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Abstract

Unmanned aerial vehicles (UAVs) have received an extensive attention in wireless commu-
nications in the recent years. Due to a high �exibility and adaptability to the environment,
UAVs can be regarded as �ying base stations (FlyBSs) that potentially bring a signi�-
cant enhancement in the performance of mobile networks. Such potential enhancements,
however, are essentially subject to an e�ective management of available resources. In
particular, several challenges are required to be addressed to e�ciently integrate FlyBSs
into mobile networks, including positioning, power consumption, association of users to
the FlyBSs, and allocation of transmission power and channel bandwidth to the users.
Power allocation/consumption is a critical aspect that could directly manifest in those

mentioned challenges. In particular, due to transmission power limitations, the FlyBS
would require to relocate in order to avoid unwanted loss in the system's performance.
Furthermore, a relocation might also be required either to reduce the distance between
the FlyBS and the user, or to access better FlyBS-to-user channel conditions. Such dis-
placements of the FlyBS would basically incur a propulsion energy consumption. Thus,
there is a potential trade-o� between the transmission and propulsion power consump-
tions. From the perspective of power consumption, saving the propulsion energy could be
more crucial due to limitations on the FlyBS's battery. Nevertheless, from the perspective
of user's connectivity, the transmission power allocation is the key aspect.
In the view of the signi�cance of energy on the communication's performance, this dis-

sertation is dedicated to investigating the deployment of FlyBSs in mobile networks from
various major aspects while with a consideration of power in one way or another. Such as-
pects include transmission/propulsion/total power consumption, user coverage duration,
sum capacity maximization, and minimum user's capacity maximization. Several prac-
tical constraints are considered, such as the FlyBS's maximum transmission/propulsion
power limit, speed, acceleration, available battery, and altitude. Other constraints related
to the network's metrics include individual user's capacity, network's sum capacity, and
backhaul link capacity. A variety of system models and assumptions also play key roles in
the network, including i) communication mode, i.e., orthogonal and non-orthogonal mul-
tiple access (OMA and NOMA, respectively) together with related aspects such as NOMA
user clustering and determination of user decoding order in the successive-interference-
cancellation (SIC), and ii) multi-hop connection between the FlyBSs and the ground
base station (GBS) via relaying FlyBSs on the backhaul link. In an attempt to provide
comprehensive research in the area of FlyBS communications, several works are carried
out separately in the framework of this PhD dissertation. Novel solutions are proposed,
and benchmarks against the state-of-the-art are provided. The results demonstrate the
potential of FlyBSs and encourage a more tactful utilization of resources.

Keywords: Unmanned aerial vehicle, �ying base station, transmission power, propulsion
power, mobile networks, sum capacity, non-orthogonal multiple access, relay, backhaul.





Abstrakt

Bezpilotním letadl·m (UAV) se v posledních letech v¥nuje velká pozornost v oblasti bez-
drátové komunikace. Díky vysoké �exibilit¥ a p°izp·sobivosti prost°edí lze bezpilotní
letadla vyuºívat jako létající základnové stanice (FlyBS), které potenciáln¥ mohou výz-
namn¥ zlep²it výkonnost mobilních sítí. Takové potenciální zlep²ení v²ak vyºaduje efek-
tivní správu dostupných zdroj·. Pro efektivní integraci FlyBS do mobilních sítí je t°eba
vy°e²it zejména n¥kolik problém·, v£etn¥ ur£ení polohy, spot°eby energie, p°i°azení uºi-
vatel· k FlyBS a p°id¥lení p°enosového výkonu a ²í°ky pásma kanálu uºivatel·m.
Alokace/spot°eba energie je v sítích FlyBS kritickým aspektem, který by se mohl pro-

jevit ve v²ech uvedených výzvách. Zejména kv·li omezení p°enosového výkonu, je nutné
FlyBS zm¥nit polohu, aby nedo²lo k neºádoucí ztrát¥ výkonu systému. P°emíst¥ní by
navíc mohlo být zapot°ebí bu¤ ke sníºení vzdálenosti mezi FlyBS a uºivatelem, nebo k
zaji²t¥ní lep²ího kanálu mezi FlyBS a uºivatelem. Takové posunutí FlyBS by znamenalo
spot°ebu pohonné energie. Existuje tedy potenciální kompromis mezi p°enosovou a po-
honnou energií. Proto by z hlediska spot°eby energie mohla být úspora pohonné energie
výhodn¥j²í vzhledem k omezením baterie FlyBS. Nicmén¥ z hlediska konektivity uºivatele
p°id¥lení p°enosového výkonu je klí£ovým aspektem.
Cílem této diserta£ní práce je prozkoumat nasazení FlyBS v mobilních sítích z r·zných

pohled· s ohledem na význam energie na výkon komunikace. Mezi na²e zkoumané prob-
lémy pat°í p°enosová/pohonná/celková spot°eba energie, délka pokrytí uºivatele, maxi-
malizace sou£tové kapacity a maximalizace minimální kapacity uºivatele. Zvaºuje se °ada
praktických omezení, jako je maximální limit p°enosového/pohonného výkonu FlyBS,
rychlost, zrychlení, dostupná baterie a nadmo°ská vý²ka. Dal²í omezení související s
metrikami sít¥ zahrnují kapacitu jednotlivých uºivatel·, sou£tovou kapacitu sít¥ a kapac-
itu zp¥tného spoje. Klí£ovou roli hrají také r·zné modely a p°edpoklady systému, ke
kterým pat°í i) ortogonální a neortogonální vícenásobný p°ístup (OMA, resp. NOMA)
spolu se souvisejícími aspekty, jako je seskupování uºivatel· NOMA a ur£ení po°adí dekó-
dování uºivatel· p°i postupném ru²ení (SIC), a ii) vícenásobné spojení mezi FlyBS a
pozemní základnovou stanicí (GBS) prost°ednictvím rela£ních FlyBS na zp¥tném spoji.
Ve snaze poskytnout komplexní výzkum v oblasti komunikace s pomocí FlyBS je v rámci
této diserta£ní práce zpracováno n¥kolik samostatných prací. Jsou navrºena nová °e²ení a
poskytnuta srovnání s nejnov¥j²ími technologiemi. Výsledky ukazují potenciální ú£innost
FlyBS a podporují ²etrn¥j²í vyuºití zdroj· v síti.

Klí£ová slova: Bezpilotní letoun, létající základnové stanice, vysílací výkon, výkon
pohonu, mobilní sít¥, sou£et kapacity kanálu, neortogonální vícenásobný p°ístup, relé,
Páte°ní p°ipojení.
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Chapter 1

Introduction

The 6G mobile networks introduce many challenges in line with inevitably growing de-

mands in the future of mobile networks. Regardless of whether such demands prompt the

emerging technology or vice versa, the urge for communication stays at the frontier of hu-

man needs and hence it deserves prevalent attention to be aptly nourished. An increasing

density in data tra�c, not only necessitates a smart design of more advanced equipment

as well as resources, but also calls for a wise utilization of the existing. Conventional

ground base stations, as one of the pillars of communication setups in mobile networks,

cannot always adapt fully to the user's demands in their conventional static form. This is

mainly due to a changing topology of network and environment as well as constraints on

hardware supplies incorporated with limited available radio resources. Such obstacles are

alleviated by a notable degree once the base stations are enabled to change their position

over time. Unmanned aerial vehicles (UAVs) can o�er such a feature and play the role of

�ying base stations (FlyBSs) [1]-[5].

Along with the UAV's mobility comes the advantage of allocating the users channels

containing less (or ideally, no) intercepting obstacles leading to even higher quality of

communication [6], [7]. Thanks to providing a more reliable communication, FlyBSs have

caught an abundance of interest in many wireless applications. Much as every advan-

tage o�ered by FlyBSs with respect to static BSs, the adverse impacts inherent to those

advantages should also be dealt with; a (fast) relocation of the FlyBS requires consump-

tion of energy, which is commonly referred to as propulsion energy [8], and a more dense

connectivity accompanies a more intense interference in the network [9]. Consequently,

many aspects already studied in scenarios with static BSs need to be revisited to address

the concerns raised by the FlyBSs. For instance, the problem of power optimization for

static BSs only targets the transmission power allocation/optimization, whereas a similar

problem for FlyBSs requires also a dealing with the aspect of propulsion power consump-

tion. That being said, the transmission power, despite its relatively lower magnitude with

1



Chapter 1 2

respect to propulsion power [10], still remains a crucial factor from the perspective of user

quality of service. Hence, there is a trade-o� between the transmission and propulsion

power consumptions in many scenarios.

To carry out a fair research on such trade-o�s in FlyBS-assisted networks, this dis-

sertation targets to study the network performance from di�erent perspectives. Each

perspective is essentially evoked in a set of speci�c applications, and it highlights partic-

ular objectives together with certain metrics that are tailored to evaluate the system's

performance. For each studied objective we focus on the main challenges and we propose

novel solutions that pioneer existing works in one way or another.

The main contributions of this dissertation is summarized as follows

� From the perspective of power consumption, the problem of minimizing the total

power consumption of the FlyBSs is studied. In order to not underestimate the

transmission power solely based on its magnitude comparing to propulsion power,

we emphasize its importance by imposing a minimum individual capacity required

by each user. Such cases are present in many emerging time-critical applications,

such as autonomous driving, where the users are delay-sensitive, and a guarantee

of instantaneous capacity is necessary. We investigate a minimization of the to-

tal power consumption via FlyBS's positioning and allocation of bandwidth and

transmission power to the users. The problem is solved under constraints for the

FlyBS's speed and altitude. Solutions are proposed for single-point and multi-point

cases where the FlyBS's positions are optimized over one and multiple time steps,

respectively.

� Next, in order to stress the importance of transmission power even more, we target

the aspect of the user coverage in the network. More speci�cally, the user coverage is

conditioned by whether all the users are provided with their required capacity. Ac-

cordingly, the duration of user coverage is considered as the metric. Non-orthogonal

multiple access (NOMA) is adopted as the transmission mode in order to e�ciently

utilize the available radio resources. This aspect necessitates to also address NOMA

user clustering and SIC user decoding. Since the operational duration of the FlyBS

could also limit the coverage duration, a constraint on the FlyBS's battery is also

included. From this point of view, the transmission power consumption shows a

high importance while the FlyBS's battery's remaining energy is relatively high. In

contrast, the signi�cance of propulsion power consumption increases as the remain-

ing battery's energy decreases over time. Analytical solutions are developed for the

FlyBS's positioning, transmission power allocation, and NOMA user clustering. The

problem is solved under constraints for NOMA cluster size as well as the FlyBS's
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transmission power, propulsion power, battery's capacity, speed, and acceleration.

Compared to existing works, our proposed solution considers all the mentioned as-

pects together. Furthermore, the proposed solution also allows for having clusters

of di�erent sizes leading to a lower transmission power consumption and, hence,

prolonging the coverage duration.

� Next, the problem of NOMA clustering and transmission power allocation is investi-

gated to maximize the minimum capacity achieved among all the users. This metric

indicates the fairness of service among users when they actually do not demand for

a certain amount of capacity due to any speci�c applications, however, the provided

service would still a�ect their satisfaction. The problem is solved under constraints

for the FlyBS's altitude, speed, and maximum transmission power. A novel ana-

lytical solution is provided to show the relevance between the main objective, i.e.,

the optimization of minimum capacity, and the minimization of transmission power.

Then, a low-complexity solution for optimal user clustering is proposed. In partic-

ular, a geometrical solution based on a selection of convex polygons is developed to

�nd the optimal clustering. The solution allows for clusters with di�erent sizes.

� Then, from the perspective of QoS in terms of total communication capacity of

the users, we investigate the power consumption of airship-based FlyBSs aiming to

maintain the network's instantaneous total capacity above an expected threshold.

In particular, in order to avoid redundant movements of the FlyBSs leading to a

(excessive) propulsion power consumption, we try to keep the FlyBSs as much inert

as possible while a minimum sum capacity is always guaranteed in the network.

Constraints on the FlyBS's altitude and speed are considered in the optimization

problem. A low-complexity novel solution is proposed based on a successive selection

of the FlyBS with the smallest required propulsion energy to contribute a certain

increment in the sum capacity. Importantly, it is shown that, by allowing only

slight (few percent) decreases in the sum capacity of the network with respect to

the maximum achievable sum capacity, a considerable amount of propulsion energy

could be saved.

� Next, we study the problem of transmission power allocation and FlyBS's position-

ing to maximize the sum capacity in delay-sensitive applications where a minimum

user's capacity is always guaranteed. The problem is solved under practical con-

straints for the FlyBS's speed, transmission power, and altitude. In addition, a

constraint for the maximum propulsion power consumption is also included so that

the FlyBS's displacements would not incur an excessive consumption of power lead-

ing to a relatively fast termination of the FlyBS's operation. Due to non-convexity
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of the objective, an analytical solution based on an alternating optimization of the

transmission power allocation and FlyBS's positioning is proposed. For the problem

of positioning, a novel solution based on radial approximations of sum capacity is

proposed. The heuristic solution shows a signi�cant enhancement in the achieved

sum capacity with respect to existing works.

� After developing solutions for di�erent objectives in FlyBS networks, we then take

another step forward and target to exploit the advantages of a multi-FlyBS network

even more e�ectively by extending the adopted model. More speci�cally, a backhaul

link is included so that the FlyBSs communicate with a ground base station (GBS).

In addition to serving the users in such extended model, the FlyBSs also assist each

other to establish a connection with the GBS. Such model, referred to as multi-hop

FlyBS communication in our work, is very useful in scenarios where some FlyBSs

move too far away from the GBS to be able to communicate with the GBS given their

limited transmission power. Complications regarding this model include additional

constraints that ensure the capacity of the backhaul link for every FlyBS would not

be smaller than the capacity of the fronthaul link. The problem of sum capacity

maximization is investigated via a user association and positioning of the FlyBSs.

Due to non-tractability of the problem caused by non-convexity of the objective as

well as discreteness of user association, we develop a novel heuristic solution based

on an alternating optimization of user association and positioning of FlyBSs. The

results demonstrate a signi�cant increase in the sum capacity of the network with

respect to the state-of-the-art solutions.



Chapter 2

Dissertation Objectives

In this Chapter, we outline the objectives investigated throughout the dissertation. Every

objective highlights the network's performance from a di�erent perspective as follows

� Minimization of the total power consumption via optimization of the transmission

power allocation and FlyBS's positioning while a minimum instantaneous capacity

is always guaranteed to each individual user.

� Maximization of the duration of user coverage provided by FlyBSs in NOMA net-

works via FlyBS's positioning, transmission power allocation, and user clustering

for NOMA such that a minimum capacity is guaranteed to the users all the time.

� Maximization of minimum instantaneous capacity among users via transmission

power allocation, FlyBS's positioning, and NOMA user clustering.

� Optimization of the FlyBSs' positioning to minimize the propulsion energy con-

sumption in airship-based FlyBS networks such that the sum capacity provided to

the mobile users would not fall below a given minimum threshold at any time.

� Maximization of sum capacity in mobile networks via an optimization of the FlyBS's

positioning and transmission power allocation to the users while a minimum instan-

taneous capacity is always guaranteed to the users.

� Optimization of the FlyBSs' positioning and user association in multi-hop relaying

networks with backhaul to maximize sum capacity in mobile networks.

The rest of the dissertation is organized as follows. In Chapter 3, we present our

studied works within the scope of the dissertation and corresponding to the mentioned

perspectives and objectives as listed above. Each section is structured to �rst introduce

brie�y the targeted objective. Then, the discussion of the section is followed by our written

articles in line with the targeted objective. Within each attached article, we elaborate

5



Chapter 2 6

a review of the literature followed by list of own contributions. Then, the formulated

problem and the proposed solution is provided in details. The proposed solutions are

then benchmarked against existing works to show their e�ectiveness. Last, we summarize

the contribution of this dissertation in Chapter 4 and we point out to the future topics of

research in line with the conducted research work.



Chapter 3

Results

In this chapter, di�erent objectives (as mentioned in the previous chapter) are investigated

in FlyBS-assisted mobile networks. Each objective is presented in a separate section

followed by the associated article where a review of existing related works is presented as

well.

3.1 Minimization of FlyBS total power with user QoS

constraint

In this section, we focus on FlyBSs in mobile networks from a perspective of total power

consumption which consists of the transmission and propulsion power consumptions. The

transmission power is associated with providing the user's required minimum capacity at

all time. A guarantee of such minimum capacity also depends on the relative positions of

the FlyBS and the users. Thus, a positioning of the FlyBS over time might be required,

otherwise, a guarantee of the user's required capacity might lead to an excessive con-

sumption of transmission power which is not always the option due to limitations on the

FlyBS's transmitter and battery. Hence, a minimization of the total power consumption

is done via a dynamic allocation of transmission power to the users as well as a positioning

of the FlyBS.

The following papers, which are references [C5] and [J2], respectively, present our work

regarding the problem of total power optimization.

7
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Abstract—Unmanned aerial vehicles acting as flying base sta-
tions (FlyBSs) have been considered as an efficient tool to enhance
capacity of mobile networks and to facilitate communication in
emergency cases. The enhancement provided by such network
necessitates a dynamic positioning of the FlyBSs with respect
to the users. Despite that, the power consumption of the FlyBS
remains an important issue to be addressed due to limitations
on the capacity of FlyBS’s batteries. In this paper, we propose a
novel solution combining a transmission power control and the
positioning of the FlyBS in order to ensure quality of service to
the users while minimizing total consumed power of the FlyBS.
We derive a closed-form solution for joint transmission and
propulsion power optimization in a single future step. Moreover,
we also provide a numerical method to solve the joint propulsion
and transmission power optimization problem when a realistic
(i.e. inaccurate) prediction of the users’ movement is available.
According to the simulations, the proposed scheme brings up to
26% of total FlyBS’s power saving compared to existing solutions.

Index Terms—Flying base station, transmission power, propul-
sion power, prediction, mobile users, mobile networks, 6G

I. INTRODUCTION

Deployment of Flying Base Stations (FlyBSs) is a promising
technique to address multiple concerns in wireless networks.
In contrast to the conventional static base stations, the FlyBSs
feature exclusive advantages due their high-mobility, which
enables to adapt the network topology to an environment
and actual user requirements on communication. This makes
FlyBSs a suitable solution for various applications including
surveillance in an area [1], offloading traffic from static
base stations (BSs) [2], emergency operations [3], extending
coverage [4]-[7], collection of data from IoT devices [8],[9],
or improving quality of service for users [10]-[12]. In [13],
several key challenges regarding the FlyBS’s services to the
users are listed. These challenges include, among others,
positioning of the FlyBSs to provide coverage for as many
users as possible, controlling the FlyBSs’ power consumption
to enhance their serving duration, or maximizing the quality
of service (e.g., throughput). The problem of maximizing the

This work was supported by Grant No. P102-18-27023S funded by Czech
Science Foundation and by the grant of Czech Technical University in Prague
No. SGS17/184/OHK3/3T/13

coverage for networks with single FlyBS is studied in [4]
and [6]. The authors in [7] investigate optimization of the
number of required FlyBSs to guarantee the service quality
to all ground users in a given area. The authors in [14] adopt
evolutionary-based algorithms to maximize the users’ satis-
faction in terms of experienced data rates. In [10], the authors
study the problem of the uplink throughput maximization in
a scenario with multiple-antenna FlyBS. However, in all these
papers, the power consumption is not addressed at all.

The problem of power consumption in a network with a
fixed-wing FlyBS along with the ground users is investigated
in [15]. The objective is to identify the trajectory of the FlyBS
along several ground users and collect/deliver information
from/to these users while minimizing the total power spent
by the FlyBSs for flying and communication. Then, in [16],
the same problem for rotary-wing FlyBS is studied. In [17], a
reinforcement-learning (RL) framework is proposed to control
the power consumption in the mobile networks with multiple
FlyBSs. However, in [15], [16], and [17], the impact of
transmission power is ignored and only the propulsion power
spent for the movement of the FlyBS is considered. The
efficient 3D placement of the FlyBSs with the consideration of
transmission power minimization is studied in several works
with a variety of goals including maximization of the number
of covered users [18], maximization of the downlink coverage
[5], maximization of network throughput [19], maximization
of the users’ quality-of-experience (QoE) [20], etc. These
works are focused on reducing the FlyBSs’ transmission
power, but the power consumption due to the movement of
the FlyBS is not considered. The energy consumption caused
by the FlyBS’s movement as well as by transmission of data is
considered in [21]. However, the work is focused on a scenario
in which the FlyBS tracks a mobile target. In such scenario,
the constraint on quality of communication towards the users
is ignored.

In our previous work [22], the combination of both the
FlyBS’s transmission power and propulsion power is consid-
ered for a single-point optimization. The single-point optimiza-
tion is understood as adjustment of the FlyBS position and
transmission power between each two time steps of the FlyBS



Fig. 1. System model with multiple mobile users deployed within coverage
area of the FlyBS.

operation disregarding potential (even inaccurate) estimation
of future movement of the users that could further reduce the
total power consumption. Moreover, the model proposed in
[22] assumes the propulsion power as a linear function of the
FlyBS’s velocity, which might not be realistic for rotary-wing
FlyBSs as shown in [16].

In this paper, we analytically express the total power con-
sumption as a function of the users’ relative location with
respect to the FlyBS and users requirements on the downlink
capacity. Then a closed-form solution is provided for the
case of single-point optimization, where, similar to [22], the
total power is minimized between two consecutive time steps,
although here we adopt a realistic non-linear model for the
propulsion power consumption of the rotary-wing FlyBSs,
which makes the solution significantly more complicated.
Furthermore, a numerical solution is proposed to reduce the
total power consumption over multiple time steps (multi-
point optimization), as the idea of single-point optimization
does not show a good performance in scenarios where the
movement velocity of the ground users is very high. We show
the performance of the proposed solution and compare it to
the existing approaches. Our proposed method shows up to
26% improvement in the total power consumption compared
with state-of-the-art methods.

The rest of the paper is organized as follow. In section
II, we present the system model. The problem of the power
optimization via determination of the FlyBS position and
transmission power is presented in Section III. In section
IV, we provide simulation results and compare performance
with existing solutions. Last section concludes the paper and
outlines potential directions to the future research.

II. SYSTEM MODEL AND FORMULATIONS

We consider a mobile network cell with a rotary-wing FlyBS
that serves n mobile users in an area as shown in Fig. 1. All
n users in the area communicate directly with the FlyBS.

Let {X(t), Y (t),H(t)} denote the location of the FlyBS
at the time t. By adopting the model from [15], we assume
that the FlyBS operates at a fixed altitude H . Hence, the
FlyBS can either hover or flight horizontally over the area.

Let {xi(t), yi(t)} denote the coordinates of the i-th ground
user at the time t. Then, di(t) denotes Euclidian distance of
the i-th user to the FlyBS at time t.

We adopt orthogonal downlink channel allocation for all
users as considered in a conventional mobile network. Thus,
we assume no interference among channels of different users.
With that, the channel capacity of the i-th user is calculated
from the Shannon–Hartley theorem as:

Ci(t) = Bilog2(1 +
pRi (t)

Ni
), (1)

where Bi denotes the bandwidth of the i-th user’s channel, Ni

denotes the noise power at the channel of the i-th user, and
pRi (t) is the received power by the i-th user at time t.

According to the Friis transmission equation, the transmis-
sion power of the FlyBS to the i-th user (pTi ) is given as:

pTi = Qid
2
i , (2)

Qi =
pRi (4πfc)

2

GT
i G

R
i c

2
,

where GT
i is the gain of the FlyBS’s antenna, GR

i is the gain
of the user’s antenna, fc is the communication frequency, and
c = 3× 108m/s is the speed of light. Note that the coefficient
pR
i (4πfc)

2

GT
i GR

i c2
is denoted by Qi for the ease of presentation in later

discussions. Note that we assume the antennas of all users
with the same gain. From (2), we can conclude that the power
consumed by the FlyBS due to transmission power PTX is
expressed as a function of the coordinates of the users and the
FlyBS as follow:

PTX(X,Y,H, tk) =
n∑

i=1

Qid
2
i = (3)

n∑

i=1

Qi((X(k)− xi(k))
2 + (Y (k)− yi(k))

2 +H2).

Following (3), the average transmission power (denoted as
P avg
TX ) over the time span of {t1, . . . , tT } can be written as:

P avg
TX (t1, . . . , tT ) =

1

T

T∑

k=1

n∑

i=1

Qid
2
i =

1

T

T∑

k=1

n∑

i=1

Qi((X(k)− xi(k))
2 + (Y (k)− yi(k))

2 +H2). (4)

As in many related works, we assume that the current
positions of the users are known to the FlyBS (see, e.g. [4],
[23], [24]). Also, the FlyBS can determine its own position as
the knowledge of the FlyBS’s position is needed for a common
flying and navigation of the FlyBSs ([25]).

In order to formulate the power spent for the FlyBS’s
movement (propulsion power), we refer to the model provided
in [16] for rotary-wing FlyBSs. In particular, the propulsion
power is written as a function of the FlyBS’s average velocity
(denoted by V ) in the following way:

Ppr(V ) = L0(1 +
3V 2

U2
tip

) + Li(

√
1 +

V 4

4v40,h
− V 2

2v20,h
)
1
2 +

1

2
d0ρsrAV 3.

(5)



where L0 and Li are the blade profile and induced powers
in hovering status, respectively, Utip denotes the tip speed of
the rotor blade, v0,h denotes the mean rotor induced velocity
during hovering, d0 is the fuselage drag ratio, sr is the rotor
solidity, ρ is the air density, and A is the rotor disc area, see
[16] for more details about the model.

Note that the FlyBS’s average velocity can be calculated
by dividing the distance moved between two points with the
duration of the movement. In particular, if the FlyBS moves
from {X(k), Y (k),H} to the new location {X(k+1), Y (k+
1),H}, the average velocity is rewritten as:

V (k, k + 1) =
1

∆tk

√
((X(k + 1)−X(k))2 + (Y (k + 1)− Y (k))2),

(6)

where ∆tk = tk+1 − tk.
Let us define the initial position of the FlyBS as

(X(0), Y (0),H), the average propulsion power over the time
period of {t0, . . . , tT } is written as:

P avg
pr =

1

T

T−1∑

k=0

Ppr(V (k, k + 1)). (7)

In order to formulate the total power consumption, we
jointly optimize both the communication power and the
propulsion power. We consider also the power consumption of
on-board circuits at the FlyBS (denoted by Pcircuit). Hence,
the average overall power consumption P avg

tot is written as:

Pavg
tot (X,Y,H, t1, . . . , tT ) = Pavg

circuit + Pavg
TX + Pavg

pr (8)

According (3), (4), and (7)), we rewrite P avg
tot as:

Pavg
tot = Pavg

circuit+

1

T

T∑

k=1

n∑

i=1

Qi((X(k)− xi(k))
2 + (Y (k)− yi(k))

2 +H2)+

1

T

T−1∑

k=0

Ppr(V (k, k + 1)). (9)

Equation (9) can be further expanded by using (5) and (6),
but we do not show the expanded form to avoid cluttering.
Note that Pcircuit in (8) depends on the FlyBS’s computa-
tional (processing) and communication chipsets and it can be
regarded as a constant [16].

In [26], it is shown that, in order to achieve the optimal
network’s capacity while neglecting the propulsion power
of FlyBS, the optimal coordinates Xopt(k) and Yopt(k) of
the FlyBS correspond to the center of gravity of the users’
positions:

Xopt(k) =

∑n
i=1 Qixi(k)∑n

i=1 Qi
,

Yopt(k) =

∑n
i=1 Qiyi(k)∑n

i=1 Qi
.

(10)

With a similar logic, in case that the users’ capacities are not
degraded, (8) indicates the position of the FlyBS that achieves
the minimum transmission power. Note that the received power
by the users is already incorporated in Qi (1 ≤ i ≤ n)
according to (2), and so in case the users have different
throughputs, the coefficients Qi are not necessarily equal for
different users.

III. POWER OPTIMIZATION AND FLYBS POSITIONING

In this section, we first define the optimization problem.
Then, we derive a closed-form solution to the defined problem
for case T = 1, which is the single-point optimization as
in [22], however, with non-linear power consumption model
based on [16], which completely changes the solution. Next,
we provide a numerical solution for the multi-point optimiza-
tion problem (T > 1), as deriving a closed-form solution for
this case is too difficult if not impossible.

A. Problem formulation

We formulate the problem of the total power consumption
minimization over the time period T as follow:

argmin
X(k),Y (k),H(k)

P avg
tot , (1 ≤ k ≤ T ) (11)

s.t. Cj(t) ≥ Cj
min, j ∈ {1, ..., n}, ∀t.

The constraint in (11) guarantees that every user within
the coverage area receives the minimum required capacity
(denoted by Cmin

j , j ∈ 1, . . . , n) at all time. In our case, we
define Cmin

j as the capacity that would be experienced by
the j-th user over the duration of {t1, . . . , tT } if a static BS
was deployed. We remark that the transmission power (and so
the total power consumption) is increasing with the received
capacity according to (1) and (2). Thus, the minimum total
power consumption in (11) occurs when every user receives
exactly the minimum required capacity, hence, the constraint
can be rewritten as Cj(t) = Cmin

j (∀j ∈ {1, . . . , n},∀t). From
(1), it is concluded that for a constant capacity, the received
power is also constant, which implies that the coefficients Qi

are constants. Hence, the transmission power for each user
changes only when there is a relative displacement between
the FlyBS and the users (e.g., due to users’ movement). Here
we note that the optimization problem in (11) is repeated every
T time steps to calculate the optimum locations of the FlyBS
over time.

B. Closed-form solution for single-point optimization

In this subsection, we derive closed-form solution to the
optimization problem when T = 1. First, we find the critical
points at which the partial derivatives of P avg

tot are equal to
zero. However, due to the complicated expression of Ppr(V )
in (5), calculation of the exact closed-form solution is not
feasible. More specifically, we find that solving ∂Pavg

tot

∂X = 0

and ∂Pavg
tot

∂Y = 0 together leads to calculating the roots of
polynomials of degree fourteen, which cannot be provided
with algebraic solution. Instead, we find an approximation of
Ppr(V ) using polynomial fitting and then solve ∂Pavg

tot

∂X = 0 and
∂Pavg

tot

∂Y = 0 by referring to the approximated expression. More
specifically, it is observed that the propulsion power in (5)
can be well approximated by a polynomial of degree five with
respect to V . Fig. 2 shows the actual and the approximated
curves for the FlyBS with physical specifications of the FlyBS
provided in [27] for ” DJI Spreading Wings S900” (see Table I
in [27]). Since the error is negligible, we use the approximated
propulsion power (denoted by P apx

pr (V )) that is expressed as:



0 5 10 15 20 25 30

Velocity of UAV (m/s)

300

350

400

450

500

550

P
p
r

(W
a
tt
s
)

actual value

approximation by polynomial

Fig. 2. Actual propulsion power and polynomial approximation vs. velocity
of rotary-wing FlyBS.

P apx
pr (V ) =

5∑

j=0

cjV
j , (12)

c0 = 500.2700, c1 = 1.6360, c2 = −1.4103, c3 = 0.0479,

c4 = 2.3521× 10−4, c5 = −1.3452× 10−5.

The coefficients in (12) are calculated using MATLAB to fit
the polynomial to the actual curve with the minimized mean-
square-error (MSE).

Now by using P apx
pr in (12) and rewriting the equations

∂Pavg
tot

∂X = 0 and ∂Pavg
tot

∂Y = 0 for the period of {t0, t1} we get:
n∑

i=1

2Qi(X(1)− xi(1)) =

−(
X(1)−X(0)√

(X(1)−X(0))2 + (Y (1)− Y (0))2)
.
dPapx

pr

dV
|V =V (0,1)

n∑

i=1

2Qi(Y (1)− yi(1)) =

−(
Y (1)− Y (0)√

(X(1)−X(0))2 + (Y (1)− Y (0))2)
.
dPapx

pr

dV
|V =V (0,1) (13)

From (13) we derive a new equation as follows
∑n

i=1 2Qi(X(1)− xi(1))∑n
i=1 2Qi(Y (1)− yi(1))

=
X(1)−X(0)

Y (1)− Y (0)
. (14)

Equation (14) can be further rewritten as

(
∑n

i=1 2Qi)X(1)− (
∑n

i=1 2Qixi(1))

(
∑n

i=1 2Qi)Y (1)− (
∑n

i=1 2Qiyi(1))
=

X(1)−X(0)

Y (1)− Y (0)
. (15)

From (15), it is concluded that (intermediate steps leading
to (16) are not presented here):

(Y (1)− Y (0)) =

(
∑n

i=1 2Qi)Y (0)− (
∑n

i=1 2Qiyi(1))

(
∑n

i=1 2Qi)X(0)− (
∑n

i=1 2Qixi(1))
(X(1)−X(0)). (16)

With (16), we can simplify the expression for V in (6) to

V = M |X(1)−X(0)|,

M =
1

∆tk
(1 +

(
∑n

i=1 2Qi)Y (0)− (
∑n

i=1 2Qiyi(1))

(
∑n

i=1 2Qi)X(0)− (
∑n

i=1 2Qixi(1))
)
1
2 . (17)

Now by expanding the first equation in (13) using (12) and
(17) we get:

(

n∑

i=1

2Qi)X(1)− (

n∑

i=1

2Qixi(1)) = (18)

−(
X(1)−X(0)

M |X(1)−X(0)| )(5c5V
4 + 4c4V

3 + 3c3V
2 + 2c2V + c1) =

−(
X(1)−X(0)

M |X(1)−X(0)| )(5c5M
4|X(1)−X(0)|4+

4c4M
3|X(1)−X(0)|3 + 3c3M

2|X(1)−X(0)|2+
2c2M |X(1)−X(0)|+ c1).

Equation (18) can be solved by considering two different
possibilities: a) X(1) > X0 (equivalently, |X(1) − X(0)| =
(X(1) − X(0)) or b) X(1) < X0 (equivalently, |X(1) −
X(0)| = −(X(1) − X(0)). Presuming a) or b), (18) is
rewritten as a quartic function with respect to X(1) that can
be provided with a closed-form solution as elaborated below.
For X(1) > X(0), (18) is rewritten as:

a4X
4(1) + a3X

3(1) + a2X
2(1) + a1X(1) + a0 = 0,

a4 = 5c5M
3, a3 = −20c5M

3X(0) + 4c4M
2,

a2 = 30c5M
3X2(0)− 12c4M

2X(0) + 3c3M,

a1 =

n∑

i=1

2Qi − 20c5M
3X3(0) + 12c4M

2X2(0)− 6c3MX(0) + 2c2,

a0 = 5c5M
3X4(0)− 4c4M

2X3(0) + 3c3MX2(0)− 2c2X(0)+

c1

M
− (

n∑

i=1

2Qixi(1)). (19)

There are four solutions to (19) that are given by:

−a3

4a4
− S ± 1

2

√
−4S2 − 2p+

q

S
,

−a3

4a4
+ S ± 1

2

√
−4S2 − 2p− q

S
, (20)

where

p =
8a4a2 − 3a23

8a24
, q =

a33 − 4a4a3a2 + 8a24a1

8a34
,

S =
1

2

√
−2

3
p+

1

3a4
(G+

∆0

G
), G =

3

√√√√∆1 +
√

∆2
1 − 4∆3

0

2
,

∆0 = a22 − 3a3a1 + 12a4a0,

∆1 = 2a32 − 9a3a2a1 + 27a23a0 + 27a4a
2
1 − 72a4a2a0. (21)

For X(1) < X0, (18) is rewritten as:

b4X
4(1) + b3X

3(1) + b2X
2(1) + b1X(1) + b0 = 0,

b4 = 5c5M
3, b3 = −20c5M

3X(0)− 4c4M
2,

b2 = 30c5M
3X2(0)− 12c4M

2X(0) + 3c3M,

b1 = −
n∑

i=1

2Qi − 20c5M
3X3(0)− 12c4M

2X2(0)− 6c3MX(0)− 2c2,

b0 = 5c5M
3X4(0) + 4c4M

2X3(0)+

3c3MX2(0) + 2c2X(0) +
c1

M
+ (

n∑

i=1

2Qixi(1)). (22)

Similar to (19), there are four solutions to (22) that can
be derived by using the coefficients b4, ..., b0 instead of
a4, ..., a0, respectively. Of course, only the real roots of the
quartic functions in (19) and (22) are considered. Furthermore,
the solutions to (19) and (22) must meet their presumptive
conditions X(1) > X(0) and X(1) < X(0), respectively.



For each of the candidates for X(1), the corresponding value
of Y (1) is calculated from (18). In addition to the derived
solutions, we also note that (X(1), Y (1)) = (X(0), Y (0))
is another critical point of P avg

tot (of type 2). By collecting
all the (real-valued) critical points, the optimal location of
the FlyBS at t1 (i.e.,(X(1), Y (1),H) ) can be decided by
evaluating P avg

tot over {t0, t1} for all those candidate points
for X(1). Next, the optimization is performed over {t1, t2} to
find (X(2), Y (2),H), and so on.

C. Numerical solution for FlyBS power optimization (T > 1)

Note that solving the problem (11) requires determination
of 2T unknown variables in (10), namely X(k) and Y (k) for
1 ≤ k ≤ T , and so it is very difficult if not impossible to
derive a closed-form expression in general. Instead, we try
to optimize P avg

tot in (11) by providing a numerical solution.
There are several known methods that are commonly used
to perform function optimization, such as descent algorithms
(Newton’s method, Broyden’s method, etc.), evolutionary al-
gorithms (genetic algorithms, simulated annealing, etc.), and
pattern search methods (Simplex, multidirectional search, etc).
The descent algorithms are typically fast in convergence,
however, compared to other numerical solvers, they are more
likely to get stuck in local optima or even in minimax points.
In contrast, the pattern search methods are more reliable to
find the global optima of the objective function. Hence, in this
paper, we adopt pattern search methods to solve our defined
problem. More specifically, we exploit Downhill Simplex
Algorithm (also known as Nelder-Mead Algorithm [28]) to
find the minimum value of the objective function f (namely,
P avg
tot in our formulation). This method is based on direct

search in multidimensional space (with dimension m) and
function comparison using simplex, which is a polytope of
m+ 1 vertices in m dimensions. In our setup, each vertex is
an m-dimensional point with m = 2T which is corresponding
to the (X,Y ) sequence of the FlyBS over T time steps. The
simplex is updated during following steps:
1. We start from m+1 points P1, P2, . . . , Pm+1. Without loss
of generality, we rearrange their indices to satisfy the following
order (here we use the general notation of f as the objective
function for the sake of simplicity of presentation):

f(P1) ≤ f(P2) ≤ . . . ≤ f(Pm+1). (23)

2. Compute the centroid of all points except Pm+1, and let P0

denote it.
3. Compute the reflected point with reflection coefficient α as:

Pr = P0 + α(P0 − Pm+1). (24)

4. If f(P1) ≤ f(Pr) ≤ f(Pm), then the simplex is updated
by replacing Pm+1 with Pr, and then we go back to step 1.
5. If f(Pr) ≤ f(P1), the expanded point with expansion
coefficient β is calculated as:

Pe = P0 + β(Pr − P0). (25)

6. If f(Pe) ≤ f(Pr), then the simplex is updated by replacing
Pm+1 with Pe, and going to step 1. Otherwise, we replace

Pm+1 with Pr and then go to step 1.
7. Compute the contracted point with contraction coefficient
γ as:

Pc = P0 + γ(Pm+1 − P0). (26)

8. If f(Pc) ≤ f(Pm+1), then we replace Pm+1 with Pc and go
back to step 1. Otherwise, we compute the following shrunk
points with shrinkage coefficient δ:

Pi = P1 + δ(Pi − P1), 1 ≤ i ≤ m+ 1, (27)

and then go to step 1.
The termination in this method occurs when the standard

deviation of the function values at the simplex vertices falls
below a given threshold. It is notable that the performance of
Simplex method in terms of precision and termination time
relies significantly on the parameters specified in the algo-
rithm, such as the starting point (initial simplex), reflection,
expansion, contraction and shrinkage coefficients that should
be tuned according to the objective function. We derive the
appropriate values of such parameters via experiments. For
the initial simplex, we choose the values in the vicinity of
the optimal solution. To do this, we use the points derived
from the closed-form solution for single-point optimization as
elaborated in the previous subsection. We also remark that
during the calculation of the initial simplex from the closed
form solution, the predicted location of the users are adopted
as the reference. The details about the prediction of the users’
locations as well as the specifications of Simplex method are
elaborated in the next section.

IV. SIMULATION RESULTS

In this section, we provide details of simulations and models
adopted to evaluate the performance of the proposed power
control for minimizing the total power consumed by the
FlyBS. We also demonstrate the advantages of the proposed
scheme over the existing non-optimal scheme.

TABLE I
PARAMETER CONFIGURATIONS

System Parameter Numerical value
Number of users in the coverage area, n 180
Antenna gains, GT

i ,GR
i 0 dBi [33]

Noise power spectral density, Ni -174 dBm/Hz
Minimum capacity for the j-th user, Cmin

j 1 Mbps
Communication frequency, fc 2.6 GHz
System bandwidth 10 MHz [22]
Simulation step, ∆tj 1 second
Altitude of FlyBS, H 100 meters
Velocity of users, vi {2,5,10,12,15,20,25,30}m/s
On-board circuit consumption power, Pcircuit 22 dBm [22]
Simulation Duration 320 seconds
Number of simulation drops 100

A. Simulation scenario and models

The simulations are performed using MATLAB. We con-
sider a scenario where the FlyBS serves users represented by
vehicles and/or users in vehicles, for example, during a traffic
jam at a road or highway. In such situation, the conventional



network is usually overloaded as plenty of active users are
located at a small area with limited network coverage. FlyBS
can help to improve communication performance in such a
scenario ([26], [29]). More specifically, the users are assumed
to move on a 3-lane highway in the positive direction of y-
axis. A wide range of velocities of the vehicles is considered
({2, 5, 10, 12, 15, 20, 25, 30}m/s) to cover different traffic situ-
ations. As mentioned in section II, the current positions of the
users are assumed to be known to the FlyBS. However, the
location of the users at the future time slots are unknown in
general. There are many solutions for prediction of the user’s
movement, see, e.g., [30]-[32]. As each of the users-movement
predictions reaches different performance depending on sce-
nario and availability of additional information, the evaluation
of our proposal for any specific prediction would lead to
validity of the results only for such specific scenario and
conditions of the predictor. Thus, we generalize the evaluation
across the different predictive models for the position of each
user via modeling a general prediction error as follows.

The next position of the users is extrapolated from their last
two previous positions and this predicted position is further
influenced by an addition of a random error. More specifically,
we calculate the expected positions of the users by adding the
prediction error to the actual positions of the users as follow:

xi(s) = xi(0) + exi (s),

yi(s) = yi(0) + vyi,0(s)× s+ eyi (s), (28)

where exi (s) and eyi (s) denote the added error to the x and y
coordinates of the user i at the time s, respectively, and vyi,0(s)
denotes the velocity of the user i in the direction of y-axis at
the time s. In our scenario, we consider the following model
for exi (s) and eyi (s):

|exi (s)| ≤ WH ,

|eyi (s)| ≤
1

2
vyi (s)× s, (29)

where WH denotes the highway’s width.
Table I shows the values of the system parameters that we

adopt in the simulations provided later in this section. For the
wireless channel, we assume Free-Space Path Loss (FSPL)
model, and omnidirectional antennas with a gain of 0 dBi as
considered e.g., in [33]. We set spectral density of noise to
be -174 dBm/Hz. The radio frequency fc = 2.6 GHz and a
bandwidth of 10 MHz [22] are selected. Following [16], the
FlyBS’s flight altitude is set to H = 100 m. Each simulation
is of 320 s duration with a step of 1 s and the results are
averaged out over 100 simulation drops (simulation runs).

We investigate four different schemes: i) proposed multi-
point optimization scheme (MPS) with the location of FlyBS
determined by numerical optimization of P avg

tot as elaborated
in section III; ii) Single-point optimization scheme (SPS)
as in [22] where the locations of the FlyBS is determined
by minimizing P avg

tot for T = 1 , although here we adopt
the nonlinear model for propulsion power as in (5); iii)
Minimal TX scheme (MTX) as studied in [26], where only the
transmission power is minimized, and the propulsion power is
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Fig. 3. PTX for different optimization schemes and for vi = 5 m/s (top
figure) and 25 m/s (bottom figure).
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Fig. 4. Ppr for different optimization schemes and for vi = 5 m/s (top
figure) and 25 m/s (bottom figure).

ignored; iv) Stationary FlyBS scheme in which the FlyBS does
not move, and so there is no propulsion power consumption.

For the Simplex method we derived the coefficient values
for reflection (α), expansion (β), contraction (γ), and shrink-
age (δ) factors through experiments as:

α = 0.85, β = 1.75, γ = 0.4, δ = 0.45. (30)

The parameters’ values in (30) are selected with respect to the
accuracy and the termination time of the method.

B. Simulation results and discussion

First, we compare the average total power between multi-
point and single-point optimization schemes.

Figures 3, 4, and 5 illustrate the transmission, propulsion,
and total power consumption, respectively, over time for
different methods. The figures show the average results for
vi = 5 m/s and vi = 25 m/s. For MPS scheme, the duration
of optimization period is T = 80.

It is observed that at a low velocity of the users, there is no
significant change in transmission and propulsion power for
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figure) and 25 m/s (bottom figure).

both MPS and SPS schemes. This is because the propulsion
power is a decreasing function at low velocities according to
Fig. 2, and this impels the FlyBS to reduce Ppr by moving
at higher speed than the users. Roughly speaking, at the early
steps of movement, this strategy seems to make the FlyBS
overtake the center of gravity of the users’ locations, which
causes an increase in the transmission power. In order to tackle
this issue, the FlyBS moves back to the center of gravity after
a few steps with almost the same velocity as before (to keep
Ppr low as well). This strategy is selected by both MPS and
SPS, and so there is no significant difference between the
performance of the two methods at low users’ velocities. It
is notable that for high users’ velocities, this strategy does not
work, as choosing to fly at a lower speed (to reduce Ppr) at the
beginning steps causes the FlyBS to fall behind the center of
gravity, and so it may require the FlyBS to speed up towards
the same direction, which introduces more propulsion power.
This explains the degradation in SPS scheme’s performance at
high users’ velocities.

According to Fig. 5, the MPS scheme provides a signif-
icantly more control over the total power consumption over
time, by increasing the FlyBS’s speed during some steps to
avoid significant increase in transmission power. Note that
For Stationary FlyBS scheme (scheme iv as indicated in the
previous subsection), the average transmission powers (and so
the average total powers) for vi = 5 m/s and 25 m/s are 700
Watts and 18000 Watts, respectively, which is very larger than
the average total power consumption in other schemes.

Next, we investigate an impact of the duration of the
optimization period on the average power consumption of the
FlyBS. Figures 6, 7, and 8 illustrate the average transmission,
propulsion, and total power consumptions, respectively, versus
the velocity of the vehicles. The results are shown for the
optimization periods of T = {20, 50, 80}. According to all
these figures, the power consumption decreases by performing
optimization over larger optimization period for all velocities.

According to Fig. 6, there is negligible difference between

Fig. 6. Pavg
TX vs. user’s velocity for different optimization schemes.

Fig. 7. Pavg
pr vs. user’s velocity for different optimization schemes.

Fig. 8. Pavg
tot vs. user’s velocity for different optimization schemes.

the transmission powers in MPS and SPS schemes for low
velocities of the users. As discussed earlier in this section, at
low speeds of the users, the FlyBS is basically able to reduce
both the transmission and propulsion powers by increasing
its speed, and staying close to the center of gravity of the
users’ locations at the same time. We also explained the
reason for significantly increasing behavior of transmission
and propulsion powers at high users’ speeds. It is observed that
the performance gap between MPS and SPS schemes in terms
of both propulsion and transmission power is also increasing
with respect to velocity, as higher speeds can be interpreted as
higher FlyBS’s displacements from the center of gravity of the



users, which makes the FlyBS increase either the transmission
power or the propulsion power (or both) depending on the
values of those powers.

As mentioned before, MTX scheme always ignores the
impact of propulsion power. Such strategy causes more propul-
sion power (and hence more total power) at both high and low
speeds where the propulsion cost is higher compared with
medium speeds where the propulsion cost is relatively low
(which is around the speed of 20 m/s according to Fig. 2). It
is also notable that MTX slightly outperforms MPS at very
high speeds, although the performance gap is negligible.

Figure 8 shows the advantage of MPS over both SPS
and MTX schemes at different speeds. More specifically, the
proposed MPS scheme can bring up to 26% improvement
in the total power savings compared with MTX in the low-
velocity regime, and up to 60% improvement in the total power
savings compared with SPS in high-velocity regime.

V. CONCLUSIONS

In this paper, we have studied the problem of power opti-
mization in future wireless networks with the FlyBSs. Contrary
to existing papers, we optimize the total power consumed by
the FlyBS including both the transmission power of the FlyBS
and the propulsion power spent for movement of the FlyBS.
We first provide closed-form solution determining the position
of transmitting power of FlyBS for a realistic non-linear power
consumption model in the case of single-point optimization.
Then, we develop a numerical solution for the optimal location
of the FlyBS and the transmission power of the FlyBS to
minimize the total power consumed by the FlyBS over any
arbitrary duration (multi-point optimization). We show that
the proposed joint transmission power control and FlyBS’s
movement allows a significant reduction in the total power
consumed by the FlyBS while the required capacity of the
moving users is always satisfied. In the future, the multiple
FlyBS scenario should be studied. In this scenario, association
of the users to individual FlyBSs should also be considered.
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Optimization of Total Power Consumed by Flying
Base Station Serving Mobile Users
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Abstract—The unmanned aerial vehicles (UAVs) acting as
flying base stations (FlyBSs) are considered as an efficient way
to enhance the capacity of mobile networks. The enhancement
provided by such network requires a dynamic positioning of the
FlyBSs with respect to the users demands on communication.
However, the power consumption of the FlyBS is a challenge
due to a limited capacity of the FlyBS’s power supply. In this
paper, we reduce a total power consumption of the FlyBS while
a required communication capacity is guaranteed to the mobile
users in every time instant of their movement. To this end, we
derive a closed-form solution for an optimization of the FlyBS’s
total power consumption in every single time step. Then, we
provide a numerical solution for the total power optimization
problem over a long period of the users’ movement. Via the
simulations, we show that the proposed scheme reduces the
overall power consumed by the FlyBS significantly (by up to
91%) comparing to existing solutions.

Index Terms—Flying base station, transmission power, propul-
sion power, mobile users, mobile networks, 6G.

I. INTRODUCTION

Deployment of unmanned aerial vehicles (UAVs) acting as
flying base stations (FlyBSs) is a promising way to address
multiple concerns in wireless networks. Compared to the
conventional static base stations, the FlyBSs present exclusive
advantages due to their high mobility that enables to adapt
the network topology to an environment as well as to actual
user requirements on communication. Such features make the
FlyBSs an efficient solution for various applications including
surveillance [1], offloading traffic from static base stations
(BSs) [2], emergency operations [3], extension of the network
coverage [4]-[8], collection of data from IoT devices [9], [10],
or improvement in quality of service [11]-[13].

Key challenges regarding the FlyBS’s integration and de-
ployment in mobile networks include [14]: positioning of
the FlyBSs to maximize coverage, controlling the FlyBSs’
power consumption to enhance their operational time [5],
or maximizing the quality of service. The problem of the
coverage maximization for the networks with a single FlyBS is
studied, e.g., in [4] and [7]. Then, in [8], the authors investigate
an optimization of the number of required FlyBSs to guarantee
the quality of service to the users. In [15], an evolutionary-
based algorithm is adopted to maximize the satisfaction of
the users with the experienced data rates. In [11], the authors
study the uplink throughput maximization in a scenario with
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multiple-antenna FlyBS. A throughput enhancement and a
communication delay reduction by a dynamic control of the
FlyBSs’ trajectories is addressed in [16]. Furthermore, in [17],
the authors minimize a delay for communication between
the FlyBSs via planning the FlyBSs’ trajectories. Then, the
authors in [18] address the problem of FlyBS’s positioning and
user association for the FlyBSs acting as transparent relays to
maximize sum capacity of users. However, in all these papers,
the power consumption is not taken into account at all.

In [19], the problem of transmission power allocation is
tackled to maximize an energy efficiency. However, the Fly-
BSs’ positioning is not considered and the FlyBSs only hover
at fixed points all the time. An efficient positioning of the
FlyBSs considering the transmission power consumption is a
scope of several works with a variety of goals including maxi-
mization of the network throughput [20]-[24], maximization of
the difference between the profit in terms of the user capacity
and the transmission cost [25], maximization of the number
of covered users [26], minimization of the outage probabil-
ity [27], or maximization of the users’ quality-of-experience
(QoE) [28]. However, the propulsion power consumption due
to the movement of the FlyBS is not considered in any of
[19]-[28].

