
https://doi.org/10.14311/APP.2022.34.0032
Acta Polytechnica CTU Proceedings 34:32–37, 2022 © 2022 The Author(s). Licensed under a CC-BY 4.0 licence

Published by the Czech Technical University in Prague

MICROSTRUCTURE RECONSTRUCTION VIA ARTIFICIAL
NEURAL NETWORKS: A COMBINATION OF CAUSAL AND

NON-CAUSAL APPROACH

Kryštof Latkaa,∗, Martin Doškářb, Jan Zemanb

a Gymmázium Nový PORG, Pod Krčským lesem 25, 142 00 Prague 4, Czech Republic
b Czech Technical University in Prague, Faculty of Civil Engineering, Department of Mechanics, Thákurova 7,

166 29 Prague 6, Czech Republic
∗ corresponding author: latka@novyporg.cz

Abstract. We investigate the applicability of artificial neural networks (ANNs) in reconstructing
a sample image of a sponge-like microstructure. We propose to reconstruct the image by predicting
the phase of the current pixel based on its causal neighbourhood, and subsequently, use a non-causal
ANN model to smooth out the reconstructed image as a form of post-processing. We also consider the
impacts of different configurations of the ANN model (e.g., the number of densely connected layers, the
number of neurons in each layer, the size of both the causal and non-causal neighbourhood) on the
models’ predictive abilities quantified by the discrepancy between the spatial statistics of the reference
and the reconstructed sample.
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1. Introduction
Multi-scale modelling is a powerful predictive tool that
bypasses the need for complex constitutive laws by per-
forming auxiliary calculations at lower scales, using a
characteristic sample of a material microstructure [1].
Such a sample can be easily extracted when analysing
a material with regular, periodic arrangement of ma-
terial’s phases; in case of a material with stochastic
microstructure, the representative sample is typically
constructed artificially such that it matches selected
spatial statistics of the material microstructure [2].
While originally the representative samples were

generated via optimization approaches, e.g. [3], re-
cently, reconstruction methods relying on machine
learning have started to emerge, using various frame-
works including Markov random fields [4], deep adver-
sarial neural networks [5, 6], or supervised learning
using classification trees [7]. Several papers include
references to causal and non-causal neighbourhood
which both prove to be effective ways of extracting
input data for the chosen framework. However, the
causal approach generally seems to be the preferred
one, with one of these papers even claiming that their
model cannot generate valid results if based on a
non-causal neighbourhood [4].

The objective of our work is to reconstruct an image
of a microstructure from an almost random noise with
microscopic properties as similar as possible to the
original image. While many of the aforementioned
proposed approaches are implementation-complex, we
present a simple method using the TensorFlow frame-
work with the Keras sequential API [8]. We closely
follow the methodology of Bostanabad and coworkers,

[7]; however, instead of using classification trees, we
use two distinct Artificial Neural Networks (ANNs),
where the first network reconstructs the general pat-
tern of the microstructure and the second network de-
noises and smoothes out the previously reconstructed
pattern. For simplicity, we study only two-phase mate-
rials, i.e. we test the framework with black and white
images. Our implementation and data are publicly
available at a GitLab repository [9].

2. Methodology
The proposed reconstruction method comprises two
distinct steps:
(1.) The reconstruction of a general shape of the mi-
crostructure from a random noise with margins of
the reference image used as a seed.

(2.) The smoothing procedure of the reconstructed
image that improves the local features of the mi-
crostructural geometry.

2.1. Reconstructing microstructural
geometry

In Step 1, the overall material distribution should
be outlined in the reconstructed sample, rendering
the key features of the microstructural geometry. We
opted for a sequential approach, in which new values of
individual pixels in the discrete, pixel-like representa-
tion of the newly generated microstructural geometry
are predicted from the values previously determined
at antecedent positions (thus the causal approach), be-
cause such an approach has already proven its merits
in microstructural reconstruction, cf. [7].
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Figure 1. Illustration of the causal neighbourhood
with hr = 2 pixels around the central pixel highlighted
in dark grey. The red pixels represent the input data
for the ANN trained in Step 1; however, in order to
extract an input structure of a rectangular shape, the
black and yellow pixels are also included in the inputs
but their values are discarded and replaced by random
binary values.

