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Abstract. The paper is focused on the evaluation of the effect of earthquakes on underground
structures. Free-field analysis is one solution of this task common mainly in engineering tunnelling
practice, but it has some rather simplified aspects (e.g. equivalent shear strain is constant). Pseudo-
static finite element calculation combines free-field analysis and the advantages of a FEM model.
Dynamic effects are introduced in the form of displacements prescribed along the vertical boundaries of
the FEM model in a usually static manner. This approach also implies constant material parameters
for the geological profile in the horizontal direction, an arbitrary geometry of excavation, soil structure
interaction and description of share waves as a time-dependent 1D analysis of the so called free-field
column. Moreover, there is shown an example comparing pseudo-static FEM analysis with an analytical
method. Finally, the advantages of the pseudo-static FEM method are presented.
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1. Introduction
The response of underground structures subject to
seismic load can be solved in several ways, which can
be roughly classified into four categories: laboratory
testing, analytical solutions, pseudo static finite ele-
ment calculations and full dynamic analysis.
(1.) Centrifuge modelling techniques allow well for
control testing conditions regarding investigations of
soil structure interaction in simulated seismic events.
However, there are several difficulties for a dynamic
centrifuge model such as accurate modelling of the
boundary conditions or the scaling law for dynamic
velocity.

(2.) Most simplified methods were derived from closed
form solutions but involving neglect of some fac-
tors. In general, the methodology of the analytical
method is that the seismic loads for an underground
structure are characterized in terms of strains im-
posed on the structure by the surrounding ground
or their interaction. Although this is the most con-
servative method having only a limited application,
it does provide a first-order estimate of the liming
stresses so to potentially serve as an accuracy check
on more complex calculations.

(3.) A pseudo-static finite element calculation pro-
vides a solution for any shape of underground
structure in a generally non-homogeneous layered
rock/soil mass with a potentially nonlinear material
response. The basic idea of this approach is that
the maximum shear deformation in a free-field con-
dition of the layer represents the maximum dynamic
earthquake stress in this layer and can be an input
to the numerical model as a boundary condition.

The shear strain equivalent to the actual dynamic
loading can be calculated from the particle velocity
estimated either in a simplified manner based on
limited information or from the solution of a one
dimensional simulation of free-field response to an
actual earthquake.

(4.) Full dynamic analyses are based on a direct ap-
plication of recorded accelerations to the actual
computational model of the tunnel where the soil
and tunnel responses are mechanically coupled and
analysed via numerical modelling, such as finite
element methods.

2. Analytical method
The methodology of the analytical method for a seis-
mic loading design is based on the principle that the
static condition has to include the additional loading
imposed by seismicity. In the case of underground
structures, the seismic loads are described in terms of
strains imposed on the structure by the surrounding
ground mass or their interaction.

2.1. Seismic coefficient method
This method was originally developed for dynamic
analysis of over ground buildings. Inertial forces due
to earthquakes F1 of the structure and F2 of the upper
soil mass are described by the following equations:

F1 = a

g
·Q = Kc ·Q, (1)

F2 = ηc ·Kh ·m1 · g. (2)
This method is not suitable for tunnels with large
diameters because this method does not reflect the
real dynamic property of tunnel structure.
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2.2. Free – field deformation approach
Tunnel structures are assumed to move together with
the surrounding soil/rock mass during earthquakes
and therefore undergo the following deformations:
• ovaling,
• axial,
• curvature.

The ovaling deformation of a circular tunnel lining
is primarily caused by seismic waves that propagate
perpendicular to the longitudinal axis of the tunnel
(Figure 1). The vertically propagating shear waves
produce usually the most critical ovaling distortion
of the lining. The free field deformation approach
assumes that the deformation of the underground
structure should conform to the deformation of the
soil in the free field under seismic shaking. In these
simplified methods described in [1–4] the soil – struc-
ture interaction and the effects of the waves are ne-
glected. Moreover the maximum shear strain γmax
(Equation 6) induced by shear waves propogating in
vertical planes is constant along the depth z. This may
lead to an overestimate of tunnel lining deformations
especially in loose rock and soils.

Figure 1. Ovaling deformation of a Circular Cross
Section.

In the case of a circular tunnel in the homogeneous
medium the ovaling deformation is determined by the
following steps:
(1.) according to the Seismic Report we get the Pick
Ground Acceleration (3) and the site-specific Pick-
Ground-Acceleration (4):

agR = 40% · Ss, (3)

amax,s = S · agR (4)
(2.) and then we determine the pick acceleration at
the depth of the tunnel:

az,max = C · S · agR, (5)

(3.) az,max max is used to determine maximum shear
deformation in free-field condition as shown in equa-
tions (6) and (7):

γmax = Vz
Cs
, (6)

Vz = k · az,max (7)

(4.) and finally we obtained the ovaling deformation
of the circular tunnel:

∆dff = γmean
d

2 . (8)

2.3. Soil-structure interaction
approach

The kinematic interaction between the tunnel and the
surrounding soil/rock mass is used to improve the
accuracy of the widely used free-field methods. Gener-
ally, analytical solutions for estimating soil-structure
interaction for tunnels are based on the following as-
sumptions:
• the tunnel is circular;
• the soil is an infinite, elastic, homogeneous and
isotropic medium;

• the tunnel lining is generally an elastic tube under
plane strain conditions or it is based on the theory
of an elastic beam on an elastic foundation;

• the interface between the soil and the tunnel lining
has a full-slip or a no-slip condition;

• the soil-structure interaction effects operate in a
quasi-static manner, ignoring any inertial interac-
tion effect.

