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Abstract. Significant research has been conducted in identifying optimal recovery and adaptation
decisions in disruptive scenarios using engineering models. In this context, an aspect that has been
target of limited research is that of response times. Modelling is expected to grow progressively more
complex as it becomes more accurate. Such complexity increases modelling efforts, and the promise
of optimal adaptation and recovery may become hindered. The present work discusses the role of
modelling fidelities in adaptation and recovery of systems, and in particular that of using a lower
fidelity model that enables zero-time analyses of a system. A framework is proposed for using different
fidelities in adaptation and recovery, considering system’s decision time requirements. The relevance of
this analysis is researched in two traffic networks and results show that multi-fidelity models should be
expected to play a key role in increasing the efficiency of optimal adaptation and recovery decisions.
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1. Introduction
Adaptation and response of civil engineering systems
has become one of the most prominent topics of re-
search in recent years. Several methodologies and
approaches have been proposed to tackle the need for
adaptation and responsiveness, however, most of them
fail to discuss one of the most relevant aspects of the
system’s responsiveness, the decision time.

Engineering systems are complex in nature. They
depend on multiple variables that can interact together
and that originates a need for these to be treated as
holistic. It is with no surprise that system analysis is
recurrently highly complex, relying on intensive data
analytics or costly modelling techniques. Due to this
optimal decision-making for civil engineering systems
can become a resource intensive task.

Most approaches for adaptation and response to
natural or man-made disasters lay their foundation on
the premise that under a disruption an optimal adap-
tation decision making scheme can be found that will
maintain the functionality of a system at certain mini-
mum operational level. This can be achieved through
intervention, by adapting the system operational vari-
ables, or other alternative system approaches [1]. In
all cases, some form of technique needs to inform de-
cision making, and current trends of research indicate
that there is a growing interest in the application of
high-fidelity (HF) modelling as a tool to inform de-
cisions. This is identified in the progressive interest
for HF tools such as, Finite-Element Methods, and

approaches, such as digital twinning or prediction of
complex adaptivity in systems.

Most of these techniques were introduced in order to
enable prediction and decision-making that is as close
as possible to real-time response. However, in practice,
running a decision-making scheme in such HF models
can be effort consuming. In the instance of needing to
use real-time information and prediction of the system
operation to adapt and prevent any perturbation a
form of parametric analysis needs to be performed. As
this procedure will still depend on the HF model built
to have a accuracy on predicting the system’s response,
then performing any analysis that will establish a new
point of operation that maintains (or optimizes) its
functionality is expected to have large cost.

Within this context, the present paper discusses
the role that multi-fidelity (MF) techniques may have
in efficient adaptation of engineering systems. MF,
that is, a blend of HF and Low-Fidelity (LF) mod-
elling, may allow to balance the effort that is required
to set optimal adaptation and recovery decisions. In
particular, decision-times are expected to have a signif-
icant influence on the efficiency of the decision-making
schemes. In the case of adaptation and recovery of
an engineering system to a disruptive event, stalling a
decision for a time longer than strictly necessary may
set the boundary between significant or minor impacts
in the system. In order to discuss the role of MF mod-
els in the context described, Section 2 introduces the
idea of MF modelling, Section 3 discusses a framework
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Figure 1. Multi-fidelity, from low-fidelity to high-fidelity models [2].

of application to adaptation and recovery of systems,
Section 4 presents two examples of application to a
traffic network, and finally, Section 5 draws the main
conclusions of the work developed.

2. Multi-fidelity (MF) modelling
MF modelling has been widely researched in order
to tackle the increasing analysis costs that are im-
posed by progressively more complex and accurate
modelling techniques. The fundamental idea of MF is
to combine HF models (commonly characterized as of
high-resolution, high analysis cost), with LF models
(commonly characterized as of lower resolution, low
computational cost), see Figure 1. HF models are
expected to have better accuracy in practice, however,
this does not mean that LF models cannot achieve
adequate accuracy. In MF, both HF and LF are
applied to balance the amount of effort required to
perform an analysis based on the principle that an
adequate amount of HF data may suffice an accurate
analysis if complemented by LF data. Such usage
of different levels of fidelity has been previously re-
searched and identified to have an important role in
fields that are characterised by large analysis efforts
such as, uncertainty quantification and optimization
[3, 4]. It should be expected to become relevant in all
engineering analyses that depend on effort consum-
ing models, and where the time necessary to inform
decision-making schemes has a key role.