To this end, we define a rectangular causal neigh-
bourhood of (2hr+1)× (hr+1) pixels with parameter
hr being the given neighbourhood radius; see Fig. 1
for an illustration. Note that the positions highlighted
in red constitute the real input data; the dark grey
and yellow pixels are only a padding (without value)
such that the whole input features a regular 2D shape
and, consequently, pooling layers can be easily applied.
The actual value of the dark grey pixel serves as a
label during an extraction of the training data from a
reference image.
The neural network for predicting the pixel values

in Step 1 is designed such that the rectangular input
is first subsampled using a nrp × nrp pooling layer, flat-
tened and passed through several densely connected
layers. Based on our numerical experiments, the maxi-
mum pooling layer consistently delivered better results
than the average pooling layer. The setup of the train-
ing procedure and the effect of the remaining network
parameters, namely the number of densely connected
layers nr` , the number of neurons in each layer nrn, the
size of the pooling layer nrp and the neighbourhood
radius hr, are discussed later in Section 4.

Once the network is trained, a new microstructural
realization is generated by iterating over pixels of a
to-be-reconstructed image in a raster scan order. Con-
sequently, an initial microstructural geometry must
be provided in a margin of width hr at the left, top,
and bottom edge of the image; the initial values in
the remaining part of the image are irrelevant and we
generate them as a random binary noise; see Fig. 2b.

2.2. Smoothing procedure
Outputs of the model trained in Step 1 usually contain
the main features of the trained microstructural geom-
etry; however, local details are typically polluted by
random noise; compare Figs. 2a and 2c. For Step 2 we
train an additional neural network to smooth out the

image and correct irregularities in the image generated
in the Step 1.
This time, the model works with a complete, i.e.

non-causal, square neighbourhood around the central
pixel (illustrated in Figure 3), usually of a smaller
neighbourhood radius hs than in the causal model in
Step 1. Again, the two-dimensional structure of the
input is needed to facilitate a subsampling/pooling
layer, which is then followed by flattening and passing
through two densely connected layers. The impact of
the actual choice (i.e. average vs maximum pooling)
of the subsampling layer is discussed in Section 4).
To increase robustness of the trained model and

prevent if from learning to simply copy the value of
the central pixel, we introduce two errors: (i) the
value of the dark grey pixel, which is used as a label
in the training, is always randomized in the inputs,
and (ii) we also randomly choose value for ξ × 100%
of red pixels from Fig. 3.

3. Error quantification
In order to assess the performance of the proposed
models beyond a visual inspection, we compare gener-
ated microstructural samples to the reference images
in terms of spatial statistics. The most straightfor-
ward spatial statistics is a volume fraction φ of a
chosen phase (the white phase, i.e. pixels with value
1, in our case). We define error εφ as an absolute
value of the difference between the volume fraction
φref in the reference sample and the volume fraction
φgen in the generated microstructure,

εφ = |φref − φgen| . (1)

The second spatial statistics considered in our work
is the two-point probability function S2(x), which
states the probability of finding two points separated
by x in a given phase. Since all our data are repre-
sented as a regular grid of values, the discrete version
of S2(x) can be easily computed using the Fast Fourier
Transform [2]. Consequently, we quantify the discrep-
ancy in the reference and a generated microstructure
by means of their discrete two-point probability func-
tions Sref

2 ∈ RNi×Nj and Sgen
2 ∈ RNi×Nj as

εS2 = ‖S
gen
2 − Sref

2 ‖F

NiNj
, (2)

where ‖A‖F is the Frobenius matrix norm [10]

‖A‖2
F =

Ni∑
i=1

Nj∑
j=1

(Ai,j)2 . (3)

Finally, to quantify the effect of our smoothing non-
causal model, we add the third error metric εD that
captures the level of local heterogeneity. Assuming
a two-phase medium, a microstructure can be repre-
sented with a Boolean matrix M ∈ {0, 1}Ni×Nj . For
each pixel we can computed a local quantity Di,j as a
sum of the averaged absolute differences between the

33



K. Latka, M. Doškář, J. Zeman Acta Polytechnica CTU Proceedings

(a) (b) (c)

Figure 2. Microstructure reconstruction process using the causal model. After training the neural network model
on input data from the initial microstructure (a), the trained model is used to sequentially predict pixel values in a
raster scan order using previously predicted pixel values from the causal neighbourhood.

hs

Figure 3. Illustration of the non-causal neighbour-
hood of a neighbourhood radius of hs = 2 pixels. The
black pixel represents the central pixel and the red
pixels represent non-causal neighbourhood. When ex-
tracting the neighbourhood, the central black pixel is
represented as a random binary value.

value of the central pixel and its neighbouring eight
pixels,

Di,j = 1
8

1∑
k,l=−1

|Mi+k,j+l −Mi,j | . (4)

The error εD is then computed again as an average
over the image excluding the one-pixel wide margin,
i.e.