There exist many approaches in the technical liter-
ature describing seismic design and analysis of under-
ground structures using a soil structure interaction
approach. For example: Billota et al. [5] discussed
four different closed-form elastic solutions to evaluate
the maximum shear strain γmax (all approaches are
based on the equilibrium of the soil column from the
surface to the given depth z), while expressions for
displacements and internal lining forces in the circular
tunnels excavated in a rock mass with a near fault
are presented in [6], and closed-form expressions to
calculate the circular tunnel liner forces due to the
compressive seismic P-wave propagation are described
by Kouretzis et al. [7].
In addition an analytical solution for estimating

internal forces in the lining of a circular tunnel in
the homogeneous medium is published in [8, 9]. The
ovaling deformation is determined by the assumed
shear strain ∆d (Figure 1). We get for parameters
∆dff ,∆dlin the follow-on formulas:

∆dlin = Rn∆dff ,∆dff = γmean
d

2 ,

Rn = 4(1 − νm)
αn + 1 , αn =

12El(5 − 6)
d3Gm(1 − ν2

l ).
(9)

It is evident that the material and geometric parame-
ters Rn and αn take into account the rigidity of the
subsoil-lining system. Expressing the curvature of
an elliptical excavation using ∆dlin and parameters
describing soil structure interaction then the moment
in the lining (Figure 2) can be written using the polar
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coordinate ϕ (positive clockwise from horizontal) as:

M(ϕ) = 6El∆dlin
d2(1 − ν2

l ) cos (2(ϕ+ φ

4 )). (10)

With reference to Figure 2 (c), the normal force on
the curved element can be expressed as:

N(ϕ) = − 1
R

dM2

dϕ
+ PnR (11)

and after rearranging using equation (10):

N(ϕ) = 48ElI∆dlin
d3(1 − ν2

l ) cos (2(ϕ+ φ

4 )) +Rpn (12)

Figure 2. Internal forces and contact stress on the
differential element.

3. pseudo static FEM
Implementation of free-field analysis results into the
static FEM analyses can be made in several ways.
Generally, the shear strains in the 2D solution without
lining have to be in conformity with 1D free-field
analyses and the shear deformation in the free-field
deformation is applied by prescribed displacements at
the boundaries of the numerical model.
In the first method, we consider a homogeneous

soil/rock mass with an effective shear modulus G.
We determine the maximum shear deformation in
free-field condition γmax (6). The value of γmax cor-
responds to the maximum horizontal displacement
applied in the boundaries of the numerical model
(Figure 3), calculated by equation:

∆xmax = γmax · hm. (13)

The second method considers the layered soil/rock
mass (Figure 4) where some sort of homogenization is
needed. Adopting the Voigt assumption of constant
deformation at each point of the solid we obtained
effective shear modulus GhomV :

GhomV = h1

h
G1 + h2

h
G2 (14)

and average shear deformation of the numerical
model γmean:

γmean = h1

h
γ1 + h2

h
γ2. (15)

Figure 3. Homogenized mass and constant shear
strain.

Figure 4. Layered mass and constant shear strain .

For the layered mass the better method is based
on the setup constant corresponding movements by
parts – each layer has a different shear deformation
– Figure 5. The prescribed shear deformation values
should be in the ratio of the stiffness of the materials
in layers to ensure the continuity of the stress at the
layer interface:

γ1

γ2
≈ G2

G1
(16)

Figure 5. Layered mass with different values γ at
layers 1 and 2.

4. Full dynamic calculations
using FEM

The numerical solution of dynamic load effects using
the finite element method is based on the principle
of virtual displacements, which express the external
volume load by the effects of inertial forces and leads
to equations of differential motion in the form:

Mü(t) + Cu̇(t) + Ku(t) = F(t). (17)
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The assembly of the stiffness matrix C is usually a
very complicated task thus the Rayleigh formulation
is used i.e. as a linear combination of the mass tensor
M and the stiffness tensor K:

C = αM + βK. (18)

Coefficients α and β have been calculated according to
the double frequency method that avoids an overesti-
mate of damping throughout the considered frequency
range [10]. Assuming that the first natural frequency
is the least damping, the equation (17) can be decom-
posed to the natural vibrations. Using the damping
ratio ξ we get a relationship for individual frequencies
(for real systems with a large number of degrees of
freedom):

ξi = 1
2( α
ωi

+ βωi). (19)

In order for there to be a damping ratio ξ minimal
for ω=ωi it must fulfill the next equation:

dξ

dω
= 1

2(− α

ωi
+ β). (20)

After substitution ω=ωi into equation (20) we get

α = ω2
1β (21)

and then from equation (20)

β = ξ1

ω1
. (22)

In common practice, equation (17) is solved by
direct integration using the Newmark integration
method. The discrete form of equation (17) already
includes the influence of boundary conditions and the
effect of loading in the form of a prescribed accelera-
tion of displacements at the lower limit.

