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1 Introduction

This habilitation thesis is a collection of five articles [A01, A04, A06, A07, A08] I have
contributed to, supplemented by a brief introduction. Specifically, together with my
colleagues, I have been dealing with a robust model fitting of geometrical models in
computer vision problems and with the visual object tracking [A01, A04, A06]. I
have been also involved in the analysis of astroparticle data with the aim to identify
cosmic ray sources [A07, A08]. These two fields of science are remarkably different
from the point of view of an adoption of newly proposed uncertainty models. In
computer vision, where we have at our disposal extremely large amount of cheap
data and one can check models, we can choose the most successful one and so this
model is quickly widely cited. In astroparticle physics, where the right answer is
unknown and the data is rare and expensive, it takes quite a long time to adopt a
new approach.

Early in my professional life I have realized that in spite of the fact that we have
at our disposal a huge number of statistical procedures there arise problems for which
no procedure suits well. If one has a good theoretical background in mathematical
statistics, working on such problems could lead to novel or significantly modified
statistical methods. Solving any such particular problem will be widely useful if this
problem arises in applications in other fields of science.

About ten years ago, I have been invited to work at Visual Recognition Group
of Department of Cybernetics CTU where I have become acquainted with current
problems in computer vision. During this cooperation we have published several
papers. Among them, our papers [A01, A04, A06], which form part of this work,
address important issues for the computer vision community and my co-authors were
mostly interested in. It turned out that mathematical statistics is a very suitable
tool for solving such problems. To this end, I have proposed several mathematical
methods.

First, I have introduced a novel loss function and its local optimization procedure
to be used in RANSAC type procedures [A01]. I have also improved the mean-
shift tracker in order to be scale adaptive [A04] and, finally, I have worked on the
HMMTxD-tracker which uses the hidden Markov model for a fusion of multiple
trackers [A06]. Main ideas of the mathematical methods and suggested algorithms,
which are my own activities in these projects, are described in Sections 2, 3 and 4.
These methods were utilized to create computer vision algorithms with which many
different experiments with large data sets were successfully performed. Nonetheless
the computer code implementation and subsequent experiments were fully provided
by my co-authors.

It is worth noting that the predecessor of our article [A04] presented in a con-
ference proceedings [A05] was awarded the best paper prize at the Scandinavian
Conference on Image Analysis 2013; both these studies are widely cited. Similarly,
the predecessors of Ref. [A01], i.e. conference contributions [A02] and [A03] that
were published at the Conference on Computer Vision and Pattern Recognition
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2019 and 2020, respectively, are also widely cited and, moreover, they are frequently
used outside the computer vision community e.g. in geoscience and remote sensing,
robotics, data mining and knowledge discovery or neurocomputing.

More than fifteen years ago I have started my cooperation with the astrophysics
group at the Faculty of Mathematics and Physics. Thanks to the unprecedented
development of the physics of cosmic rays in the last two decades, many interesting
data on their arrival directions have been collected, which should indicate the hith-
erto unknown sources of this extremely energetic radiation. However, the detected
signals are very weak and the sources that produce them cannot be conclusively
identified.

In several internal technical reports, which are not publicly available, we dealt
with the way how to confirm a weak sources within the framework of the stan-
dard statistical method, known in the astroparticle physics as an on-off problem.
It turned out that the optimal method of analysis is the Bayesian approach, which
does not need to rely on the asymptotic behavior of the statistics used and can ad-
vantageously utilize previously acquired knowledge about the observed phenomena.
I have proposed a method based on Bayesian reasoning that allowed us to estimate
the significance of the tested source of detected events [A07]. We showed in details
its connection to commonly used procedures. In a subsequent study [A08], other
relevant quantities were introduced to demonstrate the usefulness of the Bayesian
approach in the field of cosmic ray physics. In particular, relying upon previous
observation, we dealt with the waiting time for the next observation in a counting
experiment within the Bayesian settings. We also discussed the problem how to
compare significances of sources when obtained in different observations carried out
in different experiments.

In all these activities, I mainly proposed solution methods and oversaw the cor-
rect statistical interpretation of the obtained results. Work with the data, numerical
calculations as well as the final physical interpretation were performed by my co-
authors. A brief introduction to the on-off problem is given in Section 5.
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2 Robust model fitting in computer vision

Our study presented in Ref. [A01] is introduced in the following. Section 2.1 starts
with a general description of robust methods. After a brief summary of robust
estimators, M-estimators, in Section 2.1.1, we introduce the iteratively reweighted
least squares (IRLS) method for their solving in Section 2.1.2. Robust estimators
in computer vision are discussed in Section 2.2. The relationship of M-estimators
to computer vision RANSAC-type estimators is mentioned in Section 2.2.1. Main
results of our study [A01] are highlighted in Section 2.2.2.

2.1 Robust statistics

Advanced statistical methods rely on probability models containing some theoret-
ical assumptions. The most widely used methods, e.g. the least squares method
(LSM), assume that the observed data have a normal (Gaussian) distribution. These
methods, called classical statistical methods, were used in statistics at least for two
centuries. It was understood that the statistical model is just an approximation
of reality. Then, one expects that outputs of such models are also approximately
correct. This is unfortunately not true. Even a single atypical observation, called
an outlier, can spoil the output provided by a classical statistical method.

Robust statistics derives methods which produce reliable outputs also when its
theoretical assumptions hold only approximately. If the data contain no outlier,
robust methods give practically the same results as the classical methods. In case
of presence of outliers they fit the bulk of the data and can be used for outlier
detection.

Attempts to make statistical methods more robust were made at least at the
nineteenth century. The fundaments of robust statistics were set by John Tukey,
Peter Huber and Frank Hampel only in the 60s and early 70s of the last century. It
has to be mentioned that many Czech statisticians contributed not only to further
development of robust statistics but also have formed its fundaments1) and helped
improve its reputation.2)

2.1.1 M-estimators

Currently popular robust estimators, M-estimators where “M”stands for “maximum
likelihood-type”estimators, were proposed by Huber in 1964 [1]. They are a gener-

1From this point of view, let us mention the important visit of prof. Jaroslav Hájek, the former head
of Department of Probability and Statistics at Charles University in Prague, to University of California
at Berkeley in 1961-62, where at the same time Peter Huber was at his post-doc stay. Hájek’s doctoral
student, current professor emeritus at Charles University prof. Jana Jurečková, belongs to co-founders of
robust statistics.

2For example, 10th International Conference on Robust Statistics in 2010 was held in Prague due
to international eminence and influence of prof. Jana Jurečková. At this conference, beside other, the
victory of all robust statisticians was mentioned because robust statistics has become a part of mainstream
statistics and robust procedures were incorporated in many commercial softwares.
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alization of the maximum likelihood estimators (MLE).

The same notation as in Refs. [A01, A02, A03] is adopted. Let us denote

P = {p|p ∈ Rν , ν ∈ N} the set of observed data,

Θ = {θ|θ ∈ Rd, d ∈ N} the set of possible parameters of our model and

R : Θ× P −→ R the residual function of the model with a parameter θ and an
observation p.

An M-estimator is defined as follows [2]:

Definition 1

A ρ-function will denote a function ρ such that

1. ρ(x) is a non-decreasing function of |x|,
2. ρ(0) = 0,

3. ρ(x) is increasing for all x > 0 for which ρ(x) < ρ(∞),

4. if ρ is bounded ρ(∞) = 1,

then the M-estimator of parameter θ is

θ̂ = arg min
θ∈Θ

∑
p∈P

ρ(R(θ, p)). (1)

MLE is a special type of M-estimator with ρ-function equivalent to the minus
log-likelihood function. For example, MLE for a mean of normal distribution is
an M-estimator with quadratic ρ-function, i.e. L2 estimator. Looking for robust
estimators under presence of large amount of outliers, M-estimators with bounded
ρ-function are of a special interest. Such estimators cannot be formulated as MLE
for any density function.

M-estimators of location

In this case the data p and the model parameter θ are scalars and the residual
function is [2]

R(θ, p) = (p− θ)/σ, (2)

where the parameter σ is a scale of data P , σ > 0. Unfortunately, M-estimators of
location with bounded ρ-function depend on the choice of the parameter σ which is
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usually unknown. Thus, some proper robust estimate of σ has to be used instead,
e.g. the normalized median of absolute deviation about median. There are no ex-
plicit expressions for the distribution of M-estimators of location in finite sample
sizes. However, under quite general conditions, these M-estimators are asymptoti-
cally normal in the same sense as MLEs and M-estimators with bounded ρ-function
can cope merely with 50% of outliers in a data sample.

M-estimators in linear model

Here, we assume that the data p and the model parameter θ to be vectors of real
numbers [2]

p = (y(p), x(p)), x(p) = (x1(p), x2(p), . . . , xν−1(p)), p ∈ Rν , (3)

θ = (θ1, θ2, . . . , θν−1), θ ∈ Rν−1, (4)

and the residual function

R(θ, p) = (y(p)− x(p)θT )/σ, (5)

where the parameter σ is a scale of data P , σ > 0 and here T means transposition.
Similarly as for location in previous example, also M-estimators in linear model

with bounded ρ-function depend on the choice of the parameter σ and, therefore,
some proper robust estimate of σ has to be used. Again, there are no explicit
expressions for the distribution of M-estimators in linear model in finite sample
sizes. Nonetheless, under quite general conditions, they are asymptotically normal
in the same sense as MLEs. In case of fixed or bounded vectors x(p), M-estimators
with bounded ρ-function can cope merely with 50% of outliers in a data sample.

2.1.2 Iteratively reweighted least squares

For computing M-estimates several function minimization methods can be used.
Iteratively reweighted least squares (IRLS) method is the recommended one [2].

Definition 2

If there exist the first derivative of a ρ-function, ρ′, and the second derivative at 0,
ρ′′(0), a weight w-function is a function w such that w(0) = ρ′′(0) and w(x) = ρ′(x)/x
otherwise.

IRLS algorithm

1. Compute an initial estimate θ0 and some robust estimate of σ.

2. For k = 0, 1, 2, . . . let θk+1 = arg min
θ∈Θ

∑
p∈P

w(R(θk, p))R
2(θ, p).
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3. Stop when max
p∈P
|(R(θk, p)− (R(θk+1, p)| falls below some predefined threshold.

When the weight function w(x) is non-increasing in |x|, function

L(θ) =
∑
p∈P

ρ(R(θ, p)), (6)

non-increases in each iteration of IRLS algorithm. For convex L(θ) function, IRLS
attains its minimum. However, for bounded and thus non-convex ρ-functions, L(θ)
is not convex. It was shown [2] that in linear model IRLS converges to its local
minimum. In any case the proper choice of the initial estimator is important. The
recommended initial estimator for θ0 is L1 estimator. For the parameter σ it is the
normalized median of |R(θ0, p)|, p ∈ P .

Let us note that it is not necessary for θk+1 to minimize
∑
p∈P

w(R(θk, p))R
2(θ, p)

with respect to θ. It is sufficient to decrease the sum, i.e.∑
p∈P

w(R(θk, p))R
2(θk+1, p) <

∑
p∈P

w(R(θk, p))R
2(θk, p). (7)

Commonly used ρ-functions

The commonly used ρ-functions with their w-functions are depicted in Fig.1.
These functions are defined as follows

1. L2 estimator: ρ(x) = x2/2 and w(x) = 1.

2. L1 estimator: ρ(x) = |x| and w(x) = 1/|x|.
3. Huber estimator:
ρ(x) = x2/2 for |x| < 1, ρ(x) = |x| − 1/2 otherwise and
w(x) = 1 for |x| < 1, w(x) = 1/|x| otherwise.

4. Welsch estimator: ρ(x) = 1− exp(−x2) and w(x) = 2 exp(−x2).

5. Hampel type estimator:
ρ(x) = 9

4
x2 for |x| < 1/3, ρ(x) = 3

2
|x| − 1

4
for 1/3 ≤ |x| ≤ 2/3,

ρ(x) = −9
4
x2 + 9

2
|x| − 5

4
for 2/3 ≤ |x| ≤ 1 and ρ(x) = 1 otherwise.

The corresponding weight function is w(x) = 9
2
, w(x) = 3

2|x| , w(x) = 9
2
( 1
|x| − 1)

and w(x) = 0.

6. Tukey estimator:
ρ(x) = 1− (1− x2)3 for |x| < 1, ρ(x) = 1 otherwise and
w(x) = 6(1− x2)2 for |x| < 1, w(x) = 0 otherwise.

6



-6 -4 -2 0 2 4 6

0

2

4

6
L2 estimator

x

ρ(
x)

, w
(x

)

-6 -4 -2 0 2 4 6

0

2

4

6
L1 estimator

x

ρ(
x)

, w
(x

)

-6 -4 -2 0 2 4 6

0

2

4

6
Huber estimator

x

ρ(
x)

, w
(x

)

-6 -4 -2 0 2 4 6

0

2

4

6
Welsh estimator

x

ρ(
x)

, w
(x

)

-6 -4 -2 0 2 4 6

0

2

4

6
Hampel estimator

x

ρ(
x)

, w
(x

)

-6 -4 -2 0 2 4 6

0

2

4

6
Tukey estimator

x

ρ(
x)

, w
(x

)

Figure 1: Commonly used M-estimators. ρ-functions (blue) and w-functions (red) of L2, L1,
Huber, Welsh, Hampel and Tukey estimators are depicted (from top to bottom).

It is documented in Fig.1 that L2, L1 and Huber M-estimators have unbounded
ρ-functions. Welsch, Hampel and Tukey M-estimators have bounded ρ-functions.
Only w-functions of Hampel and Tukey estimators are equal to zero for |x| > 1.
Vanishing w-function outside some bounded interval is important for IRLS proce-
dure, since usually only a small part of data is involved in each iteration.
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2.2 Robust estimation in computer vision

Many problems that require robust estimation arise in computer vision e.g. fun-
damental matrix, homography and essential matrix fitting. Unfortunately, in these
tasks M-estimators or any other results of robust statistics cannot be applied di-
rectly. There are two main reasons why.

The first one is that the ratio of the number of outliers in the data is very often
larger than 50%. In statistics, our model is assumed to describe most of the data,
thus, it cannot cope with more than 50% of outliers. In case of a bounded ρ-function
one expects that M-estimators could work under a vague assumption that outliers
“do not cooperate”with each other. Then, there are no reliable initial estimators for
θ0 and σ, however.

The second reason is the form of the residual function R(θ, p). Different computer
vision problems use different residual functions but generally they are not linear
functions of parameters θ and cannot be simply linearized. It implies that one has
to give up attempts to obtain asymptotic distribution of the M-estimator θ̂.

2.2.1 RANSAC-type estimators

In 1981 Fischler and Bolles proposed a new paradigm for model fitting the RANdom
SAmple Cosensus (RANSAC) [3], which has become a widely used robust estima-
tor not only in computer vision. The basic idea is to repeatedly randomly select a
minimal sample of m points from P . These points are required to compute a can-
didate for parameter θ. Then one calculates residua R(θ, p) of all points p ∈ P and
the model determined by this candidate and counts all points p which are closer to
this model than some predefined threshold σ. These close points are called inliers.
Finally, after completing all these loops, the candidate with the largest number of
inliers determines the estimate of the parameter θ.

The sampling algorithm

Since choosing all minimal samples of m points from P is usually intractable
we need some stopping criterion. Suppose our data contain a portion ε ∈ (0, 1) of
outliers, the probability of all-inlier sample is (1− ε)m and the probability of at least
one all-inlier sample in k samples is

1− (1− (1− ε)m)k. (8)

If one wants this probability to be larger than some predefined confidence probability
µ ∈ (0, 1), the number of chosen samples k has to be

k ≥ ln(1− µ)

ln(1− (1− ε)m)
. (9)

The sampling algorithm finds the initial estimate θ0. But the problem of a reliable
estimate of σ remains.
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Let us finally note that the same sampling algorithm with the same stopping
criterion was proposed by Leroy and Rousseeuw in their technical report in 1984 [4].

ρ-functions of RANSAC-type estimators

RANSAC can be formulated as an M-estimator with ρ-function

ρ(x) = 0 for |x| < 1 and ρ(x) = 1 otherwise. (10)

RANSAC is extremely sensitive to a choice of a parameter σ. Since its weight
function

w(x) = 0 for x ∈ R, |x| 6= 1, (11)

IRLS cannot be used for a local optimization to get an estimate of θ.
Torr and Zisserman proposed an approach [5] where other bounded ρ-functions

are used within a sampling algorithm. They preferred a ρ-function [5]

ρ(x) = x2 for |x| < 1 and ρ(x) = 1 otherwise, (12)

An estimator with this ρ-function is known as MSAC. Its weight function

w(x) = 2 for |x| < 1 and w(x) = 0 otherwise, (13)

therefore, IRLS method could be used.
Indeed, although it is not directly claimed, local optimization of MSAC in sense

of IRLS is in fact used in Refs. [6] and [7], where a new estimator called LO-RANSAC
is proposed. LO-RANSAC is less sensitive to a choice of a threshold σ than pure
RANSAC or MSAC. Nevertheless, a proper choice of σ is still a hard and crucial
problem.

For the sake of completeness, RANSAC and MSAC ρ-functions and w-functions
are depicted in Fig.2.

2.2.2 Marginalizing sample consensus

In our study [A01], we proposed a novel class of ρ-functions, see also Ref. [A03].
This class of ρ-functions is parameterized by the dimension of the data ν, with
a gradually decreasing w-functions vanishing outside some bounded interval. M-
estimators generated by these ρ-functions are called MAGSAC++. In this case
IRLS method can be used for a local optimization to obtain an M-estimator of
the parameter θ. MAGSAC++ ρ-functions and w-functions for ν = 2, 3, 4, 5 are
depicted in Fig.3.

Many minimal solvers for most computer vision tasks were proposed, among
other reasons, due to the 40-year popularity of RANSAC. They are necessary for
computation of a candidate for parameter θ using just several points from P , at
least some minimal sample of m points from P , when looking for a solution in the

9
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Figure 2: M-estimators used in RANSAC. ρ-functions (blue) and w-functions (red) of
RANSAC and MSAC estimators are visualized.
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Figure 3: MAGSAC++ M-estimators. ρ-functions (blue) and w-functions (red) of
MAGSAC++ for ν = 2, 3, 4 and 5 versions are depicted.
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inner loop of RANSAC, see the introductory text to Section 2.2.1. Each computer
vision task utilizes its own residual function R(θ, p). Its application to a minimal
sample leads to a system of polynomial equations in θ with some constrains which
has to be solved. For different computer vision tasks, different systems of equations
are derived, see the overview of minimal solvers in Ref. [8]. These minimal solvers
can be directly used for the IRLS in the MAGSAC++ loops, see the introductory
text in Section 2.2.1.

For many computer vision tasks, the parameter σ in MAGSAC++ can be chosen
from a wide range of values while having practically no impact on the resulting
estimate [A01, A03]. In this case, the IRLS method usually converges in a few
iterations.
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3 Mean-shift tracker

Visual object tracking is a computer vision task of automatically identifying objects
in video sequences. The mean-shift tracker was proposed for real-time tracking
of non-rigid objects by Comaniciu, Ramesh and Meer at Conference on Computer
Vision and Pattern Recognition 2000 [9]. In 2010, this paper was awarded the
Longuet-Higgins Prize for Computer Vision and Pattern Recognition papers from
ten years ago that have made a significant impact on computer vision research.

The mean-shift tracker is a short-term tracker of a single target and the only
information about the target provided is its bounding box in the first frame. It
tracks by minimizing the distance between a target RGB color histogram and RGB
color histograms of target candidates. The mean-shift algorithm is used for that
minimization. The procedure is recapitulated in Section 3.1 followed by the descrip-
tion of the mean-shift algorithm and its relationship to iteratively reweighted least
squares (IRLS) in Section 3.2. The mean-shift tracker with a variable bandwidth
proposed in our study [A04] is commented in Section 3.3.

3.1 Mean-shift procedure

The mean-shift is used in an iterative procedure for seeking modes of kernel estimates
of a density function. It was proposed by Fukunaga and Hostetler in 1975 [10].
This study was spread at computer vision community by Comaniciu and Meer in
2002 [11].

Kernel estimator of density function

Let K : R→ R be a kernel function, i.e. a non-negative symmetric function with∫ +∞

−∞
K(u) du = 1, (14)

then

f̂(x) =
1

nh

n∑
i=1

K

(
x− xi
h

)
, (15)

is a kernel density estimator of a sample {xi ∈ R, 1 ≤ i ≤ n} at x ∈ R with a
bandwidth h > 0.

One possible way how to define a multivariate kernel density estimator in d-
dimensional space Rd using one-dimensional kernel function is an introduction of
the so called profile k of a kernel K [9]:

k(x2) = K(x). (16)
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Let xi ∈ Rd for 1 ≤ i ≤ n, ‖ x‖2 = xTx. Then

f̂(x) =
1

cnhd

n∑
i=1

k

(
‖x− xi

h
‖2

)
(17)

is a kernel density estimator of a sample {xi ∈ Rd, 1 ≤ i ≤ n} at x ∈ Rd with a
bandwidth h > 0 and

c =

+∞∫
−∞

k(‖v‖2) dv, (18)

for v ∈ Rd.

Mean-shift

Assuming that the first derivative k′ of a kernel profile k exists and g(x) = −k′(x),

m(x) =

n∑
i=1

xig
(
‖x−xi

h
‖2
)

n∑
i=1

g
(
‖x−xi

h
‖2
) − x, (19)

is the mean-shift at x. The mean-shift vector m(x) is the normalized gradient of the
kernel density estimator obtained with kernel K at x. When searching for modes of
the kernel density estimator f̂(x), x with zero gradient is looked for.

3.2 Mean-shift algorithm and IRLS

The mean-shift algorithm works as follows:

1. Let y0 be the initial point in Rd.

2. For j = 0, 1, 2, . . ., let yj+1 = yj + m(yj) =

∑n
i=1 xig

(
‖
yj−xi

h
‖2
)

n∑
i=1

g

(
‖
yj−xi

h
‖2
) .

3. Stop when ‖yj+1 − yj‖ falls below some predefined threshold.

If the kernelK has a convex and monotonically decreasing profile k, the sequences
{yj}j=1,2,... and {f̂(yj)}j=1,2,... converge, and {f̂(yj)}j=1,2,... is monotonically increas-

ing. Then the sequence {yj}j=1,2,... converges to some mode of f̂(y), see Ref. [9].
Any kernel K non-increasing in |x| can be written as

K(x) = C(1− ρ(x)), (20)
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where the function ρ is a bounded ρ-function and C is a positive normalization
constant.

Therefore, the mean-shift algorithm for kernel K is IRLS algorithm with the
bounded ρ-function given in Eq.(20) and the residual function

R(θ,x) =
‖x− θ‖

h
. (21)

The d-dimensional vector

θ̂ = arg min
θ∈Θ

n∑
i=1

ρ(R(θ,xi)), (22)

is a mode of the kernel density estimator with the kernel K. Following Eq.(20),
corresponding w-function, w(x) = 2

C
g(x2), see Section 2.1.2, is non-negative and

non-increasing for non-increasing and convex kernel profile k. The j-th iteration of
IRLS

θj+1 = arg min
θ∈Θ

n∑
i=1

w(‖θj − xi
h
‖)‖θ − xi

h
‖2, (23)

leads to the weighted mean

θj+1 =

n∑
i=1

xig
(
‖ θj−xi

h
‖2
)

n∑
i=1

g
(
‖ θj−xi

h
‖2
) . (24)

In fact, the mean-shift procedure is equivalent to IRLS method used for an M-
estimation of location in a d-dimensional space, see Section 2.1.1.

For example, using a uniform kernel for seeking mode is equivalent to the esti-
mation of location with RANSAC ρ-function. Similarly, using Epanechnikov kernel
is equivalent to MSAC ρ-function, triweight kernel corresponds to Tukey ρ-function,
Gaussian kernel is equivalent to Welsch ρ-function and cosine kernel corresponds to
Andrew ρ-function.

3.3 Mean-shift tracker with adaptive scale

The mean-shift tracker suffers from the use of fixed size bounding box if the scale
of the target in the video sequence changes. In our study [A04], we proposed the
mean-shift tracker that uses kernel profile k with a variable bandwidth h. In our
approach, the minimization of the distance between a target RGB color histogram
and RGB color histograms of target candidates is done not only with respect to the
target candidate position but also with respect to its scale h. The minimization uses
gradient descent method and utilizes the fact that the mean-shift is a normalized
gradient of the minimized distance.
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In Ref. [A04], we introduce a tracking algorithm using the mean-shift procedure
with a variable bandwidth h and call it an adaptive scale mean-shift (ASMS) tracker.
In this study, ASMS is compared to state-of-the-art algorithms on a large tracking
data set. For example, one of used criterion for comparison is the number of frames
the algorithm locates the target correctly, the other is its speed, for other criteria
see Ref. [A04]. We observed that in all of these criteria ASMS equals or outperforms
the state-of-the-art algorithms.
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4 Multiple trackers and estimation of their confidence

A large number of diverse tracking methods has been proposed based on different
assumption about the target motion, adopted features and optimization techniques.
For example, some trackers assume a rigid motion, i.e. the motion preserves the
Euclidean distance between every pair of target points. Some trackers use a deep
neural network for finding the most similar target candidate to the target in each
frame. The mean-shift tracker utilizes the color similarity of the target and a target
candidate.

As the situation changes during the video sequence, different trackers are better
suited for tracking under different conditions. The natural idea is to exploit multiple
different trackers at the same time, in each video frame estimate their probabilities of
tracking correctly and then use the most confident ones, i.e. those with the highest
estimated probability of being correct. In our study [A06], the hidden Markov model
(HMM) is utilized for this estimation and fusion of multiple trackers. This model
is briefly introduced in Section 4.1. In addition, an expectation-maximization (EM)
algorithm that is commonly used in HMM and its connection to IRLS are mentioned
in Section 4.2. Finally, our study [A06] is commented in Section 4.3.

4.1 Hidden Markov model and IRLS

Let us assume the HMM with N possible states {s1, s2, . . . , sN}, the matrix of
state transition probabilities A = {aij}Ni,j=1, the vector of initial probabilities

π = (π1, π2, . . . , πN), a sequence of observations X = {Xt}Tt=1, Xt ∈ Rm and
F = {fi(x)}Ni=1, x ∈ Rm, using the system of conditional probability densities of
observations conditioned on St = si written

fi(x) = f(x|St = si) for 1 ≤ i ≤ N, 1 ≤ t ≤ T, x ∈ Rm, (25)

where St are random variables, each representing the hidden state at time t, and
λ = (A,F, π) denotes the parameter set of the HMM. Having the observations X ,
maximum likelihood approach is used to estimate the parameters λ.

Maximum likelihood in HMM

Let S = {s1, s2, . . . , sN}T be a set of all possible T -tuples of states and let
s∗ = (s∗1, s

∗
2, . . . , s

∗
T ) ∈ S be one possible sequence of states. Then the likelihood

function is

P (X|λ) =
∑
s∗∈S

P (s∗,X|λ), (26)

where

P (s∗,X|λ) = πs∗1(λ)fs∗1(λ,X1)
T∏
t=2

as∗t−1,t
(λ)fs∗t (λ,Xt). (27)
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Maximizing the likelihood function P (X|λ) is a complicated task that usually
cannot be solved analytically. In 1970, Baum, Petrie, Soules and Weiss proposed
an iterative procedure for maximization of P (X|λ) which is known as Baum-Welch
algorithm [13]. The idea is as follows. Let λ ∈ Λ, where Λ is a subset of Euclidean
space, and

Q(λ, λ′) =
∑
s∗∈S

P (s∗|X , λ) ln[P (s∗,X|λ′)]. (28)

Then, according to Theorem 2.1 in Ref. [13]

Q(λ, λ′) ≥ Q(λ, λ)⇒ P (X|λ′) ≥ P (X|λ) (29)

and the equality holds if and only if P (s∗|X , λ) = P (s∗|X , λ′) for ∀s∗ ∈ S.
Here we add that the form of the function P (s∗,X|λ) is not crucial for the

inequality (29). Hence, the Baum-Welch iterative procedure introduced below can
be used for any hidden variables with finite possible outcomes.

The classical Baum-Welch algorithm [13] repeats the second step in the scheme
listed below until convergence:

1. Let λ0 be the initial estimate of λ.

2. For j = 0, 1, 2, . . . let λj+1 = arg max
λ

Q(λj, λ).

In this way, each step of Baum-Welch algorithm non-decreases the likelihood
function P (X|λ). Moreover, its convergence to the likelihood function maximum de-
pends on the choice of the type of density functions fi(x) for 1 ≤ i ≤ N . Specifically,
Baum-Welch algorithm converges for the Poisson, binomial, normal and gamma dis-
tributions and does not converge for the Cauchy distribution [13].

For discrete distributions fi(x) ∈ (0, 1), for 1 ≤ i ≤ N , giving ln[P (s∗,X|λ)] < 0
for ∀s∗ ∈ S, the Baum-Welch algorithm can be formulated as IRLS procedure: Let
the residual function

R(λ, s∗) =
√
− ln[P (s∗,X|λ)]. (30)

Using Welsch ρ-function, ρ(x) = 1 − exp(−x2) for x ∈ R, with the w-function,
w(x) = 2 exp(−x2), the second step of IRLS algorithm, see Section 2.1.2, gives for
j = 0, 1, 2, . . .

λj+1 = arg min
λ

∑
s∗∈S

w(R(λj, s
∗))R2(λ, s∗)

= arg min
λ

(−2)
∑
s∗∈S

P (s∗,X|λj) ln[P (s∗,X|λ)]

= 2P (X|λj) arg max
λ

Q(λj, λ), (31)

and is equivalent to the second step of Baum-Welch algorithm mentioned above.
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In exactly the same way, one can easily deduce that for continuous bounded
densities fi(x) ≤ M, ∀x ∈ Rm, 1 ≤ i ≤ N the Baum-Welch algorithm can be
formulated as IRLS procedure with the residual function

R(λ, s∗) =

√
− ln

P (s∗,X|λ)

MT
. (32)

Let us finally note that the well-known expectation-maximization algorithm pro-
posed by Dempster, Laitd and Rubin in 1977 [14] and briefly mentioned in Sec-
tion 4.2 is, in fact, a generalization of the Baum-Welch algorithm.

4.2 Expectation-maximization algorithm and IRLS

In this section, we remind the expectation-maximization (EM) algorithm and show
its connection to IRLS.

Let X = {Xi}Ni=1, Xi ∈ Rm be observed variables and Y = {Yi}Ki=1, Yi ∈ Rk

be unobserved (hidden) variables. In EM algorithm, Z = (X ,Y) is called complete
data, X denotes incomplete data. Let θ ∈ Θ, where Θ is a subset of Euclidean
space, and let

1. f(Z|θ) = f(X ,Y|θ) be a joined density of X and Y ,

2. g(Y|X , θ) be a conditional density of Y ∈ R = RkK conditioned on X and

3. l(X|θ) be a marginal density of X .

We want to find a MLE of θ, i.e.

θ̂ = arg max
θ∈Θ

l(X|θ). (33)

The EM algorithm repeats the second step of the following prescription until
convergence:

1. Let θ0 be the initial estimate of θ.

2. For j = 0, 1, 2, . . . let θj+1 = arg max
θ∈Θ

∫
R

ln(f(X ,Y|θ)) g(Y|X , θj) dY .

Doing this procedure, each step of EM algorithm non-decreases the likelihood func-
tion l(X|λ).

The connection to IRLS follows. Let

R(θ,Z) = R(θ,X ,Y) (34)

be a residual function and ρ(x) be a bounded ρ-function, with w-function w(x), and

L(θ) =

∫
R

[1− ρ(R(θ,X ,Y))] dY , (35)

be bounded with respect to θ ∈ Θ. Let us propose a slightly generalized IRLS
algorithm:
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1. Let θ0 be the initial estimate of θ.

2. For j = 0, 1, 2, . . . let θj+1 = arg min
θ∈Θ

∫
R
w(R(θj,X ,Y))R2(θ,X ,Y) dY .

When the function w(x) is non-increasing in |x| each iteration of this algorithm
non-decreases the function L(θ) in Eq.(35).

Let f(X ,Y|θ) ≤M for all Y ∈ R. Let θ ∈ Θ and, again, the residual function

R(θ,X ,Y) =

√
− ln

f(X ,Y|θ)
M

. (36)

Using Welsch ρ-function, ρ(x) = 1 − exp(−x2) for x ∈ R with the corresponding
w-function w(x) = 2 exp(−x2), see Section 2.1.2, the second step of the generalized
IRLS algorithm gives for j = 0, 1, 2, . . .

θj+1 = arg min
θ∈Θ

∫
R

w(R(θj,X ,Y))R2(θ,X ,Y) dY

= arg min
θ∈Θ

(−2)

∫
R

ln[f(X ,Y|θ])f(X ,Y|θj) dY + 2 lnM

∫
R

f(X ,Y|θj) dY

= 2l(X|θj) arg max
θ∈Θ

∫
R

ln(f(X ,Y|θ)) g(Y|X , θj) dY , (37)

i.e. we end up with the second step of the EM algorithm and with L(θ) = 1
M
l(X|θ).

4.3 Online adaptive hidden Markov model for multi-tracker fusion

In our study [A06], we use two or three trackers and a detector. For each video
frame each tracker outputs a target candidate and some observables. The detector
outputs the verified target pose or nothing. The chosen states of HMM are the
correctnesses of individual trackers that are mostly hidden, but they are known if
the detector fires. The observables are similarity measures of the estimated target
candidates to target bounding box in the first frame. These observables are in the
interval (0, 1) or can be normalized in such a way that they range in the interval
(0, 1). We assume that the observations follow a beta distribution [A06].

In the maximization step of Baum-Welch algorithm [13], Q(λj, λ) given in Eq.(28)
splits up into two summands which can be maximized separately, the first with
respect to the state transition probabilities A = {aij}Ni,j=1 and the second with
respect to the parameters of the beta distributions. However, maximization of the
beta distribution with respect to its parameters is a complicated task. Therefore,
we modify the second step of Baum-Welch algorithm [A06] as follows. The function
Q(λj, λ) is maximized only with respect to the probabilities A = {aij}Ni,j=1. The
parameters of the beta distributions are estimated by the method of moments. Due
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to the method of moments, Q(λj, λj+1) ≥ Q(λj, λj) is not guaranteed, however. If
λj+1 does not satisfy this inequality the j-th iteration changes only estimates of
the state transition probabilities and the parameters of the beta distributions stay
unchanged, implying that Q(λj, λj+1) ≥ Q(λj, λj) holds.

In Ref. [A06], we propose a novel algorithm called HMMTxD (hidden Markov
model for trackers and detector) for fusion of multiple trackers. We choose fast
tracking methods that have different designs and work with different assumptions.
One of used trackers is our ASMS tracker [A04]. We have shown that superior
performance can be achieved by using simple trackers that may not represent the
state-of-the-art. The HMMTxD method achieves the performance of at least the
best tracker used or higher and shows the efficiency of the HMM for combination
of multiple trackers. The HMMTxD method outperforms the state-of-the-art, often
significantly, on many data-sets in almost all criteria.
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5 On-off problem

In the following, we describe our activities in the development of statistical methods
for searching for new phenomena using data that consists of a set of discrete events
providing a possible signal that is, in principle, indistinguishable from the back-
ground. The on-off experiment and its interpretation is described in Section 5.1.
The classical solution to the on-off problem is briefly mentioned in Section 5.2.
In Section 5.3, we introduce Bayesian approach to the on-off task that was worked
out by us in [A07, A08]. We show our solutions to the on-off problem obtained in
term of a difference of unknown on- and off-source intensities [A07] in Section 5.3.1.
In order to illustrate pros and cons of Bayesian method we worked out several
numerical examples presenting them in Section 5.3.2. Based on our study [A08],
in Section 5.3.3, other interesting statistical variables related to the on-off problem
within Bayesian settings are mentioned and their usefulness is briefly commented.

5.1 Signal detection

The on-off problem arises when measured data consists of two unknown parts, typi-
cally in the search for new effects in particle physics or in high-energy astrophysics.
The first set of data is due to a signal searched for, and the second one is due to an
inseparable background. Thus, the on-off experiment is designed for counting two
classes of events registered in two disjoint regions, in the on-source region, where a
new phenomenon is searched for, and in the reference off-source region, where only
background events contribute.

Specifically, one wants to decide whether the same emitter with a constant but
unknown intensity is responsible for the observed counts in both regions or whether
a source producing more events in the on-source region is present. The on-off counts,
non and noff , are assumed to follow independent Poisson distributions with unknown
positive intensities, µon > 0 and µoff > 0. Naturally, exposures of the on- and off-
source regions under considerations, won and woff , play the role. It is assumed that
their ratio α = won

woff
is known from the experimental details or is pre-estimated.

The unknown intensity of background counts in the on-source region is derived from
the intensity in the off-source region, i.e. µb = αµoff .

Apart from less used statistical concept of p-values, physicists work mostly with
a derived statistics, in a concept of significance S. While the p-value denotes the
probability of obtaining test results at least as extreme as the observed one under
the assumption that the hypothesis is true, the significance S is the upper p-value
quantile of the standard normal distribution, Φ−1(S) = 1 − p, where Φ is the cu-
mulative distribution function of standard normal distribution. For example, S = 3
corresponds to the p-value equal to 0.00135.
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5.2 Li-Ma method and Wilks’ theorem

An important paper dealing with the on-off problem was written by Li and Ma
in 1983 [15]. It summarizes and criticizes different approaches for analyzing γ-ray
astronomy experiments used so far and introduces a novel method for testing the
hypothesis of equality of on- and off-source intensities, µon = αµoff . Their approach
is based on the likelihood ratio test proposed by Wilks [16]. Famous Wilks’ theorem
described therein was presented to the American Mathematical Society on 26th
March 1937 saying that the asymptotic distribution of a logarithm of likelihood
ratio multiplied by (−2) is χ2.

Monte Carlo simulations presented in Li-Ma paper [15] and subsequent estima-
tion of significances show that, in the case that the observed counts are not too
few (say non � 10, noff � 10) and for a reasonable ratio of on- and off-source
exposures, i.e. α ∈ (0.1, 10), the likelihood ratio asymptotics works better than
approaches used previously. In the following ten years, Li-Ma formula [15] became
famous within a physics community. Nowadays, it is a standard widely used tool
claiming detection and setting its significances in different applications.

5.3 Bayesian approach

In case the measured events are extremely rare, Li-Ma formula cannot be properly
used for its only asymptotic validity. This occurs, for example, in searching for
weak signals from distance galaxies in high-energy astrophysics or in searching for
still unobserved particles created in unusual interactions in particle physics. It was
our motivation for proposing a Bayesian solution of the on-off problem that employs
the same set of parameters, namely, the number of registered events in the on-source
region, non , the number of detected events in the complemented off-source region,
noff , and the ratio of on- and off-source exposures, α = won

woff
.

With this method, it is possible to infer the signal significance, strength and
uncertainty of the measured signal and its upper limit, all in a straightforward way.
Bayesian approach is valid without restrictions for count numbers. On the other
hand, it relies on the prior choice of parameter distribution. Nevertheless, their
prior distributions can be chosen completely uninformative or, on contrary, it can
contain information from previous experiments if available. Bayesian method can
be utilized in different physics applications, in high-energy gamma astrophysics,
cosmic-ray physics or in particle physics, for example.

