
Czech Technical University in Prague
Faculty of Electrical Engineering

Department of Cybernetics

Robotic control with deep-learned structured policies.

Dissertation thesis

Ing. Teymur Azayev

Ph.D. programme: Electrical Engineering and Information Technology
Branch of study: Artificial Intelligence and Biocybernetics

Supervisor: Doc. Ing. Karel Zimmermann, Ph.D.

Prague, November 2022



ii

Thesis Supervisor:
Doc. Ing. Karel Zimmermann, Ph.D.
Department of Cybernetics
Faculty of Electrical Engineering
Czech Technical University in Prague
Karlovo nam. 13, Praha 2
Czech Republic

Copyright © November 2022 Ing. Teymur Azayev



Declaration

I hereby declare I have written this doctoral thesis independently and quoted all the sources
of information used in accordance with methodological instructions on ethical principles for
writing an academic thesis. Moreover, I state that this thesis has neither been submitted nor
accepted for any other degree.

In Prague, November 2022

............................................
Ing. Teymur Azayev

iii



Abstract

Data-driven methods for robotic control have been steadily gaining popularity over the past
decades, showing high-performing results for complex, high-dimensional robot morphologies.
Such methods usually entail learning a parametric function approximator (policy/control law)
that maps a set of sensory inputs to action outputs. The most popular class of such function
approximators is the neural network Multi-layer perceptron (MLP), consisting of several lin-
ear layers separated by a non-linearity. In conjunction with powerful trial and error algorithms
such as Reinforcement learning, we are able to learn control policies that can maximize a given
reward (cost) function in almost any domain. While most research is focused on learning al-
gorithms and improving sample efficiency and sim-to-real adaptation, there is less attention to
the actual function approximator that represents the control law. In this thesis, we show that
for some robotic morphologies, using a monolithic MLP or Recurrent Neural network (RNN)
can lead to issues during the learning phase and well as an overall poor result, especially for
structured tasks such as locomotion. In our first published work, we show this in experiments
on learning adaptive locomotion behaviors for legged hexapod robots and show that it can be
effective to partition the control problem into several discrete tasks, learning an optimal pol-
icy for each one and then learning to switch between them. In subsequent work, we enforce
well-explainable structural elements into the overall architectural design while preserving the
end-to-end training. This is done by starting with an initial hand-designed algorithm and suc-
cessively replacing various heuristic decision points with neural network modules that can then
be trained using black-box optimization methods. In our third published work, we show yet
another way in which we can structure the control policy as a hybrid of hand-designed knowl-
edge and learnable elements, giving a sample-efficient and more interpretable architecture that
can be used to learn autonomous flipper control for articulated tracked robots. We verified our
experiments in this work on a real platform in conjunction with a full navigation stack, as well
as deployed part of our algorithm in the DARPA Subt urban competition with good results.
Finally, we describe various methods of simulation to real robot policy transfer and discuss
how the various methods relate to a theoretical Bayesian approach in an increasing learning
complexity hierarchy of agents.

Keywords: structured policies, neural networks, reinforcement learning, robotics
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Abstrakt

Metody řı́zené daty pro robotické řı́zenı́ si v poslednı́m desetiletı́ neustále zı́skávajı́ popularitu
a ukazujı́ slibné výsledky pro složité, vysoce rozměrné morfologie robotů. Takové metody
obvykle zahrnujı́ učenı́ aproximátoru parametrických funkcı́ (řı́dicı́ pravidlo), který mapuje
sadu senzorických vstupů na akčnı́ výstupy. Nejoblı́benějšı́ typ takových aproximátorů je neu-
ronová sı́ť Multi layer perceptron (MLP), skládajı́cı́ se z několika lineárnı́ch vrstev oddělených
nelinearitou. Ve spojenı́ s výkonnými algoritmy na principu pokus-omyl, jako je posilováné
učenı́, jsme schopni se naučit řı́dicı́ pravidla, která můžou maximalizovat dané funkce odměny
(nákladů) téměř v jakékoli doméně. Zatı́mco většina výzkumů je zaměřena na učenı́ algoritmů,
zlepšovánı́ efektivity vzorků a adaptace mezi simulátorem a realitou, je věnována menšı́ po-
zornost na skutečný aproximátor funkcı́, který představuje řı́dicı́ pravidlo. V této práci ukazu-
jeme, že pro některé robotické morfologie, řı́zenı́ pomocı́ monolitické MLP nebo rekurentnı́
neuronové sı́tě (RNN) může vést k problémům během fáze učenı́ a také k celkově špatným
výsledkům, zejména pro strukturované úkoly, jako je lokomoce. V našı́ prvnı́ publikované práci
ukazujeme na experimentech učenı́ adaptivnı́ho lokomočnı́ho chovánı́ pro šestinohé roboty, že
může být efektivnı́ rozdělit problém řı́zenı́ do několika samostatných úkolů a naučit se optimálnı́
řı́dı́cı́ pravidlo pro každý z nich a pak se naučit mezi nimi přepı́nat. V následné práci prosazu-
jeme dobře vysvětlitelné konstrukčnı́ prvky do celkového návrhu architektury při zachovánı́
end-to-end učenı́. To se provádı́ tak, že se začne s počátečnı́m ručně navrženým algoritmem
a postupně se nahradı́ různé heuristické rozhodovacı́ body moduly neuronové sı́tě, které lze
následně trénovat pomocı́ metod black-box optimalizace. V našem třetı́m publikovaném dı́le
ukazujeme ještě jinou cestu, kterou můžeme strukturovat kontrolnı́ politikou, jako hybrid ručně
navržených znalostı́ a naučitelných prvků, což poskytuje vzorově efektivnı́ a lépe interpreto-
vatelnou architekturu, kterou lze použı́t k učenı́ autonomnı́ho ovládánı́ flipperu pro kloubové
pásové roboty. V tomto článku jsme ověřili naše experimenty na skutečné platformě ve spojenı́
s komplétnı́m navigačnı́m systémém, a také nasadili část našého algoritmu v soutěži DARPA
Subt s dobrými výsledky. Nakonec popisujeme různé metody simulace na přenos pravidla
řı́zenı́ robotů mezi simulatorem a reálným robotem a diskutujeme, jak se různé metody vztahujı́
k bayesovskému přı́stupu s rostoucı́ hierarchii složitosti učených agentů.

Klı́čová slova: Strukturované ridicı́ pravidla, neuronové sı́tě, posilované učenı́, robotika
Překlad názvu Řı́zenı́ robotu pomocı́ strukturovaného hlubokého učenı́.
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0.1 Introduction

Robots are becoming increasingly prevalent in a wide range of domains such as manufacturing

[1], inspection [2], delivery [3], human assistance [4], surgery [5] and search and rescue [6], [7].

In some places, such as factories, the role of robots is irreplaceable. Although these machines

are very complex and take considerable effort to engineer, in many cases, the software control of

the robot is still the weakest link, requiring substantially more research and development. This

is because, outside a predefined and known environment, robots have to use high dimensional

inputs from various modalities such as video and LIDAR, as well as estimate various unobserv-

able variables in order to set up a control problem that can be solved to infer robot movement.

Robotic control tasks are traditionally approached using first principle methods. That is, using

physical and mathematical knowledge of the system in order to derive an efficient control law

for that system. This works very well for rigid robotic platforms where the interaction with

the surrounding environment can be modeled reasonably well. A suitable example is a robotic

hand that moves heavy loads from one conveyor belt to the next. The robot model is known,

and the positions of the object are well-defined, which gives a problem that can be solved using

a mixture of analytical and numerical techniques. This approach, however, can become prob-

lematic when the system dynamics are difficult or exhibit a high dimension. One such example

is the locomotion problem of a 6-legged robot, whose interactions with the terrain are difficult

to model and are often unknown. This results in a high dimensional control problem that is

computationally demanding and needs to be solved using heuristic approaches. Another such

example is fluid dynamical systems that are notorious for requiring hours of simulation for only

a handful of frames [8].

Data-driven methods have enabled users to learn impressive robotic control algorithms [9] [10]

for various robotic platforms with little or no expert knowledge required. The data-driven ap-

proach is to leverage robot interaction with the environment to extract a suitable control law,

in contrast to deriving it from first principles. The advantage is that we don’t require domain

and control theory expertise, but on the other hand, it means that we need to be able to simulate

rich, high-fidelity interactions of the robotic platform in the environment that it’s going to be

deployed on. This often includes rendering modalities such as cameras and LIDAR, which can

add to the rendering cost. Such environment interactions, also called rollouts, in conjunction

with a user-defined reward function, can be used with various learning approaches to extract

powerful control laws on difficult-to-control and or high-dimensional systems. The most pow-

erful approaches use trial and error methods such as Reinforcement learning [11] and Random

Search [12], [13]. This can be simply explained as trying various actions and strategies and

using the reward function to improve the policy that generates the actions. In this regard, it is

similar to how humans learn to perform various tasks. There are various ongoing directions of
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research around this data-driven paradigm. One of them is improving the actual learning algo-

rithms themselves, improving sample efficiency and performance. Another direction is using

previously learned information to bootstrap a newly instantiated agent from available informa-

tion rather than learning tabula rasa. This area is called transfer learning. Another interesting

direction, called Meta learning, uses an outer, more general learning loop which improves the

inner learning loop, leading to more efficient training.

One drawback of data-driven models is that they usually leverage powerful black box functions,

which is one of the reasons that these methods require a large number of trials and sometimes

generalize poorly. A general black box function approximator assumes very little about the task

at hand. In fact, in most practical tasks that involve structured data, appropriate Neural Network

architectures have to be used to obtain good results. For example, in computer vision, 2D and

3D Convolutional Neural networks (CNN) currently achieve state-of-the-art results [14], [15].

In audio and other sequence recognition, mostly Recurrent Neural Networks (RNN) [16] are

used, as well as 1D CNNs [17], with newer architectures such as Transformers showing signif-

icant improvements in Natural Language Processing [18].

In our work, we focus on using structured function approximators for robotics control that

have better inductive priors and can lead to better training dynamics, better efficiency and gen-

eralization, and higher performance. This is in an effort to merge first principles and heuristics

with data-driven approaches to leverage the power of computation. This is not a new idea, as

there have been several efforts that attempt to use suitable priors for specific robotic morpholo-

gies, such as the use of graphs for legged robots [19]. Other works, such as [20], attempt to

break down neural networks into linear and non-linear parts that are individually dedicated to

various parts of the state space. Nevertheless, we feel that this area is understudied and can

bring many improvements to data-driven control, as most methods usually focus on the more

efficient and robust training algorithms [21], adaptation [22] and few shot learning techniques

[23].

0.2 Aims and contributions of the doctoral thesis

The main goal of this thesis is to progress the state-of-the-art in data-driven robotic control for

complex robotic morphologies and to demonstrate feasible methods that can be applied and

used on real platforms. Although there are many components that go into making this goal pos-

sible, our main focus is on the structure of the learnable control function (policy). Our aim is to

bridge hand-designed knowledge of a given platform, and black-box approaches into learnable

hybrid functions. We show that such functions are more suitable than monolithic black box

function approximators such as the commonly used Multi-Layer Perceptron (MLP).
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We describe the data-driven robotic control problem and the various state-of-the-art ap-

proaches that have enabled high-performing results in research and industry. We also give an

overview of the well-known problem of distribution mismatch, also known as covariate shift

[24], when deploying a simulator-learned control policy on the real platform. In this section,

we also take a broader look at general Reinforcement Learning in an unknown environment,

how it relates to the sim-to-real transfer problem, and where it stands in comparison to pro-

posed theoretical Bayesian approaches.

One of the platforms that we study is the six-legged hexapod morphology. This is a high-

dimensional control problem whose solutions are structured, low-entropy gait sequences that

are adapted for various terrains. In our publication titled: ”Blind Hexapod Locomotion in Com-

plex Terrain with Gait Adaptation Using Deep Reinforcement Learning and Classification”,

published in the ”Journal of Intelligent & Robotic Systems”, we showed that it is possible to

learn optimal locomotion using Reinforcement Learning in simulation on a wide range of chal-

lenging terrains. Our contribution was to show that it’s very difficult to learn a single monolithic

policy that can perform well on a wide range of terrains, but we can learn expert policies that

perform very well on individual terrains. We then learned a recurrent neural network policy that

classifies terrains from state-action history sequences and picks the appropriate optimal policy

network for locomotion. We showed that we are able to seamlessly switch between difficult

terrains using our hierarchical structure, something that was not possible to learn end to end

using a single policy using an MLP or a Recurrent Neural Network (RNN) [25].

In further work on the hexapod platform, we showed that we could improve hand-crafted

cyclic locomotion generators by substituting various gait decision points with learnable Neural

Network modules. By using Random Search methods such as CMA-ES [26], we are able to

optimize gait phase decision, leg swing height, and body direction, leading to superior results

compared to the baseline variant and compared to monolithic black box approaches. This work,

named ”Improving procedural hexapod locomotion generation with neural network decision

modules”, was presented as a conference paper in the ”Modelling & Simulation for autonomous

systems conference (MESAS2022)”. The point of this paper was to demonstrate that we don’t

necessarily need to start with a clean slate when doing data-driven control. Instead, we can start

with a working approach that was derived from first principles or use heuristics and replace

various sub-functions or discrete decision points with learnable Neural Network modules and

use Random Search to improve the overall performance.

Another platform that we worked with was the articulated tracked robot morphology that

has steerable tracks and four individually controllable flippers. We studied the problem of ob-

stacle negotiation and proposed an autonomous flipper controller that used exteroceptive data
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to imitate a small set of demonstrations by the robot operator. This work, named ”Autonomous

State-Based Flipper Control for Articulated Tracked Robots in Urban Environments,” was ac-

cepted and published in the ”Robotics and Automation Letters (RA-L)” journal and the ”IEEE

IROS2022” conference, where it was presented. Similar to our previous work on the hexapods,

the goal was to demonstrate that there are aspects of the control that can easily be hand-coded

and other aspects that are best learned using suitable Neural Network modules. After analyz-

ing the obstacle negotiation task, we formulated the control problem as a sequence of discrete

phases, each of which is humanly interpretable, and implemented suitable hand-crafted flipper

templates and low-level behaviors for each phase. The decisions to transition between the dis-

crete phases were learned using Imitation Learning [27]. As a suitable neural network structure,

we proposed a novel soft-differentiable state machine architecture that keeps a complete proba-

bility distribution of all phases at each time step. This allows it to essentially be in all phases at

the same time, allowing the propagation of temporal gradients throughout the decision process.

We showed that our approach is sample efficient, learning from only several minutes of data

and outperforming the previous state-of-the-art, as well as other baseline architectures. Our

approach also has excellent zero-shot performance on the real platform. A preliminary part of

the work was used to control our articulated tracked platform in difficult urban environments

in the DARPA Subterranean challenge, published in the ”Field robotics” journal under the title

”System for multi-robotic exploration of underground environments CTU-CRAS-NORLAB in

the DARPA Subterranean Challenge”.

Besides our academic publications, we also describe some of our additional contributions

during the participation in the DARPA Subterranean challenge in the Urban and Final rounds.

The appendix includes several technical and algorithmic contributions, mainly to Clearpath

Husky A200 and the Boston Dynamic Spot platform.

0.2.1 Summary of academic publications

Articles in Peer-reviewed Journals

• T. Azayev and K. Zimmerman, “Blind hexapod locomotion in complex terrain with gait

adaptation using deep reinforcement learning and classification”, Journal of Intelligent &

Robotic Systems, vol. 99, no. 3, pp. 659–671, 2020

• T. Azayev and K. Zimmermann, “Autonomous state-based flipper control for articulated

tracked robots in urban environments”, IEEE Robotics and Automation Letters, vol. PP,

pp. 1–8, 2022
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• T. Roucek, M. Pecka, P. Cı́zek, et al., “System for multi-robotic exploration of under-

ground environments CTU-CRAS-NORLAB in the DARPA subterranean challenge”,

CoRR, vol. abs/2110.05911, 2021. arXiv: 2110.05911. [Online]. Available: https:

//arxiv.org/abs/2110.05911

Articles in conference proceedings

• Teymur Azayev, Jiri Hronovsky and Karel Zimmermann, ”Improving procedural hexa-

pod locomotion generation with neural network decision modules” . Presented at the

Modelling & Simulation for autonomous systems conference (MESAS2022).

0.3 Learning robot control

0.3.1 Introduction

The task of robot control can be formulated by mapping a set of observations to actions at every

discrete time step, given a distribution of starting states. The most logical approach to this task

is to start from first principles and engineer an analytic or heuristic approach that solves the

task optimally or with satisfactory performance. Unfortunately, most real systems are complex

and non-linear, often with high dimensional input and output spaces which can make it diffi-

cult to come up with a good solution. Some platforms such as soft robots [31] or more exotic

morphologies such as tensegrity robots [32] are good examples where models can become ex-

tremely complex and might not be feasible to work with.

An alternative approach is to define the control law (policy) using a general learnable function

that maps observations to actions. A suitable performance evaluation procedure and algorithm

can then be used to learn the parameters of the policy. Specific approaches are discussed below.

0.3.2 Control problem formalization

We consider the control law as an agent which interacts with an environment E in discrete time

steps. We can describe the complete state of the agent, along with the environment, using a state

vector s ∈ S, starting at an initial distribution ρs. The state s implies a Markov property which

says that P(st |st−1, ...,s0) = P(st |st−1). The environment state emits observations ot , which are

informational subsets of states st . We define the agent as a function π : ot → at , which maps

observations ot ∈ O to actions at ∈ A. The environment is stepped in discrete time steps after

receiving an action from the agent and can be described by transition function T : st×at→ st+1.

We also define a reward function R : st×at → rt ∈R and a discount factor γ ∈ [0,1]. The above

form a markov decision process (MDP) denoted by the tuple

https://arxiv.org/abs/2110.05911
https://arxiv.org/abs/2110.05911
https://arxiv.org/abs/2110.05911
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(S,A,T,R,γ)

In the case where the observations received by the agent are ot instead of st , we say that

the environment is partially observable and, therefore, a Partially Observable Markov Decision

Process (POMDP). The general objective in the MDP is to obtain agent parameters θ , which

maximize the reward gathered by the agent within a finite horizon h, shown in equations 1.

J =
t=h

∑
t=0

R(st ,πθ (ot)) (1)

θ
∗ = argmax

πθ

J (2)

0.3.3 Imitation learning

Imitation learning is a powerful learning technique that allows us to learn an agent policy π from

given data obtained by an expert policy πe, which can be a human demonstrator or another algo-

rithm. The dataset D= {τm, ...,τm} consists of state-action trajectories τ i = {(oi
0,a

i
0), ...,(o

i
h,a

i
h)}

that we consider being suboptimal and noisy in some cases. The simplest way how to obtain

such a policy π from dataset D is to formulate the problem as supervised learning, as shown in

equation 3.

