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Abstract and contributions

Testing of digital circuits is increasingly important and complex, as the size and complexity
of contemporary circuits increase. Two topics related to digital circuit testing are the aim
of this dissertation thesis. The main topic is a generation of test sets with zero aliasing
in temporal compactors. The secondary topic is a generation of test sets for application-
oriented testing of field-programable gate arrays.

An approach to test generation of application-oriented tests for circuits implemented in
FPGAs is presented. An ATPG natively using a combined fault model of stuck-at and bit-
flip faults is proposed. The properties and relations of the two fault models are analyzed.
This work forms a basis and provides necessary tools for subsequent research, the main
aim of this thesis, and also further research on application-oriented FPGA testing that is
not part of this thesis.

An algorithm for generating tests with zero fault aliasing in output response compactors
is proposed. Output response compaction is an important tool in digital circuit testing
and design for testability techniques. The compaction decreases the amount of data needed
to be transferred from the tested circuit, at the price of introducing fault aliasing. Typ-
ical methods to reduce fault aliasing include manipulating existing tests or changing the
compactor design. The proposed method is able to directly generate tests with reduced
aliasing without changing the compactor design. This leads to higher fault coverage and
possibly smaller compactors.

In particular, the main contributions of the dissertation thesis are as follows:

1. An encoding scheme for bit-flip fault model for application-oriented FPGA testing.

2. Algorithm for generating a zero-aliasing test for general output response compactor.

Keywords:
ATPG, Multiple-Target Test Generation, Output Response Compaction, Output Re-

sponse Aliasing, zero aliasing, SAT, Pseudo-Boolean Optimization, Multiple-Input Signa-
ture Register.
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Abstrakt

Důležitost a obt́ıžnost testováńı současných č́ıslicových obvod̊u roste se zvyšuj́ıćı se kom-
plexitou dnešńıch obvod̊u. Tato disertačńı práce má 2 témata. Hlavńım tématem je gen-
erováńı testu s nulovým maskováńım poruch v kompaktorech odezvy. Vedleǰśım ćılem je
generováńı testu pro aplikačńı testováńı obvod̊u implementovaných v FPGA čipech.

V prvńı části této práce je prezentován postup pro generováńı testu pro aplikačńı
testováńı obvod̊u FPGA. Je navržen algoritmus využ́ıvaj́ıćı kombinovaného poruchového
modelu s poruchami trvalá nula a změna bitu. Tyto poruchové modely, jejich vlastnosti a
vzájemný vztah jsou analyzovány. Tento výstup poskytuje nutné nástroje a postupy pro
daľśı výzkum: hlavńı téma této práce i pokračuj́ıćı výzkum aplikačńıho testováńı FPGA,
který neńı součást́ı této práce.

V druhé části této práce je prezentován algoritmus pro generováńı testu s nulovým
maskováńım poruch v kompaktorech odezvy. Kompakce odezvy je d̊uležitý nástroj v
testováńı obvod̊u a v návrhu pro testovatelnost. Kompakce zmenšuje množstv́ı dat, která
je nutné přenést z testovaného obvodu, za cenu vzniku maskováńı poruch. Typické metody
pro potlačeńı maskováńı jsou úprava již existuj́ıćıho testu, nebo změna návrhu kompaktoru.
Navržený algoritmus je schopný př́ımo vytvořit test se sńıženým maskováńım beze změny
v návrhu kompaktoru. To vede k vyšš́ımu poruchovému pokryt́ı, př́ıpadně k možnosti
použit́ı menš́ıch kompaktor̊u.

Hlavńı př́ınosy této práce jsou následuj́ıćı:

1. Postup pro zakódováńı poruchového modelu změněného bitu v aplikačńım testováńı
obvod̊u FPGA.

2. Algoritmus pro generováńı testu s nulovým maskováńım pro obecný sekvenčńı kom-
paktor odezvy.

Kĺıčová slova:
ATPG, Multiple-Target Test Generation, Output Response Compaction, Output Re-

sponse Aliasing, zero aliasing, SAT, Pseudo-Boolean Optimization, Multiple-Input Signa-
ture Register.
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Chapter 1

Introduction

This chapter introduces the area of research, describes the motivation, and states the goals
for this dissertation thesis.

1.1 Motivation

Today’s world and human society run on digital systems. From entertainment to essential
services to life-critical systems and beyond, our reliance on digital systems is ever increas-
ing. It is therefore essential that these systems are reliable and their eventual failure is
not detrimental to human life, health, property, or the environment. The testing of digital
circuits is one of the tools that we use to prevent such hazards.

As the complexity and size of digital circuits continue to increase, so do the complexity
and price of their testing. Therefore, even though the topic has been thoroughly researched,
there is room, and indeed the need, for further improvement and innovation.

1.2 Problem Statement

Main factors that contribute to the testing cost are the test application time, the number of
test points, the volume of transferred data, and the memory of the test equipment (ATE).
To decrease these costs, the design of the would-be-tested circuit is changed to aid in the
testing. These techniques are collectively called Design for Testability (DfT). Without
DfT, the testing of complex circuits is not only expensive but practically impossible.

The two techniques that are relevant to this dissertation thesis are the Built-In Self-
Test (BIST) and the scan chain design. A part of these techniques is the Output Response
Analysis (ORA), a method used to compact the output response, i.e, decrease the amount of
data transferred from the circuit during its testing. While the amount of transferred data
can be decreased, the response compaction can introduce aliasing, a loss of information
about the presence of a fault, leading to a decrease in the fault coverage.
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1. Introduction

The aim of this dissertation thesis is to improve the test generation to decrease the
aliasing during the response compaction while also decreasing the size of the compactor.

1.3 Goals of the Dissertation Thesis

1. An encoding scheme for a bit-flip fault model for application-oriented FPGA testing.

2. Algorithm for generating a zero-aliasing test for general output response compactor.

1.4 Structure of the Dissertation Thesis

The thesis is organized into 5 chapters as follows:

1. Introduction: Describes the motivation behind our efforts together with our goals.
There is also a list of contributions of this dissertation thesis.

2. Background and State-of-the-Art : Introduces the reader to the necessary theoretical
background and surveys the current state-of-the-art.

3. Encoding Bit-Flip Fault Model in SAT Instance: Presents the first contribution of
this thesis, an ATPG for a combined fault model for FPGA.

4. Augmented ATPG with Zero-Aliasing Constraints : Presents the second contribution
of this thesis, an ATPG preventing aliasing in the output response compaction.

5. Conclusions : Summarizes the results of our research, suggests possible topics for
further research and concludes the thesis.

2



Chapter 2

Background and State-of-the-Art

In this chapter, we present a brief overview of the state-of-the-art and theoretical back-
ground from the area of digital circuits testing, automated test pattern generation and
output response compaction.

2.1 Digital Circuits Testing

The testing of digital circuits is important in all phases of the circuit life cycle. Circuits
are tested several times during the manufacturing process and their distribution, e.g., on
a wafer, before and after encapsulation. A common requirement is that circuits can be
tested during their deployment when they are integrated in larger systems.

2.1.1 Combinational Logic Testing

The basic idea behind the circuit testing is that we apply some input to the circuit under
test (CUT) and check for expected output. If the actual output differs from the precom-
puted output, we know that there is something wrong with the circuit, there is a defect
present. There can be many types of defects present in the circuit; for this thesis, we only
consider defects that can be modeled as faults on the logical level, namely stuck-at fault
(SA, S) and bit-flip fault (BF).

To test a circuit completely would mean to apply all possible vectors to its inputs.
While this may be possible for small circuits, for those with hundreds of inputs it is not.
As a compromise, we can test the circuit with a smaller number of test patterns that are
carefully selected. A simple test would be to apply a certain number of pseudo-random test
patterns. These can be implemented with Pseudo-Random Number Generators (PRNG),
e.g., Linear-Feedback Shift Register (LFSR), ring generators, but also simple counters and
adders. Other techniques can be used to improve this test, such as reseeding [69, 26, 65].
The effectiveness of this type of test is in its principle probabilistic.

The test patterns can be also computed with deterministic methods. These methods
generate a test set suited to a specific circuit. They will ideally test for all faults or function-

3



2. Background and State-of-the-Art

ality of the CUT. These methods can be divided into two main groups, the functional tests
that can test the circuit’s functionality, and the structural tests that can test for known
internal defects, modeled as faults. In this thesis, we use the structural test methods.

Combinational logic outputs, barring the signal propagation delay, depend only on
the current value applied to its inputs. Thus, applied test patterns are fundamentally
independent of each other and their ordering is, for testing, irrelevant. This property can
be utilized for other objectives, e.g., compacting the test [49, 28, 70].

2.1.2 Sequential Logic Testing

The testing of sequential circuits is also done by applying some test patterns to the inputs
of the CUT and observing for expected output response. In contrast to the combinational
logic, however, we would need to test all possible sequences of inputs.

A shorter test can be computed by either functional or structural tests [47, 40]. The
complexity of computing such tests is significantly higher and produced tests are also
longer. This makes testing of such logic circuits infeasible.

2.1.3 Design for Test

A solution to testing sequential circuits is to design them to be easily testable. These Design
for Test (DfT) techniques include strict separation of sequential and combinational logic,
e.g., state memory and transition function for finite state machine (FSM). When properly
separated, memory elements and combinational logic can be tested independently.

2.1.4 Scan Chain

Scan chain is a DfT method widely used to partition a sequential circuit into a combina-
tional part and a memory. It works by connecting (chaining) all registers in the design to
one or several shift registers. The operation of shifting the contents of such chain in or out
is called scan.

In this design, the inputs and outputs of chained registers act as Pseudo-Primary Out-
puts (PPO) and Pseudo-Primary Inputs (PPI), respectively. The combinational part can
be thus tested as a normal combinational circuit by applying a test pattern to its PIs as
usual and its PPIs by the scan-in. Conversely, the response to the test is read as usual
from POs and by the scan-out from PPOs.

It is possible to add scan registers to the circuit’s PIs and POs. These registers are
bypassed during normal operation but act as inputs and outputs during testing. This
reduces the number of test points to only input and output of the scan chain and unifies
the treatment of the circuit’s Primary and Pseudo-Primary inputs/outputs. Additionally,
the interconnections between different parts of the chip or between different chips can be
also tested. Such arrangement is referred to as a boundary scan.

4



2.2. Automated Test Pattern Generator

Compactor

CUT

TPG

MISR

Comparator

Output Response Analyzer

BIST
Controller

Figure 2.1: Example of a BIST architecture.

2.1.4.1 Built-In Self-Test

The Built-In Self-Test (BIST) is a DfT technique to add all circuitry needed for the appli-
cation and evaluation of the test in the design. This makes the circuit capable of testing
itself, without the need for external test equipment (ATE). This technique is used both in
manufacturing testing and in in-application testing.

Typical BIST design, as shown in Figure 2.1, consists of:

◦ Circuit Under Test (CUT),

◦ Test Pattern Generator (TPG),

◦ Output Response Analyzer (ORA),

◦ BIST controller.

The test pattern generator is responsible for generating test stimuli for the CUT. Ex-
amples of how the TPG can be implemented include memory and PRNG.

The output response analyzer is responsible for checking for the expected response.
It can be divided into the spatial and temporal compactor and comparator, described in
greater detail later in this chapter.

2.2 Automated Test Pattern Generator

An Automated Test Pattern Generation (ATPG) is a process of automatic (algorithmic)
search for a sequence of test patterns that can detect faults in the tested circuit. For testing
contemporary digital systems it is necessary to create the test in a fast and automated way.
There are two approaches to the test generation, functional testing and structural testing.

5



2. Background and State-of-the-Art

In functional testing we view the circuit as a black box and construct the test per the
description of its behavior. The major disadvantage of such a test is that we are generally
not able to compute the achieved coverage. Despite this, the method is still used for
example to test Intellectual Property (IP) cores for which we may not know their internal
structure.