5.3.1 On Bayesian analysis of on–off measurements

We focused on reformulating the on-off problem within Bayesian settings [A07]. The
unknown intensities in the on- and off-source regions, µon and µoff , were considered
to be independent random variables with different prior gamma distributions, i.e.
the conjugate priors for a Poisson distribution. Having a posterior distribution of
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µon given a number of events non and a posterior distribution of µoff given noff as
well, we introduce a difference variable δ = µon − αµoff and construct its posterior
distribution given non and noff . This variable estimates the strength of emitter if
the source counts are measured in the on-source region. Let us note that δ ∈ R,
δ > 0 indicate a source is present in the on-source region and δ ≤ 0 represents an
absence of a source or a sink of events in the on-source region or a possible source
in the off-source region.

We analyzed on-off data with the aim to confirm whether an emitter is responsible
for observed counts. To this end, we calculated the probability P+ = P (δ > 0) and
define the Bayesian significance of a source presence in the on-source region by
SB = Φ−1(P+), noting that SB < 0 speaks for possible presence of a source in
the off-source region or disappearance of events in the on-source area. On top of
this, also credible intervals for δ are constructed in positively identified cases since
due to Bayesian approach we have at our disposal not only the significance but the
whole distribution of difference variable δ. However, the distribution of δ has a
complicated structure containing Tricomi confluent hypergeometric function [A07].
We showed that if it is guaranteed that a source may be observed just in the on-
source region or if the background intensity µoff can be assumed to be known from
other considerations, the posterior distribution of the difference variable δ is simply
adaptable.

5.3.2 Monte Carlo simulations

In order to compare Bayesian and Li-Ma significances, we performed a set of Monte
Carlo simulations. According to Li-Ma method [15], for a likelihood ratio λ gener-
ated by two Poissonian variables non and noff observed in the regions with the ratio
of exposures α = won

woff
one has

λ =

(
α

1 + α

non + noff

non

)non
(

1

1 + α

non + noff

noff

)noff

, (38)

and −2 lnλ asymptotically follows the χ2-distribution with one degree of freedom
under a no-source hypotheses. The Li-Ma significance SLM is then given by

SLM =
√
−2 lnλ for non ≥ αnoff , and SLM = −

√
−2 lnλ for non < αnoff .(39)

For Bayesian significance SB we employed distribution of the difference variable δ
as indicated in Section 5.3.1, for more details see [A07].

In order to illustrate usefulness of Bayesian approach, here we worked out sev-
eral simple examples. Li-Ma significance SLM is compared to Bayesian significance
SB gained with a totally uninformative prior, i.e. with an improper prior equal to
1 on (0,+∞). In each Monte Carlo simulation, 105 pairs of independent Poisson
random variables with intensities µon and µoff were generated. Resultant histograms
of significances SLM and SB with prescribed values of α are depicted in Figs.4 and 5.
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Figure 4: Distributions of significances for the source detection. We show histograms for the
Li–Ma significances (red filled areas) and for the Bayes significances (blue lines) using uniform
prior distributions. Mean parameters are indicated in the panels.

There is a no source present in the on-source region in examples depicted in Fig.4.
It can be seen that for µon = 50, µoff = 50 and α = 1 the histograms of Li-Ma and
Bayesian significance are almost the same. Decreasing µon , µoff and α the signifi-
cance histograms become more different, however. In case of rejecting a no-source
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Figure 5: Same as in Fig.4. Here, Li–Ma and Bayes significances using µon = 2αµoff are shown.

hypotheses, if the significance is larger then 3, using SLM or SB leads practically to
the same frequencies of disclaims.

Both types of resultant significances for a source present in the on-source region
with µon = 2αµoff are shown in Fig.5. Interestingly, for α < 1 as it is common in all
experiments design for cosmic-ray studies, assuming significance SB within Bayesian
approach, no-source hypotheses are rejected more often then using Li-Ma method
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and corresponding significance SLM , see the rightmost panels in Fig.5.

5.3.3 A Bayesian on-off analysis of cosmic ray data

In the following study [A08], we deal with posterior distributions of some other
variables closely related to source identification that are suitable in directional anal-
ysis in cosmic-ray physics. Namely, we consider the source flux j = δ/a , where
a = α

α+1
A and A denotes the exposure in the on-source region integrated over the

period of data taking. We also assumed the intensity registered in the on-source re-
gion expressed it terms of a background intensity, β =

µon
αµoff

. Finally, we deal with

the fraction of the total intensity registered in the on-source zone, ω =
µon

µon +µoff
.

Having in disposal Bayesian posterior distributions of different variables, we fo-
cused on predicting waiting time for new events in the on-source region expressed
as a total count of events registered in both regions. To this end, we introduce
two independent Poisson processes {Non (t) : t ≥ 0} and {Noff (t) : t ≥ 0} with
intensities µon and µoff and expected values µon t and µoff t, respectively. Here,
the random variable Non (t) represents new on-source events and the random vari-
able Noff (t) stands for new off-source events collected up to and including time t.
Then, based on previous observations, the random variable Non (t) conditioned on
n = Non (t)+Noff (t), n ∈ N, follows a binomial distribution with parameters n and
ω introduced above for any t > 0. This result can be used for checking whether new
observations are consistent with the previous ones or, on the other hand, whether
the intensities of observed processes have changed [A08].

Finally, we also address a question of how to compare two independent on-off
measurements [A08]. With the Bayesian posterior distributions of different vari-
ables, we were able to quantify statistically which of the measurements indicate a
more intense emitter. For this, we choose the unconditional distributions of the dif-
ference variable. Then, we calculated the probability that the flux observed in one
experiment is less than the flux measured in the second one, both fluxes treated as
random variables. Similar results are obtained with other variable related to source
identification, for more details see [A08].
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6 Summary

In this habilitation thesis I specified my contribution to statistical approaches ap-
plied in the field of computer vision and cosmic ray physics.

In computer vision I have been working on several different projects. First,
I dealt with the RANdom SAmpling Consensus (RANSAC), a popular computer
vision method which offers a simple way of fitting parameterized models to data
corrupted by outliers. This method is highly sensitive to the user-selected threshold
that divides data into inliers and outliers. My idea was not to strictly divide data into
inliers and outliers but to assign to each point a weight corresponding to its likelihood
to be inlier. This idea led to a novel loss function and the corresponding local
optimization procedure MAGSAC++ [A01], a new type of an M-estimator. We have
shown, in many large experiments, that MAGSAC++ leads to the most accurate
estimate of relative position, significantly smaller sensitivity to the setting of the
threshold parameter and similar speed in comparison with state-of-the-art methods.
MAGSAC++ is the best RANSAC-type algorithm for challenging problems with
ratio of outliers highly above 50% [17].

Second, I dealt with visual object trackers. Visual object tracking is an important
research topic in computer vision, where given the initial state of a target i.e. its
center and location in the first frame of a video sequence, the aim of tracking is
to automatically obtain the positions of the object in the subsequent video frames.
Our contribution was an improvement of the mean-shift tracker to be scale adaptive
resulting in the adaptive scale mean-shift (ASMS) tracker [A04]. The performance
of the mean-shift tracker suffers from the use of a fixed size window if the scale of
the target changes which often leads to tracking failure. I proposed the theoretical
background which was implemented in ASMS tracker. Although ASMS tracker
slows down the standard mean-shift tracker, it is significantly faster than state-of-
the-art algorithms which can cope similarly successfully with changing scale of a
target during video sequence.

My second post on visual object tracking is a method utilized in the implemen-
tation of the HMMTxD-tracker (hidden Markov model for trackers and detector)
proposed for cooperation of multiple trackers based on different and complementary
assumptions [A06]. The estimation of parameters of the hidden Markov model is
done online using partially annotated states by the object detector and utilizing a
modified Baum-Welch algorithm. The goal is to use the best performing tracker in
each frame. HMMTxD-tracker was among the top three performing trackers at the
time of its publication, with speed comparable to other complex tracking methods.
Moreover, I have shown here that all the optimization procedures used in the above
algorithms for computer vision tasks can be formulated as iteratively reweighted
least squares.

In cosmic ray physics, I worked on the Bayesian approach to the on-off prob-
lem [A07, A08] that arises when directional data are searched for possible sources
the activity of which is submerged in a surrounding background. This scheme is
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particularly suitable when observing extremely rare events. Bayesian reasoning al-
lows us to gain more statistical characteristics suitable for the study of counting
processes, which are widely used in astroparticle physics, but are difficult to obtain
in the classical concept. Using distributions of different quantities, we were concern,
for example, with confidence intervals of a signal or its upper limits, estimates for
the waiting time for the next event and comparison of different on-off measurements.
Moreover, we focused on the precise interpretation of the results derived under the
validity of various simplifying assumptions.

We also presented several numerical examples that may serve as guides for
practical applications. First, a Monte Carlo simulation study comparing Bayesian
and classical results was performed at Section 5.3.2. Second, we successfully used
Bayesian inference in order to interpret experimental data on very high energy pho-
tons from the on-off measurements of gamma ray bursts [A07]. Finally, with the
aim to document the use and advantages of the Bayesian reasoning, we dealt with
the cosmic ray data collected in currently working observatories [A08]. We have
summarized the outputs available in this concept by looking at these data if, as
originally suggested, they are associated with a set of positions of active galactic
nuclei and the nearest one, Centaurus A.
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P103/12/G084, Center for Large Scale Multi-modal Data Interpretation, and by
the Ministry of Education OP VVV project CZ.02.1.01/0.0/0.0/16 019/0000765,
Research Center for Informatics.

29



References

[1] Huber P. J., Robust estimation of a location parameter, Annals of Mathematical
Statistics 35, pp.73-101, 1964.

[2] Maronna R. A., Martin R. D., Yohai V. J., Robust Statistics Theory and Meth-
ods, John Wiley @ Sons, Ltd, 2006.

[3] Fischler M. A., Bolles R. C., Random Sample Consensus: A Paradigm for
Model Fitting with Applications to Image Analysis and Automated Cartography,
Communications of the ACM, Vol. 24, pp.381-395, June 1981.

[4] Leroy, A., Rousseeuw, P. J., PROGRESS: A Program for Robust Regression
Analysis, Technical Report 201, Center for Statistics and O.R., Universiry of
Brussels, Belgium, 1984.

[5] Torr P. H. S., Zisserman A., MLESAC: A new robust estimator with applica-
tion to estimating image geometry, Computer Vision and Image Understanding,
Volume 78, Issue 1, pp.138-156, April 2000.

[6] Chum O., Matas J., Kittler J., Locally optimized RANSAC, Joint Pattern
Recognition Symposium, pp.236-243, 2003.

[7] Lebeda K., Chum O., Matas J., Fixing the Locally Optimized RANSAC, British
machine vision conference. Vol. 2., 2012.

[8] Pajdla T., Kukelova Z., Minimal Problems in Computer Vision,
http://aag.ciirc.cvut.cz/minimal/, 2022.

[9] Comaniciu D., Ramesh V., Meer P., Real-Time Tracking of Non-Rigide Ob-
jects Using Mean Shift, Computer Vision and Pattern Recognition Conference
Proceedings, vol.2, pp.142-149, 2000.

[10] Fukunaga K., Hostetler L. D., The Estimation of the Gradient of a Density
Function, with Applications in Pattern Recognition, IEEE Transactions on In-
formation Theory 21(1), pp.32-40, January 1975.

[11] Comaniciu D., Meer P., Mean Shift: A Robust Approach Toward Feature Space
Analysis, IEEE Transactions on Pattern Analysis and Machine Intelligenece
24(5), pp.603-619, May 2002.

[12] Comaniciu D., Visvanathan R., Meer P. Kernel-based Object Tracking, IEEE
Transactions on Pattern Analysis and Machine Intelligenece 25(5), pp.564-575,
May 2003.

[13] Baum L. E., Petrie T., Soules G., Weiss N., A Maximization Technique Oc-
curring in the Statistical Analysis of Probabilistic Functions of Markov Chains,
Annals of Mathematical Statistics, Vol.41, No.1, pp.164-171, 1970.

30



[14] Dempster A. P., Laitd N. M., Rubin D. B., Maximum likelihood from incomplete
data via the EM algorithm, Journal of the Royal Statistical Society, series B
39(1), pp.1-38, 1977.

[15] Li T. P., Ma Y. Q., Analysis methods for results in gamma-ray astronomy,
Astrophysical Journal, 272, pp.317-324, 1983.

[16] Wilks S. S., The large-sample distribution of the likelihood ratio for testing
composite hypotheses, Annals of Mathematical Statistics 9(1), pp.60-62, 1938.

[17] Riu C., Nozick V., Monasse P., Dehais J., Classification Performance of RanSaC
Algorithms with Automatic Threshold Estimation, Proceedings of the 17th In-
ternational Joint Conference on Computer Vision, Imaging and Computer
Graphics Theory and Applications, pp.723-733, 2022.

31



Selected publications by the author

[A01] Barath D., Noskova J., Matas J., Marginalizing Sample Consensus, IEEE
Transactions on Pattern Analysis and Machine Intelligence 44, pp. 8420-8432,
November 2022.

[A02] Barath D., Matas J., Noskova J., MAGSAC: Marginalizing Sample Consensus,
Proceedings of Conference on Computer Vision and Pattern Recognition, USA:
IEEE, pp. 10197-10205, 2019.

[A03] Barath D., Noskova J., Ivashechkin M., Matas J., MAGSAC++, a Fast, Re-
liable and Accurate Robust Estimator, Proceedings of Conference on Computer
Vision and Pattern Recognition, USA: IEEE, pp. 1304-1312, 2020.

[A04] Vojir T., Noskova J., Matas J., Robust scale-adaptive mean-shift for tracking,
Pattern Recognition Letters 49, pp. 250-258, 2014.

[A05] Vojir T., Noskova, J., Matas, J., Robust Scale-Adaptive Mean-Shift for Track-
ing, Proceedings of the 18th Scandinavian Conference on Image Analysis, Lec-
ture Notes in Computer Science, pp. 652-663, 2013.

[A06] Vojir T., Matas J., Noskova, J., Online adaptive hidden Markov model for
multi-tracker fusion, Computer Vision and Image Understanding 153, pp. 109-
119, 2016.

[A07] Nosek D., Noskova J., On Bayesian analysis of on-off measurements, Nuclear
Instruments and Methods in Physics Research A 820, pp. 23-33, 2016.

[A08] Nosek D., Noskova J., A Bayesian on-off analysis of cosmic ray data, Nuclear
Instruments and Methods in Physics Research A 867, pp. 222-230, 2017.

32



A Marginalizing Sample Consensus

Barath D., Noskova J., Matas J., Marginalizing Sample Consensus, IEEE Transac-
tions on Pattern Analysis and Machine Intelligence 44, pp. 8420-8432, November
2022.
DOI: 10.1109/TPAMI.2021.3103562

33



Marginalizing Sample Consensus
Daniel Barath , Jana Noskova , and Jiri Matas

Abstract—A new method for robust estimation, MAGSAC++, is proposed. It introduces a new model quality (scoring) function that

does not make inlier-outlier decisions, and a novel marginalization procedure formulated as an M-estimation with a novel class of

M-estimators (a robust kernel) solved by an iteratively re-weighted least squares procedure. Instead of the inlier-outlier threshold, it

requires only its loose upper bound which can be chosen from a significantly wider range. Also, we propose a new termination criterion

and a technique for selecting a set of inliers in a data-driven manner as a post-processing step after the robust estimation finishes. On a

number of publicly available real-world datasets for homography, fundamental matrix fitting and relative pose, MAGSAC++ produces

results superior to the state-of-the-art robust methods. It is more geometrically accurate, fails fewer times, and it is often faster. It is

shown that MAGSAC++ is significantly less sensitive to the setting of the threshold upper bound than the other state-of-the-art

algorithms to the inlier-outlier threshold. Therefore, it is easier to be applied to unseen problems and scenes without acquiring

information by hand about the setting of the inlier-outlier threshold. The source code and examples both in C++ and Python are

available at https://github.com/danini/magsac.

Index Terms—Robust model estimation, RANSAC, noise scale, M-estimator, marginalization

Ç

1 INTRODUCTION

THE RANdom SAmple Consensus (RANSAC) algorithm
proposed by Fischler and Bolles [1] in 1981 has become

the most widely used robust estimator in computer vision.
RANSAC and its variants have been successfully applied to
a wide range of vision tasks, e.g., short baseline stereo [2],
[3], wide baseline matching [4], [5], [6], motion segmenta-
tion [2], detection of geometric primitives [7], pose-graph
initialization for structure-from-motion pipelines [8], [9],
image mosaicing [10], and to perform [11] or initialize
multi-model fitting algorithms [12], [13]. In brief, RANSAC
repeatedly selects random subsets of the input data points,
typically minimal, and fits a model, e.g., a 2D line to two
points, a fundamental matrix to seven 2D point correspond-
ences, or a 6D pose to three 2D-3D correspondences. The
quality of the model is then measured, for instance, as the
cardinality of its support, i.e., the number of inlier data
points. Finally, the model with the highest quality, polished,
e.g., by least-squares fitting or numerical optimization on all
inliers, is returned.

We propose a new robust loss, a randomized RANSAC-
like robust estimator (MAGSAC++) and a termination crite-
rion which eliminate the need for a hand-picked inlier-out-
lier threshold by marginalizing over a range of noise scales

when determining the model quality and the inlier proba-
bilities of data points.

Since the introduction of RANSAC, a number of modifi-
cations have been proposed replacing the components of
the original algorithm. For instance, improving the sampler
impacts the speed of the robust estimation procedure via
selecting a good sample early and, thus, triggering the ter-
mination criterion. The NAPSAC [17] sampler assumes that
inliers are spatially coherent and, therefore, it draws sam-
ples from a hyper-sphere centered at the first, randomly
selected, location-defining point. If this point is an inlier, the
points sampled in its proximity are more likely to be inliers
than the ones outside the ball. While NAPSAC exploits the
observation that inliers tend to be “closer” to each other
than outliers, the GroupSAC algorithm [18] assumes that
inliers are often “similar” to each other and, therefore, data
points can be separated into groups according to their simi-
larities. PROSAC [19] exploits an a priori predicted inlier
probability rank of each point and starts the sampling with
the most promising ones. Progressively, samples that are
less likely to lead to the sought model are drawn. P-NAP-
SAC [20] merges the advantages of local and global sam-
pling by drawing samples from progressively growing
neighborhoods. Gradually, the algorithm changes from the
fully localized NAPSAC to the global PROSAC sampling.

Regarding speeding up the robust estimation process,
one way of avoiding unnecessary calculations is via termi-
nation of verification of models which are unlikely to be
more accurate than the current so-far-the-best. There has
been a number of preemptive model verification strategies
proposed. For example, when using the Td;d test [21], the
model verification is first performed on d randomly selected
points (where d� n). The remaining n� d ones are evalu-
ated only if the first d points are all inliers to the verified
model. The test was extended by the so-called bail-out
test [22]. Given a model to be scored, a randomly selected
subset of d points is evaluated. If the inlier ratio within this
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subset is significantly smaller than the current best inlier
ratio, it is unlikely that the model will yield a larger consen-
sus set than the current maximum and, thus, is discarded.
In [23], [24], an optimal randomized model verification
strategy was described. The test is based on Wald’s theory
of sequential testing [25]. Wald’s SPRT test is a solution of a
constrained optimization problem, where the user supplies
acceptable probabilities for errors of the first type (rejecting
a good model) and the second type (accepting a bad model)
and the resulting optimal test is a trade-off between the
time to decision and the errors committed.

Observing that RANSAC requires in practice more sam-
ples than what theory predicts, Chum et al. [26] identified a
problem that not all all-inlier samples are “good”, i.e., lead to
a model accurate enough to distinguish all inliers, e.g., due
to poor conditioning of the selected randomall-inlier sample.
They address the problem by introducing the locally opti-
mized RANSAC (LO-RANSAC) that augments the original
approach with a local optimization step applied to the so-far-
the-best models. Lebeda et al. [14] showed that, for models
with many inliers, the local optimization becomes a compu-
tational bottleneck due to the iterated least-squaresmodel fit-
ting where the processing time is a function of the number of
used points. In [14], it is proposed to consider only a subset
of the inliers in the local optimization. Only the final model
polishing process is applied to thewhole inlier set.

To improve the accuracy by better modelling the noise in
the data, different model quality calculation techniques
have been investigated. For instance, MLESAC [27] esti-
mates the model quality by a maximum likelihood proce-
dure with all its beneficial properties, albeit under certain
assumptions about data point distributions. In practice,
MLESAC results are often superior to the inlier counting of
plain RANSAC, and they are less sensitive to the manually
set inlier-outlier threshold. In MAPSAC [28], the robust esti-
mation is formulated as a process that estimates both the
parameters of the data distribution and the quality of the
model in terms of maximum a posteriori.

All of the above-mentioned scoring strategies require a
manually selected inlier-outlier threshold. Selecting a suit-
able threshold requires the user to acquire knowledge
about the problem and the actual scene, restricting the out-
of-the-box applicability of such algorithms. While there are
commonly used threshold values for a number of prob-
lems, e.g., 2-3 pixels for homography estimation, they
rarely lead to highly accurate solutions. Addressing this
issue, the dependency on the user-defined inlier-outlier
threshold is reduced by its adaptive selection during the
model parameter estimation. The MINPRAN [29] algo-
rithm, proposed in 1995, assumes that the outliers are dis-
tributed uniformly in the image. For each tested model,
MINPRAN tests a number of candidate thresholds and
chooses the one with inliers the least likely to have
occurred randomly. Moisan et al. [30] proposed a contrario
RANSAC, AC-RANSAC in short, which follows an
approach similar to MINPRAN, but the minimized proba-
bility models the consistency of data points with an
unknown rigid model. In [31], the best threshold is selected
using the Likelihood Ratio Test. While MINPRAN and AC-
RANSAC are shown to achieve accurate results, they
obtain their solutions using a single adaptively selected

threshold. This approach can fail when the background
model does not follow the assumed distribution, e.g., the
outliers are structured, and it ignores the additional infor-
mation that other candidate thresholds provide. Also, test-
ing multiple thresholds for each minimal sample model
often leads to a deterioration in the processing time. The
RECON [32] algorithm assumes that the noisy observations
of the sought model have a large amount of common
inliers with similar point-to-model residuals. Finding mul-
tiple models with similar inlier sets is interpreted as
finding the sought model. The RANSAAC [33] algorithm
follows a different strategy to eliminate the threshold from
the model fitting procedure. RANSAAC estimates models
from randomly selected minimal samples similarly as
RANSAC. It then converts the models to sets of 2D points,
and combines multiple models by averaging the point
coordinates used for representing them. Finally, the model
is fitted to the averaged point coordinates. Besides the
number of drawbacks of RANSAAC, e.g., non-robust
model-to-points conversion, it is shown by the authors that
it only works inside a local optimization process after a
reasonably good model is found. Thus, the inlier-outlier
threshold is still required.

As the main contribution of this paper, we propose an
approach, s-consensus++, that eliminates the need for a pre-
cise user-defined noise scale s when estimating the model
parameters in a robust manner. Instead of s, only a loose
upper bound smax is required defining the range of possible
threshold values. The s-consensus++ algorithm is in fact a
new M-estimator (a robust kernel), solved by an iteratively
re-weighted least squares procedure. This M-estimator mar-
ginalizes over the range of noise scales. As minor contribu-
tions, we propose a new termination criterion which does
not require a s value. Considering the fact that some appli-
cations, e.g., structure-from-motion [34], need to know
inliers, we propose a way to adaptively determine the set of
inliers after the robust estimation finishes. The inliers are
selected by thresholding, such that the model to which they
lead after least-squares fitting is similar to the model deter-
mined by the robust estimation procedure applied without
inlier-outlier decisions done.

Preliminary versions of MAGSAC++ with s-consensus+
+ were published at CVPR 2019 [35] and CVPR 2020 [20].
This paper extends and improves them by (i) combining
their “bells and whistles”, (ii) proposing a termination crite-
rion applicable for MAGSAC++, (iii) proposing an inlier
selection technique after the robust process is applied, (iv)
and providing a number of new experiments on homogra-
phy, fundamental matrix and relative pose estimation.
Example results are shown in Fig. 1.

2 NOTATION AND PRELIMINARIES

In this paper, the set of input data points is denoted P ¼
fp j p 2 Rn; n 2 N> 0g, where n is the dimension, e.g., n ¼ 2
for 2D points and n ¼ 4 for point correspondences. The
inlier set is I � P. The model to fit is represented by its
parameter vector u 2 Q, where Q ¼ fu j u 2 Rd; d 2 N> 0g is
the manifold, e.g., of all possible 2D lines, and d ¼ 2 is the
dimension of the model (angle and offset). Fitting function
F : D ! Q, where D � P� and jDj � m, calculates the model
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parameters from n � m data points, where P� ¼ expP is the
power set of P and m 2 N> 0 is the minimum point number
for fitting a model, e.g., m ¼ 2 for lines. Note that F is a
combined function applying different estimators based on
the input point set. For instance, for P0 2 P�

F ðP0Þ ¼ MinimalSolverðP0Þ if jP0j ¼ m;
LSQðP0Þ otherwise:

�
(1)

Function R : Q	 P ! Rþ calculates the point-to-model
residual. Function I : Q	Rþ 	 P� ! P� selects the set of
inliers given model u and noise standard deviation s. We
assume that the inlier-outlier threshold is calculated from the
noise s as tðsÞ ¼ ks, where k is some constant. For instance,
for the original RANSAC approach, IRANSACðu; s;PÞ ¼ fp 2
P j Rðu; pÞ < tðsÞg and tðsÞ ¼ s. The model quality func-
tion, measuring how much the actual model interprets the
scene, is Q : Q	Rþ 	 P� ! Rþ. Higher quality is inter-
preted as better model. Let fRðu; piÞgni¼1 be the point-to-
model residuals, ordered increasingly, such that 0 
 Rðu; p1Þ <
Rðu; p2Þ < � � � < Rðu; pnÞ. For RANSAC, QRANSACðu; s;PÞ ¼
jIðu; s;PÞj and forMSAC, it is

QMSACðu; s;PÞ ¼ jIðu; s;PÞj � 1

tðsÞ2
XjIðu;s;PÞj
i¼1

R2ðu; piÞ:

3 MAGSAC

First, we describe the idea and design choices of the original
MAGSAC [35] approach in brief. We will also discuss its
merits and drawbacks.

3.1 Marginalizing Sample Consensus

Idea. In the original marginalizing sample consensus
(MAGSAC) algorithm [35], the model quality is defined by
marginalizing over the noise scale s as follows:

Q�ðu;PÞ ¼
Z þ1

0

Qðu; s;PÞfðsÞds;

where the noise s is a random variable with density func-
tion fðsÞ, Q : Q	Rþ 	 P� ! Rþ is a quality function, e.g.,
the inlier counting of RANSAC, which depends on an input
model u 2 Q, the inlier-outlier threshold tðsÞ, and the set P
of n data points.

Having no prior information, s is assumed to be uni-
formly distributed within range ð0; smaxÞ, where smax is an
upper bound for the noise scale (smax > 0). Considering
this assumption, the quality calculation becomes

Q�ðu;PÞ ¼ 1

smax

Z smax

0

Qðu; s;PÞds: (2)

For instance, using the inlier counting of plain RANSAC
QRANSACðu; s;PÞ, where tðsÞ ¼ s is the inlier-outlier thresh-
old, we get marginalized quality function

Q�RANSACðu;PÞ ¼ jIðu; smax;PÞj � 1

smax

XjIðu;smax ;PÞj

i¼1
Rðu; piÞ:

Data Interpretation and Design Choices. In MAGSAC, the
choice of the marginalized quality function Q is motivated
by the assumption that the residuals are calculated as the
square root of a sum of squared normally distributed varia-
bles. Typically, the residuals of the inliers are calculated as
the euclidean-distance from model u in some n-dimensional
space (e.g., the re-projection error). In the case of assuming
the distances along each axis of this n-dimensional space to
be independent and normally distributed with the same
variance s2, value (residualsÞ2=s2 has x2- distribution with n

degrees of freedom. For a given s, the residuals of the inliers
are described by the trimmed x-distribution1 with n degrees
of freedommultiplied by s with density

gðr j sÞ ¼ 2CðnÞs�nexpð�r2=2s2Þrn�1;
for r < tðsÞ and gðr j sÞ ¼ 0 for r � tðsÞ. The normalizing
constant CðnÞ ¼ ð2n=2Gðn=2ÞaÞ�1 and, for a > 0

Fig. 1. Example image pairs from the datasets used for testing the robust
estimators. The inliers of MAGSAC++, selected adaptively by the pro-
posed procedure, are visualized.

Symbols used in this paper

P ¼ fp j p 2 Rn; n 2 N> 0g - Set of data points
P� - Power set of P
s 2 Rþ - Noise standard deviation
smax 2 Rþ - Noise std. upper bound
tðsÞ - Inlier-outlier threshold
Q ¼ fu j u 2 Rd; d 2 N> 0g - Model manifold
R : Q	 P ! Rþ - Point-to-model residual
F : P� ! Q - Model estimator function
I : Q	Rþ 	 P� ! P� - Inlier selector function
Q : Q	Rþ 	 P� ! Rþ - Model quality function

1. The square root of x2-distribution.

8422 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 44, NO. 11, NOVEMBER 2022

36



GðaÞ ¼
Z þ1

0

ta�1expð�tÞdt;

is the gamma function, n is the dimension of the euclidean
space in which the residuals are calculated and tðsÞ is set to
a-quantile (e.g., a ¼ 0:99) of the non-trimmed distribution.

Note: the idea of model quality marginalization is general
and independent of the choice of the noise distribution,
here x2.

Model Polishing. The last step of RANSAC-like algorithms
is the re-fitting of the model to all inliers. However, due to
MAGSAC not making a strict inlier-outlier decision, the
standard model polishing step is not directly applicable.
Therefore, the s-consensus algorithm was proposed which,
first, assigns an inlier weight to each point and, finally,
applies weighted least-squares fitting.

Suppose an input point set P and model u estimated
from a minimal sample as in RANSAC. Let us ¼
F ðIðu; s;PÞÞ be the model estimated from the inlier set

Iðu; s;PÞ ¼ fp j p 2 P ^Rðu; pÞ < tðsÞg; (3)

selected using threshold tðsÞ around the input model u. Sca-
lar tðsÞ is the threshold which s implies; function F esti-
mates the model parameters from a set of data points;
function I returns the set of data points for which the point-
to-model residuals are smaller than tðsÞ.

For each possible s value, the likelihood of point p 2 P
being inlier is calculated as

Pðp j us; sÞ ¼ 2CðnÞs�nRn�1ðus ; pÞ exp �R
2ðus ; pÞ
2s2

� �
;

if Rðus; pÞ 
 tðsÞ, where Rðus; pÞ is the point-to-model resid-
ual. If Rðus; pÞ > tðsÞ, likelihood Pðp j us ; sÞ is 0. For each
point p, likelihood Pðp j us; sÞ is marginalized over s and
the obtained probability is used as an inlier weight in the
final weighted least-squares fitting. The objective function
Qðu; s;PÞ is the log-likelihood with inlier density gðr j sÞ
and outliers assumed uniformly distributed.

Issues.There are two main issues with the MAGSAC
approach, a practical and a theoretical one. In practice, the
procedure of marginalizing Pðp j us; sÞ over s calculates
Pðp j us ; sÞ a number of times with different s values. Each
calculation requires to select the set of inliers and obtain us
by LS fitting on them. This step is time consuming even with
the number of speedups proposed in the original paper [35].
The theoretical issue is that the objective function does not
have its maximum at zero. Consequently, in the case of hav-
ing perfect data, i.e., no noise, MAGSAC fails to return the
sought model parameters. As a minor issue, both the quality
function and the likelihood can only be calculated approxi-
mately for non piece-wise constant objective functions, e.g.,
x2-based or truncated L2 loss. The exact calculation can
only be done for the RANSAC-like inlier counting.

4 MAGSAC++

The MAGSAC++ algorithm is proposed here via reformu-
lating the previously described MAGSAC problem as an
iteratively re-weighted least-squares (IRLS) approach. To
do so, a new model quality function and a procedure to

polish the model parameters without making strict inlier-
outlier decisions and doing a number of LS fittings are
proposed.

The proposed MAGSAC++ is based on an iteratively
reweighted least squares (IRLS) approach where the model
parameters in the ðiþ 1Þth step are calculated as follows:

uiþ1 ¼ arg minu
X
p2P

wðRðui; pÞÞR2ðu; pÞ; (4)

where the weight of point p is

wðRðui; pÞÞ ¼
Z þ1

0

Pðp j ui; sÞfðsÞds; (5)

and u0 ¼ u, i.e., the initial model from the minimal sample.
Data Interpretation and Design Choices.Similarly as in

MAGSAC, the inlier residuals are euclidean-distances of
points assumed to be corrupted by Gaussian noise and,
thus, have x-distribution. The noise standard deviation s is
assumed to be uniformly distributed within ð0; smaxÞ. How-
ever, we make no assumptions about the outlier distribu-
tions. Note that the proposed quality and inlier weight
functions can be modified straightforwardly when consider-
ing differently distributed inliers.

4.1 Inlier Weight Calculation

The weight function defined in (5) is the marginal density of
the inlier residuals as follows:

wðrÞ ¼
Z þ1

0

gðr j sÞfðsÞds: (6)

Let tðsÞ ¼ ks be the chosen quantile of the x-distribution.
For residual 0 
 r 
 ksmax

wðrÞ ¼ 1

smax

Z smax

r=k

gðr j sÞds ¼ 1

smax
CðnÞ2n�12

G
n� 1

2
;

r2

2s2
max

� �
� G

n� 1

2
;
k2

2

� �� �

and, for r > ksmax, weight wðrÞ ¼ 0. Function

Gða; xÞ ¼
Z þ1

x

ta�1expð�tÞdt;

is the upper incomplete gamma function. Due to the design
choices, weight wðrÞ is positive and decreasing on interval
½0; tðsmaxÞ�. Thus there is a r-function of an M-estimator
which is minimized by IRLS using wðrÞ and each iteration
guarantees a non-increase in its loss function (chapter 9 of
[36]). Consequently, it converges to a local minimum. If dif-
ferent noise distribution is assumed, this property does not
necessarily hold. In those cases, a different algorithm should
be used to solve the problem, e.g., Levenberg-Marquardt
optimization [37].

IRLS (4) where wðrÞ is defined by (6) with tðsÞ ¼ 3:64s,
where 3.64 is the 0.99 quantile of the x-distribution with n ¼
4, will be called s-consensus++ for problems using point
correspondences. Parameter smax is the same user-defined
maximum noise level parameter as in MAGSAC, usually,
set to a fairly high value, e.g., 10 pixels for homography fit-
ting. The s-consensus++ algorithm is applied for fitting to a
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non-minimal sample and, also, as a post-processing to
improve the output of any robust estimator.

4.2 Model Quality Function

In order to select the model interpreting the data, a quality
function has to be defined. Let

QM++ðu;PÞ ¼ n� 1

rðksmaxÞLðu;PÞ

¼ jIðu; smax;PÞj � 1

rðksmaxÞ
XjIðu;smax;PÞj

i¼1
rðRðu; piÞÞ;

where

Lðu;PÞ ¼
X
p2P

rðRðu; pÞÞ; (7)

is a loss function of the M-estimator defined by our weight
function wðrÞ. Function

rðrÞ ¼
Z r

0

xwðxÞdx ¼
Z þ1

0

Z r

0

xgðx j sÞdx
� �

fðsÞds;

for r 2 ½0;þ1Þ. For any point p with residual r, the loss
function is the mean of the residual values lower then r of a
random variable with x-distribution, i.e., the assumed dis-
tribution of the inlier residuals. Thus, the r-function is some
type of a reasonable distance. It can be formulated in the
same way for each s and then marginalized over s as in
MAGSAC.

Due to assuming that the s values are uniformly distrib-
uted within range ½0; smax� for 0 
 r 
 tðsmaxÞ

rðrÞ ¼
1

smax

Z smax

0

�
CðnÞ2nþ1

2 s

g

�
nþ 1

2
;
r2

2s2

�
� r2

2
gðksmaxjsÞ

�
ds

and the integral can be removed as follows:

rðrÞ ¼ 1

smax
CðnÞ2nþ1

2

�
s2
max

2
g

�
nþ 1

2
;

r2

2s2
max

�

þ r2

4

�
G

�
n� 1

2
;

r2

2s2
max

�
� G

�
n� 1

2
;
k2

2

���
:

For r > tðsmaxÞ

rðrÞ ¼ rðksmaxÞ ¼ smaxCðnÞ2n�1
2 g

�
nþ 1

2
;
k2

2

�
;

where

gða; xÞ ¼
Z x

0

ta�1expð�tÞdt;

is the lower incomplete gamma function. Weight wðrÞ can
be calculated precisely or approximately as in MAGSAC.
However, the precise calculation can be done very fast by
storing the values of the complete and incomplete gamma
functions in a lookup table. Then the weight and quality
calculation becomes merely a few operations per point.
MAGSAC++ algorithm uses (7) as quality function and
s-consensus++ for estimating the model parameters.

Function wðrÞ is visualized in Fig. 2 together with other
weightings which are often used for robust model fitting.

4.3 Termination Criterion

The number of inliers during the robust estimation is
unknown due to not making strict inlier-outlier decisions. It
is thus not possible to apply the standard termination crite-
rion of RANSAC [38]

kðu; s;PÞ ¼ lnð1� mÞ
ln 1� jIðu;s;PÞj

jPj
� �m� � ; (8)

where k is the iteration number, m is a manually set confi-
dence in the results (typical values are 0.95 or 0.99), m is the
size of the minimal sample needed for the estimation, and
jIðu; s;PÞj is the inlier number of the so-far-the-best model.

In order to determine k without using a particular value
for s, it is a straightforward choice to marginalize over the
noise scale s. Let us assume that the points are ordered by
their residuals as 0 ¼ tðs0Þ 
 Rðu; p1Þ ¼ tðs1Þ 
 Rðu; p2Þ ¼
tðs2Þ 
 � � � 
 Rðu; pkÞ ¼ tðskÞ 
 tðsmaxÞ < Rðu; pkþ1Þ ¼
tðskþ1Þ 
 � � � 
 Rðu; pnÞ ¼ tðsnÞ. The iteration number is cal-
culated as

k�ðu;PÞ ¼ 1

smax

Z smax

0

kðu; s;PÞds ¼ (9)

1

smax

Z smax

0

lnð1� mÞ
ln 1� jIðu;s;PÞj

jPj
� �m� � ds: (10)

Due to the fact that function jIðu; s;PÞj, measuring the num-
ber of inliers given a noise scale s, is piece-wise constant,
and that is the only part of (10) depending on s, the integral
can be replaced by a weighted summation. It is as follows:

k�ðu;PÞ ¼ 1

smax

Xk
i¼1

ðsi � si�1Þ lnð1� mÞ
ln 1� jIðu;si�1;PÞj

jPj
� �m� � : (11)

The function is, however, problematic when there are no
points with zero residual. In that case, the denominator
becomes lnð1Þ ¼ 0 and the iteration number 1. We, thus,
shift the inlier number by one and introduce a slight and
artificial approximation as

k�ðu;PÞ  1

smax

Xk
i¼1

ðsi � si�1Þ lnð1� mÞ
ln 1� i

jPj
� �m� � : (12)

Fig. 2. Weighting functions for robust fitting. For MAGSAC++, we use
smax ¼ 2s as an example and degrees-of-freedom n ¼ 2 (e.g., 2D line fit-
ting) and 4 (e.g., problems with point correspondences).
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Thus the number of iterations required for MAGSAC++ is
calculated during the procedure and updated whenever a
new so-far-the-best model is found, similarly as in RANSAC.

