw(b2n

3
c).

This ends the proof. �
We will need the following lemma in the proof of Corollary 2.26.

Lemma 2.25. If β > 1 is a real constant then
∏k
j≥1

n
βj ≤ n

lnn
2 ln β , where k = b lnnln β c.

Proof.
k∏

j≥1

n

βj
=
n

β

n

β2

n

β3
· · · n

βk−1
n

βk
≤ nk
∏k
j=1 β

j
. (20)

We have that

k∏

j=1

βj = ββ2β3 · · ·βk−1βk = β
∑k
j=1 j = β

k(k+1)
2 . (21)

Then from (20) and (21):
∏k
j≥1

n
βj ≤ nk

β
k(k+1)

2

=

(
n

β
(k+1)

2

)k
.

Since βk+1 ≥ n:(
n

β
(k+1)

2

)k
≤
(
n

n
1
2

)k
= (n

1
2 )k ≤ n lnn

2 ln β . This completes the proof. �

In order to simplify the notation let α = 3
2 and let δ = 3

2 lnα = 3
2(ln 3−ln 2) .

Based on Proposition 2.24 we will derive a non-recurrent upper bound for Γw(n).

Corollary 2.26. If w ∈ R, and n > 2 then

Γw(n) ≤ q(2q2n)δ lnn.



12 TITLE WILL BE SET BY THE PUBLISHER

Proof. Proposition 2.24 states that

Γw(n) ≤ 2q2(
n

α
)3Γw(bn

α
c). (22)

Note that ⌊
b nβ1
c

β2

⌋
≤
⌊

n

β1β2

⌋
,

where β1, β2 ≥ 1 are real constants. Then the inequality (22) implies that

Γw(b n
αj
c) ≤ 2q2(

n

αj+1
)3Γw(b n

αj+1
c). (23)

From (22) and (23):

Γw(n) ≤ 2q2(
n

α
)3Γw(bn

α
c) ≤ 2q2(

n

α
)32q2(

n

α2
)3Γw(b n

α2
c) ≤

2q2(
n

α
)32q2(

n

α2
)32q2(

n

α3
)3Γw(b n

α3
c) ≤ · · · ≤



b lnnlnα c∏

j≥1
2q2(

n

αj
)3


Γw(2).

(24)

Realize that
n

αb
lnn
lnα c

≥ 1 and
n

αd
lnn
lnα e

≤ 1.

Knowing that Γw(2) = q and using Lemma 2.25 we obtain from (24):

Γw(n) ≤ (2q2)
lnn
lnα

(
n

lnn
2 lnα

)3
Γw(2) ≤ q(2q2n)

3 lnn
2 lnα .

This ends the proof. �

From Lemma 2.19 and Corollary 2.26 it follows easily:

Corollary 2.27. If w ∈ R and n > 0 then

|Palw(n)| ≤ nq(2q2n)δ lnn.

Remark 2.28. Although Corollary 2.26 requires n > 2, it is easy to verify that
Corollary 2.27 holds also for n = {1, 2}. That is why we de�ne n > 0 in Corollary
2.27.

We can simply apply the upper bound for the palindromic complexity to con-
struct an upper bound for the factor complexity:

Corollary 2.29. If w ∈ R and n > 0 then

|Facw(n)| ≤ n4q2(2q2n)2δ lnn.
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Proof. We apply again the property of rich words that every factor is determined
by its longest palindromic pre�x and its longest palindromic su�x [7]. If there are
at most t palindromic factors in w of length ≤ n, then clearly there can be at most
t2 di�erent factors of length n. Let P̂alw(k) = max{|Palw(j)| | 0 ≤ j ≤ k}. From
Corollary 2.27 we can deduce that

t ≤
n∑

i=1

|Palw(i)| ≤ nP̂alw(n) ≤ n2q(2q2n)log2 n.

The corollary follows. �

3. Rich words closed under reversal

We can improve our upper bound for the factor complexity if we use the in-
equality (1). This inequality was shown for in�nite words whose set of factors is
closed under reversal. The next lemma and proposition generalize the existing
proof for �nite words w ∈ A+ with Facw(n+ 1) closed under reversal.

First we introduce an alphabet B and an in�nite word κ(w). Let B = A∪{x, y}
be an alphabet such that x, y 6∈ A; it follows that |B| = |A| + 2. Given w ∈ A+,
let κ(w) = (wxwRy)∞ ∈ B∞.

We show that κ(w) preserves richness.

Lemma 3.1. If w ∈ A+ is rich then κ(w) ∈ B∞ is also rich.

Proof. We have that wx is rich, because w is rich and lps(wx) = x, which is a
unioccurrent palindrome in wx and wxwR is a palindromic closure of the rich
word wx, which preserves richness [9]. As well wxwRy is rich, because y is a
unioccurrent palindrome in wxwRy. Suppose that (wxwRy)j is rich, where j is a
positive integer. We prove that (wxwRy)j+1 is rich.

We have that lps(wxwRy)j = y(wxwRy)j−1 and thus (wxwRy)jwxwR is a
palindromic closure which is rich. Realize that lps(wxwRy)j+1 = y(wxwRy)j and
y(wxwRy)j is unioccurrent in y(wxwRy)j+1. Thus y(wxwRy)j+1 is rich. It follows
that all pre�xes of κ(w) are rich. Since all factors of rich words are rich, we proved
that all factors of κ(w) are rich. Consequently κ(w) is rich. This completes the
proof. �

The following proposition generalizes the inequality (1) for �nite words. It is
known that for rich in�nite words whose set of factors is closed under reversal, the
inequality may be replaced with equality; this result has been proved in [6]. We
prove also the equality for �nite rich words.

Proposition 3.2. If w ∈ A+, Facw(n+ 1) is closed under reversal, |w| ≥ n+ 1,
and n > 0 then

|Palw(n)|+ |Palw(n+ 1)| ≤ |Facw(n+ 1)| − |Facw(n)|+ 2.
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If w is also rich then the inequality becomes equality, formally:

|Palw(n)|+ |Palw(n+ 1)| = |Facw(n+ 1)| − |Facw(n)|+ 2.

Proof. Let t = κ(w) and let k ∈ {n, n+ 1}. Clearly if Facw(n+ 1) is closed under
reversal and i ≤ n that Facw(i) is also closed under reversal. Thus we have that

Fact(k) = Facw(k) ∪ {uxv | u, v ∈ A∗ and u is a su�x of w and

v is a pre�x of wR and |uxv| = k}∪
{uyv | u, v ∈ A∗ and u is a su�x of wR and

v is a pre�x of w and |uyv| = k}.

(25)

The formula (25) says that the set of factors of t having length k contains:
• the set of factors of w of length k,
• the set of factors of t containing one occurrence of x, and
• the set of factors of t containing one occurrence of y.

It is easy to see that there are no other factors in Fact(k). Moreover for every
i ∈ {0, 1, 2, . . . , k − 1} there are unique u ∈ Facw(i) and v ∈ Facw(k − i− 1) such
that uxv ∈ Fact(k) (uyv ∈ Fact(k)). It follows that

|Fact(k)| = |Facw(k)|+ 2k. (26)

Obviously t contains exactly two palindromes r1, r2 such that r1, r2 are not
factors of w and |r1| = |r2| ∈ {n, n + 1}. In addition r1 = uxuR and r2 = vyvR

for some words u, v. Formally

Palt(n+ 1) ∪ Palt(n) = Palw(n+ 1) ∪ Palw(n) ∪ {uxuR, vyvR | u is a su�x of w and

v is a su�x of wR and |uxu| = |vyvR| ∈ {n, n+ 1}}

It follows that

|Palt(n+ 1)|+ |Palt(n)| = |Palw(n+ 1)|+ |Palw(n)|+ 2. (27)

Clearly Fact is closed under reversal; realize that t has in�nitely many palindromic
pre�xes. Consequently (1) holds for t. Then from (1), (26), and (27) we have that

|Palt(n)|+ |Palt(n+ 1)| ≤ |Fact(n+ 1)| − |Fact(n)|+ 2

and

|Palw(n)|+ |Palw(n+1)|+2 ≤ |Facw(n+1)|+2(n+1)−|Facw(n)|−2n+2. (28)

It follows from (28) that

|Palw(n)|+ |Palw(n+ 1)| ≤ |Facw(n+ 1)| − |Facw(n)|+ 2.
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If w is rich then Lemma 3.1 implies that t is rich. Then it follows from [6], (26),
and (27) that

|Palt(n)|+ |Palt(n+ 1)| = |Fact(n+ 1)| − |Fact(n)|+ 2

and

|Palw(n)|+ |Palw(n+1)|+2 = |Facw(n+1)|+2(n+1)−|Facw(n)|−2n+2. (29)

It follows from (29) that

|Palw(n)|+ |Palw(n+ 1)| = |Facw(n+ 1)| − |Facw(n)|+ 2.

This completes the proof. �
Based on Proposition 3.2 we can present a new relation for palindromic and

factor complexity.

Proposition 3.3. Let P̂alw(k) = max{|Palw(j)| | 0 ≤ j ≤ k}. If w ∈ R is a rich
word such that Facw(n+ 1) is closed under reversal, |w| ≥ n+ 1, and n > 0, then

|Facw(n)| ≤ 2(n− 1)P̂alw(n)− 2(n− 1) + q.

Proof. Proposition 3.2 states for rich words that

|Palw(n)|+ |Palw(n+ 1)| − 2 = |Facw(n+ 1)| − |Facw(n)|. (30)

Since Facw(n + 1) closed under reversal, we have that Facw(i) is closed under
reversal for i ≤ n+ 1. We can sum (30) over all lengths i ≤ n:

n−1∑

i=1

(|Palw(i)|+ |Palw(i+ 1)| − 2) =
n−1∑

i=1

(|Facw(i+ 1)| − |Facw(i)|). (31)

The sums from (31) may be expressed as follows:

n−1∑

i=1

(|Facw(i+ 1)| − |Facw(i)|) = Facw(2)− Facw(1) + Facw(3)− Facw(2)

+ Facw(4)− Facw(3) + · · ·+ Facw(n− 1)− Facw(n− 2)

+ Facw(n)− Facw(n− 1) = Facw(n)− Facw(1).

(32)

n−1∑

i=1

(|Palw(i)|+ |Palw(i+ 1)| − 2) ≤ (n− 1)(P̂alw(n− 1) + P̂alw(n)− 2). (33)

From (31), (32), and (33) we get:

Facw(n)− Facw(1) ≤ (n− 1)(P̂alw(n− 1) + P̂alw(n)− 2).
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It follows that

Facw(n) ≤ (n− 1)(2P̂alw(n)− 2) + Facw(1).

This can be reformulated as:

Facw(n) ≤ 2(n− 1)P̂alw(n)− 2(n− 1) + Facw(1).

Since Facw(1) = q it follows that

Facw(n) ≤ 2(n− 1)P̂alw(n)− 2(n− 1) + q.

This completes the proof. �
Proposition 3.3 and Lemma 2.27 imply an improvement to our upper bound for

the factor complexity for rich words with Facw(n+ 1) closed under reversal:

Corollary 3.4. If w ∈ R with Facw(n+1) closed under reversal, |w| ≥ n+1, and
n > 0, then:

|Facw(n)| ≤ 2(n− 1)nq(2q2n)δ lnn − 2(n− 1) + q.

Since the palindromic closure of �nite rich words is closed under reversal, we
can improve the upper bound for factor complexity for �nite rich words.

Corollary 3.5. If w ∈ R and n > 0 then

|Facw(n)| ≤ 2(2n− 1)2nq(4q2n)δ ln 2n − 2(2n− 1) + q.

Proof. Palindromic closure ŵ of a word w ∈ R preserves richness. Furthermore
Facŵ is closed under reversal, Facw ⊆ Facŵ, and |w̃| ≤ 2|w| [9]. Hence we can
apply Corollary 3.4, where we replace n with 2n. �

Theorem 1.1 in the introduction presents a �simple� (although a somewhat
worse) upper bound for the factor complexity. Here follows the proof.

Proof of Theorem 1.1. Note that for n > 0 we have that

2(2n− 1)2nq(4q2n)δ ln 2n − 2(2n− 1) + q ≤ 8n2q(4q2n)δ ln 2n ≤ (4q2n)δ ln 2n+2.

The theorem follows from Corollary 3.5. �
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Abstract. A finite word w with |w| = n contains at most n+1 distinct
palindromic factors. If the bound n + 1 is attained, the word w is called
rich. Let F(w) be the set of factors of the word w. It is known that
there are pairs of rich words that cannot be factors of a same rich word.
However it is an open question how to decide for a given pair of rich
words u, v if there is a rich word w such that {u, v} ⊆ F(w). We present
a response to this open question:

If w1, w2, w are rich words, m = max {|w1|, |w2|}, and {w1, w2} ⊆
F(w) then there exists also a rich word w̄ such that {w1, w2} ⊆ F(w̄)
and |w̄| ≤ m2k(m)+2, where k(m) = (q + 1)m2(4q10m)log2 m and q is the
size of the alphabet. Hence it is enough to check all rich words of length
equal or lower to m2k(m)+2 in order to decide if there is a rich word
containing factors w1, w2.

1 Introduction

In the last years there have appeared several articles dealing with rich words;
see, for instance, [1–3,5]. Recall that a palindrome is a word that reads the same
forwards and backwards, for example “noon” and “level”. If a word w of length
n contains n + 1 distinct palindromic factors then the word w is called rich. It
is known that a word of length n can contain at most n + 1 palindromic factors
including the empty word. The notion of a rich word has been extended also to
infinite words. An infinite word is called rich if its every finite factor is rich [3,4].

Let lps(w) and lpp(w) denote the longest palindromic suffix and the longest
palindromic prefix of a word w, respectively. The authors of [1] showed the
following property of rich words:

Proposition 1. If r, t are two factors of a rich word w such that lps(r) = lps(t)
and lpp(r) = lpp(t), then r = t.

Two related open questions can be found:

– In [5]: Is the condition in Proposition 1 sufficient for two rich words u and v
to be factors of the same rich word?

c© Springer Nature Switzerland AG 2019
R. Mercaş and D. Reidenbach (Eds.): WORDS 2019, LNCS 11682, pp. 286–298, 2019.
https://doi.org/10.1007/978-3-030-28796-2_23
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– In [3]: We do not know how to decide whether two rich words u and v are
factors of a same rich word w.

In the current article we present a response to the question from [3] in the
following form: We prove that if w1, w2, w are rich words, m = max {|w1|, |w2|},
and {w1, w2} ⊆ F(w) then there exists a rich word w̄ such that {w1, w2} ⊆ F(w̄)
and |w̄| ≤ m2k(m)+2, where k(m) = (q + 1)m2(4q10m)log2 m and q is the size of
the alphabet. Thus it is enough to check all rich words of length equal or lower
to m2k(m)+2 in order to decide if there is a rich word containing factors w1, w2.
However it is a rather theoretic way how to check the existence of such a word,
since the number of words needed to be checked grows “pretty rapidly” with the
length of the factors in question.

We describe the basic ideas of the proof. If w is a rich word, then let a be
a letter such that lps(wa) = a lpps(w)a, where lpps denotes the longest proper
palindromic suffix. It is known and easy to show that wa is a rich word [5, Proof
of Theorem 2.1]. Thus every rich word w can be richly extended to a word wa.
We will call wa a standard extension of w. If there is a letter b such that a �= b
and wb is also a rich word, then we call the longest palindromic suffix of wb a
flexed palindrome; the explication of the terminology is that wb is not a standard
extension of w, hence wb is “flexed” from the standard extension. We define a set
Γ of pairs of rich words (w, r), where r is a flexed palindrome of w, the longest
palindromic prefix of w does not contain the factor r, and |r| ≥ |r̄| for each flexed
palindrome r̄ of w. If (w, r) ∈ Γ , w1 is the prefix of w with |w1| = |r|− 1 and w2

is the suffix of w with |w2| = |r| − 1 then we construct a rich word w̄ possessing
the following properties:

– The word w1 is a prefix of w̄ and the word w2 is a suffix of w̄.
– The number of occurrences of r in w̄ is strictly smaller than the number of

occurrences of r in w.
– The set of flexed palindromes of w̄ is a subset of the set of flexed palindromes

of w.

Iterative applying of this construction will allow us for a given rich word w with
a prefix w1 and a suffix w2 to construct a rich word t containing factors w1, w2

and having no flexed palindrome longer than m, where m = max{|w1|, |w2|}.
Another important, but simple, observation is that if w is a rich word with

prefix u such that the number of flexed palindromes in w is less than k and u
has exactly one occurrence in w then there is an upper bound for the length of
w. We show this upper bound as a function of k and consequently we derive an
upper bound for the length of t.

2 Preliminaries

Let A be a finite alphabet with q = |A |. The elements of A will be called letters.
Let ε denote the empty word.
Let A∗ be the set of all finite words over A including the empty word and let
An ⊂ A∗ be the set of all words of length n.
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Let R ⊂ A∗ denote the set of all rich words.
Let F(w) ⊂ A∗ denote the set of all factors of w ∈ A∗; we state explicitly that
ε, w ∈ F(w). Let F(S) =

⋃
v∈S F(v), where S ⊆ A∗.

Let Fp(w) ⊆ F(w) be set of all palindromic factors of w ∈ A∗.
Let Prf(w) and Suf(w) be the set of all prefixes and all suffixes of w ∈ A∗

respectively; we define that {ε, w} ⊆ Prf(w) ∩ Suf(w).
Let wR denote the reversal of w ∈ A∗; formally if w = w1w2 . . . wk then wR =
wk . . . w2w1, where wi ∈ A and i ∈ {1, 2, . . . , k}. In addition we define that
εR = ε.

Let lps(w) and lpp(w) denote the longest palindromic suffix and the longest
palindromic prefix of w ∈ A∗ respectively. We define that lps(ε) = lpp(ε) = ε.
Let lpps(w) and lppp(w) denote the longest proper palindromic suffix and the
longest proper palindromic prefix of w ∈ A∗ respectively, where |w| ≥ 2.
Let trim(w) = v, where v, w ∈ A∗, x, y ∈ A, w = xvy, and |w| ≥ 2.
Let rtrim(w) = v, where v, w ∈ A∗, y ∈ A, w = vy, and |w| ≥ 1.
Let ltrim(w) = v, where v, w ∈ A∗, x ∈ A, w = xv, and |w| ≥ 1.

Example 2. If A = {1, 2, 3, 4, 5} and w = 124135, then trim(w) = 2413,
ltrim(w) = 24135, and rtrim(w) = 12413.

Let pc(w) be the palindromic closure of w ∈ A∗; formally pc(w) = uvuR, where
w = uv and v = lps(w). Note that pc(w) is a palindrome.

Let MinLenWord(U) and MaxLenWord(U) be the shortest and the longest word
from the set U respectively, where either U ⊆ Prf(w) or U ⊆ Suf(w) for some
w ∈ A∗. If U = ∅ then we define MinLenWord(U) = ε and MaxLenWord(U) = ε.

Let lcp(w1, w2) be the longest common prefix of words w1, w2 ∈ A∗; formally
lcp(w1, w2) = MaxLenWord(Prf(w1) ∩ Prf(w2)).
Let lcs(w1, w2) be the longest common suffix of words w1, w2 ∈ A∗; formally
lcs(w1, w2) = MaxLenWord(Suf(w1) ∩ Suf(w2)).
Let occur(u, v) be the number of occurrences of v in u, where u, v ∈ A∗ and
|v| > 0; formally occur(u, v) = |{w | w ∈ Suf(u) and v ∈ Prf(w)}|. We call a
factor v unioccurrent in u if occur(u, v) = 1.

Recall the notion of a complete return [2]: Given a word w and factors r, u ∈
F(w), we call the factor r a complete return to u in w if r contains exactly two
occurrences of u, one as a prefix and one as a suffix.

We list some known properties of rich words that we use in our article. All
of them can be found, for instance, in [2].

Proposition 3. If w, u ∈ R, |w| ≥ 1, |u| ≥ 1, and u ∈ Fp(w) then all complete
returns to u in w are palindromes.

Proposition 4. If w ∈ R and p ∈ F(w) then p, pR ∈ R.

Proposition 5. A word w is rich if and only if every prefix p ∈ Prf(w) has a
unioccurrent palindromic suffix.
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3 Standard Extensions and Flexed Palindromes

We start with a formal definition of a standard extension and a flexed palindrome
introduced at the beginning of the article.

Definition 6. Let j ≥ 0 be a nonnegative integer, w ∈ R, and |w| ≥ 2. We
define StdExt(w, j) as follows:

– StdExt(w, 0) = w.
– StdExt(w, 1) = wa such that lps(wa) = a lpps(w)a and a ∈ A.
– StdExt(w, j) = StdExt(StdExt(w, j − 1), 1), where j > 1.
Let StdExt(w) = {StdExt(w, j) | j ≥ 0}. If p ∈ StdExt(w) then we call p a
standard extension of w.
Let T(w) = {lps(ub) | ub ∈ Prf(w) and b ∈ A and ub �= StdExt(u, 1)}. If r ∈
T(w) then we call r a flexed palindrome of w.

For a given rich word w ∈ R having a flexed palindrome r we define a standard
palindromic replacement of r to be the longest palindromic suffix of a standard
extension of a prefix p of w such that lps(px) = r, where px is a prefix of w
and x ∈ A. The idea is that we can “replace” r with the standard palindromic
replacement.

Definition 7. Let stdPalRep(w, r) = lps(StdExt(p, 1)), where w, r ∈ R, r ∈
T(w), px ∈ Prf(w), x ∈ A, and lps(px) = r.

We call stdPalRep(w, r) a standard palindromic replacement of r in w.

Example 8. If A = {0, 1} and w = 110101100110000110000110011 then 001100 ∈ T(w),
lps(1101011001100001100001100) = 001100, StdExt(110101100110, 1) = 1101011001101, and
stdPalRep(w, 001100) = lps(1101011001101) = 1011001101.

We show that the length of a flexed palindrome r is less than the length of the
standard palindromic replacement stdPalRep(w, r).

Lemma 9. If ux, uy ∈ R, x, y ∈ A, x �= y, and ux = StdExt(u, 1) then
| lps(ux)| > | lps(uy)|.

Proof. Let yty = lps(uy). From the definition of a standard extension we have
lps(ux) = xvx, where v = lpps(u) and hence t ∈ Suf(v). Since y �= x we have
also yt ∈ Suf(v). The lemma follows.

An obvious corollary is that a flexed palindrome of w is not a prefix of w.

Corollary 10. If w, r ∈ R and r ∈ T(w) then r �∈ Prf(w).

In [5] the standard extension has been used to prove that each rich word w can
be extended “richly”; this means that there is a ∈ A such that wa is rich.

Lemma 11. If w ∈ R and |w| ≥ 2 then StdExt(w) ⊂ R.
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Proof. Obviously it is enough to prove that StdExt(w, 1) ∈ R, since for every
t ∈ StdExt(w) \ {w} there is a rich word t̄ such that t = StdExt(t̄, 1).

Let xpx = lps(StdExt(w, 1)), where x ∈ A. Proposition 5 implies that we
need to prove that xpx is unioccurrent in StdExt(w, 1). Realize that p is unioc-
current in w, hence xpx is unioccurrent in StdExt(w, 1).

To simplify the proofs of the paper we introduce a function MaxStdExt(u, v) to
be the longest prefix z of u such that z is also a standard extension of v:

Definition 12. Let MaxStdExt(u, v) = MaxLenWord({StdExt(v) ∩ Prf(u)}),
where u ∈ R and v ∈ Prf(u). We call MaxStdExt(u, v) a maximal standard
extension of v in u.

The next lemma shows that if a rich word contains factors ypx and ypy,
where p is a palindrome, p is not a prefix of w, x, y are distinct letters, and ypx
“occurs” before ypy in w then ypy is a flexed palindrome.

Lemma 13. If w, v, p ∈ R, v ∈ Prf(w), p �∈ Prf(w), x, y ∈ A, x �= y, ypx ∈
Suf(v), ypy �∈ F(v), and ypy ∈ F(w) then ypy ∈ T(w).

Proof. Let v̄ be such that v̄y ∈ Prf(w), ypy ∈ Suf(v̄y), and occur(v̄y, ypy) = 1.
Let u = lps(v̄). Because p �∈ Prf(w) it follows that u = lpps(v̄) = lps(v̄) and
thus there is z ∈ A such that zu ∈ Suf(v̄). Obviously v ∈ Prf(v̄) and hence
occur(v̄, p) > 1. Then Proposition 5 implies that occur(u, p) > 1. It follows that
yp ∈ Suf(u) ∩ Prf(u), z �= y, and Lemma 9 implies that ypy ∈ T(w). The word
w with is its factors is depicted on Fig. 1. This completes the proof.

