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Abstract. The paper is focused on assessment of existing prestressed concrete bridge by simplified
methods for estimation of coefficient of variation. The bridge was selected in the framework of the
European Project INTERREG AUSTRIA-CZECH REPUBLIC "ATCZ190 SAFEBRIDGE" focused on
advanced numerical analysis of existing bridges represented by non-linear finite element model. The
key ingredient in semi-probabilistic design and assessment of structures is an estimation of coefficient
of variation (ECoV). Recently, correlation interval approach together with novel Eigen ECoV were
proposed by authors of this paper and theoretically proved to be an efficient and accurate alternative to
existing methods. This contribution is focused on practical application of Eigen ECoV on real example
solved by NLFEM and its comparison with other existing simplified methods.

Keywords: Concrete structures, statistical analysis, Estimation of Coefficient of Variation.

1. Introduction
The development of computational methods for civil
engineering has become more important than ever,
since it is often necessary to employ advanced numer-
ical methods for the design of new structures in order
to fulfil the significantly increasing economical and
safety requirements in the last decades. Moreover,
there are a lot of structures, especially bridges, built
in the last century, which must often be enhanced
for higher loads assuming actual conditions of the
structures. As a result of these industrial needs, re-
searchers and civil engineers are more interested in
advanced numerical methods to solve the mathemati-
cal models of structures – typically non-linear finite
element method (NLFEM). Although NLFEM is a
very accurate numerical method for solving differential
equations, there is still a lack of knowledge of material
characteristics (e.g. fracture energy), actual geomet-
rical properties (e.g. position of reinforcement) and
even mathematical models of some physical phenom-
ena (e.g. fracture mechanics of quasi-brittle materials)
collectively called uncertainties. As can be seen from
the given examples, uncertainties play an important
role, especially in the case of concrete structures. This
lack of knowledge may generally lead to inaccurate
results and even fatal failures despite the advanced
numerical analysis performed by NLFEM.

In modern structural analysis, uncertainties are rep-
resented by random variables or vectors described by
specific probability distribution, the structural system
can then be seen as a mathematical function of a set
of random parameters. Deterministic NLFEM numer-
ical analysis of structures must thus be enriched by
stochastic analysis [1]. The elementary task of stochas-
tic analysis is to propagate uncertainties through a
mathematical model in order to obtain statistical in-

formation of outputs.
In the semi-probabilistic approach for NLFEM [2],

the structural resistance R is separated and the design
value Rd that satisfies safety requirements is evalu-
ated, as a simplification of the direct calculation of
failure probability pf = P (Z(X) < 0). The typical
formula for the estimation of Rd, assuming a lognor-
mal distribution of R, is

Rd = µR · exp(−αRβvR), (1)

where µR is the mean value, vR is the coefficient of
variation (CoV) and αR represents sensitivity factor
derived from First Order Reliability Method (FORM)
[3]; the recommended value is αR = 0.8 according to
Eurocode [4]. The target reliability index is depen-
dent on consequence classes (dependent on a type of
structure), e.g. β for the ultimate limit state, mod-
erate consequences of failure and a reference period
of 50 years is set at β = 3.8 according to the Eu-
rocode. Note that, from a probabilistic point of view,
the whole process represents the estimation of a quan-
tile satisfying the given safety requirements under the
prescribed assumption of lognormal distribution.

2. Semi-probabilistic methods
There are several safety formats and semi-probabilistic
methods for determination of a design value of re-
sponse in normative documents or scientific papers,
which are briefly described in the following paragraphs.
These methods assume several simplifications and thus
are less computationally demanding in comparison
to the fully probabilistic approach. Main advantage
of safety formats and semi-probabilistic methods is
possibility of their usage without complex reliability
knowledge.
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2.1. Partial Safety Factors
The commonly known method according to EN 1990
works with design values of input random variables
and obtained result of NLFEM corresponds directly
to the R̃d. Design values of material parameters, ex-
tremely low quantiles, can be obtained from laboratory
experiments or directly from EN. Herein, lognormal
probability distribution of material parameters was
assumed and design value is estimated as the following
quantile:

Xd = µX exp(−α β vX) (2)

where vX is coefficient of variation (CoV), α repre-
sents sensitivity factor and β target reliability index.
However, this approach leads to extremely low design
values of input random variables which migh lead to
unrealistic behavior of the numerical model. Moreover,
this method does not estimate statistical moments of
the resistance and therefore is not employed in this
comparison.