In structural testing we view the circuit as a network of elementary parts, e.g., for
Application Specific Integrated Circuits (ASIC) that would be interconnected standard
cells. The elements of the circuit can and do have many kinds of defects, e.g., open circuit
or open transistor. We model these defects on logical level as faults. It is important to
choose such a fault model that can cover the most common defects.

The stuck-at line (S@) fault model is the most widely used one, for it is simple and can
detect most of the common defects in an ASIC design. A S@ fault can be either S@0 or
S@1, which means that the signal, where the fault is located, has a permanent logical value
of 0 or 1, respectively. It is necessary to consider this fault on every output and input of
a gate, or before and after each signal branching.

In this thesis, we work only with structural testing.
ATPGs for structural testing can be categorized into three groups: structural [58, 25,

24, 61], algebraic [62], and generators using Boolean Satisfiability problem (SAT) [34].

2.2.1 Fault Model

Physical defects in a circuit are modeled at the logic level as faults. Most commonly used
fault models include:

Stuck-at line The stuck-at (SA, S) models a fault as a signal that has a permanent value
of 0 (stuck-at 0) or 1 (stuck-at 1). In a simulation, the signal is connected to a constant
driver. S model is the simplest fault model used in practice and is strong enough for most
applications [39, 36].

Bridging The bridging fault models a defect where one signal is influenced by some other
signal. Interaction between these signals can be complex; this fault can lead to a sequential
behavior in combinational circuits.

Bit-flip The bit-flip (BF) models a single event upset (SEU). When SEU happens, single
or multiple bits can be flipped in the configuration memory. This model is useful for an
FPGA circuit, where the bit-flip in a configuration memory can cause a change of function
in a look-up table (LUT) or change the signal routing in interconnection blocks.

2.2.2 Structural ATPG

One of the oldest algorithms for generating a test is the D-algorithm [58]. This algorithm
works with the multi-valued logic of {0, 1, X,D, D̄}, where D and D̄ represent logical value
of 1 changed to 0 due to the present fault in the circuit and vice versa.
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The location of a fault is excited by setting the affected signal to an appropriate value
(D or D̄). Other signals are then set to propagate the changed value to the output and to
excite it from inputs. When a conflict in value assignment is encountered, backtracking is
used. The complexity of this algorithm is O(2s) where s is the number of signals in the
circuit.

The PODEM algorithm is an improvement over D-algorithm [25], efficient, especially
for a class of circuits that includes the error-correction type of circuits. Instead of trying
to assign a value to all signals, only primary inputs (PIs) are considered, and other signal
values are propagated from PIs. This reduces its complexity to only O(2n) where n is the
number of PIs. Heuristics are used to efficiently search the space of PI combinations, but
the search is still exhaustive.

The FAN algorithm [24] further improves upon PODEM by employing several techniques.
These techniques include multiple parallel backtraces, early backtrace termination, assign-
ing as many signal values as possible by unique implication, and unique path sensitization.

SOCRATES is yet another improvement of FAN algorithm [61]. It uses learned im-
plications to speed-up assigning of signal values. The learning is static (implications are
precomputed) and dynamic (implications are discovered during the run of the ATPG).

2.2.3 ATPG Based on Boolean Satisfiability

One method to generate a test pattern that is recently gaining popularity both in academia
and industry is converting the ATPG problem to the solving Boolean Satisfiability Problem
(SAT). SAT-based ATPGs are more flexible in general and are also proficient in identifying
redundant faults [34, 18, 10].

2.2.3.1 Boolean Satisfiability Problem

The problem of satisfiability of Boolean formula is the problem of deciding whether there
exists such an assignment of Boolean variables that satisfies given formula.

Definition 2.2.1. Boolean Satisfiability Problem (SAT)
Let there be a set of Boolean variables V = {v1, v2, . . . vn}. A literal is Boolean variable

vi or its negation ¬vi. A clause is a logical disjunction of one or more literals. The Boolean
formula in Conjunctive Normal Form (CNF) is logical conjunction of zero or more clauses.

Given Boolean formula F , the Boolean Satisfiability Problem (SAT) is then a problem
of determining whether there exists such assignment V → {0, 1} that satisfies the Boolean
formula F , i.e., the Boolean formula evaluates to one for the given variables assignment.

Note 2.2.2. A Boolean formula that is not in CNF can be transformed to CNF in polynomial
time and space using the Tseitin transformation [67]. While this transformation is not
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on signal D

Figure 2.2: Example of a conceptual circuit for modeling fault in CUT.

mandatory for the SAT itself, it is practical because SAT solvers are working with this
representation and as will be shown below, the ATPG process leads naturally to this form.

While SAT belongs to the NP-hard class of problems, in recent years there has been
much progress in the field of SAT solvers. Modern solvers, such as MiniSAT [17], can
quickly solve large SAT instances, especially instances that emerge in practical applications
such as test pattern generation.

2.2.3.2 SAT-Based ATPG

SAT-based ATPG uses the SAT problem and an SAT solver to generate test patterns. The
basic idea is similar to the Boolean difference [62]; the CUT is replicated in two instances,
one as the original (unaltered) circuit, the other with a modeled fault (see Figure 2.2).
This conceptual circuit, also called miter, is then transcribed as a (CNF-)SAT instance.
[34, 18, 10].

The miter is constructed by connecting inputs of the fault-free and the faulty replica
of the CUT. The outputs are compared using an XOR gate. The fault is detected if the
outputs differ (signal BD = 1 in Figure 2.2) for the same inputs, whence the connected
inputs and compared outputs. If such an input pattern exists that would satisfy the
constrained output (BD = 1), then this pattern (or patterns) can test the modeled fault.
This is essentially the Circuit Satisfiability Problem (CSAT) which is then transformed
into SAT.

The transformation of a circuit to a CNF is straightforward. We only need to express
all gates by their characteristic functions. If all the characteristic functions are expressed in
CNF, the CNF of the whole circuit is simply a conjunction of these characteristic functions
[34].
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As was stated before, SAT is an NP-complete problem. Even so, modern solvers can
solve instances from the ATPG process fast enough that the bottleneck is in fact in the
generation of the SAT instance itself. To the point that techniques targeted at the SAT
instance generation speedup are being researched, e.g., the dynaminc clause activation [14].

2.2.4 Test Compaction

Practical test generation includes a test compaction to reduce the number of test patterns,
ideally without losing the fault coverage. These algorithms can be divided into two distinct
groups: The static test compaction, performed after the test has been generated. And the
dynamic test compaction, performed during the test generation.

2.2.4.1 Static Test Compaction

The static test compaction is performed after obtaining a test set from an ATPG. This
compaction can be therefore run independently of the ATPG. The compaction is performed
by manipulating the test pattern ordering or simulation ordering, simulating faults, and
identifying the non-essential test patterns [49, 28, 70].

2.2.4.2 Dynamic Test Compaction

The dynamic test compaction is performed during the ATPG process, on an incomplete
test set. It is also beneficial for the ATPG to utilize extra information from the compaction
while generating the next test pattern [42, 50, 32, 66, 19, 20].

Usual dynamic compaction techniques use unspecified bits of a test pattern to target
additional faults. The compaction achieved by this approach is sensitive to the additional
fault selection (fault ordering) and the chosen subset of unspecified bits in the test pattern,
both are guided by heuristics. [42, 50].

MTTG Multiple-Target Test Generation (MTTG) techniques [66, 32, 19] solve the prob-
lem of unspecified bits selection by targeting multiple faults in one step. Modern SAT
solvers are robust enough to efficiently find a test pattern for all selected faults or to prove
that no such test pattern exists. This approach suffers from the need to efficiently find a
subset of faults that can be tested by a single test pattern. In practice, faults are added
to the targeted subset incrementally.

OTG In the MTTG, a test pattern detecting all selected faults is searched for. If such a
test pattern does not exist, the test pattern is not generated, and a new fault set must be
selected. Optimization-based MTTG (OTG) techniques [20] do not prove the non-existence
of such a test pattern. Instead, they compute a test pattern, which tests some subset of
selected faults. The optimization criterion is the number of detected faults.

The algorithm presented in [20] works by constructing a miter for all selected faults.
D-chains are also generated for each selected fault. The D-chains are not constrained to
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CUT

Figure 2.3: Example of a spatial compactor.

detect all faults, but their activation is done by the solver. The number of active D-chains,
and thus detected faults, is maximized by the optimization function.

2.3 Output Response Analysis

The output response analysis is the process of checking for expected output response during
the test. To reduce the amount of transferred data, a output response compaction is per-
formed. This compaction can be separated to two steps: spatial response compaction and
temporal response compaction. A brief overview of existing response compaction designs
follows.

Note 2.3.1. The spatial response compaction and temporal response compaction are in some
literature known also as static response compaction and dynamic response compaction. In
this thesis, we use the former terms to avoid confusion with the static test compaction and
the dynamic test compaction.

2.3.1 Spatial Response Compaction

Spatial response compaction is a process of reducing the number of observed signals in
the circuit while under test, but it does not change the number of functional outputs
(Figure 2.3). The main motivations for using spatial response compaction are reducing the
response size, the number of testing outputs, and subsequent compaction logic (in temporal
compaction) and reducing test application time (by decreasing the scan-out time).

A big issue in response compaction is the danger of aliasing which occurs when the
response of a faulty circuit is mapped by the compactor to the same response that belongs
to the fault-free circuit. Ideally, we want space compactors that introduce no aliasing at
all. To achieve zero aliasing, designs using only XOR gates are often used, for the XOR
gate will always propagate a fault syndrome that arrives at one of its inputs [8], [12]. The
problem with such a design is that if the fault syndrome arrives even times at XOR tree
inputs (even-sensitized faults), the fault is aliased, so only using XOR gates may lead to
higher aliasing or lower compaction ratio.

In paper [7] two methods to combat even-sensitized faults are presented. First, it is
shown that most faults in benchmark circuits can be odd-sensitized, but there exists a
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relatively small amount of faults that are even-sensitized by every test pattern (for the
fault).

The first method, the multiplexed parity trees, inserts a multiplexer between CUT’s
PO and the parity tree. The size of the multiplexer and the number of control signals
depends on the number and propagation properties of even-sensitized faults in the CUT.
It is shown that a fault is rarely sensitized to all POs and a procedure to reduce the number
of multiplexers and complexity of its control logic is also presented.

The second method is exploiting the fact that even-sensitized faults are only possible
in circuits with branching. By adding an observation point to the CUT, it is possible
to change the even-sensitized fault to the odd-sensitized one. Each observation point is
then ANDed to a control signal, making the number of control signals and the number of
multiplexers dependent on the number of observation points.

By using these two techniques, it is possible to achieve zero-aliasing in a parity tree
space compactor.

The paper [8] presents a method for designing linear zero-aliasing space compactors with
bounded overhead. The method expresses relationships between PO of the CUT as a graph
and the task of partitioning outputs to be combined using a parity tree is then reduced to
the graph coloring problem.

In paper [44] the way to construct a zero-aliasing space compactor by using elementary
gates is described. This algorithm is using the preexisting test as a guide to combining
the circuit’s outputs using AND, NAND, OR, and NOR gates. First, responses of all
faults are computed using multi-valued logic {0, 1, X,D,D′} where D and D′ denoted a
value changed from 1 to 0 and vice versa due to presence of a fault. Until continuation
is not possible, two outputs are selected to be combined with a new gate. If this leads
to aliasing, a new test pattern is generated by an ATPG for the aliased fault. When no
such test pattern can be found, the pairing with the selected gate is rejected and another
gate and/or output pairing is tried. Otherwise, the compactor is augmented by the gate,
and output responses for all faults are recalculated. When no other such pairing and gate
remain to be tried, the algorithm ends.

Note 2.3.2. The order of output pairings and gates tried is determined by heuristics to
minimize the number of ATPG invocations and especially the number of unsuccessful
ATPG runs. This hints that the algorithm was intended to be used with structural ATPGs,
which may have problems with proving that a fault is redundant.

