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Abstract

The galactic center has long been a region of interest for high-energy and very-high-energy observations. Many potential
sources of GeV/TeV γ-ray emission are located in this region, e.g. the accretion of matter onto the central black hole,
cosmic rays from a nearby shell-type supernova remnant, or the annihilation of dark matter. The galactic center has been
detected at MeV/GeV energies by EGRET and recently by Fermi/LAT. At TeV energies, the galactic center was detected
at the level of 4 standard deviations with the Whipple 10m telescope and with one order of magnitude better sensitivity
by H.E.S.S. and MAGIC. We present the results from 3 years of VERITAS galactic center observations conducted at large
zenith angles. The results are compared to astrophysical models.
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1 Introduction

The center of our galaxy harbors a 4×106M� black hole
(BH) coinciding with the strong radio source Sgr A*.
X-ray/MeV/GeV transients in this region are observed
on a regular basis. Various astrophysical sources lo-
cated close to the galactic center (GC) may potentially
be capable of accelerating particles to multi-TeV ener-
gies, such as the supernova remnant Sgr A East or a
pulsar wind nebula [1]. Furthermore, super-symmetric
neutralinos χ are discussed as potential candidates for
dark matter accumulating in the GC region and anni-
hilating into γ-rays [2]. The resulting spectrum would
have a cut-off near the neutralino mass mχ. Assuming
a certain dark matter density profile the expected γ-ray
flux along the line-of-sight integral can be calculated as
a function of mχ and the annihilation cross section [3]
and can in turn be compared to measured upper limits.

EGRET detected a MeV/GeV source 3EG J1746-
2851 coincident with the GC position [4] and recently
Fermi/LAT resolved several sources in the GC region
[5], see Fig. 3. However, uncertainties in the diffuse
galactic background models and limited angular reso-
lution at MeV/GeV energies make it difficult to study
the morphologies of these sources. At GeV/TeV ener-
gies a detection from the direction of the GC was first
reported in 2001/02 by the CANGAROO II collabora-
tion with a steep energy spectrum dN/dE ∝ E−4.6 at
the level of 10% of the Crab Nebula flux [6]. Shortly
after, evidence at the level of 3.7 standard deviations
(s.d.) was reported from the Whipple 10 m collabora-

tion [7]. The GC was finally confirmed as a GeV/TeV
γ-ray source by the H.E.S.S. collaboration [8] (the posi-
tion of the supernova remnant Sgr A East could be ex-
cluded as the source of the γ-ray emission). The energy
spectrum measured by H.E.S.S. is well described by a
power-law dN/dE ∝ E−2.1 with a cut-off at ∼15 TeV.
The H.E.S.S. observations revealed a diffuse GeV/TeV
γ-ray component (dashed contour lines in Fig. 3) which
is aligned along the galactic plane and follows the struc-
ture of molecular clouds [9]; the emission is explained
by an interaction of local cosmic rays (CRs) with mat-
ter of the molecular clouds. The MAGIC collaboration
detected the GC (7 s. d.) in 2004/05 observations per-
formed at large zenith angles (LZA) [10], followed by a
strong (> 10 standard deviations) VERITAS LZA de-
tection in 2010 [11].

2 VERITAS Observations of the
Galactic Center

GC observations Due to its declination the GC can
only be observed by VERITAS at LZA (zenith angles
60 − 66 deg) – strongly decreasing the angular resolu-
tion and sensitivity. The use of the displacement pa-
rameter [12], between the center of gravity of the image
and the shower position, has been used in the VERI-
TAS event reconstruction which strongly improved the
sensitivity for LZA observations [11]. The performance
and energy reconstruction have been confirmed on LZA
Crab Nebula data. The column density of the atmo-
sphere changes with 1/ cos(z). In a conservative es-
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timate, the systematic error in the energy/flux recon-
struction can be expected to scale accordingly. More
detailed studies are needed for an accurate estimate;
for the GC observations we currently give a conserva-
tive value of a systematic error on the LZA flux nor-
malization of ∆Φ/Φ ' 0.4. The GC was observed by
VERITAS in 2010–2012 for 46 hrs (good quality data,
dead-time corrected) with an average energy threshold
of Ethr ' 2.5 TeV.

