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Abstrakt 

Tato práce se věnuje studiu idealizací implementovaných ve výpočetních 

modelech železobetonových stěn zatížených nárazem. První část práce poskytuje 

všeobecný teoretický přehled o zatížení nárazem a odezvě železobetonových 

konstrukcí na toto zatížení. Jsou v ní zdůrazněná specifika odlišující tyto nárazové 

jevy od statických jevů.  V práci jsou popsány běžné výpočetní postupy a 

idealizace, které inženýři standardně využívají při tvorbě výpočetních modelů. 

Jakákoliv idealizace reálného chování konstrukce vnáší do výpočtu potenciální 

nepřesnosti. Míra nepřesnosti výsledků souvisí s mírou idealizace. Rozdíly mezi 

reálným chováním konstrukce, chováním mírně idealizovaného modelu a 

chováním vysoce idealizovaného modelu jsou stěžejním tématem výzkumu 

v oblasti analýzy konstrukcí.  

Druhá část práce se podrobněji zaměřuje na jednu z nejrozšířenějších a také jednu 

z často chybně aplikovaných idealizací – modelování trojrozměrných konstrukcí 

dvojrozměrným výpočetním modelem. Rozdíly mezi výsledky silně zjednodušené 

dvojrozměrné a přesnější trojrozměrné analýzy byly sledovány a vyhodnoceny na 

případu stěny zatížené koncentrovaným zatížením. Toto zatížení simuluje náraz 

vozidla a je vyjádřeno ekvivalentní statickou silou. Předmětná stěna byla 

modelována jako svislá konzola. Veličinou, pomocí níž bylo chování modelů 

vyhodnoceno a porovnáváno, byl zvolen ohybový moment ve svislém směru, 

jelikož právě ten určuje míru vyztužení v hlavním nosném směru konstrukce. 

V rámci výzkumu byl sledován vliv deseti parametrů vstupujících do analýzy na 

hodnotu maximálního ohybového momentu ve svislém směru. Výsledky byly 

vyhodnoceny pro dvou- i trojrozměrné modely a tyto byly následně porovnány. Na 

základě tohoto srovnání byla stanovena nepřesnost idealizace trojrozměrné stěny 

dvourozměrným modelem. Zjištěná nepřesnost byla vyjádřena zavedením 

korekčních součinitelů. Použitím korekčních součinitelů na hodnoty ohybových 

momentů, které byly jednoduše stanoveny na dvourozměrných modelech, lze 

získat modifikované hodnoty, které svou přesností odpovídají výsledkům 

trojrozměrné analýzy.  

Na základě srovnání výsledků dvou- a trojrozměrné analýzy byl vytvořen praktický 

výpočetní nástroj Wall-imp. Wall-imp po zadání několika vstupních parametrů 

vypočítá hodnotu maximálního ohybového momentu ve svislém směru na 

vetknuté stěně, přičemž kombinuje přesnost trojrozměrné a jednoduchost 

dvojrozměrné analýzy.   

  



 

 

 

  



 

 

Abstract 

The thesis studies structural modelling idealisations of reinforced concrete wall 

elements subjected to impact loads. Overall background information on impact 

loads and structural response of reinforced concrete elements is presented in the 

first part of the thesis to point out the specifics and issues of the phenomenon. 

Standard engineering approaches of structural modelling are described, 

emphasising common model idealisations. Every idealisation of reality for the 

purpose of structural modelling is potential cause of result inaccuracies. The result 

inaccuracy is linked to the degree of model simplification. The discrepancy 

between real, moderately idealised, and heavily idealised behaviour of structures 

is the core research topic in the field of structural engineering.  

The second part of this thesis deeply focuses on one of the most common and 

often wrongly used idealisations – two-dimensional modelling of three-

dimensional problems. The differences between the results from heavily 

simplified two-dimensional models and more accurate tree-dimensional models 

were quantified and evaluated on the case of a wall subjected to concentrated 

loads. The load simulates the event of vehicle impact and was expressed as 

equivalent static force; the wall was modelled as a vertical cantilever. The value of 

vertical bending moment was chosen to represent the behaviour of the wall, as it 

governs the design of the main load-bearing reinforcement. Ten variable 

parameters entering the structural analysis were investigated and their effect on 

the bending moment peak value was quantified, providing comparison of two- 

and three-dimensional modelling results. The inaccuracies caused by using two-

dimensional models for an analysis of three-dimensional walls were evaluated 

based on the investigation outcomes. Correction coefficients expressing the 

differences between two- and three-dimensional models were proposed. When 

the correction coefficients are applied to the results of a simple two-dimensional 

analysis, the inaccuracy of results is rectified, and the accuracy of three-

dimensional analysis is achieved.   

A practical tool Wall-imp was developed for easy peak bending moment 

calculation based on the findings obtained from comparison of two- and three-

dimensional models. Wall-imp computes the value of peak bending moment with 

accuracy equal to results from three-dimensional models, while the simplicity of 

its use corresponds to two-dimensional approach. 
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SECTION A – Background to structural design of 

reinforced concrete structures under impact loads 
The issue of idealisation in the analysis of reinforced concrete (RC) structures 

under impact loads was chosen as the topic of this thesis. Understanding the 

subject on academic level opens the opportunity to apply theoretical knowledge 

in practice, and thus, contribute to engineering development. Section A of this 

thesis aims to give deeper reasoning for the topic choice and provides sufficient 

theoretical background to the subject of the research. General information on the 

topic presented in Section A supports subsequent investigation of a practical 

engineering problem presented in Section B.   

Section A is structured as follows:  

• Section 1 presents the importance of the topic and explains author’s 

motivation to explore the field. The objective and scope of the research is 

defined.   

• Section 2 presents principles of impact loading and describes the 

behaviour of RC elements under such specific conditions. 

• Section 3 describes various types of idealisations that are used in structural 

modelling. 

• Section 4 provides review of others’ research related to the topic of this 

thesis.  

• Section 5 summarises standardized design approach commonly used in 

engineering practice. 

1. Introduction to reinforced concrete walls subjected to 

accidental loading 

Many structural engineers design load-bearing structures primarily to withstand 

the loads that are expected to occur during the lifetime of the structure with high 

probability of appearance. On an example of a building, it is mainly dead load, 

service load and climatic load that are typically considered. These types of loading 

are a sufficient input for the design of structures of low failure consequence, as 

there is very low probability that any other load type will affect the structure, and, 

even in the rare case of extreme loading situation, the damage is not extensive.  

For structures of high failure consequence, this approach is not sufficient. Failure 

of such structures may lead to loss of lives, causes financial issues, and may 

damage cultural heritage. Therefore, it is necessary to anticipate extreme load 

scenarios that may occur during the lifetime of the structure and mitigate the 

consequences of its damage.  

Extreme loads have many possible causes – both intentional and accidental. The 

intentional causes include gun fire and blasts, which is a very current topic all over 

the world today. The accidental causes of extreme loads include blasts due to 

failure of industrial equipment, vehicle crashes, rock falls, etc. Such load scenarios 

do not occur on regular basis; nevertheless, they do happen, and the risk is 

notable. It is obvious from the list of possible extreme load scenarios above that 

the issue of extreme loads needs to be addressed.  
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This thesis focuses specifically on RC structures subjected to accidental impact 

loads or other concentrated loads and idealisations in their modelling. The choice 

of the topic raises from following: 

• The review of research summarised in Section 4 shows that the topic is not 

new to scientists and plenty of work was done already. However, there are 

still areas in this field that were not properly researched and deserve 

attention. This statement is supported by the fact that European 

standardisation of RC design for impact events is in some of its parts 

insufficient and inadequate, as several researchers concluded.  

• The outcomes of the research in this field bring not only understanding and 

satisfaction to a scientific mind, but their application finds also practical 

use in structural engineering. Using deep theoretical knowledge to develop 

practical engineering tools is the goal of research. This thesis and its topic 

choice were driven by needs of engineers struggling with design of RC 

elements under impact loads.  

The objective of this thesis is to study behaviour of RC elements under impact 

loading, and based on the findings, to develop a calculation tool for the analysis of 

RC cantilever walls subjected to impact loads. The calculation tool is intended to 

be used by engineers in their practice.  

Following steps were taken to fulfil the purpose of the thesis: 

1. Study on principles of impact events - understanding the energy balance 

of the event, defining the loads, analysing the response of RC elements. 

2. Reviewing others’ research of the field to get familiar with current state of 

work and detect unresolved issues. Reviewing standards used in practice. 

3. Narrowing the focus to the specific problem of cantilever walls under 

impact loads. Describing common approach to their analysis; defining its 

issues. Suggesting rectification of incorrect solutions.  

4. Development of rectification mechanisms by investigating the effects of 

various parameters of the structure and load on the results. Finding 

relationship between inputs and results of the structural analysis. 

5. Application of the investigation findings - development of practical tool 

Wall-imp in spreadsheet environment.  

6. Validation of Wall-imp results. Defining its range of applicability.  

2. Structural response to impact loading 

Theoretical background on behaviour of concrete structures under impact loading 

is provided by many, e.g. (Daudeville, et al., 2011), (Wright, 2012), (Sangi, 2011), 

(Baera, et al., 2016), (Kennedy, 1976), (Koechlin, et al., 2009), (Akin, 2015), (Riisgaard, 

et al., 2007), (Grote, et al., 2001), (Visser, 2017), (Pajak, 2011), (Fujikake, et al., 2009). 

Design approach for concrete structures is also standardized in following codes, 

applicable mainly in Europe: (fib Model Code, 2010), (EN 1991-1-7, 2006), (EN 1992-

1-1, 2004). 

Following subsections summarise the key points of the phenomenon widely 

explained in the publications listed above.  
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a. Basic principles 

Structures subjected to impact loading are locally exposed to a short-term 

dynamic impulse caused by collision of a moving object (striker) and the structure 

(target). Velocity of the striker corresponds to its kinetic energy. Analysis of the 

phenomenon respects the principle of energy conservation. Kinetic energy of the 

striker is conversed to multiple types of energy, involving following: 

• Kinetic energy of the target (for targets not rigidly supported) 

• Residual kinetic energy of the striker (if the target does not stop the striker 

entirely) 

• Elastic strain energy of the striker in global/local scale (deformation of the 

striker as a whole and/or local deformation at the contact point)  

• Elastic strain energy of the target in global/local scale (deformation of the 

target as a whole and/or local deformation at the contact point) 

• Plastic strain energy of the striker in global/local scale (deformation of the 

striker as a whole and/or local deformation at the contact point) 

• Plastic strain energy of the target in global/local scale (deformation of the 

target as a whole and/or local deformation at the contact point) 

• Fracture energy of the striker (cracking of the striker)  

• Fracture energy of the target (cracking of the target) 

• Heat generated at the contact point 

Quantification of the energy types requires deep knowledge of the mechanical 

parameters of both striker and target, and in many cases, those parameters reflect 

the microstructure of the materials involved. For that, it is hardly possible to 

analytically express the full equation of energy balance. However, implementing 

several idealisations into the impact event reduces complexity of the problem. 

Following section describes the idealisations.  

b. Load definition 

The behaviour of the striker and target may be idealised due to deformability of 

the objects. Two ultimate states of impact are distinguished – hard and soft 

impact. According to (Koechlin, et al., 2009), soft impact is defined for situations 

where stiffness of the striker is much lower compared to the target. The kinetic 

energy of the striker is completely conversed into strain energy of the striker. The 

target is considered indefinitely rigid, and therefore, does not receive any energy 

from the striker. Contrarily, hard impact is defined for the situations where 

stiffness of the striker is much higher compared to the target. The kinetic energy 

of the striker is completely conversed into strain energy of the target. The striker 

is considered indefinitely rigid, and therefore, its kinetic energy is fully received by 

the target. The nomenclature in definition of soft and hard impact according to 

(Koechlin, et al., 2009) is derived from the striker perspective. All other types of 

energy generated during the impact event are neglected.  

Contrarily, (EN 1991-1-7, 2006) defines soft and hard impact from the target 

perspective. That means that the nomenclature of the impact type is in reverse. 

Soft impact refers to the event where the striker is infinitely rigid, and the target is 

soft and deformable. Hard impact refers to the event when the target is infinitely 

rigid, and the striker is soft and deformable. Like in the definition provided by 

(Koechlin, et al., 2009), all other types of generated energy are neglected. 
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The dynamic character of the loading may be simplified as an equivalent static 

force. According to (EN 1991-1-7, 2006), using equivalent static force in structural 

design is allowed for structures of CC2 (consequence class 2), which corresponds 

to medium consequence of failure.  

(Akin, 2015) explains that the value of equivalent static force needs to induce 

equal displacement in the structure as would the dynamic force. (EN 1991-1-7, 

2006) offers equations to determine the values of equivalent static force for both 

soft and hard impact and quantifies the values for common design scenarios to be 

at hand for structural designers. More details on standardized equivalent static 

force are provided in Section 5. 

(Zhao, et al., 2019) proposes a method for calculation of peak impact force based 

on momentum and energy conservation. Material and geometry of the target 

structure and velocity, mass and size of the striker are the input to the calculation. 

Strain rate effects are considered, using formulas presented in (Adhikary, et al., 

2012). The method is applicable to simply supported RC beams with impact load 

acting at its mid-span.  

c. Concrete behaviour under high load rates 

There are many possible causes of impact loading. Various strain rates ε̇ are 

induced by the loading depending on the velocity and deformability of both 

striking object and target structure. Strain rate ε̇ is time derivate of strain, see 

Equation 1. 

 
𝜀̇ =

𝑑𝜀

𝑑𝑡
 Equation 1 

Table 1 presents selected loading events and corresponding range of strain rates 

that are induced in structures during the event. The ranges of strain rates are 

indicative and vary in different sources, e. g. (fib Model Code, 2010), (Pajak, 2011), 

(Visser, 2017). 

Loading event ε̇ [s-1] 

Creep and shrinkage < 10-5 

Quasi-static 10-8 – 10-4 

Vehicle impact 10-5 – 10-2 

Earthquake, traffic 10-5 – 102 

Plane crash, missiles, rock falls 10-2 – 103 

Blasts > 10-2 

Table 1: Strain rate during various loading events 

Some material characteristics, such as elastic modulus E and compressive and 

tensile strength fc/t, appear to be properties of a constant value, as they are usually 

used in the analysis of quasi-static load events and for those they are determined. 

However, these properties are sensitive to strain rates for many materials, 

including concrete and reinforcement steel. In general, strength of a material 

increases with increasing strain rate. This phenomenon is known as a strain-rate 

effect and is quantified by dynamic increase factor (DIF), see Equation 2. 
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𝐷𝐼𝐹 =  

𝑓𝑑

𝑓𝑠
 Equation 2 

where fd [MPa] is material strength under 

dynamic loading 

 

 fs [MPa] is material strength under quasi-

static loading 

 

 

DIF dependence on strain rate was widely experimentally researched for concrete. 

It was observed that strain rate effect affects concrete differently in compression 

and tension. Very low strain rates at the level of creep effects cause decrease in 

both compressive and tensile strength compared to quasi-static rates, causing DIF 

drop below the value of 1.0. However, for higher than quasi-static strain rates, DIF 

is significantly larger for elements in tension than compression.  

According to data published by (Pajak, 2011), tensile DIF is equal to approximately 

12.5 at strain rates around 102 s-1 while compressive DIF is equal to approximately 

1.5 at the same rates. (Adhikary, et al., 2012) introduces formulas for determining 

DIF for RC beams based on their slenderness and longitudinal reinforcement.  

3. Analysis idealisation 

Idealisation brings necessary simplification into solving structural engineering 

problems. A certain degree of simplification is implemented in every structural 

analysis, including accidental events of impact to RC walls. Idealisation needs to 

be implemented carefully to ensure that the effect of it is either negligible or 

increases safety of the design. It is desired to achieve results as accurate as 

possible but not posing a safety risk to the design.   

Models used for structural analysis of RC elements subjected to impact loads can 

be idealised in several aspects: 

• Geometry – Beams and columns are modelled as bars, slabs and walls are 

modelled as plates. Elements are represented by their axis/central plane. 

Three-dimensional problems are modelled in two dimensions if the section 

is constant in out-of-plane direction. 

• Material – Reinforced concrete is usually modelled as homogeneous 

material, in majority of cases with elastic behaviour and uncracked. Strain 

rate effects are usually neglected.  

• Loads – Dynamic aspect of load is often simplified into equivalent static 

load (ESL). 

• Analysis type – Linear analysis is used in majority of engineering practices.  

• Connections and supports – Joints and supports are usually modelled as 

either fully fixed or fully allowing translation/rotation in one or more 

dimensions.  

Effects of idealisation on results of structural analysis can be evaluated by 

comparing results from idealised models to real behaviour (experimentally 

investigated) or comparing results from idealised models to more accurate (less 

idealised) models. Evaluating the differences between more and less idealised 

models or idealised models and reality is the core of structural engineering 
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research. Outcomes of such research bring development in design methods and 

increase in result accuracy.  

4. Review of related research 

As described in Section 3, structures subjected to impact loading can be idealised 

in many ways. The influence of various idealisations on analysis results were and 

still are in focus of many researchers. This section brings an overview of published 

research in this field, emphasising modelling idealisations.   

Material properties are heavily idealised aspect in structural modelling. Section 7.c 

presents that RC behaviour is influenced by strain rate effects. Idealisation by 

neglecting strain rate effects is conservative in case of impact loading events, 

however, considering it may prevent unnecessary overdesign. While the 

phenomenon of strain rate effect is already well known, it is still the subject of 

research as it is not yet fully quantitatively described. In common engineering 

practice, the idealisation by neglecting strain rate effect is often driven by its 

unclarity.  

(Juhász, et al., 2017) presents an experimental programme conducted on beam 

elements with bar and dispersed reinforcement (fibre reinforced concrete (FRC) 

and synthetic fibres). The specimens were subjected to three-point bending tests 

with various speed of loading. The objective of the experiment was to obtain load-

displacement and load-crack mouth opening displacement (CMOD) diagrams 

representing the behaviour of the beams under various loading rates. 

Performance under quasi-static loading was the benchmark for evaluating load 

rate effects; the quasi-static tests were performed according to standard three-

point bending test according to (RILEM TC 162-TDF, 2002). The article concludes 

that loading rate is significant factor in performance of FRC beams and concrete 

beams reinforced with synthetic fibres. (Adhikary, et al., 2012) presents a wide 

experimental and numerical investigation of RC beams subjected to impact 

loading induced by a drop-hammer mechanism. The beams in focus were loaded 

in their midspan. Experimental data were compared to complex three-

dimensional dynamic simulations. The research evaluates DIF for varying load 

rates, beam geometry and reinforcement. The author declares large scatter of 

experimental results and concludes that the experimental set up has noticeable 

effect on the outcomes and suggests unification of experimental techniques. This 

idea agrees with a conclusion stated by (Pajak, 2011) which provides a summary 

of experimental programmes carried out in the field of high-velocity loading of 

concrete structures. Within the experiments, wide range of loading rates was 

studied and corresponding DIF values were determined. Two main types of testing 

technique were used in the experiments to achieve desired load rates: Drop 

hammer test and Split Hopkinson Pressure Bar (SHPB) test. The authors conclude 

that the obtained value of DIF depends not only on loading rate, but also on the 

testing method, as each testing method brings different circumstances 

influencing the measurement.  

Loads are a subject of idealisation as well as material properties of the structure, 

especially in case of dynamic events. Dynamic analysis of impact requires deep 

knowledge of mechanics and also requires more advanced software than 

common static analysis does. Computational time is as well significantly longer for 
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dynamic analysis. These are the reasons why the dynamic aspect of the load is 

replaced by an equivalent static force (ESF) very often. Determining ESF depends 

on many factors and some of those are difficult to quantify. That makes 

determining ESF an uneasy task. The method proposed in (EN 1991-1-7, 2006) 

involves vast simplifications of the complex problem which makes the outcoming 

ESF value less trustworthy. Finding more accurate values of ESF is a topic to 

research by many.  

(Choi, et al., 2005) proposes a method to transform dynamic loads to ESF. ESF are 

calibrated according to displacement induced by the dynamic loads using 

numerical simulation. The article points out the fact that there is a lag between 

displacement and stress induced by the dynamic loads, and therefore, the stresses 

induced by the dynamic loads do not correspond to stresses induced by the ESF. 