5. Case exemplification
The FEM calculation results will be compared with the
results of the analytical calculation published in [11].
The geometry of the model and the finite element
mesh is shown in Figure 6 and Table 1 contains the
parameters of the subsoil and the tunnel lining. The
seismic loading has PGA 2ms−2 and the wave period
is 0.01 s. All FEM calculations were made by Geo5
Tunnel software [12]. For the sake of clarity the rep-
resentative extreme values obtained for ϕ = φ

4 have
been set – see Table 2. For illustration the resulting
moment in the lining is also shown in Figure 7.
The two approaches in terms of the absolute per-

centage of the difference in the last column of Table 2
can be mutually assessed. It is evident that in the
case of a homogeneous mass and a circular excavation
both methods give comparable results. The exception
is the value of normal force in the case without a
considering of the interaction between the lining and
the soil (effect of the contact stress). If we take into
account the value of contact stress in the equation
(18), the resulting values ∆dff a ∆dlin of normal force
for both methods are almost identical.

Type Unit Value Unit
Loading γmean 0.0105 [-]

Soil Gm = Ghom 8.65 [MPa]

νm 0.3 [Pa]

ρm 2000 [kg/m3]

Lining γmean 0.0105 [-]

νl 0.3 [-]

Gl 12.5 [GPa]

d 6 [m]

h 0.3 [m]

I 0.00225 [m4]

Table 1. Input parameters of the numerical model

Figure 6. Numerical model.

6. Conclusions
The paper is focused on the evaluation of the seismic
effects on the tunnel lining by free-field analysis and
pseudo static calculation using FEM. Generally, both
calculation methods give comparable results in the
case of a homogeneous soil environment and ignoring
soil structure interaction. However, from a practical
point of view, the FEM combined with the 1D free-
field analysis yields clear advantages:

• It allows a possibility to derive the load for any
time of the earthquake (measured or synthetically
generated accelerograms).

• It analyses any shape of excavation (lining).

• It takes into account the potentially non-linear sub-
soil response.

• It take into consideration the layered rock/soil mass
depending on the "real" material parameters.

Another indisputable advantage is taking into ac-
count the soil structure interaction whose neglect in
the case of an analytical method may lead to a sig-
nificant overestimation of the normal force. Such a
non-realistic value of the normal force leads to a lower
degree of reinforcement in the effects of the bending
moment for the considered cross section.
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Variable FEM Analytical Difference [%]
∆ dff [mm] 31.3 31.5 0.6

∆dlin [mm] 31.0 36.1 14.1

M [kNm/m] –367.6 –422.8 13.1

V [kN/m] 244.5 281.0 13.0

N [kN/m] –380.8 –562.0 32.2

N∗ [kN/m] –380.8 –390.1∗ 2.4∗

* The influence of cont. nor. stresses was taken into the calc.

Table 2. Output parameters.

Figure 7. Moment in the lining.

List of symbols
a earthquake acceleration
an ratio between the stiffness of lining and massive
az,max pick acceleration at the depth of the tunnel
d diameter of the excavation
g gravitational acceleration
h thickness of the lining
k ratio of PGV to PGA
m1 weight of soil mass
u actual displacement vector

C ground motion at depth z
C damping matrices
Cs apparent propagation velocity of S-wave
D tunnel radius
El Young modulus of the lining
F vector of nodal loading
G shear modulus of soil/rock
Gm elasticity modulus of the massive
I moment of inertia of the lining
K stiffness matrices
Kv seismic coefficient in vertical direction
Kh seismic coefficient in horizontal direction
M mass matrices
Q weight of structure
PGA peak ground acceleration
R reduction factor of depth influence
R radius of excavation
Rn lining – massive racking ratio under normal loading
S coefficient based on the types of elastic response

spectra suggested in Eurocode 8

Ss short period spectral acceleration
Vs peak ground velocity

α parameter that determines the influence of mass in
the damping of systems

αM damping proportional to displacements
β parameter that determines the influence of the stiffness

in the damping of the system
βK damping proportional strain rate
γmean average shear strain of the model
ηc integrate response coefficient related to the tunnel

depth, soil property and project significance
νm Poisson number of the massive
νl Poisson number of the lining
σv Poisson number of the lining
ω angular frequency
ω1 angular frequency of the first natural mode
ωi angular frequency of i-th mode
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