2.2. ECoV fib Method
Assuming Lognormal distribution of the response vari-
able R, the task of ECoV methods is the estimation
of the mean value and variance. The first presented
method is ECoV according to fib Model Code 2010 [5–
7], the coefficient of variation caused by uncertainty
of input parameters vR can be estimated by simplified
formula for vR < 0.2 as

vR = 1
1.65 ln

(
Rm

Rk

)
. (3)

The simplified formula is based on two numerical sim-
ulations - Rm using mean values of input random
variables and Rk using characteristic values (5% per-
centile). The global resistance safety factor is then
calculated as

γR = exp(αRβvR). (4)

This method was adopted in the fib Model Code
2010, though design value Rd was later decreased by
additional factor γRd=1.06 to take model uncertainties
into account:

Rd = R(fcm, fym, anom, ...)
γRγRd

. (5)

Note that the strong assumption of Rk being equal
to simulation with characteristic values is not gener-
ally applicable for non-linear functions, but it can be
justified for engineering applications where the non-
linearity of investigated function is not typically very
high. The second significant limitation arises from a
fact, that this method is special case of Taylor Series
Expansion assuming full correlation among all input
random variables [8].

2.3. Taylor Series Expansion
Classical method for a statistical analysis of function of
random input vector is Taylor Series Expansion (TSE).
The most significant advantage of ECoV based on
TSE is its versatility and adaptability. It is common
in engineering applications to use TSE truncated to
linear terms and thus µR ≈ Rm = r(µX) and CoV is
obtained as:

vR ≈ 1
Rm

√√√√ N∑
i=1

(
∂r(X)
∂Xi

σXi

)2
. (6)

where the derivatives are evaluated at µX for all N
input random variables. The efficiency and accuracy of
TSE depends on the number of used terms (truncation
of infinite TSE) and the differencing scheme for the
practical computation of derivatives. The simplest
form is linear TSE with derivatives approximated by
one-sided differencing as:

∂r(X)
∂Xi

= Rm − RXi∆

∆Xi

. (7)

where the response of mathematical model Rm is
determined by a calculation with mean values, and
RXi∆ is the result of a model using mean values
of input random variables and a value of the i-th
random variable which has been reduced by ∆Xi

.
For the sake of clarity, the difference is calculated as
∆Xi

= µXi
− Xi∆.

Of course, one can use various differencing schemes
instead of Eq. 7 as originally proposed in [9] and
illustrated in Fig. 1. Assuming linear TSE, one of the
most promising advanced differencing schemes using
nsim = 2N + 1 simulations is

∂r(X)
∂Xi

=
3Rm − 4RXi ∆

2
+ RXi∆

∆Xi

, (8)

where the middle additional term RXi ∆
2

is obtained
via the evaluation of the original mathematical model
with mean values and a reduced i-th variable Xi ∆

2
=

µXi
− ∆Xi

/2.
The last aspect of adaptivity of TSE is represented

by step size parameter c used for definition of the dif-
ference ∆Xi

= µXi
− Xi∆, whereXi∆ = F −1

i (Φ (−c)),
where F −1

i is an inverse cumulative distribution func-
tion of the i-th variable and Φ is the cumulative
distribution function of the standardized Gaussian
distribution. Schlune et al. [10] proposed step size
parameter in dependence on target reliability index as
c = (αRβ) /

√
2. However, it brings additional compu-

tational burden when analyzing different limit states
with different target β, since it is necessary to calcu-
late N + 1 (Eq. 7) or 2N + 1 (Eq. 8) simulations for
each limit state. Therefore, it can be recommended to
use c = 1.645 independently on type of investigated
limit state, which is in compliance to ECoV according
to fib Model Code 2010 [7].
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Note that TSE is suitable for uncorrelated input
random variables, since the differencing schemes evalu-
ate the influence of each input variable independently.
If one needs to include specific correlation coefficient,
one can use following formula:

