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Katedra softwarového inženýrstv́ı
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helpful and willing to provide advice when needed. I will always cherish the memory of
the time we spent together at the institute and conferences.

Last, but not least, to my wife and family who were understanding during the whole
time of my PhD. Even in the times when I was approaching deadlines and I was not able
to focus on them rather than articles, during the waiting time for the review decision, and
while I was deep in thoughts on a complex problems. I know it may not have been always
easy and I feel in debt they were all there for me.

This work was supported by the following grants and funding

• The Grant Agency of the Czech Technical University in Prague, Grants
No. SGS16/175/OHK3/2T/14 and
No. SGS17/198/OHK4/3T/14
• Czech Science Foundation

Project No. 16-12010S and
Project No. 19-04579S.

vii





ABSTRAKT
Testováńı lidských dovednost́ı je v dnešńım světě velmi často opakovanou a běžnou

úlohou. Metodologie, s kterou je prováděna, z̊ustala po mnoho let beze změny. Je zde však
potenciál pro zlepšeńı tohoto procesu. Jedna z možnost́ı je využit́ı konceptu poč́ıtačového
adaptivńıho testu. Tento koncept má za ćıl sestaveńı modelu studenta schopného měřit
jeho nepozorované dovednosti a na tomto základě předpov́ıdat jeho výsledky v testováńı.
Tato snaha nám umožuje vytvářet kratš́ı a přesněǰśı verze test̊u, protože jsme schopni
pokládat takové otázky, které lépe pasuj́ı k danému studentovi.

V této disertačńı práci je náš výzkum zaměřen na koncept poč́ıtačového adap-
tivńıho testováńı s využit́ım bayesovských śıt́ı jakožto modelu studenta. Představujeme
metodologii prováděńı test̊u s pomoćı těchto model̊u a ověřujeme přidanou hodnotu adap-
tivńıho testu oproti klasickému testováńı. Toto ověřeńı je provedeno na umělých datech
a dále na dvou empirických sadách. Prvńı z těchto sad byla sesb́ırána jako středoškolský
test z matematiky a druhá sada je tvořena výsledky české státńı maturity z matematiky.
Naše testy prokázaly, že využit́ı konceptu adaptivńıho testu snižuje potřebnou délku
testováńı a poskytuje věrohodněǰśı výsledky. Nav́ıc lze model studenta využ́ıt k źıskáńı
daľśıch informaćı o konkrétńım studentovi namı́sto pouhých odpověd́ı v testu.

V našem výzkumu předkládáme vyhodnoceńı efektivity využit́ı bayesovkých śıt́ı jako
modelu studenta a experimentálńı potvrzeńı tohoto př́ıstupu. Dále jsme identifikovali,
popsali a otestovali vliv speciálńı vlastnosti těchto model̊u, monotonicity. Monotonicita
vyžaduje, aby model sploval určité podmı́nky kladené na jeho parametry. Empiricky jsme
potvrdili, že tyto podmı́nky zlepšuj́ı kvalitu modelu naučeného z dat a to předevš́ım
v situaci, kdy je učebńıch dat malý objem. Navrhli a představili jsme novou metodu
učeńı parametr̊u bayesovských śıt́ı zajǐsuj́ıćı dodržeńı těchto podmı́nek. Tato metoda uč́ı
modely, které jsou monotonńı a ty dle našich experiment̊u dosahuj́ı lepš́ıch výsledk̊u v
aplikaćıch ve srovnáńı s nemonotonńımi modely stejně tak jako ve srovnáńı s mono-
tonńımi modely naučenými pomoćı konkurenčńıch metod. Monotonicita je významná
vlastnost, která napomáhá procesu učeńı a umožuje nám naučit spolehlivěǰśı parame-
try. Na mı́stech, kde je v praxi monotonicita očekávána, jsou nav́ıc tyto model snáze
přij́ımány experty v odvětv́ı. Oblast uplatněńı monotonńıch model̊u je široká a jedná
se o běžnou vlastnost modelované reality. Použit́ı přesahuje z adaptivńıho testováńı do
daľśıch oblast́ı, kde je učeńı model̊u s malými datovými vzorky běžným jevem. Na těchto
mı́stech může monotonicita výrazně pomoci.

ABSTRACT
Testing of human skills and abilities is a task which is being repeated frequently in the
modern world. The testing methodology has remained the same for a long time but
there are ways to potentially improve this process. One way is by using the concept
of computerized adaptive testing. This concept aims at modeling a student, measuring
his/her (unobservable) skills and, based on those results, predicting his/her outputs in
testing. This effort allows us to create a shorter and more precise test as we are able to
ask questions suiting the particular student better.

In this dissertation thesis, our research is centered around the concept of computerized
adaptive testing using Bayesian networks as student models. We present the methodology
of facilitating the adaptive test with this type of model and verify the added value of
using the concept of CAT over the classical approach. The verification is performed either
on artificial data or on two empirical datasets. One dataset is collected as a mathematics
test at high schools, the second is the official results dataset of Czech National Final High
School Exam. Our tests proved that using the adaptive approach in testing decreases the
length of the test and provides more reliable results. Moreover, we can use the student
model to extract more information about the student rather than just the score of a
single test.

In our research we use Bayesian networks as student models. We provide an evaluation
of their effectiveness for this task and experimental proofs. We have identified, described
and tested the effect of a special condition of these models, monotonicity. The mono-
tonicity condition requires a model to satisfy special conditions placed on its parameters.
We empirically proved that this condition improves the quality of the model which is
learned from data, especially in cases where the learning dataset is small. We derive
and present a new method for learning monotone parameters. This method uses learned
models which are monotone. Based on our experiments these models provide better re-
sults than non-monotone methods and competitive monotone methods. Monotonicity is
an important concept which helps learning models and allows us to learn more reliable
parameters. Monotone models are more likely to be accepted by final users in areas where
monotonicity is to be expected. The application area of such models is large as it is a
quite common feature of modeled reality. Their application spans over the domain of
CAT to other domains as well, where learning with a small dataset may be a common
problem and monotonicity can help a lot there.
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1. Introduction and Current State of Art

This dissertation thesis is a research project of Computerized Adaptive Testing, its applica-
tions, and theoretical background of student models. The main focus is placed on Bayesian
networks, their theoretical improvements, and practical applications. The research has
been carried out as a part of the author’s PhD studies at the Faculty of Nuclear Sciences
and Physical Engineering of the Czech Technical University and the Institute of Informa-
tion Theory and Automation of the Czech Academy of Sciences (UTIA, CAS), with the
aid and co-authorship of Jǐŕı Vomlel at UTIA, CAS. This work is structured as a collection
of papers which have been published in recent years and presented in academic journals
and at prestigious peer-reviewed conferences. In the first part we provide an overview of
the whole thesis, its workflow and a summary of its methodology and achieved results.

The thesis lies in the intersection of two main areas:

• Computerized Adaptive Testing and
• Bayesian networks.

In this section we give a brief overview of both main areas and later address their overlap
in our research work.

1.1. Computerized Adaptive Testing

Testing human abilities and human knowledge is a very common task in modern society.
The computerized form of testing is also getting increased attention with the growing use
of computers, smart phones and other devices which allow us to easily contact the test
audience. Computerized Adaptive Testing (CAT) (Wainer and Dorans 2015; Almond and
Mislevy 1999; van der Linden and Glas 2000, 2010) is a concept of testing where a student
is performing a computer-administered and -controlled test. The computer system selects
questions for the student to be tested and it evaluates his/her performance. This is being
done in order to create a shorter version of the test by asking correct questions (tailored
to each particular student). If performed properly, the measurement of the student’s abil-
ity/knowledge is more precise (Pine and Weiss 1978), the test is fairer, the student is
better motivated, and less time is consumed (Moe and Johnson 1988; Tonidandel et al.
2002).

The process can be divided into two phases: model creation and testing. In the first
one, the student model is created while, in the second one, the model is used to actually
test the students. The student model is a construction which is used to model the actual
student. The model should describe the student and his/her skills as closely to reality as
possible. There are many different model types (Almond and Mislevy 1999; Culbertson
2014; Cowell et al. 1999) that can be used for adaptive testing. In this work, we cover Item
Response Theory (IRT), which is a model regularly used for CAT, Bayesian and Neural
networks (BNs and NNs); both of these models are commonly used for a large variety
of tasks in many areas of artificial intelligence. The testing part always follows the same
scheme regardless of the selected model. With the prepared and calibrated model, CAT
testing repeats the following steps:

• The next question to be asked is selected.
• This question is asked and an answer is obtained.
• This answer is inserted into the model.
• The model (which provides estimates of the student’s skills) is updated.
• (optional) Answers to all questions are estimated based on the current estimates of

his or her skills.

This procedure is repeated until we reach a termination criterion. There are many
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different stopping criteria. It can be a time restriction, the number of questions, or a
confidence interval of the estimated variables (i.e., reliability of the test).

The concept of CAT can be used for not only testing but also teaching. The student
model is a powerful tool with a lot of information about the student. It models his/her
abilities, which can subsequently be used to point him/her in the direction most appro-
priate for his/her future studies. It means that there will be no unnecessary time spent on
too simple tasks and, on the contrary, the student will focus on the topics he/she is not as
strong in. This application is very promising in the modern era of e-learning and remote
and automated procedures.

1.2. Bayesian networks

In this part, we provide an informal introduction to Bayesian networks (BNs), their scope
and references. The formal definition, as well as specific notation, is always included in the
individual papers relevant to the specific theory of the particular paper, or can be found
in, e.g., in Pearl (1988); Nielsen and Jensen (2007).

A Bayesian Network, as a probabilistic graphical model, is a structure representing
conditional independence statements. It consists of the following components:

• a set of variables (nodes);
• a set of oriented edges;
• a set of conditional probabilities.

Edges between variables have to form a directed acyclic graph (DAG). Each variable
is either continuous or discrete with a finite list of mutually exclusive states. For each
variable, a conditional probability distribution conditioned by its parents is defined in
terms of either the conditional probability table or a function defining the distribution. In
the entire research project, except for minor exceptions, we are restricted to the discrete
variables.

An example of a BN is given in Figure 1. This example network was used to model
students in the adaptive testing scenario. We can see skill nodes, (S1 - S8) representing
student knowledge, and question nodes, representing individual questions in the test (X1 -
X26 3). Links between nodes represent relationships in the student model. Each link says
there is a connection between a particular skill and a chance to score a certain amount of
points for an answer to the question it connects to. Each node has an associated conditional
probability table which defines these relationships. Skills are hidden (unobserved) variables
meaning that in no case are we are able to obtain their real values. This is caused by the
fact that a student’s skill can never be directly measured.

Example 1.1. We have created an example which is used throughout this introductory
part. Based on Figure 1, there is a test in mathematics. This test has 26 questions and
some of them have sub-questions. We have identified eight different skills which a student
should have in order to complete the test correctly. Thus, one question (X6) gives an
analytical expression of a circle written in parametric form in its text. The task is to plot
the circle. In order to complete this task the student must

• know how to work with analytical geometry;
• know how to work with equations and;
• know how to plot in a chart.

These skills are represented by nodes S1, S4, and S5. There are connections from these
skill nodes and the question node X6 establishing the causality. With different levels of
each skill, there is a varied chance that the student will answer correct or incorrect. If
s/he knows the first two parts, s/he is likely to get points for correctly finding the center’s
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Figure 1. An example of a Bayesian network used for CAT.

coordinates and the diameter of the circle, but not for plotting it. There is also always a
risk of making a computation error. Each combination of the skills has a defined prob-
ability of scoring a certain amount of points (one probability for each point option). A
combination of all possible point scores based on all possible skill combinations creates
a conditional1 probability table defining the relationship, which is an inseparable part of
the BN definition.

1.3. Monotonicity

The definition of monotonicity is present, for example, in Plajner and Vomlel (2017). At
this point, we provide an informal introduction to allow the reader to go through the
following text without the need to study the formal definition.

Monotonicity, in terms of Bayesian network features, is a behavior of the causal rela-
tionship. Consider a causal connection between two nodes A and B where A is the parent
of B. It means that the probability on B is conditioned by the state of A. If there is no
monotonicity then there is no restriction on the behavior of this connection in a general
BN. On the other hand, in a case that the monotonicity is present, increasing the state
value of A increases the expected result of B. In other words, a higher value of A yields a
higher chance of higher state of B. There is of course the possibility of an opposite/negative
effect, but the rationale would be the same without the loss of generality.

This behavior is commonly observed in the real world. For example, studies prove (e.g.
in Cornfield et al. (2009)) that a higher number of cigarettes a person smokes per day
causes a higher risk of lung cancer. While modeling such a causal connection, it is very
reasonable to expect such behavior in the model as well. Users of the probability model
are usually very unsatisfied and puzzled if they observe different behavior.

In the case of student models, simply said, monotonicity condition means that a higher
level of student skills leads to a better result. This condition sounds very reasonable,
although there is generally no insurance that a BN model will learn it from the provided
data. The main cause of not learning this feature (if it is actually present) may be a small
learning dataset. The learning algorithm then has too few data points to infer monotonicity,
which may not be visible in this reduced set. Another issue, connected to the previous one,
is the fact that most learning techniques are heuristics – they may therefore end in a non-
monotone solution of a local optimum even though the global monotone solution in fact

1Probability of obtaining certain amount of points conditioned by the combination of the states of the skills.
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exists.
In this thesis, we have expended a great deal of effort to generally describe the effect of

monotonicity in terms of CAT and BNs. In the papers we cite, an algorithm is presented
to ensure monotone BN models and thus improve the model quality and user satisfaction.

Example 1.2. In terms of Example 1.1, the simplified monotonicity means, for example,
that an increase of the level of skill S1 increases the chance of scoring more points in
question X6, i.e., if student Adam improves his skill in analytical geometry, the chance of
his answering the particular question should not decrease. Or, if there is a second student,
Eve, who has a level of skill higher than Adam’s, the expected value of her points scored
in that question should be at least as high as Adam’s (by the definition of monotonicity,
an equality is acceptable). To demonstrate the effect, we present an example conditional
probability table of the node X6 with parents S1, S4, and S5. In order to simplify the
table, all parents are binary, which means that they are either 0 (not having the skill)
or 1 (having the skill). The question has three possible states 0 through 2 (points). The
top three rows of the table set the parent configuration while the bottom three rows
are probabilities of scoring the respective amount of points. An example selection of two
violations of monotonicity is highlighted.

By the blue color in the last row, a higher-ranked state has a lower probability of
scoring. This means that improving one skill would actually decrease the chance of being
successful. That contradicts the monotonicity condition.

In the second situation, which is colored red, it is necessary to operate with the cumu-
lative distribution function. The monotonicity requires that the chance of scoring at least
one point can not get higher while having the higher-ordered level of skills. We compare a
setting of having the skill S1 against having skills S1 and S4. The chance of scoring zero
or one point is 0.7(= 0.45 + 0.25) in the first case and 0.75(= 0.4 + 0.35) in the second
case. Nevertheless, the monotonicity requires that higher-ordered states have this kind of
cumulative probability smaller than or equal to the lower-ordered ones. Simply said, the
risk of a failure cannot be higher if you are more skilled.

The condition saying that scoring at least one point can not get higher while having
the higher level of skills may sound strange at first, but there are two other possible ways
how to look at the problem. It means that scoring small amount of points is less probable
with better knowledge. Or, from the other side if you get to the highest point value it
necessarily means that higher-ordered skill states have to provide at least the same or
higher probability of scoring this highest value.

S1 0 0 0 0 1 1 1 1
S4 0 0 1 1 0 0 1 1
S5 0 1 0 1 0 1 0 1

X6 = 0 0.85 0.75 0.35 0.10 0.45 0.40 0.35 0.10
X6 = 1 0.13 0.20 0.25 0.35 0.25 0.35 0.30 0.20
X6 = 2 0.02 0.05 0.40 0.55 0.30 0.25 0.35 0.70

Table 1. An example CPT where monotonicity conditions are violated.

1.4. Student Models and Related Work

As explained in Section 1.1, CAT is a concept of testing student knowledge; it is very
dependent on the underlying student model. In practice, there have been many variations
of student models and many different approaches; IRT, which is briefly mentioned above,
is one common option in the domain. Nevertheless, research (e.g., Almond and Mislevy
(1999); Almond et al. (2015) ) shows that other models may be useful for solving this task
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as well. At the beginning of our research project, we decided to use BNs in order to model
a student. In the study Plajner and Vomlel (2016a) for this dissertation thesis we explored
different options of models, and performed experimental evaluation of their capabilities.
It has proved useful to utilize the power of BNs to model students.

There are many benefits of BNs being used for creating a student model with them.
Two main advantages are

• the graphical representation enabling comprehensible model structure; and
• a good interpretation of learned models, connections, and causalities.

The first benefit is especially important for experts in the application fields who do not
have a strong mathematical background. A graphical representation is easy to understand,
create and validate. The second benefit is extremely useful when we want to understand
the reasoning behind the decision taken by the model, or in order to extract general
knowledge from the model. These aspects are especially interesting in comparison with
another popular model, namely, Neural networks. A detailed comparison can be found
in Plajner and Vomlel (2016b). These types of models have their difficulties and their use
is less practical from the point of user interactions. More details about the interpretations
of NNs and associated research can, e.g., be found in the recent work Fan et al. (2020).

2. Dissertation Thesis Goals and Time Line

This dissertation thesis sets up a series of goals which have been refined, added to and
solved during its lifetime. The main goals we pursue are:

(1) Validate the possibility of using BNs for CAT and test it on a small data set;
(2) Compare different types of student models;
(3) Test CAT approach and student models on a large data set;
(4) Evaluate the benefit of monotonicity in the student model;
(5) Propose and test an algorithm to learn monotone BNs used for CAT;
(6) Generalize the algorithm for monotone learning; and
(7) Connect theoretical and practical discoveries and test them on a large dataset.

The entire time line of the thesis is, in a comprehensive way, displayed in Figure 2. It
shows individual activities often leading to a published paper. Table 2 presents a list of
these papers as they are displayed in the time line with a short-hand notation. In the time
line, we can also find associated research goals as they were addressed. The two first lines
grant an overview of two different data sets used for the research.

3. Methodology

The methodology of this thesis is presented in this Section by individual research goals
established in Section 2. For each goal, we go through the motivation and the steps taken
in order to fulfill it. This is an overview of the entire process and it should clarify the
consequences of this thesis. The obtained results can be found in Section 4; and specific
details are given in the respective papers which are cited after this introductory part. The
connections between goals and resulting papers are displayed in Figure 2.
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Type Reference\Title Published
[C] Plajner and Vomlel (2015) 26.11.2015 (CEUR proceedings)

Bayesian Network Models for
Adaptive Testing

Bayesian Modeling Applications
Workshop at UAI

[O] Plajner (2016) 28.01.2016
Probabilistic Models for

Computerized Adaptive Testing
Study for Dissertation

[O] Plajner and Vomlel (2016a) 28.01.2016
Probabilistic Models for

Computerized Adaptive Testing:
Experiments

CAT experiments on ArXive

[C] Plajner and Vomlel (2016b) 07.09.2016
Student Skill Models in Adaptive

Testing
International conference on

Probabilistic Graphical Models
[C] Plajner and Vomlel (2017) 11.07.2017

Monotonicity in Bayesian Networks
for Computerized Adaptive Testing

European Conferences on Symbolic
and Quantitative Approaches to

Reasoning with Uncertainty
[C] Plajner et al. (2017) 18.09.2017

Question Selection Methods for
Adaptive Testing with Bayesian

Networks

Czech-Japan seminar

[C] Plajner and Vomlel (2018) 06.06.2018
Gradient Descent Parameter Learning

of Bayesian Networks under
Monotonicity Restrictions

Workshop on Uncertainty Processing

[J] Plajner and Vomlel (2019) 20.11.2019
Learning Bipartite Bayesian Networks

under Monotonicity Restrictions
International Journal of General

Systems vol.49
[O] Plajner and Vomlel (2020) 01.09.2020

Monotonicity in Practice of Adaptive
Testing

Finalization and synergies paper on
ArXive

Table 2. List of papers corresponding to the research project. Legend: [J] journal paper, [C]: conference paper,

[O]: other paper.
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Figure 2. Project time line with activities.

3.1. Validate the possibility of using BNs for CAT and test it on a small
data set

This task is introduced in the first phase of this thesis. We are following previous research
of other scientists in this field, showing that it is appropriate to use BNs for CAT, e.g.,
Vomlel (2004a,b); Almond et al. (2015). In order to proceed with our own research, we
validate this possibility and create a framework which allows us to perform experiments
in the this thesis. This task has been split into two distinct parts, namely:

• CAT framework; and
• data collection.

To finish this task we must perform a thorough evaluation of the current state of the
art in two domains: BNs and CAT. We decided that it is necessary to obtain a data source
which would be suitable for the subsequent research. It has seemed that obtaining data
ourselves is a good option. Based on the background in teaching mathematics and analysis
of previous research, a domain of mathematics has been selected. To create a valid test we
carried out research in the psychometric field which is an important part to correctly solve
the problem. We have designed a test in mathematics to be assessed by students of high
schools in Prague. A total of 281 students answered in the he test. This data set is a good
starting point for initial experiments. Later, we created a new research goal of obtaining
a new, larger dataset, to perform more experiments.

The second part of this goal lies in the preparation of a framework for facilitating experi-
ments. We created a framework for BNs in CAT, which is implemented in the programming
language R. This framework can be used to train models for CAT from the test data, to
run simulations of adaptive testing, and to facilitate the entire process of adaptive testing
itself. We implemented the framework and used it to run a series of tests and simulated
adaptive testing runs. The focus is on simulated CATs where models are learned from the
subset data sample and then the simulated CAT procedure is performed on the remaining
data points. Among the answers produced from the testing, we have validated that the
approach of using BN for CAT is possible. Throughout work on the thesis, the correctness
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of the BN approach has repeatedly been proved.
As a result of this effort, a paper describing our early discoveries was presented at

a peer-reviewed Bayesian Modeling Applications Workshop, organized parallel with the
Uncertainty in Artificial Intelligence 2015 Conference held in Amsterdam, Netherlands.
One of the described outputs is also a student model based on the test handed to students
which is used for experiments in following goals as well.

This framework provides the functionality which allows us to work with the student
model:

• train model parameters with the EM algorithm based on the data;
• train model parameters using an isotonic regression EM algorithm (implemented in

the latter stage of the project);
• train model parameters using penalized and regular gradient descent method (im-

plemented in the latter stage of the project);
• obtain the best question to be asked based on the current state of the model and

the selected criterion;
• insert the evidence of an answered question (points value); and
• update the model based on the inserted evidence.

Example 3.1. We can, for example, insert the evidence of correctly answered question
X17. This question is connected to skill S1. Updating the model with the correct answer
increases the estimated level of skill S1. This increase of skill increases the chance of
a correct answer to question X6. This sequence of operations is performed during the
CAT procedure and after each answer the model gets more precise, it produces better
information about the student skills, and predicts their answers more precisely.

3.2. Compare different types of student models

After the initial research and assessment of the possibility to use BNs as student models,
our solution must be compared with different model types available for the same task.
This goal is set to provide sufficient comparison data regarding different possibilities of
student modeling in CAT. The BN solution has provided promising results, even though
it is necessary to evaluate it in contrast to other solutions. For the comparison, we selected
the standard CAT model, Item Response Theory (IRT) and Neural networks which are
very popular these days.

We benefit greatly from the work in previous goals, reusing the CAT framework and
further generalizing it to provide better functionality. Different models are used for CAT
student modeling and simulations. In this goal, we have proven that the selected advanced
models (BNs) than the original IRT. Also, student models based on Neural networks
did not prove efficient. This observation is most likely connected to the fact that data
available to model the students are usually quite small in volume. That means that the
benefit of BNs ability to combine expert knowledge with underlying data is very important
to provide reliable models. The result of this goal is clearly visible in Figure 3, published
in the paper presented at PGM 2016 (see below). The chart shows the average success
ratio of predictions of answers in the CAT simulations. In other words, how precise the
model is during the course of the testing. In this figure it is clearly visible that IRT and
NN methods score results which are worse than those achieved with BN models.

As a part of the work on this goal, we have evaluated and described similarities and
differences of using various models for CAT tasks. This activity results in the generalized
framework for CAT where different student models can be used while the rest of the
system remains unchanged. This concept is described in a paper which was presented at
the peer-reviewed International Conference on Probabilistic Graphical Models 2016, which
was held in Lugano, Switzerland.
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Figure 3. Comparison of answer prediction success in the CAT procedure of different models as published in the

paper at PGM 2016.

During the work on this task, we started to observe a special behavior of student models
and connections in these models. Specifically, it became clear that monotonicity feature of
the models is a feature of great importance and needs to be further evaluated. During our
work we noticed that in some cases the model showed unexpected behavior. For example,
in case of two students the one who has higher overall level of skills, the chance of answering
correctly to some questions was lower. This behavior contradicts natural expectations and
reduces the model’s credibility. Based on these observations, a new research goal has arisen
as monotonicity condition is able to disallow these situations.

3.3. Test CAT approach and student models on a large data set

The original data set we collected during the first phase of this thesis was sufficient for
initial experiments. Nevertheless, for the large-scale testing and proper continuation of
our work, a larger and more reliable data set was required. We managed to obtain data
from the official Czech National Final Exam which is taken at the end of high school. This
data set is both large and very reliable, as the motivation of students to perform at their
best is unhindered. We were able to obtain this set after negotiations with the office in
charge of the testing (CERMAT) and the Ministry of Education. The data we obtained
are anonymous. Individual answers of each student are included, which is sufficient for all
tasks we need to do and to proceed with the research.

We used this larger dataset in subsequent research to test new ideas and topics, and to
experimentally evaluate our theoretical advances. At the time of the acquisition of this new
dataset, the research was mainly focused on the monotonicity branch. This dataset was
used in all papers after 2017. Most of these papers are about monotonicity, with the most
important one published in the International Journal of General Systems in 2019. The best
overview of CAT simulations with this dataset is presented in the final paper published
for open access on ArXive in 2020. In the paper, we can find a chart which is also included
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here as Figure 4. This Figure shows the error of estimating the final score of a test2 during
the test procedure3 for different methods of learning the BN model parameters4. We can
clearly observe that, regardless of the learning method, a fixed version of the test is much
slower in error reduction during the testing procedure. This behavior clearly verifies CAT
as the correct approach.

10 20 30

0.4
0.5
0.6
0.7
0.8
0.9

1
1.1
1.2

10 20 30

em

grad

irem

qirem

rgrad

number of questions

e g  

fixed adaptive

Figure 4. Evolution of the grade prediction error based on skills, fixed and adaptive question selection.

3.4. Evaluate the benefit of monotonicity in the student model

While working with adaptive tests and student models, we have noticed that models which
hold the monotonicity constraints usually perform better than those which violate these
conditions. In other words, models violating monotonicity show an unusual and unexpected
behavior. It is very questionable if an increase of a skill decreases the chance of a correct
answer to the connected question.

An explanatory example of this behavior is already described in Example 1.2.
BNs generally allow models not to be monotone if the underlying learning data does not

have this quality. This problem has initiated a new research path to propose an algorithm
which would learn a monotone model even though the data might not exactly point towards
it. The first step was taken in the paper presented at the peer-reviewed International
Conference on Probabilistic Graphical Models 2016 in Lugano, Switzerland. In this paper,
simple generalized linear models were used to learn parameters of BNs. This technique,
due to its inner structure, always leads to a monotone solution but it is quite simple and
does not allow us to model complex relationships. This initial test showed the benefit of
introducing the monotonicity into the BN learning and justified the continuation of this
research path.

3.5. Propose and test an algorithm to learn monotone BNs used for CAT

After discovering the positive effect of monotonicity in BNs used for CAT, we decided
to investigate this topic thoroughly. There are different reasons for data possibly not
indicating monotonicity even though it is expected. Mostly it is the volume of data in
connection to the parameter space. There are usually a lot of local extremes in the space
of model parameters and with a small volume of learning data it is easily possible to
obtain a sub-optimal solution because a majority of learning techniques are heuristic.

2Y axis where the exact formula is given in the respective paper. The lower the error, the better.
3x axis
4Legend. Methods are not important in terms of this Example.
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These solutions can then easily be non-monotone as well. For example, in the case of
the very common EM algorithm, the final solution largely depends on the starting point
and the chance of obtaining a non-monotone solution is even higher. Another important
aspect is that, because of the small amount of data, the learning output of a monotone
model might appear worse than that of a non-monotone one. Then, while comparable on
a larger data set, monotonicity provides better results as it is shown in our papers, for
example, Plajner and Vomlel (2017).

Motivated by the findings about the monotonicity, we followed research which has been
done in this area and have discovered that there is a space to propose an algorithm better
than those already available in the community. We derived and tested an algorithm based
on the gradient descent, constrained to lead the solution to the monotone area of possible
parameters. The main gradient descent optimization function is the log-likelihood of the
model given the training data. That means the model parameters should provide the best
fit to the data. In addition, this criterion is penalized in order to point the solution towards
monotonicity. This algorithm can be used to learn monotone BN parameters.

Monotone models have a large application area, not only in adaptive testing but also in
other domains. They are of interest wherever we need to learn models from a small volume
of data and/or when we know that the monotonicity conditions apply. This requirement
can be based on user expectations, or on common knowledge of general behavior of the
reality to be modeled. In these cases monotonicity helps the models to learn better and
more reliable parameters by adding the information which is not visible in data. This
information is thus used as additional data samples; namely, having them should naturally
introduce monotonicity to the model.

The algorithm is mathematically established and described in the paper which was
presented at the peer-reviewed Fourteenth European Conference on Symbolic and Quan-
titative Approaches to Reasoning with Uncertainty 2017 in Lugano, Switzerland.

Example 3.2. In Example 1.2, we elaborate on the effect of monotonicity and the example
presents its violation. This example clearly illustrates how it may not be reasonable not
to include monotonicity conditions. If monotonicity were not present, it would be possible
to have a lower probability value for answering correctly even with a higher level of skill
(or more skills present). This behavior is hard to explain to the community of specialists
using the model; teachers in this particular case of a test in mathematics.

3.6. Generalize the algorithm for monotone learning

The algorithm for monotone learning has proved successful as it can learn BN models for
CAT, which score better in experiments. Nevertheless, the initial design of the algorithm
is limited to a specific shape of BNs. The largest issue is that it could work with binary
question nodes, i.e., only correct/incorrect answers. In many tests, there is a necessity to
use finer resolutions. This goal requires a generalization of the algorithm to be able to
learn models which would better suit the needs of CAT.

This generalization was performed and presented at the peer-reviewed Workshops on
Uncertainty Processing 2018 in Třeboň, Czech Republic. The paper was well received at
the conference and, after the conference, certain improvements were introduced to create
a paper which was submitted to the International Journal of General Systems.

A period of the review process followed, with additional modifications and improvements
to the paper. The final, very well refined, version of the paper was accepted in November
2019.

The final version of the algorithm allows the user to learn parameters of models which
have multiple states both on questions and skills. This is a large step forward in compar-
ison with the previous version; the difference between binary and multiple state nodes is
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very significant in terms of this algorithm. Moreover, an analysis of the concurrent algo-
rithm irEM (see van der Gaag et al. (2004)) was performed showing the weaknesses and
imperfections of this method. A comparison with our proposed method can be found in
our papers.

In one of the figures presented in the IJGS paper, we show the KL divergence values
between the learned parameters with the aid of different methods and parameters in the
model, which was used to create artificial testing data. The first two methods in the plot
legend (EM and gradient) are non-monotone, the remaining four are monotone and the
last one (res gradient) is our proposed method. In this figure we can see that monotone
methods are always better in this domain; especially, for small learning set sizes, our
proposed method provides the best results.
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Figure 5. KL divergence based on the learning set size for different learning methods.

3.7. Connect theoretical and practical discoveries and test them on a large
dataset

Working on this thesis, we have followed two main paths; adaptive testing and parameter
learning in terms of monotonicity. These two parts are separate, yet they are always
interconnected by experiments and the motivation of the use for CAT. In the first part,
we rather focus on the procedure of testing and different types of evaluation, in the second
part we work more on the underlying theory of Bayesian networks and parameter learning
especially in terms of monotonicity.

As we want to provide an unified view of this thesis as a whole, we have decided to
complete a final goal. This goal was set to fill the gaps and answer some questions which
were asked during the thesis and remained unanswered. From the previous work, we have
the following state:

• An implemented framework for adaptive testing which is mainly used with a smaller
dataset;
• the algorithm for monotone parameters learning for BN models;
• the large reliable dataset;
• the question of how precise the adaptive testing is; and
• the question of how to evaluate the score of a test.
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The last goal aims at combining these research results together: to use a new dataset to
train monotone BN student models, and use these models in the adaptive testing frame-
work in order to get results of the simulated CAT procedure and to evaluate this process.
In addition, it is necessary to answer the question of how to evaluate the test in terms
of scoring, which is necessary for the real application. This last goal is thus a finalization
and mutual interconnection of all the previous tasks providing a comprehensive overview
of the entire project.

The solution of this task is described in the paper which is published online at the same
time as this thesis is finalized. This paper brings an unified view of the topic. It clearly
shows the possibilities and options of CAT and the role of monotone BNs used as student
models. The process of measuring the score is described and tested, and the results of these
tests are promising. The paper wraps up this thesis while it also shows further possible
study paths. The larger data set is intensively used in this goal and thoroughly tested.
This paper is the final interconnecting element between the two research paths which have
been overlapping and influencing each other during the whole thesis, both lying in the
intersection of the two main research areas.

4. Results

In this Section we present the main results of this thesis by citing the individual papers
in which they were published. All of the papers included in this dissertation are given
here exactly in the forms in which they were published.. For each paper, its main ideas,
theoretical work, experiments and results are summarized in this Section.

4.1. Bayesian Network Models for Adaptive Testing

This paper (Plajner and Vomlel 2015) is published in the proceedings of the peer-reviewed
Bayesian Modeling Applications Workshop, which was held at the conference Uncertainty
in Artificial Intelligence 2015 in Amsterdam, Netherlands (CEUR Proceedings). This pa-
per is an introductory paper of this thesis. It describes the problem of adaptive testing,
used collected dataset and computerized adaptive test procedure. After defining the CAT
process and the role of BNs in it, we presented several different BN student models. These
models were tested in CAT simulation and compared against each other. Among the most
important results of this paper are answers to very important questions

• validation of the possibility to use BNs for CAT;
• overview of the model quality in the adaptive test simulation;,
• discovery that larger and more complex models are better but require more input

for learning; and
• the fact that additional student information can quickly be replaced by the answers

to the questions and it is not that important to know more about the students.