The study is performed on a two-dimensional frame model, neglecting out-of-

plane distribution of internal forces. (Majeed, et al., 2019) explains the difference 

between impact force (that can be expressed as ESF and can be determined from 

kinetic energy balance) and contact force on a case of a boulder fall event. Contact 

force acts locally at the surface of the target, while ESF can be used only to 

determine its effects on global behaviour of the target structure. The study is 

supported by extensive experimental programme in which the magnitude of the 

contact force is evaluated. The study concludes that the contact force reaches 

much higher magnitudes than ESF in the early stage of the impact event. The 

magnitude of contact force is strongly dependent on compressive stiffness of both 

striking object and target structure. The authors provide a practical chart for 

engineers to find contact force values for various design situation, enabling them 

to avoid complex numerical modelling. (Zhou, et al., 2017) investigates behaviour 

of RC bridge piers during vehicle collision using advanced dynamic analysis in LS-

DYNA software. One of the goals of the research is to evaluate standardized values 

of ESF from (EN 1991-1-7, 2006), (AASHTO-LRFD, 2012) and (JTG D60, 2004). The 

study concludes that for some of the investigated loading scenarios, the values of 

ESF provided in the mentioned standards are inappropriately low and their use 

leads to underestimated design. This indicates that further development in the 

field of dynamic load simplification is needed.  

Bridge piers/columns under impact loading are extensively researched by many, 

since traffic accidents are not rare, and bridges are a part of critical infrastructure. 

Researchers took a variety of approaches in their work, conducting both 

experimental and numerical investigations, analysing both load and structural 

response. Following text contains only a small example of work published to this 

topic. 

Impact loading on concrete columns is researched by (Mestrovic, et al., 2008) who 

focuses on probabilistic approach to determine impact loading. (Do, et al., 2018) 

uses numerical modelling to obtain peak impact force during an accident and 

finds the relationship between peak impact force and engine weight. Interference 

of lateral impact load and static axial force in concrete columns is researched by 

(Liu, et al., 2017) where experimental the testing was supplemented with 

numerical modelling. The influence of pre-existing axial force in a column on 

impact performance was examined also by (Abdelkarim, et al., 2017) who 

conducted finite element method (FEM) investigation of several structural 
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parameters; peak dynamic force and ESF were evaluated for various conditions 

and compared against standardized values. Impact on concrete columns caused 

by rockfalls was presented by (Mavrouli, et al., 2010) who analysed the whole 

accidental situation from calculation of the event probability, through structural 

response evaluation, to evaluation of robustness of the whole building and 

calculation of damage index.  

Structural response to impact is also studied on concrete structures with 

enhanced mechanical properties, using ultra-high performance concrete (UHPC), 

FRC, carbon fabric reinforced concrete, etc. The aim of such research is to find a 

suitable material for structures exposed to risk of impact loading. A few selected 

publications on this topic are outlined in following text, not to give the reader the 

full review of possible material solutions, but to give illustrative examples.  

(Yoo, et al., 2017) studies behaviour of UHPC and FRC elements under impact and 

blast loading. The study focuses on structural performance of various types of 

fibres and the influence of fibre orientation. Fibre reinforced polymer enhances 

impact performance of concrete structures, according to review by (Pham, et al., 

2016). (Horská, et al., 2015) presents results of experimental programme on FRC 

slabs subjected to drop-hammer impact tests. The effects of fibre types and 

volume and slab thickness are evaluated. Structural response to impact is 

compared to quasi-static performance; elements with dispersed reinforcement 

are compared to unreinforced concrete slabs. Steel fibres are concluded to 

increase structural resistance to impact, while the effect of polypropylene fibres in 

concrete mix is negligible. (Sovják, et al., 2013) experimentally investigates ultra-

high performance fibre reinforced concrete (UHPFRC) subjected to projectile 

impact. The research results show that UHPFRC with steel micro fibres improves 

impact performance of the tested slabs compared to standard FRC.  

Contrarily to the research on beams and columns, the issue of impact load on plate 

elements is not as frequently researched. When it is, the objective is often to 

evaluate the impact loading or qualitatively compare performance of various 

material modifications, as illustrated by the review above. Quantification of 

internal forces and their distribution in the two perpendicular directions of plate 

elements is rarely studied. The distribution of the internal forces in both directions 

of plates plays a huge role for the plate element design, especially when a 

concentrated load is applied.  

(Salama, 2012) presents the issue of concentrated loads applied on rectangular 

two-way slabs supported at all four edges and proposes expressions for 

maximum bending moment values for each direction. The expressions were 

verified with the results of elastic analysis performed in FEM software. The 

proposed method is convenient as it requires only hand calculations. (Koktan, et 

al., 2019) studies differences between the results of two- and three-dimensional 

analysis of foundation slab on elastic half-space. The findings of the study result 

into proposal of a method where the results of the two-dimensional analysis are 

altered so that their accuracy is close to results of three-dimensional elastic half-

space models.  (Özel, et al., 2013) presents a study on the differences of two- and 

three-dimensional modelling of concrete faced rockfill dams subjected to 

dynamic loads. The study is focused on earthquake events and their effects on 
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crack opening, as the crack width is crucial for water retaining structures. (Yong, et 

al., 2020) focuses on experimental study of real-scale precast cantilever wall 

segments. The wall segments are subjected to impact load acting at the top edge 

of the wall and in the middle of the wall length. The aim was to develop a numerical 

simulation that agrees with the experiment in wall displacement. Contact force 

was also evaluated. Related research was presented by (Yong, et al., 2020), where 

the original study was broadened to investigate interaction of pre-existing static 

loading with accidental impact actions. These combined actions were modelled 

as well, and the model agrees with the outcomes of the experiment. Both the 

original and subsequent research consider load position in the middle of the wall 

length, neglecting the possibility of asymmetrical actions and results. Further 

investigation is required to understand effects of unsymmetrically loaded walls. 

Central position of the load and symmetry of the results are not very likely to occur 

in real application.  

The aim of research is not only to describe the phenomenon of RC structures under 

impact loads, but also apply the outcomes and use them in practice. For that, some 

researchers developed practical tools to be at hand to engineers designing such 

structures.  

A spreadsheet-based design tool for cantilever RC retaining walls was proposed 

by (Kaveh, et al., 2020). The tool uses optimisation methods to provide efficient 

design, minimising cost of concrete and steel reinforcement. The design considers 

the wall to be subjected to lateral soil pressure and surface surcharge. Both static 

and dynamic effects are considered. A two-dimensional model of the retaining 

wall was used for the analysis. (Sagar, et al., 2016) focuses as well on retaining wall 

optimisation and cost reduction.  Both stability and structural resistance are the 

criteria for the optimisation, generating a section with satisfying factor of safety 

and minimum cost. The optimisation was performed on a two-dimensional model 

of a soil retaining wall. Efficient design of cantilever RC walls is the topic of (Bhatti, 

2006). Spreadsheet tool was developed to design efficient wall section. The used 

model is two-dimensional and allows variable geometry, soil conditions and 

surface surcharge. (Hu, et al., 2018) developed a design tool to evaluate reliability 

of a retaining wall affected by a nearby railway traffic. Uncertainties in material 

parameters and reinforcement placement enter the evaluation, returning 

probability of structural failure. A two-dimensional model was used for the 

analysis. (Horská, 2020) presents a tool for structural analysis and assessment of a 

retaining wall subjected to arbitrarily set soil and hydrostatic conditions. In one 

step calculation, the tool analyses three design scenarios – flood event, rapid 

drawdown, and dry season. On a two-dimensional model, overturning, sliding, and 

bearing capacity failures are verified and decisive internal forces were evaluated.  

Overviewing the research conducted in the field of concrete structures under 

impact loads, following conclusions are made: 

• Strain rate effect is a recognised phenomenon influencing impact 

performance of RC structures. To idealise material models and simplify 

dynamic structural analysis, reliable DIF values are needed. Quantification 

of the strain rate effect through DIF is a complex problem requiring vast 

experimental investigation. That is the reason why strain rate effect was 
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not fully and reliably standardized, and so is rarely considered by structural 

designers. While extensive work was already done in this area, introducing 

the idealisation through DIF in standards was not yet completed, and 

therefore opens opportunities for further research.  

• Idealisation of the dynamic aspect of impact force by introducing ESF is 

already standardised and used in practice. However, many researchers 

found that the standardised values are not only inaccurate, but sometimes 

also unsafe. For that, further research is desirable in this field.  

• Bar elements (beams, columns) are researched much more widely than 

plate elements (walls, slabs) for their impact load structural performance. 

This is perceived as a gap and an opportunity for researchers to extend their 

scope. It is acknowledged that broadening of a two-dimensional problem 

into a three-dimensional problem brings multitude of new issues to be 

considered and addressed. 

• The issue of idealisation of three-dimensional problems by using simpler 

two-dimensional models is not fully researched. That is despite the fact 

that such approach is widely used in practice. It is deemed by the author of 

this thesis that research should meet the requirements of practice and help 

solving issues encountered by engineers in their daily work, making their 

results satisfactorily accurate and easy to achieve. Idealised two-

dimensional models are often used even for plate elements subjected to 

concentrated loads, for which they are very inappropriate as they do not 

consider force distribution in the plane of the plate. Since this discrepancy 

was not in focus of many researchers but is crucial for correct structural 

design, it was chosen as topic of this thesis.  

5. Standardization of structural design to impact loading 

This Section provides a description of standardised methods used for the design 

of RC elements under impact loading that are used in the Czech Republic, majority 

of European countries and several other countries outside Europe.  

The Eurocode (EN 1991-1-7, 2006) categorizes accidental design situations into 

two groups: 1) Identified accidental actions, 2) Unidentified accidental actions. The 

design strategies differ for the two groups.  

Identified actions can be prevented or reduced, as they are anticipated. Since the 

identified accidental actions can also be quantified, the structural elements can 

be designed to sustain such actions. Identified actions also allow the structure to 

be designed with sufficient robustness to prevent excessive damage extent.  

Unidentified actions cannot be anticipated or quantified. For that reason, more 

general approach to the design needs to be chosen. Possible provisions include 

alternative load paths, designing key elements to notional accidental action and 

ensuring sufficient ductility by correct choice of materials.  

The design strategy should be chosen respecting the probability of action 

occurrence, including the prevention systems and the consequence of structural 

failure. Usually, a certain risk level must be accepted.  
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The Eurocode section on Impact covers following areas: impact from road vehicles, 

impact from forklift trucks, impact from trains, impact from ships, the hard landing 

of helicopters on roofs. Either dynamic analysis or static analysis with ESF can be 

used. Conservatively, it can be assumed that the impacting body absorbs all the 

energy, which is in line with the theory of hard impact. Strain rate effects can be 

taken into consideration in dynamic analysis but should be neglected in 

equivalent static analysis. Neglecting strain rate effects is a conservative 

approach.  

For accidental actions caused by road vehicles, forklifts, and derailed rail traffic, 

selected equivalent static force values are tabulated in the Eurocode for specific 

target structures and category of traffic.  

Annex C of the Eurocode offers an explanation of mechanical principles applied in 

determination of ESF, that can be applied in order to perform approximate 

dynamic design. Annex C also classifies impact into two categories – hard and soft 

impact. In case of hard impact, kinetic energy of the colliding object is mainly 

dissipated by the impacting body, which is the case of a road vehicle colliding with 

a concrete structure. The structure is assumed to be rigid and immovable. The 

colliding object deforms linearly during the impact. The impact force is defined by 

mechanical properties of the colliding object, see Equation 3. 

 
𝐹 = 𝑣𝑟√𝑘𝑚 Equation 3 

where vr [m/s] is colliding object velocity at 

impact 

 

 k [N/m] is equivalent elastic stiffness of 

the colliding object 

 

 m [kg] is mass of the colliding object  

 

 

A traffic accident against a structure classifies as hard impact as the stiffness of 

the structure is assumed to be much larger than the stiffness of the vehicle. A 

vehicle is geometrically and materially complex object an no two vehicles are the 

same, and it is difficult to express its stiffness k that enters Equation 3.  For that, it 

can be simplified as an equivalent impacting object that is homogeneous and has 

a simple prism shape. Stiffness k and mass m of such object has expressed in 

Equation 4 and Equation 5. 

 
𝑘 = 𝐸𝐴/𝐿 Equation 4 

where E [Pa] is equivalent elasticity modulus  

 A [m2] is equivalent cross-sectional area  

 L [m] is equivalent length  

 

 
𝑚 = 𝜌𝐴𝐿 Equation 5 



24 

 

where ρ [kg/m3] is equivalent mass density  

 

While the simplification above enables to use basic principle of mechanics, the 

parameters of equivalent impacting object entering the basic equations are still 

difficult to determine. Complex numerical modelling or real scale experiments are 

the only reliable way for obtaining the parameters.  

The impact force F given by Equation 3 applies on the surface of the structure. 

Dynamic effects may amplify the force as it travels through the structure. The 

amplification factor ϕdyn may reach the value of 2.0.  

A short description of the conceptual approach to ULS design of structures 

subjected to impact is provided in (fib Model Code, 2010). Structural analysis is 

categorized into three levels according to its complexity. Level 1 uses quasi-static 

equivalent loads and neglects strain rate effects. Level 2 involves dynamic aspect 

of the problem and applies the load to the structure as standardized pressure-

time curves. Level 3 involves detailed dynamic analysis where the load is 

determined individually for the specific load scenario. Model Code also suggests 

values of DIF for concrete and reinforcement to use in Level 2 and 3 design.  

Note: The symbols used in this Section are adopted from (EN 1991-1-7, 2006) and 

are excluded from the list of symbols of this dissertation. Some of the symbols of 

this Section are used elsewhere in this dissertation while describing a different 

quality. 
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SECTION B – Investigation of differences in two- and 

three-dimensional modelling of cantilever walls 

subjected to concentrated loads 
The review of research in Section 4 presented variety of topics related to impact 

loading, RC response, and differences between two- and three-dimensional 

modelling. The scope of these topics is very wide, and although a lot of work has 

already been was done in this field, not all structures and load situations were 

covered by researchers yet. Section B of this thesis aims to research a problem 

that is related to all the topics mentioned above, however, was not a subject of 

any reviewed research: two- versus three-dimensional modelling of cantilever RC 

walls subjected to a concentrated impact load that is idealised as ESF. The 

investigation presented in this Section respects the principles presented in 

Section 7 and its findings are intended to be used with standardised design 

methods presented in Section 5.  

Section B is structured as follows:  

• Section 6 demonstrates the importance of the topic on simple examples 

and explains how the outcomes of this research can be used in engineering 

practice.  

• Section 7 is the core of the research. Comparative study of two- and three-

dimensional modelling is presented, analysing the effects of wall and load 

parameters on the peak value of vertical bending moment. Based on the 

findings, correction coefficients are proposed to rectify the error of two-

dimensional modelling of the problem. Correction coefficients are then 

used in development of a practical tool for engineers to enable them 

simple, but accurate design of cantilever walls subjected to concentrated 

loads.  

• Section 8 summarises the findings of the research and states the area of 

their applicability. 

6. Cantilever walls subjected to impact loading 

Structural design of a cantilever walls subjected to ESF was chosen to be the field 

of interest in this investigation. Practical approach was taken when addressing the 

problem in order to satisfy not only the academic aspect of the study, but also to 

provide conclusions that can be easily adopted by structural designers in their 

everyday work.  

Some of the outcomes of this study can be generalized and applied not only to 

cantilever wall analysis subjected to ESF but also to elements with similar 

structural character and behaviour patterns subjected to any concentrated load 

perpendicular to the wall plane.  

a. Topic importance and motivation 

Typical representative of cantilever walls is a retaining wall. Retaining walls are 

structures that usually don’t attract attention and are often overlooked by public 

as their main purpose is not architectural; however, their technical function makes 

them important part of both urban and rural areas.  
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Even though retaining walls are a very common type of structure, their structural 

design is often simplified in a way, that can lead to over- or under-dimensioning 

and, in some cases, even to both within one wall. Faulty simplification of design 

procedure results in construction cost increase, unnecessarily inflated carbon 

footprint, and in extreme situations may lead to damage of the wall and elements 

in close vicinity of the wall.  

Following sections describe a simplified approach that is often mistakenly 

adopted by structural designers. The possible errors rising from such approach are 

presented, demonstrating the importance of deeper understanding of the topic.  

b. Common design approach 

The common approach to cantilever wall design is illustrated on an example of a 

retaining wall in coastal area or areas with risk of fluvial flooding. The main 

purpose of such wall is double: to retain water in case of flood event, and to resist 

impact in case of traffic accident; see Figure 1 as an example. When designing 

dimensions and reinforcement of such wall, usually a conservative approach is 

chosen, modelling the structure as a cantilever wall, fixed against rotation at the 

base. Such approach neglects possible rotations of the retaining wall as a whole 

(including the base), and therefore returns conservative internal forces which 

inevitably results in unnecessary overdesign. Apart from being conservative, this 

approach also does not require any knowledge about foundation conditions and 

backfill parameters, which makes this method very often the only feasible way of 

design, as geotechnical survey may not be available.  

 

Figure 1: Design situations 

Since Eurocode allows use of ESF for impact loading modelling, it is the generally 

preferred method used for the design of retaining walls. Such approach is 

appreciated mainly for its simplicity and low demands on software, as software for 

dynamic analysis is not purchased very often by companies that do not specialise 

in dynamic actions.  

Majority of structural designers use linear FEM analysis for the same reason as 

stated above – simplicity and availability of software. For simple structures even 
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a hand calculation might be an option. Even though non-linear analysis would give 

more precise results, software demands and analysis duration make its use in 

many cases impractical, as demonstrated in Section 7.e.ii.  

The three simplifications described above (fixed wall support at the wall base, the 

use of ESF, linear FEM analysis) have been adopted in the cantilever wall 

investigation presented in this thesis, as the results coming out of the analysis are 

expected to be used in structural design practise, and so the issue is approached 

in similar manner.    

c. Issues of two-dimensional modelling 

Cantilever walls, such as the retaining wall described in the section above, are 

often of significant lengths, providing continuous, uninterrupted flood protection 

to land side areas. For that reason, they can be classified as a linear infrastructure. 

Linear infrastructures are specific by having all sections identical over the whole 

length, which encourages the designing engineers to use a two-dimensional 

model for the structural analysis. However, having identical geometry in all 

sections is only one of the conditions that allow simplification of a three-

dimensional problem to a two-dimensional model. The second condition is having 

the loads uniformly distributed over the wall length. In case of the example 

retaining wall, the second condition is met for the flood event scenario, where the 

water level is even in the whole length of the coast. However, in case of traffic 

accident, the impact force is concentrated in only a small area, which 

compromises the use of two-dimensional models during structural analysis. Thus, 

the results from two-dimensional models do not correctly represent the behaviour 

of the structure and lead to inaccurate results.  

Despite the reasons stated above, most designers still choose to use two-

dimensional modelling for linear infrastructures. Not all designers may have 

access to advanced three-dimensional modelling software, and in their case, a 

simplified two-dimensional calculation (often prepared with no specialized 

software at all) is the only option to carry the design.  

Very often, the vehicle impact load scenario with concentrated loading force is the 

only obstacle standing in the way of a reliable two-dimensional modelling. This 

fact encouraged the topic choice of this thesis  

Two examples of a cantilever wall subjected to a concentrated load were prepared 

to demonstrate how inaccurate results may be obtained by using two-

dimensional models on three-dimensional problems. Example no. 1 presents a 2m 

high and 14m long retaining wall designed to withstand vehicle impact ESF of 75 

kN located at the wall top edge. ESF position along the length of the wall cannot 

be strictly specified as the load case is of accidental character. Design of the 

structure must therefore appreciate all the possible positions of the ESF for the 

structure to be safe. 

Firstly, a simplified two-dimensional hand calculation of a maximum bending 

moment was prepared, see Figure 2 (left). The two-dimensional model represents 

1 m of wall length, so the loading force is also distributed to 1 m of wall length 

without any appreciation of the fact that the wall may be longer in longitudinal 

direction. With this approach, the wall would be designed for maximum bending 
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moment of 150 kNm/m along the whole wall length, follow the simple calculation 

steps in Table 2.  