In paper [35] the algorithm described in the previous paragraph is augmented to not
require an ATPG. When all AND, NAND, OR, and NOR gates are exhausted, the XOR
(or XNOR) gate is then tried as a last resort. This method provides a similar compaction
ratio to the previous one without the need for an ATPG. Both of these methods provide a
better compaction ratio with less area overhead than designs using purely XOR gates.
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Figure 2.4: Example of LFSR-based MISR with a characteristic polynomial of x3 + x+ 1.

2.3.2 Temporal Response Compaction

Temporal response compaction is a process of reducing the number of responses to different
test patterns that are applied in different clock cycles. This means using some kind of
sequential circuit where we build the circuit signature from incoming responses. At the
end of testing, we compare the CUT signature with the precomputed one. As in the spatial
compaction, here we also want to minimize the aliasing.

There are many architectures of temporal compactors. One of the more prevalent ones
is the Multiple-Input Signature Register (MISR). In its most common form, it is formed by
an LFSR with parallel inputs. An example is shown in Figure 2.4, input(x) denotes inputs
from the CUT (or space compactor), signature(x) denotes outputs to the comparator (for
signature checking). This particular compactor gets the most attention in aliasing analysis
and minimization of.

In paper [46] the periodic quotient compression technique is described. When using
LFSR as an output response analyzer (ORA), it behaves as a polynomial divider over
GF(2). What we call the circuit signature is the reminder after the division, while the
quotient is ignored. This method constructs the LFSR in such a way that the quotient is
periodical, which can then be checked easily with the circuitry of the size linearly bound
with the length of the period.

The paper additionally presents proof that for any CUT there exists an LFSR which
produces a periodic quotient, for any period. A method for finding such LFSR is presented.

This method achieves zero-aliasing for single-output circuits. It does not however
achieves this for multi-output circuits, although it does reduce the amount of aliasing
for such circuits.

Another method that utilizes periodic response compaction is described in paper [15].
While usually the test pattern generation and output response compaction are considered
separately, this method influences test patterns to achieve zero-aliasing response com-
paction.

By reordering the test patterns, they achieve a periodic response of the CUT. Such a
response can be easily checked in a similar way to the previous method.
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Also as in the previous method, zero-aliasing is achieved for single output circuits while
for multiple output circuits this is not guaranteed.

In paper [2] a method for response compaction is presented that converts the response
to a stream of alternating values. The response of the CUT is applied to the inputs of
a MISR, but instead of checking the signature at the end of testing, the contents of one
memory element of the MISR are read every clock cycle. This binary steam is however not
alternating, so additional combinational circuits are added, the cover circuits. The test
patterns are applied to these cover circuits and their output is combined with the output
of the MISR to produce alternating output. The fault is detected by the disruption of the
output value alternation. This method does not achieve zero-aliasing.

In paper [16] the analysis of aliasing probability in augmented signature testing is pre-
sented. What authors mean by augmented signature testing is nothing else than an LFSR-
based MISR with a quotient detector. The quotient detector is a circuit that uniquely
identifies the quotient of an LFSR.

In paper [45] a generalized model based on LFSR is described (GLFSR). Under this
model, LFSR, MISR, and multiple MISR designs are special cases. A new framework for
the analysis of aliasing probability in the GLFSR model is presented.

By using these results, they have shown that some GLFSR compressor exists for all
CUTs with arbitrarily small aliasing probability.

In paper [33] a method to estimate the compaction quality of compactors that is based
on the entropy of the compactor state is presented. Using this method, LFSR, non-linear
cyclic feedback shift registers (CFSR), and counting compactors are compared.

It is shown that a CFSR can be as good as an LFSR with a primitive polynomial.
Counting compactors are worse than both CFSR and LFSR. It is also shown that while
the number of possible LFSR is 2n, for the CFSR it is 22

n
, thus expanding the number

of possible compacting structures significantly. It is hinted that the quality of non-linear
compactors is dependent on the CUT and finding such a compactor is left an open question.
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Chapter 3

Encoding Bit-Flip Fault Model in SAT
Instance

In this chapter, we present a method to generate a test for application-oriented FPGA
testing. This approach has been published in [A.1].

3.1 Introduction

3.1.1 Problem Statement

Field-Programmable Gate Arrays (FPGAs) are typically tested with dedicated test target-
ing their regular structure [64, 52, 54]. The FPGA chip is tested whole, independently
of the target application (the circuit implemented in the FPGA). This approach requires
reconfiguration of the tested FPGA. It is, therefore, suitable for manufacture-oriented test-
ing, but unsuitable for application-oriented testing, i.e., testing configurations must be
uploaded in place of the application [56].

In the application-oriented testing, the circuit implemented in FPGA is tested as if it is
custom logic [56, 48, 59, 13]. The FPGA chip itself is not tested whole, only parts used in
the uploaded design are tested. The FPGA configuration is not modified for testing [55].

Testing of a circuit implemented in an FPGA requires a specific fault model. It has been
shown that the commonly used stuck-at (SA) fault model is insufficient [48, 3]. Particularly,
LUT contents, interconnects, and device family-specific features must be tested specifically.
Note that in many previously published application-oriented FPGA testing approaches,
standard stuck-at or gate-level fault models are used [13, 55, 57].

3.1.2 Method Overview

Since FPGA fabric contains many different device-specific features, fault models used for
ASIC testing, such as the stuck-at fault model, are not suitable [48], [3]. Most past and
contemporary FPGAs consist of:
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1. look-up Tables (LUTs) of different sizes, typically contained in Configurable Logic
Blocks (CLBs), together with flip-flops,

2. device-specific primitives, such as fast carry chains (dedicated XOR gates) and mul-
tiplexers,

3. interconnects,

4. I/O and other communication blocks, and

5. special complex features, such as block-RAMs, DSP blocks, CPUs, etc.

In this chapter, we focus on the first three types only, as their description can be
generalized readily. Moreover, the last two types typically require special approaches to
their testing [38, 64, 52, 53, 54, 29]. Also, only combinational circuits will be considered for
simplicity; testing of flip-flops or sequential circuits, in general, would require a sequential
ATPG process or a special DfT approach [51].

The fault model used is a combination of the stuck-at (SA) and bit-flip (BF) fault
models. The BF models a single changed bit in the configuration memory of LUTs. The
configuration memory of interconnects is not considered for simplicity, as interconnects
design and its configuration are device-specific. Instead, the SA model is used for testing
interconnects. Single faults are assumed in this chapter, however, the model can be readily
extended to support multiple faults. For this fault model, an SAT-based ATPG is presented
and its properties are discussed.

3.2 Application-Oriented FPGA Testing

3.2.1 The Overall Algorithm (ATPG)

The SAT-based ATPG works by duplicating a part of a circuit and modeling the fault
in the duplicated part [34]. For the typical stuck-at fault model, the faulty signal is
duplicated and forced to have the stuck-at value. The rest of the circuit that is dependent
on this signal (output cone) is also duplicated. The output of this duplicated circuit is
then XORed with the original circuit and the Circuit Satisfiability Problem (CSAT) is then
solved by reduction to an SAT instance, which is then solved by an SAT solver [17, 34].
Any satisfying variable assignment then represents a test vector. In the case where no such
variable assignment exists, the fault is identified as redundant.

In addition to stuck-at faults, we are also considering single bit-flips in LUTs [41, 3].
We model these faults by duplicating a given LUT and injecting a fault in it, by flipping
one bit in its memory. Then we duplicate the output cone of the affected LUT in the same
way as with the stuck-at faults.
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3.2.2 The Proposed Combined Fault Model

As denoted in the Introduction, we aim at application-oriented testing. Thus, only the
implemented circuit is tested, disregarding the unused parts of the chip. This scenario
allows testing the interconnect using a standard stuck-at model, in contrast to transistor-
oriented FPGA interconnection testing, where switching matrices that are known only after
the place&route phase, must be considered [38, 64]. Simple gates can also be tested using
the stuck-at model. However, the stuck-at model is not sufficient for LUT testing [48, 3].
Therefore, a single bit-flip fault model is used for this purpose. This basically complies
with the idea of [48], where stuck-at faults in all LUT cells were considered. However,
one-half of these faults were found redundant and had to be explicitly removed from the
fault list. The bit-flip fault model directly eliminates this problem.

As shown in [56, 3], the initial circuit description (non-mapped netlist) is not suitable
for ATPG purposes. However, the logic of the mapped circuit can be easily obtained from
commercial FPGA synthesis tools [57]. As a result, the mapped netlist can be described
as a multi-level Boolean network, where nodes are described in a Sum of Products (SOP)
form. This network can then be directly used for test generation.

In our algorithm, we describe the mapped logic by a network of general nodes. By
general nodes we understand arbitrary single-output functions; however, the approach can
be easily extended for multi-output functions too (for the case of contemporary 2-output
LUTs, for example).

For implementation purposes, the BLIF format [68], where each node is described as a
sum-of-products (SOP), is well-suitable. Essentially, two types of nodes can be present in
the mapped netlist:

1. a k-input LUT node, whose function (LUT content) can be described by an SOP,

2. any other simple function (XOR, MUX, etc.) that can be described in an SOP form
as well.

Summarised, the proposed fault model derived from the multi-level network of SOP
nodes consist of:

1. all single bit-flips in the LUT, i.e., 2k faults for a k-input node,

2. single stuck-at-0 and stuck-at-1 at all inputs and outputs of each node.

3.2.3 Generating Test for Different Fault Models

While the general ATPG algorithm remains the same, one step in particular differs across
the fault models – the generation of a miter.

The difference is in how we model the fault itself. A stuck-at fault is modeled by
disconnecting the faulty signal from the fault-free circuit and setting its value using a unit
clause [34]. When modeling a bit-flip fault, there is no discontinuity in the faulty circuit.
Instead, we model this fault by flipping the output for a particular LUT input vector.
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Figure 3.1: Example of miter with a bit-flip fault. The output of the circuit must be 1 to
detect the fault. Bit-flip is distinguished by italics

F (a, b, c) = {0, 2, 3, 6, 7}

on-set

a b c y

0 - 0 1 (a ∨ c ∨ y)
- 1 - 1 (¬b ∨ y)

off-set

a b c y

1 0 - 0 (¬a ∨ b ∨ ¬y)
- 0 1 0 (b ∨ ¬c ∨ ¬y)

CNF

(a∨c∨y)∧(¬b∨y)∧(¬a∨b∨¬y)∧(b∨¬c∨¬y)
Figure 3.2: An example function defined by a list of 1-minterms, its minimized on-set,
off-set, and their respective CNF clauses

For example, let us have a LUT described by 1-minterms {000, 011, 100} and a bit-flip
at address 110 which can be described by adding a minterm {110}, see Figure 3.1.

3.2.4 Characteristic Function of LUT

The basic idea behind this method is an algebraic transformation of the characteristic
function of a node to CNF. We start with the equivalence of the output and the function
of the node. Then we proceed by applying Boolean algebra to transform this formula into
CNF [34].

In practice, this is done by finding a representation of the node function (on-set) and
its complement (off-set) in an SOP form. These SOPs are implicating the function output,
one or zero, respectively. By using DeMorgan’s rules, we transform these implications to
products-of-sums (POS) ORed with the output. Then we simply distribute the output
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LUT

Figure 3.3: Dominance of different faults. Triangle denotes a SA fault dominated by a
bit-flip fault. Cross denotes a SA fault that may not be dominated.

inside the POS forms. This leaves us with two CNFs that together form a characteristic
function of the node as can be seen in Figure 3.2. Assuming that the nodes are simple
functions with a small number of inputs, this approach is computationally feasible. How-
ever, this method can produce up to 2k clauses of a length up to k + 1 literals, where k is
the number of inputs of the node.

3.2.5 Dominance between Stuck-at and Bit-Flip Faults

It can be shown that in a circuit with prevalent LUT nodes all testable stuck-at faults that
are located at LUT inputs or at the LUT output, are dominated by some bit-flip faults.