εD = 1
(Ni − 2)(Nj − 2)

Ni−1∑
i=2

Nj−1∑
j=2

Di,j . (5)

The reasoning behind this error measure is that
if we consider the phases of pixels in a very small
neighbourhood around the central pixel, the number
of pixels whose phase is different to that of the central
pixel will be lower if the edges are properly smoothed
out. Even though this might not necessarily be true
for the pixels which form the edge of the reconstructed
pattern (and thus, the black and white phase must
switch), it will apply on a larger scale (hence, we
compute the sum of the values of Dij, for all pixels in
the image). Therefore, in theory, the lower the value
of εD is for an image, the more smoothed out the
image should be.

4. Results
We report the effect of parameters on the quality of
the microstructural reconstruction quantified with the
error measures introduced in the previous chapter.

First, we focus on parameters of the reconstruction
model. Tables 1 and 2 illustrate the impact of altering

Number of neurons nrn
9 16 25

nr` = 2 0.046 0.031 0.036
nr` = 3 0.031 0.049 0.029
nr` = 4 0.002 0.010 0.021

Table 1. Values of the volume fraction error εφ,
depending on the number of layers nr` and the number
of neurons in each layer nrn.

Number of neurons nrn
9 16 25

nr` = 2 1.36×10−4 9.36×10−5 1.05×10−4

nr` = 3 9.32×10−5 1.46×10−4 7.57×10−5

nr` = 4 2.96×10−5 3.71×10−5 6.70×10−5

Table 2. Values of the two-point probability error
εS2 , depending on the number of layers nr` and the
number of neurons in each layer nrn.

the number of densely connected layers nr` and the
number of neurons in each layer nrn, while keeping
the neighbourhood radius hr and the pooling size nrp
constant, on the volume fraction error εφ and the two-
point probability error εS2 , respectively. In particular,
we set hr = 15 and nrp = 3 as these values produced
the most visually appropriate reconstructions in early
tests of the model.
The next two tables, Tabs. 3 and 4, summarize

the sensitivity study investigating the influence of
the neighbourhood radius hr and the pooling size nrp
on the reconstruction. This time, all the tests were
performed with nr` = 2 densely connected layers with
nrn = 16 neurons in each layer.
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(a) (b)

Figure 4. Effect of the smoothing network based on the non-causal model: (a) reconstructed image serving as an
input, (b) microstructure corrected by the smoothing model. Both images are of size 200 x 200 pixels.

Neighbourhood radius hr
10 12 15

nrp = 2 0.491 0.298 0.006
nrp = 3 0.058 0.046 0.031

Table 3. Values of the volume fraction error εφ,
depending on neighbourhood radius hr and pooling
size nrp.

Neighbourhood radius hr
10 12 15

nrp = 2 2.50×10−3 1.24×10−3 4.05×10−5

nrp = 3 1.81×10−4 1.36×10−4 9.36×10−5

Table 4. Values of the two-point probability error εS2 ,
depending on neighbourhood radius hr and pooling
size nrp.

The next three tables, i.e. Tables 5, 6, and 7, sum-
marize the parametric study for the smoothing model
with non-causal neighbourhood. We chose the re-
constructed image obtained by the first model using
nr` = 2 layers, each with nrn = 16 neurons, a neighbour-
hood radius of hr = 15 and a pooling size of nrp = 3
as an input to the model and compared the resulting
smoothed-out image to the original microstructure
(before reconstruction), recall Fig. 2a, in terms of the
error measures introduced in Section 4. We carried
out two sets of test: one for the average and one for
the maximum pooling 2D layer. In each set, we altered
the radius of the non-causal neighbourhood hs as well
as the magnitude of the artificially introduced noise ξ.
Each set rendered three tables as we inspected also
the level of local heterogeneity εD, in addition to the
errors εφ and εS2 already reported for the generative
model.

5. Discussion
First, we add an observation regarding the three error
measures defined in Section 3 and our visual percep-
tion of the reconstructed microstructures. The first
error measure, εφ, served as a coarse check that the
volume fraction in the reconstructed image is similar

Neighbourhood radius hs
5 7 10

m
ax

ξ = 0.05 0.041 0.002 0.040
ξ = 0.10 0.004 0.036 0.033
ξ = 0.15 0.051 0.027 0.033

av
er
ag
e ξ = 0.05 0.058 0.000 0.033

ξ = 0.10 0.037 0.003 0.030
ξ = 0.15 0.044 0.029 0.036

Table 5. Values of the volume fraction error εφ,
depending on the magnitude of artificially introduce
noise ξ, neighbourhood radius hs, and the type of
pooling layer used (max or average).

