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Abstract. In many instances, the safety of existing structures can no longer be demonstrated by
standard code-based assessments. Reasons for this include changes in the code, changes in the demands
on the structures and deterioration. To address this problem, it is common practice to perform a
more detailed assessment utilizing advanced models. In this way, many structures can be shown to
comply with safety requirements, even if they cannot be verified by standard assessments. The standard
code models are often conservatively biased. This leads to designs which include hidden safety. If
the reassessment is performed with more advanced models in lieu of standard models, the hidden
safety can vanish. Concurrently, the reduced uncertainty of advanced models may compensate this
safety reduction. In this paper we investigate this issue on a hypothetical population of existing bridge
structures under traffic. We consider that the standard code model is exchanged by an advanced traffic
load simulation.
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1. Introduction
Structural design codes aim to provide easy-to-use
rules that lead to economical and safe structures [1].
Today’s structural design codes are based mainly on
the semi-probabilistic partial safety factor (PSF) con-
cept [2–5]. It contains two explicit safety components:
The PSFs and the characteristic values. Both compo-
nents are determined via code calibration [6–8]. The
calibration is typically based on standard models and
the determined safety components are intended to be
used with these standard models. In many cases the
standard models are biased in a conservative sense (e.g.
[9]). This leads to another implicit safety component:
The hidden safety.

The presence of hidden safety is unproblematic,
as long as standard models are applied; however,
problems may arise if standard models are exchanged
by more advanced models. Thereby, two effects are
present: First, advanced models are typically not
biased; hence, the hidden safety vanishes. Second,
advanced models typically include less model uncer-
tainty.

When it comes to the design of new structures,
these two effects influence the structural reliability
in opposite directions. If one effect dominates, a
recalibration of the explicit safety components of the
PSF concept is needed. The recalibration ensures that,
on average, the standard and the advanced models
lead to the same level of safety. We investigate this
in detail in [9, 10].

In the assessment of existing structures both effects
are present as well. The difference to new designs
is that for existing structures the design choices are
already made; hence, the advanced models are only

used to reassess if a given design is in compliance with
the requirements. Whether or not the accepted design
is safe enough is the question addressed in this paper.

We perform a case study on a hypothetical popu-
lation of existing bridge structures under traffic load.
We consider an increase of the traffic load since the
construction date of the bridges such that they are
no longer in compliance with standard code-based
assessments. We investigate how the application of
advanced traffic load simulation affects the reliability.

2. Design following the partial
safety factor concept

We follow the approach and the nomenclature of the
Eurocode [11]. The investigations can be transferred
to other semi-probabilistic structural design codes.

In a Eurocode design, four different models can be
identified (Figure 1): The load model ML,EC , the
structural model MS,EC , the material model MM,EC ,
and the resistance model MR,EC . We use the sub-
script EC to stress that these are the standard models
provided by Eurocode.

The load model and the material model are typi-
cally probabilistic models. In order to make the design
process deterministic, a characteristic load lk,EC and
characteristic material properties mk,EC are deter-
mined. To consider the uncertainty of the load model
and the material model and to ensure a sufficiently
safe structure, the characteristic values are modified
by the PSFs γf and γm. The resulting values are the
input of functions tS,EC and tR,EC provided by the
structural model and the resistance model. To con-
sider the uncertainty of these models, the outcome is

216

https://doi.org/10.14311/APP.2022.36.0216
https://creativecommons.org/licenses/by/4.0/
https://www.cvut.cz/en


vol. 36/2022 A study on the effects of hidden safety

Load model
ML,EC

Characteristic load
lk,EC

Partial safety factor
γf

Structural model
MS,EC

Partial safety factor
γSd

Design load effect
ed,EC

Characteristic material
mk,EC

Partial safety factor
γm

Resistance model
MR,EC

Partial safety factor
γRd

Design resistance
rd,EC

Material model
MM,EC

Figure 1. Overview of the Eurocode design appraoch.

