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Abstract. The work introduces a two-phase method for determination of axial loads in tie-rods. The
method described here consists of an experimental activity and an automated numerical calculation.
The influence of considering an elastic Winkler-type bed to model the tie-rod constraint inside the
wall has been investigated. The algorithm used for calculation involves a solution of a functional
minimization problem, where the tensile load and the stiffness of elastic foundation at the edges are
used as optimization parameters and the error function, which describes the deviation between the
frequencies measured and those calculated using finite element method, is minimized. Qualitative
analysis of the results showed a significant reduction of the error compared to models with different
boundary conditions. The method showed to be conservative for the strength evaluation of the rods,
because the optimal values of tensile loads appeared to be higher than the load in perfect encastre
conditions.
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1. Introduction
Tie-rods are structural elements used in a wide range
of civil constructions. One of purposes they serve is
to provide support for masonry arches and vaults in
ancient buildings (e.g. churches, castles, etc.), which
are known to lurch and founder course of time. Tie-
rods are subjected to axial tension and, thus, help
the building resist occurring lateral loads exerted by
structural elements, walls and facades.
Over the years deformation of masonry walls and

some displacements in the building may cause signif-
icant changes in the axial loads of tie-rods. In the
extremes this can lead to either failures in tie-rods
structural integrity, or to laziness of tie-rods that stop
carrying out their duty when they loose loads. That
is why regular monitoring of tie-rods condition is of a
great importance.

The goal of the presented work is to determine axial
loads acting on the tie-rods of the fifteenth century
Casa Romei located in Ferrara, Emilia-Romagna, Italy,
and thus to evaluate their functionality and reliability.
An approach based on an experimental investigation
and a numerical method is introduced to serve this
purpose.

2. Previous Studies
Some attempts have been made throughout the years
to develop an appropriate non-destructive technique
for and indirect estimation of the tensile load in tie-
rods. Previous studies [1–3] report a method that
combined static and dynamic force identification. Tie-
rods were modeled as simply supported Euler beams
with rotational springs of similar stiffness added on
each edge. The stiffness of the spring and the force

were the two unknowns obtained from the system of
equations, built with a static equation for deflection
and a dynamic equation for natural frequencies. An-
other study [4] introduced a static approach for force
identification. The experiment consisted of measuring
three vertical displacements and strains variations at
three sections of the tie-rod under a concentrated load;
in [5] an algorithm to identify the axial tensile force
in ancient tie-rods by using the first three natural
frequencies is developed. The tie-rod was modelled
as an Euler beam of uniform cross-section, neglecting
the shear deformation and rotary inertia, and was
assumed to be simply supported at the ends with
additional rotational springs.

Recently, Maes et al. [6] introduced a method that
enables definition of axial loads in slender beams with
unknown boundary conditions, taking into account
affects of rotational inertia of the beam and masses of
sensors. However, it requires data from five or more
sensors along the length of the beam to determine
all the introduced unknown of the inverted problem.
A similar technique of the axial force identification
was developed by Li et al. [7] focusing on studies of
Euler-Bernoulli beams and takes into account bending
stiffness effects. Rebecchi et al. [8] established an an-
alytical method of processing experimental data from
five instrumented sections of a prismatic slender beam,
which showed excellent results in estimation of the
axial load in tie-rods. The method does not require
any exact value of effective length of the beam, but
neglects both rotary inertia and shear deformations
effects in the solution for beam vibrations. For cases
of similar beams, Tullini et al. [9–11] proposed a static
method of axial force identification. The analytical
algorithm makes use of any set of experimental data
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represented by flexural displacements or curvatures
measured at five cross-sections of the beam subjected
to an additional concentrated lateral load. Again,
Gentilini et al. [12] developed a procedure that com-
bines dynamical testing with FEM simulations using
added masses. The method was tested out for tie-rods
of various length and load intensity, showing reliable
results. Livingston et al. [13] identified the tensile
force in prismatic beams of uniform section by us-
ing modal data and assuming rotational and vertical
springs at each end of the beam. Shear deformation
and rotary inertia were neglected (according to the
Euler beam model).

3. Estimation Method
In the present study authors intend to introduce a
method of health monitoring of tie-rods inserted in
ancient monumental masonry buildings. The method
consists of an in-situ experimental activity and an au-
tomated two-parameter optimization algorithm which
allows to evaluate the axial load in tie-rods with a
good precision. The technique is basically a simply
executed frequency-based identification method that
allows to minimize the estimation error.
About six natural frequencies can be easily identi-

fied with a simple test by experimentally measuring
the frequency response functions (FRFs) of the tie-
rods with instrumented hammer excitation. Further
a parametric finite element model of a tie-rod is de-
veloped in the FEM analysis software Abaqus.