Many works also address the problem of the FlyBS’s
trajectory planning in a scenario with static users. In [29], the
authors minimize the total power consumption in the networks
with a fixed-wing FlyBS collecting/delivering data from/to
one static user. This work is then extended towards multiple
static users in [30]-[32]. Furthermore, the authors in [33] and
[34] maximize the minimum data rate of the users served by
FlyBSs, However, in [29]-[34], the problem is defined as a
planning of the trajectories among the static users and an
allocation of the time for a sequential communication with
each user and hovering in order to minimize the overall energy
consumed by the FlyBS. The problem addressed in these
papers is an analogy of the traveling salesman problem with
a planning of the FlyBS trajectory among fixed and a priory
known positions of the static users. The authors assume the
users communicate sequentially in a non-real time manner.
Hence, these works are suitable for delay-tolerant services and
scenarios with static users (e.g., collection of data from sensors
or power meters), however, an extension towards mobile
users requiring real-time services is not straightforward, if not
impossible.

In addition to [29]-[34], several other related works, e.g.,
[35]- [41], are also focused on the power consumption of the
FlyBSs in different scenarios, where the users are static with
coordinates known in advance. Unfortunately, the solutions
proposed for the static users rely on a priori known and not
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changing positions of the users. Thus, these solutions cannot
be applied to a dynamic scenario with moving users.

The problem of the propulsion and transmission power
consumption in mobile networks is considered in [42], where
the FlyBS tracks a single moving target. However, the quality
of communication channel is not taken into account. Up to our
best knowledge, the problem of the power optimization for the
FlyBSs serving mobile users with a constraint on the quality
of service guarantee to the users has not been investigated in
the literature.

In this paper, we focus on the minimization of the total
power consumed by the rotary-wing FlyBS for the movement
and for the communication while the minimum required
communication capacity is continuously guaranteed to each
mobile user in a real-time over the whole period of the FlyBS’s
operation. We propose a power saving scheme adjusting the
FlyBS’s position and the transmission power over a sequence
of time steps to serve the mobile users. Even if we are aware
of the fact that the transmission power consumption is usually
lower than the propulsion power consumption for the FlyBSs,
we still investigate both the transmission and propulsion
powers jointly, as neglecting the transmission power would
lead to a sub-optimal solution in some cases. We provide a
generic solution applicable to any case disregarding whether
the transmission power is negligible or not.

The major contributions of this paper are summarized as
follows:

• The total power consumption is analytically expressed for
rotary-wing FlyBS as a function of the system parameters
including locations of the users and the FlyBS and the
minimum capacity required by the users.

• Then, we propose a single-point optimization scheme
(denoted as SPS) to minimize the total power consumed
by the FlyBS between two consecutive time steps. At
each time step, the bandwidth allocation and the position
of the FlyBS for the next time step is determined. For
this case, we derive a closed-form solution expressing
the next position of the FlyBS for arbitrary allocation of
the bandwidth.

• We extend the SPS towards a multi-point optimization
scheme (referred to as MPS), as the SPS does not
guarantee the optimum over a long time period. For the
MPS, we provide a numerical solution based on Nelder-
Mead Simplex algorithm considering a constraint on the
FlyBS’s speed.

• Furthermore, we extend the idea of the MPS towards an
enhanced MPS (EMPS) to further reduce the propulsion
power consumption. The extension combines the aspects
of both SPS and MPS via a sliding window to continu-
ously adjust the future positions of the FlyBS.

• As the above-mentioned solutions might lead to an ex-
cessive transmission power of the FlyBS to fulfill the
constraints on the users’ required capacity, we further
enhance the proposed solution towards a more practical
case with the transmission power of the FlyBS consid-
ered. Then, we reformulate such a constrained problem
to be solvable numerically.

• By simulations, we show that our proposed solution
leads to a significant (up to 91%) improvement in the
total power consumption comparing to the state-of-the-
art methods.

Note that this paper is an extension of our prior works [43],
[44], where we have provided an initial analysis of the total
power optimization.

The rest of the paper is organized as follow. In Section
II, we present the system model. In Section III, the problem
of the power optimization via a determination of the FlyBS’s
position and the transmission power for the moving users is
formulated for a scenario with an unconstrained transmission
power to show a theoretical maximum performance. Besides,
we propose novel solutions for this problem in Section IV.
In Section V, we formulate the problem and we provide
solution for a practical power optimization in the scenario
with a constrained transmission power. Then, in Section VI,
we explain the simulation scenario and models, in section VII
we present results and compare these with the performance
of existing solutions. Last section concludes the paper and
outlines potential directions to the future research.

II. SYSTEM MODEL

We consider a rural scenario with n mobile users (e.g.,
vehicles) moving on a road or a highway as illustrated in
Fig. 1. In such scenario, the FlyBSs are a suitable solution
to provide temporary connectivity in case of a traffic jam or
an accident [45], [46], when the users search for information
about the traffic situation and, hence, move rather slower
than in a common traffic situation. All n users in the area
communicate directly with the FlyBS, as the communication
capacity of the conventional static base stations in the rural
areas is usually not sufficient to serve many users in the traffic
jam.

Let r(t) = [X(t), Y (t), H(t)] denotes the location of the
FlyBS at the time t and [xi(t), yi(t)] denotes the coordinates
of the i-th user at the time t. Then, di(t) denotes Euclidean
distance of the i-th user to the FlyBS at the time t.

The channel capacity of the i-th user is calculated from the
Shannon–Hartley theorem as:

Ci(t) = Bi(t)log2(1 +
pRi (t)

Ni
), (1)

where Bi(t) denotes the bandwidth of the i-th user’s channel,
Ni denotes the noise power at the channel of the i-th user,
and pRi (t) is the power received by the i-th user at the
time t. In case of additional interference at the receiver, the
superimposed interference can be assumed to be of Gaussian
distribution and, thus, its power can be incorporated into (and
treated as) the noise power [29], [48].

The transmission power of the FlyBS to the i-th user (pTi )
is calculated according to the Friis’ transmission equation as:

pTi = Qid
γi
i =

pRi (4πfc)
γidγii

GTi G
R
i c

γi( M
M+1hi + 1

M+1 h̃i)
, (2)

where γi is the path-loss exponent between the FlyBS and
the i-th user, GTi and GRi are the gains of the FlyBS’s
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Table I: Summary of Parameters

Parameter Description
[X(t), Y (t), H(t)] Coordinates of FlyBS
Hmin, Hmax FlyBS’s minimum and maximum allowed

flying altitudes
[xi(t), yi(t)] Coordinates of user i

di(t) Distance between FlyBS and user i
Ci(t), C

min
i (t) Instantaneous capacity and minimum

required capacity of user i
pRi (t) Received power by user i
pTi (t) FlyBS’s transmission power to user i
Bi(t) Bandwidth of user i
Ni Noise power at the channel of user i

GRi , G
T
i Antenna gain of user i and FlyBS

fc Communication frequency
c Speed of light

PTX(t) FlyBS’s instantaneous transmission power
P avgTX FlyBS’s average transmission power
PmaxTX maximum transmission power of FlyBS
Ppr(t) FlyBS’s instantaneous propulsion power
P avgpr FlyBS’s average propulsion power
V (t) FlyBS’s speed
Vmax Maximum FlyBS’s speed
P circuit FlyBS circuits’ power consumption
L0, Li FlyBS hovering blade profile and

induced power
Utip, A Blade speed and disk area of FlyBS rotor
v0,h Rotor induced speed for hovering FlyBS
d0 FlyBS’s fuselage drag ratio
sr FlyBS’s rotor solidity
ρ Air density
T Number of time steps in multi-point

optimization
T∆ Number of time steps in EMPS’s output
WH Highway’s width
η Error factor in prediction

{eM,xi , eM,yi } Real-time measurement error in
{x, y}-coordinates of user i

{ePr,xi , ePr,yi } Prediction error in {x, y}-coordinates
of user i

{vxi (t), vyi (t)} Velocity of user i in directions of
{x, y}-axes

α, β, ν, δ Reflection, expansion contraction, and
shrinkage factors in Simplex

and user’s antennas, respectively, fc is the communication
frequency, c = 3 × 108m/s is the speed of light, M is the
Rician fading factor, hi is the line-of-sight (LoS) component
satisfying |hi| = 1, and h̃i denotes the non-line-of-sight
(NLoS) component satisfying h̃i ∼ CN(0, 1) Note that
the coefficient pRi (4πfc)

γi

GTi G
R
i c
γi ( M

M+1hi+
1

M+1 h̃i)
is substituted with Qi

for the ease of presentation in later discussions. Furthermore,
despite high velocities of the users, an impact of Doppler shift
is still marginal and can be ignored, as the ratio of the relative
speed between the FlyBS and the users to the speed of light
is very small.

From (2), we observe that the transmission power PTX
consumed by the FlyBS is expressed as a function of the

Fig. 1. System model with multiple mobile users deployed
within coverage area of the FlyBS.

coordinates of the users and the FlyBS, i.e.,:

PTX(X,Y,H, tk) =
n∑

i=1

Qid
γi
i = (3)

n∑

i=1

Qi
(
(X(tk)− xi(tk))2 + (Y (tk)− yi(tk))2 +H2(tk)

) γi
2 .

Following (3), the average transmission power, denoted as
P avgTX , over the time span of {t1, . . . , tT } is written as:

P avgTX (t1, . . . , tT ) =
1

T

T∑

k=1

n∑

i=1

Qid
γi
i =

1

T

T∑

k=1

n∑

i=1

Qi
(

(X(tk)− xi(tk))2 + (Y (tk)− yi(tk))2 +H2(tk)
) γi

2 . (4)

As in many related works, we assume that the current posi-
tions of the users are known to the FlyBS (see, e.g., [4], [29],
[31], [49], [50]). However, in any realistic case, the positioning
information is inaccurate and contains a positioning error.
Thus, the user’s position known to the FlyBS is given as:

xi(t) = xexacti (t) + eM,x
i (t),

yi(t) = yexacti (t) + eM,y
i (t), (5)

where xexacti (t) and yexacti (t) are the exact x and y coordi-
nates of the i-th user at the time t, respectively, and eM,x

i (t)
and eM,y

i (t) are the positioning errors in x and y coordinates at
the time t, respectively. We further assume that the FlyBS can
determine its own position, as the knowledge of the FlyBS’s
position is needed for a common flying and navigation of the
FlyBSs [51].

In order to formulate the power spent for the FlyBS’s
movement (propulsion power), we refer to the model provided
in [31] for rotary-wing FlyBSs. In particular, the propulsion
power is a function of the FlyBS’s average velocity V in the
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following way:

Ppr(V ) = L0(1 +
3V 2

U2
tip

) + Li(

√
1 +

V 4

4v4
0,h

− V 2

2v2
0,h

)
1
2 +

1

2
d0ρsrAV

3, (6)

where L0 and Li are the blade profile and induced powers
in hovering status, respectively, Utip denotes the tip speed
of the rotor blade, v0,h represents the mean rotor induced
velocity during hovering, d0 is the fuselage drag ratio, sr is
the rotor solidity, ρ is the air density, and A denotes the rotor
disc area. Interested readers can find more details about the
model in [31]. Note that we consider the setting of parameters
of the propulsion power model in line with the FlyBS with
physical specifications provided in [52] for ”DJI Spreading
Wings S900” (see Table I in [31] and Table I in [52]).

Note that the FlyBS’s average velocity is calculated by
dividing the distance moved between two points with the
duration of the movement. In particular, if the FlyBS moves
from the position r(tk) to the new position r(tk+1), the
average speed is determined as:

V (tk, tk+1) =
1

∆tk
||r(tk+1)− r(tk)||, (7)

where ∆tk = tk+1 − tk.

Let us define the initial position of the FlyBS as
[X(t0), Y (t0), H(t0)]. Thus, the average propulsion power
over the time period of {t0, . . . , tT } is written as:

P avgpr =
1

T

T−1∑

k=0

Ppr
(
V (tk, tk+1)

)
. (8)

We jointly optimize both the transmission power and the
propulsion power as these are main parts of the total power
consumption of the FlyBS. Nevertheless, we also consider a
power consumption of on-board circuits of the FlyBS (denoted
by Pcircuit). Hence, the average overall power consumption
P avgtot is written as:

P avgtot (r, t0, t1, . . . , tT ) = P avgcircuit + P avgTX + P avgpr . (9)

Note that Pcircuit in (9) depends on the FlyBS’s computational
(processing) and communication chipsets, and can be regarded
as a constant [31].

Inserting (4) and (8) into (9), we rewrite P avgtot as:

P avgtot = P avgcircuit +
1

T

T−1∑

k=0

Ppr(V (tk, tk+1)) +
1

T

T∑

k=1

n∑

i=1

Qi×

(
(X(tk)− xi(tk))2 + (Y (tk)− yi(tk))2 +H2(tk)

) γi
2 . (10)

Equation (10) can be further expanded by simply plugging
(7) into (6), however, we do not show the expanded form to
avoid cluttering.

III. PROBLEM FORMULATION FOR UNCONSTRAINED
TRANSMISSION POWER

We formulate the problem of the total power consumption
minimization over the period of T time steps as:

min
r(tk),B(tk)

P avgtot , (1 ≤ k ≤ T ) (11)

s.t. Ci(tk) ≥ Cimin,∀i ∈ {1, ..., n},∀k, (a)

Hmin(X(tk), Y (tk)) ≤ H(tk) ≤ Hmax(X(tk), Y (tk)), (b)

||r(tk+1)− r(tk)|| ≤ Vmax(tk+1 − tk). (c),
n∑

i=1

Bi ≤ Btot (d),

where Vmax is the FlyBS’s maximum speed and Btot is the
total available bandwidth that can be allocated by the FlyBS.
The constraint (a) in (11) guarantees that every user within
the coverage area receives the minimum required capacity
Cmini ,∀i ∈ {1, . . . , n}) at all time as the users move. Further-
more, the constraint (b) in (11) bounds the FlyBS’s movement
to the allowed altitude range of [Hmin(X,Y ), Hmax(X,Y )] at
every time step. The values of Hmin(X,Y ) and Hmax(X,Y )
are determined based on the environment’s topology (e.g.,
obstacles, buildings, etc.) and/or flight regulations given by
local authorities in every country at each [X,Y ] position of
the FlyBS. Furthermore, the constraint (c) guarantees that the
FlyBS’s movement does not incur a speed larger than the
maximum limit of Vmax, and the constraint (d) ensures that
the total allocated bandwidth does not exceed the maximum
available bandwidth Btot.

For further elaboration and solution of the problem defined
in (15), we simplify the constraint on the minimum capacity
via the following proposition.

Proposition 1. The minimum transmission power in (11) is
achieved for Ci(t) = Ci

min,∀i ∈ {1, ..., n},∀t.
Proof. From (1), the received power pRi is rewritten as:

pRi (t) = Ni(2
Ci(t)

Bi − 1), (12)

and, hence, the transmission power is formulated as:

pTi = Qid
γi
i =

Ni(2
Ci(t)

Bi − 1)(4πfc)
γi

GTi G
R
i c

γi( M
M+1hi + 1

M+1 h̃i)
dγii . (13)

From (13), we see that pTi is increasing with Ci for i =
1, ..., n. Thus, the minimum transmission power is obtained
when Ci(t) = Cmini (∀i ∈ {1, . . . , n},∀t).

Proposition 1 implies that, in order to achieve the minimum
transmission power, the constraint (a) in (11) should be
rewritten as Ci(t) = Cmini (∀i ∈ {1, . . . , n},∀t).

IV. OPTIMIZATION OF POWER AND FLYBS POSITIONING
AND BANDWIDTH ALLOCATION

In this section, we introduce the proposed approach to solve
(11) via a successive optimization of the bandwidth allocation
and the FlyBS’s positioning. Then, we explain solution to the
subproblem of the bandwidth allocation at the given position
of the FlyBS. Afterwards, for the problem of the FlyBS’s
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positioning, we provide a high-level overview of the proposed
solutions for the FlyBS positioning. Next, we derive a closed-
form solution of the problem for the first proposed solution
represented by the single-point optimization scheme SPS, (i.e.,
for T = 1). Next, we provide a numerical solution for the
multi-point optimization scheme MPS (T > 1), as deriving
a closed-form solution for this case is extremely difficult if
not impossible. Furthermore, we enhance the MPS towards
EMPS via a multi-point optimization with a sliding window
to eliminate a problem with the power consumption discovered
at the end of the optimization period of T time steps.

A. Successive optimization of the bandwidth and the FlyBS’s
positioning

A joint optimization of the FlyBS’s position and bandwidth
to solve (11) is difficult, as the total power consumption is a
non-convex problem with respect to the FlyBS’s position. To
tackle this issue, we propose a solution based on a successive
optimization of the bandwidth B and the FlyBS’s position.
In other words, we optimize the bandwidth allocation for a
given position of the FlyBS. Afterwards, a new position of the
FlyBS is found and we solve again the problem of bandwidth
optimization at the updated position of the FlyBS. This process
is repeated until the changes in the derived r(tk) and B(tk)
falls below a given threshold, or until the maximum number of
iterations is reached in the proposed sequential optimization
of r(tk) and B(tk).

B. Optimization of the bandwidth allocation
To optimize bandwidth, let us note that the problem in

(11) is convex with respect to B at any fixed position of
the FlyBS. Hence, at the given position of the FlyBS (i.e.,
r(tk)), the convex subproblem of the bandwidth optimization
is formulated as:

min
B(tk)

P avgtot , (1 ≤ k ≤ T ) (14)

s.t. Ci(tk) = Ci
min,∀i ∈ {1, ..., n},∀k, (a)

n∑

i=1

Bi ≤ Btot, (b)

Using Shannon’s formula, the constraint (a) in (14) is
rewritten as Bi(tk) ≥ Cmini

log2(1+
pR
i
Ni

)
. Thus, the problem in (14)

is convex with respect to B and we solve it using CVX which
is an efficient optimization tool for convex problems [53].

C. Optimization of the FlyBS’s positioning
Next, for the optimal bandwidth allocation derived by CVX,

we reformulate the subproblem of the FlyBS’s positioning to:

min
r(tk)

P avgtot , (1 ≤ k ≤ T ) (15)

s.t. Ci(tk) = Ci
min,∀i ∈ {1, ..., n},∀k, (a)

Hmin

(
X(tk), Y (tk)

)
≤ H(tk) ≤ Hmax

(
X(tk), Y (tk)

)
, (b)

||r(tk+1)− r(tk)|| ≤ Vmax(tk+1 − tk). (c)

The solution to (15), i.e. finding the FlyBS position, is
outlined in next subsections.

Fig. 2. Illustration of a high-level principle of all three
proposed schemes for single-point, multi-point, and enhanced

multi-point optimizations of the total power consumed by
FlyBS.

D. Overview of the proposed solutions to the FlyBS’s posi-
tioning

Before going into details of individual proposed solutions,
we first provide a high-level illustration of all three proposed
schemes to outline key differences among them. Note that the
bandwidth allocation problem is solved in a similar way for
all the proposed solution as explained in the subsection IV.A.

According to Fig. 2, at each iteration of the optimization, the
proposed SPS calculates the FlyBS’s position only for a given
single time step, while the MPS and the EMPS determine
multiple future positions of the FlyBS in several time steps.
In the MPS as well as in the EMPS, for each input including
a set of the expected locations of the users over next T time
steps, the future T positions of the FlyBS are determined.
While the MPS navigates the FlyBS over all these determined
positions during the whole period of T and new positions are
determined again after T , the EMPS continuously updates all
future positions exploiting new updated inputs.

Details of individual proposed solutions are presented in the
following subsections.

E. Single-point optimization of the total power consumption
(T = 1)

In this subsection, we derive closed-form solution to the
problem defined in (15) for T = 1. Note that the solution is
derived for the FlyBS’s movement with no constraint on the
speed and at a fixed altitude. The motivation to consider a fixed
altitude is that, the available propulsion power consumption
model for rotary-wing FlyBSs (provided by [31]) considers
only a horizontal flight at a fixed altitude. However, we further
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Fig. 3. Actual propulsion power and polynomial
approximation vs. velocity of rotary-wing FlyBS.

enhance the solution to variable altitude in subsection IV.F for
multi-point optimization. We also adopt γi = 2 (see (13)) in
this subsection for simplicity of formulations and expressions,
nevertheless, the solution can be easily extended to any value
of γi and we generalize γi also in subsection IV.F.

To solve (15), first, we find the critical points at which the
partial derivatives of P avgtot are equal to zero. A calculation of
the exact closed-form solution for Ppr(V ) defined in (6) is
extremely complicated, as solving ∂Pavgtot

∂X = 0 and ∂Pavgtot

∂Y = 0
together leads to calculating the roots of polynomials of degree
fourteen. Thus, we first find an approximation of Ppr(V ) using
polynomial fitting and then solve ∂Pavgtot

∂X = 0 and ∂Pavgtot

∂Y = 0
by referring to the approximated expression. To this end, we
approximate the propulsion power in (6) by a polynomial of
degree five with respect to V as:

P apxpr (V ) =
5∑

j=0

cjV
j , (16)

c0 = 215.6755, c1 = 3.0695, c2 = −2.5831, c3 = 0.3497,

c4 = −0.0064, c5 = 7.5336× 10−5.

The propulsion power approximation coefficients cj in (16)
are calculated via the minimum mean-square-error (MSE).
The actual and approximated curves are shown in Fig. 3 to
demonstrate sufficient fitting of the approximated propulsion
power consumption model.

Using the approximation in (16), we calculate the critical
points of P avgtot . The following Theorem 1 determines the
optimum position of the FlyBS in closed-form via a derivation
of the critical points for P avgtot and an evaluation of P avgtot in
these critical points.

Theorem 1. The FlyBS’s optimum position at the time t1 is
derived as:

[X(t1), Y (t1)] = argmin
[X,Y ], X∈Xc

P avgtot (17)

where Xc ={Xc
1 , ..., X

c
5} is the set of the x-coordinates of the

critical points for P avgtot given by:

Xc
1 = X(t0),

{Xc
2 , X

c
3} =

−A3

4A4
− S ± 1

2

√
−4S2 − 2p+

q

S
, (18)

{Xc
4 , X

c
5} =

−A3

4A4
+ S ± 1

2

√
−4S2 − 2p− q

S
,

and Y (t1) is determined as:

(Y (t1)− Y (t0)) =

(
∑n
i=1 2Qi)Y (t0)−

(∑n
i=1 2Qiyi(t1)

)

(
∑n
i=1 2Qi)X(t0)−

(∑n
i=1 2Qixi(t1)

)(X(t1)−X(t0)
)
,

(19)

with the following substitutions adopted:

p =
8A4A2 − 3A2

3

8A2
4

, q =
A3

3 − 4A4A3A2 + 8A2
4A1

8A3
4

,

S =
1

2

√
−2

3
p+

1

3A4
(G+

∆0

G
), G =

3

√
∆1 +

√
∆2

1 − 4∆3
0

2
,

∆0 = A2
2 − 3A3A1 + 12A4A0,

∆1 = 2A3
2 − 9A3A2A1 + 27A2

3A0 + 27A2
1A4 − 72A4A2A0,

A4 = 5c5M
3, A3 = −20c5M

3X(t0) + (−1)Ig (4c4M
2),

A2 = 30c5M
3X2(t0)− 12c4M

2X(t0) + 3c3M,

A1 = −20c5M
3X3(t0) + (−1)Ig

(
12c4M

2X2(t0)
)
−

6c3MX(t0) + (−1)Ig (
n∑

i=1

2Qi + 2c2),

A0 = 5c5M
3X4(t0)− (−1)Ig

(
4c4M

2X3(t0)
)

+ 3c3MX2(t0)

−(−1)Ig (2c2X(t0)) +
c1
M
− (−1)Ig

( n∑

i=1

2Qixi(t1)
)
,

M =
1

∆tk

(
1 +

(
∑n
i=1 2Qi)Y (t0)−

(∑n
i=1 2Qiyi(t1)

)

(
∑n
i=1 2Qi)X(t0)−

(∑n
i=1 2Qixi(t1)

)
)

1
2 ,

Ig = 1{X(t1)<X(t0)}. (20)

Proof. See Appendix A.
After the FlyBS moves to the new position derived via

Theorem 1, the optimization is performed over {t1, t2} to find
[X(t2), Y (t2), H], and so on and so forth.

F. Multi-point optimization of the total power consumption
(T > 1)

The single-point optimization in the previous subsection
minimizes the total power consumption over a duration of
one time step. Hence, the positioning of the FlyBS might
be sub-optimal in terms of the power consumption from the
perspective of a longer operation of the FlyBSs. To tackle this
problem we provide an extended solution by optimizing the
total power consumption over multiple time steps (T > 1).

Solving the FlyBS positioning, i.e., the problem defined in
(15), for multi-point optimization requires a determination of
3T unknown variables in (10), namely X(tk), Y (tk), and
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H(tk) for 1 ≤ k ≤ T , and so it is extremely difficult, if
not impossible, to derive a closed-form expression in general.
Hence, we optimize P avgtot in (15) by providing a numerical
solution.

There are several known methods that are commonly used
to perform function optimization, such as descent algorithms
(Newton’s method, Broyden’s method, etc.), evolutionary al-
gorithms (genetic algorithms, simulated annealing, etc.), or
pattern search methods (Simplex, multidirectional search, etc).
The descent algorithms are typically fast in convergence,
however, compared to other numerical methods, they are more
likely to get stuck in local optima or even in minimax points.
In contrast, the pattern search methods are more reliable and
find the global optima of the objective function. Hence, in
this paper, we adopt the pattern search methods to solve
our defined problem. More specifically, we exploit Downhill
Simplex Algorithm (also known as Nelder-Mead Simplex
Algorithm) [54] to find the minimum value of P avgtot according
to the objective formulated in (15). This algorithm is based on
a direct search in a multidimensional space with m dimensions
and a function comparison using simplex, which is a polytope
of m+1 vertices among m dimensions. The simplex is updated
based on the values obtained from reflection, expansion,
contraction, and shrinkage operations on the vertex at which
the function reaches the largest value, and the centroid of the
remaining vertices.

The Nelder-Mead Simplex algorithm requires all the un-
known variables in the objective function to be unconstrained.
However, the constraints (b) and (c) in (15) explicitly bound
the coordinates of the FlyBS. To resolve this issue, we provide
a change of variables to guarantee that the constraints (b)
and (c) in (15) are automatically fulfilled and, hence, the
constraints can be removed from the problem in (15). To
always guarantee the constraints (b) and (c), we define the
new variables %k, ςk, and τk so that:

X(tk+1) = X(tk) + Vmax(tk+1 − tk)cos(%k+1)cos(ςk+1),

Y (tk+1) = Y (tk) + Vmax(tk+1 − tk)cos(%k+1)sin(ςk+1),

H(tk+1) = min{Hmin

(
X(tk+1), Y (tk+1)

)
+ (21)(

Hmax

(
X(tk+1), Y (tk+1)

)
−Hmin

(
X(tk+1), Y (tk+1)

))

×sin2(τk+1),max{H(tk) + Vmax(tk+1 − tk)sin(%k+1),

Hmin

(
X(tk+1), Y (tk+1)

)
}},

With the new defined variables %k, ςk, and τk and knowing
that 0 ≤ sin2(τk) ≤ 1 all the time, it is concluded that:

Hmin

(
X(tk+1), Y (tk+1)

)
≤ H(tk+1) ≤ (22)

Hmin

(
X(tk+1), Y (tk+1)

)
+ (Hmax

(
X(tk+1), Y (tk+1)

)
−

Hmin(X(tk+1), Y (tk+1)))sin2(τk+1) ≤
Hmin

(
X(tk+1), Y (tk+1)

)
+
(
Hmax

(
X(tk+1), Y (tk+1)

)
−

Hmin

(
X(tk+1), Y (tk+1)

))
= Hmax

(
X(tk+1), Y (tk+1)

)
.

Thus, with the parameterization proposed in (21), the con-
straint (b) on the FlyBS’s altitude is fulfilled. Furthermore,

from (21), we also have

||r (tk+1)− r (tk) || ≤ ||Vmax(tk+1 − tk)×
[cos(%k+1)cos(ςk+1), cos(%k+1)sin(ςk+1), sin(%k+1)]|| =

Vmax(tk+1 − tk). (23)

Hence, the constraint (c) in (15) is also fulfilled, and the
optimization problem in (15) can be reformulated as

min
%k,ςk,τk

P avgtot , (1 ≤ k ≤ T ) (24)

s.t. Ci(t) = Ci
min,∀i ∈ {1, ..., n},∀t.

where the constraint in (24) is presented considering Proposi-
tion 1. Now we explain details of the proposed algorithm,
which is also summarized in Algorithm 1. In our setup,
each vertex of the simplex (denoted by Si, 1 ≤ i ≤ m)
is an m-dimensional point with m = 3T corresponding
to the sequence of %k, ςk, and τk for 1 ≤ k ≤ T , i.e.,
{%1, ς1, τ1, ..., %T , ςT , τT }. The 3T + 1 vertices of the simplex
are selected by guessing an initial point as one of the vertices
(denoted as Sm+1) and, then, generating each of the other 3T
vertices by changing the value at one dimension of the initial
point. More specifically, for 1 ≤ i ≤ m,

Si =

{
Sm+1 + κiSm+1,iei Sm+1,i 6= 0,

Sm+1 + εiei otherwise,
(25)

where Sm+1,i denotes the i-th element of Sm+1, and ei
is the m-dimensional unit vector with zero elements at all
dimensions except the i-th dimension, and εi and κi are real
coefficients that adjusts the convergence of the algorithm. The
values for εi and κi create the initial simplex, and choosing
a larger εi and κi leads to a larger search space for the
optimization and, hence, to a prolongation of the optimization
process. Thus, we start with the setting εi = 0 and κi = 0
and, then, we gradually increase these values and run the
algorithm repeatedly until the found the solution does not
change anymore. This indicates that the optimum point is
already enclosed by the initial simplex and, thus, a further
increase in εi and κi is not necessary [55].

From the definition of the simplex’s vertices, it is inferred
that the values of the vertices should be selected carefully
to achieve an efficient numerical optimization in terms of an
accuracy as well as a convergence time. The algorithm is
terminated when the standard deviation of the corresponding
values of P avgtot at the updated simplex’s vertices fall below a
given threshold. In other words, when the vertices are close
enough to each other, the algorithm stops to save time. In
our setup, the value of threshold is set by trial and error
considering the convergence time.

Also, the internal parameters specified in the algorithm, such
as reflection, expansion, contraction, and shrinkage coefficients
are tuned through trial and error and by considering both
precision and convergence time, as there is no deterministic
approach to select the optimal values for these coefficients.
An option to determine the parameter’s values is to exploit
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evolutionary algorithms, such as genetic algorithms. However,
these algorithms require a relatively long time to find suitable
values of parameters, and there is still no guarantee that the
derived values would be optimal [56].

Another common approach, adopted also in our paper, is
to find the parameters’ values empirically and by testing the
performance of the algorithm for different values, as suggested
in [57], where the authors provide an experimental testbench
for the choice of the parameters, and analyze the performance
of the Simplex. In line with [57], we find the values of the
parameters in the Simplex algorithm via an evaluation of
the algorithm’s performance for a variety of the parameters’
values exploiting a knowledge of the Simplex’s principle.
Thus, we start from the default values proposed in the original
Nelder-Mead algorithm, i.e., 1.00, 2.00, 0.50, and 0.5 for the
reflection, expansion, contraction, and shrinkage parameters,
respectively. Then, at each time, we change one of those pa-
rameters by a specified increment/decrement value, and check
the corresponding performance of the Simplex. According to
the results presented in [57] and [58], the performance of the
Simplex starts degrading if the values of those parameters
become too large or too small. Hence, we do not need to
check every possible combination of different values of these
parameters and we choose an increment/decrement value of
±0.05 for all Simplex’s parameters. We find the minimum
total power consumption of the FlyBS for the values of 0.87,
1.75, 0.46, and 0.45 of the reflection, expansion, contraction,
and shrinkage parameters, respectively.

We note that, after the Simplex algorithm is applied to find
%k, ςk, and τk for 1 ≤ k ≤ T , we repeat the algorithm to find
%k, ςk, and τk for T + 1 ≤ k ≤ 2T , and so on for the entire
operational time.

G. Enhanced multi-point optimization of transmission power
and position

From (11), it is inferred that the obtained positions of
the FlyBS at time steps t1, . . . , tT guarantee the minimal
power consumption over the period of T time steps only,
and if the operational time of the FlyBS is longer than T
time steps, such solution might not be suitable due to the
problem of having a transition edge between two optimization
periods. More specifically, the location of the FlyBS at tT
is considered as the end position of one optimization period
{t1, . . . , tT } and also as the initial position of the FlyBS for
the next period {tT+1, . . . , t2T }. Since (11) is solved for each
time period disregarding the next period, the transition among
the optimization periods at tT can potentially increase the
propulsion power consumption over {tT+1, . . . , t2T }. This can
be solved by setting a long-enough T . However, performing
the optimization over a larger T may not be useful in realistic
scenarios with erroneous prediction of the users movement, as
increasing T introduces a higher prediction error in general.

In order to tackle this issue, we enhance the previous multi-
point optimization scheme by a sliding window optimization
over multiple time points. To this end, we solve (11) over
{t1, . . . , tT }, however, only the derived locations of the FlyBS
for the first T∆ time steps (i.e., t1, . . . , tT∆

, where T∆ < T ) are

Algorithm 1 3-dimensional optimal positioning of the FlyBS

Input: [xi(tk), yi(tk)], (1 ≤ i ≤ n, 1 ≤ k ≤ T ),
Output: FlyBS’s position at tk = argmin%k,ςk,τk P

avg
tot , (1 ≤

k ≤ T )
σ(A): standard deviation of elements in set A
σ0: standard deviation threshold for termination
Sm+1: random initial guess for %k, ςk, τk
Si (1 ≤ j ≤ m): other simplex’s vertices calculated from (25)
f(Si): P avgtot at the FlyBS’s positions given by Si.

1: Sort and rearrange simplex’s vertices as f(S1) ≤ f(S2) ≤
. . . ≤ f(Sm+1).

2: while σ
(
f(S1), f(S2), . . . , f(Sm+1)

)
> σ0 do

3: S0 = centroid{S1, ..., Sm}
4: if f(S1) ≤ f(Sr) ≤ f(Sm) then Sm+1 ← Sr
5: else Se = S0 + β(Sr − S0)
6: end if
7: if f(Se) ≤ f(Sr) then Sm+1 ← Se and go to step 13
8: else Sm+1 ← Sr and go to step 13
9: end if

10: Sc = S0 + ν(Sm+1 − S0).
11: if f(Sc) ≤ f(Sm+1) then Sm+1 ← Sc and go to step

13
12: else Si = S1 + δ(Si − S1) for 1 ≤ i ≤ m + 1 and

go to step 13
13: end if
14: Sort points so that f(S1) ≤ f(S2) ≤ . . . ≤ f(Sm+1).
15: end while
16: Calculate H(tk) from the updated τk in Sm+1 and (21)

actually used and the rest is adjusted in the next steps. Next, we
solve (11) over {tT∆+1, . . . , tT∆+T } with the initial position of
the FlyBS as at tT∆

. Then, this optimization is repeated when
the FlyBS reaches tT∆+1, thus, only the derived locations
of the FlyBS at time steps {tT∆+1, . . . , t2T∆} are used. This
process is repeated for the rest of the entire operational time.

H. Summary of all three proposed solutions

The basic principle of all three proposed schemes (SPS,
MPS, EMPS) is summarized in Fig. 4. For all proposed
schemes, the user’s coordinates represent the inputs to the al-
gorithm. The outputs are in a form of the FlyBS’s coordinates
and the transmission power setting.

The SPS determines the FlyBS’s positioning and the trans-
mission power allocation to each user at every time step tk
in a single-time-step-input to single-time-step-output manner,
while the MPS and the EMPS provide positions and transmis-
sion power allocations for a whole period of T > 1 time steps
on a basis of multiple-time-step-input to multiple-time-step-
output optimization. Furthermore, the MPS does not update the
calculated positions of the FlyBS in the previous optimization
iteration, while the EMPS constantly adjusts later FlyBS’s
positions and transmission powers calculated in the previous
iterations.
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Fig. 4. Detailed principle of all three proposed schemes
based on single-point optimization, multi-point optimization,

and enhanced multi-point optimization.

V. POWER OPTIMIZATION WITH TRANSMISSION POWER
CONSTRAINTS

The presented solutions in the previous section show a
theoretical achievable performance in the communication sys-
tem with unbounded transmission power. In real networks,
however, the transmission power is limited by regulations or
simply by capabilities of the physical equipment. Thus, in
this section, we focus on a realistic case with the limited
transmission power of the FlyBS.

In case the transmission power is limited, the power opti-
mization problem is enhanced with a new constraint as:

min
r(tk)

P avgtot , (1 ≤ k ≤ T ) (26)

s.t. Ci(tk) = Ci
min,∀i ∈ {1, ..., n},∀k, (a)

Hmin(X(tk), Y (tk)) ≤ H(tk) ≤ Hmax(X(tk), Y (tk)), (b)

||r(tk+1)− r(tk)|| ≤ Vmax(tk+1 − tk). (c)

PTX(X,Y,H, tk) ≤ PmaxTX ,∀k ∈ {1, ..., T} (d)

where the equality in the constraint (a) corresponds to the
Proposition 1. To fulfill the constraint (d) in (26), global
parameters of the mobile network should be set properly
in the same way as expected in any existing research work
dealing with a resource allocation and management in the
mobile networks (not limited to FlyBSs). If the system is
not globally set up properly (e.g., when a too narrow band is
available, user’s are guaranteed with too high capacity, etc.),
the constraint (d) in (26) might not hold even for the optimum
Xopt and Yopt at some time step(s). Thus, to solve the practical
problem with the transmission power constraint, we assume

that the system level parameters including available bandwidth
(Bi) and antennas’ gains (GTi , GRi ) are pre-set with respect to
the environment so that the following condition is fulfilled:

min
r(tk)

n∑

i=1

Ni(2
Cmini
Bi

−1
)(4πfc)

γi

GTi G
R
i c

γi( M
M+1

hi + 1
M+1

h̃i)
dγii ≤ PmaxTX (27)

The solution adopted for MPS and EMPS (sections IV.F and
IV.G) is based on Simplex algorithm. However, the Simplex
algorithm is not able to solve optimization problems with
constraints on the optimization variables in the objective
function. In other words, we cannot apply the same solution
directly to (26), as if we expand the constraint (d) in (26) using
(3), the constraint contains unknown positions of the FlyBS
in the following way:
n∑

i=1

Qi
(
(X(tk)− xi(tk))2 + (Y (tk)− yi(tk))2 +H2(tk)

) γi
2 ≤

PmaxTX ,∀k ∈ {1, ..., T}. (28)

Furthermore, the constraint (b) in (26) also limits the
FlyBS’s altitude. Thus the Simplex algorithm cannot be
immediately applied to the current optimization setting in
(26). In order to address this issue, we propose a solution
based on the change of variables X(tk), Y (tk), and H(tk)
(1 ≤ k ≤ T ) to eliminate the constraints (b), (c), and (d)
in (26) as follow. We first consider the constraint (b) in (26).
Suppose that Hmax(X(tk), Y (tk)) ≤ HM . Then, by rewriting
the transmission power in terms of the system parameters, the
constraint (b) is fulfilled if:
n∑

i=1

Qi
(
(X(tk)− xi(tk))

2
+ (Y (tk)− yi(tk))

2
+H2

M (tk)
) γi

2 ≤ PmaxTX

(29)

Using the first-order Taylor approximation for((
X(tk)− xi(tk)

)2
+
(
Y (tk)− yi(tk)

)2)
, the left-hand

side in (29) is rewritten as:
n∑

i=1

Qi
(
(X(tk)− xi(tk))

2
+ (Y (tk)− yi(tk))

2
+H2

M (tk)
) γi

2 ∼=

A0 + (
n∑

i=1

Qi)
(
(X(tk)−X∗)2

+ (Y (tk)− Y∗)2) (30)

where

A0 =
n∑

i=1

Qi
(
(H2

M + ΛiH
2
MΩ)

γi
2 − γi

2
ΛiH

2
MΩ×

(H2
M + ΛiH

2
MΩ)

γi
2 −1)

+
γi
2

(H2
M + ΛiH

2
MΩ)

γi
2 −1

(x2
i + y2

i )−

(

∑n
i=1 Υixi∑n
i=1 Υi

)
2

− (

∑n
i=1 Υiyi∑n
i=1 Υi

)
2

,

X∗ =

∑n
i=1 Υixi∑n
i=1 Υi

, Y∗ =

∑n
i=1 Υiyi∑n
i=1 Υi

,
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Υi = Qi(H
2
M + ΛiH

2
MΩ)

γi
2 −1

,

Λi =

⌊(
X(tk)− xi(tk)

)2
+
(
Y (tk)− yi(tk)

)2

H2
MΩ

⌋
. (31)

Note that the value Ω is an approximation parameter and
choosing a smaller Ω results in a smaller error in the approxi-
mation in (30). Using the approximation in (31), the inequality
in (29) is rewritten as:

(
X(tk)−X∗

)2
+
(
Y (tk)− Y∗

)2 ≤ ζ2, (32)

where ζ = (
PmaxTX −A0∑n

i=1 Qi
)

1
2 . Next, with a consideration of (32)

and to also fulfill the constraints (c) and (d) in (26), we take a
similar approach as in the solution to (15) and we define φk,
ψk, χk, ωk, and ξk so that the following equations hold:

X(tk+1) = min{X(tk) + Vmax(tk+1 − tk)cos(ωk)cos(ξk),

X∗(tk+1) + ζsin(φk+1)cos(ψk+1)}
Y (tk+1) = min{Y (tk) + Vmax(tk+1 − tk)cos(ωk)sin(ξk),

Y∗(tk+1) + ζsin(φk+1)sin(ψk+1)}
H(tk+1) = min{Hmin

(
X(tk+1), Y (tk+1)

)
+(

Hmax

(
X(tk+1), Y (tk+1)

)
−Hmin

(
X(tk+1), Y (tk+1)

))
×

sin2(χk+1),max{H(tk) + Vmax(tk+1 − tk)× sin(ωk+1),

Hmin

(
X(tk+1), Y (tk+1)

)
}}. (33)

With the defined φk, ψk, χk, ωk, and ξk the constraints (b)-
(d) in (26) fulfill automatically and, thus, the problem of the
total power minimization is rewritten as:

min
φk,ψk,χk,ωk,ξk

P avgtot , (1 ≤ k ≤ T ) (34)

s.t. Ci(t) = Ci
min,∀i ∈ {1, ..., n},∀t.

Similar to (15), the solution to optimization problem in (34)
is based on the Simplex method as elaborated in Section IV.F.

In general, an analysis of the computational complexity is
not possible for the Nelder-Mead Simplex, as it highly depends
on the objective function [65]. Nevertheless, we can still derive
the order of the computational complexity by counting the
total number of clock cycles taken for fixed-point operations
performed during the optimization. To this end, we assume
each multiplication of two numbers takes 3 clock cycles and
each addition takes 1 clock cycle [66]. Then, by simulating
the scenario for different number of time steps T in the
optimization and counting the total number of clock cycles, it
is observed that the computational complexity of the proposed
solution scales as O

(
T 3.2

)
. Furthermore, an evaluation of the

total power consumption in (10) is of a linear complexity
with respect to the number of users (n). Hence, the overall
complexity of the proposed solution is O

(
nT 3.2

)
.

VI. SIMULATION SCENARIO AND MODELS

In this section, we provide details of simulations and
models adopted to evaluate the performance of the proposed

solution minimizing the total power consumed by the FlyBS
serving mobile users. We also define competitive algorithms
considered in simulations.

We consider a scenario with the FlyBS serving users
represented by vehicles, for example, during a busy traffic
or a traffic jam at a road or a highway. In such situation,
the conventional network is usually overloaded as plenty of
active users are located in a small rural area with a limited
network coverage. In such scenario, the FlyBS is a suitable
solution to improve the performance, see [45], [46]. The
users are assumed to move on a 3-lane highway in the
positive direction of y-axis. A wide range of velocities of the
vehicles is considered ({2, 5, 10, 12, 15, 20, 25} m/s) to cover
different traffic situations corresponding to a traffic jam and/or
a busy traffic. Note that for higher speeds than 25 m/s, the
typical FlyBS is not efficient and cannot follow the vehicles’
movement, as common rotary-wing UAVs can fly typically
with a maximum speed of about 25 m/s [52]. We assume that
a length of the crowd of vehicles served by the FlyBS in the
traffic jam is 600 meters (i.e., the length of the line of the
vehicles is 600 m).

As mentioned in Section II, the current positions of the users
are assumed to be known to the FlyBS. However, the known
positions contain a randomly distributed error of eM,x

i ∈
[−10, 10] m and eM,y

i ∈ [−10, 10] m, see (5). Furthermore, the
location of the users in future time slots are fully unknown in
general. There are many solutions for a prediction of the user’s
movement, see, e.g., [59], [60], [61]. As individual prediction
schemes reach different performances depending on a scenario
and an availability of additional information, the evaluation
of our proposal for any specific prediction would lead to a
validity of the results only for such specific scenario and
conditions of the predictor. Thus, we generalize the evaluation
across different predictive models in the following way: The
next position of the users is extrapolated from the last two
previous positions of the user and this predicted position is
further influenced by an additional random error so that:

xi(t) = xi(0) + vxi (t)t+ ePr,xi (t),

yi(t) = yi(0) + ePr,yi (t), (35)

where ePr,xi (t) and ePr,yi (t) denote the added error to the x
and y coordinates of the user i at the time t, respectively, and
vxi (t) denotes the velocity of the user i in the direction of x-
axis at the time t. In our scenario, we consider the following
model for ePr,xi (t) and ePr,yi (t)

|ePr,xi (t)| ≤ ηvxi (t)t,

|ePr,yi (t)| ≤WH , (36)

where WH denotes the highway’s width, and η is the er-
ror factor that indicates the extent of error incurred by the
prediction. Note that, although our proposed solution for the
positioning of the FlyBS is designed for 3D movement of the
FlyBS, the only suitable propulsion power consumption model
of the rotary-wing FlyBSs, see [31], only applies to a fixed
altitude. Thus, for the simulations, the FlyBS’s altitude is set
to H = 100 m, and the optimization problems in (11) and
(26) are solved only for x and y coordinates of the FlyBS.
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Table II shows the values of the system parameters adopted
in the simulations. For the wireless channel, we assume free
space path loss (FSPL) model, as the communication link
between the FlyBS and the users (vehicles) on a road is
typically without any obstacles and the FSPL is a commonly
adopted model in such cases [23], [29], [38]. Omni-directional
antennas with gains of 7 dBi and 0 dBi for the FlyBS
and the users are considered, respectively, [62], [67]. We set
spectral density of noise to -174 dBm/Hz. The radio frequency
fc = 2.6 GHz and a bandwidth of 100 MHz are selected. We
consider the same minimum required capacity for all users,
i.e., Cimin = Cmin,∀i ∈ {1, ..., n} and the simulations are
performed for Cmin = 5 Mbps and Cmin = 10 Mbps.

To suppress randomness in the models, each simulation is
of 15 minutes duration with a step of 1 s and the results are
averaged out over 100 simulation drops.

To solve the problems by Simplex algorithm, we set κi =
0.05 and εi = 0.00025 to create the initial simplex from (25).
These values are selected with respect to the accuracy and
the termination time of the algorithm, as explained in Section
IV.F.

For the initial simplex, we choose the points derived from
the closed-form solution for the single-point optimization as
elaborated in Section IV.F. The input used for this single-point
optimization is the predicted location of the users calculated
from (35).

We investigate five different schemes:
i) Proposed multi-point optimization scheme (MPS) with the
location of FlyBS determined by the numerical optimization
of P avgtot as elaborated in subsection IV.F;
ii) Enhanced MPS (EMPS) as elaborated in subsection IV.G,
with T = 2 and T∆ = 1, i.e., the optimization is done over
2 time steps, and it is iterated after each time step. Note that
the values for T and T∆ are selected experimentally;
iii) Single-point optimization scheme (SPS), where the lo-
cations of the FlyBS is determined by minimizing P avgtot for
T =1, as explained in subsection IV.E;
iv) Minimal TX power scheme (MTX), as outlined in [45]
and further exploited and elaborated in [68], [34], targeting the
transmission power minimization while the propulsion power
is ignored;

In addition to the above mentioned schemes, we also eval-
uate the performance for the scenario with conventional static
base station (i.e., with no propulsion power consumption) to
investigate benefits of the FlyBSs. However, based on the
simulation results, the conventional static base station leads
to the average transmission powers of 900 and 16 000 Watts
for vi = 10 m/s and 25 m/s, respectively even for Cminj = 5
Mbps. These values are multiple times larger than the average
total power consumption of all other schemes. Thus, for the
clarity of presentation of the results, we do not show this
scheme in the figures.

Note that up to our best knowledge, there is no other existing
solution that targets the minimization of transmission and/or
propulsion power while the minimum capacity is guaranteed
to the moving users.

Table II: Parameter for simulations

System Parameter Numerical value
Number of users, n 90
FlyBS’s antenna gain, GTi 7 dBi [62]
Ground users’ antenna gain,GRi 0 dBi [67]
Noise power spectral density, Ni -174 dBm/Hz
Minimum capacity for the i-th user, {5,10} Mbps
Cmini

Communication frequency, fc 2.6 GHz
System bandwidth 100 MHz
Simulation step, ∆tj 1 second
Range of FlyBS altitude, [Hmin, Hmax] [100,300] meters
Velocity of users, vi {2,5,10,12,15,20,25} m/s
FlyBS’s circuit power, Pcircuit 0.15 Watts
Maximum transmission power, pTmax 2 Watts
Simulation Duration 15 minutes
Number of simulation drops 100

Fig. 5. Evolution of transmission power PTX over a sample
of time for a) vi = 10 m/s and b) vi = 25 m/s. η = 0.5 is

assumed for MPS and EMPS.

VII. PERFORMANCE EVALUATION

In this section, we discuss simulation results. First, we
illustrate an evolution of the transmission, propulsion, and total
power consumption over time for the proposed algorithms.
Then, we compare the performance of the proposed scheme
with existing state-of-the-art solutions in terms of the average
power consumption and we analyze an impact of an error in
prediction of the vehicles’ movement.

A. Evolution of power consumption over time

Figures 5, 6, and 7 represent a sample of the transmission,
propulsion, and total power consumption, respectively, over a
sample interval with a duration of 180 s. These figures show
a mutual cooperation of the transmission power control and
the selection of the position of the FlyBS. The figures show
the results for vi = 10 m/s (subplot (a)) and vi = 25 m/s
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Fig. 6. Evolution of propulsion power Ppr over a sample of
time for a) vi = 10 m/s and b) vi = 25 m/s. η = 0.5 is

assumed for MPS and EMPS.

(subplot (b)). For the proposed MPS, the number of time steps
in the optimization is set to T = 30, and Cj

min =10 Mbps
is assumed for all schemes. Note that we break (collapse) the
y-axis in Figs. 6 and 7 to increase a separation of the plots for
all three proposed solutions (SPS, MPS, and EMPS) and to
demonstrate clearly the performance of individual solutions.

According to Fig. 5, the transmission power increases over
time for all the proposed solutions. This behavior is justified
by evaluating the changes in transmission and propulsion
powers with respect to the change in the FlyBS’s speed. More
specifically, assume that increasing the FlyBS’s speed by some
δV > 0 causes an increase and a decrease in the propulsion
and transmission powers by δPpr and δPTX , respectively.
According to (4), δPTX is directly proportional to Cmin as
well as to the relative distances between the FlyBS and the
users (di), whereas δPpr is independent of the Cmin and
di. Now, let us have δPpr > δPTX for the considered δV .
Then, as a result, the FlyBS endeavors not to increase its
speed by more than or equal to δV in the proposed solutions.
Consequently, the distance between the FlyBS’s position and
the center of gravity of the users might increase over time
and, this imposes an increase in the transmission power.
If the distance between the FlyBS and the users becomes
large enough so that δPpr < δPTX , then the FlyBS would
start increasing its speed by more than δV to reduce the
transmission power.

Furthermore, the increase in the transmission power over
time is higher when the difference between the FlyBS’s and
the users’ velocities is larger, as illustrated in Fig. 5 (bottom
subplot in Fig. 5 shows about 6-times higher increase in
PTX comparing to the top subplot). In contrast, the MTX
scheme keeps the FlyBS’s position at the center of gravity of
the users disregarding the incurred propulsion power. Hence,
the MTX results in a significant increase in the propulsion
power consumption (see Fig. 6) and, consequently, also in the
total consumed power (Fig. 7). As shown in Fig. 6 (subplot

Fig. 7. Evolution of total power Ptot over a sample of time
for a) vi =10 m/s and b) 25 m/s. η = 0.5 is assumed for

MPS and EMPS.

(a)), all three propose schemes (SPS, MPS, EMPS) reach
similar propulsion power for a low speed of vehicles. However,
for higher speeds of vehicles (subplot (b)), the differences
among SPS, MPS, and EMPS become more significant, as the
propulsion power for MPS undergoes rapid peaks at some time
steps. The reason for such peaks is that the MPS optimizes
the total power consumption over T time steps by deriving
the T locations of the FlyBS. These locations are, however,
not necessarily the optimal over a longer period of operation.
Therefore, after the T time steps, the FlyBS can be in a
suboptimal position and should fly a relatively long distance
to reach the long-term optimum in order to reduce the power
for the next T time steps. In contrast, the EMPS does not
suffer from such sudden jumps in the propulsion power, as it
iterates the optimization and adjusts the FlyBS’s position and
transmission power after each time step while still considering
long-term optimization perspective. Fig. 7 confirms that the
EMPS always outperforms both SPS and MPS in terms of the
total power consumption.

