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Abstract

XMM-Newton is one of the most successful science missions of the European Space Agency. Since 2003 every year about

300 articles are published in refereed journals making directly use of XMM-Newton data. All XMM-Newton calls for

observing proposals are highly oversubscribed by factors of six and more. In the following some scientific highlights of

XMM-Newton observations of black holes are summarized.
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1 Introduction

XMM-Newton ([1]) is the second cornerstone of Euro-
pean Space Agency’s (ESA) Horizon 2000 Science Pro-
gramme, providing an observatory-class X-ray facility.
The spacecraft was launched by an Ariane 5 on 10 De-
cember 1999. The observatory provides simultaneous
non-dispersive spectroscopic imaging and timing (Eu-
ropean Photon Imaging Camera; EPIC, [2] and [3]),
medium resolution dispersive spectroscopy (Reflection
Grating Spectrometer; RGS, [4]) and optical/UV imag-
ing, spectroscopy and timing from a co-aligned tele-
scope (Optical Monitor; OM, [5]). The three X-ray mir-
rors ([6]) in combination with the cameras of EPIC offer
a large effective area over the energy range from 300 eV
to 12 keV, up to 2500 cm2 at 1.5 keV and ∼1800 cm2 at
5 keV. The scientific potential of the effective area may
be illustrated by the first observation of an evolving
dust-scattered X-ray halo around a gamma ray burst
([7]). Each of the two modules of the RGS cover the
energy range from ∼0.4 keV to 2.2 keV with an effec-
tive area of 60 cm2 at 15 Å.

2 Scientific Highlights

Scientific highlights resulting from the first decade of
XMM-Newton and Chandra observations can be found
in [8]. In the following I list a number of highlights
from XMM-Newton observations of black holes. In this
paper I have focused on some of the most exciting dis-
coveries in this field, which also received wide publicity
in public relations announcements by ESA.

2.1 Galactic black holes and
ultraluminous X-ray sources

Globular clusters (GC), containing thousands of stars
packed within tens of light years, were considered as
a possible breeding ground for black holes. A ri-
val hypothesis suggests that black holes are ejected
through close star encounters and consequently GCs
are devoid of black holes. XMM-Newton observa-
tions of NGC 4472 allowed the first detection of a
black hole in a GC ([9]) excluding the latter hypothe-
sis. Ultraluminous X-ray sources (ULX) were proposed
to harbour intermediate-mass black holes, which pro-
vides the link between stellar mass black holes and
supermassive black holes (SMBH) in the centres of
galaxies. XMM-Newton and Chandra observations of
CXOM31 J004253.1+411422 in Andromeda allowed to
connect this ULX to Low Mass X-ray Binaries ([10],
implying accretion onto a stellar-mass black hole in
the Eddington regime. A second ULX found in An-
dromeda, XMMU J004243.6+412519, allowed to ob-
serve the emission of the accretion disk in X-rays to-
gether with the emission form its jets in radio ([11]).
The experimental key for both observations was the low
absorbing column density towards Andromeda whereas
absorption is a major obstacle of ULX observations in
our own Galaxy. [12] found an intermediate-mass black
hole in NGC 1313. The X-ray spectra of the ULX can be
described with a power law plus an accretion disk (kT ∼=
150 eV) implying a mass of ∼= 103M�. A intermediate-
mass black hole with m > 500 M� could be associated
with an ULX in ESO 243-49 based on luminosity vari-
ations observed by XMM-Newton ([13]).
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2.2 The strong gravitational field

Currently, X-ray observations are the only way to ob-
serve the strong gravitational field in the direct vicinity
of black holes and neutron stars ([14]). Special and gen-
eral relativistic effects distort the spectra of particles
orbiting black holes depending on the orbital parame-
ters and the black hole’s spin. Theoretical discussion
can be found in [15], [16], [17] [18] or more recently
in [19] and [20]. Experimentally the iron Kα line is
most studied as there are no lines of abundant elements
nearby. Early examples are the XMM-Newton obser-
vations of the Galactic black hole XTE J1650-500 in
outburst ([21]) and the Active Galactic Nuclei (AGN)
MGC-6-30-15 in low state ([22]). Both spectra are ex-
plained by a fast spinning black hole and the extrac-
tion and dissipation of rotational energy from it. The
simultaneous XMM-Newton and NuSTAR observation
of NGC 1365 revealed that reflection from an ionized
disk readily explains the spectra taken by both satel-
lites ([23]). The XMM-Newton spectra of the Galactic
black hole, GX 339-4 in outburst ([24]) is an example
of a black holes with almost maximum spin. The ob-
servation of 1H 0706-495 is unique as it shows not only
the iron Kα, but also the iron Lα line ([25]). In ad-
dition the light cure shows the expected characteristic
variability of reflection from an ionized disk (compare
also [26], [27], [28], [29]).

