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Abstract. Current practice is mostly focused on prescriptive design approaches where the performance
of the structure in case of fire is assessed based on its performance in standardized fire tests. Those
tests indicate whether the structural member can withstand standardized ISO 834 fire exposure for
a certain code specified time. This method however does not provide an explicit safety level. This
issue is enlarged even more by the fact that the ISO 834 fire exposure does not represent a natural
fire exposure, but a pseudo-worst-case exposure, making the correlation between the standardized fire
test results and real-life behaviour of structural members exposed to fire questionable. However, there
has been a century-old tradition of standardized fire tests with a lot of experience and infrastructure
based on it. For that reason, here, a methodology is presented to obtain more information on the
behaviour of structural members exposed to a natural fire from the standardized fire test results by
using a Bayesian framework. As an example structure, a simply supported concrete slab is considered.
Its failure during the standardized fire test is modelled and the parameters affecting the time when it
fails (i.e., parameters affecting the nominal fire resistance time) are determined. The model is then used
in a Markov chain Monte Carlo procedure to update parameter distributions based on the measured fire
resistance time. Using these updated distributions, a full probabilistic calculation of the performance
of the slab considering a natural fire exposure is then conducted to assess the failure probability.
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1. Introduction
Structural stability of a building in case of fire is of
utmost importance both for the safety of its occupants
as well as for other fire safety objectives such as prop-
erty protection. Therefore, it is essential to provide a
building design with an adequate safety level. In the
structural sense, it is important to mitigate the risk
of a collapse due to the fire effects.

A common way of representing a structure’s perfor-
mance in the case of fire is through its fire-resistance
rating. The fire-resistance rating represents how long
a structural member can withstand a furnace test be-
fore collapsing. During the furnace test, the structural
member is exposed to a standardized fire exposure, a
universal temperature-time curve that in its essence
should represent a conservative worst-case fire sce-
nario.

This approach has a lot of benefits: it is standard-
ized, it provides the same temperature exposure for a
range of different materials and structural members,
and therefore can be used to compare different solu-
tions. However, it also has a few shortcomings. First
of all, the standardized temperature-time curve does
not represent any real fire scenario. This temperature-
time curve is monotonically increasing and therefore

does not include the cooling phase of the fire. Sec-
ondly, even though it should represent an envelope
case for multiple possible fire scenarios, there are cases
where this approach is not conservative [1].

Despite these shortcomings, the standardized ap-
proach is highly popular. There is an abundance of
data and research focused on the material and struc-
tural behaviour of members exposed to the standard
temperature-time curve. Unfortunately, the test does
not provide any direct information about how the
structure will behave in a real fire situation. All it
provides is a time of failure for a structural member
exposed to a fire scenario that, as mentioned earlier,
might be conservative, but does not represent a real
fire. This problem is even enhanced by the fact that
a lot of current building codes allow the use of this
value as proof of safety by prescribing the minimal
fire resistance rating a member must achieve in the
standardized test.

In order to overcome this issue, in this paper, a
Bayesian updating procedure is applied. The Bayesian
framework in fire safety engineering has been success-
fully used in the past in a variety of fire safety prob-
lems. For example, Wang and Zabaras [2] used them
in order to determine the magnitude of a heat source
from the temperature data, Guo et al. [3] used a zone
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Figure 1. Temperature field of a 20 cm thick concrete slab with the concrete cover of 35 mm after 120 min of
standardized fire exposure.

model as a forward model for a Bayesian inversion
to obtain the fire size and its origin within a multi-
compartment structure based on the measured gas
temperature. Overholt and Ezekoye [4] managed to in-
vert the fire’s heat release rate based on the measured
temperature data from room-scale experiments.

The Bayesian updating is used to predict the be-
haviour in a more realistic fire for the case of a simply
supported concrete slab, considering the fire resistance
as measured in the standardized test. Using numerical
heat transfer analysis, a Bayesian framework and full
probabilistic calculation, the failure time determined
during the furnace test is used to compute the failure
probability in case of a natural fire.

2. Methodology
2.1. Overview
The procedure presented in this paper consists of two
main parts. First, the prior distributions of the ma-
terial properties of the slab are updated considering
the measured fire resistance time. Second, these pos-
terior distributions are used to determine the failure
probability of the slab in case of the natural fire. For
the updating procedure, a model that calculates the
failure time during the furnace test must be created.
That is done by calculating the time instant when the
capacity of the slab is lower than the loads applied.
Afterwards, this model is used in the Bayesian frame-
work to update the material properties based on the
test failure time.