  

Figure 2: Two-dimensional model (left), three-dimensional model (right) 

H [m] 2 
Wall height equal to vertical load 

position from the wall base 

F [kN/m] 75 Load force 

M2D,max [kNm/m] 75 x 2 = 150 Maximum bending moment 

Table 2: Example no. 1 - moment obtained on two-dimensional model 

Secondly, a three-dimensional model of the case was prepared, respecting the 

real wall length and point nature of the load force, see Figure 2 (right). To cover all 

possible force positions, 15 load cases were set up, varying the force position 

along the wall top with 1 m step. The vertical reinforcement of the wall should be 

designed to a bending moment from an envelope of the load cases. The results 

(see Figure 3) show that the maximum bending moment value is 105 kNm/m, 

which is 70 % of the maximum bending moment obtained on the two-dimensional 

model. More importantly, this peak value occurs only at the edge parts of the wall. 

In the rest of the wall length the bending moment value at the base is 

approximately 37 kNm/m, which is 25 % of the two-dimensional model result.  

 

Figure 3: Example no. 1 – bending moment obtained on three-dimensional 

model 

The comparison presented above clearly shows that, in that specific case, 

simplification the problem to two-dimensional model brings significant over-

dimensioning and results in unnecessary increase in reinforcement or wall 

thickness demand, causing rise of construction costs and carbon footprint.  
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Example no. 2 will show that in some conditions, two-dimensional modelling may 

lead not only to over-dimensioning, but also under-dimensioning. Similar two- 

and three-dimensional model comparison was prepared like in example no. 1, 

differing only in geometry and load – wall height 1 m, wall length 70 m, load force 

20 kN.  

Two-dimensional approach gives maximum bending moment equal to 20 kNm/m. 

For further convenience, the value was related to itself (maximum bending 

moment obtained by two-dimensional modelling), obtaining relative maximum 

bending moment equal to 1. See summary in Table 3. Respecting assumption of 

two-dimensional modelling, this value would be adopted as a basis for structural 

design of the wall throughout its length. This result is represented in a graph, see 

Figure 4. The graph shows only one half of the wall length, as the problem is 

symmetrical.  

 

H [m] 1 
Wall height equal to vertical load position 

from the wall base 

F [kN/m] 20 Load force 

M2D,max [kNm/m] 20 x 1 = 20 Maximum bending moment 

Mrel,max [-] 20/20 = 1 Relative maximum bending moment 

Table 3: Example no. 2 - moment obtained on two-dimensional model 

Three-dimensional model of the problem was prepared in the same manner as it 

was in case of example no. 1. Like in previous example, bending moment values 

were concentrated in the edge parts of the wall. Since maximum values are always 

situated at the bottom fixed edge of the wall, results on the wall cut at the bottom 

were extracted to see only the relevant values that can be plotted in a graph. 

Relative values of maximum bending moment were calculated by relating the 

moments to the maximum bending moment obtained from two-dimensional 

modelling. The relative maximum bending moment was plotted in a graph to 

show the course over the wall length, see Figure 4. 

Comparison of the two curves in graph in Figure 4 shows that in majority of the 

wall length the two-dimensional modelling gives overly conservative results. 

While the relative bending moment on two-dimensional model is equal to 1, 

three-dimensional modelling gives value of 0.49. On the other hand, 0.4 m of wall 

length on either end shows higher values of relative bending moment when using 

three-dimensional modelling when compared to the two-dimensional. The 

relative bending moment resulting from the three-dimensional model is equal to 

1.28 at the very end of the wall. Therefore, the edge parts of the wall from example 

no. 2 might be under-designed and the structure may be potentially hazardous.    
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Figure 4: Example no. 2 – relative bending moment on two- and three-

dimensional model 

The two examples above demonstrate how two-dimensional modelling of 

retaining walls can be misleading. This thesis aims to quantify the error brought 

by such simplification and proposes a solution that would enable the designers to 

keep using the simplification by two-dimensional modelling while increasing 

accuracy of their results.  

There are several reasons why two-dimensional modelling provides inaccurate 

results in internal forces: 

• Two-dimensional models incorrectly assume even distribution of loads and 

internal forces over the wall length, as they assume all vertical sections of 

the wall to be identical in their geometry, boundary conditions and loads. 

• Two-dimensional models neglect the interaction with the parts of the wall 

that are outside the loaded length. They presume that the considered 1 m 

long segment of the wall deforms independently from the rest of the wall 

length. 

• Two-dimensional models neglect boundary conditions at the side faces of 

walls. 

• Two-dimensional models neglect torsional effects that are consequent to 

the two points above. 
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7. Comparative study of two- and three-dimensional 

modelling 

The previous section of this thesis presented the reasons why the idealisation and 

simplification of using two-dimensional analysis are misleading when modelling 

cantilever walls subjected to impact loading. In this section, the error of such 

simplification is quantified through a comparative study. Two- and three-

dimensional models were prepared to analyse an identical design scenario of 

impact loaded cantilever wall (described in detail in the section below).  

The reference parameter observed in the comparative study is the peak value of 

bending moment in vertical direction, as it is decisive for the design of the main 

load bearing vertical reinforcement. All values of bending moment obtained from 

three-dimensional models include torsional effects according to Wood-Armer 

theory (Wood, 1968). 

As the three-dimensional modelling is presumed to be more accurate and better 

representing real behaviour of the structure, the deviation of the results obtained 

from two-dimensional models from the results obtained on three-dimensional 

models is determined to be the error of two-dimensional simplification. The error 

was quantified for all examined design scenarios, generalized, and used for a 

development of correction coefficients. Correction coefficients rectify the 

inaccuracy caused by two-dimensional simplification.  

a. Hypotheses of the analysis 

The wall in focus was modelled as a vertical cantilever fixed the bottom edge, see 

Figure 5. Deformability of the ground was neglected. No backfill was considered 

to be restraining the wall stem. Equal boundary conditions were used in both two- 

and three-dimensional models. The two-dimensional model consists of a single 

bar with no sectional and material properties, as they do not have any effects on 

the resulting bending moment. The three-dimensional model of the wall was 

created as a shell element.  

The wall was subjected to a concentrated load located at its top edge. The 

dynamic character of the impact force caused by traffic accident was expressed 

as ESF. Strain rate effects caused by the dynamic character of the load were 

neglected.  

The results were obtained from linear analysis. The peak bending moment value 

in vertical direction was result of interest and subject of comparison. In case of the 

two-dimensional model, the calculations were prepared in MS Excel, as their 

simplicity does not require any specialized structural software and can be done 

manually. The three-dimensional analysis was prepared in Robot Structural 

Analysis, which is a FEM software.  

All model idealisations, simplifications and assumptions were chosen to provide 

more onerous results than what would occur on the real structure to ensure that 

the design based on those results is safe.  
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Figure 5: Two-dimensional model (left), three-dimensional model (right) 

For many cases examined in this thesis, it was necessary to simulate a wall of 

infinite length, so that the proximity of the wall end would not affect the 

distribution of internal forces. To practically achieve that on a three-dimensional 

model of a finite length, the load was placed in the centre of the top wall edge, and 

the length was modelled large enough so that there were zero forces and 

deformations on the side ends of the wall. It was experimentally tested that for all 

cases studied in this thesis, the wall length of 70 m was sufficient for simulation of 

an infinite wall.  

The nomenclature used is presented in Figure 6. 

 

Figure 6: Nomenclature 

b. Bending moment distribution approximation 

The peak bending moment in vertical direction is decisive for the design of 

reinforced concrete section. In case of a cantilever wall subjected to a 

concentrated load, the peak bending moment occurs at the base of the wall below 

the load. If such problem is analysed using a two-dimensional model, all of the 

bending moment at the wall base is concentrated into one point, creating an 

extreme peak. However, when more accurate three-dimensional model is used, 

the bending moment at the wall base distributes over the horizontal length of the 
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wall. The peak still occurs below the position of the load, but its value differs from 

two-dimensional models due to the moment horizontal distribution. For further 

use in the study, it is practical to analyse the course of the moment distribution 

over the wall length at the wall base.  

A set of three-dimensional models was prepared to evaluate the horizontal course 

of bending moment at the wall base. All modelled walls were 70 m long which is 

sufficient length to simulate infinite wall (see Section 7.a for more details). All 

modelled walls were 300 mm thick, concrete class C30/37 was used. The load was 

a single force of 1000 kN located at the wall top in the horizontal centre (x = 35 m), 

see Figure 7. Wall height H ranged from 0.6 to 6.0 m with 0.2 m step.  

 

Figure 7: Example of models used for the analysis of bending moment 

distribution 

The course of bending moment M3D over the wall length at its base was obtained, 

see an example of such result in Figure 8. For more convenient result processing, 

the relative values of the bending moments Mrel were calculated, see Equation 6.  

 
𝑀𝑟𝑒𝑙 =

𝑀3𝐷

𝑀2𝐷
 Equation 6 

where M3D [kNm/m] is the bending moment obtained 

from a three-dimensional model 

 

 M2D [kNm/m] is the bending moment obtained 

from a two-dimensional model 
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Figure 8: The course of bending moment over the wall length at its base 

The results are summarised in a graph in Figure 9. The graph shows the 

dependence of the relative bending moment Mrel on horizontal position l at the 

wall base. Due to the geometrical symmetry of the problem, the results are plotted 

only for one half of the wall length, starting at l = 35 m. The plotted area of the 

graph ends at l = 50 m as the curves reached zero relative bending moment at that 

point. The legend of each individual curve is not provided for easy orientation. The 

curve with the highest peak corresponds to the shortest wall within the examined 

range (H = 0.6 m), the curve with the lowest peak corresponds to the tallest wall 

within the examined range (H = 6.0 m).  

 

 

Figure 9: Dependence of relative bending moment on horizontal position 
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The aim of this Section is to analytically describe or approximate the course of the 

relative bending moment curves by a function, that has clearly defined 

parameters. For that, one of the curves was chosen for function fitting. 

Applicability of the function on the rest of the curves was verified subsequently.  

The curve chosen for function fitting was the curve of wall height H = 2.0 m. The 

values of the horizontal axis were shifted to obtain the peak value at l = 0, not l = 

35 m. The shift creates coordinate lp which refers to the horizontal distance from 

the curve peak. The shape of the curve suggests that the best fit can be achieved 

with a bell-shaped function. For that, five bell-shaped functions were chosen to 

approximate the relative bending moment curve: 

• Gaussian function (Normal distribution)  

• Algebraic function (root of polynomial equation) 

• Hyperbolic secant (derivative of Gudermannian function) 

• Witch of Agnesi (probability density function of Cauchy distribution) 

• Derivate of logistic function (scaled version of the derivate of hyperbolic 

tangent function) 

Table 4 contains analytical description of the bell-shaped functions and values of 

parameters best describing the moment curve shape. The values of all parameters 

were set according to two criteria – to obtain the peak value identical to the peak 

relative bending moment, and to copy the curve shape with the most precision. 

 

 Function  Analytical description Parameters 

1. Gaussian function 
𝑓(𝑥) = 𝑎𝑒

−𝑥2

2𝜎2  
𝑎 = 0.245 

𝜎 = 1.742 

2. Algebraic function 

𝑓(𝑥) =
𝑎

(𝑏 + 𝑐𝑥𝑑)𝑒
 

𝑎 = 0.245 

𝑏 = 1.000 

𝑐 = 0.200 

𝑑 = 2.000 

𝑒 = 1.500 

3. Hyperbolic secant 
𝑓(𝑥) =

𝑎 ∗ 2

𝑒𝑥 + 𝑒−𝑥
 𝑎 = 0.490 

4. Witch of Agnesi 

𝑓(𝑥) =
𝑏𝑎3

𝑥2 + 𝑐𝑎2
 

𝑎 = 0.245 

𝑏 = 1.000 

𝑐 = 0.200 

5. Derivate of logistic 

function 
𝑓(𝑥) =  

𝑎𝑒𝑥

(1 + 𝑒𝑥)2
 𝑎 = 0.980 

Table 4: Approximation functions 

Note: The symbols used as function parameters in Table 4 are commonly used for 

their description and are excluded from the list of symbols of this dissertation. 

Some of the symbols used in this table are used elsewhere in this dissertation 

while describing a different quality. In the context of this Section, the x symbol 

used in Table 4 as a variable of the function is equal to horizontal position l, with a 

shift of 35 m.  

The dependence of relative bending moment Mrel on horizontal position l with the 

35 m shift is displayed in Figure 10 along with all five approximation curves.  
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Figure 10: Approximation functions 

 

The best fitting curve was chosen according to three criteria: 

• Accuracy. The error of approximation was evaluated as a percentage 

related to the area under the curve. Table 5 summarises the error of each 

approximation curve.  

• Safety of use. The approximation must provide more onerous results to be 

applicable in engineering practice safely. This is evaluated by comparing 

the areas under the curves; the approximation function must be equal or 

larger than the moment curve, not smaller. See Table 5 for summary. 

• Clear definition of parameters. The parameters defining the approximation 

function need to be clearly defined based on the wall geometry. They need 

to be easily obtained for various wall heights. Table 5 shows summary of 

parameter clarity.  

 

Curve 

Area 

under the 

curve [-] 

Approximation 

error [%] 
Safety 

Clear definition of 

parameters 

 Relative 

bending 

moment 

1.04 - - - 

1.  

Gaussian 

function 
1.07 3.0 safe 

Parameters clear: 

• a is equal to the 

peak value, 

which is known 
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heights H, 
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Section 7.d.ii of 

this thesis; 

• σ is linearly 

dependent on 

wall height H, 

as described 

further in this 

section. 

2. Algebraic 

function 
1.08 4.0 safe Parameters unclear. 

3. 
Hyperbolic 

secant 
0.77 26.0 unsafe 

Parameters clear: 

dependent on peak 

bending moment. 

4. Witch of 

Agnesi 
0.99 4.3 unsafe Parameters unclear. 

5. Derivate 

of logistic 

function 

0.98 5.6 unsafe 

Parameters clear: 

dependent on peak 

bending moment. 

Table 5: Evaluation of approximation functions 

Table 5 shows that Gaussian function is the only approximation meeting all three 

criteria. Gaussian function was therefore chosen as the best fit to describe the 

horizontal course of bending moment over wall base.  

The Gaussian function was used as an approximation of the bending moment 

distribution for the whole range of wall heights H, see the graph in Figure 11. 

Parameters of the approximation function (a, σ) were fitted for all examined wall 

heights. It was observed that the parameters are dependent on the wall height H 

in following manner: 

• Parameter a directly describes the peak of the curve. The peak value is 

dependent on wall height H. It is identical to correction coefficient k2, that 

is determined in Section 7.d.ii.  

• Parameter σ is linearly dependent on wall height H, as it is clear from the 

graph in Figure 12. The graph shows σ values dependent on wall height H, 

including the trendline best describing the linear dependence. The 

dependence of parameter σ on wall height H is expressed in Equation 7. 

 
𝜎 = 0.834𝐻 + 0.056 Equation 7 

where H [m] is the wall height  
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Figure 11: Approximation of relative bending moment course for various wall 

heights 

  

 

 

Figure 12: Dependence of σ parameter on wall height 

For more convenient comparison, all curves of relative bending moment and all 

curves of Gaussian approximation were plotted in one graph, see Figure 13.  
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Figure 13: Course of bending moment and its approximation curves for various 

wall heights 

To conclude the findings of this Section, the approximation of the course of the 

bending moment Mrel over the wall length at its base can be expressed by Equation 

8 andEquation 9 using the general form of Gaussian function and implementing 

specific parameters.  

 

𝑓(𝑥) = 𝑎𝑒
−𝑥2

2𝜎2  
Equation 8 

 

𝑀𝑟𝑒𝑙 = 𝑘2𝑒

−𝑙𝑝
2

2(0.834𝐻+0.056)2 
Equation 9 

where a, σ [-] are parameters of Gaussian function (not 

defined in the list of symbols) 

 

 k2 [-] is the correction coefficient according to 

Section 7.d.ii 

 

 lp [m] is the horizontal distance from the peak 

bending moment 

 

 

c. Wall zones 

Depending on the circumstances in the vicinity of the cantilever wall, the position 

of the point load representing vehicle impact may or may not be known. If the wall 

is fully exposed to the impact, the exposed wall length Lex is equal to the full wall 

length L, and the load may be applied on any point of the structure, and therefore, 

the design needs to cover all possible positions. If only certain areas of the wall 

are exposed to the impact, only a specific part of the wall is influenced, see Figure 

14.  
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Figure 14: Influenced zone 

The influenced zone Li is defined as the length of the wall that has non-zero 

bending moment values in vertical direction, see Figure 15. Behind the borders of 

this zone, the wall remains intact. The influenced half-length Li/2 is defined as the 

horizontal distance between the point load at the end of the area exposed to 

impact and the position of the nearest zero bending moment. For a wall subjected 

to a single point load the influenced wall length is double the influenced half-

length. As the peak bending moment is located directly below the load force 

position and their horizontal coordinate is equal, it also means that the influenced 

half-length Li/2 is also the horizontal distance from the load force position to zero 

bending moment. 

 

Figure 15: Influenced half-length 

i. Influenced zone of infinite wall 

To quantify the length of the influenced zone on an infinite wall subjected to a 

single point load, a set of three-dimensional models was prepared. A wall of length 
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L = 70 m (to simulate infinite length, see Section 7.a) and thickness t = 300 mm was 

subjected to a point load F = 1000 kN located at the top wall edge in the centre of 

the wall length (x = 35.0 m). Various wall heights H were examined, ranging from 

0.6 m to 6.0 m with 0.2 m step. 

The course of relative bending moment Mrel over the wall length was observed. The 

graph in Figure 16 displays the results. The horizontal axis of the graph shows the 

representative part of the wall length. It starts at the centre of the wall (l = 35.0 m) 

and ends in positions where the curves approach zero bending moment (l = 50.0 

m). The bending moments in positions behind l = 50.0 m are so close to zero that 

they are not shown to emphasise the depicted part of the graph. The bending 

moments in positions before l = 35.0 m are symmetrical to the ones after this mark. 

There are two curves highlighted dashed in the graph – the curve of 0.6 m wall 

height and the curve of 6.0 m wall height. These two curves are the beginning and 

end of the examined range of wall heights. The legend for the rest of the curves is 

not displayed to keep clarity in the graph.  

 

Figure 16: Influenced half-length of infinite wall subjected to a single point load 

The curve of 0.6 m wall height has the highest peak of relative bending moment 

Mrel,max. The bending moment obtained on this three-dimensional model is 81 % of 

the bending moment that is obtained on a two-dimensional simulation of the 

problem. While the peak value of relative bending moment Mrel,max is the highest of 

the examined range of wall heights, the influenced zone is the shortest. The curve 

decreases rapidly and reaches zero relative bending moment at l = 37.0 m. Since 

the graph shows values after l = 35.0 m mark, the influenced half-length Li/2  equals 

to 37.0 – 35.0 = 2.0 m, and therefore, the influenced length Li  is 4.0 m.  
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On the other side of the examined wall height spectrum, the curve of 6.0 m wall 

height has the lowest peak of relative bending moment Mrel,max. The bending 

moment obtained on this three-dimensional model is 8 % of the bending moment 

that is obtained on a two-dimensional simulation of the problem. While the peak 

value of relative bending moment Mrel,max is the lowest of the examined range of 

wall heights, the influenced zone is the longest. The curve decreases slowly from 

the peak and reaches zero relative bending moment at l = 48.4 m. Since the graph 

shows values after l = 35.0 m mark, the influenced half-length Li/2 equals to 48.4 – 

35. 0 = 13.4 m, and therefore, the influenced length Li is 26.8 m.  

The results for the whole range of the examined wall heights are presented in 

Figure 17 andFigure 18. The graph in Figure 17 shows the dependence of the 

influenced Li wall length on wall height H. The graph in Figure 18 shows the 

dependence of the influenced wall half-length Li/2 on wall height H. The trend of 

the curve in Figure 17 can be analytically expressed, see Equation 10. Therefore, 

the dependence of the influenced wall length Li on the wall height H can be 

expressed, see Equation 11. Similarly, the curve describing dependence of the 

influenced half-length Li/2 was determined, see Equation 12.  