B. Impact of user’s velocity

In this subsection, we investigate the impact of the users’
velocity on the average power consumption of the FlyBS over
a longer period of the operational time of the FlyBS. Figs.
8, 9, and 10 show the average transmission, propulsion, and
total power consumption, respectively. The results are shown
for the case with no limitation of the transmission power (left
subplots) as well as for the case with the transmission power
limited to 2 W (right subplots). The figures show the results
for Cmin = 5 Mbps as well as Cmin = 10 Mbps. The
proposed MPS is investigated for the number of time steps
in the optimization T set to 10, 20, and 30.

First, we explain the results for the case with no transmis-
sion power limit. According to Fig. 8, the average transmission
power increases with the users’ velocity. As discussed in
the description of Fig. 5, this is caused by the fact that for
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higher velocities of users, the distance between the FlyBS
and the center of gravity of the users’ locations is higher
on average, as the FlyBS tends to fly approximately with
the speed corresponding to the minimum propulsion power
for all the proposed solutions. The FlyBS increases its speed
time-to-time in order to reduce the transmission power if
the transmission power would be too high with respect to
the propulsion power. Clearly, for higher velocities of the
users, the FlyBS increases its speed more often and, hence,
the average propulsion power increases with the velocity of
the users, as illustrated in Fig. 9. In addition, Fig. 9 shows
the advantage of the EMPS over the SPS and the MPS in
controlling the propulsion power via a continuous adjustment
of the FlyBS’s positions over time. Contrary to the proposed
solutions, the MTX leads to the situation when the FlyBS
flies with the speed equal to the users’ velocity to keep the
transmission power at the lowest level. This causes a relatively
high propulsion power, especially for a high velocity of the
users. More specifically, at the velocity of 25 m/s, the proposed
EMPS, MPS, and SPS reduce the propulsion power by up
to about 91%, 90%, and 90%, respectively, comparing to the
MTX. Note that roughly the same gains are observed for both
Cmin = 5 Mbps and Cmin = 10 Mbps.

Similar behavior and trends in the transmission and propul-
sion powers are observed also for the case with the transmis-
sion power constraint in Figs. 8 and 9 (right subplots). More
specifically, before the transmission power reaches the maxi-
mum allowed value, the FlyBS keeps the propulsion power low
while the transmission power is increasing. However, when
the transmission power reaches the maximum, the FlyBS is
forced to increase the speed in order to avoid getting too
far from the center of gravity of the users. Consequently, the
propulsion power is increased to find a position in which the
capacity Cmin is guaranteed to all users. The left subplot in
Fig. 9 shows this increase in the average propulsion power
compared with the right subplot, especially for high speeds
of the users and a high guaranteed Cmin. For higher users’
required capacity, the transmission power becomes comparable
to the propulsion power, and hence, the FlyBS increases its
velocity to avoid a large increase in the transmission power.

Note that the transmission power limit does not change
the results for MTX with respect to the case without the
transmission power limit, as the MTX always achieves the
minimum transmission power, which should be lower than
PmaxTX , otherwise the problem in (26) would have no solution.
According to Fig. 9, the proposed EMPS, MPS, and SPS
reduce the propulsion power comparing to the MTX by 91%,
91%, and 89%, respectively, at the velocity of 25 m/s and for
Cmin = 5 Mbps. If Cmin = 10 Mbps, the respective gains of
EMPS, MPS, and SPS comparing to the MTX are about 36%,
34%, and 33%.

The average total power consumption is investigated in Fig.
10. The average total power consumed by the proposed MPS
for T = 30 is lower than for T = 10 and T = 20. Note that we
have tested also the performance for larger values of T , but it
has lead to no significant improvement in the performance of
MPS. Hence, the results for T > 30 are not included to keep
the figures clear. The reason that increasing T does not always

(a) unconstrained transmission power

(b) constrained transmission power

Fig. 8. P avgTX vs. user’s velocity for a) unconstrained trans-
mission power and b) constrained transmission power with
PmaxTX = 2 W. η = 0.5 is assumed for MPS and EMPS.

improve the performance is because a larger T also entails
the prediction over a longer period, thus, a higher prediction
error is incurred. Furthermore, increasing T can potentially
increase the magnitude of sudden peaks in the propulsion
power. Fig. 10 shows that the lowest power consumption is
achieved by the EMPS. Comparing to the MPS, the EMPS
allows a more frequent adjustment of the future positions of
the FlyBS so that the sudden peaks in the propulsion power
are suppressed. In the case of limited transmission power,
the difference among the proposed solutions becomes more
obvious for a higher required users’ capacity Cmin because
of a higher gap between the users’ and FlyBS’s speeds, which
allows the FlyBS to leverage an increase in the transmission
power for the benefit of a saving in the propulsion power.

Fig. 10 further demonstrates that all proposed solutions
outperform the MTX for all velocities. For the case of un-
constrained transmission power at the velocity of 25 m/s,
the proposed EMPS, MPS, and SPS reduce the total power
comparing to the MTX by 91%, 90%, and 89%, respectively,
if Cmin is set to 5 Mbps, and by 90%, 89%, and 87%,
respectively, if Cmin is set to 10 Mbps. For the case of
constrained transmission power at the velocity of 25 m/s,
the proposed EMPS, MPS, and SPS lead to a reduction in
the total power consumption of about 90%, 89%, and 88%,
respectively, with respect to the MTX if Cmin is set to 5 Mbps,



14

(a) unconstrained transmission power

(b) constrained transmission power

Fig. 9. P avgpr vs. user’s velocity for a) unconstrained trans-
mission power and b) constrained transmission power with
PmaxTX = 2 W. η = 0.5 is assumed for MPS and EMPS.

and about 16%, 13%, and 12%, respectively, if Cmin is set to
10 Mbps.

Next, Fig. 11 depicts the trajectory of the FlyBS for the
cases with and without constraint on the FlyBS’s transmission
power. For the constrained transmission power, the FlyBS’s
displacements are relatively larger compared to the uncon-
strained transmission power, as the FlyBS has to keep the
transmission power below the maximum limit by moving to a
favorable point even if such a movement would incur a larger
propulsion power.

C. Impact of prediction error

Last, we investigate the impact of the error due to a
prediction of the vehicles’ movement (according to (35)) on
the total power consumption of the FlyBS in Fig. 12. The
average total power consumption increases for both MPS
and EMPS with the prediction error, because having more
inaccurate parameters in a function leads to a calculation of
more inaccurate optimal values in general. We further see that,
for any value of the error factor η (see (36)), the average total
power consumption for MPS increases with T as the prediction
error increases with T as well. Furthermore, the EMPS shows
a stable behavior and robustness against the prediction error

(a) unconstrained transmission power

(b) constrained transmission power

Fig. 10. P avgpr vs. user’s velocity for a) unconstrained trans-
mission power and b) constrained transmission power with
PmaxTX = 2 W. η = 0.5 is assumed for MPS and EMPS.

Fig. 11. FlyBS’s trajectory. The start and end points of the
movement are marked by ”•” and ”×”.

comparing to the MPS, as the optimization is adjusted over
time to suppress the negative impact of the prediction error.

VIII. CONCLUSIONS

In this paper, we have studied the problem of power
optimization in future wireless networks with the FlyBSs.
Contrary to existing papers, we optimize the total power
consumed by the FlyBS while guaranteeing the minimum
communication capacity to all users during their movement.
We first provide the closed-form solution determining the
position and the transmission power of the FlyBS for a realistic



Fig. 12. P avgtot vs. the prediction error’s factor (η) for
different schemes and for a) vxi = 25 m/s and b) vxi = 15

m/s. Cmin = 10 Mbps is assumed.

non-linear power consumption model in the case of single-
point optimization. Then, we develop a numerical solution for
the optimal positioning of the FlyBS and setting of the FlyBS’s
transmission power to minimize the total power consumed by
the FlyBS over a period with an arbitrary duration (multi-point
optimization). We show that the proposed joint transmission
power control and FlyBS’s movement allows a significant
reduction (up to 91%) in the total power consumed by the
FlyBS while the required capacity of the moving users is
always satisfied.

In the future, the scenario with multiple FlyBSs should
be studied. Regarding this, two key aspects that should be
addressed jointly are: i) association of the users to the FlyBSs
and ii) management of interference among the FlyBSs.

APPENDIX A
PROOF TO THEOREM 1

Proof. To find the FlyBS’s position that minimizes P avgtot ,
we start by finding the critical points for P avgtot . First, it
is noted that [X(t1), Y (t1)] = [X(t0), Y (t0)] is one the
critical points for P avgtot . Now we find the critical points where
[X(t1), Y (t1)] 6= [X(t0), Y (t0)]. by using P apxpr in (16) and
rewriting ∂Pavgtot

∂X = 0 and ∂Pavgtot

∂Y = 0 for the period of {t0, t1}
we get:

n∑

i=1

2Qi(X(t1)− xi(t1)) =

−(
X(t1)−X(t0)√

(X(t1)−X(t0))2 + (Y (t1)− Y (t0))2)
.
dP apxpr

dV
|V=V (t0,t1),

n∑

i=1

2Qi(Y (t1)− yi(t1)) =

−(
Y (t1)− Y (t0)√

(X(t1)−X(t0))2 + (Y (t1)− Y (t0))2)
.
dP apxpr

dV
|V=V (t0,t1).

(37)

We derive an auxiliary equation from (37) that does not include
the complicated term of

dPapxpr

dV and helps to derive an explicit
relation between X(t1) and Y (t1) as:

∑n
i=1 2Qi(X(t1)− xi(t1))∑n
i=1 2Qi(Y (t1)− yi(t1))

=
X(t1)−X(t0)

Y (t1)− Y (t0)
. (38)

Equation (38) is further rewritten as:

(
∑n
i=1 2Qi)X(t1)− (

∑n
i=1 2Qixi(t1))

(
∑n
i=1 2Qi)Y (t1)− (

∑n
i=1 2Qiyi(t1))

=
X(t1)−X(t0)

Y (t1)− Y (t0)
.

(39)

Then, from (39), it is concluded that:

(Y (t1)− Y (t0)) =

(
∑n
i=1 2Qi)Y (t0)− (

∑n
i=1 2Qiyi(t1))

(
∑n
i=1 2Qi)X(t0)− (

∑n
i=1 2Qixi(t1))

(X(t1)−X(t0)).

(40)

With (40), we can simplify the expression for V in (7) to:

V = M |X(t1)−X(t0)|,

M =
1

∆tk
(1 +

(
∑n
i=1 2Qi)Y (t0)− (

∑n
i=1 2Qiyi(t1))

(
∑n
i=1 2Qi)X(t0)− (

∑n
i=1 2Qixi(t1))

)
1
2 .

(41)

Now, by expanding the first equation in (37) using (16) and
(41), we get:

(
n∑

i=1

2Qi)X(t1)−
( n∑

i=1

2Qixi(t1)
)

= (42)

−(
X(t1)−X(t0)

M |X(t1)−X(t0)| )(5c5V
4 + 4c4V

3 + 3c3V
2 + 2c2V + c1)

= −(
X(t1)−X(t0)

M |X(t1)−X(t0)| )(5c5M
4|X(t1)−X(t0)|4+

4c4M
3|X(t1)−X(t0)|3 + 3c3M

2|X(t1)−X(t0)|2+

2c2M |X(t1)−X(t0)|+ c1).

Equation (42) can be solved by considering two different
possibilities:
a) X(t1) > X(t0) (equivalently, |X(t1)−X(t0)| = (X(t1)−
X(t0)): with this presumption (42) is rewritten as a quartic
equation with respect to X(t1) as follow

a4X
4(t1) + a3X

3(t1) + a2X
2(t1) + a1X(t1) + a0 = 0,

(43)

where

a4 = 5c5M
3, a3 = −20c5M

3X(t0) + 4c4M
2,

a2 = 30c5M
3X2(t0)− 12c4M

2X(t0) + 3c3M,a1 =
n∑

i=1

2Qi−

20c5M
3X3(t0) + 12c4M

2X2(t0)− 6c3MX(t0) + 2c2,

a0 = 5c5M
3X4(t0)− 4c4M

2X3(t0) + 3c3MX2(t0)−

2c2X(t0) +
c1
M
− (

n∑

i=1

2Qixi(t1)). (44)



There are four solutions to (43) that are given by:

−a3

4a4
− S ± 1

2

√
−4S2 − 2p+

q

S
,

−a3

4a4
+ S ± 1

2

√
−4S2 − 2p− q

S
, (45)

where

p =
8a4a2 − 3a2

3

8a2
4

, q =
a3

3 − 4a4a3a2 + 8a2
4a1

8a3
4

,

S =
1

2

√
−2

3
p+

1

3a4
(G+

∆0

G
), G =

3

√
∆1 +

√
∆2

1 − 4∆3
0

2
,

∆0 = a2
2 − 3a3a1 + 12a4a0,

∆1 = 2a3
2 − 9a3a2a1 + 27a2

3a0 + 27a2
1a4 − 72a4a2a0. (46)

b) X(t1) < X(t0): with this presumption, (42) is rewritten as:

b4X
4(t1) + b3X

3(t1) + b2X
2(t1) + b1X(t1) + b0 = 0,

(47)

where

b4 = 5c5M
3, b3 = −20c5M

3X(t0)− 4c4M
2,

b2 = 30c5M
3X2(t0)− 12c4M

2X(t0) + 3c3M,

b1 = −
n∑

i=1

2Qi − 20c5M
3X3(t0)− 12c4M

2X2(t0)−

6c3MX(0)− 2c2, b0 = 5c5M
3X4(t0) + 4c4M

2X3(t0)+

3c3MX2(t0) + 2c2X(t0) +
c1
M

+ (
n∑

i=1

2Qixi(t1)). (48)

Similar to (43), there are four solutions to (47) that can be
derived by using the coefficients b0, ..., b4 instead of a0, ..., a4,
respectively.

Note that only the real roots of the quartic functions in (43)
and (47) are considered. Furthermore, the solutions to (43) and
(47) should meet their presumptive conditions X(t1) > X(t0)
and X(t1) < X(t0), respectively. For each of the candidates
for X(t1), the corresponding value of Y (t1) is calculated from
(40).
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3.2 Maximization of FlyBS coverage duration with

user QoS constraint

The optimization of total power consumption of the FlyBS, despite its importance from

the aspect of FlyBS's battery capacity, considers the transmission and propulsion power

consumptions from the same point of view: a decrease of, e.g., 1 Watt in the trans-

mission power is only as e�cient/costly as decreasing 1 Watt in the propulsion power.

However, the transmission power could be regarded as a more signi�cant parameter than

the propulsion power as long as the user's connectivity is concerned. In particular, it

is the transmission power that guarantees the user's required capacity. In case that the

required transmission power exceeds the FlyBS's maximum transmitting power, the users

could not be provided with their required capacity. This would limit the use of FlyBSs in

applications with real-time users. The works presented in this section, which include the

reference paper [C3] followed by [J3], are dedicated to highlighting the di�erence between

propulsion and transmission powers from the perspective of user's coverage and with re-

spect to the FlyBS's battery limits. NOMA is adopted as the communication mode to

e�ciently exploit the available radio resources in the network. Along with the assumption

of NOMA, the problem of NOMA user clustering is also targeted, and a low-complexity

solution is proposed accordingly.
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Abstract—Deployment of unmanned aerial vehicles (UAVs)
as flying base stations (FlyBSs) is considered as an efficient
tool to enhance capacity of mobile networks and to facilitate
communication in emergency cases. The improvement provided
by such network requires a dynamic positioning of the FlyBSs
with respect to the mobile users. In this paper, we focus on an
optimization of transmission power of the FlyBS in networks with
non-orthogonal multiple access (NOMA). We propose a solution
jointly positioning the FlyBS and selecting the optimal grouping
of users for NOMA in order to minimize the FlyBS’s transmission
power under the constraint on guaranteeing a minimum required
capacity for the mobile users. Moreover, we derive the grouping
of users corresponding to the optimal transmission power in a
low-degree polynomial time, which makes it suitable for real-
time applications. According to the simulations, the proposed
method brings up to 31% of FlyBS’s transmission power saving
compared to existing solutions.

Index Terms—Flying base station, Non-orthogonal multiple
access, user grouping, transmission power, mobile users, mobile
networks, 6G.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) acting as flying base
stations (FlyBSs) provide a promising way to address various
concerns in mobile networks. Due to their high mobility,
the FlyBSs present exclusive features, such as adaptability to
the network topology and to the actual users’ requirements,
in comparison to conventional static base stations. These
advantages make the FlyBSs an efficient solution for multiple
practical applications including surveillance and monitoring
[1], data traffic management [2], emergency missions [3],
network coverage enhancement [4], data gathering of IoT
devices [5], or improvement in users’ quality of service [6].

In our previous works ([7], [8]), we study the problem of
power optimization for the FlyBS serving moving users and
we provide a joint power control and FlyBS’s positioning for
orthogonal multiple access (OMA) in the mobile networks.
In this paper, we focus on the FlyBS’s positioning and

This work has been supported by Grant No. P102- 18-27023S funded by
Czech Science Foundation and by the grant of Czech Technical University in
Prague No. SGS20/169/OHK3/3T/13.

transmission power consumption for non-orthogonal multiple
access (NOMA).

Non-orthogonal multiple access (NOMA) is considered as a
promising and suitable technique for future mobile networks.
NOMA provides a high spectral efficiency by including super-
position coding at the transmitter and successive interference
cancellation (SIC) decoding at the receivers [9]. Thus, unlike
OMA, NOMA enables to group multiple users into clusters
and serve the users in the same cluster at the same time-
frequency resources with a separation in a power domain ([10],
[11], [12]). Consequently, NOMA increases throughput and
spectral efficiency with respect to OMA [6].

Key challenges related to NOMA include fairness control
[13], throughput improvement [14], resource allocation [11],
network coverage [15], and user pairing or grouping [11],
[12]. These key challenges are even emphasized and extended
when NOMA is integrated to the networks with FlyBSs. For
example, the grouping schemes provided for the networks with
static base stations consider instantaneous gains of the users’
channels as a criteria to find the user grouping [11], [12].
However, these methods are not suitable for the networks with
FlyBS, as the next position of FlyBS is determined based on
the current pairing/grouping, while the selected grouping is
based on the current position of the FlyBS.

A full exploitation of NOMA together with the FlyBSs’
characteristics requires a precise positioning of the FlyBSs,
advanced resource allocation, interference control, and group-
ing of the users for NOMA and SIC in order to efficiently
deal with the challenges mentioned above.

In [16], the authors study the coverage in the network with
two static ground users served by the FlyBS. Adopting a
fading channel model, the authors provide a combination of
NOMA and OMA transmission modes to reduce an outage
probability of the ground users. However, the positioning
of the FlyBS (trajectory) is not optimized. Then, in [15],
the authors determine an altitude of the FlyBS serving also
only two static ground users in the network with NOMA to
maximize Jain’s fairness index. The paper [15] is extended in
[14] by a power allocation and a determination of the FlyBS’s



altitude to maximize the sum capacity of two static ground
users. Nevertheless, the x and y coordinates of the FlyBS are
fixed. Thus, the flexibility in a spatial deployment offered by
the FlyBSs is not fully exploited. Furthermore, in [17], the
authors provide a resource allocation algorithm for NOMA
with one FlyBS acting as a relay to maximize the throughput
in a scenario with, again, only two static ground users. We
note that, since there is only one pair of users in the system
model, the problem of user pairing/grouping is not inclusively
studied by any of the works in [14]-[17], and none of these
works provide a concrete paring/grouping for multiple users.

In [10], a heuristic solution for a joint user grouping and
positioning of the FlyBS is proposed to improve the sum
capacity. The grouping of users for NOMA is limited to only
two users (i.e., pairing of users) and its generalization to
the grouping of more than two users is not straightforward.
Moreover, the provided solution is sub-optimal and loses
performance as the number of users increases.

To the best of our knowledge, a study of the transmission
power consumption and an analysis of the user grouping
for NOMA in networks with FlyBSs is not investigated in
the literature. However, the transmission power consumption
affects the coverage and, hence, should not be ignored. This is
supported by many works focused on the transmission power
consumption of the FlyBSs for a variety of OMA scenarios
([6]-[8]). Moreover, due to limitations on a maximum trans-
mission power of the FlyBSs, the FlyBS might fail to satisfy
the minimum required capacity for the users. Thus, a solution
reducing the transmission power is necessary to enhance the
users’ coverage reliability. In NOMA, the transmission power
becomes even more critical aspect, as adopting an inefficient
grouping scheme can lead to a very high transmission powers
beyond the limit of the FlyBS.

In this paper, we focus on the problem of the FlyBS’s
transmission power optimization in NOMA networks. We
formulate the problem of the transmission power minimization
with a constraint on a minimum guaranteed capacity for all
mobile users. We analytically provide an optimum strategy for
the grouping of users for NOMA and we determine related
optimum position of the FlyBS to minimize the transmission
power. The proposed solution is of a very low complexity
(low degree polynomial) and, thus, can be applied in real
networks. We show that our proposed solution reduces the
transmission power consumption by up to 31% compared to
existing solutions.

The rest of the paper is organized as follow. In Section II,
we present the system model and formulate the problem of
transmission power optimization via the grouping of users for
NOMA and FlyBS’s positioning. The proposed solution for the
transmission power optimization is introduced and thoroughly
described in Section III. The performance of the proposed
solution and comparison with the performance of existing
solutions is discussed in Section IV. Last section concludes
the paper and outlines future research directions.

Fig. 1: System model with multiple mobile users (blue dots)
deployed within coverage area of the FlyBS and grouped into
clusters (red circles) for NOMA purposes.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we first define the system model by ex-
plaining users grouping in non-orthogonal transmission model,
and SIC decoding in the network with FlyBS, and we also
provide details about the transmission power modeling. Then,
we formulate the transmission power optimization problem.

A. System Model

We consider one FlyBS serving Nu mobile users U =
{u1, u2, . . . , uNu

} in an area as shown in Fig. 1. The users
are moving along the same direction similar to, e.g., vehicles
on a road or a highway. Without a loss of generality, we
assume the movements are aligned with the x-axis to simplify
notations and explanation of the idea. All Nu users in the area
communicate directly with the FlyBS.

Let {X(t), Y (t), H(t)} denote the location of the FlyBS at
the time t. We assume that the altitude of the FlyBS is fixed
at H(t) = H as in many previous related works (e.g., [8],
[10], [17], [18]). Furthermore, let {xGi,j(t), yGi,j(t)} denote the
coordinates of the i-th user at the time t. Note that we consider
mobile users, and so the coordinates of the users as well as
of the FlyBS change over time. As commonly expected in
related works, we also assume that the current positions of
the users are known to the FlyBS (see, e.g., [14], [18]). Also,
the FlyBS can determine its own position as the knowledge
of the FlyBS’s position is needed for a common flying and
navigation of the FlyBSs ([17]).

In non-orthogonal transmission, the users are grouped into
clusters such that all users in each cluster share the same
bandwidth at the same time. Thus, the data transmission to the
users in the same cluster imposes an interference (referred to
as intra-cluster interference). However, there is no interference
among different clusters.

Let G denote the space of all possible functions that group
the users into Ncl clusters with Ncu users in each cluster,
(hence, Nu = Ncl×Ncu). Each function G ∈ G is defined as
a bijective mapping G: 〈1, N〉 → 〈1, Ncl〉 × 〈1, Ncu〉. More



specifically, the function G assigns the user un as the ncu-
th user in the ncl-th cluster if G(n) = (ncl, ncu) for the
given n. We refer to ncu and ncl as the index of the user
in the cluster and the index of the cluster, respectively. Let
uG1,j , u

G
2,j , . . . , u

G
Ncu,j

denote the clustered users in the j-th
cluster (1 ≤ j ≤ Ncl) that is determined by the grouping
function G.

For SIC in non-orthogonal transmission, canceling the
strong interferences in each cluster is a more efficient approach
than canceling the weak interferences, in the sense that the
total transmission power to satisfy the minimum required
capacity of all users is lower in the first approach [12]. In
the following we define model for the SIC regardless of
the different signals’ strengths, and only based on the users’
indices within each cluster. This assumption helps to solve the
problem in a simpler way and without loss of generality, as
we find the minimum transmission power among all possible
grouping options.

Suppose that, by applying SIC, the user uGi,j in the j-th
cluster (1 ≤ i ≤ Ncu− 1) cancels the interfering signals from
the user i′ in the same cluster (i.e., uGi′,j) for i+1 ≤ i′ ≤ Ncu
to extract its own signal. As a result of this, the achievable
SINR γGi,j , (1 ≤ i ≤ Ncu) for the user uGi,j is expressed as:

γG1,j =
pG,R1,j

σ2
,

γGi,j =
pG,Ri,j

σ2 +
∑i−1
l=1 p

G,R
i,l,j

, (1)

(2 ≤ i ≤ Ncu)

where pG,Ri,l,j denotes the interference power imposed to the
user uGi,j by the signal transmitted to the user uGl,j in the
same cluster j, and σ2 denotes the noise’s power. Now let
CGi,j denote the channel capacity of the user uGi,j . According
to the Shannon–Hartley theorem, the channel capacity CGi,j is
defined as:

CGi,j = Blog2(1 + γGi,j), (2)

where B is the bandwidth assigned to each user and each
cluster. Following [11], the channel’s bandwidth as well as
the noise’s power are assumed to be equal for all clusters.
The total transmission power of the FlyBS at the time tk is
expressed as:

PTX(X,Y,H, tk, G) =

Ncl∑

j=1

Ncu∑

i=1

pG,Ti,j , (3)

where pG,Ti,j is the transmission power of the FlyBS to the
uGi,j . According to the Friis’ transmission equation, pG,Ti,j is
determined as:

pG,Ti,j =
(4πf)2

DG,T
i,j DG,R

i,j c2
pG,Ri,j dGi,j

2
,

1 ≤ i ≤ Ncu, 1 ≤ j ≤ Ncl, (4)

where pG,Ri,j is the received signal power by the user uGi,j ,
DG,T
i,j is the gain of the FlyBS’s antenna, DG,R

i,j is the gain
of the user’s antenna, dGi,j is the distance between the FlyBS
and the user uGi,j , f is the communication frequency, and c =
3× 108 m/s is the speed of light. The coefficient (4πf)2

DG,T
i,j DG,R

i,j c2

is substituted by Q in the rest of the paper for clarity and
simplicity of the discussions. Using (4), the total transmission
power of the FlyBS is rewritten as:

PTX(X,Y,H, tk, G) =

Ncl∑

j=1

Ncu∑

i=1

QpG,Ri,j dGi,j
2
, (5)

By expanding (5) with the coordinates of the users and the
FlyBS, we get:

PTX(X,Y,H, tk, G) = (6)
Ncl∑

j=1

Ncu∑

i=1

QpG,R
i,j ((X(tk)− xGi,j(tk))2 + (Y (tk)− yGi,j(tk))2 +H(tk)

2).

B. Problem Formulation

Our goal is to find the position of the FlyBS jointly with
the clustering of the users for NOMA purposes to minimize
the transmission power of the FlyBS while guaranteeing a
minimum capacity for the users. We formulate the joint
problem of the transmission power minimization and users’
clustering as:

[Gopt, [Xopt(tk), Yopt(tk)]] = argmin
[G,[X(tk),Y (tk)]]

PTX ,∀k (7)

s.t. CGi,j(tk) ≥ Cmin,∀j ∈ 〈1, Ncl〉 ,∀i ∈ 〈1, Ncu〉 ,∀k,
where the constraint guarantees that every user receives at least
the minimum required capacity Cmin all the time. In line with
[11], the minimum capacity is assumed to be the same for all
the users. We note that, similar to many works (e.g., [14]-
[17]) we do not consider the power consumption due to the
FlyBS’s movement (known as propulsion power). The problem
of power optimization including the propulsion power is left
for future work due to page limit of this paper.

III. PROPOSED OPTIMAL GROUPING OF USERS FOR NOMA
AND POSITIONING OF FLYBS

In this section, we provide a novel method to solve (7) by
finding the optimal grouping function Gopt as well as the op-
timal FlyBS’s positions [Xopt(tk), Yopt(tk)] over time. From
the definition of grouping, there are Nu!

Ncl!
different grouping

options (grouping options that are obtained by switching the
label (index) of clusters are considered the same). Thus, the
number of options becomes extremely large for realistic values
of Nu (it is about 17.2 million options even for only 14 users).
This motivates us to find an analytical solution to grouping.

We start by deriving the conditions that yield the minimum
transmission power, and then we find the position of FlyBS
corresponding to the minimum transmission power. From the
constraint in (7) and using (2), it is inferred that:



γGi,j ≥ γmin, (8)

where γmin = (2Cmin/B − 1) is a positive constant. Then,
from (1), we rewrite (8) as:

pG,R1,j

σ2
≥ γmin,

pG,Ri,j

σ2 +
∑i−1
l=1 p

G,R
i,l,j

≥ γmin, (9)

(2 ≤ i ≤ Ncu, 1 ≤ j ≤ Ncl).
Using (9), we find the conditions to reach the minimum

transmission power as follows. Equation (9) is rewritten using
(4) as:

pG,T
1,j

QdGi,j
2

σ2
≥ γmin,

pG,T
i,j

QdGi,j
2

σ2 +
∑i−1

l=1 p
G,T
l,j

QdGi,j
2

≥ γmin, (10)

(2 ≤ i ≤ Ncu, 1 ≤ j ≤ Ncl).
After several simple math operations, (10) is transformed to

(assuming
∑0

1 is equal to 0):

γmin

i−1∑

l=1

pG,Tl,j + γminQd
G
i,j

2
σ2 ≤ pG,Ti,j , (11)

(1 ≤ i ≤ Ncu, 1 ≤ j ≤ Ncl).
Therefore, by writing down (11) for every j ∈ 〈1, Ncl〉 and

for all i ∈ 〈1, Ncu〉, we get
Ncl∑

j=1

Ncu∑

i=1

pG,Ti,j ≥ γminQσ2
Ncl∑

j=1

Ncu∑

i=1

((1 + γmin)
Ncu−i)dGi,j

2
.

(12)

The minimum in (12) is achieved when the equality in (11)
holds for 1 ≤ i ≤ Ncu, and 1 ≤ j ≤ Ncl, that is, if:

γmin

i−1∑

l=1

pG,Tl,j + γminQd
G
i,j

2
σ2 = pG,Ti,j , (13)

(1 ≤ i ≤ Ncu, 1 ≤ j ≤ Ncl).
Hence, from (13), we derive PTX(X,Y,H, tk, G) as:

PTX(X,Y,H, tk, G) = γminQσ
2
Ncl∑

j=1

Ncu∑

i=1

((1 + γmin)
Ncu−i)dGi,j

2
=

Ncl∑

j=1

Ncu∑

i=1

((1 + γmin)
Ncu−i)((X(tk)− xGi,j(tk))

2+

(Y (tk)− yGi,j(tk))
2 +H(tk)

2). (14)

From (14), the FlyBS’s position to achieve the minimum
transmission power is derived for each grouping function G
by evaluating the transmission power at its critical point(s).
Thus, by solving equations ∂PTX

∂X = 0 and ∂PTX

∂Y = 0 with
PTX defined in (14), we get the following critical point:

XG
opt =

∑Ncl

j=1

∑Ncu

i=1 ((1 + γmin)
Ncu−ixGi,j)∑Ncl

j=1

∑Ncu

i=1 ((1 + γmin)Ncu−i)
, (15)

Y Gopt =

∑Ncl

j=1

∑Ncu

i=1 ((1 + γmin)
Ncu−iyGi,j)∑Ncl

j=1

∑Ncu

i=1 ((1 + γmin)Ncu−i)
.

Knowing the coordinates XG
opt and Y Gopt and considering

the definition of the total transmission power in (14), the
corresponding minimum transmission power is determined by
plugging (15) into (14). After a few simple math operations,
the minimum transmission power corresponding to the group-
ing function G is rewritten as:

PminTX (G) = PTX(XG
opt, Y

G
opt, H, tk, G) = γminQσ

2NuH
2+

γminQσ
2(δGx + δGy ), (16)

where

δGx = −
(
∑Ncl

j=1

∑Ncu
i=1 ((1 + γmin)

Ncu−i)xGi,j)
2

∑Ncl
j=1

∑Ncu
i=1 ((1 + γmin)Ncu−i)

+

Ncl∑

j=1

Ncu∑

i=1

((1 + γmin)
Ncu−ix2

G
i,j),

δGy = −
(
∑Ncl

j=1

∑Ncu
i=1 ((1 + γmin)

Ncu−i)yGi,j)
2

∑Ncl
j=1

∑Ncu
i=1 ((1 + γmin)Ncu−i)

+

Ncl∑

j=1

Ncu∑

i=1

((1 + γmin)
Ncu−iy2

G

i,j). (17)

We note that for the movement in line with the system model,
i.e., a crowd of users (e.g., vehicles) moving along the street
in the direction of x-axis, the value of δGx is significantly
larger than δGy in a system of vehicles at a road or a highway.
This is mainly because δGx and δGy can be interpreted as a
weighted sample variance of the x and y coordinates of the
users’ locations, respectively, and the range of x-coordinates
corresponding to the vehicles is much larger than the range
of y-coordinates (we do not show further details due to page
limit). Therefore, we find the optimal grouping function by
minimizing δGx .

To minimize δGx , we first derive an optimal grouping func-
tion Gopt via Theorem 1, that provides a necessary condition
for Gopt.

Theorem 1. Suppose that before grouping of users into
clusters, the x-coordinates of the users are sorted as Xsorted =
{xl1 , . . . , xlNu

}, such that xl1 < ... < xlNu
. Then, for

the grouping function that minimizes δGx (i.e., the optimal
grouping), the set of first users of all clusters (i.e., the users
x
Gopt

1,1 , x
Gopt

1,2 , . . . , x
Gopt

1,Ncl
) should be Ncl consecutive users in

the sorted sequence Xsorted, i.e., {xGopt

1,1 , x
Gopt

1,2 , . . . , x
Gopt

1,Ncl
} =

{xlr , xlr+1 , ..., xlr+Ncl−1
} for some r ∈ 〈1, Nu −Ncl + 1〉.

Furthermore, the set of second users of all clusters (i.e.,
x
Gopt

2,1 , x
Gopt

2,2 , . . . , x
Gopt

2,Ncl
) should be Ncl consecutive users in

the sorted sequence Xsorted\{xGopt

1,1 , x
Gopt

1,2 , . . . , x
Gopt

1,Ncl
}, and

so on and so forth for the rest of the users of all groups.

Proof. We prove Theorem 1 using mathematical contradic-
tion as follow: Suppose that {xGopt

1,1 , x
Gopt

1,2 , . . . , x
Gopt

1,Ncl
} =

{xi1 , ..., xiNcl
} with xi1 < ... < xiNcl

. Then, by contradiction,
we assume that the users in {xi1 , ..., xiNcl

} are not consecutive
in Xsorted and there exists xj such that xi1 < xj < xiNcl

and
xj /∈ {xi1 , ..., xiNcl

} Also, we assume that, for Gopt , xj is
the s-th user in some cluster (s > 1).



Let G1 denote the grouping function that is obtained by
swapping xi1 and xj in Gopt. Similarly, G2 denotes the
grouping obtained by swapping xiNcl

and xj in Gopt. From
the optimality of Gopt it is inferred that:

δGopt
x − δG1

x < 0, (18)

δGopt
x − δG2

x < 0.

Now, we rewrite the left-hand side terms in (18) in terms
of the system parameters as follow:

δ
Gopt
x − δG1

x = (x2i1 − x2j )((1 + γmin)
Ncu−1 − (1 + γmin)

Ncu−s)− αβ,

α =
(xi1 − xj)((1 + γmin)

Ncu−1 − (1 + γmin)
Ncu−s)

∑Ncl
j=1

∑Ncu
i=1 ((1 + γmin)Ncu−i

,

β = 2

Ncl∑

j=1

Ncu∑

i=1

((1 + γmin)
Ncu−ixGi,j)− (1 + γmin)

Ncu−1xi1−

(1 + γmin)
Ncu−1xj − (1 + γmin)

Ncu−sxi1 − (1 + γmin)
Ncu−sxj .

(19)

Using the first inequality in (18) and using the fact that
xi1 < xj , it follows from (19) that:

(

Ncl∑

j=1

Ncu∑

i=1

(1 + γmin)
Ncu−i)(xi1 + xj)− β > 0. (20)

A similar inequality to (20) can be derived from the second
inequality in (18) (details omitted due to page limit). Then, by
summing the respective sides in (20) and in the other derived
inequality, it is concluded that:

Ncl∑

j=1

Ncu∑

i=1

(1 + γmin)
Ncu−i− (21)

((1 + γmin)
Ncu−1 + (1 + γmin)

Ncu−s) < 0,

which is not correct, since the left-hand side in (21) consists
of a summation of positive terms (after excluding (1 +
γmin)

Ncu−1 and (1 + γmin)
Ncu−s from

∑Ncl

j=1

∑Ncu

i=1 (1 +

γmin)
Ncu−i), and so this contradicts the initial assumption

that the users in {xi1 , ..., xiNcl
} are not consecutive. There-

fore, {xi1 , ..., xiNcl
} consists of consecutive users in Xsorted.

By a similar procedure as above, we verify that the sec-
ond users of all clusters should be consecutive values in
Xsorted\{xGopt

1,1 , x
Gopt

1,2 , . . . , x
Gopt

1,Ncl
}, and so on for the next

users of all clusters. This completes the proof to Theorem
1.

Theorem 1 provides a solution to choosing the optimal
grouping function as follows: First, we sort the x-coordinates
of users as xl1 < ... < xlNu

, and list all possible se-
quences of length Ncl that consist of consecutive values in
Xsorted = {xl1 , . . . , xlNu

}. There are (Nu−Ncl+1) of such
sequences. According to Theorem 1, the set of first users of
all clusters in the optimal grouping is one of those sequences
in the list. Therefore, instead of considering all

(
Nu

Ncl

)
of such

possible subsets, we only have (Nu − Ncl + 1) candidates.
Of course, the optimal sequence cannot be determined until
all of the Nu users are assigned to groups. Therefore, for

each of the sequences in the first step, we list all sequences
of Ncl consecutive users in the remaining set of users in
Xsorted. Again, according to theorem 1, the set of second
users of all clusters in the optimal grouping is one of these
sequences. We repeat the procedure until there is no users
left, that is, all the groups are completed. Next, we use (14)
to evaluate the transmission power corresponding to every
grouping completed in the procedure, and then choose the one
that yields the minimum transmission power.

The size of the search space in the provided method is
Ncu∏

k=1

(Nu − kNcl + 1). (22)

The search space is polynomial with Nu and Ncl and its
size is significantly reduced with respect to search space of
the exhaustive search, which is Nu!

Ncl!
.

IV. SIMULATIONS AND RESULTS

In this section, we provide details of models and simulations
adopted for evaluation of the performance of the proposed op-
timization of the transmission power consumed by the FlyBS
serving mobile users. We also demonstrate the advantages of
the proposed scheme over existing state of the art schemes.

A. Simulation scenario and models

We consider a scenario where the FlyBS serves users
represented by vehicles and/or users in vehicles during a busy
traffic or a traffic jam at a road or a highway in a rural area.
In such situation, the FlyBS is a suitable solution to improve
the performance, since the conventional network is usually
overloaded as plenty of active users are located in a small
area with a limited network coverage (see, e.g., [20]).

The users are assumed to move on a 3-lane highway in the
positive direction of x-axis. The users are distributed uniformly
among all three lanes. Within one lane, the velocities of all
users are the same so that the minimum regulated distance
between the vehicles is kept all the time. More specifically, we
set the two-second rule, that is, the minimum distance between
two vehicles is equal to the distance moved by the vehicles
within two seconds. The velocities are selected uniformly over
interval {19-24} m/s, {17-19} m/s, and {14-16} m/s for the
first, second, and third lanes, respectively. A common rotary-
wing UAVs is considered to serve the users. Such UAV can fly
typically with a maximum speed of about 25m/s [21], thus,
the typical FlyBS is not efficient for higher speeds than 25
m/s as the FlyBS cannot follow the vehicles’ movement.

We assume free space path loss (FSPL) model for the
wireless channel, as the communication link between the
FlyBS and the vehicles on the road is typically without any
obstacles and the FSPL is a commonly adopted model in such
cases ([8], [10], [18]). Omni-directional antennas with gains
of 7 dBi and 0 dBi for the FlyBS and the users are considered,
respectively, in line with [22]. The radio frequency f = 2.6
GHz and a bandwidth of 100 MHz are selected. Spectral
density of noise is set to –174 dBm/Hz. Following [18], the



TABLE I: Parameter Configurations

System Parameter Numerical value
Number of users in the coverage area, Nu {30,60,90}
FlyBS’s antenna gain, Dj,T

i,G 7 dBi
User’s antenna gain, Dj,R

i,G 0 dBi
Noise power spectral density, Ni –174 dBm/Hz
Minimum guaranteed capacity to each user Cmin 15 Mbps
RF frequency, f 2.6 GHz
System bandwidth 100 MHz
Altitude of FlyBS, H 100 meters
Simulation Duration 600 s
Number of simulation drops 100

FlyBS’s altitude is fixed at H = 100 m. The simulations are
performed for the capacity required by each user Cmin = 15
Mbps. Each simulation is of 600 seconds duration with the
optimal grouping and transmission power calculated every
second. The results are averaged out over 100 simulation
drops. The system parameters are summarized in Table I.

Our proposal, which minimizes the FlyBS’s transmission
power consumption together with the FlyBS’s positioning and
determination of the optimal grouping of users for NOMA
purposes (as elaborated in Section III) is compared with
four most-related state of the art schemes: i) the algorithm
introduced in [10] that provides a joint NOMA pairing and
FlyBS’s positioning for sum rate maximization (referred to as
SRM in the later discussions in this paper), ii) an enhanced
version of SRM in [10] (referred to as ESRM) that adopts
the pairing scheme as in [10], but the position of FlyBS
is enhanced by our proposed positioning according to (15)
in order to achieve the minimum transmission power, as the
solution in [10] targets a maximization of sum rate, iii) the
algorithm developed in [12] that adopts the optimal grouping
corresponding to the minimum transmission power in NOMA
with static base station (referred to as SBS), and hence, does
not provide any solution to the FlyBS’s positioning, iv) an
enhanced version of SBS (referred to as ESBS) that adopts the
grouping scheme according to [12], but the positioning of the
FlyBS is enhanced by our proposed positioning according to
(15) to achieve the minimum transmission power consumption.

B. Simulation results

In this subsection, we present and discuss simulation results.
First, we focus on an evolution of the transmission power
consumption of the FlyBS over time to demonstrate the
advantage of our proposed method over the existing solutions
in terms of an efficient power management and consequent
enhancement of coverage. Then, we compare the performance
of the proposed scheme with existing solutions in terms of
complexity and average power consumption.

Fig. 2 illustrates the transmission power of the FlyBS over
time for Cmin = 15 Mbps guaranteed to each user and for
Nu = 90 (top subplot) and Nu = 30 (bottom subplot). In
this figure, we assume NOMA is set so that users are paired
(Ncu = 2), thus, two users share the same time-frequency
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Fig. 2: Transmission power vs. operation time of the FlyBS
for Nu = 90 (top subplot) and Nu = 30 (bottom subplot).

resources. The transmission power consumption is increasing
in general over time, for all solutions. This is due to a general
increase in the relative distance between the first and the last
vehicles in the scenario over time caused by diverse velocities
of vehicles on different lanes causing a gradual expansion of
the area demarcated by users covered by the FlyBS.

Fig. 2 further shows that the transmission powers corre-
sponding to SRM, ESRM, and ESBS grow notably faster than
for our proposed solution and the power is reduced roughly
by 33%, 50%, and 66% with respect to SRM, ESRM, and
ESBS, respectively for Nu = 90. We depict also the optimum
power consumption determined via the exhaustive search. As
the complexity of the exhaustive search does not allow to
determine results for Nu = 90, we show it only for Nu = 30.
The results confirm that the proposed solution reaches almost
the optimum performance with totally negligible difference.

The efficiency of the proposed method is explained also in
terms of the coverage as, in practice, the transmission power
of the FlyBS is limited. Thus, the FlyBS may fail to guarantee
Cmin to all the users if the power limit is reached. In such case,
a higher number of FlyBSs is required and the users should be
associated to other FlyBSs to ensure a continuous coverage. In
this sense, our proposed solution provides a higher coverage
radius and less FlyBSs are needed to cover a specific area.

For example, if the transmission power of the FlyBS is
limited to 1 Watt, Fig. 2 shows that the FlyBS is not able
to guarantee Cmin to all users after 10 s, 380 s, 400 s, 450
s, and 600 s, for SBS, ESBS, SRM, ESRM, and the proposal,
respectively. More specifically, compared with SBS, ESBS,
SRM, and ESRM, the maximum covered area provided by
the proposal is 155%, 36%, 26%, and 17% larger, respectively.
Note that the transmission power reached by SBS (scheme iii,
see previous subsection) is in the order of hundreds of watts,
since the relative distance between the base station and the
users increases notably due to immobility of the base station.
Hence, the results of SBS are omitted in the rest of the paper.

Next, we investigate an impact of the number of users on the
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Fig. 3: Average transmission power achieved by individual
schemes for various numbers of users Nu.

transmission power in Fig. 3 (with Ncu = 2 for all schemes). It
is observed that the average transmission power increases with
the number of users, as a larger Nu results in less bandwidth
available for each cluster of users, and so a higher transmission
power is required to satisfy Cmin = 15 Mbps. Our proposed
solution reaches the lowest transmission power of the FlyBS
disregarding the number of served users Nu. For Nu = 90,
the transmission power is reduced by 48%, 38%, and 31%
comparing to SRM, ESRM, and ESBS, respectively.

We also show the complexity of the proposed and state
of the art solutions for joint users’ pairing and the FlyBS’s
positions in Table II for Nu = 90. The complexity is defined
as the number of calculations (math operations) performed by
each solution. The results are shown for Ncu = 2, since ESRM
is designed for Ncu = 2 and its extension to Ncu > 2 is not
straightforward. Note that we do not include the complexity
of SRM and ESBS, as the complexity of these is not easy to
calculate, because the SRM and ESBS solutions are based on
bisection search [10] and convex optimization, respectively.
Table II confirms that the proposed optimization reduces the
complexity significantly with respect to exhaustive search
(2.7×1080 times) as well as with respect to ESRM (twice).

V. CONCLUSIONS

In this paper, we have studied the problem of joint FlyBS’s
positioning and transmission power minimization in future
mobile networks based on NOMA. We formulate the trans-
mission power minimization problem in terms of the group-
ing of users for NOMA purposes and determination of the
FlyBS’s positions over time as the users move. Then, we
provided a solution to find the optimum grouping and the
FlyBS’s positions that yield the minimum transmission power
while guaranteeing a minimum required capacity for all users.
Furthermore, we show that the proposed solution reduces the
transmission power consumed by the FlyBS by tens of percent
while the required capacity of the moving users is always
satisfied. Due to the efficient transmission power consumption

TABLE II: Complexity of power optimization represented as
the number of math operations required to obtain results.

Method Complexity
Proposed transmission power optimization 46
ESRM 90
Exhaustive search 1.24×1082

in the proposed method, the coverage area of the FlyBS is
significantly expanded.

In the future work, a scenario with multiple FlyBS should
be studied. This scenario implies another dimension of the
problem related to the user association to individual FlyBSs.
Furthermore, the problem of power optimization with inclu-
sion of propulsion power consumption should be considered.
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Optimal Positioning of Flying Base Stations and
Transmission Power Allocation in NOMA Networks
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Abstract—Unmanned aerial vehicles (UAVs) acting as flying
base stations (FlyBSs) are considered as an efficient tool to
enhance the capacity of future mobile networks and to facilitate
the communication in emergency cases. These benefits are,
however, conditioned by an efficient control of the FlyBSs and
management of radio resources. In this paper, we propose a
novel solution jointly selecting the optimal clusters of an arbitrary
number of the users served at the same time-frequency resources
by means of non-orthogonal multiple access (NOMA), allocating
the optimal transmission power to each user, and determining
the position of the FlyBS. This joint problem is constrained
with the FlyBS’s propulsion power consumed for flying and
with a continuous guarantee of a minimum required capacity
to each mobile user. The goal is to enhance the duration of a
communication coverage in NOMA defined as the time interval
within which the FlyBS always provides the minimum required
capacity to all users. The proposed solution clusters the users
and allocates the transmission power of the FlyBS to the users
efficiently so that the communication coverage provided by the
FlyBSs is extended by 67%–270% comparing to existing solutions
while the propulsion power is not increased.

Index Terms—Flying base station, non-orthogonal multiple
access, user clustering, transmission power, mobile users, mobile
networks, 6G.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) acting as flying base
stations (FlyBSs) provide a promising way to address various
concerns and challenges in the future mobile networks. Due
to a high mobility, the FlyBSs present exclusive features,
such as adaptability to the network topology and to the
actual users’ requirements, in comparison to conventional
static base stations [1]. These advantages make the FlyBSs an
efficient solution for multiple practical applications including
surveillance and monitoring [2], [3], data traffic management
[4], emergency missions [5], network coverage enhancement
[6], [7], data gathering from IoT devices [8], or improving
users’ quality of service [1], [9], [10].

A critical and limiting aspect in the networks with FlyBSs
is a power consumption. In [11], an efficient positioning of the
FlyBSs is proposed to maximize the number of covered users
while reducing the transmission power in orthogonal multiple
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access (OMA) network. However, the power consumption due
to movement of the FlyBS (denoted as propulsion power)
is not considered. Furthermore, the problem of a throughput
improvement in the OMA-based mobile networks with FlyBSs
is addressed in [12]. Then, in [13], the authors maximize
the throughput via a positioning of the FlyBS in the mobile
networks with OMA. However, neither the transmission nor
the propulsion power consumption is considered in [12] and
[13]. In [14] and [15], the power consumption of the FlyBS
serving moving users is optimized and a joint power control
and FlyBS’s positioning is provided for the networks with
OMA.

Non-orthogonal multiple access (NOMA) is considered
as a promising technique in future mobile networks [16].
NOMA provides a high spectral efficiency by including
a superposition coding at a transmitter and a successive-
interference-cancellation (SIC) decoding at a receiver [17].
Thus, NOMA enables to group users into clusters and
serve all users in one cluster at the same time-frequency
resources with a separation in a power domain [18].
Consequently, NOMA potentially increases throughput and
spectral efficiency comparing to OMA [1], [17], [19], [20].

Key challenges related to NOMA include fairness control
[21], [22], throughput improvement [23], resource allocation
[24], [25], [26], [27], [28], network coverage [29], and
pairing (or clustering) of the users served at the same time-
frequency resources [24], [30]. These key challenges are
even emphasized and extended when NOMA is integrated to
the networks with FlyBSs [16]. For example, the clustering
schemes developed for the networks with the static base
stations consider instantaneous gains of the users’ channels as
a criteria to find the users’ clustering in [24], [30]. However,
such approach is not suitable for the networks with the FlyBS,
as the next position of the FlyBS is determined based on the
current pairing/clustering, while the selected clustering of the
users is based on the current position of the FlyBS. Hence, the
solutions designed for the static base stations are not suitable
for the FlyBSs.

In [31], the problem of optimizing the FlyBS’s altitude,
antenna beamwidth, and transmission power allocation is
investigated to maximize the sum capacity in a multiuser
NOMA network. However, the problem of the user’s
pairing/clustering is not investigated, as the authors assume
the users are already (beforehand) paired into fixed clusters.

Furthermore, in [32], the authors investigate the coverage



in a network with two static users served by the FlyBS.
The authors provide a combination of NOMA and OMA
transmission to reduce an outage probability of the users.
However, the positioning (trajectory) of the FlyBS is not
optimized. Then, in [29], the authors determine the altitude
of the FlyBS serving also only two static users in the network
with NOMA to maximize Jain’s fairness index. The paper [29]
is extended in [23] by a power allocation and a determination
of the FlyBS’s altitude to maximize the sum capacity of two
static users. Nevertheless, the x and y coordinates of the FlyBS
are fixed. Thus, the flexibility in a spatial deployment offered
by the FlyBSs is not fully exploited. In [33], the authors
provide a resource allocation for NOMA with the FlyBS to
maximize the throughput in a scenario with, again, only two
static users. Then, in [34], the authors focus on a problem
of the sum capacity maximization via the transmission power
allocation and the FlyBS’s trajectory optimization in a hybrid
network consisting of the FlyBS serving users via OMA and
a static base station serving the users via NOMA so that all
users served by the static base station are in one cluster. In
[35], a joint FlyBS positioning and the transmission power
allocation is targeted to improve the sum capacity of the users
that are all grouped into just one cluster. Since there is only
one cluster of the users considered in [23], [29], [32], [33],
[34], [35], the problem of the users’ pairing/clustering is not
addressed by any of these works.

In [18], a heuristic solution for a joint user clustering
and positioning of the FlyBS is proposed to increase the
sum capacity. The user clustering for NOMA is limited
to only two users (i.e., a pairing of the users) and its
generalization to the clustering of more than two users is not
straightforward. Moreover, the FlyBS’s power consumption is
not considered and the provided solution is sub-optimal and
loses performance as the number of users increases.

