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Abstract: This article deals with the issue of online chatter detection during milling. The aim is
to achieve a verification of the reliability and robustness of selected methods for the detection of
chatter that can be evaluated on the machine tool in real time by using the accelerometer signal. In
the introductory part of the paper, an overview of the current state of the art in the field of chatter
detection is summarized. Entropic methods have been selected that evaluate the presence of chatter
from the qualitative behavior of the signal rather than from the magnitude of its amplitude, because
the latter can be affected by the transmission of vibrations to the accelerometer position. Another
criterion for selection was the potential for practical implementation in a real-time evaluation of the
accelerometer signal, which is nowadays quite commonly installed on machine tools. The robustness
of the methods was tested with respect to tool compliance, which affects both chatter occurrence and
vibration transfer to the accelerometer location. Therefore, the study was carried out on a slender
milling tool with two different overhangs and on a rigid roughing tool. The reference stability
assessment for each measurement was based on samples of the machined surface. The signals
obtained from the accelerometer were then post-processed and used to calculate the chatter indicators.
In this way, it was possible to compare different methods in terms of their ability to achieve reliable
in-process detection of chatter and in terms of the computational complexity of the indicator.

Keywords: online chatter detection; chatter indicators; milling; acceleration signal

1. Introduction

The issue of chatter detection in machining has been a topic in practice for a long
time. In practice, the boundary between stable and unstable machining in milling is
often visualized by using the stability lobe diagram (SLD). Stability lobe diagrams (SLDs)
are usually used to select stable cutting conditions. An experimental methodology for
determining SLDs in milling operations is described in [1]. The same main authors also
provide a very comprehensive review of the chatter issues, which is presented in [2]. Here,
the state of research in the field of self-excited chatter is summarized, including strategies
that can be used to achieve stable machining. The paper also includes a review of methods
for in-process evaluation of chatter generation. A more recent paper [3] summarizes the
chatter issue with a focus on milling technology. It covers topics such as process damping,
tool throw, gyroscopic effect, and the importance of these areas in predicting chatter. The
article also includes an overview of chatter detection techniques. The most recent review
article found that addresses chatter in milling is [4]. According to this article, more than
100 research papers addressing the issue of online chatter detection have been published
every year since 2011. The chatter detection topic is also one of the larger chapters covered
in detail in [4]. Feature extraction methods play an essential role in the field of real-time
chatter detection. The authors of [4] clearly summarize the features in the signal according
to the predominant time, frequency, and time-frequency domains and list the features here.
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In the time domain, the main concern is the computation of statistical indices using raw
measured signals.

In the frequency domain, enough data usually needs to be collected first to perform the
necessary transformation. The evaluation of chatter can then be based on the knowledge
that chatter alters the significant frequencies contained in the signal. The time-frequency
domain is often used to extract features from the signal. For example, fast Fourier transform
or methods based on wavelet techniques can be employed here. In practice, the idea
is to decompose the signal into meaningful parts—components—so that the necessary
information (features) can be evaluated from them.

In practice, chatter detection requires the use of signals measured directly on the
machine. Usually these are signals from accelerometers. Cutting force signals from dy-
namometers or acoustic emission signals are less common in practice. This may be due,
among other reasons, to the cost of these sensors and their lower versatility. In the research
sphere, however, a relatively large number of scientific papers deal with force as an input
signal, for example, [5–8]. The microphone signal is used even less frequently (e.g., in [9]).
Less frequent also are current signals from motors (e.g., [10]), torque-force combinations
(e.g., [11]) and other types of signals. A very interesting approach is presented in [12]
wherein the authors work with cutting force estimation by using an observer based on a
drive model where relevant signals from the machine axis drive are the input. The use of
actuator signals can be complicated by the closed-loop nature of the control system or the
problem of accessing fast high-frequency data. However, if available, signals from electric
actuators can be an interesting alternative or complement to signals from accelerometers,
which is addressed in papers such as [10,13]. The paper [10] uses a stable/unstable milling
support vector machine (SVM) to evaluate the states. It is a machine learning method
that is based on the analysis of the electrical signal from the spindle and the use of neural
networks. However, the current signal is not obtained directly from the machine system
but using Hall sensors on all phases of the spindle. The paper [13] relies on the information
available in the CNC machine at high clock speed to utilize the spindle current signal. The
signal is transmitted in real time via a digital interface to an external PC, where chatter
evaluation is addressed by using frequency detection in the spectrum. Despite the use of
an external PC, the described method has a certain potential for practical application. For
any detection method to be used in practice, it needs to be deployed on a suitable platform,
which can be, for example, the NI cRIO platform. Such a system can be similar to the one
described in [14].