Fig. 1. Structure of the word w for Lemma 13.

4 Removing Flexed Points

We define formally the set Γ mentioned in the introduction. An element (w, r)
of the set Γ represents a rich word w for which we are able to construct a
new rich word w̄ such that w̄ does not contain the flexed palindrome r, but w̄
have certain common prefixes and suffixes with w. We require that r is one of
the longest flexed palindromes of w and that r is not a factor of the longest
palindromic prefix of w. In addition we require that |r| > 2 so that the standard
extension of rtrim(r) would be defined.
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Definition 14. Let Γ be a set defined as follows: (w, r) ∈ Γ if

1. w, r ∈ R and |r| > 2 and r ∈ T(w) and
2. r �∈ F(lpp(w)) and
3. |r| ≥ |r̄| for each r̄ ∈ T(w).

Given (w, r) ∈ Γ , we need to express w as a concatenation of its factors
having some special properties. For this reason we define a function parse(w, r):

Definition 15. If (w, r) ∈ Γ then let parse(w, r) = (v, z, t), where

– v, z, t ∈ R and vzt = w and
– r ∈ Suf(v) and occur(w, r) = occur(v, r) and
– vz = MaxStdExt(vzt, v).

Remark 16. The prefix v is the shortest prefix of w that contains all occurrences
of r. The prefix vz is the maximal standard extension of v in w, and t is such
that vzt = w. It is easy to see that v, z, t exist and are uniquely determined for
(w, r) ∈ Γ .

The next simple lemma is necessary for the following definition of a reduced
prefix.

Lemma 17. Let (w, r) ∈ Γ , let (v, z, t) = parse(w, r), and let v̄ be such that
v = v̄ lps(v).

– If occur(v̄r, r) > 1 then there is a word ḡ such that ḡrz ∈ Prf(v) and
occur(ḡrz, r) < occur(v, r)

– If occur(v̄r, r) = 1 then U �= ∅ and r �∈ F(U), where
U = {u | u ∈ Prf(pc(v̄ rtrim(r))) and ltrim(r)z ∈ Suf(u)}.

Proof. It follows from Property 2 of Definition 14 that there is h ∈ Prf(w) such
that w = hzR lps(v)zt. Note that lps(v) �= v since r ∈ T(w) and thus r �∈ Prf(w),
see Corollary 10. It is clear that r ∈ Prf(lps(v)) ∩ Suf(lps(v)). This implies that
hzRr ∈ Prf(w). Note that v̄ = hzR. We distinguish two cases as stated in the
Lemma:

– occur(v̄r, r) > 1: Let g be the complete return to r in v such that g ∈
Suf(hzRr). Clearly rz ∈ Prf(g) and zRr ∈ Suf(g), since r �∈ F(ltrim(r)z);
recall r ∈ Suf(v) and occur(v, r) = occur(vzt, r). Let ḡ be such that
ḡg = hzRr.

– If occur(v̄r, r) = 1: Let ū = stdPalRep(hzRr, r). Clearly lps(hzRr) = r and
ū �= r. Because zR rtrim(r) ∈ Suf(hzR rtrim(r)), then obviously U �= ∅ and
r �∈ F(U).

The word w with is its factors is depicted on Fig. 2. This completes the proof.
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For an element (w, r) ∈ Γ we define a function rdcPrf(w, r) (the reduced prefix),
which is a prefix of the palindromic closure of some prefix of w. In Theorem 28 we
show that the concatenation of rdcPrf(w, r) and t is a rich word having a strictly
smaller number of occurrences of r than in w, where (v, z, t) = parse(w, r). This
reducing of occurrences of r is the key for removing all “long” flexed palindromes
as explained in the introduction.

Definition 18. If w, r ∈ Γ and (v, z, t) = parse(w, r) then let rdcPrf(w, r)
be defined as follows. Following the notation and the proof of Lemma 17 we
distinguish two cases:

– occur(v̄r, r) > 1: We define rdcPrf(w, r) = ḡrz.
– occur(v̄r, r) = 1: We define rdcPrf(w, r) = MinLenWord(U).

We call rdcPrf(w, r) the reduced prefix of w by r.

Figure 2 depicts the factors of the word w used for construction of the reduced
prefix of w.

Remark 19. Note in Definition 18 in the second case, where occur(v̄r, r) = 1, it
may happen that the reduced prefix rdcPrf(w, r) is not a prefix of w. However it
is a prefix of a palindromic closure of hzR rtrim(r), hence the number of flexed
palindromes remains the same; formally |T(hzR rtrim(r)))| = |T(rdcPrf(w, r))|.
Realize that pc(t) ∈ StdExt(t) for each t ∈ R and |t| ≥ 2.

In the first case, where occur(v̄r, r) > 1, the reduced prefix rdcPrf(w, r) is
always a prefix of w.

Fig. 2. Construction of the reduced prefix. Case 1 and 2.

To clarify the definition of the reduced prefix rdcPrf(w, r) we present below
two examples representing those two cases in the definition. For both examples
we consider that A = {1, 2, 3, 4, 5, 6, 7, 8, 9}.

Example 20. If w = 123999322399932442399932255223993 and r = 999
then v = 1239993223999324423999, z = 322, t = 55223993, lps(v) =
999324423999, h = 1239993, w = hzR lps(v)zt, g = 9993223999 ∈ Suf(hzRr) =
Suf(1239993223999), ḡ = 123, and rdcPrf(w, r) = 123999322.
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Example 21. If w = 123999599932239949 and r = 999 then v =
1239995999, z = 32, t = 239949, lps(v) = 9995999, h = 1, w =
hzR lps(v)zt, StdExt(hzR rtrim(r), 1) = StdExt(12399, 1) = 123993, ū =
stdPalRep(123999, 999) = 3993, pc(12399) = 12399321, U = {1239932}, and
rdcPrf(w, r) = 1239932.

Using the reduced prefix we can now define the word rdcWrd(w, r) (a reduced
word):

Definition 22. Let rdcWrd(w, r) = rdcPrf(w, r)t, where (v, z, t) = parse(w, r)
and (w, r) ∈ Γ . We call rdcWrd(w, r) the reduced word of w by r.

We show that the reduced word rdcWrd(w, r) and w have the same prefix and
suffix of length |r| − 1.

Lemma 23. If (w, r) ∈ Γ and u = rdcWrd(w, r) then | lcp(u,w)| ≥ |r| − 1 and
| lcs(u,w)| ≥ |r| − 1.

Proof. From the construction of the reduce prefix and the reduced word, it is
easy to see that rtrim(r) ∈ F(lcp(u, v)) and ltrim(r) ∈ F(lcs(u, v)). The lemma
follows.

As already mentioned the reduced prefix rdcPrf(w, r) is not necessarily a prefix
of w. In such a case rdcPrf(w, r) ∈ Prf(pc(v̄ rtrim(r))), see Definition 18. We
show that every palindrome from the set F(rdcPrf(w, r))\F(v̄ rtrim(r))) contains
as a factor the standard palindromic replacement ū of r in w and we show that
ū is not a factor of w. This will be important when proving richness of the word
rdcWrd(w, r).

Let F(w, r) = {u | u ∈ F(w) and r �∈ F(u)} ⊆ F(w), where w, r ∈ A∗.
The set F(w, r) contains factors of w that do not contain the factor r. Let
Fp(w, r) = Fp(w) ∩ F(w, r).

Proposition 24. If (w, r) ∈ Γ , (v, z, t) = parse(w, r), u = rdcPrf(w, r), ū =
stdPalRep(w, r), and v̄ is such that v = v̄ lps(v) then Fp(u, ū) ⊆ Fp(v̄ rtrim(r))
and ū �∈ Fp(w).

Proof. From the properties of the palindromic closure it is easy to see that
Fp(pc(f), lps(f)) ⊆ Fp(f) for each f ∈ R. It means that every palindromic
factor of pc(f) that is not a factor of f contains the factor lps(f). It follows that
Fp(u, ū) ⊆ Fp(rtrim(v)).

We show that occur(w, ū) = 0. Let ū = xtx and r = ypy, where x, y ∈ A.
Obviously x �= y. Lemma 9 implies that |ū| > |r|. It follows that py ∈ Prf(t),
and yp ∈ Suf(t). Thus xty ∈ F(w). Lemma 13 implies that ū ∈ Fp(w) if and
only if ū ∈ T(w). Since |ū| > |r|, this would be a contradiction to Property 3 of
Definition 14. Hence ū �∈ Fp(w). This completes the proof.

We define a set Mergeable which contains 3-tuples (d, g, t) of rich words such
that, among other properties, dg and gt are rich. Later we prove that the “merge”
dgt of dg and gt is also rich. Let flt(p) = A∩Prf(p) be the first letter of a word
p ∈ A∗ with |p| ≥ 1.
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Definition 25. We define a set Mergeable as follows: (d, g, t) ∈ Mergeable if

1. d, g, t, dg, gt, dg flt(t) ∈ R and
2. lps(dg flt(t)) ∈ T(dg flt(t)) and
3. lps(gp) �∈ F(dg) for each p ∈ Prf(t) with |p| ≥ 1.

Let (d, g, t) ∈ Mergeable. The following proposition shows that dgt is a rich
word. This will allow us from a rich word of the form dgwgt to construct a rich
word dgt. In other words this will allow us to remove the factor w from a rich
word, and thus to reduce the number of occurrences of flexed palindromes.

Proposition 26. If (d, g, t) ∈ Mergeable then

– dgt ∈ R and
– lps(dgp) = lps(gp) for each p ∈ Prf(t) with |p| ≥ 1.

Proof. From Definition 25 it follows immediately that the Proposition holds for
(d, g,flt(t)).

Suppose that the Proposition holds for (d, g, p̄), where p̄ ∈ Prf(t) with 1 ≤
|p̄| < |t|. We show that the Proposition holds for (d, g, p) and (h, g, p), where
p ∈ Prf(t) with |p| = |p̄|+1. From the property that a finite rich word w of length
n has n+1 palindromic factors it follows that |Fp(w)| = |Fp(rtrim(w))|+1. This
and Property 3 of Definition 25 imply that lps(gp) �∈ F(lps(dgp̄)). Consequently
lps(gp) = lps(dgp) and dgp ∈ R, see Proposition 5. This completes the proof.

We prove that the set of flexed palindromes of the word dgt that are not factors
of prefix dg, where (d, g, t) ∈ Mergeable, does not depend on the prefix d.

Proposition 27. If (d, g, t), (h, g, t) ∈ Mergeable, |d| ≥ 1, and |h| ≥ 1 then
T(dgt) \ T(dg) = T(hgt) \ T(hg).

Proof. To get a contradiction, suppose that there is p ∈ Prf(t) with |p| ≥ 1 such
that lps(dgp) ∈ T(dgp) and lps(hgp) �∈ T(hgp). If |p| > 1 then | lps(dgp)| ≤
| lps(dg rtrim(p))| and trim(lps(hgp)) = lps(hg rtrim(p)), which is a contradic-
tion, because lps(dg rtrim(p)) = lps(hg rtrim(p)) = lps(g rtrim(p)), see Proposi-
tion 26. If |p| = 1 the proposition holds because of Property 2 of Definition 25.
This completes the proof.

The main theorem of the paper states that the reduced word rdcWrd(w, r)
is rich, where (w, r) ∈ Γ . In addition the theorem asserts that the set of flexed
palindromes of rdcWrd(w, r) is a subset of the set of flexed palindromes of the
word w, the number of occurrences of r is strictly smaller in rdcWrd(w, r) than
in w, and the longest common prefix and suffix of rdcWrd(w, r) and w are longer
than |r| − 1.

Theorem 28. If (w, r) ∈ Γ then

– rdcWrd(w, r) ∈ R and T(rdcWrd(w, r)) ⊆ T(w) and
– occur(rdcWrd(w, r), r) < occur(w, r) and
– | lcp(rdcWrd(w, r), w)| ≥ |r| − 1 and | lcs(rdcWrd(w, r), w)| ≥ |r| − 1.
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Proof. Recall that rdcWrd(w, r) = ut, where (v, z, t) = parse(w, r) and u =
rdcPrf(w, r). If |t| = 0 then rdcWrd(w, r) ∈ R and T(rdcWrd(w, r)) ⊆ T(w).

Let d be such that rdcPrf(w, r) = d ltrim(r)z. If |t| > 0 then we are going
to show that (d, ltrim(r)z, t) ∈ Mergeable. Obviously d ltrim(r)z, ltrim(r)zt ∈ R;
recall that ltrim(r)zt ∈ Suf(w). We need to show that Property 3 of Definition 25
is satisfied: Because vz = MaxStdExt(vzt, v) it follows that lps(vz flt(t)) ∈ T(w).
This and occur(ltrim(r)zt, r) = 0 imply that | lps(vzp)| ≤ | ltrim(r)zp| for each
p ∈ Prf(t) with |p| ≥ 1. In consequence lps(ltrim(r)zp) = lps(vzp). Proposi-
tion 24 and occur(vzp, lps(vzp)) = 1 imply that lps(vzp) �∈ F(d ltrim(r)z). The
other properties of Definition 25 are clearly also fulfilled. Hence (d, ltrim(r)z, t) ∈
Mergeable. Thus from Proposition 26 we get that d ltrim(r)zt ∈ R.

Let w̄ be such that w = w̄ ltrim(r)zt. Obviously (w̄, ltrim(r)z, t) ∈ Mergeable.
Then Proposition 27 asserts that T(rdcWrd(w, r)) ⊆ T(w).

The fact that occur(ut, r) < occur(w, r) follows Lemma 17 and Definition 18.
Note that occur(rdcPrf(w, r), r) < occur(w, r).

The properties | lcp(rdcWrd(w, r), w)| ≥ |r| − 1 and | lcs(rdcWrd(w, r), w)| ≥
|r| − 1 follow from Lemma 23.

This completes the proof.

Two more examples will illuminate the construction of rdcWrd(w, r). The exam-
ples are again based on the two cases of Definition 18. For both example we
consider that A = {1, 2, 3, 4, 5, 6, 7, 8}.

Example 29. If w = 12145656547745656545656547874 and r = 656 then
v = 12145656547745656545656, z = 547, t = 874, lps(v) = 656545656,
u = rdcPrf(w, r) = 12145656547, and rdcWrd(w, r) = ut = 12145656547874.

Example 30. If w = 12145656547874 and r = 656 then v = 12145656, z = 54,
t = 7874, lps(v) = 656, u = rdcPrf(w, r) = 12145654, and rdcWrd(w, r) = ut =
121456547874.

For a finite set S, we can consider that the set S is well-ordered. No matter
how, we just need a function that selects one element from S. Let the function
selectFirst(S) returns the first element of S. If S is an empty set, then we define
selectFirst(S) = ε.

If a rich word w has a factor u, then the palindromic closure of w is rich and
contains the factor uR. Hence for us when constructing a rich word containing
given factors, it does not matter if w contains u or uR. We introduce the notion
of a reverse-unioccurrent factor. Moreover we define a function ruo(w, u, v) (a
reverse-unioccurrence of u, v in w) which returns a factor of w such that u, v are
reverse-unioccurrent in this factor; in addition we require u or uR to be a prefix
and v or vR to be a suffix of ruo(w, u, v).

Definition 31. If |{u, uR} ∩ F(w)| = 1 then we say that a word u is reverse-
unioccurrent in w, where w, u ∈ R.

If w1, w2, w ∈ R, w1, w2 ∈ F(w), and there is t ∈ Prf(w) such that w1 ∈ F(t)
and {w2, w

R
2 }∩F(t) = ∅ then let M(w,w1, w2) ⊂ F(w) such that t ∈ M(w,w1, w2)

if:
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– t ∈ F(w) and w1, w2 are reverse-unioccurrent in t and
– {w1, w

R
1 } ∩ Prf(t) �= ∅ and {w2, w

R
2 } ∩ Suf(t) �= ∅.

Let ruo(w,w1, w2) = selectFirst(M(w,w1, w2)).

Remark 32. It is not difficult to see that the function ruo(r, w1, w2) is well
defined and the set M(w,w1, w2) is nonempty.

We define the function elmWrd(w,w1, w2) (eliminated word) that constructs
a rich word from w by “eliminating all” flexed palindromes longer than m =
max{|w1|, |w2|} and keeping the prefix w1 and the suffix w2 of w.

Definition 33. Let maxFlxPal(w) = {r | (w, r) ∈ Γ}. If w,w1, w2 ∈ R, m =
max{|w1|, |w2|}, w1 ∈ Prf(w), and w2 ∈ Suf(w), then let elmWrd(w,w1, w2) be
the result of the following procedure:

01 INPUT: w,m,w_1,w_2;

02 res: = ruo(w,w_1,w_2);

03 r := selectFirst(maxFlxPal(res));

04 WHILE r is longer than m

05 DO

06 res := rdcWrd(res,r);

07 res := ruo(res,w_1,w_2);

08 r := selectFirst(maxFlxPal(res));

09 END-DO;

10 RETURN res;

The calls of the function ruo on the lines 02 and 07 guarantee that w1, w2 are
reverse-unioccurrent in the word res and that {w1, w

R
1 } ∩ Prf(res) �= ∅ and

{w2, w
R
2 }∩Suf(res) �= ∅. Realize that it is not guaranteed that w1, w2 are reverse-

unioccurrent in rdcWrd(res, r), even if w1, w2 are reverse-unioccurrent in res.
Clearly, the facts that t̄ is reverse-unioccurrent in a rich word t and t̄ ∈ Prf(t)

imply that lpp(t) ∈ Prf(t̄); realize that if d ∈ F(lpp(t̄)) then dR ∈ F(lpp(t)) also,
since palindromes are closed under reversal. Thus if r is a flexed palindrome of
t longer than the prefix t̄, then r is not a factor of lpp(t) and hence r satisfies
Property 2 of Definition 14.

Let r = selectFirst(maxFlxPal(w)). The call of the function rdcWrd(res, r)
on the line 06 contains valid parameters, since if r �= ε and |r| > m then (w, r) ∈
Γ .

In addition, because |r| > max{|w1|, |w2|}, Theorem 28 asserts that
{w1, w

R
1 } ∩ Prf(rdcWrd(res, r)) �= ∅ and {w2, w

R
2 } ∩ Suf(rdcWrd(res, r)) �= ∅;

consequently {w1, w
R
1 } ∩ Prf(res) �= ∅ and {w2, w

R
2 } ∩ Suf(res) �= ∅ on the line

06.
Moreover Theorem 28 implies that the procedure finishes after a finite

number of iterations, because occur(rdcWrd(w, r), r) < occur(w, r) and
T(rdcWrd(w, r)) ⊆ T(w). The number of iterations is bounded by the number∑

r∈T(w) occur(w, r). Note that several occurrences of r may be “eliminated” in
one iteration. Hence we proved the following lemma:
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Lemma 34. If w ∈ R, w1 ∈ Prf(w), w2 ∈ Suf(w), m = max{|w1|, |w2|}, and
t = elmWrd(w,w1, w2) then

– t ∈ R and for each r ∈ T(t) we have |r| ≤ m and
– {w1, w

R
1 } ∩ Prf(t) �= ∅ and {w2, w

R
2 } ∩ Suf(t) �= ∅.

5 Words with Limited Number of Flexed Points

What is the maximal length of a word u such that w is reverse-unioccurrent in
u, w is a prefix of u, and u has a given maximal number of flexed palindromes?
The proposition below answers this question.

Proposition 35. If u,w ∈ R, |u| ≥ 1, |v| ≥ 1, w ∈ Prf(u), |T(u) \ T(w)| ≤ k,
|w| ≤ m, and w is reverse-unioccurrent in u then |u| ≤ m2k+1.

Proof. Obviously |pc(u)| < 2|u|, pc(u) ∈ StdExt(u), and w is not reverse-
unioccurrent in pc(u), since wR ∈ Suf(pc(u)). It follows that if v1, v2 ∈ Prf(ū)
such that v1 is reverse-unioccurrent in ū, v1 ∈ Prf(v2), |T(v2) \ T(v1)| = 1,
and lps(v2) ∈ T(v2) then | rtrim(v2)| < 2|v1|, since rtrim(v2) ∈ StdExt(v1) and
pc(v1) ∈ StdExt(v1) also. This implies that |v2| ≤ 2|v1|. The proposition follows.

Remark 36. The proof asserts that if v1, v2 are two prefixes of a word u such
that the longest palindromic suffix of v2 is the only flexed palindrome in v2 which
is not a factor of v1, then v2 is at most twice longer than v1 on condition that
v1 is reverse-unioccurrent in ltrim(v2). Less formally it means that the length
of a word can grow at most twice before the next flexed palindrome appears.
Note that for k = 1 we have |u| ≤ 2m, which makes sense, since the palindromic
closure of a word u is at most twice longer than u.

In [4] the author showed an upper bound for the number of palindromic
factors of given length in a rich word. Recall that q = |A |.

Proposition 37 ([4], Corollary 2.23]). If w ∈ R and n > 0 then

|Fp(w) ∩ An | ≤ (q + 1)n(4q10n)log2 n.

Proposition 37 implies an upper bound for the number of flexed palindromes:

Lemma 38. If w ∈ R, n > 0, and A≤n =
⋃n

j=0 Aj then

|T(w) ∩ A≤n | ≤ (q + 1)n2(4q10n)log2 n.

Proof. Just realize that
∑n

j=1(q + 1)j(4q10j)log2 j ≤ (q + 1)n2(4q10n)log2 n.

From Lemmas 34, 38 and Proposition 35 we obtain the result of the article:

Corollary 39. If w,w1, w2 are rich words, w1, w2 ∈ F(w), m = max {|w1|, |w2|}
then there exists also a rich word w̄ such that w1, w2 ∈ F(w̄) and |w̄| ≤ m2k(m)+2,
where k(m) = (q + 1)m2(4q10m)log2 m.



298 J. Rukavicka

Proof. Without loss of generality, suppose that there is t̄ ∈ Prf(w) such that
w1 ∈ Prf(t̄) and {w2, w

R
2 } ∩ F(t̄) = ∅. Then the function ruo(w,w1, w2) is well-

defined. Let t ∈ ruo(w,w1, w2). Consider the word g = elmWrd(t, w1, w2). Let
k(m) = (q + 1)m2(4q10m)log2 m. Lemma 38 and Proposition 35 imply that |g| ≥
m2k(m)+1. Lemma 34 implies that g ∈ R, {w1, w

R
1 } ∩ F(g) �= ∅, and {w2, w

R
2 } ∩

F(g) �= ∅. Let w̄ = pc(g). It follows that w1, w2 ∈ F(w̄). Because |pc(g)| ≤ 2|g|,
the corollary follows.
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Abstract

A word w is called rich if it contains |w| + 1 palindromic factors,
including the empty word. We say that a rich word w can be extended
in at least two ways if there are two distinct letters x, y such that
wx,wy are rich.

Let R denote the set of all rich words. Given w ∈ R, let K(w)
denote the set of all words such that if u ∈ K(w) then wu ∈ R and wu
can be extended in at least two ways. Let ω(w) = min{|u| | u ∈ K(w)}
and let φ(n) = max{ω(w) | w ∈ R and |w| = n}, where n > 0. Vesti
(2014) showed that φ(n) ≤ 2n. In other words, it says that for each
w ∈ R there is a word u with |u| ≤ 2|w| such that wu ∈ R and wu can
be extended in at least two ways.

We prove that φ(n) ≤ n. In addition we prove that for each real
constant c > 0 and each integer m > 0 there is n > m such that
φ(n) ≥ (29 − c)n. The results hold for each finite alphabet having at
least two letters.

1 Introduction

A word is called a palindrome if it is equal to its reversal. Two examples of
palindromes are “noon” and “level”. It is known that a word w can contain
at most |w| + 1 distinct palindromic factors, including the empty word [2].
If the bound |w| + 1 is attained, the word w is called rich. Quite many

∗Department of Mathematics, Faculty of Nuclear Sciences and Physical Engineering,
CZECH TECHNICAL UNIVERSITY IN PRAGUE (josef.rukavicka@seznam.cz).
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articles investigated the properties of rich words in recent years, for example
[1, 2, 3, 4, 5]. Some of the properties of rich words are stated in the next
section; see Propositions 2.1, 2.2, and 2.3.