In [36], the authors target to guarantee a secure transmission
for static users served by the FlyBS in NOMA considering
also a simultaneous wireless information and power transfer
(SWIPT). Then, in [37] the authors provide a joint power
allocation, beamspace precoding, and FlyBS positioning to
maximize an energy efficiency in NOMA with the static users.
However, the problem of the propulsion power consumption
is addressed in neither [36] nor [37], as the FlyBS is assumed
to hover at a fixed position during the entire operation in these
papers.

To the best of our knowledge, the transmission power
optimization and the optimal clustering of an arbitrary number
of users for NOMA in the networks with FlyBSs is not
investigated in the literature. However, the problem of the
transmission power allocation should not be ignored, as
it directly affects the communication coverage in NOMA
provided by the FlyBSs. Due to the maximum transmission
power limit of any transmitter in real world application,
including the FlyBSs, the FlyBS might fail to satisfy the
minimum capacity required by the users if the transmission
power in NOMA is not managed and allocated to the users
properly. The guarantee of the minimum capacity is mandatory

in many real-time applications, such as assisted or autonomous
driving, or in emergency situations. Many works focus on
the transmission power optimization of the FlyBSs for a
variety of OMA scenarios, see e.g., [1], [9], [14]. However,
in NOMA, the transmission power becomes an even more
critical aspect, as adopting an inefficient clustering of the
users and power allocation can lead to a requirement on a
very high transmission power beyond the maximum allowed
transmission power of the FlyBS and to an inability to
guarantee the users’ required capacity.

In this paper, we propose a joint clustering of the users
for NOMA, optimal allocation of the transmission power
for NOMA, and optimal FlyBS’s positioning to enhance a
duration of the communication coverage in NOMA networks.
Moreover, we consider practical constraints on the FlyBS’s
speed, acceleration, and propulsion power consumption,
while continuously guaranteeing a minimum communication
capacity to each mobile user. The detailed contribution and
novelty presented in our paper are as follow:

• We express analytically the transmission power
consumption as a function of i) the user clustering
for NOMA, ii) the users’ minimum required downlink
capacity, and iii) the users’ relative locations with
respect to the FlyBS. Then, the minimum achievable
transmission power is expressed in terms of these
parameters.

• As a major contribution, we derive a low-complexity
analytical solution determining the optimum user
clustering for NOMA with an arbitrary number of users
in every cluster, and we determine the corresponding
position of the FlyBS to optimize the transmission power
allocation. This enables to increase the communication
coverage provided by the FlyBS while continuously
guaranteeing the minimum capacity required by the
mobile user.

• We also take the propulsion power consumption into
account to make the proposed solution efficient in terms
of a total power consumption and we propose a method
to control the propulsion power considering the speed and
acceleration limits of the FlyBSs.

• By simulations, we show that our proposed clustering of
the users for NOMA, transmission power allocation to the
users in the same NOMA cluster, and FlyBS’s positioning
significantly enhances the communication coverage in
NOMA provided by the FlyBS and we show that our
proposal is applicable also to a scenario with multiple
FlyBSs.

Note that this paper is an extension of our prior work [38],
where we outline a general idea of the transmission power
optimization for the FlyBS with NOMA and we provide initial
results.

The rest of the paper is organized as follow. In Section
II, we present the system model and formulate the problem
of joint NOMA clustering, transmission power allocation,
and FlyBS’s positioning. The proposed solution is introduced



and thoroughly described in Section III. The performance of
the proposed solution and a comparison with state-of-the-
art solutions are discussed in Section IV. Last, Section V
concludes the paper and outlines future research directions.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section we first explain the model for the user
clustering and SIC decoding in the networks with NOMA
and with FlyBS, and we provide details about transmission
power modeling. Furthermore, we formulate the problem of
user clustering, power allocation, and FlyBS’s positioning.

A. System Model

We consider one FlyBS serving Nu mobile users U =
{u1, u2, . . . , uNu} in an area as shown in Fig. 1. The users
are moving in the same direction similar to, e.g., movement
of vehicles on a sub-urban/rural road or a highway. The
deployment of the FlyBS is a suitable solution in busy traffic or
traffic jam situations to improve the network performance, as
the conventional network is usually overloaded by many active
users located in a relatively small area with a limited network
coverage, (see, e.g., [39], [40]). Without loss of generality, we
assume the movement of the users is aligned with the x-axis
to simplify the notations and explanation of the idea. All Nu
users in the area communicate directly with the FlyBS. The
FlyBS and the users use single antenna, since the principle
of our proposed solution is independent of the number of
antennas. The proposed solution can be easily enhanced
towards MIMO, as the interference between different clusters
in MIMO is canceled by allocating orthogonal resources to
different clusters [41]. After the interference cancellation, our
solution can be directly applied to MIMO.

Let {X(t), Y (t), H(t)} denote the location of the FlyBS at
the time t. We assume that the altitude of the FlyBS is fixed
at H(t) = H as in many related works, see e.g., [15], [18],
[33], [36]. Note that we adopt this assumption, as the height
optimization does not change the principle of the proposed
solution, however, it makes the mathematical derivations and
explanations clearer and easier to follow. In our model, we
consider mobile users and, thus, the coordinates of the users as
well as of the FlyBS change over time. As commonly expected
in the related works, we assume that the current positions of
the users are known to the FlyBS (see, e.g., [18], [23], [42]).
However, we assume a realistic case, where the positioning
information is inaccurate and contains a positioning error.
Thus, the known user’s position is given as:

xGi,j(t) = xexact,Gi,j (t) + exi,j(t),

yGi,j(t) = yexact,Gi,j (t) + eyi,j(t), (1)

where xexact,Gi,j (t) and yexact,Gi,j (t) are the exact x and y

coordinates of the user uGi,j at the time t, respectively, and
exi,j(t) and eyi,j(t) are the positioning errors in x and y
coordinates at the time t, respectively. The FlyBS is able
to determine its own position as this information is anyway

Fig. 1: System model with multiple mobile users (blue dots) deployed
within coverage area of the FlyBS and grouped into clusters (red
circles) for NOMA purposes.

mandatory for a common flying and navigation of the FlyBSs
[33].

In NOMA, the users are grouped into clusters such that
all users in each cluster share the same frequency at the
same time. Thus, the data transmission to the users in the
same cluster imposes an interference (referred to as intra-
cluster interference). However, there is no interference among
different clusters. Let G denote the space of all possible
functions that group the users into Ncl clusters such that
the number of users in each cluster is larger than or equal
to 1 and does not exceed Nmax

cu . For Ncl = 1, the user
in the given cluster is served at orthogonal resources by
means of OMA. Furthermore, the maximum cluster size Nmax

cu

can be set to an arbitrary value and is practically related to
an incurred complexity in SIC decoder. Thus, the maximum
cluster size Nmax

cu is typically much lower than the number
of users (Nmax

cu � Nu). Let Ncu,j denote the size of the j-
th cluster, hence, Nu =

∑Ncl
j=1Ncu,j with Ncu,j ≤ Nmax

cu .
Each function G ∈ G is defined as a bijective mapping
G: 〈1, Nu〉 → 〈1, Ncl〉 × 〈1, Nmax

cu 〉 and the function G
assigns the user un as the ncu-th user in the ncl-th cluster
if G(n) = (ncl, ncu) for the given n. We refer to ncu and
ncl as the index of the user in the cluster and the index
of the cluster, respectively. Let uG1,j , u

G
2,j , . . . , u

G
Ncu,j ,j

denote
the users assigned by the clustering function G to the j-th
cluster (1 ≤ j ≤ Ncl). Then, {xGi,j(t), yGi,j(t)} represent the
coordinates of the user uGi,j at the time t.

Now we focus on SIC as a common interference
cancellation method in NOMA. Suppose that in SIC, the user
uGi,j in the j-th cluster (1 ≤ i ≤ Ncu,j − 1) cancels the
interfering signals from the user i′ in the same cluster (i.e.,
uGi′,j) for i + 1 ≤ i′ ≤ Ncu to extract its own signal. As a
result of this, the achievable SINR γGi,j , (1 ≤ i ≤ Ncu,j) for
the user uGi,j is expressed as:

γGi,j =
pG,Ri,j (t)

σ2 +
∑i−1
l=1 p

G,R
i,l,j (t)

, (1 ≤ i ≤ Ncu,j), (2)



where pG,Ri,j (t) represents the received signal power by the user
uGi,j , p

G,R
i,l,j (t) denotes the interference power imposed to the

user uGi,j by the signal transmitted to the user uGl,j in the same
cluster j, and σ2 is the noise power. Furthermore, let CGi,j(t)
denotes the channel capacity of the user uGi,j . According to
the Shannon–Hartley theorem, the channel capacity CGi,j(t) is
defined as:

CGi,j(t) = B × log2(1 + γGi,j), (3)

where B is the bandwidth assigned to each user and each
cluster. As the bandwidth allocation is not a critical aspect for
NOMA (it is challenging rather for OMA, see [18], [42]), the
channel bandwidth as well as the noise power are assumed to
be equal for all clusters.

Now, let us define the model for the transmission power of
the FlyBS. The total transmission power of the FlyBS at the
time tk for the user clustering function G is expressed as:

PTX(X,Y,H, tk, G) =

Ncl∑

j=1

Ncu,j∑

i=1

pG,TXi,j (tk), (4)

where pG,TXi,j (tk) is the transmission power of the FlyBS to
the uGi,j . We assume line-of-sight (LoS) communication, since
obstacles appear rather exceptionally between the FlyBS at a
relatively high altitude and the vehicles on a sub-urban/rural
road, hence, the LoS link is dominant. We evaluate LoS
probability in our scenario later in Section IV to validate
this assumption. According to the Friis’ transmission equation,
pG,TXi,j (tk) is determined as:

pG,TXi,j (tk) =
(4πf)α

DG,TX
i,j DG,R

i,j cα
pG,Ri,j (tk)dGi,j

α
(tk),

(1 ≤ j ≤ Ncl, 1 ≤ i ≤ Ncu,j), (5)

where α denotes the path-loss exponent, DG,TX
i,j is the gain of

the FlyBS’s antenna, DG,R
i,j is the gain of the user’s antenna,

dGi,j(tk) represents the distance between the FlyBS and the user
uGi,j , f is the communication frequency, and c = 3×108 m/s is
the speed of light. The coefficient (4πf)α

DG,TXi,j DG,Ri,j cα
is substituted

by Q in the rest of the paper for clarity of the discussions.

Using (5), the total transmission power of the FlyBS is
rewritten as:

PTX(X,Y,H, tk, G) =

Ncl∑

j=1

Ncu,j∑

i=1

QpG,Ri,j (tk)× dGi,j
α

(tk),

(6)

Furthermore, for the propulsion power, we refer to the
model provided in [43] for rotary-wing FlyBSs. In particular,
let VFlyBS(tk) denote the FlyBS’s speed at tk. Then, the
propulsion power consumption is expressed as a function of
VFlyBS(tk) as:

Ppr(tk) = L0

(
1 +

3V 2
FlyBS(tk)

U2
tip

)
+
η0ρsrAV

3
FlyBS(tk)

2
+

Li
(
√

1 +
V 4
FlyBS(tk)

4v40,h
−
V 2
FlyBS(tk)

2v20,h

) 1
2 , (7)

where L0 and Li are the blade profile and induced powers in
hovering status, respectively, Utip is the tip speed of the rotor
blade, v0,h is the mean rotor induced velocity during hovering,
η0 is the fuselage drag ratio, ρ is the air density, sr is the rotor
solidity, and A is the rotor disc area. Interested readers can
find more details about the model in [43].

B. Problem Formulation

Our goal is to find the position of the FlyBS jointly with
the clustering of the users for NOMA and allocation of
the transmission power within NOMA clusters to enhance
the duration of the communication coverage (denoted by
Tcoverage). The communication coverage is defined as the
maximum time step tk at which i) the FlyBS’s battery is yet
not fully depleted, and ii) the required transmission power
at every time step ts ≤ tk remains below the maximum
transmission power limit PmaxTX . The coverage duration
depends on the transmission and propulsion power and, hence,
on the FlyBS’s position, the NOMA user clustering, and the
transmission power allocation to the users in the NOMA
clusters. Thus, to maximize Tcoverage, we formulate the
joint problem of the user clustering, the transmission power
allocation, and the FlyBS’s positioning while guaranteeing a
minimum capacity for the users during the whole Tcoverage as
follows:

[
Gopt, [Xopt(tk), Yopt(tk)], p

Gopt,TX
i,j,opt

]
=

argmax[
G,[X(tk),Y (tk)],p

G,TX
i,j

]Tcoverage,∀j ∈ 〈1, Ncl〉 ,∀i ∈ 〈1, Ncu,j〉 ,∀k,

s.t. CGi,j(tk) ≥ Cmin,∀j ∈ 〈1, Ncl〉 ,∀i ∈ 〈1, Ncu,j〉 ,∀k, (a)

PTX(X,Y,H, tk, G) ≤ PmaxTX ,∀k, (b) (8)∑

tk≤Tcoverage
(PTX(X,Y,H, tk, G) + Ppr(tk))(tk − tk−1) ≤ Eb. (c)

‖V FlyBS(tk)‖ ≤ V maxFlyBS , ∀k, (d)

‖aFlyBS(tk)‖ ≤ amaxFlyBS , ∀k. (e)

where Cmin is the minimum instantaneous capacity required
by the users, ‖.‖ denotes the norm of a vector, Eb is the
initial available energy in the FlyBS’s battery, V maxFlyBS and
amaxFlyBS are the FlyBS’s maximum speed and acceleration,
respectively, and V FlyBS(tk) =

(
V xFlyBS(tk), V yF lyBS(tk)

)

and aFlyBS(tk) =
(
axFlyBS(tk), ayF lyBS(tk)

)
are the FlyBS’s

velocity and acceleration vectors at the time tk, respectively.
The velocity and acceleration vectors are defined, respectively,
as:



V FlyBS(tk) =

(
X(tk), Y (tk)

)
−
(
X(tk−1), Y (tk−1)

)

(tk − tk−1)
,

aFlyBS(tk) =
V (tk)− V (tk−1)

(tk − tk−1)
. (9)

The constraint (a) in (8) guarantees that every user receives
at least the minimum required capacity Cmin all the time.
In line with [18], [24], [33], the minimum capacity is
assumed to be the same for all the users. Such assumption
corresponds to the case when the minimum required capacity
is provided to all users for their essential and critical services,
e.g., to a navigation information for the vehicles or to
provide/collect control information related to driving. The
constraint (b) ensures that the transmission power does not
exceed the maximum transmission power limit. Furthermore,
the constraint (c) guarantees that the FlyBS’s total power
consumption does not exceed the maximum capacity of
the FlyBS’s battery. Furthermore, the constraints (d) and
(e) limit the FlyBS’s movement in terms of the incurred
speed and acceleration, respectively. We propose to extend
Tcoverage via an efficient positioning of the FlyBS considering
the transmission power and propulsion power consumption.
However, despite the fact that the propulsion power is
significantly larger than the transmission power in general,
targeting the optimization of the propulsion power at every
time step is not an efficient solution, as such approach is not
deterministic. In particular, for the propulsion power to be
optimal at every time step, it would be sufficient to determine
only the FlyBS’s speed corresponding to the minimum
propulsion power. From the propulsion-power-minimization
standpoint, any positioning of the FlyBS that incurs the
minimum propulsion power can be regarded as the optimum
position of the FlyBS. In such sense, there are potentially
infinite candidate positions. However, since the location of the
moving users in the next time step(s) is unknown in general, it
would not be possible to tell which of the obtained candidate
positions would yield the longest coverage duration. In fact,
any of those candidate options can be the solution, because
the minimum propulsion power is yielded by a movement to
any of the candidate positions. Thus, a random selection of
the FlyBS’s position out of many candidates should be done
at every time step.

In contrast, the minimization of the transmission power
at every time step with the constrained propulsion power
consumption is an efficient strategy. The rationality of this
strategy is justified by stressing the fact that the suboptimal
transmission power incurs even a larger transmission power
(comparing to the transmission power minimization approach)
and, thus, the transmission power reaches the maximum
limit PmaxTX faster. Consequently, to extend the duration of
the coverage duration in NOMA, the transmission power
to users should be allocated so that the total transmission
power remains below the maximum limit of PmaxTX . Such
a solution can be provided based a minimization of the
transmission power from the early time steps to avoid an

increase in the distance between the FlyBS and the optimum
position over time. If the distance between the FlyBS and
the optimum position would become too large, reaching the
optimum position at later time steps might not be possible
due to the practical limitations on the FlyBS’s speed and
acceleration. In contrast, the positioning of the FlyBS to
minimize the transmission power at every time step from the
beginning keeps the FlyBS constantly close to the position
minimizing the transmission power for NOMA, because the
FlyBS’s optimum positions from one time step to the next
time step are typically close to each other.

Hence, we reformulate the problem of Tcoverage
maximization in (8) to the problem of transmission power
minimization with a constraint on the propulsion power
consumption included so as to address the FlyBS’s battery
constraint (i.e., constraint (c) in (8)) as follows:

[
Gopt, [Xopt(tk), Yopt(tk)], p

Gopt,TX
i,j,opt

]
=

argmin[
G,[X(tk),Y (tk)],p

G,TX
i,j

]PTX ,∀j ∈ 〈1, Ncl〉 ,∀i ∈ 〈1, Ncu,j〉 ,∀k,

s.t. CGi,j(tk) ≥ Cmin,∀j ∈ 〈1, Ncl〉 ,∀i ∈ 〈1, Ncu,j〉 ,∀k, (a)

PTX(X,Y,H, tk, G) ≤ PmaxTX ,∀k, (b)

Ppr(tk) ≤ Ppr,th(tk), ∀k, (c)

‖V FlyBS(tk)‖ ≤ V maxFlyBS , ∀k, (d) (10)

‖aFlyBS(tk)‖ ≤ amaxFlyBS , ∀k, (e)

where Ppr,th(tk) in the constraint (c) is the upper bound
for the propulsion power consumption. The parameter Ppr,th
establishes a trade-off between the transmission and propulsion
power consumption, so that choosing a lower value of Ppr,th
leads to a reduction in the propulsion power (hence, to a
slower depletion of the FlyBS’s battery) while it causes an
increase in the transmission power, because the FlyBS would
have a limited range of speeds during the flight to reach the
position minimizing the transmission power. Furthermore, in
an extreme case with Ppr,th set to the value corresponding to
the minimum propulsion power, the problem (10) corresponds
to the case when both the propulsion and transmission powers
are minimized. In the subsection III.C, we elaborate a setting
of Ppr,th to tackle the constraint on the capacity of the FlyBS’s
battery (i.e., constraint (c) in (8)).

III. PROPOSED OPTIMAL CLUSTERING OF USERS FOR
NOMA AND POSITIONING OF FLYBS

In this section, we present a novel solution to the problem
defined in (10) by finding the optimal clustering function Gopt
as well as the optimal FlyBS’s positions over time.

Solving the problem of user clustering for NOMA jointly
with the FlyBS’s positioning in (10) is challenging, as the
constraints (c), (d), and (e) define a non-convex region for
the FlyBS’s position. Furthermore, the set of the clustering
options is potentially of a very large size (exponential with the
number of users and the NOMA cluster sizes). In addition, the
discrete nature of the set of the clustering options for NOMA
makes the optimization problem intractable. To deal with these



challenges, we first target the positioning of the FlyBS for
arbitrary clustering function G. We solve the problem of
positioning by first relaxing the constraints (c), (d), and (e) in
(10) (as explained in subsection III.A), and then deriving the
solution to the unrelaxed problem (as presented in subsection
III.B). Next, we discuss the setting of the parameter Ppr,th
for the proposed positioning of the FlyBS in subsection III.C.
Last, in subsection III.D we discuss how to find the optimal
clustering in (10) via a derivation of necessary conditions for
the clustering to be optimal. Such necessary conditions help
to reduce significantly the size of the set of the clustering
options. Now, to solve the problem of the FlyBS’s positioning
for the clustering function G we lift the constraints (c), (d), and
(e), and solve the relaxed problem in terms of the clustering
function G. Then, the derived solution is adjusted to fulfill all
constraints.

A. Transmission power minimization and FlyBS positioning

In this subsection we focus on the transmission power
optimization and the FlyBS’s positioning for any NOMA user
clustering G, and we derive the FlyBS’s position and the
transmission power as functions of the clustering. The relaxed
problem of the FlyBS’s positioning is defined as:

[
[Xopt(G,tk), Yopt(G,tk)], pG,TXi,j,opt

]
= (11)

argmin[
[X(G,tk),Y (G,tk)],p

G,TX
i,j

]PTX ,

∀j ∈ 〈1, Ncl〉 ,∀i ∈ 〈1, Ncu,j〉 ,∀k,
s.t. CGi,j(tk) ≥ Cmin,∀j ∈ 〈1, Ncl〉 ,∀i ∈ 〈1, Nmax

cu 〉 ,∀k.

In the following, we solve (11) via a determination of the
FlyBS’s positioning and the user’s power allocation for the
NOMA user clustering G. To this end, from the constraint
in (11) and using (3), it is inferred that γmin ≤ γGi,j , where
γmin = (2Cmin/B − 1) is a positive constant. To find the
conditions to reach the minimum transmission power we
rewrite γmin ≤ γGi,j using (2) and (5) as follows

γmin(σ2 +

∑i−1
l=1 p

G,TX
l,j (tk)

QdGi,j
α

(tk)
) ≤

pG,TXi,j (tk)

QdGi,j
α

(tk)
,

(j ∈ 〈1, Ncl〉 , i ∈ 〈1, Ncu,j〉). (12)

After several simple math operations, (12) is transformed
to:

γmin

i−1∑

l=1

pG,TXl,j (tk) + γminσ
2QdGi,j

α
(tk) ≤ pG,TXi,j (tk),

(j ∈ 〈1, Ncl〉 , i ∈ 〈1, Ncu,j〉). (13)

Therefore, by writing down (13) for every j ∈ 〈1, Ncl〉 and
i ∈ 〈1, Ncu,j〉, we get:

Ncl∑

j=1

Ncu,j∑

i=1

pG,TXi,j (tk) ≥

γminQσ
2
Ncl∑

j=1

Ncu,j∑

i=1

(
(1 + γmin)Ncu,j−i

)
dGi,j

α
(tk). (14)

The minimum in (14) is achieved when the equality in (13)
holds for 1 ≤ j ≤ Ncl and 1 ≤ i ≤ Ncu,j . Hence, we derive
PTX(X,Y,H, tk, G) as:

PTX(X,Y,H, tk, G) =

γminQσ
2
Ncl∑

j=1

Ncu,j∑

i=1

(
(1 + γmin)Ncu,j−i

)
dGi,j

α
(tk) (15)

To find the FlyBS’s optimum position (XG
opt and Y Gopt)

and to minimize the transmission power in (15), we exploit
Downhill Simplex Algorithm (also known as Nelder-Mead
Algorithm). The solution is based on a direct search in
two-dimensions and a function comparison using simplex,
which is a polytope of m+ 1 vertices among m dimensions.
The simplex is updated based on the values obtained from
expansion, contraction, and shrinkage operations on the vertex
at which the function reaches the largest value, and the
centroid of the remaining vertices. Now, we explain the details
of the Nelder-Mead Algorithm in our problem (see Algorithm
1). The simplex finds the optimal position of the FlyBS at
every time step tk. For our setup, there is a 2-dimensional point
in simplex, with the first and second dimensions corresponding
to X(tk) and Y (tk), respectively. The values for the three
vertices of the simplex (denoted as S1, S2, S3) are determined
as follows. First, an initial value for S3 is guessed (in other

Algorithm 1 Find optimal position of the FlyBS for arbitrary
clustering G

λ(A): standard deviation of elements in set A, λ0: standard deviation
threshold for termination
f(Si): Transmission power at tk evaluated at Si (i.e.,
PTX(Si,1, Si,2, H, tk, G)).
Sort and rearrange the points as f(S1) ≤ f(S2) ≤ f(S3).

1: while λ(f(S1), f(S2), f(S3))) > λ0 do
2: compute S0 = centroid{S1, S2}
3: if f(S1) ≤ f(Sr) ≤ f(S2) then S3 ← Sr

4: else compute Se = S0 + β(Sr − S0)
5: end if
6: if f(Se) ≤ f(Sr) then S3 ← Se, and go to step 13
7: else S3 ← Sr , and go to step 13
8: end if
9: compute Sc = S0 + ν(S3 − S0).

10: if f(Sc) ≤ f(S3) then S3 ← Sc, and go to step 13
11: else compute Si = S1 + δ(Si − S1) for 1 ≤ i ≤ 3, and go

to step 13
12: end if
13: Sort points so that f(S1) ≤ f(S2) ≤ f(S3).
14: end while
15: From (15) calculate transmission power at S3

Output: S3 = (XG
opt(tk), Y

G
opt(tk)) = argmin{X(tk),Y (tk)} PTX ,

and Pmin
TX (G, tk), ∀k



Fig. 2: FlyBS’s propulsion power consumption vs. speed. Threshold
Ppr,th limits the propulsion power consumption and specifies the
allowed flight speed range of [Vth1 , Vth2 ].

words, an initial position of the FlyBS at tk is guessed). We
initialize S3 by the FlyBS’s position at the previous time step
tk−1. Then, the values for S1 and S2 are found by changing the
value at one dimension of S3. In particular, S3 is initiated with
S3 =

(
X(tk−1), Y (tk−1)

)
and, then, S1 and S2 are derived

as:

Si =

{
S3 + κiS3,iei S3,i 6= 0,

S3 + εiei otherwise,
(16)

for 1 ≤ i ≤ 2, where S3,r denotes the r-th element
of S3, and ei is the 2-dimensional unit vector with zero
elements at all dimensions except the i-th dimension.
Furthermore, εi and κi are real coefficients that adjust the
convergence of the algorithm. Therefore, the initial simplex
includes three different instances of the FlyBS’s positions.
The algorithm keeps updating the values of the vertices
based on expansion, contraction, and shrinkage operations
(demonstrated in the lines 4, 9, and 11 in Algorithm 1,
respectively) until the standard deviation of the corresponding
values of PTX(X,Y,H, tk) at the simplex’s vertices fall below
a given threshold.

B. FlyBS’s positioning with constrained propulsion power,
speed, and acceleration

In the previous subsection, the solution to the FlyBS’s
position (XG

opt(tk), Y Gopt(tk)) is derived (in Algorithm 1) to
minimize the transmission power for the relaxed optimization
problem (11). However, the calculated optimal position
(XG

opt(tk), Y Gopt(tk)) might not be reached at some time
steps due to the constraints on the FlyBS’s propulsion
power, speed, and acceleration, i.e., Ppr,th, V maxFlyBS , amaxFlyBS ,
respectively, in (10). Thus, in this subsection, we address the
problem of FlyBS’s positioning considering the constraints
for the propulsion power, acceleration, and speed. In case
the required speed or acceleration to move the FlyBS to the
optimal position (XG

opt(tk), Y Gopt(tk)) (derived from Algorithm
1) exceeds the corresponding limits on the speed or the
acceleration (i.e., V maxFlyBS and amaxFlyBS , respectively), or causes
the propulsion power larger than Ppr,th, the FlyBS moves
only to the point that is the closest to the optimal position
and, at the same time, can be reached with the speed and the
acceleration within their allowed ranges. To derive the point to

which the FlyBS should move, let
(
XG
cto(tk), Y Gcto(tk)

)
denote

the closest point to the optimal position
(
XG
opt(tk), Y Gopt(tk)

)

such that the movement from the FlyBS’s position at tk−1
to
(
XG
cto(tk), Y Gcto(tk)

)
does not incur the propulsion power

larger than the threshold Ppr,th and also the speed and
the acceleration are not larger than V maxFlyBS and amaxFlyBS ,
respectively. Hence, the problem of FlyBS’s positioning is
formulated as follows:

[V FlyBS(tk),aFlyBS(tk), (XG
cto(tk), Y Gcto(tk))] =

argmin
V FlyBS(tk),aFlyBS(tk)

||(X(tk), Y(tk)− (XG
opt(tk), Y Gopt(tk))||

s.t. Ppr(tk) ≤ Ppr,th(tk), ∀k (a) (17)
||V FlyBS(tk)|| ≤ V maxFlyBS , ∀k (b)

||aFlyBS(tk)|| ≤ amaxFlyBS .∀k (c)

Fig. 2 shows an example of Ppr,th and the corresponding
range of the FlyBS’s speeds [Vth1

, Vth2
] for which Ppr ≤

Ppr,th for the propulsion power model in (7). The
FlyBS’s speed should not exceed the allowed range of
[Vth1 ,min{Vth2 , V

max
FlyBS}]. Hence, the optimization problem

(17) is rewritten by merging the constraints (a) and (b) as a
modified constraint on the speed as follows:

[
V FlyBS(tk),aFlyBS(tk),

(
XG
cto(tk), Y Gcto(tk)

)]
=

argmin
V FlyBS(tk),aFlyBS(tk)

‖
(
X(tk), Y (tk)

)
−
(
XG
opt(tk), Y Gopt(tk)

)
‖

s.t. Vth1 ≤ ‖V FlyBS(tk)‖ ≤ min{V maxFlyBS , Vth2}, (a)

‖aFlyBS(tk)‖ ≤ amaxFlyBS . (b) (18)

To solve (18), we assume a constant acceleration over
very small time steps tk of the FlyBS’s movement. Hence,(
X(tk), Y (tk)

)
is calculated using the motion equation for

constant acceleration:

X(tk) =
1

2

(
axFlyBS(tk)

)
× (tk − tk−1)2+

(
V xFlyBS(tk−1)

)
× (tk − tk−1) +X(tk−1),

Y(tk) =
1

2

(
ayF lyBS(tk)

)
× (tk − tk−1)2+

(
V yF lyBS(tk−1)

)
× (tk − tk−1) + Y (tk−1). (19)

Before presenting the solution to (18), we further elaborate
the constraints in (18). Using (19), the constraint (a) in (18)
is rewritten as:

Vth1 ≤
((
axFlyBS(tk) +

V xFlyBS(tk−1)

(tk − tk−1)

)2
+
(
ayF lyBS(tk) +

V yF lyBS(tk−1)

(tk − tk−1)

)2) 1
2

≤ min{V maxFlyBS , Vth2}. (20)

Furthermore, using the identity ‖aFlyBS(tk)‖ =(
axFlyBS

2(tk) + ayF lyBS
2
(tk)

) 1
2 , the constraint (b) in

(18) is rewritten in terms of axFlyBS and ayF lyBS as:
(
axFlyBS

2(tk) + ayF lyBS
2
(tk)

) 1
2 ≤ amaxFlyBS . (21)



According to the inequalities in (20), (axFlyBS , a
y
F lyBS) lies

inside a ring centered at
(
−V

x
FlyBS(tk−1)

(tk−tk−1)
,

−V
y
FlyBS(tk−1)

(tk−tk−1)

)
with inner and outer radii corresponding

to the minimum and maximum limits of Vth1
(tk−tk−1)

and
min{VmaxFlyBS ,Vth2}

(tk−tk−1)
, respectively. Fig. 3 shows the region defined

by (20) in the axFlyBS−ayF lyBS plane (blue ring). Furthermore,
the constraint in (21) defines the inner part of the circle
centered at (0, 0) with a radius of the FlyBS’s acceleration
limit amaxFlyBS (green circle in Fig. 3). Thus, by incorporating
the two constraints in (20) and (21), the problem in (18)
is understood as the minimization of ‖

(
X(tk), Y (tk)

)
−(

XG
opt(tk), Y Gopt(tk)

)
‖ over the region enclosed by four curves

AB, BC, CD, and DA as shown in Fig. 3.
To proceed with the solution, we use (19) to express

the objective function in (18) in terms of axFlyBS(tk) and
ayF lyBS(tk) as follows:

‖
(
X(tk), Y (tk)

)
−
(
XG
opt(tk), Y Gopt(tk)

)
‖ =

m
((
axFlyBS(tk)− ρ0

)2
+
(
ayF lyBS(tk)− σ0

)2) 1
2

, (22)

m =
(tk − tk−1)2

2
,

ρ0 =

(
V xFlyBS(tk−1)

)
× (tk − tk−1) +X(tk−1)−Xopt(tk)

m
,

σ0 =

(
V yF lyBS(tk−1)

)
× (tk − tk−1) + Y (tk−1)− Yopt(tk)

m
.

According to (22), the minimum value of
‖
(
X(tk), Y (tk)

)
−
(
XG
opt(tk), Y Gopt(tk)

)
‖ is achieved by the

closest point (axFlyBS(tk), ayF lyBS(tk)) to (ρ0, σ0). Therefore,
the solution to (18) is derived by finding the closest point in
the region enclosed by ABCD to (ρ0, σ0). To this end, we
first find the point on each of the curves AB, BC, CD, and
DA that is the closest to (ρ0, σ0). Since all the curves AB,
BC, CD, and DA are on circles, the closest point to (ρ0, σ0)
for each curve can be found by finding the intersection of that
curve and the line connecting (ρ0, σ0) to the center of the
circle that the curve lies on. In case that the intersection point
lies beyond the curve’s endpoints, one of the endpoints yields
the minimum distance to (ρ0, σ0). The objective function in
(22) is evaluated at all four closest candidate points to find
the optimal

(
axFlyBS(tk), ayF lyBS(tk)

)
. Then, we calculate(

X(tk), Y(tk)
)

from (19), which is the optimal solution to
(18) (i.e.,

(
XG
cto(tk), Y Gcto(tk)

)
).

C. Determination of Ppr,th
In this subsection we discuss selection of proper values

for the propulsion power limit Ppr,th at every time step.
Although the proposed solution to the FlyBS’s positioning in
subsection III.B is valid for any value of Ppr,th, a fixed Ppr,th
in (10) may not be very efficient in extending the coverage
duration, as the impact of the transmission and propulsion
power consumption changes over time due the actual values

Fig. 3: Regions in axFlyBS − ayFlyBS plane corresponding to the
constraints (20) and (21)

of the transmission power and the remaining energy of the
FlyBS’s battery. Hence, we introduce a varying Ppr,th over
time. At the beginning, because of a large amount of the
remaining energy in the battery, we set Ppr,th to the FlyBS’s
propulsion power consumed at the FlyBS’s maximum speed.
Then, at every time step tk (k > 1), we estimate the shortest
time that it takes for the transmission power to reach the
maximum limit of PmaxTX . More specifically, the estimated
time to reach PmaxTX is denoted by TmaxTX and calculated as
TmaxTX =

PmaxTX −PTX(tk)
RmaxTX (tk)

, where RmaxTX (tk) is the maximum
slope of the increase that can occur between tk and tk+1.
Note that, an accurate evaluation of RmaxTX (tk) is not possible
in general, as RmaxTX (tk) depends on the future location of the
users at tk+1. Nevertheless, the values for the slope of the
increase in the FlyBS’s transmission power in the previous
time steps is still a sufficient indicator to estimate RmaxTX (tk).
Thus, we choose RmaxTX (tk) to be the maximum rate of the
increase in the transmission power that has actually occurred
between two consecutive time steps during the past ∆t time
steps:

RmaxTX (tk) = max
s

(PTX(ts)− PTX(ts−1))

(ts − ts−1)
,

k −∆t + 1 ≤ s ≤ k. (23)

Choosing lower values for ∆t results in a less accurate
estimation of RmaxTX , but also an adoption of too high values
for ∆t may result in an inaccurate estimation of RmaxTX . This is
because, the transmission power may have an unusual increase
due to a (unusual) movement of the users at some time step
tp and, hence, such an unusual increase in the transmission
power should not affect the evaluation of RmaxTX at every time
step tk with p < k. Next, we use the calculated TmaxTX at
tk to determine Ppr,th at tk. Since the transmission power is
estimated to reach the maximum limit of PmaxTX in the time
TmaxTX , the time when the battery depletes completely should
not occur within the next TmaxTX seconds. Thus, we choose to
fulfill the following condition:

Eb(t0)− Eb(tk)

Ppr,th(tk) + PTX(tk)
≥ TmaxTX , (24)



or equivalently, Ppr,th(tk) ≤ Eb(t0)−Eb(tk)
TmaxTX

−PTX(tk). Hence,

we set the value of Ppr,th(tk) to Eb(t0)−Eb(tk)
TmaxTX

− PTX(tk) to
tackle the constraint on the FlyBS’s battery (i.e., constraint (c)
in (8)).

D. Clustering of users for NOMA

In the previous subsection, XG
cto(tk) and Y Gcto(tk) are

derived as functions of the selected clustering G. Hence,
evaluating the transmission power PminTX (G, tk) at the optimal
position is enough to find the optimum clustering Gopt to solve
the optimization problem in (10).

The naive approach to find the optimum clustering
is to evaluate PTX(XG

cto, Y
G
cto, tk) for every possible

clustering (i.e., to perform an exhaustive search) and, then,
to select the clustering with the smallest corresponding
PTX(XG

cto, Y
G
cto, tk). However, the number of all

possible clustering options can be very large (there are
Ncl∏
i=1

(Nu−∑i−1
j=0Ncu,j

Ncu,i

)
different clustering options for every set

of the cluster sizes {Ncu,1, ..., Ncu,cl}). Hence, the exhaustive
search is not a practical solution for real word applications. In
order to address this issue, we reduce the search space size of
the problem by characterizing the optimal clustering function.
To this end, we first derive the optimal clustering function
Gopt via Theorem 1 that provides a necessary condition for
Gopt.

Theorem 1. Suppose that before clustering of the users,
the x-coordinates of the users are sorted as Xsorted =
{xl1 , . . . , xlNu}, such that xl1 < ... < xlNu . Also, let Nmax

cu

and Nk denote the size of the largest cluster and the number
of clusters with a size of k, respectively. Then, for the
clustering function that minimizes PTX(XG

cto, Y
G
cto, tk) for a

given Nmax
cu , the first users in each cluster with a size of Nmax

cu

should be NNmaxcu
consecutive users in the sorted sequence

Xsorted. Similarly, the set including the (Ncu,j−i+1)-th user
of the j-th cluster (1 ≤ i ≤ Nmax

cu , j ∈ 〈1, Ncl〉) should be∑Nmaxcu −i+1
s=1 Ni+s−1 consecutive users in the sorted sequence

Xsorted after eliminating the selected (Ncu,j−r+1)-th users
of the j-th cluster (1 ≤ r ≤ Nmax

cu − i).
Proof. See Appendix A.
In addition to Theorem 1, we also define the following

proposition that helps us to further reduce the complexity of
the user clustering.

Proposition 1. All permutations of the users uGi,j with the
same value for (Ncu,j− i) along all clusters result in different
groupings with the same corresponding PTX(X,Y,H, tk, G).

Proof. Suppose that for the grouping function G1, the users
uG1
i,j and uG1

i′,j′ satisfy Ncu,j−i = Ncu,j′−i′. Also, suppose that
the grouping function G2 is derived by exchanging uG1

i,j and
uG1

i′,j′ between the clusters j and j′ (i.e., uG2

i′,j′ = uG1
i,j ). Since

the FlyBS’s distance to the users does not change by modifying
the grouping (i.e., dG2

i′,j′ = dG1
i,j ), from (15), it is concluded that

PTX(X,Y,H, tk, G1) = PTX(X,Y,H, tk, G2).

Theorem 1 and Proposition 1 together allow to choose
the optimal clustering function. In particular, we collect all
different clustering options that meet the necessary conditions
in Theorem 1, while Proposition 1 enables to avoid collecting
the clustering options that lead to the same transmission power.
We first find all possible solutions to

∑Ncl
r=1Ncu,r = Nu,

where 1 ≤ Ncu,r ≤ Nmax
cu as follows. We start with checking

the necessary conditions for the equation
∑Ncl
r=1Ncu,r = Nu

to obtain the solutions satisfying 1 ≤ Ncu,r ≤ Nmax
cu .

By evaluating
∑Ncl
r=1Ncu,r at the upper and lower bounds

in 1 ≤ Ncu,r ≤ Nmax
cu , we get the necessary conditions

Ncl × Nmax
cu ≥ Nu and Ncl ≤ Nu, respectively. Next, we

consider all possible values 1, . . . , Nmax
cu for Ncu,1 and,

for each of those values, we rewrite our main equation as∑Ncl
r=2Ncu,r = Nu − Ncu,1. For the updated equation (with

Ncl − 1 variables) we check again the necessary conditions
for an existence of solution and eliminate those equations
that do not fulfill the conditions. Then we consider all Nmax

cu

possible values 1, . . . , Nmax
cu for Ncu,2 and update the

equation similarly as in the previous step. We repeat the
same process and collect all solutions for {Ncu,1, . . . , Ncu,cl}
until the necessary conditions are not held anymore. Then,
for every set of the solutions (i.e., sizes of the clusters),
we find and collect all clustering candidate options derived
from Theorem 1. More specifically, we sort the x-coordinates
of the users as xl1 < ... < xlNu , and choose NNmaxcu

consecutive elements from the sorted sequence. Therefore,
instead of considering all

(
Nu

NNmaxcu

)
possible subsets, we only

have (Nu − NNmaxcu
+ 1) options. According to Proposition

1, for each selected sequence, all permutations result in the
same corresponding transmission power. Thus, we only keep
one of many permutations for each sequence. According to
Theorem 1 a similar process to the previous step is considered,
i.e., the i-th users of all clusters with a size of Nmax

cu are
chosen together with the (i− 1)-th users of the clusters with
a size of Nmax

cu − 1 together with the (i − 2)-th users of the
clusters with a size of Nmax

cu −2 and so on. This procedure is
continued until all users are assigned to clusters. We repeat the
same process for all different sizes of clusters, and we collect
all the clustering candidates. Then, the transmission power
corresponding to every clustering is derived via Algorithm
1. Then, the clustering that yields the minimum transmission
power is chosen and applied for NOMA. For every set of the
clusters size {Ncu,1, ..., Ncu,cl}, the search space size in the

proposed clustering is
Nmaxcu∏
i=1

(Nu −
∑i−1
j=0NNmaxcu −j + 1). The

total complexity of the proposed solution is then calculated by
summing the complexity over all derived sets of the clusters
size {Ncu,1, ..., Ncu,cl}. For the exhaustive search, there are
Ncl∏
i=1

(Nu−∑i−1
j=1Ncu,j

Ncu,i

)
different clustering options for every set

of the cluster size {Ncu,1, ..., Ncu,cl}. Thus, the number of
options for the exhaustive search becomes extremely large
for realistic values of Nu. For example, for Nmax

cu = 2 and
Ncl = 7, the search space for the exhaustive search is about



17.2 million options, whereas the proposed solution leads
to only 8 options to be checked. This illustrates significant
lowering of the complexity by the proposed solution compared
to the exhaustive search.

E. Discussion of optimality of the proposed solution

There is no general way to find the optimal solution
to the non-convex problem in (10). Hence, we choose the
exhaustive search to show the optimality of the proposed
solution. Note that, since there are continuous-valued variables
in (10), even performing the exhaustive search cannot achieve
the exact optimum. Nevertheless, using the exhaustive search
allows us to evaluate the maximum possible gap between
the derived transmission power from the proposed solution
and the optimal transmission power. We do this evaluation
via a combination of a discretized exhaustive search and an
analysis of the error caused by the discretization. For the
discretized exhaustive search, at every time step, we check
all possible user clustering options of the users for NOMA,
and we find the minimum corresponding transmission power
for each clustering option by finding the optimal values of
the acceleration and the velocity of the FlyBS. In particular,
at every time step tk, we consider all possible vectors of the
FlyBS’s acceleration aFlyBS(tk) = (axFlyBS(tk), ayF lyBS(tk))
that fulfill the constraint (e) in (10). For the discretized
interval of [−amaxFlyBS , a

max
FlyBS ] we consider the values starting

with −amaxFlyBS and increasing with a step size of ξ. Then,
for each selected value of, e.g., ϕ for axFlyBS(tk) from the
discretized interval, the value of ayF lyBS(tk) should be within

the range of [−
√
amaxFlyBS

2 − ϕ2,
√
amaxFlyBS

2 − ϕ2] to meet
the constraint (e) in (10). A similar discretization for the
interval [−

√
amaxFlyBS

2 − ϕ2,
√
amaxFlyBS

2 − ϕ2] with a step size
of ξ is done to find all possible numerical combinations for
the acceleration vector. Then, for each possible acceleration
vector, we calculate the vector of velocity from (9). For
those velocity vectors fulfilling the constraints (c) and (d)
in (10), we calculate the FlyBS’s position from (19). Next,
at the calculated position of the FlyBS, the corresponding
transmission power is derived. We repeat this procedure for
values of the acceleration vector and for every clustering
option. In the following Lemma 2, we define the upper
bound for the discretization error for every tested pair
(axFlyBS(tk), ayF lyBS(tk)) = (ϕ, τ) over the discretized sets.
Lemma 2. The maximum error due to discretization of the
interval for the exhaustive search for the acceleration values
for axFlyBS ∈ (ϕ,ϕ+ ξ) and ayF lyBS ∈ (τ, τ + ξ) is:

|ζ| ≤ ξ2|Mxx|+ 2ξ2|Mxy|+ ξ2|Myy| =
ξ2(|Mxx|+ 2|Mxy|+ |Myy|), (25)

where Mxx, Mxy , and Myy are the supremum of ∂2PTX
∂axFlyBS

2 ,
∂2PTX

∂axFlyBS∂a
y
FlyBS

, and ∂2PTX
∂ayFlyBS

2 , respectively, over the interval

of axFlyBS ∈ [ϕ,ϕ+ ξ] and ayF lyBS ∈ [τ, τ + ξ].

Proof. See appendix B.
Using the error’s upper bound in (25), we evaluate the

smallest potential value for the transmission power that can
occur for axFlyBS ∈ (ϕ,ϕ + ξ) and ayF lyBS ∈ (τ, τ + ξ).
By collecting the calculated lower bound for the transmission
power for every candidate clustering option, we find the lowest
bound for the transmission power among all clustering options.
The lower bound is evaluated for the transmission power in
the our scenario in Section IV to confirm that the proposed
solution is very close to the optimum.

F. Feasibility of FlyBS positioning and user NOMA clustering
and extension to multiple FlyBSs

No solution to the problem defined in (8) exists if the
required transmission power to guarantee Cmin to all users
exceeds the maximum transmission power limit of PmaxTX .
Thus, a necessary and sufficient condition for an existence
of a solution to (8) is derived using (15) as:

Qσ2(2
Cmin
B − 1)

Ncl∑

j=1

Ncu,j∑

i=1

(
2
Cmin
B ×(Ncu,j−i))dGi,j

α
(tk) ≤ PmaxTX

(26)

Once the condition in (26) is fulfilled there definitely exists a
solution to (8). If the condition (26) (and hence the constraints
(a) and (b) in (8)) are not fulfilled for a given setting of the
communication-related parameters, the only approach to make
the problem in (8) feasible is to increase the number of FlyBSs.
The multiple FlyBSs allow to split the load degenerated by the
users to avoid a violation of the constraint (a) on Cmin.

With respect to the single-FlyBS scenario, an association
of the users to the FlyBSs and management of interference
among the FlyBSs should be handled. For the user association,
a straightforward way is to associate the users based on the
commonly used approaches, e.g., the received signal strength
[50] or K-means [49]. Of course, the proposed positioning of
the FlyBSs and NOMA user clustering is optimal only for the
given association. Furthermore, in the multi-FlyBS scenario,
other FlyBSs cause interference to NOMA clusters within
other FlyBSs. The interference level depends on the users’
location with respect to other FlyBSs. Hence, the FlyBS’s
positioning and the user clustering should be extended by
taking the impact of interference from other FlyBSs into
account. The user association makes the problem of the
FlyBS’s positioning and user’s clustering NP-hard in general.
Solving such problem optimally is itself a challenging and
complex task, thus, we leave it for future research.

IV. SIMULATIONS AND RESULTS

In this section, we provide details of models and simulation
settings adopted for evaluation of the proposed solution
for NOMA user clustering, power allocation, and FlyBS’s
positioning. Then, we introduce competitive state-of-the-art
algorithms, and we thoroughly analyze the performance of the
proposal and demonstrate the advantages of the proposal over
the existing solutions.



A. Simulation scenario and models

We consider a scenario where the FlyBS serves users
represented by vehicles and/or users in vehicles during a busy
traffic or a traffic jam on a road or a highway. In such situation,
the FlyBS is a suitable solution to improve the performance
of an overloaded network (see, e.g., [39], [40]). The FlyBS is
represented by a common rotary-wing UAV. Such UAV can
fly typically with a maximum speed of about 25–30 m/s [44].
Thus, the rotary-wing UAV is suitable for our scenario, as the
vehicles in the busy traffic or in the traffic jam usually move
with speeds within the limits of the common UAV. Following
[43], the FlyBS’s altitude is fixed at H = 100 m.

The users move on a 3-lane highway in the positive direction
of the x-axis. The users are distributed uniformly among
all three lanes. Within one lane, we set a two-second rule,
that is, the minimum safe distance between two vehicles
is equal to the distance moved by the vehicles within two
seconds. This rule is adopted and suggested for a driving in
the real world to roughly maintain a safe distance between the
vehicles, while also taking the speed of vehicles into account
to specify the minimum distance between the vehicles over
time. Furthermore, the speeds are selected uniformly over
the intervals {14-16} m/s, {14-17} m/s, and {15-19} m/s for
the first, second, and third lanes, respectively. The range of
vehicles’ speeds is selected considering the maximum flying
speed of the FlyBS, as the FlyBS should be able to fly with
the served vehicles with a certain speed margin to adjust a
relative position with respect to the vehicles. Note that the
FlyBS knows the location of users only with a measurement
error exi,j and exi,j uniformly distributed over [−10, 10] m at
every time step.

To validate the assumption on the LoS communication, we
evaluate the probability of LoS in our scenario as follows.
We first solve the problem of the FlyBS’s positioning with
the assumption of LoS transmission to all the users. Then,
we calculate the LoS occurrence (defined by 60% of the first
Fresnel zone to be clear of obstacles) in the modeled suburban
environment. In line with [47], we assume that the average
height, width, and length of the buildings are set to 15 m and
the density of the buildings is 13% of the total area. The height
of the users’ receiving antenna is set to 1.5 m. According
to our simulations, the average probability of LoS is 99.6%,
99.1%, and 98.4% in the scenarios with 30, 60, and 90 users,
respectively.

The simulations are commonly performed for Cmin = 15
Mbps by each user, however, we also analyze the impact of
Cmin on the performance. Each simulation is of 1200 seconds
duration with the user clustering and the transmission power
calculated every 0.1 seconds. The results are averaged out over
100 simulation drops. The system parameters are summarized
in Table I.

Our proposed solution is investigated for two cases: i)
Communication coverage-maximizing clustering and FlyBS’s
positioning (CMCP) for NOMA, as elaborated in Section
III and with setting of Vth,1 = 12 m/s, Vth,2 = 33 m/s

TABLE I: Parameter Configurations

System Parameter Numerical value
Number of users, Nu {30,60,90}
FlyBS’s antenna gain, Dj,TX

i,G 7 dBi [45]
User’s antenna gain, Dj,R

i,G 0 dBi [45]
Noise power spectral density, Ni –174 dBm/Hz
RF frequency, f 2.6 GHz
System bandwidth 100 MHz
Altitude of FlyBS, H 100 meters
User’s required capacity, Cmin {10,12,15,18,20} Mbps

(see (10)), and ii) Propulsion power minimization (PPM),
which is a specific case of the proposed solution with the
setting minimizing the propulsion power consumption, i.e.,
with Vth,1 = Vth,2 = 22.7 m/s and Ppr,th = 461.6 W. Both
options are compared with the following related state-of-the-
art schemes:

i) Sum rate maximization (SRM) algorithm, introduced in
[18], that provides a joint NOMA pairing and FlyBS’s
positioning for sum rate maximization. Note that the
SRM algorithm does not include the constraints on
the speed and acceleration in (10). Thus, for a fair
comparison, we adjust the FlyBS’s speed and acceleration
to the closest value within the allowed range in case that
the required speed or acceleration exceed their limits.
ii) enhanced SRM (ESRM) algorithm that adopts the
pairing scheme proposed in [18], but the positioning of
FlyBS is enhanced by our proposed optimal positioning
in order to reduce the transmission power, as the solution
proposed in [18] targets to maximize the sum rate,
iii) NOMA for static base station (SBS), developed in
[46], that maximizes the sum capacity for static base
station and, hence, does not provide any solution to the
FlyBS’s positioning,
iv) enhanced SBS (ESBS), that exploits the clustering
scheme adopted in [46], and is enhanced with our
proposed optimal positioning of the FlyBS to avoid
limitations implied by the static base station assumed in
[30].

B. Simulation results

In this subsection, we present and discuss simulation
results. First, we focus on an evolution of the FlyBS’s
transmission power consumption over time to demonstrate
the advantage of our proposal over the existing solutions
in terms of efficiency in transmission power management
and consequent enhancement of the NOMA communication
coverage. We also compare the performance of the proposed
scheme with existing solutions in terms of complexity, average
transmission power, maximum potential common capacity,
and average propulsion power for various numbers of users
(Nu), and minimum required capacities by each user (Cmin).
Furthermore, we evaluate the performance of the proposed
solution for different maximum cluster sizes Nmax

cu .



Fig. 4: Transmission power vs. operation time for Nu = 90 and
Cmin = 15 Mbps. Only part of the values for SBS are shown, as
the transmission power is in the order of hundreds of watts.