V arRTl
≈

N∑
i=1

(
∂r(X)
∂Xi

)2
σ2

Xi
+ (9)

+
∑

i,j=1,...,N

i ̸=j

ρi,jσXi
σXj

∂r(X)
∂Xi

∂r(X)
∂Xj

. (10)

where ρ is the correlation coefficient. However, it is
often necessary to use advanced differencing scheme
or higher order of TSE (such as quadratic depicted in
Fig. 1) for accurate estimation of variance in case of
correlated input random variables [9].

2.4. Eigen ECoV Method
The recently proposed Eigen ECoV [8] is derived di-
rectly from TSE. However, there is an assumption of
fully correlated input random variables similarly to
ECoV according to fib Model Code 2010 and thus
number of simulations is dramatically reduced – 3
independent on N . Eigen ECoV is based on idea of
projection of input random vector on 1D eigen distri-
bution Θ with variance equal to the first eigenvalue of
input covariance matrix σ2

Θ =
∑

σ2
Xi

= λ1 and mean
value is simply obtained as:

µΘ =

√√√√ N∑
i=1

(µXi
)2

. (11)

In the original proposal, there are three levels of
Eigen ECoV corresponding to TSE methodology con-
sisting of three increasing levels of complexity and
accuracy [9]. The most promising Eigen ECoV for-
mula for estimation of vR offering a balance between
the efficiency and accuracy (derived directly from Eq.
8) is in the following form:

vR ≈
3Rm − 4RΘ ∆

2
+ RΘ∆

∆Θ
·

√
λ1

Rm
, (12)

where a simulation RΘ∆ = r (XΘ∆) with coordi-
nates of input realization XΘ∆ = (X1∆, . . . , XN∆)
and RΘ ∆

2
= r

(
XΘ ∆

2

)
with coordinates XΘ ∆

2
=(

X1 ∆
2

, . . . , XN ∆
2

)
are depicted together with illustra-

tion of Eigen ECoV method in Fig. 1 For the sake of
clarity, the input vectors consisting of reduced values
of input random variables are Xi∆ = F −1

i (Φ (−c))
and the intermediate coordinates are as follows:

Xi ∆
2

= µXi
− µXi − Xi∆

2 = µXi
− ∆Xi

2 . (13)

Finally, the ∆Θ represents distance between µΘ and
desired quantile F −1

Θ (Φ (−c)). It is generally obtained

directly from the inverse cumulative distribution func-
tion of lognormal distribution with corresponding sta-
tistical moments of eigen distribution Θ or one can use
the following approximation suitable for calculation
without software:

∆Θ = µΘ − µΘ · exp

(
−c ·

√
λ1

µΘ

)
(14)

The Eigen ECoV combines versatility and adapt-
ability of TSE via various differencing schemes and
step size parameter c together with efficiency of ECoV
according to fib Model Code 2010. Note that, more
theoretical details can be found in the original pro-
posal of Eigen ECoV including additional formulas
based on another differencing schemes or higher TSE,
which is suitable for input variables with high CoV
[8].

3. Post-tensioned Concrete
Bridge

The described semi-probabilistic methods are em-
ployed for probabilistic assessment of an existing con-
crete bridge. This study significantly extends the ob-
tained results from the original simplified case-study
[17]. The bridge was selected in the framework of the
European Project INTERREG AUSTRIA-CZECH
REPUBLIC "ATCZ190 SAFEBRIDGE" focused on
advanced numerical analysis of existing bridges. The
bridge consists of three spans constructed from 16
bridge girders KA-61 in transverse direction. The cru-
cial part of the bridge for assessment is the mid-span:
19.98 m long with total width 16.60 m. The geometry
of a typical bridge girder KA-61 is created according
to an original documentation describing also positions
of reinforcement and tendons. The drawing together
with the simplified cross-section is depicted in Fig. 2.