In [3] it was proved that if w is rich then there is a letter x such that
wx is also rich. In [5] it was proved that if w is rich then there is a word
u and two distinct letters x, y such that |u| ≤ 2|w| and wux, wuy are rich.
Concerning this result, the author of [5] formulated an open question:

• Let w be a rich word. How long is the shortest u such that wu can
always be extended in at least two ways?

In the current article we improve the result from [5] and as such, to some
extent, we answer to the open question. Let R denote the set of all rich
words. We say that a rich word w can be extended in at least two ways if
there are two distinct letters x, y such that wx,wy are rich. Given w ∈ R,
let K(w) denote the set of all words such that if u ∈ K(w) then wu ∈ R and
wu can be extended in at least two ways; K(w) contains the empty word if
w can be extended in at least two ways. Let ω(w) = min{|u| | u ∈ K(w)}
and let φ(n) = max{ω(w) | w ∈ R and |w| = n}, where n > 0. The result
from [5] can be presented as φ(n) ≤ 2n.

We show that φ(n) ≤ n. It is natural to ask how good this bound is. The
rich word wu is called a unique rich extension of w if there is no proper prefix
ū of u such that wū can be extended in at least two ways. In Remark 2.4 in [5]
there is an example which shows that there are wn, un ∈ R such that wnun is a
unique rich extension of wn and |un| = n, where n > 1. However in the given
example the length of wn grows significantly more rapidly than the length of
un as n tends towards infinity. This could suggest that limn→∞

φ(n)
n

= 0; we
show that this suggestion is false. We prove that for each real constant c > 0
and each integer m > 0 there is n > m such that φ(n) ≥ (2

9
− c)n.

We explain the idea of the proof. Let wR denote the reversal of the word
w. We construct rich words hn = unv

Rtvn, where n ≥ 3 such that

1. The word t is the longest palindromic suffix of unv
R
n t.

2. For every factor xpy of tvn we have that xpx is a factor of un, where
x, y are distinct letters and p is a palindrome.

3. 2| hn | < | hn+1 |.
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Let v̄x be a prefix of vn, where x is a letter. Let y be a letter distinct
from x and let ypy be the longest palindromic suffix of unv

R
n tv̄y. Property 1

implies that ypy is a suffix of yv̄Rtv̄y, since v̄Rtv̄ is the longest palindromic
suffix of unv

R
n tv̄. Property 2 implies that ypy is not unioccurrent in unv

R
n tv̄y.

In consequence unv
R
n tv̄y is not rich; see Proposition 2.3. Hence there is no

proper prefix v of vn such that unv
R
n tv can be extended in at least two ways.

It follows that |vn| ≤ ω(unv
Rt). Property 3 implies that for each m > 0 there

is n such that | hn | > m.
We will see that to find un for given vn is quite straightforward. The

crucial part of our construction is the word vn. To be specific, the word vn
that we will present contains only a “small” number of factors xpy defined
in Property 2. As a result the length of un grows almost linearly with the
length of vn as n tends towards infinity.

2 Preliminaries

Consider an alphabet A with q letters, where q > 1. Let A+ denote the
set of all nonempty words over A. Let ǫ denote the empty word, and let
A∗ = A+ ∪ {ǫ}. We have that R ⊆ A∗.

Let F(w) be the set of all factors of the word w ∈ A∗; we define that
ǫ, w ∈ F(w). Let Prf(w) and Suf(w) be the set of all prefixes and all suffixes
of w ∈ A∗ respectively; we define that {ǫ, w} ⊆ Prf(w) ∩ Suf(w).

Let SufU(v, u) =
⋃

t∈Prf(u)\{ǫ} Suf(vt), where v, u ∈ A∗. The set SufU(v, u)
is the union of sets of suffixes of vt, where t is a nonempty prefix of u.

We define yet the reversal that we have already used in the introduction:
Let wR denote the reversal of w ∈ A∗; formally if w = w1w2 . . . wk then
wR = wk . . . w2w1, where wi ∈ A and i ∈ {1, 2, . . . , k}.

Let lps(w) and lpp(w) denote the longest palindromic suffix and the
longest palindromic prefix of w ∈ A∗ respectively. We define that lps(ǫ) =
lpp(ǫ) = ǫ. Let lpps(w) and lppp(w) denote the longest proper palindromic
suffix and the longest proper palindromic prefix of w ∈ A∗ respectively, where
|w| ≥ 1. If |w| = 1 then we define lppp(w) = lpps(w) = ǫ.

Let rtrim(w) = v, where v, w ∈ A∗, y ∈ A, w = vy, and |w| ≥ 1. Let
ltrim(w) = v , where v, w ∈ A∗, x ∈ A, w = xv, and |w| ≥ 1. The functions
rtrim(w) and ltrim(w) remove the last and the first letter of w respectively.

Let occur(u, v) be the number of occurrences of v in u, where u, v ∈ A+;
formally occur(u, v) = |{w | w ∈ Suf(u) and v ∈ Prf(w)}|. We call a factor
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v unioccurrent in u if occur(u, v) = 1.
We list some known properties of rich words that we use in our article.

All of them can be found, for instance, in [3]. Recall the notion of a complete

return [3]: Given a word w and factors r, u ∈ F(w), we call the factor r a
complete return to u in w if r contains exactly two occurrences of u, one as
a prefix and one as a suffix.

Proposition 2.1. If w, u ∈ R∩A+, u ∈ F(w), and u is a palindrome then

all complete returns to u in w are palindromes.

Proposition 2.2. If w ∈ R and p ∈ F(w) then p, pR ∈ R.

Proposition 2.3. A word w is rich if and only if every prefix p ∈ Prf(w)
has a unioccurrent palindromic suffix.

From Proposition 2.2 and Proposition 2.3 we have an obvious corollary.

Corollary 2.4. A word w is rich if and only if every suffix p ∈ Suf(w) has

a unioccurrent palindromic prefix.

3 Standard Extension

We define a left standard extension and a right standard extension of a rich
word. The construction of a standard extension has already been used in [5].
The name “standard extension” has been introduced later in [4]. Here we use
a different notation and we distinguish a left and a right standard extension.

Definition 3.1. Let j ≥ 0 be a nonnegative integer, w ∈ R, and |w| ≥ 1.
We define ERj(w), ELj(w) as follows:

• ER0(w) = EL0(w) = w.

• EL(w) = EL1(w) = xw, where x ∈ A is such that lppp(w)x ∈ Prf(w).

• ER(w) = ER1(w) = wx, where x ∈ A is such that x lpps(w) ∈ Suf(w).

• ELj(w) = EL(ELj−1(w)), where j > 1.

• ERj(w) = ER(ERj−1(w), where j > 1.
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Let ELa(w) = {ELj(w) | j ≥ 0}. We call p ∈ ELa(w) a left standard

extension of w. Let ERa(w) = {ERj(w) | j ≥ 0}. We call p ∈ ERa(w) a

right standard extension of w.

Remark 3.2. It is easy to see that ERj(w) = (ELj(wR))R and ELj(w) =
(ERj(wR))R, where j ≥ 0.

If x ∈ A then ER(x) = EL(x) = xx, since lppp(x) = lpps(x) = ǫ.

Example 3.3. Let A = {0, 1, 2, 3} and w = 010200330. Then we have:

• lppp(w) = 010 and lpps(w) = 0330.

• ER(w) = 0102003300, ER2(w) = 01020033002,
ER3(w) = 010200330020, ER4(w) = 0102003300201,
ER5(w) = 01020033002010, ER6(w) = 010200330020102,
ER7(w) = 0102003300201020.

• EL(w) = 2010200330, EL(w)2 = 02010200330,
EL(w)3 = 002010200330, EL(w)4 = 3002010200330,
EL(w)5 = 33002010200330, EL(w)6 = 033002010200330,
EL(w)6 = 0033002010200330, EL(w)7 = 20033002010200330.

A left and a right standard extension of a rich word w is rich. In con-
sequence, every rich word w can be extended to rich words wx, yw for some
letters x, y; this has already been proved in [3, 4, 5].

Lemma 3.4. If w ∈ R and |w| ≥ 1 then ERa(w) ∪ ELa(w) ⊆ R.

Proof. Since ELj(w) = (ERj(wR))R and since for every t ∈ ERa(w) \ {w}
there is a rich word t̄ ∈ ERa(w) such that t = ER(t̄), it is enough to prove
that ER(w) ∈ R.

Let xpx = lps(ER(w)), where x ∈ A. Because w ∈ R, Proposition 2.3
implies that we need to prove that xpx is unioccurrent in ER(w). Realize that
p = lpps(w); it means that p is either unioccurrent in w or w is a complete
return to p. In either case xpx is unioccurrent in ER(w). This completes the
proof.

4 A unique rich extension

We formally define a unique rich extension mentioned in the introduction.
In addition we define a flexed point of a rich word.
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Definition 4.1. If u, v ∈ R∩A+, v ∈ Prf(u), and

Prf(rtrim(u)) ∩ {vt | t ∈ ω(v)} = ∅

then we call u a unique rich extension of v.
Given v ∈ R with |v| > 1, let

T(v) = {ux | ux ∈ Prf(v) and x ∈ A and ux 6= ER(u)}.

We call w ∈ T(v) a flexed point of v.

Remark 4.2. Note that if x ∈ A and ux is a flexed point of a rich word v
then u can be extended in at least two ways. A similar notion of a “flexed
palindrome” has been used in [4].

Example 4.3. Let A = {0, 1, 2}.

• The rich word 00101 can be extended in at least two ways, because
001010, 001011, and 001012 are rich.

• The rich word 20010110 cannot be extended in at least two ways be-
cause 200101100 and 200101102 are not rich. Only the right standard
extension 200101101 is rich. Hence 200101101 is a unique rich extension
of 20010110.

• If w = 201011011101111011111001 then w1111 is unique rich extension
of w; this example is a modification of the example in Remark 2.4 in
[5].

• If w = 2010110111011110111 then the set of flexed points of w is:

T(w) = {20, 201, 20101, 201011, 2010110111,
20101101110111, 201011011101111}.

There is a connection between a unique rich extension and a right stan-
dard extension.

Lemma 4.4. If u is a unique rich extension of w then u ∈ ERa(w).

Proof. Suppose there is ūx ∈ Prf(u) such that ū ∈ ERa(w), x ∈ A, and
ūx 6∈ ERa(w). Then obviously ū can be extended in at least two ways, since
both ūx and ER(ū) are rich. Hence u cannot be a unique rich extension of
w. The lemma follows.
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To simplify the formulation of next lemmas and propositions concerning
a unique rich extension we define an auxiliary set Γ as follows: (v, v̄, u) ∈ Γ if
vv̄u is a unique rich extension of vv̄ and lpps(vv̄) = v̄, where v, v̄, u ∈ R∩A+.

We show that if wu is unique rich extension of w, then lpps(w) is unioc-
current in lpps(w)u.

Proposition 4.5. If (v, v̄, u) ∈ Γ then occur(v̄u, v̄) = 1.

Proof. The proposition follows from the proof of Theorem 2.1 in [5]. The
author shows that a rich word w can be extended into a rich word ww̄ in
such a way that an is a suffix of ww̄, where an is the largest power of some
letter a ∈ A. It is proved that ww̄ can be extended in at least two ways. In
both cases distinguished in the proof of Theorem 2.1 in [5] it is easy to see
that occur(lpps(w)w̄, lpps(w)) = 1. The proposition follows.

We present two simple properties of a unique rich extension.

Lemma 4.6. Let (v, v̄, u) ∈ Γ.

1. If |u| ≤ |v| then uR ∈ Suf(v).

2. If |u| ≥ |v| then vR ∈ Prf(u).

Proof. Obviously vv̄vR ∈ ERa(vv̄). Lemma 4.4 implies that vv̄u ∈ ERa(vv̄).
The lemma follows.

The next proposition discusses words of the form vv̄ux, where vv̄ux is
unique rich extension of vv̄, x is a letter, v̄ is the longest proper palindromic
suffix of vv̄, and v̄ux is a flexed point of v̄ux. The proposition asserts that
there are words t1, t2 such that v = t1t2, xuR is a proper suffix of t2, and v̄tR2
is a flexed point of v̄tR2 . In particular it implies that |v| > |ux|.

Proposition 4.7. If (v, v̄, ux) ∈ Γ and v̄ux ∈ T(v̄ux) then there exist t1, t2 ∈
R such that

• v = t1t2,

• xuR ∈ Suf(ltrim(t2)), and

• v̄tR2 ∈ T(v̄tR2 ).
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Proof. Let w = lpps(v̄u) and let y ∈ A be such that yw ∈ Suf(v̄u). Since
v̄ux ∈ T(v̄ux) we have that x 6= y.

Obviously ywy ∈ F(vv̄u) because vv̄ux is a unique rich extension of vv̄
and thus vv̄uy 6∈ R. Hence the palindromic suffix ywy of vv̄uy is not unioc-
current in vv̄uy, see Proposition 2.3.

We have that w is unioccurrent in v̄u and v̄ 6∈ F(w), since w = lpps(v̄u)
and v̄ is unioccurrent in v̄u, see Proposition 4.5. It follows that there are
t1, t2 ∈ F(v) such that v = t1t2, ywy ∈ Prf(t2v̄ux) and ywy is unioccurrent
in t2v̄ux. Thus lpp(yt2v̄ux) = ywy.

From the fact that v̄ 6∈ F(w) follows that ywy ∈ Prf(t2v̄). Lemma 4.6
implies that |t2| ≥ |ux| and xuR ∈ Suf(ltrim(t2)). Just consider that |t2| ≤
|ux| would imply that ywy ∈ F(v̄ux).

Since xuRv̄ ∈ Suf(t2v̄), w ∈ Suf(v̄u), ywy ∈ Prf(t2v̄), and x 6= y it follows
that occur(t2v̄, w) > 1; hence Proposition 2.1 implies that lppp(ltrim(t2v̄)) 6=
w. It follows that t2v̄ 6= EL(ltrim(t2v̄)). Consequently v̄tR2 6= ER(rtrim(v̄tR2 ))
and thus v̄tR2 ∈ T(v̄tR2 ). This completes the proof.

We step to the main result of this section. The theorem says that if vv̄u
is a unique rich extension of vv̄ and v̄ is the longest proper palindromic suffix
of vv̄ then u is not longer than vv̄.

Theorem 4.8. If (v, v̄, u) ∈ Γ then |u| ≤ |vv̄|.

Proof. Let (v, v̄, u) ∈ Γ. If |u|+| lpps(v̄)| ≤ |v̄| then clearly |u| ≤ |vv̄|. For the
rest of the proof suppose that |u| + | lpps(v̄)| > |v̄|. We show that the set of
flexed points T(v̄u) is nonempty. Let v̄ = h lpps(v̄). Proposition 4.5 implies
that hR 6∈ Prf(u), because occur(h lpps(v̄)hR, v̄) = 2. Since |u|+ | lpps(v̄)| >
|v̄| it follows that there are ū ∈ R and x ∈ A such that ūx ∈ Prf(u) and
v̄ūx 6= ER(v̄ū); just realize that h lpps(v̄)hR ∈ ERa(h lpps(v̄)). We showed
that T(v̄u) \ Prf(v̄) 6= ∅.

Without lost of generality, suppose that v̄ūx is the longest flexed point
from the set T(v̄u) \ Prf(v̄) and suppose that |u| > |v|. Proposition 4.7
asserts that there are t1, t2 ∈ R such that v = t1t2, v̄tR2 ∈ T(v̄tR2 ), and
xūR ∈ Suf(ltrim(t2)). If |u| > |v|, then v̄tR2 ∈ Prf(v̄u), see Lemma 4.6. This
is a contradiction, since we supposed that v̄ūx is the longest flexed point of
v̄u. We conclude that |u| ≤ |v|. This completes the proof.

The simple corollary is that if wu is a unique rich extension of w then u
is not longer than w.
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Corollary 4.9. If n ≥ 1 then φ(n) ≤ n.

Proof. The corollary is obvious for n ∈ {1, 2}. If wu is a unique rich extension
of w, |w| ≥ 2, and |u| ≥ 1 then there is clearly (v, v̄, u) ∈ Γ such that w = vv̄.
Then the corollary follows from Theorem 4.8.

5 Construction of a Uniquely Extensible Rich

Word I

Definition 5.1. We call a word xpy a switch if x, y ∈ A, x 6= y, and

p ∈ A∗ is a palindrome. Let sw(v) = {w | w ∈ F(v) and w is a switch}. Let

swSuf(v, u) = sw(vu) ∩ SufU(v, u), where v, u ∈ A∗.
Given S ⊆ A∗, let

rdc(S) = {w | w ∈ S and w 6∈
⋃

u∈S\{w}
F(u)}.

We call rdc(S) a reduction of S.

Suppose xpy is a switch, let spc(xpy) = xpx, where x, y ∈ A. We call

spc(xpy) a switch palindromic closure of the switch xpy. If B ⊂ A+ is a set

of switches then we define spc(B) = rdc(
⋃

w∈B{spc(w)}).

Remark 5.2. Note that if xpy is a switch, then p can be the empty word.
The set swSuf(v, u) is a set of switches that are suffixes of vū for all

nonempty prefixes ū of u.
The reduction rdc(S) of the set S is a subset of S and contains only

elements that are not proper factors of other elements of S.
The switch palindromic closure of a set B is a reduction of the union of

all switch palindromic closures of switches from the set B.

Example 5.3. Let A = {0, 1, 2}, v = 0100110, and u = 12. Then we have:

• sw(vu) = {01, 10, 100, 110, 011, 001, 010011, 001101, 12, 012, 11012}.

• swSuf(v, u) = (sw(v1) ∩ Suf(v1)) ∪ (sw(v12) ∩ Suf(v12)) =
{001101} ∪ {12, 012, 11012}.

• spc(001101) = 001100, spc(12) = 11, spc(012) = 010,
spc(11012) = 11011.
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• spc(swSuf(v, u)) = rdc({001100, 11, 010, 11011}) =
{001100, 010, 110011}.

The following proposition clarifies the importance of switches for a unique
rich extension of rich words. The proposition says that if

• wuRv̄u is a rich word and

• v̄ is the longest palindromic suffix of wuRv̄ and

• x is a factor of w for every letter and

• for every switch t which is a suffix of wuRv̄ū for some ū ∈ Prf(u) we
have that spc(t) is a factor of w

then wuRv̄u is unique rich extension of wuRv̄.

Proposition 5.4. If w, u, v̄ ∈ A+, wuRv̄u ∈ R, lps(wuRv̄) = v̄, A∩F(w) =
A, and spc(swSuf(wuRv̄, u)) ⊆ F(w) then wuRv̄u is a unique rich extension

of wuRv̄.

Proof. We show that there is no prefix ūx ∈ Prf(u)∩ω(wuRv̄), where x ∈ A.
Suppose that there is ūx ∈ Prf(u)∩ ω(wuRv̄). Let y ∈ A be such that x 6= y
and wuRv̄ūy ∈ R. Let t = lps(wuRv̄ūy). We distinguish two cases:

• t ∈ A. The assumptions of the proposition guarantee that t ∈ F(w).

• t = yt̄y for some palindrome t̄. Clearly yt̄x ∈ swSuf(wuRv̄, u) and the
assumptions of the proposition guarantee that t = spc(ytx) = yty ∈
F(w).

It follows that the longest palindromic suffix t is not unioccurrent, hence
wuRv̄ūy is not rich; see Proposition 2.3. This completes the proof.

Given a factor u of a word w, for us it will not be important if u or uR is
unioccurrent in w. For this purpose we define a special notion.

Definition 5.5. If
∑

v∈{u,uR} occur(w, v) = 1 then we say that the word u is

reverse-unioccurrent in w, where w, u ∈ A+.

Remark 5.6. The notion of reverse-unioccurrence has also been used in [4].

We show that if the switch ytx is a suffix of the word wx and ytx is
reverse-unioccurrent in wx then wx is a flexed point of wx.

10



Lemma 5.7. If w,wx ∈ R, x, y ∈ A, ytx ∈ Suf(wx) ∩ sw(wx), and ytx is

reverse-unioccurrent in wx then wx ∈ T(wx).

Proof. Suppose that wx ∈ ERa(w). If u = lpps(w) then |t| < |u| and
t ∈ Prf(u) ∩ Suf(u). It follows that xux ∈ Suf(wx) and ty ∈ Prf(u), since
yt ∈ Suf(u). Consequently xty ∈ Prf(xu), which is a contradiction, because
xty is reverse-unioccurrent in wx. The lemma follows.

There is an obvious corollary of Lemma 5.7 saying that if t is a switch of
w, then there is a flexed point v of w such that either t or tR is a suffix of v.

Corollary 5.8. If w ∈ R, t ∈ sw(w) then there is v ∈ T(w) such that

{t, tR} ∩ Suf(v) 6= ∅.
Proof. If w ∈ R and t ∈ sw(w), then there is obviously u ∈ Prf(w) such that
{t, tR} ∩ Suf(u) 6= ∅ and t is reverse-unioccurrent in u. Then Lemma 5.7
implies that u 6∈ ERa(rtrim(u)). This completes the proof.

In order to construct a word with a prefix containing all switch palin-
dromic closures of its switches we introduce two functions ewp and elpp.

Definition 5.9. If w, t ∈ R∩A+ and t is a palindrome then we define

Σw,t = {u | u ∈ Prf(w) and |u| ≥ | lppp(w)| and rtrim(t) ∈ Suf(u)}.

If Σw,t 6= ∅ then let π̄w,t denote the shortest element of Σw,t and let πw,t be

such that π̄w,t = lppp(w)πw,t.

Let x = Prf(t) ∩ A and let

ewp(w, t) =

{
x(πw,t)

Rw if Σw,t 6= ∅ and t 6∈ F(vRw)

w otherwise.

In addition we define

ewp(w, t1, t2, . . . , tm) = ewp(. . . (ewp(ewp(w, t1), t2), . . . ), tm),

where w is a nonempty rich word and t1, t2, . . . , tm are rich nonempty palin-

dromes.

Given w ∈ A+ and x ∈ A, let maxPow(w, x) = k such that xk ∈ F(w)
and xk+1 6∈ F(w).

Suppose w ∈ R, y ∈ A, and k = maxPow(w, y). Let elppy(w) =
ewp(w, yk+1).

11



Remark 5.10. The notation “ewp” stands for “extension with prefix”. It is
clear that (πw,t)

Rw is a left standard extension of w that has as a prefix
ltrim(t).

The notation “maxPow” stands for “maximal power”. If x 6∈ F(w) then
maxPow(w, x) = 0.

The notation “elpp” stands for “extension with letter power prefix”. The
function elppy(w) is the word yu where u is a left standard extension of w
such that ymaxPow(w,y) is a prefix. If maxPow(w, y) = 0 then elppy(w) = yw.

Example 5.11. Let A = {0, 1, 2}, w = 2020111010111010, t1 = 11011, and
t2 = 20201. Then we have:

• rtrim(t1) = 1101, ltrim(t1) = 1011, lpp(w) = 202.

• Σw,t1 = {202011101, 202011101011101}, σw,t1 = 011101.

• ewp(w, t1) = 11011102020111010111010.

• Let v = ewp(w, t1). Then σv,t2 = 102020

• ewp(w, t1, t2) = ewp(v, t2) = 202020111011102020111010111010.

• maxPow(w, 1) = 3, maxPow(w, 2) = 1, and maxPow(w, 0) = 1.

• elpp1(w) = ewp(w, 1111) = 111102020111010111010.

• elpp2(w) = ewp(w, 22) = 22020111010111010.

• elpp0(w) = ewp(w, 00) = 002020111010111010.

We prove that ewp(w, t), elppy(w) ∈ R are rich words.

Lemma 5.12. If w, t ∈ R∩A+ and y ∈ A then ewp(w, t), elppy(w) ∈ R.

Proof. Because elpp(w) = ewpy(w, y
k+1) it suffices to prove that ewp(w, t) ∈

R. From the definition of ewp(w, t) it is clear that we need to verify only
the case where Σw,t 6= ∅ and t 6∈ F(vRw). Obviously (πw,t)

Rw ∈ R, since
(πw,t)

Rw ∈ ELa(w), see Lemma 3.4. Let x = Prf(t)∩A. Then lpp(xvRw) = t
and since t 6∈ F(vRw) we have occur(xvRw, t) = 1. Hence Corollary 2.4
implies that xvRw ∈ R.
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6 Construction of a Uniquely Extensible Rich

Word II

In this section we consider that {0, 1} ⊆ A. Let gn = gn−1 01
n0 gn−1, where

g1 = 1 and n > 1. For n, k ≥ 2 we show that the words 0k gn are rich and
that 0k gn−1 01, 0

k gn−1 01
n are the only flexed points of 0k gn that are not

flexed points of 0k gn−1. Let T̄n = T(0k gn) \ T(0k gn−1).

