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Abstract
The paper describes a computationally convenient analytical formulation of the stability of the cutting process with respect 
to self-excited vibrations in the case of five-axis milling based on the commonly used zero-order approximation. In the case 
of five-axis milling with general milling cutters, it is difficult to calculate stable machining process conditions for two 
main reasons. The first reason is the difficulty of calculating the mean value of the cutting force Jacobian with respect to 
the regenerative displacement (closely related to a milling directional matrix) for a generally inclined tool, and the second 
reason is the nonlinearity of this Jacobian with respect to the process parameters, which means that the problem cannot be 
reduced to a linear eigenvalue problem as is usual for linear cases (e.g. cylindrical milling with respect to the axial depth 
of cut). In the first part, this paper presents a modification of the calculation of the machining stability limits for a nonlinearly 
dependent cutting force Jacobian. A new formulation of this Jacobian for a general tool based on the surface integral over 
the tool and workpiece engagement region is presented which leads directly to the mean value of the Jacobian of the cutting 
force (direction matrix) without the need to calculate it as a function of time and then calculate the mean value over one 
revolution. The advantage is that if we can analytically describe the engagement area, we also obtain an analytical relation 
for the cutting force Jacobian. This is presented with the practical example of a generally inclined ball-end mill. This analyti-
cal formulation of the force Jacobian allows the calculation of its derivatives with respect to the technological parameters 
(depth of cut, step over, tilt and lead angles), which is useful both for the calculation of stability diagrams and for solving 
optimization problems related to machining stability.
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1  Introduction

One of the main limits to efficient machining is tool and 
workpiece vibration, which can have various origins — from 
drives, their control [1] and the dynamic behaviour of mov-
ing machine parts [2] to the cutting process. Of the latter 
source, the most important is the phenomenon of self-excited 

vibration — chatter, which leads to rough surfaces and possi-
ble damage to the workpiece and tool, or at least to high tool 
wear. Chatter is a result of self-sustained oscillation due to 
tool workpiece interaction. The positive feedback that leads 
to the oscillation is caused by the fact that process stiffness 
depends on chip thickness regeneration, an effect firstly con-
sidered some 70 years ago by Tlusty and Polacek [3] for turn-
ing operation. In the case of milling, the problem is more dif-
ficult due to the time-dependent force response of the cutting  
process. Budak and Altintaş [4] developed an approximate 
method to solve chatter stability for cylindrical end-mills 
called zero-order approximation (ZOA). The method is based 
on averaging over one revolution of the time-dependent cut-
ting force Jacobian matrix with respect to relative position 
change within two consecutive cuts, i.e. using only its zero-
order Fourier series term. It has been compared with more 
precise time-domain simulations and proven to be rather 
accurate for tools with standard geometry (tools without 
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serration or variable helix angle) and operation (most impor-
tantly constant spindle speed) [5].

Milling stability calculation methods were primar-
ily developed for cylindrical tools because of the simpler 
geometry of the process. There are two crucial differences 
between cylindrical and 5-ax ball-end milling which com-
plicate stability calculation. For cylindrical tools, the cut-
ting force Jacobian matrix is directly proportional to depth 
of cut (the directional matrix does not change with the depth 
of cut) and the process can be modelled in 2D and described 
by simple trigonometric formulas. In contrast, the cutting 
force Jacobian matrix for ball-end milling is not linearly 
dependent on the depth of cut and is difficult to calculate 
in 5-ax milling due to the difficulty of calculating the tool-
workpiece engagement for non-zero tilt and lead angles. 
The first issue was addressed for 3-ax ball-end milling by 
Altintas and Lee [6]. Their approach was based on using an 
iterative calculation of the mean cutting coefficients with 
respect to variable depth of cut. The structural dynamics 
model of the tool and workpiece is considered in feed and 
normal directions without considering variable dynamics 
with the change of position.

Ozturk and Budak [7] and Ozturk et al. [8] proposed 
another method in their paper that successfully dealt with 
depth of cut nonlinearity. They also consider the tool’s non-
zero tilt and lead angles. The method is based on discretiza-
tion of the engagement surface into layers perpendicular to 
surface normal direction and use of the layer thickness as a 
linear stability parameter. This calculation is done iteratively 
to obtain the correct limit depth of cut.

There are many approaches based on trigonometric rela-
tionships which work well in cylindrical mills, but due to 
the geometric complexity of the problem, the calculations 
or cutting force models are too specific to be useful in gen-
eral 5-ax milling stability calculations, e.g. Wojciechowski 
et al. [9], Graham et al. [10], Hao et al. [11], Tsai and Liao 
[12], Shtehin et al. [13] or Lazoglu and Liang [14]. For this 
reason, it is often advantageous to use simulation software 
to calculate tool-workpiece engagement, as e.g. [15] or 
[16]. Chao and Altintas [17] used software determination 
of the engagement region in their article on chatter-free 
orientations. A similar approach was used by Li et al. [18] 
who followed the previous article and applied screw theory 
to define general tool-workpiece kinematics. Ju et al. [19] 
solid-analytical-based method, which Zhan et al. [20] used 
to analyse the effect of variable pitch, also uses software 
solutions for tool-workpiece intersection calculation.

However, the need to use a virtual machining tool to 
define the engagement slows stability lobe diagram (SLD) 
calculation or process optimization significantly. This arti-
cle presents a method to efficiently (analytically) calcu-
late ZOA-based stability lobe diagrams for ball-end mill-
ing, which offers an advantage because if contact between 

the cylindrical shank and workpiece is avoided, the shape 
of  the contact is not affected by a change of  tilt or lead 
angles.

In the analysis, the tool tip engagement situation (with 
non-zero undeformed chip thickness) is not considered due 
to the high level of cutting force model uncertainty near 
the tool tip linked to near-zero cutting velocity. A process 
damping model would be necessary for correct estima-
tion of stability, particularly for vibration in the direction 
of the tool axis.

The first part presents a novel formulation of averaged 
cutting force Jacobian matrix with respect to relative tool-
workpiece displacement based on surface integration over 
the engagement region. The surface integral is independ-
ent of the coordinate system so it can be parametrized in 
the workpiece coordinate system where the integral lim-
its are simplest and as the engagement region is typically 
significantly smaller than the area covered by the rotat-
ing cutting edge (ca. half-sphere) it requires significantly 
fewer calculation steps than averaging time-dependent 
Jacobian. Furthermore, if the engagement surface can be 
described by (piecewise) analytical functions, the formula-
tion of the Jacobian is also analytical, which enables its 
differentiation. This is important because it also allows to 
determine the derivatives of  the stability exponent with 
respect to the technological parameters, which can be used 
for numerical calculation of SLD, distinguishing stable and 
unstable regions in the diagram or for optimization prob-
lems. Knowing the derivatives, it can be used, for example, 
to find the optimal orientation of the workpiece with respect 
to the process stability more quickly. The proposed approach 
can be considered as an analytical formulation and gener-
alization with respect to the tool geometry of the approach 
proposed by Ozturk and Budak [7] and Ozturk et al. [8] for 
ball-end tools. The resulting Jacobian is generally nonlin-
ear with respect to the process parameters (depth of cut, 
stepover) and it is therefore necessary to generalize Tlusty’s 
prescription for these cases as well. This is the subject of the 
next section of the paper.

The second section presents a formulation of the non-
linear eigenvalue problem for constructing a stability lobe 
diagram for the limiting depth of cut (or other parameter, e.g. 
lead and tilt angles, step over) and the spindle speed, which 
generalizes Otto et al. [21] formulation of Tlusty’s law for 
zero-order approximation (ZOA). This formulation is not 
limited to machining with a ball milling machine, but for 
example also to the side-milling process with a cylindrical 
tool, where instead of the axial depth of cut, with respect 
to which the force reaction is linear, we consider the radial 
depth, with respect to which the force reaction behaves non-
linearly. It is also shown how to calculate the derivatives 
of the parameters defining the stability limits given the ana-
lytical expression of the Jacobian of the cutting force.
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In the  third part, the new method is applied to ball-
end milling with general tool and workpiece orientation 
— the cutting process parameters are indicated in Fig. 1. 
The boundaries of this region are derived for the ball tool 
as analytical functions based on the engagement condi-
tions expressed as geometric inequalities. This allows the 
mean value of the cutting force Jacobian with respect to the 
tool and workpiece regenerative displacement to be deter-
mined as an analytical function in the case of a ball mill-
ing machine. This allows derivations of this Jacobian with 
respect to the process parameters, which can be advanta-
geously used to efficiently determine the SLD or to optimize 
the process with respect to the process with respect to the 
depth of cut, stepover or tilt and lead angles. A validation 
of the approach by comparing the separately averaged time-
dependent Jacobian cutting forces obtained numerically 
from a software simulation of material removal is performed 
at the end of the section. Although the method is derived 
from mathematical relationships, the validation ensures that 
there is no error in the numerical implementation.

The final sections present a numerical demonstration of 
the approach The approach is not restricted to depth of cut 
as a limit parameter, and therefore step over and lead and tilt 
angle stability lobe diagrams are also presented.

2 � Novel analytical formulation 
of the cutting force Jacobian

In this section, an alternative formula for mean cutting 
force Jacobian is presented. The first part shows that gener-
ally, the averaging of integral based force modelling can 

be reformulated as a surface integral over the engagement 
area. The second part applies this to ball-end milling where 
the method leads to an analytical description of the force 
Jacobian needed for a stability lobe diagram calculation.