This paper sets the research path for further research and it validates the usage of student
data without additional student information, i.e., anonymous data.

4.2. Probabilistic Models for Computerized Adaptive Testing

This paper (Plajner 2016) is published online on the open-access ArXive. It is a study for
this dissertation thesis. In the study for the dissertation, we bring a thorough explanation
of the concept of CAT. We go through its advantages and disadvantages in great detail.
Further, we present the data sample which was collected as a test of mathematics at
Czech high schools. We perform a complete evaluation of the test in terms of psychometric

13



analysis. In the final part of this paper, we create student models with the aid of three
different techniques

(1) Classical Item Response Theory;
(2) Bayesian networks; and
(3) Neural networks.

These models are described in the paper and the way they are to be used in the adap-
tive procedure is presented. In this paper, the concluding part is very important as it
summarizes a lot of research questions. It creates a summary of the current state of the
art and sets the research possibilities to be further addressed in subsequent papers. There
is the first mention of the requirement to reduce the space of parameters while learning
BN models. This requirement further leads to the research of monotonicity, which is one
of the most important benefits of this thesis.

4.3. Probabilistic Models for Computerized Adaptive Testing: Experiments

The paper (Plajner and Vomlel 2016a) is closely connected to the previous one (Plajner
2016). The previous paper grants a theoretical overview, research questions and ideas.
This paper provides experiments to support the theoretical work done in Plajner (2016).
These experiments are performed on the small dataset which was already described. We
tested multiple methods during the testing process and we evaluated each of them as well
as comparing them.

4.4. Student Skill Models in Adaptive Testing

The paper Plajner and Vomlel (2016b) is published in the proceedings of the peer-reviewed
Eighth International Conference on Probabilistic Graphical Models in Lugano, Switzerland
(Proceedings of Machine Learning Research). In this paper, we presented a generic model
which ties different student models together. We set the common framework, which can
be used for CAT testing with various model types. Within this framework, we present the
question of selecting the methodology in order to facilitate CAT tests. We instantiated
the generic model with three different model types: Bayesian networks, Item Response
Theory model, and Neural networks. All these models fit the framework and we performed
experiments with them. In this paper we also describe the monotonicity property and
elaborate on its usefulness during parameter learning. Its connection to all three model
types is discussed.

We present results of experiments with different student models from three model types.
Some models fulfill the monotonicity condition, while others do not. The results are com-
pared with each other and discussed. The most important scientific output of this paper
is the empirical evidence that monotonicity improves model results, which leads to the
following papers further examining the monotonicity condition.

4.5. Monotonicity in Bayesian Networks for Computerized Adaptive
Testing

This paper (Plajner and Vomlel 2017) is published in the proceedings of the peer-reviewed
conference European Conferences on Symbolic and Quantitative Approaches to Reasoning
with Uncertainty 2017 in Lugano, Switzerland (Lecture Notes in Computer Science). In
this paper we describe the concept of monotonicity. We elaborate on the fact that even
though it is a restriction on the parameter space of the learning procedure, it may, in
specific cases, provide better results. We present an algorithm which learns monotone
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parameters of a BN model. This algorithm is based on the gradient-descent method and
restricts the learning so that the resulting model is monotone.

The proposed algorithm is tested on two datasets. One dataset is artificial, while the
other contains real data. The artificial dataset is used in order to ensure that the generating
model is monotone and we are introducing monotonicity correctly. There is a strong expec-
tation that a student model is monotone, but it cannot be proved for sure as skills are not
observed. We compare results obtained by learning monotone models with non-monotone
models. The comparison is done also with monotone models learned by another technique,
isotonic regression EM. Based on our empirical evaluation, the proposed gradient method
performs very well and outperforms the other methods. This statement especially holds
for small learning set sizes. With larger learning datasets, differences start to disappear.
It is caused by a naturally increased presence of monotonicity in the data sample.

This paper’s most significant research output is the algorithm for monotone parameter
learning. Nevertheless, this version of the algorithm is tailored to specific model structures,
which is limiting. Further research was needed in order to generalize the algorithm.

4.6. Question Selection Methods for Adaptive Testing with Bayesian
Networks

The paper by Plajner et al. (2017) was written together with an undergraduate student
from the Faculty of Nuclear Sciences and Physical Engineering, Czech Technical University.
It was presented at Czech-Japan Seminar on Data Analysis and Decision Making 2017 in
Třeboň. It is published in its proceedings. This paper answers the question that arose
in the initial phase of the dissertation. The quality and speed of the CAT process is
very dependent on the way in which the questions are selected. There are many possible
concepts for suitable selection of the next question. In this paper we have explored three
possibilities. Maximization of

• expected skills entropy reduction;
• expected skills variance; or
• expected question variance.

The first one aims at the reduction of the uncertainty on student skills, the second aims
at the best students differentiation possible, and the last one aims at the best chance to
predict question results. All three methods were compared with each other and also with
the classical sequential method. It was proved that, without any doubt, all three methods
perform far better than the sequential one. No clear ordering can be established among
the advanced methods themselves. Nevertheless, it was shown that they behave differently
and user should always keep that in mind to select the right criterion according to his/her
goals.

4.7. Gradient Descent Parameter Learning of Bayesian Networks under
Monotonicity Restrictions

This paper (Plajner and Vomlel 2018) was presented at the peer-reviewed Workshop on Un-
certainty Processing 2018 in Třeboň, Czech Republic. It further generalizes the proposed
method of restricted gradient-descent parameter learning. We present this generalization
to use the method for both questions and skills with multiple states. This step allows
Bayesian networks to be more general and to cover wider application areas. In our case,
it allows us to use models and tests which have more possible points for each question to
score rather than just correct and incorrect answer.

In this paper we thoroughly describe the monotonicity condition. Next, we derive the
gradient-descent algorithm to learn parameters of Bayesian networks. The gradient de-
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scent works with the log likelihood criterion, which it tries to maximize in order to achieve
the model which best fits the learning data. This gradient descent is further penalized by
a function taking into account violations of the monotonicity conditions. That leads the
solution of the algorithm towards the monotone area of the parameter space. The penal-
ization has its control parameter, which allows us to set the strength of the penalty and, in
fact, sets the necessity of maintaining the monotonicty. In this paper, the algorithm can-
not ensure that monotonicity is met and the resulting solution may remain non-monotone,
even though it is unlikely.

The algorithm is tested on two datasets. The first one is artificially generated from a
synthetic model. This model is created to be monotone and is further used to measure
the distance of the solution from the known generating parameters. The second set is an
empirical set obtained from the Czech National Final high school exam. Based on this
set, an expert BN model is created measuring the skills of the students who took this
test. This second dataset is large, and the associated model is complex. In this paper, we
measure the score of the learned models by two criteria for the artificial model. First, we
measure the ratio between log-likelihood of the generating model and the learned model
given the same data points. Second, we measure the mean distance between the learned
and generating parameters to see how far the learned model is from the original one. For
the empirical dataset, we measure only the log-likelihood of the full data sample because
we have no actual parameters to compare with. As the comparison method against the
proposed restricted gradient, we use the EM algorithm.

Results of experiments in this paper clearly show the benefit of the monotone principles
of learning parameters for the student model. In all observed criteria, the proposed method
works better, especially for small learning datasets. In this paper, a comparison with other
monotone methods is missing, and there is no theoretical guarantee of a monotone solution
for the restricted gradient method.

4.8. Learning Bipartite Bayesian Networks under Monotonicity
Restrictions

This paper Plajner and Vomlel (2019) was published in the International Journal of Gen-
eral Systems vol.49 in 2019. It is an extension of the previous paper presented at WUPES
2018 (Plajner and Vomlel 2018). It works with the penalized restricted gradient-descent
method for monotone parameter learning.

In addition to the previous paper, we use two other possible methods for learning
monotone models to provide the proper comparison.
The first one is the isotonic regression EM method (irEM) (van der Gaag et al. 2004),
which was used before also in our paper Plajner and Vomlel (2017). To use this method
in this paper, we had to generalize it to work with multiple state variables (both parent
and child nodes); it was originally defined only for binary variables by the authors.
The second method is the bounded non-linear optimization (Powell 1994), which performs
the search for the optimal solution only in the polytope defined by the monotonicity
conditions.

Another addition to the previous paper is an introduction and theoretical description of
the modification ensuring a monotone solution while using our restricted gradient method.
This modification is important whenever there is a need of strictly ensuring monotonicity,
which was previously impossible. This also sets up a fair ground for comparisons with
other monotone methods that ensure monotone solutions.

This paper provides much more detailed experimental section than the previous one. It
runs its experiments on a total of six methods for parameter learning:

• gradient (unrestricted) (Cauchy 1847);
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• EM (unrestricted) Lauritzen (1995);
• irEM (van der Gaag et al. 2004);
• qirEM (van der Gaag et al. 2004);
• bounded non-linear method Cobyla (Powell 1994);
• restricted gradient descent (Plajner and Vomlel 2019);

where qirEM is a variation of irEM.
We compare these methods with each other and in this comparison we observe that

the proposed restricted gradient method provides significantly better results especially for
small learning set sizes. This conclusion is also supported by the a version of the metric,
which is Wilcoxon’s test, measuring whether the difference in the learned parameters is
significantly better in the case of the artificial model. This test also proves that our method
provides significantly better results. The next novelty in the experimental evaluation is
the way in which we measure the distance of the learned parameters from the generating
ones for the artificial model. In this paper, we use KL divergence rather than the simple
average distance. This method provides a fairer comparison as it is more sensitive to
extremes. This updated methodology of measuring the fit quality also speaks in favor of
the proposed method. All the conclusions referred to above hold for both empirical and
artificial datasets.

In addition to the results in the previous paragraph, we have also observed and described
the behavior of irEM and qirEM methods. The irEM method may end up in the point
of the optimization process where the solution oscillates between monotone and non-
monotone solutions due to its two-step optimization process. This leads to an increase of
computational time as well as possibly blocking the possibility of reaching the optimal
solution.

4.9. Monotonicity in Practice of Adaptive Testing

The final paper of this collection of papers finalizes this thesis Plajner and Vomlel (2020). It
was published in an open-access ArXive repository in 2020. We have shown how Bayesian
networks can be used for adaptive testing of students and their skills. Later, we have
taken the advantage of monotonicity restrictions in order to learn models that better fit
the data. This paper provides a synergy between these two phases, as it evaluates the
Bayesian Network models used for computerized adaptive testing and learned with the
proposed restricted gradient descent method for monotone parameter learning.

This paper is rather focused on the adaptive part of the procedure, and the tests are
performed with the large dataset, Czech National Final high school exam, which was not
used for the CAT tests before. Moreover, in this paper, we present the methodology to
predict the final student score, its distribution, and its reliability interval. Along with that,
we elaborate on the student grading and ranking. These parts are very important in order
to use BN models in CAT in practice for two reasons:

• they are actually able to assess the students; and
• they are able to effectively control the flow of the CAT procedure and stop the testing

when appropriate.

In experiments presented in this paper, we empirically prove that a test can significantly
be shortened while using the concept of CAT without a significant loss of precision. Further
we show that models learned with the proposed restricted gradient method perform better
in most criteria. There are certain points for which the unrestricted methods perform
better, which is caused by the freedom in their parameter learning. Nevertheless, in the
overall view, the advantages of using the monotone models are clearly seen. The last
observation available in the paper is the view of the evolution and the reduction of the
confidence interval of the score prediction. We show how the uncertainty of the prediction
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decreases in the processes of CAT.
Summarized, this final paper provides a link through the research of this thesis con-

necting the theoretical advances in parameter learning with a series of elaborated tests
and experiments performed on the large dataset.

5. Scientific benefit and future work

This thesis describes the research which was performed in two main areas, Bayesian net-
works parameter learning and Computerized Adaptive Testing. The research brings prac-
tical and theoretical improvements of the current state of the art. From the practical point
of view we have established a clear methodology for

• using Bayesian networks in the adaptive testing field;
• predicting the student final score; and
• establishing when and how to stop the CAT process.

These results are beneficial for the work in the field of adaptive testing as well as intelligent
tutoring systems and teaching.

From the theoretical point of view, this thesis brings new results in the field of mono-
tonicity and parameter learning of Bayesian networks. We have shown how the mono-
tonicity conditions affect the learning of parameters and the resulting model. We present
experimental proofs that applying monotonicity to a model increases its quality. The re-
sulting models have a better accuracy when used for practical tasks. We present a novel
method to learn monotone parameters. This method is based on the gradient descent and
restricted to maintain monotonicity. The learned models have been extensively tested to
prove the benefit of montonicity; these benefits have successfully been confirmed.

There is still open future work on this topic. One open question is further generalization
of the proposed method to work with even more general Bayesian networks. The final
method only works with a special, but very useful, structure of BNs, bipartite BNs; further
generalization to general BNs would enlarge the possible area of use. One possible direction
is that of healthcare and diagnostics, where monotone models could be helpful in finding
connections between symptoms and diseases. Another possible path for further research
is the exploration of monotone effect and testing in domains different from CAT.

It would be interesting to use monotone models in an intelligent tutoring system to
provide a predictive platform for students to improve their learning process and allow
them to learn more effectively.
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Abstract

Computerized adaptive testing (CAT) is an in-
teresting and promising approach to testing hu-
man abilities. In our research we use Bayesian
networks to create a model of tested humans.
We collected data from paper tests performed
with grammar school students. In this article
we first provide the summary of data used for
our experiments. We propose several different
Bayesian networks, which we tested and com-
pared by cross-validation. Interesting results
were obtained and are discussed in the paper. The
analysis has brought a clearer view on the model
selection problem. Future research is outlined in
the concluding part of the paper.

1 INTRODUCTION

The testing of human knowledge is a very large field of hu-
man effort. We are in touch with different ability and skill
checks almost daily. The computerized form of testing is
also getting an increased attention with the growing spread
of computers, smart phones and other devices which allow
easy impact on the target groups. In this paper we focus on
the Computerized Adaptive Testing (CAT) (van der Linden
and Glas, 2000; Almond and Mislevy, 1999).

CAT aims at creating shorter tests and thus it takes less time
without sacrificing its reliability. This type of test is com-
puter administered. The test has an accompanied model
which models a student (a student model). This model is
constructed based on samples of previous students. During
the testing the model is updated to reflect abilities of one
particular student who is in the process of testing. At the
same time we use the model to adaptively select next ques-
tions to be asked in order to ask the most appropriate one.
This leads to collection of significant information in shorter
time and allows to ask less questions. We provide an addi-
tional description of the testing process in the Section 4 and

more information can be found also in (Millán et al., 2000).
It seems that there is a large possibility of applications of
CAT in the domain of educational testing (Vomlel, 2004a;
Weiss and Kingsbury, 1984).

In this paper we look into the problem of using Bayesian
network models (Kjærulff and Madsen, 2008) for adaptive
testing (Millán et al., 2010). Bayesian network is a con-
ditional independence structure and its usage for CAT can
be understood as an expansion of the Item Response The-
ory (IRT) (Almond and Mislevy, 1999). IRT has been suc-
cessfully used in testing for many years already and ex-
periments using Bayesian networks in CAT are also being
made (Mislevy, 1994; Vomlel, 2004b).

We discuss the construction of Bayesian network mod-
els for data collected in paper tests organized at grammar
schools. We propose and experimentally compare different
Bayesian network models. To evaluate models we simulate
tests using parts of collected data. Results of all proposed
models are discussed and further research is outlined in the
last section of this paper.

2 DATA COLLECTION

We designed a paper test of mathematical knowledge
of grammar school students focused on simple func-
tions (mostly polynomial, trigonometric, and exponen-
tial/logarithmic). Students were asked to solve different
mathematical problems1 including graph drawing and read-
ing, calculation of points on the graph, root finding, de-
scription of function shape and other function properties.

The test design went through two rounds. First, we pre-
pared an initial version of the test. This version was carried
out by a small group of students. We evaluated the first
version of the test and based on this evaluation we made
changes before the main test cycle. Problems were updated
and changed to be better understood by students. Few prob-

1In this case we use the term mathematical “problem” due to
its nature. In general tests, terms “question” or “item” are often
used. In this article all of these terms are interchangeable.
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lems were removed completely from the test, mainly be-
cause the information benefit of the problem was too low
due to its high or low difficulty. Moreover we divided prob-
lems into subproblems in the way that:

(a) it is possible to separate the subproblem from the main
problem and solve it independently or

(b) it is not possible to separate the subproblem, but it rep-
resents a subroutine of the main problem solution.

Note that each subproblem of the first type can be viewed
as a completely separate problem. On the other hand, sub-
problems of the second type are inseparable pieces of a
problem.

Next we present an example of a problem that appeared in
the test.

Example 2.1. Decide which of the following functions

f(x) = x2 − 2x− 8

g(x) = −x2 + 2x+ 8

is decreasing in the interval (−∞,−1].

The final version of test contains 29 mathematical prob-
lems. Each one of them is graded with 0–4 points. These
problems have been further divided into 53 subproblems.
Subproblems are graded so that the sum of their grades is
the grade of the parent problem, i.e., it falls into the set
{0, . . . , 4}. Usually a question is divided into two parts
each graded by at most two points2. The granularity of
subproblems is not the same for all of them and is a subset
of the set {0, . . . , 4}. All together, the maximal possible
score to obtain in the test is 120 points. In an alternative
evaluation approach, each subproblem is evaluated using
the Boolean values (correct/wrong). The answer is evalu-
ated as correct only if the solution of the subproblem and
the solution method is correct unless there is an obvious
numerical mistake.

We organized tests at four grammar schools. In total 281
students participated in the testing. In addition to prob-
lem solutions, we also collected basic personal data from
students including age, gender, name, and their grades in
mathematics, physics, and chemistry from previous three
school terms. The primal goal of the tests was not the
student evaluation. The goal was to provide them valu-
able information about their weak and strong points. They
could view their result (the scores obtained in each individ-
ual problem) as well as a comparison with the rest of the
test group. The comparisons were provided in the form of
quantiles in their class, school and all participants.

2There is one exception from this rule: The first problem is
very simple and it is divided into 8 parts, each graded by zero or
one point (summing to the total maximum of 8).

The Table 1 shows the average scores of the grammar
schools (the higher the score the better the results). We
also computed correlations between the score and average
grades from Mathematics, Physics, and Chemistry from
previous three school terms. The grades are from the set
{1, 2, 3, 4, 5} with the best grade being 1 and the worst be-
ing 5. These correlations are shown in the Table 2. Nega-
tive numbers mean that a better grade is correlated with a
better result, which confirms our expectation.

Table 1: Average test scores of the four grammar schools.

GS1 GS2 GS3 GS4 Total
42.76 46.68 46.35 43.65 44.53

Table 2: Correlation of the grades and the test total score.

Mathematics Physics Chemistry
-0.60 -0.42 -0.41

3 BAYESIAN NETWORK MODELS

In this section we discuss different Bayesian network mod-
els we used to model relations between students’ math
skills and students’ results when solving mathematical
problems. All models discussed in this paper consists of
the following:

• A set of n variables we want to estimate {S1, . . . , Sn}.
We will call them skills or skill variables. We will
use symbol S to denote the multivariable (S1, . . . , Sn)
taking states s = (s1, . . . sn).

• A set of m questions (math problems) {X1, . . . , Xm}.
We will use the symbol X to denote the multivariable
(X1, . . . , Xm) taking states x = (x1, . . . , xm).

• A set of arcs between variables that define relations
between skills and questions and, eventually, also in-
between skills and inbetween questions.

The ultimate goal is to estimate the values of skills, i.e., the
probabilities of states of variables S1, . . . , Sn.

3.1 QUESTIONS

The solution of math problems were either evaluated using
a numeric scale or using a Boolean scale as explained in the
previous section. Although the numeric scale carries more
information and thus it seems to be a better alternative,
there are other aspects discouraging such a choice. The
main problem is the model learning. The more the states
the higher the number of model parameters to be learned.
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With a limited training data it may be difficult to reliably
estimate the model parameters.

We consider two alternatives in our models. Variables cor-
responding to problems’ solutions (questions) can either be

• Boolean, i.e. they have two states only 0 and 1 or

• integer, i.e. each Xi takes mi states {1, . . . ,mi},
mi ∈ N, where mi is the maximal number points for
the corresponding math problem.

In Section 5 we present results of experiments with both
options.

3.2 SKILL NODES

We assume the student responses can be explained by skill
nodes that are parents of questions. Skill nodes model the
student abilities and, generally, they are not directly observ-
able. Several decisions are to be made during the model
creation.

The first decision is the number of skill nodes itself. Should
we expect one common skill or should it rather be several
different skills each related to a subset of questions only?
In the later case it is necessary to specify which skills are
required to solve each particular question (i.e. a math prob-
lem). Skills required for the successful solution of a ques-
tion become parents of the considered question.

Most networks proposed in this paper have only one skill
node. This node is connected to all questions. The student
is thus modelled by a single variable. Ordinarily, it is not
possible to give a precise interpretation to this variable.

We created two models with more than one skill node. One
of them is with the Boolean scale of question nodes and
the other is with the numeric scale. We used our expert
knowledge of the field of secondary school mathematics
and our experiences gained during the evaluation of paper
tests. In these model we included 7 skill nodes with arcs
connecting each of them to 1 – 4 problems.

Another issue is the state space of the skill nodes. As an
unobserved variable, it is hard to decide how many states it
should have. Another alternative is to use a continuous skill
variable instead of a discrete one but we did not elaborate
more on this option. In our models we have used skill nodes
with either 2 or 3 states (si ∈ {1, 2} or si ∈ {1, 2, 3}).
We tried also the possibility of replacing the unobserved
skill variable by a variable representing a total score of the
test. To do this we had to use a coarse discretization. We di-
vided the scores into three equally sized groups and thus we
obtained an observed variable having three possible states.
The states represent a group of students with “bad”, “aver-
age”, and “good” scores achieved. The state of this variable
is known if all questions were included in the test. Thus,

during the learning phase the variable is observed and the
information is used for learning. On the other hand, during
the testing the resulting score is not known – we are trying
to estimate the group into which would this test subject fall.
In the testing phase the variable is hidden (unobserved).

3.3 ADDITIONAL INFORMATION

As mentioned above, we have collected not only solutions
to problems but also additional personal information about
students. This additional information may improve the
quality of the student model. On the other hand it makes
the model more complex (more parameters need to be es-
timated). It may mislead the reasoning based solely on
question answers (especially later when sufficient infor-
mation about a student is collected from his/her answers).
The additional variables are Y1, . . . , Y` and they take states
y1, . . . , y`. We tested both versions of most of the models,
i.e. models with or without the additional information.

3.4 PROPOSED MODELS

In total we have created 14 different models that differ in
factors discussed above. The combinations of parameters’
settings are displayed in the Table 3. One model type is
shown in the Figure 1. It is the case of ”tf plus” which is
a network with one hidden skill node and with the addi-
tional information3. Models that differ only by number of
states of variables have the same structure. Models with
the “obs” infix in the name and “o” in the ID have the skill
variable modified to represent score groups rather than skill
(as explained earlier in the part 3.2). Models without addi-
tional information do not contain the part of variables on
the right hand side of the skill variable S1. Figure 2 shows
the structure of the expert models with 7 skill variables in
the middle part of the figure.

4 ADAPTIVE TESTS

All proposed models are supposed to serve for adaptive
testing. In this section we describe the process of adaptive
testing with the help of these models.

At first, we select the model which we want to use. If this
model contains additional information variables it is neces-
sary to insert observed states of these variables before we
start selecting and asking questions. Next, following steps
are repeated:

• The next question to be asked is selected.

• The question is asked and a result is obtained.

• The result is inserted into the network as evidence.
3Please note that the missing problems and problem numbers

are due to the two-cycled test creation and problems removal.
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Figure 1: Bayesian network with one hidden variable and personal information about students

ID Model name N
o.

of
sk

ill
no

de
s

N
o.

of
st

at
es

of
sk

ill
no

de
s

Pr
ob

le
m

va
ri

ab
le

s

A
dd

iti
on

al
in

fo

b2 tf simple 1 2 Boolean no
b2+ tf plus 1 2 Boolean yes
b3 tf3s simple 1 3 Boolean no
b3+ tf3s plus 1 3 Boolean yes
b3o tf3s obssimple 1 3 Boolean no
b3o+ tf3s obsplus 1 3 Boolean yes
b2e tf expert 7 2 Boolean no
n2 points simple 1 2 numeric no
n2+ points plus 1 2 numeric yes
n3 points3s simple 1 3 numeric no
n3+ points3s plus 1 3 numeric yes
n3o points3s obssimple 1 3 numeric no
n3o+ points3s obsplus 1 3 numeric yes
n2e points expert 7 2 numeric no

Table 3: Overview of Bayesian network models

• The network is updated with this evidence.

• (optional) Subsequent answers are estimated.

This procedure is repeated as long as necessary. It means
until we reach a termination criterion which can be either
a time restriction, the number of questions, or a confidence
interval of the estimated variables. Each of these criterion
would lead to a different learning strategy (Vomlel, 2004b),
but because such strategy would be NP-Hard (Lı́n, 2005).
We have chosen an heuristic approach based on greedy en-
tropy minimization.

4.1 SELECTING NEXT QUESTION

One task to solve during the procedure is the selection of
the next question. It is repeated in every step of the testing
and it is described below.

Let the test be in the state after s− 1 steps where

Xs = {Xi1 . . . Xin | i1, . . . , in ∈ {1, . . . ,m}}
are unobserved (unanswered) variables and

e =

{Xk1 = xk1 , . . . , Xko = xko |k1, . . . , ko ∈ {1, . . . ,m}}

is evidence of observed variables – questions which were
already answered and, possibly, the initial information. The
goal is to select a variable from Xs to be asked as the next
question. We select a question with the largest expected
information gain.

We compute the cumulative Shannon entropy over all skill
variables of S given evidence e. It is given by the following
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Figure 2: Bayesian network with 7 hidden variables (the expert model)

formula:

H(e) =

n∑

i=1

∑

si

−P (Si = si|e) · logP (Si = si|e) .

Assume we decide to ask a question X ′ ∈ Xs with possible
outcomes x′1, . . . , x

′
p. After inserting the observed outcome

the entropy over all skills changes. We can compute the
value of new entropy for evidence extended by X ′ = x′j ,
j ∈ {1, . . . , p} as:

H(e,X ′ = x′j) =
n∑

i=1

∑

si

−P (Si = si|e,X ′ = x′j)
· logP (Si = si|e,X ′ = x′j)

.

This entropy H(e,X ′ = x′j) is the sum of individual en-
tropies over all skill nodes. Another option would be to
compute the entropy of the joint probability distribution
of all skill nodes. This would take into account correla-
tions between these nodes. In our task we want to estimate
marginal probabilities of all skill nodes. In the case of high
correlations between two (or more) skills the second crite-
rion would assign them a lower significance in the model.
This is the behavior we wanted to avoid. The first crite-
rion assigns the same significance to all skill nodes which

seems to us as a better solution. Given the objective of the
question selection, the greedy strategy based on the sum of
entropies provides good results. Moreover, the computa-
tional time required for the proposed method is lower.

Now, we can compute the expected entropy after answering
question X ′:

EH(X ′, e) =

p∑

j=1

P (X ′ = x′j |e) ·H(e,X ′ = x′j) .

Finally, we choose a question X∗ that maximizes the infor-
mation gain IG(X ′, e)

X∗ = argmax
X′∈Xs

IG(X ′, e) , where

IG(X ′, e) = H(e)− EH(X ′, e) .

4.2 INSERTION OF THE SELECTED QUESTION

The selected question X∗ is given to the student and his/her
answer is obtained. This answer changes the state of vari-
able X∗ from unobserved to an observed state x∗. Next, the
question together with its answer is inserted into the vec-
tor of evidence e. We update the probability distributions
P (Si|e) of skill variables with the updated evidence e. We
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also recompute the value of entropy H(e). The question
X∗ is also removed from Xs forming a set of unobserved
variables Xs+1 for the next step s and selection process can
be repeated.

4.3 ESTIMATING SUBSEQUENT ANSWERS

In experiments presented in the next section we will use
individual models to estimate answers for all subsequent
questions in Xs+1. This is easy since we enter evidence
e and perform inference to compute P (X ′ = x′|e) for all
states of X ′ ∈ Xs+1 by invoking the distribute and collect
evidence procedures in the BN model.

5 MODEL EVALUATION

In this section we report results of tests performed with
networks proposed in Section 3 of this paper. The test-
ing was done by 10-fold cross-validation. For each model
we learned the corresponding Bayesian network from 9

10 of
randomly divided data. The model parameters were learned
using Hugin’s (Hugin, 2014) implementation of the EM al-
gorithm. The remaining 1

10 of the dataset served as a test-
ing set. This procedure was repeated 10 times to obtain 10
networks for each model type.

The testing was done as described in Section 4. For every
model and for each student from the testing data we simu-
lated a test run. Collected initial evidence and answers were
inserted into the model. During testing we estimated an-
swers of the current student based on evidence collected so
far. At the end of the step s we computed probability distri-
butions P (Xi|e) for all unobserved questions Xi ∈ Xs+1.
Then we selected the most probable state of Xi:

x∗i = argmax
xl

P (Xi = xl|e) .

By comparing this value to the real answer x′i we obtained
a success ratio of the response estimation for all questions
Xi ∈ Xs+1 of test (student) t in step s

SRt
s =

∑
Xi∈Xs+1

I(x∗i = x′i)

|Xs+1|
, where

I(expr) =

{
1 if expr is true
0 otherwise.

The total success ratio of one model in the step s for all test
data (N = 281) is defined as

SRs =

∑N
t=1 SR

t
s

N
.

We will refer to the success rate in the step s as to elements
of sr = (SR0,SR1, . . .), where SR0 is the success rate of
the prediction before asking any question.

ID/Step 0 1 5 15 25 30
b2 0.714 0.761 0.766 0.778 0.798 0.835
b2+ 0.749 0.768 0.768 0.778 0.797 0.829
b3 0.714 0.745 0.776 0.803 0.843 0.857
b3+ 0.746 0.754 0.78 0.801 0.831 0.859
b3o 0.714 0.747 0.782 0.8 0.832 0.864
b3o+ 0.747 0.761 0.785 0.799 0.83 0.865
b2e 0.715 0.73 0.767 0.776 0.781 0.768
n2 0.684 0.708 0.73 0.713 0.745 0.776
n2+ 0.717 0.732 0.731 0.717 0.75 0.778
n3 0.684 0.723 0.745 0.758 0.781 0.79
n3+ 0.684 0.724 0.743 0.757 0.77 0.776
n3o 0.686 0.721 0.745 0.751 0.77 0.779
n3o+ 0.716 0.729 0.743 0.752 0.773 0.779
n2e 0.684 0.699 0.735 0.738 0.737 0.715

Table 4: Success ratios of Bayesian network models

Table 4 shows success rates of proposed networks for se-
lected steps s = 0, 1, 5, 15, 25, 30. The network ID corre-
sponds to the ID from the Table 3. The most important part
of the tests are the first few steps, which is because of the
nature of CAT. We prefer shorter tests therefore we are in-
terested in the early progression of the model (in this case
approximately up to the step 20). During the final stages
of testing we estimate results of only a couple of questions
which in some cases may cause rapid changes of success
rates. Questions which are left to the end of the test do
not carry a large amount of information (because of the
entropy selection strategy). This may be caused by two
possible reasons. The first one is that the state of the ques-
tion is almost certain and knowing it does not bring any
additional information. The second possibility is that the
question connection with the rest of the model is weak and
because of that it does not change much the entropy of skill
variables. In the latter case it is also hard to predict the
state of such question because its probability distribution
also does not change much with additional evidence.

From an analysis of success rates we have identified clus-
ters of models with similar behavior. For models with in-
teger valued questions and also for models with Boolean
questions three clusters of models with similar success ra-
tio emerged:

• models with skill variable of 3 states,

• models with skill variable of 2 states, and

• the expert model.

We selected the best model from each cluster to display
success ratios SRs in steps s in Figure 3 for Boolean ques-
tions and in Figure 4 for integer valued questions. We made
the following observations:

• Models with the skill variable with 3 states were more
successful.
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b2+ b3 b2e n2+ n3 n2e
AZT 0.5 1.9 7.5 18.1 47.4 81.7
AS 0.002 0.006 0.026 0.047 0.081 0.121

Table 5: Avg. number of zeros/sparsity of different models

• Models with skill variable with 2 states were better at
the very end of tests, but this test stage is is not very
important for CAT since the tests usually terminates at
early stages as explained above.

• The expert model achieved medium quality prediction
in the middle stage but its prediction ability decreases
in the second half of the tests.

We would like to point out that the distinction between
models is basically only by differences of skill variables
used in the models. The influence of additional informa-
tion is visible only at the very beginning of testing. As can
be seen in the Table 4 “+” models are scoring better in the
initial estimation and then in the first one. After that both
models follow almost the same track. In the late stages of
the test, models with additional information are estimating
worse than their counterparts without information. It sug-
gests that models without additional information are able
to derive the same information by getting answers to few
questions (in the order of a couple of steps).

It is easy to observe that the expert model does not provide
as good results as other models especially during the sec-
ond half of the testing. As was stated above the second part
of the testing is not as important, nevertheless we have in-
vestigated causes for these inaccuracies. The main possible
reason for this behavior may be the complexity of this type
of model. With seven skill nodes and various connections
to question nodes this model contains a significantly higher
number of parameters to be fitted. It is possible that our
limited learning sample leads to over-fitting. We have ex-
plored the conditional probability tables (CPTs) of models
used during cross-validation procedure to see how sparse
they are. Our observation is shown in the Table 5. The
number AZT is the average of the total number of zeros in
cross-validation models for the specific configuration and
AS is the average sparsity of CPTs rows in these models.
We can see that in the same type of scales (Boolean or nu-
meric) the sparsity of expert models is significantly higher.
This can be improved by increasing data volume or de-
creasing the model’s complexity. This finding is consistent
with the above explained possible cause for inaccuracies.
In addition we can observe that there is also an increase in
sparsity when more skill variables states are introduced. It
seems to us as a good idea to further explore the space be-
tween one skill variable and seven skill variables as well as
the number of their states to provide a better insight into
this problem and to draw out more general conclusions.