Fig. 4 illustrates an evolution of the transmission power of
the FlyBS over time for Cmin = 15 Mbps and for Nu = 90. In
this figure, we assume NOMA user pairing (Nmax

cu = 2, Ncl =
45) for all existing solutions as these do not allow Nmax

cu > 2.
In general, the transmission power consumption is increasing
over time for all solutions. This is due to a general increase
in the relative distance between the first and the last vehicles
in the scenario over time, caused by diverse velocities of the
vehicles on different lanes, leading to a gradual expansion of
the area demarcated by the users. Fig. 4 further shows that
the transmission powers corresponding to SRM, ESRM, SBS,
and ESBS grow notably faster than for our proposed solution.
This faster growth of the transmission power in the existing
solutions is due to the sub-optimality of the user clustering
in SRM, ESRM, SBS, and ESBS. Furthermore, it is observed
that PPM leads to frequent peaks in the transmission power.
These peaks are due to the fact that the FlyBS’s speed is set to
minimize the propulsion power and consequent limitation of
the FlyBS’s ability in reaching a suitable position at desired
time step.

According to Fig. 4, after 1200 s the proposed positioning
of the FlyBS applied to SRM (towards ESRM) reduces
the transmission power by 6% comparing to the original
positioning proposed for the existing SRM. Another notable
reduction of up to 5% and 10% compared with the
transmission power in ESRM and ESBS, respectively, is
achieved by our proposed solution considering a joint
positioning of the FlyBS, optimal allocation of transmission
power, and optimal user pairing. In total, the proposed solution
reduces the transmission power with respect to the original
state-of-the-art solutions SRM and SBS by 15% and 99.95%,
respectively. In addition, Fig. 4 shows the transmission power
over time for the exhaustive search over the discretized
intervals and also the lower bound calculated analytically
according to (25). The gap between the transmission power
achieved by the proposed CMCP and the exhaustive search
is typically lower than 0.15%, and always below 1%.
Furthermore, the gap between the results from CMCP and
the analytical lower bound is typically lower than 0.2% and

Fig. 5: Duration of communication coverage vs. transmission power
limit for different methods and Nu = 90 and Cmin = 15 Mbps.

always below 1.5%. This small difference demonstrates that
the performance of the (suboptimal) proposed solution is very
close to the optimal solution.

Next, the coverage duration (Tcoverage as defined in
subsection II.B) achieved by the proposed and competitive
schemes is depicted in Fig. 5. The figure shows that
the proposed scheme significantly enhances the duration of
communication coverage with Cmin guaranteed to all users. If
the transmission power of the FlyBS is limited to 1 Watt (i.e.,
PmaxTX = 1 W), the FlyBS guarantees Cmin to all users only
for 104 s, 5 s, 677 s, 306 s, and 575 s, for PPM, SBS, ESBS,
SRM, and ESRM, respectively. As an impact of the proposed
FlyBS’s positioning, the duration of NOMA communication
coverage in ESRM and ESBS is 42% and 7620% higher than
in SRM and SBS, respectively. For pairing (Nmax

cu = 2), the
proposed combined optimal clustering and optimal FlyBS’s
positioning further enhances the coverage duration by 35% and
14% comparing to ESRM and ESBS, respectively. Moreover,
Fig. 5 also shows an impact of the cluster size, as proposed for
CMCP and PPM. The proposed extension of the cluster size
to Nmax

cu = 6 further prolongs the communication coverage
duration of the proposed CMCP by 648%, 96% and 67% with
respect to PPM, ESRM and ESBS, respectively. This superior
performance is a result of the joint optimization of clustering,
power allocation, and positioning of the FlyBS. Note that
the coverage duration for PPM is significantly lower than for
CMCP, ESRM, and ESBS due to the peaks in the transmission
power during the operation (as observed in Fig. 4). Also, the
transmission power reached by SBS rises very quickly and it
becomes in the order of hundreds of watts after few tens of
seconds, since the relative distance between the base station
and the users increases notably due to immobility of the static
base station. Hence, the results for the SBS are not included in
further plots and we illustrate only the results for ESBS which
enhances the SBS with our proposed FlyBS’s positioning.

We also discuss the impact of the cluster size on the
transmission power for the proposed CMCP and PPM in
Fig. 6. According to Fig. 6, the average transmission power
decreases by increasing the maximum number of users
grouped in the cluster (i.e., Nmax

cu ). The decrease is getting



Fig. 6: Average transmission power vs. Nmax
cu for Nu = 30, 60, 90,

and Cmin = 15 Mbps, for CMCP and PPM.

less significant, and the average transmission power saturates
with larger Nmax

cu so that the difference between Nmax
cu = 5

and Nmax
cu = 6 becomes marginal. This saturation is caused by

a stronger interference among users in the same cluster if the
cluster is of a larger size. Furthermore, the proposed CMCP
reduces the transmission power with respect to the PPM by
3%, 6%, and 34% for Nu = 30, Nu = 60, and Nu = 90,
respectively.

Next, we investigate the impact of the number of users
on the FlyBS’s transmission power in Fig. 7. The average
transmission power increases with the number of users Nu,
as a larger Nu results in a less bandwidth available for
each cluster of users. Consequently, a higher transmission
power is required to satisfy the required Cmin for every
user. Our proposed solution reaches the lowest transmission
power disregarding the number of served users. The highest
transmission power is required by the state-of-the-art schemes
SRM and SBS. The transmission power is notably reduced
by 8% and 99.9% (for Nu = 90) by applying our proposed
positioning of the FlyBS on the top of the original SRM
and SBS towards ESRM and ESBS, respectively. Further
significant improvement of 31% and 19% with respect to
ESRM and ESBS, respectively, is achieved by our proposal
considering joint positioning of the FlyBS, optimal allocation
of transmission power, and optimal user clustering (with
Nmax
cu = 2). Thus, the proposed solution reduces the

transmission power with respect to the original state-of-the-art
solutions SRM and SBS by 37% and 99.96%, respectively. In
addition, by an extension of the cluster size to Nmax

cu = 6, the
proposed CMCP reduces the transmission power with respect
to CMCP with Nmax

cu = 2 by 23%. Thus, in total, the proposed
CMCP with Nmax

cu = 6 reduces the transmission power with
respect to SRM and SBS by 47% and 99.97%, respectively.

We show also the FlyBS’s propulsion power consumption in
Fig. 8. The propulsion power for PPM is lower than all other
schemes due to the setting of the propulsion power threshold
(Ppr,th) to the minimum propulsion power. The figure shows
that, for Nu = 30 and Nu = 60, the propulsion power required
by the schemes where the proposed positioning is applied (i.e.,
CMCP, PPM, ESRM, and ESBS) is close to each other (the

Fig. 7: Average transmission power vs. number of users for different
schemes and Cmin = 15 Mbps.

Fig. 8: Average propulsion power consumed by FlyBS vs. number
of users for different schemes and Cmin = 15 Mbps.

difference among those schemes is less than 2.5% with the
confidence interval of 95%). This is due to the fact that the
transmission power is so low for Nu = 30 and Nu = 60 that
the proposed positioning of the FlyBS enhances the coverage
duration via the propulsion power reduction (by reducing
Ppr,th) rather than via the transmission power reduction. As a
result of such strategy, the propulsion power consumption for
CMCP, ESRM, and ESBS becomes similar to PPM.

Next, we investigate the impact of the minimum required
capacity Cmin on the transmission power in Fig. 9. The
transmission power for all approaches increases with Cmin as
expected according to (15). Nevertheless, the sub-optimality
of the user clustering in the existing state-of-the-art solutions
results in a significantly higher rise in the transmission power
comparing to our proposed scheme. According to Fig. 9,
the proposed CMCP (with Nmax

cu = 2) brings up to 47%,
50%, 45%, 100%, and 31% reduction in the transmission
power consumption comparing to PPM, SRM, ESRM, SBS,
and ESBS, respectively. Furthermore, by the extension of
CMCP to the cluster size of Nmax

cu = 6, the transmission
power is reduced by another 41% with respect to CMCP with
Nmax
cu = 2. Moreover, the transmission power for PPM is

also enhanced by 37% via the extension of Nmax
cu = 2 to

Nmax
cu = 6. Overall, the proposed CMCP (with Nmax

cu = 6)
brings up to 38%, 70%, 67%, 100%, and 59% reduction in the



Fig. 9: Average transmission power vs. Cmin for different algorithms
and Nu = 90.

TABLE II: Complexity of the transmission power optimization
represented as the number of math operations required to obtain
results for user pairing (Nmax

cu = 2).

Approach Nu = 30 Nu = 60 Nu = 90

Proposed CMCP 16 31 46
ESRM 30 60 90
Exhaustive search 2×1020 3.1×1049 1.2×1082

transmission power consumption comparing to PPM, SRM,
ESRM, SBS, and ESBS, respectively. It is also noted that, the
proposed solution presents realistic values for the transmission
power in Fig. 9 ([44], [48]).

We also determine the maximum potential Cmin for the
given transmission power PG,TXfixed = 1 W in Fig. 10. For
Nmax
cu = 2, the proposed CMCP increases the maximum

potential Cmin by up to 19%, 13%, 14%, and 16% compared
to PPM (with Nmax

cu = 2), ESBS, ESRM, and SRM,
respectively. Considering also the proposed extension of the
NOMA cluster size to Nmax

cu = 6, the proposed CMCP
improves the maximum potential Cmin by 53%, 46%, 48%,
and 50% compared with PPM (with Nmax

cu = 6), ESBS,
ESRM, and SRM, respectively.

We further show the maximum potential Cmin of the
proposed CMCP for the scenario with multiple FlyBSs in
Fig. 11. We consider the users association based on K-means
[49] and orthogonal resources allocated to the FlyBSs. The
available bandwidth Nu × B is split between the FlyBSs
proportionally to the number of associated users to each
FlyBS. We observe that the maximum potential Cmin
increases with the number of FlyBSs, since the number of
associated users to each FlyBS decreases and, at the same
time, also the average distance between the FlyBSs and the
users decreases. The maximum potential Cmin reached by
single FlyBS is enhanced by 7% and 16% for 2 and 3 FlyBSs,
respectively, for both for Nmax

cu = 2 as well as Nmax
cu = 6.

Such an increase in the maximum potential Cmin confirms
that an infeasible guarantee of Cmin for single FlyBS in (8)
can become feasible for a higher number of adopted FlyBSs.

Last, we also compare the complexity of the proposed and
state-of-the-art solutions for user pairing in Table II. For each

Fig. 10: Maximum potential Cmin with a fixed transmission power
consumption of PG,TX

fixed = 1 W.

Fig. 11: Maximum potential Cmin for the proposed CMCP for
Nu =30, 60, 90 for 1, 2, and 3 FlyBSs.

value of Nu the comparison between different algorithms is
done under the same number of clusters. The complexity
is defined as the number of calculations (math operations)
performed by each solution. The complexity of the proposed
CMCP can be calculated as explained in Subsection III.D, and
the computational complexity of ESRM is linear with respect
to Nu. The results are shown for Nmax

cu = 2, since ESRM is
designed for Nmax

cu = 2, and its extension to Nmax
cu > 2 is not

straightforward. Note that we do not include the complexity
of SRM, SBS, or ESBS, as the complexity of these are not
easy to calculate. The reason is that the SRM solution is
based on bisection search [18], and its complexity is even
higher than for ESRM. In SBS and ESBS, the power allocation
and clustering are derived using convex optimization [30] for
which the complexity cannot be easily determined. Table II
confirms that the proposed scheme reduces the complexity
significantly with respect to the exhaustive search (1.26×1019

times, 1048 times, and 2.7×1080 times for Nu = 30, Nu = 60,
and Nu = 90, respectively), and it is even lower than the
complexity of ESRM.

V. CONCLUSIONS

In this paper, we have studied the problem of joint
optimization of user clustering, transmission power allocation,
and FlyBS’s positioning in future mobile networks based on



NOMA. We formulate the transmission power optimization
problem in terms of the clustering of users for NOMA
purposes, and the positioning of the FlyBS over time as
the users move. Then, we provide a solution to find the
optimum clustering of users, and the FlyBS’s positions that
yield the minimum transmission power while guaranteeing
a minimum required capacity for all users. This allows a
significant increase in the NOMA communication coverage
duration for the FlyBS. We show that the proposed solution
extends the FlyBS’s coverage duration by tens of percent.

In the future work, the scenario with multiple FlyBS should
be studied. This scenario implies another dimension of the
problem related to the user association to individual FlyBSs
as well as a management of interference from the FlyBSs
[49], [50]. Furthermore, the problem of optimal bandwidth
allocation should be considered.

APPENDIX A
PROOF TO THEOREM 1

Proof. We prove Theorem 1 using mathematical contradiction
as follow: Let Ncl,i denote the number of clusters of a
size i. Also, let clj1 , ..., cljNcl,Nmaxcu

be the clusters of a size

Nmax
cu . Suppose that {xGopt1,clj1

, x
Gopt
1,clj2

, . . . , x
Gopt
1,cljNcl,Nmaxcu

} =

{xi1 , ..., xiNcl,Nmaxcu

} with xi1 < ... < xiNcl,Nmaxcu

. Then, by
contradiction, we assume that the users in {xi1 , ..., xiNcl,Nmaxcu

}
are not consecutive in Xsorted, and there exists xj such that
xi1 < xj < xiNcl,Nmaxcu

and xj /∈ {xi1 , ..., xiNcl,Nmaxcu

}. Also,
we assume that, for Gopt, xj is the s-th user in some cluster
(s > 1). Let G1 denote the clustering function that is obtained
by swapping xi1 and xj in Gopt. Similarly, G2 denotes the
clustering obtained by swapping xiNcl,Nmaxcu

and xj in Gopt.
From the optimality of Gopt it is inferred that:

PTX(X,Y,H, tk, Gopt)|(XGoptcto ,Y
Gopt
cto )

−
PTX(X,Y,H, tk, G1)|

(X
Gopt
cto ,Y

Gopt
cto )

< 0, (27)

PTX(X,Y,H, tk, Gopt)|(XGoptcto ,Y
Gopt
cto )

−
PTX(X,Y,H, tk, G2)|

(X
Gopt
cto ,Y

Gopt
cto )

< 0.

Now, we rewrite the left-hand side terms in (27) by means
of the system parameters as follow:

PTX(X,Y,H, tk, Gopt)|(XGoptcto ,Y
Gopt
cto )

− (28)

PTX(X,Y,H, tk, G1)|
(X

Gopt
cto ,Y

Gopt
cto )

=

γminQσ
2
(
(1 + γmin)N

max
cu −1 − (1 + γmin)N

max
cu −s)(di1α − djα),

PTX(X,Y,H, tk, Gopt)|(XGoptcto ,Y
Gopt
cto )

−
PTX(X,Y,H, tk, G2)|

(X
Gopt
cto ,Y

Gopt
cto )

=

γminQσ
2
(
(1 + γmin)N

max
cu −1 − (1 + γmin)N

max
cu −s)(dαiNcl,Nmaxcu

− djα)

From the first inequality in (27) and the first equality in
(28) it is included that (di1 − dj) < 0. Similarly, from the
second inequality in (27) and the second equality in (28)
it is concluded that (diNcl,Nmaxcu

− dj) < 0. However, the

inequalities (di1 − dj) < 0 and (diNcl,Nmaxcu

− dj) < 0 cannot
hold at the same time given the assumption that xi1 < xj <
xiNcl,Nmaxcu

due to following reasons. First, in a movement on
a road in the direction of the x-axis, the range of x-coordinates
of the users is much larger than the range of y-coordinates.
Thus, from (di1 − dj) < 0 it is concluded that Xcto <
(xi1+xj)

2 . Similarly, from (diNcl −dj) < 0 it is concluded that

Xcto >
(xiNcl,Nmaxcu

+xj)

2 . By incorporating the two derived

inequalities Xcto <
(xi1+xj)

2 and Xcto >
(xiNcl,Nmaxcu

+xj)

2 we
get xi1 > xiNcl,Nmaxcu

, which contradicts the assumption of
xi1 < xiNcl,Nmaxcu

. Hence, the initial assumption that the users

in {xGopt1,clj1
, x
Gopt
1,clj2

, . . . , x
Gopt
1,cljNcl,Nmaxcu

} are not consecutive

is incorrect. Therefore, {xi1 , ..., xiNcl,Nmaxcu

} consists of the
consecutive users in Xsorted. By a similar procedure as above,
we verify that the second users of the clusters of a size
Nmax
cu and the first users of the clusters of a size Nmax

cu − 1
should be consecutive values in Xsorted after eliminating
{xGopt1,clj1

, x
Gopt
1,clj2

, . . . , x
Gopt
1,cljNcl,Nmaxcu

}, and so on so forth for the

next users of all clusters. This completes the proof to Theorem
1.

APPENDIX B
PROOF OF LEMMA 2

Proof. To determine the discretization error in the exhaustive
search we use the first-derivative Taylor approximation with
respect to axFlyBS and ayF lyBS . Then, the approximation error
(denoted by ζ) is expressed in terms of the second derivatives,
i.e.,

ζ = (axFlyBS − ϕ)2
∂2PTX

∂axFlyBS
2 |(X(ϕ+),Y (τ+))+ (29)

(ayF lyBS − τ)2
∂2PTX

∂ayF lyBS
2 |(X(ϕ+),Y (τ+))+

2(axFlyBS − ϕ)(ayF lyBS − τ)
∂2PTX

∂axFlyBS∂a
y
F lyBS

|(X(ϕ+),Y (τ+))

where ϕ+ and τ+ are (unknown) values satisfying ϕ+ ∈
[ϕ,ϕ+ξ] and τ+ ∈ [τ, τ+ξ]. Using the triangle inequality, and
by the fact that 0 ≤ axFlyBS−ϕ ≤ ξ and 0 ≤ ayF lyBS− τ ≤ ξ
for axFlyBS ∈ [ϕ,ϕ+ ξ] and ayF lyBS ∈ [τ, τ + ξ], the error is
upper bounded by:

|ζ| ≤ ξ2|Mxx|+ 2ξ2|Mxy|+ ξ2|Myy| =
ξ2(|Mxx|+ 2|Mxy|+ |Myy|), (30)
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3.3 Maximization of minimum user capacity for NOMA

In this section, we investigate the problem of minimum user's capacity maximization via

FlyBS's positioning, NOMA user clustering, and transmission power allocation. It is

noted that the minimum user's capacity is also regarded as a critical metric as it indicates

the fairness of the FlyBS's provided coverage among the users. We propose a geometrical

approach with low complexity to cluster the users. Furthermore, we show the relation

between a minimization of the transmission power and a maximization of the minimum

capacity of the users. The following work presents the reference paper [J4] in that regard.
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Abstract—In this letter, we maximize the minimum downlink
capacity of moving users in the mobile networks based on non-
orthogonal multiple access (NOMA) with flying base stations
(FlyBSs) considering practical constraints on the speed, altitude,
and transmitting power of the FlyBSs. We propose a geometrical
approach allowing us to reflect the users’ movement and to derive
optimal user clustering for NOMA, positions of the FlyBS, and
the transmission power allocation to the users in one cluster
served in NOMA at the same time-frequency resources. The
proposed solution increases the minimum capacity of all users
by 20%-59% comparing to state-of-the-art solutions.

Index Terms—Flying base station, Non-orthogonal multiple
access, Minimum capacity, Mobile users, Mobile networks, 6G.

I. INTRODUCTION

In the recent years, unmanned aerial vehicles (UAVs)
acting as flying base stations (FlyBSs) have received
remarkable interest thanks to their intrinsic characteristics,
such as adaptability to environment or potential to improve
performance in mobile networks. The advantages offered by
the FlyBSs, of course, rely on an efficient radio resource
management and FlyBS’s positioning. These aspects become
even more challenging for non-orthogonal multiple access
(NOMA), as the users should be clustered together and the
users in each cluster are served at the same radio resources.

Superiority of NOMA over the conventional orthogonal-
multiple-access (OMA) is shown in [1]. In [2], an energy-
efficient NOMA communication of the FlyBS is further
investigated. However, the problem of the FlyBS’s positioning
is addressed in neither [1] nor [2], as a static FlyBS is assumed.
The FlyBS’s positioning is targeted, e.g., in [3] and [4] jointly
with the transmission power allocation to maximize the sum
capacity and to minimize the transmission power, respectively.
However, the problem of the NOMA user clustering is not
addressed in these papers and only one NOMA cluster is
considered. The assumption of single cluster is practical for
only scenario with few users due to a high complexity of
successive interference cancellation (SIC) decoding commonly
adopted to cancel interference within the NOMA cluster [5].

Furthermore, in [6], the authors minimize an energy
consumption of the IoT devices in scenarios with the FlyBS
collecting data from these devices in NOMA networks. To
this end, the FlyBS’s trajectory and resource allocation are
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optimized. Nevertheless, the trajectory is designed for the users
being static during the FlyBS’s entire mission and an extension
towards mobile users is not straightforward.

The mobile users are considered in [7], where joint NOMA
user clustering and FlyBS’s positioning is investigated to
prolong the coverage duration of the users served by the
FlyBS. The solution in [7], however, targets 1D scenario,
where all users move in the same direction along x-axis (e.g.,
vehicles on a road). Hence, the clustering in [7] is done
based on only the x-coordinate of the users. Then, a heuristic
solution for a joint user clustering and FlyBS’s positioning to
increase the minimum downlink sum capacity is proposed in
[8]. The NOMA clusters size is, however, limited to only two
users. Furthermore, the solution in [8] does not guarantee any
minimum capacity to individual users, hence, some users may
end up with zero capacity. The problem of NOMA clustering
in the scenario with potentially moving users targeting to
minimize the transmission power and to maximize the sum
capacity is addressed in [10] and [11], respectively. However,
the FlyBS’s positioning is considered in neither [10] nor [11],
as only a static base station is assumed in both.

Even if the problem of maximization of the minimum
capacity for users reflects fairness among users and is
heavily addressed in common mobile networks, it is not
yet investigated for the NOMA-based networks with FlyBSs
serving mobile users. Hence, we maximize the minimum
capacity via a joint FlyBS’s positioning, transmission power
allocation, and NOMA users clustering in the scenario with the
moving users. In addition, we consider a generalized model
for NOMA, where the cluster sizes can be different and the
cluster size of one is allowed, i.e., some users can potentially
be served in OMA. We derive a closed-form expression for the
transmission power in terms of the FlyBS’s position and the
NOMA clustering. We also derive necessary conditions for the
users’ capacities so that the minimum capacity of all users can
be maximized. Then, we maximize the minimum capacity via
the FlyBS’s positioning and the transmission power allocation
to the users and we find the optimal user clustering.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we explain the system model and then
formulate the problem of user clustering, power allocation,
and FlyBS’s positioning.

We consider one FlyBS serving Nu mobile users U =
{u1, u2, . . . , uNu} as depicted in Fig. 1. In our NOMA model,
the users are assigned into different clusters such that the
users in each cluster share the same channel at the same time,



Fig. 1: System model with multiple mobile users deployed within
coverage area of the FlyBS. The circles with the same color represent
the users in the same NOMA cluster.

however different clusters are served at different (orthogonal)
channels. Let G denote the space of all possible functions
that group the users into Ncl clusters with Ncu,j users in
the j-th cluster. We assume that Ncu,j ∈ [1, Nmax

cu ], where
Nmax
cu is the maximum potential size of each cluster and it

is practically related to an incurred complexity in the SIC
decoder. Each function G ∈ G is defined as a bijective
mapping G: [1, Nu] → [1, Ncl] × [1, Nmax

cu ]. Furthermore,
let uG1,j , u

G
2,j , . . . , u

G
Ncu,j ,j

denote the users assigned by the

function G to cluster j. Let lM [k] =
[
X[k], Y [k], H[k]

]T
and

lGi,j [k] =
[
xGi,j [k], yGi,j [k]

]T
denote the locations of the FlyBS

and uGi,j , respectively, at the time step k . In SIC, suppose
that the user uGi,j (i ∈ [1, Ncu,j − 1]) cancels the interfering
signals from the users uGi′,j (∀i′ ∈ [i+ 1, Ncu,j ]) to extract its
own signal (note that the adopted decoding order would not
affect optimality since finding the index of users in clusters is
subject to optimization instead). Consequently, the achievable
SINR γGi,j for uGi,j is:

γGi,j [k] =
pG,Ri,j [k]

σ2 +
∑i−1
l=1 p

G,R
i,l,j [k]

, (1 ≤ i ≤ Ncu,j), (1)

where σ2 is the noise power, pG,Ri,j is the received power by
uGi,j , and pG,Ri,l,j represents the interference at uGi,j caused by the
signals transmitted to another user uGl,j in the same cluster j.

The channel capacity CGi,j of the user uGi,j is calculated
as CGi,j [k] = Blog2(1 + γGi,j [k]), where B is the bandwidth
assigned to each NOMA cluster.

Next, we formulate the FlyBS’s total transmission power
as PTX(l, k,G) =

∑Ncl
j=1

∑Ncu
i=1 p

G,T
i,j , where pG,Ti,j is the

transmission power of the FlyBS to the i-th user uGi,j in the
j-cluster calculated by the Friis’ transmission equation as:

pG,Ti,j =
ζ

( λ
λ+1ε+ 1

λ+1 ε̃)
pG,Ri,j dαi,j,G[k] = QpG,Ri,j dαi,j,G[k],

(2)
where pG,Ri,j is the received signal power by the user uGi,j , di,j,G
denotes the distance between the FlyBS and the user uGi,j , ζ

is a parameter depending on communication frequency and
gain of antennas. Furthermore, λ is the Rician fading factor,
ε is the line-of-sight (LoS) component satisfying |ε| =1, and
ε̃ denotes the non-line-of-sight (NLoS) component satisfying
ε̃ ∼ CN(0, 1), and α is the pathloss exponent.

Using (2), the total transmission power PTX is rewritten as:
PTX(lM , k,G) =

∑Ncl
j=1

∑Ncu,j
i=1 QpG,Ri,j di,j,G

α[k].
Our goal is to find the position of the FlyBS jointly with

the transmission power allocation to the users and the NOMA
clustering of the users to maximize the minimum capacity η[k]
at every time step k. We formulate this problem as:

max[
G,pG,Ti,j ,lM

] η[k], (3)

s.t. CGi,j [k] ≥ η[k], (3a)

PTX(lM , k,G) ≤ PmaxTX ,∀k, (3b)

Hmin ≤ H[k] ≤ Hmax , (3c)∣∣∣∣lM [k]− lM [k − 1]
∣∣∣∣ ≤ Vmaxδk, (3d)

where δk in (3d) is the duration between time steps k− 1 and
k. The constraint (3b) guarantees that the FlyBS’s transmission
power is within the maximum transmission power limit PmaxTX ,
and the constraints (3c) and (3d) limit the FlyBS’s altitude to
[Hmin, Hmax] and the FlyBS’s speed to Vmax.

III. PROPOSED FLYBS POSITIONING, TRANSMISSION
POWER ALLOCATION, AND USER CLUSTERING

In this section, we first transform of the problem to
more convenient transmission power minimization. Then, we
describe the proposed users clustering and FlyBS positioning.

A. Maximization of minimum capacity via minimization of
transmission power

The user’s capacity and so the minimum capacity (objective)
in (3) are not convex or concave. Furthermore, the discrete
function G makes the problem (3) non-tractable. To tackle
these challenges, we propose a solution based on a conversion
of the objective in (3). To this end, we first elaborate the
characteristics of the optimal solution to (3) (denoted by η∗)
and its relevance to the transmission power via Proposition 1.

Proposition 1. In the optimal solution to (3), CGi,j = η∗,∀i, j.
Proof. We first show that PTX is an increasing function
of CGi,j . To this end, from (1) and (2), we observe that
pG,T1,j = Qσ2γ

G
1,j [k]dα1,j,G[k]. Thus, pG,T1,j increases with

γG1,j [k]. Furthermore, from (1) and (2), pG,Ti,j is rewritten as:

pG,Ti,j = σ2γGi,j [k]dαi,j,G[k] + γGi,j [k]

Ncu,j−1∑

l=1

pG,Tl,j . (4)

From the recursive formula in (4), we observe that pG,Ti,j

also increases with γGi,j and, consequently, with CGi,j (since

γGi,j [k] = 2
CGi,j [k]

B −1). Now, by contradiction, suppose that the
capacity received by some user uGi′,j′ would be greater than η∗

in the optimal solution to (3). In such case, decreasing CGi′,j′



as long as it still remains larger than or equal to η∗ would
not decrease the minimum capacity η∗ while it decreases
the transmission power. This means that, given the maximum
transmission power limit PmaxTX , we can always first reduce the
capacity of the users to η∗ (to reduce the transmission power)
and, then, we can increase the capacity of all users together
by increasing the power to all users (exploiting the reduced
transmission power) until the transmission power reaches the
PmaxTX . This proves the Proposition 1.

It is deduced from the proof of the Proposition 1 that,
once the optimal G and lM are derived, the optimal
power allocation pG,Ti,j in (3) is determined from (4) and
by setting the FlyBS’s total transmission power to PmaxTX .
Furthermore, Proposition 1 indicates the connection between
the maximization of η∗ and the minimization of PTX as
elaborated and demonstrated in the following Corollaries.

Corollary 1. Using the expression for pG,Ti,j in (4) and by the

fact that the capacity of all users is η∗ and γ∗[k] = 2
η∗[k]
B −1,

the total transmission power is calculated as:

PTX(lM , k,G) = γ∗Qσ2

Ncl∑

j=1

Ncu,j∑

i=1

(1 + γ∗)Ncu,j−idαi,j,G, (5)

Corollary 2. Following the Proposition 1 and given that
the transmission power increases with the capacity η∗ and
vice versa, the solution to the user clustering and FlyBS’s
positioning in (3) can be alternatively derived via solving the
following problem of transmission power minimization:

min[
G,lM

]PTX [k],∀k, (6)

s.t. (3c), (3d),

CGi,j [k] = ηarb, i ∈ [1, Ncu,j ], j ∈ [1, Ncl], (6a)

where ηarb is an arbitrary user capacity. The constraint (6a)
ensures that every user receives the capacity of exactly ηarb.

Note that the value of ηarb does not affect the optimal G or
lM in (6) (see Proposition 1), but it is selected such that the
constraint (3b) would not be violated (so that there would exist
a feasible solution). The power minimization problem in (6) is
more convenient for FlyBS’s positioning and user clustering,
because the maximization of minimum capacity requires the
knowledge of which user receiving the smallest (minimum)
capacity among all users. However, such knowledge is hard to
obtain without determining the user clustering. On the other
hand, the objective in (3) and the constraints (3c) and (3d)
are convex with respect to lM . Hence, for a fixed clustering
function G, the optimal FlyBS’s position is efficiently derived
using CVX. Note that (6a) is translated into γ[k] = 2

ηarb[k]

B −1,
which is used to write the transmission power as in (5).

B. Determination of user clustering and FlyBS positioning

Although the optimal position for each clustering can be
derived (as explained in the previous subsection), finding
the optimal clustering by an exhaustive search is not always
feasible, because, even if all the clusters would be of the

same size, there are Nu!
Ncl!

different clustering options, which
could be extremely large even for small Nu.Hence, to tackle
the user clustering, we derive all promising clustering options
to reduce complexity and we select the one maximizing the
performance. First, let’s define a necessary condition for the
optimal clustering. To do this, we introduce the following
terminology. Let Λ denote a set of points in the xy-plane.
The subset T ⊂ Λ is said to form an “exclusively convex
polygon” if the convex hull determined by T does not enclose
any point from Λ − T . Furthermore, let Ψ denote the set of
points in the xy-plane corresponding to the users’ locations.
Now, we define the necessary condition via Theorem 1.

Theorem 1. Denoted by Θe,q the set of e-th users in clusters
of size q, for the optimal clustering Gopt minimizing PTX ,
Θ1,Nmaxcu

forms an exclusively convex polygon in Ψ. Moreover,
Θ2,Nmaxcu

∪ Θ1,Nmaxcu −1 is an exclusively convex polygon in
Ψ − Θ1,Nmaxcu

. Similarly, Θ1,Nmaxcu −i ∪ ... ∪ Θi,Nmaxcu −1 is an
exclusively convex polygon in the set of unselected users, i.e.,
Ψ− ∪ir=1 ∪r−1j=0 Θr,Nmaxcu −j for (1 ≤ i ≤ Nmax

cu − 1).

Proof. Let Ncl,i denote the number of clusters of size i and
clj1 , ..., cljNcl,Nmaxcu

be the clusters of size Nmax
cu . Suppose

that Θ1,Nmaxcu
= {uGopt1,clj1

, u
Gopt
1,clj2

, ..., u
Gopt
1,cljNcl,Nmaxcu

} =

{ui1 , ..., uiNcl,Nmaxcu

}. By contradiction, we assume there
exists user uj such that uj belongs to the convex hull
for {ui1 , ..., uiNcl,Nmaxcu

}, but uj /∈ {ui1 , ..., uiNcl,Nmaxcu

}.
Furthermore, suppose that the convex polygon’s vertices are
{uv1 , ..., uvq}. For Gopt, we assume that uj is the user at the
s-th position in some cluster. Let Gl denote the clustering
function obtained by swapping uvl from the polygon and uj
in Gopt for l ∈ [1, q]. From the optimality of Gopt, it is
inferred that (PTX (Gopt)−PTX (Gl)) < 0. Now, we rewrite
(PTX (Gopt) − PTX (Gl)) at (Xopt, Yopt) by means of the
system parameters as:

γarbQσ2(dαil − dαj )((1 + γarb)
Nmaxcu −1 − (1 + γarb)

Nmaxcu −s
) (7)

From the inequality PTX (Gopt) − PTX (Gl) < 0 and from
(7), it is concluded that dil − dj < 0 for l ∈ [1, q]. Since the
points in {uv1 , ..., uvq} create the convex polygon, the set of
inequalities dil − dj > 0 also demarcates the convex polygon
Γi. Now, for any w ∈ [1, q], let’s consider the edge from Γi
corresponding to diw = dj . Since Γi is convex, all the vertices
in Γi lie in the halfplane defined by diw > dj . This implies that
the intersection of the inequalities dil − dj < 0 (∀l ∈ [1, q]) is
an empty set. This contradicts the initial assumption that the
points corresponding to the users in Θ1,Nmaxcu

do not create
the exclusively convex polygon. By a similar procedure, the
second users of the clusters of size Nmax

cu and the first users of
the clusters of size Nmax

cu −1 should also create an exclusively
convex polygon in the set remained from Ψ, and so on so forth
for the next users of all clusters. This completes the proof.

In order to apply Theorem 1, we now find all subsets of the
users forming an exclusively convex polygon. We develop our
algorithm based on a method provided in [9], where general



convex polygons (CPs) are found based on a target vertex
size. The solution in [9] cannot be immediately used in our
case, as we need to find CPs with a certain total number
of points belonging either to the vertices or to the interior
of the CP. Hence, we extend the general solution in [9] to
enable a selection of the exclusively convex polygons of an
arbitrary size m from the set Ψ, see Algorithm 1. The set of
points Ψ represents the locations of the users in the xy-plane.
Following [9], the principle of finding such CPs is to first set
the lowermost point in the polygon (line 2 in Algorithm 1)
and, then, create sequences of vertices by collecting all next
candidate points (users) to be included in the sequence (lines
3 and 5). The addition of the points to the sequence should
not violate the convexity presumption of the polygon (line 5).
After adding new vertex to our sequence of vertices (line 9),
we check the number of enclosed points by the CP of the
sequence (lines 7 and 12). Then, sequences containing more
points than m are excluded from the vertex search.

Following the proposed search for polygons in Algorithm
1, we now find the optimal clustering using Theorem 1. Note
that, in Theorem 1, the size of the clusters is prespecified.
Hence, we should first find all possible sets of the cluster
sizes {Ncu,1, . . . , Ncu,cl} with a maximum cluster size of
Nmax
cu . Then, for each derived set {Ncu,1, . . . , Ncu,cl}, we

apply Theorem 1 as follows. To determine the first users in the
NOMA clusters with a size of Nmax

cu , we execute Algorithm
1 for m = Ncl,Nmaxcu

and collect all candidate sets of users.
Next, for each obtained candidate set, we determine the second
users in the clusters with a size of Nmax

cu as well as the first
users in the clusters with a size of Nmax

cu − 1. To this end, we
apply Algorithm 1 for m = Ncl,Nmaxcu

+N
cl,Nmaxcu −1 over the

set of the remaining users and so on and so forth until every
user is assigned to one cluster.

Algorithm 2 summarizes the whole proposed solution to (3).
First, the optimum position of the FlyBS is determined (line
1) using CVX for each clustering derived by Algorithm 1.
Next, the clustering and corresponding position yielding the
smallest transmission power are selected (lines 2-3) and the
transmission power is allocated (line 4) via (4).

The computational complexity of the proposed solution is
determined by the number of clustering candidate options and
by the calculation of the transmission power and the FlyBS’s
position from the simulations. By caluclating the order of
complexity with respect to the system parameters, the total
computational complexity is O(Ncl

0.83Nmaxcu Nu
1.81Nmaxcu ).

Despite the exponential complexity with respect to Nmax
cu ,

complexity is still low and allows a fast enough processing
for practical applications, as Nmax

cu is relatively low in real-
world applications due to an implementation complexity of
SIC for large Nmax

cu .

IV. SIMULATIONS AND RESULTS

In this section, we provide details of models and setting
adopted for the performance evaluation and we demonstrate
the advantages of the proposal over state-of-the-art schemes.

Algorithm 1 Find all exclusively convex polygons of size m

Uq ⊂ Ψ: halfspace of points with y-coordinate larger than that of q
Hq,w: halfspace to the left of the directed line qw
S = Ψ: initial set for the lowermost point when counting polygons
Ωs ← []: Matrix to store sequences of vertices on top of s
CP (Φ): convex polygon (CP) obtained from the vertices Φ

1: while S 6= ∅ do
2: s← point with smallest y-coordinate in S, Ωs ← [Ωs, s]
3: for every point q ∈ Us do add q to every row in Ωs
4: delete rows in Ωs whose size of CP is larger than m
5: for every w ∈ Us∩Hs,q do add w to every row in Ωs
6: for j = 1, j ≤ rows(Ωs), j + + do
7: delete row j if |CP (Ωs(j, :))| > m
8: end for
9: q ← w

10: end for
11: end for
12: delete rows in Ωs whose size of CP is not equal to m
13: S ← S − {s}
14: end while
Output: Ωs, s ∈ Ψ: vertex sequences of convex polygons of size m

A. Simulation scenario and models

We consider a scenario with 60–240 active users in an
outdoor event (sports, festivals, etc.) within 500 m×500 m
area. The users are assumed to leave the area through four exit
paths in the ± directions of the x and y axes with Nu/4 users
on each path. We consider three crowds on each path with
Nu/12 users in each crowd with the speed of users in the first,
second, and third crowds uniformly distributed over intervals
of [0.6, 1.4] m/s, [1, 2] m/s, and [1.5, 2.5] m/s, respectively.

Following [8] we assume α = 2. Omni-directional antennas
with gains of 7 dBi and 0 dBi for the FlyBS and the users
are considered, respectively. The radio frequency of 2.6 GHz
and the bandwidth of 100 MHz are selected. Note that the
bandwidth is equal for all clusters. Spectral density of noise
is set to -174 dBm/Hz. The allowed range for the FlyBS’s
altitude is Hmin =150 m and Hmin =350 m. The maximum
transmission power PmaxTX is set to 1 W. Each simulation lasts
for 1200 seconds with the problem (3) solved every second.
The results are averaged out over 100 simulation drops.

We compare our proposal with following state-of-the-art
works: i) maximization of the minimum sum capacity among
all clusters via FlyBS’s positioning and NOMA pairing [8]
(labeled as max-min-C), ii) transmission power minimization
via NOMA clustering for static base stations (SBSs) [10] (min-
Tx), iii) sum capacity maximization via NOMA clustering
for the SBS [11] (max-C), iv) enhanced version of [10] with
our proposed FlyBS positioning (E-min-Tx), and v) enhanced

Algorithm 2 Optimal user clustering and FlyBS positioning

1: derive optimal lM [k] via CVX for each clustering from Alg. 1
2: calculate PTX for each clustering according to (5)
3: optimal G← argminG PTX
4: calculate pG,Ti,j from (4)

Output: optimal
[
G, pG,Ti,j , lM

]
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version of [11] with our proposed positioning (E-max-C).

B. Simulation results

In this subsection, we present and discuss simulation results.
Fig. 2 demonstrates the transmission power increases with
the number of users, because less bandwidth is available for
each user and a larger transmission power is required (see
(4)). All benchmarks require notably larger transmission power
compared to our proposed solution. As max-min-C supports
only Nmax

cu = 2, we compare it with the proposed solution for
Nmax
cu = 2 and the proposal reduces the transmission power

by 67%. By an extension of the cluster size to Nmax
cu = 5,

the transmission power required by our proposal is further
reduced by 54% compared to the proposal with Nmax

cu = 2.
This is because for a larger cluster size, fewer clusters are
created and more bandwidth can be allocated to each cluster
resulting in a lower transmission power. Overall, the proposed
solution (with Nmax

cu = 5) reduces the transmission power by
78% and 80% with respect to min-Tx, max-C, respectively.
The extension of min-Tx and max-C with our proposed FlyBS
positioning towards E-min-TX and E-max-C demonstrates that
our positioning reduces the transmission power of the original
min-TX and max-C by 67% and 59%, respectively.

Fig. 3 shows that the average minimum capacity η∗

decreases with the number of users, because the more users are
served by the FlyBS, the narrower channel is allocated to each
user, as the whole available bandwidth is split among clusters.
The proposed solution improves the average η∗ compared to
max-min-C by up to 20% (for Nmax

cu = 2). In addition, the
average η∗ is enhanced by 17% for our proposal if Nmax

cu is
increased to 5. In total, compared to max-min-C, min-Tx, max-
C, E-min-Tx, E-max-C the proposed solution (for Nmax

cu = 5)
increases the average η∗ by 35%, 44%, 59%, 11%, and 20%,
respectively.

V. CONCLUSIONS

In this letter, we have provided a geometrical approach to
derive NOMA clustering, transmission power allocation to the
users, and the FlyBS’s positioning maximizing the minimum
capacity among all users. We have shown that the proposed
solution enhances the minimum capacity by tens of percent
with respect to state-of-the-art work. In the future, the scenario
with multiple FlyBSs shall be studied.
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3.4 Minimization of FlyBSs propulsion power with

guarantee of sum capacity

Next, we focus on the major di�erence between airship-based FlyBSs and static BSs,

that is, the energy consumption due to FlyBSs' mobility. To this end, we investigate

the extent of FlyBSs remaining idle like a static BS, as well as FlyBSs considering a

relocation to enhance the system's performance. Such movements come at a cost of

propulsion energy consumption. Hence, to study such trade-o� between performance and

energy consumption, we target to minimize the propulsion energy consumption of the

FlyBSs. Such task is done on the condition that a minimum "expected" sum capacity in

the network is guaranteed all the time. To this end, an analytical solution to the FlyBSs'

positioning is proposed.

In the following, we present the studied problem along with the results (representing

the references [C4] and [J1]).



Reducing Energy Consumed by Repositioning of
Flying Base Stations Serving Mobile Users

Zdenek Becvar, Pavel Mach, Mohammadsaleh Nikooroo
Department of Telecommunication Engineering, Faculty of Electrical Engineering

Czech Technical University in Prague
Technicka 2, 166 27 Prague, Czech Republic

{zdenek.becvar, machp2, nikoomoh}@fel.cvut.cz

Abstract—Unmanned Aerial Vehicles (UAVs), acting as flying
base stations (FlyBSs), are seen as a promising solution for future
mobile networks, as the FlyBSs can serve space and time varying
heterogeneous traffic in areas where deployment of conventional
static base stations is uneconomical or infeasible. However, an
energy consumption of the FlyBSs is a critical issue. In this
paper, we target a scenario where the FlyBSs serve slowly moving
users, e.g., visitors of an outdoor music festival or a performance.
In such scenario, rotary-wing FlyBSs are not efficient due to a
high energy consumption while not moving (given by an effect
of a ”helicopter” dynamics). Hence, we consider small airships
or balloons. We develop a closed-form solution that determines
new positions of the FlyBSs so that the energy consumption
for a movement of the FlyBSs is reduced significantly (by 45-
94% depending on the number of deployed FlyBSs) while sum
capacity of the users is decreased only marginally (less than 1%
for before-mentioned energy savings). Moreover, the proposed
solution does not require any prediction of users’ movement,
thus, it is not affected by the prediction error or uncertainty of
the users’ behavior.

Index Terms—Energy consumption, mobile users, flying base
station, UAV, 6G

I. INTRODUCTION

In future mobile networks, Unmanned Aerial Vehicles
(UAVs) acting as flying base stations (FlyBSs) are expected
to help with serving a diverse and space-time varying require-
ments of users and machines, or during emergency situations
[1]–[3]. The concept of FlyBSs, however, imposes many
challenges (listed, e.g., in [2], [4]), such as a determination of
optimal positions of the FlyBSs, optimization of trajectories of
FlyBs, or mobility and radio resource management, to name
a few.

Another critical challenge is related to an energy consump-
tion of the FlyBSs. The FlyBSs are supposed to be powered
by energy sources of a limited capacity used not only for com-
munication with the users and the network, but also for flying.
Consequently, an operational time of the FlyBSs is reduced if
the energy would not be used in an efficient way. The energy or

This work was supported by the Czech Science Foundation (GACR) under
Grant P102-18-27023S.

power consumption of the FlyBSs is considered, e.g., in [5]–
[9]. In [5], [6], the authors minimize transmission power under
the constraint of guaranteeing data rate for all user equipment
(UE). In [7], the energy consumption for communication is
constrained by keeping at least the same size of coverage
area and the lower consumption is achieved via movement
of the FlyBSs providing connectivity to the devices at certain
positions (stopping points). An energy efficient collection of
data from sensors [10] by means of the FlyBSs is addressed in
[8], [9]. In [8], the scheduling of the FlyBSs for data collection
and forwarding of the data to conventional static base stations
(SBSs) is proposed. In [9], the minimization of a transmission
power for communication of sensors in a hierarchical manner
(via cluster heads) with the FlyBSs is based on a scheduling of
communication of individual cluster heads and the FlyBSs. In
[11], [12], the objective is to minimize the energy consumed
for both communication and movement of the FlyBSs in the
scenario where the FlyBSs flight over a set of static ground
nodes and exchange data with each of them sequentially. To
this end, the authors design an algorithm that plans trajectories
among the ground nodes and communication/hovering time
in order to minimize the overall energy consumed by the
FlyBS. All these works targeting energy efficiency take into
account only static UEs with known coordinates, which are not
changing over time. Such scenario corresponds, for example,
to a collection of data from static IoT/machine-type devices,
but the solution cannot be applied to a dynamic environment
with moving UEs due to complexity of the solution and the
fact that the solutions rely on the knowledge of future UEs’
positions.

Mobile UEs are considered, e.g., in [13]–[16]. In [13], how-
ever, only single FlyBS is considered and an extension towards
multi-FlyBS scenario is not straightforward. Then, in [14],
the authors solve the positioning jointly with association of
the UEs via k-means algorithm. In [15], the authors optimize
jointly the network capacity and energy consumption of the
UEs. In [16], the authors focus on the coverage maximization
and interference mitigation. Nevertheless, none of these papers
consider the energy consumption of the FlyBSs.



The energy consumption in the scenario with the mobile
UEs is addressed in our prior works [15], [17]. Specifically,
in [15], we consider the energy efficiency only at the UE side.
Then, in [17], we jointly optimize a transmission power of the
FlyBSs and the power spent for movement of the FlyBSs while
communication capacity is not impaired. To this end, a closed-
form solution for transmission power setting and determination
of the FlyBS coordinates is proposed in [17]. Such solution is
easy to implement, but it is designed and suitable only for a
single FlyBS. Also, the closed-form solution tracks the UEs
strictly and, thus, it can lead to a high energy consumption for
repositioning of the FlyBS if few UEs move rapidly despite
the fact that the sum capacity of all UEs would change only
negligibly.

In this paper, we focus on a saving of the energy spent
for movement of FlyBSs while guaranteeing close-to-optimum
sum capacity of the users in the scenario where the FlyBSs
provide continuous communication service to the mobile (mov-
ing) users, such as pedestrians. In related works, where the
authors also target the energy minimization, see e.g., [11], [12],
the addressed problem is an analogy to the one with a traveling
salesman problem as the positions of the UEs are known and,
more important, do not change over time. In our case, we
assume mobile UEs, thus, there is no knowledge of future
positions of these UEs. As a result, any advanced planning of
the FlyBS trajectory is not easy and the FlyBSs should adjust
their positions only based on the actual positions of the UEs.
Of course, such problem could be solved via prediction of the
users’ movement. Nevertheless, the prediction of the users’
movement is a complex problem with a significant uncertainty
in terms of the prediction accuracy.

To this end, we propose a new concept of the FlyBS
movement optimization that eliminates redundant movement
of the FlyBSs while circumventing the need for an accurate
prediction or estimation of the future users’ movement. Under
a realistic assumption of the known actual positions of the
UEs (as in many existing works, see, e.g., [11], [18]), we
analytically determine suitable future positions of the FlyBSs
so that the users’ sum capacity remains close to an achievable
maximum while the energy spent for the flying of the FlyBSs
is significantly reduced and, thus, an operational time of the
FlyBSs is extended. Unlike many other papers, we consider
moving users, for example, pedestrians. In [11], the authors
develop a power consumption model for rotary-wing UAVs.
The model indicates that the power consumption is relatively
high for static or slowly moving rotary-wing UAVs. This is
a result of helicopter dynamics, see e.g., [19]. Thus, in the
scenarios with pedestrians (e.g., visitors of an outdoor event,
music festival) considered in our paper, the optimal position of
the FlyBSs will not change significantly and the change will
be similar or even lower than the movement speed of the users.
Hence, we consider FlyBSs represented by, e.g., small balloons
or airships, for which the slow movement or even temporary
hovering at the same position is not a drawback from energy
consumption point of view [1], [20]. Via simulations, we show
that the proposed approach can reduce the energy spent for the

FlyBS movement by tens of percent while the impact on the
sum capacity is negligible. We show that the energy saving
can be controlled by an adjustment of the minor acceptable
degradation in the sum capacity.

The rest of the paper is organized as follows. The next sec-
tion outlines the system model considered in this paper. Then,
in Section III, we propose a solution that analytically derives
new positions of the FlyBSs so that the energy consumed for
flying is reduced and we illustrate the principle of the proposed
idea on an example. In Section, IV, simulation scenario and
models are outlined and performance of the proposed solution
is analyzed and discussed. Last, Section V concludes the paper
and outlines potential future works.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we define our system model and we formu-
late the problem that will be solved later in the paper.

A. System Model

Let’s assume N UEs distributed within an area covered by
M FlyBSs. The positions of the UEs are defined as UUU =
{u1u1u1,u2u2u2, . . . ,uNuNuN}, where ununun = [xn, yn, zn] ∈ R3 for ∀n ∈
〈1, N〉. Similarly, the FlyBSs are located at the positions VVV =
{v1v1v1, v2v2v2, . . . , vMvMvM}, where vmvmvm = [xm, ym, zm] ∈ R3 for ∀m ∈
〈1,M〉. Note that both UEs and FlyBSs are moving over time
and the coordinates of each FlyBSs are updated depending
on the UEs movement. Initial positions of all FlyBSs and an
association of the UEs to the FlyBSs are solved via k-means
clustering algorithm [14].

The theoretical optimum position of the m-th FlyBSs from
the sum capacity point of view is represented by the cen-
ter of gravity of the UE’s positions [13], i.e., Xopt,m =
1

nm

∑
∀n∈Nm

αnxn and Yopt,m = 1
nm

∑
∀n∈Nm

αnyn where
nm is the number of the UEs associated to the m-th FlyBS,
αn ∈ 〈0, 1〉 is the relative throughput requirement of the UEn

and Nm is the set of UEs associated to the m-th FlyBS. Note
that the FlyBSs are supposed to operate in an outdoor area,
thus, we can assume that the positions of the UEs are known
as in related works (see, e.g., in [11], [18]). As the UEs move,
the k-means clustering algorithm is continuously repeated to
determine jointly the association of the UEs to the FlyBSs and
the optimal positions of the FlyBSs as in [14]. Note that we
consider 3D positions of all entities, however, the movement
takes place in 2D space and the altitudes of the FlyBSs and
the UEs are set to the constant values of 150 m [1], [21] and
1.5 m, respectively, for the sake of clarity of the analytical
derivation of the solution. An extension towards 3D space is
straightforward and analogical to the derivation of the solution
for 2D.

The downlink communication capacity of the n-th UE
connected to the m-th FlyBS is defined as:

Cn,m = Bn,m × log2 (1 + γn,m) (1)

where Bn,m stands for the channel bandwidth between the
n-th UE and the m-th FlyBS (bandwidth is the same for all



UEs connected to the same FlyBSs), and γn,m represents the
SINR between the n-th UE and the m-th FlyBS defined as:

γn,m =
PT
mhn,m

σ2 +
∑M

i=1, i �=m PT
i hn,i

(2)

where PT
m is the transmission power of the m-th FlyBS that

serves the n-th UE, PT
i stands for the transmission power of

the i-th FlyBS that interferes to the communication of the n-
the UE, hn,m is the the channel gain between the n-th UE
and its serving m-th FlyBS, hn,i represents the channel gain
between the n-th UE and the i-th interfering FlyBS, and σ is
the noise.

