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Abstract.
This paper examines the possibility of using the Mori-Tanaka micromechanical model describe

the rate dependent behavior of the polymer matrix based fibrous composites. The generalized Leonov
model is adopted to capture the time and rate dependent character of the selected matrix, while fibers
are assumed elastic. The performance of the Mori-Tanaka method is tested against the finite element
simulations carried out in the framework of first-order homogenization. For simplicity, the periodic
hexagonal array model is chosen to represent the microstructural arrangement of fibers in the yarn
cross-section. To match the predictions provided by the two approaches a suitable modification to the
original Mori-Tanaka method is proposed. An extensive parametric study is presented to illustrate a
considerable improvement of the predictive capability of the modified Mori-Tanaka method.
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1. Introduction
Unidirectional fiber-reinforced composites have al-
ready found a way into a variety of industrial fields.
For such reasons as low weight, good thermal proper-
ties, high corrosion and chemical resistance, high lon-
gitudinal stiffness and strength, lower economic and
environmental cost compared to other widely used
materials, their application appears in aerospace, au-
tomotive, marine, and various construction sectors.
In order to take full advantage of the benefits the
composite material offers, a suitable computational
model predicting its macroscopic response including
the rate dependent behavior due to the viscous char-
acter of the matrix phase is necessary.

Despite a random nature of the distribution of
fibers in the matrix, easily visible from images of ma-
terial cross sections, a periodic hexagonal arrange-
ment (PHA) model [1] is adopted, because for high
volume fraction of fibers it has been suggested as suf-
ficiently accurate representation of a statistically ho-
mogeneous microstructure [2]. Moreover, when lim-
iting attention to elasticity the Mori-Tanaka (MT)
method [3] delivers the macroscopic response compa-
rable to finite element (FEM) simulations assuming
the PHA model [4]. Unfortunately, when moving be-
yond elasticity the original Mori-Tanaka scheme ap-
pears too stiff [5] and some action is needed to bring
the predictions closer to those provided by FEM [6, 7].
In the present study, we build upon the approach

proposed in [8] for asphalts. However, their original
formulations requires some modification to suit the
present material system.

While attention is primarily accorded to testing
the Mori-Tanaka method as a very efficient substitute
for a highly expensive finite element method in large
scale simulation of textile composites [9], the material
model representing the epoxy matrix is mentioned
only briefly. Further details on extensive experimen-
tal program to calibrate the Leonov model [7, 8, 10]
can be found in [11].

The paper is organized as follows. Section 2 intro-
duces the material system examined herein. Next,
section 3 shortly describes the Leonov viscoelastic
model adopted for the epoxy matrix. For the sake
of convenience we briefly summarize the main results
of the experimental program needed to calibrate the
constitutive model. In particular, creep tests at dif-
ferent stress levels and rate dependent uniaxial tensile
strain controlled experiments are described. Finally,
Section 4 outlines two types of modifications of the
Mori-Tanaka method accompanied by an extensive
parametric study to examine their potential. The
principal achievements are then summarized in Sec-
tion 5.

2. Examined composite system
Following our recent study on the Mori-Tanaka
method [5] we again consider a unidirectional fibrous
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Figure 1. Cross section of examined fibrous composite.

(a) (b)

Figure 2. a) MTS Alliance 30kN, b) polymer dog bone specimens.

EA ET GA GT νA cf

[GPa] [GPa] [GPa] [GPa] [-] [-]
Carbon fibers 294 13 12 5 0.24 0.56

Table 1. Material properties of carbon fibers and its volume fraction in yarn.

composite system made of elastic carbon fibers and
nonlinear viscoelastic polymer matrix. A representa-
tive cross-section of the yarn and its binary form is
displayed in the Fig. 1. An image analysis was car-
ried out to acquire the volume fraction of the fibers,
see Table 1 together with material properties taken
from [9].

Because fibers are transversely isotropic and the
matrix is isotropic, the overall macroscopic response
is expected to be also transversely isotropic. This
is precisely what both the MT method and the PHA
model would predict in case of elastic response. While
the MT method keeps this property even beyond elas-
ticity, the PHA model may yield the overall behav-
ior orthotropic [5]. Thus the application of the MT
methods calls for caution when applied to real mate-
rial systems.

3. Generalized Leonov Model
The generalized Leonov model is adopted here to de-
scribe the nonlinear viscoelastic behavior of the epoxy
matrix. The formulation assumes the bulk response
be linearly elastic

σm = Kεv. (1)

The viscoelastic response is thus driven solely by
the deviatoric stress and strain components. For the
Maxwell chain model the corresponding constitutive
equations read

dsij

dt
=

M!

µ=1
2Gµ(deij

dt
−

dep,µ
ij

dt
), (2)

sij =
M!

µ=1
sµ

ij . (3)
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Figure 3. Strain rate dependent uniaxial tensile tests.

Figure 4. Eyring plot.