The part of a tie-rod hidden inside the masonry
wall is assumed to have a length of 0.2 m and the
constraints given to this part are modelled as elastic
foundations (Winkler bed). The tensile force and the
stiffness of the foundation are chosen as the unknown
parameters. In some cases the length of the rod in-
serted inside the masonry wall can be also assumed
as unknown. The sought axial load, as it is explained
subsequently, is obtained through an optimization
routine that minimizes the deviation between corre-
sponding experimentally determined eigenfrequencies
and those calculated by FEM.

The authors have previously tested the present tech-
nique with some variations over different buildings
and situations [14–16]. The novelty introduced in the
present work is the optimization with respect to the
stiffness of the Winkler bed type boundary conditions.

3.1. Experimental Part
The tie-rods investigated during the case study have
been installed at different points along the lifespan of
Casa Romei (see Fig. 1), therefore they differ in di-
mensions, cross-section shapes and material condition.
Measurements of geometrical characteristics and of
natural frequencies were performed for each reachable
tie-rod of the building. The natural frequencies were
obtained from the analysis of response to dynamical
excitation applied to tie-rods in horizontal plane for
a more accurate estimation of the axial load. Since

Figure 1. Inner yard of Casa Romei.

Figure 2. A typical FRF plot (acceleration amplitude
vs. frequency).

the studied rods are much stiffer in the vertical plane,
tests in vertical direction were not performed.
The used instrumentation was composed by tools

listed in Tab. 1.
The signal from accelerometers was handled by the

dynamic signal acquisition module National Instru-
ment (NI) 9234 and acquisition software developed in
LabView and further elaborated in MatLab resulting
in the frequency response functions (FRF) for each tie-
rod. FRF for a ground floor tie-rod Pt4 is presented
in Fig. 2.

Another important part of the experimental activity
was to measure accurately the geometric character-
istics of tie-rods, i.e. cross-section dimensions and
lengths. For the further study it was assumed that
the cross-section remains the same along all the length
of a rod. The tested rods are crafted in iron for which
the characteristics vary insignificantly, thus the mate-
rial data was assumed as follows: E = 2 × 1011 N/m2,
ρ = 7850 kg/m3, υ = 0.3. The main parameters E
and υ appear in the frequencies under the square root,
so even some variation in these values can only have
a minor influence on the natural frequencies.

For the further analysis first six natural frequencies
were identified for each tie-rod by means of peak-
picking from FRFs. Six eigenmodes are providing
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Tool Manufacturer Model Sensitivity
Impact Hammer Brï£¡el&Kjaer 8202 4pc/N
Accelerometer PCB 356A01 0,01 V/(m/s2)
Accelerometer PCB 356A01 0,01 V/(m/s2)

Table 1. List of experimental tools.

an over constrained problem, thus the higher modes
were not taken under consideration in this research.
Besides that, identification of higher modes might
appear inaccurate due to larger possible measurement
errors.

3.2. Numerical Part
Since the extremities of tie-rods are built into the
masonry walls in a way that hardly leaves a possi-
bility to be certain about the end constraints, as a
first iteration, boundary conditions for the edges were
modeled as plain fixed and/or simply supported. In
both cases for any range of optimization parameters
(length and force) and weight coefficients the error
function reaches minimum every time for the minimal
length in the range, i.e. for the measured length. This
means that the minimum is forced. Investigation of
the function in symbolic mathematics package Maple
13.0 showed good correspondence of the results ob-
tained from FEM with analytical models of a string
and a beam under axial load. Also the error function
has an absolute minimum that lies however below the
length measured. This kind of behavior proves that
the BCs are irrelevant.

The real conditions on the edges of tie-rods are un-
known and may vary from one rod to another, because
they are fixed inside masonry walls in a way that is
hard to determine using non-destructive techniques.
However, certain attempts can be made in order to
develop a generalized parametric model suitable for
numerical determination of loads in tie-rods.

In order to determine the loads, tie-rods are modeled
in FEM software Abaqus using 3D beam elements that
incorporate Timoshenko beam theory (B31), which
allows to take into account shear deformation and
rotational inertia effects. The cross section is assumed
to be constant along each rod.

As a first step a pretension load N is applied to the
beam and as a second step modal analysis is performed.
Since the value of the pretension load is the subject
of search, it has to be tuned to make the results of
modal analysis in FEM reach a good agreement with
experimentally defined frequencies. However, manual
tuning of the load is not considered to be an option
in this case, because there is no certainty about the
boundary conditions at the beam edges.