All FlyBSs use the same band, thus, interference is present
at the UEs attached to different FlyBSs. The overall bandwidth
Bm = NmBn,m is the same for all FlyBSs and each FlyBS
assigns orthogonal channels of the same bandwidth to its
underlaying UEs.

Note that the communication between the FlyBSs and the
network (e.g., communication with the existing static BSs)
and its specific implementation or potential limitation does
not change our proposed solution. Thus, like in many related
works, we assume a high capacity connection of the FlyBSs
to the network via, for example, optical wireless links [22],
[23].

For the scenario with pedestrians considered in our paper,
the rotary-wing FlyBSs are not convenient due to their rel-
atively high power consumption in static or slowly moving
mode (this is a result of an effect in helicopter dynamics, see,
e.g., [19] or the power consumption model developed in [11]).
Thus, we focus on the FlyBSs represented, e.g., by balloons
or airships, for which the power consumption is proportional
to the distance traveled between two points and the power
consumption is negligible if these FlyBSs are not moving
as the gravity if compensated by a static buoyancy [24]. We
assume that the FlyBS follows the shortest distance between a
current location vk(t) = [Xcur, Ycur] and a new determined
location vk(t+1) = [Xnew, Ynew], i.e., the FlyBS moves for

the distance Dmov =

√
(Xcur −Xnew)2+(Ycur − Ynew)

2.
Then, the flying energy is defined as EF = Dmov × emov

where emov represents the instantaneous unit energy spent
for the movement per unit of distance (e.g., per meter). The
hovering energy for balloons, airships, or similar UAVs is
considered to be negligible.

B. Problem formulation

Our objective is to reduce the energy spent by all FlyBSs
for flying while the sum capacity of the moving UEs is still
close to the sum capacity that would be achieved if the FlyBSs
would be in their optimum positions from the capacity point
of view. Note that our proposed solution is independent of
the way how the optimum position is determined. Hence,
the problem of the optimum position determination is out of
scope of this paper and we adopt the approach based on the
center of gravity and k-means (see previous subsection) for
our investigation.

Figure 1. Illustration of the core idea of the proposed solution for elimination
of redundant movement.

The optimization problem is then defined as:

argmin
VVV∈∈∈RRR2M

∑

∀M
EF

s.t.
N∑

i=1

M∑

j=1

Ci,j ≥ Copt × ε

(3)

where Copt is the capacity achieved by the UEs if the FlyBSs
are deployed in the positions Xopt and Yopt that lead to the
maximum capacity, and ε ∈ 〈0, 1〉 is the constant indicating
acceptable degradation of the capacity. Note that the optimum
position depends on the actual position of the moving UEs
and is derived via k-means according to [14] as explained in
previous subsection.

III. POSITIONING OF FLYBSS REDUCING ENERGY SPENT
FOR MOVEMENT

In this section, we propose an approach to derive the new
positions of the FlyBSs with respect to the UEs movement.
The basic idea behind the solution introduced in this section is
that, not every movement of the UEs requires repositioning of
the FlyBSs to the position that gives maximum sum capacity
(denoted as the new optimal position), because a potential
degradation of the UEs capacity could be anyway negligible.
Instead, we suggest that the FlyBS does not follow exactly the
optimum position [Xopt,Yopt], but stays in a certain distance
Dto from the optimum. Thus, instead of the FlyBS traveling to
the optimum position, it moves only to the new real position
[Xnew, Ynew], which is between the optimum and current
positions as illustrated in Fig. 1. This way, we are able to
notably decrease the energy consumption of the FlyBSs and
prolonging their operation time.

The new real position of the FlyBS is determined knowing
the current FlyBS position [Xcur,Ycur], the new optimal
position of the FlyBS [Xopt,Yopt] (derived from the actual
positions of UEs as they move), and the distance Dto to this
new optimal position. The new optimal position is determined
from the actual positions of the UEs associated to the given
FlyBSs. The assumption on the knowledge of the UEs position
is reasonable as the FlyBSs are assumed to serve outdoor UEs
where relatively accurate positioning of the UEs is possible;
this assumption is commonly considered in most of the related



works as explained in Section II. As we show via simulations,
common positioning errors of the satellite navigation systems
in an order of a meter [25] does not impact on the performance
notably. The new real position is represented by an intersection
of the straight line between the current and new optimal posi-
tions with the circle positioned so that its center corresponds
to the new optimal position of the FlyBS and radius Dto.

Lemma 1. The new coordinates [Xnew, Ynew] of the FlyBS
are determined in a closed-form as:

Xnew = Xopt

∓
√

(2Xopt(1+S2))2−4(1+S2)(X2
opt)(1+S2)−D2

to)

2(1+S2)

Ynew = Yopt + (Xnew −Xopt)S

(4)

where S represents the slope of the line and it is defined as
S = (Ycur − Yopt)/(Xcur − Yopt).

Proof. From Fig. 1, we can see that the movement from the
current to the new optimal position follows the straight line
that interconnects the current coordinates [Xcur,Ycur] to the
optimal ones [Xopt,Yopt]. Also the new position [Xnew,Ynew]
lies on that line. By using equation of the line, we can write:
Ynew = Yopt + (Xnew −Xopt)S. Now, we need to determine
the intersection of the line with the circle with the center at
[Xopt,Yopt] and with the radius Dto. As the new real position
of the FlyBS lies on the circle, we can define the circle as:
D2

to = (Xnew −Xopt)
2
+ (Ynew − Yopt)

2. Then, inserting
Ynew = Yopt + (Xnew −Xopt)S to the equation of the circle
and after several few mathematical operations, we get:

X2
new(1 + S2)−Xnew2Xopt(1 + S2) +X2

opt(1 + S2)−D2
to = 0 (5)

Solving this quadratic equation, we get:

Xnew = Xopt±√
(2Xopt(1 + S2))2 − 4(1 + S2)(X2

opt)(1 + S2)−D2
to)

2(1 + S2)

(6)

Then, by insertion of Xnew to the equation of the line, we
get Ynew coordinate as Ynew = Yopt + (Xnew −Xopt)S. �

Note that the Lemma and proof are defined for the case
when Xcur 	= Xopt. In case Xcur = Xopt (i.e., horizontal
line), Xnew = Xcur = Xopt and Ynew = Yopt ±Dto. We can
simplify the determination of both coordinates analogically for
the vertical line (i.e., if Ycur = Yopt).

Obviously, the solution to quadratic equation gives two sets
of new coordinates [Xnew1,Ynew1] and [Xnew2, Ynew2]. As
the new coordinates [Xnew,Ynew], the set that leads to a less
movement is selected, i.e., the set that leads to a smaller dis-
tance

√
(Xcur −Xnew∗)2 + (Ycur − Ynew∗)2 where Xnew∗

(Ynew∗) stands for the x (y) coordinate corresponding to
Xnew1 and Xnew2 (Ynew1 and Ynew2).

The above described approach leads to a ”smoothening”
of the FlyBSs’ movement. In other words, the FlyBSs do not
copy the movement of the UEs accurately, but naturally avoids

Figure 2. Example of FlyBS movement considering proposed concept (green
color) with respect to optimum positions (blue color). Right figure shows
zoom of the middle part of left figure to indicate how and when the movement
takes place. Each cross determines decision instance, i.e., at these positions
new position of FlyBS is determined.

a redundant and not beneficial movement whenever possible
as illustrated in Fig. 2.

IV. PERFORMANCE EVALUATION

In this section, first, simulation scenario, models, and met-
rics are outlined and summarized. Then, we provide discussion
of simulation results.

A. Simulation scenario, models, and metrics

We assume an area with a size of 1000 x 1000 m. Within
this area, 1000 UEs are dropped as the FlyBSs are supposed
to serve heavily loaded scenarios with a high UE density. A
half of the UEs (i.e., 500 UEs) is dropped randomly into the
area and their movement corresponds to random walk mobility
model with a speed of 1 m/s. The second half of the UEs is ran-
domly distributed into Ncr = 6 ”crowds” and follows a crowd
mobility model inspired by [26]. Movement of each crowd is
defined by coordinates of its center W = {w1, w2, . . . , wNcr

},
where wNcr

∈ R2 for ∀ncr ∈ 〈1, Ncr〉 and by a cluster radius
Rcluster = 20 m, which is the same for all clusters. Then
the UEs of the second half are randomly assigned to one of
these clusters and dropped within the corresponding radius.
Each UE in the cluster follows the global movement direction
of the center of the cluster, which is moving with a speed
of 1 m/s. On the top of it, each UE within the cluster can
also change its direction by ±15◦ and speed by ± 0.4 m/s
with respect to the cluster center. Thus, all UEs in the cluster
move with a speed from range of 0.6 to 1.4 m/s. Note that
the UEs of the second group (i.e., crowd) cannot leave the
cluster radius. The UEs are served by one to five FlyBSs. The
optimal FlyBS positioning and the association of the UEs to
the FlyBSs are done jointly by k-means algorithm according
to [14] as indicated in the system model.

To determine the channel quality among the UEs and the
FlyBSs, we follow free space path loss model. We assume
carrier frequency of 2.6 GHz, bandwidth of 20 MHz, and
transmission power of the FlyBSs is set to a common value of
15 dBm. Noise with a density of −174 dBm/Hz is also consid-
ered and interference perceived by the UEs from neighboring
FlyBSs is determined as a sum of all interfering signals.

The simulations are of a 1800 seconds duration and the sim-
ulations are repeated 500 times with different UEs deployment
and movement in each simulation run to suppress an impact



Table I
SIMULATION PARAMETERS

Parameter Value
Simulation area 1000 m x 1000 m

Carrier frequency 2.6 GHz
Bandwidth 20 MHz

Number of UEs 1000
Number of FlyBSs 1, 3, 5

Tx power of FlyBSs 15 dBm
Height of FlyBSs 150 m [1] [21]

Height of UEs 1.5m
Noise power spectral density -174 dBm/Hz

of randomness. Key simulation parameters and settings are
summarized in Table I.

The proposed solution is compared with performance of
the optimum positioning providing maximum capacity (as
proposed, e.g., in [13], [14]). We define two performance
metrics:

• Relative energy consumption of FlyBSs – determined
as an average energy consumption of individual FlyBSs
for movement over whole simulations related to the
consumption of the energy by FlyBSs moving in the
optimum positions (determined by k-means according to
[14]).

• Relative sum capacity of the UEs – defined as a total
capacity of all UEs averaged over whole simulation time
related to the capacity achieved by the FlyBSs in the
optimum positions (determined by k-means according to
[14]).

Note that we present both performance metrics as relative
values (from 0 to 1) with respect to performance in the opti-
mum positions of the FlyBSs. The relative metrics eliminate
an impact of specific energy consumption model. Thus, in all
figures, the optimum positioning from the capacity point of
view reaches relative capacity and energy consumption of 1.

Figure 3. Relative energy consumption of FlyBSs for movement (flying)
with respect distance of FlyBSs from their optimum position (determined by
k-means [14]).

B. Simulation results and discussion

First, we investigate the relative energy consumed by the
FlyBSs for flying in Fig. 3. Note that the optimum positioning
according to [14] is independent of Dto (the FlyBSs are always
in the optimum positions). Thus, the energy consumption
is always maximum and relative energy consumption of the
optimum positioning is always equal to 1.

The energy consumption of the FlyBSs for the proposed
solution reduces with increasing distance from the FlyBS
to the optimum position (depicted on x-axes). This is a
result of the fact that the FlyBSs do not follow exactly the
optimum position, but avoid redundant movements, which cost
additional energy while having only negligible impact on the
sum capacity. The energy consumption goes down rapidly even
for lower values of Dto (more than 35% and 45% energy saved
for Dto equals to 10 m and 20 m, respectively, for all numbers
of FlyBSs). Then, the energy consumption starts decreasing
more slowly with Dto. Such behavior results from the fact
that for a larger Dto, any notable redundant movement of the
FlyBSs is already avoided, so there is less space for additional
savings.

Fig. 3 also shows that if only one FlyBS is deployed, the
energy saving is a bit slower for very low values of Dto

comparing to 3 or 5 FlyBSs. For example, for Dto = 2 m,
the saving is 13%, 22% and 20% for 1, 3, and 5 FlyBSs,
respectively; however, for Dto = 50 m, the saving is 83%,
66% and 63% for 1, 3, and 5 FlyBSs, respectively. The
reason for such behavior is the fact that for one FlyBS, the
distribution of the UEs in whole area is rather homogeneous
despite the crowds. Thus, in fact, the FlyBS stays close to the
center of the area and its movement is limited (usually up to
tens of centimeters per second) due to almost homogeneous
deployment of the UEs. Contrary, for more FlyBSs, the whole
area is split into several smaller sub-areas, each served by
individual FlyBSs, and the distribution of the UEs within
these sub-areas is less homogeneous due to a presence of the

Figure 4. Relative sum capacity of UEs with respect to distance of FlyBSs
from of their optimum position (determined by k-means [14]).



crowds of UEs (see description of mobility model in previous
subsection). Also, for more FlyBSs, the energy consumption
is not decreasing so quickly for larger values of Dto due to
a need for re-association of the UEs and each re-association
can lead to relatively large movement, especially if the FlyBSs
stay far from the optimum position.

In previous figure, a significant saving in the energy spent
for movement of the FlyBSs is shown for the proposed
solution. Now, let’s investigate an impact on the sum capacity
of the UEs in Fig. 4. Again, the optimum positioning according
to [14] is independent of Dto and reaches maximum possible
sum capacity, thus the relative sum capacity of this algorithm is
equal to 1. The sum capacity achieved by the proposed solution
slightly decreases as the distance to the optimum position
increases. Such trend is expectable, because if the FlyBSs
are not in the optimum locations, the sum capacity of the
UEs is degraded due to a lower quality of the communication
channels for most of the UEs. The more FlyBSs are deployed,
the more significant relative decrease in the sum capacity is
experienced by the UEs. This trend (more FlyBSs leading to
more significant degradation in the sum capacity) is, again,
a result of the lower homogeneity of the UEs distribution
if the area served by one FlyBS becomes smaller. Then, a
relatively small variation of the positions of UEs not followed
by update of the FlyBS position can lead to a negative impact
on the channel quality, interference, and consequently on the
sum capacity. However, an important observation from Fig.
4 is that the relative degradation of the sum capacity with
Dto is negligible with respect to a decrease in the energy
consumption (presented in Fig. 3). For example, for Dto =
5 m, the sum capacity is degraded only by less than 0.01%
for 1, 3, as well as 5 FlyBSs. Such drop in the sum capacity
is absolutely negligible, however, the energy consumption for
the same Dto is reduced notably by 25%, 30%, and 28% (for
1, 3, and 5 FlyBSs, respectively). Even for a very large Dto

(e.g. 50 m), the sum capacity is degraded only by 0.5%, 2.0%,
and 2.9% for 1, 3, and 5 FlyBS, while 83%, 66%, and 63% of
the energy spent by FlyBSs is saved. Thus, the energy saving
is many times (ten to hundred times) higher than the decrease
in the sum capacity.

Taking into account the parameter ε expressing an ac-
ceptable degradation of the sum capacity (see (3)), we can
determine the acceptable Dto from Fig. 4 for the given ε. For
example, if we set ε = 0.01, i.e., the degradation of the sum
capacity is up to 1%, in Fig. 4, we see that such condition
is still fulfilled by Dto = 90, 30, and 20 m for 1, 3, and 5
FlyBSs respectively. Then, from Fig. 3, the energy saving is
estimated for these values of Dto as 94%, 55%, and 45% for
1, 3, and 5 FlyBSs, respectively.

In Fig. 5, we illustrate a behavior of the proposed solution
on a sample situation with one FlyBS for 700 simulation steps
(i.e., 700 seconds). The figure shows the optimal positions (X
and Y coordinates) of the FlyBS over time (red color) and
positions of the FlyBS if the proposed solution is applied with
four different values of Dto. As Dto increases, the FlyBS can
save energy by avoiding redundant movement.

Figure 5. Illustrative example of an impact of Dto on movement (coordinates)
of one FlyBS over time, red color represents optimum positions (maximum
sum capacity) determined by k-means, other colors correspond to the FlyBS
positions over time for proposed solution with different Dto.

V. CONCLUSIONS

In this paper, we have proposed a closed-form solution that
reduces the energy consumption for movement of the FlyBSs,
represented by small airships or balloons, serving the mobile
users. The proposed solution saves the energy by avoiding
redundant movement of the FlyBSs in case the movement
of the users is not significant. The energy saving is at the
cost of a marginal reduction in the users’ sum capacity. For
example, if the capacity degradation is limited to up to 1%,
still the energy saving is 94%, 55%, and 45% if 1, 3, and 5
FlyBSs are deployed. An important aspect is that the proposed
solution does not require any type of prediction of future users’
movement.

In the future, the proposed solution can be enhanced towards
consideration of the joint optimization of movement and
transmission powers of the FlyBSs.
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Abstract—Flying base stations (FlyBSs) can serve space-time
varying heterogeneous traffic in the areas, where a deployment
of conventional static base stations is uneconomical or unfeasible.
We focus on energy consumption of the FlyBSs serving moving
users. For such scenario, rotary-wing FlyBSs are not efficient due
to a high energy consumption while hovering at a fixed location.
Hence, we consider airship-based FlyBSs. For these, we derive
an analytical relation between the sum capacity of the users
and the energy spent for flying. We show theoretical bounds of
potential energy saving with respect to a relative sum capacity
guarantee to the users for single FlyBS. Then, we generalize the
problem towards multiple FlyBSs and we propose an algorithm
minimizing the energy consumption of the FlyBSs serving moving
users under a constraint on the minimum relative sum capacity
guarantee. The proposed algorithm reduces the energy consumed
by the airship-based FlyBSs for flying by dozens of percent at a
cost of only a marginal and controlled degradation in the sum
capacity. For example, if the degradation in the sum capacity
up to 1% is allowed, 55.4%, 67.5%, and 90.7% of the energy is
saved if five, three, and one FlyBSs are deployed, respectively.

Index Terms—Energy consumption, sum capacity, trade-off,
mobile users, flying base station, unmanned aerial vehicles, 6G

I. INTRODUCTION

Unmanned Aerial Vehicles (UAVs) are applied to many
use-cases encompassing space-air-ground-sea applications [1],
such as an area monitoring, where ad-hoc communication
among the UAVs should be ensured [2] [3]. Besides, the
UAVs acting as flying base stations (FlyBSs) are expected to
help serving diverse and space-time varying requirements of
users during peak traffic periods or emergency situations [4]–
[8], or to offload computation from the users [9]. However,
as indicated in [5] or [10], the concept of FlyBSs imposes
challenges, such as a determination of the FlyBSs’ positions,
optimization of the FlyBSs’ trajectories, or mobility and radio
resource management. Another critical challenge is related to
energy consumption of the FlyBSs, which are supposed to
be powered by energy sources of limited capacity, such as
batteries. Moreover, the energy is spent not only for commu-
nication with the users, but also for flying. Consequently, an
operational time of the FlyBSs is shortened if the energy is
not used efficiently.
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The energy (or power) consumption of the FlyBSs is con-
sidered, e.g., in [11]–[28]. In [11], the FlyBS’s transmission
power allocation to user equipments (UEs) is investigated to
maximize energy efficiency. Then, the transmission power is
optimized jointly with association of the UEs to the FlyBSs
and ground base stations in [12]. However, as the UEs are
static, also the FlyBS’s position does not change in both [11]
[12]. In [13], the authors optimize 3D trajectory of the FlyBSs
together with resource and power allocation in an urban
environment to maximize the minimum throughput of the UEs.
Then, in [14], the throughput of the UEs is maximized via suc-
cessive convex optimization of the FlyBSs’ 3D positions and
the transmission power. The UEs’ throughput is maximized
also in [15] via interference mitigation in three-tier space-
air-ground heterogeneous networks with optimized altitude of
the FlyBSs’ hovering and uplink transmission power control.
In [16]–[18], the authors minimize the transmission power
while guaranteeing data rate and/or communication quality for
all UEs. In [19], energy consumption for communication is
constrained by keeping at least the same size of a coverage
area and a lower energy consumption is achieved via a
movement of the FlyBSs providing connectivity to the UEs
at certain positions (stopping points). An energy efficient col-
lection of data from static sensors by the FlyBSs is addressed
in [20] [21]. In [20], scheduling of the FlyBSs collecting
and forwarding data to the conventional static base stations
(SBSs) is proposed. In [21], minimization of the transmission
power for communication of sensors in a hierarchical way via
cluster heads (CHs) is achieved by a smart scheduling of the
communication of individual CHs and the FlyBSs.

A relaying via the FlyBSs acting in an energy-efficient
transparent mode is investigated in [22], where the static UEs
are associated to the FlyBSs and the FlyBSs are positioned
by deep neural networks in order to maximize throughput.
Nevertheless, the energy consumption for communication and
flying is not considered. In [23] [24], the objective is to
minimize the energy consumed for both communication and
movement of the FlyBSs in the scenario, where the FlyBSs
fly over a set of static UEs and exchange data with the UEs
sequentially. To this end, the authors design an algorithm
that plans trajectories among the UEs and allocate time for
communication and hovering in order to minimize the overall
energy consumed by the FlyBSs. A communication of the
static UEs via multiple FlyBSs is addressed also in [25], where
the authors minimize the traveling time of these FlyBSs while
collecting data from the UEs.

Scheduling of the UEs’ communication and transmission



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 14, NO. 8, AUGUST 2021 2

power and bandwidth allocation together with a design of the
FlyBS’s trajectory in order to serve sequentially the static UEs
is consider in [26]. Then, a design of a circular trajectory for
the FlyBS serving multiple static UEs is proposed in [27].
The authors derive an energy efficient trajectory so that the
UEs in a defined area are served with a certain quality of
the communication channel. In [28], the authors consider the
energy consumption in joint FlyBSs’ trajectory determination,
transmission power setting, and scheduling of the UEs to
maximize the sum throughput.

All papers [11]–[28] targeting the power/energy aspects
of the FlyBSs, however, take only static UEs with apriori
known coordinates into account. Such scenario corresponds,
for example, to a collection of data from static IoT/machine-
type devices (e.g., smart-meters) in a way that the FlyBS
serves a group of the UEs/devices and, then, continues to serve
another group (a “sequential communication” of the FlyBS
with the UEs). Such solution is, however, applicable only when
the UEs do not require any real-time services and do not care if
the communication resources are available at the very moment
or in few seconds or even minutes. In contrast, we focus on
the problem, when the UEs require continuous services with
a low latency and cannot wait seconds or minutes till the
connectivity is provided. Moreover, the problem addressed
in related papers [11]–[21], [23]–[28] relies on the apriori
knowledge of the future UEs’ positions to plan the trajectory
of FlyBS among the static UEs in a sequential way. Hence, the
targeted problem in these papers is an analogy to the traveling
salesman problem. Unfortunately, the solutions developed in
these papers cannot be easily extended to an environment
with moving UEs with positions not known in advance and
changing over time.

The mobile UEs are considered, e.g., in [29]–[32]. In [29],
the authors analyze performance of the mobile network with
single FlyBS serving the mobile UEs. Multiple FlyBSs are
assumed in [30], where the authors solve the positioning of
the FlyBSs jointly with an association of the UEs via k-
means algorithm. In [31], the authors optimize the network
capacity and the energy consumption of the UEs. In [32],
the coverage maximization and interference mitigation are
addressed. Nevertheless, none of [29]–[32] consider the energy
consumed by the FlyBSs.

The mobile UEs and the energy consumption of the FlyBSs
are considered in [33], where the authors optimize the FlyBSs’
trajectories and the UEs’ association for a multi-antenna trans-
mission. However, the proposed gradient-ascent-based solution
requires to select future positions of the FlyBSs upon a knowl-
edge of an impact of the selected actions on the performance.
In practice, testing various trajectories over moving UEs is not
possible, since the UEs’ positions change for each iteration.
Furthermore, a physical wired connection among the FlyBSs,
assumed in [33] to allow a coordination and the energy sharing
among FlyBSs, limits practical applications.

The energy consumption of the single FlyBS in the scenario
with mobile UEs is tackled in [34] [35], where the transmis-
sion power of single FlyBS and its energy spent for flying are
jointly optimized. A closed-form solution for the transmission
power setting and determination of the FlyBS’s coordinates

is derived. Even though such solution is easy to implement,
it is designed only for single FlyBS and cannot be easily
extended to multiple FlyBSs. Also, the closed-form solution
tracks the UEs strictly and, thus, leads to an unnecessary
energy consumption.

The works considering mobile UEs [29]–[35] assume
rotary-wing FlyBSs. However, the power consumption is rela-
tively high for static or slowly moving rotary-wing FlyBSs, as
shown e.g. in [23]. This is a result of helicopter dynamics, see
e.g., [36]. Thus, in the scenarios with pedestrians (e.g., visitors
of an outdoor event, sports, or city festival) considered in our
paper, the rotary-wing FlyBSs would operate in a high energy
consumption regime. Hence, we focus on the airship-based
FlyBSs represented by, e.g., small balloons or airships, for
which a slow movement or even temporary hovering at the
same position is not a drawback from the energy consumption
point of view [4] [37] [28].

Our objective is to reduce the energy spent for the airship-
based FlyBSs’ movement while guaranteeing a close-to-
optimum sum capacity of the UEs. Unlike [11]–[21], [23]–
[28], where the static UEs with apriori known positions are
served sequentially, we focus on the scenario with the airship-
based FlyBSs providing continuous communication services
to the slowly moving UEs (e.g., pedestrians) in rural or sub-
urban areas, where a temporary event, such as sport match,
music/city festival, or concert, takes place. In such scenario,
constructing common infrastructure of mobile networks with
dense SBSs might not be economical, since the area is usually
lightly crowded and high communication requirements arise
only from time to time (e.g., once per week) due to the above-
mentioned temporary event. We also focus on the energy
consumption, which is neglected in most of the works targeting
mobile UEs, see, e.g., [29]–[32]. Besides, the works, where
either mobile UEs or energy is taken into account, e.g., [29]–
[35], assume the rotary-wing FlyBSs, but these are not efficient
for slow moving UEs due to a high energy consumption
and the solution tailored for the rotary-wing FlyBSs cannot
be applied due to completely different principle of flying
and, consequently, different energy consumption models. We
propose a new concept of the FlyBSs’ 3D movement opti-
mization to eliminate redundant movements of the FlyBSs so
that a notable energy saving is reached at a cost of only a
marginal degradation in the sum capacity of UEs. Despite
assuming mobile (moving) UEs, our solution does not require
any knowledge of the future UEs’ positions as in the related
works targeting the static UEs [11]–[28]. The contribution and
novelty presented in this paper are summarized as follows:
• We derive a closed-form relation between the energy

consumed by the airship-based FlyBSs for flying and the
sum capacity achievable by the served mobile UEs.

• We derive theoretical bounds and trade-offs between the
energy consumed by single FlyBS for flying and the sum
capacity of the mobile UEs. Further, we show a relation
of both the energy consumption and the sum capacity
to the positioning of single FlyBS to demonstrate that a
slightly sub-optimal movement of the FlyBS in terms of
the sum capacity results in a substantial reduction in the
the energy consumption for flying.
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• We extend the scenario to multiple FlyBSs and we formu-
late the problem of the flying energy minimization under
the sum capacity constraint considering also practical
constraints on flying. To solve this problem, we derive
a relation between the energy consumption and the sum
capacity for multiple FlyBSs serving mobile UEs and
we propose an algorithm determining 3D positions of
the FlyBSs so that the sum capacity of the moving UEs
remains close to a theoretical maximum while the energy
spent for flying is significantly reduced.

• We show that the proposed approach reduces the energy
spent by the FlyBSs for flying by dozens of percent
while the impact on the sum capacity is negligible for
a wide range of numbers of the UEs and the FlyBSs.
This interesting finding proves the fact that a “perfect
positioning” of the airship-based FlyBSs is not necessary
in practice, as it is energy demanding while the gain in
sum capacity with respect to sub-optimal approaches is
insignificant. This allows to relax requirements on the
FlyBSs’ positioning and provides new degree of freedom
for future optimizations in the networks with FlyBSs.

Note that the paper is an extension of our prior work
presented in [38], where we show that the energy consumption
of the FlyBSs can be reduced by restricting the FlyBSs’ 2D
movement while a cost represented by a degradation in the
sum capacity is marginal.

The rest of the paper is organized as follows. The next
section outlines the system model considered in this paper and
formulates the problem of energy consumption minimization.
Then, in Section III, we provide an overview of general frame-
work for the energy consumption minimization and we analyze
trade-offs between the energy consumption and sum capacity
for single FlyBS to illustrate theoretical bounds of the energy
saving with respect to the sum capacity. Then, in Section IV,
we extend the analysis to multiple FlyBSs and we propose a
novel algorithm for the positioning of FlyBSs minimizing the
energy consumed for flying. In Section V, simulation scenario
and models are outlined and performance of the proposed
algorithm is analyzed. Last, Section VI concludes the paper
and outlines potential future works.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first define the system model and, then,
we formulate the targeted problem. Note that we summarize
key parameters and notations used in the paper in Table I.

A. System Model

Let’s assume N moving UEs distributed within an area
covered by M FlyBSs. Current positions of the UEs at the
time t are defined as UUU(t) = {u1u1u1(t),u2u2u2(t), . . . ,uNuNuN (t)},
where ununun = [xu,n(t), yu,n(t), zu,n(t)] ∈ R3 for ∀n ∈
〈1, N〉. Similarly, the FlyBSs are located at 3D posi-
tions VVV (t) = {v1v1v1(t), v2v2v2(t), . . . , vMvMvM (t)}, where vmvmvm =
[xf,m(t), yf,m(t), zf,m(t)] ∈ R3 for ∀m ∈ 〈1,M〉. Both the
UEs and the FlyBSs move over time and the coordinates
of each FlyBS are updated depending on the movement of
the UEs. Note that the analysis and solution provided in this

Table I
KEY PARAMETERS AND NOTATIONS USED IN THE PAPER

Param. Meaning
M,N Number of FlyBSs and UEs, resp.
ununun(t) 3D coordinates of UE n at time t
vmvmvm(t) 3D coordinates of FlyBS m at time t
Cn,m Capacity of UE n to FlyBS m
Copt Maximum sum capacity of all UEs
Bn,m Bandwidth of UE n served by FlyBS m
an,m Association of UE n to FlyBS m
γn,m SINR between UE n and FlyBS m
pRn,m Received power at UE n from FlyBS m
σ2 Noise plus background interference

G
T/R
m Gain of Tx and Rx antennas
dn,m Distance between UE n and FlyBS m
αn,m Path-loss exp. between UE n and FlyBS m
PTm Transmission power of FlyBS m
ςn,m Channel fading between UE n and FlyBS m
EF,m Energy spent by FlyBS m to fly from vm(t) to vm(t+ 1)
em Energy for the movement of FlyBS m per unit distance
Es Energy saving wrt path maximizing sum capacity
Do Distance of FlyBS to optimum position (reaching Copt)
dm Distance FlyBS m moves between time t and t+ 1
ε Maximum allowed degradation in sum capacity

ν, ωn Substitutions defined in Proposition 2
A, rm Substitutions defined in Theorem 3

θ Angle between two segments of FlyBS path
dm,req Movement distance of FlyBS m to meet required capacity
dmax Max. distance FlyBS can move between time t and t+ 1

∆C Increase in sum capacity due to FlyBS movement
∆Cstep Capacity change within a sub-step of FlyBS movement

∆Ctarget Increase in sum capacity to fulfill capacity constraint
hmin/max Minimum and maximum allowed altitude of FlyBS

paper are independent of the UEs’ movement, as we derive the
new positions of the FlyBSs in a closed form based only on
the actual UEs’ positions (i.e., reactive approach). Hence, no
mobility model is defined for the purposes of the analysis and
we specify mobility models for simulations later in Section
V-A.

Initial positions of all FlyBSs and association of the UEs to
the FlyBSs are solved via commonly used k-means clustering
algorithm, such as in [30]. As the UEs move, the k-means
algorithm is continuously repeated to associate the UEs to the
FlyBSs. Note that the principle of our algorithm introduced
later in this paper is independent of the the UEs’ association
and arbitrary approach for the UEs’ association, such as
the one based on machine learning proposed in [22], can
be adopted without changing our analysis or the proposed
algorithm. We adopt k-means as an example, because k-means
converges fast (in order of microseconds) due to its polynomial
complexity while it provides a good performance for the UEs’
association [30].

The downlink communication capacity of the n-th UE from
the m-th FlyBS is defined as:

Cn,m = Bn,m log2 (1 + γn,m) (1)

where Bn,m stands for the channel bandwidth between the
n-th UE and the m-th FlyBS (as our proposed solution does
not depend on the selected bandwidth allocation, we assume
the equal bandwidth allocation among the UEs connected to
the same FlyBSs), and γn,m represents the SINR between the
n-th UE and the m-th FlyBS considering also interference
from other FlyBSs, as we assume the scenario with all FlyBSs



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 14, NO. 8, AUGUST 2021 4

occupying the same band. Thus, γn,m is defined as:

γn,m =
pRn,m

σ2 +
∑M
i=1, i 6=m p

R
n,i

(2)

where pRn,m and pRn,i are the received powers at the n-th UE
from the serving m-th FlyBS and the i-th interfering FlyBS,
respectively, and σ2 represents the sum of the noise and the
background interference (e.g., from neighboring cells).

The received power pRn,m is proportional to the distance
dn,m between the n-th UE and the m-th FlyBS and is generally
defined as:

pRn,m =
PTmG

T
mG

R
n c

αn,mςn,m

(4πf)αn,md
αn,m
n,m

=
Qn,m

d
αn,m
n,m

(3)

where PTm is the transmission power of the m-th FlyBS, GTm
and GRn are the gains of the FlyBS’s and UE’s antennas,
respectively, f is the communication frequency, c = 3 × 108

m/s is the speed of light, αn,m represents the path loss
exponent (of any positive value suitable for both line-of-sight,
LoS, and non-line-of-sight, NLoS, communications) for the
channel between the n-th UE and the m-the FlyBS, and ςn,m
represents the channel fading between the m-th FlyBS and
the n-th user. We substitute PTmG

T
mG

R
n c
αn,m

(4πf)αn,m with Qn,m for an
ease of representation in the rest of the paper. Note that aspects
related to channel estimation are left out, since this problem
is addressed in many other works (e.g., [39] [40]) and key
concept remains similar as for the SBSs, since we focus on
slow moving pedestrians with a low speed. Consequently, also
the FlyBSs move with low speed far below speeds supported
by 5G. Thus, we can neglect an impact of outdated CSI.

Note that the communication between the FlyBSs and the
network (i.e., with the SBSs) and its specific implementation or
potential limitation does not change principle of our proposed
solution. Thus, like in many related works, we assume a high
capacity backhaul connection of the FlyBSs to the network
via, for example, optical wireless links [41] [42].

For the scenario with pedestrians, considered in this paper,
the rotary-wing FlyBSs are not convenient due to their rela-
tively high power consumption in a static or slowly moving
mode. This high consumption is a result of the helicopter
dynamics’ effect (see, e.g., [23] [36]). Thus, we focus on the
airship-based FlyBSs. The power consumption of the airships
is proportional to the distance traveled between two points
and the power consumption of the airships is negligible if the
airship are not moving, since the gravity is compensated by a
static buoyancy [43]. We assume the FlyBS follows the short-
est path between the current location vm(t) = [x(t), y(t), z(t)]
and a new determined location vm(t + 1) = [x(t + 1), y(t +
1), z(t+1)], i.e., the m-th FlyBS moves for the distance dm =√(

x(t) − x(t+ 1))2 + (y(t) − y(t+ 1))2 + (z(t) − z(t+ 1))2
)

.
Having in mind the power consumption of the airship

is negligible when the airship hovers at the same position
the energy spent by the m-the FlyBS to fly from vm(t) to
vm(t+ 1) is defined as EF,m = dmem, where em represents
the instantaneous unit energy spent for the movement of the
m-th FlyBS per unit of distance (e.g., per meter). The overall
energy consumption of the FlyBSs includes also transmission

power spent for communication (data as well as signaling,
channel estimation, flight control, etc.), and consumption of
the circuitry. However, the overall transmission power is typi-
cally between 10 and 30 dBm (0.01–1 W) [18] [44] [45] and is
significantly (few orders of magnitude) lower than the power
required for flying [23] [35] [46] [47] [43]. Hence, we neglect
the energy spent for communication. Besides, also the circuitry
power is typically constant and cannot be influenced in frame
of our targeted problem. Thus, we leave out the circuitry
consumption to avoid veiling the gains directly related to our
proposal.

B. Problem formulation

We focus on saving of the energy spent by the FlyBSs for
flying while keeping the sum capacity of the moving UEs
still close to the maximum achievable sum capacity. Thus, we
minimize the energy consumption and the problem addressed
in this paper is defined as:

V̂ (t)V̂ (t)V̂ (t) = argmin
VVV∈∈∈RRR3M

M∑

m=1

EF,m

s.t. (a)
N∑

n=1

M∑

m=1

an,mCn,m ≥ Copt × (1− ε),

(b) dm ≤ dmax,
(c) hmin ≤ zf,m ≤ hmax,

(4)

where an,m = 1 if the n-th UE is associated to the m-th
FlyBS, otherwise an,m = 0, Copt is the sum capacity achieved
by the UEs if the FlyBSs are deployed at the positions that lead
to the maximum sum capacity, and ε ∈ 〈0, 1〉 is the constant
indicating the maximum allowed degradation in the sum
capacity (no degradation is allowed for ε = 0; and note that
ε is typically set to a fixed value according to users’ required
communication quality), dmax is the maximum distance the
FlyBS can move per time step (reflecting movement speed
limit), and hmin and hmax are the minimum and maximum
allowed altitudes of the FlyBS, respectively.

For clarity of explanations and derivations, but without lost
of generality, we leave out an,m in the rest of the paper and
we set Cn,m = 0 if the n-th UE is not connected to the m-th
FlyBS.

III. ANALYSIS AND BOUNDS FOR ENERGY SAVING AND
SUM CAPACITY OF SINGLE FLYBS

In this section, we first outline a general framework and a
core idea behind the energy consumption minimization (i.e.,
saving the energy) for the airship-based FlyBSs. Then, we
analytically derive a relation and trade-offs between a potential
saving in the energy consumed for flying and a decrease in
the sum capacity. The analysis is done for single FlyBS, as it
allows to illustrate theoretical bounds for the energy saving and
the sum capacity in an easy-to-follow way without interaction
among FlyBSs (interference and mutual impact on positions).
Note that an extension towards multiple FlyBSs follows in
Section IV.
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Figure 1. Illustration of a core idea of the proposed solution for elimination
of redundant movement. Note that if the FlyBS is within the distance Do
from the new optimal position, no movement is necessary.

A. Framework for FlyBS positioning to save energy for flying

Existing algorithms focusing on the scenario with the mo-
bile UEs typically navigate the FlyBS(s) to follow the position
maximizing the capacity. Hence, in the related existing works,
the FlyBS moves frequently to increase the capacity offered to
the UEs. In our scenario with the slow-moving pedestrian UEs
served by the airship-based FlyBS, which is efficient for such
scenario, the frequent changes of the FlyBS’ position notably
drain their battery while achieving only a marginal improve-
ment in the sum capacity. Consequently, the sum capacity
maximization leads inevitably to “redundant” movements of
the FlyBS. However, due to logarithmic dependence of the
capacity on the distance (which is related to the channel
quality), some of the FlyBS’s movements introduce only a
marginal improvement in the sum capacity while a notable
additional energy is consumed by the FlyBS for flying. The
work presented in this paper is based on a presumption that
not every movement of the UEs should necessarily lead to
a repositioning of the FlyBSs to the position yielding the
maximum sum capacity (denoted as the new optimal position).
To this end, we suggest to avoid the “redundant” movements so
that the FlyBS does not follow exactly the optimum position
(i.e., position yielding the maximum capacity) v∗v∗v∗(t + 1) =
[x∗f (t + 1), y∗f (t + 1), z∗f (t + 1)]. Thus, instead of traveling
to the optimum position, the FlyBS moves only to a new
position vvv(t + 1) = [xf (t + 1), yf (t + 1), zf (t + 1)], which
is between the optimum and current positions to avoid the
redundant movement, as illustrated in Fig. 1.

The new real position of the FlyBS is determined knowing
the current FlyBS position vvv(t) = [xf (t), yf (t), zf (t)], the
new optimal position of the FlyBS v∗v∗v∗(t + 1) = [x∗f (t + 1),
y∗f (t+ 1), z∗f (t+ 1)], and the distance Do to this new optimal
position. Finding of the optimum positions of the FlyBS is a
linear programming problem, hence, we derive the optimum
position numerically by the Nelder-Mead simplex search (see
details in [48]). Such approach is, however of a high com-
plexity making it impractical for real networks. Therefore,
we also investigate the performance for the positions of
the FlyBS derived by a commonly adopted low-complexity
(polynomial) and fast converging, but sub-optimal (in terms of
the sum capacity) approach via k-means (see, e.g., [30]) and
via state-of-the-art successive convex optimization outlined in
[14]. Note that our proposed solution is independent of the
approach for the optimum positions’ determination. Hence,

Figure 2. Example of FlyBS movement considering proposed concept (green
solid line) with respect to positions yielding maximum sum capacity (red
dashed line). Each cross “×” identifies a point where new position of
FlyBS is determined and circles represent distance Do from the optimum
FlyBS’s position maximizing capacity within which the allowed sum capacity
degradation ε is not exceeded.

we consider these three approaches for our investigation to
show performance for i) complex, but well-performing, ii)
low-complexity, but slightly worse performing, as well as iii)
state-of-the-art approaches.

The new real position of the FlyBS is represented by an
intersection of the straight line between the current and new
optimal positions and the sphere defined by the radius Do(t+
1) whose center corresponds to the optimal position of the
FlyBS. The new 3D coordinates of the FlyBS are defined in
following lemma.

Lemma 1. The new position of the FlyBS is determined in a
closed-form as:

vvv(t+ 1) = vvv(t) +
(v∗v∗v∗(t+ 1)− vvv(t))

||v∗v∗v∗(t+ 1)− vvv(t)||× (5)

max{0, (||v∗v∗v∗(t+ 1)− vvv(t)|| −Do(t+ 1))}
Proof. In case that ||v∗v∗v∗(t+1)−vvv(t)|| ≤ Do(t+1), the FlyBS
would not move, as the constraint (4a) is already fulfilled.
Furthermore, in case that ||v∗v∗v∗(t+ 1)−vvv(t)|| > Do(t+ 1), the
movement of the FlyBS starts from vvv(t) and continues towards
v∗v∗v∗(t+1). The movement distance is dm = ||v∗v∗v∗(t+1)−vvv(t)||−
Do(t+1) according to Fig. 1. Hence, the displacement vector
of the FlyBS is (v∗v∗v∗(t+1)−vvv(t))

||v∗v∗v∗(t+1)−vvv(t)||dm, where (v∗v∗v∗(t+1)−vvv(t))
||v∗v∗v∗(t+1)−vvv(t)|| is the

unit vector for the movement towards v∗v∗v∗(t+1). This concludes
the proof. �

The above described approach leads to a natural “smoothen-
ing” of the FlyBS’s movement. In other words, the FlyBS do
not copy the movement of UEs accurately, but naturally avoids
a redundant and non-beneficial movement as illustrated in Fig.
2.

B. Analysis of energy consumption and sum capacity trade-
offs for single FlyBS

In the case of single FlyBS, no interference among the
FlyBSs applies, thus, the downlink communication capacity
of the n-th UE is defined as:

Cn = Bn × log2

(
1 +

pRn
σ2

)
(6)

Note that we omit index of the FlyBS in this subsection
for clarity of presentation, as only one FlyBS is considered.
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For clarity of derivations, we remove also the constraints on
the FlyBS flight (4b) and (4c) in this subsection. Then, the
problem formulated in (4) is simplified to:

V ∗(t)V ∗(t)V ∗(t) = argmin
VVV∈∈∈RRR3M

EF

s.t.
N∑

n=1

Cn ≥ Copt × (1− ε)
(7)

To solve this problem analytically, we first modify the
constraint in (7) and we define relation between the allowed
degradation in the sum capacity ε and the distance Do, which
the FlyBS keeps from the optimum position as indicated in
Proposition 2.

Proposition 2. The constraint
∑N
n=1 Cn ≥ Copt × (1− ε) in

(7) can be replaced with the following constraint
d [vvv(t), vvv∗(t)] < Do(t) (8)

where d [vvv(t), vvv∗(t)] represents the distance between the points
vvv(t) and vvv∗(t) representing the current and the optimal
positions of the FlyBS at the time t .

The constraint (8) indicates that the new 3D position of the
FlyBS lies in the sphere with the center at vvv∗(t) and with the
radius:

Do(t) =

(
ν − Copt × (1− ε)

∑N
n=1 ωn

) 1
2

(9)

where ν and ωn are substitutions of the system parameters (in-
cluding, among others, 3D coordinates of the FlyBS) defined
in Appendix A to simplify the formulation.

Proof. Please see Appendix A. �

To quantify efficiency of the positioning in terms of the
energy consumption, we define the energy saving metric Es
representing the amount of energy saved by the optimized
positioning with respect to the positioning maximizing the sum
capacity. To evaluate the energy saving Es, let’s first expand
the general high-level illustration of the principle presented in
Fig. 1 into multiple consecutive steps of the FlyBS’s movement
as shown in Fig. 3. The FlyBS’s movement can be decomposed
into movements corresponding to short time steps (from t to
t+1, from t+1 to t+2, etc.). Each segment of the movement
is described by its length and by its angle θ with respect to the
previous segment. Note that this angle is used for the purpose
of analysis and can be of any value (i.e., θ ∈ [0, 2π]). The
figure depicts two possible paths of the FlyBS, each with two
segments. The first path (red dashed line) corresponds to the
FlyBS movement achieving the maximum sum capacity while
the second path (green solid line) represents a shorter path
resulting in the saving in energy consumed for flying.

Considering the airship-based FlyBS, as explained in Sec-
tion II, a potential energy saving is proportional to the ratio of
the energy consumption over the energy efficient (green solid)
path and the energy consumption over the path maximizing the
sum capacity (red dashed). Hence, the relative saved energy
Es for the movement of single FlyBS is expressed by (10).

The Es expresses the achievable energy saving in relation
to the loss in sum capacity (with respect to the theoretical
maximum achievable capacity) for single FlyBS. The energy
saving Es is proportional to Do that is, in turn, proportional to
ε (i.e., allowed degradation in the sum capacity with respect
to Copt, see (9)). Thus, with increasing ε, Do increases as
well and, consequently, more energy is saved (see (10)). Note
that Es = 1 corresponds to 100% of saved energy while
Es = 0 represents no saving at all. A visualization and a
quantification of the trade-off between the energy savings and
the sum capacity according to (10) are provided in Section V
focused on performance evaluation.

IV. ENERGY EFFICIENT POSITIONING OF MULTIPLE
FLYBSS

In this section, we extend the single FlyBS scenario to
multiple FlyBSs. First, we derive energy consumption of the
FlyBS with respect to required changes in the sum capacity
considering mutual impact (interference and positioning) of
the FlyBSs. Then, we propose algorithm minimizing the en-
ergy consumed by the FlyBSs for flying under the constraints
on sum capacity and flying in (4). Last, we discuss complexity
and potential limitations of the algorithm.

A. Energy consumption and sum capacity for multiple FlyBSs

An extension towards multiple FlyBSs assumes to consider
a mutual interference among the FlyBSs. Thus, the channel
capacity of the n-th UE associated to the m-th FlyBS (Cm,n)
is defined in line with (1) and (2). For analysis of the energy
consumption and sum capacity trade-offs in this section, we
first approximate the sum capacity of multiple FlyBSs in the
following theorem.

Theorem 3. The sum capacity of N UEs served by M FlyBSs
is approximated as:

M∑

m=1

N∑

n=1

Cn,m ≈ A−
M∑

m=1

rmd
2 [vmvmvm(t), v∗mv

∗
mv
∗
m(t)] (11)

and the constraint (4a) can be reformulated to:

M∑

m=1

rmd
2 [vmvmvm(t), v∗mv

∗
mv
∗
m(t)] ≤ A− Copt × (1− ε) (12)

Es = 1− d[vvv(t),vvv(t+1)]+d[vvv(t+1),vvv(t+2)]
d[vvv(t),vvv∗(t+1)]+d[vvv∗(t+1),vvv∗(t+2)] = 1− d[vvv(t),vvv∗(t+1)]+d[vvv(t+1),vvv∗(t+2)]−Do(t+1)−Do(t+2)

d[vvv(t),vvv∗(t+1)]+d[vvv∗(t+1),vvv∗(t+2)] =

1− d
[
vvv(t),vvv∗(t+1)

]
−
(
Do(t+1)+Do(t+2)

)
+
√
D2
o(t+1)+d2[vvv∗(t+1),vvv∗(t+2)]−2Do(t+1)d[vvv∗(t+1),vvv∗(t+2)]cos(θ(t+1))

d
[
vvv(t),vvv∗(t+1)

]
+d
[
vvv∗(t+1),vvv∗(t+2)

]

(10)
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Figure 3. Illustrative example of single FlyBS movement over several (two)
positions; the dashed red line is the “state-of-the-art” movement maximizing
the sum capacity while the solid green line is the movement reducing the
energy consumed for flying.

where A and rm are substitutions defined in Appendix B to
simplify the formulation.

Proof. Please see Appendix B. �

To derive also the energy consumed for flying of individual
FlyBSs, we first determine the required movement (dm,req) of
the m-th FlyBS (1 ≤ m ≤ M) leading to the increase in the
sum capacity ∆C, which is required to fulfill the constraint
(4a). Thus, ∆C is the difference between the sum capacity
offered by all FlyBSs at the time t− 1 and at the time t, i.e.,:

∆C =
M∑

m=1

N∑

n=1

Cn,m(t)−
M∑

m=1

N∑

n=1

Cn,m(t− 1) (13)

Now, exploiting the reformulated constraint from Theorem
3, we define ∆C as a function of the m-th FlyBS’s movement
for the distance dm,req required to fulfill the constraint, i.e.,:

∆C =

M∑

m=1

N∑

n=1

Cn,m(t+ 1)−
M∑

m=1

N∑

n=1

Cn,m(t) =

(A−
M∑

m=1

rm(d [vmvmvm(t), v∗mv
∗
mv
∗
m(t)] + dm,req)

2)−

(A−
M∑

m=1

rmd
2 [vmvmvm(t), v∗mv

∗
mv
∗
m(t)]) =

−rm
(
d2
m,req(t+ 1) + 2d [vmvmvm(t), v∗mv

∗
mv
∗
m(t)] dm,req(t+ 1)

)
(14)

We can rewrite (14) to:

(dm,req(t+ 1) + d [vmvmvm(t), v∗mv
∗
mv
∗
m(t)])

2
= d2 [vmvmvm(t), v∗mv

∗
mv
∗
m(t)]− ∆C

rm
(15)

From (15), the value of dm,req(t+ 1) is simply expressed as:

dm,req(t+ 1) = −d [vmvmvm(t), v∗mv
∗
mv
∗
m(t)]±

√
d2 [vmvmvm(t), v∗mv

∗
mv
∗
m(t)]− ∆C

rm
(16)

Between two values resulting from (16), we choose the one
with a smaller absolute value, as the smaller movement incurs
lower energy consumption:

Algorithm 1 Determination of new positions for FlyBSs
minimizing energy consumption

1: M ← {1, ...,M}, [xf,m(t + 1), yf,m(t + 1), zf,m(t + 1)] ←
[xf,m(t), yf,m(t), zf,m(t)], dm,tot = 0 ∀m ∈M

2: ∆Ctarget ← Copt × (1− ε)−∑N
n=1

∑M
m=1 Cn,m

3: while ∆Ctarget > 0 do
4: Calculate [EF,1, ..., EF,M ] from (18)
5: m0 ← argmaxm∈M(

∆Cstep
EF,m

)

6: Calculate dm0,req(t + 1) from (17) with setting ∆C =
∆Cstep

7: if dm0,req(t+ 1) > dmax then dm0,req(t+ 1)← dmax and
calculate ∆C from (14) end if

8: Calculate new posit. [xf,m0(t+1), yf,m0(t+1), zf,m0(t+1)]
of m0-th FlyBS via (1)

9: if zf,m0(t+ 1) > hmax or zf,m0(t+ 1) < hmin then

10: dm0,req(t+1)←
∣∣∣∣
∣∣∣∣
hmax(min)−zf,m0

(t)

zf,m0
(t+1)−zf,m0

(t)
× (v∗m0

v∗m0
v∗m0

(t+1)−vm0
vm0vm0

(t))

||v∗m0
v∗m0
v∗m0

(t+1)−vm0
vm0vm0

(t)||

∣∣∣∣
∣∣∣∣

and calculate ∆C (14) and vm0vm0vm0 (1)
11: end if
12: if dm0,tot(t+ 1) + dm0,req(t+ 1) > dmax then
13: dm0,req(t+ 1)← dmax− dm0,tot(t+ 1), calculate ∆C

from (14) and vm0vm0vm0 from (1), and M←M− {m0}
14: else dm0,tot(t+1)← dm0,tot(t+1)+dm0,req(t+1) end if
15: ∆Ctarget = ∆Ctarget −∆C
16: end while

|dm,req(t+ 1)| =
min

{∣∣∣∣∣−d [vmvmvm(t), v∗mv
∗
mv
∗
m(t)]−

√
d2 [vmvmvm(t), v∗mv

∗
mv
∗
m(t)]− ∆C

rm

∣∣∣∣∣ ,
∣∣∣∣∣−d [vmvmvm(t), v∗mv

∗
mv
∗
m(t)] +

√
d2 [vmvmvm(t), v∗mv

∗
mv
∗
m(t)]− ∆C

rm

∣∣∣∣∣

}

(17)

Then, the energy consumption for flying of the m-th FlyBS
leading to ∆C is:

EF,m (t+ 1) = emdm,req(t+ 1) (18)

B. Energy efficient positioning of multiple airship-based Fly-
BSs

Exploiting the relation between the sum capacity and the
energy consumption derived in the previous subsection, we
propose an algorithm that determines the positions of arbitrary
number of FlyBSs so that the energy spent for flying is
minimized while the sum capacity still satisfies the constraint
(4a). We distinguish two cases according to the constraint:

1) If the capacity constraint (4a) is satisfied, the FlyBSs
should not move to avoid redundant consumption of the
energy for flying.