The formula for the total cutting force is based on the com-
monly used Montgomery approach [22] of integration of cut-
ting force differentials along the engaged cutting edge which 
are based on local process parameters. The force acting on 
an element of cutting edge of width dw is

where [T] = [�̂ �̂ �̂] is the transformation matrix between 
the local coordinate system at the cutting edge (LCS) and 
chosen global coordinate system (e.g. WCS) with a basis 
of the tangential 𝐭 (cutting velocity direction), normal 𝐧̂ 
(cutting edge created surface outer normal) and 𝐛̂ binormal 
vectors. The empirical model of the specific cutting force 
in the LCS is denoted as � . For demonstration purposes, a 
shifted linear model identified on steel is used in the simula-
tions below, i.e.

where �e,�c are edge and cutting force coefficients (rep-
resented as vectors in LCS basis). Its parameters (which 
depend on the cutting edge position) are the cutting veloc-
ity (magnitude) vc , inclination angle � , rake angle � and 
the dynamic undeformed chip thickness h which is the dis-
tance between a point on the cutting edge and the surface 
created in the previous cut. This distance is a result of the 
prescribed movement of the tool, which can be divided into 
translational and rotational movement of the tool as a rigid 

(1)d�j = g(s,�, j)[T]�dw

� = �e(�, �, vc) +�c(�, �, vc)h,

Fig. 1   Ball-end milling process geometry — step over ae , depth of cut 
ap and tilt and lead angles and coordinate systems used in the calcual-
tion: WCS — workpiece coordinate system, ECS — engagement 

coordiante system, LCSs — local coordinate systems at three diferent 
points at the cutting edge
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body relative to the workpiece, and dynamic disturbance, 
which is a result of deformations due to the compliance of 
the tool and the workpiece. The parameter can be approxi-
mated as

where ft is feed per tooth related to tool centre point �TCP , and 
�F is a change of the tool axis orientation between two succe-
sive cuts (see Fig. 2). This tool axis rotation can be either due 
to change of tilt and lead angle or change of the workpiece 
surface normal due to its curvature alont the toolpath. Vector 
� denotes a point of the tool envelope which will be described 
more closely in the next paragraph. The symbol

denotes the tool and workpiece regenerative dynamic dis-
placement, see Fig. 2. It is calculated as a change of dynamic 
displacement � of the tool centre point with respect to the 
workpiece position at the engagement within the time delay 
� (given by time per one tooth revolution). The elemental 
chip width dw is the length of the cutting edge element pro-
jected onto a plane perpendicular to tangential direction.

In end milling, the force distribution on the workpiece 
and tool can be modelled as a point force which is obtained 
by line integration of all the force differentials expressed by 
Eq. (1) along all curves �j representing j-th the tool cutting 
edge. It is assumed that all the curves lie on the same sur-
face of revolution around the tool axis given by unit vector 
𝐞̂Ω . This surface can be represented using Rodrigues’ rota-
tion formula with rotation matrix [R�Ω

(�)] corresponding 
to a rotation around �Ω by an angle �.

(2)h = �̂ ⋅ (ft�̂F +�F × (� − �TCP) + �).

(3)�(t) = �(t) − �(t − �)

The LCS basis vectors on the engagement surface HGL(see 
Fig. 1) can be written in the following form

The transformation matrix [T] is composed of the basis vectors

The elementary chip width defined above as a projection 
of cutting edge element length to a direction perpendicu-
lar to the cutting velocity direction can be written using 
the LCS vectors as

As pointed out by Otto et al. [21], the stability is based 
on linearization of the cutting force Jacobian with respect 
to regenerative dynamic displacement �

where g is a characteristic function which returns 1 if a point 
s on a j-th cutting edge is engaged and 0, if not.

The averaged cutting force Jacobian over one revolution nec-
essary for the ZOA-based stability lobe diagram calculation is

The previous formula for mean cutting force Jacobian 
contains double integration: one integral along the curve 
describing the cutting edge and a second over one revolu-
tion. The main point of this method of efficiently calculat-
ing the mean Jacobian is to transform the double integral in 
the specified variables into a general surface integral over 
an engagement surface. This requires division of the inte-
grand by surface point � distance from the tool axis of rota-
tion �(�) , i.e.

�(�, s) = [R�Ω
(�)]�1(s).

(4)𝐭 =
𝐞̂Ω × 𝐱

‖𝐞̂Ω × 𝐱‖ ,

(5)𝐧̂ =

�𝐱

��
×

�𝐱

�s

‖‖‖
�𝐱

��
×

�𝐱

�s

‖‖‖
,

(6)𝐛̂ = 𝐭 × 𝐧̂.

(7)[T] = [𝐭 𝐧̂ 𝐛̂].

dw(s) =
||||
�𝐱(�, s)

�s
⋅ 𝐛̂(�, s)

||||ds.

𝐅(�,𝚫) ≈ 𝐅(�, 𝟎) +
(
∇𝚫𝐅(�, 𝟎)

)
𝚫

∇𝚫𝐅(�, 𝟎) =

N∑
j=1

smax

∫
smin

g(s, j,�) [T]
�f

�h

||||𝚫=𝟎𝐧̂
T �w

�s
ds

[∇��] =
1

2�

2�

∫
0

[
∇��(�, �)

]
d�.

Fig. 2   Undeformed chip thickness as a result of feed and tool dynamic 
displacements at actual and past tool position. The thickness is meas-
ured in the direction of surface normal 𝐧̂ calculated considering unper-
turbed tool-workpiece kinematics
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where the contact surface (engagement) between the tool 
and the workpiece is denoted S. The derivation of the for-
mula is outlined in the Appendix A.1.

The tool axis (axis of rotation) is defined by the vector 
𝐞̂Ω . The cutting edges are space curves under the condition 
that the distance from the axis of rotation is constant at a 
given axial position

An important observation is that although we started from 
a specific parameterization of the tool envelope, all inputs 
to the calculation are independent of this parameteriza-
tion and work only with a general surface x, which can be 
parameterized arbitrarily to make the calculation as simple 
as possible. The functions in the integrand and parametriza-
tion of the engagement surface necessary for the mean force  
Jacobian calculation are defined in the following subsections.  
The most convenient parametrization of the tool-workpiece 
engagement surface is in the engagement coordinate system 
as used by Altintas and Lee [6] previously for zero lead and 
tilt angle milling.

In the case of the cylindrical milling tool geometry, it is 
possible to show the agreement of the formulation with the 
solutions in the literature. In the following section, an exam-
ple of matrices for this case is given. The main advantage 
of this method is for more complex geometries where it is 
more difficult to define the belting of the tool. In the second 
part, the solution will be presented on a ball cutter when 
only the spherical part of the tool is belted. The implemen-
tation of a calculation including shank would require more 
complex definitions of the shanking conditions, the need to 
take into account possible different tool orientations in adja-
cent grooves, especially on curved surfaces, and the practical 
benefit to the design of the toolpaths would probably not be 
significant.

2.1 � Application to cylindrical milling

The following section demonstrates the calculation on a 
simple case of a r diameter cylindrical milling cutter. For 
this case, the surface integral formulation does not provide 
any particular advantage, but due to the availability of solu-
tions in the literature it is possible to compare the resulting 
matrices. Geometrically, this is a simple problem where the 
tool axis coincides with the normal to the workpiece sur-
face. We can therefore work in the engagement coordinate 

(8)[∇𝚫𝐅] =
N

2� ∫S

[T(𝐱)]

�(𝐱)

�𝐟

�h
(𝐱)𝐧̂T (𝐱)dS

(9)‖‖𝐱 − (𝐱 ⋅ 𝐞̂Ω)𝐞̂Ω
‖‖ =

√
(𝐱 ⋅ 𝐱) − (𝐱 ⋅ 𝐞̂Ω)

2 = �

system (ECS), which is given by feed �F , cross-feed �C and 
surface normal �N directions, as shown in Fig. 3. In the first 
step, axis of rotation and parametrization of tool envelope 
surface is defined

Using the formulas (4), the local coordinate system basis 
vectors with respect to the ECS are calculated:

In order to calculate the surface integral, the integration 
limits must be determined in a given parametrization of 
the tool envelope. For explanatory purpose, this will be 
done in a manner used for the ball mill in the next section. 
The engagement surface points must satisfy the following 
conditions: 

	 (I)	 Point must be outside the volume removed in the pre-
vious row. The previous row is bounded by a plane, 
which is a moving cylinder envelope surface. This 
plane has normal vector �C and its position is given 

(10)�� = (0, 0,−1)T ,

(11)� = (r sin𝜙, r cos𝜙, z)T , 𝜙 ∈ [0, 2𝜋), z > 0.

(12)� = (cos�,− sin�, 0)T ,

(13)� = (sin�, cos�, 0)T ,

(14)� = (0, 0, 1)T

Fig. 3   Cylindrical tool milling: conditions for points inside an engagemnet 
surface: I — point is outside the the volume removed in the previous 
pass — defined by a  radial depth of cut ae , II — point is inside a half 
space representing the workpiece — defined by an axial depth of cut ap , 
III — point is on envelope of the tool where undeformed chip thickness 
h is positive
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by the radial depth of cut ae , see Fig. 3(I). The 
condition of a plane bounded half-space can be 
formally expressed as follows for down/milling 

 respectively for up-milling. 

 This leads to integral limits �st, �ex for down-milling 
r cos� ≤ a

e
− r,resp. for up-milling r cos� ≥ −a

e
+ r.

	 (II)	 Envelope point must be inside the original work-
piece volume also bounded by a plane Fig. 3(II). 
This plane has normal vector �N and its position is 
given by the axial depth of cut ap . 

 This leads to 0 ≤ z ≤ ap
	 (III)	 Condition of positive chip thickness on the tool 

envelope, i.e. � ⋅ �F > 0 , see Fig. 3(III). The con-
dition leads to the following range of the angular 
parameter: 0 ≤ � ≤ �.

Taking into account the conditions (I) and (III), we have 
�
st
= � − arccos

(
1 −

a
e

r

)
 , �

ex
= � for down-milling and �

st
= 0 , 

�ex = arccos

(
1 −

ae

r

)
 for up-milling.