Proposition 6.1. If n, k ≥ 2 then 0kgn ∈ R and

T̄n = {0k gn−1 01, 0
k gn−1 01

n}.

Proof. Obviously 0k g1 ∈ R. Suppose that 0k gn−1 ∈ R, where n ≥ 2. We
show that 0k gn ∈ R. We have that 0k gn = 0k gn−1 01

n0 gn−1. Note that
lps(0k gn−1) = gn−1. It follows that 0k gn−1 0 = ER(0k gn−1) and hence
0k gn−1 0 ∈ R. It is easy to see that

lps(0k gn−1 01) = lps(0k gn−2 01
n−10 gn−2 01) = 10 gn−2 01

and that occur(0k gn−1 01, 10 gn−2 01) = 1. Hence we have 0k gn−1 01 ∈ R; see
Proposition 2.3. It follows that 0k gn−1 01

n−1 ∈ ERa(0
k gn−1 01) ⊆ R. Also

we have that 0k gn−1 01 6= ER(0k gn−1 0) and thus 0k gn−1 01 ∈ T̄n.
Obviously occur(0k gn−1 01

n, 1n) = 1. Since 1n is a palindrome we have
that 0k gn−1 01

n ∈ R; see Proposition 2.3. Since gn−1 01
n0 gn−1 is a palin-

drome we have that lps(0k gn−1 01
nt) = tR1nt for each t ∈ Prf(0 gn−1).

This implies that 0k gn−1 01
nt ∈ ERa(0

k gn−1 01
n) ⊆ R and in particular

0k gn ∈ ERa(0
k gn−1 01

n) ⊆ R. Clearly 0k gn−1 01
n 6= ER(0k gn−1 01

n−1) and
thus 0k gn−1 01

n ∈ T̄n.
Consequently for each n, k ≥ 2, we conclude that 0k gn ∈ R and T̄n =

{0k gn−1 01, 0
k gn−1 01

n}.

We present all switches of 0k gn. Let Sn =
(
sw(0k gn) \ sw(0k gn−1)

)
∩⋃

w∈T̄n
Suf(w), where n ≥ 3.

Proposition 6.2. If k ≥ 2 and n ≥ 3 then

Sn = {00 gn−1 01, 01
n−10 gn−2 01

n, 01n}.

Proof. Proposition 6.1 states that T̄n = {0k gn−1 01, 0
k gn−1 01

n}. We will
consider the switches that are suffixes of the flexed points from T̄n:
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• For 0k gn−1 01: Let t = lps(0k gn−1 0). Obviously t = 0 gn−1 0. Since
occur(t, 1n−1) = 1 it follows that t is the only palindromic suffix of
0k gn−1 0 which contains the factor 1n−1. Consequently each palin-
dromic suffix of 0k gn−1 0 which is not equal to t is a factor of 0 gn−2 0 ∈
Suf(t). Thus 00 gn−1 01 is the only switch of t̄ = 00 gn−1 01 which is not
a switch of 0 gn−2 0 ∈ F(0k gn−1).

• For 0k gn−1 01
n: Let t ∈ Suf(0k gn−1 01

n) ∩ sw(0k gn). Since 1n ∈
Suf(00 gn−1 01

n) it follows that |t| ≥ n + 1. For |t| = n + 1 there
is the switch 01n. For |t| > n + 1 we have that 1n−1 ∈ Suf(rtrim(t)) ∩
Prf(ltrim(t)) and because occur(00 gn−1 01

n−1, 1n−1) = 2 it follows that
there is only one switch with |t| > n+ 1; namely t̄ = 01n−10 gn−2 01

n.

The proposition follows.

Proposition 6.2 and Corollary 5.8 allow us to list all switches of 0k gn.

Corollary 6.3. If n ≥ 3 then

sw(0k gn) =

k⋃

i=1

{00i1} ∪ {01, 10, 00101, 11010, 01011}∪

n⋃

i=3

{00 gn−1 01, 01
n−10 gn−2 01

n, 1n0 gn−2 01
n−10, 01n, 1n0}.

Proof. Proposition 6.2 states that Sn = {00 gn−1 01, 01
n−10 gn−2 01

n, 01n} for
n ≥ 3. We may easily check that

• (00 gn−1 01)
R = 10 gn−1 00 6∈ F(0k gn),

• (01n−10 gn−2 01
n)R = 1n0 gn−2 01

n−10 ∈ F(0k gn), and

• (00 gn−1 01)
R 6∈ F(0k gm) for all m ≥ 2.

Obviously sw(0k g2) =
⋃k

i=1{00i1}∪{01, 10, 001, 00101, 01011}; recall that
0k g2 = 0k101101. Note that (01011)R = 11010 ∈ F(g3), (00

i1)R = 10i0 6∈
F(gm), and (00101)R = 10100 6∈ F(gm) for all i,m ≥ 1. Corollary 5.8 asserts
for every switch t of w that there is a flexed points w̄ ∈ T(w) such that
{t, tR} ∩ Suf(w̄) 6= ∅. The corollary follows.

Let j ≥ 2. We define:
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• α1,j = 00 gj−1 00,

• α2,j = 01j−10 gj−2 01
j−10,

• α3,j = 1j0 gj−2 01
j, and

• α4,j = 1j+1.

The next obvious corollary of Corollary 6.3 presents the switch palin-
dromic closures of all switches of the word 0k gn.

Corollary 6.4. If k ≥ 2 and n ≥ 3 then

spc(sw(0k gn)) = {0k, 00100, 11011, 01010, α4,n}∪
n⋃

i=3

{α1,j, α2,j, α3,j}.

Proof. Corollary 6.3 lists all switches of the word 0k gn. For every switch
t ∈ sw(0k gn) we may easily verify that there is v ∈ spc(sw(0k gn)) such that
spc(t) ∈ F(v). This completes the proof.

Remark 6.5. Note that the palindromes α4,j are factors of α4,n for j ≤ n.
This is the difference to palindromes αi,j, where i ∈ {1, 2, 3}. For this reason
the palindrome α4,j is not involved in the union formula from i = 3 to n.

The next definition defines a word hn. Later we show that hn is a unique
rich extension of h̄n, where hn = h̄n ltrim(gn).

Definition 6.6. Let n ≥ 3. We define:

• κ(j, w) = elpp0(ewp(w, α1,j, α2,j, α3,j, α4,j)), where w ∈ R∩A+ and

3 ≤ j ≤ n.

• hn,n = κ(n, 000 gn 00 gn).

• hn,j = κ(j, hn,j+1), where 3 ≤ j < n.

• Suppose that A is totally ordered, let σ(A) = x1x2 . . . xm, where xi ∈
A \{0, 1}, xi < xi+1, 1 ≤ i < m, and m = |A| −2.

• hn = σ(A) ewp(hn,3, 00100, 11011, 01010).

15



Remark 6.7. The function κ(j, w) extends the word w to a word w̄w in such
a way that w̄w contains the switch palindromic closures of switches α1,j, α2,j ,
α3,j, α4,j . In addition the longest palindromic prefix of w̄w is 0k for some
k > 0.

The word hn,3 is constructed by iterative applying of the function κ(j, w)
starting with the word 000 gn 00 gn.

The word hn contains the switch palindromic closures of all switches of
the word 00 gn. The suffix of hn is the word 000 gn 00 gn. As a result hn has
the form u rtrim(gn)1001 ltrim(gn) for some u ∈ A∗. It is the form used in
Proposition 5.4. The prefix σ(A) of hn is there to assert that u contains all
letters. The order of the letters does not matter.

We show that hn is a rich word.

Lemma 6.8. If n ≥ 3 then hn ∈ R.

Proof. Lemma 5.12 says that both ewp(w, t), elpp0(w) ∈ R, where w, t ∈
R. Proposition 2.2 and Proposition 6.1 imply that rtrim(αi,j) ∈ R, since
rtrim(αi,j) ∈ F(00 gj) ⊆ F(00 gn), where i ∈ {1, 2, 3, 4} and 3 ≤ j ≤ n.
Because αi,n = ER(rtrim(αi,n)) we have that αi,n ∈ R, see Lemma 3.4.
Hence κ(j, w) ∈ R.

Proposition 6.1 asserts that 0k gn ∈ R. Also it is easy to see that
000 gn 00 gn ∈ R; just consider that 00 gn 00 gn ∈ ERa(00 gn),

occur(000 gn 00 gn, 000) = 1, and lpp(000 gn 00 gn) = 000,

see Corollary 2.4. In consequence hn,j ∈ R for 3 ≤ j < n. We have that
ewp(hn,3, 00100, 11011, 01010) ∈ R, because 00100, 01010, 11011 ∈ R.

Obviously σ(A) ∈ R. Moreover it is easy to verify that if w1, w2 ∈ R and
F(w1) ∩ F(w2) = ǫ then w1w2 ∈ R. Hence

σ(A) ewp(hn,3, 00100, 11011, 01010) ∈ R .

We conclude that hn ∈ R.

Proposition 6.9. Let h̄n be such that hn = h̄n ltrim(gn). If n > 2 then hn

is a unique rich extension of h̄n.

Proof. Obviously there is w ∈ R such that hn = w rtrim(gn)1001 ltrim(gn).
Corollary 6.4 lists the elements of spc(sw(0k gn)). The construction of hn

guarantees that all these elements are factors of w; formally αi,j ∈ F(w) for
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all i ∈ {1, 2, 3, 4} and 3 ≤ j ≤ n. For 00 g2 0 = 001011010 we can see that
sw(001011010) = {01, 10, 001, 011, 110, 00101, 01011, 11010}. It follows that
spc(sw(001011010)) = {00100, 01010, 000, 111, 11011}. Obviously we have
that {00100, 01010, 000, 111, 11011} ⊆ F(w).

Since σ(A) ∈ Prf(hn) we have that A ∈ F(w). It is easy to check that
lps(w rtrim(gn)1001) = 1001. Hence we have

w rtrim(gn)1001 ltrim(gn) ∈ ERa(w rtrim(gn)1001).

Thus Proposition 5.4 implies that hn is a unique rich extension of h̄n.

Let ρ(n) = | gn |, where n ≥ 1. Since gn = gn−1 01
n0 gn−1, we have

2ρ(n) < ρ(n + 1) and consequently ρ(n) < 1
2k ρ(n + k), where k > 0.

We derive an upper bound for length of hn. We start with an upper
bound for |κ(j, w)|.

Proposition 6.10. If j, k > 2, w̄ ∈ R, w = 0k gj w̄ ∈ R, lpp(w) = 0k and

αi,j 6∈ F(w̄) for i ∈ {1, 2, 3} then |κ(j, w)| < |w| + 7ρ(j − 1) + 5k + 5j + 10.

Proof. Let t1 = ewp(w, α1,j), t2 = ewp(t1, α2,j), t3 = ewp(t2, α3,j), and t4 =
ewp(t3, α4,j). Clearly κ(j, w) = elpp0(t4). It is easy to see that:

• t1 = 00 gj−1 0
k gj w̄; lpp(t1) = α1,j = 00 gj−1 00.

• t2 = 01j−10 gj−2 01
j−10 gj−2 0

k−2t1;
lpp(t2) = α2,j = 01j−10 gj−2 01

j−10.

• t3 = 1j0 gj−2 01
j0 gj−1 0

k gj−1 0
k gj−2 t2; lpp(t3) = α3,j = 1j0 gj−2 01

j.

• If α4,j ∈ F(w) then t4 = t3 and lpp(t4) = lpp(t3) else t4 = 1t3 and
lpp(t4) = α4,j = 1j+1.

• If α4,j ∈ F(w) then κ(j, w) = 00k gj−1 0t4 else

κ(j, w) = 00k gj−1 01
j0 gj−2 0t4.

In either case we have lpp(κ(j, w)) = 0k+1.

It follows that:

• |t1| = |w| + ρ(j − 1) + 2.
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• |t2| = |t1| + (k − 2) + 2ρ(j − 2) + 2(j − 1) + 4 = |w| + 6 + ρ(j − 1) +
2ρ(j − 2) + (k − 2) + 2(j − 1).

• |t3| = |t2|+ 2ρ(j − 2) + 2ρ(j − 1) + 2k+ 3+ 2j = |w|+ 9+ 3ρ(j − 1) +
4ρ(j − 2) + (k − 2) + 2k + 2(j − 1) + 2j.

• |t4| ≤ |t3| + 1.

• |κ(j, w)| ≤ |t4| + k + 4 + ρ(j − 1) + ρ(j − 2) + j = |w| + 14 + 4ρ(j −
1) + 5ρ(j − 2) + (k − 2) + 3k + 2(j − 1) + 3j.

Since 2ρ(j−2) < ρ(j−1) we have |κ(j, w)| < |w|+7ρ(j−1)+4k+5j+10.

The main theorem of the section presents an upper bound for the length
of hn.

Theorem 6.11. If n ≥ 2 then | hn | < 11
2
ρ(n)+(n−3)(5n+22)+3n+20+|A|.

Proof. Proposition 6.10 implies for j = n, k = 3 and w = 000 gn 00 gn that

| hn,n | = |κ(n, w)| < |w| + 7ρ(n − 1) + 4 ∗ 3 + 5n+ 10. (1)

For n − 1 and n − 2 we have:

• | hn,n−1 | = |κ(n− 1, hn,n)| < | hn,n |+ 7ρ(n− 2) + 4 ∗ 4 + 5(n− 1) + 10.

• | hn,n−2 | = |κ(n−2), hn,n−1 | < | hn,n−1 |+7ρ(n−3)+4∗5+5(n−2)+10.

And generally for n − i:

| hn,n−i | < | hn,n−i+1 | + 7ρ(n − i − 1) + 4(i+ 3) + 5(n − i) + 10 =

| hn,n−i+1 | + 7ρ(n − i − 1) + 5n − i+ 22 <

| hn,n−i+1 | + 7ρ(n − i − 1) + 5n+ 22.
(2)

Realize that ρ(n − i− 1) ≤ 1
2i+1ρ(n), |w| = 2ρ(n) + 5, and

∑n−3
i=1

1
2i+1 < 1

2
. It

follows from (1) and (2) that:

| hn,3 | < 2ρ(n) + 5 + 7ρ(n)
n−3∑

i=1

1

2i+1
+ (5n+ 22)

n−3∑

i=1

1 <

11

2
ρ(n) + (n − 3)(5n+ 22) + 5.

(3)
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Obviously lpp(hn,3) = 0n and 0n g2 0 ∈ Prf(hn,3).
Let t1 = ewp(hn,3, 00100), t2 = ewp(t1, 11011). We have that hn =

σ(A) ewp(t2, 01010). We can verify that t1 = 001 hn,3, t2 = 11011010n−2t1,
and hn = σ(A)01010n10n10t2.

Using (3) we get:

| hn | ≤ | hn,3 | + |001| + |11011010n−2| + |01010n10n10| + |A| <
11

2
ρ(n) + (n − 3)(5n+ 22) + 3n+ 20 + |A| .

This completes the proof.

Theorem 6.11 and Proposition 6.9 have the following corollary to the
lower bound for φ(n).

Corollary 6.12. For each real constant c > 0 and each integer m > 0 there

is n > m such that φ(n) ≥ (2
9

− c)n.

Proof. Proposition 6.9 implies that ω(|h̄n|) ≤ | gn | − 1 = ρ(n)− 1. It follows
that φ(|h̄n|) ≥ ρ(n) − 1 and

φ(|h̄n|) ≥ ρ(n) − 1

|h̄n|
|h̄n|. (4)

From Theorem 6.11 and Proposition 6.9 we have that

ρ(n) − 1

|h̄n|
=

ρ(n) − 1

| hn | − ρ(n) − 1
=

ρ(n) − 1
9
2
ρ(n) + (n − 3)(5n+ 22) + |A|+4

.

Since ρ(n) ≥ 2n this implies that

ρ(n) − 1

|h̄n|
≤ 2

9
for n > 3 (5)

and

lim
n→∞

ρ(n) − 1

|h̄n|
=

2

9
(6)

The corollary follows from (4),(5), and (6).
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A non-empty word w is a border of the word u if |w| < |u| and w is both a prefix and a 
suffix of u. A word u with the border w is closed if u has exactly two occurrences of w . 
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Peltomäki (2016) presented the following open problem: “Give a nontrivial upper bound 
for B(n)”, where B(n) denotes the number of privileged words of length n. Let D(n) denote 
the number of closed words of length n. Let q > 1 be the size of the alphabet. We show 
that there is a positive real constant c such that

D(n) ≤ c ln n
qn

√
n

, where n > 1.

Privileged words are a subset of closed words, hence we show also an upper bound for the 
number of privileged words.
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1. Introduction

A non-empty word w is a border of the word u if |w| < |u| and w is both a prefix and a suffix of u. A border w of the 
word u is the maximal border of u if for every border w̄ of u we have that |w̄| ≤ |w|. A word u with the border w is closed
if u has exactly two occurrences of w . It follows that w occurs only as a prefix and as a suffix of u. A word u is privileged
if |u| ≤ 1 or if u contains a privileged border w that appears exactly twice in u. Obviously privileged words are a subset of 
closed words.

The properties of closed and privileged words have been studied in recent years [2], [5], [6]. One of the questions that 
has been investigated is the enumeration of privileged words. In [3], it was proved that there are constants c and n0 such 
that for all n > n0, there are at least cqn

n(logq n)2 privileged words of length n. This improves the lower bound for the number 
of privileged words from [1]. Since every privileged word is a closed word, the result from [3] forms also a lower bound for 
the number of closed words.

Concerning an upper bound for the number of privileged words we have found only the following open problem [4]: 
“Give a nontrivial upper bound for B(n)”, where B(n) denotes the number of privileged words of length n. Also in [4], the 
author presents an idea how to improve the lower bound from [3]. On the other hand, in [4], there is no explicit suggestion 
how to approach the problem of determining the upper bound.

In the current article we construct an upper bound for the number of closed words of length n. Since the privileged 
words are a subset of closed words, we present also a response to the open problem from [4].
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We explain in outline our proof. Let A be an alphabet with q > 1 letters, let Am denote the set of all words of length m, 
and let A∗ = ⋃

m≥0 Am . It is known that | Am | = qm . Let Aw(n) denote the number of words of length n that do not contain 
the factor w ∈ A∗ . Let μ(n, m) be the maximal value of Aw(n) for all w of length m; formally

μ(n,m) = max{Aw(n) | w ∈ Am}.
Let D̂(n) denote the set of all closed words of length n and let D̂(n, m) denote the set of all closed words of length n having 
a maximal border of length m. Let D(n) = |D̂(n)| and D(n, m) = |D̂(n, m)|.

Obviously D̂(n) = ⋃n−1
m=1 D̂(n, m) and D̂(n, m) ∩ D̂(n, m̄) = ∅, where m 	= m̄. We show that if 2m > n then D(n, m) ≤ q
 n

2 �
and if 2m ≤ n then D(n, m) ≤ qmμ(n − 2m, m); see Lemma 2.5. It follows that

D(n) =
n−1∑
m=1

D(n,m) ≤
� n

2 
∑
m=1

qmμ(n − 2m,m) +
n−1∑

m=� n
2 
+1

q
 n
2 �. (1)

Let N denote the set of positive integers. Let ω(n) = 1
ln q (ln n − ln ln n). Let � denote the set of all functions π(n) : N →

N such that π(n) ∈ � if and only if 1 ≤ π(n) ≤ max{1, ω(n)} and π(n) ≤ π(n + 1) for all n ∈ N . We apply the function 
max, because ω(n) < 1 for some small n.

The key observation in our article is that the number of words of length n that do not contain some “short” factor of 
length π(n) ∈ � has the same growth rate as the number of words of length n − � ln n

ln q 
. Formally said, for each π(n) ∈ �

there is a positive real constant c such that μ(n, π(n)) ≤ cqn− ln n
ln q ; see Theorem 2.3. This observation allows us to show that 

there are real positive constants c1, c2 such that

� n
2 
∑

m=1

qmμ(n − 2m,m) ≤ c1 ln n

� n
2 
∑

m=�c2 ln n

qmμ(n − 2m,m). (2)

In consequence we may count only closed words having a maximal border longer than c2 ln n in order to find an upper 
bound for D(n).

Applying that μ(n − 2m, m) ≤ qn−2m for n ≥ 2m, we derive from (1) and (2) our result for the number of closed words.

2. Upper bound for the number of closed words

We present an upper bound for the number of words of length n that avoid some factor of length m; it means an upper 
bound for μ(n, m).

Lemma 2.1. If n, m ∈N then

μ(n,m) ≤ qn
(

1 − 1

qm

)� n
m 


.

Proof. Given w ∈ Am , let Un,w be a set of words u = u1u2 . . . uk−1uk ∈ A∗ , where |u| = n, |ui| = m, w 	= ui for all 1 ≤ i < k, 
and |uk| = n mod m. It follows that |uk| < m = |w| and thus uk 	= w . Obviously

|Un,w | = (qm − 1)�
n
m 
qn mod m = qn

(
1 − 1

qm

)� n
m 


.

Note that | Am \{w}| = qm − 1. It is clear that the set of words of length n not containing the factor w is a subset of Un,w . 
The lemma follows. �

For the proof of Theorem 2.3 we need the following limit.

Proposition 2.2. We have that

lim
n→∞n

(
1 − ln n

n

)n

= e .

Proof. Let

y = lim
n→∞n

(
1 − lnn

n

)n

. (3)
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From (3) we have that

ln y = lim
n→∞ ln

[
n

(
1 − ln n

n

)n]
= lim

n→∞

[
ln n + n ln

(
1 − lnn

n

)]
. (4)

Let us consider the second term on the right side of (4):

lim
n→∞n ln

(
1 − ln n

n

)
= lim

n→∞
ln

(
1 − ln n

n

)′

( 1
n )′

=

lim
n→∞

(−1)( 1−ln n
n2 )(

1− ln n
n

)
− 1

n2

= lim
n→∞

n(1 − ln n)

n − ln n
.

(5)

Since limn→∞ n
n−ln n = 1, it follows from (4) and (5) that

ln y = lim
n→∞

[
lnn + n(1 − lnn)

n − lnn

]
= lim

n→∞ [lnn + 1 − ln n] = 1.

It follows that y = e. This completes the proof. �
Let R+ denote the set of positive real numbers.
Let β = 1

ln q ∈R+ . The following theorem states that the number of words of length n avoiding some given “short” factor 
(of length shorter than π(n) ∈ �) has the same growth rate as the number of all words of length n − β ln n.

Theorem 2.3. If π(n) ∈ � then there is a constant c ∈R+ such that for all n ∈N we have that

μ(n,π(n))

qn−β ln n
≤ c.

Proof. From Lemma 2.1 we have that

μ(n,π(n))

qn−β ln n
≤

qn
(

1 − 1
qπ(n)

)� n
π(n)




qn−β ln n
= n

(
1 − 1

qπ(n)

)� n
π(n)



. (6)

Realize that qβ ln n = n.
Obviously there is n0 ∈N such that qπ(n) ≤ n

ln n for all n > n0; recall that π(n) ≤ ω(n) = 1
ln q (ln n − ln ln n) as n tends to 

infinity. Consequently for all n > n0 we have that

n

(
1 − 1

qπ(n)

)n

≤ n

(
1 − ln n

n

)n

. (7)

Proposition 2.2 and (7) imply that

lim
n→∞n

(
1 − 1

qπ(n)

)n

≤ e . (8)

Clearly limn→∞ ( f (n))
1

π(n) ≤ e for each function f (n) such that f (n) ≥ 0 and limn→∞ f (n) ≤ e; recall that π(n) ≥ 1. Then 
the theorem follows from (6) and (8). This completes the proof. �

Let h(n) = �β ln n
. We present Theorem 2.3 in a slightly different manner that will be more useful for us in the following.

Corollary 2.4. If π̄ (n) ∈ � then there is a constant c ∈R+ such that for all n ∈N we have that

μ(n − 2π̄ (n), π̄ (n))

qn−h(n)
≤ c.

