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Abstract

Similarity search is becoming part of the applications we use daily, e.g., in recommenda-
tion systems or multimedia search applications. As the amount of data grows, so does
the need to search this unstructured data efficiently and effectively. While various simi-
larity indexing approaches provide efficiency, their constraints on the used similarity limit
the effectiveness that represents the relevance of the results. Hence, there is a demand for
indexing methods that impose as few constraints as possible and still manage to index big
multimedia databases.

This thesis presents new indexability indicators (triangularity and ptolemaicity) that
consider the data structure required by indexes. Moreover, they can also capture violations
of these constraints and possibly the level of such violations. Both indicators use an analysis
of relationships between objects in the database. We have analyzed high-dimensional
data using these indicators, and experiments confirmed the expected properties of these
indicators.

The second part deals with transforming non-metric distance measures to enable the in-
dexing of non-metric similarity spaces using traditional metric approaches. Metric indexes
are the de facto standard in similarity search, so it is possible to use many existing indexes.
As a solution, we proposed TriGenGA as an extension of the TriGen algorithm to gener-
ate general modifiers using genetic algorithms. The results showed that such modifiers
outperform the existing TriGen algorithm’s efficiency and effectiveness.

Finally, we defined a data-transitive similarity meta-model that illustrates inherently
non-metric similarity. The main focus is on the relevance of similarity search. It is challeng-
ing to design a high-quality similarity model in the case of data with many duplicates or few
similarity links. A data-transitive similarity meta-model solves this problem by construct-
ing a chain of similar objects that can link even mutually dissimilar objects. At the same
time, the chain itself is an explanation of why two objects are relevant. Moreover, although
this is a completely new approach, it is possible to apply common similarity approaches.
We have successfully tested this meta-model within the domain of open datasets.

The thesis is structured as a commentary on already published papers.
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Abstrakt

Podobnostní vyhledávání se stává součástí aplikací, které používáme každý den, např. do-
poručovací systémy nebo aplikace pro vyhledávání multimedií. S rostoucím množstvím
dat roste i potřeba v těchto nestrukturovaných datech rychle a efektivně vyhledávat. Za-
tímco různé podobnostní přístupy k indexaci zajišťují rychlost vyhledávání, jejich omezení
limitují efektivitu reprezentovanou relevancí výsledků. Proto vzniká poptávka po index-
akčních metodách, které kladou co nejmenší omezení a přesto umožňují indexování velkých
mutlimediálních databází.

Tato práce prezentuje nové indikátory indexovatelnosti (angl. triangularity a ptole-
maicity) které zohledňují indexy požadovanou strukturu dat. Kromě toho dokáží zachytit
i porušení těchto omezení a případně úroveň takového porušení. Oba indikátory využí-
vají analýzy vztahů mezi objekty v databázi. Využitím těchto indikátorů jsme provedli
analýzu vysoce dimenzionálních dat. Experimenty potvrdily očekávané vlastnosti těchto
indikátorů.

Druhá část se zabývá transformací nemetrických vzdáleností, která umožňuje indexaci
nemetrických podobnostních prostorů pomocí tradičních metrických přístupů. Metrické in-
dexy jsou de facto standardem v oblasti podobnostního vyhledávání, takže je možné využít
mnoho již existujících indexů. Jako řešení jsme navrhli TriGenGA jako rožšíření algoritmu
TriGen o generování obecných modifikátorů pomocí genetických algoritmů. Výsledky uká-
zaly, že takové modifikátory překonávají existující TriGen algoritmus v rychlosti i efektivitě.

Na závěr jsme definovali datově-tranzitivní podobnostní meta-model, který je ukázkou
inherentně nemetrické podobnosti. Hlavní důraz je kladen na relevanci podobnostního
vyhledávání. V případě dat s mnoha duplicitami či málo podobnostními propojeními je
obzvláště obtížný úkol vytvořit kvalitní podobnostní model. Datově-tranzitivní podob-
nostní meta-model řeší tento problém pomocí sestavení řetězu podobných objektů, který
může propojovat i zcela nepodobné objekty. Zároveň je takový řetěz vysvětlením, proč jsou
dva objekty vzájemně relevantní. Navíc, přestože se jedná o zcela nový přístup, je na něj
možné aplikovat běžné podobnostní přístupy. Tento meta-model jsme úspěšně otestovali
v rámci domény otevřených dat.

Práce je strukturována jako komentář k již publikovaným článkům.
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Contributions

In particular, the main contributions of the dissertation thesis are as follows:

1. Indexability Analysis
New indexability indicator triangularity for metric and ptolemaicity for Ptolemaic
similarity models that consider the structure of objects defined by constraints given
by these similarity models. At the same time, these indicators deal with possible
violations of these constraints.

2. TriGenGA
Proposal of an extension of the original TriGen algorithm that can deal with multi-
parameter modifiers. Using genetic algorithms, it can find a general modifier that
outperforms the original algorithm.

3. Data-Transitive Similarity Meta-model
Definition of data-transitive similarity meta-model as a robust relevance-oriented
similarity. This provides a novel self-explanatory way to enrich similarity by using
mutually similar objects from the database.
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Notation

U universe (domain) of valid objects
S ⊂ U database of objects
S∗ ⊂ S random subset of database

x, y, z, oi ∈ S objects from database
q, qi ∈ U query objects from domain

s : U× U→ R similarity measure between pairs of objects in U
δ : U× U→ R+

0 dissimilarity measure (distance) between pairs of objects in U
M : R+

0 → R+
0 distance modifier

QkNN(q, k) kNN query with parameter k
Qrange(q, r) range query with parameter r
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Chapter 1
Introduction

In this chapter, we introduce the reader to the field of similarity search and the primary
points of research. Section 1.1 introduces the reader to what similarity search deals with
and where they may encounter it in everyday life. In Section 1.2, we define the current
problems in this domain that are addressed in this thesis. The main goals are presented
in Section 1.3. Section 1.4 describes the structure of the thesis.

1.1 Similarity Search
Searching in structured databases is now standard, and almost no IT sector can do it
without using relational databases. In this case, a data structure is an essential feature,
otherwise query languages like SQL could not work properly. In many cases, the strict
data structure of relational databases has proved too restrictive. Hence, document, graph,
and other databases based on alternative data structures have come into popularity.

In recent years, however, the amount of unstructured and unannotated data has rapidly
grown. Multimedia databases are becoming a part of our lives. This creates demand to nav-
igate in these databases without the need for manual annotation or structure definition.
Keyword search proves insufficient and often problematic, especially when expressing more
complex concepts. Thus, similarity search comes with querying by example, which is ap-
plied in many domains.

The similarity is based on expert knowledge, unlike other domains (artificial intelli-
gence, probabilistic models). Evaluating whether two database elements (e.g., images) are
similar is a subjective matter. At the same time, it turns out that different definitions of
similarity are suitable for different applications. For one use case, it may be useful to mea-
sure similarity based on color distribution. Meanwhile, for another use case, it may be
better to compare sets of visual features. This property, complicates algorithms working
with similarities. Therefore, some algorithms restrict themselves to subsets of similarities,
making it challenging to use non-trivial similarities.
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1. Introduction

1.1.1 Motivation

Many streaming applications apply similarity search within their recommendation algo-
rithms at the content-based recommendation level, searching for similar songs, clips, or
products. [1, 2] They use a similarity-based approach to identify users with similar behav-
ioral patterns and then match preferences at the collaborative filtering level. [3] Identifying
a user from a photo, footage, or other data is another domain where we may encounter
similarity search. [4]

Recently, similarity search has also gained importance due to the need for information
verification (fact-checking). [5] First of all, thanks to similarity search, we can often easily
trace the original source of information (e.g., an image), regardless of frequent artificial
modifications. In the second place, similarity search can be used to verify the authenticity
of information, such as the location captured in an image or video. Finding a similar
photo from the exact location, where we have confidence in the annotation attached, can
be challenging in unstructured data. [6]

With the growing amount of data comes the need to find efficient algorithms, that can
handle even such unstructured data indexing. The definition of similarity is a rather sub-
jective matter and efficient algorithms often have various constraints on how such similarity
should look like. Exploration is also a relatively common target of similarity search. [7]
Exploration allows us to find what we are looking for using a sequence of steps instead
of one query. The results of such search could be more relevant to a user. A similarity
directly defined as exploration will, by definition, not satisfy some of the constraints of
indexes. Thus, the algorithms need to be adapted.

1.2 Problem Statement
In our research, we address two problem domains. The first domain is indexing non-
metric similarities using existing metric indexes. Metric indexes are efficient, but we are
limited to using only metric distance measures. This requires the use of techniques that
allow conversion from non-metric to metric space while preserving properties important
for similarity measures. Thus, one of the goals is to propose an approach that allows
a more general construction of transformations from non-metric space to metric space,
using a genetic algorithm approach. Secondary criterion is to keep indexing and search
as efficient as possible.

The second domain is data-transitive similarity. This thesis aims to define what data-
transitive similarity is, how it relates to exploration, and to show its practical use in a real-
world use case. Another goal is to present the limitations associated with transitive simi-
larity.
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1.3. Goals of the Thesis

1.3 Goals of the Thesis
In this section, we briefly summarize the main goals of this dissertation:

1. Indexability Analysis (see Chapter 3)
To create novel indexability indicators that are more sensitive to the structure of
metric (or Ptolemaic) similarity models. The new indicators should also be able to
deal with the violation of triangular (or Ptolemaic) inequality, so that they can be
used for indexability analysis of non-metric similarity models.

2. TriGenGA (see Chapter 3)
Propose a variant of the TriGen algorithm using a genetic algorithm to generate more
general modifiers that optimize both efficiency and effectiveness better.

3. Data-Transitive Similarity Meta-Model (see Chapter 4)
Define a new similarity model linking dissimilar objects to each other using a chain
of similar objects (simulating exploration).

1.4 Structure of the Thesis
This thesis is a brief commentary on our publications. The commentary is divided into
five chapters as follows:

Chapter 1 summarizes the motivation and the basic goals of our efforts. It also presents
a summary of the main contributions.

Chapter 2 introduces basic concepts in similarity search, metric similarity models, and
indexing.

Chapter 3 discusses non-metric spaces, transformations to metric spaces and presents
the current state-of-the-art. We also mention indexability indicators in the context of
non-metric similarity. Finally, it presents the basic idea of transformations generated
by genetic algorithms and experimental evaluation.

Chapter 4 defines a data-transitive similarity meta-model and its important properties.
We demonstrate the importance and relevance of the domain of open data search.

Chapter 5 summarizes the presented research results and suggests possible future re-
search topics.

All contributions are properly published and cited in Bibliography. Relevant papers are
mentioned at the beginning of each section and their full parts are included in the second
part of the thesis (Part II: Work 1–Work 10).
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Chapter 2
Background

This chapter is divided into two parts. Section 2.1 describes the basics of similarity search
and quality measurement. Section 2.2 presents the basic principles and requirements for
efficient search within metric spaces.

2.1 Basic Concepts
Similarity as a concept is very individual and subjective. It is challenging to decide whether
two objects are similar in everyday life. Nevertheless, people are very good at making
relative comparisons between pairs of objects from the same universe, e.g., for the domain
of animals, whether a fish and a whale are more similar than a cat and a dog. In our
context, similarity is primarily a qualitative measure, formally defined by Definition 2.1.1,
where U is the universe (domain) of all objects. Thus the concept of similarity itself is not
restrictive. In real cases, these similarity measures have further restrictions.

Definition 2.1.1 (Similarity Measure). Let s be a pairwise similarity function s : U×U 7→
R defined in the way that ∀x, y, z ∈ U if s(x, y) > s(x, z) holds, then object x is more similar
to object y than object z.

The object can be a document, an image, a video, virtually anything. This raises
the following question: if we are comparing animals, are we interested in their visual
similarity or genetic similarity? For different kinds of similarity measures, a different subset
of data, attributes, and features are appropriate. Therefore, similarity measures usually do
not work directly with the original object but only with some simplified representation of it
(vector, set, …). Formally, we can define this transformation as a function σ : O 7→ U that
maps the original objects to the domain of the similarity measure. In information retrieval,
such a result of the transformation is called a descriptor. In image processing, the same
concept is called a feature. We will ignore this implementation detail for our purposes, and
when we discuss objects, we will always implicitly consider their representations.

7



2. Background

Since the definitions themselves can be quite abstract, let us give an example of sev-
eral similarity measures. A frequently used similarity measure in the vector domain is
the Cosine similarity [8]. According to Equation 2.1, Cosine similarity returns values in
the interval 〈−1, 1〉, where a value of −1 means that the vectors are completely opposite
each other, while a value of 1 means that the vectors point in the same direction. The Jac-
card index [9], which is a popular similarity measure in the domain of sets, has different
bounds. According to Equation 2.2, the Jaccard index returns values in the interval 〈0, 1〉,
where a value of 0 means that the sets have no element in common (they are completely
different). Conversely, a value of 1 means that the sets are identical.

sCosine(x⃗, y⃗) =
x⃗y⃗

‖x⃗‖ ‖y⃗‖
=

N∑
i=1

xiyi√
N∑
i=1

x2
i

√
N∑
i=1

y2i

(2.1)

sJaccard(X,Y ) =
|X ∩ Y |
|X ∪ Y |

(2.2)

2.1.1 Similarity vs. Distance
Although the definition of the similarity measure does not require a formal restriction on
the domain of values, such a restriction makes sense from a logical point of view. After
all, no matter how we define similarity, we usually want to specify the situation where
two objects are identical. However, the general definition of similarity measure is too
benevolent and makes no assumptions about the identity of two objects. If two objects
have a similarity of 42, we cannot determine whether the objects are identical or not
without knowing the details of the similarity measure.

Therefore, in the field of similarity search, we encounter the concept of distance measure
more often. The distance measure δ (sometimes also d) is a kind of an inverse concept with
respect to the similarity measure, formally defined by Definition 2.1.2. While this may not
formally denote the identity property (see Definition 2.2.1), in most cases it will, or we are
able to achieve this by a suitable transformation of the original distance measure. Since
the distance measure is defined differently in various literature [10, 11], we will discuss
these concepts and their differences later in Section 2.2 and Chapter 3.

Definition 2.1.2 (Distance Measure). Let δ be a distance (dissimilarity) function δ :
U × U 7→ R+

0 defined as the opposite of the similarity function s. It should satisfy non-
negativity (∀x, y ∈ U) δ(x, y) ≥ 0 and (∀x, y, z ∈ U) s(x, y) > s(x, z) ⇔ δ(x, y) < δ(x, z).
The pair (U, δ) is a dissimilarity space.

To give a more specific idea, we will list some well-known distance measures categorized
by different types of input data. The most trivial distance measure we can define is
the Discrete metric [12] defined by Equation 2.3. The range of values are the numbers
0 and 1, so for each pair of objects, it gives us information on whether the objects are

8



2.1. Basic Concepts

identical or not. Thus we can apply this distance measure over any set of objects that
we are able to compare for equality. The practical use of such distance measure is very
questionable.

δDiscrete(x, y) =

{
0, for x = y,

1, for x 6= y.
(2.3)

Vector-based distances One of the most common types of descriptors is the represen-
tation of an object by a vector of numbers. Some objects are inherently representable by
a vector, e.g., the representation of a patient by his blood tests [13]. Other objects, such
as text or images, are typically transformed into a vector implementation using embed-
dings [14]. The individual components of the vector then represent properties that can
have real meaning (e.g., the dominant color of an image) or also abstract meaning (e.g.,
how blocky an image is).

We introduced cosine similarity sCosine in the previous section. In the case where we
need to work more with distance, similarities can be converted to distance measures in
several ways. For cosine similarity, we encounter two approaches most often. The first
approach is to directly transform the similarity to a distance by changing the sign and
applying an appropriate shift. The Cosine distance is defined as Equation 2.4 [15, 16].
An alternative approach is to view the distance in terms of angles and obtain the angle
itself from the cosine similarity by applying trigonometric functions. Angular distance is
defined as Equation 2.5 [15, 16]. Both of these distance measures have different properties
(to be discussed later). Hence, the use of one over the other may be more advantageous in
different situations, as stated by Cer et al. in [17].

δCosine(x⃗, y⃗) = 1− sCosine(x⃗, y⃗) (2.4)

δAngular(x⃗, y⃗) =
arccos (sCosine (x⃗, y⃗))

π
(2.5)

The previous similarities describe distances based on the angles between two vectors.
Regardless of their magnitudes, a special meaning is then given to the null vector 0⃗, which
cannot be used in this case. Instead, in some situations, the vectors represent points in
space. For comparing such vectors, we commonly encounter the Euclidean distance defined
as Equation 2.6. Deza and Deza [16] describe the Euclidean distance as ”as-the-crow-flies”,
which aptly captures that such a distance is based more on the proximity of points to each
other.

δEuclidean(x⃗, y⃗) = L2 =

√√√√ dim∑
i

(x⃗i − y⃗i)
2 (2.6)

9



2. Background

Figure 2.1: Comparison of several Lp dis-
tances. Line shows the shape of elements
within the same distance from the center.

The Manhattan distance defined by
Equation 2.7 takes a similar approach,
which can be thought of as a path be-
tween two vectors along only parallel axes.
As an analogy we can mention the Cheby-
chev distance defined by Equation 2.8,
where the distance is equal to the maximum
of the distances in each dimension. Figure
2.1 presents a visual comparison of these
distance measures. These distance mea-
sures belong to the family of Minkowski dis-
tances or also known as Lp distances which
can be described by Equation 2.9, where
p ≥ 1. By extending the Minkowski dis-
tances parameter to 0 < p ≤ 1 we obtain
Fractional Lp distances.

δManhattan(x⃗, y⃗) = L1 =
dim∑
i

|x⃗i − y⃗i| (2.7)

δChebychev(x⃗, y⃗) = L∞ = max
i
|x⃗i − y⃗i| (2.8)

δp≥1
Minkowski(x⃗, y⃗) = Lp =

( dim∑
i

|x⃗i − y⃗i|p
) 1

p

(2.9)

As a further generalization of the Euclidean distance, we can note the Quadratic-form
distance defined as Equation 2.10, where A is a non-singular matrix of Rdim,dim. The matrix
A represents correlations between the dimensions. If matrix A corresponds to a unit matrix
(the dimensions are independent), we obtain an alternative notation for the Euclidean
distance.

δAQFD(x⃗, y⃗) =
√
(x⃗− y⃗)⊺ A (x⃗− y⃗) (2.10)

String-based distances In the domain of texts, and especially shorter ones such as
various headings, labels, and in general texts where it is very difficult to capture the
meaning using embeddings (the context is quite small) or documents (text contains few
unique words), we typically use a direct representation by text strings. However, we can
also use this representation in many other domains, such as genetics where we can use
strings to represent individual AGCT bases [18].

Hamming distance [16] assumes two strings of equal length on the input, defined as
Equation 2.11. In simple terms, it is the number of positions at which the strings differ.
This means that for the words peel and eels, the Hamming distance is equal to 3. In this
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case, 4 is the maximum distance with respect to the length of the words. However, both
words share the substring ”eel”.

δHamming(x [1..n] , y [1..n]) =
n∑

i=1

1x[i] ̸=y[i] = |{i ∈ N | x[i] 6= y[i] ∧ 1 ≤ i ≤ n}| (2.11)

Since equal string length is a fairly strict constraint, a different distance measure often
used over strings is the Levenshtein distance [16], also known as edit distance, where distance
represents the number of operations (insert, remove, substitute) needed to transform one
string into the other. It is thus a generalization of Hamming distance. The distance is
defined as Equation 2.12, where x[1..n] is a string x of length n. Since the function itself
is recursive, such similarity is usually implemented using dynamic programming. Using
the previous example, we get that ”peel” and ”eels” have edit distance equal to 2 (one per
removing letter ”p” and one per adding letter ”s”).

δEdit(x[1..n], y[1..m]) =



|x| for |y| = 0,
|y| for |x| = 0,
δEdit(x[2..n], y[2..m]) for x[1] = y[1],

1 + max


δEdit(x[2..n], y[1..n])

δEdit(x[1..n], y[2..n])

δEdit(x[2..n], y[2..n])

 otherwise.

(2.12)

Time series-based distances When processing data, we often take the time compo-
nent into account. Therefore, we often encounter representations using time series, either
univariate or multivariate. Thus, we are not directly comparing values at one point in
time but how similar the events are. We can also use time series to represent, for example,
simple gestures [19] or player behaviour in game [20].

In the context of time series, we can then encounter the Dynamic time warping distance
(DTW, [21]) defined as Equation 2.13. From the definition, we can see a direct similarity
to δEdit, which is extended by the ground distance d(x, y), which specifies the distance
between two points at a particular point of time series ẋn = (ẋ1, ẋ2, . . . , ẋn).

δdDTW (ẋn, ẏm) =



0 for n = 0 ∧m = 0,
∞ for n = 0 ⊻m = 0,

d(ẋn, ẏm) + max


δdDTW (ẋn, ẏm−1)

δdDTW (ẋn−1, ẏm)

δdDTW (ẋn−1, ẏm−1)

 otherwise.
(2.13)
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Set-based distances An exciting category of descriptors are sets of elements. Whether
they are actual sets of some specific elements or features, these are interesting kinds of
descriptors. Like a time series, a descriptor consists of multiple unrelated objects. A typical
example is a set of keywords, where we can consider either exact matching in finding
the intersection or at least partial matching and finding the best match (e.g., accepting
typos).

When comparing sets, the simplest variant is the aforementioned Jaccard index. To
obtain the distance measure, it is sufficient to make a similar adjustment as in the case of
Cosine distance. Jaccard distance [16] is defined as Equation 2.14. Simply put, it treats
elements as being either the same or different, similar to the Discrete metric. The result
is the ratio of the intersection of sets to their union.

δJaccard(X,Y ) = 1− |X ∩ Y |
|X ∪ Y |

(2.14)

Some other distance measures, in turn, also consider similarities (distances) between
elements of a set. For example, the Hausdorff distance [22] defined as Equation 2.15
considers the similarity of the elements d(x, y), where x ∈ X, y ∈ Y . The goal is then to
match elements of one set to the most similar elements of the other set.

δdHausdorff (X,Y ) = max
{
δ̂dasymHaus(X,Y ), δ̂dasymHaus(Y,X)

}
(2.15)

δ̂dasymHaus(X,Y ) = max
x∈X

min
y∈Y

d(x, y)

2.1.2 Similarity Search
Similarity search differs from full-text search primarily in the form of querying. Standard
keyword-based search or SQL-like languages are not sufficient since the data is not struc-
tured and often not annotated, e.g., we often do not have captions for photos. Instead,
query-by-example style querying is used, where we already have an image (example) and
search for images that are the similar or relevant.

The problem of similarity search can be formalized as a search for all relevant objects
in the database S ⊂ U. Although the query to the database S is from domain U, the result
of the search is always a subset of the database S. The database S is mostly assumed to be
a static database because building the index is difficult. Nevertheless, there exist solutions
for dynamic databases. [23, 24]

One basic type of query is the range query [10]. Such a query consists of a search
pattern q (query) and a parameter r that conditions the distance of the objects in the
query result. The formalization of a range query is captured in Definition 2.1.3. The r
parameter is dependent on the distance δ used; although it indirectly affects the size of the
result set, it is not possible to estimate the exact size. We can only rely on the statement
that as r grows, the size of the resulting set Qrange(q, r) grows.

12
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Definition 2.1.3 (range query). Let q ∈ U be a query object and r ∈ R+
0 the range

of the query. Then Qrange(q, r) is the range query. The result of the range query is
Qrange(q, r) = {x ∈ S | δ(q, x) ≤ r}.

Range query basically divides the database S into two disjunctive subsets Qrange(q, r)
and S \ Qrange(q, r). By applying several different r to the same query q, we can obtain
a partition into several different similarity levels. The naive implementation of range query,
illustrated by Algorithm 1, requires computing O(|S|) distance comparisons. Thus, the goal
of indexing algorithms is primarily to reduce the number of those comparisons. The range
query is effectively used in the DBScan clustering algorithm [25] to analyze neighborhood
density.

Algorithm 1: Naive implementation of range query
Input: database S ⊂ U, distance δ, range query Qrange(q, r)
Result: set of relevant objects V
V ←− {}
for x ∈ S do

if δ(q, x) ≤ r then
V ←− V ∪ {x}

return V

Figure 2.2: Example of a range (orange line)
and a kNN query (blue numbers).

Range query has a rather complicated
way of checking the size of the result set,
and very often, we get into a situation
where there is no object in the result set
(Figure 2.2, r = 2.5) or, on the contrary,
all the objects from the database S. This
problem is addressed by the kNN query
(k-nearest neighbors, [10]), which consists
of a search pattern q and a parameter k
that specifies how many nearest neighbors
we want to retrieve. The formalization of
the kNN query is captured in Definition
2.1.4. Although the parameter k explicitly
specifies the number of nearest neighbors,
it makes no claims about their distance
to each other. The definition also shows
that the resulting set V is not uniquely
determined since the kth nearest neighbor
can theoretically have the same distance as
the (k + 1)th nearest neighbor. Figure 2.2
shows that stars #2 and #3 have the same
distance δ, so for k = 2 there are 2 valid
results.
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Definition 2.1.4 (k-nearest neighbors query). Let q ∈ U be a query object and k ∈ Z+

the number of nearest neighbors in the result V ⊂ S. Then QkNN(q, k) is the k-nearest
neighbors query (alternatively kNN query). The result V of the kNN query is defined as
|V | = k, (∀x ∈ V, ∀y ∈ S \ V ) δ(q, x) ≤ δ(q, y).

A naive implementation of kNN query is illustrated in Algorithm 2, which has time
complexity O (|S| log (k)), but since the distances can be precomputed, it is not necessary to
compute more than O(|S|) distances. The constant k is usually small compared to the size
of the database, and we can thus neglect log(k). Alternatively, instead of a heap, we can
use the Quickselect algorithm, which finds the kth element in the set, splitting the set into
elements that are smaller and larger than that element. Thus the total complexity will be
just O(|S|) in average.

Algorithm 2: Naive implementation of kNN query
Input: database S ⊂ U, distance δ, kNN query QkNN(q, k)
Data: distance table d(q, ⋆) for q
Result: set of relevant objects V
/* precompute distance */
for X ∈ S do

d(q, x)←− δ(q, x)

/* keep only k objects in heap */
HeapInit(V )
for x ∈ S do

HeapAdd(V , (d(q, x), x))
if |V | > k then

HeapRemoveMax(V )
return V

2.1.3 Quality Measures
In order to be able to compare different similarity approaches, we need to define indicators
to determine the quality of each approach. A typical indicator of the quality of an algo-
rithm is its time complexity. As introduced in the previous section, the naive solution has
asymptotically linear complexity with respect to the size of the database S. It does not
make much sense to improve the asymptotic complexity, because in the worst case it will
always be linear. Speeding up will mainly be achieved by filtering out non-viable candi-
dates, which will depend on many factors, including the query itself. In case of similarity
search, we call this property efficiency.

Instead of asymptotic complexity, we can measure the actual runtime of the program.
Such a metric has practical use but is dependent on the implementation itself and various
optimizations. These may include the physical location of individual objects (or their
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descriptors) in memory. Such a measurement is then influenced by other factors such
as data retrieval from disk, cache, etc. The implementation itself or the chosen distance
measure also play a significant role. We obtain quadratic complexity for edit distance or
DTW, assuming we have enough memory to use dynamic programming. For Hausdorff
distance, the situation is further complicated because the asymptotic complexity itself will
depend on the ground distance.

Since the distance measure is one of the main factors influencing the resulting speed,
measuring the average number of distance function calls over all queries makes sense. This
also allows us to speed up the experiments by precomputing the distance matrix. Even for
more complex similarity functions, we can easily and quickly evaluate different approaches.

The second direction we may be interested in for similarity search is the quality of the
returned result, so-called effectiveness. Finding out the quality of the result makes sense if
we experiment with different kinds of distances and have queries and their expected results.
In this case, we check which model returns more or less relevant results from the user’s
perspective. For a standard indexing method, this is not a meaningful comparison, as
it depends only on the model itself. On the other hand, for approximation methods, we
are mainly interested in quality compared to the naive approach or how much the result
differs from the naive approach. Thus, in terms of effectiveness, we look at the following
indicators.

Precision [26] is an indicator that directly defines the usefulness of the result. Precision
is defined as the ratio of relevant (expected) objects in the result to the number of all
retrieved objects. Practically, it determines the probability that an object in the result
set is relevant. It is typically defined as precision-at-k (or P@k, [27]), formally defined as
Equation 2.16. Technically, for k = 0, we can define that precision is equal to 1.

P@k =
|relevant ∩ k retrieved|

|k retrieved| =
|relevant ∩ k retrieved|

k
(2.16)

Recall [26] is an indicator that complements precision with information about whether
we have retrieved all relevant objects. Recall can be defined as the ratio of relevant (ex-
pected) objects in the result to the number of all relevant objects in the database. Although
we can determine precision from the query result alone, we need to know the entire database
to determine the resulting recall. Typically, we determine the recall-at-k (or R@k), for-
mally defined as Equation 2.17. Symmetrically to precision, for k = |S| we get that recall
is equal to 1.

R@k =
|relevant ∩ k retrieved|

|relevant| (2.17)

Precision and recall are concepts that are opposed to each other in the general case. As
k increases, recall increases, but precision decreases. Therefore, instead of P@k and R@k,
we often encounter the so-called precision-recall curve (PR curve), which describes how
precision changes as a function of recall. We can also encounter the 11-point variant of the
precision-recall curve [28], where we consider recall only in the levels {0, 0.1, 0.2, . . . , 1}. To
get a single value, we can consider, for example, the area under the curve for comparison.
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F -measure (Equation 2.18, [29]) is another way to convert a precision and recall pair
into a single quantity. In simple terms, it is the harmonic mean of precision and recall. But
we may encounter a generalized version in the form of the Fα measure, which is formally
defined as Equation 2.19 (α ∈ 〈0, 1〉). Thus, the ideal value is 1, where we have 100%
precision and recall.

F =
2PR

P +R
(2.18)

Fα =
1

α 1
P
+ (1− α) 1

R

(2.19)

2.2 Metric-space Indexing
Naive approaches to similarity search are insufficient with the rise of big data. The velocity
and volume of data are increasing every year, and with them, the need for efficient search
in unstructured data. For this purpose, we use various indexes. In our work, we focus on
indexing metric spaces and related techniques.

Metric space is a prerequisite for many similarity indexes and applications. Metric
space is defined as Definition 2.2.1. We use the non-negativity as an implicit property of
the distance measure (Definition 2.1.2) in comparison to other definitions. At the same
time, in some literature, we can see definitions where identity is replaced by reflexivity
(∀x ∈ U, δ(x, x) = 0) and non-negativity (positivity, ∀x, y ∈ U, x 6= y =⇒ δ(x, y) > 0).[10]

Definition 2.2.1 (Metric space). Metric space is a pair (U, δ). To qualify as metric space,
the domain U and the distance δ must satisfy three requirements known as the metric
axioms: identity, symmetry and triangle inequality.

∀x, y ∈ U , x = y ⇐⇒ δ(x, y) = 0 (identity)
∀x, y ∈ U , δ(x, y) = δ(y, x) (symmetry)
∀x, y, z ∈ U , δ(x, z) ≤ δ(x, y) + δ(y, z) (triangle inequality)

In the case of invalidity of the identity criterion, we are able to fill in this deficiency
as a special case, or if ∃c ∈ R, ∀x, y ∈ U, δ(x, x) = c ∧ δ(x, y) >= c holds, we can create
a new distance measure δ0(x, y) = δ(x, y)− c satisfying this rule. Similarly, in the case of
a failure to satisfy symmetry, we can define a new distance measure δsym as, for example,
δsym(x, y) = min{δ(x, y), δ(y, x)}.[30]

2.2.1 Filtering
The most important of all rules is the triangle inequality. It is this property that allows effi-
cient indexing of similarity. The inequality itself allows us to efficiently estimate the lower
δLB(x, y) and upper δUB(x, y) bounds with partial knowledge of the distances.
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(a) Filtering using 3 points (b) Filtering using 2 points and interval

Figure 2.3: Illustration of filtering in metric spaces using pivots.

Suppose that for some objects x1, x2, . . . , xn ∈ U we know the distances between two
consecutive objects dxixi+1

= δ(xi, xi+1) and the distance δ satisfies the metric axioms.
Then from the triangle inequality it follows that δ(x1, x3) ≤ dx1x2 + dx2x3 = δUB(x1, x3),
in general for a < b, δ(xa, xb+1) ≤ δUB(xa, xb) + dxbxb+1

= δUB(xa, xb+1), so for δ(x1, xn) ≤∑n−1
i=1 dxixi+1

= δUB(x1, xn). This knowledge can be trivially used, for example, to process
a range queryQrange(q, r). If δUB(q, x) ≤ r, then we can say with confidence that the object
x will be in the result of this query and there is no need to compute the exact δ(q, x)
distance.

Suppose that for some objects p, x, y ∈ U we know the distances dpx = δ(p, x), dpy =
δ(p, y) and the distance δ satisfies the metric axioms. Then the triangle inequality implies
dpy ≤ dpx + δ(x, y) and we can obtain the relation defined by Equation 2.21, simplified to
just δLB(x, y) = |dpx − dpy| ≤ δ(x, y). Figure 2.3a illustrates both cases graphically. For
most purposes, the object p is called pivot.

δLB(x, y) =

{
dpx − dpy for dpx > dpy

dpy − dpx otherwise

}
≤ δ(x, y) (2.21)

Suppose that for some objects p, x, y ∈ U we know the distance dpx = δ(p, x) and
for δ(p, y) we know the lower and upper bounds b−py ≤ δ(p, y) ≤ b+py and the distance
δ satisfies the metric axioms. Unlike the previous instance, we get more cases, these
are shown in Equation 2.22. After a brief analysis of each case, we can simplify it to
δLB(x, y) = max

{
dpx − b+py, 0, b

−
py − dpx

}
≤ δ(x, y). Figure 2.3b visually illustrates all cases

graphically.
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δLB(x, y) =


dpx − b+py for b+py < dpx

0 for b−py ≤ dpx ≤ b+py
b−py − dpx for dpx < b−py

 ≤ δ(x, y) (2.22)

These principles are used by various indexes to filter the database and make queries
more efficient (AESA [31], LAESA [32], M-tree [33], PM-tree [34], …). Although in this
paper we will only discuss indexing based on metric axioms, it is important to mention
that not all indexes are based on this principle. For example, permutation indexes [35] do
not rely on metric space at all and use information about the order of pivots according
to the distance to the object for indexing. Ptolemaic indexes [36], on the other hand,
are based on satisfying Ptolemy’s inequality. Inverted index [37] is a popular structure in
information retrieval domain.

2.2.2 Indexability
The indexes provide efficient structures, but the important question is whether a given
space is indexable. The real efficiency of indexing algorithms and structures depends on
the similarity space itself. Indexability can be affected by the chosen distance δ. For
example, the discrete metric is practically non-indexable. Since all objects are equidistant
from each other, there is no internal structure to allow indexing.

Similarly, the poor indexability may be due to the combination of the chosen distance
and the database S. Thus, Euclidean distance may behave similarly when the dimension
is high, and the number of elements is small. A high dimension will have the same effect
as in the case of discrete metric, namely that all objects are similarly far apart. In an
extreme case, we can have just one dimension reserved for each object, then the Euclidean
distance becomes a discrete metric. This effect is well-known as the curse of dimensionality
by Chavez et al. [38].

Chavez et al. proposed intrinsic dimensionality, which serves as an indexability indica-
tor. Applying the Definition 2.2.2 of intrinsic dimensionality shows that intrinsic dimen-
sionality grows with the higher mean of distances and lower variance of distances. Due to
a large number of objects in the database S, the intrinsic dimensionality is usually only
estimated from a smaller random sample.

Definition 2.2.2 (Intrinsic Dimensionality). The intrinsic dimensionality of a metric space
is defined as IDim(δ) = µ2

2σ2 , where µ and σ2 are the mean and variance of its histogram of
distances δ.

Intrinsic dimensionality is practically only one number summarizing the whole complex
model, this is quite practical for automatic evaluation. The disadvantage is that the same
IDim can represent many different distributions. This is why in the case of manual anal-
ysis one works with the distance distribution itself. That provides information not only
about the relationship between mean and variance, but also about the overall distribution
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of distances. Unfortunately, both intrinsic dimensionality and distance distributions them-
selves only deal with the distance of two objects, but do not look further at the distance
relationships between them.

Skopal [39] comes up with the idea of an indicator that relates to metric access methods
based on ball partitioning. The ball-overlap factor (BoF, [39]) represents an indicator
that tracks the ratio between the overlaps of kNN ball regions. Such an overlap implies
inefficiency for indexes based on partitioning of objects into ball regions. If there are many
overlaps, the indexing will not be very efficient. On the contrary, if there is no overlap, it
is a perfect partition.
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Chapter 3
Non-metric Similarity Models

This chapter describes the problem of searching in a non-metric similarity model using
metric indexes. The chapter is divided into five parts. Section 3.1 includes the intro-
duction and motivation behind using metric approaches to solve the non-metric similarity
problem and describes the basic terms and concepts. Section 3.2 then presents an overview
of Related Work in the area. Section 3.3 describes new indexability indicators for analysis
of high-dimensional data in the both metric and non-metric spaces. Section 3.4 intro-
duces a generalization of TriGen using genetic algorithm. Finally, Section 3.5 discusses
the findings and future work. The details are described in the author’s papers Work 5, 9,
and 10.