The previous calculations of the integration limits could 
be computed based on a simple sketch, but the purpose of 
the example is to demonstrate the procedure of finding the 
integration limits using a system of inequalities, which 
will be used later in the more complex case of a ball mill.

The distance between tool envelope point and tool axis 
is for cylindrical mill equal its radius, �(�) = r . To allow 
comparison with the literature, the cutting coefficient vec-
tors are expressed through tangential cutting coefficient Kc 
and ratio of normal and tangential component Kr in the form 
�c = Kc (1,Kr, 0)

T.

� ⋅ �C ≤ ae − r,

� ⋅ �C ≥ −ae + r.

� ⋅ �N −min(� ⋅ �N) ≤ ap.

(15)[∇𝚫𝐅] =
N

2�

ap

∫
0

�ex

∫
�st

1

�(𝐱)
⏟⏟⏟

=r

[T]𝐊c𝐧̂
T

=rd�dz
⏞⏞⏞
dS

[T]𝐊c𝐧̂
T =

⎛
⎜⎜⎝

cos� sin� 0

− sin� cos� 0

0 0 1

⎞
⎟⎟⎠

⎛⎜⎜⎝

1

Kr

0

⎞
⎟⎟⎠

⎛
⎜⎜⎝

sin�

cos�

0

⎞⎟⎟⎠

T

=
Kc

2

⎛⎜⎜⎝

2Kr sin
2 � + sin 2� 2 cos2 � + Kr sin 2� 0

−2 sin2 � + Kr sin 2� 2Kr cos
2 � − sin 2� 0

0 0 0

⎞⎟⎟⎠

The result leads to the same Jacobian (directional matrix) as 
presented by Budak and Altintaş [4].

3 � Tlusty’s law for nonlinear ZOA‑based 
cutting force Jacobian

Calculation of the stability lobe diagram requires finding 
a spindle speed dependence of a particular technological 
parameter for which the machining process is stable. Both 
structure and cutting process react by force to small dis-
placements or velocity perturbation. Linearization of these 
responses leads to a dynamical system suitable for stabil-
ity analysis. The structural response (mass, stiffness and 
damping matrices) can be modelled by FEA or the system 
can be described by FRFs at the tool-workpiece contact. 
The aforementioned zero-order approximation (ZOA) sim-
plifies the problem by averaging the time-dependent cutting 
process force interaction (linearized) between the tool and 
workpiece. This allows for relatively simple formulation 
of the problem in the frequency domain. After separating 
the static and dynamic parts of the motion equations (Flo-
quet approach for milling, see Insperger and Stépán [23]), 
the machining stability problem is in the Laplace domain 
mathematically posed by a homogeneous equation

where [Φ(�c + i�c)] is the structural transfer function (matrix). It 
is not necessary to specify the coordinate system of the structural 
transfer function matrix or the cutting force Jacobian matrix at 
this point, but it is necessary to ensure that they are related to 
the same coordinate systems. One of the convenient coordinate 
systems is the engagement coordinate system determined by a a 
machined surface normal at the tool location on the workpiece 
and feed direction. The use of the transformation of transfer func-
tions from the coordinate system on the workpiece and on the tool 
to a common coordinate system in five-axis milling is described 
in more detail by Li et al. [18]. The argument of the transfer func-
tion, the Laplace parameter, has a real part, denoted �c , which 
denotes the exponential evolution of the solution (i.e. the stability 
of the system being described), and an imaginary part, which 
corresponds to the frequency of oscillation and is denoted �c . 
Since we are interested in finding the boundaries of the unstable 
domains in the machining parameter space where the real part 
of the Laplace variable is zero, it is sufficient to describe the sys-
tem via the frequency response function (FRF), i.e. transfer 
function [Φ(i�c)] resticted to purely imaginary Laplace param-
eters (frequencies). The vector �(i�c) is the Laplace transform 
of the eigenvector of the self-excited oscillation (at the stability 

� =
(
1 − e−(�c+i�)�

)
[Φ(�c + i�c)][∇Δ�]�,

1504 The International Journal of Advanced Manufacturing Technology (2022) 123:1499–1519
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boundary). [∇Δ�] is the cutting force Jacobian with respect to 
the regenerative displacement averaged over the tool revolution. 
This Jacobian is closely related to so-called directional matrix 
(see e.g. Budak and Altintaş [4]), which is used to calculate stabil-
ity in cases where the force depends linearly on the depth of cut. 
The Jacobian depends on various process parameters, of which 
the depth of cut ap is considered in the analysis, step over ae , lead 
angle �L , and tilt angle �T . The time delay � is the time between 
successive cuts. This homogeneous system of equations has non-
trivial solutions only for certain combinations of parameters. In 
the following, the parameter chosen to calculate the lobe diagram 
from the above parameters ap, ae,�L and �T is denoted by p and 
the other parameters are omitted from the formulas for brevity. 
The condition for the existence of a non-trivial solution for a 
system of homogeneous equations is as follows

The lobe diagram (boundaries of the unstable parameter regions) 
is calculated as a set of parametric curves (Ω(�(�c)), p(�c)) with 
frequency �c as its parameter. The spindle speed directly related 
to the time delay �.

Otto et al. [21] presented an approach to problems where 
the force Jacobian depends linearly on the depth of cut (or chip 
width). In that case, the stability condition can be transformed 
to the linear eigenvalue problem and the real limit depth of 
cut and corresponding real delays (and hence the spindle 
speed) are determined from the real and imaginary part of the 
eigenvalue.

The generally non-linear Eq. (16) can be treated similarly 
to the linear case. The auxiliary eigenvalue problem

where � =
(
1 − e−(�c+i�)�

)−1 is solved together with stability 
limit condition �c = 0 , which is transformed to more direct 
condition Re � = −

1

2
 . It means we have a set of non-linear 

equations for the stability parameters p, � which are solved 
for each chatter frequency �c

The time delay and related spindle speed are calculated from 
the eigenvalue using the same formulas as in the linear case

(16)det

(
[I] −

(
1 − e−i�c�

)
[Φ](i�c)[∇Δ�(p)]

)
= 0.

(17)
(
[Φ](i�c)[∇Δ�(p)] − �[I]

)
� = 0,

(18)0 = det

(
�(�c, p, �)[I] − [Φ(i�c)][∇Δ�(p)]

)
,

(19)0 =Re �(�c, p) +
1

2
.

� =
1

�c

(
(2k − 1)� + 2 arctan

Re �(p)

Im �(p)

)
, k ∈ Z,

Ω =
2�

�
.

The generalization is very similar to the formula pro-
posed by Otto et al. [21] for systems where process stiff-
ness is directly proportional to the depth of cut but it cannot 
be transformed to eigenvalue problem as in the linear case. 
There are various methods how to solve the equations 
numerically using for instance the Regula Falsi method 
or Newton-Ralphson method. In the latter, the analyticity 
of the proposed force Jacobian calculation can be utilized, 
as the calculation of the eigenvalue derivative ��

�p
 is straight-

forward. Knowing the eigenvalue � and corresponding 
eigenvector � for a given value of p, one can express 
the derivative as

The derivative can be used for numerical calculation 
of  the  lobe diagram (Newton-Ralphson method) or for 
optimization problems. Another application is distinguish-
ing between stable and unstable domains in the stability 
lobe diagram. As the problem is nonlinear, several values 
of the limit parameter for a given chatter frequency may 
exist. It is necessary to apply a method that is able to find 
all relevant limit parameters; for a possible approach, see 
[24].

The aforementioned summary and generalization of 
the previous results hold for ball-end milling as well as other 
tool geometries.

4 � Application to ball‑end milling

The geometry description generally follows notation as 
summed up by Ozturk et al. [25] and Li et al. [18]. This 
geometry is slightly simplified: the curvature of the machined 
surface is not considered and the  toolpaths are (at least 
approximately) parallel. This however does not significantly 
limit its application to machining stability calculation which 
is considered (usually implicitly) for quasi-stationary condi-
tions [26], which would not be possible on highly curved 
surfaces. The following forumulas are derived assuming that 
only the spherical part of the tool is engaged. To consider 
also the cylindrical shank, it would be necessary to divide 
the area into two domains and to solve the problem here sepa-
rately. This would add another source of nonlinearities to 
the SLD calculation.

The preceding calculations at the general level do not 
require the specification of a coordinate system. However, 

d�

dp
= −

1

�T�
�T

(
[Φ]

d

dp
[∇Δ�]

)
�,

d�

d�c

= −
1

�T�
�T

(
d[Φ]

d�c

[∇Δ�]

)
�.
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for the application of Eq. 8 in relation to a specific tool, 
it is advisable to introduce convenient coordinate sys-
tems in which it is easier to introduce a parametrization of 
the engagement area for the calculation of the surface inte-
gral and to find the integration limits. These points will be 
the subject of the following subsections.

The Wolfram Mathematica implementation of the Jacobian 
calculation presented in the sections bellow is in the Appendix 
A.4

Coordinate systems  The coordinate systems used in the anal-
ysis respect the notation used by Li et al. [18]. The workpiece 
coordinate system (WCS), engagement coordinate system 
(ECS) and local coordiante systems (LCS) on the cutting 
edge are shown in Fig. 1. The engagement coordinate system 
is given by the feed direction vector 𝐞̂F , outer normal vector 
to the desired surface 𝐞̂N , and cross-feed direction 𝐞̂C normal 
to both, such that 𝐞̂F, 𝐞̂C, 𝐞̂N form a right-handed coordinate 
system.

The advantage of the ball-end tool is that the contact 
geometry does not depend on the tilt and lead angles (if 
only the spherical part is immersed in the workpiece). 
These angles are defined as angles of rotation about 𝐞̂C 
(lead angle) and 𝐞̂F (tilt angle) axes as illustrated in Fig. 1.

