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Ivan Němec, and Assoc. Prof. Anton Tkachuk.

Warm acknowledgments for long-time discussions on the issues of habilitation thesis and mentoring
belong to Prof. K.C. Park and Prof. Miloslav Okrouhĺık.
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Abstract

This habilitation thesis summarizes relevant advancements in numerical modelling of elastic wave
propagation in solids and contact-impact problems. The advanced numerical methods for accurate
numerical wave modelling in solids and contact-impact modelling are presented to improve cardinal
phenomena which pollute the numerical results as spurious oscillations of the stress field in the wave
propagation, improve convergence rate for free vibration tasks, analysis of dispersion errors in the
finite element modelling in explicit time schemes and avoid the stability trouble in the penalty-based
dynamic contact-impact modelling with stabilization of contact force oscillations. On that topics, the
author of the thesis worked for twelve years to improving standard numerical technologies in FEM
which can be implemented into commercial software for dynamics, wave propagation and contact-
impact problems.

The first Section presents the analysis of the dispersive properties of the finite element method
in elastic wave propagation. The dispersive properties of plane square bilinear and biquadratic
FEs are analyzed for the full spatial/grid disctretization and also for the temporal-spatial semidis-
cretization with the explicit and implicit time integration. The higher-order FEM discretization via
the spline-based shape functions is studied with intention to describe dispersion and effects of order
and smoothness of the spline shape function are discussed with respect to the the dispersion behaviour.

The second Section summaries the activities in the area of the advanced time stepping for the
finite element discretized equations of motions, the analysis of its accuracy and stability. The main
attention is paid to diminishing the dispersion errors and spurious stress oscillations of the numerical
results. The partitioned longitudinal and shear wave algorithm was found, implemented and
tested. The spline based FEM together with several time explicit and implicit schemes are studied
with respect to the spurious oscillations. Finally, the heterogenous time stepping algorithm for
elastic wave propagation is presented. It is based on the localized Lagrange multilpliers and solving
of the interface problems without dissipation of the energy on the interfaces.

The third Section focuses on applications of the finite element method in elastic wave prop-
agation in layered and heterogeneous media. The verification of the numerical results by the
experimental and analytical approaches are presented. The applications of the FEM for time reversal
tasks and in nondestructive testing of materials and structures are mentioned. The review of elas-
tic wave propagation in 3D printed structures and identification of the residual stresses in bodies is
introduced.

In the fourth Section, the advanced numerical methods based on higher-order FEM are presented.
Mainly, the isogeometric analysis applied into the free vibration problems is shown with the
discussion on convergence rate in eigen-value computations. The direct inversion mass matrix -
called reciprocal mass matrix - in free vibration problems is mentioned and discussed.

The fifth Section focuses on the advanced numerical methods for modelling of the contact-impact
problems based on the bipenalty method as an extension of the classical penalty method. On
the numerical tests, the accuracy and stability of the nominated methods for contact-impact are
summarized and commented for one-dimensional and two-dimensional problems.

The thesis finishes with the summary and comments of possible future works and today challenging
directions for the studies in the areas of the thesis.
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1 Introduction

The finite element method has a long-time tradition in numerical modelling of physical and engineering
tasks based on the ordinal and partial differential equations. Nowadays, the displacement based finite
element method (FEM) is an accepted numerical method/approach for problems of solid mechanics
including dynamics and nonlinear behaviour materials and their fracture. It is a standard issue that
constructors and designers use the commercial software based on FEM and predict and estimate the
mechanical behaviour and responses including lifetime of complex technical units as air-crafts, cars,
satellites or others.

On the other side, we know that standard-usual FE approach in elastic wave propagation in solids and
their impact problems are not fully developed with respect to numerical errors of the FEM, optimal
accuracy and stability in elastic wave propagation and impact problems. For that reason, during
the past 12 years, the author of the thesis paid attention to the improving the FEM approaches as
a powerful, accurate and robust numerical tool for modelling of elasto-dynamic problems of solids
and their contact-impact problems. It should be emphasised that contact-impact problems are highly
non-linear and besides the elastic waves,the plastic waves also play a considerable role. Still, the elastic
approach is the best first approximation to what happens later.

Solved scientific problems in the thesis are summarized as follows:

• analysis of dispersive properties of classical linear and quadratic FEM

• analysis of dispersive properties of higher-order/smooth FEM including spline-based approxima-
tion

• analysis of temporal-spatial dispersive properties of FEM in implicit and explicit time stepping

• suggestion of advanced time stepping for suppressing of dispersion errors in FEM with explicit
direct time integration

• suggestion of explicit heterogeneous time stepping for suppressing the spurious stress oscillations
in FEM for wave propagation in heterogeneous media

• applications of FEM for modelling of elastic wave propagation in solids, as in non-destructive
areas, wave propagation in heterogeneous and 3D printed media

• improving FEM in free-vibration problems via the higher-order and smooth FE discretization
and direct inversion of mass matrix called reciprocal mass matrix

• improving the penalty method in contact-impact problems via the bipenalty method due to the
stability and accuracy of the time history of contact forces and their spurious oscillations.

The defined scientific questions and their solutions were published in several papers overviewed in this
thesis. All mentioned items are presented and commented in the following Sections.
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2 Background

The accurate, fast and robust numerical modelling of wave propagation and wave processes in solid
bodies is a still important issue for real problems including non-destructive testing in civil and me-
chanical engineering, seismic problems, bio-mechanical or space applications together with impact
problems. In this thesis we summarize the improving the finite element method in elastic wave prop-
agation, transient and free-vibration problems and contact-impact problems of solids.

One important issue in usage of the finite element method in elastic wave propagation is its dispersive
properties of this numerical method. It is known that the finite element method as a tool for the
spatial and temporal discretization produces dispersive behaviors of the numerical model – the wave
speed through a FE mesh depends on the frequency/wavelength of the propagating wave and the FE
model behaves as a frequency filter. However, the continuum model of elastic wave propagation on
an unbounded domain is non-dispersive. The dispersive properties of FEM are needed to analyze
not only for the spatial discretization but also with the effect of the time discretization via the time
stepping schemes. In the thesis, the temporal-spatial dispersive properties in explicit and implicit
time methods are mentioned.

Generally, the dispersion of acoustic branches can be controlled by the higher-order discretization and
smoothness of shape functions. For that reason, the spline-based shape fucntions were tested due
to the dispersion errors. A modern approach in computational continuum mechanics is represented
by the Isogeometric Analysis. This modification of FEM employs shape functions of different spline
types as B-splines and NURBS, T-splines, etc. In addition, the IGA approach provides higher-order
of continuity of the field of unknown quantities than that offered by FEM based on Lagrangian
polynomials. This higher-order approximation really produces the better dispersion errors of the
acoustic branches but they produce the optical branches as a by-side-effect of this approximation.
The issue is also commented and summarized in the thesis.

In FEM modelling of wave propagation, the method of semidiscretization with direct time integration
is generally applied. Often, the implicit and explicit direct time scheme are used. In this research,
the attention has been paid to the improving of explicit time integration with respect to numerical
dispersion and accuracy, mainly measured by the level of spurious oscillations of the stress field. Also
the task of efficient inversion of mass matrix of consistent type has been studied, where the reciprocal
mass matrix has been suggested in connection with the mass scaling for lower and higher-order FEM
and IGA.
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3 Dispersive properties of Finite element method

3.1 Dispersion errors of numerical methods

Dynamic non-stationary stress states and wave propagation occur in a variety of engineering problems
such as non-destructive testing of materials, impact and shock loading of bodies, acoustic scattering,
earthquake and seismic problems. Analytical modelling of stress wave propagation in bodies of complex
geometries and with complicated material properties is practically impossible – that is why various
numerical approaches in wave propagation tasks are used. Today, in the engineering applications, the
finite element method is a dominant numerical approach but not alone, as the finite volume method,
boundary element method and others can be used. The finite element method is often employed for
the numerical solution of wave propagation in complex heterogeneous media. Spatial discretization by
FEM ([1, 2, 3]) can easily approximate the boundaries of domain of interest and boundary conditions,
accounting for complex material behaviour.

Generally, a suitable numerical method must be able to minimize numerical errors as attenuation or
amplification, polarization errors, numerical anisotropy, error in phase and group velocities (disper-
sion), extraneous parasitic (spurious) modes, and numerical diffraction. It is possible to reduce these
numerical errors by tuning the discretization of space and time and by a proper choice of numerical
techniques. It is known that spatial discretization by FEM introduces so-called dispersion errors,
which may be viewed as mere solution artefacts that do not actually exist in the continuum. The
dispersion behaviour of FEM encompasses change of direction and wave speeds and, in general, affects
the way of the wave propagating. Furthermore, the FEM mesh behaves as a frequency filter – not all
the frequencies can be transmitted (Reference [4, 5]). The dispersive behaviour of media is character-
ized as a relationship between the wave speed of wave propagation and its frequency. Sometimes, the
dispersion relationship is given as the function of wavelength. During wave motion in the dispersive
media the wave with different frequencies/wavelengths propagates with different wave speed. It means
the the pulse consists of several pulses with different frequencies is distorted due to the dispersion of
each wave component.

3.2 Grid dispersion of FEM

The theoretical basis of the dispersion analysis related to FEM for the solution of hyperbolic partial
differential equation was perhaps initiated in [6], where the Gibb’s effect in the FEM solution was
observed in the form of stress jump oscillations that did not vanish upon mesh refinement. Later on, the
Fourier method (sometimes called the von Neumann method) was recognized as the dispersion analysis
tool for hyperbolic partial differential systems (References [7]). A very simple and efficient approach
to the complex wave numbers Fourier analysis of FEM is presented in Reference [8]. In 1973, Krieg
and Key (Reference [9]) studied one-dimensional constant strain elements employed in the numerical
solution of the one-dimensional Helmholtz equation. They discovered a hidden interrelation between
the mass matrix approximation and temporal discretization. Belytschko and Mullen (Reference [10])
extended this dispersion analysis to higher order (quadratic) one-dimensional elements. It was shown
that an optical branch in the spectrum existed. This notion refers to Brillouin’s original text, in which
the lowest characteristics were called the acoustic branches and the higher ones optical branches. The
existence of optical modes accounts for the noise associated with the propagation of discontinuities. In
that well-known study, the dispersion analysis revealed the ’stopping’ bands in the frequency spectrum
of biquadratic elements, whose corresponding solutions in the frequency range decayed exponentially.

Holmes and Belytschko (Reference [11]) showed numerically that an abrupt change of mesh size pro-
duced interior reflections, contributing to the propagation of spurious waves. Their magnitude was
analytically estimated by Bažant and Celep in References [12]. The same authors subsequently proved
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in Reference [13] that mesh grading (insertion of transition domain) did not provide much assistance,
i.e. it could not absorb the spurious modes. One-dimensional Lagrangian and Hermitian elements
were studied, along the same lines, by Okrouhĺık and Höschl in Reference [14]. The response of the
one-dimensional constant strain element mesh to the Heaviside loading was solved in Reference [15]
and stress oscillations as well as the appearance of spurious waves were reported again. It was proved
that the spurious oscillations could not be entirely removed but only partially eliminated. The in-
tensity of such oscillations depends solely on the number of finite elements through which the elastic
wave has passed. Generally, it depends on the frequency spectrum of the loading pulse.

Mullen and Belylschko (Reference [5]) extended the dispersion analysis to two-dimensional wave equa-
tion using bilinear elements, where the effects of mesh layout, mass approximation and underintegra-
tion were examined. In this work, the passing bands in dispersion spectrum have been detected for
a plane mesh consisting of 3-node linear triangle finite elements. The mesh layout of different struc-
tured FE meshes from 3-node linear elements exert considerable influence on dispersion behaviour.
Passing bands exist for two-dimensional or three-dimensional multi-mass-spring systems, for details
see Reference [16]. The dispersion properties of triangular, rectangular and square finite elements,
respectively, for two-dimensional domains have been determined and analyzed in References [17, 18].
Dispersion analysis of the three-dimensional second-order scalar wave equation (the three-dimensional
Helmholtz equation) was carried out by Abboud and Pinsky in Reference [19]. The analysis was per-
formed for trilinear rectangular 8-node elements, for triquadratic rectangular 27-node elements and
for serendipity rectangular 20-node elements with the investigation of mass approximation to follow.