In Figures 5 and 6 we compare which questions were often

selected by the tested models at different stages of the tests.
Figure 5 is for Boolean questions and Figure 6 for integer
valued questions. Only three models (the same as for suc-
cess ratio plots) were selected because other models share
common behavior with others from the same cluster. On
the horizontal axis there is the step when the question was
asked, on the vertical axis are questions by their ID. The
darker the cell in the graph the more tests used the corre-
sponding variable in the corresponding time. Even though
it provides only a rough presentation it is possible to notice
different patterns of behavior. Especially, we would like to
point out the clouded area of the expert model where it is
clear that the individual tests were very different. Expert
models are apparently less sure about the selection of the
next question. This may be caused by a large set of skill
variables which divide the effort of the model into many
directions. This behavior is not necessarily unwanted be-
cause it provides very different test for every test subject
which may be considered positive, but it is necessary to
maintain the prediction success rates.

6 CONCLUSION AND FUTURE
RESEARCH

In this paper we presented several Bayesian network mod-
els designed for adaptive testing. We evaluated their per-
formance using data from paper tests organized at grammar
schools. In the experiments we observed that:

• Larger state space of skill variables is beneficial.
Clearly, models with 3 states of the hidden skill vari-
able behave better during the most important stages of
the tests. Test with hidden variables with more than 3
states are still to be done.

• Expert model did not score as good as simpler models
but it showed a potential for its improvements. The
proposed expert model is much more complex than
other models in this paper and probably it can improve
its performance with more data collected.

• Additional information provided improves results
only during the initial stage. This fact is positive be-
cause obtaining such additional information may be
hard in practice. Additionally, it can be considered
politically incorrect to make assumption about student
skills using this type of information.

In the future we plan to explore models with one or two hid-
den variables having more than three states, expert models
with skill nodes of more than 2 states, and try to add re-
lations between skills into the expert model to improve its
performance. We would also like to compare our current
results with standard models used in adaptive testing like
the Rash and IRT models.

31



0.
65

0.
75

0.
85

0.
95

step

su
cc

es
s 

ra
te

0 5 10 15 20 25 30 35 40

b2+
b3
b2e

Figure 3: Success ratios for models with Boolean questions

0.
65

0.
75

0.
85

0.
95

step

su
cc

es
s 

ra
te

0 5 10 15 20 25 30 35 40

n2+
n3
n2e

Figure 4: Success ratios for models with integer valued questions
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Figure 5: Relative occurrence of questions (on vertical axis) into models with Boolean scale. From left “b2+”,“b3”,“b2e”
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Introduction

Educational testing is an important part of our lives in the modern society.
Every person participates in a large number of tests which are used to assess
his/her level of knowledge, quality, or skill in a certain domain. There are
many different possibilities how to design a test for a specific purpose. The
theory of test creation, administration, validation, etc. (in general called psy-
chometrics) is extensive (for example, [Helmstadter, 1964, Lord and Novick,
1968, Rasch, 1960, Mislevy, 1994], and many others). The process of the
creation of a good test is long, contains many steps, and can be performed
in many different ways. In the classical approach we first identify the tar-
get ability (the ability we want to measure). Afterwards, there are repeated
cycles of adding new questions, testing the test on a small set of examinees
(to see if the questions are measuring the right ability in a correct way), and
removing unsuitable questions. In the end we end up with one satisfactory
version of the test. This test is fixed in its questions (i.e., every student
taking the test will have the same question). This approach does not take
into account the individuality of each examinee. It is clear that for a skilled
examinee the test will necessarily contain a lot of questions which are too
easy and vice versa. The time which is being spent by solving these ques-
tions could be used to better explore his/her actual skill level. This can be
achieved by asking questions with an appropriate difficulty.

There are banks of questions which are suitable to measure the ability
of a student (sometimes they are quite limited – for example if we measure
a physical ability there might be a limited number of possible questions –
and sometimes they are unlimited – in mathematics we can create as many
different problems to solve as we want). Questions for a test are selected from
this bank. If we use one set of questions for every test there will be a lot of
possibly good questions which are never asked (those which remained in the
question bank unselected). The same set of questions for every test also, in
some cases, encourages cheating (which of course can usually be solved by
other methods, but it requires additional steps).

Some tests do not follow the outline explained in the paragraph above and
tries to utilize the whole bank of questions. One way of doing that is for ex-
ample used in the Czech driving license test1. It is a computer test where 25
questions are randomly selected from approximately a thousand of possible
questions. This approach negates the possibility of learning all the questions
by heart as well as cheating by looking into your neighbor’s sheet. Another

1http://www.mdcr.cz/cs/Silnicni_doprava/etesty/etesty.htm(Czech language)
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test in a similar manner is done by the Faculty of Medicine of the Charles
University2 as an entrance exam test. Questions for the entrance exam are
selected from a set (book) of possible questions for each test (i.e., question
bank). Several versions of a test are prepared for every entrance exam ses-
sion. Both of these selection processes (driver’s license and entrance exam)
remove some complications mentioned above but produce new problems. In
the driver’s license test, where the question selection is done automatically
by the system, it is hard to ensure the overall difficulty of each test will
be approximately the same. Cases where a lot of easy questions, or on the
contrary a lot of difficult questions, is selected might occur. In the approach
of the medical faculty this unfair combination can be avoided by a care-
ful test composition. The test composition is done by hand by specialists.
These specialists sometimes have shifted notion of the difficulty of individual
questions (some things they may think of as very easy are actually hard for
young students). There is also definitely a lot of effort and time involved in
the preparation of every entrance exam round.

Computerized Adaptive Testing (CAT) offers a way to overcome some
of the limitations given by the classical testing approach. The examinee
is answering questions presented to him/her by a computer system. This
system is centered on a student model. There are many ways to construct a
student model. One way is a model composition by experts. Another is to
construct the model from a data set of many previously tested examinees.
These examinees have to be tested without the adaptive approach to obtain
a basis for the model creation. Afterwards, the model can be further updated
and extended with new cases even while being in use.

During the course of testing the student model is updated to reflect abili-
ties of the tested student and as a part of that process an estimate of student’s
level of knowledge is updated as well. This provides us an actual estimate
of student’s abilities in every phase of testing. At the same time the model
is used to select the next question. The next selected question is the most
appropriate one. An appropriate question suits certain criteria, usually pro-
viding the best information about the student at the current stage of testing.
Questions are selected from a bank of questions. This bank can be similar
to a question bank for the classical test. Adaptive testing is performed until
a criterion is reached. There is a variety of possible criteria. Usually we
want to stop the test when the confidence of the estimate of student’s skill
is above a certain significant value. Other practical limitations might affect
this criterion such as the total time of the test or the number of asked ques-
tions. The adaptive testing concept brings many advantages but also some
disadvantages over the classical testing approach. These aspects are detailed
in the following chapters. Further we present three different model types for
CAT. Experimental results of these models with empirical data are in an
associated paper [?]

2http://www.lf1.cuni.cz/prijimaci-rizeni(Czech language)
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Chapter 1

Computerized Adaptive Testing

This chapter introduces the concept of Computerized Adaptive Testing (CAT)
and summarizes its advantages and disadvantages.

CAT is a concept of testing which is getting large scientific attention for
about two decades [van der Linden and Glas, 2000, Wainer and Dorans, 2015,
van der Linden and Glas, 2010]. With CAT we build computer administered
and computer controlled tests. The computer system is selecting questions
for a student taking the test and evaluating his/her performance.

The process can be divided into two phases: model creation and testing.
In the first one the student model is created while in the second one the model
is used to actually test examinees. There are many different model types [Al-
mond and Mislevy, 1999, Culbertson, 2014, Cowell et al., 1999] which can be
used for adaptive testing. In this work we are going to cover Item Response
Theory (IRT), which is a model regularly used for CAT, Bayesian and neural
networks (BNs and NNs), which are both models commonly used in many
areas of artificial intelligence for a large variety of tasks. We will pay closer
attention to these models later on but regardless of the model we choose
the testing part follows always the same scheme. With the prepared and
calibrated model, CAT testing repeats following steps.

• The next question to be asked is selected.

• This question is asked and an answer is obtained.

• This answer is inserted into the model.

• The model (which provides estimates of the student’s skills) is updated.

• (optional) Answers to all questions are estimated given the current
estimates of student’s skills.

This procedure is repeated until we reach a termination criterion. There
are many different stopping criteria. It can be a time restriction, the number
of questions, or a confidence interval of the estimated variables (i.e., reliability
of the test).

5
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1.1 Advantages of CAT

Shorter tests: One of the most obvious advantages of CAT is that the overall
length of a test is reduced. Because questions are selected according to the
level of the tested student he/she is not forced to answer questions which
are too easy or too hard. This means the test aims better at discovering the
level of the student. That results in the reduction of the length of the test in
both time and the number of questions. Usually it is enough to ask as few
as half the questions to obtain reliable results.

Fairness: A test in the classical theory usually expects a Gaussian score
distribution among the population of students. This expectation yields fre-
quencies of question difficulties to be of the same distribution (most questions
are medium difficulty and less of them are hard or easy). Because of that
a precision of the resulting score is the best for mediocre students while it
drops for students on edges of the scale. CAT on the other hand selects
appropriate questions based on the skill of the student. That results in the
same precision for each student, nevertheless his/her position on the score
scale. This topic is further discussed in [Pine and Weiss, 1978].

Intelligent tutoring system: It is quite easy to convert a CAT test to an
intelligent tutoring system. ITS is a system which is designed to uncover
student’s weak and strong spots and offer more exercises and materials to
learn from.

Motivation: While testing a student with a CAT system the optimal
probability of successful answer to a question is 50% (at least while using the
IRT student model). Even though a question with such probability may not
exists to be selected in every step of the testing it should not get far from
this value if the question bank is well designed. This helps to keep a student
interested in the test. A weaker students will not get overwhelmed by many
difficult questions while a good student will not get bored by easy ones.

Reseating the exam: With CAT it is extremely easy to resit the exam
(provided we keep track of previous questions for the particular student).
Because of its nature CAT system can create a completely different test to
retest the same student.

Computer administration: The test is done electronically and thus results
are available immediately and can be stored easily. It is also possible to
deliver the test over the internet.

1.2 Disadvantages of CAT

Over usage of some items: This issue greatly depends on the way we use to
select subsequent questions for students. Nevertheless, with most commonly
used criteria there is a danger of selecting the same questions for groups
of students and/or selecting certain questions in many tests. For example,
the first question, if the selection process is not modified, will be the same
for each student. We have no information about the student so far and the
selection process results in the same question. Following questions will be

6
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the same for groups of students. These groups shrink with more answered
questions as the number of possible combinations of answers increase. This
behavior can be reduced by having a large question bank containing many
different questions with similar properties (i.e., difficulty). Moreover, it is
possible to modify the selection process to ensure a wider spread of selected
questions over the question bank (with the cost of decreased precision).

Initial data collection: Prior to starting a test using CAT it is necessary to
obtain a large set of data (full test results) from a representative population.
This data is used to create and calibrate the student model used for testing.
Results used for this creation need to come from a full length tests (optionally
it would be possible, but not preferable, to have a several sub-tests). This
means students participating in the initial testing are required to fill answers
to many items. Another option is to build a model with the help of an expert
in the field but even this approach is time consuming.

Computer administration: In order to test students it is necessary to
create an environment for such testing on the computer. Also it is necessary
for students to have access to a computer rather than having just a pen.

Results perception: Last but not least, there might be some issues with
the perception of results by students taking the test. It may be hard to
explain to them and for them to comprehend the fact, that even though
they got completely (or partly) different questions they are sorted on the
same scale (sometimes even obtaining the same score). It may seem unfair
and incomparable because of the question selection process. The feeling
may be the same as with the the Czech driving license test mention in the
introduction but there the selection is done at random. In reality CAT
tests tend to be more fair the regular paper-pen tests [Moe and Johnson,
1988, Tonidandel et al., 2002].
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Chapter 2

Data Collection

To support the creation of a student model we have collected empirical data.
We designed a paper test of mathematical knowledge of grammar school
students. The test focuses on simple functions (mostly polynomial, trigono-
metric, and exponential/logarithmic). Students were asked to solve various
mathematical problems1 including graph drawing and reading, calculating
points on the graph, root finding, describing function shapes and other func-
tion properties.

2.1 Test Design

When we were creating the test for the data collection we performed several
steps. First, we prepared an initial version of the test. This version was
carried out by a small group of students and took about 80 minutes to be
solved. We evaluated this first version and based on this evaluation we made
changes before the main test cycle. It was necessary to limit the time of
the test to 45 minutes to make it fit one school lesson. Some questions
were removed completely from the test. They were mainly those where the
information benefit of the problem was too low due to their high or low
difficulty (i.e. only a few students answered them correctly or incorrectly).
There was no assumption that all the students should be able to finish all
the questions in time which is a usual way to create school test. In this
case we were targeting the number of questions to allow the best students
to finish just in time. This allowed us to remove less questions than we
normally would. Remaining problems were updated and changed to be better
understandable. Moreover we divided problems into subproblems in the way
that:

(a) it is possible to separate the subproblem from the main problem and
solve it independently or

(b) it is not possible to separate the subproblem, but it represents a sub-
routine of the main problem solution.

1In this case we use the term mathematical “problem” due to its nature. In general
tests, terms “question” or “item” are often used. In this article all of these terms are
interchangeable.
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Note that each subproblem of the first type can be viewed as a completely
separate problem. On the other hand, subproblems of the second type are
inseparable pieces of a problem.

The final version of the test contains 29 mathematical problems. These
problems have been further divided into 53 subproblems. Subproblems are
graded so that the sum of their grades is the grade of the parent problem, i.e.,
it falls into the set {0, . . . , 4}. Usually a question is divided into two parts
each graded by at most two points2. The granularity of subproblems is not
the same for all of them and is a subset of the set {0, . . . , 4}. All together,
the maximal possible score in the test is 120 points.
In an alternative evaluation approach, each subproblem is evaluated using
the Boolean values (correct/wrong). An answer is evaluated as correct only
if the solution of the subproblem and the solution method is correct unless
there is an obvious numerical mistake.

We organized tests at four grammar schools. In total 281 students par-
ticipated in testing. In addition to answers to questions, information about
students was collected. This includes mostly some personal factors as gen-
der, age, and grades from mathematics, physics, and chemistry from the
recent period. These factors will be used to better differentiate between stu-
dents and to better predict their performance as well as to verify the validity
of the test. The goal of the test was to pinpoint students’ weak and strong
points and to provide them with valuable information about their skills. Stu-
dents are able to view their results (the scores obtained in each individual
question). We also provide them with a comparison with specific groups of
students (their class, school, and all participants). Comparisons are provided
in the form of quantiles in the respective group.

2.2 Test Assessment

In the following section we present a psychometric analysis of the test. This
kind of analysis should be done for every large scale test. It might not be
necessary to perform all actions which are presented below for CAT. Never-
theless we will use these results to compare classical approach and CAT as
well as to point out some interesting relations. Moreover it proves that the
paper test we used to collect data provide reasonable results.

True scores and reliability
The goal of every test is to measure a certain variable. This variable re-
flects examinee’s skill, ability or level of another quality (some psychiatric
test might be measuring person’s empathy). In terms of IRT and CAT this
variable is a part of the student model described in the Section 3.1. Even
in the classical test there is a certain variable. A test is just a tool created
to measure this variable. As always, when measuring anything, the mea-
surement process is obstructed with measurement errors. These errors are

2There is one exception from this rule: The first problem is very simple and it is divided
into 8 parts, each graded by zero or one point (summing to the total maximum of 8 points).
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caused by many different factors (the examinee could have a bad day, be ill,
guess the answer, or get distracted while solving a single question,. . . ) and
it is reasonable to expect them to have a significant influence on the final
value. The value obtained as a measurement x of the variable X is called a
raw score and is in the form

x = τ + e

where τ is the true score and e is an additive error.
There is an obvious question whether the raw score is influenced more by

the true score or the error. For many measurements the maximum-likelihood
estimator of the error is the variance of many consecutive measurements of
the same factor. In our case it proves to be impractical to measure one
person multiple times for obvious reasons. It is not as well possible to use
the variance of many different examinees as their true values most likely
differ. The variability of scores in the data set is then caused by actual
differences between examinees (different true scores) as well as errors. It
is usually expected that the data set satisfies homoskedasticity condition3.
With this assumption true scores and errors are statistically independent
and thus the observed variance σx is a sum of variances of true scores στ and
errors σe.

σx = στ + σe

The best possible situation is that the variance of the measured variable X
is fully modeled by true scores. This situation is very unlikely to happen.
To determine the level of the relationship we use the value called reliability4

which is defined as follows:

rxx =
στ
σx

=
στ

στ + σe

The higher the value the better. Unfortunately variables στ in the nominator
as well as σe in the denominator of the second fraction are hidden (unobserv-
able) variables and as such we are unable to evaluate their variance. The
reliability has to be estimated with a different approach.

There are many possible approaches and we will elaborate more into one of
them which is known as Cronbach’s alpha coefficient. The idea is that items
of the test are measuring the same factor and thus they should correlate
with each other. The amount of pair wise correlations for q questions is
k = q(q−1)

2
. All these correlations are put together in the Cronbach’s alpha

coefficient which can be calculated as

rxx ≈ α =
n

n− 1

(
1−

∑n
i=1 σ

2
i

σ2
t

)

where σi is the variance of the ith item of the test, σt is the variance of the
whole test and n is the number of items in the test. The coefficient should

3Homoskedasticity means that the size of an error is not correlated with the size of the
measured variable

4Note that reliability is a well established and very important property of a test among
psychometric comunity
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reach high values. According to [Helmstadter, 1964] any value below 0.5
means the test is of no use. Quality results are produced with the coefficient
over 0.9.

For our data set (281 students) the following values were calculated:
Cronbach’s alpha for the numeric classification: α = 0.914
Cronbach’s alpha for the Boolean classification: α = 0.925
These values show reasonably high reliability of the test.

Normalization and standard scores
It may not be very efficient to use directly the score a student obtained in the
test. This score is called the raw score. The question with raw score is that
it may not distinguish between individual students as well as it could. For
example in case we have 3 results with scores of 20, 40 and 60 respectively.
It would seem to us that the gap between the first and the second pair is the
same. It definitely is in terms of raw score, but it may not be in terms of real
abilities of students. If there are a lot of students who score between 20 and
40 and just a few in the interval between 40 and 60 then the skill gap from
the second to the third may not be as wide as it appears. In order to better
categorize students, scores are usually normalized. With normalized scores
it is easier to evaluate the position of a student in the test for a specialist
who is used to work with normalized scores. There are many different types
of standard scores and most of them are obtained by a linear transformation
of raw scores (note that it means that the order of examinees is not changed
by this kind of transformation) by the following formula

x′ = µ′ + σ′
(x− µ)

σ

Where x′ is the transformed score, µ′ and σ′ are desired mean and variance
values of the standardized score, µ and σ are previous mean and variance
values and x is the raw score.

To apply these transformations it is required that the raw score belong
to the Gaussian distribution (ideally with the mean value in the middle of
possible scores). Standardized scores differ in the chosen parameters of µ′ and
σ′ and some special selections are generally recognized. The most commonly
used is the z-score with the mean value 0 and the variance 1. Another
well known standard score is the IQ score (µ′ = 100, σ′ = 15) used mostly
for intelligence testing. Other well known scores are also stens, stenines,
percentiles, and t-scores.

The set of scores obtained from our data set most likely do not belong
to Gaussian distribution. The visual proof is displayed in the Figure 2.1
where it can be clearly seen that it does not resemble the Gaussian distribu-
tion. The Shapiro-Wilk normality test also rejects the null hypothesis of the
Gaussian distribution by resulting with p − value = 3.648·−7. The solution
to this problem is provided by the McCall’s area standardization [McCall,
1922, Urbánek et al., 2011] which transforms raw scores to the Gaussian dis-
tribution. We performed this step at first and then we transformed scores to
the standardized score scales. To illustrate these scales, a short excerpt from
whole scale tables for the z-score and the IQ score is shown in the Table 2.1.
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Figure 2.1: Score frequencies

From this table we can see that the center of the normalized score scale is
around 40 points of raw score (z value of 0 and IQ of 100). Maximum score
obtained was 107 points and minimum 0. The transformed scale at these
points has opposite (and extreme) values. The space between center of 40
points and these extremes is the same at both sides for normalized scores
but it is not for raw scores. There is the same amount of students scoring
in any two intervals of the same length ending/starting at the center on the
normalized score scale (for example the same amount of students scored in
intervals (-1,0) and (0,1) on the z-score, which corresponds to raw scores of
(20, 40) and (40, 72 - not in the table)).

Table 2.1: Standardized scores
raw 0 20 40 60 80 100 107
z -2.91 -1.00 -0.01 0.67 1.16 2.06 2.91
IQ 56 85 100 110 117 131 144

Validity
Another question it is important to ask is whether the test is actually mea-
suring the factor it is supposed to measure (i.e. in our case if the score
obtained reflects mathematical skills rather than for example the ability to
read the question or the writing skill of the examinee). This characteristic is
called validity and there are many different ways of proving the test is valid.
Most validity proofs come from the outside of the test. One way is to let an
examinee to answer a new different test measuring the same factor (ideally
a test which is already well established). Another way is to consult other
factors known about the examinee, which is what was performed in our case.

As was mentioned above, in addition to solutions to individual problems
student’s grades from subjects (mathematics, physics, and chemistry) were
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obtained. It is reasonable to expect a correlation between these grades and
the score reached. The correlation is present and its values are shown in the
following paragraphs. Because of this fact, although the complete validation
would require more thorough examination, it is expected that the test is
valid.

2.3 Preliminary Test Statistics

In this section we present an overview of results obtained in testing. This
should provide an idea of skills of students, prove validity as mentioned in
the paragraph above and will also be referenced later on for comparison.

Table 2.2: Average test scores of the four grammar schools.

GS1 GS2 GS3 GS4 Total
Males 51.40 40.08 47.77 51.03 48.48
Females 42.53 54.86 44.45 38.81 43.06
Together 42.76 46.68 46.35 43.65 44.53

The Table 2.2 shows the reached scores divided by gender and school.
We calculated Pearson’s correlation coefficients of score with other factors.
Results are shown in the Table 2.3. The correlation test is associated with
its p-value, where the null hypothesis is correlation of 0 (no correlation). It
means we can say that the correlation between score and all grades (math,
physics, and chemistry) is present. The negative value of correlation means
that better grade (lower value) yields better score (higher value) which is
expected. Furthermore we can see that the grade in mathematics has the
highest correlation while physics and chemistry lower. Another significant
correlation is interestingly between the fact that the student filled his/her
name and his/her score. Positive value shows that those students who filled
their name scored better in the test. On the other hand we can not reject the
null hypothesis for gender, so there most likely is no statistically significant
correlation between gender and score5.

Table 2.3: Correlations of the score with other factors

Gender Mathematics Physics Chemistry Name
Correlation -0.10 -0.59 -0.42 -0.41 0.22

p-value 0.08 2.20E-16 3.63E-12 2.65E-11 0.18E-4

Some questions were in the form of word problems with a connection to
everyday life (calculating savings, time to finish a job,etc.). These questions

5Females were encoded as 1 and males as -1. Negative value would show worst score
for females, but it is statistically insignificant.
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were correlated with the score independently as well. The result is displayed
in the Table 2.4. In the first column it is possible to see that there is a strong
and statistically significant correlation of the score obtained in these ques-
tions with the total score. Also in this case there is not a strong correlation
with the gender of the student even though a bit higher and on the edge of
rejection of statistical insignificance. The trend of correlations with grades is
preserved but the strength of correlation is lower. In connection with previ-
ous results, it leads to an assumption that students with worse grades from
these subjects answered correctly rather this kind of questions than other
questions.

Table 2.4: Correlations of word problems with other factors

Score Gender Mathematics Physics Chemistry
Correlation 0.69 -0.19 -0.38 -0.25 -0.27

p-value 2.20E-16 0.16E-3 3.16E-10 7.99E-5 2.25E-5
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Chapter 3

Models for Adaptive Testing

We remind, as was mentioned in the Section 1, the process of an adaptive
test.

• The next question to be asked is selected.

• This question is asked and an answer is obtained.

• This answer is inserted into the model.

• The model (which provides estimates of the student’s skills) is updated.

• (optional) Answers to all questions are estimated given the current
estimates of student’s skills.

In this section we will take a closer look on the model structures for different
approaches. Also we will discuss the question selection process from step 1 of
the list above. Insertion to the model (step 3) and consequent update of the
model (steps 4 and 5) is always done with respective tools for the particular
model and will not be extensively discussed here. This topic, especially for
BNs, is covered in [Plajner and Vomlel, 2015]. We performed experiments
on empirical data with different models of following model types. Results of
these experiments are not a part of this paper but they are available in [?].

3.1 Building Models with the Help of IRT

The beginning of Item Response Theory (IRT) stems back to about 5 decades
ago [Lord and Novick, 1968, Rasch, 1960, Rasch, 1993]. This approach is
different from the Classical Test Theory (CTT) and it is getting scientific at-
tention ever since. IRT allows more specific measurement of certain abilities
of an examinee. Internationally, there is a large amount of tests adapting
this concept. It has stronger assumptions but it also provide stronger re-
sults. Nevertheless, its spread is not as high as could have been expected.
This smaller impact might be caused by the fact that there is a requirement
for a stronger statistical and theoretical preparation of a test creator than in
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Question a b c
1 -2 0.3 0
2 0 1.5 0
3 5 0.7 0

Table 3.1: IRFs’ parameters

the CTT. In the Czech Republic there is just a few large normalized tests
which use this concept [Urbánek et al., 2011]1.

IRT expects a student to have an ability (skill) which directly influences
his/her chance of answering a question correctly. This ability is called latent
ability or latent trait θ. When we have only one variable2, it is common
to refer to it as proficiency variable. We will stay with the more general
skill variable term because we will have more variables in the following parts
(Bayesian networks). Every question of the IRT model has an associated
item response function (IRF) which is a probability of a successful answer
given θ. There are more variants of the shape of this IRF but mostly a 3
parametric model is used (often called 3PL). These parameters reshape a
standard logistic function. The resulting IRF, as the probability of a correct
answer to i-th with the ability of θ, is given by a formula

pi(θ) = ci +
1− ci

1 + e−ai(θ−bi)

where ci is a parameter for guessing, ai sets the scale of the question (this
sets its discrimination ability - a steeper curve better differentiate between
students), bi is the difficulty of the question (horizontal position of a curve
in space). An example of typical IRFs is shown in the Figure 3.1. The
dependence of a correct answer probability P based on the skill θ is displayed.
The Table 3.1 shows parameters of these functions.

IRFs are created either by setting parameters manually or automatically
through machine learning procedures. Manual creation is done by field ex-
perts based on their knowledge and experiences in the field. Automatic
creation is done from collected data as most likelihood estimates of IRFs’
parameters.

3.1.1 Adaptive Test Procedure

Building CAT model with IRT is very straightforward. IRT itself, as was
described above, is in the form prepared to be used for CAT. With the
model fitted from sample data or created by domain experts we have IRFs
for every question. In every phase of the test we can compute an estimate of
the latent skill θ based on answers x: p(θ|x). For this estimations Empirical
Bayes or Multiple Imputation methods of IRT are used. Knowing the value

1One of them is, for example, the Woodcock–Johnson test [Anton and Ruef, 2010]
2There are variants of multidimensional IRT model where it is possible to have more

then one latent variable but in this section we are going to discuss only models with one
latent variable.
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Figure 3.1: Item Response Functions

of the latent skill we know probabilities of a correct answers pi(θ) and an
incorrect answers qi(θ) to every question3. More importantly, we are able
to calculate the information provided by asking the question. This is called
item information and it is given by the formula

Ii(θ) =
(p′i(θ))

2

pi(θ)qi(θ)

where p′i is the derivation of the item response function pi. There is an exam-
ple of typical item information functions (with the same parameters of items
as in the Table 3.1) in the Figure 3.2. This item information provides one,
and most straightforward, way of the next question selection. In every step
the question X∗ which is selected is one with the highest item information.

X∗(θ) = arg max
i
Ii(θ)

This approach minimizes the standard error of the test procedure [Hambleton
et al., 1991] because the standard error of measurement SEi produced by
i− th item is defined as

SEi(θ) =
1√
Ii(θ)

.

This means that the better precision of difficulty we are able to achieve while
asking questions the less error of measurement.

3.2 Building Models with the Help of BN

In this section we go over the basic definitions of Bayesian networks, more
details can be found in [Nielsen and Jensen, 2007, Kjærulff and Madsen,

3With 3 parametric model these two numbers do not necessarily sum to 1
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Figure 3.2: Item Information Functions

2008]. The use of BNs in educational assessment is discussed in [Almond
et al., 2015, Culbertson, 2015, Millán et al., 2010]. This section is focused on
the creation Bayesian networks models for CAT. This topic is also discussed,
for example, in [Vomlel, 2004b, Vomlel, 2004a].

Bayesian network is a probabilistic graphical model, a structure repre-
senting conditional independence statements. It consists of the following:

• a set of variables (nodes),

• a set of edges,

• a set of conditional probabilities.

Edges between variables have to form a directed acyclic graph (DAG). Each
variable has a list of mutually exclusive states. For each variable a con-
ditional probability distribution conditioned by its parents is defined, e.g.,
variable A with parents B1,B2,...,Bn has the conditional probability table4

P (A|B1, B2, ..., Bn).
To build a BN model for adaptive testing we need to perform 3 steps:

1. define nodes of the BN,

2. define connections between nodes, and

3. specify initial values of conditional probability tables.

Types of Nodes

We will divide nodes of a BN into three sets.

4Note that the variables with no parents have the table in the form P (A)
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• A set of n variables we want to estimate {S1, . . . , Sn}. These variables
represent latent skills (abilities, knowledge) of a student. We will call
them skills or skill variables. We will use symbol S to denote the
multivariable S = (S1, . . . , Sn) taking states s = (s1,i1 , . . . , sn,in).

• A set of m variables representing eventual additional information about
the student {I1, . . . , Im}. We will use the symbol I to denote the mul-
tivariable I = (I1, . . . , Im) taking states i = (i1, . . . , im).

• A set of p questions (math problems) {X1, . . . , Xp}. We will use the
symbol X to denote the multivariable X = (X1, . . . , Xp) taking states
x = (x1, . . . , xp).

Skills

Skill nodes model the student abilities and, generally, they are not directly
observable. It means they are hidden variables of the model and their value
is not known prior to the model creation. Several decisions concerning skill
nodes are to be made during the model creation.

The first decision is the number of skill nodes itself. Should we expect
one common skill or should it rather be several different skills each related
to a subset of questions only? In the later case it is necessary to specify
which skills are involved in solution of each particular question (i.e. a math
problem). These skills become parents of the considered question. Possible
relations between them are discussed in the last chapter.

This way we create variables with a given meaning (specific student abil-
ity). It is not possible to cover all the necessary skills to solve a question.
Also, there are some other aspect important for a question’s solution. During
the interpretation of a CAT result we have to be careful. Even though we
have given the variable the meaning, it is possible that the model learned a
combination of this meaning with other factors. Nevertheless, if the model
was properly constructed the meaning of the variable should converge to the
intended meaning. For example, we have two skills overlapping over some
questions and not overlapping over other questions. It means that a skill 1 is
needed to solve some questions, skill 2 is needed as well to solve a subset of
them and then some others. If we select a student who has (by the model)
only one of these skills, we should be able to observe that he/she answered
correctly only to a part of questions of the corresponding skills. If this is true
and we can specify the skill needed to solve this type of questions, then it is
reasonable to assume that the skill interpretation converges to the intended
one.

Another decision we are facing is about the size of a state space of skill
nodes. As an unobserved variable, it is hard to decide how many states it
should have. Another alternative is to use a continuous skill variable instead
of a discrete one but we did not elaborate more on this option. For BNs no
suitable apparatus to handle continuous parents exists. It would be possible
though to create different kind of models with continuous parents. The use
of a discrete state space can be in a way viewed as sampling (or discretizing)
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the continuous skill variable of the student. It may seem reasonable to create
many states for each skill variable but each state increases the total num-
ber of parameters of the model (the exact rate depends on the structure).
This means that these models are too complex. It may be hard to learn a
statistically reliable and stable model if the complexity is high. Conditional
probability tables may end up very sparse and that limits the generalization
ability of the BN.

Skills are ordinal variables.A variable Si with possible states {si,1, . . . , si,ni
}

and an arbitrary state si,0 which is one but first state of the variable, has a
probability

P (S ≤ si,j)

of the variable Si being in one of states si,k, k ∈ {1, . . . j} (previous to j). We
define

P (Si ≤ si,0)
def
= 0

P (S ≤ si,ni
)
def
= 1.

Then for the probability of the ordinal variable Si being in the state si,j the
following has to be satisfied:

P (Si = si,j) = P (Si ≤ si,j)− P (Si ≤ si,j−1).

If this assumption would not be taken into account it may cause incon-
sistent results. For example, consider a student answering to a question that
is dependent on one skill (with 3 states). Without the ordinality assumption
a BN model could result in a following probability distribution:

• With a low level of the skill the chance of a correct answer is high.

• With a medium level of the skill the chance of a correct answer is low.

• With a high level of the skill the chance of a correct answer is high.

This situation is impossible with our definition of a skill to be a reasonable
requirement for the question’s solution. If the probability of a correct answer
is high with the low level of the skill it has to be higher for the medium level
and even higher for the high level5.

It is also possible to use a different BN model where unobserved skill
variables are replaced by observed variables. The easiest way is to introduce
the total test score as a variable into the model. To do this it is necessary
to use a coarse discretization. At first, total scores are divided into n groups
and by that we obtain an observed variable having n possible states. The
states represent a group of students with similar scores achieved. During
the learning phase the variable is observed and the information is used for
learning. On the other hand, during the testing, the resulting score is not
known – we are trying to estimate the group into which a test subject falls.
In the testing phase the variable is again hidden (unobservable).

Combinations of both types of skill variables are also possible.

5It would be possible to have an inverse situation if we had a skill which negates a
correct solution, but it still would have to be monotonic.
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Information about a Student

Information nodes gather additional information we have about a student.
They are observed variables. The number of their states correspond to the
possible options of the specific piece of information. One state, labeled as
“unknown”, may be also included for missing values. This should be done
especially if it has any information value in the context of the test. For
example, if a student does not enter his/her grade of mathematics it may
indicate that he does not feel very confident. If it is the case, then this
information can be used to our advantage. This additional information may
improve the quality of the student model.

Questions

The last type of nodes are question nodes. This node type holds answers
to individual questions. Its state space depends on the number of possible
answers to a question. As it was already mentioned it is difficult to build a
computerized system for evaluation of answers which do not use the multiple
choice question type. In some cases it may be possible to have open answers
to questions but in most cases these would be too hard to process. With
multiple choice, a question node has two possible state spaces:

1. one state for each possible answer,

2. one state for the correct answer and one for any incorrect answer.