2) If the capacity constraint (4a) is not satisfied, a move-
ment of at least one of the FlyBSs is required to satisfy
the users requirements on communication capacity.

As the first case does not require any movement, we now
focus on the second case. The FlyBSs move with small steps
as summarized in Algorithm 1. At the beginning (line 2 in
Algorithm 1), the required increase in the sum capacity to
fulfill the constraint ∆Ctarget reflecting the users’ require-
ments is determined. The ∆Ctarget is split into small sub-
steps ∆Cstep ∈ (0; ∆Ctarget〉. In each sub-step, the energy
consumption for the required increase in sum capacity is
calculated from (18) for each FlyBS (line 4). The FlyBS,
whose movement yields the highest gain in the sum capacity
at the cost of the smallest energy consumption is selected,
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i.e., in each sub-step, we select the FlyBS m0 maximizing
∆Cstep
EF,m

(see line 5). As Cstep > 0, ∆Ctarget decrements over
sub-steps and the algorithm converges. Note that selection of
a larger ∆Cstep leads to a lower number of sub-steps with
a longer FlyBS’s movement in each sub-step (thus, keeps
low computation complexity), but the longer movement of the
FlyBS in each sub-step results to a sub-optimal new position
of the FlyBS. The sub-optimality results from the fact that
the selected FlyBS m0 keeps moving even if its ∆Cstep

EF,m0
is no

longer maximal among all FlyBSs. Our experiments show that
setting of ∆Cstep to few kbps guarantees close-to-optimum
performance and still keeps a low number of sub-steps. Hence,
we set ∆Cstep to 10 kbps in this paper.

Now, using (17), we determine the distance dm0,req(t+ 1)
for which the selected FlyBS m0 should move to reach ∆Cstep
(line 6). If the resulting dm0,req(t + 1) exceeds dmax and
violates constraint (4b), the FlyBS moves only for dmax and
∆C is updated via (14) (line 7). Then, new position of the
selected FlyBS m0 is determined via (1) (line 8). If the new
position would lead to a movement below minimum or above
maximum allowed altitudes (constraint (4c)), the coordinates
vm0
vm0vm0

of the FlyBS are adjusted and ∆C is also updated (lines
9–11). After this, we also verify if the total movement of single
FlyBS over all sub-steps towards ∆Ctarget still fulfills the
constraint (4b) (lines 12–14) and ∆C is updated together with
the FlyBS’s coordinates vm0

vm0vm0 if the constraint is violated (line
13). Since the violation of (4b) indicates that the FlyBS m0

cannot further move in the next sub-steps, m0 is excluded
from the set of all FlyBS considered for movement in next
iterations (line 13). Finally, ∆Ctarget is decreased by ∆Cstep
(line 15). The process of the FlyBS selection and movement
(lines 4–15) is repeated until the constraint (4a) is not fulfilled,
i.e., as long as ∆Ctarget > 0. Algorithm 1 is repeated again
if the capacity constraint in (4a) becomes not fulfilled in the
future, e.g., due to the UEs’ movement.

C. Complexity and potential limitations

To determine the computation complexity of Algorithm 1,
first, let us remind the proposed solution consists of two steps:
i) an approximation of the sum capacity, and ii) a positioning
of the FlyBSs based on the approximated sum capacity (Al-
gorithm 1). The complexity of the approximation in the step
i) is O(M) for each UE, where M is the number of FlyBSs.
Thus, the complexity of the step i) is O(MN), where N is
the number of UEs and this complexity is linear with respect
to both the number of UEs and the number of FlyBSs. Then,
the complexity of the step ii) is O(1/∆Cstep). Hence, the
total complexity of the proposed solution is O(MN/∆Cstep),
which makes the algorithm fast and easy to implement in
practical systems.

Our algorithm is designed for the airship-based FlyBSs
and would not work well for the rotary-wing FlyBSs, since
the rotary-wing FlyBSs exhibit completely different energy
consumption behavior. However, this limitation is implied
by our targeted scenario, where the rotary-wing FlyBSs are
not efficient, see Section I. Furthermore, the FlyBSs should
cooperate together. Still, solutions considered commonly in

the related works assuming a control of the FlyBSs centrally
from the network via SBSs can be adopted in a way that the
algorithm is processed by the network and decisions are, then,
delivered to individual FlyBSs. Hence, no extra signaling or
information exchange is required with respect to the related
works.

V. PERFORMANCE EVALUATION

In this section, first, simulation scenario, models, and met-
rics are outlined. Then, we illustrate bounds of theoretical
energy saving related to the sum capacity of the UEs for single
FlyBS. Last, we investigate the energy saving in the scenario
with multiple FlyBSs and we demonstrate an efficiency of
the proposed algorithm comparing to the optimum as well as
state-of-the-art solutions for the FlyBS positioning.

A. Simulation scenario, models, and metrics

We assume the area of 1000 × 1000 m as in [12]. Within
this area, 40 or 1000 UEs [12] [33] [35] are dropped as the
FlyBSs are supposed to serve heavily loaded scenarios with a
high UEs’ density. To mimic a realistic scenario, we model the
UEs’ mobility as a mixture of random way-point and cluster-
based mobility models. To this end, a half of the UEs (i.e.,
500 UEs) are dropped randomly within the simulation area and
move according to the commonly used random walk mobility
model with a speed of 1 m/s. The second half of the UEs
(another 500 UEs) are randomly distributed into Ncr = 6
“crowds” and these UEs follow the crowd mobility model
inspired by [49]. The movement of each crowd is defined by
coordinates of the crowd’s center W = {w1, w2, . . . , wNcr},
where wNcr ∈ R2 for ∀ncr ∈ 〈1, Ncr〉. Each cluster is of 20
m radius. Then, the 500 UEs belonging to the second half are
randomly assigned to one of these clusters and dropped within
the corresponding radius. Each UE in the cluster follows the
global movement vector of the cluster, which moves with a
speed of 1 m/s. On the top of the cluster movement, each UE
within the cluster can also change its movement by ±15◦ and
speed by ±0.4 m/s with respect to the cluster center (i.e., the
clustered UEs move with the uniformly distributed speed of
0.6 − 1.4 m/s). Note that the UEs cannot leave the cluster
radius.

We deploy up to five FlyBSs to serve the UEs [12] [33]
[35]. The FlyBSs’ traveled distance per second is limited
to dmax = 25 m and the altitude to hmin = 30 m and
hmax = 350 m. The channel between UE and FlyBS is
determined via mixed LoS/NLoS path loss model with 10%
probability of NLoS and 90% of LoS, as we focus on an
outdoor scenario with the UEs in an open area. LoS and
NLoS channels are modeled via the free space path loss
with αn,m = 2 and αn,m = 3 in (3), respectively. We
assume carrier frequency of 2.6 GHz [35], bandwidth of
20 MHz [50], and transmission power of the FlyBSs of
15 dBm [33] [44]. Noise and background interference from
the neighboring SBSs with a density of −174 dBm/Hz [12]
[35] and −130 dBm/Hz, respectively, are also considered to
reflect our scenario, where a common infrastructure of mobile
networks is not exactly in the served area like in the case of, for
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Table II
SIMULATION PARAMETERS

Parameter Value
Carrier frequency 2.6 GHz [35]

Bandwidth 20 MHz [50]
Number of UEs 40 and 1000 [12], [33], [35]

Number of FlyBSs 1, 3, 5 [12], [33], [35]
Tx power of FlyBSs 15 dBm [33], [44]

Height of UEs 1.5m [50]
FlyBS altitude limits hmin and hmax 30 m and 350 m

FlyBS flight constraint dmax 25 m
Noise power spectral density –174 dBm/Hz [12], [35]

Background interference –130 dBm/Hz

example, music festival in rural area. Note that the interference
among the FlyBSs is derived as a sum of all interfering signals
and it is added up to the noise and background interference
from the neighboring SBSs.

The simulations are of 1800 seconds duration and the simu-
lations are repeated 500 times with different UEs’ deployments
and movements in each simulation run to suppress an impact
of randomness. Key simulation parameters and settings are
summarized in Table II.

The proposed solution is compared with following ap-
proaches:

• Numerical positioning, which determines the positions of
the FlyBSs to maximize the sum capacity numerically via
Nelder-Mead simplex.

• Positioning based on k-means, introduced in [30], rep-
resents the common approach adopted for positioning in
recent works, as it is of polynomial complexity only (thus
converges fast).

• Positioning via successive convex optimization, repre-
senting state-of-the-art work determining the FlyBSs’
positions to maximize the minimum capacity, as proposed
in [14].

Note that up to our best knowledge, there is no paper targeting
the minimization of the energy consumption for flying of
the airship-based FlyBSs serving mobile UEs and comparison
with the works for static UEs is not possible due to the nature
of such works.

To evaluate a performance of the proposed algorithm, we
define two performance metrics:

• Energy saving Es – determined as relative average
amount of the energy consumed by the proposal with
respect to the average energy consumed by the algorithms
determining the FlyBSs (sub-)optimal positions numeri-
cally, by k-means, and via successive convex optimiza-
tion, during the whole simulation.

• Sum capacity degradation – relative difference between
the sum capacity achieved by the the proposed algorithm
and by the FlyBSs in the (sub-)optimum positions. Note
that the sum capacity approximation in Theorem 3 does
not apply in the simulations.

Note that we present both performance metrics as relative
values (from 0 to 1) with respect to performance in the
(sub-)optimum positions of the FlyBSs, since the relative

metrics eliminate an impact of a specific setting of the energy
consumption model.

B. Theoretical bounds of energy saving for single FlyBS

For easy interpretation of the trade-offs in energy saving
and sum capacity, let us first illustrate a relation between the
distance of the FlyBS from the optimum position Do and the
allowed degradation in sum capacity ε for typical FlyBS’s
altitudes [4] [51] in Fig. 4.

Fig. 4 indicates that Do first rises quickly with increasing
ε and, then, starts slowly saturating. This is implied by the
logarithmic relation between the capacity and path loss with
respect to the distance. We illustrate the results for various
altitudes of the FlyBS to indicate that there is almost linear
dependence between the FlyBS’s altitude and Do. Thus, the
higher the FlyBS is, the higher the distance from the optimum
position is acceptable in order to fulfill the maximum allowed
degradation in the sum capacity. In general, relatively large
values of Do (in order of ones to few dozens of meters) still
lead to only a negligible decrease in the sum capacity. For
example, to guarantee the sum capacity degradation below
1% (i.e., ε = 0.01), the FlyBS can stay about up to 1.1 m,
2.3 m, 5.5 m, 12 m, 18.5 m, and 37 m from the optimum
position for the FlyBS at altitudes of 10 m, 20 m, 50 m, 100
m, 150 m, and 300 m, respectively. This finding itself can be
interpreted so that the sub-optimal FlyBS’s positions in order
of few meters lead to only a negligible degradation in the sum
capacity. Such outcome significantly relaxes requirements on
finding the optimum positions of the FlyBSs.

Now, let’s investigate the trade-off between energy saving
and sum capacity degradation according to (10). In Fig.
5, we illustrate three examples of common practical cases
representing the UEs moving along: i) straight street (θ = π)
with length of L meters, ii) right-angled streets (i.e., under the
angle θ = π/2), each street with length of L/2, and iii) streets
with length of L/2 under the angle of θ = π/4.

We analyze the energy saving of single FlyBS depending on
the street length L, its direction (defined by the angle θ), and
Do in Fig. 6. We show the energy saving for the allowed sum
capacity degradation of 0.5% (ε = 0.005) and 4% (ε = 0.04)
corresponding to Do of 12 m and 39 m, respectively, for the
FlyBS’s altitude of 150 m. Note that Do is derived from ε via
(9), as visualized in Fig 4. The results in Fig. 6 indicate that the
longer the street is (i.e., the higher value of L), the less energy
can be saved. This is justified by the fact that the longer the
movement in the same direction is, the proportionally lower
part of the movement can provide some energy saving. Let us
illustrate this on an example of rather extreme case with a long
direct street (θ = π) and all UEs moving along the street in the
same direction. For such street, the optimum position yielding
the maximum sum capacity “moves” along with the UEs in
the same direction. Thus, any energy saving is possible only
at the beginning of the street until the optimum position is not
farther than Do from the initial position of the FlyBS. Once
the optimum position becomes farther than Do, the constraint
(4a) would not hold unless the FlyBS moves as well. However,
as the UEs keep moving in the same direction, the FlyBS
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Figure 4. Relation between distance to opti-
mum Do with respect to allowed degradation
in sum capacity of UEs ε.

Figure 5. Examples of UEs’ movement along:
i) straight street (θ = π), ii) right-angled streets
(θ = π/2), and iii) streets under angle of θ =
π/4.

Figure 6. Relative amount of saved energy of
FlyBS for flying; Es = 0 represents no saving,
Es = 1 corresponds to 100% of energy being
saved.

should also keep moving in the same direction. Thus, when the
optimum becomes at the distance Do from the FlyBS position
for the first time, the FlyBS is forced to move all the time
and no saving is possible to fulfill the constraint (4a). Thus,
with prolongation of the street (higher L), the Do(t) becomes
relatively smaller with respect to L and the energy saving is
also reduced.

Furthermore, Fig. 6 demonstrates that more notable energy
saving is observed if the angle between two streets θ is more
acute. The reason is that the more acute angle enables to
eliminate more significant part of the movement. In other
words, the FlyBS moves less, as the UEs remain within Do

for a longer time. We also observe that a significant (dozens of
percent) saving in the energy consumed for flying is possible
despite a very low (few percent or less) degradation in the sum
capacity is allowed. This very positive trade-off theoretically
allows to save a significant amount of the energy for flying at
a cost of only a marginal degradation in the sum capacity.

The analysis and results in Fig. 6 indicate that the energy
saving is more likely for “more random” movement of the
UEs rather than for a uniform direct movement of all UEs in
the same direction. Such finding is, however, positive as the
UEs are supposed to move at least a bit randomly in most of
real-world situations.

C. Energy saving for multiple FlyBSs

Now, let’s focus on the energy saving and the sum capacity
in the scenario with multiple FlyBSs. For this investigation,
we assume a general area without streets (e.g., a square in a
city, a concert, a sport event, or an emergency situation in an
open area), where some of the UEs move randomly and some
follow a crowd movement model as explained in Section V-A.

Fig. 7 and Fig. 8 show the energy saving and corresponding
sum capacity degradation ε (reflecting the users’ requirements,
see (4)), respectively, of the proposed algorithm with respect to
the FlyBSs’ positioning derived by three approaches outlined
in Section V-A, i.e., numerically via simplex (left subplots),
by k-means (middle subplots), and by state-of-the-art 3D
positioning maximizing the minimum capacity via successive
convex optimization (right subplots). The figures show results
for lightly loaded network represented by 40 UEs (blue lines)
and heavily loaded network with 1000 UEs (black lines)

to demonstrate a scalability of our proposal. For the lower
number of UEs, the gain with respect to the state-of-the-
art works is a bit smaller (up to several to dozens percent
decrease if the number of UEs drops 25-times, i.e., from 1000
to 40). This behavior is expectable, as the lower number of
UEs imposes less pressure on communication and, hence, even
less efficient solutions do not suffer much from sub-optimal
decisions. A notable energy saving is observed with respect
to all three competitive algorithms disregarding the number of
FlyBSs, however, more significant energy saving is reached
for a lower number of FlyBSs. The higher saving for less
FlyBSs is due to a lower level of mutual interference among
the FlyBSs and, at the same time, due to the fact that the
more FlyBSs are deployed, the smaller area is served by each
FlyBS and its movement is limited to this smaller area. Note
that the decrease in energy savings with the number of FlyBSs
is very small (just few percent when the number of FlyBSs is
increased from three to five) and the savings are still significant
(far above 60%) even for five FlyBSs. Hence, the solution is
applicable even for large-scale scenarios.

In all three subplots in Fig. 7, the amount of saved energy
increases with relaxation of the constraint on the sum capacity
(i.e., with increasing ε). The energy saving first raises promptly
when ε > 0, since even a small allowed degradation in the
capacity enables notable energy savings. With further increase
in ε, the savings get saturated, since the saving reaches its max-
imum given by the users movement pattern. The energy for
flying is saved significantly even if the allowed decrease in the
sum capacity is very low (i.e., for very low ε). For example, for
the allowed degradation in the sum capacity of 1% (ε = 0.01),
55.4%, 67.5%, and 90.7% of the energy is saved compared to
the numerical derivation of the optimum position (left subplot)
if five, three, and one FlyBSs are deployed, respectively. The
numerical derivation of the optimum position is not practical
due to a high complexity. Thus, we show also the performance
of the proposed scheme with respect to a more practical state-
of-the-art solution determining the position of the FlyBSs
based on low-complexity k-means (middle subplot in Fig. 7)
and based on successive convex optimization (right subplot
in Fig. 7). With respect to the k-means-based determination
of the positions, the proposal achieves even more significant
energy saving and 77.2%, 88.2%, and 98.8% of the energy is



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 14, NO. 8, AUGUST 2021 11

Figure 7. Relative energy saving of proposed FlyBSs’ positioning with respect to energy consumed by positioning: maximizing sum capacity derived
numerically (left), based on k-means (middle), and based on successive convex optimization (right).

Figure 8. Sum capacity degradation due to proposed energy-efficient positioning with respect to maximum sum capacity determined: numerically (left), by
k-means (middle), and based on successive convex optimization (right).

saved for five, three, and one FlyBSs, respectively, if only 1%
degradation in the sum capacity is allowed (i.e., ε = 0.01).
Similar energy saving of 77.1%, 88.6%, and 98.9% for five,
three, and one FlyBSs, respectively, if ε = 0.01 is reached
by the proposal also with respect to the positioning based on
successive convex optimization. The reason for higher savings
reached by the proposal compared to the k-means and the
successive convex optimization than the savings compared
to the numerical solution is the fact that both the k-means
and the successive convex optimization provide a sub-optimal
sum capacity (lower than for the numerical solution) and,
thus, enable our proposed algorithm to avoid the redundant
movement even more notably.

Note that ε defines the maximum “allowed” degradation in
the sum capacity, however, even a lower degradation can be
actually experienced by the UEs. Thus, in Fig. 8, we illustrate
the real sum capacity degradation observed in the simulations
with respect to the given allowed degradation ε. The figure
confirms that the real degradation in the sum capacity is safely
below the allowed one (dotted straight line in figures) and the
capacity constraint (4a) is satisfied.

Comparing the proposal with the positioning maximizing
the sum capacity numerically in Fig. 8, left subplot, for
1% real degradation in the sum capacity, ε corresponds to
0.0105, 0.0110, and 0.0125 and, consequently, the real energy
saving (determined for these values of ε in Fig. 7, left
subplot) is 55.7%, 67.9%, and 91.9% for five, three, and
one FlyBSs, respectively. The real degradation in the sum
capacity comparing the proposal and the k-means is presented
in Fig. 8 (middle subplot). For the same allowed sum capacity
degradation of 1%, the real degradation is only about 0.90%,
0.80%, and 0.59% for five, three, and one FlyBSs, respectively.

Thus, considering the real sum capacity degradation of 1%
(corresponding to ε of 0.011, 0.0125, and 0.0175), the energy
saving of 77.9%, 89.4%, and 99.5% is observed for five,
three, and one FlyBSs, respectively. Last, Fig. 8 (right subplot)
depicts the real degradation in the sum capacity with respect to
the successive convex optimization-based positioning. For the
allowed sum capacity degradation of 1%, the real degradation
corresponds to ε of 0.011, 0.0120, and 0.015. Consequently,
the real energy saving reaches 77.7%, 89.6%, and 99.4% for
five, three, and one FlyBSs, respectively, compared to the
successive convex optimization.

These results confirm the efficiency of the proposed al-
gorithm and demonstrate that a significant saving in the
energy for flying of the airship-based FlyBSs is achieved at a
negligible cost represented by only marginal decrease in the
sum capacity of the UEs. The results can be also interpreted
in the way that an imprecise positioning of the FlyBSs (in
order of dozens of decimeters to few meters) does not lead
to any notable reduction in the sum capacity. Such finding
gives a new degree of freedom for future optimization of the
networks with the FlyBSs.

We investigate also an impact of the UEs’ speed on both the
energy saving and the sum capacity compared to the position-
ing of the FlyBSs maximizing the sum capacity numerically
via simplex in Fig. 9 for the allowed degradation in sum
capacity of 4% (i.e., ε = 0.04). The figure demonstrates there
is no notable impact (variation is about 2%) on both the energy
saving (left subplot) and the sum capacity degradation (right
subplot). This is due to the fact that there is no strong direct
dependency of the proposed algorithm on the speed of UEs
and the algorithm still forces the FlyBS to reach the same
distance to optimum Do (see (9)). Besides, the right subplot
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Figure 9. Impact of speed of UEs on energy saving (left subplot) and sum capacity (right subplot) with respect to the numerical positioning for allowed
degradation in sum capacity ε = 0.04

confirms that the real sum capacity degradation is safely below
the allowed 4%.

Furthermore, in Fig. 10, we demonstrate that the fairness in
capacity of individual UEs (defined as Jain’s fairness index)
is similar for our proposal and for state-of-the-art works. Our
algorithm even slightly improves the fairness (by few percent)
if ε increases compared to the state-of-the-art works, since the
larger ε provides additional flexibility in balancing the capacity
among UEs.

To illustrate fast convergence of the proposed algorithm, we
plot the average number of iterations over the capacity step
∆Cstep (see Algorithm 1) in Fig. 11. This figure confirms
that the larger the step of the FlyBS movement is (i.e., larger
∆Cstep), the faster the FlyBSs converge to their final positions.
However, already ∆Cstep of roughly 10 kbps requires only
about two iterations. This means that only two FlyBSs move
in each step. Such fast convergence does not limit practical
applications. Note that all previous figures are plotted for
∆Cstep of 10 kbps.

In Fig. 12, an example of the FlyBS trajectory in 3D space
(left subplot) and projection to 2D (right subplot) is shown
for three FlyBSs. We observe that each FlyBS changes 3D
position in a certain area depending on the UEs’ movement
and the FlyBSs’ positions are also influenced by interference
from neighboring FlyBSs to the UEs. Hence, if one FlyBS
initiates some movement towards other FlyBSs motivated by
new UE’s positions, the other FlyBSs adapt to that movement
with a similar movement pattern to keep their served UEs also
satisfied. Fig. 12 also indicates optimum position of the FlyBSs

derived numerically to illustrate that a notable reduction in
the redundant movements of the FlyBSs is achieved by the
proposed approach.

VI. CONCLUSIONS

In this paper, we have derived and analyzed a relation
between the sum capacity and the energy consumed for flying
by the airship-based FlyBSs serving the mobile (moving)
UEs. We have analytically shown theoretical bounds for the
energy saving of the FlyBSs with respect to the sum capacity
degradation. Then, we have proposed novel algorithm reducing
the energy consumed for flying while still guaranteeing close
to optimum sum capacity. If the sum capacity degradation is
limited to 1%, the proposed algorithm enables energy saving of
55.4%, 67.5%, and 90.7% if five, three, and one FlyBSs are de-
ployed, respectively, compared to the numerically determined
position maximizing the sum capacity. The results indicate
that a “perfect positioning” of the airship-based FlyBSs is
not necessary and an error in the positioning in order of few
meters have only marginal impact on the sum capacity. This
finding provides a new degree of freedom for future research
and development of algorithms for networks with FlyBSs.

In the future, the presented analysis and the proposed
algorithm can be enhanced towards a joint optimization of
the energies spent for flying and for communication. Besides,
considering battery lifetime and charging aspects in the prob-
lem of FlyBSs positioning, e.g., as done for vehicles in [53],
is a challenging topic.

Figure 10. Fairness in capacity experienced by users with respect to
allowed sum capacity degradation ε for five FlyBSs.

Figure 11. Number of iterations performed in the proposed positioning
for different ∆Cstep and various values of allowed degradation in sum
capacity ε for five FlyBSs.



IEEE TRANSACTIONS ON COMMUNICATIONS, VOL. 14, NO. 8, AUGUST 2021 13

Figure 12. Example of movement of three FlyBSs for the proposed algorithm (solid lines) and positioning derived numerically (dotted lines), “•” and “×”
markers indicate starting and finishing positions of the FlyBSs in 3D (left) and 2D projection (right).

APPENDIX A

This appendix provides the proof to Proposition 2. Let us
start with the sum capacity definition from system model
(Section II), i.e.,:

N∑

n=1

Cn =

N∑

n=1

Bn log2

(
1 +

pRn
σ2

)
=

N∑

n=1

Bn log2

(
1 +

Qn
σ2dαnn

)
. (19)

Now, we approximate log function with respect to parameter
X using linear approximation:

log2(a+X) ≈ 1

ln(2)

(
ln(a+ asτ)− sτ

1 + sτ
+

X

a(1 + sτ)

)
,

(20)

where s = b Xaτ c. We also use the polynomial approximation
with respect to an arbitrary X:

(a+X)k ≈ (a+ qaδ)k + k(a+ qaδ)k−1(X − qaδ), (21)

where q = bXaδ c. Note that the values of τ and δ in (20) and
(21), respectively, are approximation parameters, and choosing
a smaller τ and δ results in a smaller error in the linear
approximations (up to a certain low value of both, as the UEs’
distribution is discrete), but the smaller error is at the cost of
a higher computation complexity.

By applying (20) and (21) (with Qn
σ2dαnn

as X), the sum
capacity from (19) is rewritten for the optimal FlyBS position
[x∗f , y

∗
f , z
∗
f ] as:

N∑

n=1
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N∑

n=1

Bn
ln(2)

(
ln(1 + snτ)− snτ

1 + snτ
+
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)
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)
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N∑

n=1

BnQn
(1 + snτ)σ2 ln(2)
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(
(z∗f − zu,n)2 −Υ2)+ Υ2

)−αn
2
, (22)

where Υ 6= 0 is arbitrary value for the approximation. The
expression (22) is then:
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(23)

where vovovo = [xf,o, yf,o, zf,o], and

kn = b
(
(x∗f − xu,n )2 + (y∗f − yu,n )2 + (z∗f − zu,n )2 −Υ2

)
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The expression in (23) allows to directly evaluate
∑N
n=1 Cn

at [xf , yf , zf ]. To this end, using the approximation in (23),
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the constraint
∑N
n=1 Cn ≥ Copt×(1−ε) from (7) is rewritten

as:

ν −
( N∑

i=1

ωn
) (

(x∗f − xf,o)2 + (y∗f − yf,o)2+(z∗f − zf,o)2) ≥

Copt × (1− ε), (25)

(x∗f − xf,o)2 + (y∗f − yf,o)2+(z∗f − zf,o)2 ≤ D2
o(t), (26)

where Do(t) =
(
ν−Copt×(1−ε)∑N

n=1 ωi

) 1
2

as observed from (25),
and xf,o, yf,o, zf,o are, in line with (24), the coordinates
of the FlyBS at which

∑N
n=1 Cn reaches its maximum for

[xf , yf , zf ]. Consequently, [xf,o, yf,o, zf,o] = [x∗f , y
∗
f , z
∗
f ] and

(26) represents the distance d [vvv(t), vvv∗(t)]. Thus, (26) can be
rewritten as d [vvv(t), vvv∗(t)] < Do(t). This concludes the proof.

APPENDIX B

To provide proof to Theorem 3, let us first analyze the
constraint (a) in the problem defined in (4) for multiple
FlyBSs. From (1), (2), and (3), we get:

M∑

m=1

N∑

n=1

an,mCn,m =
M∑

m=1

N∑

n=1

an,mBn,m × log2(1+

pRn,m

σ2 +
∑M
j=1,m 6=j p

R
n,j

) =
M∑

m=1

N∑

n=1

an,mBn,m ×
(

log2(σ2+

Qn,m

d
αn,m
n,m

+
M∑

j=1,m 6=j

Qn,j

d
αn,m
n,j

)− log2(σ2 +
M∑

j=1,m 6=j

Qn,j

d
αi,j
n,j

)
)

(27)

Next, using the linear approximation as defined in (21), we
approximate Qn,m

d
αn,m
n,m

in (27) as:

Qn,m

d
αn,m
n,m

= Qn,m
(

(x∗f,m − xu,n)2 + (y∗f,m − yu,n)2+

(
(z∗f,m − zu,n)2 −Υ2)+ Υ2

)−αn,m
2 ≈ Qn,m

(
η
−αn,m

2
n,m −

αn,m
2

η
−αn,m

2
−1

n,m

(
(x∗f,m − xu,n)2 + (y∗f,m − yu,n)2+

((z∗f,m − zu,n)2 −Υ2)− kn,mτΥ2
))

, (28)

ηn,m = Υ2(1 + kn,m)δ, kn,m =

b
(
(x∗f,m − xu,n)2 + (y∗f,m − yu,n)2 + (z∗f,m − zu,n)2 −Υ2

)

Υ2δ
c,

A similar approximation is done also for Qn,m
d
αn,m
n,m

. Then, the
sum capacity in (27) is approximated as:

M∑

m=1

N∑

n=1

an,mCn,m ≈
M∑

m=1

N∑

n=1

an,mBn,m

(
log2

(
σ2 +Qn,m

(

Γn,m
(
(x∗f,m − xu,n)2 + (y∗f,m − yu,n)2 + (z∗f,m − zu,n)2 −Υ2−

kn,mδΥ
2))+

M∑

j=1,m 6=j
Qn,j

(
Γn,j((x

∗
f,j − xu,n)2+

(y∗f,j − yu,n)2 + (z∗f,j − zu,n)2 −Υ2 − kn,jδΥ2)
))
−

log2

(
σ2 +

M∑

j=1,m 6=j
Qn,j ×

(
Γn,j

(
(x∗f,j − xu,n)2+

(y∗f,j − yu,n)2 + (z∗f,j − zu,n)2 −Υ2 − kn,jδΥ2))
))

=

M∑

m=1

N∑

n=1

an,mBn,m ×
(

log2

(
ψn,m +

M∑

j=1

(
Qn,jΓn,j×

(
(x∗f,j − xu,n)2 + (y∗f,j − yu,n)2 + (z∗f,j − zu,n)2 −Υ2))

)

− log2

(
φn,m +

M∑

j=1,m 6=j

(
Qn,jΓn,j ×

(
(x∗f,j − xu,n)2+

(y∗f,j − yu,n)2 + (z∗f,j − zu,n)2 −Υ2))
))

(29)

where Γn,m =
(
Υ2(1 + kn,mδ)

)−αn,m
2 − αn,m

2

(
Υ2(1 +

kn,mδ)
)−αn,m

2
−1; φn,m = σ2 − ∑M

j=1,m 6=j Qn,jΓn,jkn,jδΥ
2;

ψn,m = σ2 −Qn,mΓn,mkn,mδΥ
2 −∑M

j=1,m 6=j Qn,jΓn,jkn,jδΥ
2.

Using the approximation in (29), we get:

M∑

m=1

N∑

n=1

an,mCn,m ≈ (30)

M∑

m=1

N∑

n=1

an,mBn,m ×
( ∑M

j=1 Qn,jΓn,j

ln(2)ψn,m(1 + λn,mτ)
×

(
(x∗f,m − xu,n)2 + (yf,m − yu,n)2 + (z∗f,m − zu,n)2 −Υ2)+

ln
(
ψn,m(1 + λn,mτ)

)
− λn,mτ

1 + λn,mτ
−
∑M
j=1,m 6=j Qn,jΓn,j

φn,j(1 + βn,mτ)
×

(
(x∗f,m − xu,n)2 + (y∗f,m − yu,n)2 + (z∗f,m − zu,n)2 −Υ2)

+ ln
(
φn,m(1 + βn,mτ)

)
− βn,mτ

1 + βn,mτ

)

where

βn,m = b 1

τφn,j
×

M∑

j=1,m 6=j

(
Qn,jΓn,j

(
(x∗f,j − xu,n)2+

(y∗f,j − yu,n)2 + (z∗f,j − zu,n)2 −Υ2))c, ξn,m = Γn,m×
(

(x∗f,m − xu,n)2 + (y∗f,m − yu,n)2 + (z∗f,m − zu,m)2 −Υ2
)

+

M∑

j=1,m 6=j
Qn,jΓn,j

(
(x∗f,j − xu,n)2 + (y∗f,j − yu,n)2+

(z∗f,j − zu,n)2 −Υ2
)
, λn,m = b ξn,m

τψn,m
c. (31)

The sum capacity defined in (30) is further simplified to:

M∑

m=1

N∑

n=1

Cn,m ≈ A−
M∑

m=1

rm
(

(32)

(x∗f,m − xf,o,m)2 + (y∗f,m − yf,o,m)2+(z∗f,m − zf,o,m)2
)
,
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where the following substitutions are adopted:

A = Bn,mΥ2(
−∑M

m=1 Qn,mΓn,m

ln(2)ψn,m(1 + λn,mτ)
+

∑M
m=1,m 6=j Qn,jΓn,j

φn,m(1 + βn,mτ)
)

+
M∑

m=1

N∑

n=1

(
Bn,m
ln(2)

M∑

m=1

(
ln(ψi,m(1 + λi,mτ))− λi,mτ

1 + λi,mτ

))
−

M∑

m=1

N∑

n=1

(
Bn,m
ln(2)

M∑

j=1,m 6=j

(
ln
(
φn,j(1 + βn,jτ)

)
− βn,jτ

1 + βn,jτ

))

−
N∑

n=1

ζn,mx
2
u,n −

N∑

n=1

ζn,my
2
u,n −

N∑

n=1

ζn,mz
2
u,n+

(
∑N
n=1 ζn,mxu,n)2

∑N
n=1 ζn,m

+
(
∑N
n=1 ζn,myu,n)2

∑N
n=1 ζn,m

+
(
∑N
n=1 ζn,mzu,n)2

∑N
n=1 ζn,m

)
,

ζn,m =
Bn,m
ln(2)

M∑

m=1

(
Mlm − (M − 1)sm

)
,

lm =
N∑

n=1

M∑

m=1

Qn,mΓn,m
ψn,m(1 + λn,mτ)

, rm =
N∑

n=1

ζn,m,

sm =
N∑

n=1

M∑

m=1

Qn,mΓn,m
φn,m(1 + βn,mτ)

, xf,o,m =

∑N
n=1 ζn,mxu,n∑N
i=n ζn,m

,

yf,o,m =

∑N
n=1 ζn,myu,n∑N
n=1 ζn,m

, zf,o,m =

∑N
n=1 ζn,mzu,n∑N
n=1 ζn,m

. (33)

Since the sum capacity reaches its maximum for
[xf,m, yf,m, zf,m] = [xf,o,m, yf,o,m, zf,o,m] it is concluded
that [x∗f,m, y

∗
f,m, z

∗
f,m] = [xf,o,m, yf,o,m, zf,o,m] according to

(32). Then, we use the approximation in (32) to evaluate the
sum capacity at [xf,m, yf,m, zf,m] as follow:

M∑

m=1

N∑

n=1

Cn,m ≈ A−
M∑

m=1

rmd
2 [vmvmvm(t), v∗mv

∗
mv
∗
m(t)

]
(34)

Given the approximation derived in (34), the constraint (4a)
is rewritten as:
M∑

m=1

N∑

n=1

Cn,m ≈ A−
M∑

m=1

rmd
2 [vmvmvm(t), v∗mv

∗
mv
∗
m(t)

]
≥ Copt × (1− ε)

(35)

To conclude the proof, (35) is directly rewritten to the form
in Theorem 3:

M∑

m=1

rmd
2 [vmvmvm(t), v∗mv

∗
mv
∗
m(t)

]
≤ A− Copt × (1− ε) (36)
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3.5 Energy-e�cient maximization of sum capacity

In addition to our provided works on power minimization (transmission, propulsion, to-

tal), we also take a di�erent approach and we consider the sum capacity of the network

as the objective. For such a goal, the minimum quality of service to each mobile user is

also considered at all time. The optimization problem is done via an allocation of the

transmission power and a positioning of the FlyBS. As the sum capacity is a non-convex

problem, challenges regarding the optimization are introduced and dealt with. In ad-

dition to the user's minimum required capacity, a constraint on the FlyBS's propulsion

power consumption is also included so that the optimization of the sum capacity would

not lead to excessive consumption of energy. An analytical solution based on geometrical

interpretation of the constraints is provided, and a low-complexity solution to the opti-

mization problem is proposed. The following work is the reference [C1] that presents our

contribution to the described problem.
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Abstract—The use of unmanned aerial vehicles (UAVs) acting
as flying base stations (FlyBSs) is considered as an effective tool
to improve performance of the mobile networks. Nevertheless,
such potential improvement requires an efficient positioning of
the FlyBS. In this paper, we maximize the sum downlink capacity
of the mobile Internet of Things devices (IoTD) served by the
FlyBSs while a minimum required capacity to every device is
guaranteed. To this end, we propose a geometrical approach
allowing to derive the 3D positions of the FlyBS over time as the
IoTDs move and we determine the transmission power allocation
for the IoTDs. The problem is formulated and solved under
practical constraints on the FlyBS’s transmission and propulsion
power consumption as well as on flying speed. The proposed
solution is of a low complexity and increases the sum capacity
by 15%-46% comparing to state-of-the-art works.

Index Terms—Flying base station, UAV, Transmission power,
Propulsion power, Sum capacity, Mobile IoT device, 6G.

I. INTRODUCTION

Deployment of unmanned aerial vehicles (UAVs) acting as
flying base stations (FlyBSs) is a promising way to improve
performance in 6G mobile networks, since the FlyBSs offer
a high mobility and an adaptability to the environment via
flexible movement in 3D. Potential benefits offered by the
FlyBSs, however, comes along with challenges related to radio
resource management and positioning of the FlyBSs [1], [2],
[3], [4], [5], [6].

The problem of the FlyBS’s positioning is investigated in
many recent works. The objectives targeted in those works
include a maximization of the downlink sum capacity [7], a
maximization of the minimum capacity [8], a maximization
of the uplink capacity [9], a maximization of the sum of
uplink and downlink capacities [10], [11], a maximization
of the minimum average capacity for device-to-device
communication [12], a maximization of the minimum capacity
in networks of sensors or Internet of Things devices (IoTDs)
[13], a minimization of the FlyBS’s power consumption [14],
a minimization of the number of FlyBSs to guarantee users’
QoS requirements [15]. However, the users considered in [7]-
[15] are static (i.e., do not change their location over time).
This is a required assumption in the solutions provided by

This work was supported by the project No. LTT 20004 funded by Ministry
of Education, Youth and Sports, Czech Republic and by the grant of Czech
Technical University in Prague No. SGS20/169/OHK3/3T/13, and partially
by the HUAWEI France supported Chair on Future Wireless Networks at
EURECOM.

those works in [7]-[15], and the FlyBS’s entire trajectory is
derived before the beginning of mission knowing that the
users do not move during the mission. An extension of the
solutions in these papers to the scenario with moving users is
not straightforward. Furthermore, a guarantee of the minimum
capacity to the users is not considered in [7], [10], [11], hence,
the solutions cannot be adopted in applications, where the
quality of service is concerned.

A solution potentially applicable to the scenarios with
moving users is outlined in [16], where the FlyBSs’ altitude is
optimized to maximize the average system throughput. Then,
in [17], the authors optimize the number of FlyBSs and their
positions to maximize sum capacity. However, neither [16]
nor [17] provide any guarantee of the minimum capacity
to the users. In [18], the sum capacity is maximized via
a positioning of the FlyBSs using reinforcement learning.
Furthermore, the problem of the transmission power allocation
is investigated in [19] to maximize the energy efficiency, i.e.,
the ratio of the sum capacity to the total transmission power
consumption. The minimum required capacity in [18] and [19]
is assumed to be equal for all users. Besides, the FlyBS’s
positioning is not addressed in [19] at all and the transmission
power allocation is not considered in [18]. Then, the minimum
capacity of the users is maximized via the FlyBS’s positioning
and the transmission power allocation in [20]. Nevertheless, no
constraint on the FlyBS’s speed is considered.

Surprisingly, there is no work targeting the sum
capacity maximization in a practical scenario with moving
sensors/IoTDs and with the minimum capacity guaranteed
to the individual sensors/IoTDs. All related works are either
focused on the scenario where data is collected from static
users with apriori known coordinates or no minimum capacity
is guaranteed to the users. We target the scenario with
mobile devices and the minimum capacity guarantee and we
propose a low-complexity solution based on an alternating
optimization of the FlyBS’s positioning and the transmission
power allocation to the devices. The proposed optimization is
done with respect to the feasibility region that is derived via
a proposed geometrical approach. With respect to a majority
of the related works, we also consider practical aspects and
constraints of the FlyBSs including limits on the flying speed,
transmission power, and propulsion power.

The rest of this paper is organized as follows. In Section



Fig. 1: System model with mobile IoTDs placed within the
coverage area of the FlyBS.

II we provide the system model for FlyBS-enabled sensor
network and we formulate the problem of sum capacity
maximization. Next, we propose a method to check the
feasibility of a solution to the FlyBS’s positioning and
transmission power allocation in Section III. Then, we propose
a solution based on an alternating optimization of the
transmission power allocation and the FlyBS’s positioning
in section IV. A geometrical approach is proposed for the
FlyBS’s positioning. Then, in section V, the adopted simulation
scenario and parameters are specified and the performance of
our proposed solution is shown and compared with state-of-
the art schemes. Last, we conclude the paper and outline the
potential future extensions in Section VI.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we first define the system model. Then,
we formulate the constrained problem of the sum capacity
maximization.

In our system model, one FlyBS serves N sensors/IoTDs
{u1, ..., uN} in an area as shown in Fig. 1. Let l(t) =[
X[k], Y [k], H[k]

]T
denote the location of the FlyBS at time

step k. We refer to the IoTDs/sensors as nodes in the rest
of this paper. Let vi[k] =

[
xi[k], yi[k], zi[k]

]T
denote the

coordinates of node i at time step k. Then, di[k] denotes
Euclidian distance of node i to the FlyBS at time step k.

We adopt orthogonal downlink channel allocation for all
nodes. Thus, the channel capacity of node i is:

Ci[k] = Bi log2

(
1 +

pRi [k]

Ni + I

)
, (1)

where Bi denotes the bandwidth of the i-th node’s channel
(note that Bi can differ among nodes), Ni is the noise power at
the i-th node’s channel, I denotes the background interference
from neighboring base stations (both flying and static), and
pRi [k] is the received power by the i-th node at time step k.

Let pT = [pT1 , ..., p
T
N ] denote the FlyBS’s transmission

power allocated to all N nodes. According to the Friis’

transmission equation, the received signal’s power at node i
(i ∈ [1, N ]) from the FlyBS is calculated as:

pRi [k] = Qi(
γ

γ + 1
hi +

1

γ + 1
h̃i)p

T
i [k]di

−αi [k], (2)

where the coefficient Qi is a parameter depending on the
communication frequency and gain of antennas. Furthermore,
γ is the Rician fading factor, hi is the line-of-sight (LoS)
component satisfying |hn| = 1, and h̃i denotes the non-line-
of-sight (NLoS) component satisfying h̃i ∼ CN(0, 1), and αi
is the pathloss exponent of the channel for node i.

For the propulsion power consumption, we refer to
the model provided in [21] for rotary-wing UAVs. More
specifically, the propulsion power is expressed as:

Ppr[k] = L0

(
1 +

3V 2
F [k]

U2
tip

)
+
η0ρsrAV

3
F [k]

2
+

Li
(
√

1 +
V 4
F [k]

4v4
0,h

− V 2
F [k]

2v2
0,h

) 1
2 , (3)

where VF [k] is the FlyBS’s speed at the time step k.
Furthermore, L0 and Li are the blade profile and induced
powers in hovering status, respectively, Utip is the tip speed of
the rotor blade, v0,h is the mean rotor induced velocity during
hovering, η0 is the fuselage drag ratio, ρ is the air density, sr
is the rotor solidity, and A is the rotor disc area.

Our goal is to find the position of the FlyBS to maximize
the sum capacity at every time step k while the node’s
minimum required capacity is always guaranteed with practical
constraints implied by FlyBSs. Hence, we formulate the
problem of the sum capacity maximization as follows:

max
pT [k],l[k]

Ctot[k],∀k, (4)

s.t. Ci[k] ≥ Cmini [k], i ∈ [1, N ], (4a)

Hmin[k] ≤ H[k] ≤ Hmax[k], (4b)

||l[k]− l[k − 1]|| ≤ V maxF δk, (4c)

Ppr[k] ≤ Ppr,th[k], (4d)
∑N

i=1
pTi [k] ≤ pTmax, pTi [k] ≥ 0, (4e)

where Ctot[k] =
∑N
i=1 Ci[k] is the sum capacity of the

nodes at time step k, Cmini [k] denotes the minimum capacity
required by node i at time step k, Hmin and Hmax are the
minimum and maximum allowed flying altitude of the FlyBS
at the time step k, respectively, and are set according to the
environment as well as the flying regulations. Furthermore,
V maxF is the FlyBS’s maximum supported speed, δk is the
duration between the time steps k − 1 and k, ||.|| is the
L2 norm, and pTmax is the FlyBS’s maximum transmission
power limit. The constraint (4a) ensures that every node always
receives the required capacity. Furthermore, (4b) and (4c)
restrict the FlyBS’s speed to the range of [0, V maxF ] and[
Hmin[k], Hmax[k]

]
, respectively. In addition, the constraints

(4d) and (4e) assure that the FlyBS’s propulsion power and
total transmission power would not exceed Ppr,th and pTmax,



respectively. In practice, the value of Ppr,th can be set/adjusted
at every time step and according to available remaining energy
in the FlyBS’s battery to prolong the FlyBS’s operation.

Challenging aspects to solve (4) include: i) before the
positioning of the FlyBS, a feasibility of the solution to (3)
should be verified due the constraints (4a)-(4e), and ii) the
objective function Ctot and the constraint (4e) are non-convex
with respect to l.

To tackle the aspect i), we propose a geometrical approach
with a low complexity to check the feasibility of any solution
to (4). If there is a feasible solution, the proposed approach
further determines the feasibility domain used for a derivation
of the FlyBS’s positions. To tackle the aspect ii), we propose
a suboptimal solution using an alternating optimization of
the transmission power allocation and the FlyBS’s positioning
based on a local approximation of the objective function. In
particular, we propose an iterative approach based on two
steps: 1) an optimization of the transmission power allocation
pT at the given position of the FlyBS and, 2) an update
(optimization) of the FlyBS’s position for the derived vector
pT from the step 1 via a consideration of the feasibility domain
defined by the constraints in (4). We elaborate the derivation
of feasibility domain in Section III. Then, we explain our
proposed alternating optimization of the transmission power
and the FlyBS’s positioning in Section IV.

III. FEASIBILITY OF A SOLUTION

In this section, we present a geometrical approach to check
the feasibility of an arbitrary solution to (4) via a consideration
of the constraints in (4). Let us first rewrite the constraint (4a)
for an arbitrary setting of the transmission power allocation
pT to individual nodes by means of (1) and (2) as follows:

Ci = Bi log2

(
1 +

Qip
T
i

di
αi(Ni + I)

)
≥ Cmini , (5)

which yields

di ≤ (
Qip

T
i

(2
Cmin
i
Bi − 1)(Ni + I)

)

1
αi

= ρi, 1 ≤ i ≤ N. (6)

Each of the N inequalities in (6) demarcates a sphere in
3D space. In particular, for every i ∈ [1, N ], the inequality in
(6) implies that the FlyBS lies inside or on the sphere with a
center at the location of node i and with a radius of ρi.

Next, the constraint (4b) defines the next position of the
FlyBS on or between the planes z = Hmin[k] and z =
Hmax[k]. In addition, according to Fig. 2, the constraint
(4d) is translated as VF ∈ [V th,1F , V th,2F ]. By combining this
inequality with (4c) we get

||l[k]− l[k − 1]|| ≤ (min{VF,max, V th,2F })δk, (7)

and

||l[k]− l[k − 1]|| ≥ V th,1F δk. (8)

The equations (7) and (8) define the FlyBS’s next possible
position as the border or inside of a region enclosed

Fig. 2: Propulsion power model vs. speed for rotary-wing FlyBS.

by two spheres centered at l[k − 1] (i.e., the FlyBS’s
position at the previous time step) and with radii of V th,1F δk
and (min{VF,max, V th,2F })δk. Furthermore, to interpret the
constraint (4e) in terms of the FlyBS’s position, in following
Lemma 1, we derive a necessary condition for the FlyBS’s
next position so that there exists a feasible position of the
FlyBS for an arbitrary setting of pT .

Lemma 1. For the power allocation vector pT at time step
k − 1, a necessary condition for a feasibility of any solution
to the positioning of the FlyBS at time step k is:

∣∣∣∣l[k]− θ0(pT , k)
∣∣∣∣ ≤ Υ(pT , k), (9)

where θ0(pT , k) = [
∑N
i=1 ιixi∑N
i=1 ιi

,
∑N
i=1 ιiyi∑N
i=1 ιi

, H], and ιi is a

substitution derived in the proof, and Υ(pT , k) = (
pTmax−χ∑N

i=1 ιi
)

1
2

.

proof. Please see Appendix A
Note that, an existence of a feasible solution is contingent

upon all the constraints in (4) and not only the condition
(9). Thus, we now analyze the feasibility of any solution to
(4) by incorporating the constraints derived for the FlyBS’s
next position. In order to check if these inequalities hold
at the same time, we propose the following low-complexity
approach. Let cli (i ∈ [1,+2]) denote N + 2 spheres defined
by the inequalities (6), (7), and (9). Note that we deal with
(7) later in this section. The N spheres represented by (6)
have centers at the same position as their corresponding nodes.
Furthermore, the sphere indicated by (7) has a center at the
FlyBS’s position at time step k − 1.

Then, for each pair of spheres spj and spk, we consider
their intersection. There are three different cases regarding the
intersection: i) spj and spk have no intersection point and
lie completely outside each other, ii) spj and spk have no
intersection points and one of these spheres lies inside the
other one, iii) spj and spk intersect on their borders which is
in the shape of a circle (assuming that a single point is also a
circle with radius of zero). Note that any two spheres from the
set of spheres indicated by (4a) do not completely overlap, as
each sphere has a distinct center. Furthermore, if any sphere
represented by (7) or (9) is identical to another sphere, we
simply ignore one of those spheres.

For the case i, we conclude that at least two of the



constraints in (4) do not hold at the same time and, thus,
there is no feasible solution to (4). For the case ii, one
of the constraints in (4) corresponding to the outer sphere
is automatically fulfilled if the other constraint (the one
corresponding to the inner sphere) holds. In such case, we
ignore the constraint corresponding to the outer sphere and
the rest of the constraints are dealt with according to case i or
iii. For the case iii, we propose the following low-complexity
method to verify the non-emptiness of the intersections of the
spheres (in other words, a feasibility of a solution to (4)): given
the fact that the intersection of a plane and a sphere is circle
(if not empty), we search for the intersection of the spheres
only on certain planes. In particular, corresponding to each of
the N + 2 spheres spj , consider two horizontal planes plj,1
and plj,2 that are tangent to spj (one at the topmost point
on spj and one at the lower most point). Then, we remove
from the set of the derived planes those that do not fulfill
the altitude constraint (4b). Hence, at most 2N + 4 horizontal
planes are derived. Next, for each of the remaining planes,
we find the intersection of the plane and all the spheres.
Let cll,k,1 and clj,k,2 be the intersection (circle) of spk on
plj,1 and on plj,2, respectively. On each plane, we derive and
collect the intersection points of each two of such circles.
Then, we verify whether there are any points in the set of
the collected points that would lie inside or on the border
of all the circles on the same plane. In case that there are
no such points on any of the planes, there is no feasible
solution to (4) as all the constraints in (4) cannot be met
at the same time. Otherwise, there would be a solution if
the remaining condition (8) is also met for at least one of
those eligible candidate points. From the described process,
the computational complexity of the proposed feasibility check
scales as (2N + 4)×

(
N+2

2

)
× (N + 2), i.e., it is O(N4).

In the next section, we target the problem of power
allocation and the FlyBS’s positioning in (4) and we show
how the FlyBS’s position is determined with respect to the
constraint spheres spj (j ∈ [1, N + 2]) derived in this section.