A stuck-at fault located at the output of a LUT may be not covered by a bit-flip in the
LUT, if and only if there is no such bit-flip that would change the value of this signal in
the same way as the stuck-at fault (for any input vector). However, such LUT would have
a constant output, independent of its input, thus it would be redundant and so would be
the stuck-at fault.

For stuck-at faults that are located at input signals of a LUT to be not covered by
some bit-flip would mean that there exists no logical assignment of remaining LUT inputs
that would cause observable change at the LUT output for different values of the faulty
signal. That would mean that the output of the circuit is independent of the signal value
and thus the stuck-at fault would be redundant.

There is, however, no guarantee of dominance for stuck-at faults that are not directly
adjacent to any LUT, be it at signals between two non-LUT elements or at signals after
or before branching. Examples of such stuck-at faults are shown in Figure 3.3.

3.3 Experimental Results

For our experiments, we used 279 circuits from benchmarks MCNC, LGSynth’91 [71],
LGSynth’93 [37], ISCAS’85 [5], ISCAS’89 [4] and IWLS 2005 [1]. For sequential circuits,
combinational parts were extracted. The circuits were then synthesized by Xilinx Vivado
2015.2, for the Artix-7 architecture. After the synthesis step, we extracted the circuit
structure from the EDIF format to BLIF [68].

We have measured the ratio of stuck-at faults that are covered by bit-flip faults, and
the ratio of bit-flip faults that are covered by stuck-at faults. Results for several selected
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Table 3.1: Redundant faults and coverage of non-redundant faults in selected circuits

stuck-at bit-flip total
faults redundant testable coverage faults redundant testable coverage faults redundant

circuit # [%] # [%] [%] [%] # [%]
alu4 2484 0.85 2463 100 9060 17.27 7495 68 11544 13.7
barrel16a 1246 0 1246 91.1 3208 1.5 3160 90.8 4454 1.08
cm42a 136 0 136 100 160 0 160 100 296 0
cmb 162 0.62 161 100 342 13.16 297 31 504 9.13
dalu 2492 6.86 2321 100 8056 35.74 5177 87.4 10548 28.9
des 6626 0.09 6620 100 15960 20.4 12704 95.6 22586 14.4
dsip 8960 0 8960 100 17944 0 17944 87.5 26904 0
mux 118 0 118 100 320 0 320 23.1 438 0
s9234 5098 0.53 5071 98.9 10584 17.01 8784 82.2 15682 0
average 0.33 99.6 10.15 69.5 7.42

circuits can be seen in Table 3.1; average values obtained from all the tested circuits are
shown in the last row.

We have found that almost all stuck-at faults are dominated by bit-flip faults. An
example of a circuit, where there are stuck-at faults that are not dominated by a bit-flip
fault, is circuit barrel16a, which contains primitives, such as multiplexers.

For bit-flip faults, we have observed a dominance by stuck-at faults ranging from 17%
to 100%, with an average of 69.4% and a median of 72.6%.

We have found a surprisingly large set of redundant faults; the observed average ratio
of redundant faults was 0.33% for stuck-at faults, 10.15% for bit-flip faults and 7.42% for
all faults, as can be seen in Table 3.1. Such a high amount of redundant bit-flip faults is
due to a smaller controllability and observability of these faults, i.e., the probability that
such test vector exists, so all inputs of a given LUT are set to excite the fault and it is
propagated to a primary output. Note that propagation to output is equivalent to stuck-at
faults propagation, but excitation needs more signals to be set to a specific value.

We have also examined how the final test lengths differ, for the two fault models and
for different orderings of faults. Results of measurements for few selected circuits can be
seen in Table 3.2. We have found that the ordering of faults has a small impact on the
number of testing vectors. When we look at the ratio of these two orderings, we see that it
ranges from 0.81 up to 1.11, with an average of 0.97 and a standard deviation of 0.04. This
means that there is no significant difference between these two orderings; the difference is
just due to the algorithmic noise [63].

3.4 Conclusions

In this chapter, we have presented our SAT-based ATPG with two fault models, the stuck-
at and the bit-flip models. Compared to previous methods, our ATPG works natively
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Table 3.2: Length of test for different fault ordering

circuit stuck-at bit-flip SA,BF BF,SA SA,BF
BF,SA

alu4 413 2844 2866 2871 0.998
barrel16a 112 766 745 804 0.927
cm42a 16 16 16 16 1
cmb 24 227 218 228 0.956
dalu 158 1181 1165 1190 0.979
des 296 2232 1944 2214 0.878
dsip 313 4190 4052 4212 0.962
mux 33 306 297 306 0.971
s9234 375 2649 2618 2647 0.989
average 0.971

with both SA and BF faults. A combination of these models is suitable for application-
oriented FPGA testing. The suitability of this fault model is further examined in [A.4],
which is not part of this thesis. Also, in the scope of the thesis, the development of this
ATPG algorithm served to prepare necessary tools for further research, namely the ZATPG
algorithm presented in the next chapter.

We have examined the two fault models in the context of application-oriented FPGA
testing and their interaction with respect to their mutual dominance. We have found that
most stuck-at faults are dominated by bit-flip faults. The cases where stuck-at faults are
not dominated include FPGA primitives, such as multiplexers. Bit-flip faults, on the other
hand, are generally dominated by stuck-at faults to a much smaller degree, ranging from
as low as 17%.

We conclude that for complete coverage of these two fault models, both must be con-
sidered. However, most stuck-at faults are dominated by bit-flip faults. These are easily
identifiable from the circuit structure, as they are adjacent to LUTs and their dominance
is independent of the circuit function. They constitute a majority of stuck-at faults, thus
their omission may lead to a significant ATPG speed-up. To reach a complete fault cover-
age, structurally not dominated stuck-at faults must be considered too since some of them
are not covered by bit-flip faults (they are not dominated functionally).

We have also examined the overall lengths of tests generated with the fault-dropping
technique for two orderings of faults and have found no significant impact of fault ordering
on the number of generated test vectors.
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Chapter 4

Augmented ATPG with Zero-Aliasing
Constraints

In this chapter, we present our method to prevent aliasing in the output response analyzer.
The method works by augmenting the ATPG process itself, i.e., the aliasing is prevented
during a test pattern generation. This approach has been published in [A.2] and [A.3].

4.1 Introduction

4.1.1 Problem Statement

When generating a test for a digital circuit, there are several important factors to consider.
For the sake of clarity, we focus mainly on the fault coverage, the test length, and the size
of the testing logic. Additional important factors are test application time and the volume
of transferred data.

The test application time can be approximated by the test length. For the purpose of
this thesis, they are effectively equivalent. The volume of data transferred during the test
application is considered only for the direction from the CUT to a tester (ATE, BIST. . . ),
again for the sake of clarity. The data that is transferred is in the simplest case a single
signature from a signature register. The opposite direction of data transfer is discussed
briefly in the discussion but is otherwise left for future work.

4.1.2 Method Overview

Conventional SAT-based ATPG searches for a test pattern without considering further
processing of its output response. The only requirement is that the tested fault is detected
at combinational outputs (POs and PPOs) of the CUT. Each test pattern and fault that
are detected are treated on their own. There is no notion of test ordering or response
compaction in the ATPG process. The problem of possible aliasing in compactors is treated
separately, with an already generated test.
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Figure 4.1: Conceptual circuit (miter) for an SAT-based ATPG.

Approaches based on altering (or re-running) the ATPG to reduce aliasing in the spatial
compactor have been proposed, e.g., [9, 44]. However, up to our knowledge, no method of
generating aliasing-free test patterns for temporal compactor has been proposed prior to
our papers [A.2, A.3].

The focus of this chapter is, therefore, on the aliasing in temporal compactors and its
prevention. Aliasing in spatial compactors is not considered, it is assumed that no new
untestable faults are introduced; the spatial compactor is irredundant. Instead, the spatial
compactor is considered a part of the CUT. This has the advantage that all irredundant
faults in the spatial compactor are explicitly tested. For the remainder of this chapter, the
spatial compactor won’t be discussed again unless necessary.

In our approach, we constrain the ATPG process itself to generate test patterns for
the CUT, including the temporal compactor. Thus, no test patterns recomputation is
needed; test patterns exhibiting no aliasing are produced directly. The output of the
ATPG, the test, is a sequence of test patterns for given temporal compactor. Should a
different compactor be used or the test be manipulated (e.g. reordered), the zero-aliasing
property of the test is no longer valid.

4.2 Augmenting the ATPG

We build on the idea of extending the conceptual circuit (miter) from Figure 4.1 [30,
60]. The extended miter (Figure 4.2) introduces additional circuitry that computes fault
aliasing.

Let us consider the search for a suitable test pattern pi, applied to PI for the fault f1.
Our miter initially corresponds to Figure 4.1, ensuring that the response at PO′ to a test
pattern differs from the response at PO of the fault-free circuit CUT0.

In the context of temporal compaction, we know that in the presence of the fault f1,
the internal state of the compactor (partial signature) will differ from the partial signature
of the fault-free circuit. This is because the fault f1 was newly tested by the test pattern
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Figure 4.2: Extended miter for finding non-aliasing test vector p for the fault f1.

pi.

This assumption, however, needs not to hold for other faults that were tested by some
previously generated test pattern(s). If we know of such faults, f2–fn, and they additionally
have a potential to be aliased by pi, i.e., after application of pi, the partial signature in the
MISR could be the same as the partial signature for the fault-free circuit (for details on
their identification see Subsection 4.5.1). It means that although some fault (e.g., f2) has
been detected by a previously generated test pattern, the MISR returns to the sequence
indicating no fault. To prevent this, we must ensure that the next state of the MISR (the
next partial signature) will stay different from the fault-free case when any such fault is
present. We can include anti-aliasing constraints in form of additional circuitry in the
miter (Figure 4.2).

The next partial signature is computed by applying the transition function of the MISR
(its combinational part, TMISR) to the present partial signature and the circuit response.
In the fault-free case, let us call the present partial signature S1. In the case of a fault
f2 producing a response PO′′, let us call the partial signature S2. To avoid the above-
mentioned aliasing, all next states caused by the faults f1–fn must differ from that of
the fault-free case. The extended miter (Figure 4.2) compares the results of the MISR
transition function applied to TMISR(S1, PO) and TMISR(S2, PO′′), respectively. Hence,
the extension of the miter consists of additional replicas of the CUT (CUT2–CUTn), each
with one fault (f2–fn) modeled. Their output responses (PO′′–PO′n) are inputs for the
transition function of the compactor (block “MISR” in Figure 4.2, see Subsection 4.3 for
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details). The values of partial signatures Sj can be obtained by sequential simulation, or
by extracting signal values from the SAT instance solution.

All constraints, as well as the Boolean difference of the original miter, must be applied
simultaneously when generating a test pattern. That is expressed by the last AND gate
of the miter, which can be implemented as a conjunction of clauses in the CNF instance
(since the AND output is forced to 1).

By including multiple copies of the CUT, we increase the number of clauses and vari-
ables significantly (i.e., the size of the SAT instance), especially if a high number of anti-
aliasing constraints is in effect. However, it has been shown on a problem of multi-targeted
faults that SAT solvers are robust enough for this approach to be feasible [19]. We expect
that the SAT solver will be efficient in finding the constrained test pattern or proving that
no such pattern exists and aliasing is unavoidable (aliasing of some fault fj in the current
step, by test pattern pi).

The necessary assumption of sequential generation of test vectors, i.e., test vectors p1
– pi−1 must have been generated prior to pi, leads to an unfortunate consequence that
the generated test vectors cannot be further rearranged or compacted after the test was
generated, as this would invalidate the guarantee of zero aliasing. However, it has been
shown [23] that much more compact, i.e., shorter test can be obtained when fault dropping
is not used in the main ATPG loop; in standard ATPG practice [23], highly redundant
test is generated first, and then it is compacted to reduce its size. This is unfortunately
not possible in our case. Consequently, longer tests are expected.