  

 

Figure 17: Influenced wall length 

dependence on wall height 

 

 

Figure 18: Influenced wall half-length 

dependence on wall height 

 𝑦 =  −0.229𝑥2 + 5.647𝑥 + 0.981 Equation 10 

 𝐿𝑖 =  −0.229𝐻2 + 5.647𝐻 + 0.981 Equation 11 

 𝐿𝑖/2 =  −0.114𝐻2 + 2.823𝐻 + 0.491 Equation 12 

where H [m] is the height of the wall  
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The equations presented above apply to walls of infinite length, or walls of finite 

length where the position of the point load is known to be at least Li/2 from wall 

end.  

The modelling was repeated for load force F = 80 kN. The results were identical to 

those with load force F = 1000 kN, proving that the influenced zone is independent 

from load magnitude. 

ii. Influenced zone of finite wall 

The proximity of a wall edge undoubtedly affects the influenced zone of the wall. 

In case of an infinite wall subjected to a single point load, the influenced zone Li is 

double the distance from the peak to zero bending moment and the influenced 

half-length Li/2 is equal to the distance from the load force horizontal position to 

zero bending moment. It is obvious that in case of finite walls with loads 

positioned near wall side edges, the influenced half-length on the edge side from 

the peak will be reduced to the limits of the wall, see Figure 19. In this section of 

the thesis, there was examined if the half-length on the central side from the peak 

bending moment is identical for finite and infinite walls.  

 

Figure 19: Influenced half-length of infinite and finite wall 
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To determine the influenced half-length of finite wall subjected to a point load, a 

three-dimensional model of a wall was prepared. The wall of length L = 70 m, 

height H = 2.0 m and thickness t = 300 mm was subjected to a point load F = 160 

kN. The position of the load was variable, ranging from x = 0.0 m to x = 35.0 m, 

creating 176 load cases.  

The dependence of the relative bending moment Mrel on horizontal position l is 

presented in the graph in Figure 20. for all load positions from x = 0.0 m to x = 12.4 

m. The curves of further load positions are not displayed as the trend of the curves 

is monotonic for load positions behind x = 12.4 m. The distance between the peak 

position and the position where the curve reaches zero is 5.6 m for all presented 

curves, see illustration of this result in Figure 21. This means, that the influenced 

half-length in the direction to the centre of the wall is independent from the 

position of the load force. The proximity of wall end manifests itself only as a rise 

in the bending moment peak value and does not result in larger wall length 

affected by the load.  

 

 

Figure 20: Influenced half-length of a finite wall 
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Figure 21: Equal influenced wall half-length for edge and non-edge load position 

The findings from this and the previous Section can be summarised as follows: 

• For walls with areas exposed to impact further than Li/2 from wall edge (xmin 

≥ Li/2), the influenced zone Li can be expressed by Equation 13. 

• For walls with areas exposed to impact closer than Li/2 to wall edge (xmin < 

Li/2), the influenced zone Li can be expressed by Equation 14. 

 
𝐿𝑖 =  2𝐿𝑖/2 + 𝐿𝑒𝑥 Equation 13 

 
𝐿𝑖 =  𝑥𝑚𝑖𝑛 + 𝐿𝑒𝑥 + 𝐿𝑖/2 Equation 14 

where  xmin  is the distance between the wall end and the 

closest impact load position 

 

 Lex is the length of the wall exposed impact  

 Li/2 Is the half-length defined in Equation 12  

 

 

iii. Central and edge zones 

If a wall is fully exposed to impact load, the internal forces in the areas in proximity 

of wall side edges are strongly influenced. Since the purpose of this study is to 

obtain reliable results for convenient structural design, it is handy to establish wall 

zones within which specific rules for the analysis will apply.  

Two major wall zones are introduced: a) Central zone; b) Edge zone, see Figure 22. 
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Figure 22: Central and edge zones 

The central zone is the part of the wall where the peak bending moment is not 

influenced by the proximity of the wall edge. Generally, the bending moment in 

the central zone is smaller than bending moment obtained from a two-

dimensional model.  

The edge zone is the part of the wall in which the peak bending moment is 

increased due to the proximity of the wall edge. Generally, the bending moment 

in the edge zone is higher than the bending moment in the central zone; in some 

cases, it may even exceed the bending moment obtained from a two-dimensional 

model.  

The position of the interface between edge and central zone is defined by size of 

the wall edge zone Le. In this section, the size of Le is determined. For that purpose, 

the three-dimensional model of a wall from the previous section was analysed. 

The wall of length L = 70 m, height H = 2.0 m and thickness t = 300 mm was 

subjected to a point load F = 160 kN. The position of the load was variable, ranging 

from x = 0.0 m to x = 35.0 m, creating 176 load cases. The results of this analysis 

were already presented in the previous section in Figure 20. While in the previous 

section it was analysed if the horizontal distance between the peak bending 

moment and zero bending moment is equal for impact forces applied at the wall 

edge and in a distance from edge (Figure 20), in this section, it is observed for what 

load position the peak bending moment value is increased in comparison to an 

infinite wall.  

The graph in Figure 23 presents relative bending moments Mrel over the wall length 

for various load position x. The peak values of the curves representing load cases 

where the load position is further than 4.4 m from the wall edge is constant Mrel = 

0.24. The peak value starts to increase at x = 4.2 m and increases with decreasing 

x, reaching Mrel = 0.74 at x = 0.0 m. The wall edge zone is equal to the range of 

positions where the trend of moment peaks is not constant. In this case, the wall 

edge zone Le = 4.2 m. As it was proven in the previous section, this result is 

independent from the load magnitude.  
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Figure 23: Wall edge zone 

The analysis was repeated for various wall heights H ranging from 1 m to 5 m with 

1 m step. The dependence of the edge zone length Le on wall height H is presented 

in a graph in Figure 24. The curve can be described by Equation 15, and therefore 

the dependence of the edge zone length Le on wall height H follows Equation 16. 

 

 

Figure 24: Wall edge zone dependence on wall height 

 
𝑦 =  2.180𝑥 + 0.020 Equation 15 

 

 𝐿𝑒 =  2.180𝐻 + 0.020 Equation 16 

where H is the height of the wall  
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Knowing the size of the edge zones Le, the central zone Lc can be determined as 

the remaining part of the wall length L, see Equation 17.  

 𝐿𝑐 =  𝐿 − 2𝐿𝑒 Equation 17 

The definition of central and edge zones of the wall according to the equations 

stated above is important for a correct use of calculation methods presented in 

this thesis.  

It is important to distinguish between influenced wall half-length Li/2 and edge 

zone length Le, as they might seem to be equal, but they are not. The influenced 

half-length is the distance between the peak bending moment and zero bending 

moment on a wall subjected to a single point load. The edge zone is the distance 

between peak bending moment at the wall edge and the position past which the 

peak bending moment no longer decreases in case of a wall that is fully exposed 

to impact loading and therefore there are infinite possible positions of the load. 

This is further explained in Figure 25, where the distance Li/2 spans from peak of 

the black curve to the position where the black curve reaches zero bending 

moment. Contrarily, the distance Le spans from the absolute peak of all curves to 

the point where the envelope of the peaks stabilizes at a constant value.  

 

Figure 25: The difference between influenced wall half-length end edge zone 

iv. Zone sensitivity to moment precision  

The definition of zones in Sections above was determined by detecting at what 

point of wall length the bending moment reaches a certain value or zero. It needs 

to be mentioned that such approach is very sensitive to the bending moment 

value precision. As the curve of bending moments approaches a constant value, 
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its inclination becomes lower. For that, a small difference in bending moments 

means a large difference in horizontal position, see Figure 26.  

The equations presented in the previous sections are based on results of relative 

bending moments that have the precision of 0.00. This means that the rounding 

error is 0.005, i. e. 0.5 %.  

 

Figure 26: Sensitivity of wall zones to moment precision 

d. Effects of parameters influencing bending moment distribution  

The distribution of bending moment over the structure and its peak value are 

affected by several parameters of the structure and load. The effects of each 

individual parameter on the peak value of bending moment are analysed in 

following Subsections. The evaluated parameters are listed as follows: 

1. Wall length  

2. Wall height  

3. Wall thickness  

4. Load magnitude  

5. Load distribution  

6. Vertical load position  

7. Horizontal load position  

8. Concrete class  

9. Reinforcement  

10. Edge supports 

As the objective of this thesis is to provide results of vertical bending moment with 

precision of three-dimensional modelling with use of only two-dimensional hand 

calculation, the effects of each individual parameter listed above is incorporated 

as a correction coefficient to be applied on the maximum value of bending 
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moment M2D,max from a two-dimensional model. Interaction between the 

parameters and its effects on resulting value of peak bending moment M3D,max is as 

well evaluated where applicable.  

i. Wall length 

The peak bending moment on three-dimensional models of a retaining wall is 

strongly dependent on wall length L, as the length provides space for distribution 

of bending moment in horizontal direction. The more the bending moment is 

distributed, the smaller is its peak value. Since the objective of this thesis is to 

obtain peak values of bending moments with precision equal to three-

dimensional modelling with use of simplified two-dimensional models on long 

retaining walls, it is crucial to classify the walls according to their length, and thus 

define applicability of the findings presented further in the thesis.   

One of the findings described in Section 7.c is the definition of influenced wall 

length Li. Based on that, a hypothesis is proposed regarding the effects of wall 

length:  

A wall with length L equal to or larger than the influenced wall length Li is classified 

as a long wall and can be divided into central and edge zones. The peak bending 

moment caused by a point load placed in the central zone on the top edge of such 

wall is equal to the peak bending moment on an infinite wall caused by that load. 

To validate the hypothesis, a set of three-dimensional models was prepared. A 

wall was subjected to a point load of 20 kN placed in the centre of the top wall 

edge. The wall was modelled with thickness of 300 mm, C30/37 concrete class was 

used. Three wall heights were examined – 1 m, 2 m, and 3 m. The wall length was 

variable, ranging between 0.2 m and 20.0 m with 0.2 m step. The values peak 

bending moment in vertical direction M3D,max were observed. The results are 

presented in Figure 27 on a graph of peak bending moment M3D,max dependence 

on wall length L.  
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Figure 27: Peak bending moment dependence on wall length 

All three curves in the graph of Figure 27 decrease with increasing wall length, 

which confirms the assumption that large wall lengths provide enough space for 

bending moment distribution, and thus decrease the peak value. 

For more convenient result processing, the relative values of the bending 

moments Mrel were calculated, see Equation 18.  

 
𝑀𝑟𝑒𝑙,𝑚𝑎𝑥 =

𝑀3𝐷,𝑚𝑎𝑥

𝑀2𝐷,𝑚𝑎𝑥
 Equation 18 

where M3D,max [kNm/m] is the peak bending moment 

obtained from a three-

dimensional model 

 

 M2D,max [kNm/m] is the maximum bending 

moment obtained from a two-

dimensional model 

 

𝑀2𝐷,𝑚𝑎𝑥 = 𝐹𝐻  

 

Equation 19 

  where  

   F [kN] is the loading 

force  

   H [m] is the wall height, 

equal to vertical 

load position in 

this case 

 

 

The dependence of relative bending moment Mrel,max on wall length L is presented 

in Figure 28.  
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Figure 28: Relative bending moment dependence on wall length 

Validation of the hypothesis stated above requires proving that for wall lengths L 

larger than influenced wall length Li, the peak bending moment Mrel,max does not 

differ from the peak bending moment Mrel,max on infinite wall. In other words, for 

walls longer than Li, the peak bending moment should remain constant regardless 

increasing wall length L. To evaluate that, the influenced wall lengths Li for all wall 

heights H are calculated according to Equation 11 in Section 7.c.i and presented in 

Table 6.  

wall height H [m] influenced wall length Li [m] 

1.0 6.4 

2.0 11.4 

3.0 15.9 

Table 6: Influenced wall length for examined wall heights 

The influenced lengths Li were introduced into the detail of the M3D,max-L graph as 

vertical borders, see Figure 29.  
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Figure 29: Relative bending moment dependence on wall length with marked 

influenced lengths 

The graph shows the specific values of relative bending moment Mrel,max for the wall 

lengths L equal to the influenced wall length Li. The values are equal to the relative 

bending moment values for the longest walls of the examined range, which are 

shown in the graph as well. This proves that the relative bending moment Mrel,max 

for wall length Li is equal to the relative bending moment Mrel,max for longer walls. 

The values of relative bending moments Mrel,max remain constant for walls with 

lengths L larger than Li in all three cases of examined wall heights. The hypothesis 

stated at the beginning of this Section is thus validated.  

Based on the findings presented above, it can be concluded that walls with length 

L equal to or larger than the influenced wall length Li can be categorized as long 

walls, that have defined central and edge zones. When the load of such wall is 

placed in its central zone, the behaviour of the wall is equal to behaviour of an 

infinite wall. Walls shorter than Li are categorized as short walls and need 

individual approach in their modelling. They are not a subject of the study 

presented in this thesis and the findings described in the other Sections of this 

thesis are not applicable to them.  

It is advised to always use three-dimensional modelling for the analysis of walls 

with length L smaller than Li to obtain reliable results. For walls with length L 

smaller than or equal to 1.0 m, it is advised to use two-dimensional beam models.  

ii. Wall height 

The cantilever wall analysed in this thesis is in default assumed to be subjected to 

a loading force placed at the top wall edge. For that, the wall height H is equal to 
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the vertical position of the force h, and therefore, the wall height H strongly affects 

the peak bending moment as it defines the lever arm of the force.  

A set of three-dimensional models was prepared to evaluate the effects of wall 

height H. A wall with length of 70 m was subjected to a load of 20 kN placed in the 

centre of the wall horizontally, at the top wall edge vertically. The wall was 

modelled with thickness of 300 mm, C30/37 concrete class was used. Wall heights 

ranged between 0.6 and 6.0 m with 0.2 m step. 

The peak bending moment in vertical direction M3D,max was observed for all 

examined wall heights. The peak value is situated in the central section of the wall 

for all cases. The dependence of peak bending moment M3D,max on wall height H is 

summarised in a graph in Figure 30. 

 

Figure 30: Peak bending moment dependence on wall height 

The graph in Figure 30 shows general increase of the peak bending moment M3D,max 

with increasing wall height H, with the exception of the very beginning of the curve 

corresponding to wall heights up to 1.0 m. A possible cause of this discrepancy at 

the beginning of the height range is that the wall is too short for using a plate 

element for its modelling. The curve is not entirely smooth as the software 

provides results with precision of two decimal places, and for that close values 

appear to be equal.  

The vertical axis of the graph in Figure 30 shows quite narrow range of values. To 

put the values in perspective, Figure 31 provides the results shown with the 

baseline at zero bending moment.  
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Figure 31: Peak bending moment dependence on wall height 

This new perspective reveals that the resulting values of peak bending moment 

M3D,max are in fact very close for all examined wall heights. Hence, the effect of the 

wall height H is much less significant in three-dimensional modelling than it is in 

two-dimensional modelling, where there is a linear dependence between wall 

height H and peak bending moment M2D,max according to Equation 20.  

 
𝑀2𝐷,𝑚𝑎𝑥 = 𝐹𝐻 Equation 20 

where F [kN] is the point load force  

 H [m] is the wall height, equal to vertical 

load position h in this case  

 

 

In case of three-dimensional models, the peak bending moment M3D,max increases 

very slowly with increasing wall height H, while the increase is more rapid on two-

dimensional models. The reason for that is that the tree-dimensional model 

provides wider influenced area into which the bending moment can spread, and 

therefore, its peak is reduced.  

To obtain the relationship between the results on two- and three-dimensional 

models, the relative peak bending moment Mrel,max,2 is introduced as a ratio of the 

value obtained from the three-dimensional model to the value obtained from the 

two-dimensional model, see Equation 21.  

 
𝑀𝑟𝑒𝑙,𝑚𝑎𝑥,2 =

𝑀3𝐷,𝑚𝑎𝑥

𝑀2𝐷,𝑚𝑎𝑥
 Equation 21 

where M3D,max [kNm/m] is the peak bending moment 

obtained from a three-

dimensional model 

 

 M2D,max [kNm/m] is the peak bending moment 

obtained from a two-dimensional 

model 
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The dependence of the relative peak bending moment Mrel,max,2 is plotted in Figure 

32. For all inspected wall heights, the peak relative bending moments obtained 

from the three-dimensional models were smaller than the ones obtained from the 

two-dimensional models. Increasing wall height H leads to a decrease of relative 

bending moment Mrel,max,2. For a wall with the height of 0.6 m, the bending moment 

from the three-dimensional model is 81% of the moment from the two-

dimensional model. For a wall with the height of 6.0 m, it is 8%. 

 

Figure 32: Relative peak bending moment dependence on wall height 

A trendline of the curve of the relative peak bending moment Mrel,max,2 was found, 

see Equation 22. The precision of the equation is satisfactory as its determination 

coefficient R2 is equal to 1.000. The trendline function can be used as a correction 

coefficient k2 dependent on wall height H, see Equation 23.Equation 23 

 
𝑦 =  0.486𝑥−0.993 Equation 22 

 
𝑘2 = 𝑦 =  0.486𝑥−0.993 = 0.486𝐻−0.993 Equation 23 

 

The correction coefficient k2 can be applied on the peak bending moment M2D,max 

obtained from the two-dimensional analysis, returning modified value that 

approximates a value that would have been obtained from the three-dimensional 

model, see Equation 24. The correction coefficient k2 compensates the error of the 

two-dimensional analysis. The correction coefficient is applicable to the central 

zone of very long walls as defined in Section 7.c. 

 
𝑀3𝐷,𝑚𝑎𝑥 = 𝑘2𝑀2𝐷,𝑚𝑎𝑥 = 0.486𝐻−0.993𝐹𝐻 = 0.486𝐹𝐻0.007 Equation 24 
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To generalize the use of correction coefficient k2 defined in Equation 23, its 

applicability was tested for changing conditions in the other parameters defining 

the wall and load (according to the list in Section 7.d). Further paragraphs contain 

the results of this testing, considering the wall and load parameters one by one 

and their potential interference with the outcomes from above.  

Wall length: The analysis of wall height influence on the peak bending moment 

was conducted for the case of an infinite wall or a finite wall with length L equal to 

at least Li with the loading force F placed in the central zone, as defined in Section 

7.c. For shorter walls or walls with the loading force F placed in an edge zone, the 

ratio of peak bending moments on the three- and two-dimensional models differs. 

Hence, the correction coefficient k2 as defined by Equation 23 is not applicable in 

such cases. Applicability of the correction coefficient k2 on an infinite wall or a finite 

wall with length L equal to at least Li is given by the definitions of infinite/finite 

walls and central/edge zones from Section 7.c. Within those boundaries, the 

correction coefficient k2 is independent from wall length L. 

Wall thickness: To test whether the variability of wall thickness t affects the 

correction coefficient k2, a set of verification models was prepared. Wall heights H 

selected for verification were ranging from 1.0 to 6.0 m with 1.0 m step. Each wall 

selected for verification was assigned with a thickness different from the default 

thickness 300 mm. Peak bending moment M3D,max was obtained from the models, 

and approximated using Equation 24 as well. Both values were then compared, 

and the error of the approximation evaluated. See summary in Table 7.  

wall 
height 
H [m] 

wall 
thickness 

t [mm] 

FEM computed 
peak moment 

M3D,max [kNm/m] 

approximated 
peak moment 

M3D,max [kNm/m] 

approximation 
error [%] 

1.0 150 9.80 9.72 0.8 

2.0 200 9.82 9.77 0.5 

3.0 250 9.83 9.80 0.4 

4.0 350 9.83 9.81 0.2 

5.0 400 9.83 9.83 0.0 

6.0 500 9.83 9.84 0.1 

Table 7: Verification of correction coefficient sensitivity to wall thickness 

Table 7 shows that the approximation error is under 1% for wall with thicknesses 

t varying from 300 mm, which is acceptable. Therefore, it is concluded that the 

correction coefficient k2 is independent from wall thickness t.  