again modified by PSFs γSd and γRd. Eventually, the
design values ed,EC and rd,EC are obtained. A design
is sufficient, if the design values fulfill the following
inequality:

ed,EC ≤ rd,EC (1)

⇔ γf · tS,EC(lk,EC · γSd) ≤
tR,EC

(
mk,EC

γm

)
γRd

For the sake of simplicity, the Eurocode merges the
partial safety factors of the action and the resistance
side:

γF = γf × γSd (2)
γM = γm × γRd (3)

In the subsequent case study we assume tS,EC and
tR,EC to be linear functions through the origin. Then
Equation 1 simplifies to:

γF · tS,EC(lk,EC) ≤ tR,EC (mk,EC)
γM

(4)

If the design is chosen optimally in regard to resource
consumption, equality holds in Equation 4. From this,
PEC is derived:

PEC = γF · γM · tS,EC(lk,EC)
tR,EC (mk,EC) (5)

PEC can be interpreted as the design choice following
the PSF concept (e.g. the cross section area of a
truss).

The corresponding probability of failure can be de-
termined via the following limit state function (LSF):

g = PEC · tR(M) − tS(L) (6)

Note that in Equation 6 tR, tS , M and L are not
subscripted with EC, hence, do not originate from
the Eurocode. M and L are the "true" – or as we call
them: purely aleatoric [9] – distributions of the load
and the material property. tR and tS represent the
true relationship between the load and the material
property to the load effect and the resistance. Gen-
erally, these are unknown and have to be estimated
carefully.

The probability of failure Pr(F ) results from

Pr(F ) =
∫

ΩF

fM,L(m, l) dm dl (7)

where fM,L(m, l) is the joint probability density func-
tion (PDF) of M and L and ΩF = {m, l | g < 0} is
the failure domain.

3. Case study: Existing bridge
structures under traffic load

In the following we perform a case study on a hypo-
thetical population of existing bridge structures under
traffic load.

3.1. Setup and assumptions
We choose the following setup of the case study:
• n = 10 000: Number of samples of the population

of bridge structures. This is needed, since some
of the subsequent calculations are sample-based.
Apart from the statistical error originating from the
sampling, the results are not effected by n.

• We choose the material property M to follow a
lognormal distribution:

M ∼ LN E[M ] = 1 c. o. v.[M ] = 0.1 (8)

The coefficient of variation of 0.1 is in the typical
range of material properties (e.g. concrete compres-
sion strength) [12]. Some material properties may
have higher (e.g. timber bending strength) or lower
coefficients of variation (e.g. structural steel yield-
ing strength). Therefore, we vary the coefficient
of variation between 0.05 and 0.3 in a sensitivity
analysis.

• We choose the annual maximum of the traffic load
L to follow a standardized Gumbel distribution:

L ∼ G E[L] = 1 c. o. v.[L] = 0.08 (9)

The choice is based on simulated traffic following
the approach of [13]: Local traffic data from three
locations of German highways with light, medium
and heavy traffic is analyzed. On this bases, traffic
streams (sequences of vehicles) are generated ap-
plying numerical traffic simulation. The simulated
traffic load is applied on a portfolio of bridges. The
portfolio includes bridges with 1-3 spans, each with
10, 15, or 20 m. On each bridge we apply either
light, medium and heavy traffic. Hence, the portfo-
lio consists of 3 · 3 · 3 = 27 bridges. For each bridge
a structural analysis is carried out and the resulting
100-year time histories of the internal forces are
evaluated at all locations that are needed for the de-
sign. The annual block maxima of the time histories
are taken to fit generalized extreme values distri-
butions via the Maximum-Likelihood-Method. The
shape parameters of the fitted generalized extreme
value distributions are close to 0, in which case the
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generalized extreme value distribution converges
to the Gumbel distribution. The sample mean of
the coefficient of variation of the field moments is
0.06, of the supporting moments 0.08 and of the
shear forces at the supports 0.08. This justifies the
choice of c. o. v[L] = 0.08. Note that L is the purely
aleatoric distribution; hence, c. o. v[L] = 0.08 only
covers aleatoric uncertainties. Epistemic uncertain-
ties are added via the error in the estimation of the
characteristic load (see ΘEC and Θadv below).