πθ∗ = argmax
θ

∑
τ∈D

∑
(ot ,at)∈τ

L(π(ot),at) (3)

This is called behavioral cloning in literature. It works well for some systems but suffers

a well-documented issue problem called covariate shift [24], which can be briefly explained

as follows. The trajectories in dataset D are collected from a demonstration policy πe, giving

trajectories samples given by τ ∼ Pπe . During inference, however, the trajectories are instead

sampled from the learned policy πθ , giving trajectory samples τ ∼ Pπθ
. The mismatch in the

trajectory distributions is referred to as the covariate or distribution shift. Intuitively, one can

think of the issue as the learned policy making small mistakes which make it end up in states

that it has not seen before, resulting in larger errors that compound and lead to failure. This

issue is more prominent in inherently unstable control systems. We describe a system in our

work on articulated tracked robots [33] where this method works well. Another limitation of

this approach is that the performance is limited by the quality of the demonstrations.

A potential improvement to the above imitation learning can be to use offline Reinforcement

learning [34] in which we can learn a more robust and potentially higher performing policy than

we can achieve with behavioral cloning. The idea is that if we are given a large amount of data

(possibly noisy), then we can specify an additional reward function R(s,a) and learn a value
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function or an action-value (Q-function) on the given data. The Q-function could be used to

learn a policy, similarly to Deterministic Policy Gradients (DDPG)[35], without the need for

further interactions with the environment.

More sophisticated methods which attempt to learn a policy from demonstrations include In-

verse Reinforcement Learning (IRL) [36] where the task is to learn a reward function that best

explains the given demonstrations and then learns a policy from the given reward function. This

is a difficult task, as there are multiple reward functions for which a given set of demonstrations

is optimal. Another disadvantage of IRL is that we require an inner reinforcement learning loop

which makes the process computationally demanding.

0.3.4 Trial and error learning

A powerful way to learn agent policies can be achieved by trial and error algorithms. This can

be summarized by the agent exploring random actions around its current policy and updating its

own parameters based on how well those actions were evaluated. This approach is very general

because it only requires the ability to query a reward function and makes no assumption on

the differentiability of the reward function with respect to the parameters of the agent. Trial

and error approaches can be divided into two main categories: Random Search (RS) and Re-

inforcement learning (RL). Random search encompasses all types of Evolutionary Algorithms

(EA), but more commonly refers to techniques named Evolutionary Strategies (ES) that are of-

ten used as black box optimizers. We show using a general heuristic random search algorithm

in figure 1 that the difference between these two approaches is minor and can be summarized in

the following few points:

• RS uses a distribution of candidate parameters, whereas in RL usually, we usually keep a

single agent at a given iteration.

• RS samples random candidate solutions, whereas RL evaluates the same candidate mul-

tiple times during a single iteration.

• RS performs evaluation usually deterministically, whereas RL depends on random roll-

outs for exploration.

The key takeaway is that RS explores in parameter space, whereas RL explores in action

space. This can be significant depending on the system in question. They each have their

advantages and disadvantages, but both are equivalent complete in the sense of learning power.

Amongst the most powerful RS algorithms is an Evolutionary Strategies algorithm named

CMA-ES [26], as well as Augmented Random Search (ARS) [37]. The authors showed that

ARS could train complex policies and is competitive with RL methods.
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Agent Parameters

Sample new
candidate(s)

Perform rollouts

Aggregate and
update

Figure 1: General Heuristic random search approach. The left shows general Evolutionary
Strategies, and the right is Reinforcement learning. The wiggly lines denote a stochastic choice.

Learning complexity Trial and error methods usually have a high sample complexity, mean-

ing that a large number of interactions are required with the environment to learn a good policy.

The least efficient are Random Search (RS) methods. On the other hand, they are very simple

to implement and can be embarrassingly (easily) parallelized, leading to low wall clock times

when compute is available. On-policy RL algorithms, based on the policy gradient theorem

[11], such as [38] and [39] are more efficient, requiring an order of magnitude fewer interac-

tions than RS algorithms and can be parallelized up to a point. Off-policy RL algorithms [21],

and [40] make the most efficient use of data and require an order of magnitude fewer data than

On-policy RL algorithms. They are, however, sometimes more difficult to train. Using state-

of-the-art Offline RL algorithms, it is even possible to train some real robotic tasks on the real

platform using several hours of experience.

However efficient the learning algorithm, Trial and error methods still heavily rely on fast sim-

ulation. Fortunately, we have access to increasing compute power that comes with newer CPU

architectures, as well as the use of accelerators such as Graphics processing units (GPU) and

Tensor Processing Units (TPU) [41]. There are several dynamic simulation frameworks that are

built to use such accelerators [42], [43], [44] and offer several orders of magnitude speeding up

training.

Generalization, interpretability and control guarantees When designing a control law for

a system, we almost never work with the actual system but with a model. This is true for first
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principles approaches, as well as for data-driven approaches. For the latter, the model of the real

system usually consists of interactions with a simulator. Both approaches suffer from the fact

that the model and simulator differ from the corresponding real system, sometimes insignif-

icantly, and sometimes by a large amount that can cause control performance degradation or

failure. For various safety-critical systems, control theory is still the preferred approach be-

cause there are often provided theoretical guarantees that the control will work under a certain

set of assumptions. These assumptions are usually made on approximations and linearization

of the system, which can, in many cases, differ from the real system. It is, however, better

to have some guarantee about an approximation of the system rather than nothing. When us-

ing data-driven control using function approximators, we generally don’t have any theoretical

guarantees due to the non-linear complexity of the function approximators. However, one thing

that we can get is an empirical performance guarantee under various randomizations of the en-

vironment. This means simulating the system from various starting states, with all possible

disturbances and all possible system parameter variations both during training and testing. In

some cases, this can perhaps be more credible than theoretical guarantees on the proxy model

of the system since it provides significantly more flexibility. In complex systems consisting of

large perception, estimation, and control pipelines, such as self-driving cars, it is only possible

to evaluate the system empirically. Empirical guarantees under simulation randomization can

be seen as probabilistic Monte Carlo estimations of guarantees for a system of any complex-

ity and non-linearity. The advantage of this approach is that it is easily parallelizable and thus

scales with additional computing and given time. As mentioned in the above paragraph, some

modern simulators, such as the NVIDIA Isaac [44], use the advantage of accelerated hardware

and can even run a hundred or thousand instances in parallel, even on consumer GPUs.

0.3.5 Neural network function approximators

A data-driven control policy (agent) πθ consists of a function that maps observations ot to

actions parametrized by learnable parameter vector θ . It has to be sufficiently expressive for the

task at hand and has to be efficiently learnable within a given learning framework. For example,

linear functions or low-order polynomials are not powerful enough to express complex policies

required for a dynamic gait of a legged robot. Similarly, some function classes, such as decision

rules in conjunctive normal form (CNF) and decision trees, are much more difficult to train

because of the lack of differentiability. In most cases in learning control for difficult systems,

the policy function π represents some form of Neural Network or a combination thereof. The

most basic Neural Network is a multi-layer perceptron (MLP), which is a succession of linear

layers separated by a non-linearity to create a resultant non-linear parametric function. The

use of such classes of function approximators refers to Deep learning control. What makes

Deep Neural Networks an attractive function class to use is that they automatically extraction
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non-linear features on input data and are relatively easy to optimize.

Besides the raw learning power of the function approximator, the performance will also be

heavily tied to the degree of observability of the system when receiving observations ot . In most

cases, some partial unobservability exists. This can manifest itself, for example, in the delay

between control and observations, in unmodelled higher-order dynamics in robot actuators, or

incomplete states due to a lack of sensors. In many cases, this can be ignored, and an MLP

policy function is sufficient. In some cases, partial observability is significant, and we need

to add memory to alleviate the effect. As an example, one can imagine playing a first-person

shooter game from images. Without memory, the agent does not know what happened in the

previous frames and therefore doesn’t know how to continue. Similarly, if we remove velocity

information from a simple inverse pendulum system, then it’s unclear what the optimal action

should be. To solve such a problem, we require a Neural Network architecture that either

efficiently processes entire sections of time series or processes observations individually while

carrying over a learned memory vector that is used as input in the next time step. Such a memory

vector represents relevant information about the history of the past observation-action pairs.

The following list describes the various architectures that are often used when we require an

agent that has memory, starting from more traditional to more state-of-the-art and experimental

approaches.

• MLP with memory: One solution is to concatenate a history of observations ot ,ot−1,ot−h

for a chosen horizon h and feed them as input to the MLP. This can work well if the dimen-

sion of the observations is not too large, but it ignores the correlated temporal structure in

the observations and will therefore not be as sample-efficient and is prone to overfitting

to temporal noise.

Hidden layers

Input
Output

Figure 2: Multi Layer Perceptron on univariate temporal data with windowsize of h

• Temporal convolutions Temporal convolution networks (TCN) [17] are similar to 2D

convolution networks used in various computer vision tasks, with the difference that they
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operate on a single-dimensional sequence with multiple channels. This is a direct im-

provement to the above-discussed temporal MLP architecture in that we have multiple

simple convolutional kernels that operate on the entire sequence (convolution operation);

therefore, reusing the weights in the kernels. The outputs are fed into yet more con-

volutional kernals, which result in processing at various time scales and abstractions.

Temporal convolutions are sometimes favored over other architectures, such as Recurrent

Neural Networks (RNN) due to their simplicity and because they don’t exhibit vanishing

gradient issues that are common with RNNs. One common improvement in sequence

processing with convolutional networks is temporal causality, where we make sure that

subsequent layers only attend to inputs that have occurred in the past to prevent unwanted

lookahead of the network. Figure 3 shows such a modification visually.

Figure 3: Temporal convolutions.

• Recurrent neural networks (RNN) [45]: When processing time-series data sequentially,

it is necessary to consider the current observation in the context of the previous time steps

up to a certain horizon. As shown in the above MLP architecture, one way of doing

this is to use part of the history as input. The disadvantage of this is that this leads to

an increasing amount of inputs with the history size. A more effective way to achieve a

similar goal is to summarize the history at every timestep using a memory vector. RNNs

do this by using the previous memory vector, along with the current observation, to predict

an output, along with the next memory vector. This entire process is learned differentiably

through the sequence. RNNs have been used for a wide variety of sequential tasks and

have shown state-of-the-art performance in audio, speech, image sequence, and other

problems. There are, however, issues connected with holding a memory vector over

long time spans, such as memory fade and the gradient vanishing problem. There have

been several architectures, such as the GRU [46] and LSTM [25], that propose advanced

memory-gating mechanisms that alleviate the mentioned issues and allow the learning

of sequences over large time spans. This is due to their ability to work over very long

sequences. RNNs can be very difficult to learn in trial-and-error approaches such as

Reinforcement learning due to the added complexity of deciding what to remember in the
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next time step. A more detailed discussion on this matter can be found toward the end of

this section.

Figure 4: Recurrent Cell.

• Attention mechanisms A relatively new neural network architecture, illustrated in 5, ini-

tially introduced in [47] has lately grown very popular for certain sequential tasks such

as natural language processing (NLP). The architecture calculates pointwise similarities

(attention) between the inputs at various timesteps and then calculates the relevance of a

specific input in the given temporal context. This results in the ability to accept very long

sequences and calculate similarities between the inputs in a hierarchical fashion. This

mechanism is good for sequences that do not necessarily have a smooth temporal corre-

lation, such as natural language. One disadvantage of this mechanism is the quadratic

computational complexity. In time series tasks, attention mechanisms encoder/decoder

architectures, called Transformers [18] are sometimes used in conjunction with other

methods such as LSTM and Temporal Convolutions.

0.4 Sim-to-real transfer

0.4.1 Introduction

In the introduction, we described a data-driven control paradigm using which we can

obtain a control policy πθ for a physical system by optimizing parameters π using trial

and error-based methods such as Reinforcement Learning (RL). Due to the large num-

ber of random trials required, the training is usually done in simulation on a model that

resembles the physical control system that we want to deploy our policy on. Unfortu-

nately, there is often a discrepancy between the simulation and the real system. Efforts
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Figure 5: Attention mechanism.

that aim to close this gap are referred to as sim-to-real transfer methods. In this section,

we will go over state-of-the-art sim-to-real methods, their advantages and disadvantages,

and potential applications.

0.4.2 Related works

There have been a plethora of proposed techniques that can be used to bridge the Sim-

to-real gap and enable simulator-trained policies to work better on a real platform. We

consider grouping the most used techniques into several main categories.

System Identification The lowest hanging fruit when transferring a policy learned in

simulation to the real platform is to match the system in simulation as much as possible to

the real platform. This can be done manually but also more effectively using a data-driven

approach. If data can be gathered from the real platform beforehand, then we can use the

performed actions to drive the agent in simulation and then compare the state trajectories

with the ground truth data and optimize the parameters so that the model trajectories are

as close as possible to the ground truth data. Efficient black-box approaches such as evo-

lutionary strategies [13], or Bayesian approaches [48] can be used to optimize simulation

parameters. There are also parallel differentiable simulators [43] that are already avail-

able that can perform numeric simulations of dynamical systems in a differentiable way,

allowing us to use methods such as gradient descent to optimize the parameters.

Transfer learning In some cases, it is possible to reuse knowledge gained from one

task to perform another task. This can simply be done by training a neural network on

task T1 and using the learned weights as an initialization for learning task T2 with a lower
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learning rate. In this case, we would refer to it as fine tuning. In some cases, such as com-

puter vision, it is possible to use entire pre-trained feature extractors on large datasets and

train a smaller NN on top of it. This can improve sample efficiency and generalization and

is a technique that is very often used in machine learning. In the context of sim-to-real

transfer, a policy could be trained in simulation and then finetuned with a significantly

smaller set of real rollouts. Besides training and transferring feature extractors, it is also

possible to train and transfer parts of policies if structured in a hierarchical manner, such

as in Feudal Learning [49] or the Options framework [50]. There are specialized meth-

ods of training that address multi-task Reinforcement learning explicitly, such as in [51].

Training on multiple tasks can enable the transfer of skills that are common to those tasks.

Domain randomization and adaptation Domain randomization can be described as

training in simulation on randomized instances of our environment. The rationale is that

if the agent sees randomized environments during training time, there is a much larger

chance that the real environment is an instance of the distribution of trained randomized

environments, giving a policy that is more robust than one trained on a single instance.

Domain randomization is usually divided into perception randomization and dynamics

randomization.

– Perceptual High-dimensional sensor rendering is improving with every generation

of simulators. State-of-the-art engines allow for almost real-time raytraced camera

renders that are close to photorealistic. Simulation environments such as Gazebo

and Nvidia Isaac [44] provide high-quality renders of LIDAR and other range sen-

sors. Nevertheless, it often helps to randomize various rendering parameters of the

scene to obtain robust feature detectors. For images, this is straightforward as we

can randomize scene textures and common camera parameters while training an

agent policy, as demonstrated in the task of learning dexterous manipulation behav-

iors in simulation [52]. It is also possible to adapt image inputs from the simulator

using data from the real platform (or the other way around) with techniques such

as Generative Adversarial Neural networks (GANs) [53]. The idea is that we can

use a learned modifier Neural network that changes the input image to look like a

canonical simulation image [54] and therefore decrease the domain shift between

simulation and real images.

– Dynamics Domain randomization can also be done on system dynamics, such as in

[55]. The work of [56] uses real data to steer the randomization distribution of the

simulation. Dynamics randomization is often used with state estimation methods,
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described in the next section

Latent state estimation The task of sim-to-real transfer can be treated as a Partially

Observable Markov Decision Process where the variability in the randomized instances

of the simulator and the real platform can be represented by a latent vector that encodes

this variability. If we can encode this representation in a vector and give it as input to the

agent during training and test times, then the agent should have an idea of which type of

environment it is in and therefore be able to perform optimally. During training, we have

the ground truth parameter vector that we use to generate the randomized instances of the

environment, but during test time, we do not. One of the most popular ways of solving

this revolves around the idea of using ground truth labels to learn an estimator of the

latent vector from a series of agent observations and actions. This estimator can then be

deployed on the real platform, and the estimation can then be used as an input to the agent

[57]. This is conceptually similar to state estimation techniques that are used in control

theory, except that, in this case, the estimated states are latent vectors that parameterize the

random environments. It is also possible to use data-driven inverse dynamics to calculate

corrections during deployment for the trained simulation policy [58].

Meta RL The sim-to-real gap can also be closed by using techniques that allow the

agent to learn fast. This is done by formulating the inner training loop as a training

example and using an outer optimization loop, which optimizes for the performance of

the agent that is a result of the inner training loop. One commonly used example of this in

machine learning is hyperparameter optimization. In the case of Reinforcement learning,

we can use an outer optimization loop that can teach an agent to learn to adapt to the

changes in the environment from a small number of rollouts (few-shot learning) or from

a single interaction episode (one-shot learning). There are several aspects of the agent’s

policy that can be metalearned.

– Hyperparameters As mentioned above, the simplest form of meta-learning is through

tuning hyperparameters of the learning algorithm, which leads to faster learning and

higher performance. Such parameters can be the number of layers or units in the

neural network policy, the learning rate and momentum of the optimizer, and other

variables pertaining to the environment, such as episode length, etc.

– Optimizer Function approximators such as Deep Neural Networks have complex

gradient descent mechanics due to the very high dimensional parameter space, and

finding the optimal update rule is not trivial. The most commonly used techniques
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use some sort of adaptive momentum or second-order information. There have been

several works, such as [59], showing that learning an update rule for such an opti-

mizer that is a function of the current updates and features from the history can in-

crease the performance of the optimizer, decreasing learning times in several tasks.

– Weight initialization Neural networks are usually learned from scratch with ran-

dom weights. It can be beneficial to learn a suitable starting point for a range of

tasks that will enable faster learning from consequent gradient updates. A well-

known example is the MAML algorithm [60] and its follow-up works, which learn

a good initial parameter initialization that can be adapted from several episodes of

experience.

– Architecture Using standard neural networks can be unsuitable for some tasks, es-

pecially when high dimensional inputs are involved. It can make sense to learn part

of the structure in an outer loop that suits the task more. Several works, such as [61],

have shown such an approach to convolutional neural networks (CNN) for image-

related tasks. Earlier works on neuro-evolution, such as NEAT [62], use a similar

approach to optimize the architecture along with the weights simultaneously.

– Exploration The problem of exploration is one of the most fundamental aspects

of trial-and-error methods such as Reinforcement learning. The stochastic aspect

of the policy is what allows the gathering of new experiences to optimize a reward

function. This means that exploring relevant parts of the state space can make a big

difference in the quality of the experience that is obtained from the rollouts. We

could meta-learn an exploration function as a separate agent, which would lead to

faster learning of the Reinforcement Learning agent. Ideally, we would like to learn

an agent that learns to explore as an instrumental task while optimizing the target

task. Such an agent would have to be learned end to end using a recurrent policy

(with memory). Such work is explored in [63].