In the paper [20], the dispersive properties of square plane bilinear and biquadratic finite element have
been studied. The dispersion relationships of a plane square biquadratic serendipity finite element are
examined and compared with a bilinear one. Dispersion analysis is carried out for the consistent
and lumped mass matrices. A dispersive ’improved’ lumped mass matrix for biquadratic serendipity
elements is proposed. The numerical dispersive solver for higher-order method has been suggested
and implemented. This solver can be apply to arbitrary FE mesh and order of approximation.

The dispersion analysis of higher-order FEM provide also the higher order dispersion curves which are
the product of higher order discretization. These higher curves correspond to the optical wave modes
where the neighboring nodes vibrate in the opposite directions. Also for several wave propagation
directions, the negative numerical group speeds have been observed. This effect is non-physical due
to the spatial discretization via higher order FEM.

The paper [20] closes with the recommendation of a choice of permissible dimensionless wavelengths
for bilinear and biquadratic serendipity finite element meshes. The mesh size is only one way how to
control the dispersive behaviour of FEM solution obtained by the commercial softwares.

On the basis of this dispersion analysis, the mesh size (prescribed by the length of element edge H)
with respect to the given wavelength of a propagating wave λ has been recommended for plane square
bilinear and biquadratic serendipity finite elements. It was suggested to use uniform finite element
meshes satisfying the following conditions for the transient elastodynamic analysis:

- H ≤ 20λ for bilinear square finite elements with the lumped mass matrix,

- H ≤ 10λ for biquadratic square finite elements with the lumped mass matrix,

- H ≤ 10λ for bilinear square finite elements with the consistent mass matrix,

- H ≤ 4λ for biquadratic square finite elements with the consistent mass matrix.

The appropriate mesh sizes for the given wavelength guarantee permissible dispersion errors and the
accuracy of the numerical solution of elastodynamics transient problems. The suitable estimation of
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λmin could be set as λmin = c2/fmax, where fmax is the maximal loading frequency in [Hz] given by
the character of external loading and c2 is the speed of transverse wave in elastic media.

In the following Section, the effect of temporal discretization is mentioned.

3.3 Temporal-spatial dispersion of FEM

The time stepping produces the numerical damping and elongation/shortening of the time period
of the response depended on the direct time integration method. For that reason it is needed that
the temporal and spatial dispersive properties of the semidiscretized numerical method have be to
take into account together and the temporal-spatial dispersion relationships are obtained from the
dispersion analysis including the spatial and temporal discretizations.

In principle, dispersion errors in FE computations are influenced by a choice of mass matrix, type of
the time integration, its numerical parameters and, in addition by the time step size. It is known that
some methods of direct time integration cause period elongation of pulse in time (Reference [1]). For
certain choices of mass matrices and time integration methods, the dispersion and period elongation
errors can suppress each other. It was shown for linear finite elements in one-dimensional problems that
an optimal choice is based on the combination of the central difference method with the diagonal mass
matrix and the Newmark method with the consistent mass matrix (Reference [5]). Also, the results of
full (both temporal and spatial together) dispersion analysis of the Newmark method and the central
difference method with the consistent as well as lumped mass matrices became known (Reference [10]).
It was shown that the consistent mass matrix overestimates numerical wave speed, on the other hand,
the diagonal mass matrix underestimates numerical wave speed. Based on these considerations, the
Newmark method was recommended to be used with the consistent mass matrix, whereas the central
difference method was identified as a suitable counterpart to mass lumping procedures.

In most FE commercial software, the central difference method (Reference [21]) as an explicit time
integrator and the Newmark method (Reference [22]) as an implicit time integrator are often imple-
mented. In general, the central difference method in time is combined with the diagonal mass matrix
due to the efficient solution of equations of motion (Reference [23]). With respect to the efficient
solution of the nonlinear dynamic problems, the linear shape functions in spatial discretization are
employed in explicit time integration with one-point Gauss integration connected with the Hourglass
stabilization (Reference [24, 23]). This combination of linear FEM, diagonal mass matrix and explicit
time integration via the central difference method produces a suitable temporal-spatial dispersion
effect on the numerical errors, (Reference [20]). The explicit time schemes in FEA are preferred for
modelling of fast and shock responses of bodies and structures. Explicit methods with a diagonal mass
matrix require a vector solver only, but mostly they are merely conditionally stable. Thus, the time
step size must satisfy the stability limit, see References [24, 25].

Conversely, the Newmark method in the implicit form is recommended to be used with the consistent
mass matrix (Reference [23]). Implicit computation needs a much larger computational effort per
time step due to the solving a large system of linear algebraic equations, where the corresponding
matrix of the linear problem is given by the linear combination of the mass matrix, damping matrix
and linearized stiffness matrix (Reference [1]). In wave-like problems, the implicit time schemes are
used with the consisted mas matrix due to suitable dispersion errors. However, implicit methods were
derived and occur the unconditional stability for linear cases and then the time step size could be chosen
rather freely based only on the characteristics of the physical problem to be solved. The implicit time
schemes are employed in the numerical solution of lower and middle frequency response and mainly
together with the higher-order finite element spatial discretization. Several variants of the Newmark
family method have been studied in Reference [26] as the average acceleration method, the linear
acceleration method, the Fox-Goodwin method as well as the central difference method. Overview
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of the properties of these time schemes are mentioned in Reference [1]. Today, the generalized-α
time scheme in the implicit time stepping (Reference [27]) is very popular due numerical damping
and filtering effect of higher frequency spectra via the time stepping without extra post-processing
techniques.

The full (both temporal and spatial together) dispersion analysis of the Newmark method and the
central difference method with the consistent as well as diagonal mass matrices has been presented for
1D FEM in[10]. It was shown that the consistent mass matrix overestimates numerical wave speed,
on the other hand, the diagonal mass matrix underestimates numerical wave speed. It was shown for
linear finite elements in one-dimensional problems, that an optimal choice is based on the combination
of the central difference method with the diagonal mass matrix and the Newmark method with the
consistent mass matrix [5]. Dispersion analysis of FEM associated full temporal-spatial discretization
was studied in [28].

The results of full (both temporal and spatial together) dispersion analysis of the Newmark method [22]
and the central difference method [21] with both consistent and lumped mass matrix became known. It
was shown that the dispersion relations for time integration numerical schemes were influenced by the
magnitude of the time step. Based on these considerations, the Newmark method was recommended
to be used with the consistent mass matrix, whereas the central difference method was identified as a
suitable counterpart to mass lumping procedures making the diagonal mass matrix.

The work [29] presents the temporal-spatial (full) dispersion and stability analysis of plane square
linear and biquadratic serendipity finite elements in explicit numerical solution of transient elastody-
namic problems. In this paper, the grid dispersion analysis of plane square biquadratic serendipity
finite elements from Reference [20] is extended to study of influence of time integration by the central
difference method in connection with the diagonal mass matrix. The evaluation of the critical time
step size with respect to stability (for whole class of permissible lumped mass matrices) was also
studied. All obtained results are compared with those of square bilinear finite elements. The disper-
sion computation strategy is adopted from the paper [20]), where a lumping strategy for the quadratic
serendipity FE has been proposed. We report on a computational strategy for temporal-spatial disper-
sion relationships, where eigenfrequencies from grid/spatial dispersion analysis are adjusted to comply
with the time integration method. Moreover, the suggestion of an ‘optimal’ lumped mass matrix with
respect to stability and good dispersion behaviour is reported. It should be noted that the continuous
Galerkin formulation with Lagrangian shape functions (Reference [1]) is utilized in the paper [20].

In the paper [30], the temporal-spatial dispersive properties of plane square bilinear and biquadratic
serendipity finite elements in implicit direct time integration of elastic wave propagation problems in
solids are studied. In the time integration, the implicit methods of the Newmark type (the average
acceleration method, the linear acceleration method, the Fox-Goodwin method) are employed and
the close form for the dispersion temporal-spatial dependencies are found. Based on the temporal-
spatial dispersion analysis, the mesh size and time step size are recommended for accurate modelling
of elastic wave propagation in the implicit time simulations via the finite element method. The results
of implicit temporal-spatial dispersion analysis as well as suitability of the ’proper’ choice of the mesh
size and time step size were illustrated on the two numerical problems.

Based on the temporal-spatial dispersion in implicit and explicit time integration and its stability
analysis, respectively, presented in the papers [30] and [29], relationships suggesting the ‘proper’
choice of mesh size and time step size from knowledge of the loading spectrum are presented.

With respect to the temporal-spatial dispersion analysis of plane bilinear and biquadratic serendipity
FEs in the explicit time integration used for transient elastodynamics and wave propagation analysis,
we suggest using uniform finite element meshes (H) and time step sizes (∆t) satisfying the following
conditions [29]:
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• for the time step size given by ∆t = H/c1 - for linear FEM

• for the time step size given by ∆t = 0.2H/c1 - for biquadratic FEM

where c1 marks the wave speed of longitudinal wave.

Following, the time step size is recommened to use with respect to the temporal-spatial errors for the
Newmark method and consistent mass matrix [30]:

- ∆t = H/c1 - for bilinear FEM

- ∆t = 0.5H/c1 - for biquadratic FEM

In this case, we set the numerical parameters of the FE model so that the temporal-spatial errors are
smaller then 1%.

3.4 Dispersion of spline-based FEM

Another approach for improving FEM dispersion properties is based on a choice of completely differ-
ent shape functions than the Lagrangian interpolation polynomials. Shape functions in the form of
Legendre polynomials (hp-version of FEM) and hierarchic Fourier functions (Reference [8]), Cheby-
shev polynomials (References [31, 32]), B-splines (Reference [7]) or NURBS (non-uniform rational
B-splines) (References [33, 34]) are considered.

A modern approach to computational continuum mechanics is the Isogeometric Analysis (IGA) [35],
taking its inspiration from Computer Aided Design (CAD). This modification of FEM employs shape
functions of splines (for examples, B-splines, NURBS–Non-Uniform Rational B-spline, T-splines and
others). The advantage of spline-oriented FEM is that geometry and approximation of the field
of unknown quantities are prescribed by the same technique. Another benefit is that the approximation
is smooth with a higher order of continuity and also some 2D and 3D geometries could be precisely
described [36]. IGA aims at integrating FEM ideas in CAD systems without the necessity of generating
new computational meshes as required by the conventional FEM.

It has been shown that IGA produces optimal convergence rate and dispersion properties in elastody-
namics problems [33, 34]. B-spline based FEM exhibits small dispersion errors in wave propagation in
an one-dimensional unbounded elastic medium [7, 34]. It has also been shown that the higher optical
modes did not exist and, subsequently, dispersion errors were reported to decrease with the increasing
order of B-spline shape functions [33, 34]. IGA improves the dispersion errors and frequency spectrum
in the comparison to higher-order Lagrangian finite elements. This can be ascertained from the fact
that B-spline basis functions are uniform (homogeneous) for a uniform knot vector. This means that
constituent basis functions are the same, but they are moved in the parametric space with an identical
distance [36]. For this reason, equations of motion are repeated and the discretized medium subse-
quently produces a low level of dispersion errors with no stopping bands [34]. On the other hand, the
high order of continuity of B-spline basis functions generates not only propagating waves, but also
evanescent waves with a pure imaginary wavenumber. With respect to the high level of attenuation of
evanescent waves, the IGA numerical solutions are not being polluted by these waves [34]. Generally,
the B-spline or NURBS basis functions for bounded domains are not uniform [36]. For this reason,
the non-homogeneity of basis functions close to the boundary of the domain produces the dispersion
and attenuation behaviour.