3.1 Introduction
In the previous section, we described the principles of efficient search using the metric space
model. The main advantage is a large number of existing indexes based on the metric
model. The metric model introduces constraints in the form of metric axioms. However,
many distance measures will not satisfy these metric axioms. This is the main difference
between cosine and angular distance, where cosine distance is easy to compute but is not
metric. Conversely, angular distance satisfies the metric axioms, but calculating arccos
function is time-consuming. Other distances, such as Fractional Lp distance measures or
DTW distance, are non-metric too.

This problem increases if we consider user-defined distance measures. Such a restriction
is a huge limitation and prevents using more robust similarities. This chapter presents ways
to modify the original similarity to preserve its properties while ensuring that the triangle
inequality is satisfied. Such an approach will provide an efficient similarity search regardless
of the distance chosen. Possible violations of some metric axioms (identity, symmetry) can
be corrected easily; we have shown this in Section 2.2.1.

The most complicated part is to ensure the validity of the triangle inequality. For
the purposes of this thesis, a semimetric distance is a distance measure that satisfies all
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metric axioms except the triangle inequality. The triangular inequality is necessary for
metric indexes to index the database efficiently. In this section, we introduce methods that
attempt to deal with the problem using a modifier (a transformation function, Definition
3.1.1), as well as our proposed method that uses machine learning methods to ensure
triangular inequality.

Definition 3.1.1. Let the functionM(d) : R+
0 → R+

0 be increasing andM(0) = 0 . Then
we call such a function a modifier. The modifierM can be applied to the distance measure
δ as (M◦ δ)(x, y) =M(δ(x, y)).

Most of the methods assume that the chosen distance δ (respectively modifier M) is
〈0, 1〉 -bounded, i.e. δ : U × U → 〈0, 1〉 (respectively M : 〈0, 1〉 → 〈0, 1〉). In the general
case, we could not apply such a method to many distances that are unbounded (e.g.,
Minkowski distances, Hausdorff distance). In our case, we always index a finite database
S ∈ U, so for distances within the database, we can estimate d+ = maxx,y∈Sδ(x,y). Since
queries q ∈ U are usually not elements of the database S, it makes sense to multiply d+

by a suitable constant (e.g., (1 + ε), where ε ≥ 0) and/or constrain the resulting distance
δ⟨0,1⟩-bounded(x, y) = min

(
δ(x,y)

d+·(1+ε)
, 1
)

. In the following sections, we will always assume that
the distance and modifiers used are 〈0, 1〉 -bounded.

3.2 Related Work
The simplest approach to obtain a metric distance from a semimetric distance is to use the
following modifier

MM(d) =

{
0 for d = 0,
d+1
2

otherwise,

which transforms an arbitrary semimetric distance into a metric distance.[11] All other
metric properties of the original distance are preserved. However, the problem with this
approach is that the intrinsic dimensionality shown in Equation 3.1 is too high.

IDim(MM ◦ δ) =
µ2
MM◦δ

2σ2
MM◦δ

=

(
µ+1
2

)2
2
(
σ
2

)2 =
(µ+1)2

4

2σ2

4

=

≤1︷︸︸︷
µ2 +

≥1︷ ︸︸ ︷
2µ+ 1

2σ2
= IDim(δ) +

2µ+ 1

2σ2
(3.1)

Constant Shift Embedding A more elegant approach is the Constant Shift Embedding
method [40], which uses a similar principle to the previous case MM . Authors came up
with the idea that it is enough to shift the original distance δ by a suitable constant
0 ≤ c ≤ 1, i.e. MCSE

c (d) = d+c
1+c

. This approach is a generalization of the previous method,
where MM =MCSE

1 . The constant c can be chosen based on the random sample S∗ ⊂ S
such that ∀x, y, z ∈ S∗ holds triangle inequality ((MCSE

c ◦ δ)(x, z) ≤ (MCSE
c ◦ δ)(x, y) +

(MCSE
c ◦ δ)(y, z)).
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TriGen An alternative approach was introduced by Skopal [30] with his TriGen algo-
rithm. The algorithm can be considered a generalization of the Constant Shift Embedding
approach. Over a random sample S∗, it defines ϵ(S∗, δ) as the percentage of triplets of ob-
jects from the sample S∗ that violate the triangle inequality using the distance δ. The basic
idea is that if we apply an arbitrary concave modifierM+ to the distance δ, ϵ(S∗,M+ ◦ δ)
will be lower (at least equal) than before the application. Such a modifier is called triangle-
generating.

Figure 3.1: Example of TriGen
modifier. Orange arrow denotes
concavity.

An example of such modifier is Fractional-power T-
base (Equation 3.2), which is concave for w > 0 (Fig-
ure 3.1). The parameter w expresses the concavity and
hence the power of the modifier to generate a triangular
inequality. The algorithm defines a way to find the mod-
ifier with the best properties in general among the set
of one-parameter modifiers. For each modifier, the algo-
rithm uses a binary search to find w such that ϵ(S∗,Mw)
is less than or equal to the acceptable threshold ϵT ≥ 0.
Similarly, as in the case of Constant Shift Embedding,
TriGen finds a parameter in such a way as to increase in-
trinsic dimensionality as little as possible. From the set
of all matching modifiers Mi (with the parameter w al-
ready found), the one that best satisfies the secondary
criterion (e.g., IDim, BoF ) is selected.

MFP
w (d) =


d

1
1+w for w > 0 (triangle-generating),

d for w = 0,

d1−w for w < 0 (triangle-violating).
(3.2)

The algorithm allows setting the threshold 0 ≤ ϵT ≤ 1, which indirectly affects the qual-
ity of the search results. Indexes based on metric axioms can return bad results (filtering
out something they should not). This will result in a just approximate search. On the other
hand, the efficiency of such a search may be better.

Skopal [39] also generalizes the TriGen algorithm to triangle-violating modifiers. These
are convex modifiersM−, which in contrast, can break the triangle inequality in the data-
base. This again to the specified threshold ϵT to reduce intrinsic dimensionality and
potentially increase indexability. TriGen thus tries to find the ideal compromise between
effectiveness and efficiency. The main limitation remains in the form of individual modifiers.

Other similar approaches Several other properties have the potential to be used as
an indexing tool in multimedia databases. Fagin et al. [41] utilize relaxed triangle inequal-
ity, which is defined as δ(x, z) ≤ ρ (δ(x, y) + δ(y, z)). In that case, authors use similar
filtering methods as defined in Section 2.2.1.
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3. Non-metric Similarity Models

Ptolemy’s indexing is another substitution for the triangle inequality. Lokoč et al. [36]
presented the Ptolemy’s indexing with the Signature Quadratic Form Distance. Ptolemy’s
inequality (∀a, b, c, d ∈ U holds δ(a, d)δ(b, c) ≤ δ(a, b)δ(c, d) + δ(a, c)δ(b, d)) presents in-
formation about two pivots, the object, and the query. It was shown that for efficient
filtering, we need to find pivots close to the object and the query[36].

Connor et al. [42] recently presented good results in a similarity search with the four-
point property. Similarly as Ptolemy’s inequality utilizes four points for lower bounding,
the four-point property is based on embedding the original space into l32 space as a tetra-
hedron (generally simplex).

All of the mentioned properties were constructed and observed in the data. The dif-
ferent approach presented by Bartoš [43, 44] infers the artificial inequalities using genetic
programming. For inferring the artificial inequalities, the parallel approach was constructed
and described in a doctoral thesis [45].

3.3 Indexability
The resulting effectiveness of similarity search is affected by several factors: data distri-
bution, queries, distances, or the indexing method used. Indexability indicators such as
IDim, distance distribution, or BoF try to capture properties that directly or indirectly
affect the efficiency. Some, such as IDim, capture only the basic properties (distances).
On the other hand, BoF targets specific indexing methods. Both expect metric similarity
model. In our case, the situation is further complicated because the similarity space need
not be metric, so we proposed new indicators triangularity and ptolemaicity. [A.5]

Triangularity First of all, we decided to analyze the triplets (of objects) themselves and
define a triangularity over one triplet (Definition 3.3.1). The triangularity indicates, on
a scale from 0 to 1, how triangular the triplet is. Values between 0 and 1⁄2 mean that
the triangular inequality is violated, and a value of 1/2 means that the triplet forms a line
segment. Values between 1/2 and 1 then represent valid triangles, and a value of 1 means
that the triplet is an equilateral triangle.

Definition 3.3.1. Let (o1, o2, o3) ∈ S3 be a triplet of objects which forms distances
(δ(o1, o2), δ(o1, o3), δ(o2, o3)). Then for sorted distances (a, b, c), where a ≤ b ≤ c, the
Tri(a, b, c) = a+b

2c
is the triangularity of triplet.

For the purposes of indexability analysis, we construct a distribution of triplets. We can
construct all possible triplets for a random selection S∗ ⊂ S. Or we can construct it directly
as a random selection of triplets (o1, o2, o3) ∈ S3. We then compute the triangularities for
each triplet and construct a distribution.

In the distribution, the intervals and values mentioned above are indicative for us.
The distribution of triplets in the intervals (0, 1⁄2) and (1⁄2, 1) determines indirectly the ac-
curacy of the returned results using the metric space index. The traditional TriGen also
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works with the ratio itself. The triplets distribution tells us not only whether triangle
inequality is satisfied but also to what extent the criterion is satisfied.

Returning to the simplest version of three-point filtering (Section 2.2.1), in the case of
an equilateral triangle Tri(a, b, c) = 1, the lower bound will always be δLB(x, y) = 0. This
means that such a triangle is not suitable for indexing. Conversely, the lower bound does
not always have to be maximal for the line Tri(a, b, c) = 1/2. If we consider the assumption
that dpx ≈ 0 (e.g., which we are able to satisfy with enough pivots), then values close to
1⁄2 will maximize δLB. Thus, a distribution with a high number of triplets near 1⁄2 is likely
to be well indexable.

Ptolemaicity Similarly, we proposed the ptolemaicity of quadruplets (of objects) as
Definition 3.3.2. The processing procedure is similar, but the actual interpretability is
difficult. We cannot simply say that 1⁄2 represents a segment, but it is still true that
the value 1⁄2 is expected for efficient indexing. Similarly, ptolemaicity of 1 indicates poor
indexability.

Definition 3.3.2. Let (o1, o2, o3, o4) ∈ S4 be a quadruplet of objects which forms products
of distance pairs (δ(o1, o2) · δ(o3, o4), δ(o1, o3) · δ(o2, o4), δ(o1, o4) · δ(o2, o3)). Then for sorted
values (a, b, c), where a ≤ b ≤ c, Pto(a, b, c) = a+b

2c
is the ptolemaicity of quadruplet.

3.4 TriGenGA
The original TriGen algorithm only works with one-parameter modifiers. This limits it
mainly in the number of possible combinations, and the expected effectiveness and efficiency
are a function of the parameter w. As a solution to this problem, in our experiments
we considered the modifier Mone−point

a,b (d) defined as Equation 3.3 with two parameters
a, b ∈ (0, 1). Applying the binary search sequentially to each parameter may not find a valid
or optimal solution. A brute force search for optimal parameters will be time-consuming
since the number of possible combinations increases with the number of parameters and
their values (which need not be discrete). Therefore, we decided to use genetic algorithms
to estimate the parameters.

Mone−point
a,b (d) =

{
b · d

a
for d ≤ a,

b+ (1− b) · d−a
1−a

otherwise.
(3.3)

In [A.10], we introduced the concept of finding these parameters using a genetic al-
gorithms approach. In our case, the genetic algorithm has a relatively simple structure,
see Algorithm 3. The first step is to randomly generate a population of individuals of
a given population size (pop_size = 100). The generation of the new population starts by
selecting pairs with a preference for the best individuals based on a fitness function (fit(v⃗),
Equation 3.6). These pairs will then generate new children (crossover, Figure 3.2a), which
will undergo a possible mutation (with a probability of 5 %) and become candidates.
A new population is created by merging the generated candidates with the old population
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(a) One-point crossover example, new
child in middle. (b) Example of TriGenGA modifier

Figure 3.2: Illustration of TriGenGA modifier and crossover of two parents.

and discarding half of the worst individuals. In the case of rapid population convergence,
a catastrophic scenario replaces 50 % of the population with random individuals.

An individual is a modifier represented by a vector of numbers v⃗ = (v⃗0, v⃗1, . . . , v⃗n) of
dimension n + 1, for which v⃗0 = 0, v⃗n = 1 and ∀i, j ∈ Zn+1 holds i < j =⇒ v⃗i <
v⃗j. Since some operations (crossover, mutation) may violate the increasing vector rule,
the vector is reordered after each such operation to preserve the rule (Figure 3.2a). Such
an operation does not affect the behavior of the genetic algorithm, only the meaning of
the individual operations. The general modifier Mpiecewise

v⃗ itself (Figure 3.2b) is then
defined as a piecewise linear function by Equation 3.4.

Mpiecewise
v⃗ (d | i

n
≤ d ≤ i+ 1

n
) = v⃗i + (v⃗i+1 − v⃗i)(nd− i) (3.4)

In [A.9], we have improved our genetic algorithm by improving the fitness function,
which is the heart of the whole optimization algorithm. From preliminary results, we
found that functions that change concavity (convexity) frequently show good results on
a small sample but do not behave as expected when generalized. Therefore, we proposed
the so-called ConFactor(v⃗) (Equation 3.5), which compares the number of concave seg-
ments c+v⃗ and the number of convex segments c−v⃗ . The resulting fitness function is then
defined by Equation 3.6, with the first part taking care of primarily achieving the triangular
inequality in the desired quantity and the second part trying to do a secondary optimiza-
tion. Secondary optimization favors mainly functions that have the minimum number of
inflection points.

ConFactor(v⃗) =
∣∣c+v⃗ − c−v⃗

∣∣
c+v⃗ + c−v⃗

(3.5)
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Algorithm 3: TriGenGA: Genetic Algorithm for TriGen
Result: modifier Mpiecewise

v⃗ with the best fitness score
Population←− GenerateRandomModifiers(pop_size)
while UnsuccessfulCatastrophe() ≤ max. # of catastrophes do

Parents←− TournamentSelectork(Population, fit(v⃗)
for ∀pair of Parents do

/* combine modifiers */
Child←− OnePointCrossover(pair)
if mutation probability succeeded then

/* randomly modify modifier */
Child←− Mutate(Child)

Population←− Population ∪ {Child}
keep only pop_size best individuals in Population
modify k to keep diversity in Population
if best fitness score does not change for last L iterations then

/* rapid convergence */
Population←− CatastropheScenario(Population)

return argmaxx⃗∈Population fit(x⃗)

fit(v⃗) =
{
1− ϵ(S∗,Mpiecewise

v⃗ ◦ δ) for ϵ(S∗,Mpiecewise
v⃗ ◦ δ) > ϵT,

1 + ϵ(S∗,Mpiecewise
v⃗ ◦ δ) · ConFactor(v⃗) otherwise.

(3.6)

3.5 Discussion
In [A.5], we illustrated how the triangularity and ptolemaicity of high-dimensional data
change after applying the TriGen algorithm. In experiments with metric and Ptolemaic
spaces, we showed that the TriGen algorithm could effectively modify the distance to speed
up similarity search with minimal error. Even for pseudo-random (nearly unindexable)
data, the TriGen algorithm found a transformation that improves indexing without loss of
accuracy.

In [A.9], we showed that TriGenGA outperforms (Figure 3.3) the original TriGen al-
gorithm. The choice of appropriate modifiers is what mainly limits the TriGen algorithm.
On the other hand, TriGenGA is based on randomness so that each algorithm run may re-
turn a different result. Nevertheless, in experiments, TriGenGA outperformed the original
algorithm in precision-efficiency ratio and much better estimated the actual search error
compared to the threshold.

The widespread use of neural networks makes us wonder whether neural networks could
be similarly used to find a modifier suitable for indexing. Since the indexing process is
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Figure 3.3: Comparison of precision and efficiency of original TriGen (orange, binary
search) and TriGenGA (blue, genetic algorithm).

performed once, the time required to train such a network is negligible. In case of changes
to the database, only minor fine-tuning of the network should be sufficient. A second open
problem is how TriGenGA will behave for similarity searches based on similarity spaces
other than metric (e.g., Ptolemaic, four-point property).
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Chapter 4
Data-Transitive Similarity Metamodel

This section describes the principles of the data-transitive metamodel in similarity search.
Section 4.1 introduces the basic problems and real-world motivation for using transitive
similarities. Section 4.2 describes related work and the current state-of-the-art. Section
4.3 then defines the data-transitive metamodel. Section 4.4 summarizes the findings of
the experiments, open problems, and future work. The details are described in the author’s
papers Work 1, 2, 3, 4, 6, and 7).

4.1 Introduction
Big data brings new challenges. The problem itself is not only the large volume and lack
of annotation but often also sparse or no linking of such data at all. A large amount of
unrelated information creates only a very weak link between database objects.

In [A.7, A.6], we had to deal with the domain of financial data and use anonymized
information about clients, their payments, repayments, or ATM withdrawals to find links
between individual clients and to create a social network (not only) for information prop-
agation analysis. To create a link between clients based only on simple rules between two
clients was unthinkable given the small sample of data (small institution). Therefore, these
factual links were complemented by links based on the similarity of the entities (clients,
shops, ATMs, …) and aggregated by inferred links (see Figure 4.1).

These linkages allowed to connect users at several different levels. The first level was
factual links of the type ”clients withdraw money from the same ATM”. These are then
represented mainly by the common location of the two clients. The second level was
”clients withdrawing from similar ATMs” (inferred links, see Figure 4.1). In this case, we
lose information about the location of the ATM but gain information about the behavior of
the clients. At the same time, their interconnections from the previous levels can be used
to aggregate other information or infer links. In the end, we created a similarity-based
social network, but the actual processing had to be done by analyzing the resulting graph.

At the same time, by exploiting external knowledge and aggregating it, we can gain
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4. Data-Transitive Similarity Metamodel

Figure 4.1: Example of inferrred similarity of users in graph using clustering ATMs.

further linkages and get a more comprehensive view of the problem domain. External
information does not always have to be available in sufficient quality, so alternative ap-
proaches must be applied. Moreover, it is important to emphasize the distinction between
similarity and relevance, which in theoretical terms merge.

In [A.4], we addressed the possibility of using similarity search in the domain of open
datasets. Open datasets are collections of data published by organizations for further use.
The problem is a large number of datasets with minimal annotation, which makes it difficult
to find similar or related datasets. The usefulness of open datasets lies in the ability to link
and extract knowledge from these compilations. However, the organizations are unaware
of the existence of similar datasets, so this linking is left to data analysts, journalists, and
enthusiasts.

Finding similar datasets has proven to be challenging, and common open dataset cat-
alogs only allow full-text searches. Our initial solution involved augmenting the basic
similarity search with contextual information in the form of knowledge graphs or word em-
beddings. This contextual information proved to be essential, but linking datasets based
on similarity was still only localized to nearly identical datasets.

4.2 Related Work
The metric space model [10] is considered the gold standard in the similarity search do-
main. However, metric space model only provides a tool for indexing the database (e.g.,
quick search). Although it is a relatively reasonable trade-off in many problems, the met-
ric space model remains too limited for similarity modeling. The limitations increase with
models aimed at higher search efficiency, such as Ptolemaic [46] or supermetric [47] mod-
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els. In the last decade, approaches ranging from using a combination of metrics [48] to
completely non-metric [11] approaches have been introduced to increase the effectiveness
of similarity search. The main goal is to increase the relevance of the retrieved objects
from the database while maintaining reasonable efficiency.

The query-by-example mechanism itself, in the form of single range and kNN queries,
provides only basic search functionality. Therefore, linking similarities to relational data-
bases tends to be complicated and requires using languages such as MSQL [49] or Sim-
ilarQL [50]. The concept of similarity joins [51] brings the similarity aspect of joining
entire database tables. In the case of graph databases, inferred social network [A.6] in
the form of a weighted graph and subsequent analysis of social networks or various graph
metrics [52] is offered. In order to make queries more expressive, similarity queries can be
extended to multi-modal retrieval using techniques such as late fusion [53] or content-based
recommender systems [54].

4.3 Our Approach
In [A.3], we introduced the basic concept of data-transitive similarity, which addresses
the problems outlined. The first problem is the distinction between similarity and rele-
vance. User needs are very subjective, and the similarity approach most often leads to
retrieving identical or very similar results to the query. In many cases, the goal is to find
objects that are only very close or related in some way to the query.

For example, for a query on the movie ”Spiderman: Homecoming”, one can expect all
the episodes of this movie series or movies of a similar genre. This respects the traditional
idea of similarity. On the other hand, we can expect the movie ”Dolittle” because they
share some actors together. One level deeper, we can expect a ”Doctor Strange” movie
set in the same fictional world. This last example shows the similarity as a relevance that
may not be obvious at first glance because apart from the shared music and comic book
origins, the movies have almost nothing in common. However, both movies share a com-
mon intermediary, ”Spider-Man: No Way Home”, which connects the two aforementioned
movies (see Figure 4.2).

Such an example is very similar to the well-known example of non-metric similarity,
where ”man” and ”horse” are not similar at all, but both have a quite strong similarity to
the mythical creature ”centaur”. Indeed, such similarity is analogous to exploration process
and will almost certainly lead to a non-metric model. Our proposed meta-model can be
described in general terms as a chain of sequentially similar objects, for which, however,
it may not be true that the first and last objects of this chain are similar in the original
model. The chain of similar objects makes them relevant in a particular context.

Formally, we can define such a data-transitive distance by Equation 4.1, where n stands
for the length of the chain and the symbols � and ] stand for the outer and inner aggre-
gation. Table 4.1 then represents a sample of the aggregations we used in our experiments.
The main drawback of the approach used in [A.6] was the need to analyze the resulting
network using graph-based methods. In the case of a data-transitive meta-model, we can
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Figure 4.2: Example of data-transitive similarity of movies

sum(d0, d1, . . . , dn) =
∑n

j=0 dj

min(d0, d1, . . . , dn) = min {d0, d1, . . . , dn}
max(d0, d1, . . . , dn) = max {d0, d1, . . . , dn}
prod(d0, d1, . . . , dn) =

∏n
j=0 dj

iprod(d0, d1, . . . , dn) = 1−
∏n

j=0 (1− dj)

Table 4.1: Examples of inner
⊎

and outer
⊙

aggregations.

use standard similarity methods and indexes, e.g., by applying TriGenGA, we can obtain
a metric model and further index using standard metric approaches.

δ̂⊙,n
⊎ (x,y) =

⊙
(i1,...,in)∈Sn

⊎
(δ (x, i1) , δ (i1, i2) , . . . , δ (in,y)) (4.1)

In our experiments, we also used optimizations that prevented identity-based transi-
tivity. That is, the case where δ(x, y) = 0 . Such transitivity degenerates to standard
similarity, so all chains containing the pair x, y for which δ(x, y) ≤ d5% did not participate
(are excluded) in the construction of δ̂.1

1d5% is first vigintile, respectively |{(x,y)∈S2|δ(x,y)≤d5%}|
|S| = 5%
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4.4 Discussion
In [A.1], we applied a data-transitive meta-model specifically to the domain of open dataset
exploration and tested the effectiveness of such a meta-model. User testing has shown that
such models can be invaluable, specifically in cases where the individual objects are only
weakly similar (for datasets, the textual labels are sparse). In particular, when we are
interested in the broader context of relevant (not always similar) objects, this method
outperformed standard similarity approaches.

The user testing had two objectives. The first goal was to develop a set of relevant
answers for the queries. For each relevant answer, we added the percentage of users con-
sidering the object relevant. In a conservative setting, we only considered responses that
were identified as relevant by all users. Traditional methods such as TF-IDF [55] or word
embeddings performed better (see Table 4.2). Transitive methods started to dominate
(see Table 4.2) over traditional methods when we lowered this criterion to a consensus
of at least 80% of users. The second goal was to find out the subjective feeling of users
about such an application, and in the SUS testing [56] performed, our application scored
70 points, which is a good result.

User consensus −→ 60 % 80 % 100 %
↓ TF-IDF Cosine PR AUC
without transitive 0.49 0.61 0.89
� = min ] = max 0.61 0.63 0.40
� = min ] = iprod 0.61 0.63 0.45
↓ Word2Vec Cosine PR AUC
without transitive 0.61 0.71 0.89
� = min ] = max 0.56 0.72 0.73
� = min ] = iprod 0.76 0.67 0.66

Table 4.2: Comparison of standard (without data-transitive) similarity models and data-
transitive models using precision-recall area under curve per different levels of user con-
sensus.

It also has the advantage of self-explainability since the intermediate chain itself ex-
plains the reason why a particular pair is relevant. However, for long chains or exotic
aggregations it may be more challenging to explain the relevance. This risk is minimal
with the knowledge of the distance measure and aggregations used. Self-explainability
is a major advantage over neural networks, which suffer from this very shortcoming as
a black-box approach.

The data-transitive meta-model should be seen as a completely new field that cre-
ates many new challenges. Although the indexing of such data-transitive distance can be
solved by the aforementioned methods, including our proposed TriGenGA, the computa-
tion of data-transitive distance itself is a challenging problem. Finding the optimal value
of the outer aggregation has an asymptotic complexity O(|S|n). The inner aggregation will
have an asymptotic complexity of at least Ω(n). We can apply simple pruning for some
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combinations, such as � = min,] = max, but the general principle will be much more
complicated or require approximate methods.

The second area is generally experiments with longer chains n > 1 or combinations of
several different lengths n. The first problem is the previously mentioned worse interpreta-
tion of the results. The second problem is how to combine such distances. Would it be more
user-friendly to display the distances separately or aggregated (e.g. min{δ(x, y), δ̂⊙,n

⊎ (x, y)})?
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Chapter 5
Conclusion

Research in similarity search has primarily focused on efficient retrieval using various in-
dexing techniques. On the other hand, there has been an increasing demand for semantic-
based querying. The tremendous growth of data has emphasized not only speed but also
relevance. Traditional approaches no longer meet the needs of a user looking for alterna-
tives, not duplicates. This thesis briefly presents new ways to deal with these problems,
published in papers in which David Bernhauer was the co-author.

In the first part of this paper, we introduced the basic problems and the necessary
theoretical background. We introduced new indexability indicators, focusing on indexes
using metric or Ptolemaic axioms. Compared to standard indicators, these also account for
the violation of the triangular (or Ptolemaic) inequality and their properties were tested
together with an application of the TriGen algorithm. As part of this, we extended the
TriGen algorithm to include multi-parameter functions and the estimation of their param-
eters by genetic algorithms. These can better adapt to a given distance and outperform
the original TriGen algorithm.

We dealt with similarity modeling within the domain of financial data and open datasets.
We have created The SimilAnT tool [A.8] (Work 8) for human-based analysis of similarity
models and used it to visualize and find appropriate similarity models in these domains.
We proposed a data-transitive similarity model for the open dataset domain that solved the
problems of weak direct similarity due to sparse data. Compared to the financial domain,
we were able to stay in the similarity area and thus use existing similarity approaches. User
testing has shown that using data-transitive similarity effectively increases the relevance
of results without requiring lengthy exploration.

5.1 Contributions of the Thesis
1. Indexability Analysis

In Chapter 3, we introduced the novel indexability indicators triangularity and ptole-
maicity, which focus on capturing the structure of the data using properties of the
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particular similarity model. They can also successfully capture the degree of viola-
tion of these properties, which existing approaches only capture with a single number
(e.g., the percentage of triplets violating the triangle inequality). These indicators
can be used for indexability analysis or, for example, as indicators of suitable pivots
for certain types of indexation.

2. TriGenGA
In Chapter 3, we developed an extension TriGenGA to the existing TriGen algorithm
to generate modifiers using genetic algorithms. These allow finding the optimal mod-
ifier, eliminating the need to optimize multiple one-parameter modifiers that may not
cover all possible transformations. We have shown that such a modifier can outper-
form the original algorithm in both efficiency and effectiveness. Moreover, TriGenGA
does not have to be limited to metric spaces and can be used for other spaces (e.g.,
Ptolemaic) with appropriate modifications. However, this requires further experi-
mentation.

3. Data-Transitive Similarity Meta-Model
In Chapter 4, we defined the data-transitive similarity meta-model. By applying it to
a real open dataset domain, we showed that the data-transitive similarity meta-model
can be used in situations where objects in the database are only sparsely similar to
each other, and by using transitive similarity we are able to extend the original
similarity. At the same time, we should also point out the main advantage of this
approach, that the result of such transitive similarity is self-explainable, so that
the context in which two objects are similar is always known. Moreover, this approach
is compatible with similarity methods.

5.2 Future Work
Neural networks have proven to be an indispensable tool in the case of data preprocessing,
whether for text descriptors (e.g., Word2Vec [57, 58]) or image descriptors (e.g., CNN [59]).
Neural networks have already demonstrated the ability to index metric spaces [60]. Thus,
the question is whether we can also use neural networks for efficient indexing of arbitrary
similarity, which may greatly expand the range of usable distances and, with it, the free-
dom to design similarity. Compared to classical indexing methods, neural network-based
methods may have the advantage of easy fine-tuning when enlarging the database. A sim-
ilar principle can be used instead of the genetic algorithm in TriGen to derive a suitable
distance modifier.

Data-transitive similarity is at the very beginning these days. It has proven to be an ex-
cellent concept in the case of database exploration, mainly because it provides an important
explanation in the form of a sequence of similar objects. However, no experiments with
more than one auxiliary object have been performed yet. In this area, it will be necessary
to analyze the behavior for longer chains and also to design a way to present the results
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across different lengths. A second useful feature is the densification of the similarity space
when similarity arises between originally dissimilar objects. Such behavior depends on
the chosen aggregation functions, and here we encounter another area that has only been
explored in basic experiments.
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Abstract
Today, open data catalogs enable users to search for datasets with full-
text queries in metadata records combined with simple faceted filtering.
Using this combination a user is able to discover a significant number
of the datasets relevant to a user’s search intent. However, there still re-
main relevant datasets that are hard to find because of the enormous
sparsity of their metadata (e.g., several keywords). As an alternative,
in this paper, we propose an approach to dataset discovery based on
similarity search over metadata descriptions enhanced by various se-
mantic contexts. In general, the semantic contexts enrich the dataset
metadata in a way that enables the identification of additional rele-
vant datasets to a query that could not be retrieved using just the
keyword or full-text search. In experimental evaluation we show that
context-enhanced similarity retrieval methods increase the findability
of relevant datasets, improving thus the retrieval recall that is critical
in dataset discovery scenarios. As a part of the evaluation, we cre-
ated a catalog-like user interface for dataset discovery and recorded
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streams of user actions that served us to create the ground truth. For
the sake of reproducibility, we published the entire evaluation testbed.

Keywords: Dataset, Discovery, Search, Similarity, Evaluation, Context

1 Introduction
Dataset discovery is an important task in the area of data integration [1].
Leading tech companies, including Google, have developed their own dataset
search techniques [2]. Novel solutions for dataset search in various domains
started to appear recently, such as the Datamed [3] – an open source index
for discovery of biomedical datasets. The existing approaches emphasize the
importance of quality metadata for dataset findability [4], pointing out that
available metadata attached to a dataset does not always describe the dataset’s
semantic content as well as the usability of that metadata in a particular re-
trieval task (or use case). Other works [5–7] confirm that dataset discovery
is highly contextual depending on the particular user’s task. This makes the
dataset discovery harder as it may not be sufficient to search for datasets only
by classical keyword or full-text search. The mentioned works show the contex-
tual dependency should be inherently reflected by the dataset search engines.
More sophisticated approaches able to search for datasets being similar to an
example dataset could be helpful in these scenarios. However, as shown by
[1, 4], many existing dataset discovery solutions are based on basic keyword
search. Examples of such solutions are the European Data Portal1, the Czech
National Open Data Catalog2 [8], or the Open Data Portal of the US Govern-
ment3. [4] provides a detailed survey of existing discovery solutions and shows
that existing solutions are mainly based on the basic keyword search in struc-
tured metadata records comprising the titles, descriptions and free keywords
characterizing datasets.

In this paper, we evaluate several approaches to dataset discovery that
are based on the similarity search. The similarity-based methods allow us to
systematically incorporate the datasets’ context information into the search
process, which is especially beneficial if the dataset’s metadata alone is very
sparse. Then, it could provide better results than the traditional full-text
search applied on sparse metadata. The hypothesis we want to research in this
paper is formulated as follows:

Research hypothesis:
Context-enhanced similarity-based dataset discovery extends the search results
with relevant datasets that are not findable using the full-text search methods.

1https://data.europa.eu
2https://data.gov.cz
3https://www.data.gov/
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1.1 Paper Contributions
The contributions presented in this paper are summarized as follows.

• We argument for similarity search in the role of an open dataset discovery
technique and describe selected similarity-based methods for dataset search.

• We created a prototype of a user environment in the style of standard
dataset catalog the users are familiar with. Beyond the standard catalog
functionality, we also implemented an option for dataset similarity search.

• We hired and tasked professional independent users (not related to the
authors of the paper) to use the catalog environment and solve several pre-
defined dataset discovery scenarios (use cases). We recorded the streams of
user actions in the environment for all the users and their tasks. Using the
streams, we created a new ground truth for evaluation of the effectiveness
of dataset discovery methods.

• We showed how to use the new ground truth in order to compare hundreds
of different dataset search methods.

• By the analysis of user action streams we have confirmed the research
hypothesis.

• We have accomplished and evaluated also the usability and user friendliness
of the similarity-based dataset discovery using the standard SUS method.

2 Related work
The problem of dataset search and discovery could be addressed by vari-
ous approaches. Domain-specific and small-scale dataset collections could be
maintained by database administrators and thus described by a relational
schema (list of simple-type attributes). Then the dataset discovery task would
be as simple as querying records in an SQL database. However, most of the
datasets are published on the web as open data where no admins exist, the
scale is enormous and the semantic diversity of the datasets is unlimited. The
dataset discovery techniques are rarely based on querying the actual content of
datasets, as the datasets’ content structure and semantics greatly varies (full-
text, spreadsheets, database dumps, multimedia) while the individual dataset
elements are too fragmented (numbers, strings, dates, pixels). The diversity
of open datasets is so large that the common consistent description for open
datasets proved to be a simple metadata record comprising of a few text-based
attributes (title, description, keywords) describing the dataset.

2.1 Similarity Search
As the datasets’ metadata is text-based, a natural method for dataset discovery
is the full-text search, widely used in various web search engines. However,
from a wider perspective the full-text search methods are just a subset of larger
concept for retrieval of unstructured data – the similarity search.

In the area of similarity search, data objects are retrieved using the query-
by-example paradigm. The query is defined as an example data object (a
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particular dataset in our case) and similarity scores are computed between
the example and all the objects in the database4. The similarity scores then
determine the ranking of objects with respect to the similarity of the query
example. Finally, the most similar objects in the ranking are returned as the
query result – mostly in the form of k nearest neighbors (kNN).

The research in the similarity search area had intensified some three decades
ago by setting the metric space model as the golden standard [9]. The met-
ric distances in place of (dis)similarity functions were introduced purely for
database indexing reasons (i.e., for fast search). Though a good trade-off for
many problems, the metric space model remains quite restrictive for model-
ing similarity. The restrictions are even more strict in follow-up models aiming
at improving search efficiency, such as the ptolemaic [10] or supermetric [11]
models.

In the era of Big data, however, the increasing diversity and complexity of
data calls for more general schemes of similarity modeling. The metric space
properties could be too restrictive in many fields [12], therefore approaches to
non-metric similarity search get constantly more attention in the last decades.
For the sake of robustness, the similarity models used in practical applica-
tions often favor partial matching over the global similarity (high similarity
in objects’ details implies higher mutual relevance of objects than a smaller
"overall" similarity does). However, such a bias towards partial matching nec-
essarily brings violations of the metric properties [12] (e.g., triangle inequality
is broken). Consider the textbook example with a man, a horse and a centaur.
The centaur is partially very similar to the man (upper body part) as well
as to the horse (lower body part), but the man and the horse are completely
dissimilar (a triangle for them cannot be created). In such situations, mod-
els dropping some of the metric space properties – the non-metric similarity
models – could address the problem. The need for non-metric similarity mod-
els could be beneficial also in the domain of dataset discovery as they allow to
more easily integrate the dataset contexts in various ways.

2.2 Similarity-based Dataset Discovery
In this paper, we are interested in similarity-based dataset discovery. The ra-
tionale for using similarity search is the usage of an example dataset as query
instead of a free-form text. Where full-text query (typed into a search box by
user) consists of a few arbitrary keywords, the example dataset carries richer
semantics.