The creep strain increment follows from the Eyring
flow model as

dep

dt
= 1

2A sinh(τ/τ0) , (4)

where A and τ0 are model parameters determined ex-
perimentally from either uniaxial [10, 12] or torsional
tests [8] performed at different strain rates. For ex-
ample, rewriting Eq. (4) for a uniaxial tension we get

σy = τ0
√

3 ln(2A
√

3) + τ0
√

3 ln ε, (5)

which upon substituting the experimentally observed
yield, or the maximum, tensile stress σy allows us
to determine the necessary material parameters, see
Figures 3 and 4 and the next section.

3.1. Strain rate dependent tensile tests
Six dog bone specimens in Fig. 2(b) made of 285/500
aero Havel epoxy resin were loaded in simple ten-
sion in the displacement controlled regime at a spe-
cific strain rate until failure using the MTS Alliance
30kN electromechanical testing machine equipped
with 30kN load cell, see Fig. 2(a).

The resulting stress strain diagrams in Fig. 3 con-
firm the rate dependent response of the epoxy matrix.
Replotting the yield stress as a function of the applied
strain rate in a logarithmic scale and applying simple
linear regression gives the material parameters of the
Eyring flow model in Eq. (5).

Figure 5. Creep experiments at various stress levels.

Figure 6. Approximation of master curve.

3.2. Creep tests
The Maxwell chain model requires calibration of the
creep relaxation function typically found using the
Laplace transform of the creep compliance function.
One-dimensional format of these functions can be
written as

J(t) =
M!

µ=1
Jµ

"
1 − exp

#
− t

τµaσ(t)

$%
, (6)

R(t) =
M!

µ=1
Eµ exp

#
− t

θµaσ(t)

$
. (7)

where τµ and θµ are the selected retardation and
relaxation times, respectively, and aσ is the stress
shift factor to define a nonlinear viscosity of a dash-
pot element in, e.g. the Kelvin unit ηµ(τeq) =
τµJµaσ(τeq), τeq =

&
1/2sijsij . The compliances Jµ

can be derived by minimizing the least square dif-
ference of J (t) given by Eq. (6) and experimentally
constructed master curve for the selected set of retar-
dation times, while exploiting the time-stress super-
position principle. Note that τ1 should be sufficiently
small to represent in the limit τ → 0 a solid mate-
rial. Theoretically, τ1 = 0.001 might not satisfy this
requirement but the resulting series validated in [11]
proved satisfactory.

To that end, a series of creep tests at different stress
levels is performed first. The creep curves in Fig. 5 are
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(a) (b)

Figure 7. a) Periodic unit cell (PUC) with hexagonal arrangement of fibers in yarns, b) mesh of PUC.

µ τµ [s] Jµ [MPa−1] θµ [MPa·s] Eµ [MPa]
1 0.001 2.606512×10−4 9.927397×10−3 2.787166×101

2 0.01 1.905071×10−6 9.966502×10−2 1.278184×101

3 0.1 8.808431×10−7 9.815126×10−1 7.056602×101

4 1 4.934025×10−6 9.543319×10+0 1.711529×102

5 10 1.276165×10−5 9.344254×10+1 2.334448×101

6 100 1.969419×10−5 9.580883×10+2 1.418353×102

7 1000 1.290521×10−5 8.275395×10+3 5.659977×102

8 10000 6.291266×10−5 9.647045×10+4 1.586346×102

9 100000 7.887707×10−6 2.005373×10+5 1.944645×103

10 1000000 1.577867×10−3 4.168654×10+5 5.096147×102

Table 2. Parameters of Maxwell chain model.

then horizontally shifted to get the master curve for
the selected reference stress. The experimental points
as well as the resulting polynomial representation are
plotted in Fig. 6.

Ten Maxwell units in parallel were considered in
the present study to represent the Maxwell chain
model. The resulting parameters are listed in Ta-
ble 2. The shear moduli in Eq. (2) are obtained from
Eµ for the selected Poisson ratio set equal to 0.39.
Further details including validation of the proposed
constitutive model are available in [11].

4. Homogenization
As mentioned in the introductory part, we consider
the predictions provided by FEM as a benchmark to
test the performance of the MT method. Owing to a
space limitation we present, with reference to FEM
simulations, the PHA computational model only, see
Fig. 7, and refer the reader for details on theoretical
grounds of the first-order homogenization to, e.g. [4,
13, and references therein].

4.1. Mori-Tanaka method: standard
formulation

The MT method, however, deserves more attention.
To begin with, we write the increments of local stress
averages in individual phases as

∆σf = Lf ∆εf , ∆σm = 'Lm(∆εm − ∆µm), (8)

where Lr, r = f, m1, is the phase material stiffness
matrix and 'Lm represents the dependence on the cur-
rent viscoelastic modulus. The local strain incre-
ments written in terms of the prescribed macroscopic
strain increment ∆E and the increment of the creep
strain ∆µm developed in the matrix follow from Dvo-
rak’s transformation field analysis, see [14], in the
form

∆εf = 'Af ∆E + 'Dfm∆µm, (9)
∆εm = 'Am∆E + 'Dmm∆µm. (10)

where 'Ar and 'Drm are the mechanical strain localiza-
tion factors and strain transformation influence func-
tions, respectively. In the light of the MT method [3]
they can be expressed as

'Am =
(
cmI + cf

'Tf

)−1
, 'Af = 'Tf

'Am, (11)

'Drm =
*

I − 'Ar

+ *
'Lm − Lf

+−1 'Lm. (12)

The partial strain concentration factor 'Tf follows
from the Eshelby transformation field analysis and in
general it is a function the shape and orientation of
the fiber and instantaneous properties of the matrix.