Based on an extensive study of the literature, it has been opted to contribute to the subject with a
complex wavenumber Fourier analysis of the B-spline based FEM in elastic wave propagation through
a 1D infinite domain divided into segments with the C0 connection, see [37]. The main attention
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of the dispersion analysis is devoted to the study of influence of the C0 continuity between spline
segments and also of parameterization inside the B-spline segments. It was shown for the higher-
order B-spline based FEM, that the optical modes did not occur in the case of infinite domains,
unlike the higher-order Lagrangian and Hermitian finite elements, and also the dispersion errors are
smaller. The paper’s main focus [37] is the wave propagation through B-spline multi-patch/segment
discretization with the C0 connection of B-spline segments and, chiefly, to the determining of dispersion
and attenuation dependencies. The numerical optimization process employed leads to substantial
minimization of dispersion errors by the choice of parameterization. Furthermore, the errors decrease
with the increasing order of the B-spline elements/segments, with the local refinement, and also by
the particular choice of the positions of control points through the optimizing procedure.
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4 Advanced time schemes in wave propagation

4.1 Time stepping for IGA

In the previous section, the dispersion analysis of IGA has been mentioned and actually, the numerical
solution of wave propagation based on FEM is realized together with direct time integration. The basic
using of the direct time integration methods in FEM, as the central difference method and Newmark’s
family method have been commented in the previous section, as well as the standard setting of mass
matrix connected to explicit and implicit time method and limits on the time step size.

Now, we will mention the properties of higher-order FEM connected to direct time integration and
dissipative time stepping methods, mainly in the explicit time computations. In principle, non-physical
higher vibration modes occur in frequency spectrum of higher-order FEM [10, 20, 37, 38] and of IGA
on multipatches with C0 continuity [37]. Therefore time integration methods should be derived in
such a way that the dissipation of higher frequencies is optimal and minimized for the low frequency
spectra. Attempts to do so are presented by the Hilber-Hughes-Taylor (HHT-α) method [39, 40] or the
generalized-α method [41, 27]. Implicit time integration schemes are preferred in higher-order FEM
and in IGA [35]. In the case of explicit time integration, the presence of high frequency modes in the
spectrum causes fragility of higher-order elements and spline based FEM regarding numerical stability
condition for the setting of time step size. The two-time step method for application for higher-order
FEM and IGA has been presented in [42].

In order to take advantage of IGA approach in explicit dynamics, one uses a lumped mass matrix
formulation. Due to positive values of spline shape functions, all the terms of the consistent mass
matrix in the Galerkin approximation method are also positive. Thus, the ’row-sum’ technique [1] for
the lumped mass matrix in IGA can be employed. The lumped mass matrix losses the second-order
accuracy of IGA in higher modes [35]. One way how to overcome the lumping issue in IGA is to
provide explicit predictor/multi-corrector algorithms as described in [43, 1, 44]. Here, the lumped
or consistent mass matrix is used for the ’left-hand-side’ matrix and the consistent mass is used in
calculation of the ’right-hand-side’ residual vector.

In the paper [45], several time scheme have been tested in connection with the B-spline higher order
discretizations. Here, the accuracy of stress distributions and spurious oscillations of the B-spline based
FEM are studied in numerical modelling of one-dimensional propagation of stress discontinuities in
a bar, where the analytical solution is known. For time integration, the Newmark method, implicit
form of the generalized-α method, the central difference method and the predictor/multi-corrector
method are tested and compared. The use of lumped and consistent mass matrices in explicit time
integration was discussed. Accuracy considerations lead to the conclusion that, the consistent mass
matrix is preferred in explicit time integration in IGA.

4.2 A time stepping for migimiting of spurious stress oscillations

In the FEM modelling of wave propagation, fast response problems and shock problems, the explicit
direct time schemes are preferred. The most used explicit methods in FEM are summarized here: the
central difference method [21, 9], the Trujillo method [46], the Park variable-step central difference
method [47], the Chung and Lee method [48], the explicit form of the generalized-α method [41], the
Zhai method [49], the Tchamwa-Wielgosz method [50], the explicit predictor-multicorrector method
[1], the Krenk method [51], the Tamma et al. method [52, 53], the Idesman method [54], the Chang
pseudo-dynamic method [55], the multi-time step (KCP) Park method [56, 57], the two-time step
Bathe method [58] and other second- or higher-order accuracy explicit methods could be mentioned
[59]. The comparative study of numerical explicit time integration algorithms for impact problems
has been presented in [60, 61].
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Dissipative explicit methods, for examples the Tchamwa-Wielgosz method, the generalized-α method
in the explicit form or the Chang method, are often used due to reduction of spurious oscillations
induced by dispersion behavior of spatial and time discretization. Unfortunately, in this case, a part
of total energy is lost due to numerical dissipation. The effect of numerical damping and dissipation
of spurious oscillations in explicit computations has been studied in [62]. One way, how to partially
reduce spurious oscillations without additional numerical dissipation, is application of multi-time step
methods, time sub-cycling methods [59, 63, 64]. Presently, heterogeneous and asynchronous time
integrators [65, 66, 67] and variational time integrators [68, 69] are very popular in structural dynamics
and these approaches have got a big potential for application in wave propagation problems involving
different time step sizes and different time integrators on different domain.

For the reason mentioned in the previous section, the local time stepping method connected to push-
forward method has been developed, see [70]. The standard explicit time scheme in finite element
analysis is not able to keep accuracy of stress distribution through meshes with different local Courant
numbers for each finite element. The used two-time step scheme with the diagonal mass matrix is
based on the modification of the central difference method with pullback interpolation. Using this
approach, the dispersion behaviour of linear FEM is suppressed with minimal level of dissipation of
energy [70]. A numerical example of one-dimensional wave propagation in a bimaterial elastic bar has
shown the quality of time stepping process. Based on numerical tests, the employed time scheme with
pullback interpolation and local stepping technique is able to eliminate spurious oscillations in stress
distribution in numerical modelling of shock wave propagation in heterogeneous materials [70]. The
method has been extented for explicit asynchronous time stepping with different time step for each
domain [71].

In nature, many types of waves propagating in solids are observed as longitudinal and shear waves,
surface Rayleigh’s waves, Lamb’s waves, Love’s waves, von Schmidt’s waves and others. We know
from the theoretical prediction of multi-dimensional wave propagation in unbounded continuum that
longitudinal and shear waves propagate with different speeds [72]. Therefore, the mismatch in the wave
speeds of these two types of wave components produces spurious oscillations in numerical solution by
FEM with direct time integration. Further, in computations using the central difference method as in
one-time step scheme, the stability limit is given by the fastest propagating wave – longitudinal wave.
This explains why the shear waves cannot be integrated as accurately as the longitudinal waves by
an one-time step scheme. This is the main disadvantage of the central difference method employing in
multi-dimensional wave propagation problems in solids. Moreover, we have also to take into account
anisotropy of grid dispersive behavior of FEM in unbounded domains [20, 73] and in a Rayleigh’s wave
propagating along stress-free boundaries [74].

Suppression and diminishing of spurious oscillations in finite element simulations of discontinuous
wave propagation in solids for multidimensional tasks is still an current open problem to be studied.
A suggestion of time integration scheme based on partitioned shear and longitudinal wave equations,
where these partitioned equations of motion are integrated separately with individual CFL stability
limits [75], were presented in [57] and extented with effective implementation in [76]. It is possible
to mitigate temporal-spatial dispersion errors and spurious oscillations resulting dispersion behavior
of finite element method. The equations of motion are decomposed on the element-by-element level
as application of decomposed operators on elemental forces. Then, we use the pullback interpolation
formula for evaluation of longitudinal and shear displacement fields at the same time level. After that,
the sum of the partitioned longitudinal and shear displacement fields is employed as a predictor for
the central difference computation by the stable time step size. The partitioned wave time scheme is
presented in depth in a predictor-corrector form as a modification of the originally published four-time
step version in [57]. In [76], the three-time step version in the predictor-corrector form is presented with
a detailed step-by-step flowchart. By this modification of the presented time scheme, the computational
time is reduced by 25% with holding the same order and accuracy of computations as the original
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version of the partitioned wave time scheme [57].

The present three-time step integration method [76] has been completely explicit with a diagonal
mass matrix requirement, of second-order accurate, conditionally stable and has a minimal sensitivity
behavior on the time step size satisfying the stability limit [76]. Moreover, the new presented three-time
step scheme gives the same results as previous version [57]. Linear 4-noded quadrilateral and 8-noded
hexahedral one-point integrated finite elements are then preferred option to model solid components,
avoiding detrimental volumetric locking under nearly incompressible dynamic behavior. This paper
describes how to apply the shock-capturing algorithm to the partitioned equations of motion and how
to implement it in a predictor-corrector form into standard finite element codes. The algorithm was
implemented into an open research code Tahoe. The partitioned wave method has been extended into
heterogeneous explicit multi-step time integration for discontinuous elastic stress wave propagation in
heterogeneous solids [77].
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5 Finite element method in elastic wave propagation tasks

5.1 Applications of FEM in elastic wave propagation

The elastic wave propagation in solids has potential applications in several branches in engineering
as nondestructive testing in civil and mechanical engineering, biomechanics, aircraft, and space appli-
cations. One task in that area is to understand wave processes in solids under dynamic, shock, and
impact loading of bodies and predict the critical value of loading reaching the material limit. In this
case, understanding the stress concentration around geometrical discontinuities and cracks including
the wave interactions is an important part of studies in wave propagation. The second one lies in
the interaction of waves inside the bodies producing the internal stress intensity for potential internal
plastic or fracture zones as hidden defects in the bodies. The third application pays attention to non-
destructive testing, acoustic emission, time-reversal technique, and ultrasound method for detection
of cracks and defects via wave propagation phenomenon. The fourth one of applications is control-
ling of wave processes, wave interaction, and scattering in the meaning of acoustic lens or space-time
materials for modulation of wave processes in solids. With today high-technologies for manufacturing
including multi-material 3D printing of metals and meta-materials, it is possible to manufacture a
body with arbitrary multi-material distribution inside the body. By this material distribution, one
can control/attenuate/amplify the stress intensity and/or kinetic energy passing through the area of
interest. For all that applications, robust, accurate, and stable numerical solvers are needed to use
and/or develop for analysis and predicting of wave processes inside the elastic bodies with strong
material heterogeneities for possible applications. Residual stresses after production is a important
issue which affect the lifetime of bodies and non-controllable deformation. Residual stresses are prone
to appear in any production technique, which remain a challenge to be measured. Among nondestruc-
tive testing techniques, acoustic and ultrasonic waves remain widely used to determine stresses, voids
and defects in a wide array of parts. In [78], ultrasonic testing is highlighted as an alternative for
measuring residual stress both during and after fabrication.