2.1. Forms of multi-fidelity modelling
MF models can appear in different forms, and the
level of fidelity depends on a series of factors. It can
be said that HF models represent the behaviour of a
system with an adequate level of accuracy, and that
LF models are frequently a less refined representation
of these. LF models can be created by assuming sim-
plified forms for HF models. This can be achieved
through dimensionality reduction, linearisation, sim-
pler physics models, coarser domains, partially con-
verged results, among other [5]. [5] highlight also
different forms in which a system can be distinguished
in terms of levels of fidelity. These may depend on
the physical assumptions (e.g. may use different theo-
ries), numerical assumptions (e.g. more refined grids

or different computational models that use same un-
derlying theory), and also on the simple nature of the
information (e.g., experimental versus simulations).

One alternative that has captivated interest in the
field of MF modelling is metamodelling. It consists in
creating surrogates of a function or model by charac-
terizing the relationship between inputs and outputs
and relies on metamodels as LF pairs to HF data [6].
An overview of popular metamodelling techniques is
provided in [7], and [8] provides insight on the usage of
MF paired with metamodelling. Different metamodels
can be applied in this context. The interested reader
is directed to the extensive literature on this topic [7]
for a review of some examples. In the present work a
kriging model is applied to discuss the relevance of MF
alternatives in adaptation and recovery of systems.

3. Integration of MF modelling in
adaptation and response of
engineering systems

Effective system response or adaptation is expected
to rely on quick responses to damaging or disruptive
events. When an informative state of the system is
acquired, if decisions that are based on this state are
not implemented fast enough, then this informative
state may be lost as the system evolves. Moreover, if
an optimal decision of recovery or adaptation that was
based on this informative state is later obtained; then
there is a large likelihood that it won’t be optimal as
the system evolved. To add that when an informative
state of a system that is being affected by a disruption
exists, from the perspective of the decision-maker, it
is very difficult to not act and wait for an optimal
evaluation of the decision-making scheme, even if this
would be the most beneficial choice to achieve efficient
decisions. As a result if an optimization for adap-
tation or recovery is pursued that aims at optimal
decision-making, and if the results are delayed by run-
ning optimal searches for the decision variables in HF
techniques, then loss of efficiency should be expected.

In order to illustrate the importance of these as-
pects, research on MF applications is implemented in
a traffic network. Two networks are used to research
on the effectiveness of MF in contexts of, respectively,
recovery and adaptation. The Nguyen-Dupuis and
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Sioux-Falls traffic networks are used. A more detailed
description of the network parameters used in these
can be found in [9]. The MF model applied combines
as HF the traffic network user equilibrium, a non-
linear model that determines the optimum state of
equilibrium for the network users; and as LF model a
kriging model, a surrogate of the HF model.

4. Discussion on recovery and
adaptation of a traffic
network to a disruptive event

The MF relationship between the HF and LF in the
contexts of adaptation and recover is highlighted in
Figure 2. Two essential notions of time under decision-
making schemes can be highlighted in this context:
• slow-time: where time is not key for the effectiveness

of overall decision-making response.
• fast-time: where time has critical role in the overall

effectiveness of the decision-making scheme.
A metamodeling discussion that uses a similar idea
was previously implemented in the research of digital
twinning in [10].

Figure 2. Framework for MF application in adapta-
tion and response.

For most of the operation of a system, decision-
making can be considered to be in slow-time. Any
modelling of decision-making in such circumstance
can rely in HF models and limited change to steady
conditions should be expected. In this phase, HF
can predict outcomes for the system at limited cost.
Effectiveness will be largely unaffected by decision-
times as the pairing of the system modelling with its
operation is continuous. However, under a disruptive
scenario the same assumptions about the relationship
of decision-making schemes and effectiveness are not
expected to hold. In unsteady conditions, the system
will be changing, hence, an optimal decision on slow-
time is unlikely to be optimal (to adapt or recover the
system a decision-making scheme may be needed to

adapt the decision variables). In such scenario optimal
decisions should have zero-time and be paired with
the system unsteady conditions.