Also, example datasets really exist in some dataset catalog, so using them
as queries cannot be a "blind shooting" (whereas arbitrary full-text search
can). A limitation to this approach is the assumption that such an example
dataset is provided by the user or by the system. This is not always possible
especially at the beginning of the dataset discovery process, while in such cases

4Note that the data-engineering terminology could be a bit misleading. A database is generally
a collection of database objects (or documents). In our case, the database object (document) is a
particular dataset (e.g., a CSV file). Hence, in dataset discovery we search a database of datasets.
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the full-text query is the only viable starting option. Nevertheless, once some
datasets suitable for examples are determined during the discovery process, by
them we obtain a consistent way of how to ask for other relevant datasets –
the similar ones.

The similarity can be used during query processing where the query re-
sult obtained by full-text search can be enriched with similar datasets. Also,
it could be used for result handling and presentation where similarity of re-
trieved datasets is applied to group datasets in the presentation or to enable
exploration of retrieved datasets in case of large results.

A specific subset of techniques related to similarity-based dataset discovery
is discussed in the recent survey [4]. It discusses techniques to extend a table by
discovering tables through table similarity based on tabular schema similarity
(e.g., [13, 14]) and semantic similarity using embedding approaches (e.g., [15]).
These can be considered also as dataset discovery techniques because a table
is just a special case of a dataset.

Several novel techniques for similarity-based dataset discovery using knowl-
edge graphs have been proposed in the last few years. The Aurum system
[16] was proposed to build, maintain and query an enterprise knowledge graph
(EKG) which represents datasets and their structural elements, e.g., table
columns, as nodes and relationships between them as edges. A relationship
between two structural elements may represent content similarity, schema sim-
ilarity, e.g., similarity of names of the columns, or key/foreign key pairs defined
in the dataset schemas. The paper introduces an efficient model which uti-
lizes EKG. Moreover, the introduced technique requires only a linear passage
through datasets to build EKG. Dataset discovery is then performed on top
of EKG. When a user selects a dataset, the tool offers other relevant datasets
through the relationships in EKG.

A content and schema similarity technique was proposed in [17]. For schema
similarity, the approach considers similarity of attribute (column) names. For
content similarity, the approach considers various similarity models, e.g., based
on value embedding. Content-based union and complement metrics between
RDF datasets were proposed in [18], designed to compute similarity scores
directly on the RDF triples forming the datasets.

Several papers propose dataset similarity techniques based on metadata
similarity. A full-text search method proposed in [19] enables to measure simi-
larity between datasets on the basis of papers citing the datasets and a citation
network between datasets. In another study [20] the authors evaluate four
different metadata-based models for searching spatially related datasets, i.e.,
datasets which are related because of the same or similar spatial area cov-
ered (where the user query is parsed and tagged by a geocode). A number
of similarity models and indexes were proposed for semi-structured data [21–
24], where mix of both textual and structured information is available. These
multi-modal approaches could be used in cases the schema of the expected
datasets is designed to grasp meaningful semi-structured content.
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There are also works which focus on methods useful for datasets published
as Linked Data [25]. For example, content-based metrics for measuring connec-
tivity between datasets using links and shared entities between the datasets
were introduced in [26]. The authors of [27] also use shared entities to define
similarity between datasets and extend this approach also to cluster similar
entities. The metrics can be then used also for measuring similarity between
datasets. A dataset recommendation approach is presented in [28] which iden-
tifies linking candidates based on the presence of schema overlap between
datasets. A dataset recommendation method based on cosine similarity of sets
of concepts present in datasets was introduced in [29]. Similarly, the authors
of [30] recommend datasets based on the similarity of resource labels present
in the datasets. Then they rank the recommended datasets based on cosine
similarity and tf-idf weights and the coverage of labels present in the origi-
nal dataset. Another work [31] presents a probabilistic Bayesian classifier for
dataset recommendation. Such recommendation techniques can also be used
for dataset discovery services as they recommend similar or related datasets.

2.2.1 Baseline: The European Data Portal

The European Data Portal5 (EDP) offers a discovery feature based on dataset
similarity besides the basic keyword search. For a dataset found by the key-
word query search, similar datasets are also offered to the user. According to
source code published at GitLab6, the portal uses a similarity-based model
called TLSH [32, 33]. In TLSH, the keyword-based title and description meta-
data of the dataset are concatenated into a string. Then a locally sensitive
hash is constructed from the concatenated string, aiming to produce similar
hashes for similar datasets, and these hashes (bit strings) are compared us-
ing a proprietary similarity function. It was implemented as a technique for
searching for duplicate or almost equal datasets, ignoring typing errors. Being
the official similarity-based method in EDP search interface, we use TLSH as
the baseline method in our evaluation.

3 Similarity Models for Dataset Discovery
The fundamental element for similarity search is the representation of objects
for measuring similarity. In our case, we work with the metadata attached to
datasets, which are text-based properties title, description, and keywords. The
metadata representation is very sparse as the information included is very small
(a few keywords) or even missing (e.g., title). An example of a real dataset
medatada is:

title = "Floods in the 19th century",
description = "Flooded areas in a 19th century flood in the Pilsen region",
keywords = "floods; environment; GIS"

5https://data.europa.eu/en
6https://gitlab.com/european-data-portal/metrics/edp-metrics-dataset-similarities/

-/blob/master/src/main/java/io/piveau/metrics/similarities/SimilarityVerticle.java

61



1. Open Dataset Discovery using Context-enhanced Similarity Search

Preprint submitted to KAIS

Open Dataset Discovery using Context-enhanced Similarity Search 7

3.1 Direct similarity models
The first group of similarity models we used in our evaluation are models
that measure direct similarity between a pair of datasets’ descriptors. Such
similarities are not dependent on other objects (datasets) in the database.

3.1.1 Context-free models

The simplest similarity models are context-free, that is, there is no external
knowledge used to evaluate the similarity score of two objects. Only the infor-
mation stored in descriptors is used for the similarity computation. An example
of such a simple similarity measure over text strings that we originally tried
for dataset discovery was the Levenstein (or edit) distance [34]. However, it
proved to be very impractical early on, especially for longer text strings, e.g.,
description, due to its high time complexity. Therefore, we did not use it as
regular similarity for dataset discovery. Nevertheless, we used edit distance
for presentation purposes; specifically for grouping similar datasets within the
final user interface (section 4.1.1).

The first measure in our evaluation was the TLSH – Locality Sensitivity
Hashing – presented in [32] and used the European Data Portal (EDP). Thus,
it served us as a suitable baseline similarity model. Except for the extra lan-
guage translation step, our implementation7 of the algorithm is identical to the
implementation in EDP. The concatenation of title and description is hashed
by a hashing function (TlshH) and the subsequent similarity T lshD(#x,#y)
is computed over this hash. This hashing function provides similar hashes for
similar strings.

Another possibility is to represent dataset’s textual metadata (denoted as a
text document doc) as a vector in the bag of words model (BoW). The document
doc is parsed for words, that are lemmatized, non-significant words (such as
prepositions, conjunctions, stop-words (frequent words), etc.) are filtered out.
We use the UDPipe [35] for lemmatization of doc with the English-ParTUT
model for English metadata [36] and Czech-PDT model for Czech metadata
[36]. These lemmatized words are called terms. A dictionary is created that
contains all terms from the entire database (all datasets’ metadata). Thus,
the simplest option is to represent each term as a separate dimension, and
the value of the vector for a given doc tells us the number of occurrences
(freqterm,doc) of that term in doc. The vector of a dataset associated with doc
is defined as doc = (tf (t1, doc) , tf (t2, doc) , ..., tf (tm, doc)), where m is the
number of terms in the dictionary. Then it is sufficient to compare the vectors
by, for example, the Cosine distance CosD(a,b) defined by Equation 4. A
more popular model is then TF-IDF [37], which extends the whole concept
by word frequency analysis and thus emphasizes unique words as shown by
Equation 2. The vector is built using the tf-idf score defined as Equation 3
instead of tf score (Equation 1).

7https://github.com/mff-uk/simpipes-components/blob/main/processors/
compute-similarity/basic/linda/tlsh.py
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tf (term, doc) =
freqterm,doc∑
t∈doc freqt,doc

(1)

idf (term) = − log
|{doc ∈ D : term ∈ doc}|

|D|
(2)

tf-idf (term, doc) = tf (term, doc) · idf (term) (3)

CosD (a,b) = 1−
∑n

i=1 aibi√∑n
i=1 a

2
i

√∑n
i=1 b

2
i

(4)

We also evaluated set-based similarities. In particular, keywords, or titles
(split into words), can be thought of as a set of words. Such a set can then be
compared using Jaccard distance based on Jaccard similarity. JacD is defined
in Equation 5. Alternatively, we can utilize the set of vectors from the next
section. Since we would have a hard time finding duplicates in such vectors,
as the vectors will usually be slightly different, we can use Hausdorff distance
defined in Equation 6. HausD tries to find the minimum matching between
two sets using a defined ground distance d. This ground distance d, in our case,
is the Cosine distance CosD as mentioned above.

JacD (A,B) = 1− |A ∩B|
|A ∪B|

(5)

HausDd (A,B) = max

{
sup
a∈A

inf
b∈B

d(a, b), sup
b∈B

inf
a∈A

d(a, b)

}
(6)

3.1.2 Context-enhanced models

The problem of context-free models in our particular case of dataset discovery
is the sparsity of metadata. Simply said, there is often nothing in common
between the datasets if a similarity model relies just on keyword matching.
This problem could be alleviated with a context to enhance the keywords by
some background semantic concepts. Such an enhancement enables the find
similarities at some higher-level of abstraction.

As an example, knowledge graphs/ontologies like WordNet [38], Concept-
Net [39] or Wikidata [40] could be used to map metadata as well as user
queries to knowledge graph nodes. The terms in metadata/query are enriched
by keywords represented by the knowledge graph nodes and the query result
is obtained using the standard full-text search or a kind of shortest path eval-
uation [40]. To boost the enriching effect even more, NLP-based preprocessing
methods could be used to semantically disambiguate the terms later mapped
to knowledge graph nodes [41–43].

Alternatively, NLP-processed text could be used alone as a light-weight
variant to the ontology mapping. Word embeddings stand for such a light-
weight alternative that "imports" the contextual knowledge directly into the
data representations (vectors). Instead of knowledge graphs, embeddings rep-
resent machine-learning approach to create a background shared semantics to
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be used for dataset representations. In particular, word embeddings transform
each word or phrase into a vector representing a given concept. It is based on
the principle that similar words occur in similar contexts. Vectors of similar
words are then close to each other. We average all the vectors (one vector per
term from query/metadata) into a single vector for a query/dataset. In our
experiments, we tried the original Word2Vec embedding [44] with three differ-
ent parameterizations. For English metadata, we use the Word2Vec(enwiki)
model trained on English Wikipedia articles. For Czech metadata, we use
the Word2Vec(cswiki) model trained on Czech Wikipedia articles and the
Word2Vec(law) model trained on legislative texts.

Node2Vec [45] extends the idea of Word2Vec from the text domain to the
graph domain. k random walks of length len are generated for each node.
These random walks then represent standard sentences, and the embedding
concept is identical to Word2Vec. For Node2Vec embedding, we trained several
models with different parameters k, len over the Wikidata graph. Concepts
from Wikidata then serve not only as a node in the graph, but also as a term.

Similarly, we experimented with the BERT model [46]. BERT model
provides not only embedding but also natural language processing, i.e., lemma-
tization, word splitting, etc. At the same time, the learning principle is slightly
different from Word2Vec-based methods. Word2Vec methods are based on the
prediction of surrounding words based on a specific word or vice versa, the
prediction of a specific word based on surrounding words. The BERT model
is trained by masking certain words and then predicting them. In addition to
masking, it also uses Next Sentence Prediction, i.e., whether two sentences are
consecutive in the text, for training.

Although we ultimately did not include these similarity models in the user
evaluation that formed the ground truth, the results of automatic evaluation
are available in the extended evaluation in the section 4.2.3.

3.2 Data-transitive Similarity Meta-model
In this section, we utilize the meta-model of data-transitive similarity [47].
Unlike the direct similarity models, using data-transitive similarity all objects
in the database influence the similarity score between a particular pair of
objects. In a sense, the data-transitive similarity introduces a new level of
context-enhanced similarity modeling; the context is the database itself.

The basic assumption of data-transitive similarity is a chain of objects from
the database that are similar to each other, but the beginning and end of the
chain could be quite dissimilar (yet relevant). The strength of the chain itself
can be formalized as an aggregation of several consecutive ground distances.
The Equation 7 defines general form of data-transitive distance function d̂,
where D is a set of objects (the database in practical applications), d is a
ground distance (the direct similarity), n is the length of the chain. Operator⊙

is an outer aggregation over all permutations of length n over elements of
database D (e.g., min, max, avg). Operator

⊎
is an inner aggregation over the

individual direct distances within a particular chain. Table 1 shows examples
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of various inner aggregation functions. They are also the aggregation functions
we worked with in our preliminary experiments. A more complex alternative
may be a combination of several kinds of aggregations or distances.

d̂⊙,n
⊎ (x,y) =

⊙
(i1,...,in)∈Dn

⊎
(d (x, i1) , d (i1, i2) , . . . , d (in,y)) (7)

sum(δ0, δ1, . . . , δn) =
∑n

j=0 δj

min(δ0, δ1, . . . , δn) = min {δ0, δ1, . . . , δn}
max(δ0, δ1, . . . , δn) = max {δ0, δ1, . . . , δn}
prod(δ0, δ1, . . . , δn) =

∏n
j=0 δj

iprod(δ0, δ1, . . . , δn) = 1−
∏n

j=0 (1− δj)

Table 1: Examples of inner aggregation
⊎

.

To summarize, the data-transitive similarity d̂ is a non-metric meta-model
operating on top of a ground similarity model d and a particular database
D. The computation of a single data-transitive distance involves a series of
similarity queries over the database.

In our experiments, we evaluated the data-transitive similarities defined in
Equation 8, 9, 10, 11, and 12. For our user evaluation, we describe the selected
similarity models in section 4.1.1.

d̂min,1
max (x,y) = min

i1∈D
max (d (x, i1) , d (i1,y)) (8)

d̂min,1
sum (x,y) = min

i1∈D
(d (x, i1) + d (i1,y)) (9)

d̂min,1
prod (x,y) = min

i1∈D
(d (x, i1) · d (i1,y)) (10)

d̂min,1
iprod (x,y) = min

i1∈D
(1− (1− d (x, i1)) · (1− d (i1,y))) (11)

d̂max,1
diff (x,y) = max

i1∈D
|d (x, i1)− d (i1,y)| (12)

3.2.1 Notation

Since we worked with more than 200 different configurations in our experi-
ments, we provide a simplified notation to understand how models work. The
input descriptors are T title, D description, or K keywords, and their language
(-en or -cs), or their concatenation (e.g. TD-en means concatenated title
and description translated into English). The | sign means data processing,
L lemmatization, SW removal of stop-words,. Or their transformation, split
splitting string into a set of words, BoW splitting into a bag of words or avg
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average of values. Data-transitive similarity in our model is a function with
three parameters: ground distance, outer aggregation, inner aggregation. For
all examples, we assume chains of length equal to 1. Thus, for example, DT(d,
outer, inner) corresponds to d̂inner,1outer .

An example is HausD(TDK-en | L | Word2Vec(cswiki)), where we take
the concatenation of all the metadata in the English translation, lemmatize
it, apply Word2Vec embedding, and take the subsequent vectors as input for
Hausdorff distance.

Another example is DT(CosD(T-cs | L | SW | BoW(tf)), min, max)
which represents data-transitive meta-model d̂min,1

max based on Cosine dis-
tance. Descriptors are titles in the Czech translation. These descriptors are
lemmatized, and bag of words (based just on term frequencies) is created.

4 Evaluation
In this section we provide a thorough quantitative evaluation of the similarity-
based methods for dataset discovery.

4.1 Methodology
Our evaluation of the individual methods for dataset search was based on
several realistic use cases. In a particular use case we assigned a user with a
specific goal of finding datasets needed to build a certain service, e.g., a mobile
application showing flood areas, or a map of criminality, etc. The use case was
specified with a short description of the service to be built and, in the cases
of similarity-based methods, with a starting dataset which is relevant for the
service. In the case of the fulltext-search method, we did not provide a starting
dataset.

4.1.1 Experimental Setup

We defined 6 use cases and hired 10 independent users to evaluate 6 different
dataset similarity models in the context of the defined use cases. The 10 users
were professionals who worked with open data at the national or local (munic-
ipal) level and who regularly used the Czech National Open Data Catalog8.
The use cases were defined in Czech, but we offer an English translation here:

UC1 Intellectual property protection – As a programmer, I want to create
an online service to find data about intellectual property protection.
Starting dataset: Intellectual property rights checks, published by the
Ministry of the Interior

UC2 Medical facilities – As a journalist, I want to create a map of medical
facilities in the Czech Republic according to their addresses.
Starting dataset: Doctors’ offices in Brno, published by the Brno city

UC3 Construction in Brno city – I want to build a family house in Brno and
as an analyst I want to know something about the area. That is, information

8https://data.gov.cz
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about the processes of building a house in Brno, data about living in Brno,
etc.
Starting dataset: People and housing in Brno, published by the Brno city

UC4 Floods – As a programmer, I want to make an application for displaying
flood maps.
Starting dataset: Floods in the 19th century in Plzeň (Pilsen), published by
the Plzeň city

UC5 Climate status – As a journalist, I want to create an application showing
the state of the climate in the regions of the Czech Republic.
Starting dataset: Climate bonity, published by the Prague city

UC6 Fined people – As a programmer, I want to create a service for showing
traders and companies that have been fined for their business practices. I
have already found various data sets on fines, but they do not contain data
on the fined traders and companies themselves. So I still need to supplement
the data on fines with data on fined traders and companies.
Starting dataset: Imposed fines, published by the Czech Trade Inspection
Authority

For all similarity models, the input is metadata records (title, description,
keywords) for datasets. Since the metadata can be in different languages, they
are automatically translated into English using LINDAT [48]. On the other
hand, a poor translation can cause noise in the data and subsequent process-
ing problems. Therefore, the information is presented to users in their native
language, which allows us to objectively build ground truth and evaluate the
quality of the models.

For clarity, we describe the abbreviations used in the figures, as defined
in section 3.2.1. The baseline method we evaluated is the TLSH method
(tlsh = TlshD(TD-en | TlshH)). As the basis of our similarity method,
we implemented the TF-IDF method (tf_idf = CosD(TDK-en | L | SW |
BoW(tf-idf))) over the union of title, description, and keywords if the dataset
has that metadata category present. We also evaluated data-transitive simi-
larity models. We evaluated a total of 3 kinds of data-transitive similarities
based on TF-IDF method (tf_idf):

• min_max = DT(tf_idf, min, max)
• min_sum = DT(tf_idf, min, sum)
• min_iprod = DT(tf_idf, min, iprod)

The users did the evaluation using an extended version of the current user
interface [49] of the Czech National Open Data Catalog, called LinkedPipes
DCAT-AP Viewer. There are two extensions:

1. The detailed view of a dataset is extended with the list of similar datasets
returned by a given similarity method (see Figure 1). In addition, when
the list of similar datasets contains datasets, which are very similar among
themselves, they can be displayed in groups. The granularity of grouping
can be set by the user using the slider Grouping similar datasets.
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Figure 1: Dataset detail view with similar datasets (translated from Czech)

2. It is possible to like a dataset or a group of similar datasets using the like
button in the dataset title or in the list of similar datasets, marking it as
relevant to the currently evaluated use case.

4.1.2 Evaluation

During an evaluation session, a user searched for datasets either by using the
full-text search offered by the original interface, or by browsing through similar
datasets using their similarity computed with one of the similarity methods.
When a user found a given dataset relevant for a given use case, they gave a
like to it.

The evaluation consisted of three rounds – a warm-up round, the first round
and the second round. During the warm-up round, the evaluators could try
out the extended user interface as they pleased, getting familiar with it. In
this round, the user interface contained both the full-text search functionality,
and the similar datasets functionality.

In the first round, the users were first given a set of tasks, each task being an
evaluation of a given similarity method on a given use case. All combinations
of 6 use cases, 6 similarity methods and the full-text search method, amount-
ing to the total of 42 tasks, were evaluated by each of the 10 users. The users
had 7 minutes to evaluate each similarity-based task and 10 minutes to com-
plete the full-text based task. The users did not know, which of the methods
they are evaluating in each session, only that they are evaluating the full-text
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search method, or some of the similarity-based methods. One of the similarity
methods was evaluated twice for verification purposes. Therefore, we actually
tested 5 similarity methods, one of which was evaluated twice, and a full-text
method. After the first round, the evaluators were asked to take at least 7 days
break from the evaluations, before continuing with the second round.

In the second round, the users were given a new use case and a user interface
which allowed them to use a similarity method we selected for them and the
original full-text search functionality. We selected the method from the first
round which was resulting in the biggest number of liked datasets overall,
when we cleaned the results of one outlying user. This does not necessarily
mean that the selected method is the best similarity method. However, it is
good enough to test the usability of a dataset search user interface enhanced
with similarity-based dataset searching functionality. This was the goal of the
evaluation in the second round. In the second round, the users were given 15
minutes to finish the tasks. After finishing it we asked them to answer a couple
of questions about the usability of the user interface with the combination of
the full-text search functionality and the similar datasets functionality (SUS
questionnaire). The questions and results are discussed in section 4.4.

4.1.3 Collected Data

For each task we recorded each of the following user actions:

• like – a user liked a certain dataset or a group of datasets
• dislike – a user cancelled a like of a certain dataset or a group of datasets
• navigation – a user navigated in the user iterface from one page to another,

including the full-text search query
• openWindow – a user opened a new browser tab or window
• closeWindow – a user closed a new browser tab or window
• autoStart – the evaluation session started automatically, based on the

unique URL provided to each of the users
• finish – user manualy finished the evalution by clicking Finish
evaluation button

• start – user manualy started the evaluation, or resumed previously finished
evaluation

We recorded the sequence of the user actions as a stream of time-stamped
events. The dataset is published and persisted in Zenodo [50]. It links to the
dataset containing dataset metadata from the data catalog used for the evalua-
tion [51]. We provide an example here, showing an event stream representing a
user session, its members representing user actions, and we provide an example
of a "Like" action of a dataset.
<https://.../tf_idf_en_min_iprod-...>

a ldes:EventStream;
odsim:method <https://.../tf_idf_en_min_iprod>;
odsim:useCase <https://.../use-case-005>;
odsim:user <https://.../U03>;
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tree:member <https://.../2021-10-13T08:20:24.139Z>,
<https://.../2021-10-13T08:20:24.160Z>,
<https://.../2021-10-13T08:20:37.863Z>,
<https://.../2021-10-13T08:20:39.582Z>;

ldes:timestampPath sosa:resultTime .

<https://.../021-10-13T08:20:37.863Z>
a sosa:Observation;
sosa:resultTime "2021-10-13T08:20:37.863Z"^^xsd:dateTime;
odsim:dataset <https://.../Ostrava/37085167>;
odsim:action <https://.../actions/like> .
We then used the event streams to evaluate the similarity methods and the

provided user interface for dataset search based on their similarity as follows.
First, we use the event streams to construct a new ground truth for eval-

uating dataset similarity methods in section 4.2. In section 4.2 we also show
such evaluation of several dataset similarity methods (a superset of those used
in the user evaluation). Second, we use the event streams to confirm the hy-
pothesis from the introduction to this paper in section 4.3. Finally, we evaluate
the usability of the provided user interface using the System usability scale
method in section 4.4.

4.2 Ground Truth Evaluation
In this section, we describe the importance and process of creating ground
truth testbed for automatic evaluation.

4.2.1 Ground Truth Testbed Construction

A user evaluation of different similarity models can be time-consuming and
costly. For experimental evaluation, it is necessary to rely at least partially
on automatic evaluation, which can serve as a good indicator of a retrieval
method quality. However, an automatic evaluation cannot work without a
clearly specified ground truth (search results provided or confirmed by a hu-
man user). Unfortunately, to the best of our knowledge there does not exist a
public testbed for open dataset discovery that would also include a well-defined
ground truth. Therefore, it is necessary first to build such a testbed.

The construction of ground truth involves many problems. Open data cata-
logs contain a large number of datasets from various providers. This means that
it is not a controlled database, and it is impossible to specify which datasets
can be found in it. Particular tasks to find datasets must have at least par-
tial coverage in the database. The actual building of ground truth by a user
(domain expert) is time-consuming and can be considered subjective. There-
fore, it is quite logical to include multiple independent users in the process of
ground truth construction.

For each use case, users selected several datasets that they considered rele-
vant through our evaluation tool. The ground truth for each use case can then
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be constructed as a set of datasets that have been identified as relevant by at
least q users. The choice of the parameter q can significantly affect the results,
for q = 100% the ground truth will be constructed very conservatively. Theo-
retically, there may be a situation where the result is an empty set, i.e., a user
disagrees with the others. On the other hand, lower q values support creative
users and their ideas and increase the total set of relevant datasets.

UC1 UC2 UC3 UC4 UC5 UC6
q = 10% 5.71% 0.86% 2.57% 1.60% 1.89% 57.36%
q = 20% 5.08% 0.24% 1.65% 1.10% 1.24% 51.67%
q = 30% 2.49% 0.17% 1.03% 0.90% 0.49% 36.66%
q = 40% 0.43% 0.10% 0.68% 0.76% 0.32% 6.03%
q = 50% 0.06% 0.10% 0.49% 0.70% 0.21% 0.05%
q = 60% 0.00% 0.08% 0.44% 0.68% 0.17% 0.02%
q = 70% 0.00% 0.08% 0.33% 0.62% 0.11% 0.02%
q = 80% 0.00% 0.08% 0.27% 0.52% 0.10% 0.00%
q = 90% 0.00% 0.05% 0.22% 0.27% 0.10% 0.00%
q = 100% 0.00% 0.02% 0.17% 0.17% 0.10% 0.00%

Table 2: Number of relevant items (datasets) normalized by the database size
for different q (starting dataset is excluded).

Table 2 shows the size of the resulting set of relevant datasets over each
parameter q. We can see that for use cases UC1 and UC6 and large parameters
q the users do not agree on any relevant dataset except the starting one (not
included in the table nor in the automatic evaluation). Similarly, for low q
values the resulting set of relevant datasets is too large (≥ 5% of all datasets).
Following the HCI recommendations, the user interface shows only up to ten
most similar datasets in our setup (i.e., following the Google search ergonomy).
It corresponds to 0.1% of the database size (6302 datasets). Therefore, it makes
sense to consider these use cases in the automatic evaluation only for reasonable
values of q.

The ground truth for each relevant combination of a use case and a q value,
i.e., those for which there is non-empty set of datasets, is published in Zenodo
for reuse as a spearate dataset [52] linkend to the evaluated datasets from [51].
Each ground truth is modeled as a SKOS [53] collection of datasets in the data.

Sample of the ground truth data for UC1 and q = 50%:
col:UC1_50 a skos:Collection;

skos:prefLabel "Ground truth of UC1 with q=50%"@en;
odsim:useCase "UC1";
odsim:q 50 ;
skos:member ds:https---...190910full,

<https://data.gov.cz/...ntrolniU/98197>,
ds:http---data.ctu.cz-ap...0-ae26-4be34d1d477f,
<https://data.gov.cz/...dy/CObchodniI/98803>,
ds:http---data.mfcr...rav-dusevniho-vlastnictvi

.
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Figure 2: Precision-recall area under the curve score

4.2.2 Automatic Evaluation

In terms of automatic evaluation, we can look at two criteria, precision and
recall [54]. If the search engine returns k results (datasets), the precision is a
fraction of the results the users consider as relevant. Recall tries to capture
the relationship between all relevant results and those obtained by a search
engine. We use an 11-point precision-recall curve [55] to compare the search-
engine behavior for different k. In the case of an ideal search engine, for any
value of recall, precision should be 1, while a bad search engine will have
almost zero precision values. To simplify the comparison, we compute the area
under the precision-recall curve (PR AUC) and compare the different variants
accordingly. This value is averaged over all valid use cases.

Figure 2 shows the relationship of the PR AUC of each similarity model
as a function of q = {10%, 20%, . . . , 80%, 90%, 100%}. In the case of the con-
servative setting of parameter q, we obtain the highest success rate by using
the standard TF-IDF similarity. Decreasing the parameter q leads to higher
success rates of similarity models based on data-transitivity. The main reason
for this is the ability of data-transitive models to capture direct similarities
and, more importantly, to capture associations between completely dissimilar
datasets. The TLSH approach has proven to be insufficient.

The effectiveness gain when using data-transitive similarity models can be
seen even more in Figure 3. Here we show the precision at k = 20 of the
returned results. To show the added value, we do not include the relevant
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Figure 3: Precision at k = 20, without relevant datasets found by full-text
search

results found by users using standard keyword search (full-text) in the results.
Hence, the figure shows how data-transitive similarity models add extra value
over the standard keyword search.

Overall, the variants of data-transitive similarity models behave very simi-
larly, with minimal differences. Considering precision-recall curve and precision
at k = 20 results, the min_iprod variant performs best. However, we must
stress that this is the model’s success rate over our use cases. Other models
may be more appropriate for different use cases. This is shown by the differ-
ence between q = 50% and q = 100%; due to the minimal number of datasets
for q = 100% (all users must agree).

4.2.3 Extended Evaluation

Apart from the few similarity models employed in the user evaluation, we per-
formed automatic evaluations also for more than 200 other similarity models,
however, they were evaluated with respect to the new Ground Truth. These
models cover a variety of similarity functions, parameters, contexts, and meta-
data. A complete list would be exhaustive and uninformative, so below we list
only the results of the most interesting models.

Table 3 shows the PR AUC values for the selected models and the selected
parameters q. In total, we see three different approaches, all working with the
union of all metadata (title, description, keyword) and cosine distance. The
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Model \ q paramater 50% 60% 80% 100%
CosD(TDK-en | L | BoW(tf-idf)) 0.47 0.49 0.61 0.90

DT(CosD(TDK-en | L | BoW(tf-idf)), min, max) 0.60 0.61 0.63 0.41
CosD(TDK-en | L | SW | BoW(tf-idf)) 0.46 0.49 0.61 0.89

DT(CosD(TDK-en | L | SW | BoW(tf-idf)), min, max) 0.59 0.61 0.63 0.40
DT(CosD(TDK-en | L | SW | BoW(tf-idf)), min, iprod) 0.59 0.61 0.63 0.45

CosD(TDK-en | L | Word2Vec(enwiki) | avg) 0.58 0.61 0.71 0.89
DT(CosD(TDK-en | L | Word2Vec(enwiki) | avg), min, max) 0.51 0.56 0.72 0.73
DT(CosD(TDK-en | L | Word2Vec(enwiki) | avg), min, iprod) 0.71 0.76 0.67 0.66

Table 3: PR AUC values for selected similarity models.

difference is in the processing; for the first two TF-IDF models we do not
filter frequent words. Last three models utilize Word2Vec[enwiki] embedding,
which converts individual words to vectors generated by the Word2Vec model
learned over the English Wikipedia articles. It can be seen that stop-word
filtering does not matter that much; on the other hand, the use of embeddings
can be beneficial. Again, we have confirmed that the less conservative the
q parameter setting we use, the more successful data-transitive models are
compared to the other approaches.

Figure 4 shows the precision at k = 20 returned results excluding results
found by full-text search for q = 50%. It may be interesting to observe that
title and description are the biggest information carriers. Another interesting
observation may be that models with language translation can be more efficient
than the original ones. This may be due to several factors, the first factor is the
use of english models that are trained on larger amounts of data. The second
reason may be the translation itself, which prefers the same translations of
words instead of using synonyms. Models using Node2Vec based on Wikidata
hierarchy, BERT, or Hausdorff distance did not prove to be very effective
for our use cases. Last but not least, it shows importance of data-transitive
similarity models, which work very well as a complement to traditional full-text
search.

4.3 Evaluation of similarity search vs. fulltext search
In this section, we use the event streams recorded in our user evaluation to
confirm the research hypothesis we already posed in section 1:

Context-enhanced similarity-based dataset discovery extends the search re-
sults with relevant datasets that are not findable using the full-text search
methods.

First, we analyze the number of liked datasets per use case and method
(either a method based on a similarity model or the full-text search method)
by individual evaluators. The results are visualized in Figure 5 as box-plot
diagrams for each use case.9 The first observation is that users found some
relevant datasets for each use case and search method. None of the methods
outperforms on a significant number of use cases. We can see that the full-text

9The numbers can be computed using query1.sparql published with the dataset [50]
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Figure 4: Precision at k = 20, without relevant datasets found by full-text
search during extended evaluation for q = 50%

search performs quite well as the number of found datasets is high in com-
parison to the similarity methods. In other words, the evaluators were able to
find significant amount of datasets using the classical full-text search method.
They were also able to find some datasets using the similarity methods.

The previous evaluation does not confirm nor disprove our hypothesis. We
need to know which datasets the evaluators found using a similarity method
but not with the full-text method and, vice versa, which datasets they found
using the full-text search method but not using none of the similarity methods.
Figure 6 shows the number of datasets per use case and similarity method
which were liked by evaluators without the datasets which were also liked when
the full-text method was used.10 In other words, it shows us how similarity
methods complement the full-text method with showing datasets which were
unnoticed by the evaluators when they used the full-text search. We can see
that the majority of the evaluators liked datasets which they did not like when
using the full-text search. This confirms the part of our hypothesis that the
dataset similarity methods provide users with datasets which are not findable

10The numbers can be computed using query2.sparql published with the dataset [50]
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Figure 5: Number of datasets liked by evaluators per use case and method
(ln scale).

by the full-text search method or which they did not notice when using the full-
text method. We can therefore say that dataset similarity methods supplement
the full-text search accordingly.

Figure 7 shows the numbers of datasets the evaluators liked when using the
full-text search but which they did not like or did not notice when using the
similarity search methods.11 It shows that using only the similarity methods
is not sufficient for the dataset search because for each use case there are some
datasets the evaluators noticed (i.e. gave like to them) when using the full-text
metod but did not notice when using the similarity search methods.

These two evaluations confirm our hypothesis. None of the methods is suf-
ficient on its own. Our evaluation shows that for various dataset search use
cases there are datasets which were noticed by the evaluators using the classical

11The numbers can be computed using query3.sparql published with the dataset [50]
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full-text search. However, there are also relevant datasets which the evalua-
tors did not notice when using the full-text search and needed a similarity
method. Therefore, it is beneficial to combine the classical full-text search with
similarity methods.

Let us demonstrate the evaluation on a concrete example. Table 4 shows
a dataset Forests, which was found useful to the use case Climate status with
the starting dataset Climate bonity by 4 users during the evaluation. The
interesting fact is that the users found this dataset in the data catalog using
some of the similarity-based methods and at the same time, no user found this
dataset using the full-text search.

Title
Keywords Description
Climate bonity

S Prague Climate quality - a comprehensive description according
to all evaluated climatological aspects. The data were cre-
ated using ArcGIS 9.2, Spatial Analyst. The layer was
transferred from the raster layer bonita, with a horizon-
tal resolution of 25m. The following data were used for the
implementation of this map: Digital reference map Prague-
block map of the building Line layer of street sections
Vector data of the thematic layer Úpn-transport-line layer
of the road network Outputs from the Model Air Quality
Assessment in Prague-update 2006 by ATEM s.r.o. Digital
terrain model DMR25 Orthophotos of the Czech Repub-
lic. The resulting creditworthiness map was created on the
basis of the weighted average of partial maps using map
algebra.

Forests
F GIS, overview Forest areas in the territory of Pilsen and its surroundings

(derived from the cadastral map).

Table 4: Example of a starting dataset (S) and the dataset found useful by
multiple users in the evaulation using similarity-based methods (F).

4.4 System usability evaluation
To evaluate the usability of the user interface of the LinkedPipes DCAT-AP
Viewer extended with the listing of datasets similar to a particular dataset
based on our similarity methods, we used the System usability scale (SUS).12
The SUS methodology uses a simple form consisting of the following 10
questions.

Q1 I think that I would like to use this system frequently.
Q2 I found the system unnecessarily complex.
Q3 I thought the system was easy to use.
Q4 I think that I would need the support of a technical person to be able to

use this system.
Q5 I found the various functions in this system were well integrated.

12https://measuringu.com/sus/
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Figure 6: Average number of liked datasets per use case and model not found
by the full-text method (ln scale).

Q6 I thought there was too much inconsistency in this system.
Q7 I would imagine that most people would learn to use this system very

quickly.
Q8 I found the system very cumbersome to use.
Q9 I felt very confident using the system.

Q10 I needed to learn a lot of things before I could get going with this system.

Each question can be answered on a scale from 1 to 5 where 1 means
Strongly disagree and 5 means Strongly agree. The resulting SUS score is com-
puted as SUS = 2.5 ∗ (20+ r(Q1)− r(Q2)+ r(Q3)− r(Q4)+ r(Q5)− r(Q6)+
r(Q7)− r(Q8) + r(Q9)− r(Q10)) where r(QN) represents the result given in
the Nth question.

We received 10 answers from our 10 users, as can be seen in Table 5 yield-
ing an average SUS score of 70. According to the original description of the
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Figure 7: Average number of liked datasets per use case found only by the
full-text method.