The former case is more informative. It gives us a possibility to differen-
tiate between students not only based on the fact that the answer is cor-
rect/incorrect but as well on the fact which incorrect one it is. Nevertheless,
it has some limitations. The more the states the higher the number of model
parameters to be learned. With a limited training data it may be difficult to
reliably estimate model parameters. It requires larger data set to learn from.

Another aspect is the concept of fairness. It is questionable if it is fair
to make distinctions based on wrong answers. On one hand, a classical test
usually do not do this. If the answer is wrong then it does not matter which
one it is. On the other hand the selected answer brings additional information
about the student’s ability and there is no theoretical obstacle why not to
use it.

Connections between Nodes

The last step in the BN model creation is to define a set of arcs between
variables (nodes), i.e., network structure. This set defines relations between
skills, questions, and additional information, eventually, also inbetween them.
This task is usually done by the domain expert by hand. There are algorithms
for automated structure learning, but these algorithms are for general cases
and usually do not provide usable results for this specific purpose. We discuss
the automated creation more in the last chapter. The expert who is creating
a structure has to pinpoint which variables should be connected. Usually, we
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connect skill nodes with questions in a way that skill nodes are parents of
questions when the skill is needed to a question’s solution. The connection
can be of

• a deterministic relation, where we have to assign all the values of an
associated conditional probability table (discussed in the next section),
or

• a specific relation, e.g., AND, OR, etc. (discussed in the last section).

Then, there may be connections between skills if we want to further spec-
ify them. For example, we can create a common skill that is brought down
to two sub-skills. This common skill have a connection to the two sub-skills,
but possibly no questions. If we want to include some additional information
the expert also has to define what it influences. It depends on the type of
the piece of information. It can influence a skill, or even a question directly
if it is an important factor for its solution.

3.2.1 Model Learning

The last action to complete a BN is to define conditional probability tables
(CPT) for each node. Values in CPTs represent probabilities of the variable
being in a state conditioned by a configuration of its parents for every state of
the variable and every combination of its parents. First, we manually input
values into CPTs. Values should reflect a general expectation and are created
with expert knowledge in the field of the test. These probabilities serve as a
starting point for the learning algorithm. Next we learn the model with the
standard EM algorithm using collected data. This operation modifies values
in CPTs to better reflect the data.

BNs have a large advantage since they can learn from missing data (with
some unknown values). The EM algorithm, that is used for learning, has no
problems operating with missing data. Also, during the prediction process
unknown values are simply not inserted into the network and the prediction
is performed without this knowledge.

3.2.2 Adaptive Test Procedure

During the adaptive test we use standard BN inference methods to update
the network. These methods estimate probabilities of skill variables as well
as probabilities of a success in unanswered questions.
One task to solve during the CAT procedure is the selection of the next
question. It is repeated in every step of the testing and it is described below.

Let the test be in the state after s − 1 steps. It means that s questions
were already answered and they form the evidence e:

e = {Xi1 = xi1 , . . . , Xin = xin|i1, . . . , in ∈ {1, . . . ,m}}.

Remaining questions

Xs = X \ e
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are unobserved (unanswered).
The goal is to select a question from Xs to be asked next. We select a

question with the largest expected information gain.
We compute the cumulative Shannon entropy over all skill variables of S

given evidence e. It is given by the following formula:

H(e) =
n∑

i=1

in∑

j=1

−P (Si = si,j|e) · logP (Si = si,j|e).

Assume we decide to ask a question X ′ ∈ Xs with possible outcomes
x′1, . . . , x

′
p. After inserting the observed outcome the entropy over all skills

changes. We can compute the value of new entropy for evidence extended by
X ′ = x′j, j ∈ {1, . . . , p} as:

H(e,X ′ = x′j) =
n∑

i=1

ni∑

j=1

−P (Si = si,j|e,X ′ = x′j)
· logP (Si = si,j|e,X ′ = x′j)

.

This entropy H(e,X ′ = x′j) is the sum of individual entropies over all skill
nodes. Another option would be to compute the entropy of the joint proba-
bility distribution of all skill nodes. This would take into account correlations
between these nodes. In our task we want to estimate marginal probabilities
of all skill nodes. In the case of high correlations between two (or more) skills
the second criterion would assign them a lower significance in the model. This
is the behavior we wanted to avoid. The first criterion assigns the same sig-
nificance to all skill nodes which is a better solution. For our problem, the
greedy strategy based on the sum of entropies provides good results. More-
over, the computational time required for the proposed method is lower.

Now, we can compute the expected entropy after answering question X ′:

EH(X ′, e) =

p∑

j=1

P (X ′ = x′j|e) ·H(e,X ′ = x′j) .

Finally, we choose a questionX∗ that maximizes the information gain IG(X ′, e)

X∗ = arg max
X′∈Xs

IG(X ′, e) , where

IG(X ′, e) = H(e)− EH(X ′, e) .

3.2.3 Obtaining Total Score from Skills

BN models usually produce estimates of student skills. In some cases this is
more useful than a regular score. On the other hand if we want to obtain a
score in terms of achieved points we have to transform these skills. First, we
define a score SC as a weighted sum of skills (S1 = s1, . . . , Sn = sn):

SC
def
=

n∑

i=1

siCi
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Ci is a weight associated with the i-th skill. These weights define the maxi-
mum score

SCmax =
n∑

i=1

si,ni
Ci,

where si,ni
is the last possible state of Si.

The weights Ci can be set to any value. There are two special cases. The
first is, when all the weights are set to be equal

Ci = C.

Then the impact of each skill on the total score depends on the number of
the skill’s states. The second is, when we want all the skills to have the same
impact on the score. Then weights have to be set to

Ci =
nmax
ni

C,

where nmax = max
i
ni and C is a scaling constant.

During the testing process, the states of skills S1, . . . , Sn are unknown.
We use their estimates to compute an expected value of the total score:

E(SC) =
n∑

i=1

ni∑

j=1

P (Si = si,j)si,jCi

For a tested student this expected total score is our estimate of the real total
score.

3.3 Building Models with the Help of NN

Neural networks are models for approximations of non-linear functions. We
present a brief overview of NNs. For more details about NNs, please refer
to [Haykin, 2009, Aleksander and Morton, 1995].

There are three different parts of a NN:

1. an input layer,

2. several hidden layers, and

3. an output layer.

Each layer consist of several nodes called neurons. These neurons have con-
nections to the next layer. Usually the connections are formed from one
neuron to all neurons in the next layer. Every connection has an associated
weight. These weights are used to calculate a value of a neuron from values
of its predecessors. A substantial difference between NNs and previously de-
scribed IRT and BN models is that NNs are learned by supervised learning.
In this scenario an output (result), that is to be predicted by a NN, has to
be known during learning. IRT and BNs are usually working with unsuper-
vised learning [Schlesinger and Hlaváč, 2002]. For them we do not need to
know the output. That allow us to learn models for unknown values of skills.
During the learning it is not necessary6 to input other values than question

6BNs are able to learn even in a supervised fashion knowing the output value

24

58



responses. This pattern does not work with neural networks. It is necessary
to provide target values during the learning algorithm. In this case we can
use score results of the test as target values. It means, that the NN model
can not predict the skill of a student but it can predict his/her score directly.

The input layer of the NN model for CAT is created by as many nodes
as the number of questions is. For every question we are feeding its result
into the neuron. We have two options how to encode information about the
answer. It is either 1 (or 1,...,n if it is possible to have more points) for a
correct answer and 0 for an incorrect one. Inserting 0 to a node means that
there will not be any activation of such node. If we want to activate it even
for an incorrect answer we have to encode it as -1.

There is a general problem of missing data with NNs [Hastie et al., 2009,
Pesonen et al., 1998]. In order to produce a result NN has to obtain values
to all its nodes. There are many different methods to overcome this problem.
In our research we input either a value of 0 (there wont be any activation of
a neuron then) or an average score for a question (hopefully producing an
average result from that question).

The number and the size of hidden layers is up to our choice. There is
no specific rule how to choose the best specifications of a NN.

The last output layer contains only a single node. The value of this node
corresponds to predicted score of a student.

Learning of the NN model is done by a standard back propagation algo-
rithm from collected data.

3.3.1 Selecting the Next Question

In the two previous models we have used the entropy reduction criterion to
select the next question. The entropy was measured on the skill variables. We
have no skill variables with NN, only a score output. Measuring an entropy
in this case is not possible, because reducing the entropy of total score would
mean that we are trying to push a student to some specific score value. With
score there is no reason for this, with skills we wanted a student to reach
a certain level of skill. Instead, we propose a simple criterion to deal with
the selection of the next question. We want the selected question to provide
us as much information as possible about the student. That means that a
student who answers incorrectly should be as far as possible on the score scale
from the one who answers correctly. Let the SC|Xi,x be the score prediction
after answering the i-th question’s state x, P (Xi,x) the probability of state
x to be the answer to question i. P (Xi,x) can be obtained, for example,
by statistical analysis of answers. We select a question X∗ maximizing the
variance of predicted scores:

X∗ = arg max
i

Va
x
r(SC|Xi,x) =

∑

x

P (Xi,x)(SC|Xi,x − SC|Xi),

where
SC|Xi =

∑

x

P (Xi,x)SC|Xi,x
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is the mean values of predicted scores.

3.4 Some Remarks on Models

Scoring

Both IRT and BN models usually estimate the skill of a student. We have
to perform transformations to the score scale if we want to produce a score
of the test. For BN it was discussed in the Section 3.2.3. For IRT models
a similar procedure can be applied. NN models predict the resulting score
directly thus there is no conversion needed.

Question nodes

BN allow us to exploit every answer to a question as an information about
the student. This may help the adaptive test to evolve faster in case there
are some answers which are “more” wrong that other wrong answers. As was
mentioned above it requires large data samples for learning to avoid overfit-
ting.

Additional Information

BN and NN models allow us to include additional information about a stu-
dent. This is not possible in the standard version of IRT-CAT.
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Future Work

In this section we present a brief overview of research problems of our further
interest.

Constrained question selection

Adaptive tests constructed with the IRT model have various well established
methods of selecting next questions. As it was discussed in the first chap-
ter, the selection process should be carefully managed to prevent the overuse
of some questions as well as very similar question combinations for many
participants. One way IRT researchers are solving this issue is through a
series of constraints in the selection process [van der Linden and Veldkamp,
2004, Stocking and Lewis, 2000]. We plan to analyze the use of such con-
straints for BN models. The research will be conducted in order to define the
correct constraints, their application and their impact on the CAT procedure.

Precision of skills measurement

Stopping rules for CAT used in IRT are of two kinds.

• Practical, e.g., limited time of the test or a specific number of asked
questions, or

• Statistical, e.g., reliability of the test (precision of measured latent
skill).

The goal of this research path is to provide a similar criteria for BN-CAT
models as well. We will establish a criterion able to provide a statistically
sound precision of estimates. Afterwards, we will review the effect of using
this criterion as the stopping rule for CAT.

Model quality criterion

So far in our research we were evaluating a model quality based on its pre-
dictions of answers to remaining questions. This criterion provide reasonable
results but it also at the same time has some drawbacks. First of all, for
some models similar to each other it is often hard to order them in terms
of quality. The prediction accuracy varies over the test run and the order
of models changes in different steps (different numbers of asked questions).
Next, some models are able to predict the student’s skills very well while
their prediction power back to answers is not that good. These models have
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X2 X3X1

Y

Figure 3.3: Simple Bayesian network

a disadvantage compared to other models (with better backwards precision)
if we use the current criterion. This applies especially for some of neural
networks models.

We will focus on the design and testing criteria that are able to take into
account more aspects of models for CAT. We would like to better describe,
and experimentally verify on data, criteria that work with skills estimates.
Specifically, we will measure the quality of a model as a correlation of the pre-
dicted score with the real score. Also we want to compare the final ordering
of students based on predictions and real values.

Model creation

One reason of the small spread of the CAT use is in the high amount of work
required to create a student model. The process itself may be very useful
due to its highly organized character and statistically strong results, but it
requires a certain level of expertise in modeling and statistics.

We want to address an option of an automated model creation based on
data. Algorithms for BN structure learning in a general case exist, some
examples are in [Margaritis, 2003]. These algorithms cover general structure
learning which may serve well in some areas but in case of CAT it usually
does not reflect our situation very well. We would like to explore special
types of models which would fit better for our needs as the CAT model. This
leads to learning a model which contains a local structure. It is an interesting
theoretical task for the whole BN community, not limited only to CAT.

Local structure in BNs

Bayesian networks encode conditional probabilities. These probabilities can
be encoded in many ways. One of the most common is to define a conditional
probability table (CPT). This table defines a conditional probability of a
variable for every combination of its parents. For example, let us consider
the network in the Figure 3.3. The CPT for this network with a child Y
and parents X1, X2, X3 is in the Table 3.2 (values are chosen at random).
In the general case we have to specify 2n parameters where n is the number
of parents. In the example case, we need 23 = 8 parameters. This amount
of parameters correspond to binary nodes. For nodes with more than two
states, the total amount of parameters is even higher.
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X1 1 1 1 1 0 0 0 0
X2 1 1 0 0 1 1 0 0
X3 1 0 1 0 1 0 1 0
Y (0) 0.05 0.41 0.12 0.67 0.85 0.5 0.9 0.08
Y (1) 0.95 0.59 0.78 0.33 0.15 0.5 0.1 0.92

Table 3.2: CPT for the BN in 3.3

If we have additional information about the structure (relations) of BN
variables we can use this information to our benefit. The local structure in
a BN allow us to specify these relations and encode conditional probabilities
efficiently. The local structure concept is sometimes called as canonical mod-
els. A more thorough introduction to the theory of canonical models can be
found in [Dı́ez and Druzdzel, 2007]. Basically, we establish a function that
prescribes how to compute a child’s value from its parents. The function
can be of many different types, but for our illustrative example, we will now
consider the noisy OR function only. If there is OR local structure (without
noise) it means, that the value of Y is:

Y = X1 ∨X2 ∨X3

Because the relation is encoded directly in the formula, there is no need to
specify a CPT. In this case, we need to know only the values of X1, X2, X3.
To this model we introduce noise by adding auxiliary variables Z1, Z2, Z3.
The network then changes from the one in the Figure 3.3 to the one in the
Figure 3.4. In this case we need to include probabilities

P (Zi|Xi)

which specify the noise. This forms the noisy OR local structure. The
total number of parameters that we have to specify is n (there might be
one additional inhibitor variable with connection to each Zi making it to 2n
parameters). In our example we have to specify 3 or 6 parameters. It means
there is a difference of O(n) for models with a local structure compared to
O(2n) for models without a local structure.

We will explore learning strategies for BNs with a local structure. It
means, we have to modify the learning process of the general BN to this
special case. During the general structure learning we use criteria for the
model ranking. AIC/BIC7 criteria are popular. These criteria takes into
account the prediction quality of a model, but also penalize it for its size. It
is necessary to adapt these criteria to the specialized case of BNs with the
local structure. AIC/BIC work with the number of nodes to compute pa-
rameters, but with the local structure the reduction of number of parameters
is essential.

It is clear that exploiting a local structure in a BN has many advantages.

• First, it is easier to learn a statistically reliable model with less param-
eters.

7Akaike Iformation Criterion/Bayesian Information Criterion
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Z1 Z2 Z3

Y
OR

Figure 3.4: Bayesian network with noisy OR

• We are able to create more complex models where computational op-
eration will be quickly solvable.

• It is possible to store this model in less space.

• Last but not least, we do not need to specify a large number of con-
ditional probabilities. These probabilities are often obtained from ex-
perts and it may be difficult to get reliable estimates of them for large
CPTs. With the local structure, we have to specify significantly less
conditional probability values.
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(2002). Computer-adaptive testing: the impact of test characteristics on
perceived performance and test takers’ reactions. The Journal of applied
psychology, 87(2):320–32.
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Abstract

This paper follows previous research we have
already performed in the area of Bayesian net-
works models for CAT. We present models us-
ing Item Response Theory (IRT - standard CAT
method), Bayesian networks, and neural net-
works. We conducted simulated CAT tests on
empirical data. Results of these tests are pre-
sented for each model separately and compared.

1 INTRODUCTION

All of us are in touch with different ability and skill checks
almost every day. The computerized form of testing is also
getting an increasing attention with the spread of comput-
ers, smart phones and other devices which allow easy con-
tact with target groups. This paper focuses on the Comput-
erized Adaptive Testing (CAT) (van der Linden and Glas,
2000; Almond and Mislevy, 1999; Almond et al., 2015)
and it follows a previous research paper (Plajner and Vom-
lel, 2015).

In this previous paper we explained the concept of CAT.
Next, we describe our empirical data set. The use of
Bayesian networks for CAT was discussed and we con-
structed different types of Bayesian network models for
CAT. These models were tested on empirical data. The re-
sults were presented and discussed.

In this paper we present two additional model types for
CAT: Item Response Theory (IRT) and neural networks.
Moreover, new BN models are proposed in this paper. We
conducted simulated CAT tests on the same empirical data
as in the previous paper. This allows us to make compar-
isons of two new model types (BN and NN) with the CAT
standard IRT model. Results are presented for each model
separately and then they are all compared.

2 CAT PROCEDURE AND MODEL
EVALUATION

All models proposed in this paper are supposed to serve
for adaptive testing. In this section we briefly outline the
process of adaptive testing1 with the help of these models
and methods for their evaluation. For every model we used
similar procedures. The specific details for each model type
are discussed in the corresponding sections. At this point
we discuss the common aspects.

In every model type we have the following types of vari-
ables. For some models they have a different specific name
because of an established naming convention of the corre-
sponding method. Nevertheless, the meaning of these vari-
ables is the same and we explain differences for each model
types. In this paper we use two types of variables:

• A set of n variables we want to estimate S =
{S1, . . . , Sn}. These variables represent latent skills
(abilities, knowledge) of a student. We will call them
skills or skill variables. We will use symbol S to de-
note the multivariable S = (S1, . . . , Sn) taking states
s = (s1,i1 , . . . , sn,in).

• A set of p questions X = {X1, . . . , Xp}. We will
use the symbol X to denote the multivariable X =
(X1, . . . , Xp) taking states x = (x1, . . . , xp).

We collected data from paper tests conducted by gram-
mar schools’ students. The description of the test and its
statistics can be found in the paper (Plajner and Vomlel,
2015). All together, we have obtained 281 test results. Ex-
periments were performed with each model of each type
that is described in following sections. We used 10-fold
cross-validation method. We learned each model from 9

10
of randomly divided data. The remaining 1

10 of the data
set served as a testing set. This procedure was repeated 10
times to obtain 10 learned student models with the same
structure and different parameters.

1Additional information about CAT can be found in (Wainer
and Dorans, 2015)
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With these learned models we simulate CAT using test sets.
For every student in a test set a CAT procedure consists of
the following steps:

• The next question to be asked is selected.

• This question is asked and an answer is obtained.

• This answer is inserted into the model.

• The model (which provides estimates of the student’s
skills) is updated.

• (optional) Answers to all questions are estimated
given the current estimates of student’s skills.

This procedure is repeated as long as necessary. It means
until we reach a termination criterion, which can be, for ex-
ample, a time restriction, the number of questions, or a con-
fidence interval of the estimated variables. Each of these
criteria would lead to a different learning strategy (Vomlel,
2004b), but finding a global optimal selection with these
strategies would be NP-hard (Lı́n, 2005). We have cho-
sen an heuristic approach based on greedy optimization
methods. Methods of the question selection differ for each
model type and are explained in the respective sections. All
of them use the greedy strategy to select questions.

To evaluate models we performed a simulation of CAT test
for every model and for every student. During testing we
first estimated the skill(s) of a student based on his/her an-
swers. Then, based on these estimated skills we used the
model to estimate answers to all questions X . Let the test
be in the step s (s − 1 questions asked). At the end of the
step s (after updating the model with a new answer) we
compute marginal probability distributions for all skills S.
Then we use this to compute estimations of answers to all
questions, where we select the most probable state of each
question Xi ∈ X :

x∗i = argmax
xi

P (Xi = xi|S).

By comparing this value to the real answer to i−th question
x′i we obtain a success ratio of the response estimates for
all questions Xi ∈ X of a test result t (particular student’s
result) in the step s

SRts =

∑
Xi∈X I(x

∗
i = x′i)

|X | , where

I(expr) =

{
1 if expr is true
0 otherwise.

The total success ratio of one model in the step s for all test
data is defined as

SRs =

∑N
t=1 SR

t
s

N
.

SR0 is the success rate of the prediction before asking any
questions.

3 ITEM RESPONSE THEORY

The beginning of Item Response Theory (IRT) stem back
to 5 decades ago and there is a large amount of resources
available, for example, (Lord and Novick, 1968; Rasch,
1960, 1993). IRT allows more specific measurements of
certain abilities of an examinee. It expects a student to have
an ability (skill) which directly influences his/her chance
of answering a question correctly. When we have only one
variable2, it is common to refer to it as a proficiency vari-
able. This ability is called latent ability or a latent trait θ.
The trait θ corresponds to the general skill S1 defined in the
Section 2. Every question of the IRT model has an associ-
ated item response function (IRF) which is a probability of
a successful answer given θ.

We fitted our data on the 2 parametric IRT model. It means
that characteristic Item Response Functions, as the prob-
ability of a correct answer to i-th given the ability θ, are
computed by the formula

pi(θ) =
1

1 + e−ai(θ−bi)

where ai sets the scale of the question (this sets its discrim-
ination ability - a steeper curve better differentiate between
students), bi is the difficulty of the question (horizontal po-
sition of a curve in space).

For question selection step of CAT we use item information
of a question i that it is given by the formula

Ii(θ) =
(p′i(θ))

2

pi(θ)qi(θ)

where p′i is the derivation of the item response function pi.
This item information provides one, and most straightfor-
ward, way of the next question selection. In every step the
question X∗ which is selected is one with the highest item
information.

X∗(θ) = argmax
i
Ii(θ)

This approach minimizes the standard error of the test pro-
cedure (Hambleton et al., 1991) because the standard error
of measurement SEi produced by i− th item is defined as

SEi(θ) =
1√
Ii(θ)

.

This means that the better precision of difficulty we are able
to achieve while asking questions the smaller error of mea-
surement.

The result of CAT simulation is displayed in the Figure 1.
We can notice that this model is able to choose correct

2There are variants of multidimensional IRT model where it is
possible to have more then one ability but in this section we are
going to discuss only models with one only.
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questions to ask very quickly and its prediction success
rises after asking the first two. After these questions it can
not improve much any more. This is caused by the simplic-
ity of the model.

4 BAYESIAN NETWORKS

In this section we use Bayesian networks (BN) as CAT
models. Details about BNs can be found in (Nielsen and
Jensen, 2007; Kjærulff and Madsen, 2008). The use of BNs
in educational assessment is discussed in (Almond et al.,
2015; Culbertson, 2015; Millán et al., 2010). This topic is
also discussed, for example, in (Vomlel, 2004a,b).

A Bayesian network is a probabilistic graphical model,
a structure representing conditional independence state-
ments. It consists of the following:

• a set of variables (nodes),

• a set of edges,

• a set of conditional probabilities.

Specific details about the use of BNs for CAT can be found
in (Plajner and Vomlel, 2015). Types of nodes in our BNs
correspond to types of variables defined in the Section 2. In
this paper we use question nodes with only Boolean states,
i.e., question is either correct or incorrect. Edges are de-
fined usually between skills and questions (we present ex-
amples of connections in figures). Conditional probability
values have been learned using standard EM algorithm for
BN learning.

In this paper we use a modified method for model scoring
compared to the method used in our previous research. The
current method is described in the section 2. The difference
is that in this case we estimate answers to all questions in
the question pool and then compare to real answers in ev-
ery step. In the previous version we were estimating an-
swers only to unanswered questions in every step. It led
to a skewed results interpretation because the value in the
denominator of the success rate

SRts =

∑
Xi∈X I(x

∗
i = x′i)

|X |

was decreasing in every step. The modified version is com-
paring all questions and because of that the denominator
stays the same in every step.

From previous models we selected the model marked as
“b3” and “expert”. The former means that it has Boolean
answer values, there is one skill variable having 3 states and
no additional information (personal data of students) was
used. See Figure 2 for its structure. The later is an expert
model with 7 skill nodes (each having 2 states), Boolean

answer values and no additional information about students
was used. See Figure 3 for its structure.

In this paper we present three new BN models. The first
two are modifications of “b3” model. They have the same
structure and differ only in the number of states of their
skill node. We present experiments with 4 and 9 states. We
performed experiments with different numbers of states as
well, but they do not provide more interesting results. Next,
we add a modified expert model. This modified model has
also Boolean questions and no additional information. We
have added one state to 7 skill nodes from the previous ver-
sion (they have 3 states in total now). The reason for this
addition is an analysis of the question selection criterion.
We select questions by minimizing the expected entropy
over skill nodes. With only two states it means that we are
pushing a student into one or the other side of the spectrum
(basically, we want him to be either good or bad). With
3 states we allow them to approach mediocre skill quality
as well. Moreover, we realized that the model structure
as in the Figure 3 has only skills that are very specialized.
We introduce a new 8th skill node which connect previous
7 skill nodes. Its representation is an overall mathemati-
cal skill combining all other skills. It allows skills on the
lower level to influence each other and to provide evidence
between themselves. The final model structure is in the
Figure 4.

All models are summarized in the Table 1. Results of CAT
simulation with BN models are displayed in the Figure 5.
Increasing the number of states of one skill node improved
prediction accuracy of the model (simple 4s, simple 9s),
but only slightly. As we can see, one additional state (4
states in total) is better than more states (9). This confirms
our expectation that simply adding node states can not im-
prove the model quality for long due to over fitting of the
model. Next, we can observe that there is a large difference
between the new and the old expert model. The success
rate of the new version exceeds all other models. Adding
additional skill node connecting other skills proved to be
a correct step. Possibilities in the model structure are still
large and it remains to be explored how to create the best
possible structure.

5 NEURAL NETWORKS

Neural networks are models for approximations of non-
linear functions. For more details about NNs, please refer
to (Haykin, 2009; Aleksander and Morton, 1995).

There are three different parts of a NN:

1. an input layer,

2. several hidden layers, and

3. an output layer.
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simple 3s 2 1 3
simple 4s 2 1 4
simple 9s 2 1 9
expert old 3 7 2
expert new 4 7+1 3

Table 1: Overview of Bayesian network models

We use NN as a student model. We feed student answers to
the input layer. These values are transformed to the hidden
layer(s). There is no general rule how to choose the number
of hidden layers and their size. In our case we performed
experiments with one hidden layer of different sizes. The
hidden layer then further transforms to the output layer.
NNs are not suitable for unsupervised learning. Because
of that, we do not estimate an unknown student skill in the
output layer. We would not have any target value needed
during the learning step of the NN. Instead of that, we es-
timate the score (the test result) of a student directly. The
score of a student is known for every student at the time of
learning. The output layer then provide an estimate of this
score. Nevertheless, this score is a corresponding variable
to skill variables described in the Section 2

To select the next question we use the following procedure.
We want the selected question to provide us as much in-
formation as possible about the tested student. That means
that a student who answers incorrectly should be as far as
possible on the score scale from another who answers cor-
rectly. Let the S|Xi,x be the score prediction after answer-
ing the i − th question’s state x, P (Xi,x) the probability
of state x to be the answer to the question i. P (Xi,x) can
be obtained, for example, by statistical analysis of answers.
We select a question X∗ maximizing the variance of pre-
dicted scores:

X∗ = argmax
i

Va
x
r(SC|Xi,x)

=
∑

x

P (Xi,x)(SC|Xi,x − SC|Xi),where

SC|Xi =
∑

x

P (Xi,x)SC|Xi,x

is the mean value of predicted scores.

In our experiment we used only one hidden layer with many
different numbers of hidden neurons. From them we select
models with 3, 5, and 7 neurons in the hidden layer because
they provide the most interesting results. The structure of
the network with 5 hidden neurons is in the Figure 6. Re-
sults of CAT simulation with NN models are displayed in
the Figure 7. As we can see in this figure, the quality of es-
timates while using NNs increases very slowly. This may
be caused by the question selection criterion. If we were se-
lecting better questions, it is possible that the success rate
would be increasing faster. It remains to be explored which
selection criterion would provide such questions. Never-
theless, this better question selection does not change the
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Figure 2: Bayesian network with one hidden variable and personal information about students

final prediction power of the model (the maximal success
rate would not be exceeded). This prediction power could
be increased by using a different version of NNs. More
specifically, we will perform experiments with one of the
recurrent versions of NNs, i.e., Elman’s networks or Jor-
dan’s networks.

6 MODEL COMPARISON AND
CONCLUSIONS

We present a graphical comparison of all three model types
in the Figure 8. One model is selected from each type. We
can see that the neural network model scored the worst re-
sult. This may be further improved by a better NN structure
and better question selection process. The new BN expert
model is scoring the best. Even in this case we believe that
further improvements are possible to increase its success
rate. We will focus our future research into methods for
BN models creation and criteria for their comparison. Es-
pecially, we would like to use a concept of the local struc-
ture in BN models (Dı́ez and Druzdzel, 2007). That would
allow us to create more complex models, yet with less pa-
rameters to be estimated during learning. Both previous
models can be compared with the IRT model which is the
standard in the field of CAT.
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Abstract
This paper provides a common framework, a generic model, for Computerized Adaptive Testing
(CAT) for different model types. We present question selection methods for CAT for this generic
model. We use three different types of models, Item Response Theory, Bayesian Networks, and
Neural Networks, that instantiate the generic model. We illustrate the usefulness of a special model
condition – the monotonicity – and discuss its inclusion in these model types. With Bayesian net-
works we use specific type of learning using generalized linear models to ensure the monotonicity.
We conducted simulated CAT tests on empirical data. Behavior of individual models was assessed
based on these tests. The best performing model was the BN model constructed by a domain expert;
its parameters were learned from data under the monotonicity condition.
Keywords: Bayesian Networks; Computerized Adaptive Testing; Generalized Linear Models;
Item Response Theory.

1. Introduction

Testing human abilities and human knowledge is frequent in the modern society. The computerized
form of testing is also getting an increasing attention with the growing spread of computers, smart
phones and other devices which allow easy contact with the test audience. This paper focuses
on Computerized Adaptive Testing (CAT) (Wainer and Dorans, 1990; Almond and Mislevy, 1999;
van der Linden and Glas, 2000, 2010). CAT is a concept of testing where an examinee is performing
a computer administered and computer controlled test. The computer system selects questions for
a student taking the test and it evaluates his/her performance. This is being done in order to create
a shorter version of the test by asking correct questions (tailored for each particular student). If
performed properly the measurement of student’s ability/knowledge has better precision (Pine and
Weiss, 1978), the test is more fair, the student is better motivated, and less time is consumed (Moe
and Johnson, 1988; Tonidandel et al., 2002).

In this paper we introduce a framework for CAT. This framework is formed by a generic model
and associated methods. The goal is to provide a unifying probabilistic graphical model for diverse
models. The CAT process can be divided into two phases: model creation and testing. In the
former, the student model is created. In the later, the model is used to actually test examinees. In the
Section 2 we present a generic structure which is further used to nest different probabilistic models.
This allows us to summarize similarities in different modeling approaches. Next, in the Section 3 we
discuss the procedure of testing and associated methods. After establishing this generic structure,

1
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we present specific examples of models to be filled into it. We go through the use of Item Response
Theory (IRT), which is a model regularly used for CAT and Bayesian and neural networks (BNs
and NNs), which are both models commonly used in many areas of artificial intelligence for a large
variety of tasks. We conducted simulated CAT tests on an empirical dataset which we collected
for this purpose. This allows us to compare two model types (BN and NN) which are new in the
field of CAT with the standard IRT model. The overview of the dataset, experimental setup and
experimental results are presented in the concluding parts of this paper.

2. Student Skill Models

The student model is a tool which models a student. It provides assumptions about his/her skills,
expected score and other variables. There are many different student model types (Culbertson,
2015) which can be used for adaptive testing. In this work we present a common framework which
views them as special cases of one generic model for CAT.
2.1 Generic Student Model

The generic student model has the following two types of vari-
ables:

• A set of n variables we want to estimate S = {S1, . . . , Sn}.
These variables represent skills (abilities, knowledge)
of a student. We will call them skills or skill vari-
ables. We will use symbol S to denote the multivariable
S = (S1, . . . , Sn) taking states s = (s1,i1 , . . . , sn,in).

• A set of m questions X = {X1, . . . , Xm}. We will use the
symbolX to denote the multivariableX = (X1, . . . , Xm)
taking states x = (x1, . . . , xm).

X1 Xm

S1, . . . , Sn

. . .

Skills S are either continuous or discrete variables. In the continuous case they provide values
which can be interpreted as levels of skills. They also naturally make an ordering of students.
Discrete variables can be Boolean (true/false) or categorical. Boolean variables inform us that a
student has or has not the particular skill. Categorical variables are sampled from the continuous
case. Their states are different skill levels a student can have. Ordering of students can be done by
the value of expected skill computed from probabilities of each state. In addition we differentiate
between observed and unobserved skills (in the training sample). In the case of observed skills we
measure them by a certain metric (for example, score of the test), or they are produced by an expert
from a test results analysis. In the case of unobserved skills their states are not known even for
students with complete test results.

Questions X are discrete variables having Boolean or categorical states. Boolean for cor-
rect/incorrect answers, categorical for multiple choice answers. The subset of questions which
are already answered forms evidence

e = {Xi1 = xi1 , . . . , Xik = xik |i1, . . . , ik ∈ {1, . . . ,m}}.

Links connecting skills S and questions X define the relationship between these two sets.
Spa(i) ⊆ S, with the respective multivariable Spa(i) = spa(i), denotes parents of the question

2
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Xi. Then the probability of a correct answer to i − th question (or the probabilities of the specific
item answered) is: P (Xi = xi|Spa(i)) has to be provided in the model. In the case of continuous
skills these probabilities are given by a continuous link function pi(Xi = 1|Spa(i)) giving the prob-
ability of a correct answer based on Spa(i). In the case of discrete skills, probabilities are in the form
of conditional probability tables (CPTs). Because the state of Spa(i) is directly influenced by the
evidence e we will also use shorthanded notation pi(Xi = 1|e) and P (Xi = xi|e). We assume all
questions are conditionally independent given skills, i.e., Xi ⊥⊥ Xj |S, ∀i 6= j. The joint probability
distribution is then P (X,S) = P (S) ·∏m

i=1 P (Xi|Spa(i))
All together it forms a graphical probabilistic model. It is formed by vertices S ∪ X , edges

between them and associated parameters with these edges. In order to create this model, we have to
establish its structure and learn parameters. In this paper we will not discuss the former and we will
focus only on the later. One way of obtaining necessary parameters is to ask an expert to provide
them based on his/her knowledge of the field. This option is very demanding (in terms of knowledge
of the expert as well as time) because the space of parameters associated with the model is very large.
The other way is to learn probabilities by a machine learning approach from collected data. Even
this approach has issues with the large space of parameters and a large volume of quality samples
has to be provided in order to obtain statistically reliable estimations. The automated learning of
parameters is discussed in this paper.