The promising application of computational wave propagation in a digital twin in indentification and
localization cracks via the acoustic emission and refocusing of waves. The time reversal uses the
reversibility property of wave propagation to focus the energy to the original source location in space
and time. If the original source is very local, then this procedure is called refocusing. In [79], there
is a study of the accuracy and robustness of the computational time reversal approach based on the
explicit finite element method for application in nondestructive testing in solids. In practice, the
process of localization is accomplished in two steps. The first step, based on forward propagation,
is measuring on a real structure. In the second step, the measured signals are reversed in time and
transmitted to the computational model, where based on back propagation, energy is focused into
the location of the original source. Generally, one works only with partial information (incomplete
data from sensors), since it is not possible to record response signals in the whole structure. There
are two approaches of performing effective refocusing using TR method. The first one is using a
substantial number of transducers in combination with short record (and computational) time, the
second one is the exact opposite – using only one or several transducers combined with long record
times. The second approach exploits reflections from structure boundaries which are compensating
a lack of the direct information, altogether creating a virtual time-reversal mirror. For numerical
modeling of frontal (forward) and reverse (backward) problems of elastic wave propagation, we use
the finite element method and explicit time integration with the lumped mass matrix. A special
attention is paid to prescription of boundary conditions/loading for the reverse problem for accurate
reconstruction of time history of the original source. Based on several numerical tests, effects of
prescription of boundary conditions/loading in time reversal, effect of mesh size and time step size,
a shape of domain of interest, a number of sources, and noise on the correctness of reconstruction of
the original source have been shown.
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Using the FEM in elastic wave propagation in heterogeneous media, as layered structures with dif-
ferent layering, has been commented with the analysis of numerical dispersion of pulse in [80]. Here,
the finite element method and the finite volume method have been applied in parallel for the simula-
tion of a pulse propagation in periodically layered composites beyond the validity of homogenization
methods. The direct numerical integration of a pulse propagation demonstrates dispersion effects and
dynamic stress redistribution in physical space on example of a one-dimensional layered bar. An-
alytical solution as well as numerical computations showed the strong influence of the composition
of constituents on the dispersion of a pulse in a heterogeneous bar and the equivalence of results
obtained by two numerical methods – finite element method and the finite volume method. In [81],
wave propagation in a two-layer composite strip is investigated analytically and numerically. The
strip is loaded by a very short transverse stress pulse. Three cases of the strip problem are assumed:
(i) isotropic aluminum Al strip and two-layer strips made of (ii) Al and the ceramics Al2O3 and (iii)
the ceramics Al2O3 and Al. The analytical method is based on Laplace and Fourier transform. The
in-house finite element algorithm and thermodynamic consistent finite volume scheme are employed
for computations, while the explicit time stepping procedure is used in both cases. The comparison
of analytical and numerical results determines the degree of the accuracy of calculations, which is
important for simulation of complex wave propagation problems in general heterogeneous media. In
[82], two-dimensional wave propagation in an aluminium strip has been examined experimentally, an-
alytically, and numerically. The main question is the suitability of numerical procedures to represent
the transient wavefield observed in the experiment. It was demonstrated that standard finite volume
and finite element algorithms conform analytical results and the numerical results are in a good agree-
ment with experiment for time observation including several wave reflections from upper and bottom
boundaries. The experimental, analytical, and numerical results presented in this study can be used
as a benchmark data for the investigation of transient waves in a two-dimensional elastic medium to
validate other numerical or semi-analytical methods.
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based computational time reversal in elastodynamics: Refocusing, reconstruction and its numerical
sensitivity, Mathematics and Computers in Simulation, Vol. 189, pp. 163–190, 2021. (IF=2.463).
https://doi.org/10.1016/j.matcom.2020.11.004

[80] A. Berezovski, R. Kolman, M. Berezovski, D. Gabriel, V. Adámek. Full field computing for
elastic pulse dispersion in inhomogeneous bars, Composite Structures, Vol. 204, pp. 388–394, 2018.
(IF=4.101). https://doi.org/10.1016/j.compstruct.2018.07.055
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6 Finite element method in free-vibration problems

6.1 IGA in free vibration problems

It is well known in FEM modelling of eigen-vibration problems, that the higher-order FEM produces
better accuracy and larger convergence rate that the linear FEM. There is a relation between order
of shape functions and rate of convergence of eigen-values (eigen-frequencies) of dynamic problems
[1]. Also we know that the values of eigen-frequencies for the consistent mass matrix converge from
above [1].

The paper [38] is devoted to numerical solution of free vibration problems for elastic bodies of canonical
shapes by means of a spline based finite element method – Isogeometric Analysis. It has an advantage
that the geometry is described exactly and the approximation of unknown quantities is smooth due to
higher-order continuous shape functions. IGA exhibits very convenient convergence rates and small
frequency errors for higher frequency spectrum. In this paper, the IGA strategy is used in computation
of eigen-frequencies of a block and cylinder as benchmark tests. Results are compared with the
standard FEM, the Rayleigh-Ritz method and available experimental data. The main attention is
paid to the comparison of convergence rate, accuracy, and time-consuming of IGA against FEM and
also to show a spline order and parameterization effects. In addition, the potential of Isogeometric
Analysis in resonant ultrasound spectroscopy measurements of elastic properties of general anisotropy
solids is discussed.

6.2 Inverse mass matrix in free vibration and transient problems

In several applications, the having the inversion of mass matrix is a helpful tool. For example, the
explicit time integration needs the evaluation of accelerations from the equation of motion [1]. We
can evaluate them as

ü = M−1 (r−Bλ) (1)

where r is the residual force vector and the term Bλ corresponds to the reaction force due to the
constraints. When we use the diagonal mass matrix, the inversion of the mass matrix is trivial, but
not in the case of consistent mass matrix or employing mass scaling. Note, the inversion of band type
mass matrix with of-diagonal terms is fully filled. The inversion of sparse and of-diagonal mass matrix
gives the full matrix and for that reason the simple inversion is not possible to use. In the paper [83],
the reciprocal mass matrix as the approximation of the inversion mass matrix has been suggested in
the form

M−1 = A−TCA−1 (2)

where A is the dual-base projection matrix, C the global reciprocal mass matrix. This reciprocal
mass matrix has the structure as the original mass matrix, it preserves the total mass and produces
suitable eigen-frequencies of lower part of full spectra.

An efficient method for generating the mass matrix inverse of structural dynamic problems is presented,
which can be tailored to improve the accuracy of target frequency ranges and/or wave contents. The
present method bypasses the use of biorthogonal construction of a kernel inverse mass matrix that
requires special procedures for boundary conditions and free edges or surfaces, and constructs the free-
free inverse mass matrix employing the standard FEM procedure. The various boundary conditions
are realized by the the method of localized Lagrange multipliers. In particular, the present paper
constructs the kernel inverse matrix by employing the standard FEM elemental mass matrices. It is
shown that the accuracy of the present inverse mass matrix is almost identical to that of a conven-
tional consistent mass matrix or a combination of lumped and consistent mass matrices. Numerical
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experiments with the proposed inverse mass matrix are carried out to validate its effectiveness when
applied to vibration analysis of bars, beams and plain stress problems.

In the paper [84], the reciprocal mass matrix has been extended for IGA. A variational framework is
employed to generate inverse mass matrices for isogeometric analysis. As different dual bases impact
not only accuracy but also computational overhead, several dual bases are extensively investigated.
Specifically, locally discontinuous biorthogonal basis functions are evaluated in detail for B-splines
of high continuity and Bzier elements with a standard C0 continuous finite element structure. The
boundary conditions are enforced by the method of localized Lagrangian multipliers after generating
the inverse mass matrix for completely free body. Thus, unlike inverse mass matrix methods without
employing the method of Lagrange multipliers, no modifications in the reciprocal basis functions are
needed to account for the boundary conditions. Hence, the present method does not require internal
modifications of existing IGA software structures. Numerical examples show that globally continuous
dual basis functions yield better accuracy than locally discontinuous biorthogonal functions, but with
much higher computational overhead. Locally discontinuous dual basis functions are found to be
an economical alternative to lumped mass matrices when combined with mass parameterization. The
resulting inverse mass matrices are tested in several vibration problems and applied to explicit transient
analysis of structures.
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[84] J. González, J. Kopačka, R. Kolman, S.S. Cho, K.C. Park. Inverse mass matrix for isoge-
ometric explicit transient analysis via the method of localized Lagrange multipliers, International
Journal for Numerical Methods in Engineering, Vol. 117(9), pp. 939–966, 2019. (IF=2.591). https:

//doi.org/10.1002/nme.5986

30

https://doi.org/10.1121/1.4916199
https://doi.org/10.1002/nme.5613
https://doi.org/10.1002/nme.5986
https://doi.org/10.1002/nme.5986


Habilitation Thesis Ing. Radek Kolman, Ph.D.

7 Advanced methods for contact-impact problems

Contact-impact problem is still an important task in engineering areas as in mechanical, civil, biome-
chanical and in space applications. The accurate and robust numerical solution of the contact-impact
problem is a challenging task in computational mechanics, where the non-linearities due to the non-
penetration condition on contact areas, friction laws, satisfying the equations of motion and behaviour
of materials should be taken into account. Generally, analytical solutions of impact-contact problems
can be found only for limited number of simple cases. For that reason, the numerical solution is needed
to be employed in real and technical realizations. Also in dynamics, we have to add the persistency
condition together with non-penetration condition into the system of governing equations. For that
task, several numerical approaches have been developed and used in FEM modelling.

The task of simulating dynamic impact problems with penalty methods in a robust and efficient way,
remains as one of the most elusive problems in computational contact mechanics. Among the different
solution techniques available for the explicit solution of dynamic contact problems, the stiffness based-
penalty method is very popular mainly due to its efficiency and implementation simplicity. The
principle of the penalty method implies that the contact impenetrability condition is satisfied only
approximately, achieving a more precise fulfillment using stiffer penalty parameters. This makes
penalty methods generally not consistent within the variational formulation of the problem and the
final matrix form is ill-conditioned. Moreover, it is well known that the results of contact problems
obtained via penalty-like methods are very sensitive to the magnitude of the penalty parameter.
A direct consequence of an inexact fulfillment of the contact constraints is non-zero penetration,
which causes the contact stresses to produce non-physical energy associated to the contact interfaces.
Different rules of thumb, strongly based on experience, are then used in penalty methods to decide
stable values for the stiffness penalty accompanied, at the same time, with acceptable violation of the
contact constraints and affordable time integration steps. But these rules are problem-dependent and
it does not exist a general and theoretically sound solution to avoid all these effects, clearly limiting
the applicability of penalty methods in contact-impact applications.

7.1 Bipenalty method in contact-impact problems

Most frequently, penalty methods, Lagrange multipliers method, its localized variant and augmented
Lagrangian methods are applied for modelling dynamic contact problems in the context of the finite
element analysis, e.g. see [85, 86, 87, 88]. In explicit finite element analysis, the penalty method
is preferred due to its implementation simplicity and fast evaluation of contact forces [85] which, in
comparison to Lagrange Multipliers method, does not increase the number of unknowns. It is also
needed to mention the works related to efficient active set approaches in contact problems as [89]. In
principle, the penalty method can be simply implemented into existing dynamic explicit finite element
codes. On the other hand, the main disadvantage of the penalty method in elastodynamics is the
fact that the stability limit of the explicit time integration scheme is destroyed by a large value of the
numerical stiffness penalty parameter used for contact constraints enforcement [85]. The stable time
step size rapidly decreases with increasing value of the penalty stiffness parameter as is depicted in
Fig. 1. For that reason, the bipenalty method for avoiding this issue has been studied.

The bipenalty method [90] adds the term to the strain energy to enforce the zero-gap on the contact
boundary and at the same time, an extra term to the kinetic energy to enforce the zero-velocity-gap on
the contact boundary. By this way, we define a penalization term associated to the contact interface
as

Wc (u, u̇) =

∫
Γc

(
−1

2
εs〈g〉2 +

1

2
εm〈ġ〉2

)
dΓ, (3)

where the operator 〈•〉 are the so-called Macaulay’s brackets defined as 〈•〉 = |•|+•
2 . The parameters
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Figure 1: Characteristic dependence of the stable time step size for the penalty and bipenalty methods
with optimal setting. In the penalty method, the stable time step size is strongly affected by the penalty
stiffness parameter βs while bipenalty with optimal setting remains unaffected.

εs [kg m−2 s−2] and εm [kg m−2] are the stiffness and mass penalty parameters, respectively, g defines
the gap function and ġ marks the gap-rate, Γc has a meaning of contact area.