U. / Q. Q1 Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10 SUS
U01 4 2 2 3 1 5 1 3 1 4 30
U02 3 3 4 4 4 3 3 4 2 4 45
U03 1 2 5 4 2 4 5 1 2 1 57.5
U04 4 1 4 1 4 2 4 2 4 1 82.5
U05 5 2 5 2 5 1 4 2 4 1 87.5
U06 3 1 4 1 4 4 5 2 2 1 72.5
U07 5 2 5 1 4 2 5 1 4 2 87.5
U08 5 2 4 2 3 3 5 2 4 2 75
U09 5 2 4 1 4 2 5 2 3 1 82.5
U10 4 2 4 1 3 2 5 1 3 1 80

Table 5: System Usability Scale evaluation – answers and SUS scores

SUS methodology published by U.S. General Services Administration (GSA)
Technology Transformation Service13, "based on research, a SUS score above
a 68 would be considered above average and anything below 68 is below aver-
age". More recent study [56] describes 7 grades of SUS scores from 1: Worst
imaginable to 7: Best imaginable with grades 4: OK with the SUS mean score
50.9, 5: Good with 71.4 and 6: Excellent with 85.5. Therefore, the resulting
score shows that our interface for searching data sets in a catalog extended
with the similarity methods is considered good for the users.

It is worth noting that besides the standard SUS questions, we asked
each user for a free-text generic comment regarding the evaluation. From the
comment of U01 it was clear that their answers were heavily biased by the
quality of the dataset metadata in the platform, which is something we cannot
influence.

13https://www.usability.gov/how-to-and-tools/methods/system-usability-scale.
html
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5 Conclusions
In this paper we proposed an approach to dataset discovery based on similar-
ity search over metadata descriptions enhanced by various semantic contexts.
In experimental evaluation we have shown that context-enhanced similarity
retrieval methods increase the findability of relevant datasets. As a part of the
evaluation we created a catalog-like user interface for dataset discovery and
recorded streams of user actions that served us to create the ground truth. We
published the entire evaluation testbed.

Based on the evaluation, we recommend the developers of open dataset
catalogs to implement the option of similarity-based retrieval into the catalog
search engines. The similarity-based search alone does not outperform full-
text or keyword search in all dataset discovery scenarios. Though, it could be
a useful complementary search option that together with the full-text search
could improve the effectiveness of the dataset discovery. The similarity-based
search could be especially useful for improving the retrieval recall (complete-
ness of search results). In particular, the retrieval recall can be improved for
more opened discovery usecases similar to those presented in the evaluation.
These usecases start with an open-ended goal to build a certain service and
with a starting dataset found using the classical keyword search. For each
usecase, there were datasets that were similar to the given dataset but could
not be found using keywords. However, we also showed that it is not possi-
ble to choose the best similarity technique. It is necessary to implement more
different similarity techniques and combine them.
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Abstract

Purpose – Semantic retrieval and discovery of datasets published as open data remains a challenging task. The
datasets inherently originate in the globally distributed web jungle, lacking the luxury of centralized database
administration, database schemes, shared attributes, vocabulary, structure and semantics. The existing dataset
catalogs provide basic search functionality relying on keyword search in brief, incomplete or misleading textual
metadata attached to the datasets. The search results are thus often insufficient. However, there exist manyways
of improving the dataset discovery by employing content-based retrieval, machine learning tools, third-party
(external) knowledge bases, countless feature extraction methods and description models and so forth.
Design/methodology/approach – In this paper, the authors propose a modular framework for rapid
experimentationwithmethods for similarity-based dataset discovery. The framework consists of an extensible
catalog of components prepared to form custom pipelines for dataset representation and discovery.
Findings – The study proposes several proof-of-concept pipelines including experimental evaluation, which
showcase the usage of the framework.
Originality/value – To the best of authors’ knowledge, there is no similar formal framework for
experimentation with various similarity methods in the context of dataset discovery. The framework has the
ambition to establish a platform for reproducible and comparable research in the area of dataset discovery. The
prototype implementation of the framework is available on GitHub.

Keywords Dataset, Discovery, Search, Framework, Similarity, Knowledge graph

Paper type Research paper

1. Introduction
The number of datasets available on theweb increases tremendously. For example, the number
of datasets published by public authorities in European countries increased from 880k datasets
in August 2019 [1] to 1140k datasets in November 2021 [2]. Also Google observed an explosive
growth in the number of available datasets in recent years according to Benjelloun et al. (2020).
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Although there exist dataset catalogs providing search for datasets, their retrieval features are
restricted to simple keyword search based on textual metadata recorded in the catalog. These
simple search methods presume that their users, the data consumers, know exactly what they
are searching for and which search query leads to the expected results. However, this
assumption is usually not valid, and, in principle, it neglects the very purpose of the catalogs.
When users knowwhich datasets they are searching for, they usually also knowwho publishes
a dataset and how the publisher titles the dataset. With this knowledge, it is quite
straightforward to locate a dataset on the publisher’s website using a generic search engine.
The genuine purpose of data catalogs emerges when users do not exactly knowwhich datasets
they are searching for andhow to find them.This is a usual situationwhere theusers knowonly
a few keywords and topics that roughly characterize the needed data. The problem of missing
information about data is inherently related to the big data phenomenon and is generally
discussed as the problem of data findability by Zezula (2015). In their studies, Gregory et al.
(2020a), Koesten (2018) and Degbelo (2020) show that users typically need to search for more
than a single, isolated dataset. Typically, the userswish to findmultiple datasets similar to each
other in some way, and this is where the pure metadata-based search methods come up short.
The studies also show that dataset discovery depends on the context of the user’s needs and
discovery tasks. Various works such as Fernandez et al. (2018), Zhang and Balog (2018) and
Mountantonakis and Tzitzikas (2018) also show that dataset content can be important for
building dataset discovery services. Therefore, it is not easy to construct a dataset discovery
service on top of a single similarity discovery method. It is necessary to be able to experiment
with various combinations of different methods and compare them. This leads us to the
following research questions we try to solve in this paper:

RQ1. How can we support such experiments with different similarity dataset discovery
methods?

RQ2. How can we support combining the methods to more complex pipelines for
computing dataset similarities?

RQ3. How can we evaluate and compare different pipelines?

In this paper, we introduce a modular framework for rapid experimentation with methods for
similarity-based dataset discovery, using the perspective of software engineering. We are
aware that the development of an ultimate and universal method for dataset discovery would
be an infeasible effort. This is based on our previous work – �Skoda et al. (2019), Skopal et al.
(2021) –where we already experimented with various similarity discoverymethods.We have
measured them on various real search scenarios, and we showed that none of the evaluated
methods performs best on all the scenarios. In this paper, we do not propose yet another
method. Instead, we focus on answering the research question above by proposing a
framework for experiments with various dataset similarity methods.

Therefore, the framework is not proposed as a complete solution to particular dataset
discovery problems, but it should rather act as an extensible modular toolbox for
experimentation with various dataset discovery pipelines, including future ones. It supports
experimentation by providing a predefined and extensible set of compatible components
which can be combined to more complex pipelines which can then be measured, evaluated
and compared. Although the framework is designed as generic and extensible, its retrieval
model is based on the similarity search paradigm that proved to be an effective general
mechanism for retrieval of complex data. Another feature of the framework is its
presumption of external knowledge in the process of dataset discovery, which is essential
to retrieval using different dataset contexts. In �Skoda et al. (2020), we proposed a framework
for evaluation of dataset discovery methods. This paper focuses not only on the evaluation
but also on the experimentation with the methods and their combinations.
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1.1 Paper contributions
We identify four contributions in this paper:

(1) The modular and extensive architecture of the framework provides a formal meta-
model solution under which particular steps or methods can be easily connected
together into dataset discovery pipelines.

(2) The framework includes a proof-of-concept component catalog that could be used as a
predefined source for assembling discovery pipelines.

(3) We demonstrate the framework benefits using a proof-of-concept implementation
and evaluation of several pipelines constructed within the framework.

(4) The extensible architecture of the framework could provide other scientists both
formal and system platforms for reproducible and repeatable research in the area of
dataset discovery.

The rest of the paper is organized as follows. In Section 2, we give an overview of the dataset
discovery area and various discovery methods with the main focus on similarity-based
methods. We also show that there is a lack of a framework introduced in this paper. In
Section 3, we introduce the framework. We present its layered architecture and describe its
layers in detail. In Section 4, we prove the viability of our approach using a proof-of-concept
where we construct concrete pipelines for measuring dataset similarity and its presentation
to users willing to discover datasets. We conclude in Section 5.

2. Related work
2.1 Importance of dataset discovery
Finding related datasets, or shortly dataset discovery, is one of the important tasks in data
integration as shown byMiller et al. (2018). Chapman et al. (2020) recognize dataset discovery as a
research field with its unique technical challenges and open questions. Large companies such as
Google develop their own dataset search techniques and solutions (Brickley et al., 2019). New
solutions for dataset search in specific domains started to appear recently. For example, Chen et al.
(2018) introduced Datamed, which is an open source discovery index for finding biomedical
datasets. The field of dataset discovery is not studied only from the technical point of view but
also from amore social point of view. Gregory et al. (2020a) investigate how researchers discover
data theyneed for their research projects on the base of the large survey among researchers (1,677
respondents from 105 countries). Gregory et al. (2020b) investigate the same problems by
analyzing existing research literature and interviewing scientists who need to discover datasets
for their work. Koesten (2018) interviewed 20 data professionals asking them questions on how
they search for datasets. These recent studies and surveys show that dataset discovery is an
important problem which needs further research. Gregory et al. (2020a, b) conclude that dataset
search engines could help searchers looking for data outside their domain to better identify new
possible sources of data.Gregory et al. (2020a)moreover show that data needed for a research task
canbe diverse data fromdifferent sources of various types. Degbelo (2020) formulate 27 opendata
user needs as a synthesis of current findings from recent literature focusing on smart city data.
They structure the statements to 10 categories. One of the categories is called serendipitous
resource discovery (SRD)which involves user questions such as “Are there datasets that I never
thought of, that could also be relevant to my tasks?.”Degbelo (2020) emphasize the need of cross-
linking to other datasets related to the dataset being looked at by the user.

2.2 Dataset discovery techniques
All the studies emphasize the role of quality metadata for dataset findability, while Chapman
et al. (2020) point out that available metadata do not always describe what is actually in a
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dataset and whether a described dataset fits for a given task. Gregory et al. (2020a, b) and
Koesten (2018) confirm that dataset discovery is highly contextual depending on the current
user’s task. The studies show that this contextual dependency must be reflected by the
dataset search engines. This makes the task of dataset discovery harder as it may not be
sufficient to search for datasets only by classical keyword-based search. More sophisticated
approaches which are able to search for similar or related datasets could be helpful in these
scenarios. As shown by Chapman et al. (2020) and Miller et al. (2018), many existing dataset
discovery solutions are based on simple keyword query search. This is what is typically
implemented in open data portals such as NODC or EDP. There are also open data portal
mash-ups. For example, EDP collects metadata records about open datasets from national
portals of individual member states and provides search features across the whole European
Union. Recent works further extend these basic approaches. Brickley et al. (2019) describe
Google Dataset Search. The authors explain in the paper how dataset metadata is crawled
from the web and cleansed. The metadata is then mapped to the Google’s knowledge graph,
which is then used for dataset duplicates detection and for dataset discovery. Chen et al.
(2020) enrichmetadata records with labels based on the dataset content. Chapman et al. (2020)
describe the whole dataset discovery process comprising querying for datasets, query
processing resulting in a list of datasets, result handling and its presentation. It also surveys
recent techniques for these individual steps.

2.3 Similarity-based dataset discovery techniques
In this paper, we are interested in similarity-based dataset discovery techniques. Dataset
similarity can be used either during query processing where the query result can be enriched
with similar datasets or for result handling and presentation where similarity of retrieved
datasets can be used to group datasets in the presentation or to enable exploration of
retrieved datasets in case of large results. For example, EDP offers a discovery feature based
on dataset similarity besides the basic keyword query search. For a dataset found by the
keyword query search, similar datasets are also offered to the user. According to source code
published at GitLab [3], the portal uses TLSH presented by Oliver et al. (2013). Firstly, they
concatenate the title and description of the dataset. The locally sensitive hash is constructed
from the concatenated string, which should produce a similar hash for a similar dataset, and
these hashes are compared. Originally, the method was introduced by Dutkowski and
Schramm (2015). It was implemented as a technique for searching for duplicate or almost
equal datasets, ignoring typing errors.

Similarity-based dataset discovery is discussed in the recent survey by Chapman et al.
(2020). It discusses techniques to extend a table by discovering tables through table similarity
based on tabular schema similarity (e.g. Das Sarma et al., 2012, Yakout et al., 2012) and
semantic similarity using embedding approaches (e.g. Zhang and Balog, 2018). These can be
considered also as dataset discovery techniques because a table is just a special case of a
dataset. Several novel techniques for similarity dataset discovery have been proposed in
literature in the last few years. Fernandez et al. (2018) propose Aurum. It is a system to build,
maintain and query an enterprise knowledge graph (EKG) which represents datasets and
their structural elements, for example, table columns, as nodes and relationships between
them as edges. A relationship between two structural elements may represent content
similarity, schema similarity, for example, similarity of names of the columns, or key/foreign
key pairs defined in the dataset schemas. The paper introduces an efficient model which
exploits EKG. Moreover, the introduced technique requires only a linear passage through
datasets to build EKG. Dataset discovery is then performed on top of EKG. When a user
selects a dataset, the tool offers other relevant datasets through the relationships in EKG.
Bogatu et al. (2020) propose a technique based on content and schema similarity. For schema
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similarity, the approach considers similarity of column names. For content similarity, the
approach considers various similarity models, for example, based on value embedding.
Mountantonakis and Tzitzikas (2020) propose union and complement metrics between RDF
datasets. The metrics are content-based and computed directly on the RDF triples forming
the datasets. Several papers propose dataset similarity techniques based on metadata
similarity. Altaf et al. (2019) describe a method which enables to measure similarity between
datasets on the base of papers citing the datasets and a citation network between datasets.
Degbelo and Teka (2019) evaluate four different metadata-based models for searching
spatially related datasets, that is, datasets which are related because of the same or similar
spatial area covered. The first model is a full-text search model. The second one parses and
geocodes user’s query. The other two models map user’s query to knowledge graphs,
WordNet (Fellbaum, 2005) and ConceptNet (Speer et al., 2017), enrich the query with the
neighborhoods from these knowledge graphs and use the result for the full-text search.

There are also works which focus on methods useful for datasets published as Linked
Data (Berners-Lee, 2006). For example, Mountantonakis and Tzitzikas (2018) introduce
content-based metrics for measuring connectivity between datasets using links and shared
entities between the datasets. Wagner et al. (2014) also use shared entities to define similarity
between datasets and extend this approach also to clusters of similar entities. Themetrics can
be then used also for measuring similarity between datasets. Ellefi et al. (2016) present a
dataset recommendation approach which identifies linking candidates based on the presence
of schema overlap between datasets. Ellefi et al. (2016) introduce a dataset recommendation
method based on cosine similarity of sets of concepts present in datasets. Similarly, Martins
et al. (2016) recommend datasets based on the similarity of resource labels present in the
datasets. Then they rank the recommended datasets based on their TF-IDF score and their
coverage of labels present in the original dataset. Leme et al. (2013) present a probabilistic
Bayesian classifier for dataset recommendation. Such recommendation techniques can also
be used for dataset discovery services as they recommend similar or related datasets.

2.4 Data catalogs and metadata
Any dataset discovery method depends on the ability to find and access available datasets.
To make a dataset available and accessible, the current practice is to describe it with
metadatawhich is published in a data catalog. A typical data catalog consists of a database of
dataset metadata records and a pair of query interfaces, one for machines, for example, a
SPARQL endpoint, and one for humans, for example, a user interface, the latter typically
using the former. Examples of such data catalogs are the official portal for European data
(EDP) [4], the CzechNational OpenData Catalog (NODC) [5] described byKl�ımek (2019), or the
US government’s open data portal [6]. In addition, there are many more data catalogs within
enterprises. Those typically contain non-open data, but otherwise, they work in an identical
way as the open data catalogs.

For dataset metadata, there is the DCATW3C Recommendation (Browning et al., 2020), a
vocabulary specifying the metadata fields and their representation based on RDF (Cyganiak
et al., 2014). For data portals within the European Union, there is an application profile of
DCAT called DCAT-AP [7], further specifying the metadata fields, improving metadata
interoperability. Furthermore, there are additional application profiles of DCAT-AP for
individual countries and use cases.

According to DCAT, a dataset is “A collection of data, published or curated by a single
agent, and available for access or download in one or more representations [8].” The dataset
metadata record according to DCAT contains various kinds of fields. Some fields are textual,
such as dataset title, dataset description and keywords describing a dataset. Other fields,
such as, in the case of DCAT-AP, update frequency, file format or language used, contain
values from code lists from the EU Vocabularies [9].

Similarity-
based dataset

discovery
framework

92



2.5 Modularity and reusability of existing solutions
Based on the datasetmetadata, data catalogs offer dataset search and retrieval functionalities
for their users. As the studies mentioned above show, the users typically need to search for
more than a single, isolated dataset. Typically, the userswish to findmultiple datasets related
to each other in someway, and this is where the puremetadata-based searchmethods present
in today’s data catalogs come up short. The studies also show that dataset discovery depends
on the context of the user’s needs and discovery tasks. Therefore, it is not easy to construct a
dataset discovery service on top of a single similarity discovery technique. It is necessary to
be able to experiment with various combinations of various techniques and compare them. A
framework supporting such experimentation, possibly providing predefined components
which can be combined and compared, would be helpful for anyonewho needs to find a viable
solution for their domain and contexts. The framework shall support extracting metadata
from data catalogs, processing the extracted metadata and computing similarities between
described datasets, and presenting the resulting similarities to human users. The framework
shall be modular. It shall provide a set of various components for metadata extraction,
metadata processing, similarity measuring and also various human interfaces for presenting
the similarities to human users. One could say that any ETL framework shall be sufficient.
AnETL framework, as explained byEl-Sappagh et al. (2011), is a framework for defining data
manipulation processes, each starting with extracting data from its sources, its various
transformations and loading the result to a database. The database is then used for various
purposes, including presentation of the data to human users. However, what is important is
not a particular ETL framework but a set of ETL components prepared for a certain task. In
our case, this task is dataset discovery and measuring similarity of datasets in particular.
From this point of view, a given technique for metadata extraction or similarity computation
shall be packed as a component. Moreover, the components need to have standardized and
compatible outputs and inputs so that it is possible to combine them and introduce new
components for experimentation.

Unfortunately, the only standardization in the existing solutions are the DCAT and
DCAT-AP metadata standards described above. The existing techniques for metadata
extraction and similarity computation surveyed in the subsections above are isolated and
incompatible solutions without open and modular architecture. This makes them hard to
combine and compare. To the best of our knowledge, the existing works in the field of dataset
discovery do not address this problem, and our paper is the first which addresses the problem
of defining such open and modular architecture for dataset discovery. For example, Brickley
et al. (2019) describe the architecture of the Google dataset search solution. The architecture
comprises components for metadata extraction; metadata manipulation including its
normalization, cleansing and deduplication; and a user interface for searching datasets using
the cleansedmetadata. TheEDP architecture comprises components for harvestingmetadata
from national data catalogs in EU countries, components for metadata manipulation
including a component for computing dataset similarities using TLSH. Fernandez et al. (2018)
describe the architecture of Aurum comprising a component for extracting dataset profiles of
tabular datasets, a component for building relationships between datasets and a component
for querying the resulting search index by human users. We can see that all these works
somehow describe a dataset discovery architecture, but none of them defines it as open and
modular architecture which enables to reuse and combine various solutions.

3. Architecture of dataset discovery framework
In this section, we introduce our dataset discovery framework. We present its basic concepts,
its architecture and conceptual model of its components. As can be seen from the overview of
dataset similarity techniques in Section 2, the framework needs to accommodate various
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solutions, from simple metadata similarity techniques to techniques employing knowledge
graphs. The framework must be modular so that it is possible to combine the techniques. To
achieve modularity, it is necessary to encapsulate various techniques as framework
components with well-defined inputs and outputs.

The basic concepts of our framework are similarity production pipelines and similarity
presentations. A similarity production pipeline is a data processing pipeline which takes a
data catalog as an input together with other possible inputs and produces similarity of
datasets in the catalog. It comprises various components which either extract data from
external sources, process data or present data to end users. A similarity presentation then
presents similarity to human users through a user interface. It comprises a presentation
component which takes an output of one or more similarity production pipelines as an input.
The framework supports experts in building their own similarity production pipelines and
similarity presentations. The experts can experiment with various combinations of
components suitable for their domain and use cases and compare them.

The architecture is depicted in Figure 1. It comprises three layers of abstraction: pipeline
(yellow), catalog (orange) and conceptual (green). The pipeline layer comprises concrete
assembled similarity production pipelines, each complementedwith a similarity presentation.
A similarity production pipeline connects various components together, defines in which
order the components are executed and how the components pass their outputs. A similarity
presentation then takes the outputs of one or more pipelines and presents them to human
users using a presentation component. Two sample similarity production pipelines are
outlined in Figure 1. Their components are depicted as blue boxes with rounded corners.
Component inputs and outputs are depicted as squares in different colors. Each pipeline ends
with a similarity presentation.

The catalog layer comprises a catalog of supported components which can be placed in
pipelines and used for presentations. A component specifies expected input data, how the
input data is processed and what output is provided. The sample catalog depicted in Figure 1
comprises eight different components, each depicted as a blue box with rounded corners and
with their expected inputs and their outputs as colored squares. The gray dashed arrows

Figure 1.
The architecture of the

dataset similarity
discovery framework
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oriented from the pipeline layer to the catalog layer depict how the individual components
chosen from the catalog layer are placed in the similarity pipelines or used for similarity
presentation.

The conceptual layer is an abstract layer which defines the conceptual model of similarity
production pipelines and similarity presentations. The conceptual model defines supported
component types. Each component in the catalog is an instance of a component type from the
conceptual model. A component type specifies an action but it is abstracted from a specific
method and specific form of input and output data. The input and output data specification is
abstracted to conceptual entity types which describe possible inputs and outputs at the
conceptual level without technical details. Figure 1 outlines the conceptual model. It shows
that the conceptual model defines component types with their input and output entity types.
From the left to the right, each component type depicted as a blue box has one or more
instances at the catalog layer. The first component type depicted on the left of the conceptual
layer has two components as its instances in the catalog layer, the second has one component
as an instance and so forth. Each component type instance, that is, a specific component,
adheres to its component type. It means that it provides a specific implementation of the
action defined by the component type. To perform the action, it takes inputs and provides
outputs which adhere to the input and output types, respectively, predefined by the
component type.

In this section, we describe each layer in detail. We describe the conceptual model as a
fixed set of component types, with fixed set of entity types as their inputs and outputs. We
then define how components in a catalog shall be defined. However, we do not define a fixed
catalog. A definition of a specific catalog of components is up to a specific implementation of
the framework and a given catalog can be arbitrarily extended with new components.
However, any component must be an instance of one of the types from the conceptual level
which is fixed. This section ends with a formal definition of similarity pipelines and
presentations which shows how components from a catalog can be combined together. A
specific component catalog, specific similarity pipelines and presentations and how they can
be executed are presented in Section 4.

3.1 Conceptual layer
The conceptual layer defines the conceptual model for similarity production pipelines and
similarity applications. It ensures compatibility of components in pipelines as it defines
supported entity and component types. Each component type represents some action with a
given input and output. This defines not only supported actions but also possible ordering of
components in pipelines because it is necessary that their inputs and outputs are compatible.

3.1.1 Entity types. An entity type represents types of data entities handled during
similarity production pipelines execution. The conceptual model of possible entity types is
depicted in Figure 2. We distinguish the following entity types in this paper:

(1) Dataset represents a dataset D in a collection of datasets {D1, . . ., Dn} or shortly
fDign1 or {Di} when n is not important. The goal of a similarity production pipeline is
to produce similarities of datasets in {Di} among each other.

(2) Knowledge represents external knowledge which is used in a similarity production
pipeline. We distinguish three subtypes in this paper:

� KnowledgeGraph represents external knowledge structured as a graph
G5 (N, E) where N is a set of nodes, E⊆N3 P3 (N∪ L) is a set of edges, P is a set
of all possible node properties and L is a set of all possible literal values. A literal
value is simply a string. For an edge (n, p, o), n is called subject, p is called
predicate and o is called object. An edge (n, p, o) s.t. o ∈ N is called object edge.
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An edge (n, p, o) s.t. o ∈ L is called literal edge. A reader may notice that the
knowledge graph model corresponds to the RDF data model (Cyganiak et al.,
2014), but this is not important at the conceptual layer.

� NodeEmbedding represents external knowledge structured as a node
embeddingN G : N →Rn of a knowledge graph Gwhere N is the set of nodes of G.

� WordEmbedding represents external knowledge structured as a word
embedding W : L→Rn where L is the set of all possible literal values.

(3) Descriptor represents a descriptor of a dataset D. A descriptor of D is any collection
of data which describes D, for example, vector, a histogram, time-series, a set of
descriptors or a combination of other dataset descriptors.Wedistinguish three subtypes:

� Metadata represents a descriptorwhich describes D usingmetadata. Currently,
we consider only one possible kind of metadata descriptors which correspond to
the DCAT standard (see Section 2.4).

� Mapping represents a descriptor which describes D bymapping its representation
{d1, . . ., dm} to an external knowledge. A representation {d1, . . ., dm} of D is any set
of elements which characterize D. It is a generic concept which may comprise
elements of the data schema of D, all or chosen data elements from the content of D,
and it can also be D itself. A mapping of D to an external knowledge comprises
particular mappings of the elements of the representation.

If the external knowledge is a knowledge graph G, then the mapping is a set

fðD; di; fni1; . . . ; nikigÞg
m

i¼1
whichmaps each element di of a representation {d1,

. . ., dm} of D to a set of nodes fni1; . . . ; nikig from G.

If the external knowledge is an embedding E, then the mapping is a set

fðD; di; fvi1; . . . ; vikigÞg
m

i¼1
which maps each element di of a representation {d1,

. . ., dm} ofD to vectors fvi1; . . . ; vikigwhere each vector is a result of applying the
embedding E and some mapping logic represented by a concrete mapping
component.

� SimilarityRanking represents a descriptor which describes D in a collection
fDign1 using similarity ofDwith other datasets in {Di}\{D} as a pair (D, {(D1, s1), . . .,
(Dn, sn)}) where sj 5 similarity(D, Dj) for some function measuring similarity of
datasets.
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(4) DataSource represents an external source of a certain kind of data. An instance of
a data source type is a concrete data source which can be accessed through an API to
extract data. We distinguish the following data source types.

� DataCatalogSource represents a data catalog source DScat which provides
an API for extracting metadata descriptors. Currently, we consider only data
catalog sources providing DCAT metadata descriptors through a SPARQL
endpoint or for a bulk download.

� KnowledgeSource represents an external knowledge source DSk which
provides an API for extracting external knowledge. It can be a SPARQL endpoint
for extracting an RDFknowledge graph, a bulk download of aword embedding or
a set of documents on which a word embedding can be trained.

� DatasetSource represents a datasets source DSdwhich enables downloading
a dataset described by a metadata descriptor. It can simply be the web where the
metadata descriptor provides a URL for downloading the content of the dataset.

3.1.2 Component types. A component type represents an operation. It is abstracted from a
concrete algorithm for that operation and its implementation. The concrete algorithm and
implementation is provided by a concrete component which is an instance of the
component type.

Formally, an operation operationðin1; . . . ;inmÞ : out takes input parameters
fin1; . . . ;inmg and produces an output out. An input inj is a regular expression T, Tþ,
T* or T? meaning that one instance, one or more instances, zero or more instances, or zero or
one instance of an entity type T is provided on the input. The same is for the operation output.

The top-level component type is Component. It represents all possible components.
There are three more specific subtypes: Extractor,Processor andPresenter. The
full list of supported component types with their inheritance hierarchy is shown in Figure 3.

3.1.2.1 Extractors. Extractor represents an extractor. An extractor is a component
which performs an operation of extracting data from a data source. The conceptual model of
extractors is shown in Figure 4. We distinguish the following subtypes of Extractor:

(1) ExtractExternalKnowledge represents components performing

extractkðKnowledgeSourceÞ : Knowledge
which extracts an external knowledge from a given external knowledge source.

(2) ExtractMetadataDescriptor represents components performing

Figure 3.
The conceptual model
of possible components
types for similarity
production pipelines
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extractmetaðDataCatalogSourceÞ : Metadataþ
which extracts metadata about datasets from a given data catalog source.

(3) ExtractContentDescriptor represents components performing

extractdescðDatasetSource;MetadataþÞ : Descriptorþ
which extracts from a dataset source a descriptor for each dataset with a provided
metadata descriptor.

3.1.2.2 Processors. Processor represents a processor. A processor is a component
which performs an operation for processing input entities to output entities. The conceptual
model of processors is shown in Figure 5.

(1) RefineDescriptor represents components performing

processrefdðDescriptorþÞ : Descriptorþ
which transforms input descriptors to output descriptors.

(2) RefineExternalKnowledge represents components performing

processrefkðKnowledgeÞ : Knowledge
which transforms an external knowledge to another external knowledge, for example,
transforming literal objects of literal edges to other literal objects in a knowledge graph,
removing some object edges from a knowledge graph or applying some vector
operation on the vectors in an embedding.

(3) MapDatasetToKnowledge represents components performing

processmapðDescriptorþ;KnowledgeÞ : Mappingþ
which maps a set of datasets described by the input descriptors to an input external
knowledge. The resulting output mapping is created on the base of the input
descriptors, and it maps each dataset to the external knowledge.

(4) RefineMapping represents components performing

processrefmðMappingþ;Descriptor*;Knowledge?Þ : Mappingþ
which transforms an input mapping of datasets to an external knowledge to another
mapping of the same datasets to the same external knowledge or another external
knowledge specified as an optional input. The new mapping is created using the
optional input descriptors of the datasets.

Figure 4.
The conceptual model
of possible extractor
component types for
similarity production

pipelines

Figure 5.
The conceptual model
of possible processor
component types for
similarity production
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(5) ComputeSimilarity represents components performing

processsimðDescriptorþÞ : SimilarityRankingþ
which computes a similarity of each dataset described by an input descriptor with other
datasets described by the other input descriptors. The component uses the input
descriptors to compute the similarity.

(6) FuseSimilarities represents components performing

processfuseðSimilarityRankingþÞ : SimilarityRankingþ
which performs multimodal fusion of two or more input similarities for a dataset to a
single similarity. For each dataset with specified similarities on the input, an output
similarity is produced.

3.1.2.3 Presenters.Presenter represents a presenter. The conceptualmodel of presenters
is shown in Figure 6. A presenter is a component which uses the products of dataset similarity
pipelines to present them to human users and provide them with some functionality.

(1) SimilarityEvaluation represents components performing

presentevalðSimilarityRankingþ;DescriptorþÞ
which presents dataset similarities to a human user who evaluates the similarities. It
uses input descriptors of the datasets for presenting the datasets.

(2) SimilaritySearch represents components performing

presentsearðSimilarityRankingþ;DescriptorþÞ
which enables a human user to choose a dataset and then shows datasets similar to the
chosen one on the base of the input similarities. It uses input descriptors of the datasets
for presenting the datasets.

(3) SimilarityExploration represents components performing

presentexplðSimilarityRankingþ;Descriptorþ;Knowledge*Þ
which explains similarities between datasets to a human user. For the explanation, it
uses the input similarity, dataset descriptors and optionally also external knowledge of
different kinds. Among the input descriptors, there are alsomappings of the datasets to
the external knowledge if provided on the input. Descriptors may be used for
presentation as well as explanation purposes.

3.2 Catalog layer
The catalog layer contains the catalog of components experts may use to build their
similarity production pipelines and similarity presentations. Each componentc in the catalog
is an instance of a component type T from the conceptual level which we write as c∈T. A
component c is described in the catalog with a record using the following structure:

type: specifies the type of c from the conceptual layer

input: specifies the inputs of c from the conceptual layer using the entity types from the
conceptual layer

output: specifies the outputs of c from the conceptual layer using the entity types from the
conceptual layerFigure 6.

The conceptual model
of possible presenter
component types for
similarity production
pipelines
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description: describes verbosely the behavior of c

implementation: specifies a link or links to the source code and documentation of one or
more implementations of c

configurable: specifies whether and how the behavior of c can be configured

configurations: if c is configurable there is a list of predefined configurations; for each
predefined configuration, a name and configuration specification is provided

As can be seen from the structure, a component has one or more executable implementations.
The implementations consume the same conceptual entities on the input, produce the same
conceptual entities on the output but they technically differ in data formats used to express
the inputs and outputs. Furthermore, a component’s behavior can be further specified by
configuring it. In case of a configurable component, some concrete configurations may be
predefined in the catalog. These configurations are then used by their name in pipeline
specifications in the next section which makes pipeline specifications clearer.

3.3 Pipeline layer
The components in the catalog layer represent concrete operations with their concrete
implementations. The pipeline layer contains concrete similarity production pipelines and
similarity presentations which put components together. In this section, we introduce a
formal algebraic model of similarity production pipelines and similarity presentations.
A pipeline expressed using the algebraic model cannot be directly executed. The algebraic
expression must be interpreted and translated to an executable script as described in
Section 4.4. The algebraic model enables one to define a pipeline without implementation
details so that it is more suitable for comparing different pipelines. Using the algebraic model,
it is easier to see what are the conceptual differences between given pipelines.

A pipeline fragment F is an expression.

(1) cðF1; . . . ;FmÞ where c∈T is a component of type T performing an operation
operationðin1; . . . ;inmÞ : outand F1, . . ., Fm are pipeline fragments s.t. ∀j∈ {1, . . .,
m} Fj is compatible with the input parameterinj of operation. Fj is compatiblewith an
input parameter inj of a component typeT iff the type of the result of execution of Fj is
the same as the type of inj.

(2) F1∪F2 whereF1,F2 are pipeline fragments with their outputs being of the same entity
type, or

(3) s where s∈DataSource.

An execution of F ¼ cðF1; . . . ;FmÞ means executing the operation defined by c with the
results of executing F1, . . ., Fm passed as parameters. An execution of F 5 F1 ∪ F2 means
creating the set union of the results of executing F1 and F2. An execution of F ¼ s where
s∈DataSource is undefined.

A pipeline fragment F is a similarity production pipeline iff F ¼ cðF1, . . ., FmÞ where
c ∈ ComputeSimilarity ∪ FuseSimilarity. A pipeline fragment F is a similarity
presentation iff F ¼ cðF1, . . ., FmÞwhere c ∈ Presenter.

The introduced algebraic model does not allow for specification of component configurations.
If a component described in the catalog is configurable, its configurations must be defined and
named in the catalog, and only these named configurations can be used in pipeline specifications.

4. Dataset discovery framework proof-of-concept
In this section, we demonstrate the dataset discovery framework on a concrete component
catalog and similarity production pipelines constructed using the components from
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the catalog. To demonstrate the framework, we apply the pipelines on a specific open
data catalog and external knowledge. We also show examples of similarity presenters which
we used for user evaluation of the resulting similarities, for example in �Skoda et al. (2020).

4.1 Data and external knowledge used for proof-of-concept
For the framework demonstration purposes, we work with metadata from the Czech National
Open Data Catalog (NODC) [10] described in Kl�ımek (2019), which is regularly harvested by
the European Data Portal (EDP). This metadata describes open datasets published by public
institutions in Czechia, such as the Czech Statistical Office, the city of Prague or the Czech
Social Security Administration. For illustration of how the framework can be used, we use the
most basic, textual metadata fields: title, description and keywords – which contain textual
descriptions of the datasets in Czech. The collection we work with contains approximately
6,600 datasets from 39 publishers.

Besides dataset metadata, we utilize multiple types of external knowledge. We choose to
employ Wikidata (Vrande�ci�c and Kr€otzsch, 2014), a collaboratively edited knowledge-base
with free access, as a knowledge graph source. In general, theWikidata model is built around
the entities and their relations. The entities may represent concepts or real objects or people.
The relations are of various types, but for the framework demonstration we utilize only
instance of [11] and subclass of [12] relations. We have also used this model for computing
Node2Vec (Grover and Leskovec, 2016) text (labels) and concept (nodes) embeddings with
different hyperparameters. For comparison, we utilize two standard word embeddings:
Word2Vec (Mikolov et al., 2013) model trained on CzechWikipedia articles and BERT (Devlin
et al., 2018) using the BERT-base, multilingual cased model.

Formally, we define the following entities (see Section 3.1.1), whichwill be used in the proof
of concept by components in pipelines:

(1) NODC

type: CatalogDataSource

description: Snapshot of the DCAT-AP metadata dump from the Czech National Open
Data Catalog in the RDFTriG (Carothers and Seaborne, 2014) file format from 2020–04–
20. For practical reasons, datasets of the State Administration of Land Surveying and
Cadastre were omitted. It was approximately 120,000 datasets with very similar
metadata, which did not add any value for the purpose of the framework demonstration,
but unnecessarily increased the time and hardware requirements of the demonstration.

download: 2020.04.20-data.gov.cz-no-cuzk.trig [13] (Kl�ımek and
�Skoda, 2021a).