Neighbourhood radius hs
5 7 10

m
ax

ξ = 0.05 1.22×10−4 3.15×10−5 1.20×10−4

ξ = 0.10 3.24×10−5 1.06×10−4 9.88×10−5

ξ = 0.15 1.23×10−4 7.21×10−5 9.88×10−5

av
er
ag
e ξ = 0.05 1.76×10−4 3.08×10−5 1.01×10−4

ξ = 0.10 1.12×10−4 3.25×10−5 8.98×10−5

ξ = 0.15 1.31×10−4 8.90×10−5 1.08×10−4

Table 6. Values of the two-point probability error εS2 ,
depending on the magnitude of artificially introduce
noise ξ, neighbourhood radius hs, and the type of
pooling layer used (max or average).

to the original; however, it could not assess how simi-
lar the reconstructed pattern is to the original. For
this purpose, we adopted εS2 , based on the two-point
correlation function, as we excepted it ot be better
suited to compare the reconstructed pattern to the
original. Nevertheless, we noticed a significant discrep-
ancy between the values of εS2 for each model and the
visual similarity of the reconstructed pattern to the
original one. For example, the generative model using
nr` = 2 layers, each with nrn = 16 neurons, neighbour-
hood radius of hr = 15 and a pooling size of nrp = 3,
could probably be considered as the most accurate in
terms of the visual pattern (the image reconstructed
using this model is in Figure 2c), but only seventh
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Neighbourhood radius hs
5 7 10

m
ax

ξ = 0.05 0.130 0.133 0.123
ξ = 0.10 0.135 0.129 0.124
ξ = 0.15 0.123 0.130 0.127

av
er
ag
e ξ = 0.05 0.113 0.120 0.112

ξ = 0.10 0.114 0.119 0.112
ξ = 0.15 0.114 0.115 0.113

Table 7. Values of the local heterogeneity error εD,
depending on the magnitude of artificially introduce
noise ξ, neighbourhood radius hs, and the type of
pooling layer used (max or average). For comparison,
the value of εD for the reference image is 0.097.

best according to εS2 . We conclude that other spatial
statistics such as two-point cluster function or lineal
path should be added to the suite of error measures
as well to capture both the global distribution of a
microstructure and its local characteristics. On the
other hand, the assessment of the smoothing model
by εD values was generally in accordance with the
quality of the visual appearance of the reconstructed
images.

Our results show that taking more layers with less
neurons in each was favourable to the approach with
less but more populated layers. Perhaps as expected,
the larger neighbourhood radius was considered during
training of the generative model, the better the results
were. Surprisingly, nrp = 2 pooling size was better for
the largest neighbourhood radius, while larger pooling
was preferential in all other cases.

In the case of the smoothing model, considering
larger neighbourhood radius hs beyond certain thresh-
old (in our case hs = 7) did not improve its perfor-
mance. This can be attributed to the different purpose
of both models; while the generative model needs in-
formation from distant points to properly distribute
the material with the sample, the smoothing model is
by its nature local. On the other hand, larger pooling
layer was consistently outperforming the smaller one
in all tests. Most importantly, we noticed that the
values of εD were significantly lower for the smooth-
ing models using an average pooling layer instead of
a maximum pooling layer. This is probably due to
the fact that the average pooling layer ignores sharp
features in the image (e. g. individual pixels whose
phase was not correctly identified in the Part 1 of the
reconstruction), which allowed us to smooth out the
edges of the reconstructed pattern in the image.
However, it is important to emphasize that these

observations are specific for the considered microstruc-
ture.

6. Conclusions
Despite the simplicity of the proposed ANN-based
model, accompanied by the ease of implementation

facilitated by the TensorFlow framework and the
Keras Sequential API, the model generates mean-
ingful microstructural geometries. The combination
of a causal model used for reconstruction and a non-
causal smoothing model in particular yielded satis-
fying results, cf. Figure 4, considering the fact that
the models knew only a limited local information. We
believe that even better results can be obtained by,
e.g., incorporating the considered errors directly in the
loss function during the training process of individual
networks. Yet, this remains to be done in our future
work.

The need for the margin of initial values during
reconstruction might be seen as a limitation restricting
the model to generating microstructural samples only
as large as the reference one, from which the margin
can be easily copied. However, a possible solution is
to take the reference sample, dismember it into pieces
and reorder the pieces so that they form the margin
of desired size. Alternatively, starting from different
parts of the reference microstructure, a set of smaller
samples can be generated; these samples can be then
assembled together while blending the microstructure
in their overlaps using, e.g., image quilting [6].
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