However, the most commonly used sensors in chatter detection are probably ac-
celerometers despite some inferior characteristics (noise etc.). These also seem to have the
highest potential for application in practice. The installation of accelerometers is becoming
increasingly common [4]. These sensors are generally more affordable and reliable and their
installation can be noninvasive. Accelerometers find applications in other areas such as
machine tool quality improvement. This area is dealt with, for example, in [15], where the
authors describe various sensing technologies that are applicable to the area of predictive
maintenance, which is dealt with by one of the world’s leading machine tool manufacturers
(DMG MORI). The authors follow up this paper with [16], where the accelerometer signal is
used for multiple functions at the same time—both for evaluating chatter information and
for machine tool condition monitoring for predictive maintenance. An overview of usable
sensors is quite comprehensively covered in an article focusing on intelligent spindles [17].
A summary of the possibilities of measurement, signal processing, and chatter evaluation
in milling and turning is also summarized in [18].

The processing and evaluation of chatter from the measured input signals can occur
either online on the machine, or afterward with delay, or offline. The results can be used,
for example, to achieve a stable cutting process by changing its parameters. The methods
that have the greatest potential for practical application are those that can be deployed
online on the machine in milling by using built-in acceleration sensors. These methods will
be given more attention below.
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An interesting method for real-time chatter detection in milling is presented in [19].
It is based on the calculation of a chatter indicator based on cyclostationary theory. The
calculation involves a signal from a three-axis accelerometer and additional information
from an encoder about the spindle rotation. The presented approach is suitable for both
constant speed machining (CSM) and spindle speed variation (SSV) machining. The results
were verified on the machine under different cutting conditions. Another paper that focuses
directly on online chatter detection in milling is [20]. The authors first remove periodic
components from the input signals and then work with an advanced spectral analysis tech-
nique called subspace-based spectral estimation, “which can obtain superhigh frequency
resolution with a small number of data samples”. They also introduce a “Normalized
cyclostationary Energy Ration chatter indicator” (NER) for the chatter evaluation. The
authors measure both acceleration and force in their experiments. For the chatter detec-
tion alone, they only rely on the acceleration signal for better application in engineering
practice. The appropriate chatter detection is not only important for process optimization
but also for machine tool performance testing. The authors of [21] presented a method for
operational machine tool testing where chatter is identified by using a combined criterion
of harmonic dominant frequency, vibration amplitude in the frequency spectrum, and
workpiece surface quality.

Another series of papers use the empirical mode decomposition (EMD) method or
its more advanced variant, ensemble empirical mode decomposition (EEMD) for signal
processing. These methods are generally designed for chatter detection in the signal, but
are not directly designed for online detection. For real-time use, some types of chatter
indicator are then considered for computation. For example, the authors of [22] use the
EEMD method, but for real-time evaluation only the described “nonlinear dimensionless
indicators” are considered. A very extensive work is presented in [23]. The presented
approach to chatter detection in milling uses energy aggregation-based Hilbert–Huang
transform (HHT). In the described method, EMD (or EEMD) is performed first, followed
by Hilbert spectral analysis (HSA). Chatter indicators are again introduced to evaluate
the chatter online, here it is the “Normalized Energy Ratio of the Most Powerful IMF”,
NER, and again the indicator CV—Coefficient of Variation of the energy-limited Hilbert–
Huang spectrum. A similar approach was taken by the authors of [24]. Another paper [25]
uses p-leader multifractal features for online chatter detection. Interestingly, the paper
compares it with other methods such as EEMD itself, but it cannot be directly used for
real-time detection.

Another approach for chatter detection in milling is described in [26]. The authors pro-
pose using a power spectral entropy (∆PSE) indicator. The variational mode decomposition
(VMD) method is used to separate the signal components in which chatter is to be detected.
The authors mention the small endpoint effect and less mode mixing as the main advan-
tage of VMD over EMD/EEMD. A similar approach was previously taken by the authors
of [27], when they computed the “energy entropy” as an indicator from signals that were
previously decomposed by VMD and wavelet packet decomposition (WPD) techniques.
The authors describe the method as excellent performance, but also note that the choice of
basis functions (wavelet) still requires some expertise to achieve good results. In this case,
the authors do not explicitly mention the use of their results for online detection. Methods
that are based on the calculation of signal entropy can generally have great potential for
practical application. By using them, numerical indicators that can indicate chatter can
apparently be calculated in real-time without large demands on computing power. Among
the other methods found, mention can be made of the coarse-grained entropy rate (CER),
which was presented in [28] and further applied to the case of turning in [29] and milling
in [30]. Another potentially interesting one is the numerical indicator calculated by the
Rényi entropy method [31], which works with data in the frequency domain. As the last of
the list, the paper [32] will be mentioned here, which uses the power spectral entropy (PSE)
calculation, which is still combined with the standard deviation (SD) and fractal dimension
(FD) criteria into one “multi-indicator” criterion.
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A specific approach is presented by works that use machine learning-based methods
for chatter detection. The paper [9] works with hybrid machine learning techniques.
“The custom machine learning architecture is deployed in parallel with a physics-based
method to improve the robustness of online chatter detection”. The authors mention that
it is possible to work with signals from microphones or accelerometers. They use the
microphone signal in their tests. The chatter detection itself is based on energy. However,
the authors of the paper [33] make some improvements and declare very high reliability of
chatter detection.

