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Abstract. A variety of steels, cast iron grades and other metals have long been used for the production
of machine components. In recent years, however, new materials such as sintered materials and plastics
become increasingly important. Because of the large number of different fibers, matrices, stacking
sequences, processing conditions and processes and the variety of resulting material configurations it is
not possible to rely on proven fatigue models for conventional materials. Moreover, the development of
models, which are valid for all composites are generally extremely difficult.

In this work, a possible application of high-performance composites as materials for machine
elements are investigated. This study attempts to predict the fatigue behavior and the consequent
durability, based on laboratory measurements. Using the statistics program JMP, the aquired data
was subjected to a reliability analysis in order to ensure the plausibility, validity and accuracy of the
measured values.
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1. Introduction
There was a tremendous advance in the field of plastics
took in the past few decades. Plastics have become
an integral part of our daily life. Polymers are flexible
materials which can cover a great range of applica-
tions. They replace more and more metal, glass, wood
and other materials. The development of novel artifi-
cial materials often opens a door to new technologies.
Electrical and automotive industry are hard to imag-
ine without plastics, the use of polymer materials has
revolutionized medicine.

Cyclically stressed components have a limited dura-
bility, therefore it is important to perform fatigue tests
or simulations on critical components to predict their
lifetime. Figure 1 shows representative loading pat-
terns with constant amplitudes for the whole loading
level [1].

Figure 1. Constant amplitude loading patterns.

Fatigue tests are performed to study the relationship
between the fatigue resistance of a material, compo-
nent or structural element and cyclic loading [2]. It is
a slowly progressing damage process. The strengths
lie far below the static strength and yield strength.
The objective of this work was to create high cy-

cle fatigue curves from experimental datasets, using
suitable material models, similar to the Wöhler curve.
The curve should as closely as possible reflect the
experimental values. Since specimens and test con-
ditions are never 100 % identical, in two discrete
measurements there is always scattering in the re-
sults, which can span over a decade in fiber reinforced
polymers [1]. Therefore to handle and correctly inter-
pret experimental results, statistical methods must be
used.

2. Fatigue Models
In general, Fatigue models are quantifications of phys-
ical material properties. They are independent of the
shape of the component and are usually based on
experimentally acquired data. The aim of all mod-
els is to predict how a component behaves in certain
conditions. The relationships are reproduced mathe-
matically afterwards, therefore they are mathematical
models.

In this work, the focus will be on presenting fatigue
models [3]. In order to design a component correctly
in terms of fatigue, a complete set of experimentally
acquired data is usually required. Since this is not
possible for reasons of time and cost, engineers have
to rely on predictive models. This models predict the
durability N (in cycles) under a given cyclic loading.
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2.1. The Basquin Model
The Basquin fatigue model is a linear regression model.
In a logarithmic scale, the durability (logN) is plotted
versus the stress amplitude (log∆σ).

logN = A−B · log∆σ, ∆σ ≥ ∆σ0, B ≥ 0 (1)

A and B are material parameters that need to be
approximated with appropriate fitting methods. In
the model, ∆σ is limited by ∆σ0, the endurance limit.
In this work, the endurance limit is at 406 cycles. ∆σ0
itself has no direct influence on the model, since it is
not considered in the formula.

2.2. The Strohmeyer Model
In contrast to the Basquin model the models of
Strohmeyer and Weibull are nonlinear. They are
shaped by smoothing a piecewise linear function.
Again A and B are the material parameters.

logN = A−B · log(∆σ −∆σ0), B ≥ 0 (2)

2.3. The Weibull Model
The Weibull model is more complex, since there are
more parameters to fit.

log(N+D) = A−B·log
(

∆σ −∆σ0

∆σst −∆σ0

)
, B ≥ 0 (3)

A, B and D describe the material parameters and
∆σst denotes the ultimate strength.

2.4. The Bastenaire Model
logN −B
∆σ −∆σ0

= A · exp[−C · (∆σ −∆σ0)] (4)

A, B and C express the material parameters. This
model will be henceforth denoted as Bastenaire1, be-
cause one can find another model of Bastenaire in the
literature, which is called Bastenaire2 here. It is quite
similar to equation 4 and it is also discussed for the
purpose of comparison.

N = A · exp[−C · ∆σ −∆σ0

B
]/(∆σ −∆σ0) (5)

3. Techniques of Parameter
Fitting

In this section, two exemplar fitting methods are dis-
cussed in greater detail [4–6]. Both methods are cur-
rent and proven estimation methods in statistics.

3.1. The Method of Least Squares
(L2-Norm)

The method of Least Squares is a mathematical stan-
dard procedure for compensation calculation. Here
a function is determined, which fits a point cloud as
close as possible. A point cloud is a scatter plot, a
graphical representation of statistical measurements
in a coordinate system.