The principal drawback of the MT method is evi-
dent from Fig. 8 comparing the FEM simulations with

1Subscripts f, m stand for the fiber and matrix phase, re-
spectively.
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Figure 8. Stress-strain diagrams for various uniaxial
tensile strain rate loading.

the MT results for various strain rates of the applied
in-plane shear strain. It is reasonable to attribute
the observed stiff response of the MT method to its
inability to represent localization of inelastic strain
since dealing with phase volume averages only.

4.2. Mori-Tanaka method: modified
formulation

Owing to the previous results we propose a simple
modification to match the predictions provided by
both MT method and FEM. Being inspired by [8, 12]
we attempt to describe the stress redistribution due
to formation of shear bands by the reduction of stress
taken by the fibers through a damage like parameter
ω and write the fiber stress increment as

∆σf = (1 − ω)Lf ∆εf . (13)

Two particular formulations describing the evolution
of ω are investigated. The one suggested in [12] reads

ω = 1 −
"

τ t
eq

Nτ0
/sinh(

τ t
eq

Nτ0
)
%M

, (14)

where M, N are the model parameters and the equiv-
alent stress τeq is given by

τeq =
,

1
2sijsij . (15)

The influence of parameters N and M is illustrated in
Fig. 9 suggesting a rather similar effect of the two pa-
rameters both in terms of stiffness and overall stress
reduction. Thus tuning only one of them appears
sufficient in adjusting the macroscopic response.

However, as seen in Fig. 10, plotting the FEM
and MT estimates of the macroscopic response for
the applied rate of macroscopic in-plane shear strain
Ėxy = 1 × 10−4 s−1 shows that such a formulation
does not provide satisfactory results. Therefore, we
propose a new formulation written as

ω = N

"
1 −

#
τ t

eq − T

τ0
/sinh(

τ t
eq − T

τ0
)
$%M

, (16)

(a)

(b)

Figure 9. Influence of parameters M, N in describ-
ing the evolution of ω according to Eq. (14): (a) influ-
ence of parameter M , N=1, (b) influence of parame-
ter N , M=1.

Figure 10. Comparison of FEM and MT predictions
with ω given by Eq. (14).

where M, N, T are again the model parameters,
which, unlike to Eq. (14), provide more freedom in
the model calibration.

The way they control the evolution of ω is evident
from Fig. 11. While parameter M adjusts the rate
of evolution of ω with τeq, the other two parameters
N, T merely shift the damage curve horizontally and

118



vol. 30/2021 Viscoelastic modeling of unidirectional fibrous composites

(a)

(b)

(c)

Figure 11. Influence of parameters M, N in describ-
ing the evolution of ω according to Eq. (16): (a) in-
fluence of parameter M , N=1, T =0; (b) influence of
parameter N , M=1, T =0; (c) influence of parameter
T , M=N=1.

vertically. Thus N controls the minimum stress the
fibers may take and T serves to delay the onset of
damage evolution. Note that these two parameters
are subject to some limitations, particularly

N = 〈0, 1〉, (17)

and

if τeq < T then ω = 0, (18)

Figure 12. Comparison of FEM and MT predictions
with ω given by Eq. (16).

if τeq > T then ω follows from Eq. (16). (19)

Figure 12, showing again the macroscopic stress-
strain curve for the applied shear strain rate Ėxy =
1 × 10−4, promotes this new formulation as almost
a perfect match between FEM and MT predictions
can be obtained with properly adjusted parameters
M, N, T in Eq. (16).

5. Conclusions
The main goal of this study was to confirm suitabil-
ity of the Mori-Tanaka method to replace demand-
ing finite element simulations in the prediction of
the macroscopic response of fibrous composites. This
would prove advantageous particularly in a multi-
scale analysis of textile composites where the re-
sponse at the level of yarn must be solved indepen-
dently from the textile ply. To that end, two modifi-
cations to the original MT formulation were tested
with particular attention devoted to the nonlinear
viscoelastic response of the matrix phase governed
by the generalized Leonov model. Both modifications
attempt to reduce the stress taken by the fibers by
introducing a damage like parameter ω in the consti-
tutive equation for the fiber phase.

The first modification originated from the work of
Valenta et al. [8, 12]. While successful for asphalt
mixtures it proved insufficient in the present study.
Therefore, a new modification was proposed to allow
for more freedom in the calibration of the evolution
law for damage parameter ω. The results clearly show
a superiority of this new formulation allowing us to
receive a very good agreement between FEM and MT
predictions. This also promotes the MT method as
a perfect tool for the prediction of macroscopic re-
sponse of two-phase composites made of aligned fibers
embedded into a polymer matrix.
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