In the paper [90], the stability and reflection-transmission properties of the bipenalty method have been
studied in applications to explicit finite element analysis of one-dimensional contact-impact problems.
In this paper, the influence of the penalty ratio (ratio of stiffness and mass penalty parameters) on
stability and reflection-transmission properties in one-dimensional contact-impact problems using the
same material and mesh size for both domains is studied. The paper closes with numerical examples
demonstrating the stability and reflection-transmission behaviour of the bipenalty method in one-
dimensional contact-impact and wave propagation problems of homogeneous materials.

The paper [70] presents a stabilization technique for the finite element modeling of contact-impact
problems of elastic bars via a bipenalty method for enforcing contact constraints while employing an
explicit predictor-corrector time integration algorithms. The present proposed method combines three
salient features in carrying out explicit transient analysis of contact-impact problems: the addition
of a penalty term associated with a kinetic energy expression of gap constraints, in addition to the
conventional internal energy penalty term of the gap constraints; an explicit integration method that
alleviates spurious oscillations; and, a judicious selection of two penalty parameters such that the
stable time steps of the resulting explicit method is least compromised. Numerical experiments have
been carried out with three explicit methods: the standard central difference method, the stabilized
predictor-predictor method [91] and a method for mitigating spurious oscillations [56] as applied to
simulate one-dimensional contact-impact problems of the Signorini problem and the impact of two
elastic bars. Results indicates that the proposed method can maintain the contact-free stability limit
of the central difference and yield improved accuracy compared with existing bipenalty methods.

The work [92] presents an efficient and accuracy-improved time explicit solution methodology for the
simulation of contact-impact problems with finite elements. The proposed solution process combines
four different existent techniques. First, the contact constraints are modeled by a bipenalty contact-
impact formulation [90] that incorporates stiffness and mass penalties preserving the stability limit of
contact-free problems for efficient explicit time integration. Second, a method of localized Lagrange
multipliers [93] is employed, which facilitates the partitioned governing equations for each substructure
along with the completely localized contact penalty forces pertaining to each free substructure. Third,
a method for the direct construction of sparse inverse mass matrices of the free bodies in contact [83]
that is combined with the localized Lagrange multipliers approach. Finally, an element-by-element
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mass matrix scaling technique [84] that allows the extension of the time integration step is adopted
to improve the overall performance of the algorithm. A judicious synthesis of the four numerical
techniques has resulted in an increased stable explicit step-size that boosts the performance of the
bipenalty method for contact problems. Classical contact-impact numerical examples have been used
to demonstrate the effectiveness of the proposed methodology.

7.2 Author’s papers related to the section

[90] J. Kopačka, A. Tkachuk, D. Gabriel, R. Kolman, M. Bischoff, J. Plešek. On stability and
reflection-transmission analysis of the bipenalty method in contact-impact problems: a one-dimensional,
homogeneous case study, International Journal for Numerical Methods in Engineering, Vol. 113(10),
pp. 1607–1629, 2018. (IF=2.162). https://doi.org/10.1002/nme.5712

[70] R. Kolman, J. Kopačka, A. González, S.S. Cho, K.C. Park. Bi-penalty stabilized technique
with predictor-corrector time scheme for contact-impact problems of elastic bars. Mathematics and
Computers in Simulation, Vol. 189, pp. 305–324, 2021. (IF=2.463). https://doi.org/10.1016/j.

matcom.2021.03.023

[92] J. González, J. Kopačka, R. Kolman, K.C. Park. Partitioned formulation of contact-impact
problems with stabilized contact constraints and reciprocal mass matrices, International Journal
for Numerical Methods in Engineering, Vol. 122(17), pp. 4609–4636, 2021. (IF=3.477). https:

//doi.org/10.1002/nme.6739
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8 Conclusions and Future works

The systematic work on advanced numerical methodologies based on the finite element method for
modelling of elastic wave propagation and contact-impact problems is summarized and presented in
this habilitation thesis. The special focus has been paid to the improving of accuracy and robustness
and also to avoiding the troubles with spurious stress oscillations, temporal-spatial dispersion of FE
semidiscretization connected with direct time integration and contact force oscillations. All suggested
methodologies can be implemented into existing FE codes, because the methodologies have been
developed with respect to these requirements. At the moment, the author of the thesis is in touch with
the company developing the software COMSOL about the implementation of the bipenalty method
into this software.

For future works, it is in mind the following open and challenging problems in computational mechanics
and multi-physics problems, that have a potential for novelties in the numerical mechanics and multi-
physics problems and publishing in prestige impacted journals:

• asynchronous heterogeneous time stepping for cloud computations for strong heterogeneous solid
problems

• three-field decomposition of wave equations based on the Helmholtz-Hodge decomposition

• localized bipenalty method and its stability connection with asynchronous heterogeneous time
stepping

• reciprocal mass matrix for higher-order FEM, shells and plates

• elasto-plastic wave propagation and high-velocity impact with application of plasma shock peen-
ing

• Taylor test modelling and material parameter identification based on artificial intelligence

• multi-physics of electro-active materials and dynamics of soft robots

• dynamics of grippers for robotics and soft robotics

• bipenalty stabilization for differential-algebraic equations (DEAs) for multibody dynamics of
rigid and deformable bodies.
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[17] R. Brepta and M. Okrouhĺık. Dispersion properties of a plane continuum model consisted of
rectangular triangular finite elements. Research Report Z-966/84, Institute of Thermomechanics,
Prague, Czech Republic, 1984.

37



Habilitation Thesis Ing. Radek Kolman, Ph.D.
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stability analysis of finite element method in explicit elastodynamics. International Journal for
Numerical Methods in Engineering, 106(2):113–128, 2016.
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a b s t r a c t 

The B-spline variant of the finite element method (FEM) is tested in one-dimensional 

discontinuous elastic wave propagation. The B-spline based FEM (called Isogeometric anal- 

ysis IGA) uses spline functions as testing and shape functions in the Galerkin continuous 

content. Here, the accuracy of stress distribution and spurious oscillations of the B-spline 

based FEM are studied in numerical modeling of one-dimensional propagation of stress 

discontinuities in a bar, where the analytical solution is known. For time integration, 

the Newmark method, implicit form of the generalized- α method, the central difference 

method and the predictor/multi-corrector method are tested and compared. The use of 

lumped and consistent mass matrices in explicit time integration is discussed. Due to 

accuracy, the consistent mass matrix is preferred in explicit time integration in IGA. 

© 2017 Elsevier Inc. All rights reserved. 

1. Introduction 

Many methods for numerical modeling of wave propagation problems in elastic solids have been developed and tested 

(see. e.g., [1] ). Unfortunately, the majority of these numerical methods produce spurious oscillations occurring in stress 

distributions in cases of shock loading. As a rule, discrete numerical methods are able to describe successfully a response 

of body on harmonic or generally smooth loadings, but they have got a trouble with modeling of problems corresponding 

to shocks. Other approaches for the description of displacement/strain/stress discontinuous fields in continuum mechanics 

should be mentioned as the Discontinuous Galerkin methods [2] or eXtended Finite Element methods (XFEM) [3–5] . 

In this paper, the semidiscretization method [6] is tested in the case of one-dimensional elastic wave propagation. For the 

spatial discretization, the continuous Galerkin approximation method is employed [7] , where the Finite element method 

(FEM) with spline shape functions, called the Isogeometric Analysis (IGA) [8] , is used. 

Standard results of numerical simulations of fast transient elastodynamic problems by FEM [7] are influenced by dis- 

persion errors caused by both spatial and temporal discretizations [9] . A monochromatic harmonic stress wave propagates 

in unbounded elastic continuum uniformly regardless of its frequency and correspondingly a wave packet propagates 
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Fig. 1. Scheme of an elastic free-fixed bar under a shock loading. 

without distortion. However, when these propagating phenomena are modeled by FEM, the speed of a single harmonic 

wave depends on its frequency and thus a wave packet is distorted. Furthermore, the high frequency errors of the high 

vibration mode increase with increasing order of higher-order Lagrangian finite elements [9,10] . 

The Isogeometric analysis [8,11–13] represents a modern approach in computational mechanics. In this modification of 

FEM, the shape and testing functions are based on various types of splines. This approach has an advantage that the ge- 

ometry and approximation of unknown field quantities are prescribed by the same technique. Another benefit is that the 

approximation is smooth. We should mention that the B-spline representation is sufficient for approximation of an one- 

dimensional domain. 

It was shown for Isogeometric analysis with homogeneous spline shape functions, that the optical modes do not exist, 

which is not the case for higher-order Lagrangian finite elements [12,13] . Further, dispersion and frequency errors for Iso- 

geometric analysis were reported to decrease with increasing order of splines [12,13] . The dispersion analysis of B-spline 

Galerkin based FEM has been studied in [12,14] for one-dimensional case and in [15] for two-dimensional case. The effect 

of inhomogeneity of spline shape functions and of parameterization of the B-spline representation on the dispersion and at- 

tenuation behavior was studied in [14] . Furthermore, IGA is a very efficient tool for vibration analysis of elastic objects 

[13,16,17] and for solving tasks of quantuum mechanics [18] . IGA solution with the consistent mass matrix not only accu- 

rately predicts eigenvalues in the full frequency spectrum but also provides an excellent approximation for eigenmodes [19] . 

In principle, non-physical higher vibration modes occur in frequency spectrum of higher-order FEM [9,14,20,21] and of 

IGA on multipatches with C 

0 continuity [14] . Therefore time integration methods should be derived in such a way that the 

dissipation of higher frequencies is optimal and minimized for the low frequency range. Attempts to do so are presented by 

the Hilber–Hughes–Taylor (HHT- α) method [22,23] or the generalized- α method [24,25] . Implicit time integration schemes 

are preferred in higher-order FEM and in IGA [8] . In the case of explicit time integration, the presence of high frequency 

modes in the spectrum causes fragility of higher-order elements and spline based FEM regarding numerical stability con- 

dition for the setting of time step size. The two-time step method for application for higher-order FEM and IGA has been 

presented in [26] . 

In order to take advantage of IGA approach in explicit dynamics, one uses a lumped mass matrix formulation. Due to 

positive values of spline shape functions, all the terms of the consistent mass matrix in the Galerkin approximation method 

are also positive. Thus, the ‘row-sum’ technique [7] for the lumped mass matrix in IGA can be employed. The lumped mass 

matrix losses the second-order accuracy of IGA in higher modes [8] . One way how to overcome the lumping issue in IGA is 

to provide explicit predictor/multi-corrector algorithms as described in [7,27,28] . Here, the lumped or consistent mass matrix 

is used for the ‘left-hand-side’ matrix and the consistent mass is used in calculation of the ‘right-hand-side’ residual vector. 

Due to the variety of methods, it is not clear which one should be chosen for the efficient and accurate solution of wave 

propagation problems. Therefore, in this paper, we study the ability of time integration methods with the B-spline based 

finite element method to treat spurious oscillations using one-dimensional discontinuous wave propagation as a suitable 

benchmark. The paper is organized as follows. In Section 2 , the problem description of discontinuous wave propagation in 

an elastic bar is presented as well as the analytical solution is mentioned. The fundamentals of the B-spline based FEM 

(Galerkin based IGA) in the one-dimensional case are shown in Section 3 . The direct time integration schemes suitable for 

IGA are reported in Section 4 as well as results of numerical solutions of wave propagation in an elastic bar. The paper 

closes with conclusions in Section 5 . 

2. Problem description 

For the purposes of this paper, we use a benchmark problem - wave propagation in an elastic bar under shock loading 

(see Fig. 1 ), where shock loading generates a discontinuous sharp stress and velocity wavefront. 