5 INLIER SELECTION

For some applications, the knowledge of what is inlier and
outlier is a requirement. For instance, in structure-from-
motion algorithms, the inlier correspondences are triangu-
lated in 3D after the relative pose estimation and used for
the reconstruction. Given the estimated model parameters u
after applying MAGSAC++, the objective is to find a reason-
able set of inliers without introducing new parameters, e.g.,
a threshold. The idea is to return the set of points on which a
least-squares fitting leads to a model which is similar to the
one determined by the robust estimator. The problem is for-
malized as follows:

I� ¼ arg
I�P

minjF ðIÞ � uj; (13)

where function F estimates the model parameters from
a set of data points, and norm j:j is some distance func-
tion defined over the model manifold. Note that this for-
mulation allows to consider as inliers points with large
point-to-model residuals. Besides, the problem intro-
duced in (13) is NP-hard. Therefore, we weaken (13) by
assuming that there exists a noise scale s� and, thus, an
inlier-outlier threshold tðs�Þ such that the points with
residuals smaller than tðs�Þ are the elements of I�. Con-
sequently, it is enough to find s�. The problem becomes
the following:

s� ¼ arg
s2S

minjF ðIðu; s;PÞÞ � uj; (14)

where S ¼ fsigki¼1 � ½0; smax� as introduced above (10). Note
that it is straightforward to see that there are no other
threshold values leading to different sets of inliers [29].

In the algorithm, we define the model-to-model distance
as the sum of L1 point-to-model residual distances as
follows:

ju1 � u2j ¼
X
p2P
jRðu1; pÞ �Rðu2; pÞj: (15)

Since the sought model should be of the same distance
from both the inliers and outliers as the initial one, dis-
tance ju1 � u2j can measured on all points without differ-
entiating inliers and outliers. Since we measure the L1

residual differences, outlier points with large residuals
do not have higher impact on the model-to-model dis-
tance than inliers with small residuals. Also, distance
ju1 � u2j is enough to be measured only on a subset of
points to speed up the procedure when needed. The
pseudo-code of the algorithm is shown in Algorithm 3.
Parameter nmin is the minimum number of points
required to return, depending on the current application.
If there is no requirement, nmin ¼ m, where m is the
minimal sample size. Note that for models which are
estimated from a larger-than-minimal sample by using
SVD decomposition, e.g., fundamental/essential matrix,
homography, using an incremental version of SVD, e.g.,

[39], speeds up the procedure significantly when a large
number of points falls closer than smax. Also, the proce-
dure is straightforwardly parallelizable on multiple
CPU cores.

Algorithm 1. The MAGSAC++ Algorithm

Input: P – data points; �max – max. threshold
m – confidence;

Output: u� – model parameters; I� – inliers (optional)
1: q�  0.
2: while : Terminateðm; q�Þ do " Section 4.3
3: S  Sample(P). " default: P-NAPSAC sampler [20]
4: if : TestSample(S) then " Degen. and cheirality tests
5: continue

6: u EstimateModel(S)
7: if : TestModel(u) then " Degen. and cheirality tests
8: continue

9: u0  s-consensus++(P, u, t�1ð�maxÞ) " Algorithm 2
10: if : TestModel(u0) then " Degen. and cheirality tests
11: continue

12: q Scoring(P, u0, t�1ð�maxÞ) " Eq. (7)
13: if q > q� then
14: q�; u�  q; u0

15: I�  SelectInliersðu�;PÞ " Section 5 (optional)

Algorithm 2. The s-Consensus++ Algorithm

Input: P – data points; smax – max. noise scale
u – initial model;

Output: u� - model parameters
1: u0; i u; 0.
2: repeat
3: frjgjPjj¼1  fRðui; pÞ j p 2 Pg
4: fbrjgjPjj¼1  SortðfrjgjPjj¼1Þ
5: fwjgjPjj¼1  fwðbrjÞgjPjj¼1 " Eq. (6)

6: uiþ1  WLSðP; fwjgjPjj¼1Þ " Weighted least-squares

7: if : TestModel(uiþ1) then " Degen. and cheir. tests
8: break

9: i iþ 1
10: until Terminateðui�1; ui; iÞ
11: u�  ui

6 ALGORITHMIC CHOICES

To achieve state-of-the-art results, we combine the pro-
posed MAGSAC++ with the components discussed in
USAC [40]. We consider three popular vision problems,
i.e., fundamental matrix, homography and relative pose
(i.e., essential matrix) estimation. The included compo-
nents for each problem are as follows: 1. Sample degener-
acy. The degeneracy tests of minimal samples are for
rejecting clearly bad samples to avoid the sometimes
expensive model estimation. For homographies, samples
consisting of collinear points are rejected. 2. Sample cheir-
ality. The test is for rejecting samples based on the
assumption that both of the cameras observing a 3D sur-
face must be on its same side. For homography fitting,
we check if the ordering of the four point correspond-
ences – along their convex hulls – in both images are the
same. If not, the sample is rejected. 3. Model degeneracy.
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The purpose of this test is to reject models early to avoid
verifying them unnecessarily. For fundamental matrices,
DEGENSAC [41] is applied to determine if the epipolar
geometry is affected by a dominant plane. For relative
pose estimation, improper rotation matrices [42], i.e., the
ones with negative determinant, are rejected. We
observed that, for epipolar geometry estimation, symmet-
ric epipolar distance tends to be more robust to degener-
ate models. In contrast, Sampson distance leads to
higher accuracy – when using Sampson distance some
degenerate models have lots of inliers. Therefore, we use
Sampson distance as residual function when estimating
fundamental and essential matrices and reject all models
where the inlier number is significantly lower with sym-
metric epipolar distance. In practice, we found that a
model can be rejected if it does not have at least half as
many inliers with symmetric epipolar distance as with
Sampson distance. 4. Model cheirality. The test is for
rejecting models considering that the cameras must be
on the same side of the observed surface. For fundamen-
tal and essential matrix estimation, we apply the ori-
ented epipolar constraint [43]. 5. Sampling. We use the P-
NAPSAC sampler [20]. It requires an a priori determined
ordering of the input data points for its PROSAC [19]
part. We used the scoring coming from the ratio-
test [44]. The neighborhoods were determined by a
multi-layer grid as proposed in [20] to minimize the
computational overhead. 6. Solvers. One of the most
time-sensitive parts of RANSAC-like robust estimation is
the solver estimating the model parameter from a mini-
mal or larger-than-minimal sample. It is time-sensitive
since it runs at least once in every iteration. In many
popular vision problems, e.g., homography estimation,
the solution includes homogeneous or inhomogeneous
linear systems. We thus tested the ways of solving such
systems by the algorithms implemented in the Eigen
library and chose the actual solvers in our MAGSAC++
implementation accordingly. Homographies are esti-
mated by the standard normalized 4PT algorithm [38]. In
the minimal case, the correspondences were not normal-
ized since the system is not over-determined – the

solution is exact. For fundamental matrices, the 7PT
algorithm [38] runs to estimate from a minimal sample.
In the over-determined case, we applied the normalized
8PT algorithm [45]. Essential matrices are estimated by
the solver of Stewenius et al. [46]. When selecting the
actual method applied to solve a linear system, our strat-
egy was the following.

Table 1 reports the accuracy in pixels and processing
time in milliseconds of methods solving the linear systems
in the solvers for homography, fundamental and essential
matrix estimation. Each test is repeated 100 000 times on
randomly generated point correspondences. In each test,
the size of the larger-than-minimal sample is selected uni-
formly randomly from range ½mþ 1; 1000�, where m is the
sample size.

In the minimal case, we chose the fastest methods from
Table 1 since the accuracy is not crucial – the model is
always improved later on more inliers. Also, this solver
runs the most times. For fitting homographies to minimal
samples, we solve the normal equations of the implied lin-
ear system via the Cholesky decomposition (LLT in the
table). For estimating fundamental matrices, the null-space
from the coefficient matrix is calculated by the LU decom-
position with complete pivoting since that is one of the fast-
est solutions when we are given a 7	 8 coefficent matrix
(FullPivLU). For essential matrices, we chose the LU decom-
position with complete pivoting (FullPivLU).

In the over-determined case, we selected the methods
leading to the lowest errors. If there are multiple ones
leading to the same error, the fastest one is applied. For
fitting homographies, we apply the QR decomposition
with column pivoting (ColPivHouseholderQR) – all
tested types of QR decomposition lead to similarly low
error, but column pivoting is the fastest. For estimating
fundamental matrices, the null-space from the coefficient
matrix is calculated by the QR decomposition with full
pivoting (FullPivHouseholderQR). For essential matrices,
we chose the QR decomposition with column pivoting
(ColPivHouseholderQR).

The pseudo-code of MAGSAC++ and s-consensus++ are
shown in Algorithms 1 and 2, respectively. In the algorithm,

TABLE 1
The Average Processing Times (in Milliseconds) and Errors (in Pixels) in the Estimated Homographies (H), Fundamental (F) and

Essential (E) Matrices Using Different Methods for Solving the Linear Systems in Their Solvers When Estimating the
Model Parameters From a Minimal (m) or a Larger-Than-Minimal (> m) Sample. Each test is repeated 100 000 times. The size of
the larger-than-minimal sample is selected uniformly randomly from range ½mþ 1; 1000�. For error calculation, the re-projection was
used for homographies, and Sampson-distance for fundamental and essential matrices. The tested methods solving linear systems

are the ones implemented in the Eigen library.

Average processing time (milliseconds) Average error (pixels)

H F E H F E

m > m m > m m > m m > m m > m m > m

LLT 0.002 – – – – – 10�8 – – – – –
LDLT 0.003 – – – – – 10�8 – – – – –
PartialPivLU 0.003 – – – – – 10�11 – – – – –
FullPivLU 0.003 – 0.011 – 0.060 – 10�11 – 10�12 – 10�14 –
HouseholderQR 0.005 0.099 0.014 0.028 0.067 0.081 10�11 10�7 10�9 10�7 10�12 10�6
ColPivHouseholderQR 0.006 0.085 0.015 0.027 0.069 0.077 10�10 10�7 10�10 10�7 10�13 10�8
FullPivHouseholderQR 0.006 0.103 0.014 0.026 0.066 0.075 10�11 10�7 10�12 10�7 10�14 10�3
JacobiSVD 0.023 22.356 0.028 0.039 0.079 0.088 10�6 10�6 10�4 10�6 10�13 10�7
BDCSVD 0.024 27.954 0.028 0.040 0.080 0.089 10�6 10�6 10�4 10�6 10�13 10�7
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TestSample refers to the degeneracy and cheirality checks
applied to minimal samples. Function TestModel is the
degeneracy and cheirality checks applied to the estimated
models.

Algorithm 3. Inlier Selection

Input: P – data points; u – initial model
nmin – min. # of required points " default: sample size
Output: I� – inliers
1: frjgkj¼1  SortðfRðu; pÞ j p 2 P ^Rðu; pÞ 
 tðsmaxÞgÞ
2: ��  1.
3: for i ¼ nmin . . . k do
4: u0  LSðfrjgij¼1Þ " Least-squares fitting
5: � ju � u0j " Eq. (15)
6: if � < �� then
7: ��; I�  �; frjgij¼1

7 EXPERIMENTS

For testing the proposed methods, we used the problems
and datasets from CVPR tutorial RANSAC in 2020 [47]. The
datasets and codes used are available at https://github.com/
ducha-aiki/ransac-tutorial-2020-data. The hyper-parameters
of all comparedmethods were tuned on the provided training
set to maximize the accuracy. The reported errors were then
calculated on the set which was not used when setting the
hyper-parameters.

The error metric used is the mean Average Accuracy
(mAA). This metric was originally introduced in [48], where
it was called mean Average Precision (mAP). Later, Jin et al.
[49] argued that “accuracy” is the correct terminology, due
to simply evaluating how many of the predicted poses are
accurate, as determined by thresholding the acceptance
threshold, i.e., the threshold which decides if a particular
result is accurate or not.

In order to determine which method is the least sensitive
to the setting of either s or smax, we also measure the insen-
sitivity to the inlier-outlier threshold (or upper limit in the
case of MAGSAC, MAGSAC++ and AC-RANSAC). The
methods were run multiple times using different threshold
values from t1; . . .; tn. For fundamental matrix and relative
pose estimation, t1::8 ¼ ð0:1; 0:25; 0:5; 1:0; 1:5; 3:0; 5:0; 10:0Þ.
For homography estimation, the following threshold values

are used tH1::12 ¼ ð0:1; 0:25; 0:5; 1:0; 1:5; 3:0; 5:0; 10:0; 25:0; 50:0;
75:0; 100:0Þ. For each run, we calculated the mAA score of
the results. The insensitivity of a method is measured as the
weighted average of the mAA scores as follows:

Pn
i¼1ðti � ti�1ÞmAAðtiÞPn

i¼1ðti � ti�1Þ ¼ 1

tn

Xn
i¼1
ðti � ti�1ÞmAAðtiÞ; (16)

where t0 ¼ 0 andmAAðtiÞ is themAA score of amethod after
running it with threshold ti. Formula (16) approximates the
area under the mAA curve when plotted as the function of
the inlier-outlier threshold used for the estimation.

In the rest of the paper, we call (16) the insensitivity mea-
sure. Note that measuring purely the insensitivity without
including the accuracy of a method would require normal-
izing (16) by the maximum mAA value. We avoid this to
make the insensitivity scores interpretable on their own. For
example, (16) equals to 1 only if the method returns the per-
fect solution independently of the threshold.

7.1 Fundamental Matrix Estimation

The methods compared for fundamental matrix estimation
are OpenCV RANSAC [1], OpenCV LMedS [50], LO-RAN-
SAC [26], LO-RANSAC + DEGENSAC [41], GC-RAN-
SAC [51], GC-RANSAC + DEGENSAC, USAC [40], AC-
RANSAC [30], MAGSAC, MAGSAC++, and GC-RANSAC
with MAGSAC++ quality function and DEGENSAC. AC-
RANSAC is a method setting the threshold adaptively. We
tested two settings, i.e., with (AC-RANSAC) and without
(AC-RANSAC1) an upper bound on threshold. The upper
bound was tuned on the test set similarly as the parameters
of the other tested methods.

The data are from the CVPR IMW 2020 PhotoTourism
challenge. Correspondences were obtained using RootSIFT
features and mutual nearest neighbour matching. We used
all scenes from the test set, i.e., Sacre Coeur, St Peters Square,
Brandenburg Gate, BuckinghamPalace, Colosseum Exterior,
Grand Place Brussels, Notre Dame Front Facade, Palace of
Westminster, Pantheon Exterior, Prague Old Town Square,
Taj Mahal, Temple Nara Japan, Trevi Fountain, Westminster
Abbey. From the validation set, we used only scene British
Museum to tune the hyper-parameters of the methods. Each
scene contains 4950 image pairs. The reported accuracy is

Fig. 3. The mean Average Accuracy of the tested robust estimators on fundamental matrix, relative pose and homography estimation. For each prob-
lem, the methods are ordered according to their scores. We used all scenes from the test set of the CVPR IMW 2020 PhotoTourism challenge. For F
and E estimation, the methods were tested on a total of 54450 image pairs. Abbrevations used: OpenCV RANSAC (RANSAC), GC-RANSAC +
DEGENSAC (GC + DEG), GC-RANSAC + DEGENSAC + MAGSAC++ scoring (GC + DEG + M++). Higher value is better.
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calculated on the total of 54450 image pairs from the test set
using the parameters tuned on scene BritishMuseum.

The results on the test set are shown in Fig. 3a. It can
be seen that MAGSAC, MAGSAC++, GC-RANSAC, GC-
RANSAC + DEGENSAC, and GC+RANSAC + DEGENSAC
with MAGSAC++ quality function leads to similar accuracy.
The maximummAA difference between their results is 0.007.
The most accurate results are obtained by GC-RANSAC with
DEGENSAC and the proposedMAGSAC++ quality function.
The other methods which do not need to a set a single thresh-
old value, i.e., AC-RANSAC and LMeDS, are significantly
less accurate. AC-RANSAC when applied without an upper
bound (AC-RANSAC1) fails to return reasonable solutions
in most of the cases. With an upper bound, it is more accurate
than the RANSAC implemented inOpenCV.

The first row of Fig. 4a plots the mAA scores on scene
BritishMuseum as the function of the inlier-outlier threshold
used for the estimation.We chose this scene since it is the first
one in the validation set when the scene names are ordered
alphabetically. All methods expect for MAGSAC and MAG-
SAC++, have a similar trend, i.e., their results increase
slightly in the beginning while the threshold approaches its
optimal value – for example, 0.75 px for USAC. Then their
accuracy starts dropping dramatically. The trend of MAG-
SAC andMAGSAC++ is different. If themaximum threshold
is set to a too low value, e.g., < 1 px, the results are inaccu-
rate as it is expected. Between 1 and 10 pixels, the results are
reasonably stable. This range is much wider than for the

other methods which are only stable in-between 0:5� 1:5
pixels. Graph-Cut RANSAC with DEGENSAC and the pro-
posedMAGSAC++ scoring shows an interesting trend, since
it leads to almost constant mAA score in-between 0:1� 1:5
px threshold, then it starts deteriorating, however, less sig-
nificantly thanmost of the other methods. The second row of
Fig. 4a shows the processing time as the function of the
threshold. It can be seen that MAGSAC++ is faster than
MAGSAC as it is expected. It leads to similar processing
time to its other less accurate alternatives.

Fig. 4. The mean Average Accuracy (top row; higher is better) and average processing time (bottom; in seconds; lower is better) plotted as the
function of the inlier-outlier threshold (or its upper limit; horizontal axis) parameter. For fundamental matrix and relative pose estimation, only scene
British Museum was used. Homographies were estimated from both the EVD and HPatches datasets. The threshold (horizontal axis) is shown on a
logarithmic scale – the right half of the plots covers a significantly larger area than the left one.

TABLE 2
The Insensitivity (16) to the Inlier-Outlier Threshold (or its Upper

Bound) is Shown on Fundamental Matrix (F), Essential
Matrix (E), and Homography (H) Fitting. The best values are

shown in red, the second best ones are in blue.

F E H AVG

OpenCV RANSAC 0.076 0.342 0.358 0.259
OpenCV RHO – – 0.329 –
USAC 0.096 0.590 0.452 0.379
GC + DEG 0.113 – – –
AC-RANSAC 0.118 0.670 0.421 0.403
GC-RANSAC 0.125 0.489 0.261 0.292
GC (+ DEG) + M++ 0.170 0.564 0.275 0.336
MAGSAC 0.215 0.797 0.519 0.510
MAGSAC++ 0.273 0.776 0.514 0.521
MAGSAC++ + DEG 0.279 – – –
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The first column of Table 2 reports the threshold-insensi-
tivity score on scene British Museum calculated as proposed
in (16). MAGSAC++ combined with DEGENSAC yields the
highest score and, thus, that method is the least sensitive to
the setting of the inlier-outlier threshold – it is the easier to be
usedwhen applying robust estimation to a yet unseen scene.

7.2 Essential Matrix Estimation

The methods compared on relative pose (i.e., essential
matrix) estimation are OpenCV RANSAC [1], OpenCV
LMedS [50], LO-RANSAC [26], GC-RANSAC [51], USAC
[40], AC-RANSAC [30], MAGSAC, MAGSAC++, and GC-
RANSAC with MAGSAC++ quality function. DEGENSAC
is not included in these tests since it is for recovering the
fundamental matrix from scenes with dominant planar
structures. For the five-point algorithm [46], planar scenes
are not degenerate. Since the datasets used for fundamental
matrix estimation contain the intrinsic camera parameters
as well, we used the same scenes.

Fig. 3b shows that the most accurate essential matrices
are clearly obtained by MAGSAC++ which achieves 4%
higher mAA score than the second best MAGSAC. The
other methods which do not need to a set a single threshold
value, i.e., AC-RANSAC and LMeDS, are significantly less
accurate, however, they are better than for fundamental
matrix estimation. AC-RANSAC without an upper bound
(AC-RANSAC 1) fails to return reasonable solutions in
most of the cases. With an upper bound, it is more accurate
than OpenCV RANSAC and USAC.

The top row of Fig. 4b shows similar trend as for funda-
mental matrix estimation. All methods but MAGSAC and
MAGSAC++ have a clear “best” threshold. If it is exceeded,
their accuracy deteriorates dramatically. The results of MAG-
SAC and MAGSAC++ are almost constant throughout the
range of thresholds. Interestingly, MAGSAC++ is the most
accurate when the threshold upper bound is set to a small
value, e.g., 0.1. Its results are just slightly less accurate for
other threshold values. AC-RANSAC performs better here
than for fundamentalmatrix estimation. The processing times
are shown in the bottom row of Fig. 4b. MAGSAC++ is signif-
icantly faster for most of the threshold values than the other
robust estimators. While AC-RANSAC leads to reasonable
accuracy, it is significantly slower than the othermethods.

7.3 Homography Estimation

For homography estimation, we used the Extreme-

View [14] (EVD) and HPatches [16] datasets partitioned
into test and validation sets as done in [47]. They consist of
image pairs of different sizes from 329	 278 up to 1712	
1712 with point correspondences provided. The pairs of
EVD undergo an extreme view change, i.e., wide baseline or
extreme zoom. The HPatches scenes are extracted from a
number of image sequences, where each sequence contains
images of some planar object, e.g., a painting or a wall
with graffiti. Since the datasets contain significantly fewer
images then the ones used for epipolar geometry estimation,
we repeated every method 100 times on each image
pair. Besides the methods used for epipolar geometry esti-
mation, we included the RHO [52] method implemented in
OpenCV. The validation set was used to tune the hyper-

parameters of the methods. The accuracy is measured on
the test set.

It can be seen in Fig. 3c that the most accurate results are
estimated by GC-RANSAC, MAGSAC++ and LO-RANSAC
with a marginal difference of 0.002 – 0.005 in their mAA
scores. The same trend can be observed for AC-RANSAC
and LMeDS as before. AC-RANSAC with its threshold
upper bound tuned works reasonably well. LMeDS fails to
return accurate results. The mAA scores on the test set using
varying threshold values are shown in the top row of
Fig. 4c. Since the methods do not seem to be as sensitive to
the inlier-outlier threshold as when fitting epipolar geome-
try, we tested a much wider range 0.1 – 100 than previously.
The performance of MAGSAC and MAGSAC++ is very sta-
ble if smax is chosen from interval ½5; 100�, where the accu-
racy difference is small. They achieve their maximum
accuracy at smax ¼ 25, however, the accuracy drops only
marginally for higher values. The bottom plot of Fig. 4c
shows the processing time in seconds as the function of the
inlier-outlier threshold. If the threshold is set to a small
value (
 1) all methods, except RHO, gets slow. However, if
tðsÞ or tðsmaxÞ is greater than 3 the proposed MAGSAC and
MAGSAC++ is similarly fast as the other methods running
at real-time speed. While RHO is extremely fast for all set-
tings, it is reasonably accurate only for a narrow range of
thresholds, where all the other methods are similarly fast.

7.4 Iteratively Re-Weighted Least-Squares on
2D Lines

We compare the proposed iterative re-weighting strategy
without the other components of MAGSAC++. To do so, we
generated 100 2D points stemming from a 2D line and outliers.
The outliers were generated uniformly randomly within a
window of size 1000	 1000. A 2D line passing through the
middle of the window is generated with a random normal.

Fig. 5. The inliers of the estimated homography selected by the pro-
posed adaptive strategy with varying the parameter nmin which controls
the minimum number of required inliers.
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Points were sampled from the line uniformly randomly and,
then, zero-mean Gaussian-noise was added to their coordi-
nates. We tested the following parameters: noise s 2
f0; 5; . . .; 50g; outlier ratio m 2 f0:0; 0:1; . . .; 0:9g; threshold
multiplier t 2 f1; 2; 5; 10; 25g. The actual inlier-outlier thresh-
old is calculated by multiplying t with the noise scale s. For
each configuration, 10000 testswere run.

Fig. 6 plots the average angular errors (in degrees) as the
function of the tested parameters. The compared robust
weighting techniques are the proposed MAGSAC++;
MSAC, assigning weight 1 if the point is closer than the
threshold and, otherwise 0; Tukey bi-square weighting;
Huber weights and re-descending Huber weights. It be seen
that the MAGSAC++ weights guide the IRLS more success-
fully than the other compared techniques. Thus, the final
errors of MAGSAC++ are smaller if threshold is set reason-
ably large. Also, it is the least sensitive to over-estimating the
threshold value – its results are just slightly affected even if
the actual threshold is 25 times the noise scale. Note that the
offset errors of the estimated lines show a similar trend.

7.5 Inlier Selection

To test the proposed inlier selection, we generated a syn-
thetic scene similarly as in the previous section. We com-
pared the proposed technique with MINPRAN [29] and a
contrario RANSAC [30]. We measured the average model
error (15), in pixels, and the number of returned inliers. All
algorithms got the ground truth line as input to select the
inliers. Each test was repeated 10000 times. The results are

shown in Fig. 7. The average model accuracy (left) and the
number of inliers returned (right) of the compared adaptive
threshold selection techniques are plotted as the function of
the image noise, in pixels. From the left plot, it can be seen
that the proposed technique returns inlier sets which lead to
significantly more similar models, to the input one, than the
other algorithms. The average model error of the proposed
method for inlier ratio 0.1 is lower than the error of the other
method for inlier ratio 0.9. For the fair comparison, it is
important to note that MINPRAN and AC-RANSAC solve a
different problem, i.e., selecting the noise scale which mini-
mizes the randomness of the points which fall closer than
the threshold. Their objective function is designed to select
both the model and noise scale together. In our case, the
input model is accurate and, therefore, we only need a set of
inliers leading to a similarly accurate model.

From the right plot of Fig. 7, it can be seen that the pro-
posed inlier selection usually returns fewer points than the
other methods if the inlier ratio is higher than 0.1. The num-
ber of points that suffices depends on a particular

Fig. 6. The average results of iteratively re-weighted least-squares fitting using different robust weights (i.e., the proposed MAGSAC++, MSAC, Tukey
bisquare, Huber and redescending Huber weights) when fitting 2D lines. The methods were repeated 10000 times using each parameter setting.
(Left) The angular error, in degrees, of the estimated lines are plotted as the function of inlier-outlier threshold multiplier. The actual threshold is calcu-
lated by multiplying the noise s by the values shown on the horizontal axis. (Middle) The angular error is plotted as the function of the noise s added to
the point coordinates. (Right) The angular error is plotted as the function of the outlier ratio.

Fig. 7. The avg. model error (left) and the number of returned inliers
(right) of adaptive threshold selection techniques are plotted as the func-
tion of the image noise (in pixel). Synthetic scene: points from a 2D line
with zero-mean Gaussian-noise and uniformly distributed outliers (in
total, 100 points), 10000 runs on each setting.

Fig. 8. The inliers of the estimated fundamental matrix selected by the
proposed adaptive strategy with varying the parameter nmin which con-
trols the minimum number of required inliers.
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application where the proposed method is used. For exam-
ple, for doing a cheirality check after decomposing an essen-
tial matrix, a few correspondences are usually enough,
while a scene reconstruction might need many points. Set-
ting the minimum number of points required to nmin is
straightforward by initially including the nmin points with
the lowest residuals. The algorithm starts adding new
points from the (nmin þ 1)th closest one. The upper bound of
nmin is the number of points with residuals smaller than
tðsmaxÞ.

Example scenes showing the proposed adaptive inlier
selectionwith different values for nmin in the cases of homog-
raphy and fundamental matrix estimation are shown in
Figs. 5 and 8, respectively. Three different values are tested
for nmin which arem (4 for homographies; 8 for fundamental
matrices), jPj=8 and jPj=4. In these examples, all the selected
inliers are correct. Moreover, a reasonable number of inliers
are returned even when nmin ¼ m. Note that even if the
ground truth inlier number is lower than, e.g., jPj=4, the
algorithm is guaranteed to return the inliers which lead to an
as similar model as possible to the input one.

8 CONCLUSION

We formulate a novel marginalization procedure as an itera-
tively re-weighted least-squares (IRLS) approach. We intro-
duce a new model quality (scoring) function, that is
increased by this IRLS approach, and a termination criterion
for RANSAC-like robust estimation that does not require a
crisp inlier-outlier decision. Also, a new method for adap-
tive inlier selection is proposed assuming that an accurate
model is known. Combining the proposed techniques, the
“bells and whistles” of USAC [40], e.g., pre-emptive verifi-
cation, degeneracy testing, and a number of technical
improvements, we propose MAGSAC++.

To the experiments, MAGSAC++ leads to the most accu-
rate relative pose estimation. When all methods are tested
using their “best” inlier-outlier thresholds, the most accu-
rate fundamental matrices are obtained by combining the
proposed quality function with GC-RANSAC [51]. For
homography estimation, MAGSAC++ is the second most
accurate method with only marginally higher errors than
first one, i.e., GC-RANSAC. In practice, this “best” thresh-
old is usually unknown. In those cases, both MAGSAC and
MAGSAC++ are significantly less sensitive to the setting of
the noise scale or its upper limit than the other state-of-the-
art robust estimators. The source code and examples imple-
mented both in C++ and Python are available at https://
github.com/danini/magsacand in OpenCV.
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a b s t r a c t

The mean-shift procedure is a popular object tracking algorithm since it is fast, easy to implement and
performs well in a range of conditions. We address the problem of scale adaptation and present a novel
theoretically justified scale estimation mechanism which relies solely on the mean-shift procedure for
the Hellinger distance. We also propose two improvements of the mean-shift tracker that make the scale
estimation more robust in the presence of background clutter. The first one is a novel histogram color
weighting that exploits the object neighborhood to help discriminate the target called background ratio
weighting (BRW). We show that the BRW improves performance of MS-like tracking methods in general.
The second improvement boost the performance of the tracker with the proposed scale estimation by the
introduction of a forward–backward consistency check and by adopting regularization terms that counter
two major problems: scale expansion caused by background clutter and scale implosion on self-similar
objects. The proposed mean-shift tracker with scale selection and BRW is compared with recent state-
of-the-art algorithms on a dataset of 77 public sequences. It outperforms the reference algorithms in
average recall, processing speed and it achieves the best score for 30% of the sequences – the highest per-
centage among the reference algorithms.

� 2014 Elsevier B.V. All rights reserved.

1. Introduction

The mean-shift (MS) algorithm by Fukunaga and Hostetler [4] is
a non-parametric mode-seeking method for density functions. It
was introduced to computer vision by Comaniciu et al. [3] who
proposed its use for object tracking. The MS algorithm tracks by
minimizing the distance between two probability density func-
tions (pdfs) represented by a target and target candidate histo-
grams. Since the histogram distance (or, equivalently, similarity)
does not depend on the spatial structure within the search win-
dow, the method is suitable for deformable and articulated objects.

The performance of the mean-shift algorithm suffers from the
use of a fixed size window if the scale of the target changes. When
the projection of the tracked object becomes larger, localization
becomes poor since some pixels on the object are not included in
the search window and the similarity function often has many
local maxima. If the object become smaller, the kernel window
includes background clutter which often leads to tracking failure.

The seminal paper by Comaniciu et al. [3] already considered
the problem and proposed changing the window size over multiple

runs by a constant factor (�10%). The window size maximizing the
similarity to the target histogram was chosen. This approach does
not cope well with the increase of the object size since the smaller
windows usually have higher similarity and therefore the scale is
often underestimated.

Collins [2] exploited image pyramids and used an additional
mean-shift procedure for scale selection after estimating the posi-
tion. The method works well for objects with a fixed aspect ratio,
but this often does not hold for non-rigid or a deformable objects.
Moreover, the method is significantly slower than the standard MS.

Image moments are used in [1,10] to determine the scale and
orientation of the target. The second moments are computed from
an image of weights that are proportional to the probability that a
pixel belongs to the target model. Yang et al. [13] introduced a new
similarity measure that estimates the scale by comparison of sec-
ond moments of the target model and the target candidate.

Pu and Peng [11] assume target rigidity and restrict motion to
scaling and translation. The target is first tracked using the
mean-shift both in the forward and backward direction to estimate
the translation. Scale is then estimated from feature points
matched by an M-estimator with outlier rejection. Similarly,
[8,15] rely on ’’support features’’ for scale estimation after the
mean-shift algorithm solves for position. Liang et al. [8] search
for the target boundary by correlating the image with four
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templates. Positions of the boundaries directly determine the scale
of the target. Zhao et al. [15] exploit affine structure to recover the
target relative scale from feature point correspondences between
consecutive frames.

Methods depending on feature matching are able to robustly
estimate the scale, but they cannot be seamlessly integrated to
the mean-shift framework. Moreover, estimating scale from fea-
ture correspondences takes times, requires presence of well-local-
ised features that can be detected with high repeatability, and it
has difficulties dealing with a non-rigid or a deformable object.

We present a theoretically justified scale estimation mechanism
which, unlike the method listed above, relies solely on the mean-
shift procedure for the Hellinger distance. Furthermore, we pro-
pose a formulation for background weighting that exploits the
tracked object’s neighborhood to help discriminate the object from
the background. Additionally, we present two mechanisms that
make the scale estimation more robust in the presence of back-
ground clutter and improve tracker performance to level of the
state-of-the-art. The performance is compared to state-of-the-art
algorithms on a large tracking dataset.

2. Mean-shift tracker with scale estimation

2.1. Standard kernel-based object tracking

In the standard mean-shift tracking of [3], the target is mod-
elled as an m-bin kernel-estimated histogram in a feature space
located at the origin:

q̂ ¼ q̂uf gu¼1...m

Xm

u¼1

q̂u ¼ 1: ð1Þ

A target candidate at location y in the subsequent frame is
described by its histogram

p̂ðyÞ ¼ p̂uðyÞf gu¼1...m

Xm

u¼1

p̂u ¼ 1; ð2Þ

Let xi denote pixel locations, n be the number of pixels of the target
and let fx�i gi¼1...n be the pixel locations of the target centered at the
origin. Spatially, the target covers a unit circle and an isotropic, con-
vex and monotonically decreasing kernel profile kðxÞ is used. Func-
tion b : R2 ! 1 . . . m maps the value of the pixel at location xi to the
index bðxiÞ of the corresponding bin in the feature space. The prob-
ability of the feature u 2 f1; . . . ;mg is estimated by the target histo-
gram as follows:

q̂u ¼ C
Xn

i¼1

k kx�i k
2

� �
d½bðx�i Þ � u�; ð3Þ

where d is the Kronecker delta and C is a normalization constant so
that

Pm
u¼1q̂u ¼ 1.

Let fxigi¼1...nh
be pixel locations in the current frame where the

target candidate is centered at location y and nh be the number
of pixels of the target candidate. Using the same kernel profile
kðxÞ, but with a scale parameter h, the probability of the feature
u ¼ 1 . . . m in the target candidate is

p̂uðyÞ ¼ Ch

Xnh

i¼1

k
y � xi

h

��� ���2
� �

d½bðxiÞ � u�; ð4Þ

where Ch is a normalization constant. The difference between prob-
ability distributions q̂ ¼ q̂uf gu¼1...m and p̂uðyÞf gu¼1...m is measured by
the Hellinger distance of probability measures, which is known to
be a metric:

Hðp̂ðyÞ; q̂Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� q½p̂ðyÞ; q̂�

q
; ð5Þ

where

q½p̂ðyÞ; q̂� ¼
Xm

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p̂uðyÞq̂u

q
ð6Þ

is the Bhattacharyya coefficient of q̂ and p̂ðyÞ. Minimizing the Hel-
linger distance is equivalent to maximizing the Bhattacharyya coef-
ficient q½p̂ðyÞ; q̂�. The search for the new target location in the
current frame starts at location ŷ0 of the target in the previous
frame using gradient ascent with a step size equivalent to the
mean-shift method. The kernel is repeatedly moved from the cur-
rent location ŷ0 to the new location

ŷ1 ¼

Pnh
i¼1xiwig

ðŷ0�xiÞ
h

��� ���2
� �

Pnh
i¼1wig

ðŷ0�xiÞ
h

��� ���2
� � ; ð7Þ

where

wi ¼
Xm

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂u

p̂uðŷ0Þ

s
d½bðxiÞ � u� ð8Þ

and gðxÞ ¼ �k0ðxÞ is the derivative of kðxÞ, which is assumed to exist
for all x P 0, except for a finite set of points.

2.2. Scale estimation

Let us assume that the scale changes frame to frame in an iso-
tropic manner1. Let y ¼ ðy1; y2ÞT ; xi ¼ ðx1

i ; x
2
i Þ

T denote pixel locations
and N be the number of pixels in the image. A target is represented

by an ellipsoidal region
ðx�1

i
Þ2

a2 þ
ðx�2

i
Þ2

b2 < 1 in the image and an isotropic

kernel with profile kðxÞ as in [3], restricted by a condition kðxÞ ¼ 0 for
x P 1, is used. The probability of the feature u 2 f1; ::;mg is esti-
mated by the target histogram as

q̂u ¼ C
XN

i¼1

k
ðx�1i Þ

2

a2 þ ðx
�2
i Þ

2

b2

 !
d½bðx�i Þ � u�; ð9Þ

where C is a normalization constant. Let fxigi¼1...N be the pixel loca-
tions of the current frame in which the target candidate is centered
at location y. Using the same kernel profile kðxÞ, the probability of
the feature u ¼ 1 . . . m in the target candidate is given by

p̂uðy;hÞ ¼ Ch

XN

i¼1

k
ðy1 � x1

i Þ
2

a2h2 þ ðy
2 � x2

i Þ
2

b2h2

 !
d½bðxiÞ � u�; ð10Þ

where

Ch ¼
1PN

i¼1k
ðy1�x1

i
Þ2

a2h2 þ
ðy2�x2

i
Þ2

b2h2

� � : ð11Þ

The parameter h defines the scale of the target candidate and thus
the number of pixels with non-zero values of the kernel function.

For a given kernel and variable h; Ch can be approximated in
the following way: Let n1 be the number of pixels in the ellipsoidal
region of the target model, and let nh be the number of pixels in the
ellipsoidal region of the target candidate with a scale h; then
nh¼
: h2n1. Using the definition of Riemann integral we obtain:

XN

i¼1

k
ðx1

i Þ
2

a2h2 þ
ðx2

i Þ
2

b2h2

 !
pabh2

nh
�
Z Z

ðx1 Þ2

a2h2þ
ðx2Þ2

b2h2<1

n ok
ðx1Þ2

a2h2 þ
ðx2Þ2

b2h2

 !
dx1dx2

¼h2ab
Z Z

kxk<1
kðkxk2Þ:

ð12Þ

1 Generalization to the anisotropic where h ¼ ðh1
;h2Þ

T
is straightforward.
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Therefore Ch � C 1
h2 and for any two values h0; h1 Ch1 � Ch0

h2
0

h2
1
. For

justification of the approximation see Appendix A.
As in [3] the difference between probability distribution

q̂ ¼ q̂uf gu¼1...m and p̂uðy; hÞf gu¼1...m is measured by the Hellinger dis-
tance. Using the approximations above for Ch in some neighbor-
hood of h0 we get

q½p̂ðy;hÞ; q̂� � q̂ðy;hÞ

¼
Xm

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch0

h2
0

h2

XN

i¼1

k
ðy1�x1

i Þ
2

a2h2 þðy
2�x2

i Þ
2

b2h2

 !
d½bðxiÞ�u�q̂u

vuut
ð13Þ

Thus, to minimize the Hellinger distance, function q̂ðy; hÞ is maxi-
mized using a gradient method. In the proposed procedure, the ker-
nel with a scale parameter h0 is iteratively moved from the current
location ŷ0 in direction of 5q̂ðŷ1

0; ŷ
2
0;h0Þ to the new location ŷ1,

changing its scale to h1. The basic idea of this procedure is the same
as the mean-shift method.