The point � on the tool-workpiece engagement surface 
is conveniently expressed in the ECS independently on tilt 
and lead angles

where the spherical surface is parametrized by the azimuthal 
angle � and polar angle � as shown in Fig. 4b.

As the origin of the ECS is placed at the centre of the spher-
ical envelope, the tool envelope normals at any given point 
on the contact surface have the same direction as position 
vectors � , i.e.

where r is the tool radius.
The inclined tool axis in the ECS is given by

where �T is a tilt angle and �L is a lead angle. The minus is due 
to the clockwise spindle rotation typical for most machine tools.

Engagement region  Depth of cut ap is a maximum distance 
between the plane defining workpiece surface before material 
removal and engagement surface points in the 𝐞̂N direction, 

(20)𝐱 = r sin� sin �𝐞̂F + r cos� sin �𝐞̂C − r cos �𝐞̂N

(21)𝐧̂ =
𝐱

r
,

(22)𝐞̂Ω = −
tan�L𝐞̂F + tan�T 𝐞̂C + 𝐞̂N√

tan2 �L + tan2 �T + 1
.

and step over is the distance between adjacent toolpaths and 
is denoted as ae , see Fig. 4. It can be positive or negative 
to signify the direction of the uncut material with respect to 
the cross-feed vector. The following calculation of the engage-
ment region is limited to situations when only the spherical 
part of the tool is engaged. Though the mathematical formu-
lation is stated in more general form, the conditions are not 
significantly different from [27].

The engagement surface is given by the points on the tool 
envelope (spherical surface), which must satisfy the follow-
ing conditions 

	 (I)	 To be outside the volume of material removed on 
the adjacent toolpath — approximated by a cylin-
drical surface (representing tool motion envelope) 
with an axis at a distance equal to the step over ae 
from the current toolpath, see Fig. 4I.

Fig. 4   Definition and parameterization of the engagement area — 
the colours of the boundaries are related to the conditions described 
below. The semi-transparent areas indicate the conditions that must 
be met by points on the tool envelope surface in order to be on the 
engagement surface. The red region relates to condition (I) that the 
points on the flange face are outside the volume that was removed 
when the tool passed through the preceding groove. The tool is repre-
sented by a sphere, which covers the possible orientations of the tool 
(not considering the shank), and thus the points must lie outside the 
cylindrical surface. The second condition (II) is related to the original 
workpiece volume and the depth of cut relative to its surface (yellow 
region). The last condition (III) is a non-zero chip thickness on the 
engagement — the points on the sphere (representing all the possible 
positions of the spherical part of the tool) with a non-zero chip thick-
ness are marked in blue
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	 (II)	 To be inside the stock — the distance of the points 
from the desired surface in the direction of the nor-
mal eN must not be greater than the depth of cut ap , 
see Fig. 4II.

	 (III)	 The undeformed chip thickness at a given point must 
be positive — the projection of the surface normal at 
the point to the feed direction is positive, see Fig. 4III.

The boundaries of the engagement surface are shown in Fig. 4. 
The following calculations are done in order to express the 
above conditions in the parameters of the spherical engage-
ment surface using analytic geometry.

The boundary curve I (red) resulting from the first condition 
can be formulated as the intersection of the spherical surface 
(tool envelope) given by Eq. (21) and the cylindrical surface 
(volume removed by a spherical tool on the previous toolpath) 
defined parametrically as

The following vector equation for intersection of a 
sphere (tool envelope) and a cylinder (adjacent toolpath  
envelope) must hold on the engagement boundary curve  
(red curve in Fig. 4)

This leads to the following limits in � and �

The condition II (semi-transparent yellow domain) formally 
defining the depth of cut can be formulated as

which leads to the condition

The last condition 𝐧 ⋅ 𝐞̂F ≥ 0 expresses the requirement 
of a positive chip thickness. In the given parametrization of 
the spherical surface, it leads to

In summary, the conditions lead to the integration lim-
its for the surface integral. These split into several cases 
depending on the condition in Eq. (23) and sign of step 
over ae (the direction of the uncut material with respect 
to the cross-feed basis vector). The surface integral over 

𝐒c(�c, sc) = sc𝐞̂F + (r sin �c − ae)𝐞̂C + r cos �c𝐞̂N .

�(�,�) = �c(�c, sc)

(23)r cos� sin � = r sin � − aeif sin � ≥ ae

2r
.

𝐱(𝜙, 𝜃) ⋅ 𝐞̂N −min
𝜙,𝜃

(𝐱s(𝜙, 𝜃) ⋅ 𝐞̂N) < ap,

(24)cos 𝜃 < 1 −
ap

r
.

(25)0 ≤ � ≤ �.

the whole engagement surface is calculated as the  sum 
of two surface integrals due to the condition in Eq. (23). 
The  limits of the  first integral represent boundaries of 
the half of spherical cap surface marked by the green semicir-
cle in Fig. 4b. The limits are

The second surface integral has the following limits

The previous formulas hold, if the following is satisfied

which means that there is not a gap between consecutive 
passes. If the condition does not hold, the process corre-
sponds to slot milling with the limits

(26)�10 = 0,

(27)�11 = arcsin
|ae|
2r

,

(28)�10 = 0,

(29)�11 = �.

(30)�20 = arcsin
|ae|
2r

(31)�21 = arccos

(
1 −

ap

r

)

(32)𝜙20(𝜃) =

{
0 ae ≥ 0

𝜋 − arccos

(
1 −

|ae|
r sin 𝜃

)
ae < 0

(33)𝜙21(𝜃) =

{
arccos

(
1 −

|ae|
r sin 𝜃

)
ae ≥ 0

𝜋 ae < 0
.

ap > r

⎛⎜⎜⎝
1 −

�
1 −

a2
e

4r2

⎞⎟⎟⎠
,

(34)�0 = 0

(35)�1 = arccos

(
1 −

ap

r

)

(36)�0 = 0

(37)�1 = �.
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One of the great advantages of the proposed approach 
is the analyticity of the formulation and hence the ability 
to calculate cutting force Jacobian derivatives with respect 
to process parameters. To calculate the derivatives with 
respect to step over and depth of cut, the derivatives of 
the limits need to be calculated.

Specific cutting force parameters  The specific cutting force 
coefficients are generally dependent on local cutting con-
ditions which typically change along the cutting edge. It 
will be assumed that the cutting force coefficients depend 
on local rake angle �(s) , inclination angle �(s) and cut-
ting velocity magnitude vc , where parameter s determines 
the position on the cutting edge.

To be able to incorporate the parametrically dependent 
cutting coefficient into the surface integral, it is necessary 
to be able to assign the parameter s to the parameters of 
the engagement surface �, � so that we have

Let us assume that the cutting edge is parametrized by an 
azimuthal angle in the tool coordinate system. This leads to 
the following relationship between the parameters

Due to tool rotation, the velocity magnitude vc can be 
obtained directly as the product of spindle speed Ω and 
the distance from the axis of rotation �(�, �)

The rake and inclination angles’ dependence on param-
eter s is assumed to be an input based on tool parameters 
specified by its manufacturer.

The cutting force Jacobian and its derivatives  The cutting 
force Jacobian under the previous assumptions on process 
geometry and specific force model is calculated from Eq. 8. 
In order to make the formulas more compact and readable, 
the following auxiliary function

It may be physically interpreted as a stress gradient of the 
cutting process averaged over a tool revolution. The resulting 
formula for the Jacobian is

�c(�, �) ≡ �c(vc(�, �), �(s(�, �)), �(s(�, �))).

(38)s(�, �) = arccos

(
1

r
𝐱(�, �) ⋅ 𝐞̂Ω

)
.

(39)vc(�, �) = Ω�(�, �).

(40)[P](�, s) =
[T](�, s)

�(�, s)
𝐊c(�, s)𝐧̂

T (�, s).

(41)
�
∇��

�
=

Nr

2�

⎛⎜⎜⎝

�11

∫
�10

�11

∫
�10

[P]d�d� +

�21

∫
�20

�21

∫
�20

[P]d�d�
⎞⎟⎟⎠
.

Although not explicitly stated due to the limited space of 
the text column, the auxiliary function is considered to be 
a function of the parameters s and � , i.e. [P] ≡ [P](�, s) , 
and the upper and lower limits are functions of � , i.e. 
�2∙ ≡ �2∙(�) . This notation will be also applied in the fol-
lowing formulas, if not stated otherwise.

The significant advantage of the proposed approach is 
the ability to analytically calculate the derivatives of this 
Jacobian with respect to the process parameters, which 
speeds up both the calculations of the SLD and has appli-
cations for process optimization, where it allows to iden-
tify how which parameter changes the stability exponent 
through the process stiffness. Calculations of the derivatives 
of the Jacobian force with respect to the depth of cut and 
stepover, which only appear in the integration limits, are 
based on the Leibnitz integral rule

The first formula is the contribution to the area integral from 
the distribution of the mean value of the force gradient per 
unit area along curve II in Fig. 4; the second formula is the 
contribution from the distribution along boundary I.

In order to calculate the derivatives of the Jacobian with 
respect to the lead and tilt angles for a spherical cutter, it is 
necessary to differentiate its integrand, i.e. the transforma-
tion matrix and the cutting coefficients (if the dependence on 
face angle, blade inclination or cutting speed is considered 
in the specific cutting force model).