– Adaptation Another approach that is similar to the state estimation described above

is to learn adaptation between various random instances of simulation or tasks. In

other words, an agent could learn to infer the necessary parameters, such as environ-

ment dynamics, from the history of state action pairs. One such work uses temporal

architectures such as convolutions and attention mechanisms to meta-learn robust

policies [64].

[64].
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0.4.3 General Reinforcement Learning

Sequential decision with instrumental goals We usually consider sequential decision

tasks within the framework of Markov Decision Process (MDP) in which we can train an

agent π to perform optimally for a specific reward function. In the general case, however,

the environment (MDP) has variables that are not directly observable. These unobserved

states can be due to unavailable sensory information. It is also possible to formulate

varying physical parameters or outside disturbances as unobserved parameters. In some

cases, the agent might see a different environment (MDP) with every new episode (mean-

ing starting from t = 0). All these scenarios lead to solving a partially observable MDP

(POMDP). One such typical case is the sim-to-real scenarios described in this chapter,

where the agent is trained on an environment µa, but is deployed in µb, for example.

Such decision problems are more difficult than standard reinforcement learning problems

due to having to also deal with the instrumental goal of inferring missing information

about the environment. Not only does the agent need to balance exploration vs. exploita-

tion during training, but now the optimal strategy consists of exploring and exploiting

during inference in order to gather the necessary information, which can enable the agent

to make optimal actions with respect to the cumulative reward.

Reinforcement Learning formalism. Consider a sequential task that consists of a se-

ries of actions and observations (o0,a0)...(ot ,at) that result from an interaction of agent

π with known environment µ . We will use the notation oa<t to denote observation-action

history ranging from the start to a timestep t. The action of agent π maps all possible

environment histories to actions and can be expressed as:

π : O×A∗→ A (4)

The environment is conditioned on the history and current action of the agent and can be

expressed as.

π : O×A∗×A→ A (5)

The goal of the agent is to maximize expected cumulative discounted rewards given a

history of past observation-action sequences.

Rt = Eπ,µ

[
∞

∑
h=t

γ
h−t · rh

]
(6)
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In Reinforcement Learning, we usually assume a Markov property on the environment,

namely that µoa<t = µst , where we denote s ∈ S to be a variable which defines the com-

plete state of the environment. This above-described formalism that we described is a

slight modification of the one used throughout most of this thesis. However as men-

tioned in the introduction of this section, we will consider the more general case where

the Markov property does not hold. We define a cumulative episodic knowledge qt for

each timestep and a knowledge update function I that updates qt based on the previous

observations.

qt+1 = I(qt ,ot ,at) (7)

We can then write the action that optimizes for such an intermediate goal as:

a∗ = argmax
a

I(qt ,ot ,at) max
∞

∑
h=t

γ
t−hR(π(oh,qh−1)) (8)

Equation 0.4.3 shows that the optimal action a∗ is given by the reward of the action,

conditioned on the information gain from the previous action.

Non-Markovian Reinforcement Learning It is useful to consider the framework of

Non-Markovian Reinforcement Learning as an instance of sim-to-real transfer. We con-

sider only a small part of the environment to be unknown, parametrized by vector q. This

can be a set of physical parameters of a system or a latent vector that encodes qualitative

properties of a high-dimensional modality such as a camera image. We can then use a

Deep learning model as the agent function that is temporally persistent across timesteps,

such as an RNN [25]. If trained on the target goal of maximizing rewards, such an agent

will be forced to learn to maximize the instrumental goal of inferring information about

the vector q so that it is able to make better decisions about the target goal down the line.

Several sim-to-real approaches described at the beginning of this chapter use a similar

approach. In some approaches, the instrumental goal of maximizing the knowledge of q

is performed separately, which makes the training easier but reduces performance. The

following is a summary of agents ranging from a static agent to an agent that performs

full sequential Bayesian decisions.

– Statically trained agent We consider this agent as a baseline for making decisions

in an MDP that is not fully observable. Such an agent will have worse than optimal

performance due to the lack of information to infer the current state. A specific



20

example of this is learning an agent in simulation and then deploying it on a real

model with no changes.

– Randomized agent Such an agent is trained on a set of various randomized in-

stances of a specific environment in simulation. This results in an agent that per-

forms well on average in these environments. It is, however, likely that in specific

environments, the agent performance can be significantly worse or completely fail in

comparison to the optimal agent. If the distribution of environments is wide enough,

it can also happen that some difficult instances will destabilize the training process

for the rest.

– Separated latent vector estimation In this case, we have a separate agent that

estimates the latent parameters of the environment that make it observable and feeds

it to the acting agent. This concept is quite standard in optimal control and is called

an observer. In deep learning, we have also seen similar works, such as in [57]. The

idea is to train a neural network that estimates system parameters from ground truth

labels simultaneously with the agent. It is one of the simpler and more powerful

sim-to-real approaches that one could implement.

– Active latent vector estimation as an instrumental goal In this case, the agent

treats the issue of partial observability as an instrumental goal and optimally bal-

ances the exploration/exploitation during both training and inference in order to

perform the actions that will simultaneously lead to high rewards and provide in-

formation about the environment which will lead to better actions downstream. In

a sense, this agent can learn to perform optimal decisions, perhaps to a Bayesian

extent, based on a prior environment distribution and model. Using deep learning,

such an agent could be implemented using an RNN and trained using RL end-to-

end by optimizing the target reward function, such as in [63]. The idea is that the

instrumental goal is to be inferred as part of the task.

– AIXI agent The problem of sequential decision in an unknown environment µ ∈
M, similar to the one posed in equations 0.4.3 and 0.4.3 have been proposed in

Marcus Hutter’s AIXI agent formulation [65]. AIXI is a general Reinforcement

Learning agent that optimizes actions by considering all possible future outcomes,

weighted by the probability of being in each environment µ ∈ M. At the same

time, during each timestep, the agent updates its belief that it is currently in a given

environment. The AIXI formulation uses a universal prior 2−L(µ) to weight the

individual environments µ where µ is the length of the program used to compute µ .

Using Occam’s Razor, it prefers shorter programs. The decision rule, described in

[66] can be written as follows:
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ak = argmax
ak

∑
okrk

· · ·max
am

∑
omrm

[rk + · · ·+ rm] ∑
q:U(µ,a1..am)=o1r1..omrm

2−l(µ) (9)

U is a universal Turing machine used to compute the environment. This approach

is Bayesian-optimal as it considers a prior over all possible environments, which is

updated at every step and selects actions based on current beliefs. Such a model,

however, is incomputable, and although several computable approximations exist,

it’s not something that can be used on a real problem.
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Chapter 1

Hexapod locomotion by expert policy
multiplexing

In this part we study the possibilities of adaptive hexapod locomotion through switching be-

tween control policies that have high performance on various complex types of terrain. This

is a two-level neural network architecture that infers various terrain types from temporal se-

quences of interoceptive data. We assume that the target complex terrain can be modeled by

N discrete terrain distributions that capture individual difficulties of the target terrain. Expert

policies (physical locomotion controllers) modeled by Artificial Neural Networks are trained

independently in these individual scenarios using Deep Reinforcement Learning. These poli-

cies are then autonomously multiplexed during inference using a Recurrent Neural Network

terrain classifier conditioned on the state history, giving an adaptive gait appropriate for the

current terrain. Our work demonstrated several tests to assess policy robustness by changing

various parameters, such as contact, friction and actuator properties. We also show experiments

of how such a control policy can be controlled for practical locomotion by use of geometri-

cal target goal-based positional control. We also show that we can select various gait criteria

during deployment, giving us a complete solution for blind Hexapod locomotion in a practical

setting. The Hexapod platform and all our experiments are modeled in the MuJoCo [67] physics

simulator. This work is largely taken from our publication titled ”Blind hexapod locomotion in

complex terrain with gait adaptation using deep reinforcement learning and classification”, cited

as [28], published in the Journal of Intelligent & Robotic Systems. We modified some parts of

the paper and added a few additional sections and figures that helped to expand on some of the

explained concepts. An additional contribution that we have made in this thesis is a pipeline

for procedural synthesis of heightmap terrains that are statistically similar to ones provided by

a series of photographs by the user. This pipeline makes use of structure from motion, as well

as patch-based synthesis, described in section 1.6.4

23
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1.1 Introduction

The majority of control tasks involving ground-based mobile robots require some capability of

traversing the terrain in which the robot is being deployed. Wheel-based robots are simple to

control but their capabilities are limited by the size of their wheels relative to the terrain. Other

alternatives, such as tracked systems [68], legged flipper systems [69] and tensegrity structures

[32] each have their advantage in various rough terrains.

Robotic morphologies that are tailored to a specific terrain/purpose can outperform other

designs in that domain. It can, however, be expensive and time-consuming to develop a custom

platform for each task. A legged robotic platform offers universality in its design by being

adaptable to many types of terrain. Legged robots provide a maximal amount of flexibility and

do not require a continuous path to navigate their environment. This enables the traversal of the

most complicated type of terrains, which feature sudden changes in height, holes, bumps, slants,

etc. These robots are unfortunately also the most difficult to control, as each leg usually consists

of several independent joints leading to a high dimensional continuous control problem. As an

example, a Hexapod robot has six legs, each consisting of 3 links having their own joint, which

leads to 18 degrees of freedom.

Figure 1.1: Hexapod locomotion in simulation. The front legs are distinguished by the blue
color. Supplementary video material available at https://youtu.be/OXAJ0jmdCZ0,
Github: https://github.com/silverjoda/nexabots

Locomotion on uneven terrain requires the ability to perceive the environment. This can

be done using exteroceptive sensors such as LIDAR [70] or depth camera [71]. With such an

approach, a local elevation map is usually reconstructed, and planning or other optimization

https://youtu.be/OXAJ0jmdCZ0
https://github.com/silverjoda/nexabots
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techniques are used to calculate foot trajectories and placement positions. These are then fed

into low-level tracking controllers and executed by the robot actuators. This approach can fail

if there is any inaccuracy with the local perception map, such as a puddle which causes issues

for depth sensors.

A more minimalistic approach is to use only interoceptive sensing, that is by sensing con-

tact between the leg and the ground in addition to onboard IMU and joint angle data. This

approach is not as powerful as one that uses rich sensory data about the environment since there

is less information available about the surrounding terrain. It does, however, have the obvious

advantage of being simple and not requiring complex, heavy, and expensive sensors that have

several known failure modes. The lack of high dimensional sensors also means a much lower

computational load on the system, allowing the use of cheaper and lighter hardware, such as an

embedded microcontroller for both sensing and locomotion. Another major advantage is that

such a policy learned in simulation is less prone to overfitting and should be able to generalize

to the real platform without issue.

In our work, we use the latter approach. This means that planning is out of the question due

to a lack of knowledge of the surrounding environment. To perform successful locomotion, the

robot has to feel the terrain with its feet, similar to how a human would navigate blindfolded

between rooms with outstretched hands. We use a Deep Learning approach to help us learn

a gait for the Hexapod platform, which adapts to the environment in real time, using binary

contact sensors at the feet. Our work is focused on data-driven methods for locomotion because

they are powerful and scalable. The user only has to be able to model sufficiently rich terrain

in simulation. There is little to no domain knowledge required on how the robot should move.

The user can specify certain criteria of the gait in terms of a reward function, adding as little or

as much domain knowledge as he or she wants which in part contributes to the flexibility of this

approach.

Our paper elaborates and contributes to the following topics:

• Insight into the blind locomotion problem for a hexapod platform.

• New approach to robust adaptable locomotion for legged robots by training on rich terrain

using a two-level locomotion architecture which autonomously multiplexes expert control

sub-policies that are appropriate for the each type of terrain.

1.2 The hexapod platform

The most common legged robot configurations are bipedal, quadrupedal, and hexapodal vari-

ants. Bipedal robots require the fewest actuators. They are, however, the least stable and need
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a fast control loop to keep balance. Even with the right balance, they are sensitive to slippage

and can fall over in unpredictable terrain. Some examples feature [72]. Quadruped platforms

are probably the most popular and are used by several groups to research locomotion and other

tasks [73] [74] [72]. Hexapod configurations are statically stable, meaning that they can stay

upright with little or no active control. This advantage can be attributed to the redundant num-

ber of available legs. This feature also offers the highest potential terrain traversability out of

the platforms mentioned above, as there are more points of contact with the ground. Stability

and traversability clearly increase with the number of legs on the robot, but so does the com-

plexity of construction and control. The hexapod configuration is a good compromise between

complexity and utility.

The hexapod platform consists of six legs, each having three links called the Coxa, Femur,

and Tibia, respectively. The Coxa is connected to the Thorax (body) with a joint, as are the links

between themselves, resulting in a total of 18 motorized joints. The joints are usually actuated

using readily available or purpose-built servos. One of the design choices for such a platform

is whether to use position or direct torque control. Positional servos are more readily available

and have their own inner feedback control loop, which takes care of the low-level control. Joint

actuators also require current joint angle information and preferably the instantaneous current or

torque that is being applied to it. In-built current limiting and overheating protection is preferred

in such a platform as stall conditions are likely to happen, especially during experimentation or

in the case that the control policy fails and behaves undesirably. Regular geared servos exhibit

backlash, but this is not an issue in such a platform as we do not require precise control and

placement of the legs. The platform used in our work is modeled to match the dimensions of

the hexapod platform by Trossen Robotics [75] in the MuJoCo simulator [67].

1.3 Related work

There has been a significant amount of work which addresses the task of locomotion for hexapods

robots. Some of the more popular methods for legged robot locomotion involve the use of Cen-

tral Pattern Generators (CPGs) [76], [77]. This is a bio-inspired method that attempts to mimic

certain aspects of the sensory-motor nervous system of animals to achieve a successful gait. The

advantage of this method is that it induces a strong prior on the action space of the agent, mean-

ing significantly fewer parameters and a more natural gait. The disadvantage of this method is

the domain knowledge required to craft the oscillator network and interconnections. It is also

unclear how to integrate high-dimensional sensory feedback into these networks. CPG methods

for legged robot locomotion usually include the use of inverse kinematics to control the servos

and a method of footstrike detection using an IMU, servo position feedback [78] or a button

sensor at the tip of the leg [79]. Most of these approaches focus on the bio-inspirational aspect
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of locomotion and on gait stability analysis. Our approach, however, directly optimizes for lo-

comotion performance. To our knowledge, there is no CPG based approach that is robust and

can handle a variety of challenging terrains.

A contrasting approach is to use neural networks together with data-driven methods to learn

locomotion. One such method is Deep Reinforcement Learning (DRL) that supports higher

dimension state and action spaces using neural networks as function approximators. One of

the simplest and highest performing DRL algorithms is the Proximal policy optimization (PPO)

[38] algorithm. This algorithm efficiently estimates the policy gradient [11] on a batch of states

and performs multiple updates while making sure that the updated policy does not deviate too

much from the current one. We use the PPO algorithm in all our experiments.

Learning locomotion on various terrains can be thought of as learning several skills and

choosing the right skill at the right time, which is essentially what our approach does. There is

a related work by [80] where the authors teach the agent locomotion end-to-end on flat terrain

using a mixture of sub-policies. However, the quality of results demonstrated using this algo-

rithm are unsatisfactory, even for much simpler tasks. Furthermore, this algorithm requires an

actor-critic architecture that is unstable for training locomotion tasks for many-legged robots,

especially in a recurrent setting, which would be required in our case.

One of the drawbacks of using a standard feed-forward neural network architecture for lo-

comotion is that it is ignorant of the morphology of the robot. It is preferable to use a structure

which imposes a prior on the problem, similarly to convolutional neural networks are used in

computer vision. There has been some work on learning locomotion using structured neural

network policies such as [19], where the authors propose a policy class for legged robots. Al-

though the authors demonstrate good performance on repetitively-linked morphologies such as

centipedes, all the experiments were done on flat terrain.

While dealing with tasks that require memory, recurrent neural networks (RNN) are an

appropriate choice of model. We use Long short-term memory (LSTM) networks [25] that

are models that have achieved very high performance on various time-series tasks [81], [82],

[83]. When using the policy gradient algorithm on RNNs, it is modified to update on batches of

episodes instead of batches of states.

1.3.1 Conclusion

Legged robot locomotion has been thoroughly studied but most results fall into the follow-

ing categories: a)Bio-inspired methods and gait analysis, b)optimization methods that require

complex sensors and pipelines and c)experimental data driven methods which demonstrate im-

provements in neural network architectures or training algorithms. To our knowledge, there is

no method which approaches the problem by modeling various complex terrains and training a

locomotion policy with minimal sensory input that could be used with high-level control, such
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as in our work.

1.4 The blind locomotion problem

Locomotion for legged robots is a high-dimensional combinatorial problem. One way how to

solve it is to constrain the action to a periodic movement called a gait that is suitable to a given

terrain. A suitable gait is one that allows it to traverse the terrain in a manner that is not dam-

aging to the physical platform and while respecting specific criteria such as energy efficiency

or smoothness. The simplest gait example is on flat terrain. An efficient gait would consist

of symmetric 3-4 legged (meaning that these legs are in contact with the ground) movement

without moving lifting its legs unnecessarily high, minimizing energy consumption and wear

and tear on the system. If we, however, consider a gait with tiles of various heights, then such

a gait would cause the legs to collide with the various height tiles. What is instead necessary,

is a stable gait where the legs are always lifted very high up, with slightly larger strides. The

challenge is then to recognize which type of gait is required in a given situation, and to adapt

to it autonomously. This could again be imagined walking blindfolded room. If told in advance

that the next several meters are flat ground, then we can simply walk in a normal fashion. If,

however, we are told that somewhere along the floor there will be a small step then our gait will

be careful, slower and maybe even asymmetric so that we are more balanced in the case that a

leg gets hooked at the step. At this point, it is necessary to clarify what an adaptive gait means.

In literature on gait analysis, an adaptive gait usually means a gait that works on terrain other

than a flat plane. In other words, it is able to sense the kinks in the terrain and slightly adjusts

the gait so that it works. We will refer to this as micro-adaptation. In our work, by adaptive, we

mean a locomotion policy that can change the entire gait pattern given the situation, as in the

example given above on blindfolded walking in a room. We refer to this as macro-adaptation.

Our locomotion policy does both.

1.4.1 Overview

We assume that the target environment (where we plan to deploy our agent) is somewhat struc-

tured and can often be geometrically categorized. One example is almost any man-made envi-

ronment that consists of hard ground, slippery wet ground, stairs, tunnels, pipes, ground obsta-

cles, etc. We work with the assumption that if the agent is capable of navigating these discrete

terrain distributions, then it can navigate the target terrain distribution. Note that we refer to

the terrains as distributions because we assume that an instance of a specific terrain is sampled

from some distribution that generates that type of terrain.