2.2 Monotonicity

For the needs of adaptive testing it is reasonable to require relations between skills and questions
to be isotone in the distribution (the model to be monotonic) (van der Gaag et al., 2004). First, we
create an ordering on states s, s′ of i-th student skill Si: si � s′i. It means that we are able to say
which of these states is better (or the same). The monotonic model then ensures that probabilities
of higher ordered states are also always higher (isotone) or always lower (antitone), i.e.:

si � s′i → P (X = x|Si = si) ≤ P (X = x|Si = s′i) , or

si � s′i → P (X = x|Si = si) ≥ P (X = x|Si = s′i)

For example, to avoid the following situation: “With the low level of student’s skills the probability
of a correct answer is small. With the medium level the probability is large. And with the high
level it is small again.” Skill states should reflect a certain ability level, thus we expect a positive or
negative correlation of the skill and student’s answers.

3. Testing Process

Regardless of the model we choose the testing part follows always the same scheme. With the
prepared and calibrated model, CAT repeats following steps:

• A question is selected, this question is asked and an answer is obtained.

• The answer is inserted into the model, the model (which provides estimates of the student’s
skills) is updated.

• (optional) Answers to all questions are estimated given the current estimates of student’s
skills.

3
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This procedure is repeated as long as necessary which means until we reach a termination crite-
rion. This criterion can be either a time restriction, the number of questions, or a confidence interval
of the estimated variables. Each of these criteria would lead to a different learning strategy (Vomlel,
2004a), but finding an optimal strategy is NP-hard for these criteria (Lı́n, 2005). We have chosen an
heuristic approach based on greedy optimization methods. This approach selects the next question
during the testing in every step based on a given rule. There is a large variety rules which can be
used for this task. We present some of them in the following section.

3.1 Question selection criteria

In this section we present three various criteria for question selection Cj , where j ∈ {1, 2, 3} is
an index of a criterion. Each of them works with the evidence about the student e and outputs a
value for the question Xi. The selected question X∗ is a question from all unanswered questions
maximizing this criterion given the evidence:

X∗(e) = arg max
Xi

Cj(Xi, e)

3.1.1 ITEM INFORMATION

For the continuous variables S, links to questions are given by functions pi(Xi = 1|e) (for binary
questions). The item information that is given by i− th question is then

C1(Xi, e) = I(Xi, e) =
(p′i(Xi = 1|e))2

pi(Xi = 1|e)(1− pi(Xi = 1|e))

where p′i is the derivation of pi. This item information provides one, and most straightforward,
way of the next question selection in the continuous case. It is derived form the Item Response
Theory’s classical way of measuring information, e.g., in van der Linden and Hambleton (2013).
This approach minimizes the standard error of the test procedure in each step because the standard
error of measurement SE(Xi, e) produced by the question Xi is defined as

SE(Xi, e) =
1√

I(Xi, e)
.

This means that the smallest error is produced by questions which are steep and their probability of
a correct answer is close to 50% given the current level of skill.

3.1.2 ENTROPY REDUCTION

This approach is based on reducing the expected value of entropy after asking a question. In the
following text we provide formulas for discrete case, but with minimal changes it is applicable to
continuous variables as well. The cumulative Shannon entropy over all skill variables of S given
the evidence e is

H(e) =

n∑

k=1

in∑

`=1

−P (Sk = sk,`|e) · logP (Sk = sk,`|e).

The entropy H(e) is the sum of individual entropies over all skill nodes. Another option would
be to compute the entropy of the joint probability distribution of all skill nodes. This would take into
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model skill variables type no. skill variables QS criterion
IRT continuous, unobserved 1 item information
BN discrete, unobserved 1. . . many entropy reduction
NN continuous, observed 1 students separation

Table 1: Models summary

account correlations between these nodes. In our task we want to estimate marginal probabilities
of all skill nodes. In the case of high correlations between two (or more) skills the second criterion
would assign them a lower significance in the model. This is the behavior we wanted to avoid. The
first criterion assigns the same significance to all skill nodes which is a better solution. For our
problem, the greedy strategy based on the sum of entropies provides good results. Moreover, the
computational time required for the proposed method is lower.

Assume we decide to ask a question Xi ∈ Xs with possible outcomes x1, . . . , xpi . The new
value of entropy is then computed as H(ei,j) = H(e ∪ {Xi = xj}). The expected entropy after
answering question Xi is

EH(Xi, e) =

p∑

j=1

P (Xi = xj |e) ·H(ei,j) .

C2(Xi, e) = IG(Xi, e) = H(e)− EH(Xi, e)

gives us the information gain criterion.

3.1.3 STUDENTS SEPARATION MAXIMIZATION

The last criterion, we are proposing, maximizes the distance between students within skills. That
means that a student who answers incorrectly should be as far as possible on the skill scale from the
one who answers correctly. We present this criteria for a single skill variable S1 while an extension
to more variables is possible. Let sj |ei,j be the predicted value of skill S1 given extended evidence
ei,j = e ∪ {Xi = xj} and (s̄|ei,j) be its mean value. Then we get the variance of S1 given evidence
ei,j

C3(Xi, e) =

p∑

j=1

((s̄|ei,j)− (sj |ei,j))2 · P (Xi = xj |e) .

4. Specific Models for CAT

We present three specific model types fitting into the generic CAT student model: Item Response
Theory (IRT), Bayesian networks (BN) and neural networks (NN). Basic properties of these models
are summarized in Table 1. We used question selection criteria with models as indicated in the
column QS selection. These presented choices are the most natural for the particular model but in
general, with modifications, they should be interchangeable.

4.1 Item Response Theory

The beginning of Item Response Theory (IRT) stems back to 5 decades ago and there is a large
amount of literature available, for example, Rasch (1960); Lord and Novick (1968). IRT allows

5
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more precise measurement of a certain ability of an examinee than classical test theory1. It is
expected a student has a skill2 which directly influences his/her chances of answering questions
correctly. In this case skills of the generic model defined in Section 2 reduce to S = {S1}. It is a
continuous variable. Links of generic model are filled by item response functions (IRF) which are
probabilities of a successful answer given S1. In our research we use 2PL IRT model which is in
the form

pi(Xi = 1|S1 = s1) =
1

1 + e−ai(s1−bi)

where ai sets the scale of the IRF (the discrimination ability - a steeper curve = better differ-
entiation between students), bi is the difficulty of the question (the position of a curve in space),
ai, bi ∈ R. Generally, we observe small (positive or negative) numbers. In this case there is one link
from the skill S1 to each question in X . Parameters of IRFs are usually fitted using maximum like-
lihood estimation from dataset. It is also possible to obtain these parameters from an expert. Given
the format of item response functions, IRT3 model satisfies monotonicity property as described in
Section 2.

4.2 Bayesian Networks

Bayesian networks are probabilistic graphical models, their structure represents conditional inde-
pendence statements. Details about BNs can be found in, for example, (Pearl, 1988; Nielsen and
Jensen, 2007; Kjærulff and Madsen, 2008). The use of BNs in educational assessment is discussed,
e.g., by Almond and Mislevy (1999); Vomlel (2004a,b); Millán et al. (2010); Almond et al. (2015);
Culbertson (2015).

A Bayesian network consists of: a set of variables (nodes), a set of edges, a set of conditional
probabilities. In our case the set of variables is formed by questions X and skills S from the generic
model. The number of skills can vary from 1 to many. The set of edges is formed by connections
between skills and from skills to questions where one questions can have more influencing skills.
An example can be found in Figure 1(a). All variables are discrete. Each variable has an associated
CPT which describes a probability for every configuration of its parents (structure given by edges).

Parameters can be obtained from an expert in the field, or we can use a machine learning ap-
proach from dataset. Skills in the model are not observed and thus it is necessary to use a method
capable of handling missing data. Most often, the EM algorithm (Lauritzen, 1995) is used.

4.3 Monotonicity in BNs

When using the general EM algorithm the monotonicity property cannot be ensured. In order to
make sure that the model satisfies the monotonicity property it is necessary to restrict CPTs to be
only of a specific form. We build on ideas from Rijmen (2008); Restificar and Dietterich (2013),
where generalized linear models are used to create CPTs.

1. Classical test theory focuses on the test as a whole, measuring the score as a sum of questions with the same difficulty.
IRT on the other hand views questions as individual items with different difficulties.

2. In the field of IRT it is often called ability or proficiency.
3. The structure of IRT model could be also modeled by a special type of Bayesian Network but we will not go into

details in this article.
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The CPT of a question Xi is from a binomial family model (glm model with the logit link
function). αi,βi are its parameters and the model takes the form:

P (Xi = 1|Spa(i) = spa(i)) =
exp(αi + βT

i spa(i))

1 + exp(αi + βT
i spa(i))

.

By calculating this value for every possible state combination of affecting skills, we are able
to fill the CPT. The problem with finding the parameters α and β is that with the glm model we
usually observe variables from S. In this case they are unknown. The situation is solvable with
a version of the EM algorithm for GLM models. Ibrahim et al. (2005) presents an algorithm for
partially unobserved variables. This approach ensures the model is not violating the monotonicity
property.

4.4 Neural Networks

Neural networks are models for approximations of non-linear functions. For more details about
NNs, please refer, e.g., to Aleksander and Morton (1995); Haykin (2009). There are three different
parts of a NN: an input layer, several hidden layers, and an output layer.

In our NN model the input layer is formed by questions X from the generic model defined in
Section 2. From this layer the NN transforms to intermediate hidden layers. Nodes of these hidden
layers represent unobserved uninterpretable skill variables. There is no general rule how to choose
a number of hidden layers and their size. Variants we experimented with are further detailed in
Section 5. The intermediate layers tranform to the output node which is a single observed student
skill. This skill (S0) is directly measured by the score of a test. The output node and hidden layers
form skills S . The choice of using an observed variable in this case is because NNs are not suitable
for unsupervised learning, unless having special structure. We need to have a target value during the
learning step of the NN. The score of a student is known for every student at the time of learning.
During the CAT test the output layer then provides an estimate of the score of the currently tested
student. For inverse estimations of answers based on student’s skill the NN structure is reversed.
These two networks are learned separately and each performs its own task.

Links between nodes form a function, f(S0|e) : Rm → R, through NN’s intermediary hidden
layers providing the score value. Reversed structure then provides functions pi(Xi|S0) : R → R.
These function break down to the regular NN neuron activation and combination functions (for
example, multi layered perceptron or radial basis functions). Learning methods are also common
NN methods, i.e., usually backpropagation.

5. Experiments

To verify the concepts presented in this paper we have collected empirical data. We designed a
paper test of mathematical knowledge of grammar school students. The test focuses on simple
functions (mostly polynomial, trigonometric, and exponential/logarithmic). Students were asked to
solve various mathematical problems4 including graph drawing and reading, calculating points on
the graph, root finding, describing function shapes and other function properties. All together, we
have obtained 281 test results. Details about data can be found in Plajner and Vomlel (2015). The

4. In this case we use the term mathematical “problem” due to its nature. In general tests, terms “question” or “item”
are often used. In this article all of these terms are interchangeable.
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model evaluation was done for each model of each type that is described in following sections. We
used 10-fold cross-validation method.

5.1 Results evaluation

To evaluate models we performed a simulation of the CAT test for every model and for every student.
During testing we first estimated the skill(s) of a student based on his/her answers. Then, based on
these estimated skills we used the model to estimate answers to all questions Xi ∈ X . More
specifically: Let the test be in the step s (s − 1 questions asked). At the end of the step s (after
updating a model with new answer) we compute marginal probability distributions for all skills S.
Then we use this to compute estimations of answers to all questions, where we select the most
probable state of each question5 Xi ∈ X :

x∗i = arg max
x′
i

P (Xi = x′i|S).

By comparing this value to the real answer to i − th question xi for each question we obtain a
success ratio

SR =

∑
Xi∈X f(x∗i = xi)

|X | , where f(expr) =

{
1 if expr is true
0 otherwise.

The total success ratio of a model in a step is the average of success ratios of all tests in the same
step. We compare models based on this total success ratios. The quality of models could be assessed
also in other ways. One of the main goals of a student model is to predict abilities of students. As
such it would be reasonable to measure the quality of these predictions. Unfortunately, this is hard
to achieve because these skills are usually hidden variables. It is possible to create an indicator such
as student’s overall performance or his/her known qualities. Due to the nature of our data set we do
not have any of these options and because of that we decided to use the approach described above.

5.2 Models

We have performed testing with different model versions. The best IRT, BN, and neural network
models are compared together in Figure 1(c). We select the most important representatives from
each group. Below we present an overview of these versions.

IRT is a commonly used model that can be considered as a base model to compare with. We
especially wanted to provide a comparison with other models. As we can see in the Figure 1(c) this
model’s performance is exceeded by many other models.

The first group of BN models, we experimented with, has one or two skill nodes which connect
to all questions. These skill nodes have different number of states. We selected the best performing
model and it is labeled as “simple 2x3” as it has two skill nodes each having 3 states. To satisfy
the monotonicity requirement of BN models we have implemented a version of the EM algorithm.
Models which are learned using this algorithm are labeled with additional “glm”. The rest is learned
with the Hugin EM algorithm (Hugin, 2014). The source code of our version of the EM algorithm
and other algorithms used (including BN inference) is implemented in R language and it is available
at the author’s web page (http://staff.utia.cas.cz/plajner).

5. We remind that all questions are conditionally independent given skills, i.e., Xi ⊥⊥ Xj |S, ∀i 6= j.
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The second group of BN models is based on our expert knowledge in the field of the test. We
identified several skills each connecting to a specific subset of questions which are relevant to the
skill represented by the variable. One version of this network is shown in Figure 1(a). In this
particular case there are 7+1 skill nodes. 7 nodes connect directly to questions and the last one
connects these skills together. This model is called “expert new”. In our experiments it appeared
that the connection of skill nodes provides a substantial improvement in the performance of the
models. The version of the same model, without the skill connecting all other skill nodes, is also
included as “expert old”.

The result of the best performing BN model of the first group, “simple 2x3”, is presented in
Figure 1(c). Results of BN expert models are displayed in Figure 1(b). In this graph we can compare
the performance of models learned with glm method and their counterparts. We can observe that
glm models are scoring similarly during first steps but quickly outperform those with the general
EM algorithm. The best BN expert model can be compared with other models in Figure 1(c).

Some of the most important facts resulting from experiments with BN models are: (1) Mod-
els with the monotonicity requirement provide better results than models without this requirement.
(2) Adding a higher level node to the expert model causes significant boost in the model’s perfor-
mance. We believe that it is caused by the possibility of an easier transition of evidence through the
network from a skill to another skill.

In our experiments with NNs we used only one hidden layer with different numbers of hidden
neurons. From them we select the model with 7 neurons in the hidden layer because it provides
the best results. The result of CAT simulation with this NN model is displayed in Figure 1(c).
As we can see in this figure, the quality of estimates while using NNs increases very slowly. We
believe this is caused by the question selection criterion. If we were selecting better questions, it is
possible that the success rate would be increasing faster. It remains to be explored which selection
criterion would provide such questions. Nevertheless, this better question selection does not change
the final prediction power of the model (the maximal success rate in the last steps would not be
exceeded). This prediction power could be increased by using a modified structure of the NN.
Additional research is needed to show which NN structure is better suited for this task. In this paper
we verified the general possibility of using NNs for CAT.

6. Conclusions and Future Work

In this paper we established a common generic model for CAT. This model was instantiated by
three different model types. The first one, IRT, serves as a reference point. The second type were
BNs which we studied the most. Especially, we discussed parameter learning which ensures the
monotonicity. In experiments this method produced better results than the same model without the
monotonicity condition. This is the most important empirical result of this paper and we believe
that every CAT model should consider monotonicity. The third model type, NNs, did not provide
the most convincing results. However, we believe that further improvements are possible.

In the future research we would like to focus on BN models because from models, we have
experimented with, we see the best potential in BNs. Possible combinations and variations in the
model structures are vast and it remains to be explored how to search for the best BN structure. In
this article we used generalized linear models to ensure monotonicity in BNs. It is possible that
this approach may introduce additional unwanted behavior. One way to resolve this is to use less
restricting techniques for ensuring monotonicity, such as, for example, in Masegosa et al. (2016);
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Figure 1: (a) Bayesian network structure (the expert model), (b) Expert Bayesian models success
rates, (c) Models comparison success rates
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de Campos et al. (2008). We plan experiments to verify the impact of glm models properties and to
compare it to the less restricting option. Furthermore, we would like to introduce CPTs with a local
structure (Dı́ez and Druzdzel, 2007) which would allow us to get even larger control of the form of
the BN model.
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Abstract. Artificial intelligence is present in many modern computer
science applications. The question of effectively learning parameters of
such models even with small data samples is still very active. It turns
out that restricting conditional probabilities of a probabilistic model by
monotonicity conditions might be useful in certain situations. Moreover,
in some cases, the modeled reality requires these conditions to hold. In
this article we focus on monotonicity conditions in Bayesian Network
models. We present an algorithm for learning model parameters, which
satisfy monotonicity conditions, based on gradient descent optimization.
We test the proposed method on two data sets. One set is synthetic
and the other is formed by real data collected for computerized adaptive
testing. We compare obtained results with the isotonic regression EM
method by Masegosa et al. which also learns BN model parameters sat-
isfying monotonicity. A comparison is performed also with the standard
unrestricted EM algorithm for BN learning. Obtained experimental re-
sults in our experiments clearly justify monotonicity restrictions. As a
consequence of monotonicity requirements, resulting models better fit
data.

Keywords: computerized adaptive testing, monotonicity, isotonic re-
gression EM, gradient method, parameters learning

1 Introduction

In our previous research Plajner and Vomlel (2015) we focused on Computer-
ized Adaptive Testing (CAT) (Almond and Mislevy, 1999; van der Linden and

? This work was supported by the Czech Science Foundation (project No. 16-12010S)
and by the Grant Agency of the Czech Technical University in Prague, grant No.
SGS17/198/OHK4/3T/14.
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Glas, 2000). We used artificial student models to select questions during the
course of testing. We have shown that it is useful to include monotonicity con-
ditions while learning parameters of these models (Plajner and Vomlel, 2016b).
Monotonicity conditions incorporate qualitative influences into a model. These
influences restrict conditional probabilities in a specific way to avoid unwanted
behavior. Some models we use for CAT include monotonicity naturally, but in
this article we focus on a specific family of models, Bayesian Networks, which
do not. Monotonicity in Bayesian Networks is discussed in literature for a long
time. It is addressed, for example, by Wellman (1990); Druzdzel and Henrion
(1993) and more recently by ,e.g., Restificar and Dietterich (2013); Masegosa
et al. (2016). Monotonicity restrictions are often motivated by reasonable de-
mands from model users. In our case of CAT it means we want to make sure
that students having certain skills will have a higher probability of answering
questions depending on these skills correctly. Moreover, assuming monotonicity
we can learn better models, especially when the data sample is small. In our
work we have so far used monotonicity attained by logistic regression models of
CPTs. This has proven useful but it is restrictive since it requires a prescribed
CPT structure.

In this article we extends our results in the domain of Bayesian Networks.
We present a gradient descent optimum search method for learning parameters
of CPTs respecting monotonicity conditions. First, we establish our notation
and monotonicity conditions in Section 2. Our method is derived in Section 3.
We have implemented the method and performed tests. For testing we used
two different data sets. First, we used a synthetic data set generated from a
monotonic model (CPTs satisfying monotonicity) and second, we used real data
set collected earlier. Experiments were performed on these data sets also with
the isotonic regression EM (irem) method described by Masegosa et al. (2016)
and the ordinary EM learning without monotonicity restrictions. In Section 4 of
this paper we take a closer look at the experimental setup and present results
of described tests. The last section brings an overview and a discussion of the
obtained results.

2 BN Models and Monotonicity

2.1 Notation

In this article we use Bayesian Networks. Details about BNs can be found in,
for example, Pearl (1988); Nielsen and Jensen (2007). We restrict ourselves to
the following BN structure. Networks have two levels. In compliance with our
previous articles, variables in the parent’s level are addressed as skill variables
S. The children level contains questions-answers variables X. Example network
structures, which we also used for experiments, are shown in Figure 1 and 2.

– We will use symbolX to denote the multivariable (X1, . . . , Xn) taking states
x = (x1, . . . , xn). The total number of question variables is n, the set of all
indexes of question variables isN = {1, . . . , n}. Question variables are binary
and they are observable.
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Fig. 1. Artificial Model

Fig. 2. CAT Model Network

– We will use symbol S to denote the multivariable (S1, . . . , Sm) taking states
s = (s1, . . . , sm). The set of all indexes of skill variables is M = {1, . . . ,m}.
Skill variables have variable number of states3, the total number of states
of a variable Sj is mj and individual states are sj,k, k ∈ {1, . . . ,mj}. The

variable Si = Spa(i) stands for a multivariable same as S but containing only
parent variables of the question Xi. Indexes of these variables are M i ⊆M .
The set of all possible state configurations of Si is V al(Si). Skill variables
are all unobservable.

CPT parameters for a question variable Xi for all i ∈N , si ∈ V al(Si) are

θi,si = P (Xi = 0|Si = si), θi = (θi,si)si∈V al(Si) .

We will also use θi,s = θi,si with the whole parent set S, where variables from

S \Si do not affect the value. Probabilities of a correct answer to a question Xi

given state configuration si is P (X = 1|Si = si) = 1− θi,si (binary questions).
Parameters of parent variables for j ∈M are

ρj,sj = P (Sj = sj), ρj = (P (Sj = sj′)) , j
′ ∈ {1, . . . ,mj} .

Parameter vector ρj is constrained by a condition
∑mj

sj=1 ρj,sj = 1. To remove
this condition we reparametrize this vector to

ρj,sj =
exp(µj,sj )∑mi

s′j=1 exp(µj,s′j )
.

3 In our experiments we use parents with 3 states, but the following theory applies to
any number of states.
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The whole vector of parameters is then

θ = (θ1, . . . ,θn,ρ1, . . . ,ρm) , or µ = (θ1, . . . ,θn,µ1, . . . ,µm) ,

where the meaning of µj is the same as ρj but in this case vectors contain
reparametrized variables. The transition from µ to θ is simply done with the
reparametrization above and will be used without further notice. The total num-
ber of elements in the vector µ and θ is

lµ = lθ =
∑

i∈N

∏

j∈Mi

mj +
∑

l∈M
ml .

2.2 Monotonicity

The concept of monotonicity in BNs has been discussed in literature since the
last decade of the previous millennium (Wellman, 1990; Druzdzel and Henrion,
1993). Later its benefits for BN parameter learning were addressed, for exam-
ple, by van der Gaag et al. (2004); Altendorf et al. (2005). This topic is still
active, e.g., Feelders and van der Gaag (2005); Restificar and Dietterich (2013);
Masegosa et al. (2016).

We will consider only variables with states from N0 with their natural order-
ing, i.e., the ordering of states of skill variable’s Sj for j ∈M , is

sj,1 ≺ . . . ≺ sj,mj
.

For questions we use natural ordering of its states (0 ≺ 1).
A variable Sj has monotone, resp. antitone, effect on its child if for all k, l ∈

{1, . . . ,mj}:
sj,k � sj,l ⇒ P (Xi = 1|Sj = sj,k, s) ≤ P (Xi = 1|Sj = sj,l, s) , resp.

sj,k � sj,l ⇒ P (Xi = 1|Sj = sj,k, s) > P (Xi = 1|Sj = sj,l, s) .

where s is the configuration of other remaining parents of question i without
Sj . For each question Xi, i ∈ M we denote by Si,+ the set of parents with a
monotone effect and by Si,− the set of parents with an antitone effect.

Next, we create a partial ordering �i on all state configurations of parents
Si of the i-th question, where for all si, ri ∈ V al(Si):

si �i ri ⇔
(
sij � rij , j ∈ Si,+

)
and

(
rij � sij , j ∈ Si,−

)
.

The monotonicity condition then requires that the question probability of
correct answer is higher for a higher order parent configuration, i.e., for all
si, ri ∈ V al(Si):

si �i ri ⇒ P (Xi = 1|Si = si) ≤ P (Xi = 1|Si = ri) ,

si �i ri ⇒ P (Xi = 0|Si = si) ≥ P (Xi = 0|Si = ri) ⇔ θi,si ≥ θi,ri .

In our experimental part we consider only isotone effect of parents on their
children. The difference with antitone effects is only in the partial ordering.
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3 Parameter Gradient Search with Monotonicity

To learn parameter vector µ we develop a method based on the gradient descent
optimization. We follow the work of Altendorf et al. (2005) where they use a
gradient descent method with exterior penalties to learn parameters. The main
difference is that we consider models with hidden variables.

We denote by D the set of indexes of observations vectors. One vector
xk, k ∈D corresponds to one student and an observation of i-th variable Xi

is xki . The number of occurrences of the k-th configuration vector in the data
sample is dk.

We use the model structure as described in Section 2, i.e., unobserved parent
variables and observed binary children variables. With sets Ik0 and Ik1 of indexes
of incorrectly and correctly answered questions, we create following products
based on observations in the k-th vector:

pk0(µ, s, k) =
∏

i∈Ik0

θi,s, pk1(µ, s, k) =
∏

i∈Ik1

(1− θi,s), pµ(µ, s) =
m∏

j=1

exp(µj,sj ).

We work with the log likelihood:

LL(µ) =
∑

k∈D
dk · log


 ∑

s∈V al(S)

m∏

j=1

exp(µj,sj )∑mj

s′j=1 exp(µj,s′j )
· pk0(µ, s, k) · pk1(µ, s, k)




=
∑

k∈D
dk · log

( ∑

s∈V al(S)
pµ(µ, s) · pk0(µ, s, k) · pk1(µ, s, k)

)
−

− N ·
m∑

j=1

log

mj∑

s′j=1

exp(µj,s′j ) .

The partial derivatives of LL(µ) with respect to θi,si for i ∈N , si ∈ V al(Si)
are

δLL(µ)

δθi,si
=
∑

k∈D
dk ·

(−2xki + 1) · pµ(µ, si) · pk0(µ, si, k) · pk1(µ, si, k)

θi,si ·
∑
s∈V al(S) pµ(µ, s) · pk0(µ, s, k) · pk1(µ, s, k)

.

and with respect to µi,l for i ∈M , l ∈ {1, . . . ,mi} are

δLL(µ)

δµi,l
=
∑

k∈D
dk ·

∑si=l
s∈V al(S) pµ(µ, s) · pk0(µ, s, k) · pk1(µ, s, k)

∑
s∈V al(S) pµ(µ, s) · pk0(µ, s, k) · pk1(µ, s, k)

−

−N · exp(µi,l)∑mi

l′=1 exp(µk,l′)
.

3.1 Monotonicity Restriction

To ensure monotonicity we use a penalty function

p(θi,si , θi,ri) = exp(c · (θi,ri − θi,si))
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for the log likelihood:

LL′(µ, c) = LL(µ)−
∑

i∈N

∑

si�iri

p(θi,si , θi,ri),

where c is a constant determining the strength of the condition. Theoretically,
this condition does not ensure monotonicity but, practically, selecting high values
of c results in monotonic estimates. If the monotonicity is not violated, i.e.
θi,ri < θi,si then the penalty value is close to zero. Otherwise, the penalty is
raising exponentially fast with respect to θi,ri − θi,si . In our experiments we
have used the value of c = 40 but any value higher than 20 provided almost
identical results.

Partial derivatives with respect to µi,l remain unchanged. Partial derivatives
with respect to θi,si are:

δLL′(µ, c)
δθi,si

=
δLL(µ)

δθi,si
+ c

∑

si�iri

p(θi,si , θi,ri)− c
∑

ri�isi

p(θi,ri , θi,si)

Using the penalized log likelihood, LL′(µ, c), and its gradient

∇(LL(µ, c)) =
(δLL′(µ, c)

δθi,si
,
δLL(µ)

δµj,l

)
,

for i ∈N , si ∈ V al(Si), j ∈M , l ∈ {1, . . . ,mj}, we can apply the standard gra-
dient method optimization to solve the problem. In order to ensure probability
values of θi, i ∈N it is necessary to use a bounded optimization method.

4 Experiments

For testing we use two different Bayesian Network models. The first one is an
artificial model and we use simulated data. The second model is one of the
models we used for computerized adaptive testing and we work with real data (for
details please refer to Plajner and Vomlel (2016a)). In both cases we learn model
parameters from data. Parameters are learned with our gradient method, isotonic
regression EM4 and the standard unrestricted EM algorithm. The learned model
quality is measured by the log likelihood of the whole data sample including the
training subset. This is done in order to provide results comparable between
different training set sizes.

4 We have implemented the irem algorithm based on the article (Masegosa et al.,
2016). We extended the method to work with parents with more states than 2 (the
article considers only binary variables). Questions (children) remain binary which
makes the extension easy.
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4.1 Artificial Model

The first model is displayed in Figure 1. This model was created to provide
simulated data for testing. The structure of the model is similar to models we
use in CAT modeling with two levels of variables. Parents S1 and S2 have 3
possible states and children X1, . . . , X5 are binary. We have instantiated the
model with random parameters vector θ∗ satisfying monotonicity conditions.
We drew a random sample of 100 000 cases from the model.

For parameters learning we use random subsets of size k of 10, 20, 50, 100,
1 000, 10 000, 50 000, and 100 000-(full data set) cases. For each size (except
the last one) we use 10 different sets. Next, we prepared 15 initial parameter
configurations for the fixed Bayesian Network structure (Fig. 1). These networks
have starting parameters θi generated at random, but in such a way, that they
satisfy monotonicity conditions. The assumption of monotonicity is part of our
domain expert knowledge. Therefore we can use it to speed up the process and
avoid local optima. Parameters of parent variables are uniform and initial vectors
are the same for each method. In our experiment we learn network parameters
for each initial parameter setup for each set in a particular set size (giving a
total of 150 learned networks for one set size). The learned parameter vectors
are θi,j for j-th subset of data.
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−
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Fig. 3. Negative log likelihood for the whole sample and different training set sizes for
the artificial model.

The average log likelihood for the whole data sample

LLA =

∑10
j=1

∑15
i=1 LL(θi,j)

150

is shown in Figure 3 for each set size. In case of this model we are also able
to measure the distance of learned parameters from the generating parameters
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in addition to the log likelihood. First we calculate an average error for each
learned model:

ei,j =
|θ∗ − θi,j |

lθ
,

where || is L1 norm. Next we average over all results in one set size:

e =

∑10
j=1

∑15
i=1 ei,j

150
.

Resulting values of e are displayed in Figure 4 for each set size.

4.2 CAT Model

The second model is the model we used for CAT (Plajner and Vomlel, 2016b).
Its structure is displayed in Figure 2. Parent variables S1, . . . , S7 have 3 states
and each one of them represents a particular student skill. Children nodes Xi

are variables representing questions which are binary. Data associated with this
model were collected from paper tests of mathematical skills of high school stu-
dents. In total the data sample has 281 cases. For more detailed overview of
tests refer to Plajner and Vomlel (2016a). For learning we use random subsets of
size of 1/10, 2/10, 3/10, and 4/10 of the whole sample. Similarly to the previous
model, we drew 10 random sets for each size and initiated models by 15 different
initial random monotonic starting parameters θi.

After learning we compute log likelihoods of the whole data set and we create
averages for each set size LLA(k) as with the previous model. Resulting values
are in Figure 5. In this case we cannot compare learned parameters because the
real parameters with real are unknown.
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Fig. 4. Mean difference of parameters of learned and generating networks for different
set sizes for the artificial model.
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Fig. 5. Negative log likelihood for the whole sample and different training set sizes for
the CAT model.

5 Conclusions

In this article we have presented a gradient based method for learning parameters
of Bayesian Network under monotonicity restrictions. The method was described
and then tested on two data sets. In Figures 3 and 5 it is clearly visible that this
method achieves the best results from three tested methods (especially for small
training samples). The irem method has problems with small training samples
and the log likehood in those cases is low. This is a consequence of the fact that
it moves to monotonic solution from a poor EM estimate and in these cases en-
suring monotonicity implies log likelihood degradation. We can also observe that
for the training sets larger than 1000 data vectors the EM algorithm stabilizes
in its parameter estimations. It means that at about k = 1000 the EM algorithm
found the best model it can and increasing training size does not improve the re-
sult. Nevertheless, as we can observe in Figure 4 parameters of learned networks
are always closer to the generating parameters while considering monotonicity
for both the irem and the gradient methods than for the standard EM.

These results verify usefulness of monotonicity for learning Bayesian Net-
works. A possible extension is to enlarge the theory of gradient based method
to work with more general network structures.
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Abstract

The performance of Computerized Adaptive Testing systems, which are used for testing
of human knowledge, relies heavily on methods selecting correct questions for tested
students. In this article we propose three different methods selecting questions with
Bayesian networks as students’ models. We present the motivation to use these methods
and their mathematical description. Two empirical datasets, paper tests of specific
topics in mathematics and Czech language for foreigners, were collected for the purpose
of methods’ testing. All three methods were tested using simulated testing procedure
and results are compared for individual methods. The comparison is done also with
the sequential selection of questions to provide a relation to the classical way of testing.
The proposed methods are behaving much better than the sequential selection which
verifies the need to use a better selection method. Individually, our methods behave
differently, i.e., select different questions but the success rate of model’s predictions is
very similar for all of them. This motivates further research in this topic to find an
ordering between methods and to find the best method which would provide the best
possible selections in computerized adaptive tests.

Keywords: Computerized Adaptive Testing, Question Selection, Bayesian Networks.