The derivatives of �c and derivatives of rake and inclina-
tion angle with respect to cutting edge parameter s come out 
of models of the tool geometry and specific cutting force. 
The last derivative comes from the cutting edge parameter 
definition, which might be for instance by Eq. (38). The for-
mula for the derivative of the Jacobian with respect to the tilt 
angle can be formulated analogously.

d

dap
[∇��] =

Nr

2�

d�21
dap

�21(�21)

∫
�20(�21)

[P](�, �21)d�,

d

dae
[∇��] =

Nr

2�

�21

∫
�20

d�20(�)

dae
[P](�20(�), �)d�.

d[∇𝚫𝐅]

dΨL

=
Nr

2�

⎛
⎜⎜⎝

�11

∫
�10

�11

∫
�10

d[P]

dΨL

d�d� +

�21

∫
�20

�21

∫
�20

d[P]

dΨL

d�d�
⎞⎟⎟⎠

d[P]

dΨL

=
d[T]

dΨL

𝐊c𝐧̂
T + [T]

d𝐊c

dΨL

𝐧̂T

d

dΨL

𝐊c =

�
d𝐊c

d�

d�

ds
+

d𝐊c

d�

d�

ds
+

d𝐊c

dvc

dvc

ds

�
ds

dΨL
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The derivative calculations are straightforward; however, 
due to their complexity, it is advisable to use symbolic math-
ematics software. An example of the calculation is presented 
in Appendix A.4. It is written with an emphasis on consist-
ency with the method described above. For real applica-
tions, it is useful to perform e.g. analytical pre-calculation by 
normalizing vectors or expressing transformation matrices 
into functions separately. Calling multiple functions slows 
down the computation. For a rough idea of the speed of cal-
culation, which may vary according to the computer used, 
we will give the calculation times we measured on our PC. 
The computation in Wolfram Mathematica presented in the 
appendix took about 0.7 s. After merging and simplifying 
the functions in Mathematica and transforming it to Matlab 
script, the computation of the Jacobian on the PC for differ-
ent conditions takes about 0.03 s.

4.1 � Numerical validation of the Jacobian 
calculation method

The above formulations of the Jacobian are based on math-
ematical identities and a mathematical description of the 
geometry of the process, and any objections to the validity 
of the resulting formulae should also be based on math-
ematical reasoning. However, given the complexity of the 
description, it is very easy to make mistakes (especially 
with respect to the orientations of the coordinate systems 
and the definitions of the technological parameters) and it 
is therefore advisable to validate the method with independ-
ent solutions on selected paths. The cutting force Jacobian 
calculated using the formula in Eq. 41 is compared with 
Jacobian calculated numerically using material removal 
software. The software is briefly described in Appendix 
A.2. The material removal that physically takes place on 
the individual teeth is replaced by a Boolean subtraction of 
the tool envelope from the workpiece represented by voxels 
in discrete positions �m corresponding to the tool positions 
after each tool revolution (or after rotation by the tooth 
pitch). In Fig. 5a, there is a scheme of perturbed tool tra-
jectory designed to numerically calculate the cutting force 
Jacobian. The dashed line represents unperturbed linear 
trajectory, black/grey discs unperturbed discrete tool posi-
tions and the coloured discs highlight perturbed tool posi-
tions in feed, cross-feed and surface normal directions. The 
actual feed vector calculated from the tool positions is split 
into the prescribed feed ft and perturbation � according to 
Eq. 2. The position points distribution was chosen in a way 
that the prescribed feed is ft = 0.1mm and the magnitude 
of the feed vector perturbation is d = ‖�‖ = 0.01mm . The 
numerical approximation of the Jacobian is based on cutting 

forces �(m) calculated at the points m = {1, 2, 3, 4, 5, 6} as 
presented in Fig. 5a.

 The cutting coefficients for the validation

roughly correspond to orthogonal coefficients for carbon 
steel C45. The tool used for simulations (e.g. see slot milling 
in Fig. 5b) has a diameter 8 mm and 2 teeth. The unperturbed 
feed is chosen 0.1 mm and its perturbation is 0.01 mm. This 
leads to the perturbed feed (in Fig. 5c) and perturbed cutting 
forces shown in Fig. 5d–g, which are calculated according 
to methods presented in [28], for details see Appendix A.2.

The resulting time-dependent gradient is averaged and 
compared with gradients calculated by the proposed method. 
The comparison is in Table 1. The small difference can be 
attributed to the numerical error of the voxel discretization 
in the simulation and the fact that the toolpath perturbation 
affects not only the undeformed chip thickness but also the 
tool-workpiece engagement area.

5 � Demonstration of the solution

A rather simple thin-walled plate dynamics simulated in 
FEA SW, where the transfer matrix

was chosen to demonstrate the method. The FRF used for 
calculation is shown in Fig. 6 together with the dominant 
eigenshapes. The transfer matrix in ECS is available in 
the attachment as a Matlab file. The cutting coefficients 
are the same as in the previous section. The tool for vali-
dation has an 8-mm diameter and zero inclination (helix) 
angle.

The resulting lobe diagrams for various step over values, 
inclination, and lead angles are shown in Fig. 7. The points 
of the lobe diagram were plotted point-wise for each fre-
quency without connecting the obtained solutions, giving 
a better idea of the solutions and their multiplicity. For 
clarity, areas of instability were additionally marked with 
grey fill.

Several observations can be made from the  graphs. 
Firstly, it can be seen that the farther away the points of 
engagement are from the tool axis on average, the greater 
the critical depth of cut. This is consistent with the proposed 
reformulation of the integrand to calculate the mean cutting  

(42)[∇��] =
1

2d

[
�(2)−�(1) �(4)−�(3) �(6)−�(5)

]
.

�c = (2000, 1000, 0)TN.mm
−2

[Φ](i�c) = FRF(�)𝐞̂N 𝐞̂
T
N
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force Jacobian, where the distance from the axis of rotation 
is in the denominator (it can be interpreted that the smaller 
the distance on the engagement from the axis of rotation is  

in average, the longer the cutting edge spends in the engage-
ment and higher cutting force reaction in average is). Sec-
ondly, the unusual lobe diagram for tilt 80◦ clearly shows 

Fig. 5   Numerical verification of the calculation of the cutting force  
Jacobian with respect to regenerative displacement based on cutting 
force calculation in material removal simulation software on inten-
tionally perturbed toolpath. The scheme a) shows perturbed tool  
positions at discrete time points corresponding to full tool revolu-
tions. The cutting forces calculated at the imprint points are averaged  
over one revolution and used for averaged force gradient estimation.  
Example of the slot milling simulation is shown in b). Subfigure c) shows 

a small trajectory change in the feed directions, the normal to the machined 
surface and the crossfeed for the numerical calculation of the Jacobian. 
The force components in the graphs d-g) are calculated for a ball-end 
mill with a 4-mm diameter and 2 teeth for different technological condi-
tions: d) slot milling, 4 mm depth of cut — no tool inclination; e) 1 mm 
depth of cut and 1mm stepover - no tool inclination; f) 1 mm depth of cut 
anf 1mm step over 60° tilt and 0° led angle; g) 0.3 mm depth of cut and  
0.4 mm step over, 75° tilt, 6° lead angle
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the effect of the nonlinear dependence of force gradient on 
the depth of cut. The nonlinear Jacobian leads to the exist-
ence of multiple solutions of the problem for the chosen  
frequency. The graph in Fig. 7 distinguishes the multiple 
solutions caused by this nonlinearity — the black indi-
cates the single solution on the interval for the depth of  
cut limited by the tool radius, and the blue and red indi-
cate the double solutions. This leads to the unusual predic-
tion of increasing stability with increasing depth of cut.  

The physical explanation of this behaviour lies in the tan-
gential and normal components of the cutting force. This 
can be seen in particular in Fig. 7f, g, where the same incli-
nation in absolute value is chosen, but the opposite direction 
of the unmachined material with respect to the cross-feed 
direction, so that in the case of graph (f) the contributions 
of the tangential and normal force components are par-
tially cancelled and in the case of graph (g) they add up, 
resulting in different machining stability. The effect can 
be also observed in cylindrical milling if a radial depth of 
cut is taken as its stability limit parameter. In the case of 
up-milling, the tangential and normal component projec-
tions into a direction perpendicular to feed direction act 
(on average) in the opposite direction and in the case of 
down-milling they act in the same direction. This effect 
has its analogy in cylindrical milling cutters, where due to 
the linearity of the Jacobian with respect to the axial depth 
of cut, this parameter is almost exclusively used for SLD 
drawing. The effect of radial depth of cut, with respect to 
which the Jacobian is nonlinear, or the effect of up or down 
milling is studied, for example, by Sanz-Calle et al. [29, 30] 
through the stable axial depth of cut. The method presented 
here makes it possible to analyse directly the influence of 
parameters with respect to which the Jacobian of the cutting 
force is nonlinear.

It was shown in Sect. 3 that almost any process parameter 
can be chosen as a limit parameter for machining stability. 
As a demonstration, stability lobe diagrams for spindle speed 
and lead angle, tilt angle and step over are shown in Fig. 8. 
SLD for the lead angle in Fig. 8a shows higher stability for 
the negative values of the lead angle. A small tilt angle was 
also chosen so that for small negative lead angles the tool 
tip does not get into the engagement, because there is no 