To conclude the review, it can be stated that methods that can be deployed online on
the machine by using built-in acceleration sensors have probably the greatest potential
for practical application. In particular, approaches that are based on a type of MRA
(multiresolution analysis) method and then use a type of chatter indicator in real time can
be considered promising.

The aim of this paper is to verify the applicability of selected methods for in-process
detection of chatter during milling from a machine-mounted accelerometer. The selection
of the methods considered the fact that the accelerometer position and the dynamics of
the machine, tool, and workpiece affect the measured vibration amplitudes. Therefore,
entropic methods were selected that evaluate the qualitative behavior (degree of disorder)
of the signal rather than its amplitude. Due to the aforementioned effects of dynamics on
the transmission of vibration from the cut to the accelerometer location, the robustness of
the methods was tested by using different tool types—a compliant slender tool and a rigid
tool. Because one of the methods also used fractal dimension and standard deviation as
chatter indicators, these indicators were included in the comparison. The results presented
in this paper allow a relative comparison of the selected chatter indicators in terms of their
ability to detect unstable machining and in terms of their computational complexity for
practical implementation on the machine tool.

The article is organized as follows. First, the selected methods for chatter identification
will be presented and compared in Section 2. For each method, its mathematical description
and the specific conditions under which the method was applied by the authors of this
paper will be given. In Section 3, a description of the experiments that were performed
with different tools and cutting conditions will be given. The aim is to distinguish whether
there is sufficient transfer of vibration to a location where it is practical to place the ac-
celerometer even if the vibration occurs dominantly on a compliant instrument. Therefore,
measurements were made on both a compliant slender end mill as well as a rigid shoulder
mill. In these experiments, accelerometer data was acquired for later offline processing
and a classification of the machining stability was performed by the machine operator.
This evaluation considered mainly the resulting surface quality. To complement this, a
comparison was made with the stability predicted from the measured FRFs on the tool
and the cutting coefficients for steel. In Section 4, sample experimental data are selected
for each type of experiment, from which individual chatter indicators are then computed.
This way, the selected methods can be compared in an illustrative way. The results of the
methods are confronted with the evaluation of the machine operator. The results of this
comparison are discussed in detail in Section 5.

2. Selected Methods for Chatter Identification

Three different methods for identifying chatter chosen from the literature are briefly
introduced in this section. Coarse-grained entropy rate [28] is an example of a time-
domain method, Rényi entropy [29] analyzes the frequency-domain, and the multi-indicator
method [31] considers both, as it comprises three separate indicators. All these methods
are described in the respective papers as being suitable for industry use.

The parameters for the application of each method in further sections of this paper
are given after a short theoretical description. For further details of the definitions, see the
respective reference articles.
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2.1. Coarse-Grained Entropy Rate (CER)
2.1.1. CER Definition

The first method chosen for comparison is the coarse-grained entropy rate (CER)
introduced theoretically in [28]. In [29], CER is presented as a chatter indicator in case
of turning on a lathe with increasing cutting depth and turning frequency. The authors
analyzed the experiment time series from three-axis dynamometer with a sampling fre-
quency of 5 kHz. They identified a fixed threshold value of 0.2, independent of the cutting
conditions, meaning that if CER is lower than this value, the machining is unstable and
chatter appears. The method is said to be ready for industry application even though it
was used on offline data.

Let us denote z(t) the signal values measured in discrete time samples t and define
random variables

Xi(t) = z(t− (i− 1)τ), i = 1, . . . , m, (1)

for a fixed time delay τ and a fixed parameter m. The marginal redundancy, i.e., a measure
of the average information about the last variable Xm = z(t + (m− 1)τ) in the previous
m− 1 variables, is then defined as

R′(X1, . . . , Xm−1|Xm) = ∑
x1

. . . ∑
xm

p(x1, . . . , xm) log
p(x1, . . . , xm)

p(x1, . . . , xm−1)p(xm)
, (2)

where p is the probability distribution function.
As stated in [29], for a stationary dynamical process, these marginal redundancies are

functions only of the dimension m and of the time delay τ, not of the time itself. Therefore,
it is possible to write

R′(m, τ) = R′(z(t), z(t + τ), . . . , z(t + (m− 2)τ
∣∣z(t + (m− 1)τ)), (3)

and

‖R′(m)‖ = ∑τmax
τ=τ0 R′(m, τ)

τmax − τ0
. (4)

Then we can define the coarse-grained entropy rate (CER) used as a chatter indicator as

CER =
R′(m, τ0)− ‖R′(m)‖
‖R′(m)‖τmax

. (5)

Due to the normalization by τmax, the value of CER is in the interval [0, 1]. Lower
values indicate deterministic and predictable processes, while greater values of CER mean
random processes.

In nonstationary parts of the signal, such as the start of cutting, the indicator might
be unreliable as it was derived for a stationary signal. However, from experience these
changes are usually fast, so if we choose a rather short time series to be analyzed in each
step, these transition uncertainties should not propagate too far.