Let us denote

wi ¼
Xm

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂u

p̂uðŷ0;h0Þ

s
d½bðxiÞ � u�; ð14Þ

G ¼
XN

i¼1

wig
ðŷ1

0 � x1
i Þ

2

a2h2
0

þ ðŷ
2
0 � x2

i Þ
2

b2h2
0

 !
; ð15Þ

and

mkðŷ0;h0Þ ¼

PN
i¼1xiwig

ðŷ1
0�x1

i
Þ2

a2h2
0
þ ðŷ

2
0�x2

i
Þ2

b2h2
0

� �
G

� ŷ0; ð16Þ

where mkðŷ0;h0Þ ¼ m1
kðŷ0;h0Þ;m2

kðŷ0;h0Þ
� 	T . Then we get

@q̂ðy;hÞ
@y1 ŷ0;h0ð Þ ¼ Ch0

a2ðh0Þ2
� G �m1

kðŷ0;h0Þ; ð17Þ

@q̂ðy;hÞ
@y2 ŷ0;h0ð Þ ¼ Ch0

b2ðh0Þ2
� G �m2

kðŷ0; h0Þ ð18Þ

and

@q̂ðy;hÞ
@h

ŷ0;h0ð Þ¼ Ch0

ðh0Þ2
�G � 1

h0

PN
i¼1wi �

ðŷ1
0�x1

i
Þ2

a2 þðŷ
2
0�x2

i
Þ2

b2

� �
�g ðŷ1

0�x1
i
Þ2

a2 h2
0
þðŷ

2
0�x2

i
Þ2

b2h2
0

� �
G

2
664

�h0

PN
i¼1wi �k

ðŷ1
0�x1

i
Þ2

a2h2
0
þðŷ

2
0�x2

i
Þ2

b2 h2
0

� �
G

3
775: ð19Þ

Finally, the mean-shift update of y and h is obtained:

ŷ1
1 ¼

1
a2 m1

kðŷ0;h0Þ þ ŷ1
0; ŷ2

1 ¼
1

b2 m2
kðŷ0; h0Þ þ ŷ2

0 ð20Þ

h1 ¼ 1�

PN
i¼1wi � k

ðŷ1
0�x1

i
Þ2

a2h2
0
þ ðŷ

2
0�x2

i
Þ2

b2h2
0

� �
G

2
664

3
775h0 þ

1
h0

�

PN
i¼1wi �

ðŷ1
0�x1

i
Þ2

a2 þ ðŷ
2
0�x2

i
Þ2

b2

� �
� g ðŷ1

0�x1
i
Þ2

a2h2
0
þ ðŷ

2
0�x2

i
Þ2

b2h2
0

� �
G

: ð21Þ

2.3. Background ration weighting

Instead of maximizing the Bhattacharyya coefficient, we formu-
late the problem as ratio maximization, where the numerator and

the denominator are defined as Bhattacharyya coefficients of target
candidate and target and background respectively. We call this for-
mulation background ratio weighting (BRW). Background histogram
b̂g is computed over the neighborhood of the target in the first
frame and the ratio is obtained as follows:

R ¼ q̂½p̂ðy;hÞ; q̂�
q̂½p̂ðy; hÞ; b̂g�

: ð22Þ

Using a gradient ascent method for maximization of logðRÞ we use
the following formula with weights wi changed to weights wbg

i ,
where

wbg
i ¼max 0;

Xm

u¼1

1
q̂½p̂ðŷ0; h0Þ; q̂�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
q̂u

p̂uðŷ0;h0Þ

s "

� 1

q̂½p̂ðŷ0;h0Þ; ^3bg�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
b̂gu

p̂uðŷ0;h0Þ

s 1
Ad½bðxiÞ � u�

3
5: ð23Þ

The max operator set the weights wbg
i to be a non-negative. In the

case of a non-negative weights, the mean-shift algorithm preserves
its convergence properties.

3. The tracking algorithm

Introducing scale estimation into the mean-shift procedure
reveals two issues: Firstly, there is a difference in the MS behaviour
when the position and scale estimation is imprecise. While errors
in position are usually corrected later on during the mean-shift
iteration, the error in scale estimation has no ’’self-correcting’’ abil-
ity in the presence of a non-trivial background. Secondly, the scale
ambiguity of self-similar objects usually leads to underestimation
of the scale and tracking failure (see Fig. 1).

To cope with this problem and make the tracking more robust,
we propose a mean-shift algorithm with regularized scale estima-
tion. The algorithm, denoted MSs, is summarized in Algorithm.

Algorithm 1. MSs – mean-shift with regularized scale
estimation.

Input: Target model q̂, starting position y0 and starting object
size s0

Output: Position yt and scale ht

t ¼ 1;
repeat

Compute p̂uðyt�1;ht�1Þ using Eq. (10);

Compute weights wbg
i according to Eq. (23);

Update position yt according to Eq. (20), neglecting the
constants a; b assuming that a � b;
Update scale ht according to Eq. (21);
Apply corrections ht = ht + Eq. (24) + Eq. (25);

t ¼ t þ 1;

until kyt � yt�1k
2 < e OR t > maxIter

The structure of the algorithm is similar to the standard mean-
shift algorithm, except for the scale update step. Two regulariza-
tion terms are introduced in the scale update step. The first term
rs reflects our prior assumption that the target scale does not
change dramatically; therefore, the change of scale is penalized
according to Eq. (24):

rsðhÞ ¼
� logðhÞ j logðhÞj 6 b2

b2 logðhÞ < �b2

�b2 logðhÞ > b2

8><
>: ð24Þ
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where the h is scaling factor and the function in absolute value is
bounded by the constant b2. The second term rb addresses the prob-
lem of scale ambiguity by forcing the search window to include a
portion of background pixels. In other words, from the possible
range of scales (generated by the object self-similarity), a slight bias
towards the largest is introduced. The rb function is defined by Eq.
(25):

rbðy;hÞ ¼
.� Bðy;hÞ j.� Bðy; hÞj 6 b1

�b1 .� Bðy;hÞ < �b1

b1 .� Bðy;hÞ > b1

8><
>: ð25Þ

where ðy;hÞ are the position and scaling factor and . define the per-
centage of weighted background pixels that should be contained in
the search window. The function response lies in the interval
ð�b1; b1Þ. The percentage of weighted background pixels is com-
puted as follows:

Bðy; hÞ ¼
Xn

i¼1

d½q̂bðxiÞ�
Xm

u¼1

p̂ud½bðxiÞ � u�
,Xn

i¼1

Xm

u¼1

q̂ud½bðxiÞ � u� ð26Þ

where the numerator is the sum of bin weights of the target candi-
date for pixels in which the target model has q̂u ¼ 0, and the
denominator is the sum of bin weights of the target model over
all pixels.

The MSs algorithm works well for sequences with scale change,
but for sequences without scale change or with a significant back-
ground clutter, the algorithm tends to estimate non-zero scale,
which may lead to accumulation of incorrect scale estimates and
a tracking failure. Therefore, we adopted a technique to validate
the estimated scale change: the Backward scale consistency check.
The Backward check uses reverse tracking from position yt

obtained by forward tracking and validates the estimated scale
from step t � 1 to t and t to t � 1. This validation ensures that in
the presence of background clutter the scale estimation does not
‘‘grow without bounds’’ and enables the tracker to recover from
erroneous estimates. The algorithm using this technique is sum-
marized in Algorithm 2, and we call it as Adaptive Scale mean-shift
(ASMS).

Algorithm 2. ASMS – mean-shift with scale and backward
consistency check

Input: Target model q̂, starting position y0 and starting object
size s0

Output: Position and scale in each frame ðyt ; stÞ, where
t 2 f1; . . . ;ng

foreach Frame t 2 f1; . . . ;ng do
[yt; h] = MSs(q; imaget; yt�1; st�1);
if jlogðhÞj > Hs then

//Scale change - proceed with consistency check
[	; hback] = MSs(q; imaget�1; yt;hst�1);

if jlogðh � hbackÞj > Hc then
//Inconsistent scales

st ¼ ð1� a� bÞst�1 þ asdefault þ bhst�1; where
a ¼ c1ðsdefault

st�1
Þ;

else
st ¼ ð1� cÞst�1 þ chst�1;

In the case of a detected scale inconsistency the object size is a
weighted combination of three parts: (i) the previous size; (ii) the
new estimated size; (iii) ‘‘default’’ size, which in our case is initial
size of the object. The parameters for this combination were
selected experimentally on the subset of testing sequences as a
trade off between scale adaptability of the MSs and stability of
the standard mean-shift algorithm.

We also noticed that mean-shift is more stable if the bandwidth
size is biased toward a larger size so that the whole target is
included; therefore, the computation of the weight a (Algorithm
2) is not symmetric but it prefers enlarging the object size. The
default size is kept constant during tracking, and preliminary
experiments with size adaptation show no significant benefit and
only introduce error caused by incorrect updates. This can be
explained by the character of the data, where the target scale usu-
ally oscillate around initial value.

4. Experimental protocol

Experiments were conducted on 77 sequences2 collected from
the literature. The sequences vary in length from dozens of frames
to thousands, contain diverse object types (rigid, articulated) and
have different scene settings (indoor/outdoor, static/moving camera,
lightning conditions). Object occlusions and objects that disappear
from the field of view are also present in the data.

The proposed mean-shift algorithm ASMS is compared with the
standard published mean-shift algorithm (MS) and its scale adap-
tation (MS±) proposed by Comaniciu et al. [3]. All algorithms are
evaluated with and without the proposed background weighting.

The proposed method is also compared with the state-of-the-
art tracking algorithms that are available as source code, namely
SOAMST by Ning et al. [10] base on the mean-shift algorithm,
LGT by Čehovin et al. [12], TLD by Kalal et al. [6], CT by Zhang
et al. [14] and STRUCK by Hare et al. [5]. Parameters for these algo-
rithms were left default as set by the authors. Note that our results
for those algorithms may differ from results reported in other pub-
lications since we did not optimize their parameters for the best
performance for each sequence as was done, e.g., by Zhang et al.
[14], but were fixed for all experiments. Moreover, the target was
initialized in the first frame using the ground truth position for
all algorithms. Stochastic methods were run multiple times on
each sequence and the average result was reported.

(a)

(b)

Fig. 1. Illustration of the scale ambiguity problem. (a) Target and target candidates
at different scales with fixed center location (green rectangle corresponds to h ¼ 1),
(b) target candidate similarity with target as a function of the scale parameter
measured by Bhattacharyya coefficient. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)

2 http://cmp.felk.cvut.cz/	vojirtom/dataset.
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Performance of the algorithms was measured by the recall: the
number of correctly tracked frames divided by number of frames
where the target is visible. Recall was chosen because some of
the algorithms exhibit detector-like behavior; therefore, other fre-
quently used criteria, such as first failure frame or failure frame
from which the algorithm does not recover, will not capture the
real performance of the algorithm, i.e. in how many frames the
algorithm locates the target correctly.

A frame is considered tracked correctly if the overlap with the
ground truth is higher than 0.5. The overlap is defined as
o ¼ areaðT\GÞ

areaðT[GÞ, where T is object bounding box reported by the tracker
and G is ground truth bounding box.

To characterize the speed, the average running time per frame
of each algorithm was measured. Note that the algorithms are
not implemented in the same programming language (SOAMST,
LGT, TLD, CT using matlab with MEX files, STRUCT and mean-shift
using C++), which may bias the speed measurement towards the
more efficient programming languages.

The proposed mean-shift algorithms are written in C++ without
heavy optimization or multithreading. All parameters of the algo-
rithm were fixed for all experiments. Some of the parameters are
fairly standard (mean-shift termination criterion) and the rest
were chosen empirically as follows: bounds for regularization
terms b1 ¼ 0:05; b2 ¼ 0:1 and . ¼ 0:5; termination of the mean-
shift algorithm e ¼ 0:1, and maxIter ¼ 15; scale consistency check
Hs ¼ 0:05 � 5% of the scale change, Hc ¼ 0:1; exponential averag-
ing c1 ¼ 0:1; b ¼ 0:1 and c ¼ 0:3. The pdf is represented as a histo-
gram computed over the RGB space and quantized into the
16� 16� 16 bins.

5. Results

5.1. Background weighting evaluation

The experiment evaluates the benefits of different histogram
bin weighting based on the background. The proposed BRW
method is implemented into a different MS algorithms (i.e. stan-
dard MS, the standard scale MS by Comaniciu et al. [3] and the pro-
posed ASMS) and compared to direct histogram weighting (CBWH)
proposed by Ning et al. [9].

Fig. 2 shows the recall for 77 sequences. In general, using back-
ground weighting improves MS performance. The BRW performs
slightly better or equal than CBWH for the standard mean-shift
algorithms and dominates for the proposed AMSM. The average
recall for the evaluated methods is shown by dashed horizontal
lines in the plots. From the experiment, we conclude that
ASMS-BRW is superior to other combinations, and therefore, it is
used in all subsequent experiments. When not specified otherwise,
the abbreviation ASMS refers to ASMS-BRW.

Next, ASMS was compared with the scale adaptation proposed
by Comaniciu et al. [3], denoted MS±, which runs the MS Algorithm
3 times for different window sizes (1;1� 0:1%) and the result with
the minimum distance to the target histogram is used. The com-
parison is included in Fig. 3 which also shows the results of the
state of the art methods. ASMS outperforms MS± for average recall.
It performs better on 48 sequences.

5.2. Comparison with the state-of-the-art methods

Result of the comparison of the ASMS and state-of-the-art algo-
rithms is presented in Fig. 3, which shows that the performance of
the ASMS tracker is comparable to the state-of-the-art methods,
and on a large fraction of the sequences (30%) it is the top per-
former. However, Fig. 3 also shows that ASMS performs poorly
on some sequences.

The results are summarized in two tables. Results for sequences
with at least 30% object scale difference w.r.t the reference size in
at least 20% frames of sequences are presented in Table 1. Perfor-
mance on the remaining ‘‘small scale change’’ sequences is shown
in Table 2. The last two rows show the mean performance and the
number of sequences where the tracker performed best and second
best.

There are some sequences in the set of the 32 sequences with
object scale changes where tracking without a re-detection mech-
anism fails. These ‘‘Long-term’’ sequences with thousands of
frames (e.g. CarChase, Motocross, Panda, Volkswagen) include object
disappearance from the field of view, scene cuts, significant object
occlusion and strong background clutter. Some shorter sequences
with full object occlusion (e.g. Vid_F), cannot be successfully
tracked without re-detection too. Since ASMS does not provide
any re-detection ability, it can not handle these cases. In these
sequences, the TLD tracker achieved the best results.

ASMS achieved the best score on the Vid_X sequences of [7]. The
sequences contain small amounts of background clutter and out-
of-plane or in-plane rotation, which is difficult for many state-of-
the-art algorithms whose representation of the object is usually
spatial dependent and out or in-plane rotation is not explicitly
modeled.

Performance of the mean-shift algorithms, in general, drops in
the presence of significant background clutter. This issue is more
prominent when the tracker estimates more parameters (such as
translation and scale) and the estimation errors induce a larger
drift (in scale dimension) than in the case of estimating pure trans-
lation. This was mainly the case for the drunk2 and dinosaur
sequences where the color distribution of the target was similar
to the background.

Due to RGB color histogram representation, MS algorithms also
perform poorly for grayscale sequences (e.g. track running, coke,
dog1, OccludedFace2, david, shaking, etc.).

Overall, ASMS achieved the best average performance along
with the TLD tracker on the sequences with scale and second best
performance on the sequences without scale where the STRUCK
tracker perform best. ASMS achieved the best score for 30% (which
is the highest amongst other methods) of the sequences and the
second best for 13%.

5.3. VOT2013 challenge results

The proposed ASMS algorithm was evaluated according to the
new Visual Object Tracking (VOT) Challenge3 methodology. The
evaluation protocol, dataset and experiment descriptions are avail-
able at the VOT challenge site.

VOT results obtained by the ASMS method are reported in
Table 3. The results show that the ASMS is quite robust: it has a
low number of reinitializations (robustness column), but lacks in
accuracy. Among 27 trackers the ASMS tracker would be ranked
around the ninth place. This seems unimpressive, but: (i) most
trackers ranked higher are significantly slower; (ii) the results
depend on the choice of test sequences and the evaluation method-
ology; and (iii) as shown in the paper, the MS types of detectors are
the best performers for certain sequences.

5.4. Speed

To characterize the speed, the average running time per frame
of each algorithm was measured across the whole testing dataset.
The forward–backward (FB) validation step has been shown to
benefit the ASMS, but it comes at the price of slowing the tracking

3 http://www.votchallenge.net/.
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(a)

(b)

(c)

Fig. 2. Background weighting methods – a comparison of the standard MS, standard scale MS and adaptive scale MS. CBWH denotes the background weighting of [9]; the
proposed background ratio weighting is denoted BRW. In all plots, sequences (x-axis) are sorted by the recall of the ASMS-BRW. The legend lists the methods in the order of
average performance. The dashed lines show average performance.
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Fig. 3. ASMS and the state-of-the-art algorithms - comparison of the recall on 77 sequences. Sequences (x-axis) are sorted by the recall measure of the ASMS algorithm. The
legend lists the methods in the order of average performance. The dashed lines show average performance.

Table 1
Recall on sequences with scale change (target was 30% smaller or larger on at least 20% of frames of the sequence). Bold text – best result for the sequence, underscore – second
best. na indicates that the algorithm fail to process the whole sequence.

Sequence Method

MS MS± ASMS SOAMST LGT TLD CT STRUCK

girl 0:70 0:55 0:24 0:14 0:34 0:69 0:13 0:72
surfer 0:17 0:14 0:32 0:23 0:12 0:16 0:10 0:22
Vid_A_ball 0:86 1:00 1:00 0:84 0:16 0:44 0:63 0:39
Vid_C_juice 0:49 0:78 0:78 0:44 0:62 0:44 0:47 0:48
Vid_F_person_fully_occluded 0:40 0:26 0:27 0:06 0:27 0:27 0:32 0:35
Vid_I_person_crossing 0:82 0:76 0:87 0:06 0:13 0:85 0:19 0:29
Vid_J_person_floor 0:93 0:85 0:79 0:08 0:13 0:50 0:44 0:33
Vid_L_coffee 0:24 0:68 0:27 0:51 0:22 0:23 0:19 0:23
gymnastics 0:16 0:46 0:24 0:50 0:21 0:14 0:14 0:16
hand 0:64 0:53 0:86 0:10 0:76 0:26 0:19 0:13
track_running 0:02 0:11 0:33 na na 0:41 0:24 0:25
cliff-dive2 0:15 0:16 0:15 na 0:12 0:08 0:16 0:18
motocross1 0:16 0:10 0:13 0:01 0:17 0:16 0:08 0:14
mountain-bike 0:80 0:54 0:69 0:00 0:49 0:32 0:34 0:90
skiing 0:04 0:04 0:47 0:00 0:11 0:07 0:08 0:11
volleyball 0:54 0:50 0:57 na na 0:57 0:51 0:48
CarChase 0:07 0:08 0:06 na 0:02 0:18 0:00 0:06
Motocross 0:00 0:01 0:04 na 0:00 0:41 0:00 0:03
Panda 0:07 0:07 0:17 0:00 0:23 0:33 0:20 0:22
Volkswagen 0:00 0:00 0:01 na 0:00 0:57 0:01 0:06
pedestrian3 0:11 0:63 0:11 0:00 0:02 0:31 0:26 0:47
jump 0:31 0:34 0:35 0:01 0:12 0:09 0:09 0:14
animal 0:63 0:18 0:61 0:01 0:17 0:72 0:06 0:70
singer1 0:12 0:12 0:12 0:24 0:15 0:93 0:29 0:27
singer1(lowfps) 0:26 0:25 0:36 na 0:12 0:11 0:14 0:14
skating2 0:83 0:26 0:94 0:54 0:30 0:03 0:10 0:35
soccer 0:20 0:20 0:20 0:13 0:16 0:09 0:18 0:29
drunk2 0:03 0:03 0:02 0:01 0:17 0:60 0:24 0:29
lemming 0:83 0:83 0:97 0:85 0:77 0:63 0:27 0:66
dog1 0:18 0:20 0:07 na na 0:68 0:55 0:65
trellis 0:16 0:18 0:37 0:00 0:60 0:28 0:16 0:46
coke 0:05 0:07 0:03 0:00 0:32 0:92 0:30 0:88
Mean 0:34 0:34 0:39 0:20 0:24 0:39 0:22 0:34
Best + Second (out of 32) 2þ 8 4þ 6 11þ 3 1þ 3 2þ 4 11þ 2 0þ 2 4þ 9
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Table 2
Recall on sequences without a scale change. Bold text – best result for the sequence, underscore – second best. na indicates that the algorithm fail to process the whole sequence.

Sequence Method

MS MS± ASMS SOAMST LGT TLD CT STRUCK

OccludedFace2 0:44 0:28 0:16 0:00 0:35 0:68 0:73 1:00
Vid_B_cup 1:00 1:00 0:98 0:74 0:90 0:92 0:65 1:00
Vid_D_person 0:97 1:00 0:98 0:05 0:28 0:78 0:88 0:95
Vid_E_person_part_occluded 0:90 0:86 0:88 0:06 0:50 0:88 0:91 0:91
Vid_G_rubikscube 0:63 0:77 1:00 0:16 0:78 0:24 0:85 0:84
Vid_H_panda 1:00 0:88 1:00 0:00 1:00 1:00 1:00 1:00
Vid_K_cup 0:87 1:00 0:90 0:26 0:99 0:68 0:28 0:91
dinosaur 0:23 0:17 0:34 0:01 0:69 0:38 0:22 0:23
hand2 0:63 0:41 0:68 0:03 0:60 0:11 0:07 0:08
torus 0:65 0:60 0:95 0:17 0:82 0:16 0:35 0:13
head_motion 0:70 0:64 0:37 na na 0:82 0:89 0:94
shaking_camera 0:44 0:74 0:66 na na 0:92 0:05 0:35
cliff-dive1 0:99 0:66 0:76 0:18 0:95 0:58 0:66 0:87
motocross2 0:74 0:70 0:78 0:04 0:87 0:87 0:68 0:87
car 0:54 0:52 0:28 0:00 0:32 0:99 0:13 0:73
david 0:02 0:01 0:02 na 0:08 0:48 0:04 0:04
jumping 0:51 0:75 0:27 0:00 0:08 0:86 0:03 0:87
pedestrian4 0:56 0:41 0:92 0:00 0:14 0:60 0:20 0:22
pedestrian5 0:97 0:42 0:87 na 0:33 1:00 0:66 0:48
diving 0:18 0:18 0:21 0:04 0:33 0:15 0:16 0:25
gym 0:96 0:90 0:86 0:16 0:09 0:29 0:25 0:89
trans 0:55 0:55 0:31 0:57 0:99 0:44 0:47 0:55
basketball 0:48 0:45 0:47 0:45 0:73 0:02 0:27 0:02
football 0:16 0:16 0:01 0:00 0:49 0:76 0:73 0:86
shaking 0:07 0:05 0:02 0:01 0:05 0:16 0:42 0:16
singer2 0:21 0:19 0:56 0:03 0:45 0:03 0:30 0:04
skating1 0:16 0:12 0:40 0:01 0:23 0:38 0:34 0:65
skating1(lowfps) 0:14 0:09 0:11 0:01 0:15 0:23 0:23 0:57
Asada 0:66 0:64 0:72 0:54 0:58 0:08 0:27 0:38
dudek-face 0:47 0:18 0:24 na na 0:61 0:24 0:18
faceocc1 0:79 0:32 0:78 0:18 0:51 0:94 0:40 1:00
figure_skating 0:61 0:32 0:82 0:20 0:79 0:04 0:23 0:84
woman 0:14 0:07 0:82 na 0:15 0:66 0:18 0:94
board 0:84 0:71 0:85 0:48 0:72 0:15 0:25 0:84
box 0:16 0:10 0:12 0:16 0:31 0:20 0:49 0:91
liquor 0:58 0:42 0:94 0:10 0:21 0:86 0:24 0:73
Sylvestr 0:72 0:55 0:62 na na 0:96 0:56 0:92
car11 0:29 0:04 0:38 0:00 0:12 0:62 0:19 0:99
person 0:99 0:92 0:88 0:00 0:08 0:20 0:23 0:48
tiger1 0:14 0:07 0:92 0:00 0:20 0:55 0:64 0:86
tiger2 0:02 0:02 0:01 0:00 0:70 0:33 0:62 0:59
bird_1 0:03 0:12 0:39 na 0:29 0:00 0:24 0:25
bird_2 0:13 0:38 0:52 0:10 0:63 0:75 0:48 0:51
bolt 0:21 0:48 0:42 0:00 0:03 0:01 0:01 0:01
girl_mov 0:75 0:63 0:88 0:17 0:06 0:25 0:11 0:19
Mean 0:52 0:46 0:58 0:13 0:45 0:50 0:40 0:60
Best + Second (out of 45) 5þ 8 4þ 4 12þ 7 0þ 1 7þ 7 9þ 9 3þ 6 15þ 6

Table 3
VOT2013 Challenge results. Accuracy is abbreviated as acc and robustness as rob.

Experiment baseline Experiment region_noise Experiment grayscale

acc rob speed (fps) acc rob speed (fps) acc rob speed (fps)

bicycle 0.51 0.00 168.30 0.50 0.07 169.24 0.53 8.00 174.82
bolt 0.65 1.00 96.90 0.65 1.00 101.73 0.42 5.00 89.38
car 0.43 0.00 234.50 0.49 0.60 256.80 0.44 0.00 301.77
cup 0.72 0.00 224.59 0.70 0.00 268.81 0.57 1.00 203.13
david 0.52 2.00 113.42 0.51 1.80 99.51 0.44 8.00 90.00
diving 0.37 0.00 200.06 0.38 0.00 232.96 0.38 3.00 130.10
face 0.67 0.00 190.56 0.66 0.00 196.25 0.63 0.00 166.11
gymnastics 0.47 0.00 172.89 0.45 0.00 187.58 0.41 2.00 121.01
hand 0.64 0.00 159.68 0.63 0.13 193.37 0.52 1.00 169.22
iceskater 0.61 0.00 99.02 0.60 0.00 105.35 0.49 5.00 53.66
juice 0.65 0.00 218.33 0.66 0.00 237.51 0.71 1.00 201.20
jump 0.53 1.00 124.98 0.53 0.67 141.74 0.44 1.00 143.42
singer 0.39 0.00 56.45 0.38 0.07 57.39 0.42 5.00 67.09
sunshade 0.61 0.00 199.40 0.62 0.00 218.85 0.55 2.00 154.39
torus 0.70 0.00 168.12 0.69 0.00 213.55 0.55 1.00 172.86
woman 0.63 2.00 168.92 0.61 2.00 166.40 0.57 7.00 138.73
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two times. The experiment shown (see Table 4) that the slow down
factor w.r.t. to standard MS is 2 on average. However, ASMS is still
faster then MS± and significantly faster than the state-of-the-art
algorithms.

6. Conclusion

In this work, a theoretically justified scale estimation for the
mean-shift algorithm using Hellinger distance has been proposed.
The new scale estimation procedure is regularized, which makes it
more robust. Furthermore, we proposed a new formulation of the
histogram bin weighting function (BRW) that takes into account
background appearance. The formulation is general and can be
used in any MS-based algorithm. The increase in performance
when using BRW is shown in Fig. 2.

We introduced a scheme (Forward–Backward) for automatic
decision to accept the newly estimated scale or to use a more
robust weighted combination, which is shown to reduce erroneous
scale updates. This technique reduces tracking speed twice, how-
ever ASMS is still faster then MS± and outperforms the speed of
the state-of-the-art method by a large margin (see Table 4).

The newly proposed ASMS has been compared with the state-
of-the-art algorithms on a very large dataset of tracking sequences.
It outperforms the reference algorithms in average recall, process-
ing speed and it achieves the best score for 30% of the sequences
(the highest percentage among the reference algorithms) and it
is the second best performer for 13% of the sequences.
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Appendix A

Let us assume we do not use an approximation for Ch. Thus to
minimize the Hellinger distance

q½p̂ðy; hÞ; q̂� ¼
Xm

u¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Ch

XN

i¼1

k
ðy1 � x1

i Þ
2

a2h2 þ ðy
2 � x2

i Þ
2

b2h2

 !
d½bðxiÞ � u�q̂u

vuut
ðA:1Þ

is maximized using a gradient method. The only difference from the
derivation using the approximation (Eq. (13)) is in the partial deriv-
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and A tends to 1 for large numbers of pixels in a target candidate.
The proposed approximation therefore replaces A by 1 and elimi-
nates the noise caused by A term for small scales of the objects. It
is illustrated in Fig. A.4 for a target represented by an ellipsoidal
region with a ¼ 10 and b ¼ 10 (i.e. object size equal to 20x20 px).

References

[1] G.R. Bradski, Computer vision face tracking for use in a perceptual user
interface, Intel Technol. J. 2 (1998) 15–26.

[2] R.T. Collins, Mean-shift blob tracking through scale space, in: Computer Vision
and Pattern Recognition, IEEE Computer Society, 2003, pp. 234–240.

[3] D. Comaniciu, V. Ramesh, P. Meer, Real-time tracking of non-rigid objects using
mean shift, in: Computer Vision and Pattern Recognition, Proceedings, IEEE
Conference on, vol. 2, 2000, pp. 142–149.

[4] K. Fukunaga, L. Hostetler, The estimation of the gradient of a density function,
with applications in pattern recognition, Inf. Theory 21 (1975) 32–40.

[5] S. Hare, A. Saffari, P. Torr, Struck: structured output tracking with kernels, in:
International Conference Computer Vision, 2011, pp. 263–270.

[6] Z. Kalal, J. Matas, K. Mikolajczyk, P-N learning: bootstrapping binary classifiers
by structural constraints, in: Conference on Computer Vision and Pattern
Recognition, 2010.

[7] D.A. Klein, D. Schulz, S. Frintrop, A.B. Cremers, Adaptive real-time video-
tracking for arbitrary objects, in: Intelligent Robots and Systems, 2010, pp.
772–777.

[8] D. Liang, Q. Huang, S. Jiang, H. Yao, W. Gao, Mean-shift blob tracking with
adaptive feature selection and scale adaptation, in: International Conference
Image Processing, 2007.

[9] J. Ning, L. Zhang, D. Zhang, C. Wu, Robust mean-shift tracking with corrected
background-weighted histogram, IET Comput. Vision 6 (2012) 62–69.

[10] J. Ning, L. Zhang, D. Zhang, C. Wu, Scale and orientation adaptive mean shift
tracking, IET Comput. Vision 6 (2012) 52–61.

[11] J.X. Pu, N.S. Peng, Adaptive kernel based tracking using mean-shift, in:
International conference on Image Analysis and Recognition, 2006, pp. 394–
403.
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Table 4
Processing speed in milliseconds. Max (min) are computed as a maximum (minimum)
of the average time per sequence; mean is the average time over all sequences.

Method MS MS± ASMS SOAMST LGT TLD CT STRUCK

max 14:4 61 48 6107 864 152 36 112
min 0:4 0:8 0:6 207 107 6 11 43
mean 2:9 7:3 6:1 816 250 51 21 82

Fig. A.4. Behaviour of the A term for a target represented by an ellipsoidal region
with Epanechnikov kernel and a ¼ 10 and b ¼ 10 for a variable scale parameter h.
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a b s t r a c t 

In this paper, we propose a novel method for visual object tracking called HMMTxD. The method fuses 

observations from complementary out-of-the box trackers and a detector by utilizing a hidden Markov 

model whose latent states correspond to a binary vector expressing the failure of individual trackers. 

The Markov model is trained in an unsupervised way, relying on an online learned detector to provide a 

source of tracker-independent information for a modified Baum- Welch algorithm that updates the model 

w.r.t. the partially annotated data. We show the effectiveness of the proposed method on combination of 

two and three tracking algorithms. The performance of HMMTxD is evaluated on two standard bench- 

marks (CVPR2013 and VOT) and on a rich collection of 77 publicly available sequences. The HMMTxD 

outperforms the state-of-the-art, often significantly, on all data-sets in almost all criteria. 

© 2016 Elsevier Inc. All rights reserved. 

1. Introduction 

In the last thirty years, a large number of diverse visual track- 

ing methods has been proposed ( Smeulder et al., 2013; Yilmaz 

et al., 2006 ). The methods differ in the formulation of the prob- 

lem, assumptions made about the observed motion, in optimiza- 

tion techniques, the features used, in the processing speed, and 

in the application domain. Some methods focus on specific chal- 

lenges like tracking of articulated or deformable objects ( Cehovin 

et al., 2013; Godec et al., 2011; Kwon and Lee, 2009 ), occlusion 

handling ( Grabner et al., 2010 ), abrupt motion ( Zhou and Lu, 2010 ) 

or long-term tracking ( Kalal et al., 2012; Pernici and Bimbo, 2013 ). 

Three observations motivate the presented research. First, most 

trackers perform poorly if run outside the scenario they were de- 

signed for. Second, some trackers make different and complemen- 

tary assumptions and their failures are not highly correlated (called 

complementary trackers in the paper). And finally, even fairly com- 

plex well performing trackers run at frame rate or faster on stan- 

dard hardware, opening the possibility for multiple trackers to run 

concurrently and yet in or near real-time. 

We propose a novel methodology that exploits a hidden Markov 

model (HMM) for fusion of non-uniform observables and pose 

prediction of multiple complementary trackers using an on-line 
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learned high-precision detector. The non-uniform observables, in 

this sense, means that each tracker can produce its own type of 

“confidence estimate” which may not be directly comparable be- 

tween each other. 

The HMM, trained in an unsupervised manner, estimates the 

state of the trackers – failed, operates correctly – and outputs 

the pose of the tracked object taking into account the past per- 

formance and observations of the trackers and the detector. The 

HMM treats the detector output as correct if it is not in contradic- 

tion with its current most probable state in which the majority of 

trackers are correct. This limits the cases where the HMM would 

be wrongly updated by a false detection. For the potentially many 

frames where reliable detector output is not available, it combines 

the trackers. The detector is trained on the first image and interacts 

with the learning of the HMM by partially annotating the sequence 

of HMM states in the time of verified detections. The recall of the 

detector is not critical but it affects the learning rate of the HMM 

and the long-term properties of the HMMTxD method, i.e., its abil- 

ity to re-initialize trackers after occlusions or object disappearance. 

Related work. The most closely related approaches include 

Santner et al. (2010) , where three tracking methods with dif- 

ferent rates of appearance adaptation are combined to prevent 

drift due to incorrect model updates. The approach uses simple, 

hard-coded rules for tracker selection. Kalal et al. (2012) com- 

bine a tracking-by-detection method with a short-term tracker 

that generates so called P-N events to learn new object appear- 

ance. The output is defined either by the detector or the tracker 

based on visual similarity to the learned object model. Both these 

methods employ pre-defined rules to make decisions about 

http://dx.doi.org/10.1016/j.cviu.2016.05.007 
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object pose and use one type of measurement, a certain form of 

similarity between the object and the estimated location. In con- 

trary, HMMTxD learns continuously and causally the performance 

statistics of individual parts of the systems and fuses multiple 

“confidence” measurements in the form of probability densities of 

observables in the HMM. Zhang et al. (2014) use a pool of mul- 

tiple classifiers learned from different time spans and choose the 

one that maximize an entropy-based cost function. This method 

addresses the problem of model drifting due to wrong model up- 

dates, but the failure modes inherent to the classifier itself remains 

the same. This is unlike the proposed method which allows to 

combine diverse tracking methods with different inherent failure 

modes and with different learning strategies to balance their weak- 

nesses. 

Similarly to the proposed method, Wang and yan Yeung 

(2014) and Bailer et al. (2014) fuse different out-of-the box track- 

ing methods. Bailer et al. combine offline the outputs of multi- 

ple tracking algorithms. There is no interaction between trackers, 

which for instance implies that the method avoids failure only if 

one method correctly tracks the whole sequence. Wang et al., use a 

factorial hidden Markov model and a Bayesian approach. The state 

space of their factorial HMM is the set of potential object positions, 

therefore it is very large. The model contains a probability descrip- 

tion of the object motion based on a particle filter. Trackers inter- 

act by reinitializing those with low reliability to the pose of the 

most confident one. The Yuan et al. (2015) use HMM in the same 

setup, but rather than merging multiple tracking method, they fo- 

cus on modeling the temporal change of the target appearance in 

the HMM framework by introducing a observational dependencies. 

In contrast, the HMMTxD method is online with tracker interac- 

tion via a high precision object detector that supervises tracker 

re-initializations which happen on the fly. The appearance model- 

ing is performed inside of each tracker and the HMMTxD capture 

the relation of the confidence provided by tracker and its perfor- 

mance, validated by the object detector, by the observable distri- 

butions. Moreover, the HMMTxD confidence estimation is motion- 

model free and this prevents biases towards support of trackers 

with a particular motion model. 

Yoon et al. (2012) combines multiple trackers in a particle fil- 

ter framework. This approach models observables and transition 

behavior of individual trackers, but the trackers are self-adapting 

which makes it prone to wrong model updates. The adaptation of 

HMMTxD model is supervised by a detector method set to a spe- 

cific mode of operation – near 100% precision – alleviating the in- 

correct update problem. 

The contributions of the paper are: a novel method for fusion of 

multiple trackers based on HMMs using non-uniform observables, 

a simple, and so far unused, unsupervised method for HMMs train- 

ing in the context of tracking, tunable feature-based detector with 

very low false positive rate, and the creation of a tracking system 

that shows state-of-the-art performance. 

2. Fusing multiple trackers 

HMMTxD uses a hidden Markov model (HMM) to integrate pose 

and observational confidence of different trackers and a detector, 

and updates its own confidence estimates that in turn define the 

pose that it outputs. In the HMM, each tracker is modeled as work- 

ing correctly (1) or incorrectly (0). The HMM poses no constraints 

on the definition of tracker correctness, we adopted target over- 

lap above a threshold. Having at our disposal n trackers, the set of 

all possible states is { s 1 , s 2 , . . . , s N } = { 0 , 1 } n , N = 2 n and the initial 

state s 1 = (1 , 1 , . . . , 1) . Note that the trackers are not assumed to 

be independent, because an independence of tracker correctness is 

not a realistic assumption. For example, if the tracking problem is 

relatively easy, all trackers tend to be correct and in the case of 

Fig. 1. The structure of the HMMTxD. For each frame, the detector and trackers are 

run. Each tracker outputs a new object pose and observables ( B i , x i ) and the de- 

tector outputs either the verified object pose B d or nothing. If detector fires, HMM 

is updated and trackers are re-initialized and the final output is the B d , otherwise, 

HMM estimate the most probable state s ∗ and outputs an average bounding box B̄ s ∗

of trackers that are correct in the estimated state s ∗ . 

occlusion all tend to be incorrect (see the analysis in Kristan et al., 

2015 ). The number of states 2 n grows exponentially with the num- 

ber of trackers. However, we do not consider this a significant issue 

– due to “real-time” requirements of tracking, the need to combine 

more than a small number of trackers, say n = 4 , is unlikely. 