Table 1   Comparison of 
matrices calculated according 
to the proposed formula and 
matrices numerically calculated 
from perturbed time-domain 
forces in material removal 
simulation software, see Fig. 5

a
p

a
e

lead tilt ∇� (N.m−1)
(mm) (mm) (◦) (◦) Proposed approach Process simulation SW

4 slot 0 0 ⎛⎜⎜⎝

1571 4000 − 1273

−4000 1571 5093

−1273 0 3141

⎞⎟⎟⎠

⎛⎜⎜⎝

1566 3989 − 1273

−3990 1566 5093

−1273 0 3141

⎞⎟⎟⎠
1 1 0 0 ⎛⎜⎜⎝

288 546 − 1401

−237 − 131 1461

−191 − 236 1344

⎞⎟⎟⎠

⎛⎜⎜⎝

286 543 − 1397

−233 − 130 1451

−188 − 235 1336

⎞⎟⎟⎠
1 1 0 60 ⎛⎜⎜⎝

177 268 − 782

3 27 − 33

−31 − 60 204

⎞⎟⎟⎠

⎛⎜⎜⎝

174 264 − 775

3 26 − 33

−30 − 60 203

⎞⎟⎟⎠
0.3 0.4 6 75 ⎛⎜⎜⎝

20 51 − 206

1 5 − 13

−7 − 19 79

⎞⎟⎟⎠

⎛⎜⎜⎝

20 51 − 204

1 5 − 13

−7 − 19 78

⎞⎟⎟⎠

Fig. 6   Workpiece direct FRF in surface normal direction based on 
FEA model of a thin plate. Position of machining and direct FRF 
marked by the black circle on the eigenshape visualizations
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valid model for the specific cutting force in a situation where 
the cutting speed is zero. The results, similar to the SLD for 
depth of cut at 80° tilt angle in Fig. 7, can be explained by 
the projection of the tangential and normal components to 
the direction of dominant compliance. At positive angles, 
the projections of the force response from the tangential and 
normal components act in the same direction and at negative 
angles in the opposite direction. In the case of tilt angle as a 
limiting variable in SLD in Fig. 8b, a wider region of instabil-
ity for negative values is noticeable. This can be explained by 
the smaller mean distance � of the engagement points from 
the axis of rotation (the cutting edge spends more time in 
the engagement) for negative angles, which leads to a larger 

force response of the process and therefore lower stability. In 
contrast to the lobe diagram on a cylindrical cutter, where the 
number of teeth only scales the limiting axial depth of cut, 
the non-linearity of the stability problem for a ball cutter is 
clearly evident from the different shape of the lobes for dif-
ferent numbers of tool teeth, see Fig. 9.

6 � Discussion

The proposed SLD calculation method builds on Otto’s 
approach and extends it to a cutting process with non-
linear behaviour of the cutting force gradient on selected 

Fig. 7   Stability lobe diagram for depth of cut for various combi-
nations of process parameters. The  red and blue points highlight 
multiple solutions for one frequency related to the  nonlinearity of 
the Jacobian. The shading was added to denote unstable regions. The 
technological parameters used for the calculations are a 0 ◦ lead and 
0 ◦ tilt angle, 0.5 mm step over; b 20◦ lead and 0 ◦ tilt angle, 0.5 mm 

step over; c 40◦ lead and 0 ◦ tilt angle, 0.5 mm step over; d 0 ◦ lead and 
−40◦ tilt angle, 0.5 mm step over; e 0 ◦ lead and 40◦ tilt angle, 0.5 mm 
step over; f 0 ◦ lead and 40◦ tilt angle, −0.5 mm step over; g 0 ◦ lead 
and −80◦ tilt angle, 0.5 mm step over; h 10◦ lead and 0 ◦ tilt angle, 2 
mm step over; and i 20◦ lead and 0 ◦ tilt angle, 4 mm step over
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limiting parameters, such as ball milling. It also generalizes 
the approach of Ozturk and Budak [7] and Ozturk et al. 
[8] to calculate the Jacobian of the cutting force (direc-
tion matrix) to a general tool shape and formulates it in an 
analytical form instead of a discretized one. The analytical 
formulation has a major advantage besides speed of calcula-
tion in the ability to calculate the derivatives of the Jacobian 
(directional matrix) with respect to the process parameters. 

This allows, first of all, to efficiently find the solution of 
the limiting parameter in the SLD, but also to determine 
which of the process parameters has the dominant effect on 
the stability of the process at a given point in the SLD. This 
approach is demonstrated by calculating the SLD on a ball-
end milling where, compared to previous articles, the angles 
defining the engagement have been refined by analyti-
cally describing the surfaces defining the tool envelope, 

Fig. 8   Stability lobe diagram for lead angle, tilt angle and step over 
for 8-mm diameter ball-end tool. The other parameters are a 0.5 mm 
both depth of cut and step over, 5 ◦ tilt angle; b 0.5 mm both depth 

of cut and step over, 5 ◦ lead angle; and c 0.5 mm depth of cut, 5 ◦ tilt 
angle, 5 ◦ lead angle

Fig. 9   Stability lobe diagram dependence on number of teeth: a 
N
z
= 1

 , b N
z
= 2 , c N

z
= 4 . Process parameters are a

e
= 0.5mm, 0 

◦
 lead angle, 

and −40◦ tilt angle
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the unmachined surface of the workpiece and the surface 
formed by the previous groove. The angles of engagement 
were determined from the equations defining the intersec-
tions of these surfaces. This is a more reliable method in 
3D geometry than approaches based on difficult to prove 
reductions to 2D geometry and trigonometry. The engage-
ment areas required to calculate the Jacobian for ball mill-
ing are limited to the case where only the ball portion of 
the tool is in the cut.

The potential of this approach lies in its use in simula-
tion software for general tools, where the calculation of 
the surface integral can be performed by numerical quad-
rature while taking advantage of the existing discretization 
of the removed material.

The cutting force Jacobian depends nonlinearly on all rel-
evant technological parameters which led to a need to work 
out a more general condition on machining stability limits 
than derived by Otto et al. [21]. This condition is applicable 
not only to ball-end milling but also to some other end mill-
ing tools (bull-end, toroidal) or to milling tools with round 
inserts or viper corner geometries, where the geometry leads 
to a non-linear Jacobian with respect to the depth of cut. 
It can also be applied to face or peripheral milling, whose 
Jacobian (directional matrices) is linear in the axial depth of 
cut but non-linear in the radial depth of cut. The calculation 
of the limits in case of the non-linear problem is easier when 
the derivatives of the Jacobian with respect to the sought 
limit parameter are known. This is the case for the presented 
case of ball-end milling.

The method of calculating the mean value over tool revo-
lution through the surface integral is used in the paper to cal-
culate the mean cutting force Jacobian, but this identity can 
be straightforwardly modified for the calculation of the mean 
cutting force itself and used, for example, to identify cut-
ting coefficients in generally oriented tool in a similar way 
as Gradišek et al. [31] did for a end mills with no inclination.

7 � Conclusion

An alternative mathematical formulation of the ZOA-based 
machining stability prediction was developed for ball-end 
milling. The method is suitable for complex engagement 
geometries and operations where calculation of the direc-
tional matrix is difficult and the previous solutions relied 
on material removal software for tool engagement deter-
mination. Another advantage of the method of calculating 
the Jacobian (directional matrix) using the surface integral 
compared to its calculation from the definition of the ZOA 
method is that it is not necessary to know the time evolution 
of the Jacobian and therefore significantly fewer integration 
points are sufficient, especially if the area of the engage-
ment is small compared to the area of the tool package.

The proposed calculation of the mean cutting force Jacobian 
was validated independently in material removal simulation 
software. The results of the proposed method were compared 
with averaged time-dependent cutting force Jacobian, which 
was obtained numerically from cutting forces calculated on 
toolpaths sequentially perturbed in the feed, cross-feed and 
surface normal directions.

The cutting force Jacobian matrix (directional matrix) 
obtained by the proposed method is used in a generalized sta-
bility condition for the delayed system extending the approach 
developed by Otto for non-linear eigenvalue problems. 
The analyticity of the formulation enables differentiation with 
respect to process parameters such as tilt, lead angles, or radial 
and axial depth of cut, which could be useful for machining 
stability optimization.

Appendix

A.1 Derivation of the formula for the calculation 
of the cutting force Jacobian

Below, a derivation of the transition from the standard method 
of calculating the mean value of the Jacobian to the calcu-
lation via surface integration over the engagement surface 
(Eq. 8) is outlined. Here, the engagement is assumed to be 
the same for all blades within a revolution and we can there-
fore replace the sum by N-times.

[∇𝚫𝐅] =
1

2�

2�

�
0

N∑
j=1

smax

�
smin

g(s, j,�) [T]
�f

�h

||||𝚫=𝟎𝐧̂
T dw

ds
dsd�

=
N

2�

2�

�
0

smax

�
smin

g(s, 0,�)

⏟⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏟
∫Seng

[T]
�f

�h

|||𝚫=𝟎𝐧̂T

�(𝐱)
�(𝐱)

dw

ds
dsd�

⏟⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏟
dS

.

Fig. 10   a Outer, surface and inner block for voxel representation of 
the workpiece, b distance of the workpiece boundary from cell verti-
ces dk for detailed workpiece representation by a trilinear surface
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where smin, smax denote lower and upper limit of cutting edge 
parametrization. The merit of the formulation is that while 
the previous procedure works with a parametrization based 
on tool rotation and a curve parameter for the cutting edge, 
the reformulation into a surface integral no longer depends 
on the surface parametrization and it is therefore possible 
to choose the parametrization in which the calculation is 
the simplest.

The derivation of the formulation is based on a textbook 
formula for a surface element in the curvilinear coordinate 
system, which is

The cross product can be conveniently written as

which leads to formulation used in the integral above

where 𝐞̂� is the tool axis direction unit vector.

A.2 Material removal simulation SW MillVis

The SW implementation of the material removal simulation 
MillVis uses voxel and distance field representation of the 
workpiece. The voxel discretization is to divide the volume 
into cubic blocks, which are further divided into 3 × 3 × 3 
cells. Each block is labeled as either outer, surface, or inner, 
with only surface blocks intersecting the workpiece surface 
and the distance function values containing only vertices 
belonging to at least one intersected cell, see Fig. 10a. For all 
vertices of such a cell, the distance to the workpiece surface 
is reconstructed using trilinear interpolation — this approach 
is called a distance field, see Fig. 10b. For the vertices dis-
tant from the workpiece surface, the value of the distance 
function is set to plus or minus infinity for simplicity, since 
the actual value is not needed.