At this point, it would be beneficial to clarify as to why the concept of a gait on distinct
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terrain distributions is required and why we don’t learn a locomotion policy which simply solves

the entire complex problem. As mentioned previously, treating this problem combinatorially

comes with an exponential compute cost. A gait is essentially a prior or a limitation of the state

space that allows us to solve such a difficult problem. What we can hope to do is to modify

or perturb the gait slightly to adapt to the unevenness of the terrain. This is why we believe

that it is better to have distinct gaits that are suited to their specific terrain types and to work

from there instead of having a universal gait that has to perform complex adaptations to all the

various terrain types that we are planning to deploy on.

1.4.2 Problem definition

We consider an agent that interacts with the environment in discrete timesteps. At each timestep,

the state of the agent and the environment can be jointly described by a vector s ∈ S called the

state vector. By definition, this vector should contain all the necessary information required to

choose an optimal action for the current time step. In most cases, the environment is only par-

tially observable, and therefore we work with incomplete observation vectors ot ∈O. The agent

performs an action at ∈ A, after which the environment advances by a single time step before

returning the new observation vector ot ∈O. Each state-action transition is evaluated by reward

function r : S×A→ R. At the beginning of each episode, the agent finds itself in a random ini-

tial state s0 ∼ ρ(s). The above element, along with an environment state-transition distribution

T (s′,s) and reward discount factor γ are described by a Markov Decision Process (MDP). If the

state s is not fully observable, then we refer to the process as a Partially Observable MDP, or

POMDP.

The agent is denoted by a parameterized function πθ : S→ A also called a policy function.

This is essentially a mapping from state st to action at at every time step. The parameter θ

denotes the weights of the neural network which we are optimizing.

We assume that most of the terrains can be modeled by and composed of several distinct

terrain distributions t = 1 . . .N such as stairs, slopes, pipes, slippery patches, etc. The task

is to train the policy, which performs locomotion successfully on all these types of terrain.

Desirable properties of quality gait, such as smoothness or speed, are determined by the state-

action reward function r.

We define a trajectory τ = {(s1,a1), . . .(sh,ah)} to be the sequence of consecutive states

and actions with a finite horizon h. The sum of rewards collected along a trajectory τ is the

cumulative reward

Rτ = ∑
(s,a)∈τ

r(s,a)

Terrain type t and the policy πθ uniquely determine trajectories probability distribution
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p(τ|t,πθ ). The goal is to find a policy that performs well on all types of terrain:

πθ∗ = argmax
πθ

Eτ∼p(τ|t,πθ ){Rτ}

The fact that the agent does not know what type of terrain it is on makes the task partially

observable that can be formally described by a POMDP. A purely reactive policy is insufficient

to solve this task as it requires memory to know what type of terrain it is currently on. Therefore

πθ has to be recurrent, meaning that it keeps an internal representation of the current trajectory

at a given time step. Due to the high-dimensional underlying state-action space and the variety

of terrain, direct optimization of the policy parameters θ using a recurrent neural network is

difficult. Experiments show that this approach does not learn distinct gaits, but rather a single

gait which performs sub-optimally on the individual terrains. This can be thought of as a local

optimum as far as a locomotion gait is concerned. Therefore we exploit the compositionality

prior of a given terrain and propose a novel two-level structure of the policy as shown in Figure

1.2. Our proposed compound architecture essentially separates the policy into two components.

The first part consists of the policies that perform well on the individual terrains that we call the

expert policies. The second is a multiplexer policy that classifies the current terrain and selects

the appropriate expert.
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Unstructured recurrent policy Two-layer recurrent policy

Figure 1.2: Policy structure: Left general recurrent policy πθ , Right proposed two-level struc-
ture for terrain locomotion consisting of a recurrent multiplexer policy πm

θm
and a set of reactive

expert policies πe
θt

.

We assume that for a given terrain type t, the task is fully observable and there exists a near-

optimal expert policy πe
θt
(s) : S×T → A which is purely reactive. In our experiments, we found

that recurrent policies slightly outperform their reactive counterparts because even the discrete

terrains exhibit a certain degree of partial observability due to blindness. Nevertheless, reactive

policies are used for simplicity’s sake and for proof of concept. Consequently, the proposed

structure of the policy is a concatenation πθ = πe
θt
◦πm

θm
of a multiplexer recurrent policy πm

θm
,

which switches between terrain-expert policies πe
θt

.

1.5 Training pipeline

The proposed learning scheme is summarized in the following Algorithm:
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1. Obtain terrain-expert policies πe
θt

for all terrain types t ∈ T by learning parameter vectors

θt using reinforcement learning for each terrain type t independently.

θ
∗
t = argmax

θ

Eτ∼p(τ|t,πe
θt
){Rτ} ∀t∈T

2. Use the learned expert policies to gather rollouts on compound terrains. Learn a recur-

rent multiplexer policy to classify current terrain from the history of observations on the

gathered dataset by minimizing classification cross-entropy between the predictions and

terrain labels.

θ
∗
m = argmin

θ
Eτ∼p(τ|t,πθ ){∑

t∈τ

L(πm
θ (ot , ..o0), lt)}

where lt is the current terrain label at time t. Terrain types can change multiple times

throughout an episode.

3. Optionally iterate.

In the following sections, we will take a look at the entire pipeline in detail on how to train

a blind locomotion policy that adapts the gait to several terrains.

1.5.1 Environment creation

Figure 1.3: A scenario of a complex structured terrain which is decomposed into several distinct
terrains.

The first step is to create an environment in which we want to train the agent. The environ-

ment consists of the physical world (terrain), as well as how the agent interacts with it and how
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it is rewarded. These three factors shape the agent locomotion policy. As mentioned previously,

we are assuming that the robot will be deployed in some complex terrain that can be modeled as

N distinct terrain distributions. This means that we will have to create N distinct environments.

The physical terrain consists of a heightmap which can be modeled manually in some cases

and procedurally otherwise. In our work we generate a new terrain instance every few episodes

so that the agent is able to interact with various different difficulties and doesn’t overfit to a

single instance, resulting in a robust policy. It is also important that the terrain is appropriately

difficult. Otherwise, no interesting or complex behavior will emerge as a result. If it’s too

difficult, then the agent will be unable to solve it. Depending on the terrain, there are several

approaches that we use to tune the difficulty. For specific cases such as steps and stairs, it is ap-

propriate to use realistic dimensions that a robot is expected to encounter in the field. For other

regular patterns such as tiles and slanted surfaces, the dimensions are evaluated experimentally

by incrementally increasing the difficulty and observing the limits of the robot. Terrains with

abnormal geometries such as narrow pipes that require specific gaits are more or less done sim-

ilarly as the regular terrains, with the robot limits in mind. Outdoor surfaces modeled by noise

fields such as Perlin noise [84] are tuned by hand by generating many examples and modifying

the distribution and scaling parameters of the algorithm so that interesting examples are gen-

erated every time. Simple checks, such as the absolute difference between the minimal and

maximal height, can be used to determine whether the specific sample is too easy and can be

discarded. Occasional inappropriate samples can be considered as noise and do not affect the

learning process significantly.

Compound terrains: In our experiments, we use compound terrains to demonstrate gait

adaptation. These consist of samples from various terrain distributions which are joined to-

gether to form a single instance. The tricky part is to make sure that the stitching is done

seamlessly, meaning that there are no step-differences in height between terrains. A straightfor-

ward way is to pass a height averaging sliding window over the joining region. One downside

is an introduced valley artifact that arises in this region due to the averaging. Some sections,

such as stairs, can randomly end at a certain height meaning that subsequent sections have to be

height-adjusted appropriately.

Agent interaction: The interaction is defined by the input and output spaces of the agent. The

input has to be informative enough for the agent to perform the task. If the policy is reactive

(memoryless), then the translational torso velocity and joint angular velocities have to be added

as well. Otherwise, the task will be ill-defined. Formally, the observation of the agent at time t

consists of ot = { j1
t , .., jn

t , j̇1
t , .., j̇n

t ,c1
t , ..,c

m
t ,q

w
t ,q

x
t ,q

y
t ,q

z
t} where ji

t is the ith joint angle, j̇n
t is the

ith joint velocity, ck
t is a binary value representing the kth contact of leg k with the ground and
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Figure 1.4: Top-down illustration of compound terrain consisting of 3 joined instances

q j
t are individual parts of the quaternion of rotation of the torso. It is important to set the range

of the joints reasonably. The larger the joint space, the more difficult it will be to learn a gait,

and the more likely it will lead to a gait that is asymmetric or neglecting one or more joints.

1.5.2 Training expert policies

N environments

Reinforcement
learning

�
�

�1

�
�

�2

�
�

�
�

Expert policies

Figure 1.5: Use RL to train expert policy for each environment.

We denote expert policies trained on the ith environment as πe
i . Policies are modeled as a

multilayer feed-forward neural network, also called a multilayer perceptron (MLP). The net-
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works typically have two hidden layers, with 64-96 units in each layer. The MLP is parame-

terized by a weight vector θ . The MLP policies are essentially a learnable mapping from ob-

servation to action that solves a particular Markov Decision Process (MDP) in our case. Even

though we divided the complex target terrain into simpler terrains, it does not mean that these

individual terrains are fully observable, also though we assume them to be. This means that

reactive memoryless policies learned will always be sub-optimal. The reason why we use reac-

tive policies as experts and not recurrent ones is that they are much easier and straightforward

to work with when using the multiplexer policy.

The policies can be trained by ascending the following unbiased policy gradient, similar to

what is derived in [11]. The term A(at ,ot) can be any estimate of the advantage, or goodness of

action at .

∇θ J(θ) = ∑
ot ,at∈τ

∇θ logπθ (at |ot) ·A(at ,ot) (1.1)

A single iteration of the algorithm can be summarized in a few simple steps:

1. Gather a batch of trajectory rollouts τ using the current stochastic policy πθ

2. In each trajectory, for every action taken, calculate the advantage A. We use an unbiased

Monte Carlo estimate of the return discounted by γ

A(at ,ot) =
h

∑
t=k

γ
t−kr(at ,ot) (1.2)

3. Calculate policy gradient ∇θ J(θ)

4. Update policy πθ by ascending the policy gradient

We use a slightly modified update rule from the PPO algorithm for more efficient updates.

Inputs and outputs to the policy are normalized to the interval [−1,1] where applicable. This

enables faster training and better performance. Each expert on a single CPU thread can take

anywhere from 4-8 hours to train, depending on the terrain difficulty and desired performance.

The environment is generated randomly in each episode from the environment distribution,

and an episode of 200 steps is performed. Batches of 20-40 episodes are used to obtain the

policy gradient to update the network. In our experiments, we set the same reward function for

all environments so that we can compare them, but they can be tailored to each environment

separately. The agent is rewarded in the following way:

rt = λ1 · rvλ2 · rθ −λ3 ·φ 2
t −λ4 ·ψ2

t −λ5 · ż2
t −λ6 · τ2

t (1.3)

where
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rv =
1

abs(ẋt− vtar)+1
− 1

vtar +1
(1.4)

rc = |θt−1|− |θt | (1.5)

The total reward rt consists of rewards rv,rc and various penalties. The velocity reward rv

is the reward that motivates the agent to move forward and is tuned so that the agent receives a

reward for a positive velocity up to a certain point, peaking at the target velocity. It is important

to set the maximal velocity reward to a specific target. If we simply optimized for maximal

reached distance, then we would get a very fast gait and erratic jumping behavior, which is not

something we desire as it can make training in simulation more difficult and could destroy the

real platform. The term rθ rewards the agent for correcting heading errors and works signifi-

cantly better than penalizing heading deviations. The issue is that if slippage occurs or a robot

leg gets caught on an obstacle, the robot can suddenly find itself facing the wrong way. If we

penalized heading deviations, then the agent would start to accrue large amounts of penalty for

something it didn’t do. This seems like a trivial issue, but for a legged robot, changing direction

is a task in and of itself. This is why, at the beginning of each episode, the robot is placed with

a small random yaw rotation of roughly 1 radian. Formulating the rc, as shown above, leads to

a policy that is motivated to correct the heading first and then walk towards the goal direction.

Lastly, various penalties can be added which modify the gait. Some of the simplest ones that we

added are torso angle and acceleration penalizations in the form of L2 loss. Angles φ ,ψ , and

velocity ż represent the current pitch, roll, and z-axis movement of the hexapod torso. These

are being included to produce a gait which keeps the torso level and smooth. It can be useful

if we have a camera or a scanning LIDAR sensor on board. We can also optimize for energy

consumption. This penalty is given in the term τ and denotes the sum of actuator torques at

time t.

1.5.3 Training a terrain classifier

At each time-step, the RNN receives the joint angles and binary leg contact information from

the agent and predicts a softmax probability distribution over the terrain classes. The maximum

over the softmax is then used as the label to choose the expert policy. We use an LSTM net-

work with 3 stacked memory layers. The supervised learning task is solved by descending the

following gradient in an iterative fashion:

∇θ

1
|D| ∑

(ht ,yt)∈D
L(πobs(ht), lt) (1.6)

Training is done on batches of episodes. It is essentially a sequence to sequence task where
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Figure 1.6: Training of a recurrent terrain type classifier that is then used as a multiplexer.
Observations ot are seen at every time-step by the classifier, and a label ŷ is predicted. The
predictions are then compared against ground truth labels using a cross entropy loss, marked as
CE in the illustration

we map current observation histories ht to environment labels that the agent is currently on.

The training dataset is gathered by generating random combinations of terrain instances with

various lengths and joining them into a single terrain. The transition points are stored along

with the instances so that the correct terrain labels can be generated during training time. The

hexapod then navigates the combined terrain using randomly picked expert policies at random

times, and the observations and terrain labels are recorded at each time step. The policies have

to be randomized and cannot be chosen according to the current terrain; otherwise, the classifier

will fit the policy and not to the terrain. Specifically, the episode is started with a randomly cho-

sen expert policy, and at every step, there is a probability p of choosing another expert policy.

Another way would be to iteratively learn the classifier and sample the policy choices from it

that would, in theory, lead to a trajectory distribution which would be the same in training and

test time. However, we found that the training procedure is unstable.

The terrain transitions are probably the most troublesome part of the whole process. The

terrain labels are updated a heuristic amount of steps after the agent crosses onto new terrain.

This makes sense because the agent cannot immediately know that it is on a different terrain

without first having interacted with it.

1.6 Experiments

In this section, we will demonstrate several different experiments that show the strengths and

weaknesses of our approach. These will consist of an evaluation of the expert policies, and
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our proposed two-level approach with a trained multiplexer selecting the appropriate policy. In

addition, we provide experiments to show how changes in robot and environment parameters af-

fect performance to get an understanding of the robustness of the policies. Further experiments

show how we can affect gait parameters such as walking height and speed using auxiliary in-

puts to the network. We conclude the experiment section by demonstrating that our policy can

be controlled in a waypoint fashion that can be used in conjunction with a planner or human

operator.

1.6.1 Experiment details

The platform used in experiments is modeled to match the dimensions of the Mark II hexapod

platform by Trossen Robotics in the Mujoco simulator [67]. The model dimensions and masses

are modeled by taking measurements from the real platform. Contact dynamics include tangen-

tial, torsional and rolling friction. Since we have a legged robot, we are mostly interested in

tangential friction which we set to a suggested default. Material surfaces are not simulated as

this would be excessively complex and likely not a contributing factor for hexapod locomotion.

The robot is controlled by servos with internal feedback loops. The servos have an armature,

dampening and a loop gain parameter. These are set in the simulation so that responses to step

joint angle changes respond similar to the real platform. Simulation step size is set to the sug-

gested 0.02s per step. The simulation gravity vector is set to 9.81ms−2. Parameter details can

be found in the provided GitHub repository.

1.6.2 Evaluation of expert policies

We picked five terrain types with varying degrees of contrast and train reactive policies that

perform well on those specific distributions. These policies are then cross-compared to get an

idea of how a specific policy might perform on a terrain that is similar or very different from the

one that it was trained on. The evaluation consist of episodes of 300 steps over 100 randomly

generated instances for each terrain. This is done for each policy.

We use two metrics for comparison. The first is the mean achieved reward of the environment

given by the terrain and reward function, as described in chapter 1.5.2. We can refer to this as

the gait quality metric, as it includes penalization for unnecessary torso movement and other

terms such as energy consumption. The second is the mean success rate of reaching a specific

distance. Tables 1.1 and 1.2 shows the results. The average rewards are unit-normalized to the

value achieved by the native policy. This is done because various terrains have various maximal

achievable average rewards for a specific reward function.

The results give insight as to how policies perform on environments that are similar and

different from the ones that they were trained on. We can see that most policies perform well on
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Table 1.1: Normalized gait quality performance. Rows are terrain types. Columns are the expert
policies evaluated on given terrain type.

πFlat πTiles πSlants πStairs πPipe πPerlin

Flat 1.00 0.98 0.59 0.68 0.37 0.94
Tiles 0.32 1.00 0.47 0.45 0.06 0.71
Slants 0.23 1.61 1.00 0.96 0.16 1.95
Stairs 0.23 0.66 -0.04 1.00 0.07 0.52
Pipe -0.43 -0.09 -0.33 0.16 1.00 0.05
Perlin -0.21 0.88 0.38 0.15 -0.05 1.00

Table 1.2: Mean achieved distance in a fixed amount of timesteps. Rows are terrain types.
Columns are the expert policies evaluated on given terrain type.

πFlat πTiles πSlants πStairs πPipe πPerlin

Flat 1.49 1.43 1.31 0.97 0.97 1.42
Tiles 0.62 1.20 0.92 0.59 0.46 1.19
Slants 0.49 1.20 0.96 0.65 0.40 1.31
Stairs 0.30 1.08 0.63 0.73 0.56 1.00
Pipe 0.32 0.76 0.67 0.60 1.61 0.62
Perlin 0.47 1.08 0.89 0.59 0.29 1.17

the flat environment as it admits almost any gait. The difference is only in how efficient that gait

is and its quality. Both tables show that the flat policy fails on almost all terrain except on the

native one. This is expected as the hexapod doesn’t lift its legs up high enough from the ground

that causes collisions in terrains with sudden changes in height. We see that the Tiles and Perlin

policies are somewhat interchangeable and perform similarly. This shows that a policy trained

on sufficiently rich terrain performs well on a variety of features. The difficult part comes in

terrains where a different gait is required, such as the Pipe and Stairs terrains. Here most poli-

cies perform poorly or fail completely. One such example can also be seen in the supplementary

video and shows why we need to change the gait completely in certain cases. There is, however,

an anomaly seen in the performance of the Slants policy that is outperformed in its own native

environment by several other policies. This is most likely due to a poorly designed environment

during training. In this case, particularly, the slants were physically too high for our hexapod

morphology. Since the hexapod is unable to make progress, the reward feedback is uninforma-

tive, and the learning process suffers, leading to a poor result. This was fixed subsequently but

we decided to leave the result as it was to demonstrate the failure mode. The achieved distance

table shows more or less the same results.
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Figure 1.7: Examples of generated compound environments from 3 terrain types.