Using the updated material properties based on the
test failure time the failure probability is calculated
for the slab exposed to a natural fire. A Monte Carlo
calculation is conducted taking into account uncertain-
ties in the fire exposure, loads, geometry and updated
material properties. Finally, the failure probability is
calculated for different values of test failure times and
compared.

2.2. Thermal calculation
In order to determine the capacity of the concrete slab
in the case of fire, the first step is to determine the

temperate distribution inside of it. This requires the
solution of a heat transfer problem which is commonly
solved using the finite difference method. In this study,
a 20 cm thick reinforced concrete slab exposed to the
heating from the bottom side is considered. A fine
mesh with the size of 0.1 mm and a time step of 0.1 s is
used. The boundary condition on the bottom (heated)
side is defined using a gas temperature-time curve and
heat transfer through convection (convective heat coef-
ficient hconv = 25 W/(m2.K) and radiation (emissivity
ε = 0.7). On the top (cold) side, an ambient tem-
perature of Tamb = 20◦C is imposed. The density
of concrete in the function of temperature is defined
by EN 1992-1-2 [5] with a moisture value of 3 %. A
common approach of calculating for a concrete only
section and assuming that the reinforcement temper-
ature is equal to the concrete at the same position
is employed. Figure 1 shows the temperature dis-
tribution of the slab after 120 min of ISO 834 fire
exposure.

The uncertainty associated with the parameters in
the heat transfer problem is the focus of this paper.
Thus, probabilistic models for the thermal properties,
thermal conductivity k and specific heat cp of concrete,
are used. The models’ origin and details are presented
in [6] and the main characteristics are summarized
here. The main assumptions are that each of these
properties is a continuous function of temperature,
and at each temperature the values are distributed
according to the Gamma distribution. In order to
obtain a random curve, the same quantile is used for
all temperatures. For example, if the specific heat has
a 5 % quantile value at 20 ◦C, it will also have a 5 %
quantile value at 100 ◦C, 200 ◦C and so on. This way
it is possible to define one continuous function for a
thermal property at any temperature based only on
the quantile value considered. This enables a quite
easy implementation in numerical models and its use
is presented in the following paragraph.

First, a quantile value for each of the thermal proper-
ties is chosen independently, next mean and standard
deviation at each needed temperature are calculated
using the following formula (temperature T in ◦C),
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Parameter Symbol Unit Distribution Mean Standard deviation Ref.
Thermal
conductivity k [W/(m.K)] Gamma Temperature

dependent
Temperature
dependent [6]

Specific heat cp [kJ/(kg.K)] Gamma Temperature
dependent

Temperature
dependent [6]

Reinforcement yield
strength fy [MPa] Lognormal 560 30 [7]

Table 1. Prior distribution for the parameters used in the Bayesian framework.

valid in the range 20 − 1200 ◦C [6]:

kmean [W/(m.K)] =
6.627 · 10−7 · T 2 − 1.458 · 10−3 · T + 1.772

cp,mean [kJ/(kg · K] =
−2.953 · 10−7 · T 2 + 6.498 · 10−4 · T + 0.872

kstd [W/(m · K)] =
3.19 · 10−7 · T 2 − 0.691 · 10−3 · T + 0.434

cp, std [kJ/(kg · K)] =
−3.500 · 10−7 · T 2 + 7.700 · 10−4 · T + 0.042

(1)

Afterwards, using these values and given quantile,
well-known equations defining the Gamma distribu-
tion are used to calculate both thermal properties for
each needed temperature. Finally, the same moisture
peak should be added to the specific heat curve as
defined in EN 1992-1-2 [5].

2.3. Bending capacity and failure time
Once the temperature inside the slab is calculated, its
bending capacity can be calculated using the following
formula [11]:

MR = As · kfy(T ) · fy ·
(

h − c − ϕ

2

)
−

(As · kf y(T ) · fy)2

2 · b · kfc(T ) · fc

(2)

where As is the reinforcement area, kfy(T ) is the
temperature-dependent strength retention coefficient
for the yield strength of steel, fy is the yield strength
of steel in normal design conditions, h is the slab
height, c is the concrete cover, ϕ is the reinforce-
ment diameter, b is the width of the slab, kfc(T ) is
temperature-dependent strength retention coefficient
for the compressive strength of concrete and fc is
the compressive strength of concrete in normal design
conditions.