1 Introduction

In our research we focus on Computerized Adaptive Testing (CAT). In CAT there is not a single
static version of a test distributed to many students but an individual test is dynamically created
during the course of testing for each individual participant. The next question is selected with
regard to student’s previous answers. This leads to several benefits as a better student assessment,
a better motivation, etc. [4, 8]

We employ Bayesian networks for our research in this domain. The most recent papers we have
published consider the beneficial effect of monotonicity conditions while learning model parameters.
In this paper we aim at the testing process itself while the network is already learned. We take
a closer look at the question selection procedure. There are many options how to select the next
question from a bank of possible questions. This selection process is crucial for a successful adaptive
testing procedure because the order in which questions are selected affects the rate in which the
model improve its estimations. There is so far no definite answer which objective function produces
the best possible results. In this article we discuss several question selection functions and compare
them on two real models.

The paper is organized as follows. First, we describe the concept of Computerized Adaptive
Testing, our models, and the notation we use. A short overview of two empirical data sets is
presented. Both sets contain results of a paper (written) test collected for the purpose of our
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research. The first dataset is formed by results of high school tests of mathematical skills in the
domain of functions; the second dataset has been collected from test results of foreign students of
Czech language. In Section 4, we propose three different types of methods and to compare we also
use linear selection process (questions are asked in the same order as they are ordered in the set of
possible questions). All methods are tested on two available data sets. Results of experiments are
presented in Section 5 of this paper where methods are compared and contrasted. The concluding
section summarizes our results and points out possibilities for further improvements in this area.

2 Computerized Adaptive Testing

CAT is a concept of testing which is getting a large scientific attention for about two decades [9,
10, 12]. With CAT we build computer administered and computer controlled tests. The computer
system is selecting questions for a student taking the test and evaluating his/her performance.

The process can be divided into two phases: model creation and testing. In the first phase the
student model is created while in the second phase the model is used to actually test examinees.
There are many different model types usable for adaptive testing as can be found, for example,
in [1, 2, 3]. In this work we are working with Bayesian Networks. Regardless of the model the
testing part follows the same scheme. With a prepared and calibrated model, CAT repeats following
steps:

• The next question to be asked is selected.

• This question is asked and an answer is obtained.

• This answer is inserted into the model.

• The model (which provides estimates of the student’s skills) is updated.

• Answers to all questions are estimated given the current estimates of student’s skills. (opti-
onal)

This procedure is repeated until a termination criterion is reached. Criteria can be of various
types, for example, a time restriction, a number of questions, or a confidence interval of the
estimated variables (i.e., reliability of the test).

In this article we consider the first step of the testing procedure which is the question selection
procedure.

3 Bayesian Network Models

We use Bayesian Networks (BNs) to model students. Details about BNs can be found in, for
example, [6, 5]. We restrict ourselves to the following BN structure. Networks have two levels,
variables in the parent’s level are addressed as skill variables S ∈ S where S is the set of all skills.
The children level contains question variables X ∈ X where X is the set of all questions.

• We will use symbol X to denote the multivariable (X1, . . . , Xn) taking states x = (x1, . . . , xn).
The total number of question variables is n, the set of all indexes of question variables is
N = {1, . . . , n}. Question variables are binary and they are observable.

• We will use symbol S to denote the multivariable (S1, . . . , Sm) taking states s = (s1, . . . , sm).
The set of all indexes of skill variables is M = {1, . . . ,m}. In this article we use only binary
skill variables. The set of all possible state configurations of S is V al(S). Skill variables are
all unobservable.

3.1 Data and specific models

To test our theoretical methods we have collected empirical data. We obtained two different data
sets which are described here.

First, we designed a paper test of mathematical knowledge of grammar school students. The
test focuses on simple functions (mostly polynomial, trigonometric, and exponential/logarithmic).
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Students were asked to solve various mathematical problems (reffered as questions) including graph
drawing and reading, calculating points on the graph, root finding, describing function shapes and
other function properties. Questions are open (the mathematical problem’s solution has to be
included) and results are stored as binary correct/wrong values. In total 281 participants took the
test. For the purpose of this paper this data set is modeled by two different Bayesian network
models. One of them is shown in Figure 1. It consists of 53 questions and 8 skill nodes. These skill
nodes represent different student skills connected to questions. This models is further referred to
as Mathematical knowledge test Model (MM).

Figure 1: CAT MM structure

The second dataset was collected with a test of Czech language for non-native speaker students.
This test contained multiple choice questions with four possible answers. One answer was correct.
The test was assessed in a binary way where each question was either correct or incorrect. This
test contains 30 questions and 143 students participated in the testing process. The model which
was created by a domain expert is shown in Figure 2. Apart from 30 question nodes it has 11 skill
nodes. Each skill, again, represents a specific ability a student should have to answer a connected
question correctly. The skills include abilities related to morphology, vocabulary, conjugation, etc.
This model is referred to as Czech language test Model (CM)1.

Figure 2: CAT CM structure

4 Question Selection Methods

The task of the question selection is repeated in every step of testing of an individual student. Its
process is described in detail below.

1More detailed information can be found (in Czech) in the master thesis of Amal Magauina available at
https://dspace.cvut.cz/
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We define the question evidence e as:

e = {Xi1 = xi1 , . . . , Xin = xin |i1, . . . , in ∈N}.

where {i1, . . . , in} = I are indexes of already answered questions. Remaining questions are unob-
served (unanswered) X̂ = {Xi|i ∈N \ I}.

The goal is to select a question from X̂ to be asked next. The selection is dependent on a
criterion function which may take different forms. Below, we describe three possible question
selection methods. In this paper we also use, as a comparison method, a sequential selection.
While using the sequential selection, the question we select is simply chosen in the same order
as they are ordered in the question input list. This type of question selection is often used in
non-adaptive tests where questions are always asked in the same sequence.

Three methods, we present further, are:

• Maximization of the Expected Entropy Reduction (also called Information Gain)

• Maximization of the Expected Skills Variance

• Maximization of the Expected Question Variance

The motivation for selecting these three possibilities is discussed for each criterion separately.

4.1 Maximization of the Expected Entropy Reduction

The purpose of an adaptive test is to provide the best possible information about a tested student.
Each student is modeled by his skills. The criterion described in this section uses the Shannon
entropy calculated over all skill values which we define in this section. It is a measure of the
certainty of skills estimation. Because of that we want to select a question which provides the
largest expected information gain if asked, i.e., a question which reduces uncertainty the most.
This method is further referred to as Skills’ Entropy.

We compute the cumulative Shannon entropy over all skill variables of S given the evidence e:

H(e) =
∑

j∈M

1∑

s=0

−P (Sj = s|e) · logP (Sj = s|e) . (1)

Assume we decide to ask a question X̂ ∈ X̂ . After inserting the observed outcome the entropy
over all skills changes. We can compute the value of new entropy for evidence extended by X̂ = x̂
as:

H(e, X̂ = x̂) =
∑

j∈M

1∑

s=0

−P (Sj = s|e, X̂ = x̂) · logP (Sj = s|e, X̂ = x̂) . (2)

This entropy H(e, X̂ = x̂) is the sum of individual entropies over all skill nodes. Another option
would be to compute the entropy of the joint probability distribution of all skill nodes. This would
take into account correlations between these nodes. In our task we want to estimate marginal
probabilities of all skill nodes. In the case of high correlations between two (or more) skills the
latter criterion would assign them a lower significance in the model. This is the behavior we
wanted to avoid. The first criterion assigns the same significance to all skill nodes which is a better
solution. Moreover, the computational time required for the proposed method is lower.

Now, we can compute the expected entropy after answering question X̂:

EH(X̂, e) =
1∑

x̂=0

P (X̂ = x̂|e) ·H(e, X̂ = x̂) . (3)

Finally, we choose a question X∗ that maximizes the information gain IG(X̂, e)

X∗ = arg max
X̂∈X̂

IG(X̂, e) , where (4)

IG(X̂, e) = H(e)− EH(X̂, e) . (5)
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4.2 Maximization of the Expected Skills Variance

With this criterion we want to select a question which leads to the largest variance of state pro-
babilities of skill variables. The rationale behind this selection is very similar to the one discussed
in the previous method. The goal is to provide the most accurate estimation of student’s skills
and also to provide the best separation of students based on their skills. We measure the variance
between skill’s state probabilities (student having the skill). The variance is measured for two
possible answers to one question, i.e., correct and incorrect. The criterion searches for a question
which provides the largest variance in these two possibilities. This method is further referred to
as Skills’ Variance.

We consider unaswered question X̂ ∈ X̂ to be asked. First, we establish following notation:

pj0 = P (Sj = 1|X̂ = 0, e) ,

pj1 = P (Sj = 1|X̂ = 1, e) ,

where Sj ∈ S. The symbol pj0 stands for the probability of a student having the examined skill

Sj even though the answer to the question X̂ was incorrect. pj1 is the case where the answer was

correct and the student has the skill Sj . Naturally, the value of pj1 should be larger than pj0. We
compute the average value pj :

pj = P (X̂ = 0|e) · pj0 + P (X̂ = 1|e) · pj1 .

Then, the expected variance of states’ probabilities of the skill Sj after answering the question X̂
can be obtained using the following formula:

varj(Sj |e, X̂) = (pj − pj0)2 · P (X̂ = 0|e) + (pj − pj1)2 · P (X̂ = 1|e) . (6)

This value has to be computed for each skill in the model. Afterwards, we compute the average of
these values for the question X̂:

var(S|e, X̂) =
1

m

∑

j∈M
varj(Sj |e, X̂) . (7)

We select a question which has the highest average value computed from (7):

X∗ = arg max
X̂∈X̂

var(S|e, X̂) . (8)

Maximization of (6) can be viewed as a generalization of the criterion of student separation des-
cribed in our previous article [7]. The difference is that in this case we consider the probability of
Sj = 1 after answering X̂ instead of the most probable state of Sj .

4.3 Maximization of the Expected Question Variance

Previous two criteria aimed at skills directly. This third one aims at questions instead. From all
unanswered questions we want to find a question with the highest expected variance of correct
answer probabilities for all possible state combinations. This criterion is motivated as follows: if
the question’s correct answer probability varies a lot with changing skill states it means that this
question is significantly affected when student skills shifts. It follows from the Bayes rule that
this question also has a significant influence on the skills. This method is further referred to as
Questions’ Variance.

The expected variance of the question’s X̂ correct answer probability is computed given the
following formula:

var(X̂|e) =
∑

s∈V al(S)

(P (X̂ = 1|e)− P (X̂ = 1|s, e))2 · P (s|e) . (9)

A question with the highest value of expected variance given by (9) is selected to be asked next.
The use of this function for computations during testing is impractical because of its computational
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complexity as it would take long time to select the next question. We propose an approximation
of Formula (9). We compute the variance for a single skill node and then take into account their
combined average instead of the full computation over all states’ combinations.

We establish following notation:

rj0 = P (X̂ = 1|Sj = 0) ,

rj1 = P (X̂ = 1|Sj = 1) ,

where Sj ∈ S, X̂ ∈ X̂ . rj0 stands for the probability, that the student answers correctly to the

question even though he/she has no skill in question. rj1 is the same situation while the student

has all examined skills. Intuitively, the value rj1 has to be larger than rj0.
With the average value

rj = P (Sj = 0|e) · rj0 + P (Sj = 1|e) · rj1
we can compute the expected variance of correct answer probability for the question X̂ using the
next formula:

varj(X̂|e) = (rj − rj0)2 · P (Sj = 0|e) + (rj − rj1)2 · P (Sj = 1|e) ,

var(X̂|e) =
1

m

∑

j∈M
varj(X̂|e) .

(10)

A question X∗ we select is maximizing this variance.

X∗ = arg max
X̂∈X̂

var(S|e, X̂) . (11)

The value (rj − ris) can be viewed as differential of P (X̂ = 1|Sj = s) of skill variables Sj that
have only two states s ∈ {0, 1}. Therefore, if P is the probability density function of the continuous
skill variable Sj , we can view it as a finite equivalent of the probability P (X̂ = 1|Sj = s) derivative

with respect to s. It means that var(X̂|e) is similar to Fisher’s information which is a commonly
used criterion for IRT (Item Response Theory) [11] – another possible type of model for CAT.
More detailed explanation of this criterion in the case of continuous skill variables can be found
in [7].

5 Experiments

5.1 Experimental Setup

To evaluate models we have done experiments on both data sets with models MM and CM described
above. We have used 10 fold cross-validation method for both data sets. Models were first learned
using standard EM algorithm from learning data. Next, we performed a simulation of CAT test
for every model and for every student using testing data.

During simulated testing we first estimated the skills of a student based on his/her answers. At
the start of each step we compute marginal probability distributions for all skills S. This happens
before selecting a new question and updating the model with the new answer. We use evidence
e obtained in previous steps which is at the start of testing empty. Then, based on estimated
skills we predict answers to all questions, where we select the most probable state of each question
X ∈ X :

x∗ = arg max
x

P (X = x|S) . (12)

By comparing this value to the real answer x′ of the question X we obtain a success rate of the
response estimates for all questions X ∈ X of a test result t (particular student’s result) in one
step

SRt =

∑
X∈X I(x∗ = x′)

|X | , where (13)

I(expr) =

{
1 if expr is true
0 otherwise.

(14)
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The total success rate of one model in one step for all test data is defined as

SR =

∑D
t=1 SRt

D
, (15)

where D is the dataset size.

5.2 Experimental Results

Average results of simulated tests for both data sets, i.e., both models described above, are dis-
played in graphs 3 and 4 for each model separately. Graphs show success rates SR in the first 30
steps. Step 0 is the state before asking any questions. At this point the prediction is based only on
data itself. There is no evidence and the selection criterion adds no benefit. Therefore the SR is
the same over all cases for a single model. For comparison we include also the sequential selection
as described in Section 4.
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Figure 3: MM success rates for first 30 questions of simulated testing

As we can see in these graphs the worst performing method is the sequential selection. It is
apparent that the rate in which this method improves its estimates is lower than the rate of the
remaining methods. This is caused by the fact that it is selecting questions which are not most
informative in the current test situation for the tested student.

The Skills’ Variance method of the selection has the lowest performance (or same) from three
proposed methods in both models. As explained below it is the only method which has statistically
significantly worse results in one instance. Particular reasons for this behavior has to be explored
further as there might be many possible causes.

Questions selected by individual methods are not the same even though the success rate of
question estimates is very similar. The selected questions are displayed in the Tables 3 and 4.
Numbers displayed correspond to the total number of selections of the particular question in the
MM and the CM in the first five steps of simulated testing. Questions which were not selected
at all are not included in the tables. By inspecting these tables we can easily see that there are
differences in individual methods. Some questions were not selected at all by one method while
the other two methods selected them in some cases only. For example, in the MM the question
X42 was not selected by Skills’ Entropy while Questions’ Variance selected it in 112 cases in the
first five steps. Nevertheless, we can see a trend of good questions which are selected very often
and soon in the process of testing by all methods. For example, in the MM the question X43 was
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Figure 4: CM success rates for first 30 questions of simulated testing

selected for all students by Skills’ Entropy and only for 7/10 of the dataset by the two remaining
methods.

5.3 Wilcoxon tests

To confirm our conclusions described above we used the Wilcoxon signed-rank test. Tables 1 and
2 contain p-values obtained from Wilcoxon tests to compare the success rates of two criteria. An
alternative hypothesis is that the overall success rate of the i-th criterion (row index) is greater
than the overall success rate of the j-th criterion (column index).

Table 1: MM Wilcoxon tests p-values

sequential
Skills’

Entropy
Skills’

Variance
Questions’
Variance

sequential - 1 1 1
Skills’ Entropy 1.17 · 10−5 - 1.62 · 10−1 9.39 · 10−1

Skills’ Variance 2.20 · 10−4 8.40 · 10−1 - 9.99 · 10−1

Questions’ Variance 2.04 · 10−8 6.15 · 10−2 9.22 · 10−3 -

Table 2: CM Wilcoxon tests p-values

sequential
Skills’

Entropy
Skills’

Variance
Questions’
Variance

sequential - 1 1 1
Skills’ Entropy 1.10 · 10−4 - 5.14 · 10−1 8.76 · 10−1

Skills’ Variance 8.77 · 10−5 4.92 · 10−1 - 8.58 · 10−1

Questions’ Variance 7.72 · 10−6 1.27 · 10−1 1.46 · 10−1 -

As we can see in both cases, p-values of the sequential selection compared to all other criteria are
much smaller than the borderline of α = 0.05. This confirms the fact that the sequential selection
provides the worst results. The table of the MM also shows that the success rate of Questions’
Variance method is greater than the SR of Skills’ Variance method (p-value = 9.22 · 10−3). This
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shows there is statistically important improvement in success rates of the former over the latter
method. All other pairs of different selection criteria show statistically insignificant difference
within the selected confidence interval. Therefore, for the remaining pairs we can not establish any
statistically sound order.

6 Conclusions and Future Work

This article considered different ways of selecting questions during the procedure of Computerized
Adaptive Testing. We presented three different types of methods to select questions during CAT
which were afterwards tested. For testing we used two data sets collected for this purpose.

The first important empirical observation is that the question selection method has a significant
impact on the quality of predictions during the CAT procedure. In the comparisons all three
proposed methods clearly outperformed the sequential selection. The motivation to study these
methods is thus valid.

The next observation is that three proposed methods behave differently. In this case the
difference in the quality of prediction is not large, it is statistically insignificant, but the methods
are distinguishable since they select different questions. The first step in the future research is
to provide generalizations of these methods to support multi-state skill variables. It seems that
especially for Skills’ Variance it may be very beneficial to test a model with skill nodes having
more than two states. It is necessary to show if we can improve these methods and establish any
ordering between them which would be valid generally over different models.
Acknowledgement
This work was supported by the Czech Science Foundation (project No. 16-12010S) and by the
Grant Agency of the Czech Technical University in Prague, grant No. SGS17/198/OHK4/3T/14.
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Abstract

Learning parameters of a probabilistic model is a necessary step in most
machine learning modeling tasks. When the model is complex and data
volume is small the learning process may fail to provide good results. In this
paper we present a method to improve learning results for small data sets
by using additional information about the modelled system. This additional
information is represented by monotonicity conditions which are restrictions
on parameters of the model. Monotonicity simplifies the learning process and
also these conditions are often required by the user of the system to hold.

In this paper we present a generalization of the previously used algorithm
for parameter learning of Bayesian Networks under monotonicity conditions.
This generalization allows both parents and children in the network to have
multiple states. The algorithm is described in detail as well as monotonicity
conditions are.

The presented algorithm is tested on two different data sets. Models are
trained on differently sized data subsamples with the proposed method and
the general EM algorithm. Learned models are then compared by their ability
to fit data. We present empirical results showing the benefit of monotonicity
conditions. The difference is especially significant when working with small
data samples. The proposed method outperforms the EM algorithm for small
sets and provides comparable results for larger sets.

1
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1 Introduction

In our research we address Computerized Adaptive Testing (CAT) [1, 13]. CAT is
a concept of testing latent student abilities which allows us to create shorter tests,
asking less questions in a shorter time while keeping the same level of information.
This task is performed by asking the right questions for each individual student.
Questions are selected based on a student model. In common practice experts
often use Item Response Theory models [10] (IRT) which are well explored and
have been in use for a long time. Nevertheless, we have focused our attention on
a different family of models to model a student using Bayesian Networks (BNs)
since they offer more options in the modelling process. It is for example possible to
model more complex influences between skills and questions as BNs are not limited
to connecting each skill with each question as well as we can introduce connections
between skills themselves.

During our research we noticed that there are certain conditions which should
be satisfied in this specific modelling task. We especially focused on monotonic-
ity conditions. Monotonicity conditions incorporate qualitative influences into a
model. These influences restrict conditional probabilities inside the model in a
specific way to avoid unwanted behavior. Monotonicity in Bayesian Networks has
been discussed in the literature for a long time. It is addressed, selecting the most
relevant to our topic, by [14, 3] and more recently by ,e.g., [11, 5]. Monotonicity
restrictions are often motivated by reasonable demands from model users. In our
case of CAT it means we want to guarantee that students having certain skills will
have a higher probability of answering questions correctly.

Certain types of models include monotonicity naturally by the way they are
constructed. In the case of general BNs this is not true. In order to satisfy these
conditions we have to introduce restrictions to conditional probabilities during the
process of parameter learning.

In our previous work we first showed that monotonicity conditions are uself in
the context of CAT [8]. Later we applied these conditions to Bayesian Network [9].
In this article we extend our earlier presented gradient descent optimum search
method for BN parameter learning under monotonicity conditions. The last article
covers only specific BNs. It works solely with binary children variables in the model
(yes/no answers in terms of CAT). The extension we present in this article provides
a tool to include monotonicity in BN models with multiple-state children nodes.
Additionally, in this article we perform experiments on a new dataset. It is consists
of data from the Czech high school state final exam. This data source contains a
large volume of reliable data, and it is very useful for the empirical verification of
our ideas.

We implemented the new method in R language and performed experimental
verification of our assumptions. We used two data sets. The first one, a synthetic
data set, is generated from artificial models satisfying monotonicity conditions.
The second one, an empirical data set, is formed by data from the Czech high
school final exam. Experiments were performed on these data sets also with the
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ordinary EM learning without monotonicity restrictions in order to compare these
two approaches.

The structure of this article is as follows. First, we establish our notation
and describe monotonicity conditions in detail in Section 2. Next, we present the
extended method in Section 3. In Section 4 of this paper, we take a closer look
at the experimental setup and present results of our experiments. The last section
contains an overview and a discussion of the obtained results.

2 BN Models and Monotonicity

2.1 Notation

In this article we use the new gradient descent method for BNs which are used to
model students in the domain of CAT. Details about BNs can be found, for example,
in [7, 6]. We restrict ourselves to the BNs that have two levels. In compliance with
our previous articles, variables in the parent level are addressed as skill variables S.
The children level contains questions variables X. Examples of network structures,
which we also used for experiments, are shown in Figures 1 and 2.

• We use the symbol X to denote the multivariable (X1, . . . , Xn) taking states
x = (x1, . . . , xn). The total number of question variables is n, the set of all
indexes of question variables is N = {1, . . . , n}. Question variables’ individ-
ual states are xi,t, t ∈ {0, . . . , ni} and they are observable. Each question can
have a different number of states, the maximum number of states over all
variables is Nmax = max

i
(ni) + 1. States are integers with natural ordering

specifying the number of points obtained in the i− th question1.

• We use the symbol S to denote the multivariable (S1, . . . , Sm) taking states
s = (s1, . . . , sm). The set of all indexes of skill variables is M = {1, . . . ,m}.
Skill variables have a variable number of states, the total number of states of a
variable Sj is mj , and individual states are sj,k, k ∈ {1, . . . ,mj}. The variable

Si = Spa(i) stands for a multivariable containing only parent variables of the
question Xi. Indexes of these variables are M i ⊆M . The set of all possible
state configurations of Si is V al(Si). Skill variables are unobservable.

The BN has CPT parameters for all questions Xi, i ∈ N , si ∈ V al(Si) which
define conditional probabilities as

P (Xi = t|S = s) = θti,si ,

and for all parent variables Sj , j ∈M as

P (Sj = sj) = θ̃j,sj .

1The interpretation of points is very complex and has to be viewed as per question because
we use the CAT framework. In this context getting one point in one question is not the same as
one point in another.
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Figure 1: An artificial BN model

Figure 2: A BN model for CAT

From the definition above it follows that parameters are constrained to be
between zero and one and to sum up to one. For question variable the condition
is
∑ni

t=0 θ
t
i,si = 1, ∀i, si and for parent variables it is

∑
sj
θ̃j,sj = 1, ∀j. To remove

this condition for the later use in the gradient method we reparametrize parameters

θti,si =
exp(µti,si)∑ni

t′=0 exp(µ
t′
i,si

)

θ̃j,sj =
exp(µ̃j,sj )∑mi

s′j=1 exp(µ̃j,s′j )
.

The set of all question parameters θti,si and all skills parameters θ̃j,sj is θ without
the reparametrization and µ with the reparametrization.

2.2 Monotonicity

The concept of monotonicity in BNs has been discussed in the literature since the
last decade of the previous millennium [14, 3]. Later its benefits for BN parameter
learning were addressed, for example, by [12, 2]. This topic is still active, e.g.,
[4, 11, 5].

We consider only variables with states from N0 with their natural ordering, i.e.,
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the ordering of states of skill variable Sj for j ∈M is

sj,1 ≺ . . . ≺ sj,mj
.

A variable Sj has a monotone effect on its childXi if for all k, l ∈ {1, . . . ,mj}, t′ ∈
{0, · · · , ni}:

sj,k � sj,l ⇒
t′∑

t=0

P (Xi = t|Sj = sj,k, s) ≥
t′∑

t=0

P (Xi = t|Sj = sj,l, s)

and antitone effect:

sj,k � sj,l ⇒
t′∑

t=0

P (Xi = t|Sj = sj,k, s) ≤
t′∑

t=0

P (Xi = t|Sj = sj,l, s) ,

where s is a configuration of remaining parents of question i without Sj . For
each question Xi, i ∈ M we denote by Si,+ the set of parents with a monotone
effect and by Si,− the set of parents with an antitone effect.

The conditions above are defined for states of question variable Xi in the set
{0, · · · , (ni − 1)}. Given the property of conditional probabilities, i.e.

θni

i,si = 1−
ni−1∑

t=0

θti,si ,

it holds for the state ni in the form for monotonic:

sj,k � sj,l ⇒ P (Xi = ni|Sj = sj,k, s) ≤ P (Xi = ni|Sj = sj,l, s)

and for antitonic:

sj,k � sj,l ⇒ P (Xi = ni|Sj = sj,k, s) ≥ P (Xi = ni|Sj = sj,l, s)

Next, we create a partial ordering �i on all state configurations of parents Si

of the i-th question, where for all si, ri ∈ V al(Si):

si �i ri ⇔
(
sij � rij , j ∈ Si,+

)
and

(
rij � sij , j ∈ Si,−

)
.

The monotonicity condition then requires that the probability of an incorrect
answer is higher for a lower order parent configuration (chances of correct better an-
swers increasing for higher ordered parents’ states), i.e., for all si, ri ∈ V al(Si), k ∈
{0, . . . , (ni − 1)}:

si �i ri ⇒
k∑

t=0

P (Xi = t|Si = si) ≥
k∑

t=0

P (Xi = t|Si = ri) .

In our experimental part we consider only the monotone effect of parents on
their children. The difference with antitone effects is only in the partial ordering.
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3 Parameter Gradient Search with Monotonicity

To learn the parameter vector µ we have developed a method based on gradient
descent optimization. We follow the work of [2] where authors use a gradient
descent method with exterior penalties to learn parameters. The main difference
is that we consider models with hidden variables. In this article we generalize the
method from [9] to multistate question variables.

We denote by D the set of indexes of question vectors. One vector xk, k ∈D
corresponds to one student and an observation of i-th variable Xi is xki . The
number of occurrences of the k-th configuration vector in the data sample is dk.

We use the model as described in Section 2 having unobserved parent variables
and observed children variables. With sets Ikt , t ∈ {0, . . . , Nmax} of indexes of
questions answered with the point gain of t points, we define the following products
based on observations in the k-th vector:

pt(µ, s, k) =
∏

i∈Ik
t

exp(µti,s)∑ni

t′=0 exp(µ
t′
i,s)

, t ∈ {0, · · · , Nmax}; pµ(µ, s) =
m∏

j=1

exp(µ̃j,sj ).

We work with the log likelihood of data modelled by BN with the parameter
vector µ:

LL(µ) =
∑

k∈D
dk · log


 ∑

s∈V al(S)

m∏

j=1

exp(µ̃j,sj )∑mj

s′j=1 exp(µ̃j,s′j )
·
Nmax∏

t=0

pt(µ, s, k)




=
∑

k∈D
dk · log

( ∑

s∈V al(S)

pµ(µ, s)
Nmax∏

t=0

pt(µ, s, k)
)
−N ·

m∑

j=1

log

mj∑

s′j=1

exp(µ̃j,s′j ) .

In the gradient descent optimization we need partial derivatives to establish the
gradient. The partial derivatives of LL(µ) with respect to µi,si for i ∈ N , si ∈
V al(Si) are

δLL(µ)

δµt
i,si

=

∑

k∈D
dk·

I(t, i, si, k)− (
∑ni

t′=0 exp(µ
t′

i,si)− exp(µti,si)) · pµ(µ, si)
∏Nmax

t=0 pt(µ, s, k)

∑ni

t′=0 exp(µ
t′

i,si) ·
∑

s∈V al(S)

(
pµ(µ, s)

∏Nmax

t=0 pt(µ, s, k)
) ,

where I(t, i, si, k) =

{
exp(µt

i,si), if t = k

0, otherwise
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and with respect to µ̃i,l for i ∈M , l ∈ {1, . . . ,mi} are

δLL(µ)

δµ̃i,l
=

∑

k∈D
dk ·

∑si=l
s∈V al(S) pµ(µ, s)

∏Nmax

t=0 pt(µ, s, k)
∑

s∈V al(S) pµ(µ, s)
∏Nmax

t=0 pt(µ, s, k)
−

−N · exp(µ̃i,l)∑mi

l′=1 exp(µ̃k,l′)
.

3.1 Monotonicity Restriction

To ensure monotonicity we use a penalty function which penalizes solutions that
do not satisfy monotonicity conditions

C(θi,si , θi,ri , t′, c) = exp(c · (
t′∑

t=0

θti,ri −
t′∑

t=0

θti,si))

for the log likelihood:

LL′(θ, c) = LL(θ)−
∑

i∈N

∑

si�iri

Nmax∑

t′=0

C(θi,si , θi,ri , t′, c),

and in the case of reparametrized parameters:

LL′(µ, c) = LL(µ)−
∑

i∈N

∑

si�iri

Nmax∑

t′=0

C(
exp(µt

i,si)
∑ni

t′=0 exp(µ
t′

i,si)
,

exp(µt
i,ri)

∑ni

t′=0 exp(µ
t′

i,ri)
, t′, c),

where c is a constant determining the slope of the penalization function. The higher
the value the more strict the penalization is. Theoretically, this condition does not
ensure monotonicity but, practically, selecting high values of c results in monotonic
estimates. If the monotonicity is not violated then the penalty value is close to
zero. Otherwise, the penalty is raising exponentially fast. In our experiments we
have used the value of c = 200 but any value higher than 100 provided almost
identical results.

After adding the penalized part to the log likelihood, partial derivatives with
respect to µi,l remain unchanged. Partial derivatives with respect to µt

i,si change.

The reparametrization causes the derivatives to become very complex. Due to
limited space in this paper we do not include their full description here.

Using the penalized log likelihood, LL′(µ, c), and its gradient ∇(LL′(µ, c)) we
can use standard gradient descent optimization methods to find the paramters of
BN models.

4 Experiments

We designed tests to verify our assumptions. We want to show that if we learn
parameters of BNs with little amount data it is beneficial to use monotonicity
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Figure 3: Artificial model: The ratio between the fitted and the real log likelihood
(measured on the whole data set) obtained by models trained with EM and the
restricted gradient methods for different training set sizes. Notice the logarithmic
scale of the x axis. Curves are slightly misaligned in the direction of the x-axis to
avoid overlapping.

constraints. We designed two experiments to test the method described above.
The first one works with artificial (synthetic data); the other uses a real world
empiric data sample.

Parameters are learned with our gradient method and the standard unrestricted
EM algorithm. In both cases, we learn model parameters from subsets of data of
different sizes. The quality of the parameter fit is measured by the log likelihood.
The log likelihood is measured on the whole data set to provide results comparable
between subsets of different sizes.

4.1 Artificial Model

The structure of the first model is shown in Figure 1. This model reflects the usual
model structure used in CAT where there are two levels of variables, one level of
questions, and one level of parents (skills). Parents S1 and S2 have 3 possible
states and children X1, X2, X3, X4 also have three states. The model was set up
with 10 different sets of parameters θ∗a satisfying the monotonicity conditions.
Furthermore, every model produced 10 000 test cases.

To learn parameters of these models we drew random subsets of size d of 10,
50, 100, 200, 1 000, 5 000. Ten different sets for each size (indexed by b). Next,
we created 10 initial starting points (indexed by c) for the model learning phase.
The structure of both generating and learning models is the same and is shown in
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Figure 4: Artificial model: Mean parameter distance between real and fitted param-
eters in models trained with the EM and restricted gradient methods for different
training set sizes. Notice the logarithmic scale of the x axis. Curves are slightly
misaligned in the direction of the x-axis to avoid overlapping.

Figure 1. Starting parameter vectors θb are randomized so that they satisfy the
monotonicity conditions. Parameters of all parent variables are uniform. Starting
points are the same for both the EM and the gradient method alike. In this
setup we have 10 different original models, 10 different observation subsets, and
10 different starting parameters, which gives 1 000 combinations for each set size.
Each combination has a set of parameters θda,b,c, a, b, c ∈ {1, . . . , 10}. We performed
tests for all these combinations and the results are evaluated as follows.

We measure the log likelihood on the whole data set in order to keep results
comparable. The resulting log likelihood after learning is compared with the log
likelihood obtained with the real model and then averaged over all instances. This
process gives us the average percentual difference between the original and fitted
model. For the set size d:

LRd =

∑
a,b,c

LL(θ∗a)

LL(θda,b,c)

1000

Resulting valus for all set sizes are shown in Figure 3. In this artificial setup we
are also able to measure the distance of learned parameters from the generating
parameters. First we calculate an average error for each learned model:

edi,j =
|θ∗a − θda,b,c|
|θ| ,
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where || is the L1 norm. Next we average over all results in one set size d:

ed =

∑
a,b,c ei,j

1000
.

The summary of results is shown in Figure 4.

4.2 CAT Model

The second model is the model presented in Figure 2 and we use it for our CAT
research. Parent variables S1, . . . , S8 have 3 states and each one of them represents
a particular student skill. Children nodes Ui are variables representing questions
which have a various number of states (based on the evaluation of the specific
question). This model was learned from data contained in the data sample collected
from the Czech high school final exam2. The data set contains answers from over
20 000 students who took the test in the year 2015. We created the model structure
based on our expert analysis and assigned skills to questions. To learn parameters
we use random subsets of size of 10, 50, 100, and 500 cases of the whole sample. We
drew 10 random sets for each size. Models were initiated with 10 different initial
random starting parameters θi.

Figure 5: BN model for CAT empirical data: LLIK scored on the whole dataset for
models trained with the EM and restricted gradient methods for different training
set sizes. Notice the logarithmic scale of the x axis. Curves are slightly misaligned
in the direction of the x-axis to avoid overlapping.

2The test is accessible here (Czech language):http://www.statnimaturita-matika.cz/
wp-content/uploads/matematika-test-zadani-maturita-2015-jaro.pdf
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For the learned models we computed the log likelihood for the whole data set.
These values are then averaged over all results of the same size LLA(k) similarly
to the artificial model. Results are presented in Figure 5. In this case we cannot
compare learned parameters because the real parameters are unknown.