The HMMTxD method overview is illustrated in Fig. 1 . Each 

tracker provides an estimate of the object pose ( B i ) and a vector of 

observables ( x i ), which may contain a similarity measure to some 

model (such as normalized cross-correlation to the initial image 

patch, distance of template and current histograms at given posi- 

tion, etc.) or any other estimates of the tracker performance. The 

x i , i = { 1 , 2 , . . . , n } serve as observables to relate the tracker cur- 

rent confidence to the HMM. Each individual observable depends 

only on one particular tracker and its correctness, hence, they are 

assumed to be conditionally independent conditioned on the state 

of the HMM (which encodes the tracker correctness). 

In general, there are no constraints on observable values, how- 

ever, in the proposed HMM the observable values are required to 

be normalized to the (0, 1) interval. The observables are modeled 

as beta-distributed random variables ( Eq. 1 ) and its parameters are 

estimated online. The beta distribution was chosen for its versatil- 

ity, where practically any kind of unimodal random variable on (0, 

1) can be modeled by the beta distribution, i.e., for any choice of 

any lower and upper quantiles, a beta distribution exists satisfying 

the given quantile constraint ( Gupta and Nadarajah, 2004 ). 

Learning the parameters of the beta distributions online is cru- 

cial for the adaptability to particular tracking scenes, where the 

observable values from a different trackers may be biased due to 

scene properties, or to adapt to a different types of observables of 

trackers and their correlations to the “real” tracker performance. 

For example, taking correlation with the initial target patch as an 

observable for one tracker and color histogram distance to a ini- 

tial target for a second tracker, the correlation between their val- 

ues and the performance of the tracker may differ depending on 

object rigidity and color distribution of object and background. 

The HMM is parameterized by the pair λ = (A, F ) , where A are 

the probabilities of state transition and F are the beta distributions 

of observables with shape parameters p, q > 0 and density defined 

for x ∈ (0, 1) 

f (x | p, q ) = 

x p−1 (1 − x ) q −1 ∫ 1 
0 u 

p−1 ( 1 − u ) q −1 du 

. (1) 

Since the goal is real-time tracking without any specific pre- 

processing, learning of HMM parameters has to be done online. To- 

wards this goal, the object detector, which is set to operating mode 

with low false positive rate, is utilized to partially annotate the se- 

quence of hidden states. In contrast to classical HMM, where only a 
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Fig. 2. Illustration of HMM state and trackers probability estimation during tracking. The bottom graph shows the marginal probabilities for each tracker being correct and 

the detection times (green spikes). Above the graph the inferred states s ∗t with color encoded correct trackers (1) are displayed. The final output is defined by the state s ∗t 
and the bounding box is highlighted by white color. Best viewed zoomed in color. 

sequence of observations X = { X t } T t=1 , X t = (x 1 , x 2 , . . . , x n ) is avail- 

able, we are in a semi-supervised setting and have a time sequence 

0 = t 0 < t 1 < t 2 . . . < t K ≤ T of observed states of a Markov chain 

S = { S t k = s i k , { t k } K k =1 
} , and Markov chain starting again in state s 1 , 

all trackers correct, at any time { t k + 1 , 0 ≤ k ≤ K} , since there are 

re-initialized to common object pose. This information is provided 

by the detector, where { t k } K k =1 
is a sequence of detection times. The 

HMM parameters are learned by a modified Baum-Welch algorithm 

run on the observations X and the annotated sequence of states S . 
The partial annotation and HMM parameter estimation update is 

done strictly online. 

The output of the HMMTxD is an average bounding box of cor- 

rect trackers of the current most probable state s ∗t . For t (k −1) < t < 

t k , 1 ≤ k ≤ K the forward-backward procedure ( Rabiner, 1989 ) for 

HMM is used to calculate probability of each state at time t (see 

Eqs. A .1 –A .7 ) and the state s ∗t ∈ { 0 , 1 } n \ (0 , 0 , . . . , 0) is the state for 

which 

P (S t = s i | X 1 , . . . , X t , S t 1 , . . . , S t (k −1) 
, λ) (2) 

is maximal. This equation is computed using Eq. A.5 and maxi- 

mized w.r.t i , 1 ≤ i ≤ N . For t K < t ≤ T the Eq. 2 holds with 

t (k −1) = t K . This ensures that the algorithm outputs a pose for each 

frame which is required by most benchmark protocols. Illustra- 

tion of the tracking process and HMM insight is shown in Fig. 2 . 

Theoretically the parameters of HMM could be updated after each 

frame. However, in our implementation, learning takes place only 

at frames where the detector positively detects the object, i.e., the 

sequence of states starting and ending with observed state inferred 

by the detector. 1 The detector is used only if the detection pose 

is not in contradiction with the pose of the current most probable 

state in which the majority of trackers are correct. This ensure that 

even when the detector makes a mistake, the HMM is not wrongly 

updated. When we are in the state that one or none of the trackers 

are correct, the detector get precedence. 

3. Learning the hidden Markov model 

For learning of the parameters λ of the HMM a MLE inference 

is employed, however maximizing the likelihood function P (X , S | λ) 

is a complicated task that cannot be solved analytically. In the pro- 

posed method, the Baum-Welch algorithm ( Baum et al., 1970 ) is 

adapted. The Baum-Welch algorithm is a widespread iterative pro- 

cedure for estimating parameters of HMM where each iteration in- 

creases the likelihood function but, in general, the convergence to 

the global maximum is not guaranteed. The Baum-Welch algorithm 

1 If pure online fusion is not required, future observations can also be used to 

determine the probability of each state. 

is in fact an application of the EM (Expectation-Maximization) al- 

gorithm ( Dempster et al., 1977 ). 

3.1. Classical Baum-Welch algorithm 

Let us assume the HMM with N possible states { s 1 , s 2 , . . . , s N } , 
the matrix of state transition probabilities A = { a i j } N i, j=1 

, the vec- 

tor of initial state probabilities π = (1 , 0 , 0 , . . . , 0) , the initial state 

s 1 = (1 , 1 , . . . , 1) , a sequence of observations X = { X t } T t=1 , X t ∈ R m 

and F = { f i (x ) } N 
i =1 

the system of conditional probability densities 

of observations conditioned on S t = s i 

f i (x ) = f (x | S t = s i ) for 1 ≤ i ≤ N, 1 ≤ t ≤ T , x ∈ R 

m (3) 

where S t are random variables representing the state at time t , and 

λ = (A, F ) is denoting the parameter set of the model. 

Let us denote 

Q(λ, λ′ ) = 

∑ 

s ∈ S 

P (s | X , λ) log [ P (s , X | λ′ )] , (4) 

where S = { s 1 , s 2 , . . . , s N } T is a set of all possible T-tuples of states 

and 

s ∈ S , s = (s 1 , . . . , s t , . . . , s T ) is one sequence of states. According to 

Theorem 2.1. in Baum et al. (1970) 

Q(λ, λ′ ) ≥ Q(λ, λ) ⇒ P (X | λ′ ) ≥ P (X | λ) (5) 

and the equality holds if and only if P (s | X , λ) = P (s | X , λ′ ) for ∀ s ∈ 

S . The classical Baum-Welch algorithm repeats the following steps 

until convergence: 

1. Compute λ∗ = arg max λ Q(λn , λ) 

2. Set λn +1 = λ∗. 

3.2. Modified Baum-Welch algorithm 

We propose the modified Baum-Welch algorithm that exploits 

the partially annotated sequence of states, where the known states 

are inferred from the detector output. Let 0 = t 0 < t 1 < t 2 . . . < t K ≤
T be a sequence of detection times, S = { S t k = s i k , { t k } K k =1 

} be ob- 

served states of Markov chain, marked by the detector, and S t k +1 = 

s 1 for 0 ≤ k ≤ K . So the sequence of observations of the HMM is di- 

vided into K + 1 independent subsequences, each with a fixed ini- 

tial state s 1 , the first K subsequences with a known terminal state 

defined by the detector and the last subsequence with an unknown 

terminal state. 
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The following equations are obtained by employing the modifi- 

cation to the Baum-Welch algorithm, 

log [ P (s , X , S | λ)] = 

T −1 ∑ 

t=1 

log a s t s t+1 
+ 

T ∑ 

t=1 

log f s t (X t ) , (6) 

Q(λn , λ) = 

∑ 

s ∈ S 

P (s | X , S , λn ) 
T −1 ∑ 

t=1 

log a s t s t+1 

+ 

∑ 

s ∈ S 

P (s | X , S , λn ) 
T ∑ 

t=1 

log f s t (X t ) . (7) 

The maximization of the Q ( λn , λ) can be separated to maxi- 

mization w.r.t. transition probability matrix A = { a i j } N i, j=1 
by maxi- 

mizing the first term and w.r.t. observable densities F = { f i (x ) } N 
i =1 

by maximizing the second term. 

The maximization of Eq. 7 w.r.t. A constrained by 
∑ N 

j=1 a i j = 

1 for 1 ≤ i ≤ N is obtained by re-estimating the parameters ˆ A = 

{ ̂  a i j } N i, j=1 
as follows: 

ˆ a i j = 

expected number of transitions from state s i to state s j 

expected number of transitions from state s i 

= 

∑ T −1 
(t =1 and t 	 = t k , 1 ≤k ≤K) P (S t = s i , S t+1 = s j | X , S , λ) ∑ T −1 

(t =1 and t 	 = t k , 1 ≤k ≤K) P (S t = s i | X , S , λ) 
. (8) 

This equation is computed using modified forward and back- 

ward variables of the Baum-Welch algorithm to reflect the partially 

annotated states. For the exact derivation of formulas for compu- 

tation of ˆ a i j see the Appendix A . 

3.2.1. Learning Observable Distributions 

The maximization of Eq. 7 w.r.t. F = { f i (x ) } N 
i =1 

depends on as- 

sumptions on the system of probability densities F . It is usually 

assumed (e.g., in Baum et al., 1970; Rabiner, 1989 ) that F is a sys- 

tem of probability distributions of the same type and differ only in 

their parameters. 

In the HMMTxD the m -dimensional observed random variables 

X t = (X 1 t , X 
2 
t , . . . , X 

m 

t ) ∈ R m are assumed conditionally independent 

and to have the beta-distribution, so f i ( x ), 1 ≤ i ≤ N are prod- 

ucts of m one-dimensional beta distributions with parameters of 

shape { ( p i j , q i j ) } m 

j=1 
, 1 ≤ i ≤ N. In this case maximization of the 

second term of the Eq. 7 is an iterative procedure using inverse 

digamma function which is very computationally expensive ( Gupta 

and Nadarajah, 2004 ). 

We propose to estimate the shape parameters of the beta dis- 

tributions with a generalized method of moments. The classical 

method of moments is based on the fact that sample moments 

of independent observations converge to its theoretical ones due 

to the law of large numbers for independent random variables. 

In the HMMTxD observations X = { X t } T t=1 are not independent. 

The generalized method of moments is based on the fact that 

{ X t − E(X t | X 1 , X 2 , . . . , X t−1 ) } T t=1 
is a sequence of martingale differ- 

ences for which the law of large numbers also holds. Using the 

generalized method of moments gives estimates of the parameters 

of shape 

ˆ p j 
i 
= ˆ μ j 

i 

(
ˆ μ j 

i 
(1 − ˆ μ j 

i 
) 

( ̂  σ j 
i 
) 2 

− 1 

)
(9) 

and 

ˆ q j 
i 
= (1 − ˆ μ j 

i 
) 

(
ˆ μ j 

i 
(1 − ˆ μ j 

i 
) 

( ̂  σ j 
i 
) 2 

− 1 

)
(10) 

where 

ˆ μ j 
i 
= 

∑ T 
t=1 X 

j 
t P (S t = s i | X , S , λ) ∑ T 

t=1 P (S t = s i | X , S , λ) 
(11) 

and 

( ̂  σ j 
i 
) 2 = 

∑ T 
t=1 (X 

j 
t − ˆ μ j 

i 
) 2 P (S t = s i | X , S , λ) ∑ T 

t=1 P (S t = s i | X , S , λ) 
. (12) 

Let us denote the system of probability densities with re- 

estimated parameters as ˆ F = { ̂  f i (x ) } N 
i =1 

. The generalized method of 

moments is described in detail in the Appendix B . 

3.2.2. Algorithm overview 

The complete modified Baum-Welch algorithm is summa- 

rized in Algorithm 1 , where after each iteration P (X , S | λn +1 ) ≥
P (X , S | λn ) and we repeat these steps until convergence. Note that 
ˆ A n is a maximum likelihood estimate of A therefore always in- 

creases P (X , S | λn ) (shown in Rabiner (1989) ) but ˆ F n is estimated 

by the method of moments so the test on likelihood increase is 

required (“if statement” in the Algorithm 1 ). In fact, this algorithm 

structure match to the generalized EM algorithm (GEM) introduced 

in Dempster et al. (1977) . 

Algorithm 1: Algorithm for HMM parameters learning. 

Input : X , S , λn = (A n , F n ) 

Output : λn +1 = (A n +1 , F n +1 ) 

repeat 

Compute likelihood P (X , S | λn ) ; 

Estimate ˆ A n by Eq. 8 and 

ˆ F n by Eq. 9, 10; 

if P (X , S | ̂  A n , ̂  F n ) < P (X , S | A n , F n ) then 

λn +1 = ( ̂  A n , F n ) 

else 

λn +1 = ( ̂  A n , ̂  F n ) 

λn = λn +1 = (A n +1 , F n +1 ) ; 

until convergence ∨ max number of iteration ; 

4. Feature-based detector 

The requirements for the detector are: adjustable operation 

mode (e.g., set for high precision but possibly low recall), (near) 

real-time performance and the ability to model pose transforma- 

tions up to at least similarity (translation, rotation, isotropic scal- 

ing). Basically, any detector-like approach can be used and it may 

vary based on application. We choose to adapt a feature-based de- 

tector which has been shown to perform well in image retrieval, 

object detection and object tracking ( Pernici and Bimbo, 2013 ) 

tasks. 

There are many possible combinations of features and their 

descriptors with different advantages and drawbacks. We exploit 

multiple feature types: specifically, Hessian keypoints with the 

SIFT ( Lowe, 2004 ) descriptor, ORB ( Rublee et al., 2011 ) with BRISK 

and ORB with FREAK ( Ortiz, 2012 ). Each feature type is handled 

separately, up to the point where point correspondences are estab- 

lished. A weight is assigned to each feature type w 

g and is set to be 

inversely proportional to the number of features on the reference 

template, to balance the disparity in individual feature numbers. 

The detector works as follows. In the initialization step, features 

are extracted from the inside and the outside of the region speci- 

fying the tracked object. Descriptors of the features outside of the 

region are stored as the background model. 

Usually, the input region is not 100% occupied by the target; 

therefore, fast color segmentation ( Kristan et al., 2014 ) attempts to 
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Fig. 3. Frames with the detections for 77 sequences data-set. The green marks show the true positive detection and red marks are false positive. The blue line shows the 

recall of the detector and blue dashed line shows the average recall over all sequences. The length of each sequence is normalized to range (0, 100). (For interpretation of 

the references to colour in this figure legend, the reader is referred to the web version of this article.) 

delineate the object more precisely than the axis-aligned bounding 

box to remove the features that are most likely not on the target. 

The step is not critical for the function of the detector, since the 

bounding box is a fall-back option. We assume that at least 50% of 

the bounding box is filled with pixels that belong to the target, if 

the segmentation fails (returns a region containing less than 50% 

of area of the bounding box), all features in the initial bounding 

box are used. 

Additionally, for each target feature, we use a normal distribu- 

tion N (μ f , σ f ) to model the similarity of the feature to other fea- 

tures. The parameters μf and σ f are estimated in the first frame 

by randomly sampling 100 features, other than f , and comput- 

ing distances to the feature f , from which the mean and variation 

are computed. This allows defining the quality of correspondence 

matches in a probabilistic manner for each feature, thus getting rid 

of global static threshold for the acceptable correspondence dis- 

tance. 

In the detection phase, features are detected and described in 

the whole image. For each feature g i from the image the near- 

est neighbour (in Euclidean space or in Hamming distance metric 

space, depending on the feature type) feature b ∗ from the back- 

ground model and the nearest neighbour feature f ∗ from the fore- 

ground model are computed. A tentative correspondence is formed 

if the feature match passes the second nearest neighbour test and 

a probability that the correspondence distance belongs to the out- 

lier distribution is lower than a predefined significance set to 0.1%. 

So 

d(g i , f 
∗) 

d(g i , b ∗) 
< 0 . 8 ∧ F(d(g i , f 

∗) | μ f ∗ , σ f ∗ ) < 0 . 1% (13) 

where F(d| μ f ∗ , σ f ∗ ) is a c.d.f. of the normal distribution with pa- 

rameters μ f ∗ and σ f ∗ of a distance distribution of features not cor- 

responding to f ∗. The 0.1% significance corresponds to the μ − 3 σ
threshold. Finally, RANSAC estimates the target current pose using 

a sum of weighted inliers as a cost function for model support 

cost = 

∑ 

i 

w 

g i ∗ [ g i == inlier ] , (14) 

which takes into account the different numbers of features per fea- 

ture type on the target. 

The decision whether the detected pose is considered cor- 

rect depends on the number of weighted inliers that supports 

the RANSAC-selected transformation and it controls the trade- 

of between precision and recall of the method. This threshold 

is automatically computed in the first frame of the sequence 

as max(5,min(0.03 ∗max_number_of_features_in_target_bbox, 10)). 

The threshold interval (5,10) and the feature multiplier (0.03) were 

set experimentally to have the false positive rate close to zero for 

the most of the testing sequences. Furthermore, majority voting is 

used to verify that the detection is not in contradiction to the es- 

timated HMM state, i.e. if we are in the state where two or more 

(majority) trackers are correct and the detector is not consistent 

with them, the detection is not used. This mitigates the false pos- 

itive detections, therefore HMM updates, when the trackers works 

correctly. 

The true and false positives for 77 sequences are shown in 

Fig. 3 , where the detector works on almost all sequences with zero 

false positive rate (0.46% average false positive rate on the dataset) 

and 30% recall rate. The failure cases of this feature-based detec- 

tor are mostly caused by the imprecise initial bounding box, which 

contains large portion of structured background (i.e., background 

where the detector finds features) and due to the presence of sim- 

ilar object in the scene, e.g., sequences hand2, basketball, singer2 . 

5. HMMTxD implementation 

To demonstrate the performance of the proposed framework, a 

pair and a triplet of published short-term trackers were plugged 

into the framework to show the performance gain by combination 

of a different number of trackers. As Bailer et al. (2014) pointed 

out, not all trackers when combined can improve the overall per- 

formance (i.e., adding tracking method with similar failure mode 

will not benefit). 

We therefore choose methods that have a different designs and 

work with different assum ptions (e.g., rigid global motion vs. color 

mean-shift estimation vs. maximum correlation response). These 

trackers are the Flock of Trackers (FoT) ( Vojir and Matas, 2014 ), 

scale adaptive mean-shift tracker (ASMS) ( Vojir et al., 2013 ) and 

kernelized correlation filters (KCF) ( Henriques et al., 2015 ). This 

choice shows that superior performance can be achieved by using 

simple, fast trackers (above 100 fps) that may not represent the 

state-of-the-art. The trackers can be arbitrarily replaced depending 

on the user application or requirements. 
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Fig. 4. CVPR2013 OPE benchmark comparison of individual trackers and their combination in the proposed HMMTxD. The 2-HMMTxD denotes the combination of FoT and 

ASMS trackers and 3-HMMTxD is a combination of FoT, ASMS and KCF trackers. Det stands for the proposed detector. The right plot show simple combination of individual 

trackers with the proposed detector. Suffix “-D” refers to the combination with detector. 

Trackers 

The Flock of Trackers (FoT) ( Vojir and Matas, 2014 ) evenly cov- 

ers the object with patches and establishes frame-to-frame corre- 

spondence by the Lucas-Kanade method ( Lucas and Kanade, 1981 ). 

The global motion of the target is estimated by RANSAC. 

The second tracker is a scale adaptive mean-shift tracker 

(ASMS) ( Vojir et al., 2013 ) where the object pose is estimated by 

minimizing the distance between RGB histograms of the reference 

and the candidate bounding box. The KCF ( Henriques et al., 2015 ) 

tracker learns a correlation filter by ridge regression to have high 

response to target object and low response on background. The 

correlation is done in the Fourier domain which is very efficient. 

These three trackers have been selected since they are com- 

plementary by design. FoT enforces a global motion constrain and 

works best for rigid object with texture. On the other hand, ASMS 

does not enforce object rigidity and is well suited for articulated 

or deformable objects assuming their color distribution is discrim- 

inative w.r.t. the background. KCF can be viewed as a tracking-by 

detection approach using sliding window like scanning. 

For each tracker position, two global observable measurements 

are computed, namely the Hellinger distance between the tar- 

get template histogram and the histogram of the current position 

and normalized cross-correlation score of the current patch and 

the target model patch. These target models are initialized in the 

first frame and then updated exponentially with factor of 0.5 dur- 

ing each positive detection of the detector part. Additionally, each 

tracker produces its own estimate of performance. For FoT it is the 

number of predicted correspondences (for details please see Vojir 

and Matas, 2014 ) that support the global model. For ASMS it is 

the Hellinger distance between its histogram model and current 

neighbourhood background (i.e., color similarity of the object and 

background) and for KCF it is a correlation response of the tracking 

procedure. 

6. Experiments 

The HMMTxD was compared with state-of-the-art methods on 

two standard benchmarks and on a dataset TV77 2 containing 77 

public video sequences collected from tracking-related publica- 

2 http://cmp.felk.cvut.cz/ ∼vojirtom/dataset/index.html 

tions. The dataset exhibits wider diversity of content and variabil- 

ity of conditions than the benchmarks. 

Parameters of the method were fixed for all the experiments. In 

the HMM, the initial beta distribution shape parameters ( p, q ) were 

set to (2, 1) for correct state (1) and (1, 2) for fail state (0) for all 

observations and the transition matrix was set to prefer staying in 

the current state. The transition matrix has 0.98 on diagonal, 0 in 

fist column, 0.001 in last column, 1 e − 10 in last row and 0.05 oth- 

erwise. The matrix is normalized so that rows sum to one. States in 

the matrix are binary encoded starting from the left column which 

corresponds to the state s 1 = (1 , ..., 1) . The number of iteration for 

Baum-Welch algorithm was set to 3. 

The processing speed on the VOT2015 dataset is (in frames per 

second) minimum 1.03, maximum 33.72 and average 10.83 mea- 

sured on a standard notebook with Intel Core-i7 processor. This 

speed is mostly affected by the number of features detected in 

the images which correlates to the resolution of the image (in the 

dataset the range is from 320x180 to 1280x720). 

First, we compare the performance of individual parts of the 

HMMTxD framework (i.e., KCF, ASMS, FoT trackers) and their com- 

bination via HMM as proposed in this paper. Two variants of 

HMMTxD are evaluated – 2-HMMTxD refers to combination of FoT 

and ASMS trackers and the 3-HMMTxD to combination of all men- 

tioned trackers. We also show the benefit of the proposed detector 

when simply combined with the individual trackers in such way 

that if detector fires the tracker is re-initialized. The Fig. 4 shows 

the benefit gained from the detector and further consistent im- 

provement achieved by the combination of the trackers. More de- 

tailed per sequence analysis on the TV77 dataset ( Figs. 5 and 6 ) 

shows more clearly the efficiency of learning tracker performance 

online. In almost all sequences the HMMTxD is able to identify 

and learn which trackers works correctly and achieve the per- 

formance of at least the best tracker or higher (e.g., motocross1, 

skating1(low), Volkswagen, singer1, pedestrian3, surfer ). Most notable 

failure cases are caused by the detector failure, e.g., in sequences 

singer2, woman, skating1, basketball, girl_mov . 

In all other experiments, the abbreviation HMMTxD refers to 

the combination of all 3 trackers. 

Evaluation on the CVPR2013 Benchmark ( Wu et al., 2013 ) 

that contains 50 video sequences. Results on the benchmark have 

been published for about 30 trackers. The benchmark defines 

three types of experiments: (i) one-pass evaluation (OPE) – a 

tracker initialized in the first frame is run to the end of the se- 

quence, (ii) temporal robustness evaluation (TRE) – the tracker is 
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Fig. 5. Per sequence analysis of the single trackers (i.e., KCF, ASMS, FoT) and the proposed HMMTxD. The average recall is shown by the dashed lines (precise number is in 

the legend). Black circles mark gray-scale sequences. The sequences are ordered by HMMTxD performance. 

Fig. 6. Per sequence analysis of the single trackers combined with the detector (i.e., KCF-D, ASMS-D, FoT-D) and the proposed HMMTxD. The average recall is shown by the 

dashed lines (precise number is in the legend). Black circles mark grayscale sequences. The sequences are ordered by HMMTxD performance. 

initialized and starts at a random frame, and (iii) spatial robust- 

ness evaluation (SRE) – the initialization is perturbed spatially. Per- 

formance is measured by precision (spatial accuracy, i.e., center 

distance of ground truth and reported bounding box) and success 

rate (the number of frames where overlap with the ground truth 

was higher than a threshold). The results are visualized in Fig. 7 

where only results of the 10 top performing trackers are plotted. 

Together with the tracker from this benchmark, we also added the 

MEEM ( Zhang et al., 2014 ) tracker, which is a recent state-of-the- 

art tracker. The proposed HMMTxD outperforms all trackers in the 

success rate in all three experiments. Its precision is comparable to 

MEEM ( Zhang et al., 2014 ) the top performing tracker in terms of 

precision. HMMTxD outperforms significantly the OPE results re- 

ported in Wang and yan Yeung (2014) , where five top performing 

trackers from this particular benchmark were used for combination 

(other experiments were not reported in the paper). 

VOT2013 benchmark ( Kristan et al., 2013 ) evaluates trackers on 

a collection containing 16 sequences carefully selected from a large 

pool by a semi- automatic clustering method. For comparison, re- 

sults of 27 tracking methods are available and the added MEEM 

tracker was evaluated by us using default setting from the publicly 

available source code. The performance is measured by accuracy, 

average overlap with the ground truth, and robustness, the num- 

ber of re-initialization of the tracker so that it is able to track the 

whole sequence. Average rank of trackers is used as an overall per- 

formance indicator. 

In this benchmark, the proposed HMMTxD achieves clearly the 

best accuracy ( Fig. 8 ). With less than one re-initialization per 
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Fig. 7. Evaluation of HMMTxD on the CVPR2013 Benchmark ( Wu et al., 2013 ). The top row shows the success rate as a function of the overlap threshold. The bottom row 

shows the precision as a function of the localization error threshold. The number in the legend is AUC, the area under ROC-curve, which summarizes the overall performance 

of the tracker for each experiment. 

Fig. 8. Evaluation of HMMTxD on the VOT 2013 Benchmark ( Kristan et al., 2013 ). HMMTxD result is shown as the red circle. The left plot shows the ranking in accuracy 

(vertical axis) and robustness (horizontal axis) and the right plot shows the raw average values of accuracy and robustness (normalized to the (0, 1) interval). For both plots 

the top right corner is the best performance. 

sequence it performs slightly worse in terms of robustness due to 

two reasons. 

Firstly, the HMM recognizes a tracker problem with a delay and 

switching to other tracker (here even one frame where the overlap 

with ground truth is zero leads to penalization) and secondly the 

VOT evaluation protocol, which require re-initialization after failure 

and to forget all previously learned models (the VOT2013 refer to 

this as causal tracking), therefore the learned performance of the 

trackers is forgotten and has to be learned from scratch. 

The results for the baseline and region-noise experiments are 

shown in Fig. 8 . Note that the ranking of the methods differs 

from the original publication since two new methods (HMMTxD 

and MEEM) were added and the relative ranking of the methods 

changed. The top three performing trackers and their average ranks 

are HMMTxD (8.77), PLT (9.24), LGTpp ( Xiao et al., 2013 ) (10.11). 

MEEM tracker ends up at the fifth place with average rank 10.87. 

The rankings were obtained by the toolkit provided by the VOT in 

default settings for baseline and region noise experiments. 

The second best performing method on the VOT2013 is the un- 

published PLT for which just a short description is available in 

Kristan et al. (2013) . PLT is a variation of structural SVM that uses 

multiple features (color, gradients). STRUCK ( Hare et al., 2011 ) and 
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Fig. 9. Evaluation of state-of-the-art trackers on the TV77 data-set in terms of recall, i.e. number of correctly tracked frames. The average recall is shown by the dashed lines 

(precise number is in the legend). Black circles mark gray-scale sequences. The sequences are ordered by HMMTxD performance. 

Fig. 10. Qualitative comparison of the state-of-the-art trackers on challenging sequences from the TV77 data-set (from top bird_1, drunk2, singer1, skating2, surfer, Vid_J ). 

MEEM ( Zhang et al., 2014 ) are similar method to the PLT based 

on SVM classification. We compared these method with HMMTxD 

on the diverse 77 videos along with the TLD ( Kalal et al., 2012 ) 

which has a similar design as HMMTxD. HMMTxD outperforms 

all these methods by a large margin on average recall – mea- 

sured as number of frames where the tracker overlap with ground 

truth is higher than 0.5 averaged over all sequences. Results are 

shown in Fig. 9 . Qualitative comparison of these state-of-the-art 

methods is shown in Fig. 10 . Even for sequences with lower recall 

(e.g. bird_1, skating2 ), the HMMTxD is able to follow the object of 

interest. 

7. Conclusions 

A novel method called HMMTxD for fusion of multiple trackers 

has been proposed. The method utilizes an on-line trained HMM 

to estimate the states of the individual trackers and to fuse a dif- 

ferent types of observables provided by the trackers. The HMMTxD 

outperforms its constituent parts (FoT, ASMS, KCF, Detector and its 

combinations) by a large margin and shows the efficiency of the 

HMM with combination of three trackers. 

HMMTxD outperforms all methods included in the CVPR2013 

benchmark and perform favorably against most recent state-of- 

66



118 T. Vojir et al. / Computer Vision and Image Understanding 153 (2016) 109–119 

the-art tracker. The HMMTxD also outperforms all method of the 

VOT2013 benchmark in accuracy, while maintaining very good ro- 

bustness, and ranking in the first place in overall ranking. Ex- 

periments conducted on a diverse dataset TV77 show that the 

HMMTxD outperforms state-of-the-art MEEM, STRUCK and TLD 

methods, which are similar in design, by a large margin. The pro- 

cessing speed of the HMMTxD is 5 − 10 frames per second on av- 

erage, which is comparable with other complex tracking methods. 
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Appendix A. Forward-backward procedure for modified 

Baum-Welch algorithm 

Let us assume the HMM with N possible states { s 1 , s 2 , . . . , s N } , 
the matrix of state transition probabilities A = { a i j } N i, j=1 

, the vec- 

tor of initial state probabilities π = (1 , 0 , 0 , . . . , 0) , the initial state 

s 1 = (1 , 1 , . . . , 1) , a sequence of observations X = { X t } T t=1 
, X t ∈ R m 

and F = { f i (x ) } N 
i =1 

the system of conditional probability densities 

of observations conditioned on S t = s i . 

Let 0 = t 0 < t 1 < t 2 . . . < t K ≤ T be a sequence of detection 

times, S = { S t k = s i k , { t k } K k =1 
} be observed states of Markov chain, 

marked by the detector, and S t k +1 = s 1 for 0 ≤ k ≤ K . 

The forward variable for the Baum-Welch algorithm is defined 

as follows. Let 1 ≤ i ≤ N, 1 ≤ k ≤ K, t (k −1) < t ≤ t k and 

αt (i ) = P (X t (k −1) +1 , . . . , X t , S t = s i | λ) then (A.1) 

αt (k −1) +1 (1) = f 1 (X t (k −1) +1 ) , (A.2) 

αt (k −1) +1 (i ) = 0 for i 	 = 1 (A.3) 

and for t (k −1) < t < t k 

α(t+1) (i ) = 

N ∑ 

j=1 

αt ( j) a ji f i (X t+1 ) , (A.4) 

P (S t = s i | X 1 , . . . X t , S t 1 , S t 2 , . . . , S t (k −1) 
, λ) = 

αt (i ) ∑ N 
j=1 αt ( j) 

. (A.5) 

For t K < t < T the forward variable is in principle the same as 

above with t (k −1) = t K . So 

P (X t K +1 , . . . , X T | λ) = 

N ∑ 

i =1 

αT (i ) (A.6) 

P (X , S | λ) = 

K ∏ 

k =1 

αt k (i k ) ∗
N ∑ 

i =1 

αT (i ) where S t k = s i k . (A.7) 

The backward variable for t (k −1) < t < t k is 

βt (i ) = P (X t+1 , . . . , X t k , S t k | S t = s i , λ) , (A.8) 

where βt k 
(i k ) = 1 and βt k 

(i ) = 0 for i 	 = i k and 

βt (i ) = 

N ∑ 

j=1 

a i j f j (X t+1 ) βt+1 ( j) . (A.9) 

For t K < t < T the backward variable is in principle the same as 

above where βT (i ) = 1 for 1 ≤ i ≤ N . 

Given the forward and backward variables, we get the following 

probabilities, that are used to update parameters of HMM. For 0 < 

t < T and t 	 = t k , 1 ≤ k ≤ K 

P (S t = s i , S t+1 = s j | X , S , λ) = (A.10) 

αt (i ) a i j f j (X t+1 ) β(t+1) ( j) ∑ N 
k =1 

∑ N 
l=1 αt (k ) a kl f l (X t+1 ) βt+1 (l) 

(A.11) 

and for 0 < t ≤ T 

P (S t = s i | X , S , λ) = 

αt (i ) βt (i ) ∑ N 
j=1 αt ( j) βt ( j) 

. (A.12) 

The final equation for the update of transition probabilities A of 

HMM is as follows. 

ˆ a i j = 

expected number of transitions from state s i to state s j 

expected number of transitions from state s i 
(A.13) 

= 

∑ T −1 
(t =1 and t 	 = t k , 1 ≤k ≤K) P (S t = s i , S t+1 = s j | X , S , λ) ∑ T −1 

(t =1 and t 	 = t k , 1 ≤k ≤K) P (S t = s i | X , S , λ) 
. (A.14) 

Appendix B. Generalized method of moments 

For a simplification let us assume HMM with one-dimensional 

observed random variables { X t } + ∞ 

t=1 
, X t ∈ R . The sequence { X t −

E(X t | X 1 , X 2 , . . . , X t−1 ) } + ∞ 

t=1 
is a martingale difference series where 

E(X t | X 1 , X 2 , . . . , X t−1 ) = 

N ∑ 

i =1 

E(X t | X 1 , X 2 , . . . , X t−1 , S t = i ) P (S t = i ) 

(B.1) 

= 

N ∑ 

i =1 

E(X t | S t = i ) P (S t = i ) . (B.2) 

Under the assumption that { X t } + ∞ 

t=1 
are uniformly bounded ran- 

dom variables i.e. | X t | < c, c ∈ (0 , + ∞ ) for all t ≥ 1, the strong 

law of large numbers for a sum of martingale differences can be 

used(see Theorem 2.19 in Hall and Heyde (1980) ). So 

lim 

T → + ∞ 

1 

T 

T ∑ 

t=1 

[ 

X t −
N ∑ 

i =1 

E(X t | S t = i ) P (S t = i ) 

] 

= 0 almost surely . 

(B.3) 

Let us denote μi = E(X t | S t = i ) for 1 ≤ t ≤ T and ˆ μi the estimate 

of μi based on the modified method of moments. The estimate ˆ μi 

is a solution of a following equation w.r.t. μi 

1 

T 

T ∑ 

t=1 

X t = 

1 

T 

T ∑ 

t=1 

N ∑ 

i =1 

μi P (S t = i ) . (B.4) 

Having one equation for N unknown variables μi , 1 ≤ i ≤ N it 

is necessary to add some constrains to get a unique solution. We 

propose to minimize 

T ∑ 

t=1 

N ∑ 

i =1 

(X t − μi ) 
2 P (S t = i ) , (B.5) 

w.r.t. μi , 1 ≤ i ≤ N giving 

ˆ μi = 

∑ T 
t=1 X t P (S t = s i ) ∑ T 

t=1 P (S t = s i ) 
(B.6) 

which satisfy the moment Eq. (B.4) . The same way of reasoning 

can be used for higher moments of { X t } T t=1 
. For example using 
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{ (X t ) 
2 } T 

t=1 
we get estimates ˆ σ 2 

i 
for σ 2 

i 
= var (X t | S t = i ) for 1 ≤ t ≤

T , 

ˆ σ 2 
i = 

∑ T 
t=1 (X t − ˆ μi ) 

2 P (S t = s i ) ∑ T 
t=1 P (S t = s i ) 

. (B.7) 

In the HMMTxD m -dimensional observed random variables X t = 

(X 1 t , X 
2 
t , . . . , X 

m 

t ) are assumed, each of them having beta- distribu- 

tion and being conditionally independent. There are well-known 

relations for a mean value EX and a variance varX of a ran- 

dom variable X having beta distribution and its shape parameters 

( p, q ) 

p = E X 

(
E X (1 − EX ) 

var X 

− 1 

)
(B.8) 

and 

q = (1 − E X ) 

(
E X (1 − EX ) 

var X 

− 1 

)
. (B.9) 

Using the modified method of moments gives 

ˆ μ j 
i 
= 

∑ T 
t=1 X 

j 
t P (S t = s i | X , S , λ) ∑ T 

t=1 P (S t = s i | X , S , λ) 
(B.10) 

and 

( ̂  σ j 
i 
) 2 = 

∑ T 
t=1 (X 

j 
t − ˆ μ j 

i 
) 2 P (S t = s i | X , S , λ) ∑ T 

t=1 P (S t = s i | X , S , λ) 
. (B.11) 

Then 

ˆ p j 
i 
= ˆ μ j 

i 

(
ˆ μ j 

i 
(1 − ˆ μ j 

i 
) 

( ̂  σ j 
i 
) 2 

− 1 

)
(B.12) 

and 

ˆ q j 
i 
= (1 − ˆ μ j 

i 
) 

(
ˆ μ j 

i 
(1 − ˆ μ j 

i 
) 

( ̂  σ j 
i 
) 2 

− 1 

)
. (B.13) 

If we assume in our model λ = (A, F ) that for some { (i r , j r ) ∈ 

{ 1 , 2 , . . . , N} × { 1 , 2 , . . . , m } : p j r 
i r 

= p, q 
j r 
i r 

= q } R r=1 then 

ˆ p = ˆ μ

(
ˆ μ(1 − ˆ μ) 

ˆ σ 2 
− 1 

)
(B.14) 

and 

ˆ q = (1 − ˆ μ) 

(
ˆ μ(1 − ˆ μ) 

ˆ σ 2 
− 1 

)
(B.15) 

where 

ˆ μ = 

∑ R 
r=1 

∑ T 
t=1 X 

j r 
t P (S t = s i r | X , S , λ) ∑ R 

r=1 

∑ T 
t=1 P (S t = s i r | X , S , λ) 

(B.16) 

and 

ˆ σ 2 = 

∑ R 
r=1 

∑ T 
t=1 (X 

j r 
t − ˆ μ) 2 P (S t = s i r | X , S , λ) ∑ R 

r=1 

∑ T 
t=1 P (S t = s i r | X , S , λ) 

. (B.17) 
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a b s t r a c t

We propose an analytical solution to the on–off problem within the framework of Bayesian statistics.
Both the statistical significance for the discovery of new phenomena and credible intervals on model
parameters are presented in a consistent way. We use a large enough family of prior distributions of
relevant parameters. The proposed analysis is designed to provide Bayesian solutions that can be used for
any number of observed on–off events, including zero. The procedure is checked using Monte Carlo
simulations. The usefulness of the method is demonstrated on examples from γ-ray astronomy.