In order to calculate when the slab would fail during
the furnace fire resistance test, first the temperature
distribution needs to be calculated for each point in
time of the test. That is done using the described

numerical heat transfer model and the ISO 834 fire
curve as boundary temperature-time curve. Then,
using Equation 2 the slab’s capacity can be calculated
for each point in time and from it consecutively the
failure time can be calculated by determining the
point in time when the capacity is lower than the
applied loads. The loads during the test are assumed
to be equal to 50 % of the slab’s capacity in normal
conditions, (i.e., 50 % utilization in normal design
conditions).

This process is computationally expensive for later
probabilistic calculations. Hence, for 10 000 different
combinations of the stochastic variables (Table 1), a
failure time is calculated and a polynomial regression
model is fitted on the results (with the coefficient of
determination being R2 = 0.99). All the other param-
eters in Equation 2 have been regarded as constants
instead of variables.

2.4. Updating of uncertain parameters
based on standardized fire test

The updating procedure is a standard Bayesian pro-
cedure using Markov Chain Monte Carlo simulations.
The parameters that are updated are the quantiles of
the thermal properties’ models and the yield strength
of the reinforcement. All the priors are presented in
Table 1.

The likelihood is defined under the assumption that
the failure time error is normally distributed with a
mean of 0 and standard deviation σerr and is presented
in Equation 3:

L (y|X) = 1
σ

exp
(

−1
2

(y − M(X))2

σ2
err

)
(3)

where y is the measured failure time, M(X) a model
output for the input parameters X = (k, cp, fy). The
measurement uncertainty σerr is modelled by a normal
distribution with a mean of 2 min and a standard
deviation of 1 min, these values are chosen based on
the model error and measurement precision during
the furnace test.

2.5. Natural fire exposure
The end goal is to obtain the probability of failure in
the case of a real fire using the measured test failure
time. For that, the thermal gradient for a natural
fire exposure also has to be calculated. A parametric
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Parameter Symbol Unit Distribution Mean Standard deviation Ref
Fuel load gf [MJ/m2] Gumbel 780 234 [8]
Concrete cover c [mm] Beta [µ ± 3σ] 40 5 [9]
Dead load G [kNm] Normal 27 2.7 [10]
Live Load (Qk = 16) Q [kNm] Gamma 3.2 3.04 [10]
Load model uncertainty KE [−] Lognormal 1 0.1 [10]
Resistance model uncertainty KR [−] Lognormal 1 0.15 [10]

Table 2. Distributions of the parameters used to calculate the failure probability.

Figure 2. Posterior distributions for thermal conductivity (left) and specific heat of concrete (right) at different
temperatures for different values of failure time with the shaded 90 % Highest Density Intervals (HDI).

fire curve from EN 1991-1-2 [8] is used to represent
a natural fire exposure. In order to use it, some pa-
rameters defining the compartment where the slab is
located must be defined. In this study, a compart-
ment with dimensions of 10 m × 10 m × 3 m, opening
factor O = 0.05m1/2 and wall linings with thermal
inertia of 1450 J/(m2KS1/2) is considered. These pa-
rameters can be considered as easily determined and
constant. However, to define the parametric fire curve,
the fuel load in the compartment also needs to be de-
fined. There is a lot of uncertainty on this parameter
and therefore it will be considered stochastically (see
Table 2).

Similarly, as with the analysis of the furnace test, a
heat transfer calculation is needed to determine the
temperature gradient and the slab’s bending capacity.
Again, polynomial regression is used as there is a need
for a large number of calculations. For 1000 different
combinations of the thermal conductivity quantile,
the specific heat quantile and the compartment fuel
load, the temperature gradient is calculated and that
data is used for the regression.

The final step is the calculation of the conditional
failure probability given a structurally significant fire.
This is done using the updated material properties’
distributions and additional stochastic parameters
(presented in Table 2). The failure probability is

calculated using Equation 4 which describes the limit
state Z.