The preliminary experiments have shown that the test length also depends on the fault
ordering used. Therefore, we use the fault ordering based on accidental detection index
(ADI) [43]. The experimental results for different fault orderings are presented in Section
4.6.

4.3 Unrolling the Sequential Circuit

The aliasing happens after application of a test pattern that is being generated. That
means that we need to know the future state of the temporal compactor during test pattern
generation. Simulation of the compactor is, however, possible only after a test pattern was
generated. To avoid this problem, the transition function TMIRS can be encoded in the
miter and the SAT instance by unrolling the compactor.

The method of unrolling can be used to express the future state of the compactor during
the test pattern generation, provided we know the previous state of the compactor. Then,
the future state can be computed by extracting the combinational part of the compactor.
Simulating the compactor is then part of SAT-solving during the search for a test pattern –
the compactor is included in the miter for which SAT is solved. An example of an unrolled
compactor from Figure 2.4 is depicted in Figure 4.3.

In the miter in Figure 4.2, this unrolled circuit is shown as MISR blocks, one for
each anti-aliased fault and one for the fault-free circuit (note that these are combinational
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Figure 4.3: Example of a temporal compactor and corresponding unrolled circuit

circuits, not actual MISRs). The previous internal state of the compactor is represented
by vectors S1 and S2–Sn for the fault-free and faulty circuits respectively.

This extended miter can be transformed to the CNF the same way as in the conventional
SAT-ATPG. Due to the nature of CNF, it is easy to generate the CNF of the extended
miter. For simplicity, we can use the CNF from the transformation of the classical miter
and add new parts of the extended circuit by simply concatenating new clauses to the
CNF. This includes clauses describing the circuits CUT2–CUTn, the unrolled compactor,
and constraints forcing the outputs to be non-zero vectors. In Figure 4.2, this concatenation
is represented by the AND gate.

4.4 Simplification for Linear Compactors

For linear temporal compactors, the superposition principle can be used to separate their
state and input into an error component and a correct component. These components can
be then used independently.

The output response coming from the CUT can be divided into two parts, R = Rc⊕Re,
where R is the response of the CUT, Rc is the response of the fault-free circuit, and Re is
the error difference of the output.

For illustration of this, we have chosen the LFSR-based MISR compactor from Figure
2.4. If we use the superposition principle for the MISR, we can split the internal state into
two states, S = Sc⊕Se, where S is the state of the MISR, Sc is the state for the fault-free
circuit, and Se is the error difference (error component) for the faulty circuit.
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Figure 4.4: Example of the state computation of a linear compactor.

The next partial signature is computed as S(t+1) = TMISR(S
(t), R(t)). For example,

the MISR from Figure 2.4 has a transition function TMISR((s0, s1, s2), (r0, r1, r2)) = (s2 ⊕
r0, s0 ⊕ s2 ⊕ r1, s1 ⊕ r2).

Due to the linearity of TMISR, where TMISR(a ⊕ b) = TMISR(a) ⊕ TMISR(b), we can

compute the correct and the error states separately as S
(t+1)
c = TMISR(S

(t)
c ), R

(t)
c ) and

S
(t+1)
e = TMISR(S

(t)
e ), R

(t)
e ), respectively. This is illustrated in Figure 4.4.

To compute the signature of the CUT, we only need to compute the S
(l)
c , where l is the

length of the test. Similarly, to analyze the aliasing, we only need to consider S
(l)
e , where

a non-zero vector means that a fault was detected and the zero vector means that it was
not detected.

To prevent aliasing for all single faults after application of the whole test, we need to
prevent aliasing after application of every test pattern for every single fault. Note that
aliasing for a fault fs can happen only if this fault was previously detected. Let’s say that,
after application of t-th test pattern (in test step t), the error component of the partial

signature S
(t)
e is non-zero, meaning that a fault (for example fs) was detected. In step
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Figure 4.5: Miter for finding zero-aliasing test pattern, simplified for linear compactors.

t+ 1, we apply the next test pattern testing some other fault. If we then get S
(t+1)
e equal

to zero (partial signature equal to the signature of the fault-free circuit), an aliasing event
occurred.

We can express the output response that would cause aliasing as R
(t)
e = TMISR(S

(t)
e , 0).

This can be done in compactors, where the response R(t) is directly XORed with the
internal state S(t). We can thus precompute the error difference of the response causing
the aliasing after application of the next test pattern.

By using the compactor with the error state in the simulation step, we can omit the
unrolled combinational part of the compactor. The simplified miter can be seen in Figure
4.5. Here, the vectors C1 through Cn represent constraints of the error component of the
response. These output vectors are constrained to not have the value that would cause
aliasing. This is done by solving an equation TMISR(S

(t)
e , R

(t)
e ) = 0.

4.5 Algorithm

The main execution loop of the proposed ZATPG procedure expressed in pseudocode is
shown in Algorithm 4.1. The algorithm is initialized by setting the list of uncovered faults
Fu to all non-redundant faults (line 3). After the initialization, the algorithm works by
repeatedly (lines 4–24) iterating over the list of uncovered faults Fu (lines 6–23) until either
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4. Augmented ATPG with Zero-Aliasing Constraints

Algorithm 4.1 Overview of the ZATPG algorithm.

1: procedure ZATPG(M)
2: P ← ( )
3: Fu ← F
4: repeat
5: fault loop:
6: for all f ∈ F do
7: if f /∈ Fu then
8: continue
9: end if
10: C ← {}
11: p← ATPG(f, C)
12: while a p was generated do
13: Fa, Fd ← SIM(P, p)
14: if (|Fa| ≤M) ∧ (|Fa| < |Fd|) then
15: P ← append(P, p)
16: Fu ← Fu \ Fd

17: Fu ← Fu ∪ Fa

18: continue fault loop
19: end if
20: C ← C ∪ CONSTR(P, Fa)
21: p← ATPG(f, C)
22: end while
23: end for
24: until P was not updated in last iteration
25: return P
26: end procedure

a complete fault coverage is achieved or no test pattern with zero aliasing can be found
anymore.

The requirement of preventing aliasing for all faults in every step is too strong. The
algorithm stops prematurely when no test pattern without aliasing can be found. To
alleviate this problem, we introduce relaxation: some small amount of aliasing is allowed
to occur, as we are able to re-detect the aliased fault by the end of the test. For this purpose,
we introduce an adjustable parameter M , and the generated test pattern is accepted even
with aliasing if this aliasing is lower than M . An additional requirement is that the
number of newly (re-)detected faults is higher than the number of aliased faults, i.e., the
fault coverage is improved.

During the iteration, first, a test pattern p is generated as in usual ATPG with no
additional constraints (lines 10, 11). The aliasing caused by this pattern is then analyzed
by simulation for all faults (line 13). If the number of aliased faults |Fa| is lower than the
number of newly detected faults |Fd| and |Fa| is not higher than the parameter M value,
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the pattern p is accepted.
In the case of the above-mentioned condition for accepting the pattern p not being met,

the set of aliased faults Fa is fault-simulated and a set of constraints C is constructed (line
20) and a new pattern p is generated with these additional constraints. This is continued
until the pattern acceptance condition is met or no pattern exists that would satisfy all
the constraints.

When the test pattern p is accepted, it is appended at the end of the test patterns
sequence P (line 15). Additionally, detected faults Fd are removed from the list of un-
detected faults Fu (line 16). Conversely, aliased faults Fa are added back to the list of
undetected faults Fu (line 17).

The algorithm stops when no new pattern was generated for all remaining uncovered
faults (line 24).

Our implementation also contains optional fault ordering randomization, either at the
beginning of the algorithm or in every step of the fault loop (6). If not used, fault ordering
is preserved as the fault list is generated or provided from outside.

The algorithm uses the following procedures:

4.5.1 SIM

The procedure SIM runs a sequential simulation of the partial test sequence for every
fault. It simulates the compactor’s error state after application of a partial test sequence
P , including the newly generated test pattern p. Here, the error state is the difference
between the states of the fault-free and faulty circuit, as described in Subsection 4.4.

As an implementation speed up, we need not simulate the entire (partial) test sequence.
Instead, we save the resulting compactor state of the simulation for each fault and simulate
the newly generated test pattern only. The saved state is updated when the test pattern
is accepted and appended to the test sequence.

Faults that are newly detected by p and those that are aliased, are identified. New
detection of a fault is indicated by changing the error state of the fault from the zero
vector to a non-zero vector after application of p. Conversely, the aliasing of a fault is
detected by changing its error state from a non-zero vector to a zero vector. The sets Fa

and Fd of aliased and detected faults are then returned.

4.5.2 ATPG

The procedure ATPG generates a test pattern pi for a fault f and constraints pi to not
cause aliasing, according to information given in C. C is a set of pairs of a potentially
aliased fault fj and the response (vector) Re,j to fj that would cause the aliasing. The
miter (Figure 4.5) is extended for the fault fj by adding a copy of the CUT, CUTj. The
response vector from C is then used to constrain the value Cj in the miter. In practice, a
blocking clause is added to signal Dj.

The generated test pattern pi, if any, is then returned.
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4.5.3 CONSTR

The procedure CONSTR computes constraints for the ATPG to prevent the aliasing of
faults selected in fault simulation (procedure SIM ). This is done as described in Subsection
4.4.

For example, to prevent aliasing of a fault fj, the internal state of the MISR is simulated
using only error differences of output responses to all test patterns generated prior to the
current test pattern pi (which is not computed yet). Then, the final transition of the MISR
is simulated with zero input vector, corresponding to the output response where fault fj
was not detected. The output response (for fj) that would cause aliasing is then inferred
from the internal state of the MISR.

This response (error difference) is then forwarded together with the fault Fj to the
ATPG procedure, where the constraints are incorporated into the miter.

4.6 ZATPG: Experimental Results

4.6.1 Experimental setup

In our experiments, we are using benchmark circuits from ISCAS’85 [6] and some circuits
from ITC’99 [11].

For each circuit, we consider several sizes w of the temporal compactor. Since the
CA-based MISRs are a promising alternative to LFSR-based MISRs, because of their
proclaimed lower aliasing [27], we have studied their efficiency in connection with ZATPG.
Our initial assumption is that CA-based MISRs could perform better, in sense of aliasing.
Experiments were conducted to prove or disprove this theory.

We use and compare different linear compactors, an LFSR-based MISR and cellular
automata (CA) based MISR. The selected LFSR-based MISR always has a primitive char-
acteristic polynomial. CA-based MISRs with rules 90, 150, or a hybrid 90/150 rule were
used.

As a spatial compactor, we are using a parity tree forest (disjoint XOR trees) design.
The number of spatial compactor outputs matches the width of the MISR (w). Thus, the
spatial compactor is constructed randomly as w disjoint XOR trees, while its irredundancy
is guaranteed by simulation.

For each circuit, we append a spatial compactor to CUT primary outputs and process
the resulting circuit as a whole, i.e., the spatial compactor does not affect ATPG workflow
once it has been generated. Therefore, the additional faults in the compactor are also
targeted by the ATPG. All faults in the compactor are testable under the assumption that
faults at the CUT POs are testable, i.e., that each PO can be set to both logical values 1
and 0.

We only consider faults that are testable, meaning we do not include redundant faults
in any of our aliasing or coverage percentages. The coverage of 100% can thus be achieved
for every circuit. Redundant faults are detected prior to the ZATPG run, by executing a
standard SAT-based ATPG process.
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Table 4.1: Test length for LFSR-based MISR of 9 bits

circuit orig 0decr decr incr incr0
b04 151 117 135 150 168
b11 131 117 117 132 135
c1355 91 96 97 118 122
c1908 146 136 133 168 167
c2670 253 285 274 262 244
c499 65 66 63 81 83
c5315 274 221 232 256 259
c7552 258 300 265 307 302
c880 81 82 86 100 113
total 1450 1420 1402 1574 1593

For both ZATPG and conventional ATPG, we use the SAT-based ATPG ([A.1], Chapter
3) which uses MiniSAT [17] as an SAT-solver.