Proof. Let π(n) ∈ � be a function such that π̄ (n) ≤ π(n). It is easy to verify that μ(n − 2π̄ (n), π̄ (n)) ≤ μ(n, π(n)), since 
the number of words of length n avoiding some factor of length π(n) is bigger or equal to the number of words of length 
n − 2π̄ (n) avoiding some factor of length π̄ (n) ≤ π(n).

Obviously h(n) = � ln n
ln q 
 ≤ ln n

ln q = β ln n. In consequence we have that qn−h(n) ≥ qn−β ln n .
The corollary follows from Theorem 2.3. This completes the proof. �
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We show an upper bound for D(n, m) for the cases where 2m > n and 2m ≤ n.

Lemma 2.5. Suppose n, m ∈N .

• If 2m > n then D(n, m) ≤ q
 n
2 � .

• If 2m ≤ n then D(n, m) ≤ qmμ(n − 2m, m).

Proof. If 2m > n, w ∈ A∗ , and |w| = m then there is obviously at most one word u with |u| = n having a prefix and a 
suffix w; the prefix w and the suffix w would overlap with each other. If such u exists then the first half of u uniquely 
determines the second half of u. It follows that D(n, m) ≤ q
 n

2 � .
Let F(w) denote the set of all factors of w ∈ A∗ . If n ≥ 2m then let

Z(n,m) = {wuw | u ∈ An−2m and w ∈ Am and w /∈ F(u)}.
If n ≥ 2m then D̂(n, m) ⊆ Z(n, m). It is easy to see that

|Z(n,m)| ≤ |Am |μ(n − 2m,m).

This completes the proof. �
Let κ > 1 be a real constant and h̄(n) = max{1, � 1

κ ω(n)
}. Again we use the function max to guarantee that h̄(n) ≥ 1 for 
small n.

Remark 2.6. The function h̄(n) defines the maximal length of a “short” border of a closed word. In the proof of Theorem 2.9
the closed words from D̂(n, m) will be enumerated differently for m < h̄(n) and for m ≥ h̄(n).

The next auxiliary lemma shows an upper bound for q−h(n)+h̄(n) , that we will use in the proof of Proposition 2.8.

Lemma 2.7. There is a constant c1 ∈R+ such that for all n ∈N we have that

q−h(n)+h̄(n) ≤ c1q
1

ln q

(
1
κ −1

)
ln n

.

Proof. Let

y = lim
n→∞(−h(n) + h̄(n) − 1

ln q

(
1

κ
− 1

)
ln n).

We have that

y = lim
n→∞

(
−

⌊
1

ln q
lnn

⌋
+

⌊
1

κ ln q
(ln n − ln ln n)

⌋
− 1

ln q

(
1

κ
− 1

)
lnn

)

= lim
n→∞

(
ln n

ln q

(
−1 + 1

κ

)
− 1

ln q

(
1

κ
− 1

)
ln n − 1

κ ln q
ln ln n

)
= −∞.

(9)

This implies that

lim
n→∞

q−h(n)+h̄(n)

q
1

ln q

(
1
κ −1

)
ln n

= qy = q−∞ = 0.

The lemma follows. �
The next proposition shows an upper bound for the number of closed words of length n having a maximal border of 

length ≤ 
 n
2 �.

Proposition 2.8. There is a constant c ∈R+ such that


 n
2 �∑

m=1

qmμ(n − 2m,m) ≤ c ln n
qn

√
n
, where n > 1.
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Proof. Since μ(n − 2m, m) ≤ qn−2m we have that


 n
2 �∑

m=1

qmμ(n − 2m,m) ≤
h̄(n)−1∑

m=1

qmμ(n − 2m,m) +

 n

2 �∑
m=h̄(n)

qmqn−2m. (10)

Corollary 2.4 implies that μ(n − 2m, m) ≤ cqn−h(n) for some constant c ∈R+ . It follows that

h̄(n)−1∑
m=1

qmμ(n − 2m,m) ≤
h̄(n)∑
m=1

qmcqn−h(n)

≤ h̄(n)qh̄(n)cqn−h(n).

(11)

Lemma 2.7 and (11) imply that

h̄(n)−1∑
m=1

qmμ(n − 2m,m) ≤ c1h̄(n)cqn− ln n
ln q (1− 1

κ )
, (12)

where c1 is some real positive constant.
It is easy to verify that

q−h̄(n) ≤ q− 1
κ ln q (ln n−ln ln n)+1 = q(lnn)

1
κ q− 1

κ ln q ln n
. (13)

Thus using (13)


 n
2 �∑

m=h̄(n)

qmqn−2m ≤ qn

 n

2 �∑
m=h̄(n)

q−m ≤ qn−h̄(n)

1 − q−1 ≤ q(lnn)
1
κ qn− 1

κ ln q ln n

1 − q−1 . (14)

Obviously h̄(n) ≤ ln n
κ ln q . Hence taking κ = 2, we get from (10), (12), and (14) that


 n
2 �∑

m=1

qmμ(n − 2m,m) ≤ c1h̄(n)cqn− 1
2 ln q ln n + q(lnn)

1
2 qn− 1

2 ln q ln n

1 − q−1

≤ qn− 1
2 ln q ln n

(
c1c

ln n

2 ln q
+ q(lnn)

1
2

1 − q−1

)

≤ qn− 1
2 ln q ln n

(c2 ln n + c3(ln n)
1
2 ),

(15)

for some constants c2, c3 ∈R+ . Since 
√

n = q
1

2 ln q ln n the proposition follows from (15). �
We show an upper bound for D(n).

Theorem 2.9. There is a constant c ∈R+ such that

D(n) ≤ c ln n
qn

√
n
, where n > 1.

Proof. We have that

D(n) =
n−1∑
m=1

D(n,m) =

 n

2 �∑
m=1

D(n,m) +
n−1∑

m=
 n
2 �+1

D(n,m). (16)

From Lemma 2.5 and (16) we get that

D(n) ≤

 n

2 �∑
m=1

qmμ(n − 2m,m) +
n−1∑

m=
 n
2 �+1

q
 n
2 �. (17)
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Realize that

n−1∑
m=
 n

2 �+1

q
 n
2 � ≤ n

2
q
 n

2 �

and

lim
n→∞

nq
n
2

lnn qn√
n

= 0.

Then it follows that from (17), and Proposition 2.8 that there are constants c2, c3 ∈R+ such that

c2


 n
2 �∑

m=1

qmμ(n − 2m,m) ≥
n−1∑

m=
 n
2 �+1

q
 n
2 � and

D(n) ≤ c3


 n
2 �∑

m=1

qmμ(n − 2m,m). (18)

The theorem follows from (18), and Proposition 2.8. �
Remark 2.10. Note that some of the constants c, c1, c2, c3, that we used in our results and in particular in Theorem 2.9, 
depend on q.
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Abstract. In 1985, Restivo and Salemi presented a list of five problems
concerning power free languages. Problem 4 states: Given α-power-free
words u and v, decide whether there is a transition from u to v. Problem
5 states: Given α-power-free words u and v, find a transition word w, if
it exists.

Let Σk denote an alphabet with k letters. Let Lk,α denote the α-power
free language over the alphabet Σk, where α is a rational number or a
rational “number with +”. If α is a “number with +” then suppose k ≥ 3
and α ≥ 2. If α is “only” a number then suppose k = 3 and α > 2 or
k > 3 and α ≥ 2. We show that: If u ∈ Lk,α is a right extendable word
in Lk,α and v ∈ Lk,α is a left extendable word in Lk,α then there is a
(transition) word w such that uwv ∈ Lk,α. We also show a construction
of the word w.

Keywords: Power free languages · Transition property · Dejean’s
conjecture

1 Introduction

The power free words are one of the major themes in the area of combinatorics

on words. An α-power of a word r is the word rα = rr . . . rt such that |rα|
|r| = α

and t is a prefix of r, where α ≥ 1 is a rational number. For example (1234)3 =

123412341234 and (1234)
7
4 = 1234123. We say that a finite or infinite word w

is α-power free if w has no factors that are β-powers for β ≥ α and we say
that a finite or infinite word w is α+-power free if w has no factors that are
β-powers for β > α, where α, β ≥ 1 are rational numbers. In the following, when
we write “α-power free” then α denotes a number or a “number with +”. The
power free words, also called repetitions free words, include well known square
free (2-power free), overlap free (2+-power free), and cube free words (3-power
free). Two surveys on the topic of power free words can be found in [8] and [13].

One of the questions being researched is the construction of infinite power
free words. We define the repetition threshold RT(k) to be the infimum of all
rational numbers α such that there exists an infinite α-power-free word over an
alphabet with k letters. Dejean’s conjecture states that RT(2) = 2, RT(3) = 7

4 ,

c© Springer Nature Switzerland AG 2020
N. Jonoska and D. Savchuk (Eds.): DLT 2020, LNCS 12086, pp. 294–303, 2020.
https://doi.org/10.1007/978-3-030-48516-0_22
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RT(4) = 7
5 , and RT(k) = k

k−1 for each k > 4 [3]. Dejean’s conjecture has been
proved with the aid of several articles [1–3,5,6,9].

It is easy to see that α-power free words form a factorial language [13]; it
means that all factors of a α-power free word are also α-power free words. Then
Dejean’s conjecture implies that there are infinitely many finite α-power free
words over Σk, where α > RT(k).

In [10], Restivo and Salemi presented a list of five problems that deal with the
question of extendability of power free words. In the current paper we investigate
Problem 4 and Problem 5:

– Problem 4: Given α-power-free words u and v, decide whether there is a
transition word w, such that uwu is α-power free.

– Problem 5: Given α-power-free words u and v, find a transition word w, if it
exists.

A recent survey on the progress of solving all the five problems can be found
in [7]; in particular, the problems 4 and 5 are solved for some overlap free (2+-
power free) binary words. In addition, in [7] the authors prove that: For every
pair (u, v) of cube free words (3-power free) over an alphabet with k letters, if
u can be infinitely extended to the right and v can be infinitely extended to the
left respecting the cube-freeness property, then there exists a “transition” word
w over the same alphabet such that uwv is cube free.

In 2009, a conjecture related to Problems 4 and Problem 5 of Restivo and
Salemi appeared in [12]:

Conjecture 1. [12, Conjecture 1] Let L be a power-free language and let e(L) ⊆ L
be the set of words of L that can be extended to a bi-infinite word respecting
the given power-freeness. If u, v ∈ e(L) then uwv ∈ e(L) for some word w.

In 2018, Conjecture 1 was presented also in [11] in a slightly different form.
Let N denote the set of natural numbers and let Q denote the set of rational

numbers.

Definition 1. Let

Υ = {(k, α) | k ∈ N and α ∈ Q and k = 3 and α > 2}
∪{(k, α) | k ∈ N and α ∈ Q and k > 3 and α ≥ 2}

∪{(k, α+) | k ∈ N and α ∈ Q and k ≥ 3 and α ≥ 2}.

Remark 1. The definition of Υ says that: If (k, α) ∈ Υ and α is a “number with
+” then k ≥ 3 and α ≥ 2. If (k, α) ∈ Υ and α is “just” a number then k = 3
and α > 2 or k > 3 and α ≥ 2.

Let L be a language. A finite word w ∈ L is called left extendable (resp., right
extendable) in L if for every n ∈ N there is a word u ∈ L with |u| = n such that
uw ∈ L (resp., wu ∈ L).

In the current article we improve the results addressing Problems 4 and
Problem 5 of Restivo and Salemi from [7] as follows. Let Σk denote an alphabet
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with k letters. Let Lk,α denote the α-power free language over the alphabet Σk.
We show that if (k, α) ∈ Υ , u ∈ Lk,α is a right extendable word in Lk,α, and
v ∈ Lk,α is a left extendable word in Lk,α then there is a word w such that
uwv ∈ Lk,α. We also show a construction of the word w.

We sketch briefly our construction of a “transition” word. Let u be a right
extendable α-power free word and let v be a left extendable α-power free word
over Σk with k > 2 letters. Let ū be a right infinite α-power free word having u
as a prefix and let v̄ be a left infinite α-power free word having v as a suffix. Let
x be a letter that is recurrent in both ū and v̄. We show that we may suppose
that ū and v̄ have a common recurrent letter. Let t be a right infinite α-power
free word over Σk \ {x}. Let t̄ be a left infinite α-power free word such that the
set of factors of t̄ is a subset of the set of recurrent factors of t. We show that
such t̄ exists. We identify a prefix ũxg of ū such that g is a prefix of t and ũxt
is a right infinite α-power free word. Analogously we identify a suffix ḡxṽ of v̄
such that ḡ is a suffix of t̄ and t̄xṽ is a left infinite α-power free word. Moreover
our construction guarantees that u is a prefix of ũxt and v is a suffix of t̄xṽ.
Then we find a prefix hp of t such that pxṽ is a suffix of t̄xṽ and such that both
h and p are “sufficiently long”. Then we show that ũxhpxṽ is an α-power free
word having u as a prefix and v as a suffix.

The very basic idea of our proof is that if u, v are α-power free words and x is
a letter such that x is not a factor of both u and v, then clearly uxv is α-power
free on condition that α ≥ 2. Just note that there cannot be a factor in uxv
which is an α-power and contains x, because x has only one occurrence in uxv.
Our constructed words ũxt, t̄xṽ, and ũxhpxṽ have “long” factors which does not
contain a letter x. This will allow us to apply a similar approach to show that
the constructed words do not contain square factor rr such that r contains the
letter x.

Another key observation is that if k ≥ 3 and α > RT(k − 1) then there is an
infinite α-power free word w̄ over Σk \{x}, where x ∈ Σk. This is an implication
of Dejean’s conjecture. Less formally said, if u, v are α-power free words over
an alphabet with k letters, then we construct a “transition” word w over an
alphabet with k − 1 letters such that uwv is α-power free.

Dejean’s conjecture imposes also the limit to possible improvement of our
construction. The construction cannot be used for RT(k) ≤ α < RT(k − 1),
where k ≥ 3, because every infinite (or “sufficiently long”) word w over an
alphabet with k − 1 letters contains a factor which is an α-power. Also for
k = 2 and α ≥ 1 our technique fails. On the other hand, based on our research,
it seems that our technique, with some adjustments, could be applied also for
RT(k−1) ≤ α ≤ 2 and k ≥ 3. Moreover it seems to be possible to generalize our
technique to bi-infinite words and consequently to prove Conjecture 1 for k ≥ 3
and α ≥ RT(k − 1).

2 Preliminaries

Recall that Σk denotes an alphabet with k letters. Let ε denote the empty word.
Let Σ∗

k denote the set of all finite words over Σk including the empty word ε, let
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ΣN,R
k denote the set of all right infinite words over Σk, and let ΣN,L

k denote the

set of all left infinite words over Σk. Let ΣN
k = ΣN,L

k ∪ ΣN,R
k . We call w ∈ ΣN

k an
infinite word.

Let occur(w, t) denote the number of occurrences of the nonempty factor
t ∈ Σ∗

k \ {ε} in the word w ∈ Σ∗
k ∪ ΣN

k . If w ∈ ΣN
k and occur(w, t) = ∞, then we

call t a recurrent factor in w.
Let F(w) denote the set of all finite factors of a finite or infinite word w ∈

Σ∗
k ∪ ΣN

k . The set F(w) contains the empty word and if w is finite then also
w ∈ F(w). Let Fr(w) ⊆ F(w) denote the set of all recurrent nonempty factors
of w ∈ ΣN

k .

Let Prf(w) ⊆ F(w) denote the set of all prefixes of w ∈ Σ∗
k ∪ ΣN,R

k and let

Suf(w) ⊆ F(w) denote the set of all suffixes of w ∈ Σ∗
k ∪ ΣN,L

k . We define that
ε ∈ Prf(w) ∩ Suf(w) and if w is finite then also w ∈ Prf(w) ∩ Suf(w).

We have that Lk,α ⊆ Σ∗
k . Let LN

k,α ⊆ ΣN
k denote the set of all infinite α-power

free words over Σk. Obviously LN
k,α = {w ∈ ΣN

k | F(w) ⊆ Lk,α}. In addition we

define LN,R
k,α = LN

k,α ∩ΣN,R
k and LN,L

k,α = LN
k,α ∩ΣN,L

k ; it means the sets of right
infinite and left infinite α-power free words.

3 Power Free Languages

Let (k, α) ∈ Υ and let u, v be α-power free words. The first lemma says that uv
is α-power free if there are no word r and no nonempty prefix v̄ of v such that
rr is a suffix of uv̄ and rr is longer than v̄.

Lemma 1. Suppose (k, α) ∈ Υ , u ∈ Lk,α, and v ∈ Lk,α ∪LN,R
k,α . Let

Π = {(r, v̄) | r ∈ Σ∗
k \ {ε} and v̄ ∈ Prf(v) \ {ε} and

rr ∈ Suf(uv̄) and |rr| > |v̄|}.

If Π = ∅ then uv ∈ Lk,α ∪LN,R
k,α .

Proof. Suppose that uv is not α-power free. Since u is α-power free, then there
are t ∈ Σ∗

k and x ∈ Σk such that tx ∈ Prf(v), ut ∈ Lk,α and utx 
∈ Lk,α. It means
that there is r ∈ Suf(utx) such that rβ ∈ Suf(utx) for some β ≥ α or β > α if
α is a “number with +”; recall Definition 1 of Υ . Because α ≥ 2, this implies
that rr ∈ Suf(rβ). If follows that (tx, r) ∈ Π. We proved that uv 
∈ Lk,α ∪LN,R

k,α

implies that Π 
= ∅. The lemma follows. ��

The following technical set Γ (k, α) of 5-tuples (w1, w2, x, g, t) will simplify
our propositions.

Definition 2. Given (k, α) ∈ Υ , we define that (w1, w2, x, g, t) ∈ Γ (k, α) if

1. w1, w2, g ∈ Σ∗
k ,

2. x ∈ Σk,
3. w1w2xg ∈ Lk,α,
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4. t ∈ LN,R
k,α ,

5. occur(t, x) = 0,
6. g ∈ Prf(t),
7. occur(w2xgy, xgy) = 1, where y ∈ Σk is such that gy ∈ Prf(t), and
8. occur(w2, x) ≥ occur(w1, x).

Remark 2. Less formally said, the 5-tuple (w1, w2, x, g, t) is in Γ (k, α) if w1w2xg
is α-power free word over Σk, t is a right infinite α-power free word over Σk, t
has no occurrence of x (thus t is a word over Σk \ {x}), g is a prefix of t, xgy
has only one occurrence in w2xgy, where y is a letter such that gy is a prefix
of t, and the number of occurrences of x in w2 is bigger than the number of
occurrences of x in w1, where w1, w2, g are finite words and x is a letter.

The next proposition shows that if (w1, w2, x, g, t) is from the set Γ (k, α)
then w1w2xt is a right infinite α-power free word, where (k, α) is from the set Υ .

Proposition 1. If (k, α) ∈ Υ and (w1, w2, x, g, t) ∈ Γ (k, α) then w1w2xt ∈
LN,R

k,α .

Proof. Lemma 1 implies that it suffices to show that there are no u ∈ Prf(t)
with |u| > |g| and no r ∈ Σ∗

k \ {ε} such that rr ∈ Suf(w1w2xu) and |rr| > |u|.
Recall that w1w2xg is an α-power free word, hence we consider |u| > |g|. To
get a contradiction, suppose that such r, u exist. We distinguish the following
distinct cases.

– If |r| ≤ |u| then: Since u ∈ Prf(t) ⊆ Lk,α it follows that xu ∈ Suf(r2) and
hence x ∈ F(r2). It is clear that occur(r2, x) ≥ 1 if and only if occur(r, x) ≥ 1.
Since x 
∈ F(u) and thus x 
∈ F(r), this is a contradiction.

– If |r| > |u| and rr ∈ Suf(w2xu) then: Let y ∈ Σk be such that gy ∈ Prf(t).
Since |u| > |g| we have that gy ∈ Prf(u) and xgy ∈ Prf(xu). Since |r| > |u|
we have that xgy ∈ F(r). In consequence occur(rr, xgy) ≥ 2. But Property 7
of Definition 2 states that occur(w2xgy, xgy) = 1. Since rr ∈ Suf(w2xu), this
is a contradiction.

– If |r| > |u| and rr 
∈ Suf(w2xu) and r ∈ Suf(w2xu) then:
Let w11, w12, w13, w21, w22 ∈ Σ∗

k be such that w1 = w11w12w13, w2 = w21w22,
w12w13w21 = r, w12w13w2xu = rr, and w13w21 = xu; see Figure below.

xu

w11 w12 w13 w21 w22 x u

r r

It follows that w22xu = r and w22 = w12. It is easy to see that w13w21 =
xu. From occur(u, x) = 0 we have that occur(w2, x) = occur(w22, x)
and occur(w13, x) = 1. From w22 = w12 it follows that occur(w1, x) >
occur(w2, x). This is a contradiction to Property 8 of Definition 2.
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– If |r| > |u| and rr 
∈ Suf(w2xu) and r 
∈ Suf(w2xu) then: Let w11, w12, w13 ∈
Σ∗

k be such that w1 = w11w12w13, w12 = r and w13w2xu = r; see Figure
below.

w11 w12 w13 w2 x u

r r

It follows that

occur(w12, x) = occur(w13, x) + occur(w2, x) + occur(xu, x).

This is a contradiction to Property 8 of Definition 2.

We proved that the assumption of existence of r, u leads to a contradiction.
Thus we proved that for each prefix u ∈ Prf(t) we have that w1w2xu ∈ Lk,α.
The proposition follows. ��

We prove that if (k, α) ∈ Υ then there is a right infinite α-power free word over
Σk−1. In the introduction we showed that this observation could be deduced
from Dejean’s conjecture. Here additionally, to be able to address Problem 5
from the list of Restivo and Salemi, we present in the proof also examples of
such words.

Lemma 2. If (k, α) ∈ Υ then the set LN,R
k−1,α is not empty.

Proof. If k = 3 then |Σk−1| = 2. It is well known that the Thue Morse word is a
right infinite 2+-power free word over an alphabet with 2 letters [11]. It follows
that the Thue Morse word is α-power free for each α > 2.

If k > 3 then |Σk−1| ≥ 3. It is well known that there are infinite 2-power free
words over an alphabet with 3 letters [11]. Suppose 0, 1, 2 ∈ Σk. An example is
the fixed point of the morphism θ defined by θ(0) = 012, θ(1) = 02, and θ(2) = 1
[11]. If an infinite word t is 2-power free then obviously t is α-power free and
α+-power free for each α ≥ 2.

This completes the proof. ��

We define the sets of extendable words.

Definition 3. Let L ⊆ Σ∗
k . We define

lext(L) = {w ∈ L | w is left extendable in L}

and
rext(L) = {w ∈ L | w is right extendable in L}.

If u ∈ lext(L) then let lext(u,L) be the set of all left infinite words ū such that
Suf(ū) ⊆ L and u ∈ Suf(ū). Analogously if u ∈ rext(L) then let rext(u,L) be the
set of all right infinite words ū such that Prf(ū) ⊆ L and u ∈ Prf(ū).
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We show the sets lext(u,L) and rext(v,L) are nonempty for left extendable and
right extendable words.

Lemma 3. If L ⊆ Σ∗
k and u ∈ lext(L) (resp., v ∈ rext(L)) then lext(u,L) 
= ∅

(resp., rext(v,L) 
= ∅).

Proof. Realize that u ∈ lext(L) (resp., v ∈ rext(L)) implies that there are
infinitely many finite words in L having u as a suffix (resp., v as a prefix).
Then the lemma follows from König’s Infinity Lemma [4,8]. ��

The next proposition proves that if (k, α) ∈ Υ , w is a right extendable α-power
free word, w̄ is a right infinite α-power free word having the letter x as a recurrent
factor and having w as a prefix, and t is a right infinite α-power free word over
Σk\{x}, then there are finite words w1, w2, g such that the 5-tuple (w1, w2, x, g, t)
is in the set Γ (k, α) and w is a prefix of w1w2xg.

Proposition 2. If (k, α) ∈ Υ , w ∈ rext(Lk,α), w̄ ∈ rext(w,Lk,α), x ∈ Fr(w̄) ∩
Σk, t ∈ LN,R

k,α , and occur(t, x) = 0 then there are finite words w1, w2, g such that
(w1, w2, x, g, t) ∈ Γ (k, α) and w ∈ Prf(w1w2xg).