The governing equation of one-dimensional elastic wave propagation in a bar (as an one-dimensional continuum) has 

the form (see, e.g. [29] ), 

Aρ
∂ 2 u 

∂t 2 
− AE 

∂ 2 u 

∂x 2 
= 0 , (1) 
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where u ( x, t ) is the axial displacement, x ∈ [0, L ] is the axial coordinate, L is the length of the bar, t ≥ 0 denotes the time, 

ρ is the mass density, A is the area of a cross-section and E denotes the Young modulus. Wave speed in an elastic bar is 

given by c 0 = 

√ 

E/ρ [29] . The right-hand side of the bar is fixed, therefore the boundary condition of the bar takes 

u (x = L, t) = 0 , t ≥ 0 . (2) 

The loading by a force applied on the left free-end of the bar leads to 

F (t) = −Aσ (x = 0 , t) , (3) 

where the time dependence of stress σ is given by the Heaviside step function H ( t ) in the form σ (x = 0 , t) = σ0 H(t) , where 

σ0 = F 0 /A . The bar in the time t = 0 is at the rest. 

For this benchmark, the analytical solution of this wave propagation problem can be found in [29] , where the displace- 

ment field u ( x, t ) without a wave reflection in the time range t ∈ [0, L / c 0 ] is described as 

u (x, t) = v 0 (t − x/c 0 ) H(t − x/c 0 ) . (4) 

The impact velocity v 0 is computed from the relationship σ0 = ρc 0 v 0 [29] . The stress field is then given following Eq. (4) 

σ (x, t) = −σ0 H(t − x/c 0 ) . (5) 

In what follows, the stress dependence given by Eq. (5) is used for comparison of solutions obtained by IGA. 

3. B-spline based FEM – Galerkin based IGA 

In this section, the basics of B-spline based finite element method are shortly introduced. In Computer-Aided Design 

(CAD), coordinates of a point of the B-spline curve C ∈ R 

d with order p is given by the linear combination of B-spline basis 

functions N i, p [30] 

C (ξ ) = 

n ∑ 

i =1 

N i,p ( ξ ) B i , (6) 

where B i ∈ R 

d , i = 1 , 2 , . . . , n are corresponding coordinates of control points and d marks the dimension of the Euclidean 

space of a curve, d = 1 , 2 , 3 , respectively. B-spline basis functions N i, p ( ξ ) of order p are defined in the standard IGA sence 

(see [30] ), n is the number of basis functions and ξ is a parameter. 

In the B-spline based FEM [8] applied to one-dimensional problems, the approximations of domain of interest � = [0 , L ] 

and displacement field u h on � are given by 

x (ξ ) = 

n ∑ 

i =1 

N i,p ( ξ ) x B i and u 

h (ξ ) = 

n ∑ 

i =1 

N i,p ( ξ ) u 

B 
i , (7) 

where x B 
i 

is the x -coordinate of the control points and u B 
i 

is the component of the vector of control variables – displacements 

corresponding to the control points. It should be noted that the linear B-spline based FEM is identical to the standard linear 

FEM, i.e. with the hat shape functions. In what follows, the continuous Galerkin approximation method [7] for the numerical 

solution of partial differential equations is employed. Spatial discretization of elastodynamics problems by the continuous 

Galerkin approximation method [7] yields to 

Ma + Ku = R . (8) 

Here, M is the mass matrix, K the stiffness matrix, R is the time-dependent load vector, u and ü = a contain control point 

variables – displacements and accelerations. The mass matrix, stiffness matrix and load vector are defined by the same 

relationships as in the standard FEM [7] . The element stiffness and mass matrices are given by 

K e = 

∫ 
V e 

EB 

T B d V, M e = 

∫ 
V e 

ρN 

T N d V, (9) 

where B is the strain-displacement matrix, N stores the displacement shape functions and integration is carried over the 

non-deformed element domain V e . The mass matrix defined by the relationship Eq. (9) 2 is called the consistent mass matrix. 

For lumping of the mass matrix of IGA in explicit time integration, we use the ‘row sum’ lumping approach [7] . In this paper, 

the mass and stiffness are evaluated by the Gauss-Legendre (full Gauss) quadrature formula of p + 1 order [7] . 

4. Results of direct time integration in IGA 

In this section, results of wave propagation in a bar under shock loading are presented as well as the frequency spectrum 

of the discretized bar by linear, quadratic and cubic spline representations with the consistent and lumped mass matrices. 

For direct time integration in this paper, the Newmark method [31,32] and the generalized- α method [25] are used as 

implicit time integrators and the central difference method [33] and the predictor/multi-corrector [7,28] as explicit time 

integrators. The displacement, velocity and acceleration vectors at the time t n , t n = n �t, are marked as follows: u n , v n , and 

a n , respectively. �t denotes the constant time step size through the computations and n is a time step counter. 
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Fig. 2. Dimensionless eigenfrequencies of an elastic free-fixed bar discretized by linear ( p = 1 ), quadratic ( p = 2 ) and cubic ( p = 3 ) B-spline with the 

consistent mass matrix. h = L/ (N − 1) denotes the averaged distance of control points. 

4.1. Physical and numerical data of the bar test 

Geometrical and material parameters of the task are set as follows (for simplicity): the bar length L = 1 m , the cross- 

section A = 1 m 

2 , the Young modulus E = 1 Pa , the mass density ρ = 1 kg/m 

3 and the amplitude of impact pressure 

σ0 = 1 Pa . The time history of the loading is given by the Heaviside step function. 

The bar is discretized either by linear ( p = 1 ) or quadratic ( p = 2 ) or cubic ( p = 3 ) B-splines with N = 101 control points. 

In the B-spline discretization, the knot vector is employed as uniform one [30] . The position of control points along the 

bar is given by the Greville abscissa [34] . This parameterization is called linear one. It means that the mapping for the 

parametric space to the geometrical one is linear and Jacobians of this transformation are of a constant value. It is used 

since the linear parametrization produces smaller dispersion and frequency errors that characterized by uniformly-spaced 

control points [14] . 

4.2. Eigenfrequency analysis and selection of time step sizes 

The discrete frequency spectrum of a bar discretized by the linear, quadratic and cubic B-spline approximations are 

presented in Fig. 2 for the consistent mass matrix and in Fig. 3 for the lumped mass matrix given by the ‘row sum’ approach 

[7] . The straight lines in Figs. 2 and 3 correspond to frequency distribution of dispersionless continuum. For the consistent 

mass matrix, one can see an improved progress of frequency spectrum with increasing spline order. On the other side, we 

lose accuracy of discrete frequency spectra for the lumped mass matrix and this effect is amplified for higher spline orders. 

Moreover, the ‘outlier frequencies’, which dictate maximum value of eigenfrequency, are observed for the higher-order spline 

discretizations for the both mass matrix types (see [12] ). However, the ‘outlier frequencies’ are not observed for linear (FEM) 

IGA. The ‘outlier frequencies’ correspond to vibration of boundary part of a bar. 

As it is known, the B-spline based FEM with the consistent mass matrix overestimates the real eigenfrequencies of an 

elastic free-fixed bar and errors of spectra decrease with increasing spline order. The B-spline based FEM with the lumped 

mass matrix underestimates the real eigenfrequencies of an elastic bar. For higher spline orders with the lumped mass 

matrix, the B-spline based FEM loses its accuracy in comparison with the consistent mass matrix [12,13,16] . 

In general, the maximum eigenfrequency of the discretized system defines the time step size and then accuracy of time 

stepping process and also stability of the computations for explicit methods. The maximum values of angular velocities ω max 

of the tested bar discretized by the B-spline based IGA of different spline orders and for the consistent and lumped mass 

matrices are reported in Table 1 . In the explicit computations by the central difference method, we chose the time step 
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Fig. 3. Dimensionless eigenfrequencies of an elastic free-fixed bar discretized by linear ( p = 1 ), quadratic ( p = 2 ) and cubic ( p = 3 ) B-spline with the 

lumped mass matrix by the ‘row sum’ approach. h = L/ (N − 1) denotes the averaged distance of control points. 

Table 1 

Dimensionless maximum eigenvalues ω̄ max = ω max h/c 0 for different bar discretizations and mass matrices. 

Dimensionless Consistent Consistent Consistent Lumped Lumped Lumped 

maximum mass mass mass mass mass mass 

eigenvalues p = 1 p = 2 p = 3 p = 1 p = 2 p = 3 

ω̄ max = ω max h/c 0 3.464 4.599 6.733 2.0 0 0 2.297 3.003 

Table 2 

Time step sizes for implicit and explicit time schemes. 

Time step sizes Order Order Order 

�t [s] p = 1 p = 2 p = 3 

(Courant number 

Co = �tc 0 /h [-]) 

Implicit time schemes 0.00227 0.00171 0.00117 

(0.227) (0.171) (0.117) 

Explicit time schemes 0.010 0 0 0.00871 0.00666 

with lumped mass m. (1.0 0 0) (0.871) (0.666) 

Explicit time schemes 0.00577 0.00435 0.00297 

with consistent mass m. (0.577) (0.435) (0.297) 

size with respect to the stability limit of the central difference method as �t exp = α�t cr , α = 0 . 99999 , with �t cr = 2 /ω max , 

see [35] . For the predictor/multi-corrector, the α = 0 . 9 was selected. The both lumped and consistent mass matrices are 

exploited. In the implicit computations, we select the time step size so that �t imp = 1 / 8 T min , where T min = 2 π/ω max . The 

values of the time step size for the implicit and explicit time integrations (for the lumped and consistent mass matrices) 

used in the paper are reported in Table 2 . The values in brackets in Table 2 correspond to dimensionless values of the time 

step size Co = �tc 0 /h, where h = L/ (N − 1) denotes the averaged distance between control points. One can see the effect of 

decreasing of time step size with increasing spline order. Further, as we know, the critical time step for the consistent mass 

matrix is cardinally smaller than for the lumped mass matrix (see Table 2 ). This is due to the higher-order approximation 

of the B-spline representation and, mainly, due to the non-physical ‘outlier frequencies’ of IGA. 
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Fig. 4. Dimensionless stress in an elastic bar under the shock loading at time t = 0 . 5 L/c 0 computed by the Newmark method with the consistent mass 

matrix for linear, quadratic and cubic B-spline spatial approximations. The thin line corresponds to the analytical solution of the wave propagation problem. 

4.3. The Newmark method 

The Newmark method [31] suggests of the following relations [32] 

u n +1 = u n + �tv n + 

�t 2 

2 

( ( 1 − 2 β) a n + 2 βa n +1 ) , (10) 

v n +1 = 

˙ u t + �t ( ( 1 − γ ) a n + γ a n +1 ) , (11) 

for solving the discretized equations of motion 

Ma n +1 + Ku n +1 = R n +1 , (12) 

where β and γ are the Newmark parameters. The parameters β and γ determine the stability and accuracy of the algorithm 

and were initially proposed by Newmark as β = 1 / 4 and γ = 1 / 2 thus securing the unconditional stability of the method. 

This method conserves total energy and this variant is often called the Newmark averaged acceleration method (for details 

see [31,32] ). Further, the combination of the Newmark method (the averaged acceleration method with a suitable chosen 

time step size) and the consistent mass matrix produces spatial and temporal dispersion effect which could be mutually 

suppressed [9] . 

The space distribution of dimensionless stress σ / σ 0 along the bar at the time t = 0 . 5 L/c 0 computed by the Newmark 

method ( β = 1 / 4 and γ = 1 / 2 ) with the consistent mass matrix for linear, quadratic and cubic B-spline discretizations are 

shown in Fig. 4 . Here, main spurious oscillations in the stress distribution along the bar obtained by the Newmark method 

take place in the front of the theoretical wavefront [29] . We call them front-shock oscillations. This phenomenon can be 

explained by dispersion behavior of spatial discretization. It is known, that values of wave speed of IGA system with the 

consistent mass matrix are overestimated [7,14] , therefore the pulse is distorted in the front of the theoretical wavefront. 