4.6.2 Fault Ordering

To determine the most promising fault ordering, we first need to have some metric by which
to compare. As we are generating a test with zero aliasing, or complete fault coverage,
measuring aliasing/coverage is a clear candidate for consideration.

We have found from our experiments that the fault ordering has no or insignificant
effect on fault coverage. No trend, as to which ordering achieves better coverage, was
observed. As the measurements are inconclusive, we do not include them here.

When we look at the length of the test generated, we find a different picture. For this
measurement, we have chosen one size of the LFSR-MISR, w = 9 bits. This is the size of
the LFSR-MISR, where we achieve complete coverage for all measured circuits.

The measured test lengths for different fault orderings are shown in Table 4.1. The
orderings used are orig which is simply the unchanged fault ordering from the circuit
description, decr which has faults sorted according to ADI in decreasing order, 0decr
which treats faults with the ADI of 0 as a special value and places them at the front of the
fault-list, incr and incr0 which place faults in increasing order.

The fault orderings decr and 0decr lead to the smallest test size overall while the
orderings incr and incr0 lead to longest tests. This result is in agreement with results
from [43]. Therefore, we use the decr ordering for all subsequent experiments.

4.6.3 Fault coverage

To decide the performance of the ZATPG, we measured fault coverage for different com-
pactors. Results for LFSR-based MISR and CA-based MISR with the hybrid rule 90/150
(CA90150-MISR) are shown in Tables 4.2 and 4.3, respectively. Other investigated com-
pactors, the CA with rule 90 and the rule 150 are not shown, as their performance was worse
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Table 4.2: Fault coverage for conventional and augmented ATPG (LFSR-MISR)

MISR size 2 3 4 5
atpg zatpg atpg zatpg atpg zatpg atpg zatpg

circuit faults [%] [%] [%] [%] [%] [%] [%] [%]
b04 2846 80.36 79.02 87.62 90.15 95.71 96.06 97.96 99.12
b11 2382 80.94 80.48 89.58 90.13 93.52 94.95 97.39 99.49
c499 970 82.37 78.35 89.98 88.33 97.2 94.72 96.16 97.2
c880 1582 77.43 81.67 90.32 92.59 95.12 97.66 96.76 100.
c1355 2618 78.19 73.49 88.72 92.05 95.87 95.83 97.21 96.21
c1908 2581 85.08 76.09 93.33 86.51 96.7 92.94 98.8 94.56
c2670 3613 75.64 73.01 91.58 87.15 95.43 95.18 97.78 97.53
c5315 7964 – – 90.34 91.02 94.57 96.41 97.32 98.02
c7552 10921 – – 87.46 88.56 94.29 95.26 97.9 97.37

MISR size 6 7 8 9
atpg zatpg atpg zatpg atpg zatpg atpg zatpg

circuit faults [%] [%] [%] [%] [%] [%] [%] [%]
b04 2846 98.7 99.89 99.61 100. 99.79 99.86 99.79 100.
b11 2382 98.95 100. 99.58 100. 99.75 100. 99.83 100.
c499 970 98.34 97.51 98.44 99.48 99.37 100. 99.79 100.
c880 1582 98.98 100. 99.87 100. 100. 100. 99.87 100.
c1355 2618 98.97 99.69 99.85 99.73 99.58 100. 99.96 100.
c1908 2581 99.73 99.07 99.3 99.96 99.81 100. 99.96 100.
c2670 3613 98.45 97.75 99.64 100. 99.72 99.06 99.78 100.
c5315 7964 98.93 99.9 99.5 100. 99.69 100. 99.82 100.
c7552 10921 99.07 98.09 99.39 99.96 99.71 100. 99.7 100.

than both LFSR-MISR and CA90150-MISR. We then compare the results of ZATPG with
the results of conventional SAT-ATPG. The columns “ZATPG” show the fault coverage
achieved by our algorithm, whereas the columns “ATPG” show the coverage of a test gen-
erated by an ATPG that does not consider the compactor. The coverage is a percentage of
faults that are detected after the compaction. These are the measurements for acceptable
aliasing parameter M set to ∞. No zero-aliasing spatial compactors were constructed for
circuits c5315 and c7552 with output size 2. Aliasing in temporal compactors and coverage
for these sizes was not measured, as the aliasing in the spatial compactor would skew the
results. Thus the respective entries are missing

The achieved results are comparable, but our ZATPG performs slightly worse for com-
pactors of small size. As the size of the compactor increases, ZATPG is catching up and
overtaking ATPG in terms of coverage.

Worse performance at small compactors is caused by the fact that the ZATPG stops
generating new patterns, when no improvement in coverage can be made, even if there is
no pattern for some remaining faults. ATPG, on the other hand, generates test patterns
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Table 4.3: Fault coverage for conventional and augmented ATPG (CA-MISR 90/150)

MISR size 2 3 4 5
atpg zatpg atpg zatpg atpg zatpg atpg zatpg

circuit faults [%] [%] [%] [%] [%] [%] [%] [%]
b04 2846 80.36 79.02 78.55 80.8 95.18 95.78 95.92 94.82
b11 2382 80.94 80.48 77.52 73.74 94.83 95.25 95.37 97.39
c499 970 82.37 78.35 84.3 83.99 94.82 90.06 97.82 87.45
c880 1582 77.43 81.67 82.03 82.91 95.56 97.78 95.88 98.03
c1355 2618 78.19 73.49 78.94 82.42 94.07 93.99 94.72 94.07
c1908 2581 85.08 76.09 81.08 80.61 96.9 90.88 96.19 91.73
c2670 3613 75.64 73.01 80.23 72.83 95.26 95.54 96.53 94.65
c5315 7964 – – 75.8 77.5 94.54 95.91 96.55 95.83
c7552 10921 – – 77.15 68.46 94.68 93.53 95.53 93.58

MISR size 6 7 8 9
atpg zatpg atpg zatpg atpg zatpg atpg zatpg

circuit faults [%] [%] [%] [%] [%] [%] [%] [%]
b04 2846 99.15 99.96 92.67 96.19 99.68 100. 99.75 100.
b11 2382 98.74 99.92 93.04 95.36 99.28 99.96 99.79 100.
c499 970 99.17 99.58 95.73 95.62 99.79 94.57 99.06 99.9
c880 1582 99.05 100. 95.74 95.93 99.43 100. 100. 100.
c1355 2618 98.81 99.16 94.82 95.17 99.23 100. 99.19 100.
c1908 2581 99.38 96.7 95.45 95.18 99.84 100. 99.3 99.88
c2670 3613 98.72 100. 94.62 84.43 99.31 97.58 99.5 100.
c5315 7964 98.55 99.92 92.66 92.5 99.43 99.71 99.51 99.12
c7552 10921 99.04 99.07 94.6 92.1 99.45 99.65 99.52 99.84

for all faults without considering the compactor; the loss of coverage is then caused only
by aliasing in the MISR.

Both ATPG and ZATPG perform slightly worse for the CA90150-MISR in comparison
to the LFSR-MISR. Especially for small compactor sizes, the drop in coverage is noticeable.
Even so, ZATPG achieves higher coverage than ATPG in larger CA90150 compactors. This
observation denies our initial theory – CA-based MISRs are generally not more efficient
than LFSR-based MISRs when used in connection with ZATPG. This could be attributed
to the high efficiency of the ZATPG process, which is able to find zero-aliasing test vectors
regardless of the compactor design.

4.6.4 Aliasing

The targeted aliasing for ZATPG is zero, but as can be seen from Table 4.4, this cannot
be always achieved. The Table shows how the choice of the parameter M influences the
results. The column “aliasing” shows the aliasing in the LFSR-based MISR, the column
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Table 4.4: Aliasing in LFSR-MISR

M 3 5 10
MISR aliasing coverage aliasing coverage aliasing coverage

circuit size [%] [%] [%] [%] [%] [%]
c499 6 0.31 95.01 0.21 99.06 0.10 99.90
c880 5 0.13 98.98 0.51 97.72 0.00 100
c1355 6 0.04 92.87 0.15 93.72 0.19 97.16
c2670 6 0.08 94.09 0.08 96.50 0.00 100
c7552 7 0.00 99.67 0.00 99.83 0.00 99.86

M 50 ∞ ATPG
MISR aliasing coverage aliasing coverage coverage

circuit size [%] [%] [%] [%] [%]
c499 6 0.00 96.57 0.00 96.57 99.38
c880 5 0.00 100 0.00 100 97.78
c1355 6 0.00 100 0.00 100 98.51
c2670 6 0.36 98.00 0.36 98.00 99.06
c7552 7 0.00 99.95 0.00 99.95 99.51

“coverage” shows the total test coverage, including aliasing.
This illustrates the need to relax the requirement of zero-aliasing in the ZATPG. Al-

lowing only a small number of aliasing by setting M to values less than 10 leads to worse
performance of the ZATPG compared to ATPG. On the other hand, increasing the amount
of allowed aliasing to values over 50 does not further increase the coverage, hinting that the
amount of aliasing during computation of single test pattern pi is not higher. We choose
to not limit aliasing during our testing (M =∞).

4.6.5 Robustness

Both the fault coverage and test length achieved by ZATPG naturally depend on the fault
ordering [22]. However, a robust algorithm should minimize this dependency.

We have examined the robustness of ZATPG on selected circuits by randomly changing
the initial ordering of faults, as given in the description of the algorithm (Subsection 4.5,
line 6 of Algorithm 4.1).

Then, we have observed the fault coverage and test length for different random fault
orderings. As the ADI-based fault selection strategy has been found efficient in reducing
the test length, it is included in the experiments as a reference.

4.6.5.1 Fault coverage

Distributions of fault coverage for circuits c2670 and c1355 [6] are shown in Figure 4.6,
these were computed for the smallest LFSR-MISR size where the original fault ordering
leads to the complete fault coverage. The LFSR-MISR sizes are 6 bits for c1355 and 7 bits

36



4.6. ZATPG: Experimental Results

0decr decr incrincr0

0.92 0.94 0.96 0.98 1.00
0

50

100

150

200

250

Coverage

F
re

q
u

e
n

c
y

c1355

0decr

decr

incr

incr0

0.970 0.975 0.980 0.985 0.990 0.995 1.000
0

50

100

150

Coverage

F
re

q
u

e
n

c
y

c2670

Figure 4.6: Robustness of ZATPG: test coverage for random fault ordering.
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for c2670. For circuit c1355, 2007 measurements were made and for circuit c2670, 1003
measurements were made. The parameter M =∞ was used for both circuits.

We can see that the algorithm is not robust but there is a clear trend towards a complete
fault coverage in circuit c1355, in circuit c2670 this trend is not so clear. For these circuits,
6.8 %, and 5.5 % of orderings, respectively, lead to complete fault coverage. This result
suggests that it might be possible to achieve complete fault coverage in smaller compactors
if we were able to find a better fault selection strategy.

4.6.5.2 Test length

Distributions of the test lengths generated for circuits c1355 and c1908 are shown in Figure
4.7. The compactor used was the LFSR-MISR with width w = 6 and w = 8, respectively.
We see that the test length varies wildly, up to a factor of 2 for the circuit c1355.

While the ADI orderings decr and decr0 performed better than the original ordering,
they still produce significantly bigger tests than is necessary. This suggests that the algo-
rithm is not robust and there is a possibility of improvement, possibly by finding a better
fault ordering strategy.

Circuits c2670 and b04 are examples of circuits where test lengths for the majority of
fault orderings are 253 and 127. Despite this, the difference between the best and worst
ordering is still over the factor of 2 for the circuit c2670. While ADI orderings behave
as expected for circuit b04, circuit c2670 is an anomaly as the orderings incr and incr0
give better results than the decr and 0decr orderings. Also, note that the ADI orderings
themselves are computed using the Monte Carlo simulation.