It is within this idea that MF modelling is framed
in system recovery and adaptation. MF allows to
control time in optimal decision-making, depending
on the system demand. In slow-time the multi-fidelity
technique can be improved as a predictor of the sys-
tem response for fast-time. In this phase, which is
representative of normal operational conditions, the
HF model responds and the LF model improves using
HF data (including potential disruptive scenarios).

To construct the MF model for this effect, it is
assumed that a HF model f(x) exists such that it is an
exact approximation of the system behaviour S(x) for
any operational state x, then in slow-time a MF model
can be built using metamodelling that includes a LF
surrogate G(x) of f(x). This LF can use system inputs
under foreseen and unforeseen scenarios of disruption
or operation, x. If a global approximation to the
space of x can be achieved, then the LF metamodel
can act as an accurate predictor of f(x) and S(x) for
the whole domain of operation.

Application of the kriging enables LF improvement
in slow-time using its properties to enrich the LF
model so that it responds accurately in fast-time. In
this phase, it is possible to train the LF model in x
using HF data. This relies on operational data and ex-
ploits the kriging unique Gaussian uncertainty. With
kriging as a LF, it is possible to search the opera-
tional space x for points of large uncertainty. The
LF has then the potential to systematically become
a more accurate prediction of the HF model. As a
result, in fast-time, the LF swaps to the responding
position, and the HF is expected to improve collect-
ing data from unforeseen occurrences. In this phase
decision-times are critical, and the LF model, i.e. the
Kriging, is expected to provide a sufficiently appropri-
ate prediction in order to allow for a quasi-optimum
(with relation to the LF-HF error) decision-making.
Moreover, for any x that does not fulfil the accuracy
condition in fast-time a HF sample can be taken to en-
rich the LF model. In fast-time, samples at HF should
be minimized and only extracted when necessary.

Two examples of application, in recovery and adap-
tation, are studied as reference examples of the rel-
evance of MF in the context described. These are
presented in Sections 4.1 and 4.2.

4.1. Recovery of traffic network in a
scenario of damage

In the first example of application, that concerns recov-
ery of a traffic network, the Nguyen-Dupuis network
is used. [11] researched this same traffic network in
the context of reliability. It is assumed that a damage
affects 7 of its links at 50% of their capacity; links
1,7,8,9,10, 12, 23 as per Figure 3. Then four recov-
ery teams are to be deployed in order to mitigate
the effects of this damage and to recover the network
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functionality. This recovery will be as efficient as the
decision-making that plans the recovery strategy. In
practical terms, an efficient recovery should restore
the network operational performance to the a stage
of pre-damage as soon as possible. Such procedure
depends on an efficient allocation of resources, which
minimizes the loss of functionality in the network and
improves its resilience [12, 13]. A damage in the net-
work will increase the cost for users to travel from one
node in the network to another, in particular if this
trip passes through an affected link. From a decision-
maker perspective the interest is to distribute the
resources that will efficiently decrease the travel cost.
If a damage occurs in the system at t = 0 then in this
moment the decision-maker should set the optimum
strategy in place to restore the network so that in t=1
its functionality starts to be recovered.

In the present case the LF model is defined using
kriging where for x states of operation, the MF model
uses the LF surrogate enriched on the HF model
(the network user-equilibrium model) in slow-time. x
encloses potential link capacities for the considered
links. In the seven-dimensional operational state (i.e.,
of damaged links), only 28 HF evaluations in slow-
time are required to set an accurate LF model with
a maximum relative error of prediction of a Latin
Hypercube Sample (see example [13, 14]) of 100 points
of 5%.

In order to discuss the relevance of the approach
proposed, Figure 4 presents the results of recovery
using the MF approach. The MF is used in fast-time
to predict allocation decisions. The results of this
approach are then compared with the result from
decision-making that relies exclusively in the HF tech-
nique. In both cases a Genetic Algorithm (GA) is
used to allocate teams for recovery.