On the other hand, this time series must be also long enough to capture the cutting
dynamics. The choice of the number of points in a time series, N, depends also on other
parameters. In [29], a comparison of CER values for different numbers of points N and
for different maximum time delays τmax is made for a fixed number of marginal equiquan-
tization bins Q = 4, used to compute the probability functions, parameter m = 2, and
minimum time lag τ0 = 0. In [28], they state that this relation should hold:

N − (m− 1)τmax ≥ Qm+1. (6)

2.1.2. Choice of Parameters

Based on this relation, the discussion from [29], and on the sampling frequency 32.768 kHz
of accelerometer data from our experiment, we chose the parameters values Q = 4, m = 4,
N = 6553 (i.e., time interval length 0.2 s), τ0 = 0 and τmax = 30 in units of sampling time.
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2.2. Rényi Entropy (RE)
2.2.1. Rényi Entropy Definition

Another method chosen for this comparison is frequency-domain Rényi entropy as
introduced in [31]. It was applied to force data measured by a dynamometer with 20 kHz
sampling frequency. The milling experiments were conducted with various spindle speed
settings and continuously decreasing axial cutting depth. Coolant was used. The authors
showed that Rényi entropy performed better in comparison with the more widely used
Shannon entropy. Moreover, apart from the time series length, no additional parameters
need to be chosen, which makes the method more robust and easier to use.

To calculate the Rényi entropy indicator, the spectrum of the time series is computed
first by using FFT with the Hanning window. Only half of the symmetric spectrum is used.
The spectral lines corresponding to the tooth passing frequency and its two neighboring
harmonics are set to 0. Then the amplitude spectrum sequence Yi is normalized to have a
sum equal to 1,

βi =
Yi

∑
[N/2]
j=1 Yj

. (7)

The Rényi entropy is then

Hα =
1

1− α
log2

∑ βα
i

∑ βi
=

1
1− α

log2 ∑ βα
i , α > 0, α 6= 1. (8)

2.2.2. Choice of Parameters

According to [31], we choose α = 3 and normalize the entropy so that its value lies in
interval [0, 1] and is independent of the time series length N:

RE =
H3

log2[N/2]
(9)

It only remains to set the time series length. The authors chose 0.2 s as a compromise
that requires reasonable computing time and its spectral resolution is still sufficient. We
kept this value even though our sampling frequency is higher. It is still fast enough to be
applied in real-time on the machine; however, we use only offline data, as was done also
in [31].

In [31], no fixed threshold is given to identify chatter. It is only stated that with the
occurrence of chatter, the frequency-domain Rényi entropy significantly decreases.

2.3. Standard Deviation (SD), Fractal Dimension (FD), and Power Spectral Entropy (PSE)
2.3.1. Multi-Indicators Introduction

In [32], three indicators were considered together in order to identify chatter more
precisely. The authors state that the standard deviation reflects the changes in signal energy
and amplitude in the time domain, so its value should be higher in the case of chatter.
Fractal dimension increases with the increase of signal fragmentation, which is said to
be another typical characteristic of chatter. Lastly, power spectral entropy describes the
distribution of the signal frequencies, so it should capture the concentration of frequency
components at the chatter frequencies, and thus decrease with the onset of chatter.

Before the computation of these indicators, the signal sample is decomposed to in-
trinsic mode functions (IMFs) by an improved empirical mode decomposition method
(improved EMD) as described in [32]. The modification of the standard EMD eliminates
mode mixing that is considered as the main problem of this decomposition. Then the sum
of the three most significant IMFs, i.e., the IMFs with the highest relative energy compared
to the original signal sample, are taken to create a new signal sample, which should thus
contain only the important information and be filtered from noise.
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The authors then take the indicators computed for this new signal as characteristic
vectors in 3D space, train a support vector machine model (SVM), and claim that chatter can
be identified with this method online on the machine tool without any human intervention.

2.3.2. Choice of Parameters

In this paper, the SVM model is not considered, the aim is simply to assess each
indicator’s ability to identify chatter independently and compare it with other methods.

In [32], the method is presented on the accelerometer data from several milling exper-
iments with both constant and increasing radial cutting depth. The sampling frequency
used in [32] is 5120 Hz. The minimum length of a time series segment is set as 150 points,
but it is not explicitly stated what length is actually used for the results in the paper.

The sampling frequency of the signal used for testing of this method in the following
section is 32.768 kHz. The time interval of 0.2 s remains the same. The number of points is
6553, as it satisfies this condition and it is the same as for the other methods.

3. Experimental Setup and Measurement

The aim of the experimental validation of the identification algorithms is to test
their reliability and performance on signals from the accelerometer on the spindle. This
placement is chosen because it is relatively close to the process, but at the same time at a
close distance, so that the method can be applied in normal working operation.