Z = KR · MR − KE · (G + Q) (4)

3. Results and discussion
The Bayesian updating was performed multiple times
for different assumed values of the failure time dur-
ing the test. Updated posterior probability density
functions of both thermal conductivity and specific
heat at different temperatures for a few failure times
are presented in Figure 2. From these results, it is
observed that the failure time is not particularly sen-
sitive to the value of the thermal conductivity and
the updating procedure results in only small changes
to the prior distribution. For example, at ambient
temperature, the standard deviation reduces from 0.42
to approximately 0.29 W/(m.K). However, the failure
time is highly dependent on the value of the specific
heat. The standard deviation at ambient tempera-
ture reduces from 0.57 for the prior to roughly 0.13
kJ/(kg.K) for the posterior. Furthermore, an almost
linear relation between the posterior mean value of
the specific heat and the failure time can be seen, as
shown in Figure 3 (left).

Using the first Bayesian method (MCMC) the yield
strength of reinforcement steel was also updated, how-
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Figure 3. Posterior mean value of the specific heat of concrete at ambient temperature in function of the failure
time (left); posterior distributions of the reinforcement steel yield strength at ambient temperature for different
values of the failure time (right).

Figure 4. Failure probability (left) and reliability index (right) in the function of the failure time.

ever, according to the results in Figure 3 (right), it is
evident that the failure time sensitivity to this param-
eter is relatively low.

It must be mentioned that the MCMC sampling
method might produce unrealistically low posterior
uncertainty as in theory the update would only be
specifically valid for the tested slab and not account
for the possible variations between similar slabs that
are going to be used for the same structure (which
are not tested). In the case where more than one test
is used, a procedure similar to the one presented in
[12] should be used where the mechanical properties
of reinforcement are not updated in order to focus on
the thermal properties.

To determine how much the failure probability
changes with the updated posteriors, the failure prob-

ability is first determined based on the prior distribu-
tions. This is calculated using 106 Monte Carlo real-
izations and the obtained value is equal to 4.4 · 10−3.
. The probability of failure is then also calculated
using the posterior distributions using the posteriors
for thermal conductivity and specific heat instead of
their respective priors. The results are presented in
Figure 4 in the function of the failure time. In order to
demonstrate how different test failure times affect the
probability of failure in the case of the real fire, the
failure probability has been calculated for the range
of test failure times from 110 to 150 min and it ranges
from 8.35 − 2.03 · 10−3.

As expected, a higher value of the failure time leads
to a lower value of the failure probability. However,
what is interesting is that for failure times lower than
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120 min, the failure probability is higher than the
one calculated using the prior distributions. When
analysing the distributions of the moment capacity
of the slab, it is observed that the reduction of the
variability compared to using prior distributions is
almost negligible. This can be attributed to the fact
that the uncertainty on the resistance of the slab is
mainly governed by the uncertainty on the fuel load.
However, the posteriors of the thermal properties still
have an effect, as it is observed that the mean value
of the capacity changes for different measured failure
times.

4. Conclusions
A procedure to obtain a more precise failure prob-
ability of a structural member in case of fire using
Bayesian updating based on the standard furnace test
result was presented. This procedure focuses on max-
imizing information from the highly used furnace test
in relation to the performance-based assessment of
the structural capacity under a real fire condition. As
the furnace test provides the failure time in case of
standardized fire exposure, a clearer connection from
its results to the structure’s behaviour in real fire is
explored. The procedure is demonstrated on the case
of a reinforced concrete slab.

A standard Markov Chain Monte Carlo simulation
approach was used and showed that the failure time
during the test is most sensitive to the variation of the
specific heat. For example, the updating procedure
resulted in a reduction of the standard deviation of
specific heat at ambient temperature from the prior
value of 0.57 to a posterior value of approximately
0.13 kJ/(kg.K).

This also has an effect on the calculated failure
probability under a real fire condition. Using the
updating procedure and Monte Carlo simulations,
the failure probability under a real fire condition was
calculated for the range of test failure times from
110 to 150 min and it ranges from 8.35 − 2.03 · 10−3.
It was also observed that the variability of the
concrete slab capacity in the case of a natural fire
is mainly determined by the uncertainty of the fire
exposure and that a reduction of the uncertainty
of material properties obtained with this method
has a small but distinctive effect. It must be noted
that this study’s results are limited to the behaviour
of the reinforced concrete slab, where the failure is
mostly a consequence of strength reduction of the
reinforcement due to the elevated temperature. In
the cases of other materials and structural members,
the effectiveness of this approach might differ.
Nevertheless, this presents an improvement in the use
of the furnace test results as this approach tackles
one of its biggest flaws, correlation to the real fire
behaviour, and shows that they can be used to
quantitatively assess the safety level of a structure in
case of a real fire.