The workpiece represented by voxels and distance fields 
can be effectively visualized using ray tracing, which pro-
vides high fidelity detail of the machined surface.

dS =
‖‖‖‖
d�

ds
×

d�

d�

‖‖‖‖dsd�.

d𝐱

ds
×

d𝐱

d�
=

d𝐱

ds
× (𝐞̂Ω × 𝐱)

=

(
d𝐱

ds
⋅ 𝐞̂b

)‖‖𝐱 − (𝐱 ⋅ 𝐞̂Ω)𝐞̂Ω
‖‖𝐧̂,

dS = ‖‖𝐱 − (𝐱 ⋅ 𝐞̂Ω)𝐞̂Ω
‖‖

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏟
�(𝐱)

|||||
d�j

ds
⋅ 𝐛̂

|||||
ds

⏟⏞⏞⏞⏟⏞⏞⏞⏟
dw

d�,

In the material removal simulation, surface and internal 
blocks that are close to the tool are identified. Then, for each 
of their cells, it is checked whether it is intersected by the tool 
and, if so, the distance function values at the corresponding 
vertices are updated. In practice, the representation of the 
workpiece geometry by the distance field has been shown to 
be sufficiently accurate while maintaining reasonable memory 
requirements, as lower accuracy is usually required for larger 
workpieces and vice versa (see Fig. 11).

The tool envelope definition and cutting force formulation 
is based on the framework by [32, 33]. Over the course of the 
development of this software tool, the ability to predict cutting 
forces with sufficient accuracy was repeatedly confirmed by 
comparison with dynamometer data. Figure 11 shows a com-
parison of measured and simulated cutting forces during pocket 
machining (Fig. 12).

A.3 Ball‑end milling local coordinate system basis

The LCS basis vectors defined in Eq. 4 in the spherical surface 
parametrization in the ECS are presented below. However, if pos-
sible, it is preferable to calculate the LCS basis formulas based on 
tool axis vector Eq. (22) and their definition which reduces pos-
sibility of an error. The tangential direction is dominantly given 
by circumferential velocity calculated from tool axis vector and 
point on the tool envelope (or engagement surface)

𝐞̂Ω × 𝐱 = r

⎛⎜⎜⎝

tan�T cos � + cos� sin �

− tan�L cos � − sin� sin �

sin �(tan�T sin� − tan�L cos�)

⎞⎟⎟⎠
.

Fig. 11   Comparison of real and simulated cutting force (active com-
ponent) during pocket machining
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The LCS basis vectors are shown below

A.4 Script for cutting force Jacobian calculation

The calculation of the Jacobian for milling spherical 
ends leads to matrices that are too complex to be reason-
ably presented in text form. The code below in Wolfram 

𝐭 =
𝐞̂Ω × 𝐱

‖𝐞̂Ω × 𝐱‖ ,

𝐧̂ =

⎛⎜⎜⎜⎝

sin� sin �

cos� sin �

− cos �

⎞⎟⎟⎟⎠
,

𝐛̂ =
r

‖𝐞̂� × 𝐱‖
⎛
⎜⎜⎜⎝

cos� sin
2 �(tan�

L
cos� − tan�

T
sin�) + tan�

L
cos2 � + sin� sin � cos �

tan�
T

�
sin

2 � sin
2 � + cos2 �

�
+ cos� sin �(cos � − tan�

L
sin� sin �)

sin � cos �(tan�
T
cos� + tan�

L
sin�) + sin

2 �

⎞
⎟⎟⎟⎠
.

Mathematica follows the calculation described in the paper. 
The division into the functions shown is made with read-
ability in relation to the article in mind, not code efficiency. 
For faster computation, it is preferable to analytically pre-
calculate some of the functions (e.g. matrix [T]).

Fig. 12   Pocket machining for comparison of cutting forces: a virtual machining in material removal simulation software and b real-life machin-
ing on the same toolpaths

1516 The International Journal of Advanced Manufacturing Technology (2022) 123:1499–1519



1 3

1517The International Journal of Advanced Manufacturing Technology (2022) 123:1499–1519



1 3

Author contribution  Conceptualization: Jiří Falta, Pavel Zeman, Matěj 
Sulitka; formal analysis: Jiří Falta; funding acquisition: Pavel Zeman; 
investigation: Jiří Falta; methodology: Jiří Falta, Pavel Zeman, Matěj 
Sulitka; project administration: Pavel Zeman; supervision: Pavel 
Zeman, Matěj Sulitka; visualization: Jiří Falta; writing—original draft: 
Jiří Falta, Pavel Zeman, Matěj Sulitka

Funding  Supported from the EU Operational Programme Research, 
Development and Education, and from the Center of Advanced Aero-
space Technology (CZ.02.1.01/0.0 /0.0/16_019/0000826), Faculty of 
Mechanical Engineering, Czech Technical University in Prague.

Availability of data and material  Not applicable.

Code availability  Not applicable.

Declarations 

Ethics approval  Not applicable.

Consent to participate  Not applicable.

Consent for publication  Not applicable.

Conflict of interest  The authors declare no competing interests.

References

	 1.	 Beudaert X, Franco O, Erkorkmaz K, Zatarain M (2020) Feed 
drive control tuning considering machine dynamics and chatter 
stability. CIRP Ann 69(1):345–348. https://​doi.​org/​10.​1016/j.​cirp.​
2020.​04.​054. https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​
S0007​85062​03007​67

	 2.	 Wu J, Yu G, Gao Y, Wang L (2018) Mechatronics modeling and 
vibration analysis of a 2-DOF parallel manipulator in a 5-DOF 
hybrid machine tool. Mech Mach Theory 121:430–445. https://​
doi.​org/​10.​1016/j.​mechm​achth​eory.​2017.​10.​023. https://​www.​
scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0094​114X1​73071​03

	 3.	 Tlusty J, Polacek M (1963) The Stability of Machine Tools against 
Self Excited Vibrations in Machining. International research in 
production engineering, ASME. pp. 465–474

	 4.	 Budak E, Altintaş Y (1998) Analytical prediction of chatter sta-
bility in milling–part I: general formulation. Journal of Dynamic 
Systems, Measurement and Control, Transactions of the ASME 
120(1):22–30. https://​doi.​org/​10.​1115/1.​28013​17

	 5.	 Gradisek J, Kalveram M, Insperger T, Weinert K, Stepan G, 
Govekar E, Grabec I (2005) On stability prediction for milling. Int 
J Mach Tool Manuf 45(7–8):769–781. https://​doi.​org/​10.​1016/j.​
ijmac​htools.​2004.​11.​015

	 6.	 Altintas Y, Lee P (1999) Analytical prediction of stability lobes 
in ball end milling. Transactions of the ASME 121(November 
1999):586–592

	 7.	 Ozturk E, Budak E (2010) Dynamics and stability of five-axis ball-
end milling. J Manuf Sci Eng 132(2):021003. https://​doi.​org/​10.​
1115/1.​40010​38. http://​manuf​actur​ingsc​ience.​asmed​igita​lcoll​ection.​
asme.​org/​artic​le.​aspx?​artic​leid=​14698​73

	 8.	 Ozturk E, Tunc LT, Budak E (2011) Analytical methods for 
increased productivity in five-axis ball-end milling. Int J Mecha-
tron Manuf Syst 4(3-4):238–265. https://​doi.​org/​10.​1504/​IJMMS.​
2011.​041471. https://​www.​inder​scien​ceonl​ine.​com/​doi/​abs/​10.​
1504/​IJMMS.​2011.​041471

	 9.	 Wojciechowski S, Twardowski P, Pelic M (2014) Cutting forces 
and vibrations during ball end milling of inclined surfaces. 

Procedia CIRP 14(December 2014):113–118. https://​doi.​org/​10.​
1016/j.​procir.​2014.​03.​102

	10.	 Graham E, Park CI, Park SS (2014) Force modeling and applica-
tions of inclined ball end milling of micro-dimpled surfaces. Int 
J Adv Manuf Technol 70(1–4):689–700. https://​doi.​org/​10.​1007/​
s00170-​013-​5310-5

	11.	 Hao Y, Tang G, Zhang M, With I (2014) Calculation method of 
milling contact area for ball-end milling tool with tool inclination 
angle. UPB Scientific Bulletin, Series D: Mechanical Engineering 
76(3)

	12.	 Tsai CL, Liao YS (2008) Prediction of cutting forces in ball-end 
milling by means of geometric analysis. J Mater Process Technol 
205(1–3):24–33. https://​doi.​org/​10.​1016/j.​jmatp​rotec.​2007.​11.​083

	13.	 Shtehin OO, Wagner V, Seguy S, Landon Y, Dessein G, Mousseigne M 
(2016) Stability of ball-end milling on warped surface: semi-analytical 
and experimental analysis. Int J Adv Manuf Technol. https://​doi.​org/​
10.​1007/​s00170-​016-​9656-3

	14.	 Lazoglu I, Liang SY (2016) Modeling of ball-end milling forces 
with cutter axis inclination in. 122(February 2000):3–11

	15.	 Lazoglu I, Erdim H (2011) Five-axis milling mechanics for com-
plex free form surfaces. CIRP Annals - Manufacturing Technol-
ogy (December). https://​doi.​org/​10.​1016/j.​cirp.​2011.​03.​090

	16.	 Taner TL, Ömer Ö, Erhan B (2015) Generalized cutting force model 
in multi-axis milling using a new engagement boundary determination 
approach. pp 341–355. https://​doi.​org/​10.​1007/​s00170-​014-​6453-8

	17.	 Chao S, Altintas Y (2016) Chatter free tool orientations in 5-axis 
ball-end milling. Int J Mach Tool Manu 106:89–97. https://​doi.​
org/​10.​1016/j.​ijmac​htools.​2016.​04.​007

	18.	 Li J, Kilic ZM, Altintas Y (2020) General cutting dynamics 
model for five-axis ball-end milling operations. J Manuf Sci Eng 
142(12):1–13. https://​doi.​org/​10.​1115/1.​40476​25

	19.	 Ju G, Song Q, Liu Z, Shi J, Wan Y (2015) A solid-analytical-based 
method for extracting cutter-workpiece engagement in sculptured 
surface milling. Int J Adv Manuf Technol 80:1297–1310. https://​
doi.​org/​10.​1007/​s00170-​015-​7118-y