& 2016 Elsevier B.V. All rights reserved.

1. Introduction

We consider an on–off experiment that is designed for count-
ing two classes of events, source and background events, the type
of which cannot be distinguished in principle. These events are
registered in two disjoint regions characterized by some sets of
coordinates. We deal with small numbers of events the detection
rates of which are modeled as independent Poisson processes with
unknown means.

The problem of the on–off measurement we want to solve is
whether the same emitter with a constant but unknown intensity
is responsible for the observed counts in both studied regions. Any
inconsistency between the numbers of events collected in these
regions, when they are properly normalized, then speaks in favor
of the predominance of a source producing more events in one of
the explored region over the other.

Techniques for addressing these issues from a classical point of
view have been presented in the literature. The likelihood ratio test
together with the Wilks' theorem [1] are often utilized to characterize
asymptotically the level of agreement between the data and the
assumption of new phenomena, see e.g. Refs. [2–4]. A widely dis-
cussed problem is of how to establish upper bounds of the source
intensity for small numbers of detected counts [4–7]. A Bayesian
solution of the on–off problem was proposed in Refs. [8,9] when
analyzing multichannel spectra in nuclear physics. More general
solutions can be found in Refs. [10–13]. Very recently, two specific
Bayesian solutions to the on–off problem have been presented [14,15].

In this study, we focus on how to confirm the presence of a
weak source and on the determination of credible intervals for its
intensity at a given level of significance. We address these issues
from a Bayesian point of view. Our original intent is to provide
different insights pertaining to the on–off problem that benefit
from its simplicity. We do not follow Bayesian alternatives to
classical hypothesis testing that deal with priors for models
(hypotheses) and compare competing models in terms of Bayes
factors. In our concept, the plausibility of possible models for the
on–off data is assessed by parametrizing the space of models using
a suitable parameter. Here we use the difference between the on-
source and background means inferred from the on–off mea-
surement, treating these quantities as random variables within the
Bayesian setting. Information on the various aspects of the
investigated phenomena are accessible in the posterior distribu-
tion of this difference.

Our à priori knowledge about the underlying Poisson processes
is consistently improved by using only the on–off data without any
external assumptions. By finding the extent to which the on-source
Poisson mean is greater or less than the background one, this option
allows us to obtain a new well-reasoned formula for the Bayesian
probability of the source presence in the on-source zone. As other
Bayesian approaches to the on–off problem, we also receive solu-
tions in the case of small numbers, including the null experiment or
the experiment with no background, when classical methods based
on the asymptotic properties of the likelihood ratio statistic [2–4]
are not easily applicable. In addition, our strategy allows us to
establish limits on parameters for the processes that are responsible
for the observed phenomena. There are no problems with the dis-
creteness of counting experiments or with unphysical likelihood
estimates, see e.g. Refs. [5–7]. We provide credible intervals that are
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likely to be very similar to the way in which the experimental
results are usually communicated.

The proposed method is particularly suitable when dealing with
peculiar sources whose observational conditions cannot be set in an
optimal way. Examples include transient γ-ray sources and gamma-
ray bursts when searching for an accompanying signal on targets in
their space-time vicinity. This approach can also advantageously be
used to assess possible sources of charged cosmic rays with char-
acteristics hypothesized in previous measurements.

The structure of the paper is as follows. The essential features
of our approach are described in detail in Section 2. We present
and discuss general formulae for assessing the existence of the
source and for estimating its activity. Particular attention is paid to
cases with uninformative priors. Examples are presented and
discussed in Section 3. The paper is concluded in Section 4.

2. Bayesian solutions to on–off problem

In a typical on–off analysis, a measurement of a physical
quantity of interest is set by comparing the number of events non

recorded in a signal (on-source) region, where a source is expec-
ted, with the number of events noff detected in a reference (off-
source) region. The on–off data, especially when only a few events
are recorded, are modeled as discrete random variables generated
in two independent Poisson processes with unknown on- and off-
source means, μon and μoff , i.e. non � PoðμonÞ and noff � Poðμoff Þ,1
respectively.

The relationship between both the on- and off-source regions is
given by the ratio of on- and off-source exposures, by the on–off
parameter α40. This parameter includes, for example, the ratio of
the observational time for the two kinds of events and the ratio of
their collecting areas modified by corresponding experimental
efficiencies. Its value is assumed to be known from the experi-
mental details. It can be estimated from additional measurements
or extracted from a model of the detection. Relying upon that, the
unknown mean of background counts in the on-source region is
μb ¼ αμoff .

In our treatment, the on–off problem consists in the assess-
ment of the relationship between the two unknown on- and off-
source means, μon and μoff . To solve this task we utilize Bayesian
reasoning. It is worth pointing out that we do not use often
adopted scheme, whereby the source and background parameters,
that are responsible for observed on-source counts, are chosen as
the basic independent variables, see e.g. [13–15]. We proceed quite
differently. In our concept, the Bayesian inference is applied to
improve our knowledge about the observed phenomena without
any external assumptions about the relationship of the underlying
processes. We do not compare models with and without a source
in the on-source zone, as usually proposed, i.e. no hypotheses
about the source presence are tested nor Bayes factors for on-
source model selection are examined. In addition to our à priori
notion derived from our previous experience or just selected with
respect to our ignorance, for example, we use only experimental
data in order to assess whether a source may be identified in the
on-source region. We also show how new information may be
incorporated in our treatment. This scheme is not only backed by a
compelling statistical motivation, but also fairly simple to imple-
ment, yet sufficiently general. Nonetheless, our results may devi-
ate from the results obtained under the assumptions used in other
Bayesian inference methods aiming to analyze the on–off problem

[10–15]. Based on that, our findings are to be interpreted differ-
ently in some cases.

In the first step of our analysis, we focus on what kind of
information about the on- and off-source means can be obtained
from the on–off measurements provided that observed counts in
both zones follow the Poisson distribution. Since we have no à
priori knowledge whether or in what way these means are related,
we examine their independent prior distributions. Using the on–
off data and our prior information about the on- and off-source
means, we derive their marginal posterior distributions. These
distributions summarize our state of knowledge and remaining
uncertainty about the on-source mean μon and separately about
the off-source mean μoff , given the data. Thus, the probability that
the on-source mean acquires a certain value is given without
reference to values of the off-source mean, and vice versa.

In the second step, we compare information we have about
both inferred means. Using a known on–off parameter α, we
normalize the off-source mean in order to obtain a parameter that
corresponds to the on-source exposure, i.e. we construct the
marginal distribution for the parameter μb ¼ αμoff . Then, we
determine which of the observed on–off processes is more sub-
stantial without any assumptions about the relationship of the
underlying processes. In order to get the most unbiased value of
the source probability, we assume a maximally uninformative
joint distribution of the on-source and background means, given
the on–off data. For this purpose, we examine the product of their
marginal posterior distributions, as dictated by the principle of
maximum entropy, and construct the distribution of their differ-
ence δ¼ μon�μb with a real valued domain. The probability with
which δ40, as inferred from this distribution, tells us what is the
probability that a larger intensity is detected in the on-source
region than expected from the off-source measurement.

In more detail, the posterior distribution of the difference δ
allows us to decide whether a source is or is not present in the on-
source zone. The presence of a source in the on-source region is
validated if the on–off data prefers δ40 at a given level of sig-
nificance. On the other hand, if the data indicates that δr0 at a
chosen level of significance, we state that a source is not present in
the on-source region. Instead, we infer that the data suggests more
activity observed in the off-source region than in the on-
source zone.

Although, in the Bayesian context, the assumption of a non-
negative source rate ðδZ0Þ is often taken into account by noting
that its negative values are unphysical [10–15], we initially do not
require that a source is present in the on-source region. In this
step, our choice of the on- and off-source region is regarded as
purely formal considering the fact that it is not clear in advance
what the data will reveal. This feature brings our analysis closer to
widely used classical methods that strive for knowledge about the
source activity without constraints on the properties of the
underlying processes and benefit just from the maximum like-
lihood estimates of relevant parameters, see e.g. Refs. [2–7]. In this
sense, we adopt more precise information about the same para-
meters including their uncertainties. This information is contained
in their marginal posterior distributions obtained with the help of
the on–off data using the Bayesian reasoning. We end up with
simple expressions that, in agreement with our initial knowledge
and without any additional assumptions, describe what can be
learned about the source presence in the on–off experiment.

In the final step of our analysis, we focus on the important case
when it is known before the measurement is carried out that a
source may be present only in the on-source region. Under this
condition, our initial ignorance about the relationship between the
on- and off-source processes is updated. With the prior requirement
that only the joint distribution of the on-source and background
means satisfying μonZμbðδZ0Þ is admissible, the dependence

1 Throughout this study, we use the same symbols for random variables and
their sample values.

D. Nosek, J. Nosková / Nuclear Instruments and Methods in Physics Research A 820 (2016) 23–3324

71



between on- and off-source processes reappears in the posterior
probability distribution of the non-negative difference. Using this
distribution, we finally obtain credible intervals or upper bounds of
the intensity of a possible source that is expected in the on-source
zone. By their construction, these limits are to be non-negative. In
special cases, we obtain the posterior distributions of the non-
negative difference that are in agreement with the distributions of
the source rate that have been derived using a joint prior distribution
with dependent on- and off-source parameters μonZαμoff ; μoff 40

� �
within different Bayesian approaches [8–11,13,14].

2.1. On–off means

We consider that non and noff counts were registered inde-
pendently in the on- and off-source regions, respectively. We treat
the on- and off-source data separately on an equal footing and
construct the marginal posterior distributions of the on- and off-
source means μon and μoff . This way, information about the on-
source mean contained in its posterior distribution is given with-
out reference to what is known about the off-source mean, and
vice versa.

For both these random variables, we adopt a sufficiently large
family of conjugate prior distributions for the Poisson likelihood
function. Specifically, we assume that the prior probability dis-
tribution of the on-source mean is pðμonÞ ¼ f Gaðμon∣sp; γp�1Þ and,
in a similar way, the prior distribution of the off-source mean
is pðμoff Þ ¼ f Gaðμoff ∣sq; γq�1Þ, where the Gamma distribution
f Ga ¼ f Gaðμ∣s; λÞ is introduced in Appendix A. The prior shape
parameters, sp40 and sq40, and the prior rate parameters, γp41
and γq41, characterize our information about the on- and off-
source zones before the measurement began.

Here we allow that the prior parameters for the on- and off-
source means can acquire different values. This freedom is due to
the fact that we can have in principle different initial knowledge
about the on- and off-source zone. Such informative prior dis-
tributions express our specific knowledge of the examined para-
meters that may be taken from other experiments or from theo-
retical considerations, for example. On the other hand, when no
such input information is available, the use of uninformative prior
distributions (small values of the prior parameters, e.g. 0osr1
and γ-1) typically yields results which are not too different from
the results of conventional statistical analysis.

The posterior distributions of the means μon and μb ¼ αμoff ,
given the on–off data, non and noff , then take again the form of the
Gamma distribution, see Appendix A. In particular, we have μon �
Gaðp; γpÞ for the posterior distribution of μon and μb �Ga q;

γq
α

� �
for

the posterior distribution of μb. Here, the shape parameters, p¼
nonþsp and q¼ noff þsq, include, except of the prior input (sp or sq),
also the information acquired from the on–off measurement (non

or noff ). The rate parameters of the posterior distributions of the
on- and off-source means are given by the prior rates γp and γq,
respectively. The rate parameter of the posterior distribution of the
background mean μb is modified according to the exposures of the
on- and off-source zones as expressed by the on–off parameter α.

2.2. Difference of on–off means

In the context of a single on–off measurement, we address a
question of what we are able to learn about the relationship of the
underlying Poisson processes that generate the observed on- and
off-source counts. Since there is no other relevant information, we
assume that the joint probability distributions of the involved on-
source and background means is given by the product of their
marginal posterior distributions, as it results from maximizing
missing information.

With the marginal posterior distributions of the on-source and
background means, μon and μb ¼ αμoff , derived from the on–off
data (see Section 2.1), we arrive at the first important result of our
study. Under the transformation δ¼ μon�μb while keeping μb
unchanged, with the Jacobian J¼1, and then marginalizing over μb,
we obtain after the standard calculations the probability dis-
tribution of the difference of these two unknown means (to sim-
plify the notation we denote f δðxÞ ¼ f δðδ¼ x∣non;noff ; IÞ where I ¼
ðsp; sq; γp; γq;αÞ stands for prior information)2

f δðxÞ ¼
γpp

γq
α

� �q

ΓðpÞ e�γpxxpþq�1 Uðq; pþq;ηxÞ; xZ0 ð1Þ

f δðxÞ ¼
γpp

γq
α

� �q

ΓðqÞ e
γq
α xð�xÞpþq�1 Uðp;pþq; �ηxÞ; xo0: ð2Þ

Here p¼ nonþsp and q¼ noff þsq where sp40, sq40, γp41 and
γq41 are the prior parameters, η¼ γpþ

γq
α , ΓðaÞ ¼ R1

0 e� t ta�1 dt
stands for the Gamma function and

Uða; b; zÞ ¼ 1
ΓðaÞ

Z 1

0
e� ztta�1ð1þtÞb�a�1 dt ð3Þ

is the integral representation of the Tricomi confluent hypergeo-
metric function [16]. The probability distribution written in Eqs.
(1) and (2) is our full inference about the difference of the two
unknown means μon and μb ¼ αμoff given the on–off data. This
solution is maximally noncommittal with respect to unavailable
information about the relationship between these means. Note
that, by definition, the domain of the new random variable δ¼
μon�μb is not limited and this difference may take all real values.

In practical applications, the integrals in Eq. (3) can be calcu-
lated numerically. The saddle point approximation can be used
with a good precision if the parameters p41 and q41. Analytic
expressions can be obtained when selecting particular parameters
of the prior distributions.

In some cases, it may be preferred to work with integer values
of the parameters p and q. Then, the Tricomi confluent hyper-
geometric function in Eq. (3) may be after some calculations
expressed as a finite series ða; bANÞ
Uða; b; zÞ ¼ z1�b ðb�a�1Þ! Q ða; b; zÞ ð4Þ
where

Q ða; b; zÞ ¼
Xb�a�1

i ¼ 0

b� i�2
b�a� i�1

� �
zi

i!
: ð5Þ

Straightforward calculations then give ðp; qANÞ

f δðxÞ ¼
γpp

γq
α

� �q

ηpþq�1 e�γpx Q ðq; pþq;ηxÞ; xZ0 ð6Þ

f δðxÞ ¼
γpp

γq
α

� �q

ηpþq�1 e
γq
α x Q ðp; pþq; �ηxÞ; xo0: ð7Þ

Special examples are sp ¼ sq ¼ 1 or a limiting case when sp ¼ sq-0
(for non40 and noff 40).

Notice that, if γp ¼ γq, any probabilistic conclusion based on the
distribution of the difference is independent of the choice of the
common prior rate. This property is confirmed when integrating
the distribution for the difference over an arbitrary interval.
Indeed, after a suitable transformation of variables it turns out that

2 In the following, the explanatory variable x in the probability distribution
denotes the values which the corresponding random variable may acquire, in the
sense that, for example, the probability Pðxoδrxþ dxÞ ¼ f δðxÞ dx.
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the result of integration, and the cumulative distribution function
in particular, depends only on the ratio γp

γq
.

It is also worth mentioning the following property of the dif-
ference of the on-source and background parameters. Let us define
a new random variable δ0 ¼ �δ=α. Then, it is easy to show that its
distribution function, gδ0 ðxÞ, satisfies gδ0 ðxÞ ¼ f δ

0ðxÞ where f δ
0ðxÞ

denotes the distribution function of the difference δ¼ μon�αμoff ,
as given in Eqs. (1) and (2), that is obtained under the transfor-
mation ðp; q; γp; γq;αÞ- q; p; γq; γp; 1α

� �
. Stated differently, when the

on- and off-source regions are exchanged, i.e. ðnon;noff ;αÞ-
ðnoff ;non; 1αÞ, and, accordingly, prior information is exchanged,
ðsp; sq; γp; γqÞ-ðsq; sp; γq; γpÞ, then the resulting distribution func-
tion describes the difference δ0 ¼ μoff−μon=α. Thus, any imbalance
between the involved regions leads to the same statistical con-
clusion irrespective what is the reference region. Any excess of
counts in one of these zones that suggests the source presence
therein is equivalently described as an unknown process that
reduces the number of events in the complementary region.

From this point of view, it is worth bearing in mind that other
classical test statistics possess the same property. For example, the
asymptotic Li–Ma significance, see Eq. (17) in Ref. [2], is in this sense
invariant under the transformation ðnon;noff ;αÞ- noff ;non; 1α

� �
. In the

binomial treatment [3], the binomial p-value for a deficit of counts
in the new on-source region is equal to the p-value for an excess of
counts in the original on-source zone. Also the asymptotic binomial
formula for the source detection, see e.g. Eq. (9) in Ref. [2], has the
same characteristics. In a similar manner, when the on- and off-
source regions are exchanged, it is easy to show that the trans-
formed profile likelihood ratio, see e.g. Ref. [7], provides asymptotic
confidence intervals for δ

0 ¼−δ=α¼ μoff−μon=α.

2.3. Source detection

With the posterior probability distribution of the difference we
compare the involved on-source and background means. The
Bayesian probability that the source is not present in the on-
source region corresponds to the non-positive difference of the
on-source and background means. It is obtained by integrating the
probability distribution of the difference δ given in Eq. (2) for
μonrμb, i.e. δr0. After straightforward calculations we get the
second important result of this study. The Bayesian probability of
the absence of a source in the on-source region takes a simple
form

P� ¼ Pðδr0Þ ¼
Z0
�1

f δðxÞ dx¼ I ρ
1þ ρ

ðp; qÞ ð8Þ

where ρ¼ αγp
γq
, Ixða; bÞ denotes the regularized incomplete Beta

function that is determined by Bða; bÞIxða;bÞ ¼ Bxða; bÞ where
Bxða; bÞ ¼

R x
0 ta�1ð1�tÞb�1 dt is the incomplete Beta function and

Bða; bÞ ¼ B1ða; bÞ ¼ ΓðaÞΓðbÞ
ΓðaþbÞ denotes the Beta function [16]. Obviously,

the source is observed in the on-source region with the Bayesian
probability

Pþ ¼ Pðδ40Þ ¼ 1�P� ¼ I 1
1þ ρ

ðq; pÞ: ð9Þ

For practical reasons, we also define the Bayesian significance
by SB ¼Φ�1ðPþ Þ where Φ¼ΦðxÞ is the cumulative standard
normal distribution. This significance corresponds to the number
of standard deviations from a hypothesized value in a classical
one-tailed test with a normal distributed variable [3]. We use
notation in which a negative value of this significance indicates
that the absence of a source in the on-source region is more likely
than its presence therein, i.e. if P�40:5.

The result written in Eq. (9) represents the Bayesian probability
of the source hypothesis, given the on–off data and our prior
knowledge of the underlying processes. It allows us to assess the
extent to which the processed data is indicative of the source of
events. This approach differs from the classical concept designed
to measure the exceptional nature of the on–off data with respect
to the background model. Our determination of the probability of
the source model also differs from the Bayesian strategy based on
the initial premise of the non-negative source rate ðμonZμbÞ, see
our discussion on special cases in Sections 2.4.2 and 2.4.3. In a
sense, by using a wider range of alternative models (μon40 and
μoff ¼ αμb40), our approach can yield more robust information.

The interpretation of the probability of the source presence in
the on-source zone is valid only if the on–off experiment is well
designed in the sense that only background counts are recorded in
the off-source zone, the corresponding background applies in the
on-source region where an extra source may be present. None-
theless, if it is not the case and, for example, an unknown source is
present in the off-source zone or the on-source region is shielded
due to an unknown process, the resultant probabilities apply as
well, but they should be assigned different meanings. Naturally,
the above mentioned options cannot be distinguished in a statis-
tical evaluation.

The Bayesian probabilities of the source absence or presence in
the on-source region do not depend on the prior rate parameters if
γp ¼ γq implying ρ¼ α. In such a case, if the parameters p40 and
q40 acquire integer values, the result in Eq. (8) can be rephrased
using the representation of the binomial distribution. Since the
probability PðNrq�1Þ ¼ I α

1þ α
ðp; qÞ [16] where N is a binomial

random variable with parameters pþq�1 and 1
1þα, i.e.

N� Bi pþq�1; 1
1þα

� �
, we have ðp; qANÞ

P� ¼
Xq�1

i ¼ 0

pþq�1
i

� �
1

1þα

� �i α
1þα

� �pþq� i�1

: ð10Þ

It gives the probability that less than q events out of pþq�1
events are registered in the off-source region or, alternatively, p or
more events out of pþq�1 events are detected in the on-source
region, if the null background hypothesis is true, i.e. μon ¼ μb.

Alternatively, when the parameters p40 and q40 are
integers and γp ¼ γq, it also holds that the probability PðNrq�1Þ ¼
I α
1þ α

ðp; qÞ where N is a negative binomial random variable with

parameters p and 1
1þα

, i.e. N�NBi p; 1
1þα

� �
. Then, one easily

recovers that the probability of the absence of a source in the on-
source region is ðp; qANÞ

P� ¼
Xq�1

i ¼ 0

pþ i�1
i

� �
1

1þα

� �i α
1þα

� �p

: ð11Þ

This probability describes that less than q events are registered in
the off-source region before the chosen number of p events is
detected in the on-source region, if the null hypothesis stating that
no source is present in the on-source region is true.

The above mentioned results written in Eqs. (10) and (11) hold,
for example, for the uniform prior distributions of the on- and off-
source means when the prior shape parameters sp ¼ sq ¼ 1 or for
the scale invariant prior distributions when sp ¼ sq-0 (for
non40;noff 40), while γp ¼ γq-1. In both these cases, the Baye-
sian probability of no source in the on-source region is similar to
the classical probability to reject the background hypothesis, if it is
true, in favor of an excess of the on-source events (excess p-value).
Note that this p-value follows from the classical test of the ratio of
two unknown Poisson means [3].
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Interestingly, assuming γp ¼ γq-1, the probability of the source
absence in the on-source zone derived with the uniform priors ðsp
¼ sq ¼ 1Þ is higher than the corresponding probability derived with
the scale invariant priors (sp ¼ sq-0 for non40;noff 40), i.e.
P�ðsp ¼ sq ¼ 1Þ4P�ðsp ¼ sq-0Þ, only if αnon4noff , and vice versa.
This result is easily obtained by combining the recurrence relations
for the incomplete Beta function [16].

2.4. Known source

An important case occurs if it is guaranteed with certainty that
a source may be observed only in the on-source region. Then, the
mean event rate in the on-source zone can only increase beyond
what is expected from background. Such a situation is encoun-
tered when the ability of the source to produce detectable events
has been confirmed in previous analyses or deduced from theo-
retical considerations, for example. In our concept, the additional
knowledge about the source, thought of as a new piece of prior
information, is easily incorporated into the Bayesian inference by
conditioning on the source rate. This modification allows us to
describe the properties of the predefined source, thus also pro-
viding us with information related to its detection.

Assuming that the on-source mean is not less than the back-
ground one, we are now dealing the case when the processes
generating observed counts in both zones are not independent. For
this purpose, we consider the joint prior of both means that is
written in a separable form and supplemented with the condition
μonZμb ¼ αμoff , i.e. δZ0. Under this condition, the posterior
probability distribution of the non-negative difference is easily
determined by using the results written in Eqs. (1) and (2). The
resultant distribution allows us to deduce a credible interval or an
upper bound of the source intensity, while there are no problems
with negative limits. It is worth emphasizing that this fairly simple
construction of limits is equivalent to the analysis scheme in which
the model with non-negative source intensity (μonZαμoff ) is
examined. Therefore, using special kinds of the prior distributions,
we arrive to the posterior distributions of the non-negative dif-
ference which agree with the corresponding posterior distribu-
tions of the source intensity obtained in other Bayesian approa-
ches, see Sections 2.4.1, 2.4.2, 2.4.3 and 2.4.4.

When one is concerned with the non-negative source rate, the
corresponding probability distribution is derived under the con-
dition of non-negative values of the difference of the on-source
and background means, i.e. μonZμb ¼ αμoff implying δZ0. The
distribution of the non-negative difference then follows from Eq.
(1). Another important result of our analysis that includes several
previously derived results [8–11,13,14] is

f þδ ðxÞ ¼
γpp

γq
α

� �q

ΓðqÞ
ΓðpþqÞB 1

1þ ρ
ðq; pÞ e

� γpxxpþq�1 Uðq; pþq;ηxÞ; xZ0 ð12Þ

where we introduced the conditional distribution f þδ ðxÞ ¼ f δðxÞ
P þ for

xZ0, Pþ ¼ 1�P� is the Bayesian probability that the source is
present in the on-source region, as given in Eq. (9), η¼ γpþ

γq
α and

ρ¼ αγp
γq
.

In particular, if the parameters p40 and q40 acquire integer
values, the probability distribution of the non-negative difference
of the on-source and background means is obtained from Eq. (6)
ðp; qANÞ

f þδ ðxÞ ¼ f δðxÞ
Pþ ¼ e�γpx

Q ðq; pþq;ηxÞ
Q þ
γp
ðq; pþq;ηÞ; xZ0 ð13Þ

where the function Q ða;b; zÞ is given in Eq. (5) and Pþ is the
probability that the source is present in the on-source region

written

Pþ ¼
γpp

γq
α

� �q

ηpþq�1 Q þ
γp
ðq;pþq;ηÞ ð14Þ

where ða; bANÞ

Q þ
γp
ða; b; zÞ ¼

Z1
0

Q ða;b; zxÞe� γpx dx¼
Xb�a�1

i ¼ 0

b� i�2
b�a� i�1

� �
zi

γiþ1
p

:

ð15Þ

2.4.1. Scale invariant priors
The scale invariant prior for a non-negative random variable

corresponds to a uniform prior of its logarithm. In our treatment,
such prior distributions of the means μon and μoff can be selected
only if the numbers of detected on- and off-source events are
positive. These prior distributions are classified by the rate para-
meters γp ¼ γq-1, i.e. η¼ 1þα

α and ρ¼ α, the shape parameters
sp ¼ sq→0, i.e. p¼ non40 and q¼ noff 40. Hence, for the posterior
distributions we have μon �Gaðnon;1Þ and μb �Gaðnoff ;

1
αÞ, see

Appendix A. Then it follows from Eq. (13) that the non-negative
difference of the on-source and background means, μonZμb, is

f þδ ðxÞ ¼ e�x

Pnon �1
i ¼ 0

non þnoff � i�2
non � i�1

� �
1þα
α

� �ixi
i!Pnon �1

i ¼ 0
non þnoff � i�2

non � i�1

� �
1þα
α

� �i ; xZ0: ð16Þ

The same result was presented in Ref. [11].
In our analysis, the Bayesian probability that a source is present

in the on-source region is given explicitly by, see Eq. (14),

Pþ ¼ 1
1þα

� �noff Xnon �1

i ¼ 0

nonþnoff � i�2
non� i�1

� �
α

1þα

� �non � i�1

: ð17Þ

2.4.2. Uniform priors
Let us consider the uniform prior distributions of the means μon

and μoff . In such a case, the rate parameters γp ¼ γq-1, i.e. η¼ 1þα
α

and ρ¼ α, the shape parameters sp ¼ sq ¼ 1, i.e. p¼ nonþ1 and
q¼ noff þ1. The posterior distributions are μon �Gaðnonþ1;1Þ and
μb �Ga noff þ1; 1α

� �
, see Appendix A. Assuming the non-negative

difference of the on-source and background means, μonZμb, we
get from Eq. (13)

f þδ ðxÞ ¼ e�x

Pnon
i ¼ 0

non þnoff � i
non � i

� �
1þα
α

� �ixi
i!Pnon

i ¼ 0
non þnoff � i

non � i

� �
1þα
α

� �i ; xZ0: ð18Þ

The same result was obtained in Refs. [10,13].
The Bayesian probability that a source is present in the on-

source region follows from Eq. (14), namely,

Pþ ¼ 1
1þα

� �noff þ1 Xnon

i ¼ 0

nonþnoff � i
non� i

� �
α

1þα

� �non � i

: ð19Þ

We note that a quite different formula has been advocated in Ref.
[13]. Its justification is based on the Bayes factor that accounts for a
complex source model put against a simple background hypoth-
esis. However, as pointed out in Ref. [13], the significant dis-
advantage is that the resultant probability strongly depends on the
choice of the upper bound of the uniform prior used for the source
activity.

Our Bayesian probabilities for the presence or absence of a
source in the on-source region are easily obtained in the case of
the null experiment, when no counts are registered in the on-
source region, i.e. non ¼ 0 and p¼1, or in the experiment with zero
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background counts, i.e. noff ¼ 0 and q¼1,

Pþ
non ¼ 0 ¼

1
1þα

� �noff þ1

; P�
noff ¼ 0 ¼

α
1þα

� �non þ1

: ð20Þ

Both these probabilities depend on the relationship between the
on- and off-source regions, on the on–off parameter α. Unlike
other results [13], our approach provides us with well under-
standable solutions. For example, in the null experiment ðnon ¼ 0Þ,
the Bayesian probability of the source detection in the on-source
region drops down with the increasing on-source exposure
(increasing α) as well as with the increasing number of registered
off-source events. If no events are registered at all, we get
Pþ
non ¼ noff ¼ 0 ¼ ð1þαÞ�1.

2.4.3. Jeffreys' priors
The key characteristic of the Jeffreys' prior distribution is that it

is invariant under a transformation of parameters. Thus, it
expresses the same prior belief no matter which metric is used.

In our notation scheme, Jeffreys' prior distributions of the on-
and off-source means are of the form introduced in Appendix B.
The posterior distributions are formally constructed if the rate and
shape parameters of the Gamma distributions given in Appendix A
satisfy sp ¼ sq ¼ 1

2 and γp ¼ γq-1, respectively. Then, the distribu-
tion of the difference is obtained putting p¼ nonþ1

2, q¼ noff þ1
2,

η¼ 1þα
α and ρ¼ α into the relevant equations.

In particular, the distribution for the non-negative difference
written in Eq. (12) implies the recent result based on Jeffreys' rule
presented in Ref. [14]. Indeed, using the identities for the hyper-
geometric functions [16]

a
xa

Bxða; bÞ ¼ 2F1ða;1�b; aþ1; xÞ ð21Þ

and

2F1ða; b; c; xÞ ¼ ð1�xÞa2F1 a; c�b; c;
x

x�1

� �
ð22Þ

one has, in our notation scheme,

qαqB 1
1þ α

ðq;pÞ ¼ α
1þα

� �q

2F1 q; 1�p; qþ1;
1

1þα

� �
¼ 2F1 q; pþq; qþ1; �1

α

� �
:

ð23Þ
Substituting this result into Eq. (12) and decoding the values of the
parameters p, q and η, while γp ¼ γq-1, the correspondence with
the result written in Eq. (30) in Ref. [14] is evident.

This consistency is due to the above mentioned invariant
property of the Jeffreys' prior. In our strategy, we started with the
two independent variables μon40 and μoff 40 the prior distribu-
tions of which are given by Jeffreys' rule, see Eq. (B.1) in Appendix
B. Choosing a new mean μs ¼ μon�αμoff Z0 and keeping μoff 40
unchanged, the bidimensional prior distribution considered in Eq.
(15) in Ref. [14] is easily obtained under this transformation.

It is worth stressing, however, that the probability of the
absence of a source in the on-source zone that was derived in this
study using the distribution of the difference (see Section 2.3)
differs from the results of Refs. [14,15] when Jeffreys' rule for prior
distributions is considered. The reason is that the other methods
do not benefit from all input information or do not fully utilize the
Bayesian inference.

In Ref. [14], the determination of the Bayesian probability of the
background hypothesis was based on the questionable argument
about how to choose the ratio of the arbitrary scale factors of the
prior distributions of model parameters. This ratio was derived fol-
lowing the ad hoc assumption that if no counts are observed in both
zones, the probabilities of both the signal and background model
remain the same. However, one may successfully argue that such a
null measurement with no background counts ðnon ¼ noff ¼ 0Þ should
update our knowledge about the signal. The point is that one has

additional information since the ratio of the on- and off-source
exposures is known by definition. Therefore, the result of the null
experiment with no background counts is to prefer the signal alter-
native if 0oαo1 (larger off-source exposure) and vice versa.
Unfortunately, the premise behind the procedure that provides the
probability of the background hypothesis, as advocated in Ref. [14],
does not take into account the possibility of different exposures.
Interestingly, while the probability of the no-source hypothesis H0 is
assumed to be PðH0∣non ¼ noff ¼ 0Þ ¼ 1

2 in Ref. [14], we obtain from Eq.
(8) for the Bayesian probability of the absence of a source in the on-
source region a more intuitively appealing result

P�
non ¼ noff ¼ 0 ¼ I α

1þ α

1
2
;
1
2

� �
¼ 2
π
arctanð ffiffiffiffi

α
p Þ: ð24Þ

With the increasing on-source exposure (increasing α), the prob-
ability that a source is not in the on-source region increases if no
counts ðnon ¼ noff ¼ 0Þ are detected in both on–off zones, for the
uniform priors see Eq. (20).

In Ref. [15], a predictive distribution of background counts was
utilized in order to assess to what extent the source model is not
supported by the on–off data. Following Jeffreys' rule, the dis-
tribution for the background mean was modeled as the Gamma
distribution with parameters deduced from the off-source obser-
vation using the method of moments. The significance of the sig-
nal deviation from the background hypothesis was established
based on the Poisson–Gamma mixture. In this approach, the on-
and off-source zones are treated differently. The resultant p-values
are to be interpreted as the probability of obtaining a result at least
as extreme as the observed data if the null background hypothesis
is true. Thus, such an approach does not fully exploit the Bayesian
reasoning and, therefore, it cannot provide us with information
what hypothesis is more likely, given the data.

2.4.4. Known background
The analysis may be adapted for the case of known background

with remaining uncertainty in the on-source zone, for classical
results see e.g. Ref. [5]. Let us assume that the background mean μb
is known, but we do not measure the counts due to the background
during the experiment. Such a situation may be reviewed as the
limit q-1ðq¼ noff þsqÞ, α-0 when qα¼ μb remains a finite con-
stant [10]. In our scheme, the difference of the two Poisson para-
meters enlarged by the constant background parameter follows the
Gamma distribution, i.e. μon ¼ ðδþμbÞ �Gaðp; γpÞwhere p¼ nonþsp
and γp41 are parameters for the prior distribution of the on-source
mean. Therefore, the probability distribution of the difference δ is
then given by (here we have hδðxÞ ¼ hδðδ¼ x∣non;μb; IÞ)

hδðxÞ ¼
γpp
ΓðpÞðxþμbÞp�1e�γpðxþμbÞ; xZ�μb: ð25Þ

In addition, assuming non-negative values of the difference δ, i.e.
μonZμb, we have for its probability distribution

hþ
δ ðxÞ ¼ hδðxÞ

Rþ ¼ γpp
Γðp;μbÞ

ðxþμbÞp�1e� γpðxþμbÞ; xZ0 ð26Þ

where Γða; xÞ ¼ R1
x ta�1e� t dt is the upper incomplete Gamma

function and

Rþ ¼ Pðδ40Þ ¼
Z1
0

hδðxÞ dx¼
Γðp;μbÞ
ΓðpÞ ð27Þ

is the probability of the presence of a source in the on-source region
if the background mean is known.

Note that for the uniform prior distribution of the on-source
parameter, when p¼ nonþ1ðsp ¼ 1Þ and γp-1, the result written
in Eq. (26) was obtained in Ref. [9]. More general expressions with
the prior parameter γp-1 were presented in Ref. [10].
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2.5. Source intensity

With the complete information about the on–off measurement
contained in the distribution of the difference δ, we can estimate
the source intensity. We use the shortest credible interval 〈δ�; δþ 〉
that includes the source intensity at a chosen significance level of
P. In order to obtain these intervals, one has to solve numerically

P ¼
Zδþ

δ�

f δðxÞ dx; f δðδ�Þ ¼ f δðδþ Þ ð28Þ

with the indicated condition on interval endpoints, if it can be
fulfilled.

In those cases when the lower endpoint of a credible interval is
negative, an upper bound for the source intensity is usually
required. Its value, δþ , is determined numerically using the inte-
gral in Eq. (28) where we put δ�-�1 and relax the constraint on
interval endpoints.

When it is known that a source may be present only in the on-
source zone (see Section 2.4), we obtain credible intervals for the
source intensity by putting f δðxÞ-f þδ ðxÞ with 0rδ� into Eq. (28).
For upper bounds we set δ� ¼ 0 while not using the constraint on
interval endpoints.

3. Examples

3.1. Source detection significance

We present examples which illustrate some of the features of
the method described in Section 2.3 that allows us to assign the
probability of the source absence or presence in the on-source
zone for a pair of on–off measurements. We focused on the cases
with small numbers of events. For this purpose, we use the sig-
nificance derived from the Bayesian probability of the source
presence in the on-source region using the standard normal
variate, see Section 2.3. In each example we calculated Bayesian
significances using the scale invariant, Jeffreys' as well as uniform
prior distributions of the on- and off-source means
(γ ¼ γp ¼ γq-1, s¼ sp ¼ sq; s→0 or s¼ 1

2;1). We also calculated the
asymptotic Li–Ma significance [2] with which, relying on the
likelihood ratio method, the no-source hypothesis is rejected if it is
true. We added a sign to the Li–Ma statistic SLM considering it as
non-negative if non�αnoff Z0 and negative otherwise, i.e.

SLM ¼ sgnðnon�αnoff Þ
ffiffiffiffiffiffiffiffi
S2LM

q
, since the original statistic [2] is

equivalent to the absolute value of a standard normal variable.
In the first example, we chose the number of events detected in

the off-source zone while varying the number of registered on-
source counts. We dealt with two cases. In the first case, we
assumed that noff ¼ 36 counts were detected in the off-source
region the exposure of which is 12-times larger than the exposure
of the on-source zone, i.e. α¼ 1

12. In the second case, we chose the
same exposures of the on- and off-source regions ðα¼ 1Þ, and
assumed that noff ¼ 3 events were registered in the off-source
zone. The numbers of on-source events were small, nonA 〈0;16〉.
Note that for non ¼ 0 the scale invariant and Li–Ma significances
are not determined. In Fig. 1, our results obtained within the
Bayesian inference are compared with the asymptotic Li–Ma sig-
nificances [2]. Obviously, better knowledge about background
noff ¼ 36;α¼ 1

12

� �
implies higher absolute values of significances.

Note that in this case noff ¼ 36;α¼ 1
12

� �
, the Bayesian significances

based on the uniform prior distributions are larger when com-
pared with the scale invariant results since αnononoff ¼ 36, see
Section 2.3. The opposite is true in the second case (noff ¼ 3, α¼ 1)
only when non4noff ¼ 3. The Bayesian significances based on

Jeffreys' prior distributions always lie in between results derived
assuming the uniform and scale invariant prior distributions, if the
latter choice is possible (non40 and noff 40).