Table 1.3: Easy compound environment

Oracle Proposed two-level policy End to end RNN

Normalized gait quality 1.0 0.79 0.31
Average distance reached 2.03 1.79 1.64

Comparison of Expert-Multiplexer architecture with plain RNN

In this subsection, we evaluate the performance of our proposed two-level architecture that au-

tonomously multiplexes expert policies on a compound terrain. This is then compared with a

ground truth multiplexer and an RNN based policy that was trained on the compound environ-

ment end-to-end. All policies are trained with the same reward function as described in the

1.5.2 section. We pick two sets of terrains to evaluate our experiments on. The first consists

of the terrains tiles, slants, flat, which is a relatively simple combination as far as required gait

variety is concerned. The second consists of the set tiles, stairs, pipe that is significantly more

difficult and requires dedicated gaits to attain good performance. When creating a compound

terrain instance, the terrains are sampled from the set with various lengths and with replacement

so that any combination is possible. Figure 1.7 shows several examples.

Tables 1.3 and 1.4 show the results of all 3 methods on a test set of 100 sampled instances.

We look at the gait quality metric, and average distance traveled within a given amount of steps.

We can see that our autonomous multiplexing almost matches in performance the ground-truth

policy selection in both easy and difficult sets. We can also see that the RNN policy performs

worse in the easy environment and significantly worse in the challenging one.

We also show the attained performance of two multiplexed experts versus an end-to-end

trained policy using an RNN. This can be seen in Figure 1.8. This, however, comes with a

Table 1.4: Challenging compound environment

Oracle Proposed two-level policy End to end RNN

Normalized gait quality 1.0 0.80 0.12
Average distance reached 1.86 1.63 0.85
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Figure 1.8: Average performance comparison of expert policies versus RNN policy trained end-
to-end. Graphs show filtered mean learning curves of 30 training sessions in each scenario. We
can see that on terrains on contrasting terrains, the end-to-end policy learns slower and does not
attain the performance of individual experts on each terrain.

slight caveat as any classification inaccuracy at the environment transitions can lead to a loss of

performance. This is, however, insignificant if we consider the long terrain and sparse transi-

tions.

Generalization and robustness experiments

We perform several experiments in an attempt to quantify the robustness of a learned policy to

various changes in the parameters of the environment. On flat terrain, even heavier perturbations

don’t affect the performance significantly. For a policy trained in an environment with randomly

slanted surfaces, we noticed the following behavior:

• Contact friction: We test the whole range of values that give a stable simulation. High

values have no effect, whereas low values cause slippage as expected. In extreme cases,

this sometimes causes the policy heading to deviate. Small to medium changes in friction

don’t have a significant effect on the policy.

• Mass: The standard torso mass is defined as 5kg. Perturbations range from 0.1kg to 20kg.

These don’t have a significant effect on performance as the low-level joint controller is a
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closed feedback loop.

• Link lengths: The tibia (the 3rd link of the leg) in our model is roughly 10cm long. If the

learned policy is asymmetrical and more dependant on one leg than the rest, then random

shortening of the tibia of that leg can cause performance degradation or failure. We also

tested lengthening of all the tibia links by an equal amount and found that up to a point

(3cm-4cm), the policy performs similarly to the default lengths. When the tibiae are too

long, then the policy gets unstable and can overturn.

• Controller parameters: The main parameters of servo actuators and the armature and

feedback gain value. The armature is a parameter which is roughly equivalent to the

rotational inertia of the servo actuator. Setting this parameter several times lower than the

trained value can cause the policy to be too hasty on rough terrain that leads to flailing

and policy failure. Higher armature simply causes a sluggish gait. Similar behavior is

observed with the gain feedback value of kp. In addition, a kp value that is too low is

unable to drive the joints to their commanded angles if the weight of the robot is too

large.

It is possible to include these perturbations into the environment during training so that the

policy learns to perform well over a range of parameters. This is called domain randomization

and is often used to learn robust functions in several computer vision and robotics tasks with

varying degrees of success [85], [86].

Gait analysis and shaping

As mentioned previously, using a learning approach to obtaining a locomotion policy, the user

has the option of adding optional optimization criteria that can shape the locomotion policy.

The default locomotion criterium is merely optimizing the gait for a target velocity. The gait

that emerges depends on the physical size and parameters of the robot, the joint angle ranges,

and the terrain that it is being trained on. For a flat reward function on flat ground, the emergent

gait is usually tripodal. If the joint angles range is not excessively large, then the emergent

gait is roughly symmetric. A common problem with gaits obtained by uninformative objective

functions like the one described above is that the gait is non-natural looking, asymmetric, or in

general, can be severely defective. Defects usually manifest themselves as the agent neglecting

one or several joints or limbs. These issues happen as a result of the agent getting stuck in a local

minimum. A defective or bad gait is a sub-optimal solution. In our experience, this happens

more often when trying to optimize a torque driven robot. One way how to solve this issue is
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to shape the objective function. This can be in the form of penalizing the agent for not using

all the legs uniformly or penalizing excessive joint angles or torques. An effective method of

enforcing symmetry is by adding a state-action symmetry penalty such as in [87]. The authors

of [87] also use curriculum learning by using varying levels of assistance during training time

that guides the agents and prevents bad local minima.

Real time gait manipulation

We can use reward shaping to train gait variations in real-time by providing the desired pa-

rameters to the input and modifying the reward function appropriately. The agent learns to

understand how to modify its gait conditioned on the input. This is no different than normal

reward shaping except that the specific parameters that we want to manipulate are sampled ran-

domly every episode during training and provided by the user during test time. This is also an

instance of goal-based learning, where the criteria are given to the input as goals so that they

can be manipulated during inference. As an example, we teach the agent to keep the torso at a

height and velocity provided by the user.

Figure 1.9: Hexapod gait at three different body-height levels.

The agent is trained to be able to walk at heights from 4cm to 11cm and at velocities from

0.2ms−1 to 0.8ms−1. These target inputs are normalized to the range [−1,1] to improve the be-

havior of the network. We use input using a GUI fader to manipulate the torso height and veloc-

ity. This type of parameter manipulation can be useful when the user wants to have more control

over the locomotion policy of the robot. Criteria such as energy consumption, smoothness, gait

velocity, stability could be programmed and specified during test time using this method. The

disadvantage is that the policy has to be retrained if the user wishes to add additional criteria.

High-level control

Most deep reinforcement learning results feature a locomotion policy that moves in a single

direction to maximize a distance along a given axis. We propose a goal-based method of control

where the agent receives as input relative x,y coordinates, and is trained to always walk towards

the given coordinates, being rewarded for minimizing the distance between itself and the goal

target.
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Figure 1.10: Double goal-based locomotion. Red is the immediate goal and yellow is the
pending goal. The agent receives as the coordinates of the red goal relative to its own and the
yellow goal relative to the red.

We use a double goal input where the agent is conditioned on the next two goals. The

purpose of this is that the agent can learn to position itself for the next goal if necessary. As soon

as the agent is within proximity of the first goal, therefore completing it, the next goal becomes

the current one, and a new goal is generated or added. The above methods are compatible with

real-time user control. It can be used in conjunction with a mouse-click input method. It can

also be used by a high-level planner that uses information from a global map.

1.6.3 Solving POMDPs with Recurrent Neural Networks

If we treat the problem of decomposition of complex terrains into N discrete ones as a partially

observable task with a latent variable τ denoting the current terrain that the agent is on, it

should theoretically be possible to learn a recurrent master policy which can learn to infer this

hidden variable and pick the gait appropriately. Indeed a well-constructed LSTM has sufficient

representational power to perform this task. We can show this by learning the LSTM policy

to imitate the expert policies on joint terrains directly. The imitation works, but as in most

behavioral cloning tasks, the compounding domain shift is significant, and the policy often

finds itself in a state where it does not know how to perform. This can be mitigated using a

technique called DAGGER [88], but we refrained from going down this path to avoid adding

additional complexity. Another reason is that expert policies trained using RL will always be

more robust than an imitated policy.

The question remains, though, why a recurrent agent does not learn an adaptive gait if

trained end-to-end on random joint environments. We speculate that the discovery of a gait

already results in a strong local minimum, which is difficult to get out of to adapt to other

required scenarios. A a result, the policy learns a single gait, which is a compromise between

all the different environments that it was trained on instead of learning a distinct g it for each

environment. To mitigate this issue, the policy would have to somehow explore at the latent gait

level, which we do not as of yet know how to do.

There is another reason as to why it is advantageous to multiplex expert policies instead of
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having a single master policy. If we discover that our agent performs poorly on a specific part

of the target environment, we can model that environment and quickly train an expert policy on

just that environment. The time it takes to train a single expert on an environment as well as

to retrain the multiplexer policy using supervised learning is significantly less than retraining a

master policy on all the different terrains.

1.6.4 Synthetic ways of generating real sampled terrain

Learning adaptive legged locomotion in simulation requires programming a rich enough set of

terrains using various spatially correlated noise functions such the Perlin generator, described

in section 1.5.1. We propose a method to synthesize realistic terrain which can be sampled from

the actual target terrain that we want to learn locomotion on. This can be done by first capturing

a substantial amount of photographs (50-200) of a sample of the target terrain by hand. A

smartphone camera is sufficient. The photographs are then fed into a free software package

such as VisualSFM [89] [90] which reconstructs the poses of the camera and produces a dense

pointcloud. This can further be imported into a free package called Meshlab [91] which creates

a mesh from this pointcloud which can then be rendered as a height map. Having a heightmap

we would then like to be able to synthe- size random heightmaps similar to this sample. For this

task we use EbSynth [92] which is an efficient implementation of patch-based synthesis which

supports annotation of various segments of the example and output image. A heightmap in this

regard behaves similarly to a texture. Figure 1.11 shows the pipeline to synthesize new samples

from real terrain.

Figure 1.11: Terrain synthesis pipeline. The user provides photographs of a patch of terrain
from various angles which are converted into a pointcloud using structure from motion. This is
then turned into a heightmap from which similar heightmaps are synthesized using patch based
synthesis.

The whole process takes roughly 1 hour to complete, including computation times for the

reconstruction. A sample of the results of synthesized terrain for images taken near s sand-

piled construction site can be seen in figure 1.12. One disadvantage in using this technique is

that there is a trade of between small and large scale features. If detailed terrain features are

required then the target patch should be small, in the order of 1m2 so that small scale details can
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be captured. It is also theoretically possible to do a heighmap synthesis with RGB texture on

top, but this would require modification of the patch based algorithm to work with an additional

dimension. This is something that we left for future work.

Figure 1.12: Examples of terrain synthesized using EbSynth from a reconstructed heightmap
using VisualSFM.

1.7 Discussion

We presented a data-driven approach to hexapod locomotion that requires almost no domain

knowledge and no hand-crafting of the locomotion policy. Our approach could be used in a

setting where the target environment is structured and that we have an idea on what to expect.

The whole concept of the N-terrain decomposition was made with the idea that the operator

can analyze the terrain beforehand and pick out N difficult aspects that are then used to train

locomotion. It’s not necessary not capture every single feature of the target terrain, as we

saw that policies that have been trained on sufficiently rich terrain perform well on a range of

terrains, including ones that it has not seen during training. On the other hand, more difficult

sections such as stairs and pipes require switching to a policy that was purpose-trained.

There are still several drawbacks in our approach, such as having to combine trained experts

through a multiplexer policy. A better method would be one that automatically trains a recur-

rent policy that works on all terrains. As described in section 1.6.3, this problem is difficult and

requires more exploration in suitable recurrent architectures and training algorithms. Another

drawback is the necessity to manually program a terrain distribution generator from which ter-
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rain samples can be generated. Future work might feature automatic terrain generation from

gathered photos or videos using structure from motion and heightmap synthesis.

In our work, we strive to promote a practical application of data-driven locomotion for

legged robots. One of the issues with transferring a learned policy from the simulator to a real

platform is that the dynamics, sensing, and actuation can often differ. This is a well-known

open problem in deep learning. In our case, sensory input is not an issue as we only use inte-

roceptive data. Dynamics and actuation should not cause problems since the hexapod platform

is statically stable, and the movement is more or less kinematic. Moreover, experiments show

that our policies are robust to certain changes in parameters which attempt to model some of

the differences between the simulated and real model.

Concerning learned locomotion policies, a visual analysis of the learned gaits shows that

using a non-structured policy class such as an MLP exhibits asymmetries in the rhythmic move-

ment, which could cause more wear to some servos more than others on a real platform. This

expected as the MLP imposes no prior on the morphology of the robot. Graph-based policy

classes such as in [19], [93] could help mitigate this issue. Unfortunately the authors only

demonstrate their results on flat terrain which does not properly test the performance of the

method. As mentioned throughout the paper, many of the difficulties of only emerge when the

robot needs to turn and change gait. This is an open problem and we leave it to future work to

experiment with various policy classes.

Given the current trend in all the various subfields of AI, it is clear that more general ap-

proaches that can leverage large sources of compute will dominate hand-crafted ones. We be-

lieve that the future of robotic locomotion is going to be almost entirely data-driven. Simulated

training environments will likely be generated procedurally or in an adversarial fashion, and

locomotion policies will be optimized on those environments using RL or some other heuristic

search algorithm such as Natural Evolution Strategies (NES) [94]. This is arguably the most

flexible and scalable approach, and as argued by [95], scalability is key for the future of any

almost AI technique.



Chapter 2

Learned procedural hexapod locomotion

Most data driven control methods start from a black box function approximator such as a neural

network and use reward shaping and auxilliary tasks [96] to guide the policy into performing

as the designer expected. In this section we take the opposite approach. We study a case where

we can improve an existing procedural hexapod locomotion algorithm using neural networks

and black-box learning methods. Despite the high dimensionality of the overactuated hexapod

platform, the locomotion task exhibits both morphological and temporal structure. Approaches

such as procedural locomotion generation use inverse kinematics and leg scheduling to move

the torso towards a target location. Such approaches are prominent in graphical animation.

However, considering kinematics alone can often cause failure in dynamical environments due

to slippages and other unforseen effects. We propose taking such an approach and replacing

the leg scheduling and other heuristic decision points with neural network modules. We show

that we can formulate the gait-phase decision for each leg as learnable state machines and use

Evolutionary Strategies in simulation to optimize the free parameters. We also show that other

useful locomotion traits, such as torso and leg height can be optimized as well. We propose

several weight-sharing schemes between the legs of the hexapod that lead to fewer learnable

parameters, a stronger inductive bias that leads to faster learning. The result improves on the

baseline procedural approach on difficult terrains such as stairs. Our approach attempts to inject

learnable experience from simulation into an algorithm with a high inductive prior, resulting

in a hybrid control policy that has superior performance on a wide range of uneven terrains.

The work in this section is mostly based on our publication titled ”Improving procedural hexa-

pod locomotion generation with neural network decision modules”, that was presented at the

Modelling & Simulation for autonomous systems conference (MESAS2022). We added several

figures and additional descriptions that we did not see fit to include in the paper.

47
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2.1 Introduction

Legged robots are one of the most versatile robotic platforms due to the large variety of difficult

terrain that they are capable of traversing. This has motivated many areas of research for the

construction and locomotion of such platforms. Various morphologies, such as two, four, and

six-legged platforms have their own advantages [97] and drawbacks. The Hexapod platform

has six legs with three degrees of freedom for each leg, totaling in 18 degrees of freedom. The

most prominent advantage of such a configuration is static stability, meaning that locomotion

can be generated kinematically, without significant consideration for the dynamics of the sys-

tem. Such approaches are often used in graphics animations [98] and high-end game engines.

On real robotic platforms, where slippage, obstructions, and other difficulties are present, we

may find that various heuristics are required to tune the algorithm to perform robustly in a given

environment. Such tuning can be difficult and time-consuming. Instead what can be done is

to modify the handcrafted algorithm and replace various heuristic decision points with learn-

able functions such as neural networks. These can then be optimized in simulation on a wide

variety of complex terrains until suitable behavior is achieved. This approach is in contrast to

the classical end-to-end learning paradigm where we assume that we know nothing about the

problem and train a large neural network to solve the task using Reinforcement Learning. Such

methods are powerful and have shown impressive performance in various tasks, but require a

large number of training steps and are more difficult to generalize to unknown settings, due to

the lack of inductive prior of the underlying algorithm structure.

2.2 Related work

Various approaches have been developed over the past years which study hexapod locomotion.

Biologically inspired solutions are popular and mostly revolve around using Central Pattern

Generators (CPG) for generating a locomotion gait. Such generators can be tuned or learned

[99] according to a given reward function. CPGs have also been implemented for legged robots

in analog circuits [100]. Some works have also used plain oscillators with variable frequen-

cies for each leg with interdependent signals to generate locomotion [101]. Other approaches

include using leg planning [102] and proprioceptive sensing methods for gait adaptation such

as in [103]. Powerful learning methods such as Reinforcement learning (RL) can be used to

generate locomotion for hexapod robots. The work of [104] uses neural networks with focus

on decentralized control. Inductive priors such as graph-like structures can also be applied to

neural networks in conjunction with RL for hexapod robots [19]. The work of [28] uses a heirar-

chical structure of expert policies that provide adaptive locomotion in difficult terrains.
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Figure 2.1: Learnable unstructured Algorithm (LSA) illustration

Alternative, non-learning approaches include using kinematic models and procedural genera-

tion for locomotion, such as the work of [98]. These algorithms are strongly structured, perform

well, but experience issues when deploying on a physical engine. Some works have attempted

to model hexapod dynamics [105] to assist with this. Nevertheless, it is necessary in such meth-

ods to relax some of the heuristic parts of the algorithms and replace them with neural networks

so that we can learn more complex behavior through trial and error. Black box algorithms such

as Heuristic Random Search algorithms such CMA-ES [106] and Augmented Random Search

(ARS) [12] can be used to optimize any set of free parameters in a given algorithm by using

interactions with an environment that are evaluated by a reward function. Some works such

as [107] have leveraged similar algorithms to improve openloop sinusiodal locomotion gener-

ation for hexapod robots. Other works such as [108] use similar search algorithms to improve

programmed algorithms by optimizing for locomotion within a constrained gait space. Our

approach is similar to [108], but we propose to use HRS algorithms to improve a kinematic ap-

proach similar to [98] by replacing various modules using neural networks and using blackbox

optimization to find the parameters which improve the initial algorithm on difficult terrains such

as stairs and high tiles.