Magnitude of load: To test whether load magnitude F affects the correction 

coefficient k2, a set of verification models was prepared. Verification models were 

identical to the original set with the exception of the load force F, which was set 

from the original value of 20 kN to 160 kN. The peak values of bending moment 

M3D,max were obtained for the two cases. To be able to compare the results, relative 

values of the peak bending moment Mrel,max,2 were expressed according to Equation 

21. Table 8 summarises the outcomes for all examined wall heights H and both 

load forces F. 
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Wall 
height H 

[m] 

F = 20 kN F = 160 kN 
error [%] M3D,max 

[kNm/m] 
Mrel,max,2 [-] 

M3D,max 
[kNm/m] 

Mrel,max,2 [-] 

0.6 9.69 0.808 77.55 0.808 0.0 

0.8 9.68 0.605 77.47 0.605 0.0 

1.0 9.71 0.486 77.64 0.485 0.1 

1.2 9.73 0.405 77.83 0.405 0.0 

1.4 9.75 0.348 78 0.348 0.0 

1.6 9.77 0.305 78.13 0.305 0.0 

1.8 9.78 0.272 78.23 0.272 0.0 

2.0 9.79 0.245 78.32 0.245 0.0 

2.2 9.80 0.223 78.38 0.223 0.0 

2.4 9.80 0.204 78.43 0.204 0.0 

2.6 9.81 0.189 78.47 0.189 0.0 

2.8 9.81 0.175 78.51 0.175 0.0 

3.0 9.82 0.164 78.53 0.164 0.0 

3.2 9.82 0.153 78.56 0.153 0.0 

3.4 9.82 0.144 78.57 0.144 0.0 

3.6 9.82 0.136 78.59 0.136 0.0 

3.8 9.83 0.129 78.6 0.129 0.1 

4.0 9.83 0.123 78.61 0.123 0.0 

4.2 9.83 0.117 78.62 0.117 0.0 

4.4 9.83 0.112 78.63 0.112 0.0 

4.6 9.83 0.107 78.63 0.107 0.0 

4.8 9.83 0.102 78.64 0.102 0.0 

5.0 9.83 0.098 78.64 0.098 0.0 

5.2 9.83 0.095 78.65 0.095 0.0 

5.4 9.83 0.091 78.65 0.091 0.0 

5.6 9.83 0.088 78.65 0.088 0.0 

5.8 9.83 0.085 78.65 0.085 0.0 

6.0 9.83 0.082 78.65 0.082 0.0 

Table 8: Verification of correction coefficient sensitivity to load magnitude 

Table 8 shows that the difference between the values of relative peak bending 

moment Mrel,max,2 for loads 20 kN and 160 kN is equal or very close to 0.0% in all 

cases. The non-zero errors may be explained by the fact that the values obtained 

from the software are rounded to two decimal places. Since the correction 

coefficient k2 is equal to the relative peak bending moment Mrel,max,2, it is concluded 

that the correction coefficient k2 is independent from load magnitude F.  

Load distribution: The correction coefficient k2 was determined specifically for the 

loads concentrated to one point. Load distribution has major effect on moment 

distribution and therefore its peak value (as described in Section 7.d.v). Different 

correction coefficient and design method is proposed for walls subjected to 

distributed loads, see Section 7.d.v. Correction coefficient k2 is not applicable in 

such situations.  
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Load vertical position: The correction coefficient k2 was determined specifically for 

the loads placed at the top wall edge so that the vertical load position h is equal 

to the wall height H. Cases where the vertical load position h is not equal to the 

wall height H are analysed in Section 7.d.vi. While the definition of the k2 coefficient 

according to Equation 23 still applies for walls with vertical load position h 

different from the wall height H, it is used differently to obtain the peak bending 

moment M3D,max and because of that, Equation 24 does not apply. See Section 7.d.vi 

for details and explanation.  

Load horizontal position: The correction coefficient k2 was determined specifically 

for the loads placed on infinite walls or in central zones of finite walls. Cases where 

the loads are placed in the edge zones of finite walls are analysed in Section 7.d.vi. 

Different correction coefficient and rectification method is proposed for walls 

subjected to loads placed in the edge zones, see Section 7.d.vi. Correction 

coefficient k2 is not applicable in such situations. 

Concrete strength: To test whether concrete strength fc affects the correction 

coefficient k2, a set of verification models was prepared. Verification models were 

identical to the original set with the exception of concrete strength fc, which was 

set from the original value of 30 MPa to 50 MPa (by using concrete class C50/60 

instead of C30/37). The peak values of bending moment M3D,max were obtained for 

the two cases. Table 9 summarises the outcomes for all examined wall heights H 

and both concrete strengths fc. 

wall height H 
[m] 

M3D,max [kNm/m] error 
[%] C30/37 C50/60 

0.6 9.56 9.55 0.1 

0.8 9.58 9.57 0.1 

1.0 9.61 9.60 0.1 

1.2 9.66 9.65 0.1 

1.4 9.69 9.69 0.0 

1.6 9.71 9.71 0.0 

1.8 9.74 9.73 0.1 

2.0 9.75 9.75 0.0 

2.2 9.76 9.76 0.0 

2.4 9.78 9.77 0.1 

2.6 9.78 9.78 0.0 

2.8 9.79 9.79 0.0 

3.0 9.80 9.79 0.1 

3.2 9.80 9.80 0.0 

3.4 9.80 9.80 0.0 

3.6 9.81 9.80 0.1 

3.8 9.81 9.81 0.0 

4.0 9.81 9.81 0.0 

4.2 9.81 9.81 0.0 

4.4 9.82 9.81 0.1 

4.6 9.82 9.81 0.1 
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wall height H 
[m] 

M3D,max [kNm/m] error 
[%] C30/37 C50/60 

4.8 9.82 9.82 0.0 

5.0 9.82 9.82 0.0 

5.2 9.82 9.82 0.0 

5.4 9.82 9.82 0.0 

5.6 9.82 9.82 0.0 

5.8 9.82 9.82 0.0 

6.0 9.82 9.82 0.0 

Table 9: Verification of correction coefficient sensitivity to concrete strength 

Table 9 shows that the difference between the values of peak bending moment 

M3D,max for concrete class C30/37 and C50/60 is equal or very close to 0.0% in all 

cases. Therefore, it is concluded that the correction coefficient k2 can be applied 

to walls of various concrete strength fc. 

Reinforcement: The correction coefficient k2 was determined specifically for the 

reinforcement equal in horizontal and vertical direction. Cases where the 

reinforcement differs in the two directions are analysed in Section 7.d.ix. See 

Section 7.d.ix for details and explanation. 

Wall edge restraints: The correction coefficient k2 was determined specifically for 

the loads placed on infinite walls or in central zones of finite walls. Since wall edge 

restraints affect only edge zones of finite walls, as examined in Section 7.d.x, the 

correction coefficient k2 remains applicable in central zones of walls regardless 

their side edge restraints.  

iii. Wall thickness 

A set of three-dimensional models was prepared to evaluate the effects of wall 

thickness. A wall with length of L = 70 m was subjected to a load of F = 20 kN placed 

in the centre of the wall horizontally, at the top wall edge vertically. C30/37 

concrete class was used. Wall heights H ranged between 1.0 and 6.0 m with 1.0 m 

step. Wall thickness t ranged between 100 mm and 600 mm with 100 mm step. 

The peak bending moment in vertical direction M3D,max was observed for all 

examined wall heights and thicknesses. The dependence of the peak bending 

moment on wall thickness is summarised for all wall heights in a graph in Figure 

33. 
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Figure 33: Peak bending moment dependence on wall thickness 

The graph in Figure 33 shows that the peak bending moment M3D,max decreases 

with increasing wall thickness t for all wall heights H. However, the rate of decrease 

differs for various wall heights H; the decrease is more rapid for shorter walls.  

The graph in Figure 33 presents the curves with a clear trend, however, it is 

important to put the results into perspective by broadening the vertical axis to the 

full range of values starting from zero bending moment M3D,max, see Figure 34.  

 

Figure 34: Peak bending moment dependence on wall thickness 

Figure 34 shows that, in broader perspective, the bending moment values M3D,max 

are in fact quasi-constant with increasing wall thickness t for all wall heights. For 

that, it is concluded that there is no need to consider wall thickness as a significant 
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influence on the peak bending moment. The slight diversions in results may reflect 

various wall thickness to element size ratio. 

All other wall and load parameters examined in this thesis are analysed on a wall 

with the thickness t = 300 mm. For that reason, the diversion of results for various 

thicknesses from results of 300 mm thickness is quantified, see Table 10.  

wall 
thickness t 

[mm] 

Diversion [%] in peak bending moment M3D,max from result for 
wall thickness t = 300 mm 

H = 1.0 m H = 2.0 m H = 3.0 m H = 4.0 m H = 5.0 m H = 6.0 m 

100 0.7 0.3 0.1 0.0 0.0 0.0 

200 0.2 0.2 0.1 0.0 0.0 0.0 

300 0.0 0.0 0.0 0.0 0.0 0.0 

400 -0.1 -0.2 -0.1 -0.1 0.0 0.0 

500 -0.1 -0.5 -0.3 -0.2 -0.1 0.0 

600 -0.1 -0.5 -0.3 -0.4 -0.2 -0.1 

Table 10: Diversion in peak bending moment for various wall thicknesses 

The values in Table 10 show that the largest diversion applies to short walls and 

large thicknesses. Contrarily, bending moments of tall thin walls are equal to 

bending moment of 300 mm thick wall. All the diversions in the examined range 

of wall heights and thicknesses are below 0.8%. Therefore, it is concluded that wall 

thickness does not influence the values of resulting bending moment significantly 

and does not need to be considered as an affecting parameter in the structural 

analysis.  

iv. Magnitude of load 

The magnitude of loading force applied on a structure is undoubtedly the major 

factor influencing the internal forces. In two-dimensional models, the peak 

bending moment is proportional to the loading force. Equal dependence was 

assumed to be applicable in three-dimensional modelling, and the assumption 

was confirmed in Section 7.d.ii. Section 7.d.ii provides comparison of relative 

bending moment Mrel,max,2 for a wall loaded in the centre of its top edge with two 

forces of different magnitude. The results were equal for both loading force values, 

thus proving that the peak bending moment is independent from load magnitude. 

The test in Section 7.d.ii was conducted on a wall of infinite length, and the only 

outcome observed was the peak bending moment value. Section 7.d.ii did not 

study the effect of load magnitude on the influence length. For that, this Section 

aims to verify that the relative peak bending moment is independent from the 

load magnitude even for walls with finite length that is short enough to decrease 

the influenced length. In other words, it is studied whether load magnitude affects 

influenced length of the wall.  

A set of three-dimensional models was prepared to evaluate the effects of load 

magnitude. A wall of C30/37 concrete class, with height H = 1 m and thickness t = 

300 mm was subjected to a point load F positioned at the top edge in the centre 

of the wall length. The wall length L ranged between 0.2 m and 10.0 m with 0.2 m 

step. Three values of load magnitude F were examined: 5 kN, 20 kN, and 160 kN.  
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The peak bending moment in vertical direction M3D,max was observed for all 

examined wall lengths L and load magnitudes F. The dependence of peak bending 

moment M3D,max on wall length L is summarised for all load magnitudes F in a graph 

in Figure 35. 

 

Figure 35: Peak bending moment of various load magnitudes 

The values of peak bending moment M3D,max are proportional to the load 

magnitude F, as it was assumed. Relative peak bending moment Mrel,max,2 was 

expressed for more convenient result comparison, see Equation 25 and Figure 36.  

 
𝑀𝑟𝑒𝑙,𝑚𝑎𝑥,2 =

𝑀3𝐷,𝑚𝑎𝑥

𝑀2𝐷,𝑚𝑎𝑥
 Equation 25 

where M3D,max [kNm/m] is the peak bending moment 

obtained from a three-

dimensional model 

 

 M2D,max [kNm/m] is the peak bending moment 

obtained from a two-

dimensional model 

 

 

The graph in Figure 36 shows that the results are equal for the three load 

magnitudes F in the whole range of examined wall lengths L. This finding proves 

that both relative peak bending moment and the influenced length are 

independent from load magnitude. 
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Figure 36: Relative peak bending moments of various load magnitudes 

v. Load distribution 

Concentrated load is often idealized and modelled as a point load. However, more 

realistic models consider non-zero area of load application. This section examines 

structural behaviour of walls subjected to loads distributed over the top wall edge. 

Such loads were modelled as uniformly distributed linear loads acting on a certain 

length of the top wall edge.  

A set of three-dimensional models was prepared to evaluate the effects of load 

distribution. A wall with length L = 70 m was subjected to load F =1000 kN placed 

in the centre of the wall horizontally, at the top wall edge vertically. The wall was 

modelled with thickness t = 300 mm, C30/37 concrete class was used. Wall heights 

H ranged between 1 and 4 m with 1 m step. The local x-axis is oriented 

horizontally, y-axis vertically. The peak value of bending moment M3D,max in vertical 

direction was evaluated.  

The load F was distributed, providing linear loading f applied to the distribution 

length d, see Table 11 and Figure 37. 

The peak bending moment in vertical direction M3D,max was observed for all 

examined wall heights H and load distributions d. The peak bending moment is 

situated in the central section of the wall for all cases. The dependence of peak 

bending moment M3D,max on distribution length d was evaluated for all examined 

wall heights H, see Table 12. The results are summarised in Figure 38. 

  

0

1

2

3

4

5

6

0 2 4 6 8 10

R
e

la
ti

ve
 b

e
n

d
in

g 
m

o
m

e
n

t 
M

re
l,m

ax
,2

 [-
]

Wall lenght L [m]

F = 5 kN F = 20 kN F = 160 kN



65 

 

Distribution length 
d [m] 

Linear loading 
f [kN/m] 

0 - 

0.2 1000/0.2 = 5000 

0.5 1000/0.5 = 2000 

1 1000/1 = 1000 

2 1000/2 = 500 

4 1000/4 = 250 

8 1000/8 = 125 

16 1000/16 = 62.5 

20 1000/20 = 50 

25 1000/25 = 40 

Table 11: Load distribution over the top wall edge 

  
 

  

Figure 37: Load distribution over the top wall edge 

 

d [m] 
F/d 

[kN/m] 

M3D [kNm/m] 

H = 1.0 m H = 2.0 m H = 3.0 m H = 4.0 m 

0 - 487.43 490.18 491.18 491.52 

0.2 5000 484.96 489.52 490.87 491.35 

0.5 2000 476.6 487.23 489.83 490.75 

1 1000 449.66 479.31 486.13 488.63 

2 500 372.54 450.89 472.12 480.41 

4 250 239.83 371.12 425.67 451.08 

8 125 124.97 238.23 318.39 369.98 

16 62.5 62.52 124.84 184.51 237.38 

20 50 50.01 99.99 149.23 195.61 

25 40 40.01 80.01 119.85 158.75 

Table 12: Peak bending moments for various load distribution lengths 
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Figure 38: Peak bending moment dependence on load distribution length 

For more convenient processing of the data, relative bending moment Mrel,max,5 was 

introduced, see Equation 26. The relative bending moment Mrel,max,5 relates the 

bending moment values from load acting distribution length d to the bending 

moment value from a point load.  

 
𝑀𝑟𝑒𝑙,𝑚𝑎𝑥,5 = 𝑀3𝐷,𝑚𝑎𝑥/𝑀3𝐷,𝑚𝑎𝑥.𝐹 Equation 26 

where M3D,max [kNm/m] is the peak value corresponding 

to load applied on distribution 

length d 

 

 M3D,max,F [kNm/m] is the peak value corresponding 

to load concentrated into a point 

 

 

Relative bending moment values Mrel,max,5 are summarised in Table 13 and Figure 

39. 

d [m] 
Mrel.max,5 [kNm/m] 

H = 1.0 m H = 2.0 m H = 3.0 m H = 4.0 m 

0 1.000 1.000 1.000 1.000 

0.2 0.995 0.999 0.999 1.000 

0.5 0.978 0.994 0.997 0.998 

1 0.923 0.978 0.990 0.994 

2 0.764 0.920 0.961 0.977 

4 0.492 0.757 0.867 0.918 

8 0.256 0.486 0.648 0.753 

16 0.128 0.255 0.376 0.483 

20 0.103 0.204 0.304 0.398 

25 0.082 0.163 0.244 0.323 

Table 13: Relative bending moments for various load distribution lengths 

0

100

200

300

400

500

600

0 5 10 15 20 25

P
e

ak
 b

e
n

d
in

g 
m

o
m

e
n

t 
M

3D
,m

ax
 [k

N
m

/m
]

Distribution length d [m]

H = 1.0 m

H = 2.0 m

H = 3.0 m

H = 4.0 m



67 

 

 

Figure 39: Relative bending moment dependence on load distribution length 

The curves in the graph of Figure 38 show that the maximum bending moment 

M3D,max is reached for the load concentrated to a point. This maximum bending 

moment was set as a reference moment for the relative values, therefore, the 

relative bending moment value Mrel,max,5 is equal to 1.00 for all inspected wall 

heights H. With increasing distribution length d, the peak bending moment M3D,max 

and the relative bending moment Mrel,,max,5 decrease.  

The dependence of relative bending moment Mrel,max,5 on distribution length d 

cannot be expressed analytically, as the curves describing the trend would be 

variable of too many parameters that cannot be determined based on provided 

inputs. However, the dependence can be reliably approximated. Following part of 

this Section presents the approximation. 

The principle of approximation of the dependence of relative bending moment 

Mrel,max,5 on distribution length d lies in discretization of the uniformly distributed 

load F/d into a series of point loads f acting on division element size Δd and 

summarizing their effects, see Figure 40. The number of division elements is n, see 

Equation 27. 

 
𝑛 = 𝑑/∆𝑑 Equation 27 

where d [m] is the load distribution length  

 Δd [m] the size of division element 
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Figure 40: Discretization of uniformly distributed load 

The individual effect of each discretized force f can be evaluated as it is proposed 

in Section 7.b. In general, the course of vertical bending moment over bottom wall 

edge from a single point load acting on a wall can be approximated by a bell curve 

that is commonly used as a distribution function, as it explained in Section 7.b, see 

Figure 41. The bell curve is described with Gauss function g(x), see Equation 28. 

 

Figure 41: Bell function approximation of bending moment course 

 

𝑔(𝑥) = 𝑎𝑒
−(𝑥−𝜇)2

2𝜎2  
Equation 28 

where a [-] is the peak of the bell curve  

 x [m] is the variable  

 μ [m] is the shift of the bell curve peak from x = 0  

 σ [-]   is the standard deviation  
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For the specific case of a wall subjected to a single point load, the parameters of 

the curve can be described according to Table 14.  

Note: The symbols used as function parameters in Equation 28 and Table 14 are 

commonly used for their description and are excluded from the list of symbols of 

this dissertation. Some of the symbols used in this table are used elsewhere in this 

dissertation while describing a different quality. 

 

parameter description 

a peak value of a three-dimensional bending moment M3D,f from 

discretized load f 

x horizontal position on the bottom wall edge 

μ horizontal shift of the peak bending moment to the loading force; 

μ = 0 in all cases as the peak bending moment is always positioned 

at the same horizontal position as is the point load 

σ decrease rate of the bending moment with increasing horizontal 

position x; described in Section 7.b 

𝜎 = 0.843𝐻 + 0.056 

Table 14: Bell curve parameters 

The bending moment mf(x) caused by one individual discretized load f is then 

determined by applying the parameters from Table 14 on Equation 28, see 

Equation 29, Equation 30, Equation 31 and Equation 32. 