This problem is overcome by means of a parametric
FEM model and an optimization tool for computing.
In FEM model the measured length of the tie-rod is
represented by 50 beam elements; boundary condi-

tions are assumed to be an elastic bed and, thus, are
represented by 5 spring elements on each edge of the
beam, acting in the direction of considered vibrations.
Also the displacement in direction X (tie-rod axis)
is restrained. The sketch of the assumed model is
displayed in Fig. 3.
Stiffness of each spring element together with the

sought load are chosen as optimization parameters
in the problem stated. The optimization program
requires a set of experimentally obtained frequencies,
ranges of stiffness and force with sizes of steps for each
and also a set of weight coefficients for frequencies,
that define importance of the corresponding frequency
for the analysis. Combinations of parameters form a
grid and the program launches ABAQUS input file
for each nod of this grid and then extracts and filters
natural frequencies. Vibrations in Z direction only
are of our particular interest due to testing that was
carried out in the horizontal plane. Optimization
criteria for the problem is represented by the residual
error between experimentally defined frequencies and
those obtained from FEM analysis. The error E is
calculated according to the following formula:

E =

√√√√ n∑
k=1

p2
k(fexp

k − fF EM
k )2 (1)

where pk is a weight arbitrary given to each fre-
quency. The optimal values of stiffness of the elastic
bed and of axial force deliver minimum value of the
error function.
The optimization process starts from a reasonable

value of the load which can be predicted as an optimal
load for a simplified model with fixed ends, i.e. for
infinite stiffness of the elastic bed at the constraints.
The second step to be done is now to vary the stiff-
ness of the spring bed, and optimize their value to
minimize again the error. This implies a refinement
process of the parameters along what we call zooming
technique [15]. Operatively, the algorithm defines a
matrix of values and refines grid of parameters to be
solved just where local minima of the error as defined
in Eq. 1 are found.
A typical graphic of the surfaces representing the

error distribution is presented in Eq.4. Here the error
values are plotted with respect to stiffness and axial
load, for a specific tie-rod. The free length L, and
length of Lf (in Fig. 3) are kept constant. The clear
minima of the error functional can be observed.
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Figure 3. Sketch of the computational model.

Figure 4. Error as function of bed stiffness and axial
load for different sets of weight coefficients.

The error which represents the difference between
numerical and experimental frequencies is calculated
from the Eq. 1. Each of the differences (in Hz) be-
tween couples of frequencies is multiplied by a weight
pk in order to allow us to assign higher (or lower) im-
portance to some frequencies rather than the others.
The set of weights is then arbitrary chosen, but gen-
erally, the first frequencies, or just the fundamental
one, have greater importance. A sensitivity analysis
showed that the minima of the error functional Eq. 1
with respect to the sought tensile load is not influenced
by the weights set (see Fig. 4).
The variation of the error is depicted in Fig. 5,

wherefrom it can be observed that the minimum value
of the error is reached for the optimal elastic bed
stiffness and is reached for the up to higher load
compared to the encastre boundary conditions, thus,
the method reveals to be conservative for the strength
evaluation of the rods.
The values of error vary from one tie-rod to an-

other, this shows that the model with Winkler bed
boundary conditions fits better for some of the rods,
however these errors were less than those calculated
for ordinary fixed or simply supported boundary con-
ditions. For a couple of tie-rods though a perfect
encastre boundary condition at the walls appeared to
be the best approximation which was demonstrated
by an improvement in the error value compared to
the case when a set of springs was modelled at their
extremities.

Figure 5. Influence of the elastic bed stiffness on the
minimal error.

4. Conclusions
In this work an optimization process is shown and
discussed in determining the axial load in structural
iron tie-rods. The influence of considering an elas-
tic Winkler-type bed to model the tie-rod constraint
into the wall has been investigated. This constitutes
the major novelty of this work, with respect to the
previous studies.

Structural assessment of the overall building stabil-
ity is enabled by the described method throughout
the identification of axial loads in tie-rods via exper-
imental and numerical activity. In particular, the
introduced computational model is able to take into
account even unknown boundary conditions that are
typical for tie-rods installed in ancient buildings. Fur-
thermore, from the simulations it was concluded that
the variation of tensile load shifts the set of frequen-
cies (higher the load, higher the frequencies), while
the change in elastic bed stiffness changes the dis-
tance between natural frequencies. And finally, the
conclusion about the method convergence can also be
made based on the fact that different sets of weight
coefficients bring to minor changes in the sought axial
load in tie-rods.
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