In the second example, using the Monte Carlo technique, we
focused on the distributions of significances for the source
detection. We generated 105 pairs of on- and off-source counts
that follow the Poisson distribution with predefined source and
background means, respectively, assuming that they were regis-
tered in the regions of the same exposures (α¼ 1). We determined
the Bayesian probabilities of the source presence in the on-source
region (see Eq. (9)) and the corresponding significances as well as
the asymptotic Li–Ma significances [2] for each pair of on- and off-
source counts. In Fig. 2, we present the significance distributions
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Fig. 1. Significances for the source detection are shown as functions of the number
of events detected in the on-source zone for two different off-source measure-
ments. In the first case (thick lines), noff ¼ 36 and α¼ 1

12. In the second case (thin
lines), noff ¼ 3 and α¼ 1. The Li–Ma significances are shown in magenta. The Bayes
significances for scale invariant (black lines), Jeffreys' (blue lines) and uniform (red
lines) prior distributions were derived from the probability of the source presence
in the on-source region, see Eq. (9). (For interpretation of the references to color in
this figure caption, the reader is referred to the web version of this paper.)
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Fig. 2. Distributions of significances for the source detection. Histograms for the Li–
Ma significances (filled areas) as well as for the Bayes significances using scale
invariant (black lines), Jeffreys' (blue lines) and uniform (red lines) prior distribu-
tions are visualized. Two examples for the same exposures of the on- and off-
source zones ðα¼ 1Þ are presented. In the first example (light red area and thick
lines), the on- and off-source counts were generated with the mean parameters
μon ¼ μoff ¼ 3:2. In the second example (light blue area and thin dashed lines), the
mean parameters were μon ¼ 3μoff ¼ 9:6. (For interpretation of the references to
color in this figure caption, the reader is referred to the web version of this paper.)
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for no source in the on-source zone, when the on- and off-source
means μon ¼ μoff ¼ 3:2 (light red area and thick lines). Typically, in
about 10% of on–off pairs, it happened that no events in the on- or
off-source zone were generated. This results in dips in scale
invariant (thick black line) and Li–Ma (light red area) histograms
located around zero significance since, in such cases, the relevant
significances cannot be determined. In Fig. 2, we also show sig-
nificance distributions that we received in the case when the
source is present in the on-source region using μon ¼ 3μoff ¼ 9:6
(light blue and thin dashed lines). In both presented cases, except
the problem with zero counts, the significance distributions
obtained using the Bayesian inference, with the scale invariant,
Jeffreys' or uniform prior distributions, are similar to each other as
well as to the corresponding outputs obtained with the help of the
asymptotic Li–Ma formula [2].

3.2. Gamma-ray bursts

The method described in Section 2 was applied to the data sets
examined in Refs. [14,15]. We used information about very high
energy (VHE) photons from gamma-ray bursts (GRB) collected by
the VERITAS setup [17] and by the Fermi Large Area Telescope [18].
These data sets of VHE photons detected during or shortly after 12
bursts are listed in the first four columns in Table 1. Typically, only a
few VHE photons were registered in the directions of GRBs. In most
cases, the number of collected events is not too different from the
corresponding number of events expected from background.

We assumed the same prior distributions for the on- and off-
source means with the common shape parameter, s¼ sp ¼ sq, and
zero rate parameters, i.e. γ ¼ γp ¼ γq-1. With these restrictions
we calculated the distributions of the difference of the on-source
and background means. The probability that a source is absent in
the on-source region is then given by Eq. (8). We also determined
credible intervals and, if appropriate, upper bounds of the source
intensity at a given level of significance as described in Section 2.5.

The conditional distributions of the difference ðμonZμbÞ for all
data sets are depicted in Fig. 3. These results were obtained with
Jeffreys' prior distributions (s¼ 1

2 and γ-1). Specific properties of
the GRB sources are summarized in Table 1. In this table, we
present the Bayesian probabilities of the absence of a source of
VHE photons in the on-source zone ðP�Þ. Negative values of the
corresponding Bayesian significance ðSBÞ indicate that the absence
of a source in the on-source region is more likely than its presence
therein, i.e. P�40:5. For all data sets, we also give credible inter-
vals for the difference of the on-source and background means at a
99% level of confidence. With the distributions of the difference

conditioned on the non-negative source intensity we reproduce
the upper bounds ðδþ

þ Þ obtained in Ref. [14] at the same level of
confidence (see Section 2.4.3).

In Table 1, we also present other on–off results which were
obtained within the classical concept and have, therefore, a dif-
ferent meaning. In particular, we calculated the Li–Ma significance
[2]. Also confidence intervals derived using the unbounded like-
lihood method [7] were determined. It is worth stressing that both
these classical statistics are obtained asymptotically relying upon
the likelihood ratio and the Wilks' theorem [1]. The asymptotic
confidence intervals or upper bounds are constructed in such way
that they cover an unknown true value of the parameter under
consideration with a specified probability. The Li–Ma significance
corresponds to the probability with which the null background
hypothesis is rejected if it is true. We added a sign to the Li–Ma
statistic SLM in order that SLMo0 if non�αnoff o0.

There is a clear evidence that VHE photons from GRB 080825C
were detected by the Fermi-Lat instrument [18]. The significance
of the presence of a source in the on-source zone, SB ¼ 6:22, pro-
vides the same conclusion as the asymptotic Li–Ma significance, as
the original finding [18] and other results [14,15]. Our 1σ estimate
of the source intensity, δA 〈9:75;17:49〉 obtained with Jeffreys'

Table 1
GRB data collected by VERITAS [17], GRB 080825C was observed by Fermi-Lat [18]. The same sets of data as in Refs. [14,15] are used. GRB assignments, measured counts and
on–off parameters α are listed in the first four columns. The Bayesian probability of the absence of a source in the on-source zone ðP�Þ, corresponding significance ðSBÞ and Li–
Ma significance ðSLMÞ are given in the following three columns. We show credible intervals for the difference ð〈δ� ; δþ 〉Þ and its upper bounds obtained by assuming that a
source may be present only in the on-source zone ðδþ

þ Þ, both at a 99% level of confidence. Confidence intervals for the difference ð〈δ� ; δþ 〉LÞ derived in the unbounded profile

likelihood method [7] at the same level of confidence are given in the rightmost column. For Bayesian results, Jeffreys' prior distributions (s¼ 1
2 and γ-1) were used.

GRB non noff α P� SB SLM 〈δ� ; δþ 〉 δþ
þ 〈δ� ; δþ 〉L

070419A 2 14 0.057 0.110 1.23 1.08 �1.11, 7.74 6.88 �0.88, 7.34
070521 3 113 0.057 0.923 �1.43 �1.48 �6.86, 2.91 6.12 �6.77, 3.58
070612B 3 21 0.066 0.106 1.25 1.14 �1.50, 8.61 8.00 �1.23, 8.55
080310 3 23 0.128 0.455 0.11 0.03 �3.60, 6.92 7.16 �3.37, 7.08
080330 0 15 0.123 0.932 �1.49 �3.84, 3.43 4.10 �3.38, 2.40
080604 2 40 0.063 0.591 �0.23 �0.33 �3.03, 5.10 6.12 �2.93, 5.66
080607 4 16 0.112 0.080 1.41 1.32 �1.82, 10.12 9.17 �1.42, 9.84
080825C 15 19 0.063 710�10 6.22 6.36 5.05, 26.60 5.86, 26.12

081024A 1 7 0.142 0.441 0.15 0.01 �2.13, 5.64 5.30 �1.89, 5.19
090418A 3 16 0.123 0.233 0.73 0.64 �2.50, 8.24 7.64 �2.17, 8.01
090429B 2 7 0.106 0.106 1.25 1.12 �1.04, 6.41 6.92 �0.99, 7.41
090515 4 24 0.126 0.282 0.58 0.50 �3.25, 8.63 8.34 �2.94, 8.66

0 10 20 30 40

10
-5

10
-4

10
-3

10
-2

10
-1

1 GRB
Jeffreys prior

070419A
070612B
080310
080604
080607
081024A
090418A
090429B
090515

080825C

070521

080330

x

f+ δ(
x)

Fig. 3. Distributions of the difference conditioned on non-negative values of the
on-source rate for 12 data sets connected with GRB observations [17,18]. These
results were obtained with Jeffreys' prior distributions for the on- and off-source
means (s¼ 1

2 and γ-1). Full black, blue and red curves are for GRB 080825C, GRB
070521 and GRB 080330, respectively. (For interpretation of the references to color
in this figure caption, the reader is referred to the web version of this paper.)
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prior distributions, corresponds to previously presented estimates
[14,15,18].

Other data sets of VHE photons collected in the directions of
GRBs show no signature that would distinguish them from back-
ground data. The Bayesian probabilities of the absence of a source
in the selected on-source regions are above 8%, see Table 1. The
absolute values of the corresponding significance are below 1.50.
Three data sets indicate a deficit of events in the on-source region,
i.e. P�40:5 and SBo0.

Of particular interest are the results derived from the data
associated with GRB 080330 since no on-source event was recor-
ded in this observation. We recall that the data is easy to evaluate
in the Bayesian approach. No special assumptions or external
constraints are needed. The only exception is that the choice of the
scale invariant priors (s→0) is excluded. Using Jeffreys' prior dis-
tributions, our analysis yields the Bayesian probability of the
absence of a source in the on-source zone of about 93%, see
Table 1. Our upper bound for the source intensity is somewhat
higher than the estimate which was obtained by extrapolation
within the unbounded likelihood method [7].

With the aim to demonstrate the impact of different prior
distributions, we choose the data set of GRB 070521. This data
yields the lowest positive ratio of the number of on-source events
with respect to the background counts expected in the on-source
region. In Fig. 4, various distribution functions of the difference for
GRB 070521 are shown. Three types of prior distributions were
examined. Namely, we present results based on the scale invariant
(s→0, in black), Jeffreys' (s¼ 1

2, blue) and uniform (s¼1, red) prior
distributions. The depicted distributions were obtained without
(dashed curves) or with (full curves) assuming that a source may
be present only in the on-source zone. The former distributions
are used in order to determine the probability of the source pre-
sence in the on-source zone. The latter conditional distributions
are then used for estimating credible intervals or upper bounds of
the source intensity.

In this case, and also for other data sets listed in Table 1, we
mostly obtained very similar results for the three types of prior
distributions used for the on- and off-source means. This situation
is documented in Fig. 5 where the Bayesian probabilities for the
source absence in the on-source zone are shown as functions of
the common shape parameter of the prior distributions. The no-
source probabilities mostly slowly decrease with the increasing
value of the prior shape parameter, from the scale invariant option
(s→0) down to the uniform choice (s¼1). The largest decline is
found for the data associated with the observation of GRB
081024A when the lowest total number of events was detected.

Finally, the 99% upper bounds of the source intensity, and the
1σ credible interval in case of 080825C, are depicted in Fig. 6 as
functions of the common shape parameter of the prior distribu-
tions. These characteristics were obtained by assuming that a
source may be present only in the on-source region. We learned
that the limits of the source intensity are weakly dependent on the
prior choice of the common shape parameter for 0osr1.

4. Conclusions

In this study we dealt the issue of detection of a source the
activity of which is immersed in the surrounding background. For
this purpose, we adopted the Bayesian concept that provides, on
one side, a unified and intuitively appealing approach to the pro-
blem of drawing inferences from observations and, on the other
side, it offers a powerful and sufficiently general framework for
determining optimal behavior in the face of uncertainty. As often
reported, the Bayesian inference also allows us to alleviate some of
the issues that affect conventional statistical approaches.

We have proposed a consistent description of the on–off
measurement. We focused on cases of small numbers of registered
events that obey a Poisson distribution. For the on- and off-source
means, we used an adequately large class of conjugate prior dis-
tributions for the Poisson likelihood function. It consists of Gamma
distributions, each of which is parametrized by two parameters, by
the rate and shape parameter. The Gamma family includes several
interesting and widely used options, i.e. scale invariant, uniform or
Jeffreys' prior distributions.

We examined the distribution of the difference between the
on-source and background means. This distribution is maximally
noncommittal with regard to their dependence, but it carries all
the information available from the on–off experiment. Using it, the
probability of the presence of a source in the on-source zone and
other source properties are consistently derived within the Baye-
sian concept and, therefore, have well defined meaning. We stress
that our interpretation of the on–off data is different from
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Fig. 4. Distributions of the difference using the GRB 070521 data. The distributions
shown in black, blue and red were obtained with scale invariant (s→0), Jeffreys'
ðs¼ 1

2Þ and uniform (s¼1) priors, respectively. The thick full curves are for the
distributions determined by assuming that a source may be present only in the on-
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izontal lines visualize credible intervals at a 99% level of confidence. (For inter-
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reasoning behind hypothesis testing, regardless of whether the
test is conducted in a classical or Bayesian framework.

The distribution of the difference is well suited for weak
sources whose observations may reveal a signal either in the on-
source or off-source zone, due to experimental limitations, for
example. Except one case, the proposed Bayesian solutions can be
used for any number of on–off counts, including the null experi-
ment or the experiment with no background. To our knowledge,
such results of the Bayesian inference have not yet been discussed
in the literature. By conditioning on the values of the difference we
obtained a probability distribution that allows us to describe the
on–off problem with a preassigned source in the on-source region
the activity of which is to be examined. In this case, the resultant
conditional distribution includes several results that have pre-
viously been obtained in other Bayesian approaches. Using this
distribution, well reasoned limits of the source activity are easily
determined.

We also presented several numerical examples that may serve
as guides for practical applications. In most cases, when little is
known about investigated phenomena, it turned out that the scale
invariant, if applicable, or uniform prior distributions are good
choices. The corresponding formulae reduce to simple algebraic
sums, as described in Sections 2.4.1 and 2.4.2 provided that a
source may be present only in the on-source zone. The Bayesian
inference using Jeffreys' prior distributions should be a better
compromise. However, this option, as well as the choice of infor-
mative priors, requires more complicated calculations based on
integral expressions.
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Appendix A. Bayesian inference with Poisson likelihood

We consider that the number of events registered in a counting
experiment, a random variable n, obeys the Poisson distribution

with a mean μ40, i.e. n� PoðμÞ. The probability to observe n
events ðn¼ 0;1;…Þ is

PPoðn∣μÞ ¼
μn

n!
e�μ: ðA:1Þ

Our aim is to deduce some information about the Poisson mean μ
from a measurement in which n counts were registered. For this
purpose, we adopt the Bayesian reasoning. The probability dis-
tribution of the Poisson mean to have the value μ40 is found by
means of Bayes' theorem

f ðμ∣nÞpLðμ∣nÞpðμÞ ðA:2Þ

where Lðμ∣nÞ ¼ PPoðn∣μÞ is the likelihood function and pðμÞ denotes
the prior distribution of the mean μ.

The problem is solved once we specify the form of the prior
distribution. To this end, we use Gamma distributions that provide
a family of conjugate prior distributions for the Poisson likelihood
function

pðμÞ ¼ f Gaðμ∣s; λÞ ¼
λs

ΓðsÞμ
s�1e�λμ ðA:3Þ

where s40 is the shape parameter, λ40 denotes the rate para-
meter and ΓðsÞ is the Gamma function. Notice that the mean and
variance of a random variable obeying the Gamma distribution are
EðμÞ ¼ λ�1s and VarðμÞ ¼ λ�2s, respectively. Hence, with the
increasing value of the shape parameter s, the prior distribution is
peaked at larger values around a mode λ�1ðs�1Þ. With the
increasing value of the rate parameter λ, that shifts the position of
the mean towards lower values, the prior distribution becomes
narrower.

The Gamma family of prior distributions is sufficiently large.
The two prior parameters s and λ may be chosen to contain our
degree of belief about the problem before the experiment is con-
ducted. Notice that traditionally accepted prior assumptions about
the studied parameter are included among these possibilities. For
example, in a limiting case, if λ-0, the choice s¼1 represents the
uniform prior, s¼ 1

2 is for the Jeffreys' prior (see Appendix B) and, if
n40, then the scale invariant prior distribution with s→0 may be
selected.

The posterior distribution of the Poisson mean μ then depends
on the prior choice and experimental data. If n events were col-
lected, one easily finds that μ�Gaðp; γÞ, where p¼ nþs40 and
γ ¼ λþ141, follow from Eq. (A.2) for the prior distributions
chosen from the Gamma family defined in Eq. (A.3). Hence, the
posterior distribution function is

f ðμ∣nÞ ¼ f Gaðμ∣p; γÞ ¼
γp

ΓðpÞμ
p�1e� γμ: ðA:4Þ

Let us finally note that for the random variable μ0 ¼ kμ, where k
40 is a constant, one obtains μ0 �Gaðp; γkÞ.

Appendix B. Jeffreys' prior

By definition, the Jeffreys' prior is proportional to the square
root of the determinant of the Fisher information. In the case of a
single-valued Poisson mean μ40, it is written

pðμÞp
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
�E

∂2 ln Lðμ∣nÞ
∂2μ

	 
s
¼ 1ffiffiffi

μ
p ðB:1Þ

where Lðμ∣nÞ ¼ PPoðn∣μÞ is the likelihood function given in Eq. (A.1)
and E denotes the mean value with respect to the Poisson model
under study.
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Fig. 6. Upper bounds for the difference at a 99% level of confidence are shown as
functions of the common shape parameter of prior distributions. They were
obtained by assuming that a source may be present only in the on-source zone. The
thick full blue and red curves are for GRB 070521 and GRB 080330, respectively. A
grey band represents the 1σ credible interval for the activity associated with GRB
080825C. (For interpretation of the references to color in this figure caption, the
reader is referred to the web version of this paper.)
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a b s t r a c t

We deal with the analysis of on–off measurements designed for the confirmation of a weak source of events whose
presence is hypothesized, based on former observations. The problem of a small number of source events that
are masked by an imprecisely known background is addressed from a Bayesian point of view. We examine three
closely related variables, the posterior distributions of which carry relevant information about various aspects
of the investigated phenomena. This information is utilized for predictions of further observations, given actual
data. Backed by details of detection, we propose how to quantify disparities between different measurements.
The usefulness of the Bayesian inference is demonstrated on examples taken from cosmic ray physics.

© 2017 Elsevier B.V. All rights reserved.

1. Introduction

The search for new phenomena often yields data that consists of a
set of discrete events distributed in time, space, energy or some other
observables. In most cases, source events associated with a new effect
are hidden by background events, while these two classes of events
cannot be distinguished in principle. Such a search can be accomplished
with an on–off measurement by checking whether the same process of a
constant but unknown intensity may be responsible for observed counts
in the on-source region, where a new phenomenon is searched for,
and in the reference off-source region, where only background events
contribute. Any inconsistency between the numbers of events collected
in these zones, when they are properly normalized, then indicates the
predominance of a source producing more events in one explored region
over the other.

In this study, we focus on the problems which are often encountered
when searching for cosmic ray sources while detecting rare events. Char-
acteristics of possible sources are usually proposed based on analysis
of a test set of observed data. Then, further observations are to be
conducted in order to examine the presence of a source or to improve
conditions for its verifications. But, due to unknown phenomena, the
outcome is always uncertain which calls, first, for as less as possible
initial assumptions about underlying processes and, second, for the
quantification of disparities between observations with the option to
correct for experimental imperfections.

In order to satisfy the first condition, we follow our previous analysis
of on–off measurements formulated within the Bayesian setting [1].

* Corresponding author.
E-mail address: nosek@ipnp.troja.mff.cuni.cz (D. Nosek).

Unlike other Bayesian approaches [2–9], we handle the source and
background processes on an equal footing. This option provides us with
solutions that are minimally affected by external presumptions. In order
to track the behavior of a signal registered in a selected on-source
region, we utilize variables with the capability to assess the consistency
between on–off measurements. Specifically, giving the net effect, the
difference variable [1] is well suited for estimating source fluxes if
exposures are known. In case of stable or at least predictable background
rates, we eliminate the effect of exposures by using fractional variables
which reveal relatively the manifestation of a source. For example,
the time evolution of a given source, if still observed in the same
way, is easily examined by the ratio of the on-source rate to the total
rate. In a more general case, we employ the on-source rate expressed
in terms of the rate deduced from the background. In summary, we
receive posterior distributions of different variables that include what
is available from measurements, while providing us with all kinds of
estimates, as traditionally communicated, and allowing us to make
various observation-based predictions.

Related to the on–off issue, the Bayesian inference provides solutions
in the case of small numbers, including the null experiment or the
experiment with no background, when classical methods based on the
asymptotic properties of the likelihood ratio statistic [10–13] are not
easily applicable. Also, there are no difficulties with the regularity condi-
tions of Wilks’ theorem, with unphysical likelihood estimates or with the
discreteness of counting experiments, in general, see e.g. Refs. [14–17].
On the other hand, the subjective nature of Bayesian reasoning, often

http://dx.doi.org/10.1016/j.nima.2017.06.034
Received 24 August 2016; Received in revised form 1 May 2017; Accepted 21 June 2017
Available online 27 June 2017
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mentioned as its disadvantage, may be at least partially eliminated by
using a family of uninformative prior options.

The proposed method is suitable for experiments searching for rare
events in which the observational conditions may not be adjusted op-
timally, with little opportunity for repeating measurements conducted
under exactly the same conditions. Besides searches for possible sources
of the highest energy cosmic rays, see e.g. Refs. [18–22], examples in-
clude observations of peculiar sources which exhibit surprising temporal
or spectral behavior. Another class of observations comprises searches
for events accompanying radiation from transient sources that have been
identified in different energy ranges. The identification of the properties
of very-high-energy 𝛾-rays associated with observed gamma-ray bursts
belongs to this class of problems [1–3].

The structure of this paper is as follows. Our formulation of the
Bayesian approach to the on–off problem is described in Section 2,
complemented by five Appendices. Further details about our approach
can be found in Ref. [1]. In Section 2.1 we summarize how to store
experimental information by using appropriate on–off variables. Two
ways to examine possible inconsistencies in independent observations
are proposed in Sections 2.2 and 2.3. Several realistic examples taken
from cosmic ray physics are presented and discussed in Section 3. The
paper is concluded in Section 4.

2. Bayesian inferences from on–off experiment

In the on–off experiment, two kinds of measurements are collected in
order to validate a source signal immersed in background. The number
of on-source events, 𝑛on, is recorded in a signal on-source region, while
the number of off-source events, 𝑛off , detected in a background off-
source zone serves as a reference measurement. The on- and off-source
counts are modeled as discrete random variables generated in two
independent Poisson processes with unknown on- and off-source means,
𝜇on and 𝜇off , i.e. 𝑛on ∼ Po(𝜇on) and 𝑛off ∼ Po(𝜇off ). The relationship
between the on- and off-source zone is ensured by the ratio of on- and
off-source exposures 𝛼 > 0.

In the Bayesian approach, for on- and off-source means we adopted
a family of prior distributions conjugate to the Poisson sampling pro-
cess [1]. This family consists of Gamma distributions, i.e.

𝜇on ∼ Ga(𝑠𝑝, 𝛾𝑝 − 1), 𝜇off ∼ Ga(𝑠𝑞 , 𝛾𝑞 − 1), (1)

where 𝑠𝑝 > 0 and 𝑠𝑞 > 0 are prior shape parameters, and the prior
rate parameters 𝛾𝑝 > 1 and 𝛾𝑞 > 1. It includes several frequently
discussed options, i.e. scale invariant, uniform, as well as Jeffreys’
prior distributions. After the on–off measurement has been conducted,
when 𝑛on and 𝑛off counts were registered independently in the on-
and off-source regions, using Eq. (1) we obtain independent posterior
distributions

(𝜇on ∣𝑛on) ∼ Ga(𝑝, 𝛾𝑝), (𝜇b ∣𝑛off ) ∼ Ga
(

𝑞,
𝛾𝑞
𝛼

)

, (2)

where 𝜇b = 𝛼𝜇off denotes the expected background rate in the on-source
zone and 𝑝 = 𝑛on + 𝑠𝑝 and 𝑞 = 𝑛off + 𝑠𝑞 . For more details see Ref. [1].

We recall that our next steps diverge from the traditional treatment.
In order to assess what is observed, we define suitable on–off variables
by combining the on- and off-source means, assuming that the under-
lying processes are independent. From the Bayesian perspective, this
choice is motivated by the fact that, according to Jeffreys’ rule, the joint
prior distribution is separable in the on- and off-source means [1,2].
Furthermore, as in classical statistical approaches [10–16], the proposed
option allows us to obtain adequate results regardless of in which of the
two zones the source effects are revealed [1,7].

2.1. On–off variables

In our previous work [1], we focused on the properties of the
difference between the on-source and background means, 𝛿 = 𝜇on − 𝜇b,
using maximally uninformative joint distributions, as dictated by the
principle of maximum entropy. In this section, we briefly recapitulate
our previous result and introduce other on–off variables that equally
well describe the on–off problem.

Under the transformation 𝛿 = 𝜇on − 𝜇b, with a real valued domain,
while keeping 𝜇b = 𝛼𝜇off unchanged and marginalizing over 𝜇b, the
probability density function of the difference is (for details of our
notation see Ref. [1])

𝑓𝛿(𝑥) =
𝛾𝑝𝑝
( 𝛾𝑞

𝛼

)𝑞

𝛤 (𝑝)
𝑒−𝛾𝑝𝑥𝑥𝑝+𝑞−1 𝑈 (𝑞, 𝑝 + 𝑞, 𝜂𝑥), 𝑥 ≥ 0, (3)

𝑓𝛿(𝑥) =
𝛾𝑝𝑝
( 𝛾𝑞

𝛼

)𝑞

𝛤 (𝑞)
𝑒
𝛾𝑞
𝛼 𝑥(−𝑥)𝑝+𝑞−1 𝑈 (𝑝, 𝑝 + 𝑞,−𝜂𝑥), 𝑥 < 0, (4)

where 𝑝 = 𝑛on + 𝑠𝑝, 𝑞 = 𝑛off + 𝑠𝑞 , 𝜂 = 𝛾𝑝 + 𝛾𝑞
𝛼 , 𝛤 (𝑎) stands for the

Gamma function and 𝑈 (𝑎, 𝑏, 𝑧) is the Tricomi confluent hypergeometric
function [23]. Exhaustive discussion concerning this distribution can be
found in Ref. [1], where also some special cases (𝛾𝑝 = 𝛾𝑞 → 1) based on
uninformative prior distributions, scale invariant (𝑠𝑝 = 𝑠𝑞 → 0), Jeffreys’
(𝑠𝑝 = 𝑠𝑞 =

1
2 ) and uniform (𝑠𝑝 = 𝑠𝑞 = 1) options, are described.

The difference 𝛿 yields information about the source flux. The poste-
rior distribution of the source flux is obtained by a scale transformation,
i.e. 𝑗 = 𝛿∕𝑎 where 𝑎 = 𝛼

1+𝛼𝐴 is the exposure of the on-source zone
and 𝐴 denotes the integrated exposure of the on–off experiment, both
considered as constants.

A similar picture is obtained with the ratio of the on-source and
background means (𝜇b = 𝛼𝜇off )

𝛽 =
𝜇on
𝜇b

, 𝛽 ≥ 0. (5)

This variable represents the intensity registered in the on-source region
expressed in terms of the background intensity, i.e. 𝛽 ≤ 1 when no source
is present in the on-source zone. The ratio 𝛽 obeys the generalized Beta
distribution of the second kind [24], 𝛽 ∼ Bg2(𝑝, 𝑞, 𝜌) where 𝑝 = 𝑛on + 𝑠𝑝,
𝑞 = 𝑛off + 𝑠𝑞 and 𝜌 = 𝛼𝛾𝑝∕𝛾𝑞 , with the probability density function

𝑓𝛽 (𝑥) =
𝜌𝑝

𝐵(𝑝, 𝑞)
𝑥𝑝−1

(1 + 𝜌𝑥)𝑝+𝑞
, 𝑥 ≥ 0, (6)

where 𝐵(𝑎, 𝑏) is the Beta function [23]. This posterior distribution was
obtained after the transformation 𝛽 = 𝜇on∕𝜇b while treating 𝜇on and 𝜇b
as independent variables (see Eq. (2)) and keeping 𝜇b unchanged, with
the Jacobian 𝐽 = 𝜇b, and marginalizing over 𝜇b.

In a special case, using the uniform prior distributions for the on- and
off-source means, i.e. 𝛾𝑝 = 𝛾𝑞 → 1 and 𝑠𝑝 = 𝑠𝑞 = 1, and assuming that the
on–off data were registered in the regions of the same exposure, when
𝜌 = 𝛼 = 1, the posterior distribution for the ratio 𝛽 written in Eq. (6)
reduces to the result given originally in Ref. [5]. Assuming 𝛾𝑝 = 𝛾𝑞 → 1
and 𝛼 = 1, i.e. 𝜌 = 1, the result presented in Eq. (13) in Ref. [6] is
obtained.

In some cases, it may be appropriate to use a variable

𝜔 =
𝜇on

𝜇on + 𝜇off
, 𝜔 ∈ ⟨0, 1⟩, (7)

that represents the fraction of the total intensity registered in the on-
source zone. Considering that 𝜔 = 𝛼𝛽∕(1 + 𝛼𝛽), we recover from Eq. (6)
that the probability density function of the proportion 𝜔 is

𝑓𝜔(𝑥) =
𝜅𝑝

𝐵(𝑝, 𝑞)
𝑥𝑝−1(1 − 𝑥)𝑞−1

[1 + (𝜅 − 1)𝑥]𝑝+𝑞
, 𝑥 ∈ ⟨0, 1⟩, (8)

where 𝑝 = 𝑛on+𝑠𝑝, 𝑞 = 𝑛off +𝑠𝑞 and 𝜅 = 𝛾𝑝∕𝛾𝑞 is the ratio of the prior rate
parameters. In this case, equally intensive on- and off-source processes
(𝜇on = 𝜇b) are described by a balance value of 𝜔 = 𝛼

1+𝛼 .
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Note that any Bayesian statement based on the probabilities inferred
from the above derived distributions is independent of the prior rate
parameters when 𝛾𝑝 = 𝛾𝑞 and thus 𝜌 = 𝛼. For 𝛾𝑝 = 𝛾𝑞 , we even have
that the proportion 𝜔 obeys the Beta distribution, i.e. 𝜔 ∼ B(𝑝, 𝑞). This
widely used option also follows from using the prior Beta distributions
conjugate to the binomial sampling process, i.e. prior 𝜔 ∼ B(𝑠𝑝, 𝑠𝑞).
In the context of on–off measurements, the classical analysis of the
binomial proportion is discussed in Refs. [12,15], for example. Point
estimates of the proportion 𝜔 are traditionally used in the analysis of
directional data in cosmic ray physics, see e.g. Refs. [18–20,22,25,26].

The proposed Bayesian solutions to the on–off problem have other
interesting features. Unlike traditional approaches [2–9], we treat the
on- and off-source processes as independent. Hence, our posterior distri-
butions are maximally noncommittal about missing information on the
relationship between these processes. Moreover, receiving information
separately from the on- and off-source observations, the on–off problem
is examined without a predetermined assumption in which zone the
source is to be searched for [1]. Thus, any detected imbalance will lead
to the same conclusion notwithstanding the region where more activity
is expected [1]. Note that most classical test statistics relevant to the
on–off problem possess the same property [11,15,16].

Other technical details are summarized in Appendices. In Appendix A
we show that all three on–off variables provide the same probability
of the source absence in the on-source zone. Note, however, that the
fractional variables 𝛽 or 𝜔, which are easier to handle, do not substitute
for the difference 𝛿.

A way how to determine the shortest credible intervals for the on–
off variables is described in Appendix B. In Appendix C we show how
to modify Bayesian solutions, when a source is known to be present in
the on-source zone. Similar solutions are also obtained in often adopted
schemes, whereby source and background parameters are treated as
independent variables [2,3,6–9]. In Appendix D we present Bayesian
solutions for cases when background rates are known with sufficient
precision.

2.2. Waiting for next events

Current experiments collecting rare events raise interest for pre-
dictions based on previous observations. Typically, we want to know
how many events must be registered in a subsequent experiment in
order to identify a given number of events in a selected on-source zone,
while relying on previous data collected under the same conditions with
the same instrument. This issue is solved by constructing a relevant
predictive distribution.

According to previous considerations, we assume that the num-
bers of on- and off-source events registered in a new experiment up
to and including time 𝑡 are generated in two independent Poisson
processes {𝑁on(𝑡); 𝑡 ≥ 0} and {𝑁off (𝑡); 𝑡 ≥ 0} with respective rates
𝜇on and 𝜇off , i.e. among others, 𝑁on(𝑡) ∼ Po(𝜇on𝑡) and 𝑁off (𝑡) ∼
Po(𝜇off 𝑡). Hence, we know that events of the merged Poisson process
{𝑁(𝑡) = 𝑁on(𝑡)+𝑁off (𝑡); 𝑡 ≥ 0}, 𝑁(𝑡) ∼ Po(𝜇𝑡) where 𝜇 = 𝜇on+𝜇off , arrive
into the on-source zone with the probability 𝜔 = 𝜇on∕𝜇 independently of
each other and independently of their arrival times, see e.g. Ref. [27].
Consequently, if the total number of events 𝑛 > 0 is collected up to
time 𝑡, the corresponding number of on-source events, 𝑌on = (𝑁on(𝑡) ∣
𝑁(𝑡) = 𝑛), has a binomial distribution with parameters 𝑛 and 𝜔, i.e. 𝑌on ∼
Bi(𝑛, 𝜔). We also know that the total number of events recorded until
a predefined number 𝑘 > 0 of events arrive into the on-source zone,
𝑌 = (𝑁(𝑡) ∣ 𝑁on(𝑡) = 𝑘, the on-source event is the last one), has a
shifted negative binomial distribution (waiting time distribution) with
parameters 𝑘 and 𝜔, i.e. 𝑌 ∼ NBi(𝑘, 𝜔) with support 𝑛 = 𝑘, 𝑘 + 1,…, see
e.g. Ref. [28].

Further, we ask for the probability 𝑝𝑛,𝑘(𝜔) that more than 𝑛 events
in total are collected before the 𝑘th on-source event is registered if, as

justified above, events are switched independently between on- and off-
source zones with the probability 𝜔. We obtain (𝑘 > 0 and 𝑛 = 𝑘, 𝑘+1,…)

𝑝𝑛,𝑘(𝜔) = 𝑃 (𝑌 > 𝑛 ∣𝜔) = 𝑃 (𝑌on < 𝑘 ∣𝜔) =
𝑘−1
∑

𝑖=0

( 𝑛
𝑖

)

𝜔𝑖(1 − 𝜔)𝑛−𝑖, (9)

where we use the relation between the negative binomial variable 𝑌
and the binomial variable 𝑌on, see e.g. Eq. (5.31) in Ref. [28]. This
way, Eq. (9) gives the probability of the waiting time for the 𝑘th on-
source event when the time is measured in terms of the total number of
collected events 𝑛.

In order to determine the chances of identifying on-source events
in a new series of observations, we need to be informed about the
binomial parameter 𝜔. We use the fact that, in the Bayesian concept,
the information on future measurements is contained in the posterior
predictive distribution of unobserved observations, conditional on the
already observed data. This distribution is obtained by marginalizing
the distribution of the new data, given parameters, over the posterior
distribution of parameters, given the previous data, accounting thus for
uncertainty about involved parameters.

Since the Poisson processes guarantee that the new and old obser-
vations in disjoint time intervals are independent, when conditioned
on parameters 𝜇on and 𝜇off , or, equivalently, on 𝜇 = 𝜇on + 𝜇off and
𝜔 = 𝜇on∕𝜇, and since the waiting time probability given in Eq. (9) is
independent of 𝜇, we can write

𝑃 (𝑌 > 𝑛, 𝜇, 𝜔 ∣𝐷) = 𝑃 (𝑌 > 𝑛 ∣𝜔)𝑝(𝜇, 𝜔 ∣𝐷), (10)

where 𝐷 = (𝑛on, 𝑛off ) denotes the old on–off data and 𝑝(𝜇, 𝜔 ∣ 𝐷) is
the joint posterior distribution of 𝜇 and 𝜔 which is obtained via Bayes’
rule using the prior distributions for 𝜇on and 𝜇off in Eq. (1). Hence, by
marginalizing over 𝜇 and 𝜔, we obtain from Eqs. (9) and (10) that, in
the new data set, the waiting time for the 𝑘th on-source event exceeds
𝑛 with the probability

𝑃𝑛,𝑘 = ∫

1

0

[

∫

∞

0
𝑃 (𝑌 > 𝑛, 𝜇 = 𝑦, 𝜔 = 𝑥 ∣𝐷)d𝑦

]

d𝑥

= ∫

1

0
𝑝𝑛,𝑘(𝑥)𝑓𝜔(𝑥)d𝑥, (11)

where 𝑓𝜔(𝑥) = 𝑝(𝜔 = 𝑥 ∣𝐷) = ∫ ∞
0 𝑝(𝜇 = 𝑦, 𝜔 = 𝑥 ∣𝐷)d𝑦 is the posterior

distribution of the proportion 𝜔 given in Eq. (8). In particular, assuming
that 𝜔 ∼ 𝐵(𝑝, 𝑞) for 𝛾𝑝 = 𝛾𝑞 (𝜅 = 1) where 𝑝 = 𝑛on + 𝑠𝑝 and 𝑞 = 𝑛off + 𝑠𝑞
are known from the previous measurement, it follows that

𝑃𝑛,𝑘 = ∫

1

0
𝑝𝑛,𝑘(𝑥)𝑓𝜔(𝑥)d𝑥 =

𝑘−1
∑

𝑖=0

( 𝑛
𝑖

) 𝐵(𝑝 + 𝑖, 𝑞 + 𝑛 − 𝑖)
𝐵(𝑝, 𝑞)

. (12)

Here, the Beta functions are replaced by the incomplete Beta functions,
𝐵(𝑎, 𝑏) → 𝐵 1

1+𝛼
(𝑎, 𝑏), if a source is considered to be present in the on-

source zone, see Appendix C.
The application of this result to the new data allows us to assess

the consistency between subsequent observations. Consider that 𝑛 new
events in total are registered until the 𝑘th new event arrives into the
on-source zone, while the previous data has been processed. We know
that the probability of the new observation is 𝑃𝑛,𝑘 provided the new and
old data are generated in the counting model described above. In the
classical sense, it means that our initial assumptions are not valid at a
level of confidence CL < 1 − 𝑃𝑛,𝑘. Hence, at this level of confidence,
our data-driven model fails to describe what has been measured and we
conclude that, besides other possibilities, the new data may indicate
a smaller on-source signal or a larger background rate than would
correspond to the previous measurement.

2.3. Comparison of on–off measurements

In this section we address the question of how to compare two inde-
pendent on–off measurements. Our goal is to quantify statistically which
of the measurements indicate a more intense emitter, while relying on
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information about observations contained in the posterior distributions
of on–off variables. Besides sequential measurements performed under
similar conditions, we also admit experiments conducted with different
equipments, for example, when different sources in different spatial,
time or energy ranges are observed.

We assume that two independent on–off observations, marked by
indices 1 and 2, were collected and processed by the method described
in Section 2.1. Depending on what we want to examine, we choose one
type of the on–off variable. The relationship between the two Bayesian
outputs is quantified by the probability 𝑃 (𝜏1 < 𝐴𝜏2 ∣ 𝐷1, 𝐷2) where
𝜏1(𝜏2) is a suitable on–off variable (𝜏 = 𝛿, 𝛽 or 𝜔) for the first (second)
measurement and 𝐷1 = (𝑛on1 , 𝑛off1 ) (𝐷2 = (𝑛on2 , 𝑛off2 )) denotes the
corresponding on–off data. This probability is determined by integrating
the joint probability distribution of 𝜏1 and 𝜏2 over a relevant two-
dimensional domain. Here, a constant 𝐴 is used to account, at least
to first order, for different observational conditions or experimental
imperfections (see below).