	20.	 Zhan D, Jiang S, Niu J, Sun Y (2020) Dynamics modeling and 
stability analysis of five-axis ball-end milling system with variable 
pitch tools. Int J Mech Sci 182(March):105774. https://​doi.​org/​10.​
1016/j.​ijmec​sci.​2020.​105774

	21.	 Otto A, Rauh S, Kolouch M, Radons G (2014) Extension of Tlusty’s 
law for the identification of chatter stability lobes in multi-dimensional 
cutting processes. Int J Mach Tool Manuf 82–83(November 2017):50–
58. https://​doi.​org/​10.​1016/j.​ijmac​htools.​2014.​03.​007

	22.	 Montgomery D, Altintas Y (1991) Mechanism of cutting force 
and surface generation in dynamic milling. J Eng Ind 113(May 
1991):160. https://​doi.​org/​10.​1115/1.​28996​73

	23.	 Insperger T, Stépán G (2011). Semi-discretization for time-delay 
systems—stability and engineering applications. https://​doi.​org/​
10.​1007/​978-1-​4614-​0335-7

	24.	 Smiley MW, Chun C (2001) An algorithm for finding all solu-
tions of a nonlinear system. J Comput Appl Math 137(2):293–315. 
https://​doi.​org/​10.​1016/​S0377-​0427(00)​00711-1. https://​www.​
scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0377​04270​00071​11

	25.	 Ozturk E, Tunc LT, Budak E (2009) Investigation of lead and tilt 
angle effects in 5-axis ball-end milling processes. Int J Mach Tools 
Manuf 49(14):1053–1062. https://​doi.​org/​10.​1016/j.​ijmac​htools.​
2009.​07.​013

	26.	 Dombovari Z, Munoa J, Kuske R, Stepan G, Kuske R, Dombovari 
Z, Munoa J, Kuske R, Stepan G, Stief P, Dantan JY, Etienne A, 
Siadat A (2018) Milling stability for slowly varying parameters. 
Procedia CIRP 77:110–113. https://​doi.​org/​10.​1016/j.​procir.​2018.​
08.​233

	27.	 Shamoto E, Akazawa K (2009) Analytical prediction of chat-
ter stability in ball end milling with tool inclination. CIRP Ann 
Manuf Technol 58:351–354. https://​doi.​org/​10.​1016/j.​cirp.​2009.​
03.​087

1518 The International Journal of Advanced Manufacturing Technology (2022) 123:1499–1519

https://doi.org/10.1016/j.cirp.2020.04.054
https://doi.org/10.1016/j.cirp.2020.04.054
https://www.sciencedirect.com/science/article/pii/S0007850620300767
https://www.sciencedirect.com/science/article/pii/S0007850620300767
https://doi.org/10.1016/j.mechmachtheory.2017.10.023
https://doi.org/10.1016/j.mechmachtheory.2017.10.023
https://www.sciencedirect.com/science/article/pii/S0094114X17307103
https://www.sciencedirect.com/science/article/pii/S0094114X17307103
https://doi.org/10.1115/1.2801317
https://doi.org/10.1016/j.ijmachtools.2004.11.015
https://doi.org/10.1016/j.ijmachtools.2004.11.015
https://doi.org/10.1115/1.4001038
https://doi.org/10.1115/1.4001038
http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=1469873
http://manufacturingscience.asmedigitalcollection.asme.org/article.aspx?articleid=1469873
https://doi.org/10.1504/IJMMS.2011.041471
https://doi.org/10.1504/IJMMS.2011.041471
https://www.inderscienceonline.com/doi/abs/10.1504/IJMMS.2011.041471
https://www.inderscienceonline.com/doi/abs/10.1504/IJMMS.2011.041471
https://doi.org/10.1016/j.procir.2014.03.102
https://doi.org/10.1016/j.procir.2014.03.102
https://doi.org/10.1007/s00170-013-5310-5
https://doi.org/10.1007/s00170-013-5310-5
https://doi.org/10.1016/j.jmatprotec.2007.11.083
https://doi.org/10.1007/s00170-016-9656-3
https://doi.org/10.1007/s00170-016-9656-3
https://doi.org/10.1016/j.cirp.2011.03.090
https://doi.org/10.1007/s00170-014-6453-8
https://doi.org/10.1016/j.ijmachtools.2016.04.007
https://doi.org/10.1016/j.ijmachtools.2016.04.007
https://doi.org/10.1115/1.4047625
https://doi.org/10.1007/s00170-015-7118-y
https://doi.org/10.1007/s00170-015-7118-y
https://doi.org/10.1016/j.ijmecsci.2020.105774
https://doi.org/10.1016/j.ijmecsci.2020.105774
https://doi.org/10.1016/j.ijmachtools.2014.03.007
https://doi.org/10.1115/1.2899673
https://doi.org/10.1007/978-1-4614-0335-7
https://doi.org/10.1007/978-1-4614-0335-7
https://doi.org/10.1016/S0377-0427(00)00711-1
https://www.sciencedirect.com/science/article/pii/S0377042700007111
https://www.sciencedirect.com/science/article/pii/S0377042700007111
https://doi.org/10.1016/j.ijmachtools.2009.07.013
https://doi.org/10.1016/j.ijmachtools.2009.07.013
https://doi.org/10.1016/j.procir.2018.08.233
https://doi.org/10.1016/j.procir.2018.08.233
https://doi.org/10.1016/j.cirp.2009.03.087
https://doi.org/10.1016/j.cirp.2009.03.087


1 3

	28.	 Altíntaş Y, Lee P (1998) Mechanics and dynamics of ball end 
milling. J Manuf Sci Eng 120(4):684–692. https://​doi.​org/​10.​
1115/1.​28302​07

	29.	 Sanz-Calle M, Munoa J, Iglesias A, de Lacalle LL, Dombovari 
Z (2021a) The influence of radial engagement and milling direc-
tion for thin wall machining: a semi-analytical study. Procedia 
CIRP 102:180–185. https://​doi.​org/​10.​1016/j.​procir.​2021.​09.​
031. https://​www.​scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S2212​
82712​10077​45. 18th CIRP Conference on Modeling of Machin-
ing Operations (CMMO), Ljubljana, Slovenia, June 15-17, 2021

	30.	 Sanz-Calle M, Munoa J, Iglesias A, Lopezde Lacalle LN, Dombovari 
Z (2021b) Semi-analytical period-doubling chatter analysis in thin 
wall milling. MM Science Journal 2021-November:5126–5133. www.​
scopus.​com

	31.	 Gradišek J, Kalveram M, Weinert K (2004) Mechanistic identi-
fication of specific force coefficients for a general end mill. Int 
J Mach Tools Manuf 44(4):401–414. https://​doi.​org/​10.​1016/j. 
​ijmac​htools.​2003.​10.​001. https://​www.​scien​cedir​ect.​com/​scien​ce/​
artic​le/​pii/​S0890​69550​30026​82

	32.	 Altintas Y, Engin S (2001) Generalized modeling of mechanics and 
dynamics of milling cutters. CIRP Ann 50(1):25–30. https://​doi.​org/​
10.​1016/​S0007-​8506(07)​62063-0. https://​www.​scien​cedir​ect.​com/​
scien​ce/​artic​le/​pii/​S0007​85060​76206​30

	33.	 Engin S, Altintas Y (2001) Mechanics and dynamics of general milling 
cutters.: Part I: helical end mills. Int J Mach Tools Manuf 41(15):2195–
2212. https://​doi.​org/​10.​1016/​S0890-​6955(01)​00045-1. https://​www.​
scien​cedir​ect.​com/​scien​ce/​artic​le/​pii/​S0890​69550​10004​51

Publisher’s Note  Springer Nature remains neutral with regard to 
jurisdictional claims in published maps and institutional affiliations.

Springer Nature or its licensor holds exclusive rights to this article under 
a publishing agreement with the author(s) or other rightsholder(s); 
author self-archiving of the accepted manuscript version of this article 
is solely governed by the terms of such publishing agreement and 
applicable law.

1519The International Journal of Advanced Manufacturing Technology (2022) 123:1499–1519

https://doi.org/10.1115/1.2830207
https://doi.org/10.1115/1.2830207
https://doi.org/10.1016/j.procir.2021.09.031
https://doi.org/10.1016/j.procir.2021.09.031
https://www.sciencedirect.com/science/article/pii/S2212827121007745
https://www.sciencedirect.com/science/article/pii/S2212827121007745
http://www.scopus.com
http://www.scopus.com
https://doi.org/10.1016/j.ijmachtools.2003.10.001
https://doi.org/10.1016/j.ijmachtools.2003.10.001
https://www.sciencedirect.com/science/article/pii/S0890695503002682
https://www.sciencedirect.com/science/article/pii/S0890695503002682
https://doi.org/10.1016/S0007-8506(07)62063-0
https://doi.org/10.1016/S0007-8506(07)62063-0
https://www.sciencedirect.com/science/article/pii/S0007850607620630
https://www.sciencedirect.com/science/article/pii/S0007850607620630
https://doi.org/10.1016/S0890-6955(01)00045-1
https://www.sciencedirect.com/science/article/pii/S0890695501000451
https://www.sciencedirect.com/science/article/pii/S0890695501000451

	An analytical formulation of ZOA-based machining stability for complex tool geometries: application to 5-axis ball-end milling
	Abstract
	1 Introduction
	2 Novel analytical formulation of the cutting force Jacobian
	2.1 Application to cylindrical milling

	3 Tlusty’s law for nonlinear ZOA-based cutting force Jacobian
	4 Application to ball-end milling
	4.1 Numerical validation of the Jacobian calculation method

	5 Demonstration of the solution
	6 Discussion
	7 Conclusion
	References