IV. FLYBS POSITIONING AND POWER ALLOCATION

In this section, we outline our proposed FlyBS’s positioning
and transmission power allocation maximizing the sum
capacity under the feasibility condition derived in Section III.

Our proposed solution is based on alternating optimization
updating the transmission power pT and the FlyBS’s position
l at every time step. First, note that for a given l, the problem
of the pT optimization is solved via CVX, as the sum capacity
in (4) is concave, and the constraints in (4) are convex with
respect to pT . Once pT is optimized at the given position l,
we optimize l to maximize the sum capacity while considering
the constraints in (4). To this end, we first consider the problem
of the sum capacity maximization regardless of the constraints
in (4). As the sum capacity is non-convex with respect to
the FlyBS’s position, we provide a solution based on a local
approximation of the sum capacity in the form of a radial
function with respect to the FlyBS’s position as elaborated in
the following Lemma 2.

Lemma 2. The sum capacity Ctot is approximated as a radial
function with respect to l[k] as:

Ctot[k] ≈W (pT , k)− ζ(pT , k)
∣∣∣∣l[k]− S0(pT , k)

∣∣∣∣2, (10)

where the substitutions W (pT , k), ζ(pT , k), and S0(pT , k)
are constants with respect to l[k] as presented in the proof.

proof. Please see Appendix B
According to (10), the FlyBS achieves the maximum

capacity at the location S0. In addition, the sum capacity
increases when the FlyBS’s distance to S0 decreases. This
helps to derive the FlyBS’s position for the constrained
problem in (4) in following way. The FlyBS’s position is
updated to S0 (as in (19)) if all constraints in (4) are fulfilled,
i.e., if S0 lies inside the feasibility region denoted by Rf .
Otherwise, S0 lies outside of Rf and the optimal position of
the FlyBS (optimal with respect to (10)) is, then, the closest
point from Rf to S0. If S0 lies outside of Rf , we refer to
the derived spheres representing the constraints in (4) (i.e.,
spj for j ∈ [1, N + 2], see Section III) to find the closest
point from Rf to S0 and we provide a geometrical solution to
determine the FlyBS’s position as follows (also demonstrated
in Algorithm 1). Due to the compactness of Rf , the closest
point of Rf to S0 lies on the boundary of Rf belonging
also to the border of at least one of the (N + 2) spheres spj .
The closest point from any sphere spj to S0 is determined by
finding the intersection of spj and the straight line connecting
S0 to the center of spj . Hence, we first find the closest point of
each spj to S0 (corresponding to line 1 in Algorithm 1). Next,
we derive all mutual intersections (circles) of each pair of
spheres spj and spk and we find the closest point from each of
the intersection circles to S0 (line 2 in Algorithm 1- derivation
steps not shown here to avoid cluttering, more details can be
found in [24]). Similarly, we find the intersections of each
sphere spj (j ∈ [1, N + 2]) with each of the planes z = Hmin

and z = Hmax and then we find the closest points on those
intersection circles to S0 (lines 3 and 4 in Algorithm 1). After
collecting all those closest points to S0, we discard those
collected points that do not fulfill all the conditions in (4)
(line 5 in Algorithm 1). Last, in the remaining set of candidate
points, the point with smallest distance to S0 is the optimal
position of the FlyBS (line 6 in Algorithm 1).

Once the FlyBS’s position l is updated, the power allocation

Algorithm 1 Determination of the FlyBS positioning

Input: spj (j ∈ [1, N + 2]), and planes z = Hmin, z = Hmax

Λ = []: set of closest points to S0 from the border of Rf
1: Λ← Λ ∪ argminA∈spj ||S0 −A||, ∀j
2: Λ← Λ ∪ argminD∈spj∩spk ||S0 −D||, ∀j, k
3: Λ← Λ ∪ argminB∈spj∩z=Hmin ||S0 −B||, ∀j
4: Λ← Λ ∪ argminC∈spj∩z=Hmax ||S0 −C||, ∀j
5: Λ← Λ− {l ∈ Λ| ∼ (4b) ∨ q /∈ ∩N+2

j=1 spj , }
6: l← argminl∈Λ ||S0 − l||

Output: FlyBS’s position (l)



pT is again optimized at the new l. The updated pT would
change the spheres spj (j ∈ [1, N + 2]) and also S0. Thus,
the alternating optimization of pT and l continues until the
FlyBS’s displacement at some iteration falls below a given
threshold ε or until the maximum number of iterations is
reached. The complexity of finding the FlyBS’s position at
each time step is O(N4).

V. SIMULATIONS AND RESULTS

In this section, we present models and simulations adopted
for a performance evaluation of the proposed solution, and we
show gains of the proposal over state-of-the-art schemes.

A. Simulation scenario and models

We assume an area with a size of 600 x 600 m. Within
this area, 60 to 180 nodes are dropped. A half of the nodes
move based on a random-walk mobility model with a speed
of 1 m/s. The other half of the nodes are randomly distributed
into six clusters of crowds. The centers of three of the clusters
move at a speed of 1 m/s, where each node in those clusters
moves with a uniformly distributed speed of [0.6, 1.4] m/s
with respect to the center of each cluster. The centers of the
other three clusters move at a speed of 1.6 m/s with the speed
of nodes uniformly distributed over [1.2, 2] m/s with respect
to the center of cluster.

A total bandwidth of 100 MHz is selected [22]. Spectral
density of noise is set to -174 dBm/Hz. The background
interference is set to -100 dBm. We set αi = 2.4 for all nodes.
The allowed range for altitude of the FlyBS is [100, 300] m,
and the maximum transmission power limit PmaxTX is 1 W [23].
A maximum speed of 25 m/s is assumed for the FlyBS. The
maximum allowed propulsion power consumption (according
to (4a)) is set to Ppr,th = 250 W. Each simulation is of
1200 seconds duration. The results are averaged out over 100
simulation drops.

In addition to our proposal, we show the performance of
the following state-of-the-art solutions: i) maximization of the
minimum capacity of nodes (referred to as MMC) via the
FlyBS’s positioning and the transmission power allocation,
published in [20], ii) allocation of the transmission power to
maximize an energy efficiency introduced in [19] (referred to
as EEM), iii) allocation of the transmission power proposed in
[19] extended with K-means-based positioning of the FlyBS,
as the solution in [19] does not address the positioning; this
approach is denoted as the extended EEM (EEEM).

B. Simulation results

In this subsection, we present and discuss simulation results.
Fig. 3 demonstrates the sum capacity versus number of nodes
for Cmini = 1 Mbps for all nodes. The sum capacity decreases
for larger numbers of nodes for all schemes, because the
available bandwidth and the total transmission power is split
among more nodes. However, our proposed solution enhances
the sum capacity compared to state-of-the-art solutions MMC,
EEM, and EEEM by up to 26%, 43%, and 22%, respectively.

Fig. 3: Sum capacity vs. number of nodes for Cmin =1 Mbps.

Fig. 4: Sum capacity vs. Cmini

for N = 100.
Fig. 5: Sum capacity vs. Cmini

for N = 180.

Figs. 4 and 5 show an impact of Cmin on the sum capacity
for N = 100 and N = 180, respectively. The maximum
depicted Cmini represents the largest Cmini for which the
feasible solution is found. Note that the value of Cmini in
MMC is not set manually, but it is directly derived by the
scheme itself. For N = 100 and N = 180, the EEM does
not find a feasible solution for Cmini larger than 2.2 Mbps
and 0.8 Mbps, respectively, due to a lack of positioning of
the FlyBS. It is observed that the sum capacity decreases
by Cmini in the proposed solution, EEM, and EEEM. This
is because the increasing Cmini further limits the FlyBS’s
allowed movement according to (6) and, thus, the FlyBS can
explore only a smaller feasibility region to optimize the sum
capacity. The proposed solution enhances the sum capacity
with respect to MMC, EEM, and EEEM by up to 25%, 46%,
and 22%, respectively, for N = 100, and by up to 24%, 26%,
and 15%, respectively, for N = 180.

As our algorithm is iterative, we demonstrate its fast
convergence in Figs. 6 and 7 by showing an evolution of the

Fig. 6: Convergence of the
proposed scheme for N = 100.

Fig. 7: Convergence of the
proposed scheme for N = 180.



sum capacity over iterations of the FlyBS’s positioning and the
transmission power allocation. The state-of-the-art schemes
are not iterative, thus, their sum capacity is constant. Still, the
proposed solution converges very fast, in about three iterations.
Moreover, even the first iteration leads to a notably higher
sum capacity comparing to all state-of-the-art solutions. This
confirms that iterative approach does not limit feasibility and
practical application of the proposed solution.

VI. CONCLUSIONS

In this paper, we have provided a geometrical solution
maximizing the sum capacity via a positioning of the FlyBS
and an allocation of the transmission power to the nodes, while
the minimum required capacity to each node is guaranteed.
We have shown that the proposed solution enhances the sum
capacity by tens of percent compared to state-of-the-art works.

In the future work, a scenario with multiple FlyBSs should
be studied along with related aspects, such as a management
of interference among FlyBSs and an association of the nodes
to the FlyBSs, should be addressed.

APPENDIX A
PROOF TO LEMMA 1

Proof. Using (5), the constraint (4a) is rewritten as:

Q−1
i di

αi
[k](Ni + I)(2

Cmini
Bi − 1) ≤ pTi . (11)

Then, the necessary condition to fulfill (4e) is that:
N∑

i=1

Q−1
i di

αi
(Ni + I)(2

Cmini
Bi − 1) ≤ pTmax. (12)

To derive an explicit form of (12) in terms of the FlyBS’s
position, we adopt the following inequality derived from linear
Taylor approximation with respect to arbitrary x and for η ≥ 1:

(a+ x)
η ≥ (a+ τeω)

η
+ η(e+ τeω)

η−1
(x− τaω), (13)

where τ =
⌊
x
aσ

⌋
, and σ is the approximation parameter such

that choosing a smaller σ incurs a smaller error. Hence, the
approximation error and, thus, the gap to the optimal solution
can be set arbitrarily close to zero by adopting a small enough
σ. Using (13), for the left-hand side in (12) we write:

N∑

i=1

Q−1
i di

αi
(Ni + I)(2

Cmini
Bi − 1) =

N∑

i=1

Q−1
i (Ni + I)×

(2
Cmini
Bi − 1)× ((X − xi)2

+ (Y − yi)2
+ (H − zi)2 −H2

min

+H2
min)

αi
2 ≥

N∑

i=1

Q−1
i (Ni + I)(2
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Bi − 1)× (µ

αi
2
i −

κiσαi
2
× µ

αi
2 −1
i H2

min + (X2 + x2
i − 2Xxi + Y 2 + y2

i−

2Y yi +H2 + z2
i − 2Hzi −H2

min)
αi

2µ
−αi2 +1
i

) =

(
N∑

i=1

ιi)
∣∣∣∣l[k]− θ0(pT , k)

∣∣∣∣2 + χ, (14)

where

κi =

⌊∣∣∣∣l[k]− vi
∣∣∣∣2 −H2

min

H2
minσ

⌋
, µi = H2

min(1 + κiσ),

ιi =
1

2
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αi
2 −1
i , (15)

and

χ = −
N∑

i=1

ιi(x
2
i + y2

i + z2
i )+

(
∑N
i=1 ιixi)

2
+ (
∑N
i=1 ιiyi)

2
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i=1 ιizi)
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+
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i (Ni + I)(2
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Bi − 1)(µ

αi
2
i −

κiσαi
2

µ
αi
2 −1
i H2

min).

(16)

Then, by incorporating (12) and the right-hand side in (14),
Lemma 1 is proved.

APPENDIX B
PROOF TO LEMMA 2

Proof. We use the following linear approximation (with
respect to Γ) for arbitrary values of ∆ and Γ:

log2(∆ + Γ) ≈ 1

ln(2)
(ln(∆ + ∆sξ) +

Γ− s∆ξ
∆(1 + sξ)

), (17)

where s =
⌊

Γ
∆ξ

⌋
. Note that the approximation error can be

set arbitrarily close to zero by choosing small enough ξ.
By taking pTi

Qidi
αi (Ni+I)

as Γ in (17), the sum capacity is
rewritten as:

Ctot[k] =
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i=1

Bi log2
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1 +

Qip
T
i

di
αi(Ni + I)

)
≈
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Bip
T
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BiQip
T
i

(1 + siξ)(Ni + I)ln(2)
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αi
2
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κiσαi

2
µ
αi
2

−1

i H2
min − αiµ

αi
2

−1

i

2

×(X2 + x2i − 2Xxi + Y 2 + y2i − 2Y yi +H2 + z2i − 2Hzi −H2
min))

+
N∑

i=1

Bi

ln(2)
(ln(1 + siξ)−

siξ

1 + siξ
) =W (pT , k)− (

N∑

i=1

ϕi)× ((

X − (

∑N
i=1 ϕixi∑N
i=1 ϕi

))

2

+ (Y − (

∑N
i=1 ϕiyi∑N
i=1 ϕi

))

2

+ (H − (

∑N
i=1 ϕizi∑N
i=1 ϕi

))

2

)

=W (pT , k)− ζ(pT , k)
∣∣∣∣l[k]− S0(p

T , k)
∣∣∣∣2,

(18)

where

S0(pT , k) = [

∑N
i=1 ϕixi∑N
i=1 ϕi

,

∑N
i=1 ϕiyi∑N
i=1 ϕi

,

∑N
i=1 ϕizi∑N
i=1 ϕi

], (19)



and

W (pT , tk) =
(
∑N
i=1 ϕixi)

2
+ (
∑N
i=1 ϕiyi)

2
+ (
∑N
i=1 ϕizi)

2

∑N
i=1 ϕi

−
N∑

i=1

ϕi(x
2
i + y2

i + z2
i ) +

N∑

i=1

BiQip
T
i

(1 + siξ)(Ni + I)ln(2)
×

(µ
−αi2
i +

κiαiσH
2
minµ

−1−αi2
i

2
+
αiµ

αi
2 −1
i

2
H2
min)+

N∑

i=1

Bi
ln(2)

(ln(1 + siξ)−
siξ

1 + siξ
),

si =

⌊
Qip

T
i

σ(Ni + I)dαii

⌋
, ϕi =

QiBip
T
i αiµ

−1−αi2
i

2 (Ni + I) (1 + siξ) ln (2)
,

ζ(pT , tk) =
N∑

i=1

ϕi. (20)

This proves Lemma 2.
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3.6 Maximization of sum capacity in multi-hop FlyBS

networks with backhaul

Having studied the problem of FlyBS's deployment and resource allocation for FlyBSs

operating at the access link, we then take a step forward towards integrating multi-hop

communication in FlyBS networks. In particular, a backhaul link is included to establish

a connection between the FlyBSs and the ground base station (GBS). Furthermore, some

FlyBSs in this architecture act as relays in order to provide connection between the GBS

and the other FlyBSs. In such model, the relays could also serve the ground users directly.

Constraints on data �ow are imposed at the relays to ensure that the capacity of the

backhaul links are not less than that of the fronthaul links. We investigate the problem

of sum capacity maximization via a positioning of the FlyBSs as well as an association

of the users to the BSs (including FlyBSs and the GBS). Due to a discrete nature of

user association, and due to a non-convexity of the objective as well as the backhaul

constraints, only a suboptimal solution can be provided. To this end, we propose an

analytical heuristic solution based on an alternating optimization of the user association

and FlyBS's positioning. The following paper (reference [C2]) presents our work for the

multi-hop problem as described.
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Abstract—Deployment of multi-hop network of unmanned
aerial vehicles (UAVs) acting as flying base stations (FlyBSs)
presents a remarkable potential to effectively enhance the per-
formance of wireless networks. Such potential enhancement,
however, relies on an efficient positioning of the FlyBSs as well
as a management of resources. In this paper, we study the
problem of sum capacity maximization in an extended model for
mobile networks where multiple FlyBSs are deployed between
the ground base station and the users. Due to an inclusion of
multiple hops, the existing solutions for two-hop networks cannot
be applied due to the incurred backhaul constraints for each
hop. To this end, we propose an analytical approach based on
an alternating optimization of the FlyBSs’ 3D positions as well
as the association of the users to the FlyBSs over time. The
proposed optimization is provided under practical constraints on
the FlyBS’s flying speed and altitude as well as the constraints
on the achievable capacity at the backhaul link. The proposed
solution is of a low complexity and extends the sum capacity by
23%-38% comparing to state-of-the-art solutions.

Index Terms—Flying base station, wireless backhaul, relaying,
sum capacity, mobile users, mobile networks, 6G.

I. INTRODUCTION

Unmanned aerial vehicles (UAVs) have attracted an abun-
dance of research interest in wireless communications in the
last few years thanks to their high mobility and adaptability to
the environment. Deployed as flying base stations (FlyBSs),
UAVs can potentially bring a great improvement in applica-
tions such as surveillance, emergency situations, or providing
user’s coverage in areas with unreliable connectivity [1], [2],
[3],[4]. Several challenges exist to enable an effective use
of FlyBSs, including an efficient cooperation between the
FlyBSs’ via a management of the resources as well as FlyBSs’
positioning. An important case with cooperative FlyBSs is
relaying networks where FlyBSs either serve the ground users
directly (access link) or relay the data to establish a connection
between the users and the ground base station (GBS).

Several recent works target enhancing the performance
in networks with relaying FlyBSs. With respect to those
works only focusing on the communication at the access
link, relaying networks necessitate to consider the backhaul

This work was supported by the project No. LTT 20004 funded by Ministry
of Education, Youth and Sports, Czech Republic and by the grant of Czech
Technical University in Prague No. SGS20/169/OHK3/3T/13, and partially
by the HUAWEI France supported Chair on Future Wireless Networks at
EURECOM.

link connecting the users to the GBS. In particular, flow
conservation constraints apply at each relay node to ensure
a sufficient backhaul capacity for the fronthaul link. The basic
model for relaying FlyBS networks is a two-hop architecture
where all FlyBSs directly serve users at the access link and
also connect directly to the GBS via the backhaul link. A
majority of recent works target an enhancement in two-hop
relaying networks with a consideration of backhaul.

The problem of resource allocation and FlyBS’s positioning
is considered in many works targeting various objectives, in-
cluding optimization of minimum rate for delay-tolerant users
[5], energy consumption [6], network profit gained from users
[7], sum capacity [8], network latency [9]. The mentioned
works [5]-[9] consider a single FlyBS, and an application of
those works to multiple-FlyBS scenario is not trivial.

Several works also consider multiple FlyBSs in two-hop
relaying networks. In [10] the authors study a joint place-
ment, resource allocation, and user association of FlyBSs
to maximize the network’s utility. Furthermore, the authors
in [11] maximize the sum capacity via FlyBS’s positioning,
user association, and transmission power allocation. In [12]
the minimum rate of the users is maximized via resource
allocation and positioning in wireless backhaul networks.
Furthermore, the authors in [13] investigate an optimization
the FlyBS’s position, user association, and resource allocation,
to maximize the utility in software-defined cellular networks
with wireless backhaul. Due to the introduced flow conser-
vation constraints, an extension of studies/solutions on two-
hop FlyBS networks to higher number of hops is often not
simple or straightforward. There are quite a limited number of
works that consider relaying FlyBSs in networks with more
than two hops. In [14] the minimum downlink throughput is
maximized by optimizing the FlyBSs’ positioning, bandwidth,
and power allocation. The provided solution, however, does
not address interference management as orthogonal transmis-
sions is assumed. Furthermore, the FlyBSs’ altitude is not
optimized. Then, in [15] the number of FlyBSs is optimized
while ensuring both coverage to all ground users as well as
backhaul connectivity to a terrestrial base station. The authors
in [16] investigate an interference management scheme based
on machine learning and a positioning based on K-means to
mitigate interference and FlyBSs’ power consumption.

In the view of existing works on relaying FlyBS networks,



we are motivated to take one step forward and to address
a maximization of sum capacity via a placement of FlyBSs
and an association of users in a multi-hop relaying FlyBS
architecture where the FlyBSs serving the users at the access
link connect to a GBS via another relaying FlyBS. Such an
extension from two-hop model would allow a vaster range
of user coverage to connect more remote users to the GBS.
Unlike the most of related works, in our model, also the
GBS and the relay are allowed to serve the users directly.
In contrast to most of related works, a reuse of channels from
the access link is enabled to establish the backhaul connection.
The solution is provided under backhaul constraints.

The main contribution of this paper is explained as follow.
We provide a framework based on a multi-hop FlyBS wireless
network where the FlyBSs at the access link communicate with
a ground base station through a relaying FlyBS. We formulate
the network’s sum capacity with a consideration of channel
resue for the backhaul link. We formulate the problem of sum
capacity maximization via an association of the users and a
positioning of the FlyBSs at the access link and the relay. In
our model, a direct serving of the users by the relaying FlyBS
as well as by the GBS is also possible. A heuristic iterative
solution is proposed based on an alternating optimization of
the FlyBSs’ positions at the access link, FlyBS’s position at
the relay, and then a reassociation of the users to the FlyBSs.
An approximation of the sum capacity is proposed to derive
a radial function to determine the FlyBSs’ optimal directions
of movement in the proposed iterative positioning.

The rest of this paper is organized as follows. In Section II
we elaborate the system model for multi-hop FlyBS network.
Next, the problem of sum capacity maximization is formulated
and our proposed solution to the FlyBS’s positioning and user
association is provided in Section III. Then, in section IV,
we specify our adopted simulation scenario and we show the
performance of our proposed solution and we compare it with
existing works. Last, we conclude the paper and outline the
potential extensions for the future work.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, we define the system model and provide
details about transmission power and channel capacity.

We consider a set of M FlyBSs and a ground base station
(GBS) serving N ground users. M − 1 of those FlyBSs
serve at the access link. The backhaul communication between
those M − 1 FlyBSs and the GBS is established via an
intermediate relay FlyBS. Fig. 1 illustrates the adopted model.
Let L = {l1, . . . , lM} be the set of the FlyBS’s positions
where lm[k] =[Xm[k], Ym[k], Hm[k]]T denote the location
of the m-th FlyBS at the time step k (1 ≤ m ≤ M),
where the index m = M indicates the relay. Let lM+1 =
[XM+1, YM+1, HM+1]T denote the GBS’s position. Next, let
dm1,m2

[k] denote the Euclidean distance between the m1-
th and m2-th BSs’ receivers (we use the general term BS
when referring to both GBS and FlyBSs). Furthermore, let
vi[k] =[xn[k], yn[k], zn[k]]T denote the coordinates of the n-
th ground user at the time step k. Then, dn,m[k] denotes

Figure 1: System model with the FlyBSs at the access link,
relaying FlyBS, and the GBS serving moving users.

Euclidean distance of the n-th user to the m-th BS. As in
many related works, we assume that the current positions
of the users are known to the BSs. Also, the FlyBSs can
determine their own position [8], [10], [14], [18]. Let A =
(an,m) ∈ {0, 1}N×(M+1)be the association matrix where
an,m =1 indicates an association of the n-th user to the m-th
BS. Note that the users can be directly served by the relay or
the GBS as well. Every user cannot be associated to more than
one BS. Also, we assume the whole radio band is divided into
the set of channels J = {j1, . . . , jC}, where channel jc has
a bandwidth of Bc (1 ≤ c ≤ C). Note that the channels can
be of different bandwidth in our model. We adopt orthogonal
downlink channel allocation for all users associated to the
same BS. Furthermore, let gn be the index of the channel
allocated to the n-th user. Also, we assume IM and IM+1

denote the set of indices of channels allocated to the users
served by the relay and by the GBS, respectively. Also, let
IM,m be the set of channels’ indices used between the relay
and the m-th FlyBS at the access link. The relay communicates
with users and other FlyBSs using orthogonal channels. Note
that, we do not target an optimization of channel allocation due
to space limit, and we leave that for future work. Nevertheless,
our model works with any channel allocation.

The received power from the m-th FlyBS at the n-th user
is denoted as pRn,m and calculated as:

pRn,m = Γn,m(
γ

γ + 1
hn +

1

γ + 1
h̃n)d

−αn,m
n,m = Qn,md

−αn,m
n,m , (1)

where Γn,m is a parameter depending on communication
frequency and gain of antennas. Furthermore, γ is the Ri-
cian fading factor, hn is the line-of-sight (LoS) component
satisfying |hn| =1, and h̃n denotes the non-line-of-sight
(NLoS) component satisfying h̃n ∼ CN(0, 1), and αn,m is
the pathloss exponent. Note that the coefficient Γn,m( γ

γ+1hn+
1

γ+1 h̃n)d
−αn,m
n,m is substituted with Qn,m for an ease of presen-

tation in later discussions. Similar relation applies for backhaul
link as pRm1,m2,k

=Qm1,m2,kd
−αm1,m2
m1,m2 where pRm1,m2,k

is the
received power at m1-th BS from m2-th BS over k-th channel.

The downlink capacity of the n-th user is calculated as

Cn,m = an,mBgn log2(1 +
pRn,m

σ2
n,m +

∑
m′∈{an,m′=0} p

R
n,m′

) (2)



where σ2
n,m is the noise power. Next, the capacity between

the relay and the m-th FlyBS is

CM,m =
∑

k∈Im,M

Bklog2(1 +
pRm,M,k

σ2
m,M,k +

∑
m′∈[1,M+1]\{M}

pRm,m′,k
)

(3)

Also, the link’s capacity between the GBS and the relay is

CM+1,M =
∑

k∈[1,K]\IM+1

Bklog2(1 +
pRM,M+1,k

σ2
M,M+1,k +

∑M−1
m=1 p

R
M,m,k

)

(4)

In the next section we formulate the problem of sum
capacity maximization and we elaborate our proposed solution.

III. PROBLEM FORMULATION AND PROPOSED FLYBS
POSITIONING AND USER ASSOCIATION

In this section, we first introduce the problem of sum capac-
ity maximization. Then, we outline our proposed optimization
of user association and FlyBS’s positioning.

A. Problem Formulation

The objective is to find a 3D positioning of the FlyBSs as
well as an association of users to the BSs (including GBS
and relay) to maximize the sum capacity at every time step k
while constraints on the FlyBSs’ altitude and speed as well as
on backhaul are taken into account. Hence, we formulate the
problem of the sum capacity maximization as follows:

max
L,A

M∑

m=1

N∑

n=1

an,mCn,m[k], ∀k (5)

s.t. Hmin,m[k] ≤ Hm[k] ≤ Hmax,m[k], (5a)

VF,m[k] ≤ V maxm , ∀m ∈ [1,M ] (5b)
N∑

n=1

an,mCn,m[k] ≤ CM,m[k],m ∈ [1,M − 1] (5c)
M−1∑

m=1

CM,m[k] ≤ CM+1,M [k], (5d)

an,m[k] ∈ {0, 1},
M+1∑

m=1

an,m[k] ≤ 1, (5e)
N∑

n=1

an,m[k] ≤ C, ∀m ∈ [1,M − 1] (5f)
N∑

n=1

an,m[k] ≤ |Im|, ∀m ∈ {M,M + 1}, (5g)

where Hmin,m and Hmax,m denote the minimum and maxi-
mum flying altitude of the m-th FlyBS, respectively, and are
determined with respect to the topology of the environment
and the flying regulations. Furthermore, V maxm is the m-th
FlyBS’s maximum supported speed. The constraints (5a) and
(5b) always ensures a flight within the allowed range of
altitude and speed, respectively. The constraint (5c) guarantees
that the backhaul link’s capacity between each FlyBS at the
access link and the relay is larger than the sum downlink
capacity of that FlyBS, and the constraint (5d) implies that
the capacity of the GBS-to-relay link is larger than the
sum capacity for the links between relay and FlyBSs at the

access link. The constraint (5e) indicates that each user is not
associated to more than one BS, and the constraints (5f) and
(5g) ensure that the number of users associated to each BS
cannot exceed the number of channels allocated to each BS.

Challenges regarding the optimization problem in (5) in-
clude: 1) the sum capacity function is non-convex with respect
to the FlyBSs’ positions (i.e., qm, m ∈ [1,M ]), 2) the
constraints (5c) and (5d) are non-convex with respect to the
FlyBSs’ positions, and 3) the discrete association function
A in (5) makes the optimization problem non-tractable. To
tackle the challenges mentioned above we propose a heuris-
tic solution by the means of approximation and based on
converting the objective to a radial function to determine
FlyBSs’ movement towards an increase in the sum capacity.
Then, the proposed solution to (5) is provided based on an
alternating optimization of the FlyBSs’ positions at the access
link, relay’s position, and user association. In particular, for
a given user association, we propose an iterative approach
based on an optimization of positioning of the FlyBSs at the
access link under the constraint on their backhaul link and
other constraints on their movement. Then, a positioning of
the relay is proposed under the constraint on backhaul links
between the relay and other BSs. Then, a reassociation of the
users to BSs at their updated positions is applied.

B. Approximation of sum capacity as radial function

To proceed with the solution, we first propose and derive
an approximation of the objective (sum capacity)that converts
the objective to a radial function indicating the direction of
movement for all FlyBSs to maximize the sum capacity. To
begin with, we rewrite the logarithm term in (2) using (1) as

log2(1 +

Qn,m
σ2
n,m

d
−αn,m
n,m

1 +
∑
m′∈{an,m′=0}

Qn,m′
σ2
n,m

d
−αn,m′
n,m′

) = log2(1+

Qn,m
σ2
n,m

(d2n,m)−
αn,m

2 +
∑

m′∈{an,m′=0}

Qn,m′

σ2
n,m

(d2n,m′)−
α
n,m′
2 )

−log2(1 +
∑

m′∈{an,m′=0}

Qn,m′

σ2
n,m

(d2n,m′)−
α
n,m′
2 ). (6)

Then, we use the first-order Taylor approximation log2(1 +
X) ≈ X

log(2) to expand the logarithm terms on the right-hand
side in (6) and we get a linear expression with respect to
(d2n,m)−

αn,m
2 . Next, we rewrite the term (d2n,m)−

αn,m
2 as

(Ψ2 + ((Xm − xn)2 + (Ym − yn)2 + (Hm − zn)2)−Ψ2)−
αn,m

2 ,
(7)

where Ψ is an arbitrary nonzero constant used to expand
(7) as follows. The right-hand side in (7) is in the form of
(a + χ)k where k =

αn,m
2 , a = Ψ2, and χ = ((Xm −

xn)2 + (Ym − yn)2 + (Hm − zn)2 − Ψ2). Using the first-
order Taylor approximation with respect to χ, (7) is converted
to a summation of linear terms with respect to χ. Next,
suing the equation

∑N
n=1 βn(Xm−xn)2 = (

∑N
n=1 βn)(Xm−∑N

n=1 βnxn∑N
n=1 βn

)2+(
∑N
n=1 βnx

2
n−

(
∑N
n=1 βnxn)

2

∑N
n=1 βn

) for any weighted



sum of squares (here shown only for Xm), the sum capacity
can be approximated as

N∑

n=1

Cn,m[k] ≈ ζ[k]−
∑

1≤m≤M
ρm||lm[k]− l0,m[k]||2. (8)

where ζ, ρm, and l0,m are constants with respect to lm.
Having the sum capacity as presented in (8), it is seen that

for ρm > 0 (ρm < 0) a movement of the m-th FlyBS towards
(against) l0,m causes an increase in the sum capacity. This fact
helps to determine the FlyBS’s positions under the constraints
(5a)-(5d) as elaborated in the next subsection.

C. Positioning of the FlyBSs at the access link

The approximation in (8) is exploited to reposition the
FlyBSs at the access link (repositioning of relay will be
addressed separately in the next subsection). First, we relax
the GBS-to-relay constraint (5d) and we propose a positioning
of the FlyBSs according to the constraints (5a)-(5c). The
constraint (5a) limits the position of the m-th FlyBS (qm)
between the planes z = Hmin,m[k] and z = Hmax,m[k]. Then,
the constraint (5b) bounds qm to the points on or inside of a
sphere with a center at qm[k− 1] and with a radius of V maxm δ
where δ is the time distance between two consecutive time
steps. Regarding the constraint (5c), there exist terms in Cn,m
and CM,m (in (2) and (3)) related to the interference from other
FlyBSs that complicates a dealing with (5c) as (5c) defines a
non-convex region with respect to qm. To tackle this issue,
we use the fact that the FlyBSs’ movements are limited at
each time step due to the limited speed. We convert (5c) into
a convex constraint in following way. First, let dn,m,min[k]
and dn,m,max[k] denote the minimum and maximum distances
that can occur between the n-th user and the m-th FlyBS at
the time step k, respectively. dn,m,min[k] and dn,m,max[k] are
calculated using the FlyBSs’ speeds as:

dn,m,min = ||lm[k − 1]− vn[k]|| − V maxm δ,

dn,m,max = ||lm[k − 1]− vn[k]||+ V maxm δ. (9)

Hence, the left-hand side in (5c) is upper bounded by
N∑

n=1

an,mBgn log2(1 +
Qn,md

−αn,m
n,m,min

σ2
n,m +

∑
m′∈{an,m′=0}Qn,m′d

−αn,m′
n,m′,max

)

(10)

Next, the lower and upper bounds for dm1,m2
[k] in (3) are

dm1,m2,min[k] =dm1,m2
[k − 1] − (V maxm1

+ V maxm2
)δ and

dm1,m2,max[k] =dm1,m2
[k − 1] + (V maxm1

+ V maxm2
)δ, respec-

tively. Thus, the right-hand side in (5c) is lower bounded by

∑

k∈Im,M

Bklog2(1 +
Qm,M,kd

−αm,M
M,m

σ2
m,M,k +

∑
m′∈[1,M+1]\{M}

Qm,m′,kd
−αm,m′
m,m′,min

)

(11)

Hence, we replace (5c) with the constraint (10)≤(11). Based
on its derivation, once (10)≤(11) is fulfilled, the constraint
(5c) is fulfilled as well. Note that, a derivation of closed-form
expression for dM,m from (10)≤(11) is difficult. Nevertheless,

the term in (10) is a constant, and the term in (11) is a strictly
decreasing function of dM,m[k]. Hence, we use bisection
method to find an upper bound equivalent to (10)≤(11) as
dM,m[k] ≤ DM,m[k] for m ∈ [1,M − 1]. This inequality
defines the border and interior of a sphere with a center at
lm and a radius of DM,m[k]. We refer to the combination
of (5a), (5b), and (10)≤(11) as the feasibility region, which
results from intersections spheres (corresponding to (5b) and
to (10)≤(11)) and the region between two planes (as in (5a)).

Having investigated the impact of the constraints (5a)-(5c),
we now focus on the approximated objective in (8). According
the approximated objective, for ρm > 0, the m-th FlyBS
should move to the closest possible point to l0,m to maximize
sum capacity. Similarly, for ρm < 0, the m-th FlyBS should
move as far from l0,m as possible to maximize sum capacity.
Therefore, the positioning of the FlyBSs at every time step is
based on a minimization of the m-th FlyBS’s distance from
l0,m if ρm > 0, or a maximization of the distance from l0,m if
ρm < 0 under the constraints (5a), (5b), and (10)≤(11). Since
the feasibility region is continuous if l0,m lays inside of the
region, the closest possible point to l0,m is the point l0,m
itself and the furthest point to l0,m is on the region’s border.
If l0,m lays outside of the region, the closest/furthest point
of this region to/from l0,m is on the border of the region.
This fact enables to find the optimal point by searching on
the border of the feasibility region (if l0,m is already not the
optimal). Since the feasibility region’s border is either sphere,
plane, or the intersection of those (which are circles), we thus
search for the closest point to l0,m in the described candidate
set which consists of spheres and planes and their intersection.

D. Positioning of the relay

Once the FlyBSs’ positions at the access link are updated ac-
cording to the previous subsection III.B, the relay’s postioning
comes into effect. The relay’s movement is done considering
(8) and (5d). Note that any movement of the relay would not
violate (5c), as all possible movements of the relay are already
considered for the derivation of (10)≤(11) in the previous
subsection. According to (8) the relay moves towards l0,M
if ρM > 0, or in the direction away from l0,M if ρM > 0. In
addition to the constraints (5a) and (5b), we also consider (5d)
to guarantee the requirement on the backhaul capacity. The
terms in CM,m and CM+1,M (according to (3) and (4)) include
the interference from other BSs that makes the constraint (5d)
non-convex with respect to the relay’s position. To tackle this
issue, in the following, we derive a convex constraint from
(5d). By taking a similar approach as in the derivation of (10)
and (11), the left-hand side in (5d) is upper bounded by

M−1∑

m=1

∑

k∈Im,M

Bklog2(1+

Qm,M,kd
−αm,M
m,M,min

σ2
m,M,k +

∑
m′∈[1,M+1]\{M}

Qm,m′,kd
−αm,m′
m,m′,max

) (12)



By a similar approach, the right-hand side of (5d) is lower
bounded by

∑

k∈[1,K]\IM+1

Bklog2(1 +
QM,M+1,kd

−αM,M+1

M,M+1

σ2
M,M+1,k +

∑M−1
m=1 QM,m,kd

−αm,M
M,m,min

)

(13)

Thus, instead of (5d), we consider the constraint (12)≤(13).
The term in (12) is a constant, and the term in (13) is
strictly decreasing with respect to dM,M+1. Hence, there exists
DM,M+1 such that (12)≤(13) is equivalent to dM,M+1 ≤
DM,M+1, which demarcates the points on and inside a sphere
centered at l0 with a radius of DM,M+1. The value of
DM,M+1 is derived using bisection. According to (8) for
ρM > 0 (ρM < 0) the relay moves to the closest (furthest)
point to (from) l0,M fulfilling (5a), (5b), and (12)≤(13). The
optimal position is found similarly as in subsection III.B.

E. Association of users to the BSs

After the positioning of the FlyBSs, we update the associ-
ated set of users to each BS including the GBS and the relay.
It is noted that, the capacity of each user is independent of the
association of other users to BSs, as the signal and interference
for each user (as in (2)) would be uniquely determined from
that user’s association. Hence, the problem of user association
is solved using linear programming (LP). After updating the
association of the users, the next iteration of the FlyBSs’
positioning is applied. This iterative method continues until
there is no further change in the user association, or until
a maximum number of iterations is reached. The proposed
iterative solution is applied at every time step.

IV. SIMULATIONS AND RESULTS

In this section, we present models and simulations adopted
for evaluation of our proposed solution, and we demonstrate
the advantages of the proposal over state of the art schemes.

A. Simulation scenario and models

We assume two circular areas, one with a radius of 400 m
and with the GBS at its center, and another area with a radius
of 400 m and with its center 1600 m away from the GBS.
25% of all users are distributed in the first circular area and
75% distributed in the second area. Within each area, half of
the users move based on a random-walk mobility model with
a speed of 1 m/s. The other half of the users are randomly
distributed into six clusters of crowds. The centers of three of
the clusters move at a speed of 1 m/s. Each user in those
clusters moves with a uniformly distributed speed of [0.6,
1.4] m/s with respect to the cluster’s center. Furthermore, the
centers of the other three clusters move at a speed of 1.6 m/s
with the speed of users uniformly distributed over [1.2, 2] m/s
with respect to the center of their corresponding cluster.

A total bandwidth of 100 MHz with C =120 channels of
equal bandwidths are assumed. For the GBS and the relay,
20% of the channels are allocated to directly serve the users
(i.e., |IM | = |IM+1| = 0.2C), and the rest are allocated for
backhaul connection. The backhaul bandwidth is split equally

Figure 2: Sum capacity vs. N
for different schemes.

Figure 3: Average user capacity
vs. N for different schemes.

among the FlyBSs at the access link. A maximum transmission
power of 37 dBm and 30 dBm is considered for the GBS and
the FlyBSs, respectively [17]. The noise power is set to -90
dBm. Pathloss exponents of αn,m =2.8 and αm1,m2

=2.1 are
adopted for BS-to-user and BS-to-BS channels, respectively.
An allowed altitude range of [Hmin,m, Hmax,m] =[100, 300]
m and a maximum speed of 25 m/s are assumed for the
FlyBSs. The results are shown for M ={2,3,4,5} FlyBSs.
Each simulation has a duration of 1200 seconds. The results
are averaged out over 100 simulation drops.

We compare our proposal against the performance of the
following schemes: i) a two-hop version of our proposed
solution to FlyBSs’ positioning and user association. This
model is simply derived from our original proposed model
by treating the relay as a ground base station. In such case
the positioning of the FlyBSs is done according to subsection
III.B., ii) state-of-the-art work in [10] where a maximization of
total network’s utility (referred to as MTNU) is provided in a
two-hop relaying FlyBS network via FlyBSs’ positioning, user
association, and resource allocation. The utility is defined as
the sum of logarithm of user’s capacities. iii) maximization of
minimum user’s capacity (referred to as MmUC), via FlyBS’s
positioning and resource allocation published in [14].

B. Simulation results

In this subsection, we present and discuss simulation results.
Fig. 2 illustrates the sum capacity achieved by different
schemes for different number of users and for M =2,5.
According to Fig. 2, the sum capacity increases with the
number of users in general for all schemes as there are more
(orthogonal) channels used. However, if all available channels
are used, the sum capacity would saturate as in such case, not
all the users will be served by the FlyBSs and, hence, there is
no further increase in the sum capacity of the network. This
can be seen in the lines for M =2 in Fig. 2. According to Fig.
2, the proposed solution enhances the sum capacity by 80%,
15%, 14%, 15%, and 17% compared to the two-hop proposal
for N = 200, 300, 400, 600, and 800, respectively, and by
109%, 41%, 35%, 38%, and 40% compared to MTNU for
N = 200, 300, 400, 600, and 800, respectively, and by 15%,
17%, 19%, 20%, and 23% compared to MmUC for N = 200,
300, 400, 600, and 800, respectively.

Following the comparison in terms of sum capacity, we
show the average user capacity in Fig. 3 for different number



Figure 4: Sum capacity vs. number of FlyBSs for different
schemes.

of users and different schemes. According to Fig. 3, the
average user capacity increases with N in case that there are
unused channels to be allocated to the added users. The two-
hop proposal and MTNU with M =2 show a strictly increas-
ing average user capacity for N larger than 200. However,
the average user capacity might decrease for larger number
of users in case that there are not enough unused channels to
accommodate the added users. An example for such trend is
presented in Fig.3 for MTNU with M =2 and for the three-
hop proposal with M =5 for N larger than 300 and 400,
respectively. Note that, the three-hop model has one FlyBS
less than the two-hop model at the access link for the same
value of M , and so the three-hop model would run out of
unused channels at lower values of N compared to two-hop
models. Nevertheless, the proposed three-hop solution still
outperforms other schemes (with the same M ). According to
Fig. 3, the proposed three-hop solution increases the average
user capacity compared to the two-hop proposal by 80%,
15%, 14%, 15%, and 17% for 200, 300, 400, 600, and 800
users, respectively. Furthermore, compared to MTNU, the
proposed three-hop scheme increases the average user capacity
by 110%, 41%, 35% 38%, and 40%, respectively. Compared
to MmUC, the proposed solution enhances the average user
capacity by 13%, 17%, 20% 21%, and 23%, respectively.

Next, Fig. 4 demonstrates the impact of the number of
FlyBSs on the sum capacity for different schemes for N =
200 and N = 800. It is observed that, increasing the number
of FlyBSs would increase the achieved sum capacity. This is
mainly because of two reasons: 1) due to a limited number of
channels, more number of users might be served by adding
more FlyBSs, 2) even if all the users are already being
served by the FlyBSs, adding more FlyBS might lead to
a reassociation of some users to a closer FlyBS, resulting
in a higher received power at the user despite an incurred
interference by the other FlyBSs. According to Fig. 4., for
N =200 the proposed solution increases the sum capacity by
80%, 83%, 90%, and 95% compared to two-hop proposal for
M= 2,3,4, and 5, respectively, and by 109%, 139%, 160%, and
178% compared to MTNU for M = 2,3,4, and 5, respectively,
and by 12%, 17%, 13%, and 15% compared to MmUC for
M = 2,3,4, and 5, respectively. Furthermore, for N =800, the

proposed solution enhances the sum capacity by 17%, 23%,
21%, and 16% compared to two-hop proposal for M = 2,
3, 4, and 5, respectively, and by 40%, 61%, 39%, and 28%
compared to MTNU for M = 2, 3, 4, and 5, respectively, and
by 24%, 68%, 87%, and 103% compared to MmUC for M =
2,3,4, and 5, respectively.

V. CONCLUSIONS

In this paper, we focus on multi-hop relaying FlyBS net-
works where there are FlyBSs adopted at both relaying and
access links. We maximize the sum capacity with a consid-
eration of backhaul constraints. To this end, we propose an
analytical approach based on an alternating optimization of the
FlyBSs’ positions and an association of users. The proposed
solution improves the achieved sum capacity by tens of percent
compared to existing solutions. In the future, the problem sum
capacity maximization for multiple relays shall be studied.
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Chapter 4

Conclusion and Future Work

In this Chapter, we �rst summarize the dissertation and recapitulate main contributions.

Then, we further enrich the content of this dissertation by providing suggestions on future

steps regarding the expansion of the studied works.

4.1 Summary of dissertation

This dissertation is focused on studying major aspects in mobile networks equipped with

UAVs acting as FlyBSs. In the view of impacts on the system's performance made by

energy consumption, we attempt to integrate FlyBSs into conventional mobile networks by

optimizing the performance from di�erent perspectives while also taking into account the

energy consumption. In this regard, several aspects are considered as determining factors

of performance in the network, including the FlyBS's positioning, FlyBS's transmission

power and propulsion power consumptions, transmission power and resource allocation to

the users, association of users to FlyBSs, etc.

In the scope of this dissertation, our main contributions are summarized as follow

� From the perspective of the cost of energy, the problem of total power minimization

is targeted in Section 3.1. In this sense, the positioning of the FlyBS only aims to

minimize the sum of transmission and propulsion power. Nevertheless, there are

constraints regarding the user's required capacity at every time step. Existing solu-

tions could not be applied to scenarios where the user's positions change over time.

Hence, we target such scenarios and we provide solutions for a determination of

the FlyBS's position for next single/multiple time steps (referred to as SPS/MPS).

Other parameters to be optimized include transmission power and bandwidth allo-

cation to each user. For SPS and MPS, we propose analytical closed-form solution

and numerical solution based on Simplex, respectively. In order to accommodate
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Simplex method, we propose to change the optimization variables in order to au-

tomatically ful�ll the constraints in the problem, as Simplex works for problems

with no constraints on optimization variables only. The solution for MPS is then

further enhanced by updating the derived FlyBS's optimal positions over next time

steps using a shifting window of a lower size than the MPS's output size. Bench-

marked against several schemes with di�erent settings, the proposed solution shows

to provide a signi�cant reduction by 16%-91% in the total power.

� In Section 3.2, we study the problem of user coverage maximization in FlyBS net-

works with NOMA. In scenarios with delay sensitive users where a minimum instan-

taneous capacity should be guaranteed to the users, prior solutions minimizing the

total power or propulsion power cannot always guarantee a favorable user's coverage

despite their e�ciency in saving the battery's energy. This is due to an inherent

negligence to the importance of transmission power in those solutions. Hence, we

propose a solution based on a minimization of the transmission power with a con-

sideration of an adjustable constraint to control the propulsion power consumption

over time avoiding an unwantedly fast depletion of the FlyBS's battery. Accord-

ingly, we propose to optimize the position of the FlyBS together with the clustering

of users for NOMA purposes as well as their order in SIC decoding and transmission

power allocation to each user. The proposed NOMA clustering is of a low complex-

ity and it guarantees to yield the minimum transmission power for a given set of

clusters' sizes. Unlike the majority of existing works, our solution allows clusters

of di�erent sizes, giving the �exibility to reduce the transmission power as much as

possible. The proposed solution enhances the coverage duration by up to 67%-270%

compared to existing solutions.

� The problem of user clustering for NOMA and FlyBS's positioning is elaborated

in Section 3.3 so that the minimum user capacity is minimized. To this end, �rst,

the relation between the problem of transmission power minimization is discussed.

Next, the transmission power consumption is optimized via FlyBS's positioning,

user's clustering for NOMA, and transmission power allocation to the users. The

problem is solved under constrained altitude and speed of the FlyBS. We propose

an alternating optimization of the FlyBS's positioning and an optimization of the

NOMA clustering together with transmission power allocation and SIC decoding

order. In particular, for a preset clustering, the optimization of transmission power

is done using CVX. Then, the optimal clustering together with the associated SIC

decoding order and transmission power allocation for the users are derived using a

proposed novel solution based on a selection of "exclusively convex polygons" on
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the plane of points representing the users' positions on the map. With respect to

state-of-the-art, the proposed solution signi�cantly enhances the transmission power

(by 67%-84% ) and, consequently, the minimum user's capacity (by 20%-59% ).

� In Section 3.4, The problem of propulsion energy minimization is investigated in

networks with airship-based FlyBSs. The total propulsion energy is expressed in

terms of the displacements made by the FlyBSs within the unit of time. The goal

is to maintain the sum capacity above some given minimum threshold. The novel

solution is proposed based on the idea of prioritizing relocation of those FlyBSs

that contribute to the sum capacity with the least cost/amount of energy. Existing

works focus only on scenarios where the users are represented by static nodes and

do not change their solution over time. Hence, we target to study the optimization

problem in scenarios with moving users and we propose an iterative converging al-

gorithm with low computational complexity that determines the displacement and

the direction of movement for each FlyBS over time to constantly guarantee the net-

work's required sum capacity with the minimum total propulsion power energy. The

proposed solution demonstrates a great amount of savings (by 55%-90%) in energy

consumption with respect to solutions targeting to maximize the sum capacity.

� In Section 3.5, the problem of sum capacity maximization is studied via an optimiza-

tion of the FlyBS's placement and transmission power allocation to the users. The

problem is solved for constrained transmission power, propulsion power, altitude,

and speed of the FlyBS. Furthermore, a minimum capacity is guaranteed to every

user at each time step. Existing works either ignore the mentioned practical con-

straints or do not consider user's quality of service. To this end, and given the fact

that the formulated problem is non-convex, we propose a heuristic solution based

on an alternating optimization of transmission power allocation and positioning. In

such approach, the resulting problem of power allocation is solved using CVX. The

feasibility of a solution is also discussed with respect to the constraints in the prob-

lem, and a necessary condition is derived. Furthermore, for positioning, a radial ap-

proximation of the objective (i.e., sum capacity) so that the movement of the FlyBS

is directed with a consideration of i) the point representing the maximum-capacity

point regardless of the problem constraints, ii) the non-convex space demarcated by

the constraints. The proposed solution is of low complexity and outperforms the

state-of-the-art considerably by 15%-46% .

� In Section 3.6, we study the problem of sum capacity maximization in an inte-

grated network of FlyBSs with multi-hop communication and backhaul. The relay-

ing FlyBS establishes a connection between the FlyBSs at the access link and the
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GBS. The sum capacity is optimized via a positioning of the FlyBSs and an associa-

tion of the users to the BSs. The relay and the GBS can also serve the users directly.

The formulated problem is solved for constrained FlyBSs' altitude and speed. In

addition, the �ow conservation constraint at the relay ensures that the backhaul

link's capacity is not lower than the fronthaul capacity. Due to non-convexity of the

objective (sum capacity) and the discreteness of user association, only a suboptimal

solution can be derived. We propose a heuristic solution based on an alternating

optimization of the positioning and user association. For positioning, a radial ap-

proximation of the sum capacity. The derived approximation function points out

to the optimal direction of movement for the FlyBSs. Next, the positioning of the

FlyBSs is done sequentially, i.e., �rstly for the FlyBSs at the access link and, then,

for the relay. Furthermore, as for the non-convex constraint on backhaul link, we

propose a novel method to derive a tighter convex constraint such that ful�lling the

alternative constraint would automatically ful�ll the original constraint. The Fly-

BSs are relocated using the approximated radial form of the sum capacity and with

respect to newly derived setting of the constraints. The proposed solution increases

the sum capacity remarkably by 23%-38% compared to state-of-the-art solutions.

4.2 Future research directions

The main goal of this dissertation is to shed light on various understudied aspects of

FlyBSs in mobile networks including key challenges raised by FlyBS's power consumption

(transmission and propulsion), user's mobility, multiple access and resource allocation,

channel reuse, backhaul communication, and user's quality of service. The non-convex

nature of many formulated problems in the scope of those challenges may solicit either

negligence about practically essential constraints and assumptions or even derivation of

ine�cient solutions. We believe that this dissertation has addressed a notable span of

those challenges. Not only the resolved challenges in this dissertation, as they are, would

serve e�ectively in the favor of 6G networks, also the unresolved issues are now more

tangibly understood, and the direction to successfully solve those issues is also somewhat

outlined. In the following, we indicate some of the potential research directions in line

with this dissertation.

� The problem of FlyBS's positioning could be considered to optimize other metrics

in the network, e.g., Jain fairness, number of covered users, and energy e�ciency

(ratio of sum capacity to the total energy consumption).

� Harvesting the FlyBS's energy can be considered as an aid to enhance duration of
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the FlyBS's operation. In this regard, a scheduling of the FlyBS's traveling during

the mission adds another layer to the problem that shall be investigated.

� The problem of user scheduling and handover in multiple cells allows for an imple-

mentation of the FlyBSs in larger scales. Together with such extension, the aspects

of user association to the FlyBSs as well as a management of interference should be

investigated.

� An inclusion of FlyBS's communication with satellites allows for an even more ex-

tensive connectivity meeting ever-growing demands more readily in the future of

wireless communication.
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