The milling tests were carried out on a three-axis CNC milling machine tool MCFV
5050 LN to test the real-time reliability of chatter identification. The setup is shown in
Figure 1. First, the dynamic compliance of the clamped tool was measured in two mutually
perpendicular X and Y directions. Technological tests were performed to find the stability
limit. Then, several technological tests with various cutting conditions were performed to
provide examples of stable and unstable machining. During these tests, the spindle unit
vibration was measured by means of a uniaxial accelerometer in the Y-axis direction. The
feed in the tests was in the Y-axis direction.
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A basic summary of the performed experiments with information of used cutting
tools and operations is presented in Table 1. Each experiment consists of multiple tests
with various cutting conditions, a detailed description is given in Table A1. The tool used
for Experiments 1 and 2 is end mill Iscar HP E90AN-D16-4-C16-07-C (inserts HP ANKT
070208PNTR) in a holder PILANA MCT 40xER32 DL which represent compliant slender
tools. Two sets of slot milling tests were conducted with it, using tool overhangs of 30 mm
and 50 mm. The second cutting tool is Walter F4042.B.050.Z05.15 (inserts ADMT160608R-
F56) in a holder Walter SK40 D22 A52 with an overhang of 71 mm which represents rigid
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roughing tools. Experiment 3 consists of slot milling with this tool. The cutting tools used
can be seen in Figure 2.

Table 1. Summary of performed experiments.

Experiment 1 Experiment 2 Experiment 3

Cutting tool Iscar HP E90AN-D16-4-C16-07-C Walter
F4042.B.050.Z05.15

Type End-mill Shoulder mill

Diameter 16 mm 50 mm

Length 90 mm 40 mm

No. teeth 4 5

Inserts HP ANKT 070208PNTR ADMT160608R-F56

Holder PILANA MCT 40xER32 DL Walter SK40 D22 A52

Overhang 50 mm 30 mm 71 mm

Signals S01–S06 S07–S11 S12–S24
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3.1. Identification of Structural Dynamics

The FRF measurements were performed with an apparatus consisting of the PULSE
analyzer, the modal hammer Brüel & Kjaer 8206-003, and the uniaxial accelerometer PCB
352A21. The tool direct responses were measured in the X and Y directions. The absolute
values of the resulting FRFs are in Figure 3. These FRFs are used for stability prediction.

The workpiece was a steel (ISO C60E4) block clamped on a working table. The
workpiece is significantly less compliant than the tools, and hence it is not considered
important for the onset of chatter (see Figure 3). This check is important for testing the
sensitivity of stability indicators to the dynamic properties of the tool.

3.2. Process Monitoring Setup

During machining, the acceleration in direction -Y was sensed with a uniaxial ac-
celerometer (Endevco 751-10) mounted on the spindle (on a magnet) (see Figure 1). The
vibration signals were sampled by using a data acquisition card and transmitted to a com-
puter which was used to store and process the signals. The sampling frequency was set at
32.768 kHz.
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3.3. Machining Tests Process Parameters

The main parameter affecting the occurrence of self-excited vibration is the depth
of cut. Tests with the slender tool were carried out at spindle speeds of 2188, 2984, and
3780 rpm and for an axial depth of cut of 0.5 mm and 1 mm (Experiment 1, slender end mill,
50 mm overhang) and of 2 and 3 mm (Experiment 2, slender end mill, 30 mm overhang).
The speed per tooth was 0.1 mm. Tests in Experiment 3 (shoulder mill) were performed at
spindle speeds of 898 and 955 rpm with the axial depth of cut varying from 0.5 to 3.5 mm
in increments of 0.5 mm. The speed per tooth was set to 0.15 mm for Experiment 3. All
tests were carried out without coolant.

3.4. Machining Stability Prediction

In this subsection, a comparison with the stability predicted from the measured FRF
on the tool and the cutting coefficients for steel is made for illustration. The FRFs for
each tool are available as electronic Supplementary Material in mat format, with the first
column containing the frequency (Hz), the second column containing the direct FRF in the
X direction (m/N), and the third column containing the direct FRF in the Y direction. The
stability prediction from the FRF shown by the lobe diagram is based on the ZOA method
introduced by [34] for the cylindrical tool. An empirical shifted linear model of the cutting
force is used in the stability analysis, as in the paper. The coefficients used are based on the
force measurements on the material and are Kct = 1720 N mm−2 and Kcn = 860 N mm−2.
Workpiece FRF at directions X and Y for before and after machining tests are shown in
Figure 4. The stability diagrams for the slender end mill are shown in Figures 5 and 6, and
for the rigid shoulder mill in Figure 7.
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4. Data Processing by Using Chatter Identification Methods

In this paper, matrix plots are used as a visual means of comparing methods. These
allow multiple methods and records to be compared simultaneously. In the following
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paragraphs, the procedures for calculating and displaying each indicator in a matrix graph
will be generally summarized. A comment on the content evaluation will fill the following
subsections of the paper.

All analyzed signals have the same sampling frequency of 32.768 kHz. For each signal,
the indicators are computed every 0.1 s from the previous 0.2 s signal interval. The length
of this time interval affects the indicator value and it is chosen based on the discussion
in the cited papers (see Section 2). The choice of other parameters needed to be specified
for each method is also explained there. All indicators are computed for offline measured
acceleration signals in Matlab software (2021a).