To illustrate the method, the Basquin model is used
as an example. Consider a dependent variable y (in
this case, logN), which depends on one or several vari-
ables (in this case A, B and log∆σ). The relationship
between the dependent variable and the arguments
are described in a model function f [7]. The model
function f can be linear, as in this case, but it can
also have any other shape (parabolic, exponential, ...).
The general form is:

y(x) = f(x; a1.........am) (6)

In this case:

logN = A−B · log∆σ, ∆σ ≥ ∆σ0, B ≥ 0 (7)

The parameters A and B should be adapted such that
bad data points (outliers) have only little effects on
the fitting. If no unique solution that perfectly fits the
point cloud can be found, then a compromise solution
with the smallest overall deviation from the point
cloud is the valid criterion. For this purpose, the sum
of the squares of the differences between the model
function f and the measured values yi is formed.

n∑
i=1

(f(xi; a1.........am)− yi)2 (8)

The parameters A and B are adapted until the sum
of squares becomes minimal. In this work the fit-
ting procedure carried out with the help of a solver
implemented in Excel.

3.2. The Method of Least Absolute
Deviations (L1-Norm)

The L1 Norm is a more robust fitting method. Outliers
are not so strongly weighted. In principle, this method
works similarly to the previously explained Method
of Least Squares. Instead of the sum of the squares,
the absolute sum of the differences between the model
function f and the measured values yi is calculated.

Abs ‖
n∑

i=1
(f(xi; a1.........am)− yi) ‖ (9)

Subsequently, the parameters A and B are also be
adjusted until the absolute sum is minimized.

4. Reliability
The reliability is a measure of the accuracy of the mea-
surement, as well as for the reliability of data. Mea-
surement series with very high reliability are therefore
almost free of random errors, which means that they
are repeatable at any time under the same measure-
ment conditions and thereby provide approximately
the same results [8, 9]. Therefore, one gets a high reli-
ability, when performing controlled and standardized
measurements. To examine the reliability, different
techniques can be used [10]. Some known techniques
are:
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• Test - Retest Reliability

• Parallel - Forms Reliability

• Split - Half Reliability

• Internal - Consistency Reliability.

Reliability analysis can be easily carried out with
various computer programs. Known programs are
SPSS or, as used in this work, JMP.

5. Evaluation of Fatigue Data
Two different materials were tested. Material#1 is
a glass fiber reinforced, semi-crystalline thermoplas-
tic. Material#2 is a carbon fiber reinforced, semi-
crystalline thermoplastic, where the bearing was simu-
lated as a compliant bearing. Material#3 is the same
material as Material#2, however it has been simulated
as a rigid bearing.

5.1. Fatigue Models

Figure 2 exhibits the applied fatigue models for ma-
terial#1. Since for Material#2 the ultimate strength
and the load at the endurance limit could not be in-
vestigated, only the Basquin model could be applied
3. In the case of Material#3 the fitting with the
Strohmeyer and the Weibull model resulted in the
same curve 4.

Figure 2. Applied fatigue models for Material#1.

Figure 3. Applied fatigue models for Material#2.

Figure 4. Applied fatigue models for Material#3.

The software minimized the deviation between the
models and the measured values. By comparing the
obtained model parameters the optimal model can
be easily determined, not only qualitatively but also
quantitatively. Figure 5 and 6 show the optimal
fatigue models for the materials. Since for Material#2
only the Basquin model was applied, it was omitted
below.

Figure 5. Optimal fatigue model for Material#1.

Figure 6. Optimal fatigue model for Material#3.

5.2. Reliability Analysis in JMP
In JMP custom tables can be created, or files of dif-
ferent formats (Excel, SAS, text files, ...) can be
processed. For a correct data input, the appropriate
settings in the import wizard must be applied.
In order to determine the best distribution for the

measured values, a life distribution is performed [11].
The program returns a table with the appropriate
distributions for the respective materials. JMP sorts
them in descending order, the best model being on the
top. The distribution of the measured data is weighted
by 3 criteria.The Akaike Information Criterion (AIC),
the Bayesian Information Criterion (BIC) and Log-
likelihood (maximum probability) used as estimation
methods for the selection of models in statistics.
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Tables 1, 2 and 3 show the "Model Comparisons"
for each materials. According to the distribution anal-
ysis in JMP, the measured values from Material#1
follows a natural logarithmic distribution, from Mate-
rial#2 a Frechet distribution and from Material#3 a
Weibull distribution.

Distribution AICc Loglike BIC
Lognormal 503.65435 498.90435 504.79323
Weibull 503.66928 498.91928 504.80816
Frechet 505.47261 500.72261 506.61149

Loglogistic 505.74393 500.99393 506.88280
Exponential 518.31862 516.08332 519.02776

LEV 538.93104 534.18104 540.06992
Logistic 546.20378 541.45378 547.34266
Normal 550.30607 545.55607 551.44495
SEV 563.21318 558.46318 564.35205

Table 1. Comparisons of the distribution of the
measured data for Material#1.