5 Conclusions

In this article we presented a new gradient based method for learning parameters
of Bayesian Networks under monotonicity restrictions. The method was described
and then tested on two data sets. In Figures 3 and 5 it is clearly visible that
the newly proposed method provide better results than the general EM algorithm
for small set sizes. When the size of learning set grows both method are getting
more accurate and fitting data better. As we can see in results of the artificial
model, both methods converge to the same point which is almost identical to the
log likelihood of the model with real parameters. The speed of convergence is slower
for the gradient method, nevertheless in the artificial case, it is not outperformed
by the EM algorithm. In the case of empirical data, we can observe the same
notion where for small set sizes the new gradient method is scoring better results.
In this case EM is getting better log likelihood for larger data sets. This is caused
by the fact that for these larger sets monotonicity restrictions start to make the
learning process harder. For smaller sets they are showing the right path and
guiding the learning process to a better solution. For larger sets they are restricting
parameters and making the process harder. On the other hand, in case when we use
the gradient method, we are working with learned model satisfying monotonicity
conditions which may be desirable given its purpose.

This article shows that it is possible to benefit from monotonicity conditions. It
presents the method to be used to learn parameter of BNs under these conditions.
A possible extension of our work is to design a method which would use gradient
descent optimization in a polytope defined by monotonicity conditions instead of
using a penalty function. This approach has certain benefits as it ensures ending
with strictly monotonic solution, on the other hand the current method allows
small deviations from monotonicity if data strongly contradicts it.
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ABSTRACT
Learning parameters of a probabilistic model is a necessary step in machine learning
tasks. We present a method to improve learning from small datasets by using mono-
tonicity conditions. Monotonicity simplifies the learning and it is often required by
users. We present an algorithm for Bayesian Networks parameter learning. The al-
gorithm and monotonicity conditions are described, and it is shown that with the
monotonicity conditions we can better fit underlying data.

Our algorithm is tested on artificial and empiric datasets. We use different meth-
ods satisfying monotonicity conditions: the proposed gradient descent, isotonic re-
gression EM, and non-linear optimization. We also provide results of unrestricted
EM and gradient descent methods. Learned models are compared with respect to
their ability to fit data in terms of log-likelihood and their fit of parameters of the
generating model. Our proposed method outperforms other methods for small sets,
and provides better or comparable results for larger sets.

KEYWORDS
Bayesian Networks; monotonicity; parameter learning; isotonic regression; gradient
method; computerized adaptive testing

1. Introduction

Our research is focused in the domain of Computerized Adaptive Testing (CAT) work-
ing with Bayesian Networks (BNs) to model students’ abilities, which is also addressed,
for example, by (Almond and Mislevy 1999; van der Linden and Glas 2000). CAT is a
concept of testing latent student abilities, which allows creating shorter tests, asking
fewer questions while keeping the same level of information. This task is performed
by asking each individual student the right questions. Questions are selected based
on a student model. In common practice, experts often use Item Response Theory
models (IRT) (Rasch 1960), which are well explored and have been in use for a long
time. Nevertheless, we have focused our attention on a different family of models. The
reason is that Bayesian Networks provide us with better relationships in the model. It
is, for example, possible to model more complex influences between skills and questions
because BNs are not limited to connecting each skill with each question; moreover,

CONTACT martin.plajner@fjfi.cvut.cz
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we can introduce relationships between skills themselves. We address the topic of the
model selection in larger detail in our previous work, e.g., Plajner and Vomlel (2016b).

During our research, we have noticed that there are certain conditions which should
be satisfied in this specific modeling task. We have especially been focused on mono-
tonicity conditions. Monotonicity conditions incorporate qualitative influences into a
model. These influences restrict conditional probabilities inside the model in a spe-
cific way to avoid unwanted behavior. Monotonicity in Bayesian Networks has been
discussed in the literature for a long time. The most relevant papers are Wellman
(1990); Druzdzel and Henrion (1993) and more recently Restificar and Dietterich
(2013); Masegosa, Feelders, and van der Gaag (2016). Monotonicity restrictions are of-
ten motivated by reasonable demands from model users. In our case of CAT, it means
we want to guarantee that students having a higher level of skill(s) will have a higher
probability of answering questions correctly. As another example of monotonicity us-
age, imagine a BN that is learned to predict the effect of commercial promotions of
products in retail stores. There are certain factors which should have an isotone effect.
For example, secondary placement in the store, i.e., the position in the store’s layout.
A better position should provide a better result. If it does not, it is most likely caused
by other factors or noise in the data. In this case, we want the learned effect to be
isotone and our proposed algorithm can be used to provide it.

Certain types of models include monotonicity naturally, due the way in which they
are constructed. This is not true in the case of general BNs. In order to satisfy these
conditions, we have to introduce restrictions to conditional probabilities during the
process of parameter learning.

In our previous work we showed that monotonicity conditions are useful in the
context of CAT (Plajner and Vomlel 2016b). Later we applied these conditions to
Bayesian Networks (Plajner and Vomlel 2017). In this article, we present a gradient
descent optimum search method for BN parameter learning under monotonicity con-
ditions. The algorithm we present provides a tool to include monotonicity in the BN
models with multiple-state variables. We implemented the new method in R language
and performed experimental verification of our assumptions. Experiments were per-
formed on two datasets. The first one, a synthetic dataset, is generated from artificial
models satisfying monotonicity conditions. The second one, an empirical dataset, is
newly obtained and it consists of data from the Czech high school state final exam.
This second dataset contains a large volume of reliable data, and it is very useful for
the empirical verification of our approach. Experiments on these datasets were per-
formed with various parameter learning methods both satisfying and not satisfying
the monotonicity restrictions. The results are compared to show differences between
individual methods and the approaches with and without considering monotonicity.

In contrast to our previously published articles, this paper brings significant modi-
fications and improvements. Here, we establish a way of using our proposed gradient
descent algorithm for BNs that have other than binary variables. We also modified
the irEM method, which we use as for reference in work with multi-state variables. In
this article we add a new dataset, which is based on large scale real-world data in a
domain where the monotonicity should apply. Moreover, we have revised the way to
evaluate models in order to create a more precise and comprehensive evaluation. This
step includes adding to the comparison additional monotonicity-ensuring methods.

The structure of this article is as follows. First, we establish our notation and de-
scribe monotonicity conditions in detail in Section 2.1. Next, we present different
methods for learning parameters under monotonicity conditions in Section 3 and af-
terwords we present our proposed method in Section 3.1. In Section 4, we take a
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Figure 1. An artificial BN model

closer look at the experimental setup and present results of our experiments. Section 5
contains an overview and a discussion of the obtained results.

2. BN Models and Monotonicity

2.1. Models and Adaptive Testing

In our work we focus on computerized adaptive testing and assessing student knowl-
edge and abilities, using Bayesian Networks with a specific structure. The structure is
a bipartite network, which consists of a layer of skills and a layer of questions. Skills
are parents in our structure and correspond to specific abilities a student may or may
not have. Individual states of these skills are interpreted as levels of knowledge. This
interpretation is generally difficult as skills are unobserved variables. Having mono-
tonicity constraints in our models, we are able to introduce an ordering of these levels
and refer to them as increasing (or decreasing) qualities of skills. Children in the bi-
partite structure are question nodes, which correspond to particular questions in a
test. Levels of these nodes correspond to the points obtained by solving the specific
problem (the problem can be divided into sub-problems with different scores). These
models are described in further detail in Plajner and Vomlel (2016a).

2.2. Notation

In this article, we use BNs to model students in the domain of CAT. Details about
BNs can be found, for example, in Pearl (1988); Nielsen and Jensen (2007). The
model we use can be considered a special BN structure such as Multi-dimensional
Bayesian Network Classifier which is described, e.g., in van der Gaag and de Waal
(2006). We restrict ourselves to the BNs that have two levels. In compliance with our
previous articles, variables in the parent level are skill variables S. The child level
contains question variables X. Examples of network structures, which we also used for
experiments, are shown in Figures 1 and 2.

• We use the symbol X to denote the multivariable (X1, . . . , Xn) taking states
x = (x1, . . . , xn). The total number of question variables is n, the set of all
indices of question variables is N = {1, . . . , n}. Question variables’ individual
states are xi,t, t ∈ {0, . . . , ni} and they are observable. Each question can have a
different number of states; the maximum number of states over all variables is
Nmax = max

i
(ni) + 1. States are integers with the natural ordering.1.

• We use the symbol S to denote the multivariable (S1, . . . , Sm) taking states

1In our case, points are specifying the score obtained in the question i. The interpretation of points is very
complex and has to be viewed as per question because we use the CAT framework. In this context, getting one

point in one question is not the same as one point in another.
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Figure 2. A BN model for CAT

s = (s1, . . . , sm). The set of all indices of skill variables is M = {1, . . . ,m}. Skill
variables have variable numbers of states, the number of states of a variable Sj
is mj , and individual states are sj,k, k ∈ {1, . . . ,mj}. The variable Si = Spa(i)

stands for a multivariable containing the parent variables of the question Xi. In-
dices of these variables are M i ⊆M . The set of all possible state configurations
of Si is V al(Si). Skill variables are unobservable.

The BN is defined by, along with its structure, parameters of all questions Xi, i ∈
N , si ∈ V al(Si) which define conditional probabilities as

θti,si = P (Xi = t|Si = si) ,

and, parameters of all skills Sj , j ∈M as

θ̃j,sj = P (Sj = sj) .

From the definition above it follows that the parameters are constrained to be between
zero and one with constraints for question variables

∑
t θ
t
i,si = 1, ∀i, si and, for parent

variables,
∑

sj
θ̃j,sj = 1, ∀j. To avoid these constraints in our gradient method, we

reparametrize

θti,si =
exp(µti,si)∑ni

t′=0 exp(µ
t′
i,si)

θ̃j,sj =
exp(µ̃j,sj )∑mi

s′j=1 exp(µ̃j,s′j )
.

The set of all question parameters θti,si and all skills parameters θ̃j,sj is
denoted by θ and µ is the set of reparameterized parameters. The symbol

µi,si =
{
µt

′

i,si , t
′ ∈ {0, . . . , ni}

}
stands for the set of parameters for all states of a

question Xi given one parent configuration si. Theoretically, µt
′

i,si ∈ R,∀i,∀t′ but for
the practical computational issues we forbid the two extreme values of θ, i.e., 0 and
1. We elaborate more on exact bounds in the experimental section of this paper in
Section 4.
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2.3. Monotonicity

The concept of monotonicity in BNs has been discussed in the literature since the
1990s, see Wellman (1990); Druzdzel and Henrion (1993). Later, its benefits for BN
parameter learning were addressed, for example, by van der Gaag, Bodlaender, and
Feelders (2004); Altendorf, Restificar, and Dietterich (2005); Feelders and van der Gaag
(2005). This topic is still active, see, e.g., Restificar and Dietterich (2013); Masegosa,
Feelders, and van der Gaag (2016).

We consider only variables with states from N0 with their natural ordering, i.e., the
ordering of states of skill variable Sj for j ∈M is

sj,1 ≺ . . . ≺ sj,mj
.

A variable Sj has an isotone effect on its child Xi if for all k, l ∈ {1, . . . ,mj}, t′ ∈
{0, · · · , ni − 1} the following holds2:

sj,k � sj,l ⇒
t′∑

t=0

P (Xi = t|Sj = sj,k, s) ≥
t′∑

t=0

P (Xi = t|Sj = sj,l, s)

and antitone effect :

sj,k � sj,l ⇒
t′∑

t=0

P (Xi = t|Sj = sj,k, s) ≤
t′∑

t=0

P (Xi = t|Sj = sj,l, s) ,

where s is a configuration of the remaining parents of question i without Sj . For
each question Xi, i ∈ M we denote by Si,+ the set of parents with an isotone effect
and by Si,− the set of parents with an antitone effect.

The conditions above are defined for the states of question variable Xi in the set
{0, · · · , ni − 1}. The sum property of conditional probabilities

ni∑

t=0

θti,si = 1 ,

implies that, for ni in the case of the isotone effect:

sj,k � sj,l ⇒ P (Xi = ni|Sj = sj,k, s) ≤ P (Xi = ni|Sj = sj,l, s)

and in the case the antitone effect:

sj,k � sj,l ⇒ P (Xi = ni|Sj = sj,k, s) ≥ P (Xi = ni|Sj = sj,l, s)

Next, we define a partial ordering �i on all state configurations of parents Si of the
i-th question, if for all si, ri ∈ V al(Si):

si �i ri ⇔
(
sij � rij , j ∈ Si,+

)
and

(
rij � sij , j ∈ Si,−

)
.

2Note that for ni this formula always holds since
∑ni

t=0 P (Xi = t|Sj = sj,k, s) = 1 ∀i, ∀j,∀k
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The monotonicity condition requires that the probability of an incorrect answer is
higher for a lower order parent configuration (the chance of a correct answer increases
for higher ordered parents’ states), i.e., for all si, ri ∈ V al(Si), k ∈ {0, . . . , ni − 1}:

si �i ri ⇒
k∑

t=0

P (Xi = t|Si = si) ≥
k∑

t=0

P (Xi = t|Si = ri) .

In our experimental part, we consider only the isotone effect of parents on their
children. The difference with antitone effects is only in the partial ordering.

3. Learning Model Parameters under Monotonicity Conditions

Different methods can be used to learn model parameters while satisfying monotonicity
conditions. In this Section, we will outline some of them and then we will describe our
newly proposed method. All optimization methods we consider are optimizing the
log-likelihood of the model. Methods, in the order as they are described below, are:

• Isotonic regression EM (irEM)
• Bounded non-linear optimization (Cobyla)
• Restricted gradient method (res gradient)

Isotonic Regression EM

Isotonic Regression EM was proposed in Masegosa, Feelders, and van der Gaag (2016).
The authors propose a method for parameter learning which ensures convergence to
monotonicity satisfying parameters. The method is a modification of the well-known
EM algorithm where the M-step is modified to contain an isotonic regression step.
This step, in the case of a solution not complying with the monotonicity conditions,
moves the solution to the border of the admissible parameter space. The steps of the
algorithm are applied iteratively as in the case of the regular EM. In each step a new
solution, starting from the previous point, is found. This solution may or may not
satisfy the monotonicity conditions. If it does not, isotonic regression is performed to
satisfy them. As we show later in this paper, this behavior has a tendency to end
at the border of the admissible parameter space. This behavior may imply that the
algorithm fails to provide an optimal solution.

We have implemented the generalized version of the irEM algorithm working with
multiple state parent variables in our previous paper (Plajner and Vomlel 2017). In
the present paper we further generalize the irEM method to work with multiple states
of children variables as well.

The authors of the irEM algorithm also provide quick-irEM, abbreviated to qirEM,
a version of the algorithm which is a speed optimization modification. In this case the
isotonic regression step is performed only once after the EM algorithm converges. In
experiments, we have tested this version of the algorithm as well.

Bounded non-linear optimization

The monotonicity constraints form a subspace in the whole parameter space of CPTs’
parameters. A possible approach is to apply an optimization method for finding an
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optimum only inside this subspace. In that case the solution would satisfy the mono-
tonicity constraints and should be optimal (locally or globally based on the algorithm
and properties of the space itself). In our experiments we used various methods from
NLOPT library for non-linear optimization problems (Johnson 2018). From among
methods available in the library, we selected Sequential Least-Squares Quadratic Pro-
gramming (Kraft 1994) and Constrained Optimization BY Linear Approximations
(Cobyla) (Powell 1994) methods. Reasons to select these methods are that they are
able to work in our domain of restricted space and non-linear inequalities formed by
the monotonicity constraints. They are local optimization techniques and as such they
do not guarantee global optimum. We have also experimented with global optimiza-
tion methods but the time required for these methods to converge was extensive and
this is why we decided to skip experiments with these methods.

Restricted Gradient Method

We propose to use the Restricted Gradient Search method (which is our proposed
method) to find parameters of a BN under monotonicity restrictions. This method
uses the gradient descent optimum search technique. It takes a penalized log-likelihood
function to be optimized in order to find the solution of this problem. The penalization
encourages the solution to leave the non-admissible area of nonmonotonic parameters
and leads the gradient towards a monotonic solution. As such, this method does not
strictly ensure monotonicity to hold. Nevertheless, there are two important comments
to be made. The strength of the restriction is variable and setting high restriction
values effectively enforces the solution to be monotonic. Moreover, if the solution is not
monotonic the reason might be that the underlying data strongly contradicts it. This
method provides an option to balance data evidence and the monotonicity restrictions
and allows to create a non monotonic solution. Even though this is possible to achieve,
there is no general rule how to weight these influences. It depends on the data and
the model and requires expertise to evaluate. If the user is not sure, we propose to
use large penalty values to practically ensure a monotonic solution. This method is
described in detail in the following Section.

3.1. Parameter Gradient Search with Monotonicity

We have developed a method based on gradient descent optimization. We follow the
work of Altendorf, Restificar, and Dietterich (2005) where the authors use a gradient
descent method with exterior penalties. The main difference is that we consider models
with hidden variables. In this article, we generalize the method from Plajner and
Vomlel (2017) to multi-state question variables.

We denote by D the set of indices of the question vectors. One vector xk, k ∈D
corresponds to one student and an observation of i-th variable Xi is xki . The number
of occurrences of the k-th configuration vector in the data sample is dk.

We use the BN model described in Section 2.1 where we have unobserved parent
variables and observed children variables. The parent variables correspond to skills
and the number of their levels set the levels of quality/ability of the skill. The child
nodes correspond to questions and the number of levels is the number of possible
points obtained in the particular question. Let Ikt , t ∈ {0, . . . , Nmax} be sets of indices
of the questions in a state t. Then, we define the following products based on the
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observations in the k-th vector3:

pt(µ, s, k) =





1, if Ikt = ∅
∏
i∈Ik

t

exp(µti,si)∑ni

t′=0 exp(µ
t′
i,si)

, otherwise
, t ∈ {0, · · · , Nmax},

pµ(µ, s, k) =

Nmax∏

t=0

pt(µ, s, k)

pµ̃(µ, s) =

m∏

j=1

exp(µ̃j,sj ).

We work with the log-likelihood of data modeled by BN with the parameter vector
µ:

LL(µ) =
∑

k∈D
dk · log


 ∑

s∈V al(S)

m∏

j=1

exp(µ̃j,sj )∑mj

s′j=1 exp(µ̃j,s′j )
· pµ(µ, s, k)




=
∑

k∈D
dk · log


 ∑

s∈V al(S)

pµ̃(µ, s)pµ(µ, s, k)


−N ·

m∑

j=1

log

mj∑

s′j=1

exp(µ̃j,s′j ) .

Monotonicity Restrictions for the Gradient Search

To enforce monotonicity into the model we apply a penalty function which penalizes
solutions that do not satisfy the monotonicity conditions. We will use the following
penalization function for the log-likelihood:

C(µi,si ,µi,ri , t̂, c) = max


0, c ·



∑t̂

t=0 exp(µ
t
i,ri)∑ni

t′=0 exp(µ
t′

i,ri)
−
∑t̂

t=0 exp(µ
t
i,si

)
∑ni

t′=0 exp(µ
t′

i,si
)



p
 ,

and the penalized log-likelihood is

LL′(µ, c) = LL(µ)−
∑

i∈N

∑

si�iri

Nmax−1∑

t̂=0

C
(
µi,si ,µi,ri , t̂, c

)
,

where p sets the degree of the polynomial function and it takes only odd values, c
is a constant determining the slope of the penalization function, and t̂ is the level
of the question node. The higher the value of c the more strict the penalization is.
Theoretically, this condition does not ensure monotonicity but, practically, selecting
high values of c results in monotonic estimates. The polynomial penalty uses an odd
degree polynomial function. We discuss the size of the penalty in the following Section.

Using the penalized log-likelihood, LL′(µ, c), and its gradient ∇(LL′(µ, c)), we can
use standard gradient descent optimization methods to learn the parameter vector µ
of BN models. We provide formulas to compute the gradient in Appendix A.

3As we use only reparameterized parameters in our gradient method, we provide only formulas with the
reparametrization, i.e., the parameter vector µ as was introduced in Section 2.2
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3.2. Ensuring Monotonicity with the Penalization

Penalization described above may provide a solution which is not monotone. This
behavior is observable especially in instances in which the data strongly contradict the
monotonicity conditions. The solution will always be close to the admissible region but
the distance depends on the strength of the penalization. It depends on the specific
application whether we require a strictly monotone result or not. In many cases it
may be acceptable to break these conditions in order to get a better data fit. When
the training sample is very small, it is particularly easy to have data that contradicts
monotonicity. However, in some situations, we need to enforce monotonicity. It is
particularly easy to measure the distance from the border of the admissible region.
We can use the iterative process to ensure monotonicity. If the final parameter vector
after the optimization violates the monotonicity conditions, we restart the optimization
with a stronger penalization and use the end point as a new starting point. This process
is repeated until the monotone solution is reached. Nevertheless, in this Section, we
also provide a way to ensure monotonicity conditions by setting a strong enough
penalization.

In order to be able to do that and to compare this method with other strictly
monotone methods we propose the following concept. Below we use the penalization
C(µi,si ,µi,ri , t̂, c).

The penalization of the log-likelihood described above and detailed in Appendix A
has to lead the gradient method to the admissible area. We need to ensure that for
each µt

i,si
with the parent configuration si in the term

∂LL′(µ, c)
∂µt

i,si
=

∂LL(µ)

∂µt
i,si

(1)

−
∑

si�iri

Nmax∑

t̂=0

∂C
(
µi,si ,µi,ri , t̂, c

)

∂µt
i,si

(2)

−
∑

ri�isi

Nmax∑

t̂=0

∂C
(
µi,ri ,µi,si , t̂, c

)

∂µt
i,si

, (3)

the gradient part of LL(µ, c) (1) is not larger than the penalization terms (2) and (3)
while the parameter vector µ is not in the admissible region. The two terms (2) and
(3) of the penalization gradient are generated by the monotonicity conditions where
each condition generates one item to the outer sum for one or both of them. The first
term (2) is for the situation si �i ri and the second one (3) for the opposite instance
ri �i si. For a single parameter µt

i,si
these two gradient parts have opposite effects.

We need to analyze the partial ordering of skill configurations

ri �i si, si �i ri, si, ri ∈ V al(Si)

determining conditions of the question Xi and, more specifically, a single parameter
µt
i,si

. Because the penalty and its gradient is zero when the condition is not violated,

we can omit the state configurations for which the condition holds and work only with
the configurations for which the penalty is positive, i.e., all pairs si, ri ∈ V al′(Si) ⊆
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V al(Si) for which

C(µi,si ,µi,ri , t̂, c) > 0 .

Given this reduced set V al′(Si) and the partial ordering, there is always one state
configuration which is the first in the partial ordering. It means that there exists at
least one configuration ŝi for which

{
ŝi �i ri

}
= ∅, ∀ri ∈ V al′(Si) .

In the part of the gradient corresponding to parameter µt
i,si

one of the two sums

(ri �i ŝi) is zero. If we are able to ensure that the penalization part of the gradient
is always larger outside of the admissible region for this parameter, it will be moved
to the admissible region by the gradient method. After this step, the whole solution
either is in the admissible region, or we can use the same process to move another
parameter to the admissible region as long as there are any parameters outside of the
region.

The penalization drops towards zero as it gets closer to the border of the admissible
region. This behavior creates computational difficulties. The cause of these difficulties
lies in the fact that very small values of penalization can be outweighed by improve-
ments of the log-likelihood by shifting parameters outside of the admissible space.
Thus, it would be hard to ensure monotonicity in such conditions. To avoid these is-
sues, we shrink the admissible region by adding a small margin β to the penalization
function:

C ′2,p(µi,si ,µi,ri , t̂, c, β) =

max


0, c ·



∑t̂

t=0 exp(µ
t
i,ri)∑ni

t′=0 exp(µ
t′

i,ri)
−
∑t̂

t=0 exp(µ
t
i,si

)
∑ni

t′=0 exp(µ
t′

i,si
)

+ β



p
 .

This makes the lowest possible value at the border of the admissible region to be

C∗2,p(µi,si ,µi,ri , t̂, c, β) = c · βp

As the penalization function is growing rapidly outside of the admissible region, it
is sufficient to ensure the gradient inequality between terms (1), (2) and (3) in the
formula above at the border.

Based on the reasoning above and the formulas to compute the gradient, we set the
constant c = c∗ to ensure monotonicity in the following way

∣∣∣∣∣
∂LL(θ)

∂θt
i,si

∣∣∣∣∣ <

∣∣∣∣∣
∂C
(
θi,si ,θi,ri , t̂, c

)

∂θt
i,si

∣∣∣∣∣
1

(θ̃−)m · (θ−)n
< cpβp−1 · (θ−)2

c > (θ̃−)−m · (θ−)−n−2 · β1−p ,
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where β = 0.01 and p = 3 are chosen constants for the penalization. θ̃− and θ− are
the minimal possible parameters values as

θ̃− =
exp(µ̃−)

(m− 1)exp(µ̃+) + exp(µ̃−)

θ− =
exp(µ−)

(n− 1)exp(µ+) + exp(µ−)
,

where µ̃−, µ̃+, µ−, µ+ are the bounds on reparameterized parameters which we use to
prevent the probability values from reaching zero or one. In our case we use the maxi-
mum of 3 and the minimum of -3, which effectively changes the interval of probabilities
of a three-state variable to approximately [0.0012; 0.995].

3.3. Isotonic Regression EM for Variables with Multiple States

As mentioned earlier we use the isotonic regression EM method as a comparison
method to our proposed gradient approach. Our algorithm is designed for variables
having multiple states. The original irEM algorithm as it is published in Masegosa,
Feelders, and van der Gaag (2016) only works with binary variables. In our previous
paper (Plajner and Vomlel 2017) we detailed our implementation of this method to
work with parent variables in bipartite networks having multiple states. In order to
be able to make the full comparison with the method proposed in this paper, we also
implemented the irEM algorithm based on original work of Masegosa, Feelders, and
van der Gaag (2016), and Feelders (2007), where more information about the general-
ization to non-binary cases can be found, to work with multi-state child variables as
well. We provide details of our implementation in this Section.

For the sake of simplicity, we describe the implementation for isotone effects only
as antitone effects are simple reversions. In our case of multiple states, a variable Sj
has an isotone effect on its child Xi if for all k, l ∈ {1, . . . ,mj}, t′ ∈ {0, · · · , ni − 1}:

sj,k � sj,l ⇒
t′∑

t=0

P (Xi = t|Sj = sj,k, s) ≥
t′∑

t=0

P (Xi = t|Sj = sj,l, s)

More information about the stochastic dominance which is used here to model mono-
tonicity in terms of cumulative distributions can be found in Wellman (1990).

The difference between the binary case and the multi-state case lies in the cumula-
tive probability. In the binary case there was only one series of inequalities for t = 0.
Nevertheless, the structure of inequalities is the same as in the original irEM algorithm
for each level of t ∈ {0, . . . , ni}. We propose the use of a series of isotonic regression
steps. Each step works with a single level of t, i.e., with cumulative probabilities of
question Xi in separate sets

It =

{
t∑

t′=0

θt
′

i,si

}
, ∀t ∈ {0, . . . , ni} .

We perform the isotonic regression algorithm for each set separately with weights as
relative frequencies in the same way as in the standard irEM algorithm to obtain new
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cumulative probabilities. These probabilities are afterward converted back to non-
cumulative probabilities, i.e., individual variables.

4. Experiments

In experiments we would like to verify that if we learn parameters of BNs from a
small volume of data it is beneficial to use monotonicity constraints. We designed two
experiments to compare the methods discussed in this paper. In the first experiment
we use artificial (synthetic) data; the other uses a real world empiric data sample.
There are two model versions for each dataset. One with binary and one with ternary
question nodes, creating a total of four different model types we worked with.

Parameters are learned using the methods described above: our gradient method,
unrestricted gradient descent, irEM, qirEM, regular EM, and Cobyla from NLOPT
methods family4. For all model types, we learn the model parameters from subsets
of data of different sizes. The quality of the parameter fit is measured by the log-
likelihood of the learned models. The log-likelihood is measured on the whole dataset
to provide results comparable between learning subsets of different sizes.

We implemented the methods in R and its various built-in packages to ease this
process (R Development Core Team 2008), the NLOPT package mentioned above,
and for computations of the regular EM algorithm, the Hugin (Hugin 2014) engine
was used as the most time efficient tool. One important point to mention is that we
restricted the parameters of the learned conditional probability tables to be from the
specific interval [ε, 1− ε] where ε ∈ [0, 1] is a chosen small number; we used ε = 10−3.
This step is carried out in order to avoid extreme parameter values. When the learning
sample is very small, the networks parameters tend to move towards zero or one,
but we know it should not be the case in reality. These limits are very similar for
the reparameterized case of our gradient method as described in Section 3.2. The
gradient method is penalized by the constraint described in Section 3.1 and it takes
the parameter p defining the degree of the polynomial function. In our experiments
we have always used the third degree as it proves, empirically, to converge fastest to
the solution.

4.1. Artificial Model

The structure of the first model is shown in Figure 1. This model has a typical model
structure used in CAT where there are two levels of variables, one level of questions,
and one level of skills (parents). Skills S1 and S2 have three possible states and ques-
tions X1, X2, X3, X4 are either binary or ternary, creating two different sets for further
testing. Models were set up with ten different sets of parameters θ∗a satisfying the
monotonicity conditions. Furthermore, each model was used to generate one million
of data samples (test results of a student, i.e., answers to questions). Parent variables
were unobserved in all cases.

To learn the parameters of these models, we drew random subsets of size d =
10k, where k ∈ {1, 2, 3, 4, 5, 6}. Note that for k = 6 the subset is the set itself. Ten
different sets for each size (indexed by b) were generated. Next, we created ten initial

4The reason to include regular EM and unrestricted gradient methods is to further verify the benefit of using

the monotonicity constraints. We want to provide a reader with a comparison also between the restricted and
unrestricted cases.
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Figure 3. Artificial model, binary questions: The ratio between log-likelihoods of the fitted and the generating
models.

starting points (indexed by c) for the model learning phase. The structures of both the
generating and the learned models are fixed to be the same as it is shown in Figure 1.
The starting parameter vectors µb and the corresponding θb were randomly generated
from the interval [0.01, 0.99]. The starting points were the same for all methods. In
this setup, we have ten different original models, ten different observation subsets, and
ten different starting parameters, which provides us with a thousand combinations for
each set size and each model. Each model Md, d ∈

{
10k, k ∈ {1, . . . , 10}

}
is specified

by a set of parameters θda,b,c, a, b, c ∈ {1, . . . , 10}. We performed experiments for all
these combinations and the results are evaluated as follows.

We measure the log-likelihood on the whole dataset in order to keep the results com-
parable. The log-likelihood of each learned model is compared with the log-likelihood
of the generating model and then averaged over all instances of (a, b, c). This process
gives us the average log-likelihood ratio between the generating and the fitted model
for each subset of size d:

LRd =
1

1000

∑

a,b,c

LL(θ∗a)

LL(θda,b,c)
.

In this artificial setup we are also able to measure the distance of the probability dis-
tributions of learned parameters Q from the the distribution of generating parameters
P . First, we calculate the average Kullback–Leibler divergence for each learned model:

DKL(θ∗a||θda,b,c) =
1

n

n∑

i=1

DKL(P (Xi|θ∗a)||Q(Xi|θda,b,c)) .

Next we average over all results for each subset of size d:

Dd
KL =

1

1000

∑

a,b,c

DKL(θ∗a||θda,b,c) .
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Figure 4. Artificial model, binary questions: The mean KL divergence of the fitted and generating probability
distributions.

We require all methods which are restricted to satisfy the monotonicity conditions.
As described in Section 3.2, we can ensure this behavior by setting a high value of
the penalization parameter c. In this setting c = 1020 satisfies this condition. Even
though it is possible to use this penalization, it is very high and in certain cases it is
numerically hard to reach convergence without the algorithm failing. Instead we use
a smaller penalization of c = 105 which is, together with offset β = 0.01, sufficient for
practical purposes to satisfy the condition, although it does not theoretically guarantee
it. For each solution we verify whether it lies in the admissible region or not and the
solution which does not will not be used. For the actual penalization settings none of
solutions obtained in our experiments lied outside the admissible region and, because
of that, all restricted methods are comparable as they provide solutions under the
same restrictions. For better detail, we measured the situation for a much smaller
penalization of c = 100 and the smallest learning set size, where the danger of not
satisfying the monotonicity conditions is the highest. Even in this case only under 10%
of initial solutions end outside the admissible region.

Binary Question Variables

In this Section we present results for the artificial model with binary question variables.
The resulting values of the relative log-likelihood LR measured on the whole dataset
for all set sizes are shown in Figure 3. Figure 4 then shows the KL divergence of the
learned parameter distributions from the parameters of the generating distribution. In
both Figures, the horizontal axis has the logarithmic scale.

As we can see in Figure 3 all methods converge to the same log-likelihood value
very quickly. Differences are mostly in the smaller set sizes of 10 and 100 observations.
Unrestricted methods are clearly performing worse than the methods using the restric-
tions. The isotonic regression and NLOPT methods provide similar results; and the
methods of restricted gradient provide the best solutions for small sets. In the case of
the KL divergence (in Figure 4), we can clearly see that monotonicity helps us obtain
parameters which are closer to the real ones. In order to establish a sound ordering of
the methods, we performed Wilcoxon’s test. The null hypothesis was that one method
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is not giving better (lower) results. The p-values resulting from this test are presented
in Table B1. We can see that, in most cases, the restricted-gradient methods out-
perform the other methods at a significant level. The Cobyla and irEM methods are
scoring very similarly against other methods but when pair-wise compared, the irEM
is performing better.

This model is small and all methods converge to a solution quite fast. Nevertheless,
the EM and irEM methods are the fastest as they use the graph decomposition and
update the CPTs separately. In the case of other methods, the structure remains
complex (which is caused by unobserved parent variables) and such computations are
more time-consuming for larger networks. The main problem is the increasing state
space created by the state combinations of parents. As the number of parameters
increases, the number of conditions increases as well, and computing the gradient also
takes considerably more time. Especially in the case of NLOPT methods, this problem
is significant.