Our contributions can be summarized in the following points

• A hybrid locomotion algorithm that consists of hand designed kinematic logic as well as

learnable decision points.
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• Training procedure and performance evaluation of the baseline procedural locomotion

method against our improved version with learnable state-machine leg scheduling, and

torso and leg height regression.

• A brief analysis of the training difficulties of unstructured vs structured algorithms.

• An environment of several difficult terrains in the Pybullet simulation for locomotion

testing.

2.3 Locomotion generation

In this section we will describe the hexapod platform in brief, particularly perception and actua-

tion. We also breakdown the components of our procedural locomotion algorithm, and describe

how we attempt to improve the performance by replacing various components with neural net-

work modules.

2.3.1 Hexapod environment overview

The platform that we use is a model of the MKII Phantom X hexapod in the Pybullet simulator.

This hexapod has six legs with three joints in each leg, shown in 2.2.

Figure 2.2: Hexapod leg joints description.

The actuators are modeled as servos that accept target joint angles and implement control

using a PID regulator. Proprioceptive observations include current joint angles and velocities,

as well as torso attitude. To obtain an algorithm that can be realistically used on a real platform,

we use sparse point cloud observations that could be obtained from a depth camera or lidar.

From the sparse point cloud we compute a height map by dividing the point cloud regions into

a regular grid, shown in figure 2.3. Empty voxel heights are calculated by interpolation from

neighboring voxels.
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Figure 2.3: Point cloud heightmap approximation.

We also assume that we will be running an accurate localization algorithm such as ICP so

in simulation we use ground truth position data for our experiments.

2.3.2 Algorithm structure

The locomotion algorithm consists of a movement generation module which accepts a set of

pre-computed gait parameters, set of observations and target control inputs. In this section we

will describe all the above components.

Observations and control inputs

The observations and target control inputs include the following:

• Current state of the hexapod st = (xt ,qt , jt) which consists of position xt , orientation qt

and joint angles jt

• Control inputs θ tar
t , and vtar

t defines the target direction angle and the xy velocity respec-

tively. These are provided by the user or by a waypoint follower.

• Point cloud heightmap pct provides exteroceptive data for the algorithm, shown in figure

2.3.

Movement generation module

A single step of the movement generation module is described in algorithm 1.
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Algorithm 1 Movement generator step
Estimate surface normal

Update torso pitch and roll based on the surface normal

if no legs are at the operating boundary then
Use IKT to move torso position and yaw based on control input

Update torso height based on input control

Calculate torso transformation matrix

for each leg do
Update leg given precomputed gait parameters and observations (see 2.3.2)

write joint angles to servos

The leg update function, mentioned in algorithm 1 consists of calculating the target foot

position using direct kinematics, and then deciding the movement depending on whether the

leg is in stance or swing phase. If in stance phase, then the leg follows the height of the

corresponding position of the terrain. If in swing phase, then the leg height and position is

updated according to the progress of the swing. Phase decisions are described in 2.

Target foot position calculation

Foot placement depends on the control input. The following examples can be seen in Figure

2.4.

Figure 2.4: Visualization of foot placement defined by Equations 2.1 and 2.3.

When the input control is static, the foot target txy is held in the middle cxy of the boundary.

Otherwise, the step-down target txy is placed within range r in the direction d of translational

or rotational control, shown in equation 2.1.

txy = cxy + r
d

∥d∥
(2.1)

Turning control is shown in equation 2.3

w = (Jcoxa−c)×zworld (2.2)
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txy = cxy + rd
wxy

∥wxy∥
(2.3)

The leg z coordinate is then sampled from the heightmap location corresponding to the

target foot position

2.3.3 Precomputed gait parameters

Precomputed gait parameters: We consider the following important three gait parameters that

have a significant impact of the locomotion: a) Gait-phases: These variables decide whether

a leg will transition into one of the possible {stance,swing} phases. b) Torso height: Torso

height can be important for locomotion and it is not always straightforward to decide how high

it should be based on underlying terrain. c) Leg lifting height: Leg lifting can have an impact

on the quality of the gait, stability as well as collision with the neighboring terrain. In the

following two subsections we describe how these gait parameters are computed manually and

how we propose to replace them using neural network modules.

Hand designed gait parameters

At a given time, an individual leg can be in the stance or swing phase. When in the stance phase

then the leg remains in this phase until it is nearing defined kinematic reach boundary of that

given leg, where it automatically goes into the swing phase, described in algorithm 2. We use a

stable tripod gait which activates groups of three legs at once, shown in figure 2.5

Figure 2.5: Tripod gait. The leg groups can be distinguished by the red and green color.
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Algorithm 2 Gait-phase transition
1: if Group 1 is in stance phase and some leg from Group 2 is stuck then
2: Put Group 2 in swing phase

3: if Group 2 is in stance phase and some leg from Group 1 is stuck then
4: Put Group 1 in swing phase

5:

6: for leg in All legs do
7: if leg distance from target foot position ¡ some threshold then
8: Put leg in stance phase

The movement generator calculates the torso height as follows:

htz =
1
6

6

∑
j=1

t jz +hd +hi (2.4)

Where htz is the torso height in world coordinates, t1z, t2z, . . . , t6z are z-coordinates of the

target positions, hd is the default height value, and hi is the torso height control parameter.

Leg height when lifting is calculated as follows:

hl = ht +hd +hi (2.5)

Where hl is the leg height in the world coordinates, ht is the terrain height sampled from

heightmap, hd is the default lifting height, and hi is the leg lifting height control parameter.

Neural network gait parameters

Gait Phase decisions We implemented a neural network for each of the 6 legs that can decide

to switch between the stance and swing phases given interoceptive and exteroceptive data. The

observations oi
t for leg i and timestep t consist of current leg phases pht , leg tip ground contacts

cpt ∈ R6 of all legs, leg joint angles ji
t ∈ R3, distance to the target position di

t ∈ R3, surface

normal sni
t ∈ R3 and leg boundary conditions lbt ∈ R6 of all legs. The whole observation is

shown in equation 2.6.

legi
t = {pht ,cpt , lbt , ji

t ,d
i
t ,sni

t} ∈ R25 (2.6)

Each leg gets detailed information such as joint angles only of itself, but global information

such as leg contact points of all other legs as well. This way the observation can stay relatively

low dimensional but still be informative. The neural networks can collectively decide which

legs have slipped, which are stuck and can adapt to unforseen behaviors.
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The neural network is a Multi Layer Perceptron (MLP) with ReLu activation functions and a

hyperbolic tangent (tanh) function at the output. Each network pii >gaitθi
maps input legi

t to an

output ai
t+1 ∈ R . The phase was decided according to equation 2.7

leg phase =

swing-phase, a1 > a2

stance-phase, a1 ≤ a2

(2.7)

Figure 2.6 shows the structure of such a network.

Leg phasesObservations

Figure 2.6: Generic Neural Network structure

Torso and leg height For predicting the Torso and leg heights we use a similar neural network

architecture as the gait phases, but with slightly different inputs. For the Torso height prediction

the observation consists of gait phases pht , leg boundary conditions lbt , leg contacts cpt , surface

normal sni
t , torso orientation torsoang

t and the torso height torsohm sampled from the heightmap.

This totals to a dimension of 25.

For the leg height prediction of leg i we only a small 8 dimensional vector consisting of the

surface normal sni
t , leg joint angles ji

t , leg ground contact cpi
t and current leg height li

height.

Weight sharing patterns for gait phases Given that we will be making decisions for each leg

of the hexapod robot, it makes sense to consider the structure of the morphology so as better to

distribute the weights of the neural network and to avoid redundancy. We propose three options

of weight sharing. The first is to allow each leg neural network module to have unique weights.

This leads to a large amount of parameters and is more difficult to train. The second scheme

is to use bilateral weight sharing to exploit the bilateral symmetry present in the robot. This

would mean that we only have 3 sets of weights, and the rest will be mirrored. The last scheme

is to use the same weights for each leg of the hexapod, resulting in only one set of weights.

We experimentally found that the third proposed scheme to share a single set of weights

across all 6 legs works best. Some locomotion results can even be seen after a single epoch of

training. The only difficulty with the bilateral and full weight sharing scheme is to correctly

route the inputs of the other legs to each other input.
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Figure 2.7: Neural network weight sharing schemes.

Figure 2.8: Experimental terrains: Flat, rocks, stairs

2.4 Experiments

Training and testing is done in the PyBullet simulator. The environment consists of the physics

engine, hexapod robot, and the reward function. Episodes start with the robot spawned at a given

position. The main goal is to achieve successful locomotion in the direction of the positive x

axis, along with other criteria described below. We test three different terrains with varying

difficulties and challenges, shown in figure 2.8. The rocky terrain is generated by discretizing

the height of a 2 dimensional Perlin noise function. 1

Training is done using the CMA-ES algorithm by sampling a batch of candidate solutions

from the current distribution, evaluating them for a single episode each and then then updating

the candidate solutions according to the rewards. We consider three different criteria for eval-

uation: a) Distance travelled, which is calculated by summing the instantaneous ẋ velocities,

b) Locomotion smoothness per distance, calculated by summing torso translational and angular

accelerations at and εt , normalized by the distance travelled, shown in equation 2.8 c) Power

spent, by summing the product of instantaneous joint torques and velocities, shown in equation

2.9.

rs =−∥ai + cϵi∥2 (2.8)

1Video: https://vimeo.com/744114592

https://vimeo.com/744114592
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rp =
18

∑
k=1
|τk| · jk (2.9)
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Figure 2.9: A training curve of an optimization procedure of our learnable structured algorithm
approach

We trained and evaluated our baseline structured algorithm (SA) approach, against the im-

proved proposed learnable structure algorithm (LSA) and also an end-to-end (E2E) neural net-

work. The approaches were trained individually on all three terrains. Results are shown in tables

2.3. D is the distance reached, S is the smoothness per distance, P is the power consumption per

distance.

We can also see from figure 2.10 that our proposed learned variant (LSA) is superior to

the baseline algorithm (SA) with increasing terrain difficulty in distance travelled and power

consumption. This suggests that the baseline algorithm is suboptimal and admits improvement.

Reward landscape One interesting thing to note when training a highly structured algorithm

versus a neural network is that the reward landscapes are vastly different. A small change to the

weight of the E2E neural network has a smooth and roughly proportionate effect on the reward.

The structured algorithm, on the other hand, is much more sensitive, especially when optimiz-

ing something like the gait phase scheduling. We attempt to show the various landscapes by

projecting parameter-reward pairs to a 2 dimensional plot using Principle Component Analysis

(PCA). Figure 2.11 shows the structured LSA algorithm on the left, and the unstructured neural

network on the right. The color intensity denotes reward. We can see that in the unstructured

algorithm there is quite a distinct path in 2D which leads the weight vector from the random

initialization to the optimal solution. This is something that can make training algorithms with
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Policy D Sd Pd
SA 28.58 -7.40 -94.85

LSA 32.58 -9.19 -86.67
E2E 135.21 -339.17 -61.88

Table 2.1: Performance on flat terrain
Policy D Sd Pd

SA 16.31 -202.74 -262.66
LSA 23.03 -210.42 -190.03
E2E 15.31 -1906.96 -643.16

Table 2.2: Performance on rocky terrain
Policy D Sd Pd

SA 6.97 -251.06 -603.37
LSA 8.24 -481.10 -588.32
E2E 9.37 -2374.00 -818.58

Table 2.3: Performance on steps terrain

Figure 2.10: Trends comparing the various policies
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Figure 2.11: Parameter vectors of the LSA (left) and E2E (right) projected to 2D with PCA. The
figure suggests that the E2E reward landscape is significantly more smooth and informative than
the LSA.

high inductive prior quite difficult using techniques such as random search.

2.5 Discussion and Conclusion

We proposed several experiments to compare the performance of our procedural locomotion

algorithm (SA) and the variant where we replace the gait scheduling and several other control

parameters with neural network modules. From the table 2.3 we can see that the algorithm with

the largest traversed distance and lowest power is the end-to-end neural network (E2E). This is,

however misleading as we can see from video results that the hexapod cheats by making large

jumps and strides, gaining a large distance. It shows that it is more difficult to train such a task

without a strong prior and more work has to go into the reward function to prevent such arti-

facts. Tables 2.3 show that our proposed neural network modules alow the structured algorithm

(LSA) to traverse significantly more terrain than the static variant (SA). This is also confirmed

in graphs shown in figure 2.10. Figure 2.10 also shows that although the distance traversed

by the E2E algorithm is large for smooth terrain, it is overtaken by our LSA variant in more

difficult terrains. By visually inspecting the resultant locomotion policies in the supplementary

video we can see that the unstructured variant is very shaky and

We also note that both approaches, structured and unstructured, that were presented have their

own difficulties during training. The unstructured approach (E2E) requires more involved re-

ward engineering due to the lack of inductive prior in the policy structure. The structured

variant, however, can be more difficult to train due to the noisier reward landscape. This can be



CHAPTER 2. LEARNED PROCEDURAL HEXAPOD LOCOMOTION 60

seen in the two dimensional structure of candidate parameter vectors of the CMA-ES algorithm,

obtained by PCA projection, shown in 2.11.

In conclusion, we have shown that we can improve already programmed locomotion algorithms

by replacing various decision points by neural network modules. We think that this approach is

useful not only for legged robots, but for other platforms where we can make use of a mix of

problem domain knowledge and learned experience.



Part III

Articulated tracked robot control
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Chapter 3

Hybrid control policies

In this section we look at tracked robot control. Specifically, we study the autonomous con-

trol of independent robot flippers on two different platforms with similar morphologies. The

motivation of this work is to enable semi-autonomous of full autonomous deployment of such

a platform in complex urban and outdoor terrains by providing with an algorithm that cor-

rectly sets the individual flippers in suitable position. We demonstrate a hybrid approach to

autonomous flipper control, focusing on a fusion of hard-coded and learned knowledge. The

result is a sample-efficient and modifiable control structure that can be used in conjunction with

a mapping/navigation stack. The backbone of the control policy is formulated as a state ma-

chine whose states define various flipper action templates and local control behaviors. The state

machine transitions are also used as an interface that facilitate the gathering of demonstrations

using a D-PAD gamepad to train the transitions of the state machine. One of our contributions is

a soft-differentiable state machine neural network that mitigates the shortcomings of its naively

implemented counterpart and improves over a multi-layer perceptron baseline in the task of

state-transition classification. We show that by training on several minutes of user-gathered

demonstrations in simulation, our results show a considerable increase in performance over a

previous competing approach in several essential criteria such as traversal smoothness and phys-

ical shock. We demonstrate zero-shot domain transfer from simulated training to a wide range

of obstacles on a similar real robotic platform. We successfully deployed an earlier version of

our work in the Defense Advanced Research Projects Agency (DARPA) Subterranean Chal-

lenge to alleviate the operator of manual flipper control. In the urban circuit our approach was

able to autonomously traverse stairs and other obstacles, that enabled the robot to get to hard to

reach place, improving map coverage and attaining a higher overall score. The work on this sec-

tion is taken from our publication titled ”Autonomous state-based flipper control for articulated

tracked robots in urban environments”, published in the IEEE Robotics and Automation Letters

Journal, and presented at the IROS 2022 conference. We also include additional mathematical

descriptions to our proposed soft-differentiable state machine, as well as illustrations of various

62
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parts of the system that could not make it to the publication due to page constraints.

3.1 Introduction and overview

Robotic control is a challenging problem usually approached by applying first principles or

engineering a heuristic solution based on an underlying knowledge of the problem. This of-

ten results in intractable solutions or limited performance due to highly non-linear dynamics

or high-dimensional observations. Lately, many works have shown impressive robotic control

performance in various difficult tasks [109], [110], [111] using trial and error-based approaches

such as Reinforcement Learning or Random Search [37]. This approach typically assumes lit-

tle or nothing of the underlying task and therefore allows the use of flexible parametric control

functions such as neural networks [112]. Such control functions are robot-agnostic and can lead

to a less than desirable behavior, requiring tedious reward engineering to alleviate the issue. The

weak inductive prior in such flexible functions manifests itself in high sample complexity. This

requires very fast simulations and typically tens of millions of training steps to get decent re-

sults. Finally, the result of such a monolithic algorithm is a non-interpretable black box. We

aim to bridge the extremes of hard-coded control with learning-based methods and explore an

approach that attempts to unify and make use of the best of both worlds. We hypothesize that

by analyzing how a human operator performs a robotic task manually, we can structure our

approach appropriately. The idea is to partition the control into a module that is effectively

learnable from demonstrations and another module that is simple enough to be heuristically

hard-coded. The combination of these modules results in a control approach that preserves

modularity and allows a degree of interpretability. We demonstrate this approach on the task of

flipper position control of an articulated tracked robot for purposes of obstacle traversal.

From extensive interaction with the robot, we observe that for most structured obstacles, it is

sufficient to divide the obstacle negotiation into several discrete phases: Neutral (N), Ascending-

front (N), Ascending-rear (AR), Stairs-up (SU), Descending-front (DF), Descending-rear (AR),

Stairs-down (SD. The state names correspond to the phase of obstacle negotiation at which the

robot is currently at. Figure 3.1 shows these phases (states), and their corresponding transitions,

which together form a state machine. Transitions are learned from demonstrations by a human

operator using a novel soft-differentiable state machine architecture. Each state additionally

defines local flipper controllers, which allow us to hard-code desired behaviors into the system.

At each timestep, the state machine classifier decides the next state transition. The selected

local flipper controller then overlays flipper template positions, as well as roll stabilization and

escape maneuvers to generate the final flipper target angles. For clarity, we will refer to our

proposed control system as the hybrid flipper controller (HFC).
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Figure 3.1: An illustration of our hybrid approach. The red dotted lines show the gradient flow
from the loss function. The defined flipper states and their transitions are shown using black
arrows. Self-transitions are omitted for clarity. In all states, the robot is shown as right-facing.
The flipper colors correspond to predefined flipper torques with green being the lightest and red
the heaviest. State acronyms are expanded in Section 3.4.
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Our work is summarized by the following contributions:

• A state-based control architecture for articulated tracked robots combining learnable and

hard-coded control elements which achieves zero-shot domain transfer performance on a

variety of difficult urban obstacles.

• Proposal and comparison of several state-of-the-art structures for learning state-transition

functions, including our proposed soft-differentiable state machine.

• Intuitive state-based human control interface for gathering quality locomotion data for

learning a state-transition policy for autonomous control.

• A training and test obstacle course environment in the OSRF ignition gazebo simulator

with accurate tracked robot plugins [113] for comparing and testing the performance of

proposed control algorithms.