Results show that recovery decisions for the MF
approximate with small loss of accuracy the results
provided by the HF. MF prediction refers to the value
of prediction of the MF model, while MF-DM refers to
the effective system recovery after the decision-making
takes place, i.e., real evaluation of MF prediction so-
lution in the system. From t = 1 to t = 3 the MF
prediction provides almost the same recovery efficiency
as the HF (loss is below 0.1% in total travel cost),
while at t = 4 there is a slightly larger loss of recovery
cost when compared with the GA decision making sup-
ported by the HF model. The MF approach, however,
consumes a small fraction of the decision time. In
Figure 4-(c) it is possible to infer that the GA optimal
decision for recovery (team allocation) is achieved in
MF for each day in less than 2 seconds, regardless
of the GA parameters. Such small decision-time has
a large potential to increase the agility of this deci-
sion process. Finding the optimal decision with GA
relying on the HF technique would impose a delay
of the decision-making scheme stalling the recovery
process. Decision-making that relies on the HF tech-
nique would require at least 25 minutes to achieve

similar results in the most critical days, even consid-
ering that this is a relativity low dimensional problem
in a relatively simple network. It is possible to infer
that the analysis time increases significantly when
the optimisation search in the GA uses more points,
which is an important consideration for analyses that
include more decision variables and that may demand
larger population sizes. When the population size of
100 individuals is applied jointly with the convergence
of the fitness function for 50 generations, the effective-
ness of the HF DM making decreases substantially
(decision times increase by more than 3); while in
practical terms the MF model is largely unaffected by
this. It is still capable of enabling zero-time responses
in practice. This may be an important consideration
in more involved applications.

4.2. Adaptation of traffic network
under incomplete information about
the damage scenario

The role of MF modelling in a context of adaptation is
now discussed in the Sioux-Falls network, see Figure
5. This network includes 76 links and 24 nodes. In
the present example, 14 OD pairs (with a demand
of 200 users/hour for each OD) are considered in the
modelling, each comprising 4 routes. The capacity of
each link is set initially to be 50% larger than the OD
pair demand.

The idea of the current implementation of MF mod-
elling is to find a representative example of the role of
different fidelities in adaptation of a system. In this
case decision-making for adaptation should be studied
considering a scenario of incomplete information. A
damage is known to have occurred in the network,
however its extent is uncertain. Existing information
indicates that there is a likelihood of 70% that a sce-
nario of minor damage occurred; where the number
of affected links (n(ld)) has 25% probability of being
n(ld) ≤ 4, 35% probability of being n(ld) = 5, 20%
probability of being n(ld) = 6, 15% probability of be-
ing n(ld) = 7, and 5% probability of being n(ld) ≥ 8.
In all possibilities the extent of the damage is expected
to be 70% of the link capacity. Then, there is a 30%
probability of a scenario of high damage having oc-
curred; where there is 30% probability of (n(ld)) ≤ 6,
20% probability of n(ld) = 7, a 20% probability of
n(ld) = 8, a 15% probability of n(ld) = 9, and 15%
probability of n(ld) ≥ 10. In all the cases of this sce-
nario, a damage of capacity of 75% is expected. Figure
5 presents potentially affected links (with highlighted
link numbers).

A decision should be made about how to adapt
the network to this disruption. Decisions that use
the HF model are highly accurate, but involve large
computational cost. In this example of disruption,
with 18 dimensions, that would cover the decision to
adapt potentially disrupted link capacities. So, as soon
as the decision-maker commits to search for an optimal
decision, he will need to perform an optimization
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Figure 3. Perturbation considered in the Nguyen-Dupuis network. Red arrows represent the links that are damaged.

Figure 4. Results of the application of the MF approach to the problem of recovery. (a) Results based on a GA
team distribution with a population size of 50 and that converge when no improvement in the fitness function occurs
for 20 iterations. (b) Results based on a GA team distribution that uses a population size of 50 and converges when
no improvement in the fitness function occurs for 20 iterations. (c) Computational times for (a)-(b).
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Figure 5. Sioux-Falls Network and uncertain scenario
of damage simulated. The (red) rectangles identify the
links that are potentially damaged in the uncertain
disruption.

of the decision criteria on the HF model. There is
limited adaptivity to this procedure, as changing the
input conditions to it will involve a restart of the
optimization calculations.