Proof. Let ω = F(w̄) ∩ Prf(xt) be the set of factors of w̄ that are also prefixes
of the word xt. Based on the size of the set ω we construct the words w1, w2, g
and we show that (w1, w2, x, g, t) ∈ Γ (k, α) and w1w2xg ∈ Prf(w̄) ⊆ Lk,α. The
Properties 1, 2, 3, 4, 5, and 6 of Definition 2 are easy to verify. Hence we explicitly
prove only properties 7 and 8 and that w ∈ Prf(w1w2xg).

– If ω is an infinite set. It follows that Prf(xt) = ω. Let g ∈ Prf(t) be such that
|g| = |w|; recall that t is infinite and hence such g exists. Let w2 ∈ Prf(w̄) be
such that w2xg ∈ Prf(w̄) and occur(w2xg, xg) = 1. Let w1 = ε.
Property 7 of Definition 2 follows from occur(w2xg, xg) = 1. Property 8 of
Definition 2 is obvious, because w1 is the empty word. Since |g| = |w| and
w ∈ Prf(w̄) we have that w ∈ Prf(w1w2xg).

– If ω is a finite set. Let ω̄ = ω ∩ Fr(w̄) be the set of prefixes of xt that are
recurrent in w̄. Since x is recurrent in w̄ we have that x ∈ ω̄ and thus ω̄ is
not empty. Let g ∈ Prf(t) be such that xg is the longest element in ω̄. Let
w1 ∈ Prf(w) be the shortest prefix of w̄ such that if u ∈ ω\ω̄ is a non-recurrent
prefix of xt in w̄ then occur(w1, u) = occur(w̄, u). Such w1 obviously exists,
because ω is a finite set and non-recurrent factors have only a finite number of
occurrences. Let w2 be the shortest factor of w̄ such that w1w2xg ∈ Prf(w̄),
occur(w1, x) < occur(w2, x), and w ∈ Prf(w1w2xg). Since xg is recurrent in
w̄ and w ∈ Prf(w̄) it is clear such w2 exists.
We show that Property 7 of Definition 2 holds. Let y ∈ Σk be such that
gy ∈ Prf(t). Suppose that occur(w2xg, xgy) > 0. It would imply that xgy
is recurrent in w̄, since all occurrences of non-recurrent words from ω are
in w1. But we defined xg to be the longest recurrent word ω. Hence it is
contradiction to our assumption that occur(w2xg, xgy) > 0.
Property 8 of Definition 2 and w ∈ Prf(w1w2xg) are obvious from the con-
struction of w2.
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This completes the proof. ��

We define the reversal wR of a finite or infinite word w = Σ∗
k ∪ ΣN

k as
follows: If w ∈ Σ∗

k and w = w1w2 . . . wm, where wi ∈ Σk and 1 ≤ i ≤ m, then

wR = wmwm−1 . . . w2w1. If w ∈ ΣN,L
k and w = . . . w2w1, where wi ∈ Σk and

i ∈ N, then wR = w1w2 · · · ∈ ΣN,R
k . Analogously if w ∈ ΣN,R

k and w = w1w2 . . . ,

where wi ∈ Σk and i ∈ N, then wR = . . . w2w1 ∈ ΣN,L
k .

Proposition 1 allows one to construct a right infinite α-power free word with
a given prefix. The next simple corollary shows that in the same way we can
construct a left infinite α-power free word with a given suffix.

Corollary 1. If (k, α) ∈ Υ , w ∈ lext(Lk,α), w̄ ∈ lext(w,Lk,α), x ∈ Fr(w̄) ∩ Σk,

t ∈ LN,L
k,α , and occur(t, x) = 0 then there are finite words w1, w2, g such that

(wR
1 , wR

2 , x, gR, tR) ∈ Γ (k, α), w ∈ Suf(gxw2w1), and txw2w1 ∈ LN,L
k,α .

Proof. Let u ∈ Σ∗
k ∪ ΣN

k . Realize that u ∈ Lk,α ∪LN
k,α if and only if uR ∈

Lk,α ∪LN
k,α. Then the corollary follows from Proposition 1 and Proposition 2. ��

Given k ∈ N and a right infinite word t ∈ ΣN,R
k , let Φ(t) be the set of all

left infinite words t̄ ∈ ΣN,L
k such that F(t̄) ⊆ Fr(t). It means that all factors of

t̄ ∈ Φ(t) are recurrent factors of t. We show that the set Φ(t) is not empty.

Lemma 4. If k ∈ N and t ∈ ΣN,R
k then Φ(t) 
= ∅.

Proof. Since t is an infinite word, the set of recurrent factors of t is not empty. Let
g be a recurrent nonempty factor of t; g may be a letter. Obviously there is x ∈ Σk

such that xg is also recurrent in t. This implies that the set {h | hg ∈ Fr(t)} is
infinite. The lemma follows from König’s Infinity Lemma [4,8]. ��

The next lemma shows that if u is a right extendable α-power free word
then for each letter x there is a right infinite α-power free word ū such that x is
recurrent in ū and u is a prefix of ū.

Lemma 5. If (k, α) ∈ Υ , u ∈ rext(Lk,α), and x ∈ Σk then there is ū ∈
rext(u,Lk,α) such that x ∈ Fr(ū).

Proof. Let w ∈ rext(u,Lk,α); Lemma 3 implies that rext(u,Lk,α) is not empty.
If x ∈ Fr(w) then we are done. Suppose that x 
∈ Fr(w). Let y ∈ Fr(w) ∩ Σk.
Clearly x 
= y. Proposition 2 implies that there is (w1, w2, y, g, t) ∈ Γ (k, α) such
that u ∈ Prf(w1w2yg). The proof of Lemma 2 implies that we can choose t in such
a way that x is recurrent in t. Then w1w2yt ∈ rext(u,Lk,α) and x ∈ Fr(w1w2yt).
This completes the proof. ��

The next proposition shows that if u is left extendable and v is right extend-
able then there are finite words ũ, ṽ, a letter x, a right infinite word t, and a
left infinite word t̄ such that ũxt, t̄xṽ are infinite α-power free words, t has no
occurrence of x, every factor of t̄ is a recurrent factor in t, u is a prefix of ũxt,
and v is a suffix of t̄xṽ.
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Proposition 3. If (k, α) ∈ Υ , u ∈ rext(Lk,α), and v ∈ lext(Lk,α) then there are

ũ, ṽ ∈ Σ∗
k , x ∈ Σk, t ∈ ΣN,R

k , and t̄ ∈ ΣN,L
k such that ũxt ∈ LN,R

k,α , t̄xṽ ∈ LN,L
k,α ,

occur(t, x) = 0, F(t̄) ⊆ Fr(t), u ∈ Prf(ũxt), and v ∈ Suf(t̄xṽ).

Proof. Let ū ∈ rext(u,Lk,α) and v̄ ∈ lext(v,Lk,α) be such that Fr(ū) ∩ Fr(v̄) ∩
Σk 
= ∅. Lemma 5 implies that such ū, v̄ exist. Let x ∈ Fr(ū) ∩ Fr(v̄) ∩ Σk. It
means that the letter x is recurrent in both ū and v̄.

Let t be a right infinite α-power free word over Σk \ {x}. Lemma 2 asserts
that such t exists. Let t̄ ∈ Φ(t); Lemma 4 shows that Φ(t) 
= ∅. It is easy to see

that t̄ ∈ LN,L
k,α , because F(t̄) ⊆ Fr(t) and t ∈ LN,R

k,α .
Proposition 2 and Corollary 1 imply that there are u1, u2, g, v1, v2, ḡ ∈ Lk,α

such that

– (u1, u2, x, g, t) ∈ Γ (k, α),
– (vR

1 , vR
2 , x, ḡR, t̄R) ∈ Γ (k, α),

– u ∈ Prf(u1u2xg), and
– vR ∈ Prf(vR

1 vR
2 xḡR); it follows that v ∈ Suf(ḡxv2v1).

Proposition 1 implies that u1u2xt, vR
1 vR

2 xt̄R ∈ LN,R
k,α . It follows that t̄xv2v1 ∈

LN,L
k,α . Let ũ = u1u2 and ṽ = v2v1. This completes the proof. ��

The main theorem of the article shows that if u is a right extendable α-power free
word and v is a left extendable α-power free word then there is a word w such
that uwv is α-power free. The proof of the theorem shows also a construction of
the word w.

Theorem 1. If (k, α) ∈ Υ , u ∈ rext(Lk,α), and v ∈ lext(Lk,α) then there is
w ∈ Lk,α such that uwv ∈ Lk,α.

Proof. Let ũ, ṽ, x, t, t̄ be as in Proposition 3. Let p ∈ Suf(t̄) be the shortest suffix
such that |p| > max{|ũx|, |xṽ|, |u|, |v|}. Let h ∈ Prf(t) be the shortest prefix such
that hp ∈ Prf(t) and |h| > |p|; such h exists, because p is a recurrent factor of t;
see Proposition 3. We show that ũxhpxṽ ∈ Lk,α.

We have that ũxhp ∈ Lk,α, since hp ∈ Prf(t) and Proposition 3 states that

ũxt ∈ LN,R
k,α . Lemma 1 implies that it suffices to show that there are no g ∈ Prf(ṽ)

and no r ∈ Σ∗
k \ {ε} such that rr ∈ Suf(ũxhpxg) and |rr| > |xg|. To get a

contradiction, suppose there are such r, g. We distinguish the following cases.

– If |r| ≤ |xg| then rr ∈ Suf(pxg), because |p| > |xṽ| and xg ∈ Prf(xṽ). This is

a contradiction, since pxṽ ∈ Suf(t̄xṽ) and t̄xṽ ∈ LN,L
k,α ; see Proposition 3.

– If |r| > |xg| then |r| ≤ 1
2 |ũxhpxg|, otherwise rr cannot be a suffix of ũxhpxg.

Because |h| > |p| > max{|ũx|, |xṽ|} we have that r ∈ Suf(hpxg). Since
occur(hp, x) = 0, |h| > |p| > |xṽ|, and xg ∈ Suf(r) it follows that there are
words h1, h2 such that ũxhpxg = ũxh1h2pxg, r = h2pxg and r ∈ Suf(ũxh1).
It follows that xg ∈ Suf(ũxh1) and because occur(h1, x) = 0 we have that
|h1| ≤ |g|. Since |p| > |ũx| we get that |h2pxg| > |ũxg| ≥ |ũxh1|; hence
|r| > |ũxh1|. This is a contradiction.
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We conclude that there is no word r and no prefix g ∈ Prf(ṽ) such that rr ∈
Suf(ũxhpxg). Hence ũxhpxṽ ∈ Lk,α. Due to the construction of p and h we have
that u ∈ Prf(ũxhpxṽ) and v ∈ Suf(ũxhpxṽ). This completes the proof. ��
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Abstract. The palindromic length PL(v) of a finite word v is the min-
imal number of palindromes whose concatenation is equal to v. In 2013,
Frid, Puzynina, and Zamboni conjectured that: If w is an infinite word
and k is an integer such that PL(u) ≤ k for every factor u of w then w
is ultimately periodic.

Suppose that w is an infinite word and k is an integer such PL(u) ≤ k
for every factor u of w. Let Ω(w, k) be the set of all factors u of w that
have more than k

√
k−1|u| palindromic prefixes. We show that Ω(w, k)

is an infinite set and we show that for each positive integer j there are
palindromes a, b and a word u ∈ Ω(w, k) such that (ab)j is a factor of
u and b is nonempty. Note that (ab)j is a periodic word and (ab)ia is a
palindrome for each i ≤ j. These results justify the following question:
What is the palindromic length of a concatenation of a suffix of b and a
periodic word (ab)j with “many” periodic palindromes?

It is known that if u, v are nonempty words then |PL(uv) − PL(u)| ≤
PL(v). The main result of our article shows that if a, b are palindromes, b
is nonempty, u is a nonempty suffix of b, |ab| is the minimal period of aba,
and j is a positive integer with j ≥ 3PL(u) then PL(u(ab)j)−PL(u) ≥ 0.

1 Introduction

In 2013, Frid, Puzynina, and Zamboni introduced a palindromic length of a finite
word [6]. Recall that the word u = x1x2 . . . xn of length n is called a palindrome
if x1x2 . . . xn = xn . . . x2x1, where xi are letters and i ∈ {1, 2, . . . , n}. The
palindromic length PL(u) of the word u is defined as the minimal number k
such that u = u1u2 . . . uk and uj are palindromes, where j ∈ {1, 2, . . . , k}; note
that the palindromes uj are not necessarily distinct. Let ε denote the empty
word. We define that PL(ε) = 0.

In general, the factorization of a finite word into the minimal number of
palindromes is not unique; for example PL(011001) = 3 and the word 011001
can be factorized in two ways: 011001 = (0110)(0)(1) = (0)(1)(1001).

The authors of [6] conjectured that:

Conjecture 1. If w is an infinite word and P is an integer such that PL(u) ≤ P
for every factor u of w then w is ultimately periodic.

c© Springer Nature Switzerland AG 2020
G. Jirásková and G. Pighizzini (Eds.): DCFS 2020, LNCS 12442, pp. 167–179, 2020.
https://doi.org/10.1007/978-3-030-62536-8_14
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So far, Conjecture 1 remains open. We call an infinite word that satisfies the
condition from Conjecture 1 a word with a bounded palindromic length. Note
that there are infinite periodic words that do not have a bounded palindromic
length; for example (012)∞. Hence the converse of Conjecture 1 does not hold.

In [6] the conjecture was proved for infinite words that are k-power free for
some positive integer k. It follows that if w is an infinite word with a bounded
palindromic length, then for each positive integer j there is a nonempty factor
r such that rj is a factor of w.

In [11], another variation of Conjecture 1 was considered:

Conjecture 2. Every aperiodic (not ultimately periodic) infinite word has pre-
fixes of arbitrarily high palindromic length.

In [11], the author proved that Conjecture 1 and Conjecture 2 are equivalent.
More precisely, it was proved that if every prefix of an infinite word w is a
concatenation of at most n palindromes then every factor of w is a concatenation
of at most 2n palindromes. It follows that Conjecture 2 remains also open.

In [7] Conjecture 1 and Conjecture 2 have been proved for all Sturmian words.
The properties of the palindromic length of Sturmian words have been investi-
gated also in [2]. In [1], the authors study the palindromic length of factors of
fixed points of primitive morphisms. In [8], the lower bounds for the palindromic
length of prefixes of infinite words can be found.

In [4], a left and right greedy palindromic length have been introduced as a
variant to the palindromic length. It is shown that if the left (or right) greedy
palindromic lengths of prefixes of an infinite word w is bounded, then w is
ultimately periodic.

In addition, algorithms for computing the palindromic length were researched
[3,5,10]. In [10], the authors present a linear time online algorithm for computing
the palindromic length.

In the current paper we investigate infinite words with a bounded palindromic
length. Let k be a positive integer, let w be an infinite word such that k ≥ PL(t)
for every factor t of w, and let Ω(w, k) be the set of all factors u of w that have
more than k

√
k−1|u| palindromic prefixes. We show that Ω(w, k) is an infinite

set and we show that for each positive integer j there are palindromes a, b and
a word u ∈ Ω(w, k) such that (ab)j is a factor of u and b is nonempty. Note
that (ab)j is a periodic word and (ab)ia is a palindrome for each i ≤ j. In this
sense we can consider that w has infinitely many periodic palindromes with an
arbitrarily high exponent j.

The existence of infinitely many periodic palindromes in w is not surprising.
It can be deduced also from the result in [6], which says, as mentioned above,
that if w is an infinite word with a bounded palindromic length, then for each
positive integer j there is a nonempty factor r such that rj is a factor of w.

These results justify the following question: What is the palindromic length
of a concatenation of a suffix of b and a periodic word (ab)j with “many” periodic
palindromes?

It is known that if u, v are nonempty words then |PL(uv) − PL(u)| ≤ PL(v)
[11]. Less formally said, it means that by concatenating a word v to a word u the
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change of the palindromic length is at most equal to the palindromic length of v.
The main result of our article shows that if a, b are palindromes, b is nonempty,
u is a nonempty suffix of b, |ab| is the minimal period of aba, and j is a positive
integer with j ≥ 3PL(u) then PL(u(ab)j) − PL(u) ≥ 0.

The results of our article should shed some light on infinite words for which
Conjecture 1 and Conjecture 2 remain open. For the moment, for given factor
u, we identified factors v such that PL(uv) − PL(v) ≥ 0. The idea for the future
development of this result is, for given k ∈ N, to identify factors u, v such that
PL(u) = k and PL(uv) − PL(u) > 0. The existence of such factors would, in
consequence, allow us to prove the Conjecture 1 and Conjecture 2.

2 Preliminaries

Let N denote the set of all positive integers, let N0 = N ∪ {0} denote the set
of all nonnegative integers, let R denote the set of all real numbers, and let R

+

denote the set of all positive real numbers.
Let A denote a finite alphabet with |A| ≥ 2 letters. Let A+ denote the set

of all finite nonempty words over the alphabet A and let A∗ = A+ ∪ {ε}; recall
that ε denotes the empty word. Let AN denote the set of all right infinite words.

Let n ∈ N and let w = w1w2 . . . wn ∈ A∗ (or w = w1w2 · · · ∈ AN),
where wi ∈ A and i ∈ {1, 2, . . . , n} (or i ∈ {1, 2, . . . }). We denote by
w[i, j] = wiwi+1 . . . wj the factor of w starting at position i ∈ N and ending
at position j ∈ N, where i, j ∈ N and i ≤ j ≤ n

We call the word v ∈ A∗ a factor of the word w ∈ A∗ ∪AN if there are words
a ∈ A∗ and b ∈ A∗ ∪ AN such that w = avb. Given a word w ∈ A∗ ∪ AN, we
denote by Fac(w) the set of all factors of w. It follows that ε ∈ Fac(w) and if
w ∈ A∗ then also w ∈ Fac(w).

We call the word v ∈ A∗ a prefix of the word w ∈ A∗ ∪ AN if there is
t ∈ A∗ ∪AN such that w = vt. Given a word w ∈ A∗ ∪AN, we denote by Prf(w)
the set of all prefixes of w. It follows that ε ∈ Prf(w) and if w ∈ A∗ then also
w ∈ Prf(w).

We call the word v ∈ A∗ a suffix of the word w ∈ A∗ if there is t ∈ A∗ such
that w = tv. Given a word w ∈ A∗, we denote by Suf(w) the set of all suffixes
of w. It follows that ε, w ∈ Suf(w).

Let w = w1w2 . . . wn ∈ A+, where wi ∈ A and i ∈ {1, 2, . . . , n}. Let wR

denote the reversal of the word w ∈ A+; it means wR = wnwn−1 . . . w2w1.
In addition we define that the reversal of the empty word is the empty word;
formally εR = ε.

Realize that w ∈ A∗ is a palindrome if and only if wR = w. Let Pal ⊂ A∗

denote the set of all palindromes over the alphabet A. We define that ε ∈ Pal.
Let Pal+ = Pal \ {ε} be the set of all nonempty palindromes.

Given w ∈ A∗∪AN, let PalPrf(w) = Pal∩Prf(w) be the set of all palindromic
prefixes of w.
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Given w ∈ A+, let MPF(w) denote the set of all k-tuples of palindromes
whose concatenation is equal to w and k = PL(w); formally

MPF(w) = {(t1, t2, . . . , tk) | k = PL(w) and t1t2 . . . tk = w and

t1, t2, . . . , tk ∈ Pal+}.

We call a k-tuple (t1, t2, . . . , tk) ∈ MPF(w) a minimal palindromic factorization
of w.

Let Q denote the set of all rational numbers. We say that the word w ∈ A+ is
a periodic word, if there are α ∈ Q, r ∈ Prf(w)\{ε}, and r̄ ∈ Prf(r)\{r} such that
α > 1, w = rr . . . rr̄, and |w|

|r| = α; note that r̄ is uniquely determined by r. We

write w = rα and the period of w is equal to |r|. For example 12341 = (1234)
5
4

and 12341234123 = (1234)
11
4 .

Given w ∈ A+, let

Period(w) = {(r, α) | rα = w and r ∈ Prf(w) \ {ε} and α ∈ Q and α > 1}.

The set Period(w) contains all couples (r, α) such that rα = w. Let

MinPer(w) = min{|r| | (r, α) ∈ Period(w)} ∈ N.

The positive integer MinPer(w) is the minimal period of the word w. The word
w ∈ A+ has a period δ ∈ Q if there is a couple (r, α) ∈ Period(w) such that
|r| = δ.

We will deal a lot with periodic palindromes. The two following known lem-
mas will be useful for us.

Lemma 1 (see [9, Lemma 1]). Suppose p is a period of a nonempty palindrome
w; then there are palindromes a and b such that |ab| = p, b �= ε, and w = (ab)∗a.

Lemma 2 (see [9, Lemma 2]). Suppose w is a palindrome and u is its proper
suffix-palindrome or prefix-palindrome; then the number |w| − |u| is a period of
w.

3 Periodic Palindromic Factors

We start the section with a definition of a set of real non-decreasing functions
that diverge as n tends towards the infinity.

Let Λ denote the set of all functions φ such that

– φ(n) : N → R,
– φ(n) ≤ φ(n + 1), and
– limn→∞ φ(n) = ∞.

Let k ∈ N, let τ(n, k) = k
√

k−1n ∈ Λ, let w ∈ AN, and let

Ω(w, k) = {t ∈ Fac(w) | |PalPrf(t)| ≥ τ(|t|, k)}.
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The definition says that the set Ω(w, k) contains a factor t of w if the number
of palindromic prefixes of t is larger than or equal to τ(|t|, k) = k

√
k−1|t|.

The next proposition asserts that if w is an infinite word with a bounded
palindromic length, then the set of factors that have more than τ(n, k) palin-
dromic prefixes is infinite, where n is the length of the factor in question and
k ≥ PL(t) for each factor t of w.

Proposition 1. If w ∈ AN, k ∈ N and k ≥ max{PL(t) | t ∈ Fac(w)} then
|Ω(w, k)| = ∞.

Proof. Suppose that |Ω(w, k)| < ∞ and let

K = max{|PalPrf(t)| | t ∈ Ω(w, k)}.

Less formally said, the value K is the maximal value from the set of numbers of
palindromic prefixes of factors t of w that have more than τ(|t|, k) palindromic
prefixes. Clearly K < ∞, because of the assumption |Ω(w, k)| < ∞.

Let p ∈ Prf(w) be the shortest prefix of w such that τ(|p|, k) > K. Since
limn→∞ τ(n, k) = ∞, it is clear that such prefix p exists.

To get a contradiction suppose that |PalPrf(t)| ≥ τ(|p|, k) for some t ∈
Fac(p). Since τ(|t|, k) ≤ τ(|p|, k) and thus |PalPrf(t)| ≥ τ(|t|, k), it follows that
t ∈ Ω(w, k) and consequently |PalPrf(t)| ≤ K. It is a contradiction, because
K < τ(|p|, k). Hence we have that

|PalPrf(t)| < τ(|p|, k) for each t ∈ Fac(p). (1)

Let n, j ∈ N and let

Θ(n, j) = {(v1, v2, . . . , vj) | vi ∈ Pal+ and i ∈ {1, 2, . . . , j} and
|v1v2 . . . vj | ≤ n and v1v2 . . . vj ∈ Prf(w)}.

The set Θ(n, j) contains j-tuples of nonempty palindromes whose concatenation
is of length smaller than or equal to n and also the concatenation is a prefix of
w.

Thus from (1) we get that

|Θ(|p|, j)| < (τ(|p|, k))j . (2)

The Eq. (2) follows from the fact that each factor of p has at most τ(|p|, k)
palindromic prefixes. In consequence there are at most (τ(|p|, k))j of j-tuples of
palindromes.

Let Θ̄(|p|, j) =
⋃k

j>0 Θ(|p|, j). Since τ(n, k) ≤ τ(n + 1, k) we have from (2)
that

|Θ̄(|p|, k)| ≤ k|Θ(|p|, k)| < k(τ(|p|, k))k ≤ k
(

k
√

k−1|p|
)k

= |p|. (3)

The inequality (3) says that the number of prefixes of p having the form
v1v2 . . . vj , where j ≤ k and vi ∈ Pal+ is smaller than the length of p. But p has
|p| nonempty prefixes. It is a contradiction. Since

⋃
r∈Prf(p) MPF(r) ⊆ Θ̄(|p|, k)

we conclude that Ω(w, k) is an infinite set.
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Remark 1. In the proof of Proposition 1, we used the idea that the number of
prefixes of a word of length n that are a concatenation of at most k palindromes
is smaller than n. This idea was used also in Theorem 1 in [6].