(2) W2V [CSWiki]

type: KnowledgeSource

description:Word2Vecmodel for word embedding trained on CzechWikipedia articles.

download: cswiki-latest-pages-articles.word2vec [14] (Bernhauer and Skopal, 2020).

(3) N2V [Wikidata Labels/80/40]

type: KnowledgeSource

description: Node2Vec model for word embedding trained on Czech labels of items
from the Wikidata knowledge graph, using the instance of and subclass of
directed edges. For this model, length of random walk is 80 nodes and number of
random walks per node is 40.
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download: labels.80.40.d [15] (Bernhauer and Skopal, 2021d).

(4) N2V [Wikidata Labels/160/40]

type: KnowledgeSource

description: Node2Vec model for word embedding trained on Czech labels of items
from the Wikidata knowledge graph, using the instance of and subclass of
directed edges. For this model, the length of the random walk is 160 nodes and the
number of random walks per node is 40.

download: labels.160.40.d [16] (Bernhauer and Skopal, 2021c).

(5) N2V [Wikidata KG/80/40]

type: KnowledgeSource

description: Node2Vec model for node (concept) embedding trained on the Wikidata
knowledge graph using the instance of and subclass of directed edges. For
this model, the length of the random walk is 80 nodes and the number of random
walks per node is 40.

download: concepts.80.40.d [17] (Bernhauer and Skopal, 2021b).

(6) N2V [Wikidata KG/40/10]

type: KnowledgeSource

description: Node2Vec model for node (concept) embedding trained on the Wikidata
knowledge graph using the instance of and subclass of directed edges. For
this model, the length of the random walk is 40 nodes and the number of random
walks per node is 10.

download: concepts.40.10.d [18] (Bernhauer and Skopal, 2021a).

(7) BERT

type: KnowledgeSource

description: BERT is pretrained model for NLP tasks presented in Devlin et al. (2018).
All pretrained models are officially available at https://github.com/
google-research/bert. In our experiments, we have used BERT-base,
multilingual cased model.

download: multi_cased_L-12_H-768_A-12.zip [19] (Devlin et al., 2018).

(8) Wikidata knowledge graph

type: KnowledgeSource

description: Dump of Wikidata as available at https://dumps.wikimedia.
org/other/wikidata/. The dump contains information about Wikidata entities
and their relations.

download: 20181 217.json.gz [20] (Kl�ımek and �Skoda, 2021b).

4.2 Proof-of-concept component catalog
The full list of available components and links to their implementations can be found in
Appendix A. In this section, we list a subset of the components, which is used later by the
selected similarity production pipelines in Section 4.3. The components are color-coded
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according to the type of their outputs: knowledge (violet), SimilarityRanking (pink),
descriptor (green) and mapping (orange).

4.2.1 Extractors.
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4.2.2 Processors. Similarity-
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4.2.3 Presenters.

(1) evaluateExactSize

type: SimilarityEvaluation

input: fsimilarityRankingjgnj¼1
⊂SimilarityRankingþ,

fdescriptorigni¼1 ⊂Descriptorþ
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description: Evaluates similarity using the provided baseline. For every baseline’s
dataset, the kNN query (Papadias, 2009) similarity search is performed. k is the
expected number of similarity datasets. Average ratio of observed and expected is
presented to the user.

implementation: https://github.com/mff-uk/simpipes-comp
onents/tree/main/presenters/similarity-evaluation/ex
act-size

(2) evaluateTopK

type: SimilarityEvaluation

input: fsimilarityRankingjgnj¼1
⊂SimilarityRankingþ,

fdescriptorigni¼1 ⊂Descriptorþ

description: Evaluates similarity using the provided baseline. For every baseline’s
dataset, the kNN query similarity search is performed. k is specified by user through
parameter, and it is a constant for each test case. Average ratio of observed and
expected is presented to the user.

Implementation:https://github.com/mff-uk/simpipes-components/
tree/main/presenters/similarity-evaluation/top-k

(3) evaluatePRCurve

type: SimilarityEvaluation

Input: fsimilarityRankingjgnj¼1
⊂SimilarityRankingþ,

fdescriptorigni¼1 ⊂Descriptorþ

Description: Evaluates similarity using the provided baseline. For every baseline’s
dataset, the 11-point PR curve (Zhang and Zhang, 2009) is computed and presented to
the user.

implementation: https://github.com/mff-uk/simpipes-components/
tree/main/presenters/similarity-evaluation/pr-curve

(4) OpenDataInspectorEvaluation

type: SimilarityEvaluation

input: fdescriptorigni¼1 ⊂Descriptorþ,
fsimilarityRankingjgnj¼1

⊂SimilarityRankingþ

description: OpenDataInspector is a standalone tool. The evaluation module (see
�Skoda et al., 2020) allows domain experts to evaluate similarity production pipeline
results.

implementation: https://github.com/mff-uk/simpipes-comp
onents/tree/main/presenters/similarity-evaluation/odin-
similarity

4.3 Proof-of-concept pipelines
In this section, we present four similarity production pipelines as examples. The full list of
currently available pipelines can be found in Appendix B. The pipelines demonstrate the
practical usability of our framework. For example, the first pipeline presented in Section 4.3.1
is an implementation of the solution employed by the EDP (see Section 2). In Section 2, we also
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discussed discovery solutions which employed an external knowledge in a form of a
knowledge graph, for example, Brickley et al. (2019), The fourth pipeline presented in Section
4.3.4 is an implementation of a dataset discovery solution employing an external knowledge
in a form of a knowledge graph. In our case, the external knowledge is the Wikidata
knowledge graph. A similar solution is employed by Google in their dataset search
architecture with their own knowledge graph as described by Brickley et al. (2019). Various
pipelines implementing existing as well as novel solutions can be constructed in our
framework. The results of similarity production pipelines can be used, for instance, for their
evaluation, both automatically and with assistance of domain experts. Later, in Section 4.5,
we show the usage of appropriate presenters.

4.3.1 TLSH similarity production pipeline. TLSH similarity production pipeline
corresponds to the similarity feature implemented by the EDP. Note that

can be split into hash computation and similarity function
computation, but in this case, these two parts are interconnected.

4.3.2 Metadata-based similarity production pipeline. The metadata-based similarity
production pipeline is one of the most straightforward pipelines. It relies on suitable usage of
dataset metadata such as title, keywords and description. The metadata is pre-processed by
lemmatization and by removing stop-words. Then, it is compared by the Jaccard similarity
function.

4.3.3 Text-based similarity production pipeline usingWord2Vec embedding.This similarity
production pipeline is an example of text embedding used as external knowledge. The
lemmatization phase can be followed by various embedding mappings. In this case, we use a
mapping to a Word2Vec model trained on Czech Wikipedia articles. It helps to deal with
synonyms and words with similar meaning.
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4.3.4 Concept-based similarity production pipeline with additional external knowledge. In
some cases, it can be useful to enhance a similaritymodel with additional external knowledge.
For example, one part of external knowledge can provide information about mapping words
to concepts. Another part can embed the concepts into a vector space. In our case, both come
from the same database (i.e. Wikidata), but they are processed in different ways. Firstly, we
have mapped words and phrases to Wikidata concepts. Secondly, we have trained a
Node2Vec model using the Wikidata knowledge graph and applied a concept-to-vector
embedding. In contrast with the Word2Vec embedding, the external knowledge in this
pipeline is built using the Wikidata concept hierarchy instead of the natural language
processing of the Wikipedia articles.

4.4 Pipeline implementation
In the previous section, we showcased a few selected pipeline definitions. The definitions
capture all important information that is relevant in order to compare different pipelines.
However, as the pipelines are described using the catalog layer model (see Section 3.2),
additional steps must be carried out to get an executable pipeline implementation. In the rest
of this section, we describe what a user needs to do in order to obtain an executable version of
a pipeline in a step-by-step fashion. In addition, we provide an example of each stepmotivated
by the pipeline described in Section 4.3.3.
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The first step is to employ the component catalog (see Section 4.2), resolve component
configurations and obtain links to component implementations in our GitHub repository:
https://github.com/mff-uk/SimPipes-Components. In the component
repository, each component has an implementation, input and output data sample and a
README.md file with details on how to use the component. The component description
consists of: textual description, requirements, input description, output description,
configuration and example execution script.

For example, the component performs a projection of a given property
as described in the initial part of the README.md. However, the component implementation
also changes the data format from JSON to CSV, as can be seen from the following input and
output descriptions:

Each input or output description consists of format specification, human readable description
of the content and link to a data sample.

Another important part of the description is the component implementation configuration.
The configuration is used not only to set the inputs and outputs of components, but also to
provide additional parameters to the implemented algorithms.

The last part of the component description is an example of the execution script. Note that the
name of the component entry script, json-to-csv.py, does not have to correspond to the
component name, JSON To CSV, nor to the component type name, refine-
descriptor.

The next step is to create a component instance configuration. Most of the time, this needs to
be done manually, as the user needs to understand the configuration description in the
component catalog Section 4.2 and create a corresponding configuration for the component
instance based on the README.md file in the component repository.

For example, is a named configuration of the above-mentioned
component. The configuration description of states

that the projected property is set to title. From the description configuration, the user
should be able to figure out that this can be archived by setting theproperty configuration
to title. As title is already in the example, the property argument remains the same
here. The input and output arguments of the script should be changed to match the rest
of the pipeline.
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Once the configurations are ready, the user can use them to obtain commands that can be
used to execute the given components, and put those commands into a script that forms a
backbone of the pipeline implementation. However, as the pipelines algebra captures the
pipeline at the conceptual level, it leaves out some implementation details like utility
components.

Utility components are stored in the processors/utilities directory in the
repository. They do not change the contents or meaning of the data passed among the
individual components in the pipeline, but they might be necessary for operations like data
format changes, which make the inputs and outputs of the individual components in the
pipeline compatible. Therefore, the user now needs to take a look at the implementation
pipeline backbone and possibly insert necessary utility components.

A good example of the necessity to use a utility component is the pipeline union
described in Section 3.3 and used in Section 4.3.4. The pipeline produces several different
descriptors by using the component on descriptors computed from title,
description and keywords. In the next step, all the data should be put together by union.
While the union has no counterpart in the component catalog, there is a component in the
component repository that can carry on this operation called json-union.

With the complete script to run all the components, the last step is to make sure that
requirements of each component are fulfilled. An example of such a script can be found in
Appendix C.

Some components may require external data or installationn of additional libraries,
which are described in the component’s README.md file. As the components are written
in Python, their dependencies are provided as requirements.txt files. The
installation of the dependencies is then as simple as running pip3 install-r
requirements.txt for the used components. Once all the requirements are met and
the script is ready, the pipeline can be executed simply by running the script. While the
process is relatively straightforward, the user needs to have good knowledge of the
available components and their configurations as well as basic knowledge of data
processing techniques.

4.5 Proof-of-concept similarity presentation
The possibilities of usage of the results of similarity production pipelines is out of scope of
this paper. Nevertheless, we present at least two usage examples: manual and automatic
evaluation of results of various pipelines.

4.5.1 Manual evaluation. The manual evaluation process is fully described in �Skoda et al.
(2020), showcasing, among others, the first three similarity production pipelines from Section
4.3. Note that the results of this evaluation led us to later replace the first pipeline (Section
4.3.1) with the last pipeline (Section 4.3.4) in further evaluation, which is used for illustration in
this paper.

The core idea of the manual evaluation protocol is to employ a set of predefined use
cases. Each use case defines a textual description of the user’s intent, which is used to set
up a scenario in which a user performs the search. In addition, the use case contains a
collection of the so-called starting datasets – datasets already verified to be relevant to the
user and their scenario. The user scenario definition is important as different scenarios
may lead to different results even with the same set of starting datasets. For the purpose
of the evaluation, all team members followed the same protocol as described in �Skoda
et al. (2020).

We carried out the evaluation on selected pipelines from Section 4.3 using the
OpenDataInspectorEvaluation presenter:
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The presenter provides not only an environment to run the evaluation but also the scripts that
can be used to gain basics insight into the evaluation and plot the results. In Figure 7, we can
see an example of one of those outputs. The values S1, S2 . . . S12 on the x-axis represent the
different use-cases as defined in �Skoda et al. (2020). There are results for 10 methods, whose
algebraic definitions can be found in Appendix B. To briefly summarize the results, it is clear
that there is no one method that outperforms all others in all use-cases, which shows the need
for further research into the various types of use cases, various similarity production
pipelines and into the problem of how to select the best similarity for a given use case. These
findings correspond with those in �Skoda et al. (2020).

4.5.2 Automatic evaluation. During our previous experiments (�Skoda et al., 2020), we
quickly found out that the time required for manual evaluation increases rapidly with the
increasing number of similarity production pipelines to be evaluated and their configurations
such as different embeddings and projections. This led us to investigate the possibilities of

Figure 7.
Normalized average
performance per model
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automating at least a part of the evaluation process. We devised an automated similarity
production pipeline screening process – an automatic evaluation of the success potential of
different similarity production pipelines in the form of presenters. These presenters can
provide a quick estimate of the pipeline efficiency so that we can focus on a much lower
number of candidates for the manual evaluation.

However, the automatic evaluation relies on a user-defined baseline. To obtain the
baseline, we manually added the list of all relevant datasets from the given catalog for each
use case in �Skoda et al. (2020).

The evaluateExactSize and evaluateTopK presenters perform a kNN query
search, where k is the number of expected answers, or the specified constant, respectively. For
each use-case, the accuracy is computed as the ratio of expected datasets in the result. The
presenter evaluateTopK reflects more precisely the user-based evaluation as it is not
essential to have an exact match. For the users, it is a success if the expected datasets are
found in the first few results. The evaluatePRCurve presenter provides a more
comprehensive view of the issue. Instead of one number, the PR curve says how much effort
the users have to make to achieve the required precision.

In our experiments, these methods provided a good estimate for comparing similar
pipelines, especially with different kinds of external knowledge. They are also useful for
filtering out models with a great number of settings of hyperparameters. Example of results
for similarity production pipelines in Appendix B is shown in Table 1. The accuracy found in
the automatic evaluation correspondeds very well with manual evaluation. As expected,
methods based on word embeddings with a large dictionary (e.g. Word2Vec or BERT based
onWikipedia) have been very successful.Worse, due to the specific domain, were approaches
based on smaller databases (e.g. Node2Vec).

Since we already know that different similarity production pipelines are successful for
different use cases and the results of the automatic evaluation represent an aggregation of
accuracy over all use cases, the results are not conclusive, and therefore we use them only for
the initial screening process.

4.5.3 Run-time evaluation. During the testing of various similarity models (pipelines), we
can measure pipeline run-time in addition to precision, recall, accuracy and other statistical
metrics. We can measure the run-time of entire pipelines, but we can also measure the run-
time of individual components due to the modularity of the proposed framework. This can be
very useful when comparing two implementations of the same component, where we replace
one implementation with another in an identical pipeline.

Table 1 shows the approximate run-time of each pipeline. Individual runs do not use
precomputed parts from previous runs but can use parallel processing. The computations
were run on a virtual machine running 8 cores with 32 GB of RAM running Ubuntu 21.10.
Testing on a virtual machine of course means that the measurements were influenced by

Pipeline Accuracy Run-time

B.1 cosine: description: bert 10.7% ∼ 20m
B.2 hausdorff: description: [labels.80.40.d] 4.0% ∼ 8m
B.3 cosine: description: word2vec[labels.160.40.d] 19.4% ∼ 6m
B.4 cosine: title: bert 21.2% ∼ 20m
B.5 hausdorff: title: [labels.80.40.d] 7.1% ∼ 5m
B.6 cosine: title [cswiki] 34.9% ∼ 4m
B.7 cosine: title: word2vec[labels.80.40.d] 12.7% ∼ 3m
B.8 jaccard: title 32.4% ∼ 2m
B.9 cosine: wikidata: word2vec[concepts.80.40.d] 14.3% ∼ 3h
B.10 cosine: wikidata: word2vec[concepts.40.10.d] 3.0% ∼ 7h

Table 1.
Results of

evaluateTopK with
K 5 20 for pipelines

presented in
Appendix B
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other virtual machines running on the same hardware, and are therefore only very
approximate. Since our server does not support GPU acceleration, parts of pipelines B.1 and
B.4 were run externally using GPU acceleration within Google Colab service [21].

The longer run-time of pipelines B.9 and B.10 is caused by long-running knowledge
extraction components. Those components execution time alone accounts for roughly 3 and
3.5 h, respectively. The reasons for such long execution times are the size of the Wikidata
knowledge graph dump and the proof-of-concept single threaded implementation. As a result,
there is plenty of room for improvement that could significantly speed up the execution.

One of the indisputable advantages of our framework is the ability to use existing outputs
from common parts of pipelines. This allows us to test different pipelines that share similar
properties efficiently. At the same time, if pipelines are designed appropriately, it is also
possible to use parallel processing and, therefore, experimental evaluation of several
pipelines simultaneously. As a result, the framework allows efficient experimental evaluation
despite the inefficient implementation of components, which is very common in the
experimentation phase. Although our proof-of-concept implementation is not scalable in
terms of production deployment, scalability of experiments is achieved by reusing already
computed parts, which is one of the goals of our framework.

5. Conclusions
In this paper, we have introduced a modular framework for experimentation with dataset
discovery methods. We have presented the framework from a software-engineering
perspective, providing:

(1) formal conceptual definitions of framework components,

(2) a catalog of ready-to-use component implementations,

(3) production pipelines focusing on similarity-based methods and utilization of external
knowledge, such as knowledge graphs and embedding models and

(4) publication of the framework on GitHub.

An interested reader can dive from the conceptual level to the more detailed implementation
level, where the algebraic definitions of pipelines are translated into scripts that could be
directly executed as a piece of experimental software. The framework, including the
implementation, was published on GitHub and is ready to be freely used and extended.

Notes

1. https://data.europa.eu/catalogue-statistics/Evolution

2. Measured by a SPARQL query for selecting the number of distinct datasets on https://data.europa.
eu/data/sparql

3. https://gitlab.com/european-data-portal/metrics/edp-metrics-dataset-similarities/-/blob/master/src/
main/java/io/piveau/metrics/similarities/SimilarityVerticle.java

4. https://data.europa.eu

5. https://data.gov.cz

6. https://www.data.gov/

7. https://joinup.ec.europa.eu/collection/semantic-interoperability-community-semic/solution/dcat-
application-profile-data-portals-europe

8. https://www.w3.org/TR/vocab-dcat-2/#Class:Dataset

9. https://op.europa.eu/en/web/eu-vocabularies/authority-tables
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10. https://data.gov.cz

11. https://www.wikidata.org/wiki/Q21503252

12. https://www.wikidata.org/wiki/Q21514624

13. https://zenodo.org/record/4433 464/files/2020.04.20-data.gov.cz-no-cuzk.trig?download51

14. https://zenodo.org/record/3975 038

15. https://zenodo.org/record/4433 699

16. https://zenodo.org/record/4433 737

17. https://zenodo.org/record/4433 778

18. https://zenodo.org/record/4433 795

19. https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip

20. https://zenodo.org/record/4436 356/files/20 181 217.json.gz?download51

21. https://colab.research.google.com/
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Abstract. Similarity queries play the crucial role in content-based
retrieval. The similarity function itself is regarded as the function of
relevance between a query object and objects from database; the most
similar objects are understood as the most relevant. However, such an
automatic adoption of similarity as relevance leads to limited applicabil-
ity of similarity search in domains like entity discovery, where relevant
objects are not supposed to be similar in the traditional meaning. In this
paper, we propose the meta-model of data-transitive similarity operating
on top of a particular similarity model and a database. This meta-model
enables to treat directly non-similar objects x, y as similar if there exists
a chain of objects x, i1, ..., in, y having the neighboring members similar
enough. Hence, this approach places the similarity in the role of rele-
vance, where objects do not need to be directly similar but still remain
relevant to each other (transitively similar). The data-transitive similar-
ity concept allows to use standard similarity-search methods (queries,
joins, rankings, analytics) in more complex tasks, like the entity discov-
ery, where relevant results are often complementary or orthogonal to the
query, rather than directly similar. Moreover, we show the data-transitive
similarity is inherently self-explainable and non-metric. We discuss the
approach in the domain of open dataset discovery.

1 Introduction

When searching data, we can choose from a multitude of available models and
paradigms. Some models assume exact data structure and semantics, such as the
relational database model (and SQL) or graph database model (RDF+SPARQL,
XML+XQuery). In such models, the relevance of a data entity to a particular
query is binary (relevant/not relevant); specified by a binary predicate. The
precision and recall in retrieval of structured data is always 100% as there is
no uncertainty expected. Also, structured query languages offer high expressive
power that allows the user to specify the relevance of data in many ways.

c© Springer Nature Switzerland AG 2021
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On the other side of the data universe, when searching in unstructured or
loosely structured data (like multimedia, text, time series), we do not have
enough a-priori information on how to model the data features for exact search.
In such situation the similarity search models could be used, representing a
universal way of content-based retrieval in unstructured data. Instead of formu-
lating a structured query aiming at binary relevance, in similarity search we use
a ranking of the database objects determined by their similarity score to a query
example (the query-by-example paradigm). Hence, the relevance is relaxed from
binary to multiple-value. When compared to retrieval of structured data, the
similarity search is more like an “emergency solution” for unstructured data.
The expressive power of similarity queries is limited to a ranking induced by
numeric aggregation of differences between the query example and the database
objects; keeping it a black-box search for the user. The low expressive power
of the query-by-example paradigm leads to a paradox – we search for what we
already have. Specifically, we query for as good results as possible, having the
best result already at hand – the query example. Of course, in practical applica-
tions the query-by-example paradigm makes sense, because the query example
itself does not contain the whole information we search for. For instance, search-
ing by the photo of Eiffel tower we not only get another Eiffel tower image,
but also some context (the Wikipedia web page the result image was embedded
in). Nevertheless, the context (external information attached to data) does not
remove the essence of the paradox – based purely on the similarity of results,
the query example itself is always the best result1.

Historically, the low expressive power of similarity search has been accepted
in the major application area – the multimedia retrieval. Here the semantics
to be captured in multimedia objects (the descriptors) is rather vague, general
and bound to human common knowledge. The similarity search is thus a perfect
method for multimedia retrieval as the similarity concept itself is vague and gen-
eral (and so is the human cognition – the inspiration for similarity search). When
combined with descriptor models employing high-level “canonized” semantics,
such as the bag of words using the vocabulary of deep features [11], then even
the cosine similarity can perform well. Unfortunately, the domain experts are
not always so lucky to work with nicely shaped semantic descriptors, while then
the low expressive power of similarity search is fully revealed. A solution to this
could be a proposal of similarity-aware relevance of data objects to an example
object (query) that enables much more complex aggregation than just evaluat-
ing the direct similarity (the “exampleness” of the results). If we find a way of
how to extend the concept of similarity into a relevance, we would be able to
use the existing similarity search methods in more expressive retrieval scenarios.
For example, consider a fashion e-shop where a user searches for a product by
an example image, e.g., shoes. The result could not only consist of similar shoes,
but it could also return related accessories (handbag, belt) sharing some design
features with the shoes [14].

1 Let’s omit another problem; where to acquire such a “holy grail” example in real-
world problems.
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In the following, we continue the discussion in the specific domain of open
datasets discovery. Unlike in multimedia retrieval, where direct audiovisual sim-
ilarity to a query usually leads to good results, in open datasets with sparse
descriptors we often do not find anything directly (non-trivially) similar. Here the
similarity extended towards more general relevance could improve the retrieval
effectiveness in a fundamental way.

1.1 Discovery of Open Datasets by Similarity

The similarity search models can utilize not only content features but also
metadata (if available). The focus on metadata can be efficient and effective
in domains where the content of the objects is too heterogeneous so that it is
hard to extract features for measuring similarity (or relevance). On the other
hand, such objects could be catalogued by a community to enable search of the
objects by metadata.

This is the case of the domain of open datasets search and discovery [12].
There are various datasets published on the internet which are catalogued in open
data catalogs [18]. They are extremely heterogeneous in structure and semantics
so that modeling them by content is nearly impossible (consider tables and
spreadsheets without schema, full-text reports, database dumps, geographical
and map data, logs, etc.). Open data catalogs provide descriptive metadata about
the datasets in a single place where potential consumers can search for datasets.
However, the problem of metadata is that they are often sparse and poor. In the
open data domain, dataset publishers usually limit their descriptive metadata
to briefly describe the core semantics of their datasets (by title, keywords, text
description). No broader context of a dataset including some description of its
relationships to other datasets is specified in the metadata. Using such sparse
metadata for similarity retrieval is therefore limited. We confirmed this in our
previous work [26] where we showed that various similarity methods do not
perform very well when applied to the descriptive metadata of open datasets.

In our experiments, we noticed situations where two datasets are relevant to
each other but none of the similarity models is able to identify this relevance.
Let us demonstrate this on a concrete example of open data published by public
authorities in Czechia. The datasets are catalogued in the National Open Data
Catalog (NODC)2. There are two datasets entitled IDOL Integrated Transport
System Tariff Zones and Traffic intensity on sections of motorways. The sim-
ilarity of both datasets based on their metadata descriptions is low according
to various similarity models presented in [26]. However, when we reviewed the
datasets manually we found out that they are very relevant to each other. The
first one is related to public transport. The second one is related to transport on
motorways. So when users find one of the datasets, they would like to get also
the other dataset as well. What makes them relevant to each other is the back-
ground semantics which is not directly expressed in the descriptive metadata.
Since it is not expressed in the metadata, no similarity model can work with

2 https://data.gov.cz/english/.
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this. However, there is a third dataset in NODC titled BKOM transport year-
book. The similarity models identify its similarity with the original two datasets
on the base of available metadata. So using the third dataset we could say that
the two original datasets are relevant to each other because they are both similar
to the third one. In other words, they are transitively similar when using other
datasets as a context. What is also interesting in the example is that metadata
about the third dataset express explicitly the concept of transport. So, the third
dataset is not just an intermediary dataset between the two. It explains why they
are relevant, contributing thus to the discussion on explainability of similarity
search.

2 Related Work

Before presenting the meta-model of data-transitive similarity, we discuss several
related points.

2.1 Similarity Modeling

The research in the similarity search area had intensified some three decades
ago by setting the metric space model as the golden standard [25]. The met-
ric distances in place of (dis)similarity functions were introduced purely for
database indexing reasons (i.e., for fast search). Though a good trade-off for
many problems, the metric space model remains quite restrictive for modeling
similarity. The restrictions are even more strict in follow-up models aiming at
improving search efficiency, such as the ptolemaic [15] or supermetric [9] mod-
els. As mentioned in the previous section, this might not be a problem in case
the descriptors are canonized and semantic (such as histograms referring to a
vocabulary of deep features). However, for the lower-semantic cases there were
alternative approaches to indexing similarity proposed in the past 15 years, rang-
ing from dynamic combinations of multiple metrics [5] for multi-modal retrieval
to completely unrestricted, non-metric approaches [23]. The rationale for their
introduction was to increase the expressive power of similarity search (and effec-
tiveness) and still provide an acceptable retrieval efficiency.

2.2 Retrieval Mechanisms

No matter if we choose metric or non-metric similarity, the expressive power of
retrieval is also affected by the retrieval mechanism used. The query-by-example
paradigm constitutes the basic functionality of similarity search in form of kNN
or range queries. The similarity joins enable the use of similarity within the
database JOIN operators [22]. The similarity queries could be also used with
additional post-processing techniques for multi-modal retrieval and analytics,
such as the late fusion [21] and content-based recommender systems [1]. Last but
not least, there appear proposals and frameworks helping with the integration
of similarity search constructs into query languages, such as SimilarQL [24],
or MSQL [19]. The ultimate goal is to establish higher-level declarative query
models for similarity search [3].
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2.3 Dataset Discovery

Finding related datasets, also known as dataset discovery, is one of the important
tasks in data integration [20]. Large companies such as Google have developed
their own dataset search techniques and solutions [4]. New solutions for dataset
search in specific domains started to appear recently. For example, Datamed [8]
is an open source discovery index for finding biomedical datasets. The existing
works emphasize the role of quality metadata for dataset findability while [6]
points out that available metadata does not always describe what is actually in
a dataset and whether a described dataset fits for a given task. Other studies
[12,13,16] confirm that dataset discovery is highly contextual depending on the
current user’s task. The studies show that this contextual dependency must be
reflected by the dataset search engines. This makes the task of dataset discov-
ery harder as it may not be sufficient to search for datasets only by classical
keyword-based search. More sophisticated approaches being able to search for
similar or related datasets could be helpful in these scenarios. As shown by [6,20]
many existing dataset discovery solutions are based on simple keyword search.
Discovery of datasets by similarity is discussed in the recent survey [6]. Several
papers propose dataset retrieval techniques based on metadata similarity. In [2]
a method is described which enables to measure similarity between datasets on
the base of papers citing the datasets and a citation network between datasets.
In [10] four different metadata-based models are evaluated for searching spatially
related datasets, i.e., datasets which are related because of the same or similar
spatial area covered. To the best of our knowledge, none of the approaches does
apply the following technique of data-transitive similarity in dataset discovery.

3 Data-Transitive Similarity

In this section, we introduce the meta-model of data-transitive similarity. The
original inspiration was the omnipresent database operation JOIN, used in many
data management use cases for interconnecting relevant pieces of information.
In relational databases the join operations allow to connect data records by
means of shared attribute(s). In an extensive interpretation, the mechanism in
database joins has roots in an identification of relevant entities by partial matches
(equality predicate) or by partial similarity (inequality predicate). Analogously,
by introducing data-transitive similarity we aim at consecutively joining similar
objects and evaluating the overall relevance as an aggregation over the partial
similarity scores.

The basic assumption of data-transitive similarity is thus a chain of objects
from the database that are similar to each other, but the beginning and end
of the chain could be quite dissimilar (yet relevant). Remember the well-known
example with the human and the horse, illustrating the violation of the triangle
inequality [23]. These two creatures tend to be quite dissimilar, yet they can be
relevant (transitively similar). The relevance here can be ensured by a connecting
object in the middle of the chain – a horseman, or more poetically a centaur,
creature that is half man and half horse. The data-transitive similarity itself,
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however, can be more complex; the connecting agent may not be a single object,
but a whole chain of objects. This chain also serves as an explanation of why
the two objects are relevant and in what context (addressing the explainability
issue).

The connection itself can be formalized as an aggregation of several consecu-
tive ground distances. The Eq. 1 defines general form of data-transitive distance
function d̂, where D is a set of objects (the database in practical applications), d
is a ground distance (the direct similarity), n is the length of the chain. Operator⊙

is an outer aggregation over all permutations of length n over elements of
database D (e.g., min, max, avg). Operator

⊎
is an inner aggregation over the

individual direct distances within a particular chain. Table 1 shows examples of
various inner aggregation functions. They are also the aggregation functions we
worked with in our preliminary experiments. A more complex alternative may
be a combination of several kinds of aggregations or distances.

d̂�,n
� (x,y) =

⊙

(i1,...,in)∈Dn

⊎
(d (x, i1) , d (i1, i2) , . . . , d (in,y)) (1)

Table 1. Examples of inner aggregation
⊎

.

sum(δ0, δ1, . . . , δn) =
∑n

j=0 δj

min(δ0, δ1, . . . , δn) = min {δ0, δ1, . . . , δn}
max(δ0, δ1, . . . , δn) = max {δ0, δ1, . . . , δn}
prod(δ0, δ1, . . . , δn) =

∏n
j=0 δj

iprod(δ0, δ1, . . . , δn) = 1 − ∏n
j=0 (1 − δj)

To summarize, we define the data-transitive similarity d̂ as a meta-model
operating on top of a ground similarity model d and a particular database D.
The computation of a single data-transitive distance involves a series of similarity
queries over the database. The computational complexity of the data-transitive
similarity thus involves not just the complexity of d but also the size of the
database |D|. Depending on the implementation, the worst-case time complexity
O(d̂) can vary from O(d) to O(d)O(|D|n), assuming n as a constant or n � |D|.

From the definitions above it immediately follows that data-transitive dis-
tances are not metric distances – not only due to the possibly non-linear com-
bination of the particular ground distances, but mainly due to the database-
dependent nature of the distance topology (non-uniform distribution of points
in the data universe and its impact on the chain members).

One might say that such advanced relevance constructions should not be
modeled at the level of similarity, as they are part of higher retrieval models closer
to the application level (e.g., a part of content-based recommender system).
However, we want to stress that we intentionally included the data-transitive
similarity into the family of generic pair-wise non-metric similarities. As such, it
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can be plugged into any search engine that supports non-metric similarities. This
would not be possible if designed as a proprietary late-fusion retrieval model.

3.1 Implementation

The fundamental problem we have addressed in the data-transitive similarity
design was determining the number of intermediaries (the chain length n) to form
a transitive similarity. Although our model assumes an arbitrary n, determining
the specific value is not a straightforward problem itself. A significant issue may
be that for some objects, there is no intermediary to form transitive similarity.
In general, the number of intermediaries may not be constant, and for different
objects this value needs to be chosen dynamically.

Thus, for our experiment, we have applied a simplification in this regard and
assume that data-transitive similarity has at most one intermediary (i.e., n = 1).
Therefore, we always have a triplet: a query, an intermediary, and a result. This
decision reduces the number of hyperparameters with respect to longer chains
(e.g., number of intermediaries, different aggregation functions). This approach
also has the advantage of a higher level of explainability. For longer chains of
intermediaries, we need to discuss whether each part of the sequence makes sense
for given transitivity. Whereas in the case of a single intermediary, we can argue
with a reasonable certainty whether the query and result are relevant from the
perspective of the intermediary explanation.

The second problem is the transitivity involving duplicates or near-duplicates
in the chain – intermediaries very d-close to the query or to the result. Such
duplicate intermediaries usually do not add any value. Therefore, small distances
d (the first 5% of distance distribution) are not considered (in fact, all such
distances are set to infinity to become disqualified in d̂).

Third, all ground distances are required to be normalized to 0–1 because
some aggregations (

⊎
= prod,

⊎
= iprod) require a bounded distance. In our

implementation, we do not implement any optimizations, while to compute the
data-transitive similarity we need to iterate over all database objects in the role
of an intermediary. At the moment, optimizations for reduction of the set of
intermediaries are beyond the subject of our research.

3.2 Open Dataset Testbed

For the open dataset testbed presented in Sect. 1.1, we considered title,
description, and keywords metadata. Since the original data provided by the
National Open Data Catalog are in the Czech language, we used the auto-
matic English translation [17], followed by the words lemmatization and filtering
non-meaningful words (we consider only nouns, adjectives, verbs, and adverbs).
In addition, we ignored several experimentally detected stop-words (data, dial,
export, etc.). The metadata descriptors were represented in the bag of words
model (BoW) with tf-idf weights.
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Over these descriptors, the ground cosine distance was computed as
dcos(x,y) = 1− scos(x,y) (where scos is cosine similarity) for all pairs of objects
(all pairs of datasets in our case). Figure 1 shows the distribution of distances
dcos over this testbed. We can see that most of the datasets are not dcos-similar,
and the testbed exhibits high intrinsic dimensionality [7]. This is due to the rela-
tively sparse metadata (average about 20 words). For some datasets, some parts,
such as description or keywords are empty; there is only the title description.

Fig. 1. Distance distribution of dcos and d̂min
max transitive similarity

In our experiment, we took only one intermediary, while d̂min
max (Formula 2)

was chosen as the data-transitive similarity function, since it exhibited the most
robust aggregation in our preliminary experiments. Figure 1 shows how the dis-
tribution of d̂min

max-distances is different when compared to dcos. Smaller distances
(below approx. 0.6) are eliminated due to the removal of near-duplicate dataset
pairs (set to 5% closest datasets), as mentioned in the previous subsection. The
rest of the d̂min

max-distance domain is split into two categories representing rel-
evance (more relevant around 0.7, less relevant around 0.9), with many dcos-
dissimilar datasets moving into the category of more d̂min

max-relevant datasets.

d̂min
max(x,y) = min

∀i∈D
max {d(x, i), d(i,y)} (2)

4 Evaluation

As we have already discussed in [26], the findability evaluation in the open
dataset discovery is complicated from several points of view. The database con-
tains a relatively large number of datasets, but there is no sufficient ground
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truth for dataset similarity. To overcome the lack of ground truth, in this paper
we evaluate the concept of relevance which is closer to dataset discovery, rather
than direct context-independent similarity of datasets.

4.1 Methodology

Our evaluation targets the additional value of data-transitive similarity search
over the standard (direct dcos) similarity search. First, the search for similar
datasets using standard dcos-similarity search is performed. Let us represent this
search as a kd NN query, where kd is the number of results. Then, there are kt
results displayed to the user using data-transitive similarity based kt NN query,
while filtering out results of the previous kd NN query. For our experiment, we
assume kd = 100 and kt = 20.