2.3 Active Galactic Nuclei (AGN) in
low states

Following [30] X-ray spectra of AGNs are composed
of a power-law continuum emitted above a black hole
plus reflection from an ionized disk. During the low
state the continuum emission region moves nearer to
the black hole and gravitational bending affects its light
path. Observationally, during low states the continuum
emission appears suppressed whereas the reflected emis-
sion appears constant or even enhanced, compare also
[31]. The most intensive studied AGN in low state with
XMM-Newton is PG 2112+059, where an additional
layer of ionized material was used to favour the re-
flection interpretation versus alternative scenarios ([32],
[33] and [34]). [35] used variability considerations to
discriminate the reflection interpretation versus an ab-
sorption scenario for PG 0844+349 in an X-ray weak
state. And [36] could demonstrate for the low state ob-
servation of 1H0707-495 reflected emission within one
gravitational radius of the event horizon of the black
hole.

2.4 Aspects of variability near
Supermassive Black Holes
(SMBHs)

Whereas quasi-periodic-oscillations (QPO) are well es-
tablished in X-ray binaries for almost 30 years, QPOs
remained elusive in AGNs. XMM-Newton measured a
∼1 hour QPO for RE J1034+396 ([37]). [38] found evi-
dence for orbital motion of material close to the central
black hole of Mrk 766. A XMM-Newton observation al-
lowed [39] to observe a co-rotating flare at a distance of
only 3.5 to 8 Schwarzschild radii to the SMBH of NGC
3516.

2.5 Energy budget, winds and outflows

[40] established for the fist time simultaneous spectral
energy distributions for the majority of the [41] re-
verberation mapped sample of AGN based on XMM-
Newton EPIC and OM measurements. [42] used XMM-
Newton observations to show that radio-galaxies pro-
duce sufficient mechanical energy to unbind a significant
fraction of the intra-group medium, an effect which is
negligible in massive clusters of galaxies. Combining
high resolution RGS spectra with sensitive light-curves
of EPIC, [43] demonstrated an accretion-disk origin for
the two warm absorber winds in NGC 4051. 1H 0707-
495 shows a mildly relativistic, highly ionized outflow
which changed its velocity from about 0.11c to 0.17c be-
tween 2008 January and 2010 September ([44]). Ultra-
fast outflows are present in >35% of radio-quiet AGN
observed with XMM-Newton, providing a significant
contribution to the AGN cosmological feedback ([45],
[46], [47]).

2.6 Flares and tidal disruption events

[48] observed several peaks in the power density spec-
trum of the X-ray light curve of the SMBH in the Galac-
tic Centre during which period a bright X-ray flare was
detected ([49]). Theoretical studies revealed a previ-
ously unknown topological structure inherent to black
holes with high spin: in a small region near the event
horizon of the spinning black hole the orbital velocity
decreases for decreasing orbital radius ([50]). This ef-
fect is now rightfully known as the Aschenbach effect
([51]). [52] could identify a tidal disruption event based
on ROSAT, Chandra and XMM-Newton observations.
Suzaku and XMM-Newton observations taken shortly
after the occurrence of the tidal disruption event Swift
J164449.3+573451 reveal a 200-second X-ray quasi-
periodicity ([53]). This QPO might be explained with
the forming of an accretion disc or precession of the jet.
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2.7 Deep fields and cosmology

A total of 1000 AGN detections from a variety of
ROSAT, XMM-Newton and Chandra surveys allowed
[54] to obtain for the first time reliable space densities
for low-luminosity (Seyfert-type) X-ray sources at high
cosmological redshifts. Their evolutionary behaviour
shows strong dependency on the X-ray luminosity and
differs from the dependency found for high luminosity
AGNs and quasars. XMM-Newton allows the detec-
tion of quasars at highest redshift, e.g. SDSS J104433-
012502 at z=5.80 ([55]). The spacecraft could even
establish an X-ray spectrum of SDSS J1030+0524 at
z=6.30 ([56]). An ionized iron Kα absorption edge in
the X-ray spectrum of APM 08279+5255 allowed to ob-
tain an, at the time of publication, highly interesting
constrain on the age of the universe ([57]).

3 Discussion and Conclusions

Since 2003 every year about 300 articles are published in
refereed journals making directly use of XMM-Newton
data. All XMM-Newton calls for observing proposals
are highly oversubscribed by factors of six and more.
Within ESA’s mission extension scheme all missions
are evaluated every 2 years and possibly extended by
4 years subjected to midterm confirmation. XMM-
Newton is funded up to end of 2016 subject to midterm
confirmation and further extension discussion in 2014.
Currently, the XMM-Newton mission is implementing
four-reaction-wheel operation schemata, which will re-
duce fuel consumption significantly. The envisaged op-
eration mode will allow technically operating the mis-
sion up to 2026.
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