Acknowledgements
The authors wish to thank the Research Foundation of
Flanders (FWO) for the financial support on the research
project (Grant number 3G010220) "Vibration-based post-
fire assessment of concrete structures using Bayesian up-
dating techniques".

References
[1] A. Law, L. Bisby. The rise and rise of fire resistance.

Fire Safety Journal 116, 2020.
https://doi.org/10.1016/j.firesaf.2020.103188.

[2] J. Wang, N. Zabaras. A Bayesian inference approach
to the inverse heat conduction problem. International
Journal of Heat and Mass Transfer 47(17-18):3927-41,
2004. https://doi.org/10.1016/j.
ijheatmasstransfer.2004.02.028.

[3] S. Guo, R. Yang, H. Zhang, et al. New Inverse Model
for Detecting Fire-Source Location and Intensity.
Journal of Thermophysics and Heat Transfer 24(4):745-
55, 2010. https://doi.org/10.2514/1.46513.

[4] K. J. Overholt, O. A. Ezekoye. Characterizing Heat
Release Rates Using an Inverse Fire Modeling
Technique. Fire Technology 48(4):893-909, 2012.
https://doi.org/10.1007/s10694-011-0250-9.

[5] CEN, EN 1992-1-2:2004: Eurocode 2: Design of
concrete structures - Part 1-2: General rules. Structural
fire design. European Standard, 2004.

[6] B. Jovanović, N. E. Khorasani, T. Thienpont, et al.
Probabilistic models for thermal properties of concrete.
Proceedings of the 11th International Conference on
Structures in Fire (SiF2020), p. 342-352, 2020.
https://doi.org/10.14264/363ff91.

[7] JCSS, JCSS Probabilistic Model Code. Part 3.2 Static
properties of reinforcing steel. Joint Committee on
Structural Safety, 2001.

[8] CEN, EN 1991-1-2:2002 Actions on structures - Part
1-2: General actions - Actions on structures exposed to
fire. European Standard, 2002.

[9] JCSS, Probabilistic Model Code. Part 3.10 Dimensions.
Joint Committee on Structural Safety, 2001.

[10] B. Jovanović, R. Van Coile, D. Hopkin, et al. Review
of Current Practice in Probabilistic Structural Fire
Engineering: Permanent and Live Load Modelling. Fire
Technology 57(1):1-30, 2020.
https://doi.org/10.1007/s10694-020-01005-w.

[11] T. Thienpont, R. Van Coile, R. Caspeele, et al.
Burnout resistance of concrete slabs: Probabilistic
assessment and global resistance factor calibration. Fire
Safety Journal 119, 2021.
https://doi.org/10.1016/j.firesaf.2020.103242.

[12] W. Botte, E. Vereecken, L. Taerwe, et al. Assessment
of posttensioned concrete beams from the 1940s:
Large-scale load testing, numerical analysis and
Bayesian assessment of prestressing losses. Structural
Concrete 22(3):1500-22, 2021.
https://doi.org/10.1002/suco.202000774.

89

https://doi.org/10.1016/j.firesaf.2020.103188
https://doi.org/10.1016/j.ijheatmasstransfer.2004.02.028
https://doi.org/10.1016/j.ijheatmasstransfer.2004.02.028
https://doi.org/10.2514/1.46513
https://doi.org/10.1007/s10694-011-0250-9
https://doi.org/10.14264/363ff91
https://doi.org/10.1007/s10694-020-01005-w
https://doi.org/10.1016/j.firesaf.2020.103242
https://doi.org/10.1002/suco.202000774

	Acta Polytechnica CTU Proceedings 36:84–89, 2022
	1 Introduction
	2 Methodology
	2.1 Overview
	2.2 Thermal calculation
	2.3 Bending capacity and failure time
	2.4 Updating of uncertain parameters based on standardized fire test 
	2.5 Natural fire exposure

	3 Results and discussion
	4 Conclusions
	Acknowledgements
	References