From a practical perspective, the best way is to compare source
fluxes. For this, we utilize the unconditional distributions of the dif-
ferences 𝛿1 and 𝛿2, respectively, see Eqs. (3)–(4). The probability that
the flux 𝑗1 = 𝛿1∕𝑎1 observed in the first observation is less than the flux
𝑗2 = 𝛿2∕𝑎2 deduced from the second one, both fluxes treated as random
variables, is

𝑃 (𝑗1 < 𝑗2) = 𝑃
(

𝛿1 <
𝑎1
𝑎2

𝛿2

)

= ∫

∞

−∞
𝑓𝛿1 (𝑥1)

⎡

⎢

⎢

⎣

∫

∞

𝑎2
𝑎1

𝑥1
𝑓𝛿2 (𝑥2)d𝑥2

⎤

⎥

⎥

⎦

d𝑥1. (13)

Here, the assessment of stability of source fluxes requires the knowledge
of the on-source exposures, 𝑎1 and 𝑎2. However, they may be affected
by various imperfections associated with details of detection and data
processing, especially when different sources are examined by different
techniques.

The discrepancy between two independent observations can also be
described by comparing the ratio variables while canceling out the effect
of exposures. If we adopt the unconditional distributions for the ratio
variables 𝛽1 and 𝛽2 given in Eq. (6), the inconsistency between two sets
of on–off data can be quantified by the probability

𝑃 (𝛽1 < 𝜉𝛽2) = ∫

∞

0
𝑓𝛽1 (𝑥1)

[

∫

∞

𝜉−1𝑥1
𝑓𝛽2 (𝑥2)d𝑥2

]

d𝑥1. (14)

Here, for further possible applications, we introduced a parameter 𝜉 > 0,
allowing us to compare multiples of the ratio variables. In a first order
approach, this parameter can be employed to eliminate imperfections
attributable to detection and data evaluation.

When two measurements collected in the same on- and off-source
zones are studied (𝛼1 = 𝛼2), the proportion 𝜔 is advantageously used
after a straightforward modification of Eq. (14). Note also that the
proposed probabilities are easily modified if sources are assumed to
be present in their on-source zones, see Appendix C. Specifically, when
non-negative source rates are guaranteed due to external arguments, the
probabilities of inconsistency are obtained by putting the conditional
distributions into the relevant equations while changing the integration
limits accordingly.

Fig. 1. Distributions of proportion 𝜔 for AGN data [22]. The same uninformative priors
for on- and off-source means (𝑠 = 𝑠𝑝 = 𝑠𝑞 and 𝛾𝑝 = 𝛾𝑞 → 1) are used. Results for scale
invariant (𝑠 → 0), Jeffreys’ (𝑠 = 1

2
) and uniform (𝑠 = 1) priors are shown in black, blue and

red, respectively. Distributions for the proportion, 𝑓𝜔(𝑥), and distributions 𝑓+
𝜔 (𝑥), when

conditioned on a non-negative source rate (𝜔 ≥ 𝛼
1+𝛼

), are depicted as dashed and thick full
curves, respectively. Horizontal dashed lines visualize credible intervals for the proportion
(⟨𝜔− , 𝜔+⟩) at a 3𝜎 level of confidence. Upper limits at the same confidence level for the
proportion assumed to be non-negative (𝜔+

+ for 𝜔 ≥ 𝛼
1+𝛼

) are shown by colored points.
(For interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

The integration in Eqs. (13) and (14) is to be performed numerically
over the indicated two-dimensional sets. In some counting experiments,
background rates can be estimated with sufficient accuracy from auxil-
iary measurements or modeled numerically. With this simplification,
we obtained explicit formulae for the probabilities of inconsistency
summarized in Appendix E.

The probabilities of inconsistency given in Eqs. (13) and (14) have
somewhat different meanings. The difference 𝛿 allows us to quantify
disparities between source fluxes, when on-source exposures are known.
The probabilities based on the fractional variables 𝛽 and 𝜔 describe
discrepancies between on-source observations when expressed with
respect to the background or total measurements, respectively. Thus,
in more complicated cases, additional information about details of
detection and data processing is needed for their correct interpretation
(e.g. background rates, energy ranges, data quality limits etc.).

The probabilities written in Eqs. (13) and (14) do not substitute
for the probabilities of the source presence in the on-source zone,
see Appendix A. Indeed, it can be more likely that a larger flux is
observed from a source which is found to be less significant than the
other, i.e. 𝑃 (𝑗1 < 𝑗2) > 0.50 while 𝑃+

1 > 𝑃+
2 and vice versa. Note

also that quantified disparities between source fluxes, 𝑃 (𝑗1 < 𝑗2), when
compared to ratio results, 𝑃 (𝛽1 < 𝛽2), for a given pair of observations,
may reveal hitherto unnoticed features that could affect measurements,
were not considered during data processing or disrupted homogeneity
of the underlying Poisson processes.

Table 1
AGN and Cen A data measured by the Auger surface detector [20–22] and the HS data detected by the Telescope Array [29].
Source assignment, period, exposure 𝐴 in km2 sr y, measured on- and off-source counts and the on–off parameter 𝛼 are listed
in the first sixth columns. The endpoints of examined periods are denoted by 𝐴 = (May 27, 2006), 𝐵 = (Aug 31, 2007), 𝐶 =
(Dec 31, 2009), or 𝐶 = (Jan 1, 2010) for Cen A, and 𝐷 = (Mar 31, 2014), respectively. For the HS we used the two-year data
collected from 𝐸 = (May 5, 2013) to 𝐹 = (May 11, 2015), see Table 1 in Ref. [29]. The Bayesian probabilities of no source (𝑃 −),
corresponding significances (𝑆B) and Li-Ma significances (𝑆LM) are given in the next three columns. For Bayesian results, Jeffreys’
prior distributions were adopted, i.e. 𝑠 = 1

2
and 𝛾 → 1.

Data Period A 𝑛on 𝑛off 𝛼 𝑃 − 𝑆B 𝑆LM

AGN 𝐴–𝐵 4 500 9 4 0.266 8.2 10−5 3.77 3.73
AGN 𝐴–𝐶 15 980 21 34 0.266 1.7 10−3 2.93 2.90
AGN 𝐴–𝐷 47 363 41 105 0.266 2.0 10−2 2.05 2.03
Cen A 𝐶–𝐷 31 383 3 76 0.047 0.59 −0.22 −0.31
HS 𝐸–𝐹 5 32 0.075 7.0 10−2 1.48 1.40
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Fig. 2. Distributions of source flux 𝑗 = 𝛿∕𝑎 (𝑎 = 𝛼
1+𝛼

𝐴) for AGN data [22]. Both types of
distributions are shown, 𝑓𝑗 (𝑥) (dashed curves) and 𝑓+

𝑗 (𝑥) for 𝑗 ≥ 0 (thick full curves). For
further details see caption to Fig. 1.

Fig. 3. Distributions of ratio 𝛽 for Cen A data [22]. Both types of distributions are shown,
𝑓𝛽 (𝑥) (dashed curves) and 𝑓+

𝛽 (𝑥) for 𝛽 ≥ 1 (thick full curves). For further details see caption
to Fig. 1.

3. Examples

The usefulness of the method described in Section 2 is demonstrated
using arrival directions of the highest energy cosmic rays measured by
the Pierre Auger Observatory [20–22]. Considering a predefined set of
positions of nearby active galactic nuclei (AGN), we provide information
to what extent is this set of possible sources related to directional data
after this association has been suggested [18,19]. In a similar way,
we also examine a signal that has been initially associated with the
region around Centaurus A (Cen A) [20,21]. We emphasize that earlier
conclusions [18–22] are in line with our analysis. Our aim is not to
reassess previous studies, we only point out how the previous findings
may be viewed from different perspectives.

Regardless of the results of further analysis [20,22], we assumed that
the signals from AGNs [18,19] and Cen A [20,21] have not yet been
confirmed. Given the data that were observed in the preselected on–off
regions, we calculated the posterior distributions of the difference and
fractional variables. We assumed the same prior distributions for the
on- and off-source means with common shape parameters and zero rate
parameters, i.e. 𝑠 = 𝑠𝑝 = 𝑠𝑞 and 𝛾 = 𝛾𝑝 = 𝛾𝑞 → 1. Furthermore, we
derived the posterior distributions of the source flux 𝑗 using 𝑗 = 𝛿∕𝑎

Fig. 4. Credible intervals for source flux 𝑗 = 𝛿∕𝑎 (𝑎 = 𝛼
1+𝛼

𝐴) at a 1𝜎 level of confidence
are shown as functions of the common shape parameter of prior distributions 𝑠 = 𝑠𝑝 = 𝑠𝑞
(𝛾𝑝 = 𝛾𝑞 → 1). Results for AGN (gray, blue and red bands) and Cen A (magenta) data [22]
are depicted. Dashed-dot lines indicate limits estimated using the approach based on
known background (see Appendix D). Black vertical lines show classical limits deduced
within the unbounded profile likelihood analysis [16]. The horizontal black line represents
the background expectation. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

Fig. 5. Waiting time predictions. The probabilities 𝑃𝑛,𝑘 that less than 𝑘 on-source events
are observed are shown as functions of the total number of registered events 𝑛. Predictions
based on the AGN signals observed in 𝐴–𝐵 period for the next 12 (32) AGN events are
shown in black (blue). 𝐵–𝐶 predictions for the next 20 AGN counts are in red. Magenta
lines are for predictions of one next Cen A event, based on the Cen A data from 𝐶–𝐷
period. Dashed (full) lines show unconditional (conditional) results based on Jeffreys’
prior distributions. Colored vertical lines indicate observations of (𝑛, 𝑘) events collected in
the subsequent AGN periods. (For interpretation of the references to color in this figure
legend, the reader is referred to the web version of this article.)

where 𝑎 = 𝛼
1+𝛼𝐴 and 𝐴 denotes the integrated exposure of the period of

data taking.
In the following, we show how the three on–off variables can be

used when examining the previously suggested associations. Based on
the results of Section 2.2, we provide examples related to the issue of
waiting for the next on-source events. We also present examples of how
to compare various independent measurements, see Section 2.3. In the
latter case, we include the latest hot spot (HS) data obtained by the
Telescope Array surface detector [29].

3.1. Active galactic nuclei

Among other important results [22], one of the topics of discussion
regarding the distributions of arrival directions of the highest energy
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Fig. 6. Probabilities of inconsistency for the ratio 𝛽, 𝑃𝜉𝛽 = 𝑃 (𝛽1 < 𝜉𝛽2), deduced from the
AGN data are shown as functions of the parameter 𝜉 (see Section 2.3). Black, blue and
red lines are for the comparison of three separated AGN periods. Dashed and full lines
show unconditional (𝑃𝜉𝛽 ) and conditional (𝑃 +

𝜉𝛽 ) results, respectively, based on Jeffreys’
priors. Red empty (full) points show unconditional (conditional) results for 𝐵–𝐶 and 𝐶–𝐷
periods assuming known background rates (see Appendix D) and uniform priors for on-
source means. Thin horizontal lines indicate the probabilities of inconsistency, 𝑃 (𝑗1 < 𝑗2),
between AGN fluxes. Horizontal chains of three red points are for source fluxes provided
that background rates are known (see Appendix E). (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 7. Probabilities of inconsistency for the ratio 𝛽 are shown as functions of the
parameter 𝜉 (see Section 2.3). The AGN data collected in periods 𝐴–𝐵 and 𝐵–𝐶 are
compared to the Cen A signal in period 𝐶–𝐷, see magenta lines. The probabilities that
quantify inconsistency between the HS signal and the AGN data registered in periods 𝐴–𝐵
and 𝐴–𝐶 are shown in blue. The black horizontal line indicates a probability of 0.50. For
further details see caption to Fig. 6. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

cosmic rays has focused on their association with a set of positions of
nearby objects from the 12th edition of quasars and AGNs [30]. An
initially revealed signal [18,19] has been reinvestigated in subsequent
studies using the newly registered data [20,22].

In order to document the uses and advantages of the Bayesian
reasoning, we examined data registered by the surface detector of the
Pierre Auger Observatory since May 27, 2007 up to March 31, 2014 (see
Table A1 in Ref. [22]), after the AGN signal was recognized [18,19].
Specifically, we used events with energies in excess of 53 EeV and with
zenith angles not exceeding 60◦. For the association of the selected
events with the nearby AGNs we accepted a set of parameters as defined
in Refs. [18,19] and then slightly modified [20,22]. A complex AGN

source consists of a unification of circular zones with angular radii 3.1◦
around the positions of AGNs within 75 Mpc (redshifts 𝑧 ≤ 0.018) [30].

We examined three sets of data collected successively, as reported
in Refs. [20,22]. Namely, we analyzed arrival directions of events
registered since May 27, 2006 up to August 31, 2007 (here denoted
as period 𝐴–𝐵, II in Ref. [20]), up to December 31, 2009 (here 𝐴–𝐶,
II + III in Ref. [20]) and, finally, up to March 31, 2014 (here 𝐴–𝐷, see
also Ref. [22]). The integrated exposures of the Auger surface detector,
measured counts of on- and off-source events and on–off parameters 𝛼,
all taken from Refs. [20,22], are summarized in the first six columns
in the upper three lines in Table 1. In this table, we also show some
statistical characteristics based on the Jeffreys’ priors (𝑠 = 1

2 , 𝛾 → 1)
and asymptotic Li-Ma significances [11].

The posterior distributions for the proportion 𝜔 are depicted
in Fig. 1. In this figure, we show results with three kinds of uninforma-
tive prior distributions, namely, for scale invariant (𝑠 → 0, in black),
Jeffreys’ (𝑠 = 1

2 , blue) and uniform (𝑠 = 1, red) prior distributions.
Two families of posterior distributions are depicted, unconditional
distributions (dashed curves) as well as distributions conditioned on
a non-negative source rate in the on-source region (thick full lines),
i.e. assuming 𝜔 ≥ 𝛼

1+𝛼 , see Appendix C. In Fig. 1, also credible intervals
and upper limits for the proportion 𝜔 at a 3𝜎 level of confidence are
visualized (see Appendix B).

As an alternative, in Fig. 2 we show posterior distributions for the
AGN flux 𝑗 = 𝛿∕𝑎, given the on–off data in three examined period, and
again using the three uninformative prior options. Relevant credible
intervals at a 1𝜎 level of significance are depicted in Fig. 4 as functions
of the common shape parameter. The classical estimates [16] and the
results with known background rates (see Appendix D) are also shown
in Fig. 4.

The posterior distributions shown in Figs. 1 and 2 clearly illustrate
that the Bayesian inferences are only slightly dependent on the choice
of uninformative prior distributions (𝑠 ∈ ⟨0, 1⟩, 𝛾 → 1) if the AGN
source exhibits a sufficiently high activity, see also Fig. 4. In such cases,
due to large probabilities of the source presence in the AGN region, all
conditional distributions approximately follow in their domains relevant
unconditional distributions. Furthermore, we learned how accessible
information about the AGN source evolves with an increasing number of
events recorded in the three successive sets of on–off data. Our Bayesian
estimates agree with the reported fractions of events associated with the
AGN region and their downward trend [20,22].

A decreasing AGN signal is also reflected in the predictions of the
waiting time for the next on-source events when compared with future
observations, see Section 2.2. In Fig. 5, we show the probability that
less than a given number of AGN events were detected in a number of
subsequent measurements, while relying on previous observations. For
example, the Auger data collected in 𝐴–𝐵 period predicts that a total of
42 events should be registered prior to the next 12 AGNs events with a
probability below 4 10−3 (black lines). Hence, when confronted with the
Auger data from 𝐵–𝐶 period, in which these numbers were observed,
such a waiting time is very unlikely. This result allows us to conclude
that the 𝐵–𝐶 data is inconsistent with the 𝐴–𝐵 observation at about a
3𝜎 level of confidence.

Independent AGN observations are compared in Fig. 6, see Sec-
tion 2.3. In this case, the source fluxes as well as the ratios 𝛽 (𝜉 ≈ 1) are
well suited since still the same on- and off-source zones are observed
with the same instrument. The parameter 𝜉 is employed to show the
probability that one ratio is 𝜉-times smaller than the other or it can
correct for imperfections, if known (e.g. different background rates,
energy ranges, seasonal effects etc.). Our results depicted in Fig. 6 agree
with the findings drawn from the waiting time analysis. Namely, it
is very unlikely that the AGN ratio from 𝐴–𝐵 period is less than the
ratios derived from the two subsequent periods, and the same holds for
the fluxes (black and blue results). But the probability of inconsistency
between 𝐵–𝐶 and 𝐶–𝐷 periods are much larger (red results). Note
also that the discrepancy between the probabilities calculated for the
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AGN fluxes and ratios, when relating 𝐴–𝐵 and 𝐵–𝐶 periods for 𝜉 ≈ 1
(in black), may indicate inhomogeneities of the underlying Poisson
processes.

We also examined two possible signals deduced from different on–off
measurements that were collected by different experiments. In Fig. 7,
the two-years HS data collected on the northern hemisphere by the
Telescope Array surface detector (see Table 1 in Ref. [29]) is com-
pared to the AGN signal measured by the Auger surface array on the
southern hemisphere [20,22]. Using two sets of the AGN data, 𝐴–𝐵
and 𝐴–𝐷 periods, the probabilities of inconsistency for the ratio 𝛽 are
shown as functions of the parameter 𝜉 (blue lines). Interestingly, since
𝑃 (𝛽A–D < 𝜉𝛽HS) > 0.70 for 𝜉 ≈ 1, it is more likely that the less visible HS
source (𝑆B = 1.48, see Table 1) manifests itself more markedly, when
confronted with background, than the latest signal from AGN emitters
(𝐴–𝐷 period) which are more easily identified (𝑆B = 2.05, see Table 1).
In this example, the parameter 𝜉 may be utilized to correct for different
energy scales (𝐸 ≥ 55 EeV for the HS [29] while 𝐸 > 53 EeV for the
AGNs [22] plus systematic uncertainties) and for different background
fluxes (at these energies, the overall flux on the northern hemisphere
was measured to be at least twice as large as the southern flux, see
e.g. Ref. [31]). If the northern background is truly larger than the
southern one and, consequently, the observation of the HS signal is more
difficult, one can correct for this effect by using 𝜉 > 1, enlarging even
more the probability that the AGNs are weaker emitters.

3.2. Centaurus A

Centaurus A (NGC 5128), located at a distance less than 4 Mpc, is
known as a promising candidate source of the highest energy cosmic
rays. Moreover, the nearby Centaurus cluster with large concentration of
galaxies lies in approximately the same direction, at a distance of about
50 Mpc. The excess of the highest energy events found in the vicinity
of Cen A and the properties of observed signal have been originally
reported in Ref. [20]. However, this observation was not confirmed in
successive measurements [22].

In this example, we show how the disappearance of a previously
specified signal [20] can be justified by using subsequently collected
data within the Bayesian analysis. We adopted the data registered by the
surface detector of the Pierre Auger Observatory since January 1, 2010
up to March 31, 2014 [22] (here period 𝐶–𝐷), after the original Cen A
signal was identified [20]. The arrival directions of events with energies
above 53 EeV and zenith angles up to 60◦ were taken from Table A1 in
Ref. [22]. Based on the previous findings [20], we assumed a circular
region with an angular radius of 18◦, located around the position of
Cen A (𝛼 = 201.4◦, 𝛿 = −43.0◦). The basic characteristics of the Cen A
region and the numbers of events collected in the examined period are
summarized in the last but one row in Table 1.

In Fig. 3, we give an example of most unbiased information on
the highest energy cosmic rays associated with the preselected Cen A
zone, which can be derived from the latest data [22]. In this figure,
the posterior distributions for the ratio 𝛽 and corresponding credible
intervals at a 3𝜎 level of confidence are shown for three kinds of
uninformative prior distributions. We distinguish for unconditional
distributions (𝛽 ≥ 0) and distributions conditioned on a non-negative
source rate in the on-source region (𝛽 ≥ 1). Credible intervals for the
source fluxes 𝑗 at a 1𝜎 level of confidence are depicted in Fig. 4 as
functions of the common shape parameter 𝑠 ∈ ⟨0, 1⟩ (𝛾 → 1).

The Bayesian inference indicates that the presence of the source
in the originally selected Cen A region is less likely than its absence
therein when observations since 2010 are considered, i.e. 𝑃− ≥ 0.50
(𝑆B ≤ 0) for almost all prior options, for the Cen A flux see Fig. 4.
This conclusion agrees with the classical results based on asymptotic
techniques, see Table 1. Hence, the conditional distributions for the ratio
𝛽, 𝑓+

𝛽 (𝑥) shown in Fig. 3, poorly reflect reality.
The absence of the signal registered in the Cen A region in the

latest observation can be quantified using the waiting time for one

next Cen A event, see Section 2.2. It is found in a marked difference
between unconditional and conditional predictions that disqualifies the
latter option, see Fig. 5. Based on this data, over fifty events should be
needed in order that the new one was identified in the Cen A region
at a 90% level of confidence. Using the method of Section 2.3, the
same is documented in Fig. 7. Namely, it is more likely that the four-
years Cen A signal is weaker than the AGN activity measured in two
preceding periods (magenta results). Here, the parameter 𝜉 can account
for different background zones of Cen A and AGNs emitters and different
shapes of their energy spectra, for example.

In this regard, it is worth recalling that the Auger collaboration has
lately pointed out that the significance of the excess of events in the
angular windows and energy range, as examined in this study, is less
than its originally observed value [22]. This was obtained by using a
broader set of data collected between January 1, 2004 and March 31,
2014, including events with zenith angles up to 80◦, when the hypothesis
of isotropy was tested. The most significant departure from isotropy in
the available set of data was reported for events with energies beyond
58 EeV and with arrival directions within a circle of an angular radius
of 15◦ centered on Cen A [22].

4. Conclusions

We focused on the search for new phenomena, when all relevant
characteristics of a source which is suspected of causing observed effects
cannot be set in an optimal way. The issue was dealt with in the
context of on–off measurements assuming registration of small numbers
of events that obey Poisson distributions. For this purpose, the Bayesian
way of reasoning was utilized. This approach is not only statistically well
justified and intuitively easily interpretable, but also provides readily
computable results.

We examined three appropriately chosen on–off variables that store
information available from the on–off experiment. In addition to tradi-
tionally presented results, we proposed how to utilize observation-based
information for predictions and comparisons, focusing on quantification
of signal stability.

By using successive measurements, increasing sets of the highest
energy events collected at the Pierre Auger Observatory were examined.
For comparison, also directional data reported by the Telescope Array
was considered. Using the recent Auger observations, we summarized
the outputs accessible in the proposed approach. We discussed the
extent to which the comparison of on–off measurements may help when
searching for cosmic ray sources.
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Appendix A. Source detection

Using the posterior distribution for the difference, see Eqs. (3) and
(4), the probability for the absence of a source in the on-source region
is [1]

𝑃− = 𝐼 𝜌
1+𝜌

(𝑝, 𝑞), (A.1)

where 𝑝 = 𝑛on + 𝑠𝑝, 𝑞 = 𝑛off + 𝑠𝑞 , 𝜌 = 𝛼𝛾𝑝∕𝛾𝑞 and 𝐼𝑥(𝑎, 𝑏) denotes the
regularized incomplete Beta function [23]. Using other on–off variables,
we obtain after straightforward calculations

𝑃− = 𝑃 (𝜏 ≤ 𝜆𝜏 ) = ∫

0

−∞
𝑓𝛿(𝑥)d𝑥 = ∫

1

0
𝑓𝛽 (𝑥)d𝑥 = ∫

𝛼
1+𝛼

0
𝑓𝜔(𝑥)d𝑥, (A.2)
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where 𝜏 = 𝛿, 𝛽, 𝜔, while 𝜆𝜏 = 0, 1, 𝛼
1+𝛼 denotes the balance value for

the difference, ratio and proportion, respectively. The probability of
the presence of a source in the on-source zone is 𝑃+ = 1 − 𝑃−. When
viewed in terms of a normal variate with zero mean and unit variance,
the probability 𝑃− is converted to a Bayesian significance 𝑆B.

Appendix B. Credible intervals

For the shortest credible interval, ⟨𝜏−, 𝜏+⟩, that contains the on–off
variable with a probability 𝑃 , one has to solve numerically (𝜏 = 𝛿, 𝛽, 𝜔)

𝑃 = ∫

𝜏+

𝜏−
𝑓𝜏 (𝑥)d𝑥, 𝑓𝜏 (𝜏−) = 𝑓𝜏 (𝜏+), (B.1)

under the indicated condition on endpoints of the corresponding proba-
bility density function 𝑓𝜏 (𝑥). An upper bound for the source intensity, 𝜏+,
is determined numerically using the integral in Eq. (B.1) where we put
𝜏− → −∞, 0 or 0 for 𝜏 = 𝛿, 𝛽 or 𝜔, respectively, and relax the indicated
limitation on endpoints of 𝑓𝜏 (𝑥). For a non-negative source intensity
(𝜇on ≥ 𝜇b), see Appendix C, credible intervals are derived by putting
𝑓𝜏 (𝑥) → 𝑓+

𝜏 (𝑥) into Eq. (B.1) while we set 0,1 or 𝛼
1+𝛼 ≤ 𝜏− < 𝜏+ <

+∞,+∞ or 1, respectively. For upper bounds for a know source we set
directly 𝜏− = 0, 1 or 𝛼

1+𝛼 and relax the limitation on endpoints of 𝑓+
𝜏 (𝑥).

Appendix C. Known source

In a variety of problems we know with certainty that an active source
is present in the on-source region or at least we have a good indication
that it may be assumed. This issue is encountered when searching for
accompanying radiation from already identified emitters, for example.
When the mean event rate in the on-source zone can only increase be-
yond what is expected from background, the corresponding probability
distributions are derived conditioning on the non-negative values of the
difference of the on-source and background means, i.e. 𝜇on ≥ 𝜇b = 𝛼𝜇off
or, alternatively, 𝜏 ≥ 𝜆𝜏 where 𝜏 = 𝛿, 𝛽, 𝜔 and 𝜆𝜏 = 0, 1, 𝛼

1+𝛼 for
the difference, ratio and proportion, respectively. For the conditional
distributions we have

𝑓+
𝜏 (𝑥) = 𝑓𝜏 (𝑥 ∣𝑥 ≥ 𝜆𝜏 ) =

𝑓𝜏 (𝑥)
𝑃+ , 𝑥 ≥ 𝜆𝜏 , (C.1)

where the Bayesian probability of the presence of a source in the on-
source zone, 𝑃+ = 1 − 𝑃− = 𝐼 1

1+𝜌
(𝑞, 𝑝), follows from Eq. (A.1). Note that

if the probability 𝑃+ approaches one, when it is exceedingly likely that
the source contributes to the intensity detected in the on-source zone,
the on–off problem is well described in the unconditional regime, since
𝑓+
𝜏 (𝑥) tends to 𝑓𝜏 (𝑥) in the domain where 𝑥 ≥ 𝜆𝜏 .

We recall that, by this construction, we obtain results which were
derived in another way [2,3,6–9], assuming that the source and back-
ground rates are non-negative, i.e. 𝜇s = 𝜇on − 𝜇b ≥ 0 and 𝜇b = 𝛼𝜇off ≥ 0,
for more information see Ref. [1]. Specifically, in the context of the
on–off problem, the use of the proportion 𝜔 with the Jeffreys’ prior
distributions was advocated in Ref. [8]. In our scheme, substituting the
corresponding parameters (𝑝 = 𝑛on +

1
2 , 𝑞 = 𝑛off +

1
2 and 𝛾𝑝 = 𝛾𝑞 → 1)

into Eqs. (8) and (C.1), the posterior 𝜔-distribution written in Eq. (27)
in Ref. [8] is recovered.

Appendix D. Known background

The probability distributions of examined variables are further
simplified in the case of a known background. Such a simplification
may be used, for example, when searching for sources of cosmic rays
in a small on-source region (0 < 𝛼 ≪ 1) complemented by a much
larger off-source zone which is comprised of the remaining part of
the sky within the field of view of the experiment, where 𝑛off ≫ 1.
Then, the number of background events observed in the on-source zone
follow approximately the Poisson distribution with an estimated mean
parameter 𝜇b = 𝛼𝜇off ≈ 𝛼𝑛off , since its estimated variance is negligible,
𝜎2(𝛼𝑛off ) ≈ 𝛼2𝑛off ≪ 𝜇2

b . Another example is the analysis of a counting

experiment that utilizes a constant background rate estimated based on
modeling considerations.

In such a case, we easily obtain 𝜇on = (𝛿 +𝜇b) ∼ Ga(𝑝, 𝛾𝑝) [1] and the
ratio 𝛽 = (𝜇on∕𝜇b) ∼ Ga(𝑝, 𝛾𝑝𝜇b), where 𝑝 = 𝑛on + 𝑠𝑝. The proportion
is given by the transformation 𝜔 = (𝛼𝛽)∕(1 + 𝛼𝛽). In summary, the
probability density functions of all on–off variables are, respectively,

ℎ𝛿(𝑥) =
𝛾𝑝𝑝
𝛤 (𝑝)

(𝑥 + 𝜇b)𝑝−1𝑒
−𝛾𝑝(𝑥+𝜇b), 𝑥 ≥ −𝜇b, (D.1)

ℎ𝛽 (𝑥) =
(𝛾𝑝𝜇b)𝑝

𝛤 (𝑝)
𝑥𝑝−1𝑒−𝛾𝑝𝜇b𝑥, 𝑥 ≥ 0, (D.2)

and

ℎ𝜔(𝑥) =
(𝛾𝑝𝜇off )𝑝

𝛤 (𝑝)
𝑥𝑝−1

(1 − 𝑥)𝑝+1
𝑒−

𝛾𝑝𝜇off 𝑥
1−𝑥 , 𝑥 ∈ ⟨0, 1⟩. (D.3)

In addition, assuming non-negative source rate in the on-source
region, 𝜇on ≥ 𝜇b (i.e. 𝛿 ≥ 0, 𝛽 ≥ 1 or 𝛼

1+𝛼 ≤ 𝜔 ≤ 1), we have for the
corresponding probability density functions

ℎ+𝜏 (𝑥) =
ℎ𝜏 (𝑥)
𝑅+ , 𝑥 ≥ 𝜆𝜏 , (D.4)

where 𝜏 = 𝛿, 𝛽, 𝜔, while 𝜆𝜏 = 0, 1, 𝛼
1+𝛼 , and 𝑅+ is the probability of

the presence of a source in the on-source region provided a constant
background mean is used,1 i.e.

𝑅+ = ∫

∞

0
ℎ𝛿(𝑥)d𝑥 = ∫

∞

1
ℎ𝛽 (𝑥)d𝑥 = ∫

1

𝛼
1+𝛼

ℎ𝜔(𝑥)d𝑥 =
𝛤 (𝑝, 𝛾𝑝𝜇b)

𝛤 (𝑝)
, (D.5)

where 𝛤 (𝑎, 𝑥) = ∫ ∞
𝑥 𝑡𝑎−1𝑒−𝑡d𝑡 is the upper incomplete Gamma function.

It is useful to know that 𝑅+(𝑝, 𝑥) = 𝛤 (𝑝,𝑥)
𝛤 (𝑝) = 𝑒−𝑥

∑𝑝−1
𝑘=0

𝑥𝑘

𝑘! for integer values
of 𝑝.

Notice that for 𝛾𝑝 → 1, 𝑅− = 1 − 𝑅+ is the 𝑝-value obtained in the
classical framework, when the background hypothesis (i.e. 𝜇on ≤ 𝜇b) is
tested against the alternative of a source presence in the on-source zone
(𝜇on > 𝜇b) for the Poisson sampling process [15].

Appendix E. Comparison with known backgrounds

When fluctuations in the background are completely disregarded,
see Appendix D, the probabilities of inconsistency introduced in Sec-
tion 2.3 can be expressed explicitly. We assume two independent obser-
vations, marked by indices 1 and 2. If only non negative integer values of
relevant shape parameters (𝑠𝑝1 and 𝑠𝑝2 ) are considered, the integration
in Eq. (14) is easily performed using the posterior distributions given
in Eq. (D.1). Then, the probability of inconsistency between source
fluxes when the on-source exposures (𝑎1 and 𝑎2) are known, see Eq. (13),
can be written in a compact formula (𝑝1 = 𝑛on1 + 𝑠𝑝1 , 𝑝2 = 𝑛on2 + 𝑠𝑝2 ,
𝑝1, 𝑝2 ∈ 𝑁)

𝑃 (𝑗1 < 𝑗2) = 𝑒−𝑢 𝑣𝑝2
(1 + 𝑣)𝑝1+𝑝2

𝑝2
∑

𝑘=1

𝑝2
∑

𝑖=𝑘

(

𝑝1 + 𝑝2 − 𝑖 − 1
𝑝2 − 𝑖

)

× 𝑢𝑖−𝑘

(𝑖 − 𝑘)!

( 1 + 𝑣
𝑣

)𝑖
𝑅𝑖(𝑣). (E.1)

Here, 𝑢 = 𝛾𝑝2𝜇b2 − 𝑣 𝛾𝑝1𝜇b1 ≥ 0 depends on the known background rates,
𝜇b1 and 𝜇b2 , 𝑣 = (𝛾𝑝2𝑎2)∕(𝛾𝑝1𝑎1) depends on the ratio of two on-source
exposures, 𝛾𝑝1 and 𝛾𝑝2 denote the prior rates of the on-source means and
𝑅𝑖(𝑣) = 1 for the unconditional 𝛿-distributions given in Eq. (D.1), while

𝑅𝑖(𝑣) =
𝑅+(𝑝1 + 𝑝2 − 𝑖, (1 + 𝑣)𝛾𝑝1𝜇b1 )
𝑅+(𝑝1, 𝛾𝑝1𝜇b1 ) 𝑅

+(𝑝2, 𝛾𝑝2𝜇b2 )
, (E.2)

for the conditional 𝛿-distributions, see Eqs. (D.4) and (D.5). In Eq. (E.1)
we compare source fluxes provided 𝑢 ≥ 0. If 𝑢 < 0, we simply exchange
measurements, using 𝑃 (𝑗1 < 𝑗2) = 1 − 𝑃 (𝑗2 < 𝑗1).

1 Note that there are typographical errors in Eqs. (26) and (27) in Ref. [1]. There should
be 𝛤 (𝑝, 𝛾𝑝𝜇b) instead of 𝛤 (𝑝, 𝜇b).
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In a similar way and under the same conditions, we can compare two
independent on–off measurements through the ratios 𝛽1 and 𝛽2 when
background uncertainties are not considered. Using the parameter 𝜉, the
probability of inconsistency between two ratios (see Eq. (14)) is written
(𝑝1, 𝑝2 ∈ 𝑁)

𝑃 (𝛽1 < 𝜉𝛽2) =
𝑤𝑝2

(1 +𝑤)𝑝1+𝑝2

𝑝2
∑

𝑘=1

(

𝑝1 + 𝑝2 − 𝑘 − 1
𝑝2 − 𝑘

)

( 1 +𝑤
𝑤

)𝑘
𝑅𝑘(𝑤), (E.3)

where 𝑤 = 𝜉−1(𝛾𝑝2𝜇b2 )∕(𝛾𝑝1𝜇b1 ) and 𝑅𝑘(𝑤) = 1 for the unconditional
𝛽-distributions (Eq. (D.2)) and for the conditional ones (Eqs. (D.4) and
(D.5)) it is written in Eq. (E.2). The formula in Eq. (E.3) holds for 𝜉 ≤ 1.
If 𝜉 > 1, we use 𝑃 (𝛽1 < 𝜉𝛽2) = 1 − 𝑃 (𝛽2 < 𝜉−1𝛽1).

References

[1] D. Nosek, J. Nosková, Nucl. Instrum. Methods A 820 (2016) 23.
[2] M.L. Knoetig, Astrophys. J. 790 (2014) 106.
[3] D. Casadei, Astrophys. J. 798 (2015) 5.
[4] O. Helene, Nucl. Instrum. Methods 212 (1983) 319.
[5] O. Helene, Nucl. Instrum. Methods 228 (1984) 120.
[6] H.B. Prosper, Nucl. Instrum. Methods A 241 (1985) 236.
[7] H.B. Prosper, Phys. Rev. 37 (1988) 1153.
[8] S. Gillesen, H.L. Harney, Astron. Astrophys. 430 (2005) 355.
[9] P. Gregory, Bayesian Logical Data Analysis for the Physical Sciences, Cambridge

University Press, Cambridge, 2005 (Chapter 14).
[10] S.S. Wilks, Ann. Math. Stat. 9 (1938) 60.
[11] T.P. Li, Y.Q. Ma, Astrophys. J. 272 (1983) 317.

[12] R.D. Cousins, Nucl. Instrum. Methods A 417 (1998) 391.
[13] G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 71 (2011) 1554;

G. Cowan, K. Cranmer, E. Gross, O. Vitells, Eur. Phys. J. C 73 (2013) 2501.
[14] G.J. Feldman, R.D. Cousin, Phys. Rev. D 57 (1998) 3873.
[15] R.D. Cousins, J.T. Linnemann, J. Tucker, Nucl. Instrum. Methods A 595 (2008) 480.
[16] W.A. Rolke, A.M. López, J. Conrad, Nucl. Instrum. Methods A 551 (2005) 493.
[17] S. Algeri, J. Conrad, D.A. van Dyk, Mon. Not. R. Astron. Soc. 458 (2016) L84.
[18] J. Abraham, et al. (The Pierre Auger Collaboration), Science 318 (2007) 928.
[19] J. Abraham, et al. (The Pierre Auger Collaboration), Astropart. Phys. 29 (2008) 188.
[20] P. Abreu, et al. (The Pierre Auger Collaboration), Astropart. Phys. 34 (2010) 314.
[21] P. Abreu, et al., J. Cosmol. Astropart. Phys. 06 (2011) 022.
[22] A. Aab, et al. (The Pierre Auger Collaboration), Astrophys. J. 804 (2015) 15.
[23] F.W.J. Olver, D.M. Lozier, R.F. Boisvert, Clark C.W. (Eds.), NIST Handbook of

Mathematical Functions, Cambridge University Press, Cambridge, 2010 (Chapters
8 and 13).

[24] B. McDonald, Econometrica 52 (1984) 647.
[25] T. Abu-Zayyad, et al., Astrophys. J. 757 (2012) 26.
[26] T. Abu-Zayyad, et al., Astrophys. J. 777 (2013) 88.
[27] H.C. Tijms, A First Course in Stochastic Models, John Wiley & Sons Ltd., Chichester,

2003 (Chapters 1).
[28] N.L. Johnson, A.W. Kemp, S. Kotz, Univariate Discrete Distributions, John Wiley &

Sons, Inc., Hoboken, 2005 (Chapters 5).
[29] K. Kawata, et al. (The telescope array collaboration) in: The 34th International

Cosmic Ray Conference, 30 July–6 August 2015, the Hague, The Netherlands.
[30] M.-P. Véron-Cetty, P. Véron, Astron. Astrophys. 455 (2006) 773.
[31] A. Aab, et al. (The Pierre Auger Collaboration), J. Cosmol. Astropart. Phys. 08 (2015)

049.

230

90