4.6.6 Compactor size

The size of the smallest MISR for which a complete fault coverage was found is shown in
Table 4.5, for both LFSR-MISR and CA-90/150-MISR. The column “ATPG” shows the
needed size of a MISR for which conventional ATPG found a complete (and zero-aliasing)
test. The column “ZATPG” shows the needed MISR size for our algorithm to achieve
complete fault coverage.

The search for the smallest MISR with zero aliasing and complete coverage was done
by testing all sizes of the compactor from the smallest up to the size where zero aliasing
was achieved.

Our ZATPG algorithm needs significantly smaller compactors because it is guided to-
wards zero aliasing. The conventional ATPG, on the other hand, produces a test for
all faults without heeding the compactor and the aliasing is then a result of the aliasing
probability in the compactor.

In comparison to LFSR-MISR, the CA-MISR achieves zero aliasing in compactors of
similar sizes, if slightly smaller in the case of ATPG. In the case of ZATPG, the size is also
similar, but slightly higher. In both cases, however, ZATPG achieves a smaller compactor
size with zero aliasing, except for circuit c7552. This is more distinct for the LFSR-MISR.
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Figure 4.7: Robustnes of ZATPG: test set length from random fault ordering.
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Figure 4.8: Robustnes of ZATPG: test set length from random fault ordering.

40



4.6. ZATPG: Experimental Results

Table 4.5: Minimal size of MISR with zero-aliasing test

LFSR-MISR CA-MISR 90/150
circuit faults ATPG ZATPG ATPG ZATPG

b04 2846 10 7 10 8
b11 2382 11 6 10 9
c499 970 15 8 10 10
c880 1582 12 5 10 6
c1355 2618 11 8 12 8
c1908 2581 10 8 10 8
c2670 3613 11 7 12 6
c5315 7964 12 7 12 10
c7552 10921 8 8 9 10

Table 4.6: Minimal size of MISR with zero-aliasing test

run time [s]
circuit faults ATPG ZATPG
b04 2846 17 73
b11 2788 12 41
c499 970 3 5
c880 1582 3 16
c1355 2618 6 53
c1908 2581 10 39
c2670 3613 77 297
c5315 7964 283 1299
c7522 10921 280 2452

4.6.7 Algorithm computation time

A comparison of the computation time of the ZATPG and a conventional SAT-ATPG can
be seen in Table 4.6. The computation time was measured for the MISR sizes, where each
algorithm achieved zero aliasing.

Figure 4.9 illustrates the dependence of the ZATPG computation time on the MISR
size. It is apparent that the computation time sharply rises as the MISR size decreases.
This is due to the high aliasing probability in the small compactors, which leads to a high
amount of ATPG re-runs with additional constraints. Indeed, the computation time for the
larger MISR sizes is closing the gap between ZATPG and a conventional SAT-ATPG. This
gap is never really closed, however, as ZATPG is necessarily running more fault simulations
of the CUT.
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Figure 4.9: Runtime of the ZATPG algorithm depending on the MISR size for the c7552
benchmark circuit.

4.7 Optimization-Based ZATPG

A critical problem with the ZATPG algorithm is the resulting test length. This is given by
the fact that the algorithm does not use any form of test compaction, static or dynamic.
Additionally, a fault can be tested multiple times, as it is repeatedly detected and aliased.
A related problem is the test generation time, caused by the repeated rejection of a test
pattern, especially for small compactors.

In this section, we present our approach to reduce both the aliasing and the test length.
For that, we use an optimizing Pseudo-Boolean Optimization (PBO) solver in the ATPG
process. We build on our previous algorithm, ZATPG, described earlier in this chapter.
We call this revised algorithm ZATPG-PBO.

These are preliminary results, the ZATPG-PBO was not published in peer-reviewed
paper as of the time of writing this text.

4.7.1 Constraining Fault Aliasing

When using hard constraints on aliasing, we can get into a situation where no test pattern
can be generated for our selection of anti-aliased faults. To avoid such a situation we use
an optimization criterion to minimize the number of aliased faults. We let the solver select
(some) minimal subset of anti-aliased faults to increase the probability that a test pattern
for the currently selected fault exists.

Adding all faults to the miter for anti-aliasing would be too expensive – both in the
miter construction and PBO solving. Thus we only add faults that are likely to be aliased.
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We detect such faults by simulation after a test pattern is generated. If necessary, we
construct a new miter with appended faults and try to generate the test pattern again.

Example 4.7.1. Let us have a set of faults Fa = {f1, . . . fn} that were aliased by a
newly generated test pattern p1. The pattern is simulated and if the overall coverage has
decreased because of aliasing, the pattern p1 is not accepted. The aliased faults from Fa

are added to the miter. A new test pattern p2 is generated. The PBO solver minimizes
the number of faults in Fa that are aliased by p2. The pattern p2 is simulated and if the
overall fault coverage increases, it is accepted.

4.7.2 Test Compaction

Dynamic test compaction is used, because of the test’s strict sequentiality – the aliasing
depends on all test patterns and their ordering. For this reason, static test compaction or
any other test post-processing cannot be used.

For this, we adapt recent OTG techniques [20]. With this method, we do not test a
single fault, instead, we select a set of faults Ft to be tested. Again, we use a PBO solver
to select the maximal subset F ′

t ⊂ Ft of faults that can be tested by a single test pattern.

We combine this optimization criterion with the previous one, the aliasing minimization.
Our goal is to maximize the overall fault coverage gained by the generated test pattern.
The optimization cost of one newly detected fault is the same as the cost of one fault that
was not aliased, i.e. we do not care if the pattern detects fault ft1 while aliasing fault
fa1 or if neither is detected and aliased. This also leads to decreased complexity of the
constructed miter – the newly selected faults and anti-aliased faults are uniform in the
miter and PBO instance.

4.7.3 Miter and PBO Instance

The miter is constructed similarly to the ZATPG algorithm (Figure 4.2). The difference
is that the faulty responses are not hard-constrained to be different from the fault-free
response. Instead, they are included in the optimization criterion of the PBO instance.
The optimization criterion is to maximize the number of differing faulty responses. See
signals BD1 through BDn in Figure 4.10.

The output of the solver is the test pattern with the maximum of selected faults detected
(maximum of the BDi signals set to the value 1). These are either newly targeted faults
or faults with prevented aliasing. Because the difference outputs are not constrained, this
test pattern will always exist, possibly decreasing the fault coverage.

4.7.4 The Algorithm Overview

A high-level view of the overall ZATPG-PBO algorithm is shown in Algorithm 4.2. The
flow of the algorithm is as follows.
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Algorithm 4.2 General overview of the algorithm.

1: procedure ATPG(C)
2: P ← ∅
3: F ← faults(C)
4: repeat
5: Ft ← select(F )
6: Fa ← ∅
7: repeat
8: p← genPattern(C,Ft ∪ Fa)
9: Fd, Fa ← simulate(C, p)
10: until |Fd| − |Fa| ≥Mi ∨ |Fa| ≤Ma

11: if |Fd| − |Fa| ≥Mi then
12: P ← append(P, p)
13: F ← update(F, Fd, Fa)
14: end if
15: until F = ∅ ∨ select(F ) = ∅
16: return P
17: end procedure
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4.7.4.1 Fault generation

On line 3, a fault list for the circuit C is prepared. This fault list is precomputed and
ordered by the accidental detection index (ADI) [43]. We also use this step to remove
redundant faults from the fault list.

4.7.4.2 Fault selection

On line 5, a set Ft of targeted faults is selected from F . On the first invocation or after a
test pattern was accepted, up to Mf first faults are selected. If a satisfactory test pattern

was not found, faults Ft are re-targeted and first n
Mf

2
faults are skipped for every (n)

unsuccessful search.

4.7.4.3 Pattern generation

On line 8, a test pattern p is generated, as described in previous subsections. The first run
is done only for targeted faults Ft. Subsequent runs are done also for aliased faults Fa.
This step is repeated until (line 10) a satisfactory pattern is generated or the number of
aliased faults grows over the maximum number of anti-aliased faults Ma. Care must also
be taken to detect that no satisfactory pattern exists. We do this by detecting that Fa was
not changed since the last iteration.

4.7.4.4 Fault simulation

On line 9, a fault simulation is done for all faults and the fault coverage is analyzed; aliased
Fa and newly detected Fd faults are recorded. In addition to the circuit under test, the
compactor is also simulated. The internal state of the compactor is kept for each fault by
the algorithm.

4.7.4.5 Accepting pattern

If the generated pattern is satisfactory – increases the fault coverage by at least Mi (line
11) – it is recorded (line 12). The internal state of the compactor is also updated for
each fault and fault-free circuit. The fault list F is updated (line 13), detected faults are
removed, and aliased faults are added back. The fault list remains ordered by ADI.

4.7.4.6 Algorithm termination

The algorithm terminates when all faults are covered or if the fault list is exhausted (line
15). In the case of fault list exhaustion, there are some faults left. As the last attempt,
the entire algorithm can be optionally restarted with an increased number of targeted
faults Mf . This restart keeps the already generated test set and the internal state of the
algorithm. This is however effective only if the number of undetected faults is greater than
Mf .
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4.8 ZATPG-PBO: Experimental Results

In this Section, the experimental results for the ZATPG-PBO are presented. The used
PBO solver is the Minisat+ [21]. Experiments were run on the circuits from the ISCAS’85
benchmark [6]. The used fault model is the stuck-at model.

The benchmark circuits were modified in the following way: first, an irredundant spatial
output response compactor without aliasing was randomly generated. The compactor was
appended to the primary outputs of the CUT. The spatial compactor was constructed as
a collection of disjoined XOR trees. Second, an LFSR-MISR was used as the temporal
output response compactor. The size of the LFSR was chosen to be equal to the number
of spatial compactor outputs.

4.8.1 Pilot experiments

In our pilot experiments, we focused on finding suitable parameter settings for the algo-
rithm. We have chosen the following setup:

◦ default targeted faults set size, Mf = 20,

◦ the maximal allowed targeted faults set size, Mfm = 800,

◦ the acceptable improvement, Mi = 1,

◦ the allowed anti-aliasing window size, Ma = 100.

We have determined the best size of the targeted faults set (Mf ) to be around 20 – 50.
This range provides the best compromise between the test length and computation time for
tested circuits. We have chosen the lower value and allowed the momentary increase of the
targeted set size; due to the size of tested circuits, Mfm = 800 means that the maximum
size of the targeted faults set is effectively unrestricted. In Figures 4.11 and 4.12 is shown
the influence of this parameter on the computation time and the test length.

The impact of the anti-aliasing window (Ma) is the same as the size of the targeted
faults set, as the implementation and encoding in CNF are identical. However, the aliasing
is rather small for most patterns, and for many is not considered at all. The average impact
of the parameter is lower than the number of targeted faults. The parameter of acceptable
improvement (Mi) is set to 1, as the ZATPG-PBO uses the fault coverage improvement as
the optimization criterion.

4.8.2 Fault Coverage and Test Length

Up to our knowledge, there are no similar works to be able to compare with. Thus, we
present only a comparison with our previous method [31]. The comparison is shown in
Table 4.7.