The user (evaluator) is given a list of triplets (query, intermediary, result) and
then evaluates each such triplet as relevant or non-relevant. A triplet is relevant
if the user finds a possible use case for the query dataset and the result dataset
and, at the same time, the intermediary dataset reasonably connects the two
datasets. Let us repeat that the user is only confronted with results that were
not findable by standard (direct) similarity search. A total of 5 users (evaluators)
participated in the evaluation.

During the evaluation, we encountered the problem that some pairs of
datasets are only relevant if we ignore specific fine-grained attributes of the
datasets. The first observed attribute is the information about the publisher,
e.g., contracts of the Ministry of Finance and invoices of the Ministry of Finance.
The second attribute is the time or date of repeatedly published datasets, e.g.,
the list of companies for the year 2020. The third attribute is the localization
specified in the datasets, e.g., hospitals in Prague vs. hospitals in Brno. For the
evaluation, we decided to ignore these attributes as they only contribute to frag-
mentation of the datasets that are otherwise relevant to each other. However,
this problem might disappear if we consider more than just one intermediary in
the data-transitivity model (subject of future evaluations).

As part of the experiment, we evaluated the relevance of the results for a set of
prepared queries. This set was created based on previous experiments presented
in [26]. A total of 64 transitive results were found for 11 different queries.

4.2 Results

During the evaluation, we looked at two main criteria: consistency and effective-
ness. For every triplet, we have computed its score as sum of 0 (non-relevant)
and 1 (relevant) ratings of all evaluators. In our case, the score ranges from 0 (all
evaluators claim the triplet is non-relevant) to 5 (all evaluators claim the triplet
is relevant). Figure 2 (left) shows the number of triplets with particular score,
Fig. 2 (right) shows the number of triplets per data-transitive distance ranges
and distribution of scores inside these ranges.

The consistency is validated based on the evaluators’ agreement on the rel-
evance of the evaluated triplets. Figure 2 (left) shows that in almost 78.13% of
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the cases, majority of evaluators (scores 0–1 and 4–5) agreed on the triplets’
relevances. This observation confirms that the overall evaluation results are not
just random noise.

Effectiveness is measured as the ratio of relevant datasets to all returned
results. This gives us a measure of how much data-transitive similarity can
improve the standard search. At Fig. 2 (left), we see that in 57.81% of the cases,
the triplet was marked as relevant by a majority of evaluators (score 4–5).

Although the overall effectiveness may not seem significant, we must stress
that all the relevant results found were not achievable by the direct similar-
ity search (as already mentioned in Sect. 4.1). For 65.63% of the datasets, dcos
distances to query are maximal. We can also notice in Fig. 2 (right) that the
data-transitive similarity model complies with the general thesis of similarity
search (more distant datasets are less relevant and vice versa).

Fig. 2. The left figure shows the distribution of triplet ratings (how many triplets
were rated by a particular relevancy score). For example, the score = 3 means that 3
evaluators thought the triplet was relevant (they rated it 1) and 2 evaluators thought
the triplet was not relevant (they rated it 0). The right figure shows the distribution
of ratings according to each data-transitive distance interval.

4.3 Qualitative Analysis

In Table 2 we see an example of triplet (Q, I,R) that was evaluated as relevant
in our experiment (small data-transitive distance d̂min

max(Q,R) through I). If we
analyze the distance structure, the query dataset (Q) “Floods in the 19th cen-
tury” does not have the “water” keyword in the metadata. However, thanks to
the intermediary “5-year water” dataset (I), we have both “water” and “flood”
in metadata and so the query dataset is transitively similar to the result dataset
(R) “Water reservoirs”. In the original similarity (the direct ground distance
dcos), the query Q and the result R datasets have maximum distance; they have
nothing in common. In the data-transitive similarity search, however, the dataset
R is within the first 20 results thanks to the connection with I. The relevance
here can be explained by the fact that reservoirs can affect flooding and so the
dataset R might be useful in flood prevention planning.
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Table 2. Example of Query, Intermediary, Result triplet: floods vs water. Title, key-
words and description metadata are provided for each dataset.

Title

Keywords Description

Floods in the 19th century

Q Floods, Environment,
GIS

Flooded areas in a 19th century flood in the Pilsen region

5-year water

I GIS, Floods,
Environment

Flooding areas of n-year water in the Pilsen region

Water reservoirs under the management of the river basin and the forest of
the Czech Republic under the territorial jurisdiction of the river Vltava

R water tanks, water
management

The shp file contains points representing water reservoirs
whose permitted volume of buoyant or accumulated water
exceeds 1 000 000 m3 or to which the Forests of the
Czech Republic, p. The registers are updated
continuously, the dataset only once a year. The current
data can be viewed on the water information portal
VODA – www.voda.gov.cz

The second example (Table 3) shows the imbalance of some descriptions,
where the query dataset “Housing Young 2017” description has 3 paragraphs
of text and the result dataset “BUG3 - Economy and Labour Market” descrip-
tion has only one sentence. Although these datasets share some keywords, the

Table 3. Example of Query, Intermediary, Result triplet: housing vs labour. Title,
keywords and description metadata are provided for each dataset.

Title

Keywords Description

Housing Young 2017

Q sociology, housing
research, housing young,
housing, Brno

The main objective of the Youth Housing survey
conducted in 2017 was to identify and describe the
housing needs of young people living in Brno, as well as
their preferences in this area. . . . 3 paragraphs of text here
. . .

BUG - people and housing

I Brno urban Grid,
housing, people, BUG

Datasets from the Brno Urban Grid - theme people and
housing

BUG - Economy and Labour Market

R BUG, labour market,
economy, Brno Urban
Grid

Datasets from the Brno Urban Grid application - theme
of economy and labour market

3 BUG = Brno Urban Grid.
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resulting position in ranking is too far when using the direct distance dcos, so
that the user cannot find the dataset. With the data-transitive similarity using
the intermediary “BUG - people and housing” dataset the problem is mitigated.
In this case, we are able to explain the relevance between the housing of young
people and the state of the labour market.

5 Conclusion and Future Work

We proposed an extended concept of similarity search by introducing the meta-
model of data-transitive similarity operating on top of a particular similarity
model. In the evaluation focused on the open data domain, we have demon-
strated that the user is able to find relevant datasets that were not findable
using standard (direct) similarity search. Moreover, as the data-transitive simi-
larity is a variant of pair-wise non-metric similarity, it can be plugged into any
search engine that supports non-metric similarities. It also confirms the necessity
of non-metric approaches in complex retrieval tasks, such as the entity discovery.

In the future we plan to investigate more general chains of intermediaries,
as well as internal indexing techniques for the data-transitive similarity compu-
tation itself. We also plan to experiment with other domains that require more
complex explainable similarity approaches.
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ABSTRACT
Many institutions publish datasets as Open Data in catalogs, how-
ever, their retrieval remains problematic issue due to the absence of
dataset search benchmarking. We propose a framework for evalu-
ating findability of datasets, regardless of retrieval models used. As
task-agnostic labeling of datasets by ground truth turns out to be
infeasible in the general domain of open data datasets, the proposed
framework is based on evaluation of entire retrieval scenarios that
mimic complex retrieval tasks. In addition to the framework we
present a proof of concept specification and evaluation on several
similarity-based retrieval models and several dataset discovery sce-
narios within a catalog, using our experimental evaluation tool.
Instead of traditional matching of query with metadata of all the
datasets, in similarity-based retrieval the query is formulated using
a set of datasets (query by example) and the most similar datasets
to the query set are retrieved from the catalog as a result.

CCS CONCEPTS
• Information systems → Web searching and information
discovery; Similarity measures; Resource Description Framework
(RDF); Ontologies; Recommender systems.
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open data, findability, similarity, catalogs
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1 INTRODUCTION
In order to support public oversight and public sector information
reuse, one of the legal duties of public-sector institutions, govern-
ment and municipality offices is to publish data related to their
services. Some of the data is wrapped into datasets and published
on the Web as Open Data. The datasets are described by metadata
provided by the publisher and are registered in catalogs such as
the European Data Portal (EDP)1, or the Czech National Open Data
Catalog (NODC)2. The catalogs provide a basic search functionality,
however, low findability3 of datasets still remains a major issue.
The reason is the metadata is very brief, often reduced to a few
keywords, a short description and title. Also, due to the distributed
nature of open data the datasets are acquired in different contexts
and unrestricted domains, with different background knowledge
of individual data publishers, and in different languages and/or
domain-specific slangs. In consequence, the low-level search meth-
ods provided by the catalogs based on keyword search, structured
queries or entity search, are often insufficient [4]. To demonstrate
the problem, in Figure 1 see a visualization of NODC dataset pub-
lishers represented by green nodes connected to keywords they
use in dataset metadata represented by black and red nodes. Black
nodes, a clear majority, represent keywords unique to individual
1https://www.europeandataportal.eu
2https://data.gov.cz/english/
3Note that findability is one of four key FAIR principles of data management [23] –
findability, accessibility, interoperability, and reusability.
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publishers, while red nodes represent keywords shared by at least
two publishers. Hence, the datasets of different publishers cannot
be simply matched based on keywords alone.

Figure 1: Dataset publishers from NODC (green nodes) and
their usage of unique (black nodes) and shared keywords
(red nodes) in dataset metadata.

A natural step to improve the findability of datasets is to develop
alternative retrieval and integration models, including augmenta-
tion of the metadata by other contexts, such as embedding into
knowledge bases (as motivated in [18]). However, to the best of our
knowledge there does not exist an evaluation method (not even a
benchmark) for datasets from open data catalogs that would enable
researchers to compare alternative dataset retrieval models to the
baseline search engines provided by the catalogs.

1.1 Problem Motivation
In this paper we propose a framework for dataset retrieval evalu-
ation, given the specific properties of datasets mentioned above.
We must emphasize that retrieval of datasets for a particular user
scenario is much harder than, for example, retrieval of a document
from a collection of texts. In the well-established field of text or mul-
timedia retrieval, there exists a number of evaluation techniques
and benchmarks, such as TREC [22], where the retrieval is supposed
to work with full information that allows (almost) perfect findabil-
ity, e.g., the content-based search. For example, when searching for
images of dogs in a collection of photographs, the relevant images
actually contain the dogs. However, in the case of datasets, the se-
mantics is often not captured in the metadata at a level sufficient for
perfect match. The users of data catalogs are forced to use low-level
queries the catalog interfaces provide, but they would rather search
datasets relevant to a complex scenario that cannot be simply de-
composed into a set of low-level queries, e.g., search for datasets

important for zoning decision when a highway is to be built. Such a
discrepancy is also mentioned in a recent dataset search survey [4]
that calls these scenarios constructive dataset search and provides
some examples. In consequence, a viable evaluation method cannot
abstract from the user scenarios by assembling a testbed of datasets
annotated by classic ground truth labels for a given set of prepared
queries. Instead, the user scenarios and user interaction must enter
the evaluation procedure.

1.2 Paper Contributions
In this paper, we present two contributions. First, we propose a gen-
eral evaluation framework for dataset retrieval based on arbitrary
retrieval models that provide ranking (section 3). The framework is
centered around user scenarios representing the necessary domain-
specific evaluation contexts. We also present an evaluation tool for
human experts that provides interface for rapid and intuitive user
evaluations within the framework. Second, we present a proof of
concept specification and evaluation of the framework, employ-
ing various similarity-based retrieval models (applied to datasets’
metadata) and the TLSH method used by EDP as a baseline model
(section 4 and section 5).

2 RELATED WORK
Finding related datasets, or shortly data discovery, is one of the
important tasks in data integration [14]. It has been recently rec-
ognized as a research field with its unique challenges and open
questions [4]. In this section, we summarize recent research papers
in the field and we also specifically address how dataset retrieval
models introduced in these papers were evaluated.

2.1 Finding related datasets
Two important data discovery problems need to be solved [14]:
finding joinable datasets and finding unionable datasets where the
user starts with a dataset or datasets and searches for other related
datasets which can be joined or unioned with the original ones.

As shown in [14] many existing dataset discovery solutions are
based on simple keyword query search. This is what is typically
implemented in open data portals such as NODC or EDP. There
are also open data portal mash-ups. For example, EDP collects
metadata records about open datasets from national portals of
individual member states and provides search features across the
whole European Union. Besides the basic keyword query search,
EDP also offers a discovery feature based on dataset similarity.
According to source code published at GitLab4, the portal uses TLSH
presented in [16]. Firstly, they concatenate the title and description
of the dataset. The locally sensitive hash is constructed from the
concatenated string, which should produce a similar hash for a
similar dataset, and these hashes are compared. Originally, this
method [9] was implemented as a technique for searching duplicate
(almost equal, ignoring typing errors) datasets.

Several novel techniques for dataset discovery have been pro-
posed in literature in the last years. In [10], the authors propose
Aurum, a system to build, maintain and query an enterprise knowl-
edge graph (EKG) which represents datasets and their structural

4https://gitlab.com/european-data-portal/metrics/edp-metrics-dataset-similarities/-
/blob/master/src/main/java/io/piveau/metrics/similarities/SimilarityVerticle.java
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elements, e.g., table columns, as nodes and relationships between
them as edges. A relationship between two structural elements
may represent content similarity, schema similarity, e.g., similarity
of names of the columns, or key/foreign key pairs defined in the
dataset schemas. The paper introduces an efficient model which
exploits EKG. Moreover, the introduced technique requires only a
linear passage through datasets to build EKG. Dataset discovery is
then performed on top of EKG. When a user selects a dataset, the
tool offers other relevant datasets through the relationships in EKG.
Similarly, [1] proposes a technique based on content and schema
similarity. For schema similarity, the approach considers similarity
of column names. For content similarity, the approach considers
various similarity models, e.g., based on value embeddings.

Besides approaches which analyze dataset’s structure and con-
tent there are also approaches that perform dataset discovery on
metadata about datasets, e.g., their titles, descriptions and charac-
terizing keywords. For example, Google Dataset Search [2] belongs
to this group. The authors explain in the paper how dataset meta-
data is crawled from the Web and cleansed. The metadata is then
mapped to the Google’s knowledge graph which is then used for
dataset duplicates detection and for dataset discovery. Another ex-
ample of metadata-based approaches is [8] where authors evaluate
four different metadata-based models for searching spatially related
datasets, i.e., datasets which are related because of the same or sim-
ilar spatial area covered. The first models is a full-text search model.
The second one parses and geocodes user’s query. The other two
models map user’s query to knowledge graphs, WordNet [21] and
ConceptNet [19], enrich the query with the neighbourhoods from
these knowledge graphs and use the result for the full-text search.

2.2 Evaluation of dataset retrieval
Many of the existing works on dataset discovery introduce prede-
fined usage scenarios and use the scenarios either to explain their
approaches or for some kind of evaluation. The paper [14] explains
data discovery problems of finding joinable and unionable datasets
on two scenarios of a data journalists searching for research data.
There is no true evaluation in the paper. The user scenarios are
presented only as a demonstration of proposed dataset discovery
techniques. Also Google Dataset Search [2] does not present any
systematic evaluation. The paper only shows that user’s feedback
was collected without any further details about the feedback collec-
tion process. A discussion about user’s requirements then follows
based on the collected feedback.

The evaluation of the Aurum system [10] defines three usage
scenarios in three real companies. For evaluation, the authors con-
ducted a survey with 4 users. The users used the system as defined
by the scenarios. The authors asked them to rate the usefulness of
Aurum’s discovery, time savings compared to manual discovery,
and how likely they would use the tool in their everyday work. The
users answered these questions by picking a number between 0
and 5 where 0 is the worst evaluation.

An attempt to evaluate dataset discovery systematically can
be found in [8]. Here, the authors define 4 simple full-text search
queries and ask users to evaluate relevance of the discovered dataset
w.r.t. the queries. Another systematically oriented evaluation can
be found in [1]. The paper defines a ground truth consisting of

two parts. The first part is a synthetic ground truth which consists
of approx. 5,000 tables synthetically derived from 32 base tables
extracted from Canadian open government data. The tables were
constructed by random projections and selections of the source
tables. Two datasets are considered related when one was derived
from the other. The second part is a real ground truth consisting
of approx. 700 UK open government datasets. Relationships be-
tween the datasets were defined manually by a human expert. Two
datasets are considered related when the human expert defined a
relationship between them. The precision and recall of the dataset
discovery algorithm 𝐷3𝐿 introduced in the paper are measured.

The last approach to dataset discovery evaluation could be con-
sidered as an evaluation framework which could be reused to eval-
uate other approaches as well. However, as we point out in this
paper, it is crutial to consider different usage scenarios and different
users who may have different needs and background knowledge.
The evaluation method presented in [1] however does not consider
different scenarios and users.

3 EVALUATION FRAMEWORK
As detailed in Section 2.2, the recent works in the field of dataset
discovery do not evaluate their dataset retrieval models systemati-
cally nor based on user scenarios. However, systematic evaluation
based on user scenarios is crucial to demonstrate their usefulness.
This finding led us to design and construct our own framework for
evaluating dataset retrieval models. Before we introduce the frame-
work itself, let us summarize important prerequisites of dataset
discovery which are implied by the motivation in Section 1.1 and
findings of the recent literature in the field presented in Section 2.1.

First, research papers in the field motivate their work with user
scenarios. The user in such scenarios is always a professional who
is able to process raw data, e.g., a data scientist, data journalist
or researcher. The user is not simply a common user supposed to
search web pages and now switching to search datasets. Second,
different professionals solve different problems. Therefore, they
have different expectations of what is discovered given the problem.
Their concrete discovery problem is crucial because it influences
how a discovery method should be evaluated. As it is written in
Section 2.1, the user starts with initial datasets and expects that
other related datasets needed to solve their problem are returned
by the discovery. However, what datasets are relevant is influenced
by both the user and the problem. In the literature, the best way to
describe concrete dataset discovery problems is to describe them
as user scenarios. This shows that evaluation based on a universal
ground truth cannot provide the real picture of performance of a
retrieval model.

A universal ground truth cannot reflect different users and dif-
ferent discovery problems. A human evaluation simulating con-
crete dataset discovery scenarios is necessary. This was also con-
firmed by our early attempt to create a universal ground truth (i.e.,
scenario-independent) for datasets by means of labeling a set of
query datasets. In this attempt, datasets were labeled by users as
relevant or not to a set of query datasets using three scores of rele-
vance (relevant, somewhat relevant, not relevant). We have found
out that users were consistent in labeling the datasets based on low-
level similarity (such as keyword matching). However, when asked
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for labeling high-level relevance, such as good complementarity
with query dataset, the users started to develop their own personal
ad-hoc scenarios, creating actually a universe needed to construct
a complement (in mathematical meaning). This led to wild, non-
systematic evaluations and inconsistent labeling across the users.
In conclusion of the early attempt, we have realized the evaluation
must take into account user scenarios (and user experts familiar
with them) in order to instruct the evaluators using a well-defined
evaluation protocol and to prevent trivial "everything-is-related-to-
everything" user reasoning.

Hence, we resorted to development of evaluation framework
that bounds the users (evaluators) with user scenarios. This de-
fines the following requirements on a dataset discovery evaluation
framework:

• The framework must enable evaluators to evaluate dataset
retrieval models on different user scenarios expressed as a
set of steps with a prescribed structure so that the scenarios
are specified in the same structure and the same level of
detail.

• The framework must support evaluation by different human
evaluators who go through the scenarios and specify the
performance of the evaluated models in their context.

• The framework must combine evaluation results of the eval-
uators from different scenarios.

• A graphical user interface is necessary to enable the evalu-
ators to work effectively as there may be 10s of scenarios,
10s of retrieval models and 10s of datasets returned by the
models which means 100s - 1000s of artifacts which need to
be evaluated.

As we have shown in Section 2.2, none of the recent works in
the dataset discovery field evaluate their dataset retrieval models
in this systematic way considering predefined structured scenarios
and different human evaluators. Our goal is to create an evaluation
framework which would be as simple as possible while still fulfilling
the requirements specified above.

3.1 Evaluation Methodology
Our evaluation framework is based on usage scenarios. In each
scenario we consider a user with the goal to find datasets needed
to, e.g., build a service such as a mobile or a map based application.
The user starts either by entering keyword search queries or by
browsing a data catalog. In both cases, the user finds initial datasets.
The user then explores each initial dataset and finds out that they
do not contain all necessary data. This is inevitable as the user is not
able to find datasets completely covering the goal using just simple
search queries or by simply browsing the catalog. As the initial
datasets are not complete, the user needs to continue searching to
find other complementary datasets which fill in what is missing
in the initial ones. One possibility is a manual search where the
user iterates the previous steps. The user analyzes manually what
is missing in the initial datasets. This leads to other queries or
to browsing the catalog again. The second possibility is that the
catalog offers the other datasets automatically, using the initial
datasets as queries (i.e., the query-by-example concept). This would
save a lot of user’s manual effort.

Our goal is to show how different retrieval models may fulfill
the second (query-by-example) possibility. To evaluate the models
we define scenarios considering the first possibility. Each scenario
𝑆 has the following structure:

• 𝐺 : goal specification
• 𝑃𝑖𝑛𝑖𝑡 : process of finding the initial datasets
• 𝑄 : the set of initial datasets (query datasets)
• 𝑃𝑎𝑛𝑎𝑙𝑦𝑧𝑒 : process of analyzing the initial datasets and search
for the complementary datasets manually

• 𝐶: the list of complementary datasets found manually
We evaluate each retrieval model M using the set 𝐷 of all

datasets in the catalog and each defined scenario according to the
following methodology.

(1) The set of query datasets 𝑄 is taken as the input.
(2) For each dataset 𝑑 ∈ 𝐷 its rank is computed as 𝑟𝑎𝑛𝑘M (𝑑,𝑄).
(3) Top K datasets in 𝐷 with the smallest 𝑟𝑎𝑛𝑘M (𝑑,𝑄) are re-

turned as 𝐶M .
(4) 𝐶M is compared with𝐶 automatically and by human experts.
In our evaluation we show how different retrieval models are

appropriate for the second option. We consider automated as well
as human-based comparison. This is important as the automated
comparison gives us results quickly and consistently across the
scenarios but it cannot reflect the fact that each human user searches
for datasets with a different problem in mind and with different
background knowledge. Therefore, we consider only the human-
based comparisons in the rest of this paper.

3.2 Evaluation Tool for Human Experts
In order to support the evaluation process we implement a web-
based application 5 (see its layout in Figure 2).

Figure 2: Evaluation user interface layout.

5https://github.com/mff-uk/open-dataset-inspector
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As we expect the evaluation framework to consists of multiple
scenarios, the application must support evaluation of different sce-
narios. Given a scenario 𝑆 that consists of a set of query datasets
𝑄 , a goal specification 𝐺 , and expected complementary datastes 𝐶
found manually by the scenario author, the application presents the
set of the most similar datasets 𝐶M to the user for each evaluated
modelM. The user is asked to rank the models by reordering them
from best to worst while taking 𝐶 into account. As two models
might be same in the eyes of the user, we allow the user to provide
the same ranking for multiple models.

The basic evaluation workflow consists of the following steps:

(1) Fill in the user’s identification.
(2) Provide the the goal specification 𝐺 .
(3) Fill in the set of query datasets 𝑄 .
(4) Click on the "search" button.
(5) Revise for each evaluated model the most similar returned

datasets. Take 𝐶 into account for the revision.
(6) Rank the models by reordering them using drag&drop or by

text input specifying the ordering.
(7) Click on the "submit & clear" button.

Although theworkflow is simple and straightforward, the amount
of datasets which must be revised by the user in Step 5 can be over-
whelming. To tackle this issue, we utilize the fact that the models
often return the same datasets. Being able to spot those shared
datasets easily would make the user’s work more effective. We
solve this by using colors. When a single dataset is returned by
more than one model it is colored with a unique color (see Fig-
ure 2). Therefore, the user may easily visually identify the presence
and position of a shared dataset across different models. When the
dataset is relevant, the user may search whether a dataset with the
same color appears in𝐶M′ of another modelM ′, which helps with
deciding about the ranking.

Another issue may arise with higher number of models. A sys-
tematic bias may be introduced by the initial model ordering. We
mitigate this by randomly changing the initial model ordering.

Once the user clicks on the "submit & clear" button, we save the
user identification, the user scenario identification and the ranking.

4 PROOF OF CONCEPT SPECIFICATION
In the previous section we introduced the structure of a user sce-
nario and showed a simple evaluation methodology. We have also
presented a user interface for human evaluators. In this section, we
specify a PoC (proof of concept) to demonstrate how our framework
works in practice.

4.1 Input Data
For our experiments, we use metadata from the Czech National
Open Data Catalog (NODC)6 [11], which is regularly harvested
by the European Data Portal (EDP). This metadata describes open
datasets published by public institutions in Czechia, such as the
Czech Statistical Office7, the city of Prague8 or the Czech Social

6https://data.gov.cz
7https://data.gov.cz/datasets?publisher=Český%20statistický%20úřad
8https://data.gov.cz/datasets?publisher=HLAVNÍ%20MĚSTO%20PRAHA

Security Administration9. The metadata uses DCAT-AP10, an RDF-
based [5] vocabulary based on the W3C Recommendation DCAT
[3], and a European recommendation for metadata in European
data portals.

According to DCAT, a dataset is A collection of data, published or
curated by a single agent, and available for access or download in one
or more representations.11. The dataset metadata record according
to DCAT-AP can contain various fields, some textual, some with
values from code lists from, e.g., the EU Vocabularies12. However,
for our experiments so far, we have used the most basic, textual
metadata fields: title, description and keywords, which contain tex-
tual descriptions of the datasets in Czech. The collection we work
with contains approximately 6600 datasets from 39 publishers.

In our experiments, we view the dataset metadata from the
NODC as just one of many dataset contexts. Another dataset con-
text we use is an embedding of the dataset metadata texts in a
Word2Vec model trained on all texts from the Czech Wikipedia [7].
Yet another dataset context we use is an embedding of the dataset
metadata texts in a Word2Vec model trained on texts from the
Czech legislation [6]. Both models are trained using the Python
gensim [17] implementation of Word2Vec [13] with the following
parameters in addition to default settings: vector dimension = 400,
window size = 10, word minimum count = 10, sample = 10−5, the
best of the evaluated configurations. Czech Wikipedia provides us
with a dataset context which extends our knowledge about datasets
with the general encyclopedic knowledge. Czech legislation defines
the domain of Czech public sector institutions, their competences
and duties. Under these competences and duties public institutions
publish their open data and catalog them in NODC. Theoretically,
Czech legislation provides us with a dataset context which extends
our knowledge about datasets with specification about legal rea-
sons why datasets exist, under which circumstances publishers
create and publish datasets and about semantic relationships of
datasets to other legal concepts. In our PoC we therefore include
this as one of the external sources of knowledge. For training the
Word2Vec model based on Czech legislation we used a publicly
available structured representation of the Czech code of law13 [15].

4.2 Similarity-based Retrieval Models
In our experiments, we compare 12 similarity-based retrieval mod-
els (similarity models in short), including TLSH similarity used by
EDP. The remaining models are based on one of the metadata fields:
title, description, or keywords. Every model consists of a descriptor,
i.e., preprocessed metadata record, and a distance function repre-
senting inverse similarity. Table 1 presents the used similarities.
Table 2 gives the list of the used models. According to Section 3.1,
𝑟𝑎𝑛𝑘M (𝑑,𝑄) = min𝑞∈𝑄

(
𝑑𝑖𝑠𝑡M (𝑑, 𝑞)

)
where𝑑𝑖𝑠𝑡M (𝑑, 𝑞) is the dis-

tance between 𝑑 and 𝑞 returned by similarity modelM.
The keywords-based model works with a set of phrases and uses

Jaccard distance. A phrase is a sequence of words separated by space
compared as one string. Title and description are divided into words,

9https://data.gov.cz/datasets?publisher=Česká%20správa%20sociálního%20zabezpečení
10https://joinup.ec.europa.eu/collection/semantic-interoperability-community-
semic/solution/dcat-application-profile-data-portals-europe
11https://www.w3.org/TR/vocab-dcat-2/#Class:Dataset
12https://op.europa.eu/en/web/eu-vocabularies/authority-tables
13https://esbirka.opendata.cz/sparql
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Similarity Domain Formula (distance form)

cosine vectors 𝑑𝑖𝑠𝑡 ( ®𝑥, ®𝑦) =
{

1 − ®𝑥 · ®𝑦
| ®𝑥 | | ®𝑦 | , for | ®𝑥 | ≠ 0 ∧ |®𝑦 | ≠ 0,

+∞, otherwise.

jaccard sets 𝑑𝑖𝑠𝑡 (𝑋,𝑌 ) =
{

1 − |𝑋∩𝑌 |
|𝑋∪𝑌 | , for |𝑋 ∪ 𝑌 | ≠ 0,

0, otherwise.

hausdorff sets 𝑑𝑖𝑠𝑡 (𝑋,𝑌 ) = max
{

sup𝑥 ∈𝑋 inf𝑦∈𝑌 𝑑 (𝑥,𝑦)
sup𝑦∈𝑌 inf𝑥 ∈𝑋 𝑑 (𝑥,𝑦)

}
of vectors where 𝑑 (𝑥,𝑦) is ground distance (cosine in our case)

Table 1: Similarity overview

and these words are simplified into lemma using UDPipe [20]. For
the title, we have constructed the set of words and used Jaccard
distance. In the case of the description, we have created a vector
represented by the bag of words model. Each word represents one
dimension in vector, and the value is the number of words in the
description. These vectors are compared by cosine distance.

A more robust approach is embedding words into vector space
using the Word2Vec. We have trained two Word2Vec models, based
on Czech Wikipedia (suffix [cswiki]) and Czech legislation (suffix
[law]). Extending metadata byWord2Vec embedding adds external
knowledge, which allows matching similar words where equality
is not sufficient. For every word, we have found a corresponding
vector in the model (if it exists). For models with Hausdorff distance,
we have used this set of vectors directly as the descriptor. In the
case of cosine distance, we have constructed the average vector.

Model identifier = similarity:metadata Descriptor
similarity metadata type

tlsh : title description concatenated string
jaccard : title set of words
cosine : title [cswiki] avg. W2V vector
cosine : title [law] avg. W2V vector

hausdorff : title [cswiki] set of W2V vectors
hausdorff : title [law] set of W2V vectors
jaccard : keywords set of keywords
cosine : description bag of words
cosine : description [cswiki] avg. W2V vector
cosine : description [law] avg. W2V vector

hausdorff : description [cswiki] set of W2V vectors
hausdorff : description [law] set of W2V vectors

Table 2: Similarity models used in experiments

4.3 Users
5 users participated in the evaluation. We will refer to the users
using 𝑈1 . . . 𝑈5. The users 𝑈1 and 𝑈2 are open data experts as they
cooperate with different public institutions in Czechia and help
them with publishing their datasets. They are also the authors of
the user scenarios. The user 𝑈3 is also related to the open data
field as he is the main programmer of the open source software
LinkedPipes DCAT-AP viewer [12] which is used by the Czech
Ministry of the Interior to run the NODC. The users 𝑈4 and𝑈5 are

academic researchers in the field of similarity search in general.
They are new to the field of open data.

4.4 User Scenarios
We defined 12 user scenarios 𝑆1 . . . 𝑆12 for the evaluation. Each
scenario has the structure defined in Section 3.1.

Table 3 shows some basic characteristics of the scenarios. It
shows the author and the size of 𝑄 and 𝐶 for each scenario. More-
over, it classifies the scenarios according to the discovery problem
which needs to be solved in each scenario. This is motivated by
[14] which distinguishes two discovery problems. First, finding
joinable datasets means that the user searches for related datasets
which can be joined with the original ones (Z). Second, finding
unionable datasets means that the user searches for related datasets
which can be unioned with the original ones. In addition to [14] we
distinguish the problem of unioning datasets representing the same
type of entities (⋓) and unioning datasets representing different
types of entities but sharing some common semantics (∪).

𝐼𝐷 Problem Author |𝑄 | |𝐶 |
𝑆1 Z 𝑈1 1 5
𝑆2 ∪ 𝑈1 1 2
𝑆3 ∪ 𝑈1 1 3
𝑆4 ⋓ 𝑈1 1 1
𝑆5 Z 𝑈1 1 5
𝑆6 ∪ 𝑈1 2 3
𝑆7 ∪ 𝑈2 3 8
𝑆8 ∪ 𝑈2 2 7
𝑆9 ∪ 𝑈2 3 7
𝑆10 ⋓ 𝑈1 6 25
𝑆11 ∪ 𝑈1 1 27
𝑆12 ∪ 𝑈1 1 3

Table 3: Characterization of evaluation scenarios

In the following section, we show 𝑆1 in its full detail. 𝑃𝑖𝑛𝑖𝑡 and
𝑃𝑎𝑛𝑎𝑙𝑦𝑧𝑒 show how𝑄 and𝐶 , respectively, were identified when we
prepared the scenarios. However, they are not important for the
evaluation itself. Therefore, for the rest of the scenarios, we present
only 𝐺 , 𝑄 and 𝐶 .
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4.4.1 S1 -Registered trademarks. 𝐺𝑆1 : The user intends to build
an online service which shows companies and their registered
trademarks.

𝑃𝑖𝑛𝑖𝑡
𝑆1

:

(1) The user searches for datasets using a keyword query "trade-
marks".

(2) NODC returns a list of datasets with a dataset Trademarks -
full export.

(3) The user discovers the dataset Trademarks - full export in
the list.

𝑄𝑆1 : { Trademarks - full export }
𝑃
𝑎𝑛𝑎𝑙𝑦𝑧𝑒

𝑆1
:

(1) In the documentation, the user finds out that there is only
identification of the owners of the trademarks. Details about
the owner companies are in other datasets.

(2) The user searches for company datasets manually using
different keywords. To discover all relevant datasets, the
user needs to know possible types of companies as these are
used in the metadata of these datasets.

𝐶𝑆1 : { Joint-stock companies, Limited companies, Institutes, Foun-
dations, Funded organizations }

4.4.2 S2 - Intellectual property protection. 𝐺𝑆2 : "The user
needs to build an online service for searching intellectual prop-
erty and how companies protect it. However, the user does not
exactly now what kind of intellectual property can be protected."

𝑄𝑆2 : { Inspections in the field of intellectual property rights}
𝐶𝑆2 : { Trademarks - full export, Patents and utility models - full

export}

4.4.3 S3 - Medical facilities. 𝐺𝑆3 : "The user needs to create a
map of all medical facilities of all possible kinds in the country."

𝑄𝑆3 : { Ambulances}
𝐶𝑆3 : { Pharmacies and medical facilities in Prague, Medical facil-

ities in Pilsen, National registry of healthcare providers}

4.4.4 S4 -Map of town districts. 𝐺𝑆4 : "The user wants to create
an overview of town districts in the country."

𝑄𝑆4 : { Districts of Prague}
𝐶𝑆4 : { Parts of the city of Pilsen}

4.4.5 S5 - Sanctioned companies. 𝐺𝑆5 : "The user wants to build
an online service which shows companies sanctioned because of
their bad business practices."

𝑄𝑆5 : { Sanctions by Czech Trade Inspection Authority}
𝐶𝑆5 : { Joint-stock companies, Limited companies, Institutes, Foun-

dations, Funded organizations}

4.4.6 S6 - Sanctions given to companies. 𝐺𝑆6 : "The user wants
to build an online service for searching sanctions of different kinds
given to companies. These sanctions can be, e.g. sanctions for bad
business practices or for violations of the rights of employees."

𝑄𝑆6 : { Sanctions by Czech Trade Inspection Authority, Inspections
and sanctions in electronic communications}

𝐶𝑆6 : { Technical inspections of motor vehicles, Building construc-
tion supervision, Inspections of social security duties of employers}

4.4.7 S7 - Building a house in Brno city. 𝐺𝑆7 : "The user wants
to build a house in the city of Brno and is interested in all the staff
relevant to building, housing and living in the location."

𝑄𝑆7 : { Housing research in Brno 2019, Housing of youngsters 2017,
People and housing}

𝐶𝑆7 : { Building permits statistics - national statistics, Codelist of
building authorities, Criminality in Brno, Elementary schools in Brno,
Kindergartens in Brno, Safety in Brno, Memorable trees in Brno, City
parks}

4.4.8 S8 - Floods. 𝐺𝑆8 : "The user intends to create an application
for mapping floods in the country."

𝑄𝑆8 : { Flood areas in the city of Děčín, Floods in 19th century in
Pilsen}

𝐶𝑆8 : { Flood 2002 in Pilsen, 5-year flood in Pilsen, 20-year flood
in Pilsen, 100-year flood in Pilsen, Flood areas in Prague 2013, Flood
areas of Vltava and Berounka rivers, Flood protection on Vltava and
Berounka rivers}

4.4.9 S9 - Thieves. 𝐺𝑆9 : "The user needs to create a map with an
overview of places with something valuable and can be potentially
stolen by a thief."

𝑄𝑆9 : { Waste depots in Pilsen, Railways in Pilsen, Archeological
locations in Pilsen}

𝐶𝑆9 : { Electrical waste depots in Pilsen, Railway tracks in the
Ostrava city, Tram tracks in the Ostrava city, Tram lines in Pilsen,
Fire hydrants in Pilsen, Cable-lines in Pilsen, Bombing the city of Brno
in WW2}

4.4.10 S10 - Statistics of mortality, morbidity and health in
population. 𝐺𝑆10 : "The user intends to build an application which
will show mortality, morbidity and health statistics on a map."