We alter the coefficient of variation between 0.05
and 0.3 in a subsequent sensitivity analysis. A
coefficient of variation of 0.3 is rather high in the
context of traffic loads. By this, we ensure to also
cover design situations with high uncertainty (e.g.
due to rerouting of roads).

• As already mentioned, we assume that the func-
tions tS,EC (translates the loads to the load effects)
and tR,EC (translates the load property to the re-
sistance) are both linear and trough the origin. We
further assume that both functions are equal to the
true functions tS and tR. With this assumptions
the functions tS,EC , tS , tR,EC and tR cancel each
other out within the LSF (Equation 6).

• We assume a traffic load increase since the construc-
tion of the bridge by a factor of finc = 1.3. This
value is not on the bases of any data but should
be interpreted as a hypothetical increase. In an
actual application case, this value must be derived
respectively. We vary finc between 1 and 2 in a
subsequent sensitivity analysis.

• Following the traffic load model of the Eurocode
[14], we define the characteristic traffic load as the
99.9% quantile of L (1000 year return period which
corresponds to the probability of exceedance of 5%
in 50 years). We model the error in the estimation
of the characteristic value via a relative error:

Θadv = lk
lk,adv

(10)

ΘEC = lk
lk,EC

(11)

where lk is the characteristic value of the purely
aleatoric traffic load, lk,adv is the estimation of lk by
means of advanced traffic load modeling and lk,EC

is the estimation of lk following the Eurocode.
We choose Θadv and ΘEC to follow lognormal

distributions:

Θadv ∼ LN E[Θadv] = 1 c. o. v[Θadv] = 0.1
(12)

ΘEC ∼ LN E[ΘEC ] = 0.7 c. o. v[ΘEC ] = 0.2
(13)

The choices of the distribution-parameters are jus-
tified as follows:
▷ E[Θadv] = 1: Since the simulation is based on real

data, it is reasonable to assume that it estimates
the characteristic value without a bias.

▷ c. o. v[Θadv] = 0.1: The coefficient of variation
comprises three different uncertainties: The sta-
tistical uncertainty due to a limited simulation
time, the uncertainty of the chosen distribution
type and the uncertainty of incomplete model-
ing (e.g. construction sites on the highway may
change the traffic load, but are not included in
the simulation). The statistical uncertainty is es-
timated via the multivariate normal distribution
of the parameter estimates of the fitted extreme
value distributions of the inner forces [15]. The
resulting coefficients of variation due to statis-
tical uncertainty are in the range of 0.02-0.04.
We – unfortunately – lack any data to estimate
the uncertainty of the two other sources; hence,
the overall uncertainty of c. o. v[Θadv] = 0.1 is
based on our subjective assessment. We alter
c. o. v[Θadv] between 0.05 and 0.2 in a subsequent
sensitivity analysis.

▷ E[ΘEC ] = 0.7: Within the portfolio of bridge
structures the sample mean of the relative error
is 0.76 regarding field moments, 0.70 regarding
supporting moments and 0.79 regarding the shear
forces at the supports. We apply a value of 0.7
and alter E[ΘEC ] = between 0.4 and 1.0 in a
subsequent sensitivity analysis.

▷ c. o. v[ΘEC ] = 0.2: ΘEC can be rewritten
as ΘEC = lk

lk,adv
· lk,adv

lk,EC
= Θadv · lk,adv

lk,EC
.