 

𝑚𝑓(𝑥) = 𝑀3𝐷,𝑓 ∗ 𝑒
−(𝑥)2

2(0.843𝐻+0.056)2
 

Equation 29 

 

𝑚𝑓(𝑥) = 𝑘2𝑀2𝐷,𝑓 ∗ 𝑒
−(𝑥)2

2(0.843𝐻+0.056)2 
Equation 30 

 

𝑚𝑓(𝑥) = (0.486𝐻−0.993)𝑓𝐻 ∗ 𝑒
−(𝑥)2

2(0.843𝐻+0.056)2 
Equation 31 

 

𝑚𝑓(𝑥) =
(0.486𝐻−0.993)𝐹𝐻

𝑑
∗ 𝑒

−(𝑥)2

2(0.843𝐻+0.056)2 Equation 32 

where H [m] is the wall height  

 F [kN] is the total load that is distributed 

into length d 

 

 f [kN] is the discretized load acting on 

distance Δd 

𝑓 = 𝐹/𝑛 

 

 M3D,f [kNm/m] is the peak value of a three-

dimensional bending moment from 

discretized load f, can be obtained 

as 𝑘2𝑀2𝐷,𝑓 ; correction coefficient k2 

described in Section 7.d.ii as 𝑘2 =
0.486𝐻−0.993  

 

 M2D,f [kNm/m] is the two-dimensional peak 

bending moment from the 

discretized load f; 𝑀2𝐷,𝑓 = 𝑓𝐻 
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The effects of all discretized loads f need to be summarised at the centre of load 

distribution length d to obtain the peak bending moment M3D,max. Each individual 

discretized force f is in a different position to the centre equal to x, see Figure 42. 

Provided that the number of division elements n is an even number, the first 

(smallest) and the last (largest) value of x (x1, xn, respectively) is given by Equation 

33 and Equation 34. 

 
𝑥1 =

∆𝑑

2
 Equation 33 

 
𝑥𝑛 =

𝑑

2
−

∆𝑑

2
 Equation 34 

 

Figure 42: Bending moment effect from individual discretized forces 
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Using Equation 32, the contribution mf(x) of all discretized loads f to the bending 

moment M3D,max is determined. Finally, they are summarised to obtain the peak 

bending moment M3D,max at the centre of load distribution length, see Equation 35 

and Equation 36. Due to the symmetry of the bell curve, only a half of the load 

distribution length needs to be evaluated, provided that the resulting bending 

moment is doubled. 

 
𝑀3𝐷,𝑚𝑎𝑥 = 2 ∑ 𝑚𝑓(𝑥)

𝑥𝑛

𝑥1

 Equation 35 

 

𝑀3𝐷,𝑚𝑎𝑥 = 2 ∑
(0.486𝐻−0,993)𝐹𝐻

𝑑
∗ 𝑒

−(𝑥)2

2(0.843𝐻+0,056)2

𝑑
2

−∆𝑑/2

∆𝑑/2
 Equation 36 

 

Equation 36 is to be used for determining the peak bending moment on cantilever 

walls subjected to a load distributed to a certain length along the top wall edge. 

The equation is applicable to cases where the load is applied outside edge wall 

zones (defined in Section 7.c), i.e. not in proximity of the wall side edge. Since the 

equation is based on an approximation of moment distribution curve, and the 

method uses discretization of a continuous problem, the equation does not 

provide exact analytical results, and therefore, the error rising from its use needs 

to be evaluated. For that, a comparison with FEM calculation is provided.  

Table 15 summarises the error given by the difference of the approximation from 

FEM results as a percentage related to FEM result. The error exceeds 5% margin for 

larger load distribution lengths. The error is more significant for shorter walls. 

While the error seems to be too large in some of the cases presented in the table, 

in practice, the concentrated loads are rarely distributed into lengths d larger than 

1.5 m, as this is a recommended distribution length for many design scenarios 

stated in (EN 1991-1-7, 2006). The error for distribution lengths d smaller than 1.5 

m, the errors are acceptable.  

d [m] 
error in peak bending moment M3D,max 

H = 1.0 m H = 2.0 m H = 3.0 m H = 4.0 m 

0 0.29% 0.37% 0.29% 0.16% 

0.2 0.01% 0.29% 0.25% 0.14% 

0.5 0.67% 0.11% 0.17% 0.09% 

1 2.76% 0.51% 0.12% 0.08% 

2 7.89% 2.65% 1.21% 0.72% 

4 11.18% 7.61% 4.54% 2.92% 

8 9.55% 9.47% 9.42% 7.81% 

16 9.48% 6.76% 7.28% 8.85% 

20 9.50% 6.63% 6.31% 7.41% 

25 9.50% 6.61% 5.92% 6.22% 

Table 15: Error in peak bending moment 

The error was plotted into the graph in Figure 43. The graph shows that all the 

approximated values of bending moments are larger than the values provided by 
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FEM analysis. For that, the error is on the safe side and can be accepted in practical 

use without any safety concerns.  

 

Figure 43: Approximation error of load distribution effects on peak bending 

moment 

A correction coefficient k5 is introduced to express the relationship between the 

results of two- and three-dimensional modelling, see Equation 39. The correction 

coefficient k5 is to be applied on the maximum value of bending moment obtained 

from a two-dimensional model M2D,max to obtain value that would have been 

obtained from a three-dimensional model. The value of the correction coefficient 

k5 is determined from the ratio of results on three- and two-dimensional models, 

see Equation 37 and Equation 38. 

 
𝑀2𝐷,𝑚𝑎𝑥 = 𝐹𝐻 Equation 37 

 𝑀3𝐷,𝑚𝑎𝑥

𝑀2𝐷,𝑚𝑎𝑥
= (2 ∑

(0,486𝐻−0,993)𝐹𝐻

𝑑
∗ 𝑒

−(𝑥)2

2(0.843𝐻+0,056)2

𝑑
2

−
∆𝑑
2

∆𝑑
2

)/(𝐹𝐻) Equation 38 

 
𝑘5 =

𝑀3𝐷,𝑚𝑎𝑥

𝑀2𝐷,𝑚𝑎𝑥
= 2 ∑

(0,486𝐻−0,993)

𝑑
∗ 𝑒

−(𝑥)2

2(0.843𝐻+0,056)2

𝑑
2

−
∆𝑑
2

∆𝑑
2

 Equation 39 
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vi. Vertical load position 

All other parameters of the wall and load investigated in subsections of Section 7.d 

were examined on the case of wall subjected to the loading placed at its top edge, 

making vertical position of the load h equal to the wall height H. This Section 

analyses the effects of the vertical load position h smaller than the wall height H.  

Since the bending moment strongly depends on lever arm of the load, it is 

assumed, that increasing vertical load position h will bring increase in the peak 

bending moment M3D,max even though the height of the wall H remains constant. 

This increase is linear when a two-dimensional model is used, as no other 

parameter than load force F and vertical load position h affect the value of M2D,max, 

see Equation 40. However, three-dimensional models lack the linearity, as the 

internal forces can distribute in the horizontal direction, and so other parameters 

enter the solution of the problem.   

 
𝑀2𝐷,𝑚𝑎𝑥 = 𝐹ℎ Equation 40 

where F [kN] is the point load force  

 h [m] is the vertical load position   

 

A set of three-dimensional models was prepared to evaluate the effects of vertical 

load position in the central zone of a wall. A wall with the length L = 70 m was 

modelled with the thickness t = 300 mm, C30/37 concrete class was used. The 

point load F  = 1000 kN was placed in the middle of wall length. The wall height H 

was fixed at 3.0 m. Vertical load position h varied from 0.0 m to 3.0 m with 0.2 m 

step.  

The peak bending moment in vertical direction M3D,max was observed. The 

dependence of peak bending moment M3D,max on vertical load position h is 

summarised in a graph in Figure 44. 

 

Figure 44: Dependence of peak bending moment on vertical load position 
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The graph in Figure 44 confirms the assumption, that increasing vertical load 

position h increases the peak bending moment M3D,max even though wall height H 

remains constant.  

When a two-dimensional model is used, the free height of the wall h’ (height of the 

wall above the load) does not affect the value of the peak bending moment M2D,max. 

To investigate if this principle also applies to three-dimensional models, a graph 

of peak bending moment M3D,max dependence on the vertical load position h is 

presented in Figure 45.  

 

Figure 45: Dependence of peak bending moment on vertical load position 

The graph in Figure 45 compares two curves. The first curve is taken from the graph 

in Figure 44 and corresponds to the situation where the wall height H is fixed at 

3.0 m and vertical load position h is variable (h ≤ H). The free height h’ of the wall 

decreases with increasing vertical load position h. The second curve corresponds 

to the situation where the wall height H is equal to the vertical load position h (h = 

H), therefore, the free height h’ is zero for all cases.  

The two curves in Figure 45 differ, thus proving that, unlike in two-dimensional 

models, the presence of free height of the wall affects the results of three-

dimensional models. The peak bending moments M3D,max on the wall with non-zero 

free height (h < H) are smaller than the ones on the wall with zero free length (h = 

H). The gap between the two curves decreases as the vertical load position h 

reaches wall height H, until the curves meet at h = H. The gap between the two 

curves demonstrates how the free height of the wall causes decrease in peak 

bending moment. The effect of free wall height is especially remarkable when the 

load is placed far below the wall top.  

Figure 46 explains the free height effect. The figure presents the map of bending 

moment distribution in the area around the load. Free height of the wall provides 

additional area for the bending moment to distribute - there are visible non-zero 
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moments in the area above the level of the load. Such distribution causes 

decrease in the peak value as the moment is less concentrated. Figure 47 confirms 

this statement by showing non-zero values of bending moment in vertical section 

of the panel at the position next to the loading force.   

 

Figure 46: Map of bending moment distribution 

 

Figure 47: Bending moment distribution over vertical wall cuts 

Since the effect of free wall heigh is not reflected in the results obtained from two-

dimensional models, it is concluded that two-dimensional simplification of the 

problem brings severe inaccuracies in the results.  

To evaluate the difference between results of three- and two-dimensional 

modelling, relative peak bending moment Mrel,max,6 is introduced, see Equation 41. 

Relative peak bending moment Mrel,max,6 is defined as a ratio of peak bending 

moment on a wall with free height above the load to peak bending moment on a 

wall with neglected free height, see Figure 48 for illustration.  
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𝑀𝑟𝑒𝑙,𝑚𝑎𝑥,6 =

𝑀3𝐷,𝑚𝑎𝑥(ℎ ≤ 𝐻)

𝑀3𝐷,𝑚𝑎𝑥(ℎ = 𝐻)
 Equation 41 

where M3D,max (h ≤ H)  [kNm/m] is the peak bending 

moment on wall with 

vertical load position 

smaller than or equal to 

wall height 

 

 M3D,max (h ≤ H)  [kNm/m] is the peak bending 

moment on wall with 

vertical load position 

equal to wall height 

 

 

   

Figure 48: Wall with non-zero free height (left) and neglected free height (right) 

The dependence of relative peak bending moment Mrel,max,6 on relative vertical load 

position h/H is plotted in Figure 49.  
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Figure 49: Dependence of relative peak bending moment on relative vertical load 

position 

The curve of the graph in Figure 49 can be devided into a concave and a covex part 

in its inflection point placed at the relative vertical load positon h/H = 0.33. Both 

parts of the curve are described separately, see Figure 50 and Figure 51.  

 

Figure 50: Dependence of relative peak bending moment on relative vertical load 

position for h/H ≤ 0.33 
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Figure 51: The dependence of relative peak bending moment on relative vertical 

load position for h/H ≥ 0.33 

A trendline was found for both parts of the curve, see Equation 42 andEquation 43 

applicable for h/H ≤ 0.33, and Equation 44 andEquation 45 applicable for h/H ≥ 

0.33. Both trendlines approximate the data satisfactorily as their determination 

coefficients R2 are equal to 1.000 and 0.998. The relative peak bending moment 

Mrel,max,6  defines the correction coefficient k6 which compensates neglection of the 

free wall height.  

 
𝑦 = 0.794𝑥0.149 Equation 42 

 
𝑘6 = 𝑀𝑟𝑒𝑙,𝑚𝑎𝑥,6 = 0.794(

ℎ

𝐻
)0.149 Equation 43 

 
𝑦 = 0.550𝑒0.593𝑥 Equation 44 

 

𝑘6 = 𝑀𝑟𝑒𝑙,𝑚𝑎𝑥,6 = 0.550𝑒0.593(
ℎ
𝐻

) Equation 45 

where h/H [m] is the relative vertical load 

position 
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The correction coefficient k6 can be used to determine the peak bending moment 

M3D,max on a wall with free height above the load using results on equal wall with 

neglected free height, see Equation 46. 

 
𝑀3𝐷,𝑚𝑎𝑥(ℎ ≤ 𝐻) =  𝑘6 ∗ 𝑀3𝐷,𝑚𝑎𝑥(ℎ = 𝐻) Equation 46 

 

Since the peak bending moment M3D,max for wall with neglected free height can be 

approximated using correction coefficient k2 and two-dimensional peak bending 

moment M2D,max according to Section 7.d.ii, the equation can be extended to 

Equation 47,Equation 48 andEquation 49, while Equation 48 applies to h/H ≤ 0.33 

and Equation 49 applies to h/H ≥ 0.33.  

 
𝑀3𝐷,𝑚𝑎𝑥(ℎ ≤ 𝐻) =  𝑘6 ∗ 𝑘2 ∗ 𝑀2𝐷,𝑚𝑎𝑥 Equation 47 

 
𝑀3𝐷,𝑚𝑎𝑥(ℎ ≤ 𝐻) =  0.794(

ℎ

𝐻
)0.149 ∗ 0.486ℎ−0.993 ∗ 𝐹ℎ Equation 48 

 

𝑀3𝐷,𝑚𝑎𝑥(ℎ ≤ 𝐻) =  0.550𝑒0.593(
ℎ
𝐻

) ∗ 0.486ℎ−0.993 ∗ 𝐹ℎ Equation 49 

 

The equations can be used for arbitrary vertical load position h up to the value of 

wall height H, including the vertical load position h equal to wall height H. For that, 

the formal expression of the equations can be simplified to Equation 50 applicable 

to h/H ≤ 0.33 and Equation 51 applicable to h/H ≥ 0.33. 

 
𝑀3𝐷,𝑚𝑎𝑥 =  0.794(

ℎ

𝐻
)0.149 ∗ 0.486ℎ−0.993 ∗ 𝐹ℎ Equation 50 

 

𝑀3𝐷,𝑚𝑎𝑥 =  0.550𝑒0.593(
ℎ
𝐻

) ∗ 0.486ℎ−0.993 ∗ 𝐹ℎ Equation 51 

 

The equations above were derived from result of a wall with the height H = 3.0 m. 

To verify if the equations are applicable for walls of various heights H, a set of 

verification models was prepared. Table 16 presents wall heights H and vertical 

load positions h used for the verification. Verification was conducted for the load 

force F = 1000 kN. All combinations of wall height H and vertical load position h 

presented in the table were analysed using FEM, obtaining peak bending moment 

M3D,max. Then the peak bending moments M3D,max were approximated using 

Equation 50 andEquation 51. Both FEM results and approximation are presented 

in Table 16 and are plotted in Figure 52. 
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h [m] H [m] h/H [-] 
M3D,max [kNm/m] - 

FEM 
M3D,max [kNm/m] - 

approximation 
error [%] 

3.00 3.00 1.00 491.18 487.39 0.8 

3.00 4.50 0.67 398.15 399.97 0.5 

2.00 2.00 1.00 490.18 486.01 0.9 

2.00 3.50 0.57 375.73 376.94 0.3 

1.00 1.00 1.00 487.43 483.65 0.8 

1.00 2.50 0.40 337.63 338.85 0.4 

4.00 4.00 1.00 491.52 488.37 0.6 

1.00 4.00 0.25 318.72 313.87 1.5 

2.00 4.00 0.50 362.13 361.31 0.2 

5.00 5.00 1.00 491.64 489.13 0.5 

1.00 5.00 0.20 314.13 303.61 3.4 

2.50 5.00 0.50 363.41 361.87 0.4 

6.00 6.00 1.00 491.68 489.76 0.4 

1.00 6.00 0.17 311.58 295.47 5.2 

3.00 6.00 0.50 364.16 362.33 0.5 

0.90 5.00 0.18 310.54 298.66 3.8 

1.08 6.00 0.18 313.86 299.04 4.7 

Table 16: Verification of k6 correction coefficient applicability 

 

Figure 52: Verification of k6 correction coefficient applicability 

Good agreement of the FEM results and approximation was achieved. The error of 

the approximation is presented in Table 16. For higher values of relative vertical 

load position h/H the error is satisfactory, under 1.0%. It was established that 
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maximum error accepted is 5%. According to results of the verification, the margin 

for this error is h/H = 0.18. For relative vertical load positions h/H smaller than 0.18, 

the equations may give inaccurate results, and therefore, it is recommended to 

use Equation 50 andEquation 51 only for relative vertical load positions h/H larger 

than or equal to 0.18. 

Equation 50 andEquation 51 are applicable to the walls with loads placed in their 

central zone. Equivalent approach was taken to determine peak bending 

moments M3D,max for walls subjected to loads in their edge zone. 

A set of three-dimensional models was prepared to evaluate the effects of vertical 

load position in the edge zone of a wall. A wall with the length L = 70 m was 

modelled with the thickness t = 300 mm, C30/37 concrete class was used. The 

point load F = 1000 kN was placed at the side end of the wall. The wall height H 

was fixed at 3.0 m. Vertical load position h varied from 0.0 m to 3.0 m with 0.2 m 

step.  

The peak bending moment in vertical direction M3D,max was observed. The 

dependence of peak bending moment M3D,max on vertical load position is 

summarised in a graph in Figure 53. 

 

Figure 53: Dependence of peak bending moment on vertical load position 

The dependence of relative peak bending moment Mrel,max,6 on relative vertical load 

position h/H was determined using equal approach like in case of central zone 

load position; the outcome is plotted in Figure 54. 
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Figure 54: Dependence of relative peak bending moment on relative vertical load 

position 

To analytically describe the curve of Figure 54, it was split into two intervals 

divided at the point of relative vertical load position h/H = 0.33. Both parts of the 

curve along with their trendline are presented in Figure 55 andFigure 56. Both 

trendlines approximate the data satisfactorily as their determination coefficients 

R2 are equal to 0.989 and 0.999. 

 

Figure 55: Dependence of relative peak bending moment on relative vertical load 

position 
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Figure 56: Dependence of relative peak bending moment on relative vertical load 

position 

See Equation 52 and Equation 53 applicable for h/H ≤ 0.33 and Equation 54 and 

Equation 55 applicable for h/H ≥ 0.33 for the trendline functions and their 

application to express the relative peak bending moment Mrel,max,6. The relative 

peak bending moment Mrel,max,6 defines correction coefficient k6 which 

compensates neglection of the free wall height.  

 
𝑦 = 0.943𝑥0.144 Equation 52 

 
𝑘6 = 𝑀𝑟𝑒𝑙,𝑚𝑎𝑥,6 = 0.943(

ℎ

𝐻
)0.144 Equation 53 

 
𝑦 = 0.718𝑒0.328𝑥 Equation 54 

 

𝑘6 = 𝑀𝑟𝑒𝑙,𝑚𝑎𝑥,6 = 0.718𝑒0.328(
ℎ
𝐻

) Equation 55 

 

Correction coefficient k6 can be used to determine peak bending moment on a wall 

with free height above the load using results on equal wall with neglected free 

height, see Equation 56. 

 
𝑀3𝐷,𝑚𝑎𝑥(ℎ ≤ 𝐻) =  𝑘6 ∗ 𝑀3𝐷,𝑚𝑎𝑥(ℎ = 𝐻) Equation 56 
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Since the peak bending moment for a wall with neglected free height can be 

approximated using correction coefficient k7 and two-dimensional peak bending 

moment M2D,max according to Section 7.d.vii, the equation can be extended to 

Equation 57, Equation 58 andEquation 59,  while Equation 57 applies to h/H ≤ 0.33 

and Equation 59 applies to h/H ≥ 0.33.  

 
𝑀3𝐷,𝑚𝑎𝑥(ℎ ≤ 𝐻) =  𝑘6 ∗ 𝑘7 ∗ 𝑀2𝐷,𝑚𝑎𝑥 Equation 57 

 
𝑀3𝐷,𝑚𝑎𝑥(ℎ ≤ 𝐻) =  0.943(

ℎ

𝐻
)0.144 ∗ 1.364ℎ−0.898 ∗ 𝐹ℎ Equation 58 

 

𝑀3𝐷,𝑚𝑎𝑥(ℎ ≤ 𝐻) =  0.718𝑒0.328(
ℎ
𝐻

) ∗ 1.364ℎ−0.898 ∗ 𝐹ℎ Equation 59 

 

The equations can be used for arbitrary vertical load position h up to the value of 

wall height H, including the vertical load position h equal to wall height H. For that, 

the formal expression of the equations can be simplified to Equation 60 applicable 

to h/H ≤ 0.33 and Equation 61 applicable to h/H ≥ 0.33. 