If a MF model is introduced, then decision-making
into adaptation can become adaptive; and because
running an optimization scheme on a LF model that
is representative of the HF model is virtually cost-
free, then, as new information becomes available it is
possible to change decisions.

In the case of the Sioux-Falls with 18 potentially
damaged links, the LF model is built in slow-time
and runs in tandem with the HF model considering
an x that includes the capacities of each link from a
reduction of 80% in relation to the initial capacity to
an increase of 50% of the initial capacity. It uses 3205
evaluations of the HF model and is able to validate
in average a random global sample within 10% of
absolute error in prediction. If new points are required
these can be added in slow-time or fast-time.

Figure 6 presents the results for adaptation to the
uncertain scenario presented in this example. When
the system is damaged it is assumed that a budget
of adaptation is available that can add extra capac-
ity to the network links. This budget has a limit
300 users/hour, and any of the potentially damaged
links cannot have its capacity enhanced in more than
150 users/per hour. The adaptation decision-making
problem involves then finding the optimal usage of
this budget to improve the capacity of the potentially
damaged links in Figure 6, such that the loss in travel
cost in the system is minimized. A Genetic Algo-
rithm is used to allocate the additional capacity in
the links considered in order to mitigate the effects of
the perturbation. The population size is set to 100

Figure 6. Results for the adaptation probability
distribution function using HF and MF modelling.

individuals, complemented with convergence of the
best fitness value for 50 iterations.

Loss of effectiveness for the adaptation decision is
compared in terms of the reduction of travel cost that
is possible to achieve with the it (i.e. distributing
the budget available among links). The black dot-
ted line presents the probability distribution of the
response considering predictions using the MF model.
Because the MF model is virtually costless to run, the
optimal operational point can be determined as new
information about the extent of the damage enters the
decision-making scheme, that is, an optimal adapta-
tion strategy can be defined for all possible scenarios
at virtually no cost (zero-response time). This curve
is to the left of the remaining adaptation decisions
that rely on HF modelling combined with the same de-
cision technique. Because these rely on the HF model
it is not possible to change the input conditions of
the decision-making scheme variables with the same
level of flexibility. A single optimization to a specific
scenario of damage will demand several hours to run.
Three scenarios are therefore tested; to optimize the
adaptation of the network considering that all links
are damaged at 70% of their capacity, optimize the
adaptation of the network considering that all links
are damaged at 75% of their capacity, and optimize
the adaptation of the network considering that no
links are damaged. In relation to the case of no adap-
tation, all contribute to an important improvement
of the response; nonetheless, still outperformed by
the adaptation with MF. The capability to change
ad-hoc the decision with new information means total
adaptive capacity.

5. Conclusions
The present work discussed the role that multi-fidelity
modelling may have in the future of system analysis,
with explicit relation to decision-making in recovery
and adaption. While significant research has been di-
rected to the need for accurate system models that can
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accurately inform decision-making, limited research
has been directed to the practicality of these as a
tool to inform decision schemes. While modelling of
systems becomes more complex and accurate, so does
the cost of it (effort required). In particular if paired
with an optimization scheme, achieving an optimal
decision can be quite resource and effort-demanding.
In practice, and considering that systems modelling
is inherently complex, this may not provide an effi-
cient alternative for decision-making in scenarios of
disruption. Decisions in recovery and adaptation re-
quire zero-response times to be effective. As systems
are dynamic, non-zero response times imply that at
the moment a decision is achieved, there is a like-
lihood that it won’t be optimal or near-optimal; a
consequence of the system’s evolution in time.

A metamodel was used to construct a multi-fidelity
model, where it fulfilled the role of low-fidelity model,
that enables zero-response times in recover and adapta-
tion of a system. The ideas of slow-time and fast-time
were introduced and the effectiveness of multi-fidelity
models emphasized in two examples of traffic net-
works.

An adaptive system should include zero-time
decision-making schemes, so that the optimal deci-
sion is enabled in each moment of operation, and any
recovery or adaptation of the system is continuous
with the system operation. Different layers of fidelity
have a key role in enabling this system behaviour.
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