The distribution parameters of Θadv is already
known/estimated. The distribution of lk,adv

lk,EC
is

also lognormal. The mean coefficient of variation
of lk,adv

lk,EC
is 0.17 regarding field moments, 0.13 re-

garding supporting moments and 0.14 regarding
the shear forces at the supports. We follow the
biggest value of 0.17. This results in a a coeffi-
cient of variation of ΘEC of approximately 0.2.
We alter c. o. v[ΘEC ] between 0.1 and 0.3 in a
subsequent sensitivity analysis.

• Following Eurocode [11], we define the characteristic
material property as the 5% quantile of M . We
assume that mk,EC exactly meets mk, hence, that
no estimation error in the determination of the
characteristic value is present.

• Following Eurocode [11] we choose the PSF γF =
1.35. We further set γM = 1.1.

3.2. Numerical investigations
Our main objective is to investigate the probabil-
ity of failure of the bridges within the hypothetical
population designed by Eurocode and the change of
the probability of failure when more advanced traffic
load models are used. We investigate how parameter
changes in the setup influence the mean probability
of failure and the acceptance rate of reassessed bridge
structures.

Our secondary objective is to understand how the
probability of failure would change if the advances
models would have been used to design the bridges.
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We only cover this issue for the setup defined in section
3.1 and do not investigate parameter changes within
the setup.

By rearrange Equation 10 and 11, we determine the
distribution of the characteristic traffic load according
to Eurocode and according to advanced traffic load
modeling by solving Equation 11 and 10 for lk,EC and
lk,adv. The resulting distributions are:

Lk,EC ∼ LN µln Lk,EC
= ln(lk) − µln ΘEC

σln Lk,EC
= σln ΘEC

(14)
Lk,adv ∼ LN µln Lk,adv

= ln(finc · lk) − µln Θadv

σln Lk,adv
= σln ΘEC

(15)

where µln and σln are the location and the scale pa-
rameter of the respective lognormal distribution.

We sample lk,EC,i and lk,adv,i from Lk,EC and
Lk,adv simulating the estimation of the characteristic
traffic load of i = 1, ..., 10 000 bridges. We sample
from Lk,EC and Lk,adv independently.

Given one sample lk,i (either from the characteristic
value of the Eurocode or the advanced traffic load
model) the probability of failure is calculated as:

Pr(F ) =
∫

ΩL

FM

(
finc · l · mk

γM · γF · lk,i

)
· finc · fL(l) dl

(16)

First, we calculate the probability of failure for the
case of finc = 1. From this our secondary objective
(how the probability of failure changes if the advances
models would have been used to design the bridge)
can be studied. In a next step, we increase the traffic
load finc > 1 to investigate how the increase in the
load changes the probability of failure and how a
reassessment using advanced traffic load modeling
affects the probability of failure).

The reassessment decision is based on the following
train of thought: Advanced traffic load modeling may
estimate a characteristic traffic load that is lower than
the characteristic traffic load according to Eurocode
(even when an increased traffic load is present). If
this lower characteristic value would be used to de-
sign the bridge, it would result in smaller resistances;
therefore, the reassessment according to advanced traf-
fic load modeling would deem the existing Eurocode
design to be sufficient. From this, the following accep-
tance/rejection rule is derived:

lk,adv,i ≤ lk,EC,i ⇒ accept (17)
lk,adv,i > lk,EC,i ⇒ reject (18)

3.3. Results and Discussion
Figure 2 shows the probabilities of failure (annual
reference period) of the bridges designed by Eu-
rocode loaded with the original traffic load (finc = 1).
The mean annual probability of failure is E[Pr(F |
EC-Design, finc = 1)] = 4.9 · 10−8. This probability
can be interpreted as the target probability of failure,

10−30 10−25 10−20 10−15 10−10 10−5 100
0

200

400

600

800
E[Pr(F | EC-Design, finc = 1)] = 4.9 · 10−8

Figure 2. Histogram of the probability of failure
Pr(F | EC-Design, finc = 1) of bridge structures de-
signed following Eurocode.