 
𝑀3𝐷,𝑚𝑎𝑥 =  0.943(

ℎ

𝐻
)0.144 ∗ 1.364ℎ−0.898 ∗ 𝐹ℎ Equation 60 

 

𝑀3𝐷,𝑚𝑎𝑥 =  0.718𝑒0.328(
ℎ
𝐻

) ∗ 1.364ℎ−0.898 ∗ 𝐹ℎ Equation 61 

 

Equation 60 and Equation 61 are applicable to the walls with loads placed in at 

their side edge. Conservatively, they can be applied to the whole edge zone of the 

wall. Less conservative, but still safe approach is to assume linear transition of the 

peak bending moment value in the edge zone between the extreme value from 

the load placed at the very end of the wall and the value from the load placed in 

the central zone. For more details on this approach, see Section 7.d.vii where this 

principle is used and presented.  

vii. Horizontal load position 

Horizontal position of the load on the top edge of the wall does not affect the peak 

bending moment in case of infinitely long walls. However, side ends of finite walls 

cause irregularities when the load is placed near them. According to definitions 

from Section 7.c.iii, an edge zone is the area where the presence of a side wall end 

affects the value of bending moments. This section quantifies the peak bending 

moments of loads placed in edge zones. 

A set of three-dimensional models was prepared to evaluate the effects of 

horizontal load position. A wall with the length L = 70 m was modelled with the 

thickness t = 300 mm, C30/37 concrete class was used. Wall heights H ranged 

between 1.0 and 5.0 m with 1.0 m step. The wall was subjected to the load F = 

20 kN. The position of the load x varied from 0.0 to 35.0 m with 0.2 m step. The 

position x = 0.0 m corresponds to the load placed at the side end of the wall; the 

position x = 35.0 m corresponds to the load placed in the mid-length of the wall. 
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Due to symmetry of the wall, there is no need for modelling load positions past 

x = 35.0 m.  

The peak bending moment in vertical direction M3D,max was observed for all 

examined wall heights H.  The dependence of peak bending moment M3D,max on the 

horizontal load position x is summarised in a graph in Figure 57. 

 

Figure 57: Dependence of peak bending moment on horizontal load position 

The graph in Figure 57 shows that the peak bending moment M3D,max increases as 

the position of the load nears x the wall end for all wall heights H. This can be 

explained by the fact that there is smaller length for the bending moment to 

distribute over near the wall end than it is in the central zone of the wall, as 

described Section 7.c.iii. With smaller space for moment distribution, the moment 

concentrates on a smaller length which is compensated by higher peaks of 

moments. 

For better interpretation of the results, relative peak bending moment Mrel,max,7a 

was expressed as a ratio of peak bending moment of load position x to peak 

bending moment of a wall loaded at its central zone, see Equation 62.  

 
𝑀𝑟𝑒𝑙,𝑚𝑎𝑥,7𝑎 =

𝑀3𝐷,𝑚𝑎𝑥 (𝑥)

𝑀3𝐷,𝑚𝑎𝑥 (𝐿 − 𝐿𝑒 > 𝑥 > 𝐿𝑒)
 Equation 62 

where M3D,max (x) [kNm/m] is the peak bending 

moment for load 

placed in horizontal 

position x 

 

 M3D,max (L–Le >x>Le) [kNm/m] is the peak bending 

moment for load 

placed in central zone 

of the wall 
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The dependence of the relative peak bending moment Mrel,max,7a on the horizontal 

load position x is plotted for all examined wall heights H in Figure 58. 

 

Figure 58: Dependence of relative peak bending moment on horizontal load 

position 

The graph in Figure 58 presents that the peak bending moment of walls loaded at 

wall end reach up to 3.2x larger values than of walls loaded in their central zone 

for the examined range of wall heights.  

To find the relationship between the peak bending moment on three-dimensional 

model and simplified two-dimensional model, relative bending moment Mrel,max,7b 

is introduces, see Equation 63.  

 
𝑀𝑟𝑒𝑙,𝑚𝑎𝑥,7𝑏 = 𝑀𝑟𝑒𝑙,𝑚𝑎𝑥,2 =

𝑀3𝐷,𝑚𝑎𝑥

𝑀2𝐷,𝑚𝑎𝑥
 Equation 63 

where M2D,max [kNm/m] is the peak bending moment 

obtained from a two-

dimensional model 

 

 M3D,max [kNm/m] is the peak bending moment 

obtained from a three-

dimensional model 

 

 

The dependence of the relative peak bending moment Mrel,max,7b on the horizontal 

load position x is presented in Figure 59. The curves presented correspond to 

loading force of 20 kN, however, identical curves were obtained for loading forces 

160 kN and 1000 kN, proving that the relative bending moment Mrel,max,7b is 

independent from load magnitude F.   
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Figure 59: Dependence of relative peak bending moment on horizontal load 

position 

The graph in Figure 59 shows that even though the values of peak bending 

moment increase with the load position nearing the wall side edge, in most cases, 

the three-dimensional analysis still bring less onerous results than the simplified 

two-dimensional analysis, as most of the relative peak bending moment values of 

Mrel,max,7b are smaller than 1.0. However, the curve of 1.0 m high wall reaches relative 

peak bending moment values Mrel,max,7b over 1.0 at the very end of the wall. That 

means that the results of the three-dimensional analysis are more onerous than 

of two-dimensional analysis. Thus, it can be concluded that using the simplified 

two-dimensional analysis is not generally conservative approach and might give 

unsafe results.  

To quantify relative peak bending moment Mrel,max,7b for horizontal load position at 

the wall end, the range of the examined wall heights H was widened to 0.6 m to 

6.0 m with 0.2 m step. The dependence of the relative peak bending moment value 

Mrel,max,7b with load placed at wall end on wall height H is presented in Figure 60. 

A trendline of the curve of the peak relative bending moment Mrel,max,7b was found, 

see Equation 64. The precision of the equation is satisfactory as its determination 

coefficient R2 is equal to 0.999. The trendline function can be used as a correction 

coefficient k7 dependent on wall height, see Equation 65. 
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Figure 60: Dependence of relative peak bending moment at wall end on wall 

height 

 
𝑦 = 1.364𝑥−0,898 Equation 64 

 
𝑘7 = 𝑀𝑟𝑒𝑙,𝑚𝑎𝑥,7𝑏 = 𝑦 = 1.364𝑥−0,898 = 1.364𝐻−0,898 Equation 65 

 

The correction coefficient k7 can be applied on the peak bending moment M2D,max 

obtained from the two-dimensional analysis, returning modified value that 

approximates a value that would have been obtained from the three-dimensional 

model, see Equation 66. The correction coefficient k7 compensates the error of the 

two-dimensional analysis.  The correction coefficient is applicable to the edge 

zone of walls as defined in Section 7.c.iii. 

 
𝑀3𝐷,𝑚𝑎𝑥 = 𝑘7𝑀2𝐷,𝑚𝑎𝑥 = 1.364𝐻−0.898𝐹𝐻 = 1.364𝐹𝐻0.102 Equation 66 

 

The correction coefficient k7 helps to obtain the value of the peak bending moment 

M3D,max caused by a point load placed at the very end of the wall. This value of peak 

bending moment can conservatively be applied to the whole edge zone of the 

wall. Less conservative, but still safe approach is to assume a linear decrease in 

peak bending moment between the very end of the wall and beginning of the 

central zone. This simplification is presented in graphs in Figure 61. The gap 

between the exact and simplified curve increases with increasing wall height H, 

which means that the simplified bilinear curve is more conservative for tall walls 

than short. 
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Figure 61: Simplified curves of relative peak bending moment dependence of 

horizontal load position for various wall heights 
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viii. Concrete strength 

In the structural design according to EN1992-1-1, the strength of concrete is given 

by concrete class. A set of models was prepared to investigate the influence of 

concrete class on the peak bending moment in vertical direction of a retaining wall 

subjected to concentrated loads. A wall with the length L = 70 m was subjected to 

the point load F = 20 kN placed in the centre of the wall horizontally, at the top wall 

edge vertically. The wall was modelled with the thickness t = 300 mm. The wall 

height H ranged between 0.6 m and 6.0 m with 0.2 m step. The peak value of 

bending moment in vertical direction M3D,max was evaluated. The performance of 

concrete class C30/37 and C50/60 was compared. 

The results of the analysis are presented in the graph in Figure 62 (left). The graph 

presents peak bending moment values M3D,max for all examined wall heights H. The 

two curves for concrete class C30/37 and C50/60 are almost identical. Maximum 

divergence in the values is 0.01 kNm/m, which may be caused by computation 

method and is negligible.  

For further use, it is practical also to show the values of relative peak bending 

moment Mrel,max, see the graph in Figure 62 (right). Processing the values of peak 

bending moment M3D,max into values of relative bending moment Mrel,max smoothens 

even the slight negligible differences between results of C30/37 and C50/60 

concrete classes  

  

Figure 62: Influence of concrete class on peak bending moment (left), on relative 

bending moment (right) 

Based on the data obtained by this study, it is concluded that the value of peak 

bending moment is not influenced by concrete strength class.  
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ix. Reinforcement 

Plate elements used in three-dimensional modelling of a wall subjected to a point 

load usually use predefined material model of concrete. Predefined material 

models are integrated in majority of commercial FEM software. The definition of 

the material uses simplifications according to selected standard. The default 

setting of the material characteristics considers strength and deformability of 

plain concrete and does not take into account the reinforcement.  

The reinforcement of concrete structures increases flexural stiffness of a section. 

In majority of cases, orthogonal grid of rebars is used, and the reinforcement is 

oriented in x- and y-direction of a local coordinate system. For concrete elements 

that are equally reinforced in both x- and y-axis, the ratio of flexural stiffness in x- 

and y-axis is equal to the ratio of flexural stiffness of unreinforced concrete. 

Therefore, a point load acting on such element distributes proportionally to the 

flexural stiffness ratio and equal reinforcement in x and y direction does not affect 

the load distribution.  

However, concrete elements are rarely reinforced equally in their local x- and y-

axis. Even if the reinforcement area in the section was equal for both directions, 

still, the positions of reinforcement in x- and y-axis need to be shifted to avoid 

rebar collision, thus creating slightly unequal flexural stiffness for the two 

directions.   

The influence of reinforcement was introduced into the study as a flexural stiffness 

orthotropy. The analysis software used in this study allows modification of the 

default concrete material model – the flexural stiffness can vary for x- and y-

direction. The software requires setting of a stiffness coefficient k (see Figure 63), 

that expresses the ratio of flexural stiffness in local x- and y-axis, see Equation 67. 

The ratio of bending stiffness of the plate is notated a in this thesis. 

 𝑎 = 𝑘 = 𝐸𝐼𝑥/𝐸𝐼𝑦 Equation 67 

where EIx is flexural stiffness in x-direction  

 EIy is flexural stiffness in y-direction  
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Figure 63: Flexural stiffness orthotropy in Robot Structural Analysis 

The influence of unequal reinforcement in x- and y-axis of a retaining wall 

subjected to a point load was studied on a set of three-dimensional models. A wall 

with the length L = 70 m was subjected to the point load F = 1000 kN placed in the 

centre of the wall horizontally, at the top wall edge vertically. The wall was 

modelled with the thickness t = 300 mm, C30/37 concrete class was used. The wall 

height H ranged between 1 and 6 m with 1 m step. The local x-axis is oriented 

horizontally, y-axis vertically. The peak value of bending moment in vertical 

direction M3D,max was evaluated.  
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Three values of stiffness coefficient were used, representing three reinforcement 

options, see Table 17. 

 

Reinforcement option Rebars used a = EIx/EIy Note 

1 Wall reinforced equally in 

both directions so that 

the flexural stiffness is 

equal for section in 

horizontal and vertical 

direction. This is the 

default setting of 

concrete material 

models in majority of 

structural analysis 

software.  

Not relevant. 1.00 - 

2 Wall reinforced with 

respect to EN1992-1-1 

requirement: Horizontal 

reinforcement area is at 

least 25% of vertical 

reinforcement area 

Vertical: Ø20 mm, 

150 mm spacing, 

rebar centre 

40 mm from wall 

face, equal at both 

faces. 

 

Horizontal: 

Ø10 mm, 150 mm 

spacing, rebar 

centre 55 mm 

from wall face, 

equal at both 

faces. 

 

0.90 Calculation 

of a value 

provided 

in Table 18 

3 Wall reinforced to 

achieve the lowest 

possible stiffness 

coefficient regardless 

standard requirements: 

Maximum reinforcement 

in vertical direction 

allowing concrete 

workability, absent 

reinforcement in 

horizontal direction.  

Vertical: Ø32 mm, 

40 mm spacing, 

rebar centre 

40 mm from wall 

face, equal at both 

faces. 

 

Horizontal: absent.  

0.43 Calculation 

of a value 

provided 

in Table 19 

Table 17: Reinforcement options and corresponding stiffness coefficients 
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parameter 
vertical 

section 

horizontal 

section 
description 

h [mm] 300 300 section height 

b [mm] 1000 1000 section breadth 

Ec [GPa] 33 33 concrete elasticity modulus 

Øt [mm] 20 10 
bar diameter of top 

reinforcement layer 

st [mm] 150 150 
spacing of top reinforcement 

layer 

d1t [mm] 40 55 
position of top reinforcement 

layer from top face 

Øb [mm] 20 10 
bar diameter of bottom 

reinforcement layer 

sb [mm] 150 150 
spacing of bottom reinforcement 

layer 

d1b [mm] 40 55 

position of bottom 

reinforcement layer from bottom 

face 

Es [GPa] 200 200 reinforcement elasticity modulus 

αe [-] 6.06 6.06 modular ratio 

Ac [mm2] 300 000 300 000 concrete area 

At [mm2] 2 094 524 top reinforcement area 

Ab [mm2] 2 094 524 bottom reinforcement area 

Ati [mm2] 12 693 3 173 
equivalent top reinforcement 

area 

Abi [mm2] 12 693 3 173 
equivalent bottom 

reinforcement area 

Ai [mm2] 325 387 306 347 ideal section area 

cc [mm] 150 150 
concrete centre of gravity 

position from top face 

cAt [mm] 40 55 
top reinforcement centre of 

gravity position from top face 

cAb [mm] 260 245 
bottom reinforcement centre of 

gravity position from top face 

c [mm] 150 150 
section centre of gravity position 

from top face 

Ic [mm4] 2 250 000 000 2 250 000 000 
moment of inertia - concrete 

contribution 

IAt [mm4] 153 588 974 28 639 266 
moment of inertia - top 

reinforcement layer contribution 

IAb [mm4] 153 588 974 28 639 266 
moment of inertia - bottom 

reinforcement layer contribution 

I [mm4] 2 557 177 948 2 307 278 533 moment of inertia - ideal section 

EI [MNm2] 84 76 flexural stiffness 

a [-] 0.90 flexural stiffness ratio 

Table 18: Stiffness coefficient for Reinforcement option 2 
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parameter 
vertical 

section 

horizontal 

section 
description 

h [mm] 300 300 section height 

b [mm] 1000 1000 section breadth 

Ec [GPa] 33 33 concrete elasticity modulus 

Øt [mm] 32 0 
bar diameter of top 

reinforcement layer 

st [mm] 40 150 
spacing of top reinforcement 

layer 

d1t [mm] 40 40 
position of top reinforcement 

layer from top face 

Øb [mm] 32 0 
bar diameter of bottom 

reinforcement layer 

sb [mm] 40 150 
spacing of bottom reinforcement 

layer 

d1b [mm] 40 40 

position of bottom 

reinforcement layer from bottom 

face 

Es [GPa] 200 200 reinforcement elasticity modulus 

αe [-] 6.06 6.06 modular ratio 

Ac [mm2] 300 000 300 000 concrete area 

At [mm2] 20 106 0 top reinforcement area 

Ab [mm2] 20 106 0 bottom reinforcement area 

Ati [mm2] 121 856 0 
equivalent top reinforcement 

area 

Abi [mm2] 121 856 0 
equivalent bottom 

reinforcement area 

Ai [mm2] 543 711 300 000 ideal section area 

cc [mm] 150 150 
concrete centre of gravity 

position from top face 

cAt [mm] 40 40 
top reinforcement centre of 

gravity position from top face 

cAb [mm] 260 260 
bottom reinforcement centre of 

gravity position from top face 

c [mm] 150 150 
section centre of gravity position 

from top face 

Ic [mm4] 2 250 000 000 2 250 000 000 
moment of inertia - concrete 

contribution 

IAt [mm4] 1 474 454 152 0 
moment of inertia - top 

reinforcement layer contribution 

IAb [mm4] 1 474 454 152 0 
moment of inertia - bottom 

reinforcement layer contribution 

I [mm4] 5 198 908 304 2 250 000 000 moment of inertia - ideal section 

EI [MNm2] 172 74 flexural stiffness 

a [-] 0.43 flexural stiffness ratio 

Table 19: Stiffness coefficient for Reinforcement option 3 
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The peak bending moment in vertical direction M3D,max was observed for all 

examined wall heights H and flexural stiffness ratios a. See the summary of results 

in Table 20, where the divergence of results from the results corresponding to the 

stiffness ratio a = 1.00 is expressed as ΔM3D,max.  

 

Wall height 

H [m]  
a [-] M3D,max [kNm/m] M3D,max [%] ΔM3D,max [%] 

1 1.00 487.43 100.00 0.00 

0.90 494.73 101.50 1.50 

0.43 554.78 113.82 13.82 

2 1.00 490.18 100.00 0.00 

0.90 498.79 101.76 1.76 

0.43 570.00 116.28 16.28 

3 1.00 491.18 100.00 0.00 

0.90 500.11 101.82 1.82 

0.43 574.44 116.95 16.95 

4 1.00 491.52 100.00 0.00 

0.90 500.58 101.84 1.84 

0.43 576.14 117.22 17.22 

5 1.00 491.64 100.00 0.00 

0.90 500.77 101.86 1.86 

0.43 576.92 117.35 17.35 

6 1.00 491.68 100.00 0.00 

0.00 500.84 101.86 1.86 

0.00 577.31 117.42 17.42 

Table 20: Increase in bending moment due to reinforcement orthotropy 

The graph in Figure 64 presents the dependence of the bending moment 

divergence ΔM3D,max on wall height H. For both values of flexural stiffness ratio a 

equal to 0.90 and 0.43, the divergence in bending moment ΔM3D increases with 

increasing wall height H. However, the curve trends suggest, that the increase in 

bending moment converges to a limit.  

Extrapolating the trend of the curve of flexural stiffness ratio a = 0.43, the 

convergence limit of bending moment increase ΔM3D,max is 17.6 %. For flexural 

stiffness ratio a = 0.90, it is 1.9 %.  
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Figure 64: The dependence of the increase in bending moment ΔM3D on wall height 

For practical use, only the results obtained for flexural stiffness ratio a = 0.90 are 

relevant, as that corresponds to a wall with minimal horizontal reinforcement 

according to (EN 1992-1-1, 2004). The minimal horizontal reinforcement in this 

case is limited by at least 25% of the area of vertical reinforcement. Less 

reinforcement in horizontal direction is not allowed by the code, and therefore, the 

flexural stiffness ratio a should not drop below 0.90 in any wall structure.  

The flexural stiffness ratio a is also not expected to rise above 1.00 in practice. 

Values of flexural stiffness ratio a over 1.00 would correspond to a situation, where 

the area of reinforcement is larger in horizontal than vertical direction, which is 

unlikely given the fact that the main load bearing direction is vertical for the 

structures studied in this thesis.  

This study shows that in structures that are designed according to (EN 1992-1-1, 

2004), the peak moment increase due to unequal reinforcement in horizontal and 

vertical direction should not exceed 1.9 %. Therefore, the peak moment can reach 

up to 101.9 % of its original value obtained on a three-dimensional model. Based 

on this finding, the correction coefficient k9 is proposed, see Equation 68 for its 

value and Equation 69 for its use.  