The effect is more considerable for the linear discretization due to higher dispersion errors. The quadratic and cubic B-spline 

approximations produce smaller spurious oscillations due to better dispersion behavior. Moreover, dominant spurious oscil- 

lations can be observed at the free-end of the bar. This is due to existence of higher polluted ‘outlier frequencies’, which 

correspond to vibration of free-end (see Fig. 2 ). Also the convergence properties for different spline orders are presented 

in Fig. 4 . The error of the numerical displacement field u h ( t ) is measured in the form error = 

‖ u h (t) −u (t) ‖ L 2 ‖ u (t) ‖ L 2 
, where u ( t ) cor- 

responds to the analytical solution Eq. 4 . 
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4.4. Generalized- α method 

The governing equations for the generalized- α method [25] are following: 

Ma n +1 −αm 
+ Ku n +1 −α f 

= R n +1 −α f , 
(13) 

u n +1 = u n + �tv n + �t 2 ( ( 1 / 2 − β) a n + βa n +1 ) , (14) 

v n +1 = v n + �t ( ( 1 − γ ) a n + γ a n +1 ) , (15) 

u n +1 −α f 
= (1 − α f ) u n +1 + α f u n, (16) 

v n +1 −α f 
= (1 − α f ) v n +1 + α f v n, (17) 

a n +1 −αm 
= (1 − αm 

) a n +1 + αm 

a n, (18) 

R n +1 −α f 
= (1 − α f ) R n +1 + α f R n or R n +1 −α f 

= R (t n +1 −α f 
) , (19) 

t n +1 −α f 
= (1 − α f ) t n +1 + α f t n = t n +1 − α f �t, (20) 

where αf , αm 

, γ , β are selected to ensure second-order accuracy, unconditional stability and optimal dissipation effects [25] . 

The generalized- α method with the following parameters 

αm 

= 

2 ρ∞ 

− 1 

ρ∞ 

+ 1 

, α f = 

ρ∞ 

1 + ρ∞ 

, (21) 

β = 

1 

4 

(1 − αm 

+ α f ) 
2 , γ = 

1 

2 

− αm 

+ α f , 

is an unconditionally stable, second-order accurate algorithm possessing an optimal combination of high-frequency and 

low-frequency dissipation [25] . The spectral radius ρ∞ 

specifies the dissipation of the high-frequency modal components 

and minimal low-frequency dissipative properties. In this paper, we select the spectral radius value as ρ∞ 

= 0 . 5 . The effec- 

tive computation with the generalized- α method based on the predictor-corrector procedure in the implicit form has been 

published, e.g., in [36] . The implicit form of the generalized- α method is unconditionally stable [24] , therefore the time step 

size �t can be chosen arbitrary. We select the time step size equal to that for the Newmark method. 

The stress response of the bar obtained by the generalized- α method with the spectral radius ρ∞ 

= 0 . 5 for IGA dis- 

cretizations is shown in Fig. 5 . One can see similar graphs of stress distribution as those in the Newmark method. The 

results obtained by the generalized- α method are accompanied by the lower level of spurious oscillations. This effect is due 

to the dissipative properties of this time integration scheme, where higher frequencies are suppressed. At the same time, 

front-shock spurious oscillations still appear near the theoretical wavefront. On the other side, the oscillations near the 

free-end of the bar are suppressed by this time integration method and, in general, the level of pollution of the results by 

spurious oscillations is smaller than that obtained by the Newmark method. Therefore, the generalized- α method is a suit- 

able tool for direct time integration in implicit IGA computations of elastic wave propagation problems with discontinuities 

and shock loadings. 

4.5. Central difference method 

The central difference method [33] is based on the approximate relationships between the kinematical quantities 

v n = 

1 

2�t 
( u n +1 − u n −1 ) , a n = 

1 

�t 2 
( u n +1 − 2 u n + u n −1 ) . (22) 

The latter relationships are then substituted into the equations of motion written at the time t n . Consequently, we get a 

system of algebraic equations for the resolution displacements at the time t n + �t

M 

effu n +1 = R 

eff, (23) 

with the effective quantities 

M 

eff = M / �t 2 , R 

eff = R n −
(
K − 2 M / �t 2 

)
u n −

(
M / �t 2 

)
u n −1 . (24) 

The process is effective only if the mass matrix is made diagonal by a suitable lumping method. In this paper, the 

lumping process by the ‘row sum’ method is employed [7] . Presently, there are attempts to use the direct inversion of the 

consistent mass matrix in explicit integration [37] . In linear cases, the consistent mass matrix does not change and can be 

inverted only once before the integration process. This algorithm is time efficient, since only a matrix-vector multiplication 
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Fig. 5. Stress in an elastic bar under the shock loading at time t = 0 . 5 L/c 0 computed by the implicit generalized- α method with the spectral radius 

ρ∞ = 0 . 5 with the consistent mass matrix for linear, quadratic and cubic B-spline spatial approximations. 

is needed in every time step. On the other hand, the critical time step size for the consistent mass matrix is cardinally 

smaller than for the lumped once. In this paper, we test the lumped mass matrix as well as the consistent mass matrix in 

explicit integration. 

4.5.1. Central difference method with the lumped mass matrix 

The space distribution of dimensionless stress σ / σ 0 along the bar at the time t = 0 . 5 L/c 0 computed by the central dif- 

ference method with the lumped mass matrix for linear, quadratic and cubic B-spline discretizations is shown in Fig. 6 . For 

linear IGA (i.e. linear FEM) with the lumped mass matrix and the central difference method with the time step size near to 

the stability limit, the discretized system does not produce the temporal-spatial dispersion errors [21,38] and the numerical 

wave speed is equal to the theoretical value of elastic wave speed in a bar c 0 . For the linear FEM, the stress distribution in 

the form of Heaviside step function is excellently approximated. These results could only be achieved for one-dimensional 

finite element meshes with the same critical time step size for each element. One the other hand, the ‘outlier frequencies’ 

do not exist for linear FEM/IGA unlike higher order B-spline approximations. In mutli-dimensional problems, the spurious 

oscillations can not be fully suppressed by the optimal choice of the time step size due to existence of longitudinal and shear 

waves propagating with different wave speeds, (for suggestion for eliminating of spurious oscillations in explicit integration 

see [38] ). 

For higher order spline approximations, the spurious oscillations are observed in the stress distributions along the bar. 

The post-shock oscillations (oscillations occurring behind the theoretical wavefront) are typical for the central difference 

method with a lumped mass matrix. It is known, that eigenfrequencies and wave speed for the lumped mass matrix 

are underestimated with respect to values of theoretical eigenfrequencies and wave speed in an elastic bar considered as 

continuum [7,9] . The ‘row sum’ diagonal mass matrix is only of second order of accuracy [8] , thus high frequencies pro- 

vide considerable errors. Moreover, quadratic and cubic B-splines produce outlier frequencies in the frequency spectrum 

(see Fig. 3 ), thus the global critical time step size is given by the highest non-physical eigenfrequency. For that reason, spu- 

rious oscillations for the higher order B-spline discretization substantially influence the accuracy of the central difference 

computations. So, the central difference method with lumped mass matrix for higher order B-spline based FEM is not a 

good candidate for explicit time computations and the choice of a suitable accurate lumped mass matrix is still an open 

question. 

4.5.2. Central difference method with the consistent mass matrix 

The space distribution of dimensionless stress σ / σ 0 along the bar at the time t = 0 . 5 L/c 0 computed by the central differ- 

ence method with the consistent mass matrix for linear, quadratic and cubic B-spline discretizations is shown in Fig. 7 . One 
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Fig. 6. Dimensionless stress in an elastic bar under the shock loading at time t = 0 . 5 L/c 0 computed by the central difference method with the lum ped 

mass matrix for linear, quadratic and cubic B-spline spatial approximations. 

Fig. 7. Dimensionless stress in an elastic bar under the shock loading at time t = 0 . 5 L/c 0 computed by the central difference method with the consistent 

mass matrix for linear, quadratic and cubic B-spline spatial approximations. 
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can see for the linear IGA (i.e. linear FEM) that the stress distribution is polluted by front-shock oscillations of larger level 

like for the results obtained by the Newmark method. It is a product of overestimation of numerical wave speed in linear 

IGA with the consistent mass matrix. On the other hand, the stress distributions for higher IGA contain smaller front-shock 

spurious oscillations than for linear IGA and the theoretical wavefront of sharp shape is very well approximated. For that 

reason, the consistent mass matrix is a good choice of a mass matrix in IGA explicit time integration due to the accuracy of 

approximation of stress fields with discontinuous shape. 

4.6. Predictor/multi-corrector form of the generalized- α method 

We shortly introduce the predictor/multi-corrector method (for details see [7,28,39] ). The stability and accuracy of the 

predictor/multi-corrector (multi-pass) method has been studied in [39] . In this paper, we adopt the predictor/multi-corrector 

method based on the implicit form of the generalized- α method introduced in the previous section. 

The modification of the predictor/multi-corrector method is mentioned below. In the following text, r marks an iteration 

counter. In the time stepping process, we compute for r ≥ 1 

a (0 ) 
n + 1 = 0 

v (0) 
n +1 

= v n + �t(1 − γ ) a n 
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predictor phase, (25) 
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corrector phase, (26) 

where r is the iteration counter. 

In this paper, we select numerical parameters αm 

, αf , β and γ with respect to values for the implicit form of the 

generalized- α method (see (21) ), for the value ρ∞ 

= 0 . 5 . We use the number of iteration loops as r = 3 satisfiying the 

fourth order of accuracy [28] . In the algorithm presented above, M 

L and M 

R mark the left-hand-side and right-hand-side 

mass matrices, respectively. The right-hand-side mass matrix is chosen of the consistent type and the left-hand-side mass 

matrix is used in the diagonal form and also as the consistent mass matrix. In this paper, the diagonal left-hand-side mass 

matrix M 

L is computed by the ‘row sum’ lumped process [7] . 

4.6.1. Predictor/multi-corrector form of the generalized- α method with lumped M 

L 

The stress response of the bar obtained by the predictor/multi-corrector form of the generalized- α method with the spec- 

tral radius ρ∞ 

= 0 . 5 for linear, quadratic and cubic IGA discretizations is shown in Fig. 8 . Here, the lumped left-hand-side 

mass matrix and the consistent right-hand-side mass matrix were used and only three-pass iteration loops were sufficient 

to satisfy the equation of motion for the generalized- α method with sufficient precision. For linear IGA/FEM, one can see 

small post- and front-shock spurious oscillations near the theoretical wavefront and the central difference method produces 

better results than the predictor/multi-corrector method. On the other hand, the predictor/multi-corrector gives better re- 

sults than the central difference method for higher order spline approximations. Post-shock spurious oscillations still exist 

in the stress distribution along the bar. We can say that the partial suppressing of spurious oscillations is due to the dissi- 

pative effect of the predictor/multi-corrector method based on the generalized- α method and the spurious oscillations have 

lower level of pollution than that for the central difference method. For that reason, the predictor/multi-corrector form of 

the generalized- α method as an explicit time integration in higher-order IGA is a suitable candidate for explicit time compu- 

tations of elastic wave propagation problems with discontinuities. Another advantage of the predictor/multi-corrector form 

of the generalized- α method is that it does not need the right-hand-side mass matrix of a lumped type. 

4.6.2. Predictor/multi-corrector form of the generalized- α method with consistent M 

L 

The stress response of the bar obtained by the predictor/multi-corrector form of the generalized- α method with the 

spectral radius ρ∞ 

= 0 . 5 for linear, quadratic and cubic IGA discretizationsis shown in Fig. 9 . Here, the consistent left-hand- 

side mass matrix and the consistent right-hand-side mass matrix with three-pass iteration loops are used. This choice of 
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Fig. 8. Dimensionless stress in an elastic bar under the shock loading at time t = 0 . 5 L/c 0 computed by the predictor/multi-corrector form of the 

generalized- α method with the spectral radius ρ∞ = 0 . 5 and with the left-side lumped mass matrix and the right-side consistent mass matrix for lin- 

ear, quadratic and cubic B-spline spatial approximations. 