From structural point of view, it was necessary to
create numerical model of the whole bridge span. The
reason is that although the structure is symmetric,
the individual bridge girders are not transversely pre-
stressed, which leads to the different deflection of each
girder in dependence on their distance to the loading
position. In order to create numerical model reflect-
ing their real connection conditions, the girders are
connected by reinforcement according to original doc-
umentation together with a concrete mixture between
single girders.

3.1. Finite Element Model
The cross-sections of girders KA-61 were simplified
to regular shapes in order to reduce number of finite
elements and to obtain regular mesh, see Fig. 2.
Boundary conditions are assumed to be as a simply
supported beam with elastic blocks as supports. The
geometry of elastic blocks and positions of loading
plates are modeled according to bridge documentation
and a national annex of Eurocode for load-bearing
capacity of road bridges by exclusive loading (by six-
axial truck).
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Figure 1. Representation of semi-probabilistic methods in 2D example.

Figure 2. Cross-section of a singe bridge girder KA-61.

The non-linear finite element model is created in
software ATENA Science including theory of non-
linear fracture mechanics [11]. In order to reflect
complex behavior of the bridge, the numerical model
contains three construction phases as illustrated in
Fig. 3:

(1.) prestressing of bridge girders and simultaneous

application of the self-weight;
(2.) activating of the pavement and concrete among

girders connecting bridge girders;
(3.) application of a load by a six-axial truck.

The major part of NLFEM is represented by 13,000
elements of hexahedra type and triangular ‘PRISM’
elements in the blue-colored parts of the cross-section
(see Fig. 2). Hexahedra elements lead to better nu-
merical stability of simulation and leads to easier con-
struction of mesh compatible between two volumes
connected by fixed contact, i.e. nodes of elements in
both connected sub-volumes have same coordinates.
Another advantage of brick elements is that the struc-
tured mesh constructed from brick elements leads to
a significantly lower number of finite elements in com-
parison to tetrahedra elements. Fracture-mechanical
behavior of concrete is described by a non-linear math-
ematical model [11]. Reinforcement together with
tendons are modeled as discrete 1D elements with po-
sitions, diameters and shape according to the original
documentation.

The numerical model is further analysed in order
to investigate three limit states of the bridge:

(1.) the ultimate limit state (ULS) (peak of a load-
deflection diagram);

(2.) the first occurrence of cracks in bridge girders
(Cracking);

(3.) the serviceability limit state of decompression
defined according to Eurocode (SLS).

Note that obtained results are further reduced by
dynamic amplification factor δ = 1.4 in order to reflect
that results are from static analysis.
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Figure 3. Three construction phases of the bridge represented by NLFEM.

3.2. Stochastic Model

The stochastic model contains 4 random material
parameters of a concrete C50/60: Young’s modulus E,
compressive strength of concrete fc, tensile strength
of concrete fct and fracture energy Gf . Characteristic
values of E, fct, Gf were determined from fc according
to formulas implemented in the fib Model Code 2010
[7] (Gf , E) and prEN 1992-1-1: 2021 (fct). The last
random variable P represents prestressing losses with
CoV according to JCSS: Probabilistic Model Code
[12]. Note that prestressing force itself is assumed to
be deterministic, since it was measured and controlled
during prestressing process. The stochastic model is
summarized in Tab. 1.

The bias factor for determination of mean value and
CoV of fc were taken from prEN 1992-1-1: 2021 (An-
nex A) for adjustment of partial factors for materials.
CoV of fct was assumed according to prEN 1992-1-1
and bias factor is identical to fc. Note that there is
lack of information about Gf in literature and thus it
is assumed to be described by identical bias and CoV
as fct. Note that values in Tab. 1 determined accord-
ing to prEN 1992-1-1: 2021 (Annex A) reflect also
geometrical uncertainties by additional amplification
of material uncertainty.