3.2 Related work

Articulated tracked robot control is a complex perception and control problem. The choice of

approach can depend on the target environment and the available sensory configuration. The

authors of [114] demonstrate that simple geometric approaches with a limited sensory payload

can be used to estimate suitable target flipper angles which keep the robot stable. The work

of [115] uses Reinforcement Learning (RL) to optimize a neural network policy but focuses

specifically on stairs traversal by using externally calculated edge features. The work by [116]

explores safety in RL and demonstrates safe learning on a single low palette, whereas our work

is focused on a variety of difficult obstacles. A similar work uses a safe RL algorithm for

staircase negotiation for assistive robots [117]. Computationally demanding approaches such

as planning [118] have been used in traversing certain obstacles. Planning requires a fast and

flexible simulator that allows placing the robot in various positions. It also requires privileged

information, which we do not have because our observation features are built from an elevation

map that is discovered on the fly. The authors in [119] teach a linear classifier to predict a suit-

able flipper template by learning a q-function from random actions at various poses, annotated

by noisy human rewards.

We build on the idea of using discrete flipper templates from [119], extending and im-

proving the work in several ways: Firstly, we constrain the problem to a sequential decision

task by explicitly modeling phase transitions using a state machine. We propose a learnable



CHAPTER 3. HYBRID CONTROL POLICIES 66

soft-differentiable neural state machine architecture that solves several issues of a naively im-

plemented neural state machine, described in Section 3.4. Secondly, we expand the notion of

flipper templates to states which define other attributes and hard-coded behaviors, allowing us

to inject domain knowledge into the system and train the classifier under the distribution of the

entire system. Thirdly, we use a cleaner imitation learning approach using high-quality demon-

strations made possible by our state machine structure. We show extensive experiments on a

complex variety of urban obstacles both in simulation and a corresponding real platform and

show that our hybrid approach significantly outperforms the previous work. Imitation learning

has seen use in several robotic tasks, such as autonomously following a forest trail from visual

input [120], or car steering imitation [121]. This learning approach makes sense and can be pre-

ferred over Reinforcement Learning when we can easily gather high-quality demonstrations,

such as in our case.

3.3 Formulation of the control and optimization problem.

For consistency with existing robotic learning literature, we will use a subset of a Markov

Decision Problem with an additional latent state to formally describe the control problem.

• A set of states s ∈ S of a robot in which each state uniquely describes the configuration of

the robot and environment.

• Observations o ∈O which denote what the control agent sees at each time step. Observa-

tions consist of robot body roll and pitch information, and exteroceptive feature vectors

f i
t ∈ R4 for each flipper index i ∈ 1,2,3,4. These vectors represent the height-map terrain

region pci
t in defined bounding box regions around the front and rear flippers.

ot = { f 1
t , f 2

t , f 3
t , f 4

t ,rt , pt} (3.1)

• Set of latent states qt ∈Q = {1, ..,n} of the state machine. Vector pt ∈ P⊂ R|Q| represents

the probability of being in state i at time t. State transition function pt+1 = µφ (ot ,qt) is

parameterized by learnable parameter vector φ .

• Actions a∈ A that a control policy πq = π(ot ,argmax pt) : ot→ at takes at each time step.

These actions represent the target flipper positions of the robot. We use a total of |Q|
action policies πq, each defining flipper behavior in latent state q. In our case, π consists

of hard-coded behaviors which have no learnable parameters.

• World transition function st+1 = T (st ,at) which advances the environment one time step

after taking a specific action at . The robot and navigation stack is part of the environment.
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The complete behavior of the flipper controller is defined by the combination of a learnable

state-transition function µφ and hard-coded knowledge represented by policy π , as summarized

in algorithm 3:

Algorithm 3 Flipper control inference

p1 = [1,0 . . .0] % Initialization
for t=1:T do

ot = get measurement()
qt = argmax pt % Current latent state
at = πqt (ot) % Control with hand-crafted policy
pt+1 = µφqt

(ot) % Following latent state prob. distr.

We learn the latent state-transition policy µφ from a set of demonstrations D=(o0,q1), ...,(om−1,qm)

where qt+1 are latent states chosen by an expert human operator for observation ot , described in

more detailed in Section 3.6. The learning problem can be formulated as a sequential supervised

classification of the following latent states with a cross-entropy loss l.

φ
∗ = argmin

φ
∑

(o,q)∈D
l(µφ (o),q) (3.2)

An alternative to learning from demonstrations would be to use trial and error methods such

as Reinforcement Learning. Despite their recent successes of such methods, we decided to

forgo them due to the following reasons: A simulator running sensor rendering and the entire

navigation stack achieves a real-time factor of less than 1x on a modern 6-core CPU, which is

roughly two orders of magnitude less than desirable. Secondly, it is almost infeasible to reliably

reset an entire navigation stack on a system for many trajectory rollouts.

3.4 Proposed hybrid flipper control (HFC) architecture

In this section we describe in detail several learnable neural network architectures for state-

transition classifier µφ as well as the components of the hard-coded flipper policy π . We also

describe the data gathering procedure using the proposed state machine.

3.4.1 State-transition classifier µφ neural networks.

Deciding the next state can be represented by a function conditioned on a current observation

ot and in the case of state machines, additionally on latent state qt . We consider the following

three architectures:
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Multi layer perceptron (MLP): The simplest structure is a vanilla neural network with two

hidden layers which reactively map current observations to next state decisions. The input is

the observation vector ot and the output is a probability distribution pt+1 over all states Q.

pt+1 = µφ (ot) (3.3)

Training is done on randomly sampled mini-batches from the dataset.

Crisp neural network State Machine (SM) consists of |Q| transition functions represented

by |Q| neural networks µφ1, . . .µφ|Q| with the same architecture, but different parameters φi. To

predict the next state, we use the µφqt
which corresponds to the previously predicted state qt , as

shown in the following equation.

qt+1 = argmax µφqt
(ot) (3.4)

pt+1 = onehot (qt+1) (3.5)

In contrast to the MLP, we train the state machine on sequences because we require the

current latent state qt to result from the previous prediction rather than the previous ground

truth state. This allows the state machine to train under its own state distribution and prevents

degenerate solutions caused by highly temporally-correlated labels. Given the sequential nature

of the training, it often happens that at a given time step, the current classification subset does

not contain the correct label, resulting in an undefined loss. This issue sometimes causes insta-

bilities in training and results in poor performance.

Soft-differentiable state machine (SDSM): To help alleviate the above issues with the

crisp state machine, we propose a differentiable, fuzzy variant of the state machine. Similarly to

the alternative described above, we define neural networks µφ1, . . .µφ|Q| for each of state q ∈ Q.

The key difference here is that at each time step, we keep a complete probability distribution

over all states pt . The probability output of the current state is calculated by taking the weighted

probability of all transition functions µφqi
as follows:

pt+1 = ∑
i

pi
t ·µφqt

(ot) (3.6)

This is equivalent to taking the expectation of all possible state trajectories simultaneously,

giving a well-defined loss at each time step and improved performance. This is made a bit more

clearly when describing the computation as matrix multiplication in equation 3.4.1, where we

denote transition functions from state i to state j as f (ot)
i, j.
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pt+1 =


p0

t+1
...

pm−1
t+1



=


p0

t · f (ot)
(0,0) + · · · + pm−1

t · f (ot)
(m−1,0)

...

p0
t · f (ot)

(0,m−1) + · · · + pm−1
t · f (ot)

(m−1,m−1)



=


f (ot)

(0,0) + · · · + f (ot)
(m−1,0)

...

f (ot)
(0,m−1) + · · · + f (ot)

(m−1,m−1)


︸ ︷︷ ︸

T (ot)

·


p0

t
...

pm−1
t



= T (ot) · pt

The SDSM also has the added benefit of making our architecture temporally differentiable,

as illustrated in figure 3.2. An auto diff package such as Pytorch [122] allows us to keep the

predicted state as Pytorch tensor objects which builds a computational graph in the background

which we can then backpropagate through. In a sense, our architecture is similar to a recurrent

neural network (RNN) but with a meaningful hidden state. During inference, we propagate the

probability distribution the same way as during training and take the argmax at each timestep

as the inferred state for policy π .

3.4.2 Local flipper control policy (LFC) π:

A given state q defines a local control policy πq, which provides flipper target positions [a1,a2,a3,a4].

Action ai is an overlay of three separate actions.

• Flipper template position ai
temp: Action templates are illustrated in figure 3.1 and are

chosen to be suitable for each phase of the traversal process for the tracked robot. These

templates also define target torque levels, shown by color in figure 3.1.

• Body roll stabilization: We implement a proportional-derivative (PD) regulator that at-

tempts to stabilize the roll of the body by acting on the appropriate (left/right) flipper

group. Actions belonging to the left and right flipper groups are defined as [a1,a3] and

[a2,a4] respectively. Stabilization actions are then calculated as
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Figure 3.2: Computation graph of our proposed soft-differentiable state machine with reduced
to 3 states for simplicity, computed through 2 time steps. The dashed lines show the differen-
tiable links which are carried over to the next state.

a1,3
stab =−(φ · kp− φ̇kd)

a2,4
stab = (φ · kp− φ̇kd)

(3.7)

• Escape maneuvers: We define a feature st ∈ [0,1] which we denote as stagnation, de-

noting how much the robot is currently stuck. This feature is computed by comparing the

estimated linear velocity and angular velocity of the robot against the target differential

steering velocity given by the path follower (or operator). The individual flipper escape

maneuver (em) actions ai
em are state-dependent and are a linear function of the stagnation.

For example, for the ascending-rear state, the rear action group modifier is calculated as

a1,2
em =−st ·0.3

a3,4
em = st ·0.5

(3.8)

The resultant action lowers the rear flippers in attempt to contact the ground more and lifts

the forward flippers in case there is a conflicting obstacle during ascent, as shown in figure

3.3. It is impractical to make the template action steeper to fix this issue. The reason is

that when traversing lower obstacles, the rear of the robot would rise significantly off the

ground, resulting in a higher motor current consumption and a higher potential covariate

shift at inference.
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Figure 3.3: An escape maneuver in the ascending rear state, executed by moving the flippers in
the directions shown by the green arrows. This maneuver allows for the stuck robot to regain
flipper contact with the ground.

The total action ai is calculated as a sum of the three above actions:

ai = ai
temp +ai

stab +ai
em (3.9)

3.5 Data gathering

The key learning mechanism of our approach revolves around imitating demonstrations gath-

ered by a human operator on a variety of obstacles using a standard gamepad and third-person

visual input. Transitioning between the states on our proposed state machine structure is done

by discrete button presses on the D-PAD of the gamepad. The arrows corresponding to the

transitions are shown in figure 3.1. Despite the intimidating number of arrows on the diagram,

the control is quite simple and intuitive. Figure 3.4 shows a typical obstacle traversal sequence.

We have found that this approach leads to fewer mistakes and a lower cognitive load than other

interfaces that we have tried.

To gather the training dataset, we use our training obstacle course in the OSRF gazebo

simulator. The robot is spawned in the initial position of the obstacle course, and the navigation

stack is initialized. The operator then drives the robot manually along a predefined path around

the entire training obstacle course, similar to what is shown in figure 3.8. We vary object

traversal velocities to get a wide variety of dynamics on the obstacles. We found that the velocity

with which the robot traverses the obstacle has a significant impact on whether it is susceptible

to getting stuck due to the low clearance of the robot.
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Figure 3.4: A typical traversal sequence of a positive obstacle is shown in red. The yellow
arrows correspond to the respective directions on the gamepad DPAD that the operator has to
press to transition between the given sequences.

3.6 Navigation stack and exteroceptive features

Platform and navigation stack

The platform is a 50 kg articulated tracked robot equipped with four independent, continuously

rotating flippers, shown in figure 3.5 producing a maximum torque of roughly 120N ·m.

Figure 3.5: MARV (Mobile Autonomous Rescue Vehicle): Articulated tracked platform that
we use in our experiments.

The flippers are equipped with a ribbed polyamide belt driven by each of the four main

wheels implementing a skid-steer control design. The primary sensing device is an Ouster OS-

128 lidar that has a 90◦ horizontal field of view consisting of 128 scans and a circular resolution
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of 512 scans. Although this provides adequate visibility of the terrain around the robot, there is

still a radius of roughly 60cm where the data is obstructed by the robot body, shown in figure

3.6. This means that reactive methods on LIDAR data can’t be used directly, and a mapping

method is required to put together the scans and preprocess it to give enough information about

the terrain.

Figure 3.6: Illustration of the blind zone of the LIDAR sensor on the MARV platform.

We use an ICP-based mapping algorithm based on [123] to obtain laser scan transforma-

tions for localization. These transformations are then used by a traversability estimation [124]

algorithm, which computes a dense 2.5D point cloud map. The robot navigates toward target

waypoints generated either by a high-level command from the operator or by an autonomous

planner in conjunction with a mission plan or exploration agent.

Exteroceptive features

Each flipper has a zero-pitch bounding box region which defines point cloud regions pci, as

shown in figure 3.7. The feature vector for each flipper is a combination of the median height

of all present points, the median of the highest 10% of points, which we denote as pch−10%
i

and the lowest 10% as pcl−10%
i pci as well as the number of points present in the bounding

box divided by the maximum possible amount, giving a feature in the range of [0,1]. This

generalizes well to noisy lidar inputs on the physical platform. The complete feature vector is

shown in equation 3.10. We initially included an additional feature vector that represented some

aspects of curvature of the underlying terrain for each flipper but later removed it as it made the

neural network more sensitive to noise. In contrast to legged robots, an articulated tracked robot

does not require detailed knowledge of the terrain below it for locomotion purposes.

fi = {med(pci),med(pch−10%
i ),med(pcl−10%

i ),
|pci|

max|pci|
} (3.10)
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Figure 3.7: Bounding boxes showing the flipper point cloud regions. The traversability map
often has large regions of missing data.

3.7 Experiments and results

3.7.1 Obstacle course traversal in simulation

We evaluate the performance of our entire system and compare our approach to a best-effort

reimplementation of similar previous work [119]. The reimplementation uses our proposed

flipper templates and quality demonstrations but keeps the original features, template predic-

tion function, and a similar learning process to what is described in the paper. We add several

of our improvements to [119] to compare the results and form an ablation. We, therefore, refer

to [119] as the baseline state of the art (Sota) in our results table. We also compare several neu-

ral network architectures in state-transition classification, including our soft-differential state

machine (SDSM). Demonstrations are available in the supplementary video. Our evaluation

criteria consist of the following:

• Classification accuracy: This shows us how much a given architecture is able to fit the

training data. The loss is a percentage of correctly classified data, calculated as follows:

classi f . acc.=
1
|D| ∑

ot ,qt∈D
δ [qt = q̂t ] (3.11)

• Traversal Failures: If the robot is stuck, requiring human intervention, then it counts as a

failure.

• State changes: Besides traversal success, we care about the smoothness and safety of

traversal. We can quantify this by counting the number of state changes that a policy

makes during the traversal. More state changes mean more excessive flipper movement
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Figure 3.8: Top-down view of test obstacle course in simulation. The white pallets are stacked
at various angles to form complex obstacles. The path is marked in yellow, and the grid size is
1 meter.

that makes the robot jerky and can lead to dangerous poses. Also, consistent state classifi-

cation can be leveraged in path following logic for safe obstacle traversal. For this reason,

we consider state consistency to be very important for real-world applications.

A single run of the experiment is performed as follows: The robot and navigation stack are

initialized. The path following algorithm drives the robot at constant velocity along a predefined

path around the obstacle course. If the robot gets stuck at a specific obstacle, the operator

intervenes by manual assistance and the run continues.

The test obstacle course, shown in figure 3.8, consists of 12 heavily modified versions of the

training obstacle course. The obstacles are compound and exhibit extreme height changes and

asymmetry, and are designed to push the limits of what can be done with this approach. Some

of the compound obstacles have several failure points, so we identify 16 total possible failure

points per run, giving a total of 32 for two runs at different velocities, which we average over

three iterations. All networks are trained on the same amount of epochs on the training course

and evaluated on the test course.

Table 3.1: Results of the baseline comparison [119] and our approach on the test course in
simulation averaged over two different test velocities.

Methods
Classif.
acc.

Failures
State
changes

[119] Orig (Sota) 0.52 24/32 -
[119] + MLP (Sota) 0.83 15/32 394
[119] + MLP + LFC
(Sota)

0.83 9/32 401

HFC + MLP (Ours) 0.86 7/32 346
HFC + SM (Ours) 0.74 17/32 -
HFC + SDSM (Ours) 0.9 3/32 230
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Effect of body roll balancing One of the low-level defined functionalities is active proportional-

derivative regulation of flippers for body roll minimization. We use our learned SDSM state-

transition policy and evaluate the effect of body roll stabilization on the minimum, and maxi-

mum roll experienced during the run of the test course and get the following result.

Table 3.2: Effects of body roll stabilization on the test circuit

Roll min Roll max
w \ stabilization
(Ours) [rad]

-0.33 0.14

w \o stabilization
[119] [rad]

-0.41 0.19

Figure 3.9: Active roll stabilization on a highly slanted obstacle. Left flippers are pushed down
and vice versa.

We can see in Table 3.2 that the effect is not too large, but significant. Body roll limita-

tion can be crucial in avoiding dangerous body roll situations where the robot might flip over.

Another reason to keep a minimal body roll is better LIDAR and camera coverage in an au-

tonomous mission.

3.7.2 Real platform experiments

Due to the current unavailability of the physical platform on which we have performed our tests

in simulation, we demonstrate real-world experiments on a similar available platform. It mainly

differs in having additional main tracks in the middle of the robot and higher body clearance.

This means that the robot is significantly less likely to get stuck on an obstacle. Due to the

non-deformability of the middle track, it requires more careful traversal to mitigate the fast

swinging motion of the body, which can damage the motors. The test is performed on five

different obstacles of various difficulty, including unseen, complex, and asymmetrical objects.

We define two additional metrics shown in equation 3.12, which we call shock and swing, in

addition to the number of state changes experienced by the transition policy as a proxy for

locomotion smoothness.
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shock =
maximum(|ẍ|+ |ÿ|+ |z̈|−9.81,0)2

N
swing = maximum(|θ̇ |+ |φ̇ |+ |ψ̇|−0.1,0)2

(3.12)

Table 3.3: Real platform zero-shot locomotion smoothness results averaged over three runs on
five obstacles from easiest to most difficult.

Obst.Methods Shock Swing
State
ch.

Fail.