𝑄𝑆10 : { Deaths in Czechia, Incapacity for work due to illness, Life
expectancy in Czech districts by Czech statistical office (4 datasets
for years 2015 - 2018)}

𝐶𝑆10 : { COVID-19 statistics (5 datasets), Sports injuries statistics,
Injuries at work statistics, Trafic accident injuries statistics, Injuries at
home statistics, Life expectancy by the Ministry of health, Standard-
ized mortality (6 datasets per disease groups), Statistical measures of
working disabilities (6 datasets with different statistical dimensions),
Number of sickness benefits paid from social security insurance (3
datasets per different levels of administrative territories)}

4.4.11 S11 - State of the climate. 𝐺𝑆11 : "The user intends to
create an application about the state of climate in different country
regions."

𝑄𝑆11 : { Climate in Prague - basics}
𝐶𝑆11 : { Discharge of waste into water and water sampling (4

datasets for different rivers), Amount of landfilled and incinerated
waste, Meteorological characteristics in Brno, Measuring stations in
Pilsen, Air quality in Pilsen, Health and environment - Brno, Planted
and remediated trees in Brno, Air pollution, Development of air pol-
lution by NO2 and PM10, REZZO2 - middle sources, REZZO1 - big
sources, Meteostations, Air quality in Pilsen, History and actual po-
lution data from smart street lamps in Praha Karlín district, Costs
of environment protection and their economic impact in Czech dis-
tricts, Climate in Prague - details (6 datasets from different quality
viewpoints), Costs of environment protection in Brno, Development
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of air pollution by NO2 and PM10 in Brno, Potential of green roofs in
Prague}

4.4.12 S12 - Food production. 𝐺𝑆12 : "The user wants to create
an overview of the state of production of food in the country."

𝑄𝑆12 : { Harvest of crops in districts}
𝐶𝑆12 : { Production of meat, State of cattle and pigs, Sowing areas

in Czechia}

5 PROOF OF CONCEPT EVALUATION
The output of the user evaluation is a ranking of given models for
a given usage scenario. We do not restrict the user in the ranking
they can set. As a result, we need to standardize the ranking first,
before we draw any conclusions from them.

Let as assume that 𝑟𝑖 ∈ 𝑅 is a ranking provided by the user. We
compute the normalized ranking as follows:

𝑟𝑖 = −(𝑟𝑖 − baseline(𝑅))/scale(𝑅) (1)

where baseline(𝑅) is the score of the baseline model for the given
user in a given user scenarios and

scale(𝑅) = max |𝑟𝑖 − baseline(𝑅) |𝑟𝑖 ∈𝑅 (2)

We utilize tlsh : title description as the baseline model. The 𝑟𝑖 values
are in the < −1, 1 > interval where the higher the value, the better.

As we can see from Figure 3, almost all the models outperform
the baseline model implemented by the EDP. The performance is
relative to the tlsh : title description reference model, that is why the
performance of this model is constantly zero. Most of the models
were at least once ranked as one of the best model, with relative
ranking equal to one. In similar fashion almost all of the models
were at least once ranked as the worst, or as being in group with
the worst ranking models. The cosine:title [cswiki] and jaccard:title
are the two overall best ranking models. But rather than overall
performance of models we are interested in performance per user
and per scenario.

5.1 Results per User
Let us first focus on the performance per user. In order to do so,
we compute a model performance for each user as an average
performance of the model across all scenarios evaluated by the
user. In addition, we scale the averages of each user so that the best
model’s score equals to 1.

As we can see from Figure 4, there are 4 groups of models. The
first group created by cosine:title [cswiki] and jaccard:title is the best
performing. The next group created by cosine:description[cswiki],
cosine:description[law], cosine:title[law], cosine:description seems to
be the second best performing.

It can be seen that the groups are consistent across users. That
means that, in spite of the differences among the users, i.e., their
background knowledge as discussed earlier in the paper, an agree-
ment on performance of the models was achieved thanks to the
predefined scenarios used for the evaluation.

The users had to order 12 models. Together with 7 datasets per
model, this may not be a trivial task. It happened that some users
invested their effort only into ranking a few best models, giving
the rest of the models the same ranking, even though they were
qualitatively different. This might have been caused by fatigue from
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Figure 3: Box plot of normalized model scores
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Figure 4: Model performance per user as normalized mean
of relative user ranking

the evaluation process or by the user feeling that it is only the best
performing models that matter.

In order to gain insight into the process of how users evaluate
the models, we counted for how many scenarios a user used a given
ranking and plot those values Figure 5.We can see that there are two
groups. The 𝑈5 and 𝑈4 tend to rate with finer distinction among
the models then the other users, i.e., 𝑈5, 𝑈4 use 12 ranks while
other users use 7-9. Another explanation might be that the second
group of users starts to see models as bad much faster and does
not distinguish how bad the models are after a certain threshold.

143



4. Evaluation Framework for Search Methods
Focused on Dataset Findability in Open Data Catalogs

Evaluation Framework for Search Methods Focused on Dataset Findability in Open Data Catalogs iiWAS ’20, November 30-December 2, 2020, Chiang Mai, Thailand

U1 U2 U3 U4 U5

0

2

4

6

8

10

A
bs

ol
ut

e 
us

er
 r

an
ki

ng

Figure 5: Counts of rankings categories used by users. Bigger
dots mean more frequently used ranking. More dots mean
finer ranking.

This might be a reason why better rated models are rated more
consistently by the users than the worst performing ones.

5.2 Results per scenario
While it is easy to spot the best scoring model on per-user basis, this
is not true if we consider performance over scenarios in Figure 6.
As we can see there is no single best performing model. Even when
we consider the two best performing models on per user basis
the cosine : title [cswiki] and jaccard : title, they achieve the best
performance only in total 6 scenarios (see Figure 7 and Figure 8).

It is thus clear that a model performance depends heavily on
the scenarios at hand. At the same time, if we consider cosine : title
[cswiki] and jaccard : title there is no clear connection between
their performance and use-case characteristics (see Table 3). This
suggests that a model performance does not strictly depend on the
type of the problem, size of the query 𝑄 or number of complemen-
tary datasets 𝐶 , but rather on the scenario itself. However, detailed
interpretation of the results is out of scope of this manuscript.

If we consider the used metadata (see Table 2), then description
based models score best for 3, keyword based for 1 and title based
for 7 scenarios. This suggests that different metadata are suitable
for different scenarios. At the same time it shows that users actually
consider all available metadata during the evaluation.

6 CONCLUSIONS AND FUTUREWORK
In this paper, we presented a general framework for evaluating
findability of datasets. The framework provides evaluation of ar-
bitrary dataset retrieval models within defined user scenarios. We
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Figure 6: Normalized average performance per model

also presented an evaluation tool for human experts that provides
interface for rapid and intuitive user evaluations within the frame-
work. Finally, we presented a proof of concept specification and
evaluation of the framework, employing various similarity-based
retrieval models applied to datasets’ metadata. In the proof of con-
cept we verified that suitability of a given retrieval model is heavily
dependent on particular user scenario and the expertise of the
user/evaluator.
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Figure 7: Normalized average performance per model with
highlighted cosine : title [cswiki] model
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Figure 8: Normalized average performance per model with
highlighted jaccard : title model

The evaluation framework introduced in this paper can also be
used as the base for a full dataset discovery benchmark in the future.
The lack of such benchmark is one of the most widely recognized
problems of the dataset discovery field [4].
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Abstract. The TriGen algorithm is a general approach to transform
distance spaces in order to provide both exact and approximate sim-
ilarity search in metric and non-metric spaces. This paper focuses on
the reduction of intrinsic dimensionality using TriGen. Besides the well-
known intrinsic dimensionality based on distance distribution, we inspect
properties of triangles used in metric indexing (the triangularity) as well
as properties of quadrilaterals used in ptolemaic indexing (the ptolemaic-
ity). We also show how LAESA with triangle and ptolemaic filtering
behaves on several datasets with respect to the proposed indicators.

1 Introduction

The real-world datasets for similarity search often exhibit high intrinsic dimen-
sionality manifested by distance distribution with low variance and high
mean [5]. The reason could be the high complexity of the similarity model within
a given domain (lot of independent features), but often this is just a consequence
of automated feature extraction processes, e.g., the inference of deep features [6].
Intrinsically high-dimensional data cannot be used for efficient exact search but,
luckily, there have been developed many approximate methods [9] to tackle this
problem for the price of a lower retrieval precision. Some of these methods ele-
gantly avoid the direct problem of high intrinsic dimensionality by not indexing
actual distances, but just permutations of pivots [4,7]. These methods enabled
competitive application of similarity search in real-world domains where maxi-
mal retrieval precision is not as critical as the performance. However, we must
keep in mind these methods are limited in tuning the precision at runtime (from
query to query) as well as they are restricted to pivot-based indexing schemes.

The TriGen algorithm [11] was proposed as a universal method for fast exact
and approximate search in metric and non-metric spaces. So far, it was not
analyzed as a method for (intrinsic) dimensionality reduction. In this paper

This research has been supported by Czech Science Foundation (GAČR) project Nr.
19-01641S.

c© Springer Nature Switzerland AG 2020
S. Satoh et al. (Eds.): SISAP 2020, LNCS 12440, pp. 261–269, 2020.
https://doi.org/10.1007/978-3-030-60936-8_20

148



262 D. Bernhauer and T. Skopal

we empirically analyze this missing aspect. We also investigate the impact of
TriGen modifications on the potential of ptolemaic indexing [8] that achieves
better performance than metric indexing (though limited to ptolemaic metrics).

2 Background

When indexing data for fast similarity search, we face two fundamental concepts
– the data indexability and the indexing model.

2.1 Indexability

The indexability generally refers to an ability to search efficiently a dataset S ⊂ U

under a similarity model (U, d), regardless the indexing method used. The key
is the distribution of data or, specifically, in case of similarity search it is the
distribution of distances d(x, y) among data objects x, y ∈ S. The classic index-
ability indicator for a metric space model (U, d) is the intrinsic dimensionality
[5], defined as the ratio of squared mean and doubled variance of the distance
distribution; iDim(S, d) = μ2

2σ2 . The lower iDim, the better indexability.
Alternatively, the ball overlap factor (BOF) [11] describes the ability to par-

tition the dataset into non-overlapping ball-shaped regions. The BOF counts for
how many object pairs will constitute overlapping balls (each ball radius is the
distance to the ball center’s kth nearest neighbor).

2.2 TriGen Transformation

The TriGen algorithm [11] transforms the input distance space (U, d) by use of
triangle-generating or -violating modifiers and a dataset sample S

∗ ⊆ S ⊂ U into
a target space (U, f(d)). A modifier f : R → R+

0 must be an increasing function
with f(0) = 0 to preserve the ordering of distances1 and thus search results with
respect to sequential scan. The triangle-generating (concave) modifiers “inflate”
all the triangles in the space to become more equilateral; then the dataset is less
indexable as the intrinsic dimensionality increases. The triangle-violating (con-
vex) modifiers have the opposite effect – “squeezing” the triangles and lowering
the intrinsic dimensionality. The idea behind the triangle-violating modifiers is
that they lower the intrinsic dimensionality (more efficient search) for the price
of a retrieval error (some triangles break which shows in incorrect filtering by
querying). The indexability indicators, like the intrinsic dimensionality or BOF,
together with the T-error measuring the ratio of broken triangles, guide TriGen
to determine the right modifier.

Unlike other methods that map the source distance space into the Euclidean
space, the TriGen model is based solely on transformation of distances, hence
there is no need for an expensive and static embedding of metric objects into
vectors. In consequence, once a modifier is computed for a particular problem, its

1 Ranking of objects xi ∈ U based on d(q, xi) is the same as based on f(d(q, xi)).
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change (e.g., a precision guarantee) can be easily recomputed and the already
created index just updated (no change in descriptors). This allows to switch
between several TriGen modifiers at query time, providing thus flexible exact-
to-approximate search (e.g., the NM-tree [10]). Other TriGen follow-ups include
extensions to non-symmetric distances [3], and the genetic TriGen variants [1,2].

In this paper, we inspect the TriGen in the role of dimensionality reduction
method. In high-dimensional datasets (as measured by intrinsic dimensionality),
all of the non-trivial triangles tend to be almost-equilateral. Then application
of TriGen with triangle-violating modifiers could act as a lossless dimensionality
reduction method by squeezing the triangles without the violation of triangle
inequality (breaking the triangles by squeezing them too much). Our hypothesis
is, the higher the (intrinsic) dimensionality of data is, the more almost-equilateral
the triangles are, and so the more aggressive modifier could be applied while still
keeping the triangles unbroken. Simply said, we analyze the question if TriGen
could “cancel” the curse of dimensionality (to some extent) in similarity search.

2.3 Metric and Ptolemaic Indexing

The metric access methods (metric indexes) [5] use some construction of lower
bounds using the triangle inequality. In the simplest case of pivot tables (aka
LAESA), the three objects in the triangle are the query object q, a dataset
object x, and a pivot p (i.e., LB�(q, x) = |d(q, p) − d(p, x)|). If the triangle
is equilateral, LB�(q, x) = 0 and so the dataset object x cannot be filtered
by the lower bound. On the other hand, if the triangle is (squeezed to) a line
segment, the lower bound gets maximal (i.e., LB�(q, x, p) = d(q, x)) and so it
is “super-effective” for filtering.

Similarly, ptolemaic access methods (ptolemaic indexes) [8] use some con-
struction of lower bounds using the Ptolemy’s inequality that operates on quadri-
laterals (quadruplets, respectively). In the simplest (LAESA) case there are four
objects in the quadrilaterals: the query object q, a dataset object x, and two
pivots p1, p2, while a lower bound can be derived as

LBpt(q, x, p1, p2) =
|d(q, p1) · d(x, p2) − d(q, p2) · d(x, p1)|

d(p1, p2)
(1)

As the quadrilaterals are more complex than triangles, there is not a single
best or worst quadrilateral example for the lower bound construction. Also the
inflating and squeezing effect of TriGen modifiers is not clear in case of quadri-
laterals, and so for ptolemaic indexing.

3 Triangle and Quadrilateral Distribution

The intrinsic dimensionality, as an indexability indicator, considers only dis-
tances themselves but does not consider that some distance combinations cannot
be present in triangles at the same time, which is important for the filtering by
metric access methods. The BOF compensates this issue, but it cannot be easily
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generalized for Ptolemaic inequality or non-metric cases. Therefore, we define the
triangularity to quantify the shape of triangle on a real-value scale from equi-
lateral triangle, through line segment to broken triangle. Similarly, we define
Ptolemaicity to quantify the shape of quadrilateral on a scale from tetrahedron,
through line segment to broken equilateral.

Hence, we need to aggregate three distances forming a triangle into one num-
ber, with extremes for equilateral triangles and line segments. We could adopt
the TriGen criteria (presented in [5]) used for determining the number of trian-
gles that do not satisfy the triangle inequality. The triangularity is defined for a
triangle a = d(x, y), b = d(y, z), c = d(x, z) by Eq. 2 – this ratio determines how
“equilateralish” (or “inflated”) a triangle is. The triangularity is 1 for equilateral
triangle, 1/2 means the triangle forms line segment (“squeezed”), and for values
below 1/2 the triangle is broken (does not satisfy the triangle inequality).

Triangularity(a, b, c) =
a + b

2c
, where a ≤ b ≤ c (2)

After TriGen preprocessing, we expect the distribution will be shifted to
line segments (“squeezed”) instead of almost-equilateral triangles. Knowledge of
this common property makes the triangularity a good indicator of datasets with
statistically high probability to exhibit bad indexability.

Moreover, we try TriGen for Ptolemaic indexing, though the TriGen mod-
ifiers were originally proposed for indexing using the lower bounds based on
triangle inequality and not the Ptolemy’s inequality (Eq. 3). We would like
to find out how the Ptolemy’s inequality holds in comparison with the tri-
angle inequality. We define ptolemaicity of a quadrilateral as Eq. 4, where
d(w, x)d(y, z), d(w, y)d(x, z) ≤ d(w, z)d(x, y). The greatest ptolemaicity value
is 1, which represents regular tetrahedron and results in bad indexability. ptole-
maicity 1/2 represents a line segment and for values below 1/2 the equilateral is
broken (does not satisfy Ptolemy’s inequality).

(∀w, x, y, z ∈ U) d(w, x)d(y, z) + d(w, y)d(x, z) ≥ d(w, z)d(x, y) (3)

Ptolemaicity(w, x, y, z) =
d(w, x)d(y, z) + d(w, y)d(x, z)

2d(w, z)d(x, y)
(4)

4 Analysis of High-Dimensional Data

We have analyzed several datasets and looked at the intrinsic dimensionality
and the retrieval efficiency (using the LAESA algorithm). Two low-dimensional
datasets are from SISAP datasets: the 20-dimensional NASA dataset, and the
112-dimensional Colors dataset. As high-dimensional datasets we used a sam-
ple of the 2048-dimensional AlexNet image (V3C1) dataset, and several artifi-
cial datasets of dimensionality 2 to 2048 (randomly generated vectors). For all
datasets we have used the Euclidean space, which is both metric and ptolemaic.
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Table 1. Datasets statistics (iDim, distance computations with metric LAESA).

Dataset (dim) without TriGen with TriGen (zero error)

iDim Dist. Comp. iDim Dist. Comp.

NASA (20) 5.184 ± 0.007 2.12% 4.593 ± 0.007 1.15%

Colors (112) 2.742 ± 0.003 2.63% 2.553 ± 0.003 2.08%

Random (128) 181.328 ± 0.304 100% 28.663 ± 0.022 95.78%

Random (2048) 1967.66 ± 184.295 100% 37.035 ± 0.175 99.3%

V3C1 (2048) 30 ± 0.050 86.65% 9.215 ± 0.012 45.39%

In Table 1 on the left, we present intrinsic dimensionality comparison and
efficiency improvement of the metric LAESA (with randomly chosen 50 piv-
ots) against sequential search. The iDim of Colors dataset is lower than iDim
NASA dataset, however, LAESA performs better on NASA. Note the embedding
dimensionality and iDim are dramatically different in case of V3C1 and Colors.
Figure 1 shows distance distribution histograms for all datasets.

In Fig. 2a (dashed), we present triangularity distribution. As we expected,
the distribution is shifted to the right side for high-dimensional datasets. This
is the main assumption for transforming metric space using the TriGen into a
more indexable one. Similarly, we have visualized the ptolemaicity distribution
in Fig. 2b (dashed), which displays the same properties.

Fig. 1. Distance distribution comparison

Both triangularity and ptolemaicity distributions are similar, which means
TriGen could be used for modification of Ptolemaic space, too. If the TriGen
transforms both spaces consistently then, based on figures, Ptolemy’s inequality
is violated earlier, because there is a higher number of line segments.
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Fig. 2. Distribution of triangularity or ptolemaicity in datasets before (dashed) and
after (solid) TriGen modifications.

Fig. 3. Dist. distribution before (dashed) and after (solid) TriGen modifications.

4.1 TriGen Modifications

In the first part of our experiment, we have configured TriGen to zero error
tolerance. The measured retrieval error (as defined in [11]) was also zero, hence,
we achieved faster and still exact search. Figure 3 shows the change of distance
distributions in datasets after TriGen modifications were made.

Table 1 on the right describes basic indicators after TriGen modifications, and
we observe that triangle-violating modifications reduced the intrinsic dimension-
ality. The retrieval efficiency improved for all datasets (for some only slightly,
but two times for NASA and V3C1). It indicates the presence of an inner struc-
ture beyond all conventional indicators, except for Random (2048) that is not
indexable for exact search. However, TriGen can still transform a seemingly not-
indexable dataset (V3C1, Random(128)) into partially indexable even for exact
search.
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Both triangularity (Fig. 2a) and ptolemaicity (Fig. 2b) distributions are flat-
ter and shifted to the left as we expected. The ptolemaicity distribution is flatter
than triangularity distribution, which means that Ptolemy’s inequality is more
prone to a violation when used with TriGen.

4.2 Comparison of Real Performance

The TriGen algorithm controls the ratio of triangles satisfying the triangle
inequality (so-called T-error tolerance) by a weight parameter that determines
the convexity/concavity of the modifier. In the previous experiments we set T-
error tolerance = 0 that (empirically) guarantees zero retrieval error. In Fig. 4a,
we can see the dependence of distance computations and retrieval error on the
weight (V3C1 dataset). We used just the triangle-violating (squeezing) modi-
fications where −10 weight is heavy squeezing and −0.1 weight is almost no
squeezing. We used LAESA with 50 randomly chosen pivots utilizing metric fil-
tering, ptolemaic filtering, or both, and compared it with the sequential search.

The important observation is the ptolemaic filtering2 has a similar pattern as
the metric filtering. The general difference is in the shift of the ptolemaic curves
to the right. The combination of triangle and ptolemaic filtering utilizes the
benefits of both approaches. Triangle filtering deals with retrieval error caused by
the Ptolemy’s inequality violation and the Ptolemy’s filtering deals with better
efficiency, because of its ability to create better lower bounds.

Fig. 4. Efficiency and retrieval error (LAESA with 50 pivots on V3C1 dataset).

Another point of view is presented in Fig. 4a, where pairs of efficiency and
retrieval error values from Fig. 4b are aggregated into single efficiency per error
value. So, we get rid of the TriGen weight parameter and only observe how
the real efficiency is dependent on real retrieval error, obtaining more readable
results than when depicted individually.
2 We used simple random selection of pivot pairs in ptolemaic filtering instead the

better but slower Balanced heuristic [8].
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4.3 Discussion

The intrinsic dimensionality is not always sufficient to predict the real efficiency
of an indexing algorithm. First, because of some inner structure that can hardly
be described by a single number. Second, the high number of low distances, trian-
gularities, or ptolemaicities does not imply better indexability. A good example
can be randomly generated vectors with one outlier, which will shift the whole
histogram to the left.

The TriGen can be used for both precise and approximate search. The combi-
nation of both filtering inequalities improves not only efficiency but also lowers
the retrieval error. There is a possibility in the future to try other kinds of
inequalities and their ability to scale with TriGen.

5 Conclusions

We have introduced structure-sensitive empirical measures for the analysis of
metric and Ptolemaic spaces and defined the triangularity and the ptolemaic-
ity as the quantifiers of triangle and quadrilateral shapes. Analysis of high-
dimensional data shows that it is possible to use TriGen as dimensionality reduc-
tion method that improves the efficiency of similarity search.

Although the TriGen was designed for transforming non-metric spaces into
metric ones, we have shown that the inverse application on high-dimensional
data is possible as well and efficient for both exact and approximate search.
Moreover, experiments indicate that TriGen could be used with different types
of filtering inequalities (like Ptolemy’s). The combination of several filtering
inequalities synergically deals with the advantages (better efficiency) and dis-
advantages (worse precision) of the individual methods.
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David Bernhauer1,2 , and Ladislav Peška1
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Abstract. The success of many businesses is based on a thorough
knowledge of their clients. There exists a number of supervised as well
as unsupervised data mining or other approaches that allow to analyze
data about clients, their behavior or environment. In our ongoing project
focusing primarily on bank clients, we propose an innovative strategy
that will overcome shortcomings of the existing methods. From a given
set of user activities, we infer their social network in order to analyze
user relationships and behavior. For this purpose, not just the traditional
direct facts are incorporated, but also relationships inferred using sim-
ilarity measures and statistical approaches, with both possibly limited
measures of reliability and validity in time. Such networks would enable
analyses of client characteristics from a new perspective and could pro-
vide otherwise impossible insights. However, there are several research
and technical challenges making the outlined pursuit novel, complex and
challenging as we outline in this vision paper.

Keywords: Inferred social networks · Similarity · Behavioral analysis

1 Introduction

The behavior, environment, and characteristics of clients form a significant
source of information for various businesses in order to increase their revenues,
detect potential problems, prevent unwanted situations, or at least suppress their
negative impact. During the first stage of our ongoing project, we are focusing
on clients of banks and other similar financial institutions providing basic bank-
ing products such as deposit accounts, payment cards or cash loans. However,
analogous principles and challenges can be observed in other areas too, such as,
e.g., landline or mobile phone operators, electricity or gas suppliers, or other.

This work was supported in part by the Technology Agency of the Czech Repub-
lic (TAČR) project number TH03010276 and by Czech Science Foundation (GAČR)
project number 19-01641S.
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In the financial sector, banks primarily evaluate various behavioral or credit
scores of both potential and existing clients in order to classify them as fraudulent
or legitimate, with various risk levels involved. There are basically three main
issues that banks essentially need to solve: (1) fraud detection, (2) debt services
default, and (3) customer churn. In addition, various life situations (e.g., finishing
studies, getting married, the birth of a child, promotion, loss of a job, retirement,
etc.) can be interesting for banks, so that they can offer appropriate financial
products to relevant clients, and offer them effectively and in the right moment.

For the purpose of the analysis of bank clients, there are several suitable
sources of information. The main options involve: (1) socio-demographic or other
information provided by the clients themselves, (2) transactional history or other
financial interaction of a client with the bank, and (3) publicly available third-
party information that can be linked with the internal client data. In theory,
especially the last option seems to provide valuable information so that the
identified concerns of banks can be tackled. In practice, however, there are var-
ious limitations, technical as well as legal (data and privacy protection or other
regulations), which might not permit to use this approach in its full extent.

There exists a number of data mining approaches that try to solve some of
the indicated problems [31]. Most of the solutions use some kind of a supervised
method [12,16,21], where we can predict the future behavior of clients based on a
learning data set where the corresponding targets were well known or identified
manually. Unsupervised approaches [23] use characteristics of clients in order
to group them into clusters on the basis of their mutual similarity, trying to
maximize the difference between them.

In this paper, we propose a basic concept and principles of a novel solution
inspired by both of these approaches based on the idea of analyzing a social
network of clients. Of course, also in this context the idea of utilizing social net-
works was not only already proposed [2] (e.g., for fraud detection [14,19,27] or
peer-to-peer lending [17]), but this need is also confirmed by bank representa-
tives themselves. However, in our approach, we go much further. First, we do
not assume an existence of such a network (which is a strong, often unrealistic
assumption), but based on the available characteristics and history of finan-
cial transactions we construct an inferred social network. For this purpose, we
exploit not only direct facts when describing client relationships, but also fea-
tures inferred from the available data indirectly using various similarity methods
and statistical approaches, all that with additional measures of reliability and
time-limited validity of the information.

Contemporary solutions deployed in banks are often based on techniques such
as traditional data processing and querying (projection, selection, and aggrega-
tion), integration of externally available information, processing of strings (sub-
strings, n-grams, common subsequences or regular expressions), natural language
processing, logistic regression, decision trees, or neural networks. These can help
us to solve partial problems such as household, salary, or installment detection.
For this purpose, both client and transactional data are exploited: counterparty
account numbers are matched to well-known collection accounts (e.g., big sup-
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pliers, tax offices, etc.), text comments or other payment symbols accompanying
bank transfers analyzed, or descriptions of merchants associated with card pay-
ment transactions categorized. All in all, these techniques primarily use rather
obvious, direct and only factual kind of information. Having implemented our
vision, a new set of possibilities opens, simply because we will be able to apply
behavioral patterns observed on clients who just tend to be similar (i.e., clients
who would otherwise not be related to each other at all, let alone because they
have absolutely no direct or obvious relationships), and simulate propagation
of such information, bank decisions and offers, their consequences and impact
through the network. For example, two clients can be considered similar, just
because they have similar distribution of monthly card payments based on differ-
ent Merchant Category Codes (MCC), money withdrawals carried out abroad,
or unexpectedly dwindled overall account balance normalized to the average
achieved salary.

As indicated so far, such envisioned networks will permit the banks to view
and analyze clients, their characteristics, behavior, and mutual relationships from
a new perspective, and provide otherwise impossible insights. However, the out-
lined vision cannot be attained straightforwardly, since it poses several technical
as well as research challenges. In this paper we (1) describe the first results of our
project, i.e., the process of inference of the social network from information in
bank transactions (see Sect. 2) and (2) envision the open problems and challenges
of its analysis and exploitation (not only) for the financial sector (see Sect. 3).
We believe that these two contributions will trigger a new research direction for
the information retrieval community applicable in many other domains.

2 Inferred Social Network

In our first use case from the financial sector, we assume the possession of the
following input (anonymized) data:

1. client characteristics (e.g., name, addresses, education, etc.),
2. history of financial transactions (e.g., credit/debit card payments, payments

with cash back service, cash withdrawals, transfers, permanent transfer
orders, regular or overdue loan installments, etc.), and, eventually,

3. third-party information related to the non-person entities from the previous
two data sets (e.g., shops, institutions, etc.).

In all the cases, only data belonging to a particular monitored time interval
I = [tstart, tend] is covered. In the following text, we provide a more precise
definition of the target social network and the process of its inference from the
input data.

2.1 Social Network Graph

We construct the social network of bank clients at two different levels of granu-
larity, representing a dual view of the same problem from different perspectives:
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Fig. 1. The process of inference of a social network

(1) high-level view, where the social network only consists of vertices for bank
clients, and (2) low-level view, where there are vertices also for different kinds
of real-world entities (e.g., institutions, companies, etc.). Both the views are
depicted in Fig. 1 as graphs GH and GL on the right.

High-Level Network. We define a high-level network to be a multigraph GH =
(VH , EH), where the set of vertices VH represents individual bank clients and
the set of edges EH relationships among the clients. Each client v ∈ VH has a
set of properties {p1, p2, ..., pn}, each of which is modeled as a tuple with the
following components:

– name pname (e.g., age),
– value pvalue (e.g., 58 ),
– reliability preliability ∈ [0, 1] (e.g., 0.85 for information certain for 85%), and
– validity pvalidity = [tstart, tend] representing the time interval of validity of

the information.

Each edge e ∈ EH has the following components:

– relationship type etype (e.g., colleague),
– reliability ereliability ∈ [0, 1], and
– validity evalidity = [tstart, tend].

The high-level view GH has the advantage of having a simple data structure
to work with. It enables to perform general analyses without the need to distin-
guish between types of vertices and to know and understand technical details
of the reality. For example, we are 85% sure that two clients work in the same
company, but we do not (need to) know which company.
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Low-Level Network. In case we are interested in more details (e.g., we want
to know particulars about a given company), we can use the low-level view
GL, where we also work with vertices for different real-world entities, possibly
enriched by third-party publicly available information about them.

Formally, we model this low-level network as a multigraph GL = (VL, EL),
where the set of vertices VL involves VH plus vertices for new kinds of entities,
each one of them newly associated also with a vertex type vlabel, as well as
properties {p1, p2, ..., pn} with the unchanged structure as in the original high-
level network GH . The edges in EL represent relationships among clients and
institutions, locations, etc., also having etype, ereliability, and evalidity.

2.2 Inference Process

As usual with real-world data sets, the data first need to be pre-processed using
a data analysis and cleaning module. In this step, we can already identify infor-
mation whose reliability is <1 due to lower data quality. However, this feature
will mainly be adjusted by the inference process. Similarly, from the input data,
we already know the basic time intervals of validity to be further refined.

The process of inference of graph GH (or GL) consists of two orthogonal
approaches which we denote as rule-based extraction and similarity-based extrac-
tion (see Fig. 1 on the left).

Rule-Based Extraction. The more straightforward inference path is based on
the idea of the definition of a set of domain-specific rules, each of which defines
a way of constructing a particular type (or types) of relationships in the target
graph GH (or GL). So far, we distinguish the following classes:

– factual relationships directly present in the input data (e.g., a married couple),
– aggregated relationships derived from the input data using various information

aggregations (e.g., co-workers defined as people working concurrently in the
same company), and

– transitive relationships derived from the input data on the basis of statistically
significant amount of occurrences of specific events (e.g., people living in
the same household defined as people with the same home address, frequent
mutual money transfer, frequent payments in similar shops, etc.). In this case
usually ereliability < 1.

Similarity-Based Extraction. The process of data extraction in this inference
path is more complex and, to the best of our knowledge, also unique in the given
context, so we describe it in more detail. We first define a set of similarity models
M1,M2, . . . ,Mk, each of which expresses a particular similarity of users defined
by certain selected features. These features can be of various types, such as based
on single fixed values, time-varying series, accumulated values (e.g., per week or
month), etc., or their combinations. With regards to the monitored time interval
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I, we can focus on the whole I, or just its part (e.g., since the moment a client
entered a contract with the bank).

Within a model Ml, values of such features for a given particular client c are
represented using a descriptor dlc; mostly a vector or time series where individual
coordinates/elements represent values in the selected features (e.g., a normalized
overall volume of performed debit card payment transactions, converted into the
base currency, all that separately for every month of interval I). Having a set of
descriptors for all the clients, standard approaches can be exploited to calculate
similarities of the clients using the selected metrics, configured weights, or other
parameters [30].

For each model Ml, this step thus outputs a dense square matrix Ml, where
for each two vertices vi and vj ∈ VH (or VL), the measure of their mutual similar-
ity siml(vi, vj) ∈ [0, 1] with regards to the corresponding descriptors is stored at
Ml[i, j]. The efficient matrix computation1 could be implemented by similarity
self-join on VH (or VL), e.g., using the Hadoop MapReduce algorithms [6].

Next, the set of dense matrices M1,M2, ...,Mk is transformed to a set of
sparse matrices M ′

1,M
′
2, ...,M

′
m (k and m do not necessarily need to be equal),

each representing one type of relationships to be added into the target graph,
each particular edge e with the value of reliability ereliability corresponding
to M ′

l [i, j]. The “sparsing” transformation can involve application of similar-
ity thresholds, combination of multiple similarity results (e.g., using a weighted
sum), clustering of clients into categories, etc. In general, we want to restrict the
result just to the most interesting information with a reasonable size.

To summarize, the similarity-based extraction is a method for indirect detec-
tion of relationships between clients (or entities, in general). While the rule-based
extraction can reach ereliability = 1 and well-defined semantics of the relation-
ships, there is usually a limited amount of data available. The similarity-based
extraction, on the other hand, provides weaker semantics and ereliability < 1
of relationships (in fact, it is correlated with the similarity scores), but it still
allows to identify relationships in situations where the rule-based extraction is
not applicable (due to, e.g., a small amount of data, a small number of direct
relationships, etc.).

SIMILANT. For the analysis of promising similarity models to be used in
the similarity-based extraction, we have designed and implemented an analytics
tool called SIMILANT. It enables effective browsing of data based on the chosen
similarity measure. It consists of three independent parts: clustering, visualiza-
tion, and browser. During the extraction process, we create a complete weighted
graph (i.e., the dense similarity matrix Ml), which is, however, hard to interpret.
Instead of its visualization, we visualize only a small number of related clusters.
The browser part of SIMILANT provides simple analytics of similarity models at
different levels of detail (e.g., different numbers of these clusters). Their seman-
tics can be further validated using various targets (i.e., labeled ground truth), if
available.
1 Instead of fully materialized matrices approximations can be used.
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Dynamics of the Input Data. An important feature of the input data set is
its dynamics. One aspect is that new data continuously appear. Another one is
the event-driven nature of the problem domain. For example, there are various
life situations (e.g., the loss of a job or a notable increase in salary) highly
influencing the financial behavior of bank clients and, consequently, the structure
of the graph representing their financial behavior. In order to prevent skewed
data, a change detection module determines points of such changes using a set of
predefined domain-specific rules combined with statistical analyses. When such
a change connected with a given client is identified at time tchange, instead of
working with the entire interval I = [tstart, tend], we can technically split a given
client behavior into two sub-intervals I1 = [tstart, tchange] and I2 = [tchange, tend]
– before and after the change – and study a given client within the two (or more)
intervals.

2.3 Social Network Analysis

Having the inferred (high-level or low-level) social network, in the next phase
of our project, we will focus on its thorough analysis. Currently, there exist
several verified approaches for social network analysis which primarily need to
be utilized for validity and reliability of the information. In addition, since the
inferred network is not built by people themselves, quite probably its features
will not correspond to features of traditional social networks. As a consequence,
verified approaches may need to be optimized, modified, or even identified as
inapplicable for inferred networks.

In general, our main near-future target areas are as follows:

– Visualization: We will focus on the visualization of the inferred network with
filters related to both validity and reliability. In addition, we need to visualize
the dynamics of the graph.

– Structural Analysis: We will utilize traditional methods [14], like, e.g., analysis
of density, centrality, structural holes, clustering coefficient, communities, etc.
Due to the specifics of inferred networks, we assume that the characteristics
will not correspond to usual observations for social networks [24].

– Information Propagation: Inspired by sociology, we will deal with how infor-
mation is propagated [8] in inferred networks, primarily using independent
cascade or linear threshold models, both progressive stochastic diffusion mod-
els.

These steps will lead to the main target: to identify the most relevant infor-
mation for the financial sector in order to solve the three key issues and optimize
customer services.