since the original design criteria reaches this prob-
ability of failure on average and these designs were
accepted by society. The probability is rather low com-
pared to the common range of probabilities of failures
of structures or compared to the target probability
of failure defined in the Eurocode of 8.5 · 10−6. The
reasons for the deviation are as follows: We do not con-
sider model uncertainties of the structural model, the
material model and the resistance model. Moreover,
we applied only traffic load on the bridge structures.
If also other loads would be considered (with a higher
coefficient of variation compared to the coefficient of
variation of the traffic load), the probability of failure
might be higher. We do these simplifications to keep
the issue simple. This way the effects hidden safety
are more isolated and more straightforward to study.
In case of an actual application these simplifications
should not be conducted.

Due to these simplifications the absolute value of
the probability of failure may not be very meaningful.
However, a relative comparison to the probabilities of
failure of the bridges designed or accepted/rejected
by advanced traffic load models is valid, since the
probabilities of failure are calculated on the same
basis.

Figure 3 shows the probabilities of failure that would
result if the bridges (loaded with the original traffic
load finc = 1) would have been designed using ad-
vanced traffic load modeling. The resulting mean prob-
ability of failure E[Pr(F | adv-Design, finc = 1)] =
3.1 · 10−7 is below the target of 4.9 · 10−8. This shows,
that the negative effect on the structural reliability
of the lost hidden safety due to advanced traffic load
modeling is stronger than the positive effect of the re-
duced model uncertainty. An additional safety factor
would be needed if advanced traffic load models were
to be used for bridge design. Here, we do not conduct
a calibration of such a factor. A detailed guide is
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E[Pr(F | Adv-Design, finc = 1)] = 3.1 · 10−7

Figure 3. Histogram of the probability of failure
Pr(F | Adv-Design, finc = 1) of bridge structures
designed following advanced traffic load modeling.
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Figure 4. Histogram of the probability of failure
Pr(F | EC-Design, finc = 1.3) of bridge structures
designed following Eurocode loaded by a 30 % higher
traffic load.

given [9].
Remark: The resulting probabilities of failure of the

advanced designs with an increased load (finc > 1)
would be exactly the same as in Figure 3, as long as
the load increase is also considered within the design.
finc would appear twice and cancel each other out:
Once within the design (a factor applied on lk,adv,i)
and once as a factor applied on the load L.

Figure 4 shows how the probabilities of failure of
the bridges designed according to Eurocode change if
the traffic load is increased by 30 % (finc = 1.3). The
increased traffic load raises the mean probability of
failure from 4.9 · 10−8 to 1.1 · 10−5.

Figure 5 subdivides the histogram of Figure 4
into accepted/rejected cases (according to advanced
traffic load modeling). 68.8 % of the bridge struc-
tures are accepted and 31.1 % are rejected. The
mean probability of failure of the accepted bridges

10−30 10−25 10−20 10−15 10−10 10−5 100
0

200

400

600

800

E[Pr(F | EC-Design, finc = 1.3), accepted]

E[Pr(F | EC-Design, finc = 1.3), rejected]
= 3.5 · 10−5

= 1.7 · 10−8

Figure 5. Histogram of the probability of failure
Pr(F | EC-Design, finc = 1.3) of bridge structures de-
signed following Eurocode loaded by an 30 % increased
traffic load divided into accepted (green) and rejected
(red) bridges according to advanced traffic load mod-
eling.

E[Pr(F | EC-Design, finc = 1.3), accepted] = 1.7 ·
10−8 is smaller than the target probability of fail-
ure of 4.87 · 10−8; hence, the reassessment leads to
sufficiently safe structures.