Ternary Question Variables

The same testing scenario was used for ternary question variables. The results for
relative log-likelihood are shown in Figure 5 and the divergence values of parameter
distributions in Figure 6. These Figures are constructed in the same way as those
in the binary case. These results are very similar to the case with binary question
variables. Wilcoxon’s test results for this case are displayed in Table B2. They are
almost identical to the previous case. The main difference is that the performance of
the Cobyla method has significantly decreased. We can also observe that the order
of methods is not exactly the same in both figures. The first figure shows the ability
of methods to fit data. It is measured by the log-likelihood criterion. The second
figure shows the distance of the fitted parameters to the parameters of the generating
distribution. Models that have a high log-likelihood need not necessarily represent the
best fit when it is measured by the distance of the parameters. Therefore we provide
both views.

An interesting point to point out is that, unlike the other methods, the Cobyla one
did not reach exactly the log-likelihood ratio 1 and the estimates of its parameters are
leveled at an early stage. The reason for such behavior lies in the computational de-
mands of this family of methods. The time which is sufficient for other methods is not
sufficient for the Cobyla method to converge. We have also tested other possible meth-
ods from the NLOPT family, including the global optimization method. The global
optimization method had problems finding a solution even in the binary problem. An-
other NLOPT method, Sequential Least-Squares Quadratic Programming (SLSQP),
which is a very fast local optimization method working well for the binary scenario,
was not able to reach the solution either for this specific problem.

Example of Isotonic Regression EM Behavior

We observed a problematic behavior of the irEM algorithm, which happens when the
algorithm repeatedly leaves the space of admissible solutions during the EM step.
We illustrate this behavior using a simple example. Figure 7 shows the log-likelihood
during the fitting process. For the irEM algorithm, iterations are broken down into two
consequent steps - the EM step and the isotonic regression step; the latter moves the
parameters to the border of the admissible region. We can observe oscillations which
are caused by leaving and re-entering the admissible region. This behavior creates an
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Figure 5. Artificial model, ternary questions: The ratio between log-likelihoods of the fitted and the gener-
ating models.

obstacle to finding the better solution in the similar way as local extremes do. The
irEM algorithm fails to find a better solution which is reachable by the method from
inside of the admissible space (starting parameters already monotonic). In Figure 8
we display the number of the violated monotonicity conditions. In fact, this behavior
may also cause problems with the stopping criteria as the algorithm returns to the
border possibly very close to the previous state after the ir step with a very similar
log-likelihood value.

In Figure 7 we also present results of qirEM method. This method runs as the EM
algorithm and performs the isotonic step after EM iterations. We can observe that the
fitted log-likelihood is smaller than for the two other methods, but in the last step as
the qirEM method satisfies the monotonicity conditions the log-likelihood rises above
both concurrent methods. qirEM thus provides a valid solution but it is a heuristic
which can potentially provide worse log-likelihood fits.

4.2. CAT Model

The structure of the second tested model is presented in Figure 2. Parent variables
S1, . . . , S8 have 3 states and each of them represents a particular student skill. Child
nodes Xi are variables representing questions that have different numbers of states
(based on the evaluation of the specific question). We learned this model from the
data of the Czech high school final exam5. This dataset contains answers from over
20,000 students who took the test in the year 2015. We created the model structure
based on our expert analysis and assigned questions to relevant skills. We used random
subsamples of the whole data sample with sizes of 10, 40, 160, 640, and 2560. We drew
10 random sets for each size. Models were initiated with 10 different random parameter
vectors µi and the corresponding θi.

This model was learned using our restricted gradient method and unrestricted gra-
dient and EM methods for reference. In this case, we do not compare to the irEM

5The test assignment and its solution are accessible in the Czech language at:http://www.

statnimaturita-matika.cz/wp-content/uploads/matematika-test-zadani-maturita-2015-jaro.pdf

138



0

1

2

3

4

101 102 103 104 105 106

Learning set size

M
ea

n 
K

L 
di

ve
rg

en
ce

 o
f t

he
 o

rig
in

al
 a

nd
 fi

tte
d 

di
st

rib
ut

io
n

method
EM
gradient
irEM
qirEM
Cobyla
res gradient

Figure 6. Artificial model, ternary questions: The mean KL divergence of the fitted and generating probability
distributions.

method as we are not able to measure the divergence of the parameter distributions
and the comparison would not be informative. The NLOPT family methods failed to
obtain any solution in the given time (4 hours).

We compute the log-likelihood of the learned models on the whole dataset. These
values are then averaged similarly to the artificial model. The results are presented
in Figure 9. In this case, we cannot compare the learned parameters with the real
ones because the latter are unknown. In the Figure, we can observe that, for empirical
data, the restricted gradient methods provide better results for small datasets. The
differences in the log-likelihood get lower for larger sets but, even in these cases,
parameters of EM and unrestricted gradient learning are usually not monotonic. The
parameter space is very large and these methods get easily trapped in a local optimum
outside of the monotonicity region.

5. Conclusions

In this article we present a new gradient based method for learning parameters of
Bayesian Networks under monotonicity restrictions. Our method is tested on two
datasets. When considering the log-likelihood criterion, it is clearly visible in Fig-
ures 3, 5 and 9 that the new method provides better results than other methods for
small training set sizes. When the size of the learning set grows, all methods are get-
ting more accurate and fit the data better. The results obtained by all tested methods
are very similar in terms of the log-likelihood criterion - except for the non-linear
optimization approach, which in some cases, failed to obtain any solution due to com-
putational difficulties. For synthetic data, all methods converge to models with the
same log-likelihood values, which are nearly identical with those of the log-likelihood
of the generating model. In the case of empirical data, we can observe the same be-
havior. Again, for small training set sizes the new gradient method is scoring better.
All methods converge to identical log-likelihood values for large training data sets.
Nevertheless, even for the large sets, parameters learned by a non-monotone method,
such as EM or the unrestricted gradient, remain non-monotone. The parameter space
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Figure 7. The evolution of the log-likelihood on the training sample during learning iterations of methods.
The x axis has not the same scale for all methods as the speed of convergence and the number of steps is not

relevant in this case. For the irEM method we display both steps of the iteration in sequence (EM and ir).

is large and it is easy for these methods to get stuck in a local extreme with a not
worse log-likelihood value but breaking the monotonicity conditions.

With the synthetic data generated from an artificial model, we are able to compare
the fitted parameters with those of the generating model. These comparisons show that
the newly proposed method is able to provide results which are closer to the original
parameters in all cases. The only drawback of the new method is that it requires longer
computational time than the irEM algorithm.

To summarize, we have shown that the learning methods can improve their be-
havior if they make use of valid monotonicity conditions. We have thus presented a
new method that can be used to learn parameters of BNs under the monotonicity
conditions. This method performs better in terms of the log-likelihood as well as of a
distance from the original model parameters.

There are still open issues concerning the monotonicity conditions and learning
parameters under them. One point to address is a generalization of our proposed
algorithm to work on general BN structures rather than on bipartite graphs only.
The potential application area of the general models is large. One example where we
can use the monotonicity conditions regarding promotions planning is mentioned in
the introduction of this paper. Another example is disease modeling where we could
introduce the monotonicity to model increasing chances of a disease occurrence for
higher levels of negative effects such as smoking. Hence it would be beneficial to further
explore this research topic to provide larger possibilities to learn and use monotone
models.
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Appendix A. Monotonicity Restricted Gradient

In the gradient descent optimization, we need partial derivatives to establish the gra-
dient. The partial derivatives of LL(µ) with respect to µi,si for i ∈ N , si ∈ V al(Si)
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are

∂LL(µ)
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The partial derivative of the penalization function C(µi,si ,µi,ri , t̂, c) is
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and

∂C(µi,si ,µi,ri , t̂, c)

∂µt
i,ri

= −∂C(µi,si ,µi,ri , t̂, c)

∂µt
i,si
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and the partial derivatives with respect to µ̃i,l are not affected by the penalization as
the parents do not appear in the penalization function.

∂LL′(µ)

∂µ̃j,l
=

∂LL(µ)

∂µ̃j,l

Together

∂LL′(µ)

∂µ̃j,l
for {µ̃j,l|j ∈M , l ∈ {1, . . . ,mj}}

and

∂LL′(µ, c)
∂µt

i,si
for {µti,si |i ∈N , t ∈ {1, . . . , Nmax}}

form the gradient ∇LL′(µ, c).

Appendix B. Wilcoxon’s tests

This appendix contains two tables, Table B1 and Table B2, with results of Wilcoxon’s
test for the KL divergences of generating and fitted probability distributions in artifi-
cial models with binary and ternary variables.
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Table B1. Wilcoxon’s test to compare results for artificial model with binary variables for different sizes of

the learning sets. This test statistically verifies whether a method in the row statistically fits significantly better
the generating parameters than another method in the column (H0: there is no shift in their distributions).

10 res gradient irEM qirEM EM gradient Cobyla
res gradient 0.5005 0.0000 0.0099 0.0000 0.0000 0.1533

irEM 1.0000 0.5005 0.9986 0.0000 0.0000 1.0000
qirEM 0.9902 0.0014 0.5005 0.0000 0.0000 0.8996

EM 1.0000 1.0000 1.0000 0.5005 0.0708 1.0000
gradient 1.0000 1.0000 1.0000 0.9295 0.5005 1.0000
Cobyla 0.8473 0.0000 0.1009 0.0000 0.0000 0.5005

100 res gradient irEM qirEM EM gradient Cobyla
res gradient 0.5005 0.0002 0.0055 0.0000 0.0000 0.0966

irEM 0.9998 0.5005 0.8708 0.0000 0.0000 0.9679
qirEM 0.9946 0.1297 0.5005 0.0000 0.0000 0.8624

EM 1.0000 1.0000 1.0000 0.5005 0.0025 1.0000
gradient 1.0000 1.0000 1.0000 0.9976 0.5005 1.0000
Cobyla 0.9038 0.0323 0.1382 0.0000 0.0000 0.5005

1000 res gradient irEM qirEM EM gradient Cobyla
res gradient 0.5005 0.1313 0.0000 0.0000 0.0000 0.0010

irEM 0.8692 0.5005 0.0000 0.0000 0.0000 0.0099
qirEM 1.0000 1.0000 0.5005 0.0000 0.0000 0.9556

EM 1.0000 1.0000 1.0000 0.5005 0.0132 1.0000
gradient 1.0000 1.0000 1.0000 0.9869 0.5005 1.0000
Cobyla 0.9990 0.9902 0.0446 0.0000 0.0000 0.5005

1000 res gradient irEM qirEM EM gradient Cobyla
res gradient 0.5005 0.8738 0.0000 0.0000 0.0000 0.0027

irEM 0.1267 0.5005 0.0000 0.0000 0.0000 0.0013
qirEM 1.0000 1.0000 0.5005 0.0000 0.0000 0.9951

EM 1.0000 1.0000 1.0000 0.5005 0.1048 1.0000
gradient 1.0000 1.0000 1.0000 0.8956 0.5005 1.0000
Cobyla 0.9973 0.9987 0.0050 0.0000 0.0000 0.5005

100000 res gradient irEM qirEM EM gradient Cobyla
res gradient 0.5005 0.2825 0.0000 0.0000 0.0000 0.0000

irEM 0.7183 0.5005 0.0000 0.0000 0.0000 0.0031
qirEM 1.0000 1.0000 0.5005 0.0000 0.0000 0.9984

EM 1.0000 1.0000 1.0000 0.5005 0.8101 1.0000
gradient 1.0000 1.0000 1.0000 0.1905 0.5005 1.0000
Cobyla 1.0000 0.9970 0.0017 0.0000 0.0000 0.5005

1000000 res gradient irEM qirEM EM gradient Cobyla
res gradient 0.5151 0.1965 0.0026 0.0000 0.0000 0.0038

irEM 0.8237 0.5151 0.0827 0.0000 0.0000 0.1577
qirEM 0.9981 0.9284 0.5151 0.0000 0.0000 0.6981

EM 1.0000 1.0000 1.0000 0.5151 0.7255 1.0000
gradient 1.0000 1.0000 1.0000 0.3019 0.5177 0.9999
Cobyla 0.9972 0.8612 0.3304 0.0000 0.0001 0.5177
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Table B2. Wilcoxon’s test to compare results for artificial model with ternary variables for different sizes of
the learning sets. This test statistically verifies whether a method in the row statistically fits significantly better

the generating parameters than another method in the column (H0: there is no shift in their distributions).

10 res gradient irEM qirEM EM gradient Cobyla
res gradient 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000

irEM 1.0000 0.5000 0.0000 0.0000 0.0000 1.0000
qirEM 1.0000 1.0000 0.5000 0.0000 0.0000 1.0000

EM 1.0000 1.0000 1.0000 0.5000 0.9995 1.0000
gradient 1.0000 1.0000 1.0000 0.0005 0.5000 1.0000
Cobyla 1.0000 0.0000 0.0000 0.0000 0.0000 0.5000

100 res gradient irEM qirEM EM gradient Cobyla
res gradient 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000

irEM 1.0000 0.5000 0.0000 0.0000 0.0000 0.0000
qirEM 1.0000 1.0000 0.5000 0.0000 0.0000 1.0000

EM 1.0000 1.0000 1.0000 0.5000 0.0000 1.0000
gradient 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000
Cobyla 1.0000 1.0000 0.0000 0.0000 0.0000 0.5000
1000 res gradient irEM qirEM EM gradient Cobyla

res gradient 0.5001 0.8917 0.0000 0.0000 0.0000 0.0000
irEM 0.1084 0.5000 0.0000 0.0000 0.0000 0.0000

qirEM 1.0000 1.0000 0.5000 0.0000 0.0000 0.0000
EM 1.0000 1.0000 1.0000 0.5000 0.0000 1.0000

gradient 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000
Cobyla 1.0000 1.0000 1.0000 0.0000 0.0000 0.5000
10000 res gradient irEM qirEM EM gradient Cobyla

res gradient 0.5001 0.0000 0.0000 0.0000 0.0000 0.0000
irEM 1.0000 0.5000 0.0000 0.0000 0.0000 0.0000

qirEM 1.0000 1.0000 0.5000 0.0000 0.0000 0.0000
EM 1.0000 1.0000 1.0000 0.5000 0.0000 0.0000

gradient 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000
Cobyla 1.0000 1.0000 1.0000 1.0000 0.0000 0.5000
100000 res gradient irEM qirEM EM gradient Cobyla

res gradient 0.5000 0.0000 0.0000 0.0000 0.0000 0.0000
irEM 1.0000 0.5000 0.0000 0.0000 0.0000 0.0000

qirEM 1.0000 1.0000 0.5000 0.0000 0.0000 0.0000
EM 1.0000 1.0000 1.0000 0.5000 0.0000 0.0000

gradient 1.0000 1.0000 1.0000 1.0000 0.5000 1.0000
Cobyla 1.0000 1.0000 1.0000 1.0000 0.0000 0.5000

1000000 res gradient irEM qirEM EM gradient Cobyla
res gradient 0.5005 0.0000 0.0000 0.0000 0.0000 0.0000

irEM 1.0000 0.5005 0.0000 0.0000 0.0000 0.0000
qirEM 1.0000 1.0000 0.5005 0.0000 0.0000 0.0000

EM 1.0000 1.0000 1.0000 0.5005 0.0996 0.0260
gradient 1.0000 1.0000 1.0000 0.9009 0.5005 0.3323
Cobyla 1.0000 1.0000 1.0000 0.9742 0.6686 0.5005
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Abstract
In our previous work we have shown how Bayesian networks can be used for adaptive testing of
student skills. Later, we have taken the advantage of monotonicity restrictions in order to learn
models fitting data better. This article provides a synergy between these two phases as it evaluates
Bayesian network models used for computerized adaptive testing and learned with a recently pro-
posed monotonicity gradient algorithm. This learning method is compared with another monotone
method, the isotonic regression EM algorithm. The quality of methods is empirically evaluated on
a large data set of the Czech National Mathematics Exam. Besides advantages of adaptive test-
ing approach we observed also advantageous behavior of monotonic methods, especially for small
learning data set sizes. Another novelty of this work is the use of the reliability interval of the score
distribution, which is used to predict student’s final score and grade. In the experiments we have
clearly shown we can shorten the test while keeping its reliability. We have also shown that the
monotonicity increases the prediction quality with limited training data sets. The monotone model
learned by the gradient method has a lower question prediction quality than unrestricted models
but it is better in the main target of this application, which is the student score prediction. It is an
important observation that a mere optimization of the model likelihood or the prediction accuracy
do not necessarily lead to a model that describes best the student.
Keywords: Monotonicity; Adaptive Testing, Bayesian Network; Gradient Method; Isotonic Re-
gression; Parent Divorcing.

1. Introduction

Computerized Adaptive Testing (CAT) is a concept of testing latent student abilities, which allows
creating shorter tests, asking fewer questions while obtaining the same level of information. This
task is performed by asking each individual student the most informative questions selected based
on a student model. In practice, experts often use the Item Response Theory models (IRT) (Rasch,
1960), which are well explored and have been in use for a long time. We work with Bayesian
Networks (BNs) to model students’ abilities instead. This approach can be also found, for example,
in (Almond and Mislevy, 1999; van der Linden and Glas, 2000).

Over the last few years we addressed different topics from the domain of CAT. We focused
mainly on two topics. The first one is the adaptive testing itself and the use of BN models to per-
form it, see e.g., Plajner and Vomlel (2016b). The second topic concerns the effect of monotonicity
restrictions while learning the model, e.g., Plajner and Vomlel (2020). The current article takes the
best from both topics and joins them together in a synergy. Here, we use monotone models to per-

1
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form simulated adaptive tests. For this purpose we use a data set of the Czech Nation Mathematics
Exam1. This exam serves as a high school evaluation exam and the final grade from this exam is
considered important. In this article we introduce an approach for inferring the final score and for
the prediction of the expected grade of a student. We also provide a method for establishing the
95% confidence interval of the score which does not require a specific distribution assumption. We
observe the evolution of the grade prediction quality during the test and the improvement of the con-
fidence interval. We apply monotone methods, namely our proposed restricted gradient Plajner and
Vomlel (2016b) and the isotonic regression EM by Masegosa et al. (2016), as well as the standard
(non monotone) EM, and the gradient methods to compare with.

IRT assumes that there is a hidden variable of a student’s skill. This approach motivated us to
use a structured Bayesian network to model student’s skills. In this article we show that the choice
of model evaluation criteria is critical in order to select the right model for the given task. It depends
whether we want to create a model which predicts the vector of student answers the best or a model
which model student’s skills the best. The discovery we uncover in this article is that this distinction
is also important in the model selection. Sometimes, the best option is to measure the accuracy of
answers prediction or the overall fit of data, i.e. likelihood. The reasonable expectation is that when
we are able to do this task the best the model would also model the student the best. Nevertheless,
as we discuss in the following sections it is not always the case. We can find models which have
worse answer prediction accuracy but they better indicate the student skills as it is reflected by the
final score/grade obtained in the test. In other words, the model is less certain about the individual’s
answers but despite that it models the student better.

The article is structured as follows. In Section 2 we go through the necessary notation and
describe the models used. Section 3 brings the methodology for student scoring and grading as
well as the formulas to evaluate the precision of models. In Section 4 we describe the experimental
settings used for the empirical evaluation and results of these experiments are summarized in Sec-
tion 5. Finally, Section 6 concludes the paper and recollect the main observations and benefits of
this paper.

2. BN Models and Monotonicity

2.1 Models and Adaptive Testing

In our work we focus on computerized adaptive testing and assessing student knowledge and abili-
ties, using Bayesian Networks with a specific structure. The structure is a bipartite network, which
consists of a layer of skills and a layer of questions. Skills are parents in our structure and cor-
respond to specific abilities a student may or may not have. Individual states of these skills are
interpreted as levels of knowledge. This interpretation is generally difficult as skills are unobserved
variables. Having monotonicity constraints in our models, we are able to introduce an ordering
of these levels and refer to them as increasing (or decreasing) qualities of skills. Children in the
bipartite structure are question nodes, which correspond to particular questions in a test. Levels of
these nodes correspond to the points obtained by solving the specific problem (the problem can be
divided into sub-problems with different scores). These models are described in further detail in
Plajner and Vomlel (2016a).

1. The test assignment and its solution are accessible in the Czech lan-
guage at: http://www.statnimaturita-matika.cz/wp-content/uploads/
matematika-test-zadani-maturita-2015-jaro.pdf

2
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Figure 1: A BN model for CAT

2.2 Notation

We use BNs to model students knowledge. Details about BNs can be found, for example, in Pearl
(1988); Nielsen and Jensen (2007). The model we use can be considered a special BN structure such
as Multi-dimensional Bayesian Network Classifier which is described, e.g., in Gaag and de Waal
(2006). We restrict ourselves to BNs that have two levels of nodes. In compliance with our previous
articles, variables in the parent level are skill variables S. The child level contains question variables
X . An example of a BN structure, which we also used in experiments, is shown in Figure 1.

• We use the symbol X to denote the multivariable (X1, . . . , Xn) taking states x = (x1, . . . , xn).
The total number of question variables is n, the set of all indices of question variables is
N = {1, . . . , n}. Question variables’ individual states are xi,t, t ∈ {0, . . . , ni} and they
are observable. Each question can have a different number of states; the maximum number of
states over all variables is Nmax = max

i
(ni)+1. States are integers with the natural ordering.

• We use the symbol S to denote the multivariable (S1, . . . , Sm) taking states s = (s1, . . . , sm).
The set of all indices of skill variables is M = {1, . . . ,m}. Skill variables have a variable
number of states, the number of states of a variable Sj is mj , and the individual states are
sj,k, k ∈ {1, . . . ,mj}. The variable Si = Spa(i) stands for a multivariable containing the
parent variables of the question Xi. Indices of these variables are M i ⊆ M . The set of all
possible state configurations of Si is V al(Si). Skill variables are unobservable.

• We use the symbol O to denote the score node taking states ok, k ∈ {0, . . . ,
∑

i∈N xi,ni}. Its
state space is the set of all possible sums of question points and it is modeled as sum rule
with questions as parents as shown in Figure 1. The maximum number of points is refered to
as om =

∑
i∈N xi,ni .
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2.3 Monotonicity

The concept of monotonicity in BNs has been discussed in the literature since the 1990s, see Well-
man (1990); Druzdzel and Henrion (1993). Later, its benefits for BN parameter learning were
addressed, for example, by van der Gaag et al. (2004); Altendorf et al. (2005); Feelders and van der
Gaag (2005). This topic is still active, see, e.g., Restificar and Dietterich (2013); Masegosa et al.
(2016).

We consider only variables with states from N0 with their natural ordering, i.e., the ordering of
states of skill variable Sj for j ∈M is

sj,1 ≺ . . . ≺ sj,mj .

A variable Sj has an isotone effect on its child Xi if for all k, l ∈ {1, . . . ,mj}, t′ ∈ {0, · · · , ni−
1} the following holds2:

sj,k � sj,l ⇒
t′∑

t=0

P (Xi = t|Sj = sj,k, s) ≥
t′∑

t=0

P (Xi = t|Sj = sj,l, s)

and antitone effect:

sj,k � sj,l ⇒
t′∑

t=0

P (Xi = t|Sj = sj,k, s) ≤
t′∑

t=0

P (Xi = t|Sj = sj,l, s) ,

where s is a configuration of the remaining parents of question i without Sj . For each question
Xi, i ∈M we denote by Si,+ the set of parents with an isotone effect and by Si,− the set of parents
with an antitone effect.

Next, we define a partial ordering�i on all state configurations of parents Si of the i-th question,
if for all si, ri ∈ V al(Si):

si �i ri ⇔
(
sij � rij , j ∈ Si,+

)
and

(
rij � sij , j ∈ Si,−) .

The monotonicity condition requires that the probability of an incorrect answer is higher for
a lower order parent configuration (the chance of a correct answer increases for higher ordered
parents’ states), i.e., for all si, ri ∈ V al(Si), k ∈ {0, . . . , ni − 1}:

si �i r
i ⇒

k∑

t=0

P (Xi = t|Si = si) ≥
k∑

t=0

P (Xi = t|Si = ri) .

In our experimental part, we consider only the isotone effect of parents on their children. The
difference with antitone effects is only in the partial ordering.

2. Note that for ni this formula always holds since
∑ni

t=0 P (Xi = t|Sj = sj,k, s) = 1 ∀i,∀j, ∀k
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3. Score prediction and student grading

In testing it is important to associate a score and/or a grade to a particular student who is being
tested. In the adaptive test there are multiple possible options to receive these values. Some options
to obtain the student score are described in Plajner and Vomlel (2016a) where, for example, we used
estimated skills of the student to compute the score. Nevertheless, the most natural approach seems
to be to compute the expected value of the score using the probability distribution of questions’
answers in the current state of the student model. In our application we use two different ways
how to compute the final score. In both cases we first infer probability distributions of skills of the
particular student and then

A. obtain the expected score of remaining unanswered questions, or

B. obtain the expected score of all questions (i.e. also those that were already answered).

Each option is appropriate for a particular scenario. The first one is used in the case the student
is tested and we want to estimate his/her result. Questions which were answered define the part of
the total score known with certainty and only remaining questions add uncertainty to the total score.
This way the test can be evaluated in the just manner. The second approach is more suited for the
adaptive learning scenario where we estimate the student score to measure his/her abilities. In this
case each question node actually represents a set of similar questions in the test battery. In principal
a similar question can be asked again and the answer does not need to be necessary the same, albeit
it is most probable it would be.

It is also important to observe not only the expected value but also the distribution of the score.
We model the score distribution by an additional node in the Bayesian network, the score node
O. This node has as many states as there are possible points to be obtained in the test. The node
probability distribution is given by a simple sum rule of its parents (questions). The problem which
we have to address in this case is that the dimension of the CPT of this node is very large. We
work with 37 questions which have two or more states. Even if they were binary the full state space
would be of dimension of 237. This value is very large and it does not allow direct inference due
to the memory size limit. We use the parent divorcing method as described in Olesen et al. (1989).
Another option is to use the rank-one decomposition as it is described in Savicky and Vomlel (2007).
The reduction of the computational time is very significant as it is outlined it in Figure 2. We show
the increase of the time necessary to perform the inference based on the number of questions we
connect together. The computational time of the inference is computed only for smaller number of
questions as it is not feasible for the standard case in larger numbers.

In this way we obtain the distribution of student’s score over the point scale as shown, for exam-
ple, in Figure 6. Using this distribution we can estimate the expected score and its 95% confidence
interval as well. This confidence interval is obtained in the following manner. We sort the states of
the node O (points scale) in terms of the states’ probabilities in the descending manner. We select
all states until the total cumulative probability exceeds 0.95. The probability distribution over tends
to be similar to the Gaussian distribution but it is not a rule. The advantage of the proposed approach
is that it does not require a specific distribution assumption.
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Figure 2: Time of inference in the standard and parent divorcing approach (please note the vertical
log scale).

We establish two key performance measures to evaluate different methods in the adaptive testing
scenarios. We measure

the accuracy of answers prediction aQ =

∑
i∈N I(xi = x∗i )

n
(1)

the abs. error of the total score prediction eS = |o∗ −
om∑

j=1

j · P (O = j)| (2)

in each step of the adaptive test for each learning method used, where the function I(xi = x∗i )
returns one as the maximum likelihood state equals the observed state for the question i and o∗ is
the real obtained score.

From the perspective of a student the most important measure is the test grade; especially in our
special case of the National Exam. The problem of assigning a grade to a student can be viewed
as a classification problem which aims at placing a student into the correct grade category. We
assume there are G grades where each grade is given for the resulting score in a range of points
Gi, i ∈ 1, . . . , G. The expected grade g is then established from the score variable as

g = argmax
i∈1,...,G

(
∑

j∈Gi

P (O = j)) . (3)

The error of this classification is then computed as

eg =
∑

i∈1,...,G
|g∗ − i| ·

∑

j∈Gi

P (O = j) , (4)

where g∗ is the observed grade.
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4. Experimental setup

For experiments in this article we use the data set of the Czech National Mathematics Exam. This
exam is taken at the end of the high school and the same test is taken by each student in the same
term. Given the nature of this test these data set is valid in terms of student motivation to complete
the test as good as possible and data quality is high.

Our experiments were performed according to the following scheme. From all available tests
we first drew a random subset to serve as a training set. With each set we train BN models with
different learning methods, namely regular EM, regular gradient (grad), isotonic regression EM
(irEM), quick irEM (qirEM), and restricted gradient (rgrad). There are 10 random starting points,
same for each method to start the learning process at. From the resulting 10 learned models we select
the winning model based on the optimization criteria which is the log-likelihood value measured on
the training sample. In our previous article Plajner and Vomlel (2020) we compared individual
methods on the log-likelihood of the complete data set. In this article the main focus is on adaptive
testing usage and we simulate the adaptive testing scenario. The procedure above is performed 10
times with different data selected for learning for each learning set size of 10, 40, and 160 students
(i.e. test results). Final ten results for each learning set size are then averaged over the measured
metrics.

These learned models are further used in the adaptive testing scenario. We select 100 students
which did not figure in any previously selected sets. These students are tested in the simulated test.
Tests are performed in two different ways

• fixed and

• adaptive.

The first one is selected in order to provide better insight into comparison of methods. In the
adaptive version of testing different questions may be selected for each method in each step. This
fact makes the comparison harder in some aspects. On the other hand the ability of a model to be
used adaptively is a desired one and we provide comparison of both approaches as well.

5. Results

5.1 Student classification

The grading in the Czech National Mathematics Exam is given by the following scheme.
0-16 points: 5; 17-25 points: 4; 26-34 points: 3; 35-43 points: 2; 44-52 points: 1
In the experiments each student is assigned the expected final grade in every step and the error
eg of this assignment is measured as described in (4). Figure 3 shows the evolution of this error
during the adaptive test with models with the learning set of size 10. We show only the version B
of questions’ answers predictions based only on the inferred skill. Because of that it does not end
in zero as we never have the absolute certainty of a student score while knowing only his/her skills.
This corresponds to the real-life situation with the margin for errors and mistakes during taking the
test even by the best students. In this figure we can see that the restricted gradient method provides
the best results. In the end of the test it is on the same level as unrestricted EM and better than other
methods. Due to the limited space, we do not include the case A of questions’ answers where we
predict only remaining questions because it behave very similarly in the most important part of the
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Figure 3: Evolution of the grade prediction error based on skills (B) for models of the learning set
size 10, fixed and adaptive question selection.

testing, i.e. aprox. the first half. In the second half it converges to zero as we already know all the
answers and thus also the final grade is known.

Special attention should be given to the comparison of the fixed and adaptive approach. Notice
the horizontal and vertical lines which mark the threshold of passing the error of 0.5 in all cases. This
error threshold is passed in the question 29 and 17 for the fixed and adaptive variants respectively.
This observation provides several outcomes. The first one is that using the adaptive version of test
significantly reduces the number of questions we have to ask in order to obtain the same level of
information. By inspecting the adaptive version of the skills variant further we can see that after
asking the first 17 adaptive questions we obtain almost as much information about student skills as
possible which gives an option of shortening the test.

5.2 Score and answers prediction

Figure 4 shows the measures of the grade prediction error eS and the answers prediction accuracy
aQ as they are defined in equations 1 and 2. By inspecting this figure we can see that the restricted
gradient method outperforms all other methods in the grade predictions. The only exception where
it is slightly worse is the middle part of test for the largest learning set. The highest difference
is in the smallest learning set where its benefit is visible the best. In the prediction of answers,
restricted gradient method is better in the early stages of testing. For larger learning sets together
with other monotone methods (irem and qirem). In the smallest set it is the best of all tested methods.
Nevertheless, the best method in the final parts of testing is unrestricted EM. This difference between
prediction quality of score and answers is very interesting and it is discussed further in Conclusions
section.

Figures 5 and 6 show the evolution of the score prediction as the states of the node O with its
confidence interval as it is described in Section 3. Results displayed are obtained from the adaptive
test simulation of an individual test with models learned from 10 observations with the rgrad method
and the irEM method. The first figure shows the expected value and its confidence interval during
the whole test for both methods. We can see that in this particular case both methods shift to the
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Figure 4: Evolution of the abs. error of the total score prediction eS and the accuracy of answers
prediction aS for different learning set sizes.

better predictions quite quickly. In this case irEM is faster and at the fifth question its prediction
of the total score is better. Nevertheless, irEM stays at the same level for the rest of the test while
the rgrad method improves and its final assumption is only approximately one point of the real total
score. Another important fact to notice is the shrink of the confidence interval. For the rgrad method
it starts at the width of 17 points and it ends at the width of 7 points. This situation is further detailed
in Figure 6 where we show the probability distribution at the start and the end of the same test3.

3. For the sake of visualization simplicity we display the most probable score instead of the expected score in this case.
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Figure 5: Evolution of the of the total score prediction and its confidence interval for an individ-
ual test during the adaptive procedure for the restricted gradient and irem methods, 10
learning samples.
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Figure 6: The expected score and its confidence interval for an individual test at the start and the
end of testing. Restricted gradient method, 10 learning samples.

6. Conclusions

This article explored the impact of monotonicity restrictions in BN models used to model students
in the Czech National Mathematics Exam. It also showed the benefit of adaptivity in testing with
this specific data set. In experiments we used monotone and non monotone methods and performed
comparisons using different evaluation criteria.
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The first observation is the benefit of the adaptive approach to testing. As it can be clearly seen
in Figure 3 the number of questions we need to ask is reduced by one third. This creates the space
either reducing the length of the test, or using the extra time to increase the precision by asking
other questions better tailored for the particular student.

Another new aspect we discussed is the prediction of the total score of a student which is an
indicator of his/her skills. We proposed a methodology for measuring the score including the cor-
responding confidence interval. We compared results of monotone methods and we showed the
evolution of the score and the confidence interval during the testing.

Last but not least, we would like to emphasize that monotonicity improves the quality of the
grade, score, and question answers predictions. Especially, when the learning set is small and at the
first stages of testing. Our empirical results show that the restricted gradient method we propose
provides the best results of all tested methods at the first stages of the test. At the later stages of
the adaptive test, the regular EM algorithm learning method provided models which were the most
precise in terms of individual question answers. This is caused by its flexibility in learning. As
EM is not restricted by monotonicity it can learn dependencies monotone methods can not and that
allows it to model question answers more precisely in some cases. This result is interesting in the
context of the score prediction quality which is an observable indicator of the student skills. When
this metric is used for the model evaluation, the EM models were outperformed by the restricted
gradient models despite the restricted gradient models prediction of individual answers was worse.
The reason is that the monotone models are able to better model the student himself/herself. They
are not certain about individual questions but they better infer the score since it is based on their
skill model which better characterizes the tested student. This observation means that it is important
to keep in mind the purpose of a model while learning it. This is a general observation valid not
only for CAT but also for other applications.
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