For each of the experiment settings, described in Section 3, one stable and one unstable
signal is chosen for analysis. The decision whether a signal is stable or not is based on
the operator’s evaluation and the surface quality. The whole milling process is recorded,
including the start and the end of the cut, in some signals even with some of the noise
after switching off the spindle. This allows us to distinguish the indicator values in
three different states—for noise when the spindle is off, in air-cut, and in cut—and in the
transitions between them. See Figure 8 for an example of these parts of the signal S07 from
a slot milling test (its cutting conditions are described in Table A1 in Appendix A).
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Figure 8. Detail of signal S07. Spindle switched on (1), air-cut (2), start of cut (3), full cut (4), end of
cut (5), air-cut (6), spindle switched off (7), noise (8). The grey area shows where the cutting tool is in
the cut.

As the main difference between stable and unstable machining lays in the signal energy
and distribution of frequencies, complementary spectral characteristics are computed for
each signal. The coarse view of both is acquired from the spectrum of the whole in-cut part
of the signal. More detailed analysis of the energy evolution in time is made by computing
the spectrum of 0.2 s time interval every 0.1 s and taking the maximum of its amplitudes
(further denoted by MA).

The scale of the graphs of spectrum and MA is notably different in the case of chatter,
which is caused by various factors. First, the spectrum is calculated from the whole part
when the tool is in contact with the workpiece (parts 3–5 in Figure 8), so it includes also
the start and end of cut where the signal energy is generally lower. Furthermore, the
most significant frequency varies in time, so the frequency with the highest amplitude in
some time interval of 0.2 s might contain less energy during the rest of the cut. Lastly, the
spectrum computed only from 0.2 s might be less precise than when computed from the
whole in-cut part. However, as we are interested in the evolution in time, not in the exact
values, the obtained results are sufficient for the given purpose.

The grey area in the graphs signifies the part of the signal when the tool was at least
partially in cut. Peaks in the values of the indicators can be seen right after the beginning
and before the end of cutting in several cases. These values are probably not very reliable as
the process is changing very dynamically when only a part of the cutting tool is in contact
with the material.

CER value below 0.2 is said to identify chatter, as discussed in [29], so it is plotted
in the graphs to allow a quick evaluation. For other indicators, no fixed threshold is set.
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Vaguely, chatter is indicated by a sharp decline in RE and PSE and by a sharp rise in FD
and SD.

4.1. Experiment 1: Slender End Mill, D = 16 mm, Overhang 50 mm

Two tests with different cutting conditions were selected from Experiment 1, one stable
(S02) according to the surface evaluation, and one unstable (S06). The surface quality of
the respective slots can be seen in Figure 9, and the signals are displayed in the first two
columns of Figure 10.
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Figure 9. Surfaces from Experiments 1 and 2. The measurements S02 and S07 were identified as
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In the graph of the signal S02, there is almost no difference in amplitude between
the air-cut and in-cut part. The spectrum of the in-cut part is rather evenly distributed,
and no clusters at specific frequencies are visible. The surface is smooth and without any
significant marks. This together confirms the stability of this machining process.

All considered methods accordingly identified the stability of S02. Three entropic
indicators even slightly rise in the in-cut part in comparison with the air-cut and CER
stays high above the proposed threshold. The SD has a low value throughout the whole
time when the spindle is on and no significant change is visible at the start of cutting. FD
oscillates around the same value throughout the whole signal, the only visible difference
can be seen when the spindle is switched off.

Signal S06 was evaluated as unstable, which corresponds to its deteriorated surface,
frequencies clusters in the spectrum of the in-cut signal part, and the graph of maximum
amplitudes (MA) that are much higher in the cut than elsewhere.

The values of the entropic indicators CER, RE, and PSE drop significantly in the cut
and thus correctly identify chatter. CER even decreases far below the proposed threshold.
SD grows in cut, as the signal amplitudes do. Changes in FD are visible at the start and end
of the cut, but otherwise it has a similar value in air-cut and in cut, so it fails at identifying
chatter. However, it is worth noting that there is a qualitative difference in FD graphs.
While it changes rapidly in S02 and in air-cut of S06, the indicator keeps a much more
constant value in the cutting part of S06.
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4.2. Experiment 2: Slender End Mill, D = 16 mm, Overhang 30 mm

Stable signal S07 and unstable signal S08 from Experiment 2 are shown in Figure 10.
The signal S07 is stable according to the surface quality (see Figure 9), and to the spectral
characteristics. The entropic indicators stay high in the cutting part. SD is low apart from a
slight peak in the start and the end of cut. However, nothing can be concluded from FD,
only that its value is changing rapidly as in S02.