We show that if Σ is an infinite set of words r such that the number of
nonempty palindromic prefixes of r grows more than ln |r| as |r| tends towards
infinity then for each positive integer j there are palindromes a, b and a word
t ∈ Σ such that (ab)j is a prefix of t and b is nonempty. Realize that (ab)ja is a
palindrome for each j ∈ N0. This means that Σ contains infinitely many words
that have a periodic palindromic prefix of arbitrarily high exponent j.

Proposition 2. If Σ ⊆ A∗, |Σ| = ∞, φ(n) ∈ Λ, limn→∞ (φ(n) − ln n) = ∞,
and |PalPrf(t) \ {ε}| ≥ φ(|t|) for each t ∈ Σ then for each j ∈ N there are
palindromes a ∈ Pal, b ∈ Pal+ and a word t ∈ Σ such that (ab)j ∈ Prf(t).

Proof. Given t ∈ Σ, let μ(t, i) be the lengths of all palindromic prefixes of t
such that μ(t, 1) = 1 (a letter is a palindrome) and μ(t, i) < μ(t, i + 1), where
i ∈ {1, 2, . . . , ht}. For example if t = 0100010111, then μ(t, 1) = |0| = 1, μ(t, 2) =
|010| = 3, μ(t, 3) = |0100010| = 7. Let ht = |PalPrf(t) \ {ε}|; the integer ht is
the number of nonempty palindromic prefixes of t. Let i ∈ {1, 2, . . . , ht − 1}. It
is clear that

μ(t, i + 1) = μ(t, i)
μ(t, i + 1)

μ(t, i)
. (4)

From (4) we have that

μ(t, ht)
μ(t, ht − 1)

μ(t, ht − 1)
μ(t, ht − 2)

μ(t, ht − 2)
μ(t, ht − 3)

· · · μ(t, 2)
μ(t, 1)

= μ(t, ht) ≤ |t|. (5)

Suppose that there is α ∈ R such that α > 1 and for each t ∈ Σ and for each
i ∈ {1, 2, . . . , ht − 1} we have that μ(t,i+1)

μ(t,i) ≥ α. It follows from (5) that

αht−1 ≤ ht ≤ |t|. (6)

Let c = 1
lnα ∈ R

+. Then |t| = αc ln |t|. Since ht ≥ φ(|t|) we get that

αht−1

|t| ≥ αφ(|t|)−1

|t| =
αφ(|t|)−1

αc ln |t| = αφ(|t|)−1−c ln |t|. (7)

Because limn→∞ (φ(n) − ln n) = ∞ the Eq. (7) implies that there is n0 such that
for each t ∈ Σ with |t| > n0 we have that

αht−1

|t| ≥ αφ(|t|)−1−c ln |t| > 1. (8)

From (6) and (8) we have that αht−1 ≤ |t| and αht−1

|t| > 1, which is a contra-
diction. We conclude there is no such α. In consequence, for each β ∈ R

+ with
β > 1 there is t ∈ Σ and i ∈ {1, 2, . . . , ht − 1} such that μ(t,i+1)

μ(t,i) ≤ β.
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Let j ∈ N, let

γ ≤ 1
j

+ 1 ∈ R
+, (9)

let t ∈ Σ, and i ∈ {1, 2, . . . , ht} be such that μ(t,i+1)
μ(t,i) ≤ γ. Let δ = μ(t,i+1)

μ(t,i) ≤ γ.
Let u, v ∈ Prf(t) be such that |u| = μ(t, i) and |v| = μ(t, i + 1). Then v is a
periodic palindrome with a period |v| − |u| = μ(t, i + 1) − μ(t, i) = μ(t, i)δ −
μ(t, i) = μ(t, i)(δ − 1); see Lemma 2. Lemma 1 implies that there are a ∈ Pal
and b ∈ Pal+ such that (ab)ka = v for some k ∈ N. From Lemma 1 we have
also that |ab| is the period of v. Thus

|ab| = μ(t, i)(δ − 1) ≤ μ(t, i)(γ − 1). (10)

From (9) and (10) it follows that

|ab| ≤ μ(t, i)(γ − 1) ≤ μ(t, i)
1
j
. (11)

Note that v = (ab)ka and u ∈ Prf((ab)k). Since μ(t, i) = |u| we get that
μ(t,i)
|ab| ≤ k. From (11) we have that

j ≤ μ(t, i)
|ab| ≤ k.

Thus for arbitrary j ∈ N we found t, a, b, k such that (ab)k ∈ Prf(t) and j ≤ k.
The proposition follows.

A corollary of Proposition 1 and Proposition 2 says that if w is an infinite
word with a bounded palindromic length then for each positive integer j there
are palindromes a, b such that (ab)j is a factor of w and ab is a nonempty word.

Corollary 1. If w ∈ AN, k ∈ N, and k ≥ max{PL(t) | t ∈ Fac(w)} then for
each j ∈ N there are a ∈ Pal and b ∈ Pal+ such that (ab)j ∈ Fac(w).

Proof. Just take Σ = Ω(w, k). Obviously limn→∞ (τ(n, k) − ln n) = ∞. Then
Proposition 2 implies the corollary.

4 Palindromic Length of Concatenation

In this section we present some known results about the palindromic length of
concatenation of two words.

The first lemma shows the very basic property of the palindromic length that
the palindromic length of concatenation of two words x and y is smaller than or
equal to the sum of palindromic length of x and y. We omit the proof.

Lemma 3. If x, y ∈ A∗ then PL(xy) ≤ PL(x) + PL(y).
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An another basic property says that if (t1, t2, . . . , tk) ∈ MPF(w) is a minimal
palindromic factorization of the word w then the palindromic length of the factor
titi+1 . . . tj is equal to j − i + 1 for each i, j ∈ {1, 2, . . . , k} and i ≤ j. We omit
the proof.

Lemma 4. If w ∈ A+, k = PL(w), and (t1, t2, . . . , tk) ∈ MPF(w) then for each
i, j ∈ {1, 2, . . . , k} with i ≤ j we have that PL(titi+1 . . . tj) = j − i + 1.

The following result has been proved in [11]. It says that if x, y are words then
the palindromic length of y is the maximal absolute difference of palindromic
lengths of x and xy; i.e. |PL(x) − PL(xy)| ≤ PL(y).

Lemma 5 (see [11, Lemma 6]). If x, y ∈ A∗ then

– PL(y) ≤ PL(x) + PL(xy) and
– PL(x) ≤ PL(y) + PL(xy).

We have two following immediate corollaries of Lemma 5.

Corollary 2. If x, y ∈ A∗ and y ∈ Pal then |PL(xy) − PL(x)| ≤ 1.

Proof. It is enough to consider y in Lemma 5 to be a palindrome. Thus we have
PL(y) = 1 if y �= ε or PL(y) = 0 if y = ε. The corollary follows.

Corollary 3. If x, y ∈ A∗ and xy ∈ Pal then |PL(x) − PL(y)| ≤ 1.

Proof. If x = yR then PL(x) − PL(y) = 0, because clearly PL(y) = PL(yR).
Suppose that x �= yR. It follows that |x| �= |y|, since xy ∈ Pal. Without loss of
generality suppose that |x| > |y|. Let x̄ be such that x = yRx̄. Then xy = yRx̄y.
Thus x̄ ∈ Pal+. Corollary 2 implies that |PL(yRx̄) − PL(y)| ≤ 1. The corollary
follows.

5 Concatenation of Periodic Palindromes

To simplify the notation of the next two lemmas and the theorem we define an
auxiliary set Δ. Let Δ be the set of all 4-tuples (u, d, v, n) such that

– d ∈ Pal+,
– v ∈ Pal,
– u ∈ Suf(d) \ {ε},
– n ∈ N,
– |dv| = MinPer(dvd), and
– n ≥ 3PL(u).

Remark 2. The set Δ contains all 4-tuples (u, v, d, n) such that d is a nonempty
palindrome, v is a palindrome (possibly empty), u is a nonempty suffix of d,
|dv| is the minimal period of the word dvd, and n is a positive integer such that
n ≥ 3PL(u). It follows that n ≥ 3, since u is nonempty and thus PL(u) ≥ 1.
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Lemma 6. If (u, v, d, n) ∈ Δ, r ∈ Fac(u(vd)n), and |r| ≥ 3|vd| then dvd ∈
Fac(r).

Proof. Let w̄ = u(vd)n, let p ∈ Prf(r) be such that |p| = 3|vd|, and let ī, j̄ ∈
{1, 2, . . . , |w̄|} be such that p = w̄[̄i, j̄]. Let ū ∈ Prf(d) be such that d = ūu.
Note that |uvū| = |vd| and thus (uvū, β) ∈ Period(w̄), where β = |w̄|

|uvū| > 1.
Let k ∈ N0 and w ∈ Suf(w̄) be such that w̄ = (uvū)kw, ī > |(uvū)k|,

and ī ≤ |(uvū)k+1|. Obviously such k and w exist. Let i = ī − k|uvū| and
j = j̄ − k|uvū|. It is easy to see that p = w[i, j].

We distinguish:

– If i ∈ {1, 2, . . . , |u|} then p = tvdvdvt̄ for some t ∈ Suf(u) and for t̄ such that
d = t̄t.

– If i ∈ {|u|+1, |u|+2, . . . , |uv|} then p = tdvdvdt̄ for some t ∈ Suf(v) and for
t̄ such that v = t̄t.

– If i ∈ {|uv| + 1, |uv| + 2, . . . , |uv| + |ū|} then p = tvdvdvt̄ for some t ∈ Suf(d)
and for t̄ such that d = t̄t.

In all three cases one can see that dvd ∈ Fac(p). It is easy to see that if dvd ∈
Fac(p) then dvd ∈ Fac(r) for each r ∈ Fac(w) with p ∈ Prf(r). The lemma
follows.

Remark 3. Note in the previous proof that with the condition |r| ≥ |(vd)2|
it would be possible that dvd �∈ Fac(p). In the cases 1 and 3 we would have
p = tvdvt̄. That is why the condition |r| ≥ |(vd)3| is necessary. For this reason
in the definition of Δ we state that n ≥ 3PL(u).

The next lemma shows that if (u, v, d, n) ∈ Δ, k is the palindromic length of
u, and (t1, t2, . . . , tk) ∈ MPF(u(vd)n) is a minimal palindromic factorization of
u(vd)n then there is j ∈ {1, 2, . . . , k} such that tj is a palindrome having the
factor dvd in the “center” of tj ; formally tj = pd(vd)γpR for some positive
integer γ and for some proper suffix p of dv.

Lemma 7. If (u, v, d, n) ∈ Δ, w = u(vd)n, k = PL(w), and (t1, t2, . . . , tk) ∈
MPF(w) then there are j ∈ {1, 2 . . . , k}, p ∈ Suf(dv)\{dv}, and γ ∈ N such that
tj = pd(vd)γpR.

Proof. Suppose that |ti| < 3|vd| for each i ∈ {1, 2, . . . , k}. It follows that

|t1t2 . . . tk| < 3k|vd|.

Since u(vd)n = t1t2 . . . tk and n ≥ 3k ≥ 3 it is a contradiction. It follows
that there is j such that |tj | ≥ |(vd)3|. Lemma 6 asserts that dvd ∈ Fac(tj).
Then clearly there are γ ∈ N and p1, p2 ∈ A∗ such that p1 ∈ Suf(dv) \ {dv},
p2 ∈ Prf(vd) \ {vd}, and tj = p1d(vd)γp2.

To get a contradiction suppose that p1 �= pR
2 . Without loss of generality

suppose that |p1| > |p2|. It follows that p2 ∈ Prf(pR
1 ). Obviously p1d(vd)γpR

1 ∈
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Pal. Thus we have two palindromes p1d(vd)γpR
1 and p1d(vd)γp2. Lemma 2 implies

that p1d(vd)γpR
1 is periodic with a period

δ = |p1d(vd)γpR
1 | − |p1d(vd)γp2| = |p1| − |p2|.

Clearly δ < |dv|. This is a contradiction to the condition |dv| = MinPer(dvd),
see Definition of Δ. We conclude that p1 = pR

2 . The lemma follows.

We step to the main theorem of the article.

Theorem 1. If (u, v, d, n) ∈ Δ, m = PL(u), and w = u(vd)n then PL(w) ≥
m.

Proof. Let (t1, t2, . . . , tk) ∈ MPF(w). Lemma 7 asserts that there are γ ∈ N,
j ∈ {1, 2, . . . , k}, and p ∈ Suf(dv) \ {dv} such that tj = pd(vd)γpR.

Let a ∈ Prf(w) and b ∈ Suf(w) be such that w = atjb. Realize that a =
t1t2 . . . tj−1 and b = tj+1tj+2 . . . tk. Note that a or b can be the empty word;
then j = 1 or j = k respectively. Lemma 4 implies that

PL(w) = PL(t1t2 . . . tj−1) + PL(tj) + PL(tj+1tj+2 . . . tk) =
PL(a) + PL(tj) + PL(b).

(12)

We distinguish three distinct cases.

1. u �∈ Prf(a): This case is depicted in Table 1. Let u2 ∈ Suf(u) be such that
u = au2. Let p̄ ∈ Suf(d) be such that p̄u2 = d. It follows that uR

2 p̄R = d
and pRp̄R = vd.
Then we have that uR

2 b = uR
2 p̄R(vd)β = d(vd)β ∈ Pal+ for some β ∈ N0.

Hence PL(uR
2 p̄R(vd)β) = 1. In consequence PL(u2) ≥ PL(b) − 1 and

PL(b) ≥ PL(u2) − 1, (13)

since PL(uR
2 ) = PL(u2) and uR

2 b ∈ Pal+; see Corollary 3.
Lemma 3 implies that

PL(a) + PL(u2) ≥ PL(u). (14)

From (12), (13), and (14) we have that

PL(w) = PL(a) + PL(tj) + PL(b) ≥ PL(a) + 1 + PL(u2) − 1 ≥ PL(u).

Table 1. Case 1: The structure of the word w with u �∈ Prf(a).

a tj b

a p d(vd)γ pR p̄R (vd)β

a u2 v d(vd)γ v uR
2 p̄R (vd)β

u (vd)γ+1 v d (vd)β
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2. u ∈ Prf(a) and p ∈ Suf(v): This case is depicted in Table 2. Let p̄ ∈ Prf(v) be
such that p̄p = v. Note that if p = v then p̄ = ε, and if p = ε then p̄ = v.
It is easy to verify that b = p̄Rd(vd)β for some β ∈ N0 and a = u(vd)αp̄ for
some α ∈ N0.
Let ā be such that a = uā. We have that ā = (vd)αp̄ and b = p̄Rd(vd)β . It
follows that either ā = bRd(vd)δ or b = āRd(vd)δ for some δ ∈ N0.
Since d(vd)δ ∈ Pal, Corollary 2 implies that

|PL(ā) − PL(b)| ≤ 1. (15)

It follows from Lemma 5 that

PL(a) + PL(ā) ≥ PL(u). (16)

From (12), (15), and (16) we have that

PL(w) = PL(a) + PL(tj) + PL(b) ≥ PL(a) + 1 + PL(ā) − 1 ≥ PL(u).

Table 2. Case 2: The structure of the word w with u ∈ Prf(a) and p ∈ Suf(v).

a tj b

u (vd)α p̄ p d(vd)γ pR p̄R d(vd)β

ā v

3. u ∈ Prf(a) and p �∈ Suf(v): This case is depicted in Table 3. Since p ∈ Suf(vd)\
{vd} and p �∈ Suf(v) it follows that p ∈ Suf(dv) \ (Suf(v) ∪ {dv}).

Table 3. Case 3: The structure of the word w with u ∈ Prf(a) and p �∈ Suf(v).

a tj b

u v(dv)α p̄ p d(vd)γ pR p̄R (vd)β

ā vd

Let p̄ ∈ Prf(d) be such that p̄p = dv and consequently pRp̄R = vd. Then
a = u(vd)αp̄ for some α ∈ N0 and b = p̄(vd)β for some β ∈ N0.
Let ā be such that a = uā. We have that ā = v(dv)αp̄. It follows that either
ā = bR(vd)δv or b = āR(vd)δv for some δ ∈ N0.
The rest of the proof of Case 3 is analogue to Case 2: Since v(dv)δ ∈ Pal,
Corollary 2 implies that

|PL(ā) − PL(b)| ≤ 1. (17)
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It follows from Lemma 5 that

PL(a) + PL(ā) ≥ PL(u). (18)

From (12), (17), and (18) we have that

PL(w) = PL(a) + PL(tj) + PL(b) ≥ PL(a) + 1 + PL(ā) − 1 ≥ PL(u).

We proved for each case that PL(w) ≥ PL(u). Since obviously for each u and
each p one of the three cases applies, this completes the proof.
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Abstract

Let expk,α denote a tetration function defined as follows: exp1,α =
2α and expk+1,α = 2exp

k,α
, where k, α are positive integers. Let ∆n

denote an alphabet with n letters. If L ⊆ ∆∗
n is an infinite language

such that for each u ∈ L there is v ∈ L with |u| < |v| ≤ expk,α |u| then

we call L a language with the growth bounded by (k, α)-tetration.

Given two infinite languages L1, L2 ∈ ∆∗
n, we say that L1 dissects

L2 if |L1 ∩ L2| = ∞ and |(∆∗
n \L1) ∩ L2| = ∞.

Given a context free language L, let κ(L) denote the size of the

smallest context free grammar G that generates L. We define the size

of a grammar to be the total number of symbols on the right sides of

all production rules.

Given positive integers n, k with k ≥ 2, we show that there are

context free languages L1, L2, . . . , L3k−3 ⊆ ∆∗
n with κ(Li) ≤ 40k such

that if α is a positive integer and L ⊆ ∆∗
n is an infinite language with

the growth bounded by (k, α)-tetration then there is a regular language

M such that M ∩
(⋂3k−3

i=1 Li

)
dissects L and the minimal deterministic

finite automaton accepting M has at most k + α + 3 states.
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1 Introduction

In the theory of formal languages, the regular and the context free languages
constitute a fundamental concept that attracted a lot of attention in the
past several decades. Recall that every regular language is accepted by some
deterministic finite automaton and every context free language is accepted
by some pushdown automaton.

In contrast to regular languages, the context free languages are closed
neither under intersection nor under complement. The intersection of context
free languages have been systematically studied in [4, 6, 9, 10, 11]. Let CFLk

denote the family of all languages such that for each L ∈ CFLk there are
k context free languages L1, L2, . . . , Lk with L =

⋂k
i=1 Li. For each k, it

has been shown that there is a language L ∈ CFLk+1 such that L 6∈ CFLk.
Thus the k-intersections of context free languages form an infinite hierarchy
in the family of all formal languages lying between context free and context
sensitive languages [6].

One of the topics in the theory of formal languages that has been studied
is the dissection of infinite languages. Let ∆n be an alphabet with n letters,
and let L1, L2 ⊆ ∆∗

n be infinite languages. We say that L1 dissects L2 if
|L1 ∩ L2| = ∞ and |(∆∗

n \L1) ∩ L2| = ∞. Let C be a family of languages.
We say that a language L1 ∈ ∆∗

n is C-dissectible if there is L2 ∈ C such
that L2 dissects L1. Let REG denote the family of regular languages. In
[12] the REG-dissectibility has been investigated. Several families of REG-
dissectible languages have been presented. Moreover it has been shown that
there are infinite languages that cannot be dissected with a regular language.
Also some open questions for REG-dissectibility can be found in [12]. For
example it is not known if the complement of a context free languages is
REG-dissectible.

There is a related longstanding open question in [1]: Given two context
free languages L1, L2 ⊆ ∆∗

n such that L1 ⊂ L2 and L2 \ L1 is an infinite
language, is there a context free language L3 such that L3 ⊂ L2, L1 ⊂ L3,
and both the languages L3 \ L1 and L2 \ L3 are infinite? This question was
mentioned also in [12].

Some other results concerning the dissection of infinite languages may
be found in [5]. A similar topic is the constructing of minimal covers of
languages [2]. Recall that a language L1 ⊆ ∆∗

n is called C-immune if there is
no infinite language L2 ⊆ L1 such that L2 ∈ C. The immunity is also related
to the dissection of languages; some results on this theme can be found in
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[3, 7, 11].
Let N denote the set of all positive integers. An infinite language L ⊆ ∆∗

n

is called constantly growing, if there is a constant c0 ∈ N and a finite set
K ⊂ N such that for each w ∈ L with |w| ≥ c0 there is a word w̄ ∈ L and
a constant c ∈ K such that |w̄| = |w| + c. We say also that L is (c0, K)-
constantly growing. In [12], it has been proved that every constantly growing
language L is REG-dissectible.

We define a tetration function (a repeated exponentiation) as follows:
exp1,α = 2α and expj+1,α = 2exp

j,α
, where j ∈ N. The tetration function is

known as a fast growing function. If k, α are positive positive integers and
L ⊆ ∆∗

n is an infinite language such that for each u ∈ L there is v ∈ L with
|u| < |v| ≤ expk,α |u| then we call L a language with the growth bounded by
(k, α)-tetration.

Let L ⊆ ∆∗
n be an infinite language with the growth bounded by (k, α)-

tetration, where k ≥ 2. In the current article we show that there are:

• an alphabet Σ2k−1 with |Σ2k−1 | = 2k − 1,

• an erasing alphabetical homomorphism υ : Σ∗
2k−1 → ∆∗

1,

• a nonerasing alphabetical homomorphism π : ∆∗
n → ∆∗

1, and

• 3k − 3 context free languages L1, L2, . . . , L3k−3 ⊆ Σ∗
2k−1

such that the homomorphic image υ(
⋂3k−3

i=1 Li) dissects the homomorphic
image π(L). Thus we may say that the languages with the growth bounded
by a (k, α)-tetration are CFL3k−3-dissectible.

We sketch the basic ideas of our proof. Recall that a non-associative
word on the letter z is a “well parenthesized” word containing a given num-
ber of occurrences of z. It is known that the number of non-associative
words containing n + 1 occurrences of z is equal to the n-th Catalan num-
ber [8]. For example for n = 3 we have 5 distinct non-associative words:
(((zz)z)z), ((zz)(zz)), (z(z(zz))), (z((zz)z)), and ((z(zz))z). Every non-
associative word contains the prefix (kz for some k ∈ N, where (k denotes
the k-th power of the opening bracket. It is easy to verify that there are
non-associative words such that k equals “approximately” log2 n. We con-
struct three context free languages whose intersection accepts such words;
we call these words balanced non-associative words. By counting the number
of opening brackets of a balanced non-associative word with n occurrences
of z we can compute a logarithm of n.
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Let log
(1)
2 n = log2 n and log

(j+1)
2 n = log

(j)
2 (log2 n). Our construction

can be “chained” so that we construct 3k − 3 context free languages, whose
intersection accepts words with n occurrences of z and a prefix xj z̄, where
j is equal “approximately” to log

(k)
2 n and z̄ 6= x. If L is a language with

the growth bounded by a (k, α)-tetration then the language L̄ = {xj | j =

⌈log(k)2 |w|⌉ and w ∈ L} is constantly growing. Less formally said, by means
of intersection of 3k − 3 context free languages we transform the challenge
of dissecting a language with the growth bounded by (k, α)-tetration to the
challenge of dissecting a constantly growing language. This approach allows
us to prove our result.

2 Preliminaries

Let R+ denote the set of all positive real numbers.
Let Bk = {x1, x2, . . . , xk} be an ordered alphabet (set) of k distinct open-

ing brackets, and let B̄k = {y1, y2, . . . , yk} be an ordered alphabet (set) of k
distinct closing brackets. We define the alphabet Σ2k−1 = Bk ∪(B̄k \ {y1)}).
The alphabet Σ2k−1 contains all opening brackets Bk and all the closing
brackets without the the first one B̄k \{y1}. It follows that |Σ2k−1 | = 2k−1.

Let ǫ denote the empty word. Given a finite alphabet S, let S+ denote the
set of all finite nonempty words over the alphabet S and let S∗ = S+ ∪ {ǫ}.