1 [119] + MLP 7.7 13.8 20 0/3
HFC + MLP
(Ours)

5.6 13.1 8 0/3

HFC + SDSM
(Ours)

5.5 6.1 9 0/3

2 [119] + MLP 2.1 3.6 12 1/3
HFC + MLP
(Ours)

1.9 1.1 10 0/3

HFC + SDSM
(Ours)

1.9 1.5 7 0/3

3 [119] + MLP - - - 2/2
HFC + MLP
(Ours)

5.1 8.1 14 0/3

HFC + SDSM
(Ours)

6.2 5.4 7 0/3

4 [119] + MLP 2.8 2.9 11 0/3
HFC + MLP
(Ours)

2.3 5.0 12 0/3

HFC + SDSM
(Ours)

1.8 3.3 9 0/3

5 [119] + MLP 6.6 7.0 22 0/3
HFC + MLP
(Ours)

2.2 7.1 12 0/3

HFC + SDSM
(Ours)

1.5 3.5 8 0/3

Total
score

[119] + MLP 24.3 35.4 79 3

HFC + MLP
(Ours)

17.1 34.4 56 0

HFC + SDSM
(Ours)

16.9 19.8 40 0

The original work from [119] which used a linear function approximator, as well as our

crisp state machine (SM), was excluded from tests due to poor performance. Table 3.3 shows

that the baseline generalizes poorly to the real platform and fails on several obstacles resulting
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in robot tip-over, as can be seen in the supplementary video. Our approach leads to generally

smoother and safer performance. Using our SDSM transition function leads to the fewest state

changes, a negligible difference in overall translational shock or jerk experienced, but a signifi-

cant improvement in swing, which can be dangerous for the robot and can result in an unstable

traversal.

Figure 3.10: Several of the tested obstacles on real platform.

3.7.3 DARPA subterranean challenge deployment

This work came out of a necessity for reliable and smooth autonomous flipper locomotion for

robotic missions in an unknown environment, such as the Urban circuit of the DARPA Subt

challenge. We successfully deployed [125] a subset of the presented work in preference over

previous work [119], due to its jerky and unreliable performance. We used our proposed state

machine transition architecture but with if/else transition functions which were manually tuned

on a very limited range of obstacles and mostly relied on depth data from a forward-facing

depth camera. Our main robots were sent with confidence up and down steep staircases and

traversed other obstacles in their path autonomously in order to increase map coverage and

discover artifacts that lead to additional points.

3.8 Discussion and conclusion

We evaluated the practical use of our approach by demonstrating its performance within a com-

plete navigation stack, as it would be deployed in a real world autonomous mission. In Section

3.7 we showed that our HFC architecture can reliably traverse a large variety of obstacles in

simulation and real platform from only several minutes of demonstrations. Specifically, Table

3.1 shows that our HFC significantly outperforms the previous approach, even when augmented

with elements from our HFC. The same table also shows that our proposed SDSM significantly

outperforms the MLP decision function in the task of state classification. This is shown by hav-

ing significantly fewer failures and state changes which leads to overall smoother locomotion,

which is critical in autonomous exploration in unknown environments. As expected, the naively
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Figure 3.11: Autonomous flipper control in the DARPA subterranean challenge Urban circuit.
The robot was remotely given waypoint goals on the map. The path follower algorithm controls
the robot velocity, and our flipper controller sets the flippers in such a position that enables a
smooth transition.

implemented SM does not perform well for reasons mentioned in Section 3.4. The results in 3.1

and 3.9 also show the effectiveness of our local flipper controller (LFC) in terms of robot roll

limiting and reduction of traversal failures. We have found that allowing the temporal gradient

propagation of the SDSM improves the training classification accuracy of the demonstrations

from 0.87 to 0.92, showing that it is able to leverage the temporal gradient to adjust the prior

state distribution such that it provides a better decision outcome. We have also shown that our

approach has excellent zero-shot generalization on a similar real platform, as shown in Table

3.3, again significantly outperforming the previous approach.

Our approach decouples flipper control with robot steering, with the latter being done by a

path-following algorithm. One advantage of this choice is preserving modularity and compat-

ibility with various path following and planning algorithms which is essential when working

with a large team on a complex project. More importantly, tracked articulated robots have very

poor steering characteristics when traversing an obstacle and can lead to excessive robot wear or

overturning. For this reason, it is safer and less damaging to the robot to traverse an obstacle in

a straight path and steer when the process is completed. Our method already reliably detects the

phases of traversal, so a simple heuristic would be to wait until the robot is in the neutral state

before allowing angular track velocities. However, we decided to leave this for future work,

where we will examine the tight integration of the HFC with a planning/exploration algorithm.

Another potential issue that comes up when learning from demonstrations is the well-

documented covariate shift [24]. It describes a loss in performance of the control system at test

time due to a mismatch of the training and test trajectory distributions induced by the demon-
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strator and control algorithm, respectively. After extensive experimentation and validation, we

do not observe a significant difference between training and test performance and therefore can-

not justify implementing the remedies proposed in [24]. We speculate that some of the reasons

why we can circumvent this issue are the kinematic and inherently stable nature of the platform

and a robust choice of exteroceptive features described in Section 3.6. In addition, the learned

state transition classifier in our approach comprises only part of the control system.

One of the weaknesses of our approach is that the control decisions are only as good as the

operator. A potential future work would be to jointly learn parameters in the state transition

and our defined local policies using backpropagation. Our method fully supports this thanks to

our soft-differentiable state machine, but would require training using Reinforcement Learning.

Concerning the variability of obstacles that we are able to traverse, currently negative obstacles

such as holes are an issue. These would require additional exteroceptive features and training

examples. Another possible disadvantage of exteroceptive-based approaches such as ours is

irregular and deformable terrain such as grass.

In conclusion, we demonstrated a complete flipper control approach for articulated tracked

robots which can be learned in minutes from demonstrations and deployed in a real-life au-

tonomous navigation scenario.
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3.9 Conclusion

Data-driven methods for practical applications in robotic control are still in their early stages,

but there are already several cases where it rivals or has replaced more traditional optimization/planning-

based control methods. We discussed some of the shortcomings of such methods, such as the

high training sample complexity of trial and error optimization algorithms. We also described

various sim-to-real transfer approaches that allow a trained policy to be used on a real robot. Our

main contribution, however, focused on issues and the effect of various control law structures

for a given robot morphology. We saw that, particularly for high-dimensional-legged robots

such as hexapods, it might be more suitable to start with a heuristic approach that captures

the prior of the action space (for example, cyclic motion) and replace various decision points

with learnable modules. We also showed that it is difficult to train monolithic neural networks

to perform adaptive locomotion using Reinforcement Learning and showed that structuring a

hierarchical policy that learns to adapt locomotion gaits can be more suitable. General, low

prior functions such as MLP Neural Networks also require significant reward engineering to get

a practically usable result. One example of this is hexapod locomotion, where an MLP with

a good performance might be walking asymmetrically, using only five of the six legs, which

is unacceptable for real usage. Besides raw control performance, another metric of interest is

interpretability. This is one of the negative points of using Deep Neural Networks such as MLP

for control. In our work on articulated tracked robots, we took a look at how we can engi-

neer a hybrid control function that consists of interpretable states that have learnable transition

functions but hand-designed low-level controllers. We demonstrated significant improvements

over previous state-of-the-art approaches and also showed that a correctly engineered feature

and control space can give zero-shot generalization to the real platform. This concept fuses

data-driven control with the possibility of inserting domain knowledge of system behavior. We

believe that bridging first principle approaches and data-driven methods is the way to move for-

ward because it will bring the best of both worlds. In conclusion, the fast advance of simulation

environments, along with increasing computational power and specialized hardware accelera-

tors, means that data-driven control will likely be increasingly prevalent in many robotic and

control system domains. We believe that engineering and applying more suitable control pol-

icy structures is an important step in this endeavor and will lead to more mainstream use of

data-driven control for robotic platforms.

3.10 Future work

There is an important computational aspect of data-driven control that is rarely addressed. Ev-

ery function that maps a set of inputs to an output performs a sequence of computations on
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that input. Neural Networks, for example, perform computation as a successive forward pass

between layers. This works well for pattern recognition due to the compositional structure of

the input space. However, we know that some tasks are inherently combinatorial and therefore

require iterative computation while referencing an inner memory state. It would be interesting

to experiment with policy structures that perform some form of iterative computation on a pre-

computed set of input features and apply these to difficult robotic tasks. This would perhaps be

more suitable for a task that has combinatorial subtasks, such as planning. An example of this

would be complex foot placement for a hexapod robot or short-term navigational planning for

mobile robots. There have been works that have explored learnable iterative architectures, but

it has not been explored for robotics yet.



Appendix A

Additional contributions

A.0.1 Successfully supervised student Bachelor theses:

• Adaptive control using Neural Networks, Author: Švrčina Jan

• Learning Dynamic System Control on a Data Driven Model, Author: Aleksandr Barinov

• Learning a Structured Locomotion Algorithm for Hexapod Robots, Author: Jiřı́ Hronovský

A.0.2 World robotic competition participations during PhD studies:

• Darpa Subterranean challenge Urban Round, Washington, USA (2020)

• Darpa Subterranean challenge Final Round, Kentucky, USA (2021)
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Darpa Subt Challenge Final Round 2021

Besides research work on data-driven control methods for legged robot locomotion and articu-

lated robots, we have also participated in the DARPA Subterranean challenge Urban and final

rounds. A systems paper [125] was published by our team on the Urban round but not on the

final round. As in the Urban round, a lot of work went into designing the payload computer

systems and sensors. This also comprised the software integration necessary to run the system,

which was mostly in the Robot Operating System (ROS), running on the Ubuntu 18 operating

system. On top of the system ROS plumbing, we built a navigation stack that consists of an

odometry estimator that fuses dead reckoning with a magnetometer for absolute orientation as

a precursor to a LIDAR SLAM algorithm which provided the robot precise localization. The

LIDAR point clouds were preprocessed and stitched into a traversability map consisting of a

uniformly dense voxel grid, with each voxel informing the cost of the terrain for the given

robot. Explicit or exploration goals could then be planned using an A∗ planner and followed

with a waypoint tracker. There were several minor modifications required for the spot robot that

we will describe below.

Spot payload The Boston Dynamics Spot robot is equipped with an onboard computer that

processes onboard depth cameras and sensors and computes low-level locomotion. It is a closed

system that can be communicated through an API using TCP/IP. For custom autonomy, we had

to design and mount an external payload that consisted of several computers and sensors. The

main autonomy logic was run on an Intel NUC i9 computer. Camera object detection was done

on an Nvidia Jetson Xavier, due to the requirement of CUDA GPU acceleration. Additional

sensors consisted of an X-SENS IMU, 5 BASLER RGB cameras and a 360 degree 128 row

OUSTER OS-1 LIDAR. The computers and sensors were organized and placed inside a cage

made of aluminum extrusions and mounted with the help of 3D-printed parts. We contributed

to some aspects of the design and construction of the payload. One notable part was the LIDAR

holder, which was designed in Fusion 360 and printed using PETG plastic on a Prusa MK III
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3D printer.

Figure B.1: Boston Dynamics Spot robot autonomy payload.

Spot assistant One part of the Spot robot that we contributed to is the high-level control logic

software. The platform is more complex than a skid-steer wheeled robot and has various power

modes and sitting/standing modes that we had to correctly configure before taking off. Sensor

issues can cause system faults and errors that have to be managed. After falling, the platform

has to also go over a sequence of error-clearing and self-righting procedures. Navigation using

the Spot platform was the most complex aspect and included tasks such as detecting stairs and

ramps in the path that required orienting spot to face the ascent/descent in the right direction

and setting the appropriate gait through the API. Using additional traversability information

from the LIDAR voxel map, we also switched to more careful gaits when necessary to prevent

locomotion instability and falling.

Spot driver augmentation We added several additional monitoring and control topics, such

as setting the terrain gait type, friction, and leg height parameters to the Clearpath ROS driver

for the SPOT platform, available on our fork of the driver on github https://github.

com/silverjoda/spot_ros . Additionally we made a ros interface for the inner ter-

rain representation of the Spot platform, available on our github at https://github.com/

silverjoda/spot_ros_expansion.

Virtual Bumper As described in the introduction of this section, the navigation of our robots

are done by following waypoints that were generated using a planning algorithm in a LIDAR

map. One potential issue with this approach is that errors in the traversability map and transport

and computational delays can cause situations where the robot can collide with the environment

or another robot, potentially causing damage. We found that a reasonable way to get around this

https://github.com/silverjoda/spot_ros
https://github.com/silverjoda/spot_ros
https://github.com/silverjoda/spot_ros_expansion
https://github.com/silverjoda/spot_ros_expansion
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issue is to use an additional fast, low-level loop that uses raw LIDAR data in the robot frame

to detect objects and prevent a collision. This is done by defining bounding boxes around the

robot and using thresholding to detect if there is a foreign object in a specific bounding box. An

illustration of this is shown in a screenshot from the RVIZ visualization tool in figure B.2.

Figure B.2: Virtual bumper for the Clearpath Husky robot. The various colors of the boxes
indicate the level of activation by the point cloud, shown in white.

Instead of stopping the robot when detecting that a collision is imminent, we instead attempt

to steer the robot away reactively so that it can keep going. This is done by modifying the for-

ward and angular target velocities taken from the waypoint follower. Algorithm 0 summarizes

the logic that we use. It can be inserted into the navigation stack and enables the robot to seem-

lessly avoid obstacles and walls and even navigate around them to a certain extent. We call this

our Virtual Bumper (VB). We use the VB on most of our skid steer platforms, and we deployed

them in the DARPA challenge.

Algorithm 4 Part of logic for calculating velocity from binary bounding box activations
1: Initialize Target linear and angular velocities vx,vz and boolean bounding box activations

B = fl, fr,s fl,s fr,srl,srr
2: procedure CALC COMMAND VELOCITY (vx,vz,B)
3: if vx > 0 and fl = True then ▷ Front partially blocked
4: vout

x ← 0
5: vout

z ←−max(targetlin,abs(targetang))

6: if vx > 0 and fr = True then ▷ Front partially blocked
7: vout

x ← 0
8: vout

z ← max(targetlin,abs(targetang))

9: if s fl = True then ▷ Sides partially blocked
10: vout

z ← min(vout
z ,0)

11: if s fr = True then ▷ Sides partially blocked
12: vout

z ← max(vout
z ,0)
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Author Publications response

• T. Azayev and K. Zimmerman, “Blind hexapod locomotion in complex terrain with gait
adaptation using deep reinforcement learning and classification”, Journal of Intelligent &
Robotic Systems, vol. 99, no. 3, pp. 659–671, 2020

– S. Padakandla, “A survey of reinforcement learning algorithms for dynamically
varying environments”, ACM Computing Surveys (CSUR), vol. 54, no. 6, pp. 1–
25, 2021

– W. Ouyang, H. Chi, J. Pang, et al., “Adaptive locomotion control of a hexapod robot
via bio-inspired learning”, Frontiers in Neurorobotics, vol. 15, p. 627 157, 2021

– P. Manoonpong, L. Patanè, X. Xiong, et al., “Insect-inspired robots: Bridging bio-
logical and artificial systems”, Sensors, vol. 21, no. 22, p. 7609, 2021

– G. Zhang, Y. Du, Y. Zhang, et al., “A tactile sensing foot for single robot leg sta-
bilization”, in 2021 IEEE International Conference on Robotics and Automation
(ICRA), IEEE, 2021, pp. 14 076–14 082

– M. Schilling, J. Paskarbeit, H. Ritter, et al., “From adaptive locomotion to predictive
action selection–cognitive control for a six-legged walker”, IEEE Transactions on
Robotics, vol. 38, no. 2, pp. 666–682, 2021

– P.-H. Kuo, S.-T. Lin, J. Hu, et al., “Multi-sensor context-aware based chatbot model:
An application of humanoid companion robot”, Sensors, vol. 21, no. 15, p. 5132,
2021

– F. Zhou and J. Vanschoren, “Open-ended learning strategies for learning complex
locomotion skills”, arXiv preprint arXiv:2206.06796, 2022

– M. Thor and P. Manoonpong, “Versatile modular neural locomotion control with
fast learning”, Nature Machine Intelligence, vol. 4, no. 2, pp. 169–179, 2022

– J. Homchanthanakul and P. Manoonpong, “Continuous online adaptation of bioin-
spired adaptive neuroendocrine control for autonomous walking robots”, IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 33, no. 5, pp. 1833–1845,
2021

– M. Schilling, A. Melnik, F. W. Ohl, et al., “Decentralized control and local infor-
mation for robust and adaptive decentralized deep reinforcement learning”, Neural
Networks, vol. 144, pp. 699–725, 2021

– S. Yang, “Design and typical gait realization of a wheeled-foot integrated hexapod
robot”, in 2021 IEEE 4th International Conference on Automation, Electronics and
Electrical Engineering (AUTEEE), IEEE, 2021, pp. 715–718
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– H. Hu and Y. Liu, “Blind adaptive gait planning on non-stationary environments
via continual reinforcement learning”, in 2021 IEEE International Conference on
Unmanned Systems (ICUS), IEEE, 2021, pp. 280–284

– P. Moazzeni Bikani et al., “Robust proximal policy optimization for reinforcement
learning”, 2022

– M. Li, Z. Wang, D. Zhang, et al., “Accurate perception and representation of rough
terrain for a hexapod robot by analysing foot locomotion”, Measurement, vol. 193,
p. 110 904, 2022

– F. Zhou, “A study of an open-ended strategy for learning complex locomotion skills”,

– W Amri, L Hermes, and M Schilling, “Hierarchical decentralized deep reinforce-
ment learning architecture for a simulated four-legged agent”, arXiv preprint arXiv:2210.08003,
2022

• T. Roucek, M. Pecka, P. Cı́zek, et al., “System for multi-robotic exploration of under-
ground environments CTU-CRAS-NORLAB in the DARPA subterranean challenge”,
CoRR, vol. abs/2110.05911, 2021. arXiv: 2110.05911. [Online]. Available: https:
//arxiv.org/abs/2110.05911

– A. Koval, S. Karlsson, S. S. Mansouri, et al., “Dataset collection from a subt envi-
ronment”, Robotics and Autonomous Systems, vol. 155, p. 104 168, 2022

– M. Kaufmann, R. Trybula, R. Stonebraker, et al., “Copiloting autonomous multi-
robot missions: A game-inspired supervisory control interface”, arXiv preprint arXiv:2204.06647,
2022

– T. Yang, Y. Li, C. Zhao, et al., “3d tof lidar in mobile robotics: A review”, arXiv
preprint arXiv:2202.11025, 2022

– B. Zhou, H. Xu, and S. Shen, “Racer: Rapid collaborative exploration with a decen-
tralized multi-uav system”, arXiv preprint arXiv:2209.08533, 2022

– V. Šalanskỳ, “Robot learning and perception in sensory deprived environment”,

https://arxiv.org/abs/2110.05911
https://arxiv.org/abs/2110.05911
https://arxiv.org/abs/2110.05911
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