Distribution AICc Loglike BIC
Frechet 297.91571 292.41571 297.21150

Lognormal 299.16181 293.66181 298.45760
Loglogistic 300.06766 294.56766 299.36345
Weibull 301.43592 295.93592 300.73171

Exponential 305.28286 302.83841 305.23631
LEV 320.31613 314.81613 319.61192

Logistic 326.13477 320.63477 325.43056
Normal 329.93763 324.43763 329.23342
SEV 337.33938 331.83938 336.63517

Table 2. Comparisons of the distribution of the
measured data for Material#2.

Distribution AICc Loglike BIC
Weibull 407.25467 402.16376 407.44188

Loglogistic 409.33460 404.24369 409.52181
Lognormal 409.74094 404.65003 409.92814
Frechet 415.33191 410.24100 415.51912

Exponential 416.03305 413.69971 416.33877
LEV 432.98688 427.89597 433.17409

Logistic 439.48273 434.39182 439.66994
Normal 439.98404 434.89313 440.17125
SEV 445.68650 440.59560 445.87371

Table 3. Comparisons of the distribution of the
measured data for Material#3.

Based on this findings, the durability evaluation
was performed. Tables 4, 5 and 6 display the
mean estimates for each material. σ is the standard
deviation from the measured data, β0 and β1 denote
positional and shape parameters. StdError stands for
standard error and describes the standard deviation,
but from the estimate function. Additionally the

tables show for each estimation the 95 % confidence
interval.
µ is the estimated average value of cycles, which

is dependent on the loading. Strictly speaking, this
designation should be logµ, because the relations are
from logarithmic nature.

Par. Estimate StdError Low95 % Up95 %
β0 79.25810 6.98804 64.83945 93.67675
β1 -14.17640 1.44835 -17.16484 -11.18796
σ 0.92287 0.14971 0.69226 1.31688

Table 4. Mean estimations for Material#1.

µ = 79.2581− 14.1764 · log(loading) (10)

Par. Estimate StdError Low95 % Up95 %
β0 126.9802 20.30212 82.06733 168.4553
β1 -22.7520 3.98476 -30.90587 -13.9531
σ 0.6862 0.15914 0.45366 1.1457

Table 5. Mean estimations for Material#2.

µ = 126.9802− 22.75204 · log(loading) (11)

Par. Estimate StdError Low95 % Up95 %
β0 86.41222 14.55656 53.28540 112.4174
β1 -14.89503 2.94585 -20.13681 -8.1682
σ 1.18943 0.25506 0.80843 1.8933

Table 6. Mean estimations for Material#3.

µ = 86.41222− 14.89503 · log(loading) (12)

Figures 7, 8 and 9 illustrate the quantile analysis.
The quantile is a measure of location in statistics. It
represents a threshold. A certain amount of the value
is below, the residual amount above this threshold.
Using the example of Material#1 the threshold is
21675.91 cycles. That means here that for a loading
of 132.5 there is a 50 % probability of failure. The blue
dotted lines represent the 95 % confidence interval.
JMP can also perform a custom estimate. For

example, the failure probability at the endurance limit
is calculated for each material. The results are given
in figures 10, 11 and 12. In the case of Material#3
the material can sustain 4.7*106 cycles at a loading
of 93 and a failure probability of 5 %. At a loading of
93 and cycles of 406 the failure probability becomes
4.4 %.

6. Conclusion
Due to the very large scatter of the measurement
results, the determination of the most suitable model
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Figure 7. Quantile analysis for Material#1.

Figure 8. Quantile analysis for Material#2.

Figure 9. Quantile analysis for Material#3.
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Figure 10. Custom estimate for Material#1.

Figure 11. Custom estimate for Material#2.

Figure 12. Custom estimate for Material#3.

to fit the experimental data was a major challenge.
In some cases, one gets very unsatisfactory graphical
representations of the models. By the application of
several fatigue models, at least one suitable model for
each material could be found. By the implementation
of statistical analysis also the large outliers could be
included in the parameter estimation.
JMP is a powerful tool for statistical analysis. Es-

pecially, the analysis of the failure probability is a
very important feature. The estimate in JMP within
the experimental data range leads to slightly different
prediction than that of the fatigue models. Extrapo-
lation with JMP out of range is highly dependent on
the quality of the measurement data and therefore,
does not always leads to plausible results.

List of symbols
A,B,C,D material parameter
n number of cycles
∆σ loading amplitude
∆σ0 loading amplitude at endurance limit
∆σst loading amplitude at ultimate strength
σ standard deviation
β0 positional parameter in JMP
β1 shape parameter in JMP
µ estimation for the mean value
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