GC results The VERITAS sky map of the GC region
is shown in Fig. 3. An 18 s.d. excess is detected. No
evidence for variability was found in the 3-year data.
The energy spectrum is shown in Fig. 1 and is found to
be compatible with the spectra measured by Whipple,
H.E.S.S., and MAGIC. Since the large LZA effective ar-
eas of the VERITAS observations compensate a shorter
exposure of low-zenith observations, the statistical er-
rors of the E > 2.5 TeV data points are comparable or
even smaller than those of the H.E.S.S. measurements.
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Figure 1: VERITAS energy spectrum measured from
the direction of the GC (statistical errors only). Also
shown are bow ties representing the spectra measured
by Whipple [7], H.E.S.S. [8], and MAGIC [10].

Diffuse flux limit and dark-matter annihilation
OFF-source observations were performed in a field lo-
cated in the vicinity of the GC region (similar zenith
angles and sky brightness) without a known TeV γ-ray
source. These observations are used to study the back-
ground acceptance throughout the field of view and al-
low the estimate of a diffuse γ-ray component surround-
ing the position of the GC. An upper limit of the diffuse
γ-ray flux can in turn be compared with line-of-sight
integrals along the density profile

∫
ρ2dl, in order to

constrain the annihilation cross section for a particular
dark matter model, dark matter particle mass and den-
sity profile ρ(r). Due to its likely astrophysical origin
the excess at the GC itself, as well as a region along
the galactic plane, will be excluded from this analysis
(work in progress).

Hadronic models Hadronic acceleration models [13,
14] involve: (i) hadrons being accelerated in the BH
vicinity (few tens of Schwarzschild radii). (ii) The accel-
erated protons diffuse out into the interstellar medium
where they (iii) produce neutral pions which decay into
GeV/TeV γ-rays. Linden et al. (2012) discuss the sur-
rounding gas as proton target defining the morphology
of the TeV γ-ray emission [15]. Changes in γ-ray flux
in those models can be caused by changing conditions
in the BH vicinity (e.g. accretion). The time scales of
flux variations are ∼104 yr at MeV/GeV energies (old
flares) and ∼10 yr at E > 10 TeV (’new’ flares caused by
recently injected high-energy particles) [13]. Constrain-
ing the E > 10 TeV spectral variability would serve as
an important test for this class of models.
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Figure 2: VERITAS energy spectrum compared to
hadronic [13, 14, 15] and leptonic [16] emission models
discussed for the GC source. The Fermi/LAT bow tie
is taken from [13].

Leptonic models Atoyan et al. (2004) [16] discuss
a BH plerion model in which a termination shock of a
leptonic wind accelerates leptons to relativistic energies
which in turn produce TeV γ-rays via inverse Comp-
ton scattering. The flux variability time scale in this
model is on the order of Tvar ∼100 yr. The hadronic and
the leptonic models are shown together with the VER-
ITAS/Fermi data in Fig. 2. The leptonic model clearly
fails in explaining the flux in the MeV/GeV regime.
However, this emission may well originate from a spa-
tially different region or mechanism other than the TeV
γ-ray emission. The hadronic models can explain the
SED by the superposition of different flare stages. Fu-
ture Fermi/VERITAS flux correlation studies, as well
as the measurement of the TeV energy cut-off and lim-
its on the E > 10 TeV variability will serve as crucial
inputs for the modeling.

3 Summary and Conclusion

VERITAS is capable of detecting the GC within 3 hrs
in observations conducted at zenith angles greater than
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Figure 3: VERITAS sky map of the GC region (smoothed excess significances, ring background, scale truncated).
The black contour lines indicate the GC and the supernova remnant G 0.9+0.1 as seen by H.E.S.S. [8]. The gray
dashed lines indicate the H.E.S.S. diffuse emission along the galactic plane and from HESS J1745-303 [9]. The
position of HESS J1741-302 is indicated, as well (circle); the flux/spectrum of this source make it very unlikely to
be detected in VERITAS LZA observations. The solid circles (cyan color) indicate the positions of the MeV/GeV
sources taken from the second Fermi/LAT catalog [5].

60 deg. The measured energy spectrum is found to be
in agreement with earlier measurements by H.E.S.S.,
MAGIC, and Whipple. Future observations to measure
the cut-off energy in the spectrum and to determine
limits on the flux variability at the highest energies will
place constraints on emission models. The recently dis-
covered giant molecular cloud heading towards the im-
mediate vicinity of the GC BH [17] represents further
motivation for future TeV γ-ray monitoring of this re-
gion. An upper limit on diffuse γ-ray emission and, in
consequence, a limit on the photon flux initiated by the
annihilation of dark matter particles is work in progress.
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