3 Challenges

The envisioned idea of inferring a social network from information describing
people and their interactions can be used in many other domains. Regardless of
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the domain, such inferred social networks will probably have different features
and thus will require novel approaches for their processing and analysis. We
believe that this idea opens a new, challenging, and highly practically applicable
research area for the information retrieval community. Besides the previous list
of target research areas of our project, we summarize other related challenges of
inferred networks as follows:

– Big Graph Data: Even a small bank can have hundreds of thousands of clients
and hundreds of transactions per a client and month and the inferred social
network can be very large. Approaches, such as network embedding [28], that
allow us to compact the information necessary to describe its structure can
increase the efficiency of its processing. Even if this should lead to approxima-
tions. Other challenges are observed in big graphs with high-degree vertices,
randomness in graph structure or other irregularities, different types of edges,
or in graphs with dynamic changes, causing sharding, data locality or load
balancing issues [20,25,29]. Data quality issues, although studied for decades,
also require attention in the context of Big Data processing [3,13,15].

– Time-Varying Data: Various time aspects of features and behavior of peo-
ple are natural. Hence, management of data with a temporal dimension has
already been addressed in a number of fields, from relatively old temporal
databases [9,22] for relational data to newer time-varying networks [11] for
which there exists an extensive amount of specific approaches [4], including
dedicated data stores [5]. Inferred social networks have the time aspect too,
however, its processing needs to be further adjusted with regards to their
other specific features, such as (time-varying) reliability.

– Feature Selection: The similarity-based extraction path brings a challenge
in exclusion of redundant or irrelevant descriptors whose number can be
extremely large. While the supervised approaches (which require additional
information) are well explored [1,7,18], the unsupervised ones are more suit-
able in the considered context, but also more challenging and thus less rep-
resented. For example, several criteria and unsupervised approaches are dis-
cussed in [10], whereas paper [26] proposes how to measure the validity of
feature selection objectively. Since the target inferred social network cannot
be extremely dense, the choice of the most relevant data is a crucial issue in
general.
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ABSTRACT
We present SIMILANT, a data analytics tool for modeling similarity
in content-based retrieval scenarios. In similarity search, data ele-
ments are modeled using black-box descriptors, where a pair-wise
similarity function is the only way how to relate data elements
to each other. Only these relations provide information about the
dataset structure. Data analysts need to identify meaningful combi-
nations of descriptors and similarity functions effectively. Therefore,
we proposed a tool enabling a data analyst to systematically browse,
tune, and analyze similarity models for a specific domain.

KEYWORDS
similarity modeling and analytics; similarity visualization
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1 INTRODUCTION
The similarity search model is a popular retrieval model for unstruc-
tured data, such as multimedia, text, time series, and other complex
unstructured data (often sensory data). By definition, in similarity
search, the data objects are modeled by descriptors that are to be
compared by a similarity function. Both descriptors and similar-
ity functions (i.e., the similarity model) are not specified for the
database operations such as indexing or retrieval algorithms (i.e.,
being a black box), while their implementation is left to the domain-
specific modules of the retrieval system. This separation of the
general retrieval logic and the domain-specific similarity modeling
provides a great degree of extensibility, as only the domain-specific
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modules need to be implemented as plug-ins to a general similarity
search engine. The most popular similarity search model is the
metric space model [10] allowing to index data by similarity for
efficient (fast) retrieval.

Software tools for data analytics mostly focus on structured
(relational) data, providing aggregations and data mining over in-
dividual attributes. Unlike this traditional approach that provides
access to data at the level of domain-specific attributes, in our tool
called SIMILANT (SIMILarity ANalytics Tool) we support to plug in
arbitrary black-box similarity models, yet providing data analytics
functionalities. SIMILANT aims at visualization and aggregation of
similarity relationships between data objects at the level of atomic
elements and their clusters. The main benefit of this approach is
that relationships between database objects are based purely on
their overall similarities, freeing the data analyst from the domain-
specific data structure and enabling analysis at a higher level of
abstraction.

The main highlights of SIMILANT can be described using the
following two use cases:

• Discovering Implications: As we do not know the semantics
of the data source, we try to discover interesting implications
based on the descriptors and similarity functions. The same
descriptor can provide different information for different
similarity functions and vice versa. SIMILANT provides an
ability to generate and process a large volume of combina-
tions of a descriptor and a similarity function, as well as
visualization and browsing of the pre-processed data. The
user can navigate through different combinations and eval-
uate the quality of the proposed models. The discovered
implications can then be selected for further processing in
different similarity models (as new descriptors). An exam-
ple from the bank domain is, e.g., to identify accounts of
governmental institutions based on their incoming transfers
pattern.

• Cluster-based Validation: Every classification task has its
limits, at least at the noise level. Due to the component
architecture of SIMILANT, we can replace the clustering
algorithm for a classifier. We can observe the quality of the
classifier with respect to a chosen descriptor and find the
particular problematic entries. Using the descriptor chart,
we can justify the decision of the classifier and identify a
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group of similar poorly classified entries (and its structure).
As a result, we can design an improvement of an existing
classifier by considering additional data features (feature
selection) based on the particular similarity model.

In the presentation, we will demonstrate the functionality and
advantages of SIMILANT using two real-world scenarios that result
from two distinct research projects we are participating in. By
choosing these two different domains we want to also show the
extensibility and general usability of SIMILANT.

1.1 Related Work
As mentioned above, data analytics tools (such as, e.g., Rapid-
Miner [4] or R [8]) mostly focus on structured data. A different
approach was considered in [2], proposing a visual analytics tool
for high dimensional data. The tool mostly focuses on visualizing in-
dividual clusters and provides users (domain experts) the capability
to manually update the clusters. In contrast, SIMILANT focuses on
evaluation and validation of multiple possible clusterings induced
by the combination of descriptors and similarity functions and also
finding implications towards relevant labels.

In fact, after a thorough review of related work we found only a
single closely related application called SIMG-VIZ [6]. SIMG-VIZ
is a system for identifying semantically similar entities. As the
authors mentioned, the entity resolution part can be replaced for
any pre-computed similarity graph. SIMG-VIZ visualizer targets the
graph representation of elements, whereas the graph can be dense
and, hence, the visualization unclear. SIMILANT aims to visualize
(a reasonable amount of) clusters as groups of similar entities with
a common property. Furthermore, SIMG-VIZ is presented as the
system for entity resolution, so the analyst must have some domain
knowledge. SIMILANT uses the visualization for discovering and
browsing the data without any prior knowledge of the domain.

2 PIPELINE
Currently, tasks of SIMILANT pipeline are implemented in Python
Notebooks. As we discuss in Section 2.3, our module implementa-
tion is not critical since the final result of the whole pipeline is a
static file. Python Notebooks are perfect for demonstration, but in
the production environment, we can switch them for more efficient
scripting frameworks.

The pipeline of similarity analysis in SIMILANT consists of sev-
eral steps as depicted in Figure 1. For every combination of a descrip-
tor and a similarity function, we can choose the optimal clustering
algorithm and a suitable visualization of clusters. This fact indi-
cates that the potential space of combinations is enormous. In this
section, we introduce in more detail each part of SIMILANT. The
data browser, the last step of the pipeline, is described in Section 3.

2.1 Descriptor Identification
During our original similarity task targeting bank clients, we have
found out that without a more in-depth knowledge of the banking
domain we can create even hundreds or thousands descriptors, not
knowing which will (not) be usable. Moreover, we can design tens
of similarity functions for each descriptor, while this problem is not
specific to bank clients only. The aim of SIMILANT is to minimize

the necessary effort and to discover the promising similarity models
efficiently using a semi-automatic process.

In the first step, we pre-compute similarity matrices for all the
combinations. The computation can be done automatically on a
server, either sequentially or in parallel.

2.2 Clustering & Visualization
Having all the possible similarity models computed, in the second
step SIMILANT enables to cluster and visualize the data respectively,
together with information about the quality of the model.

The similarity is not just about a relationship of elements. We
perceive similarity as a group of similar data elements that share a
certain property (or even a semantic category). As the visualization
of every data element can be confusing, we utilize clustering algo-
rithms. In particular, different variants of hierarchical clustering
are suitable for the task due to its natural ability to quickly produce
arbitrary volumes of clusters. In the current implementation, ag-
glomerative hierarchical clustering with average linkage [5] is used;
however, the choice of the clustering algorithm is independent of
the other components, and thus can be replaced if necessary.

In the current implementation, PCA [1], MDS [7] or t-SNE [9]
visualization approaches are used to layout the sample of objects
or directly the clusters (see Figures 2 and 3 described in detail
in Section 3). In case of cluster visualization, the size of the dots
represents the logarithmic size of a cluster (i.e., the number of its
elements). The shade of a dot represents the distance span of el-
ements within the particular cluster (cluster radius). In order to
evaluate the applicability of a particular set of descriptors and a
clustering method, we can validate the resulting clusters against the
selected target attributes. For this purpose, the information gain [3]
(i.e., the amount of information gained about a target variable by
separating data entries assigned to the current cluster from others)
is calculated w.r.t. each cluster and target. The information gain
is currently displayed as a record in cluster’s statistics; however,
in the future work, we plan to implement a target-specific cluster
visualization depicting target attribute’s distribution as RGB chan-
nels of the cluster’s color, while the information gain of the cluster
will correspond with the alpha channel.

2.3 Modularity
One of the important requirements resulting from the use case
analysis is that every part of the pipeline should be replaceable. As
a result of a clearly defined interface between the pipeline com-
ponents, the proposed tool is highly modular and it is not limited
just to the presented clustering and visualizing algorithms, neither
specific types of descriptors or similarity functions.

3 DATA BROWSER
The data browser is a web-based GUI entry point to SIMILANT.
The current layout consists of three main parts; however, the archi-
tecture also allows for an extension of each part, or even a change
of the whole layout structure.

3.1 Layout
Figure 2 shows the layout of SIMILANT. The left part is the control
panel of the whole tool. In the top-left part (marked as #1), the
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Figure 1: SIMILANT pipeline

Figure 2: Screenshot of SIMILANT GUI for bank clients

Figure 3: Screenshot of SIMILANT GUI for Linked Data
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analyst can select the desired combination of a descriptor and a
similarity function. In the next step (#2), the analyst can choose
the clustering algorithm and its parameters (usually the number
of clusters). The last step (#3) is to select the visualization algo-
rithm. Currently, SIMILANT enables to visualize a sample of objects
(shown in Figure 2), or clusters only (shown in Figure 3).

After the initial configuration, the analyst focuses on the central
part (#4), since it visualizes the data in 2D and gives information
about the partitioning of the dataset. The analyst can easily verify
whether the clustering makes sense, while tab Validation (#6) pro-
vides additional statistical information. We can select a particular
cluster by a mouse click or select it from list Clusters, which is
shown in Figure 3 on the right. The color of an individual object
represents its cluster (shown in Figure 2), the shade of the cluster
determines the radius of the cluster (shown in Figure 3). In the
bottom part, there is a summary of a descriptor (#5) of the chosen
cluster or the whole dataset. Visualization of descriptors is also
modular: currently, we are able to visualize histograms, tag clouds
(shown in Figure 3), or time series.

In the right part (#6), we can select a particular cluster, browse
the data set (if there is additional information about particular
objects), or validate clusters against a chosen target. As we can
see in the example, the descriptor suggests that the selected clus-
ter represents clients who often perform cash withdrawals from
ATMs (represented by a visible peak of the money category in the
bottom-right histogram, #5). The validation panel indicates that
these people are mostly middle-aged. Finally, the table below the
chart (a graphical representation of the target) shows statistical
indicators. In this example, we can accept this model and mark the
clustering as appropriate for further processing.

3.2 Considerations
One of the controversial parts of SIMILANT is the offline mode of
the browser. First, we need to generate the necessary files using the
pipeline, only then we can visualize them. The opposite approach
presented in [6] is an application communicating with an indepen-
dent server. The disadvantage of this method are time-consuming
operations during which the application does not display anything
useful. We believe that the response time is a crucial aspect of every
application, and therefore should be considered wisely.

Another issue is Big Data, that require a large volume of data
transfer, which can be a source of high network traffic and other
problems. Since we work only with clusters, we can reduce the
size of the files. In the case of bigger clusters we can encounter a
longer processing time. The large clusters cause many DOM model
changes (during the preparation of element list), which can be
difficult for the browser to handle.

4 DEMONSTRATION OUTLINE
In the demonstration, we will present individual parts of SIMILANT
pipeline, step by step. Sample descriptors and similarity functions
will be processed by the clustering and visualization algorithm. The
results will be imported into the SIMILANT browser.

We will use two real-world industry-based datasets. Firstly, we
will present how to utilize SIMILANT in case of bank clients. In
particular, we will present a similar scenario, as shown in Figure

1. We will work with anonymized data about bank clients and
divide them into several groups based on a transactional history.
The targets (e.g., the histogram in Validation Tab) will be used to
indicate that the clients in the selected cluster are well separated. In
our example, we can see that the information gain for the selected
cluster is about 40% of the original entropy, which is a sign of a good
partitioning regarding the age of clients. The descriptor summary
shows that these clients are more likely to withdraw from an ATM
then an average client. So we can estimate the age category of
clients based on their card payment behavior.

The second data set involves linked open data repositories. Since
these are unstructured data, too, Figure 3 shows a trivial clustering
based on the identity. In this case, we will demonstrate the impor-
tance of the visualization part. As it is evident, some clusters are
similar to the others. However, the targets are not available, and
so we will have to utilize a cluster validity index, such as cohesion
and separation. The cohesion and separation indices can suggest
the optimal size of the clustering. Therefore, in this case, we will
show how to find a more coarse-grained distribution.

For both examples, other similarity models, types of clustering,
and visualizations will be available during the demonstration (and
to be played with by the audience).

4.1 Intended Audience
This demonstration is intended for a wide scope of audience, rang-
ing from researchers looking both for a possible way of solving their
research issues and for new research directions in general, to prac-
titioners who can utilize SIMILANT for their particular use cases.
Since the ideas can be applied universally regardless of the chosen
domain, SIMILANT represents a unique tool with an extremely
wide area of well-motivated applications.
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Abstract. The metric space model is a popular and extensible model for
indexing data for fast similarity search. However, there is often need for
broader concepts of similarities (beyond the metric space model) while
these cannot directly benefit from metric indexing. This paper focuses on
approximate search in semi-metric spaces using a genetic variant of the
TriGen algorithm. The original TriGen algorithm generates metric mod-
ifications of semi-metric distance functions, thus allowing metric indexes
to index non-metric models. However, “analytic” modifications provided
by TriGen are not stable in predicting the retrieval error. In our app-
roach, the genetic variant of TriGen – the TriGenGA – uses genetically
learned semi-metric modifiers (piecewise linear functions) that lead to
better estimates of the retrieval error. Additionally, the TriGenGA mod-
ifiers result in better overall performance than original TriGen modifiers.

Keywords: Approximate similarity search · Semi-metric space ·
Genetic TriGen

1 Introduction

The similarity search models stand in the center of methods for content-based
retrieval in datasets of multimedia and other unstructured data. For decades,
the metric space model [7] has been widely accepted as the standard model
for similarity search applications. The metric space model is both extensible
(supporting black-box descriptors and similarities) as well as indexable (due to
metric properties), thus providing efficient similarity search by metric access
methods (MAMs) [2,7].

In the era of Big data – with the increasing diversity and complexity of data
and algorithms for entity matching – there is a need for more general schemes
of similarity modeling. The metric space properties could be too restrictive in
many fields [6], for example in bioinformatics/cheminformatics. At the same
time, the datasets grow to sizes that are not possible to query without indexing.
c© Springer Nature Switzerland AG 2019
G. Amato et al. (Eds.): SISAP 2019, LNCS 11807, pp. 86–93, 2019.
https://doi.org/10.1007/978-3-030-32047-8_8
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Hence, it is extremely challenging to provide scalability in both retrieval aspects
– the effectiveness (retrieval quality) and efficiency (system performance). There
have been many approaches developed, trading effectiveness for efficiency, e.g.,
approximate search methods. However, most of the results were based on the
metric space model. Only a few approaches considered a more general non-metric
case, one of which is the TriGen algorithm [5]. In this paper, we build on the
idea of TriGen-based modification of non-metric space into approximate metric
space, that enables metric indexing of (initially) non-metric data models for
approximate search. As a contribution, we introduce a variant of TriGen based
on genetic algorithm, that produces more robust semimetric-to-metric modifiers
and better efficiency-effectiveness tradeoffs.

2 Non-metric/Approximate Similarity Search by TriGen

When talking about non-metric similarities, we usually consider distance func-
tions that do not satisfy some of the metric axioms (reflexivity, non-negativity,
symmetry, triangle inequality). Most of the practical non-metric distances actu-
ally miss just one of the axioms, like pseudo-metrics (reflexivity), quasi-metrics
(symmetry), or semi-metrics (triangle inequality). As the lack of reflexivity and
symmetry can be solved easily in the design of indexing/query algorithms, the
real challenging problem is the semi-metric case; the lack of triangle inequality.

The TriGen algorithm [5] was developed to transform a semi-metric space
(dataset- and distance-specific) into an equivalent (approximate) metric space.
The idea behind TriGen is to use an increasing modifying function f : R → R

that preserves query-induced similarity ordering when applied to a semi-metric
distance function δ. Having a query object q ∈ U and database objects xi ∈ S ⊂
U, then ordering/ranking of the database objects based on δ(q, xi) is the same
as when based on f(δ(q, xi)). Whereas all modifying functions behave the same
with regard to the similarity ordering (thus to sequential similarity search), they
are dramatically different in terms of the degree of triangle inequality exhibited
by f(δ(·, ·)). Consider three objects x1, x2, x3 ∈ U and the distances δ(xi, xj)
among them – a distance triplet δ(x1, x2), δ(x2, x3), δ(x1, x3). In semi-metric
spaces, some triplets form triangles and some do not (one distance is larger than
the sum of the others). It is easy to show that concave modifiers increase the
degree of triangle inequality by turning more distance triplets into triangles. A
concave function magnifies short distances more than large distances, so that
any distance triplet can be f -modified to a triangle if f is concave enough. On
the other hand, convex modifiers do the opposite (break triangles).

From practical point of view, concave modifiers increase the degree of trian-
gle inequality, hence eventually turn the semi-metric space into a metric space
(indexable by MAMs). Unfortunately, they also increase the intrinsic dimen-
sionality [2] of the space by decreasing the variance of distance distribution
(up to equilateral triangles). Convex modifiers decrease the intrinsic dimension-
ality but also decrease the degree of triangle inequality, increasing thus retrieval
error when such a semi-metric space is indexed by a MAM.
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The TriGen algorithm finds the optimal level of concavity/convexity of a
modifier in order to minimize intrinsic dimensionality of the resulting space,
while keeping the expected retrieval error (degree of triangle inequality viola-
tion) below user-defined threshold. Hence, TriGen not only provides a solution
for efficient (approximate) search in semi-metric spaces, but also fast approx-
imate search in metric spaces. Specifically, TriGen utilizes a set of similarity-
preserving T-base modifiers with convexity/concavity parameter w (see Fig. 1).
Using binary search on w, such T-base f and w is found that exhibits the low-
est intrinsic dimensionality for a given T-error threshold (where T-error is the
proportion of non-triangles in all sampled distance triplets).

Fig. 1. T-bases of TriGen [5], parameterized by covexity/concavity weights w.

3 Genetic TriGen

In this paper, we present the TriGenGA (developed from an experiment [1]),
a variant of TriGen that replaces the binary-search algorithm of finding mod-
ifiers by a genetic algorithm. The original TriGen algorithm finds just one T-
base parameter w determining the concavity/convexity weight of the respective
modifier function. In the genetic variant, we have implemented a new modifier
gv : 〈0, 1〉 �→ 〈0, 1〉 represented by a piecewise linear function (Eq. 1, Fig. 3).
As in TriGen, the modifier is a strictly increasing continuous function with
gv (0) = 0, gv (1) = 1. However, instead of a predefined pool of T-base func-
tions (i.e., FP-base, RBQ-bases), each parameterized by w, the genetic modi-
fier gv is composed by n linear segments, given n − 1 parameters (n is defined
by user). The starting/ending points (x, y) of the i-th/(i − 1)-th segment are
defined as (i/n,vi), where vector v = [v1,v2, ...,vn−1] stores the parameters.
The genetic algorithm is then used to find the n parameters of the modifier,
given a dataset S and a distance function δ. Unlike the original TriGen where
modifiers are strictly concave or convex (due to the single-parameter w optimiza-
tion), the multi-parameter optimization provided by genetic TriGen is able to
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generate locally convex/concave modifiers. We anticipate such modifiers could
better control the degree of triangle inequality (achieving lower T-error for the
same or lower intrinsic dimensionalities), resulting in better precision/efficiency
tradeoff exhibited by MAMs when searching.

gv (x) =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

v1(n − 1)x 0 ≤ x ≤ 1
n

v1 + (v2 − v1)((n − 1)x − 1) 1
n ≤ x ≤ 2

n
...

vi + (vi+1 − vi)((n − 1)x − i) i
n ≤ x ≤ i+1

n

vn−1 + (1 − vn−1)(n − 1)(x − 1) n−1
n ≤ x ≤ 1

(1)

3.1 The Algorithm

The genetic algorithm (GA) consists of an evolution cycle described by Algo-
rithm 1. The population is a set of vectors representing the modifiers (piece-
wise linear functions). For the selection of potentially successful individuals, we
implemented the Tournament selector with variable size of the tournament k,
because it performed better than other selectors. The selector randomly samples
k individuals, and the best individual (with the highest fitness) is chosen in the
selection. The one-point crossover of two parents (potentially successful individ-
uals v and u) randomly generates a breakpoint bp. The new individual (child)
is generated as

childi =

{
vi for 1 ≤ i < bp,

ui for bp ≤ i ≤ n − 1.

Mutation with probability pM randomly chooses one parameter and moves it
down or up randomly (still keeping the modifier gv monotonous).

As there were several cases when the fitness of the population degenerated
quickly, we have implemented the catastrophic scenario. When the best fitness
score has not changed for several generations, part of the generation is replaced
by randomly generated. This process should bring a different kind of genomes
into the population. If the catastrophic scenario is repeatedly not successful
(the best fitness score is the same) or the maximum number of generations is
reached, the genetic algorithm terminates. Such modifier gv is selected from the
final population for which the intrinsic dimensionality of (S, gv (δ)) is minimal.

3.2 The Fitness Function

The most important part of TriGenGA is the fitness function, which is the
optimization criterion. As it is not possible to optimize (U, δ) space globally,
we have taken over the idea of triplet sampling from TriGen where a random
subset of the dataset S

∗ ⊂ S is used. However, we sample the triplets (x, y, z)
in a different way. First, a distance matrix on S

∗ is computed, i.e., all distances
δ(x, y) x, y ∈ S

∗. Then, a fraction of pairs are selected for construction of the
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Algorithm 1. TriGenGA
Result: modifier gv with the best fitness score
Population ←− GenerateRandom(pop size)
while UnsuccessfulCatastrophe() ≤ max. # of catastrophes do

Parents ←− TournamentSelectork(Population)
for ∀pair of Parents do

/* combine modifiers */

Child ←− Crossover(pair)
if mutation probability succeeded then

/* modify modifier */

Mutate(Child)

Population ←− Population ∪ {Child}
keep only pop size best individuals in Population
if best fitness score does not change for last l iterations then

CatastropheScenario(Population)

return best individual in Population

sample. For every selected pair (x, y), the third object z ∈ S
∗ is found that

maximizes δ(x,z)
δ(x,y)+δ(y,z) (with δ(x, z) maximal). This way we obtain as many

non-triangle triplets (x, y, z) in the sample as possible.
The fitness function fit(v) consists of two parts, it takes into account the

T-error (the proportion of non-triangle triplets in all triplets) as well as the index-
ability (e.g., intrinsic dimensionality). In preliminary experiments, we found that
modifiers gv with small number of alternating concave and convex segments per-
form better. Based on that observation, we have proposed the ConFactor indica-
tor (Eq. 2) which is part of the fitness function. The number of concave segments
is defined as c+v = | {i|2vi > vi−1 + vi+1} |, and number of convex segments is
defined c−

v = | {i|2vi < vi−1 + vi+1} |, for both 1 < i < n − 1. We utilized the
idea of TriGen, which assumes more triangle-preserving modifiers imply worse
indexability (higher intrinsic dimensionality), so the current implementation of
fit is described by Eq. 3, where εT is the T-error and εthreshold is the T-error
threshold (expected retrieval error specified by user at query time).

ConFactor(v) =
|c+v − c−

v |
c+v + c−

v

(2)

fit(v) =

{
1 − εT (v) for εT (v) > εthreshold,

1 + εT (v) · ConFactor(v) otherwise
(3)

4 Experimental Results

We have experimented with kNN queries, where pivot tables (LAESA [4]) were
used with TriGen and TriGenGA, as well as the sequential search. There were
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randomly sampled 400 10NN queries from the respective dataset and efficiency
and retrieval error was measured. The efficiency was defined as the proportion
of distance computations needed with respect to sequential search. The real
retrieval error was defined as |E∩O|

max{|E|,|O|} , where E were the expected objects (a
result of sequential search) and O were observed objects (result of LAESA).

For all experiments, we have used the same configuration. The size of the
database subset used by TriGen/TriGenGA was |S∗| = 1000. Triplet sample size
was 25000. 15%, 30%, 45%, 60%, 75%, and 90% triplets were selected by the
algorithm maximizing the ratio of erroneous triplets; the other part was sampled
randomly. The size of the GA population was 150 individuals. Probability of
mutation was set to 5%. The catastrophe scenario was invoked after 10 iterations
without the best fitness score improvement. The algorithm terminates after 1000
iterations or ten catastrophe scenarios, without improvement of fitness score. The
dimensions n = 5 and n = 7 were used for piecewise linear modifiers.

4.1 Datasets

SISAP NASA dataset [3] (40150 objects with 20 dimensions) was used for vector-
based descriptors with metric Minkowski Lp and semi-metric Fractional Lp dis-
tances (L3, L2, L0.75, L0.5, L0.25 and L0.125), SISAP English dictionary [3] (69069
English words) for string-based descriptors with metric Levenshtein distance,
and an industrial dataset of ATM withdrawal time series (5985 ATM’s time-
series with 168 dimensions) with semi-metric dynamic time warping (DTW)
distance bounded by Sakoe-Chiba band of size 5. We have tested the T-error
threshold εthreshold in five different ranges (0.0, 0.025, 0.05, 0.1 and 0.2).

4.2 Results

Figure 2 summarizes the results. Note that TriGen with FP-modifier has a
smooth progress as only one parameter defines the modifier. In contrast, the
non-linear and non-deterministic optimization in TriGenGA can generate two
modifiers with the same retrieval error but different efficiency. However, the stan-
dard deviation of repeated experiments with different random seed was 1% for
both the retrieval error and distance computations. TriGenGA performs better
than original TriGen for DTW distance on ATM dataset, as well as for metric
Minkowski and most of the semi-metric Fractional distance measures (NASA
dataset). On the other hand, for the Levenshtein distance and L0.125 the TriGen
algorithm dominates TriGenGA.

We evaluated not only the error/efficiency tradeoff but also the T-error
threshold vs. real retrieval error dependency. Figure 3 shows this difference –
the x coordinate of a circle shows the T-error threshold, while left endpoint of
the connected line shows the real retrieval error (y coordinate is the efficiency).
Hence, TriGenGA behaves better in terms of real retrieval error estimation.

The distance computation cost is the same for both approaches. The dis-
tance matrix on S

∗ is precomputed (see Sect. 3.2). In terms of complexity, both
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Fig. 2. Comparison of TriGen and TriGenGA on various datasets/distances

Fig. 3. Left figure shows difference between T-error threshold and retrieval error. Right
figure illustrates examples of modifiers generated by TriGen/GA.

approaches can limit the number of iterations. The difference is only in the
type of algorithm, the binary search versus the genetic algorithm. Intuitively,
the genetic variant has larger requirements for learning parameters because the
binary search has only one parameter with only one optimum. However, these
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Fig. 4. Effects of TriGenGA early termination (limited number of generations).

computations are done only once before the querying. In Fig. 4, see the evolution
convergence and the effects of sub-optimal modifier obtained by early termina-
tion (i.e., fitness achieved and distance computations of LAESA search).

5 Conclusion

We proposed a genetic variant of the TriGen algorithm for approximate similar-
ity search in semi-metric spaces. Experiments proved that the piecewise linear
modifier generated by the genetic algorithm can outperform the original Tri-
Gen algorithm with FP-modifier, as TriGenGA in some cases provides modifiers
exhibiting both lower retrieval error and lower number of distance computations
(LAESA-based search). The TriGenGA-generated modifiers also provide better
retrieval error estimation given a user-specified T-error threshold.

Acknowledgments. This research has been supported in part by the Czech Science
Foundation (GAČR) project Nr. 17-22224S.
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ABSTRACT
Nowadays, the metric space properties limit the methods of index-
ing for content-based similarity search. The target of this paper
is a data-driven transformation of a semimetric model to a metric
one while keeping the data indexability high. We have proposed a
genetic algorithm for evolutionary design of semimetric-to-metric
modifiers. The precision of our algorithm is near the specified error
threshold and indexability is still good. The paper contribution is a
proof of concept showing that genetic algorithms can effectively
design semimetric modifiers applicable in similarity search engines.

CCS CONCEPTS
• Information systems → Search engine indexing;

KEYWORDS
Genetic algorithm, Similarity search, Content-based retrieval

1 INTRODUCTION
Modern searching engines provide not only standard keyword
search but also content-based retrieval. The content-based search
aims at finding similar objects, e.g., in multimedia databases and
generally in datasets of unstructured data. Similarity function (dis-
tance, respectively) measures the similarity (dissimilarity) of two
database objects. To achieve applicability in different domains, the
search engines have to be able to employ various similarity models.

The efficiency is the most crucial part of every search engine
today. The naïve algorithm provides precise results, but the sequen-
tial scan is time-consuming. As the size of databases is growing, a
suitable indexing is necessary. Some generic algorithms, such as
LAESA [4], have additional requirements on the distance function
δ used. Most of them require distance functions satisfying the met-
ric properties. Metric properties, especially the triangle inequality,
are an essential part of the indexing process. The basic idea is a
construction of computationally cheap lower bound to the original
expensive δ using the triangle inequality and some pre-selected ob-
jects Pi called pivots. As we know the distances δ (Q, Pi ) (computed)
and δ (X , Pi ) (fetched from index), where Q is a query object and
X is a database object, we can compute lower-bound distance as
δLB (Q,X ) = |δ (Q, Pi ) − δ (X , Pi )|. If δLB (Q,X ) ≥ rQ , then we can
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say that X is not within query range rQ . However, many distance
functions, semimetrics, do not satisfy the triangle inequality.

In this paper, we present an alternative approach for approximate
search in dissimilarity spaces using a genetic algorithm. We took
the idea of TriGen [5] algorithm and extended it to a new way of
generating metric distance from semimetric. We also propose new
methods of triplet sampling necessary for our algorithm.

2 RELATEDWORK
One group of non-metric approaches use a different kind of lower-
bounding instead of triangle inequality. In [2] authors define relaxed
triangle inequality as ρ

(
δ (Oi ,O j ) + δ (O j ,Ok )

)
≥ δ (Oi ,Ok ) which

can be used as normal triangle inequality. In [3] usage of Ptolemy’s
inequality for lower bounds is presented. In [1] the authors present
an evolutionary algorithm to generate artificial inequalities for a
particular database and a distance function.

The TriGen algorithm [5] idea is to modify a semimetric distance
to satisfy the triangle inequality. The assumption is that the orig-
inal distance can be normed to [0, 1]. From the database, there is
chosen a sample of objects to form triplets. The triplets are then
distances between triplet objects that form a triangle in metric
space. TriGen is implemented as a binary search to find the best
triangle-generating (TG) modifier with parameter w (concavity).
The best TG modifier should satisfy the triangle inequality for at
least ω triplets and should have the as low intrinsic dimensionality
(iDim = µ2/2σ 2) as possible (the indexability indicator).

3 EXPERIMENT
We have proposed the new kind of semimetric-to-metric modifier
and designed a genetic algorithm to learn its parameters. Our Point
Modifier (PMod) is represented as a sorted vector ®P of real values
from [0, 1]. The ®P dimension D is variable, but for purpose of our
experiment we used D = 10. The ®P values represent PMod as
piecewise linear function. The ®P values must be strictly increasing
as we want to preserve similarity orderings [5].

As the exact computation of real error and efficiency is time-
consuming, we take over TriGen validation of modifier using the
triplet error ϵt (ratio of triplets not satisfying the triangle inequality)
and iDim as the indexability indicator.

3.1 Genetic Algorithm
Our genetic algorithm consists of the basic cycle that selects 2pop
candidates for recombination and creates a new population of size
pop = 100. We have implemented Tournament selector with adap-
tive K parameter that is increasing in time, represented as the
percentage of a population from 1/3 to 2/3 at the end of the algo-
rithm. The algorithm ends after 1000 iterations or after Catm = 15

279

192



GECCO ’19 Companion, July 13–17, 2019, Prague, Czech Republic David Bernhauer and Tomáš Skopal

consecutive catastrophic operator (see below) invocation. We have
implemented the following operators.

Crossover, that randomly selects a point in Point Modifier repre-
sentation and split both modifiers into two pieces. The first piece
from the first modifier and the second piece from the second modi-
fier are merged again in sorted sequence.Mutation, with probability
pm = 0.05 randomly choose a point in Point Modifier and move
them up or down without breaking the order of parameters. Cat-
astrophic operator, with adaptive tournament selector solves the
problem with early population degeneration. The catastrophic op-
erator is invocated after Catn = 10 generations without fitness
improvement. In that case, the best 10% of the population is kept,
and the rest of the population is newly randomly generated.

The most important part of our genetic algorithm is the fitness
function (Eq. 1). During the pre-experiments, we have found that
functions with few inflection points show better precision com-
pared to function with a large number of inflection points. Based
on that observation we have proposed the ConFactor( ®P) as the
weighted ratio max{2 |C+ |, |C− | }

2 |C+ |+ |C− |
that prefers concave function and

less inflection points. The C+ (C−, resp.) is the number of points in
®P where PMod is concave (convex).

f ( ®P) =


1 − ϵT ( ®P), for ϵT ( ®P) > ϵt ,

1 + ConFactor( ®P )√
iDim( ®P )

, otherwise. (1)

3.2 Database & Distance
We have tested our algorithm on Minkowski fractional Lp distances
(semimetrics) with p coefficients p1 = 0.25, p2 = 0.125 and p3 =
0.0625. As the database, we have used NASA vector database1 with
40150 entries described as 20-dim. vectors. As the search index we
have used LAESA with 5 randomly chosen pivots.

For learning the parameters we sampled 1000 entries of the
original database and generated 25000 triplets. The TriGen algo-
rithm [5] prefers anomalous (corner case) triplets in the sample,
while such triplets have high variance in order to almost break
the triangle inequality (i.e., min{a+b/c}, where c is the biggest side
of a triangle). In TriGen only top pa% triplets with the biggest c
value are considered. However, in experiments it was observed that
our approach break triangle inequality in lower c values. So, we
have proposed uniform anomalous triplet sampling, i.e., we sample
pua% = 0.05 triplets of uniformly distributed c values (so we have
smaller triangles). The remaining triplets are generated randomly.

3.3 Validation
We have compared our proposed genetic algorithm method with
iDim-based TriGen algorithm, where as TG-modifiers the Fractional
Point (FPMod) modifier and several Rational Bézier Quadratic modi-
fiers (RBQ) modifiers were used. Since the RBQ modifier performed
similarly to FPMod, we considered only the FP modifier. Both algo-
rithms used triplet error ϵt and iDim for learning its parameters.

The effectivity of methods was evaluated by the query error func-
tion ϵQE (E,O) = |E∩O |/max{ |E |, |O | } where E are expected objects
(a result of sequential search), and O are observed objects (LAESA
result). The efficiency was measured as the number of distance
computations (ratio). Expected error threshold was θ = 0.1.
1http://www.sisap.org/library/metricSpaces/dbs/vectors/nasa.tar
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Figure 1: Comparison of average precision (left bar) and ef-
ficiency (right bar) of PMod (GA) and FPMod (TriGen).

Validation queries were range queries generated randomly for
different ranges µ = {0.1, 0.2, . . . , 0.9}. For each query range 0.25% ≈

100 query objects were sampled from the original database.

4 RESULTS
We have ran our GA algorithm five times and took the average
error and efficiency. During the tests, the FPMod (TriGen) was far
below the threshold, but the ratio of distance computation was high.
In Figure 1 see that our proposed PMod (GA) is nearly at the error
threshold θ while the computation ratio is lower than using FPMod.
We observe that different PMods have different query range optima
that indicate we can construct PMods per group of queries.

5 CONCLUSIONS
We have shown that there is a possibility to generate triangle gener-
ating functions by genetic algorithms. PMod can be effectively used
in the approximated similarity search. GA trained PMod needs just
75% of distance computation against TriGen. As the fitness function
does not directly correspond with final results, the future work
should aim to tune the fitness function. Also, the experiments with
other non-metric distances are needed to confirm our hypothesis,
in particular similarities on Linked Data datasets and their contexts.
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