Let Fac(w) denote the set of all factors a word w ∈ S∗. We define that
ǫ, w ∈ Fac(w); i.e. the empty word and the word w are factors of w. Let
Pref(w) ⊆ Fac(w) denote the set of all prefixes of w ∈ S∗. We define that
ǫ, w ∈ Pref(w). Let Suf(w) ⊆ Fac(w) denote the set of all suffixes of w ∈ S∗.
We define that ǫ, w ∈ Suf(w). Given a finite alphabet S, let occur(w, t)
denote the number of occurrences of the nonempty factor t ∈ S+ in the word
w ∈ S∗; formally occur(w, t) = |{v ∈ Suf(w) | t ∈ Pref(v)}|.

Given two finite alphabets S1, S2, a homomorphism from S∗
1 to S∗

2 is a
function τ : S∗

1 → S∗
2 such τ(ab) = τ(a)τ(b), where a, b ∈ S+

1 . It follows
that in order to define a homomorphism τ , it suffices to define τ(z) for every
z ∈ S1; such definition “naturally” extends to every word a ∈ S+

1 . We say that
τ is a nonerasing alphabetical homomorphism if τ(z) ∈ S2 for every z ∈ S1.
We say that τ is an erasing alphabetical homomorphism if τ(z) ∈ S2 ∪ {ǫ}
for every z ∈ S1 and there is at least one z ∈ S1 such that τ(z) = ǫ.
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3 Balanced non-associative words

Suppose k,m ∈ N, where k,m ≥ 2, and k ≥ m. To simplify the notation
we define x = xm, y = ym, and z = xm−1; it means that x denotes the
m-th opening bracket, y denotes the m-th closing bracket, and z denotes the
m − 1-th opening bracket.

Let µk,m : Σ∗
2k−1 → Σ∗

2k−1 be an erasing alphabetical homomorphism
defined as follows:

• µk,m(z) = z,

• µk,m(x) = x,

• µk,m(y) = y.

• µk,m(a) = ǫ, where a ∈ Σ2k−1 \{x, y, z}.

Given a language L ⊆ Σ∗
2k−1, we define the language µk,m(L) = {µk,m(w) |

w ∈ L}.

Remark 3.1. For given k,m the erasing alphabetical homomorphism µk,m

sends all opening and closing brackets from Bk and B̄k to the empty string
with the exception of x, y, and z.

Let Nawk,m ⊆ Σ∗
2k−1 be the context free language generated by the fol-

lowing context free grammar, where S is a start non-terminal symbol, N is
a non-terminal symbol, and x, y, z, a are terminal symbols (the letters from
Σ2k−1).

• S → N xNSSN yN | NxN zN yN | N xN zN zN yN,

• N → aN | ǫ, where a ∈ Σ2k−1 \{x, y, z}.

We call the words from Nawk,m non-associative words over the opening
bracket x, the closing bracket y, and the letter z.

Remark 3.2. Let M = µk,m(Nawk,m). To understand the definition of
Nawk,m, note that the language M is generated by the context free gram-
mar defined by: S → x SS y | xzy | xzzy. To see this, just remove the
non-terminal symbol N in the definition of Nawk,m. The usage of the non-
terminal symbol N allows to “insert” between any two letters of a word from
µk,m(Nawk,m) the words from K = (Σ2k−1 \{x, y, z})∗; the set K contains
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words from Σ∗
2k−1 that have no occurrence of x, y, z. It means that if w =

w1w2 . . . wn ∈ µk,m(Nawk,m), then t0w1t1w2t2 . . . tn−1wntn ∈ Nawk,m, where
wi ∈ {x, y, z} and ti ∈ K.

The reason for the name “non-associative words” is the obvious similarity
between the words from M and the “standard non-associative words” men-
tioned in the introduction section. Our definition guarantees that w1xzyw2 ∈
M if and only if w1xzzyw2 ∈ M for every w1, w2 ∈ {x, z, y}∗.

Recall that a pushdown automaton is a 6-tuple (Q,∆,Γ, q0, S, δ), where

• Q is a set of states,

• ∆ is an input alphabet,

• Γ is a stack alphabet,

• q0 ∈ Q is an input state,

• S ∈ Γ is the initial symbol of the stack,

• δ : (Q×∆×Γ) → (Q,Γ∗) is a transition function.

We define that a pushdown automaton accepts a word by the empty stack,
hence we do not need to define the set of final states. Given a pushdown
automaton g, let AL(g) ⊆ ∆∗ denotes the language accepted by g.

Let Λk,m = AL(gk,m) ⊆ Σ∗
2k−1 denote the context free language accepted

by the pushdown automaton gk,m = (Q,Σ2k−1,Γ, qS, S, δ), where:

• Q = {qS, qB, q0, qx, qr},

• Γ = {S, X},

• δ(q, a, u) → (q, u), where q ∈ Q, u ∈ Γ, and a ∈ Σ2k−1 \{x, y, z},

• δ(qS, x, u) → (qB, u), where u ∈ Γ,

• δ(qS, z, u) → (qS, u), where u ∈ Γ,

• δ(qS, y, u) → (qS, u), where u ∈ Γ,

• δ(qB, x, u) → (qx, uXX), where u ∈ Γ,

• δ(qB, z, u) → (qS, u), where u ∈ Γ,
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• δ(qB, y, u) → (qS, u), where u ∈ Γ,

• δ(q0, x, u) → (qx, u), where u ∈ Γ,

• δ(q0, z, u) → (q0, u), where u ∈ Γ,

• δ(q0, y, u) → (q0, u), where u ∈ Γ,

• δ(qx, x, u) → (qx, uX), where u ∈ Γ,

• δ(qx, z, X) → (q0, ǫ),

• δ(qx, z, S) → (qr, X), where u ∈ Γ,

• δ(qx, y, u) → (q0, u), where u ∈ Γ, and

• δ(qr, a, u) → (qr, u), where r ∈ Σ2k−1 and u ∈ Γ.

Remark 3.3. Note in the definition of gk,m that the letters from Σ2k−1 \{x, y, z}
change neither the state of gk,m nor the stack. Hence to illuminate the be-
havior of gk,m, we can consider only words over the alphabet {x, y, z}. Then
it is easy to see that the pushdown automaton gk,m pushes XX on the stack
on the first occurrence of xx. For every other occurrence of xx the pushdown
automaton gk,m pushes X on the stack. Once reached the state qx, then for
every occurrence of xz one X is removed from the stack. The state qr works
as a refuse state. Note that after reaching the state qr the stack is not empty,
the stack cannot be changed, and no other state can be reached from qr. The
states qS and qB enable to recognize the first occurrence of xx. Once the
states qx are reached, the states qS and qB can not be reached any more.

Thus the pushdown automaton gk,m accepts all words, where the number
of occurrences of xz after the first occurrence of xx is exactly one more than
the number of occurrences of xx. Formally, if w ∈ µk,m(Σ

∗
2k−1) then we define

w̄ as follows:

• If occur(w, xx) = 0 then w̄ = ǫ.

• If occur(w, xx) ≥ 1 then let w̄ ∈ Suf(w) be such that xx ∈ Pref(w̄) and
occur(w̄, xx) = occur(w, xx).

Clearly w̄ is uniquely defined. Then we have that w ∈ µk,m(Λk,m) if and
only if w̄ = ǫ or occur(w̄, xx) + 1 = occur(w̄, xz). It follows that the words
without any occurrence of xx are accepted. In the following we will consider
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the words from the intersection U = Λk,m ∩Nawk,m. Note that there are only
two nonempty words xzy, xzzy ∈ U , that have no occurrence of xx.

Recall that a “standard” non-associative word can be represented as a full
binary rooted tree graph, where every inner node represents a corresponding
pair of brackets and every leaf represents the letter z [8]. It is known that the
number of inner nodes plus one is equal to the number of leaves in a full binary
rooted tree graph. In the case of non-associative words from Nawk,m, let the
leaves represent the factors xzy and xzzy. Then the number of occurrences
of xz is equal to the number of leaves and the number of occurrences of xx is
equal to the number of inner nodes. Hence the intersection M ∩Nawk,m con-
tains non-associative words that have no “unnecessary” brackets; for example
xzzy, xxzzyy, xxxzzyyy ∈ Nawk,m, xzzy ∈ M and xxzzyy, xxxzzyyy 6∈ M .

Let Balk,m ⊆ Σ∗
2k−1 be the context free language generated by the follow-

ing context free grammar, where S is a start non-terminal symbol, N,K, V, P
are non-terminal symbols, and x, y, z, a are terminal symbols (the letters from
Σ2k−1).

• S → KV P ,

• V → V V | N zN | N zTzN | ǫ,

• T → N yNT N xN | ǫ,

• K → KK | N xN | ǫ,

• P → PP | N yN | ǫ,

• N → aN | ǫ, where a ∈ Σ2k−1 \{x, y, z}.

We call the words from Balk,m balanced words.

Remark 3.4. Let M = µk,m(Balk,m). It is easy to see that the words from
the language M contains no factor of the form zyixjz, where i, j are distinct
positive integers; hence the name “balanced” words. The non-terminal sym-
bols K,P enable that if w ∈ M then w has a prefix xi and a suffix yj for all
i, j ∈ N ∪ {0}.

The non-terminal symbol N in the definition of Balk,m has the same pur-
pose like in the definition of Nawk,m.
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Let
Ωk,m = Nawk,m ∩Balk,m ∩Λk,m.

We call the words from Ωk,m balanced non-associative words over the opening
bracket x, the closing bracket y, and a letter z.

Let Ωk,m(n) = {w ∈ Ωk,m | occur(w, z) = n}, where n ∈ N. The set
Ωk,m(n) contains the balanced non-associative words having exactly n occur-
rences of the letter z.

Given a word w ∈ Σ∗
2k−1 and a ∈ Σ2k−1, let

height(w, a) = max{j | aj ∈ Fac(w)}.

The height of a word w is the maximal power of the letter a, that is a factor
of w. We show that if w ∈ µk,m(Ωk,m) and h is the height the opening bracket
x in w then xh is a prefix of w and yh is a suffix of w.

Lemma 3.5. If w ∈ µk,m(Ωk,m) and h = height(w, x) then xh ∈ Pref(w) and
yh ∈ Suf(w).

Proof. Note that µk,m(Ωk,m) ⊆ Ωk,m. Since Ωk,m ⊆ Nawk,m, there is h̄ ∈ N
such that xh̄z ∈ Pref(w). To get a contradiction suppose that h̄ < h. Because
Ωk,m ⊆ Balk,m it follows that w = xh̄w1zy

hxhzw2 for some w1 ∈ Fac(w) with
z ∈ Pref(w1z) and w2 ∈ Suf(w).

Consider the prefix r = xh̄w1zy
h. Obviously w1z ∈ µk,m(Balk,m). It

is easy to see that if v ∈ µk,m(Balk,m), x 6∈ Pref(v), and y 6∈ Suf(v) then
occur(v, x) = occur(v, y). Thus occur(w1z, x) = occur(w1z, y). It follows
that occur(r, x) < occur(r, y).

This is a contradiction, since for every prefix v ∈ Pref(w) of a non-
associative word w ∈ Nawk,m we have that occur(v, x) ≥ occur(v, y). We
conclude that h̄ = h and xh ∈ Pref(w). In an analog way we can show that
yh ∈ Suf(w). This completes the proof.

For a word w ∈ µk,m(Ωk,m), we show the relation between the height of
w and the number of occurrences of z in w.

Proposition 3.6. If w ∈ µk,m(Ωk,m) and h = height(w, x) then

2h−1 ≤ occur(w, z) ≤ 2h.

Proof. We prove the proposition for all h by induction:

9



• If h = 0 then w = ǫ.

• If h = 1 then w ∈ {xzzy, xzy}.

• If h = 2 then w ∈ {xxzyxzyy, xxzzyxzyy, xxzyxzzyy, xxzzyxzzyy}.

Thus the proposition holds for h ≤ 2. Since Ωk,m ⊆ Λk,m, clearly we have
that if h ≥ 2 then w = xw1w2y, where w1, w2 ∈ µk,m(Ωk,m). Suppose the
proposition holds for all h̄ < h. We prove the proposition holds for h.

Let h1 = height(w1, x) and h2 = height(w2, x). Lemma 3.5 implies
that xh1 ∈ Pref(w1), yh1 ∈ Suf(w1), xh2 ∈ Pref(w2), and yh2 ∈ Suf(w2).
Since w ∈ µk,m(Balk,m) it follows that h1 = h2. Because xh1 ∈ Pref(w1)
we have that xh1+1 ∈ Pref(w). Clearly occur(w, xh1+1) = 1; note that
occur(w1w2, x

h1+1) = 0. Thus h1 + 1 = h. For we assumed that the proposi-
tion holds for all h̄ < h, we can derive that

occur(w, z) = occur(w1, z) + occur(w2, z) ≤ 2h1 + 2h1 = 2h1+1 = 2h

and

occur(w, z) = occur(w1, z) + occur(w2, z) ≥ 2h1−1 + 2h1−1 = 2h1 = 2h−1.

This completes the proof.

Proposition 3.6 have the following obvious corollary.

Corollary 3.7. If n ∈ N, w ∈ µk,m(Ωk,m(n)), and h = height(w, x) then

log2 n ≤ h ≤ 1 + log2 n.

Given w, u, v ∈ Σ+
2k−1, let replace(w, v, u) denote the word built from w

by replacing the first occurrence of v in w by u. Formally, if occur(w, v) = 0
then replace(w, v, u) = w. If occur(w, v) = j > 0 and w = w1vw2, where
occur(vw2, v) = j then replace(w, v, u) = w1uw2.

We prove that the set of balanced non-associative words Ωk,m(n) having
n occurrences of z is nonempty for each n ∈ N.

Lemma 3.8. If n ∈ N then Ωk,m(n) 6= ∅.
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Proof. If n = 1 then xzy ∈ Ωk,m(1). Given n ∈ N with n > 1, let j ∈
N be such that 2j−1 < n ≤ 2j . Obviously such j exists and is uniquely
determined. Let w1 = xzzy. Let wi+1 = xwiwiy. Clearly occur(wj, z) = 2j

and wj ∈ Ωk,m(2
j). Note that occur(wj, xzzy) = 2j−1. Let wj,0 = wj and

wj,i+1 = replace(wj,i, xzzy, xzy), where i ∈ N ∪ {0} and i ≤ 2j−1. Let α =
2j−n. Then one can easily verify that occur(wj,α, z) = n and wj,α ∈ Ωk,m(n).

Less formally said, we construct a balanced non-associative word wj hav-
ing 2j−1 occurrences of xzzy and then we replace a given number of oc-
currences of xzzy with the factor xzy to achieve the required number of
occurrences of z. This completes the proof.

4 Intersection of balanced non-associative words

Let Ωk =
⋂k

m=2 Ωk,m and let Ωk(n) = {w ∈ Ωk | occur(w, x1) = n}. We show
that for all positive integers n, k with k ≥ 2 there is a word w ∈ Ωk such that
w has n occurrences of the opening bracket x1.

Proposition 4.1. If k, n ∈ N and k ≥ 2 then Ωk(n) 6= ∅.

Proof. Let h(1) = n. Let wi ∈ µk,i(Ωk,i(h(i−1)) and let h(i) = height(wi, xi),
where i ∈ {2, 3, 4, . . . , k}. Lemma 3.8 implies that such wi exist.

Let v2 = w2. Let vj+1 = replace(vj , x
h(j)
j , wj+1), where j ∈ N and j ≥ 2.

Lemma 3.5 implies that xh(j) ∈ Pref(vj). Note that µk,j(vj + 1) = µk,j(vj).
Then it is quite straightforward to see that vk ∈ Ωk and occur(vk, x1) = n.
Less formally said, with every iteration we construct a non-associative word
by “well parenthesizing” the prefix x

h(i)
i with the opening bracket xi+1 and

the closing bracket yi+1. This completes the proof.

To clarify the proof of Proposition 4.1, let us see the following example.

Example 4.2. Let n = 23 and k = 4. To make the example easy to read, we
define B4 = {z, (, [, <} and B̄4 = {z̄, ), ], >}. It means that x1 = z, x2 = (,
x3 = [, x4 =<, x̄1 = z̄, x̄2 =), x̄3 =], and x̄4 =>.

To fit the example into the width of the page, we define auxiliary words
u1 and u2:

• u1 = z)(z))((z)(z)))(((z)(z))((z)(z)))),

• u2 = ((((z)(zz))((zz)(zz)))(((zz)(zz))((zz)(zz))))).
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Then we have that

• h(1) = 23; w2 = (((((u1u2; h(2) = 5; w3 = [[[(][(]][[(][((]]];

• h(3) = 3; w4 =<< [[>< [[>>; h(4) = 2; v2 = w2; v3 = [[[(][(]][[(][((]]]u1u2;

• v4 =<< [>< [[>> (][(]][[(][((]]]]u1u2.

This ends the example.

We define two technical functions log
(j)
2 t and log

[j]
2 t for all j ∈ N and

t ∈ R+ as follows:

• log
(1)
2 t = log2 t and log

(j+1)
2 t = log

(j)
2 (log2 t).

• log
[1]
2 t = 1 + log2 t and log

[j+1]
2 t = log

[j]
2 (1 + log2 t).

It is a simple exercise to prove the following lemma. We omit the proof.

Lemma 4.3. If j ∈ N then for each t ∈ R+ with t ≥ 1 we have that

log
(j)
2 t ≤ log

[j]
2 t ≤ j + log

(j)
2 t.

Using the function log
(k)
2 t we present an upper and a lower bound for the

height of words from Ωk.

Proposition 4.4. If k ∈ N and k ≥ 2 then for each w ∈ Ωk, h = height(w, xk),
and n = occur(w, x1) we have

log
(k)
2 n ≤ h ≤ k + log

(k)
2 n.

Proof. It follows from Corollary 3.7 that log
(k)
2 n ≤ h ≤ log

[k]
2 n. Then the

proposition follows from Lemma 4.3.

5 Dissection by a regular language

In [12] it was shown that every constantly growing language can be dissected
by some regular language.

Lemma 5.1. (see [12, Lemma 3.3]) Every infinite constantly growing lan-
guage is REG-dissectible.
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From the proof of Lemma 3.3 in [12] we can formulate the following
Lemma.

Lemma 5.2. If n, c0 ∈ N, K ⊂ N, |K| < ∞, c = max{j ∈ K}, and L ⊆ ∆∗
n

is a (c0, K)-constantly growing language then there are j1, j2 ∈ {0, 1, 2, . . . , c}
such that j1 6= j2 and both sets H1, H2 are infinite, where

Hi = {w | w ∈ L and |w| ≡ ji (mod c+ 1)} and i ∈ {1, 2}.

6 Tetration

Recall that a deterministic finite automaton g is 5-tuple (Q,∆, q0, δ,F), where
Q is the set of states, ∆ is an input alphabet, q0 is the initial state, δ is a
transition function, and F is the set of accepting states. Let AL(g) denote
the language accepted by g; AL(g) is a regular language.

We prove that if L ⊆ Ωk is an infinite language of balanced non-associative
words with the number of occurrences of x1 “bounded” by (k, α)-tetration
then L can be dissected by a regular language.

Proposition 6.1. If k, α ∈ N, k ≥ 2, and L ⊆ Ωk is an infinite language
such that for each w1 ∈ L there is w2 ∈ L with occur(w1, x1) < occur(w2, x2)
and occur(w2, x1) ≤ expk,α occur(w1, x1) then there is a regular language R
such that R dissects L and the minimal deterministic finite automaton ac-
cepting R has at most k + α + 3 states.

Proof. Let w1, w2 ∈ L be such that

n2 ≤ expk,α n1, (1)

where n1 = occur(w1, x1) and n2 = occur(w2, x1).
Let h1 = height(µk,k(w1), xk) and h2 = height(µk,k(w2), xk). Proposition

4.4 implies that

log
(k)
2 n1 ≤ h1 and h2 ≤ k + log

(k)
2 n2 (2)

From (1) and (2) we have that

h2 ≤ k + log
(k)
2 n2 ≤ k + log

(k)
2 (expk,α n1). (3)
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Realize that log2(exp
j,α) = expj−1,α and that if a, b ∈ R+ and a, b ≥ 2

then a+ b ≤ ab. Then we have that

log
(j)
2 (expj,α n1) = log

(j−1)
2 (expj−1,α+ log2 n1) ≤ log

(j−1)
2 (expj−1,α log2 n1).

(4)
From (4) it follows that

log
(k)
2 (expk,α n1) ≤ log2(exp

1,α log
(k−1)
2 n1) = α + log

(k)
2 n1. (5)

From (2), (3), and (5) we have that

h2 ≤ k + α + log
(k)
2 n1 ≤ k + α + h1. (6)

The equation (6) says that for each u ∈ L there is v ∈ L with |u| < |v| and
height(µk,k(v), xk) ≤ k + α + height(µk,k(u), xk).

Lemma 5.2 implies that there are distinct non-negative integers j1, j2 ≤
k + α such that both H1, H2 are infinite sets, where

Hi = {v | v ∈ L and height(µk,k(v), xk) ≡ ji (mod k+α+1)} and i ∈ {1, 2}.

Let c = k+α. Consider the deterministic finite automaton g = (Q,Σ2k−1, q0, δ,F),
where

• Q = {q0, q1, . . . , qc, qa, qr},

• δ(q, x) → (q), where q ∈ Q and x ∈ Σ2k−1 \{xk, xk−1},

• δ(qi, xk) → (qi+1 mod c+1),

• δ(qj1, xk−1) → (qa),

• δ(qi, xk−1) → (qr), where i 6= j1,

• δ(q, x) → (q), where q ∈ {qa, qr} and x ∈ {xk, xk−1}, and

• F = {qj1, qa}.

The deterministic finite automaton g implements the modulo operation on
the prefix of the form xi

k. The input letter x ∈ Σ2k−1 \{xk, xk−1} does not
change the state. The input letter xk changes the state from qi to qi+1 mod c+1.
If the input letter equals xk−1 then the state changes either to accept qa or
refuse qr. Realize that if w ∈ µk,k(Ωk), a ∈ {yk, xk−1}, and xka ∈ Fac(w)
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then a = xk−1, hence we do not need any “special” transition rule for the
letter yk. Once in the state qa or qr, no other states can be reached. The
states qj1 and qa are the accepting states. It is easy to see that AL(g) = H1

and in consequence the regular language R = AL(g) dissects L.
This completes the proof.

Given n ∈ N, let ∆n be some alphabet with n letters. Let ∆1 = B1 = {x1}
be the alphabet with the “first” opening bracket. Let L ⊆ ∆∗

n be an infinite
language with a growing bounded by (k, α)-tetration. Let υ : Σ∗

2k−1 → ∆1 be
an erasing alphabetical homomorphism defined by υ(x1) = x1 and υ(a) = ǫ,
where a ∈ Σ2k−1 \{x1}. Let π : ∆∗

n → ∆1 be a nonerasing alphabetical
homomorphism defined by π(a) = x1 for all a ∈ ∆n. Note that if w ∈ ∆∗

n

then |w| = |π(w)|.
We show that there 3k − 3 context free languages L1, L2, . . . , L3k−3 ⊆

Σ∗
2k−1 such that the homomorphic image υ(

⋂3k
i Li) dissects the homomorphic

image π(L).

Theorem 6.2. If n, α, k ∈ N, k ≥ 2, L ⊆ ∆∗
n is an infinite language with the

growth bounded by (k, α)-tetration then there are 3k−3 context free languages
L1, L2, . . . , L3k−3 such that υ(

⋂3k−3
i Li) dissects π(L).

Proof. Recall that the language Ωk is an intersection of 3k − 3 context free
languages:

Ωk =
k⋂

m=2

(Nawk,m ∩Balk,m ∩Λk,m) .

Let us denote these languages L̃1, L̃2, . . . , L̃3k−3.
Let π(L) = {π(w) | w ∈ L} ⊆ ∆∗

1 and let L̄ = {w ∈ Ωk | υ(w) ∈ π(L)} ⊆
Ωk . Note that L̄ contains w ∈ Ωk if and only if there is w̄ ∈ L such that
the number of occurrences of x1 in w is equal to the length of w̄; formally
occur(w, x1) = |w̄|.

Since L is a language with the growth bounded by (k, α)-tetration, we
have that for each w1 ∈ L̄ there is w2 ∈ L̄ with occur(w2, x1) ≤ expk,α occur(w1, x1).
Then Proposition 6.1 implies that there is a regular language R that dissects
L̄. It is well known that intersection of a regular language and a context free
language is a context free language. Hence let L1 = L̃1 ∩ R and let Lj = L̃j

for all j ≥ 2 and j ≤ 3k−3. Then
⋂3k−3

i=1 Li dissects L̄. The theorem follows.
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