 𝑘9 = 1.019 Equation 68 

 𝑀3𝐷 = 𝑘9 ∗ 𝑀3𝐷,𝑚𝑎𝑥 (𝑎 = 1)  Equation 69 

where M3D,max (a = 1) 

[kNm/m] 

is the maximum bending moment 

in vertical direction for equal 

reinforcement in both x- and y-

directions 
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The correction coefficient k9 is to be applied on the value of three-dimensional 

reference peak bending moment M3D,max (a = 1) that corresponds to a wall equally 

reinforced in both horizontal and vertical direction. 

x. Wall edge restraints 

Supports of structural models have generally major influence on the internal 

forces. Cantilever walls may have free ends on sides or can be attached to other 

structures. This section aims to study the difference between the behaviour of 

walls with free and fixed side edges.  

A three-dimensional model of a 70 m long wall was prepared. C30/37 concrete 

class was used, and the wall was 300 mm thick. The wall was subjected to 160 kN 

of point load at the top wall edge. The horizontal position of the load x varied along 

one half of the wall length (due to wall symmetry), from 0.0 m to 35.0 m with 0.2 m 

step. Each individual loading was modelled as a single load case, creating 176 load 

cases in total. The model was prepared in two modifications – with free and fixed 

side edge.  

The envelope of peak bending moments M3D,max for all 176 load cases was 

observed. The results are plotted as the dependence of peak bending moment 

M3D,max on horizontal load position x in Figure 65.  

 

Figure 65: Peak bending moments in walls with free and fixed side ends 

The majority of the two curves in Figure 65 is identical and constant. The two 

curves differ at the load positions near the wall end. The curve representing the 

wall with free edge shows increase in peak bending moment M3D,max as it reaches 

the wall end. That is caused by the fact that the bending moment is not provided 

with as much length for its distribution and concentrates into a smaller area, which 

increases its peak. Contrarily, the curve of the wall with fixed edge shows decrease 

in peak bending moment M3D,max and eventually reaches zero for the load position 

x at the very edge of the wall. The moment reduction near the wall end is caused 
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by the presence of the edge support. The edge support bears part of the bending 

moment as the force nears to the edge, decreasing the bending moment in the 

wall body. In case of the wall supported at its edge, the peak bending moment 

does not exceed the value obtained in the central area.  

The load position x for which the peak bending moment M3D,max starts to noticeably 

increase/decrease when moving towards the wall end is marked by vertical lines 

in the graph for both curves. The exact stationary point of the curves is in fact 

further from the edge as the bending moments M3D,max changes very slowly in the 

near-constant region. For that, the border lines were plotted with 1% deviation 

from the exact stationary points to provide information more relevant for 

structural design. The margin marking the divergence point is not equal for the 

wall with free and fixed side end.  

It can be concluded that a fixed side end of a wall causes decrease in vertical 

bending moment in the edge zone. In case of fixed side edge, it is safe to assume 

that peak bending moment in the edge area does not exceed the peak bending 

moment in the central area. 

e. Wall-imp 

The findings of Section 7.d were used to develop a calculation tool for convenient 

structural design of cantilever walls subjected to concentrated loads. Wall-imp 

was created in MS Excel environment, and for that, it brings transparent results.  

The purpose of Wall-imp is to determine maximum vertical bending moment on a 

cantilever wall subjected to a point load. The point load simulates the equivalent 

static load of vehicle impact event or any other cause of load acting on a very small 

area. The assumed structural model is a straight RC wall with fixed support along 

the base, with or without fixed supports of side ends. The resulting bending 

moments include torsional effects according to Wood-Armer theory. 

Wall-imp combines the simplicity of a two-dimensional model approach and 

precision of a three-dimensional modelling. It allows to quickly produce accurate 

results without any demands on FEM software.  

i. Principles and use 

Figure 66 shows that the user interface is organized into the input field, the zone 

information field, the applicability check field and the result field. 

The input field contains following parameters to be set by the user: 

L [m] Wall length in horizontal direction 

H [m] Wall height 

F [kN] Point load applied perpendicular to wall plane 

h [m] Horizontal position of the load above the wall base 

Side supports Wall side ends can be fixed or free 
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Figure 66: Wall-imp user interface 

The effect of following parameters was analysed in Section 7.d, however, it was 

non-existent or negligible within the range of Wall-imp applicability, and 

therefore, the parameters are not used in Wall-imp: 

t [mm] Wall thickness 

fc [MPa] Concrete strength 

a [-] Ratio of reinforcement used in horizontal to vertical direction 

 

Section 7.d also presents study on the effect of load distribution over horizontal 

length d. This parameter was not included in Wall-imp since its interference with 

other parameters caused unclear conclusions, as it was proved during the first 

stage validation of Wall-imp.  

The zone information field shows how the wall can be divided into zones, in which 

the results are applicable. The zones were defined according to Section 7.c.  

Applicability check field provides information whether Wall-imp is suitable tool for 

the given geometry. There are two checked conditions: 

1. Wall length is L is larger than influenced length Li. 

If the first condition is not met, it means that the wall is too short to be 

divided into central and edge zone. Therefore, the results of are not 

applicable. In such situation, the note field presents a suggestion for the 

designer. If the wall length L is smaller than or equal to the influenced 

length Li but still larger than 1 m, it is suggested to the designer to prepare 

individual three-dimensional model. If the wall length L is smaller than or 

equal to 1 m, it is suggested to the designer to perform calculation on two-
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dimensional model, which is possible even without use of any software. See 

Figure 67 and Figure 68 for illustration. 

 

Figure 67: Wall length check 

 

Figure 68: Wall length check 

 



102 

 

2. The ratio of the vertical load position to the total wall height h/H is larger 

than 0.18. 

It was found and presented in Section 7.d.vi that the error of approximation 

is excessive for the walls where the load is placed very much below its top 

edge. The error of 5% was set to be the margin of acceptability, and that 

corresponds to h/H ratio equal to 0.18. Wall-imp notifies the designer that 

this margin has been crossed and the results might be highly distorted, see 

Figure 69 for illustration.  

 

Figure 69: Vertical load position check 

The result field provides two values of maximum bending moment in vertical 

direction at wall base: 

1. Bending moment Me applicable in the edge zone of the wall  

The value corresponds to the load being horizontally located at the very 

end of the wall. For practical use it is convenient for the designer to use this 

value for the reinforcement design in the whole edge zone. That is very 

conservative, but safe approach. Another, less conservative, but still safe 

option is to presume linear transition between the extreme edge moment 

value and the value applicable in the central zone, as it is described in detail 

in Section 7.d.vii. 

2. Bending moment Mc applicable in the central zone of the wall  

The value corresponds to the load being horizontally located anywhere 

withing the central zone of the wall.  
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ii. Limits of application 

The algorithms used in Wall-imp were determined by a study of the effects of all 

individual load and geometry parameters and their interaction. Each parameter 

was examined within a certain range of values. Wall-imp should not be used for 

input values outside these ranges, unless it was proven that it is safe to 

extrapolate the findings of each parameter study. Table 21 presents the limits of 

all parameters and related recommendations. 

Parameter Lower limit Upper 

limit 

Note 

Wall length L Influenced 

length Li 

- More suitable approaches are 

suggested for lengths below the 

lower limit 

Wall height H 0.6 m - Walls shorter than 0.6 m should not 

be analysed by using shell elements 

in models as their thickness/size 

ratio does is more suitable for solid 

elements. Since Wall-imp is based 

on study of shell element model, its 

results are not applicable for walls 

shorter than 0.6 m. 

 

The study was performed on walls 

up to 6.0 m of height, however, the 

precision of the results was 

generally increasing with increasing 

wall height, and so it is concluded 

that Wall-imp may be used for walls 

without any upper limit in height. 

Wall thickness t - 600 mm Walls with thickness over 600 mm 

should not be analysed as Wall-imp 

was designed based on study of 

thickness range up to this value and 

the outcomes cannot be 

extrapolated. 

Magnitude of 

load F 

- - - 

Load 

distribution d 

- - Not applicable in Wall-imp 

Load vertical 

position h 

h/H = 0.18 H Errors larger than 5% were detected 

for h/H ratio lower than 0.18 

Load horizontal 

position x 

0 L - 

Concrete 

strength fc 

- - - 
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Parameter Lower limit Upper 

limit 

Note 

Reinforcement 

ratio a 

0.9 1.0 Horizontal/vertical reinforcement 

ratio smaller than 0.9 would not 

follow Eurocode requirements on 

minimum reinforcement cross-

sectional area.  

 

It is expected horizontal/vertical 

reinforcement ratio to be less than 

or equal to 1.0 as the main load 

bearing direction is vertical.  

Side edge 

restraint 

No Yes - 

Table 21: Limits of Wall-imp applicability 

Wall-imp provides results approximating three-dimensional linear analysis on 

shell elements. Non-linear behaviour of reinforced concrete is usually not 

considered in common engineering practice. Linear analysis neglects 

heterogeneity of reinforced concrete, assumes constant value of Young elasticity 

modulus for all levels of stain, and does not consider local decrease in stiffness of 

cracked concrete. Although linear analysis is used in majority of design projects, 

non-linear analysis brings more realistic results. A non-linear model of a retaining 

wall was prepared in Atena (model setup consulted with Ing. Jan Kubát), see Figure 

70, to be compared to a linear model prepared in Robot Structural Analysis 

software. Both models analysed an infinite wall.  

 

 

 

 

Figure 70: Non-linear wall model 

The behaviour of the infinite wall length was simulated with a 70 m long wall in 

case of Robot Structural Analysis software and 20 m long in case of Atena software; 
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both models met the conditions from Section 7.c to properly simulate an infinite 

wall. In both models, the wall height was set to 3 m, wall thickness to 300 mm, 

concrete class to C30/37 and the loading force of 160 kN was placed at the top of 

the wall. Both wall models were fixed at the bottom. Non-linear model was 

reinforced with B500B bars of 12 mm diameter with 150 mm spacing in both 

vertical and horizontal direction. The linear model does not require reinforcements 

specification. 

Table 22 provides comparison of results of both models. The maximum 

deformation w is larger in case of the non-linear model, as the cracking of the 

material locally decreases bending stiffness of the wall. The peak bending 

moment M3D,max obtained from the linear model was transformed to a stress in the 

tensile concrete face to be compared to the stress obtained from the non-linear 

model. The tensile stress lower in case of the non-linear model, as the cracking of 

the material causes stress redistribution. It can be concluded that in this case, the 

linear model provides more conservative results of the peak bending moment at 

the wall base in vertical direction, while the deflection is underestimated when 

using linear model. Computational time of the linear model is approximately 40x 

shorter than the non-linear. That explains why linear models are much more 

common in engineering practice. 

 

 Linear model  Non-linear model 

Tensile stress σ [MPa] 5.2 2.0 

Maximum deformation  

wmax [mm] 
3.1 5.1 

Computational time [s] 6 ~240 

Table 22: Comparison of linear and non-linear analysis 

The non-linear model also revealed that not only the peak bending moment at the 

wall base, but also the peak bending moment at the area of force application is 

decisive for the proper wall design. The stresses caused by the loading force at the 

area of its application are causing the initial cracking of the wall; the horizontal 

crack at the wall base follows. 

Wall-imp is a calculation tool created for determining peak bending moments 

M3D,max on cantilever walls at their base, and for that it provides results, that are not 

as accurate as those provided by non-linear analysis, but are safe to use in 

structural design.  

iii. Validation of results 

A set of ten validation models was prepared to check correctness of Wall-imp 

results. The parameter values were chosen by a random number generator within 

reasonable limits presented in Table 23. 
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Parameter  Min. Max. 

L [m] 0.5 150 

H [m] 0.24 6 

F [kN] 0 5000 

h [m] 0.5 2.7 

t [m] 0.1 0.6 

a [-] 0.9 1 

side supports No Yes 

concrete class C16/20 C50/60 

Table 23: Parameter limits for validation 

Table 24 contains all ten validation parameter combinations. 

Case 1 2 3 4 5 

L [m] 35.8 22.9 136.2 34.0 42.3 

H [m] 4 2.4 2.6 4.8 3.3 

F [kN] 2288 1929 4463 4341 224 

h [m] 1.7 1.6 1.6 4.2 2.4 

t [m] 0.40 0.51 0.60 0.4 0.36 

a [-] 0.99 0.91 0.96 0.94 0.98 

side supports No No Yes No No 

concrete class C30/37 C30/37 C16/20 C35/45 C25/30 

 

 

Case 6 7 8 9 10 

L [m] 23.7 96.1 39.0 108.3 106.6 

H [m] 4.2 1.8 5.1 3.4 4.8 

F [kN] 4496 3924 998 4935 3410 

h [m] 3.9 1.3 1.5 2.3 4.2 

t [m] 0.26 0.3 0.45 0.58 0.22 

a [-] 0.93 0.92 0.9 0.99 0.95 

side supports No Yes Yes No No 

concrete class C16/20 C30/37 C20/25 C25/30 C30/37 

Table 24: Parameters of validation 

All ten validation cases were analysed by FEM using three-dimensional models 

were subjected to two load cases; in the first the load was horizontally placed in 

the mid-length (to validate results of the central zone), in the second load case the 

load was horizontally placed at the side end of the wall (to validate results of the 

edge zone). For both load cases, the peak bending moments were evaluated. The 

ten validation cases were also approximated by Wall-imp. Table 25 contains 

comparison of FEM and Wall-imp results, including the error of approximation.  



107 

 

Case  1 2 3 4 5 

FEM Central zone 790 758 1657 1988 92 

Edge zone 2192 2350 - 6774 310 

Wall-imp Central zone 754 768 1724 1969 93 

Edge zone 2719 2466 - 6558 304 

Error Central zone -4.6 1.3 4.0 -1.0 1.1 

Edge zone 0.7 4.9 - -3.2 -1.9 

 

Case  6 7 8 9 10 

FEM Central zone 2141 1616 328 1941 1561 

Edge zone 6819 - - 6457 4932 

Wall-imp Central zone 2104 1613 322 1982 1547 

Edge zone 6860 - - 6569 5151 

Error Central zone -1.7 -0.2 -1.8 2.1 -0.9 

Edge zone 0.6 - - 1.7 4.4 

Table 25: Wall-imp validation 

The error of 5% was determined to be acceptable. The errors of all validation cases 

are below this margin. Thus, it is concluded that Wall-imp provides satisfactory 

results. 
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8. Summary and conclusions 

The objective of this thesis was to investigate the behaviour of RC elements under 

impact loading, and based on the findings, to develop a calculation tool for 

convenient analysis of RC cantilever walls subjected to concentrated loads. The 

objective was achieved.  

While Section A provided general theoretical background on concrete structures 

under impact loading, Section B deeply investigated the problem of cantilever RC 

wall under concentrated loads. Specifically, the issue of idealisation by using two-

dimensional models for structural analysis was in the focus. It was proved that the 

simplification of a three-dimensional problem to a two-dimensional model gives 

very inaccurate results and may lead to both over- and underestimation of the 

design.  

The differences between two- and three-dimensional models were deeply 

investigated, and the effect of various wall geometry and load parameters were 

quantified. The influence of 10 parameters on the peak bending moment in 

vertical direction was examined – wall length, wall height, wall thickness, load 

magnitude, load distribution, load vertical and horizontal position, concrete 

strength, reinforcement, and presence of side supports of the wall. Three-

dimensional FEM models were prepared to obtain results for further examination. 

Following observations and conclusions were made: 

• Wall length affects the distribution of vertical bending moment over 

horizontal axis of the wall, and thus, significantly influences the peak value 

of the moment. For walls short in length, an individual analysis approach 

needs to be taken in order to obtain accurate results. The length requiring 

such approach was determined. For longer walls, zones were defined, 

distinguishing between behaviour of edge and central parts of the wall. In 

the edge zones, the proximity of wall end affects the value of peak bending 

moment. In the central zones, the peak bending moments are intact by wall 

ends and the moment values are equal to values that would be obtained of 

infinitely long wall.  

• The influence of wall height on the peak bending moment dramatically 

differs in two- and three-dimensional models. In two-dimensional models, 

the peak bending moment is proportional to the wall height. In three-

dimensional models, the dependence is non-linear. The ratio of results on 

three- and two-dimensional approach was evaluated for varying wall 

heights. Since the ratio defines the relationship between the results from 

three- and two-dimensional models, it was proclaimed a correction 

coefficient. When the correction coefficient is applied to the results from 

the two-dimensional model, the value equal to the result from a three-

dimensional model is obtained. The correction coefficient is not constant; 

the dependence of the correction coefficient on the wall height was 

expressed by a power function. The correction coefficient and its 

dependence on wall height differs for central and edge zone of the wall. It 

was quantified for both cases.  

• The effect of wall thickness on the peak bending moment was found to be 

negligible in the cases where the thickness is small enough to be suitable 

for modelling by plate elements. From a certain thickness to size ratio, the 
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wall should not be modelled as a plate element and if it is modelled in such 

way, even the results of three-dimensional analysis are not reliable.  

• Load magnitude directly influences the peak value of vertical bending 

moment. However, it was found that the ratio of the moments from three- 

and two-dimensional models remains intact by the load magnitude. This 

means that the correction coefficient proposed above is universally 

applicable for loads of arbitrary magnitude.  

• The effect load distribution in horizontal direction was quantified for the 

case where the load is situated at the top edge of the wall. The 

quantification was based on discretization of the distributed load to a 

series of point loads, evaluating their individual contribution to the peak 

bending moment, and summarizing their effect. An equation was proposed 

to determine the peak bending moment with the wall height and load 

distribution length being the variable factors. Walls subjected to 

distributed load placed below the top wall edge were examined as well. 

However, due to mutual interference of individual parameters, no equation 

expressing dependence of the peak bending moment on wall height, load 

distribution length and vertical load position was found.  

• Horizontal position of the load affects the value of peak vertical bending 

moment in the edge zones of the wall. It was observed that the value of the 

moment increases with increasing proximity of the end of the wall. The 

extreme value of peak bending moment is achieved when the load force is 

placed at the very end of the wall. For such position of the load, the effect 

of variable wall height was analysed and a correction coefficient expressing 

the relationship between results of three- and two-dimensional models 

was determined.  

• The results of three- and two-dimensional analysis differ remarkably for 

walls subjected to a load placed below their top edge. The part of the wall 

above the load (free height) does not influence the results of two-

dimensional models at all. In three-dimensional approach, the free height 

provides space for the bending moment to distribute, thus decreasing the 

peak value. The effect of the free height was evaluated and resulted in 

proposal of a new correction coefficient. This correction coefficient 

expresses the relationship between the peak bending moment of a walls 

with and without free height above the load.  

• Concrete strength does not affect the internal forces in the wall in any 

investigated loading scenario. 

• The ratio of reinforcement area in vertical and horizontal affects the 

stiffness of the wall in the two directions, and therefore, affects the 

distribution of bending moment and its peak value. However, the effect is 

negligible for elements reinforced in compliance with standards.  

• For walls without side supports, the peak vertical bending moment 

increases with the load nearing the end of the wall. Contrarily, the peak 

bending moment decreases with the load nearing the end of a side-

supported wall. This means that the wall area most sensitive to the load 

differs for the two cases. 

Based on the findings from the investigation of the wall and load parameter 

effects, Wall-imp design tool was developed. Commonly used idealisations of the 
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problem (except for the two-dimensional simplification) were adopted in Wall-

imp – plate elements fixed at the base to simulate the embedment of the wall, ESF 

to replace the dynamic aspect of the load, point load to neglect the real 

application area of the load, etc. Based on the wall geometry, load magnitude and 

load position, Wall-imp computes the peak bending moment in vertical direction, 

which can be further used for the design of the main loadbearing reinforcement. 

The value of Wall-imp lies in the fact that it provides results with the accuracy of 

three-dimensional modelling, while the simplicity of its use is equal to the two-

dimensional approach. That significantly saves engineers’ time and reduces 

demands on software, as the tool was developed in the widely spread MS Excel 

spreadsheet. The tool is suitable for long cantilever walls that are exposed to 

concentrated loads in their whole length.  
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