Therefore, the use of advanced models for reassess-
ment of existing structures appears justified without
further adjustment of the safety factors. This is in con-
trast to the design of new structures. The deifference
can be understood by comparing the histogram of the
probability of failure of the accepted bridge structures
(green histogram in Figure 5) to the histogram of the
probability of failure of bridge structures designed
by advanced traffic load modeling (blue histogram
in Figure 3): Following Equation 17 a structure is
accepted if Lk,adv ≤ Lk,EC . If equality would holds,
the accepted Eurocode design and the advanced de-
sign are equal, hence both histograms would coincide.
The greater the difference Lk,EC − Lk,adv, the more
hidden safety remains, which decreases the probability
of failure in the reassessment case. We conclude that
the application of advanced models to reassess a given
structure with increased load
• retains parts of the hidden safety of accepted struc-

tures;
• decreases the probability of failure by reducing un-

certainty.
Figure 6 shows the changes in the mean probabil-

ity of failure and the acceptance rate changes, when
altering selected parameters of the case study one at
a time.

The reassessment of bridge structures should be
critically considered, if the mean probability of failure
of the accepted structures is greater than the mean
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Figure 6. Mean probability of failure (left) and acceptance rate (right) of bridge structures altering setup parameters
one at a time. The blue lines represent the mean probability of failure when the original load is applied (target
probability of failure), the teal dashed lines represent the mean probability of failure when the increased load is
applied and the dash doted green and red lines represent the mean probability of failure of the accepted and the
rejected bridge structures.
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probability of failure of the bridge structures under
the original load (target probability of failure). This
is the case if
• the load strongly increases (finc > 1.6). However,

this case is not critical, since the target probability
of failure is not exceeded by much and the accep-
tance rate simultaneously drops very low.

• the coefficient of variation of the material property
is rather large (c. o. v[M ] > 0.2). This is also not
critical, since the target probability of failure is only
exceeded marginally.

• the coefficient of variation of the traffic load is rather
large (c. o. v[M ] > 0.15). Again, this is not criti-
cal, since the target probability of failure is only
exceeded marginally.

• the estimation of the characteristic traffic load ac-
cording to Eurocode is very biased (E[ΘEC ] < 0.65).
This is also not concerning, since in this case the
Eurocode design includes high amounts of hidden
safety, which leads to very low probabilities of fail-
ure. This hidden safety can serve as a reserve
against increased traffic loads.

• the estimation of the characteristic traffic load ac-
cording to Eurocode is associated with low uncer-
tainty (c. o. v[ΘEC ] < 0.18). In this case the coef-
ficient of variation in the estimation of the char-
acteristic value of the Eurocode model and the
advanced traffic load model match closely. Hence,
the reassessment does not reduce the uncertainty
significantly, but reduces the bias (hidden safety).
This case can be critical and should be prevented;
however, this case is rare, since the uncertainty of
advanced models is typically much smaller than the
uncertainty of standard models.

• the estimation of the characteristic traffic load ac-
cording to advanced models is relatively uncertain
(c. o. v[Θadv] > 0.18). As in the previous bullet
point the coefficient of variation in the estimation
of the characteristic value of the Eurocode model
and the advanced traffic load model are close. This
case can also be critical and should be prevented;
however, again is rather rare.

Overall, the reassessment of bridge trough advanced
modeling in most cases leads to sufficiently safe struc-
tures. It is only critical, if c. o. v[ΘEC ] and c. o. v[Θadv]
are very similar. However, the conduced sensitivity
analysis only varies one parameter at a time. A case in
which multiple parameters are varied simultaneously
may lead to a more critical outcome.

4. Conclusion
We investigated the effects of hidden safety if advanced
traffic load models replace the standard Eurocode traf-
fic load model. In the design case, the loss of hidden
safety increases the probability of failure more than
the reduced uncertainty of advanced models decreases

it; therefore, advanced traffic load models should not
be applied to design new structures without recalibrat-
ing the partial safety factors. The reassessment case
showed less critical results. In the vast majority of
considered cases the accepted bridge structures that
are assessed as compliant are sufficiently safe and no
recalibration is needed. In this case the hidden safety
is only reduced proportional to the load increase and
not fully erased (in contrast to the design case).
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