The signal S08 was denoted as unstable; however, the chatter does not start imme-
diately after the start of cut. The onset of chatter is visible from the surface in Figure 9
approximately 1.5 cm from the edge. Accordingly, the signal graph and maximum ampli-
tude show this delay, as well as SD indicator. The entropic criteria grow first in the cutting
part and then drop in the appropriate moment. FD is slightly higher in cut than in air-cut
and it oscillates more slowly in comparison with the stable signal S07.

4.3. Experiment 3: Shoulder Mill, D = 50 mm

Stable tests S14 and S21 and unstable S17 and S24 were chosen from Experiment 3, see
Figure 11 for the surface quality and Figure 12 for the signals. Due to the diameter of the
cutting tool of 50 mm, which is bigger than in Experiments 1 and 2, the graphs are quite
different. The transition state between the air-cut and the cutting part takes longer, and
so the discrepant values on the borders of the grey area of the graphs are more noticeable.
Moreover, the chatter frequencies of unstable signals are lower and with smaller amplitudes.
Nevertheless, there is still a significant difference between the spectral characteristics and
the surface quality of stable S14 and S21 and unstable S17 and S24.

For the chosen signals, all indicators except FD more or less decisively state if the
tests are stable or unstable, based on the comparison with the air-cut values. FD looks
smoother for S17 and S24 as for previous unstable signals, but it is even slightly lower
than for S14 and S21, which is the opposite of the indicator’s expected behavior in case
of chatter. RE and PSE have similar values for all four signals, with PSE showing slightly
greater differences. Nevertheless, for S17 and S24, they are lower than in stable cases,
and moreover they both decrease in comparison with the air-cut values. This suggests
that although the exact values depend on the cutting conditions, it might be reasonable
to compare the in-cut and air-cut values of these indicators. SD increases significantly for
chatter cases as supposed. Lastly, CER stays high above the threshold 0.2 for S14 and S21,
and it decreases sharply for signals S17 and S24, even though it is less apparent than in
Experiments 1 and 2, and in some parts its value rather oscillates around the threshold.
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5. Discussion of Results and Methods Comparison

One of the main objectives was to select a suitable in-process chatter indicator and
test its robustness with respect to different tools and their respective cutting force loadings.
Although intuitively it was expected that the chatter detection efficiency would be higher
for rigid roughing tools with higher force loads and low compliance between the tool
tip and accelerometer position, on the contrary, higher sensitivity of the indicators was
observed for the slender cutting tool. Below is a summary of the indicators used and
their evaluation.

Coarse-grained entropy rate (CER) proved to be a robust method that identifies chatter
for various cutting conditions. Its values in the transition parts of the signal during the start
and end of the cut might be unreliable and falsely detect chatter even in stable cases (as in
S14 and S21). However, once the cutting tool is fully in cut, CER value indicates whether
the chatter appears or not. Therefore, it might be reasonable to use some combination
with other criteria (e.g., spindle torque) to decide whether the tool is fully in cut or not.
The threshold proposed in [29], although identified for turning, worked well also for
the milling experiments in this paper. For the chosen signals, CER value in the cut was
always significantly above the threshold in stable cases and below for chatter, except for
S17 and S24 where it was comparable with the threshold value in a part of the cutting. See
Figures A1–A5 in Appendix A for more examples.

Rényi entropy (RE) consistently identifies chatter in Experiments 1 and 2 performed
with the slender end mill; however, the indicator is less decisive in Experiment 3 performed
with the shoulder mill where the values are very similar for stable and unstable machining.
It can be concluded that this method is more dependent on the tool dynamic properties.
Presented experiments and the cited paper [31] suggest that it works well in the case of a
slender cutting tool (a cutting tool of diameter 16 mm was used in Experiments 1 and 2, and
a cutting tool of diameter 10 mm was used in the cited paper), while it is less reliable for a
massive cutting tool (the cutting tool in Experiment 3 had diameter 50 mm). Computation
of RE is very fast (see Table 2), but it requires information about the spindle speed and
number of teeth which would need to be set for each machining operation when used
in industry.

Table 2. Average time required for computation of 1 indicator value from 0.2 s time interval.

CER RE SD FD PSE

0.0046 s 0.0005 s 0.0884 s 0.7933 s 0.0888 s

In the case of the multi-indicators method, the standard deviation (SD) appears sensi-
tive at first sight, but its disadvantage is its dependence on the absolute magnitude of the
vibration. Without a close knowledge of the dynamics of the machine, tool and process, it
would be difficult to set a generally valid threshold for chatter.

The difference between power spectral entropy (PSE) values in stable and in unstable
machining is very significant in the case of end mill measurements and less notable in
shoulder mill measurements. Similarly, as CER, PSE does not give decisive results in
S17 and S24. However, overall it is a consistent method, and it is less dependent on cutting
conditions than RE.

Finally, fractal dimension (FD) was not found to be useful compared to other methods.
It can be stated that it recognizes chatter in case S08, but it is less convincing than any other
method. In other cases, it has similar values for both stable and unstable machining, or it
is even lower for the unstable machining, which is the opposite of the expected behavior.
Considering also that computing FD is incomparably more demanding than the other
methods (see Table 2), we cannot confirm this method as being applicable in industry.