The results are presented for MISR sizes ranging from 4 to 7. In the column ATPG is
the fault coverage achieved with a classical ATPG as presented in [31]. First, a full-coverage
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Table 4.7: Fault coverage and test length

MISR SIZE 4 5
algorithm ATPG ZATPG ZATPG-PBO ATPG ZATPG ZATPG-PBO
circuit faults [%] [%] length [%] length [%] [%] length [%] length
c499 2550 97.20 94.72 52 96.47 72 96.16 97.2 52 99.88 90
c880 1820 95.12 97.66 75 99.83 32 96.76 100 80 100 28
c1355 2950 95.87 95.83 75 97.97 75 97.21 96.21 66 99.80 86
c1908 2829 96.70 92.94 78 97.00 102 98.80 94.56 86 99.72 116
c2670 4108 95.43 95.18 119 99.81 81 97.78 97.53 151 100 87
c5315 8930 94.57 96.41 150 - - 97.32 98.02 151 99.62 93
c7552 11529 94.29 95.26 128 - - 97.90 97.37 155 99.83 110
b04 3572 95.71 96.06 75 - - 97.96 99.12 106 99.94 74
b11 3266 93.52 94.95 87 98.59 105 97.39 99.49 124 99.75 91

MISR SIZE 6 7
algorithm ATPG ZATPG ZATPG-PBO ATPG ZATPG ZATPG-PBO
circuit faults [%] [%] length [%] length [%] [%] length [%] length
c499 2550 98.34 97.51 51 99.80 84 98.44 99.48 61 100 89
c880 1820 98.98 100 78 100 27 99.87 100 90 100 26
c1355 2950 98.97 99.69 91 100 87 99.85 99.73 89 100 87
c1908 2829 99.73 99.07 130 99.79 112 99.30 99.96 132 100 112
c2670 4108 98.45 97.75 186 100 82 99.64 100 268 100 86
c5315 8930 98.93 99.90 189 100 86 99.50 100 217 100 80
c7552 11529 99.07 98.09 160 99.99 100 99.39 99.96 269 100 93
b04 3572 98.70 99.89 114 99.94 66 99.61 100 118 100 68
b11 3266 98.95 100 126 99.91 88 99.58 100 121 99.97 87

test is generated for the combinational circuit with a spatial compactor but without any
knowledge about the temporal compactor. Second, fault simulation is run with the tem-
poral compactor and the fault coverage is analyzed.

In the column ZATPG is the coverage and test length achieved with the ZATPG. This
is the fault coverage achieved by zero-aliasing ATPG with hard anti-aliasing constraints.

In the column ZATPG-PBO are the coverage and test length achieved by the algorithm
described in this paper. We have chosen to present experiments with the parameter for the
number of targeted faults set to Mf = 20. This setting returned the best overall results
over the tested circuits. The missing values indicate that the algorithm did not terminate
within a time limit for the computation.

The new algorithm, ZATPG-PBO, achieved higher coverage than ZATPG in most
cases. It also achieved lower test length in cases where the fault coverage is similar with a
notable exception in the circuit c499. Lower test lengths in ZATPG for other circuits can
be attributed to lower fault coverage in ZATPG.

4.8.3 Anti-aliasing

In Table 4.8 is shown maximally used anti-aliasing, i.e., how many aliased faults we ap-
pended to the miter to prevent aliasing, up to the maximum Ma = 100. Only aliasing that
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Table 4.8: Maximal anti-aliasing

MISR 3 4 5 6 7 8 9
c499 - 100 100 100 36 13 12
c880 100 100 52 24 6 4 5
c1355 100 100 100 78 32 11 5
c1908 - 100 100 45 18 14 13
c2670 100 100 100 62 81 21 18
c5315 - - 100 100 39 13 0
c7552 - - 100 100 65 41 29
b04 - - 100 71 18 12 11
b11 100 100 96 21 24 8 9

Table 4.9: Computation time

MISR 3 4 5 6 7 8 9
circuit [s] [s] [s] [s] [s] [s] [s]
c499 - 58402 3029 1558 361 198 178
c880 4894 591 202 182 124 202 93
c1355 105807 6192 1324 590 414 346 156
c1908 - 19619 3106 529 334 285 312
c2670 291931 3066 411 364 271 233 317
c5315 - - 3514 2582 1890 895 982
c7552 - - 11419 5471 4387 1943 1541
b04 - - 1360 752 333 202 221
b11 38549 1696 861 391 332 312 293

required appending anti-aliased faults to the miter is considered. The actual aliasing can
be higher if the overall fault coverage increases.

The maximal anti-aliasing increases with smaller compactor sizes. As the probability
of aliasing increases, so does the anti-aliasing. The maximum of 100 was reached in all
circuits for sufficiently small compactors. In such case, the algorithm uses fault re-targeting
rather than appending more anti-aliased faults. In most of these cases, full coverage was
not achieved. This suggests that fault re-targeting is not as effective as anti-aliasing.

4.8.4 Computation time

In Table 4.9 are shown computation times. The computation time increases for smaller
compactors, where the aliasing probability is higher. This leads to bigger miters and PBO
instances and also to the higher number of PBO solver invocations.

There is a steep step in computation time for all circuits. This coincides with runs
where full coverage was not achieved. This also indicates that fault re-targeting is not as
efficient as anti-aliasing.
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4. Augmented ATPG with Zero-Aliasing Constraints

4.9 Conclusions

A modified SAT-based ATPG process, ZATPG for finding a test with zero aliasing in any
given temporal compactor is presented. In contrast to other approaches to minimizing the
aliasing, ZATPG does not require any compactor modification. Conversely, it can be used
for any spatial and temporal compactor design, as long, as they can be unrolled, i.e., their
combinational part can be extracted.

A simplified algorithm for linear space compactors is also presented. This algorithm is
then evaluated by the criteria of fault coverage and resulting test length.

As a consequence of generating a test with zero (or reduced) aliasing in the test gener-
ation process, the compactor size can be reduced, while preserving the fault coverage. For
tested benchmark circuits, we achieved complete fault coverage with MISRs of smaller sizes
than the conventional ATPG. This is due to ZATPG being guided towards zero-aliasing,
whereas in the test produced by other ATPG it is dependent on the aliasing probability in
the compactor.

Two different linear compactor designs are used, an LFSR-based and a cellular automata-
based MISR. Our initial assumption that the CA-based MISR could exhibit smaller alias-
ing, has not been confirmed. Probably this is because of the ZATPG flexibility, i.e., its
ability to find zero-aliasing test sequences regardless of the compactor used.

The fault coverage and test length produced by ZATPG depend on the ordering the
faults are processed in. In this respect, ZATPG is not robust. It does however overtake
this disadvantage with an increasing compactor size. Moreover, an ADI fault selection
heuristic has been used, to improve the test length. Even so, the test length is the main
disadvantage of the ZATPG.

To improve the test length and to a lesser extent the computation time, an optimization
variant of the ZATPG, the ZATPG-PBO, was presented. This variant of the algorithm
uses a Pseudo-Boolean optimization to maximize the fault coverage of each test pattern.
An MTTG technique is combined with the minimization of aliasing in a compactor.

This change to the algorithm improves both the fault coverage and the test length for
most compared circuits.
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Chapter 5

Conclusions

Testing of contemporary digital circuits is increasingly complex and important, thus, the
testing has been and continues to be, extensively researched. The aim of this dissertation
thesis are two topics from this research area: an application-oriented testing of circuits
implemented in FPGAs and an ATPG generating zero-aliasing test sets.

In Chapter 1, an introduction and goals of this thesis are presented.
In Chapter 2, the theoretical background and state-of-the-art relevant to this thesis is

presented. An overview of digital circuit testing is presented. The focus is given to testing
techniques involving design for testability and built-in self-test. A brief introduction to
automated test pattern generators is given, with an overview of test compaction techniques.
Output response analysis is discussed with a focus on output response compaction and fault
aliasing in response compactors.

In Chapter 3, the first contribution of this thesis is presented. An application-oriented
FPGA testing is analyzed. A combined fault model with stuck-at and bit-flip faults is pro-
posed, and an ATPG working natively with both fault models is presented. The properties
of the two fault models are analyzed and experimentally examined.

In Chapter 4, the second contribution of this thesis is presented. Fault aliasing in
temporal output compactors is considered and an ATPG algorithm (ZATPG) is presented
to decrease or eliminate the aliasing. ZATPG is experimentally examined and its strong and
weak points are identified. A modified version of the algorithm, based on pseudo-Boolean
optimization, is presented to eliminate one of the weak points, the test length. It is shown
that inclusion of dynamic test compaction techniques, together with optimization-based
aliasing prevention, lead to decreased test length and decreased fault aliasing.

In Chapter 5, summary and contributions are presented. Possible future work is sug-
gested and the thesis is concluded.

5.1 Summary

A combined fault model for application-oriented FPGA testing was proposed. Properties of
two fault models, stuck-at and bit-flip, were examined in the context of application-oriented

51



5. Conclusions

FPGA testing and their interaction was analyzed.
An ATPG for generating a zero-aliasing test, ZATPG, was proposed. The algorithm was

shown to improve fault coverage and reduce fault aliasing in output response compaction.
As a preliminary result, an optimization-based version of the algorithm, ZATPG-PBO,
was presented. ZATPG-PBO mitigates a weak point of the ZATPG; the test length is
significantly improved.

These results were presented in the scientific community and published in proceedings
of 2 international conferences and 1 journal. Both of these results we cited by other authors
in journal papers.

5.2 Contributions of the Dissertation Thesis

1. Direct encoding of the bit-flip faults and experimental analysis of a combined fault
model using bit-flip and stuck-at faults: Practical output of this work is an SAT-based
ATPG that works natively with both bit-flip and stuck-at faults. This result directly
ties to the second contribution, where it serves as a basis to construct necessary
tools. The research has further continued in related work [A.4] that is not part of
this thesis.

2. Zero-aliasing ATPG, ZATPG: An ATPG that generates a test with zero, or mini-
mized, aliasing in temporal output response compactors (sequential circuits). ZATPG,
and its optimization-based variant, can be used to improve fault coverage by lowering
the amount of fault aliasing in compactors. The technique can be used for any fault
model and output response compactor that can be described as a Boolean formula
(CNF).

5.3 Future Work

The author of the dissertation thesis suggests exploring the following:

◦ Other fault models and compactor designs could be incorporated with our technique
and analyzed.

◦ Test pattern generation, in a BIST circuit, is not considered. It would be interesting
to investigate the possibility to include this aspect of circuit testing in our algorithm.
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[A.9] Hülle, R.; Fǐser, P.; Schmidt, J. PBO-Based Fault Selection for Compact Test
Generation. In: Proceedings of the 7th Prague Embedded Systems Workshop. Prague,
Czech Republic, 2019.

63


	Abbreviations
	Introduction
	Motivation
	Problem Statement
	Goals of the Dissertation Thesis
	Structure of the Dissertation Thesis

	Background and State-of-the-Art
	Digital Circuits Testing
	Combinational Logic Testing
	Sequential Logic Testing
	Design for Test
	Scan Chain

	Automated Test Pattern Generator
	Fault Model
	Structural ATPG
	ATPG Based on Boolean Satisfiability
	Test Compaction

	Output Response Analysis
	Spatial Response Compaction
	Temporal Response Compaction


	Encoding Bit-Flip Fault Model in SAT Instance
	Introduction
	Problem Statement
	Method Overview

	Application-Oriented FPGA Testing
	The Overall Algorithm (ATPG)
	The Proposed Combined Fault Model
	Generating Test for Different Fault Models
	Characteristic Function of LUT
	Dominance between Stuck-at and Bit-Flip Faults

	Experimental Results
	Conclusions

	Augmented ATPG with Zero-Aliasing Constraints
	Introduction
	Problem Statement
	Method Overview

	Augmenting the ATPG
	Unrolling the Sequential Circuit
	Simplification for Linear Compactors
	Algorithm
	SIM
	ATPG
	CONSTR

	ZATPG: Experimental Results
	Experimental setup
	Fault Ordering
	Fault coverage
	Aliasing
	Robustness
	Compactor size
	Algorithm computation time

	Optimization-Based ZATPG
	Constraining Fault Aliasing
	Test Compaction
	Miter and PBO Instance
	The Algorithm Overview

	ZATPG-PBO: Experimental Results
	Pilot experiments
	Fault Coverage and Test Length
	Anti-aliasing
	Computation time

	Conclusions

	Conclusions
	Summary
	Contributions of the Dissertation Thesis
	Future Work

	Bibliography
	Reviewed Publications of the Author Relevant to the Thesis
	Remaining Publications of the Author Relevant to the Thesis