Var. Mean CoV [%] Distrib. Units
fc 56 16 Lognormal [MPa]
fct 3.64 22 Lognormal [MPa]
E 36 16 Lognormal [GPa]
Gf 195 22 Lognormal [Jm2]
P 20 30 Normal [%]

Table 1. Stochastic model of the numerical example.

In this first numerical study, there is an assump-
tion of uncorrelated random variables. Though the
correlation might play crucial role in case of concrete
structures.

3.3. Numerical Results
The design values of resistance Rd for each limit state
in tons are determined as a quantile of Lognormal
distribution with identified statistical moments, tar-
get reliability indices are βULS = 3.8, βcrack = 3.8
and βSLS = 1.5 according to EN 1990 [4]. Note that
βcrack is not assumed to be serviceability limit state,
since a cracking of the post-tensioned bridge leads
to corrosion of tendons and ultimately collapse of
the structure. Moreover, corroded tendons can not
be replaced. Obtained design values are additionally
reduced by global safety factor reflecting model un-
certainties γRd

= 1.06. Obtained statistical moments
together with determined Rd can be found in Tab. 2.

Note that the reference solution obtained by Latin
Hypercube Sampling (LHS) [13, 14] is based on 30 nu-
merical simulations and one simulation takes approx.
24 hours. From the obtained results, it can be seen
that all presented semi-probabilistic methods are in
agreement with reference solution, though there are
some differences leading to lower Rd (approx. 10%)
in comparison to LHS. However, one can see that
ECoV methods are both on conservative side while
TSE leads to accurate estimation near the reference
results obtained by LHS.

4. Discussion and Further
Research

The obtained results summarized in Tab.2 are in good
agreement among all presented methods. This can be
explained by relative low non-linearity of this exam-
ple failing in bending. In case of shear failure, this
difference could be significantly higher as presented in
previous work of the authors of this paper [15, 16, 18].

Note that the results of simplified methods also
show good agreement with their theoretical behavior,
since the ECoV according to fib and Eigen ECoV
assume fully correlated input random variables (in
order to reduce number of simulations to 2 resp. 3)
and thus their estimation should be conservative in
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Limit state: ULS Cracking SLS
Method µ vR Rd µ vR Rd µ vR Rd

ECoV fib 485 0.098 340 399 0.107 272 154 0.153 121
Eigen ECoV 485 0.075 364 399 0.097 280 154 0.153 121
TSE 485 0.066 375 399 0.085 290 154 0.132 124
LHS (Reference) 480 0.061 376 396 0.074 298 154 0.142 123

Table 2. Obtained statistical moments and corresponding design values of resistance in tons for each limit state.

comparison to TSE and LHS. The conservative estima-
tion is caused by a fact, that high correlation among
input random variables typically leads to higher vari-
ance of R. If one needs to obtain accurate results
without assumption of full correlation among input
random variables, it is necessary to perform higher
number of simulations by TSE (at least N +1) or LHS
(tens-hundreds). For the correct comparison, further
work will be focused on reference solution assuming
fully correlated variables and also realistic correlation
matrix. The two limit cases – uncorrelated input ran-
dom variables and fully correlated random variables –
then define the interval of design values affected only
by assumed correlation [8]. Unfortunately, there is
not any recommendation about correlation in codes
and other relevant documents and thus this vague
information might lead to significant differences in Rd

and further research should be also focused on this
aspect as already discussed in the previous general pi-
lot comparison of existing semi-probabilistic methods
[19].

5. Conclusions
The paper presented simplified probabilistic as-
sessment of the existing bridge by selected semi-
probabilistic methods for estimation of coefficient of
variation. The bridge is represented by highly compu-
tationally demanding NLFEM reflecting theory of non-
linear fracture mechanics of concrete. The stochas-
tic model contains 5 random variables representing
concrete characteristics and prestressing losses. The
comparison of selected methods included also recently
proposed Eigen ECoV and corresponding Taylor Se-
ries Expansion. From the obtained results, it can be
concluded that all selected methods lead to accurate
estimation of design value of resistance for selected
limit states. Moreover results also corresponds to
theoretical behavior of the methods with respect to
assumed correlation among input random variables.
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