The above experiments were performed with accelerometer data acquired at a sam-
pling rate of 32.768 kHz. This value is high enough even for relatively slender tools with
high eigenfrequencies. The time interval of each evaluation was 0.2 s.
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In terms of real-time processing, all methods except FD can be used according to
the comparison performed. For practical deployment, one of the available platforms of
industrial PC manufacturers, e.g., Beckhoff Automation or the cRIO platform (National In-
struments Corp.), is considered. These allow both the implementation of the necessary fast
calculations and the connection of an accelerometer or other additional signals (e.g., spindle
torque). At the same time, communication with the machine tool can be implemented to
ensure the machine’s response to the chatter detection.

6. Conclusions

This paper deals with the study of methods for the online identification of chatter
in milling, with the main aim of testing their robustness for practical applications. Each
selected method uses a chatter indicator assessing signal entropy, energy, or fragmentation,
and is suitable for processing acceleration signals. The novelty of the paper is the compari-
son of the performance of the methods for both rigid and slender cutting tools, which differ
significantly in dynamic compliance. Furthermore, the computational complexity of the
algorithms was evaluated with respect to the considered online application.

Specifically, the methods compared are coarse-grained entropy rate (CER), Rényi
entropy (RE), standard deviation (SD), fractal dimension (FD) and power spectral entropy
(PSE). Their assessment was performed post-process on a set of accelerometer measure-
ments from three different experiments. In total, 24 different milling records at different
cutting conditions were evaluated. A detailed overview of the conditions is given in
Tables 2 and A1.

Of the criteria tested, the CER criterion appears to be the most useful, showing the
ability to reliably detect chatter at different cutting conditions and on both cutting tools,
which represent systems with different dynamics. At the same time, this criterion allows
relatively fast computation and is therefore suitable for deployment in online chatter
detection. A certain problem in practical deployment is the possibility of false detection of
instability during transients when the instrument enters and exits the cut. For this reason,
it seems appropriate to combine the CER criterion with one of the other criteria. Such a
criterion could be, for example, the variation of the milling spindle load.

The transmission of vibrations from the process to the location of the accelerometer in
the spindle unit of the machine tool is significantly affected by the tool compliance. One of
the main contributions of this study is the testing of the robustness and effectiveness of the
presented algorithms for various cutting tools and cutting conditions.

Prospectively, similar measurements are planned on larger machines for which the
peaks of dominant compliance may be at orders of magnitude lower frequencies and,
conversely, on even more slender long cutting tools where the transmission of tool vibration
to the spindle, where the accelerometer is located, could be an issue. For the slender end
mills used in the experiments performed here, this negative effect was not observed to be
significant for the chatter detection.
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Appendix A

Table A1. Cutting conditions for all performed tests. Stability is the evaluation based on the surface
quality.

Experiment 1: slender end mill, overhang 50 mm

n [1/min] vc [m/min] fz [mm] ae [mm] ap [mm] stability

S01 2984 150 0.1 16 0.5 stable

S02 2188 110 0.1 16 0.5 stable

S03 3780 190 0.1 16 0.5 uncertain

S04 2984 150 0.1 16 1.0 uncertain

S05 2188 110 0.1 16 1.0 uncertain

S06 3780 190 0.1 16 1.0 chatter

Experiment 2: slender end mill, overhang 30 mm

n [1/min] vc [m/min] fz [mm] ae [mm] ap [mm] stability

S07 2984 150 0.1 16 2.0 stable

S08 2188 110 0.1 16 2.0 chatter

S09 3780 190 0.1 16 2.0 stable

S10 2984 150 0.1 16 3.0 chatter

S11 3780 190 0.1 16 3.0 uncertain

Experiment 3: shoulder mill

n [1/min] vc [m/min] fz [mm] ae [mm] ap [mm] stability

S12 955 150 0.15 50 0.5 stable

S13 955 150 0.15 50 1.0 stable

S14 955 150 0.15 50 1.5 stable

S15 955 150 0.15 50 2.0 uncertain

S16 955 150 0.15 50 2.5 stable

S17 955 150 0.15 50 3.0 chatter

S18 898 141 0.15 50 0.5 stable

S19 898 141 0.15 50 1.0 stable

S20 898 141 0.15 50 1.5 stable

S21 898 141 0.15 50 2.0 stable

S22 898 141 0.15 50 2.5 stable

S23 898 141 0.15 50 3.0 uncertain

S24 898 141 0.15 50 3.5 chatter
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Figure A1. Signals from Experiment 1—slender end mill, overhang 50 mm. Figure A1. Signals from Experiment 1—slender end mill, overhang 50 mm.
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Figure A2. Signals from Experiment 2—slender end mill, overhang 30 mm. Figure A2. Signals from Experiment 2—slender end mill, overhang 30 mm.
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Figure A3. Signals from Experiment 3—shoulder mill. Figure A3. Signals from Experiment 3—shoulder mill.
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