Fig. 9. Dimensionless stress in an elastic bar under the shock loading at time t = 0 . 5 L/c 0 computed by the predictor/multi-corrector form of the 

generalized- α method with the spectral radius ρ∞ = 0 . 5 and with the left-side consistent mass matrix and the right-side consistent mass matrix for 

linear, quadratic and cubic B-spline spatial approximations. 
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Fig. 10. An effect of linear (blue line) and nonlinear (black line) parameterization: Dimensionless stress in an elastic bar under the shock loading at time 

t = 0 . 5 L/c 0 computed by the Newmark method and the central difference method with the lumped mass matrix for quadratic and cubic B-spline spatial 

approximations. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.) 

mass matrices of consistent type for the predictor/multi-corrector scheme produces good results for higher/order IGA with 

acceptable level of post- and front-shock spurious oscillations and with good approximation of the theoretical wavefront. 

Therefore, the right-hand-side and left-hand-side mass matrices of consistent type are preferred for higher-order IGA. In 

this case, a special lumping process and mass matrix development is not needed for higher-order IGA. 

4.7. Effect of parameterization 

The effect of parameterization in the B-spline based FEM on dispersion behavior has been studied in [14] , where the 

linear parameterization given by the Greville abscissa (called the linear one) and the nonlinear one given by uniformly- 

spaced control points have been compared with a special setting of control points with optimal dispersive behavior of the 

B-spline based FEM. 

In the paper, we compare the stress distribution for the linear and nonlinear B-spline parameterizations on an one- 

dimensional domain of interest. The results obtained by the Newmark method and the central difference method are pre- 

sented in Fig. 10 . One can see that the linear parameterization produces better stress distribution near the theoretical wave- 

front than the nonlinear one, but spurious oscillations near a free boundary crop up. On the other hand, these higher 

frequency spurious oscillations are partially eliminated by integration with the implicit or predictor/multi-corrector form ot 

the generalized- α method. 

Generally, a multi-patch discretization with C 

0 continuity or free boundaries in IGA produce spurious oscillations, higher 

non-physical frequency behavior with optical modes and outlier frequencies [14] as well as reflection-transmission errors 

in wave propagation problems. Each non-homogeneity in IGA discretization produces reflection-transmission errors. There- 

fore, IGA discretization with full continuity of spatial discretization is preferred in wave propagation problems. For detailed 

reflection-transmission analysis of FEM with different mesh sizes and unstructural meshes see [40] or the Cohen’s book [41] . 

4.8. Notes to implementation of explicit scheme with consistent mass matrix 

In the central difference method, the cardinal issue is effectively to solve the equation of motion in the form M n +1 a n +1 = 

f 
ext 
n +1 − f 

int 
n +1 for fully nonlinear tasks in each time step for corresponding mass matrix. Here f 

ext 
n +1 and f 

int 
n +1 mark the external 

and internal nodal forces, respectively. As we said above, the inversion of the lumped mass matrix represents a trivial 

numerical task. On the other side, based on presented numerical tests for IGA in this paper, the consistent mass matrix is 

recommended against the lumped mass matrix due to accuracy of stress distribution. In principle, the inversion of consistent 

mass matrix is an extremely expensive task for computing it in each time step for time-dependent or large deformation 
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problems. One can use an approach for direct inversion of the consistent mass matrix presented in [37] with modification 

to IGA. 

Practically, the stepping process with the consistent mass matrix can be implemented in the following form 

Ia n +1 = M 

-1 

n +1 

(
f n +1 

ext − f n +1 
int 

)
, (27) 

where I is the unit matrix. In that case, the standard explicit computational process is retained and only the multiplying 

residual forces by the inverted mass matrix is needed. 

5. Conclusions 

In this paper, the B-spline based FEM (IGA) of the Galerkin type has been tested on the example of one-dimensional 

discontinuous stress wave propagation in elastic medium. The special attention has been paid to comparison of spurious 

oscillations emerging for different orders of B-spline discretizations and for various direct time integration methods. Also 

the convergence rates have been computed and compared. In addition, discrete frequency spectra of a free-fixed elastic bar 

discretized by the B-spline based FEM has been analyzed for various spline orders and for the consistent and lumped mass 

matrices. Further, The influence of spline orders and mass matrix type on the critical time step size in explicit integration 

are also reported. 

In the case of implicit time integration, we have tested the Newmark method and the generalized- α method. Based 

on the comparison of the stress distributions along the bar loading by a shock, the generalized- α method gives better 

results of stress than the Newmark method in the sense of stress accuracy. The reason is that the generalized- α method 

can efficiently suppress higher non-physical modes of the discretized bar and the stress distributions exhibit lower level of 

spurious oscillations. In general, results of the B-spline based FEM in implicit time computations are polluted by front-shock 

spurious oscillations, i.e., oscillations of stresses in front of theoretical wavefront. Nevertheless, this time integration scheme 

is preferred in implicit time integration in IGA computations of time-depend problems in solids. 

Using explicit time integration, we have tested the central difference method and the predictor/multi-corrector form of 

the generalized- α method. The both methods have been tested for consistent and lumped left-hand side mass matrix. For 

linear FEM/IGA, the lumped mass matrix is preferred in connection with the both tested explicit time schemes. On the 

other hand, the consistent left- and right-hand side mass matrices are recommended to use for higher-order IGA compu- 

tations. Based on the numerical testing, explicit computations by the central difference method with the consistent mass 

matrix is a good choice for accurate elastic wave modeling. Even better results can be obtained by the time scheme in the 

predictor/multi-corrector form of the generalized- α method with left- and right-hand side mass matrices of consistent type. 

In the future, our attention will be focused to an optimal choice of the time step size for implicit and explicit direct 

integration methods in IGA, to a choice of optimal numerical quadrature rules and the development of higher-order accurate 

mass matrix with the direct inversion for IGA. 
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Summary

A multistep explicit time integration algorithm is presented for tracking the
propagation of discontinuous stress waves in heterogeneous solids whose
subdomain-to-subdomain critical time step ratios range from tens to thousands.
The present multistep algorithm offers efficient and accurate computations for
tracking discontinuous waves propagating through such heterogeneous solids.
The present algorithm, first, employs the partitioned formulation for represent-
ing each subdomain, whose interface compatibility is enforced via the method of
the localized Lagrange multipliers. Second, for each subdomain, the governing
equations of motion are decomposed into the extensional and shear components
so that tracking of waves of different propagation speeds is treated with dif-
ferent critical step sizes to significantly reduce the computational dispersion
errors. Stability and accuracy analysis of the present multistep time integration
is performed with one-dimensional heterogeneous bar. Analyses of the present
algorithm are also demonstrated as applied to the stress wave propagation in one-
dimensional heterogeneous bar and in heterogeneous plain strain problems.

KEYWORDS

component-wise partitioned equations of motion, explicit multistep time integration, heterogeneous
solids, localized Lagrange multipliers

1 INTRODUCTION

Recently, as the performance of the mechanical technology has been improved, various kinds of materials have been used
in the machine, and as the operation speed has increased, it has become a necessary requirement to design the machine
so as to perform its functions while being subjected to an impact load. Therefore, the study on the impact problem of a
machine made of different materials is recognized as an important issue not only in the safety design of the machine but
also in the overall machine industry. Since the deformation behavior of the dissimilar materials subjected to the impact
load is determined by the transmission and reflection of the stress wave at the their own interfaces, it is necessary to study
the propagation of the stress wave at the interface of the heterogeneous materials. Currently, the propagation of the stress
wave on a single material and the dispersion and dissipation error due to numerical analysis have been studied extensively.

276 © 2019 John Wiley & Sons, Ltd. wileyonlinelibrary.com/journal/nme Int J Numer Methods Eng. 2019;118:276–302.



CHO ET AL. 277

However, there are very few research works on the propagation of stress wave on heterogeneous materials. The study of
stress waves began in the mid-nineteenth century, and Kolsky1 conducted a limited study on simple one-dimensional or
two-dimensional problems, although the theory of propagation of stress waves in elastodynamics was first systematized.
Since the governing equation of this wave propagation is represented by the hyperbolic equation, the definition of the
stress wave has discontinuity or singularity at the wave front. Therefore, theoretical approaches to the propagation of
stress waves by the computation of the stress fields in complex solids have been limited, and many researchers have been
actively studying the methods of solving the hyperbolic equations using the finite element method.2 Reed and Hill3 dras-
tically reduced the numerical dispersion error by introducing a discontinuous Galerkin method for the calculation of the
neutron transport equation consisting of hyperbolic equations. Hughes and Hulbert4,5 and Huang and Costanzo6 proposed
a finite element method using a space-time discontinuous Galerkin method to analyze the propagation of stress wave in
a solid body and conducted a study on convergence and stability. Wendlandt and Marsden7 and Kane et al8 numerically
integrated the equations governing the mechanical system by taking the variational principle in the action integral of the
discrete Hamiltonian rather than the equations of motion. Casadei and Halleux9 proposed the binary spatial partitioning
of the central-difference time integration scheme for explicit fast transient dynamics using a time step variable not only
in time but also in space, and Chang10 presented a new family of explicit time integration, which had the same character-
istic equation as the Newmark family method for linear structural dynamics. However, their time integrators seem to be
less effective in capturing the discontinuous stress waves. Cho et al11 proposed a method to reduce dispersion error and
dissipation error of stress wave by introducing a discontinuity operator in the variational integrator. Ye et al12 proposed
an selective mass scaling (SMS) method for computing the shear wave propagation in nearly incompressible materials
in which shear deformation is dominant. The SMS was derived based on volumetric and shear mode decomposition and
increased the stable time step size in explicit analysis. González et al13 proposed the efficient method for generating the
inverse mass matrix of structural dynamics problem to improve the accuracy of target frequency ranges and/or wave
contents.

Numerical analysis of transmission and reflection of stress waves in heterogeneous solids was done by a few researchers.
Prager14 described mathematically the continuous conditions of displacement and stress at the discontinuous interface
in the linear elastic problem as a classical principle of variational method and described how to apply to the finite ele-
ment method. Virieux15,16 proposed the velocity-stress finite difference method to numerically calculate the P-SV and
SH wave propagation problems in heterogeneous media in the viewpoint of seismologists. Park et al17 proposed the
new integration formula that is obtained by push-forward pullback operators in time element-by-element designed to
filter postshock oscillation, and the central difference method (CDM) that intrinsically filters front-shock oscillations.
A judicious combination of these two characteristics has been shown to substantially reduce both spurious front-shock
and postshock oscillations in one-dimensional heterogeneous solids. For multidimensional solids, the component-wise
partitioned equations of motions of extensional and shear stress components were developed, each of the decom-
posed equations of motion are integrated by the push-forward pullback operators.18 As a result, the front-shock and
postshock spurious oscillations are shown to be significantly reduced and the wave fronts of different speeds were
tailored to track by way of stiffness decomposition of the total stiffness into extension and shear components. Kol-
man et al19 proposed an improving method for efficiently performing the work of Cho et al18 and extended this
method to impact problems with contact conditions. Gravouil and Combescure20,21 proposed the multiple time step
with different time discretization in each subdomain, which allows to couple explicit and implicit numerical meth-
ods. They also presented heterogeneous asynchronous time integrators for computational structural dynamics, which
used an alternative dual approach based on the velocity continuity at the interface between heterogeneous time
integrators.22

This paper presents a multistep time integration algorithm for computing the discontinuous stress wave propagation
in heterogeneous solids. Different time step advancing can be adopted for each partition domains by using their own
critical time step sizes. In this paper, integration process employing different step sizes for different partitions is labeled
multiple integration. This study adopts the component-wise partitioned equations of motion for each partition and the
push-forward pullback time integration18 to reduce the computational dispersion errors in heterogeneous materials with
significantly large time step ratios. The continuity of the interface between heterogeneous time integrators considers
traction and acceleration, all of which are enforced via the method of localized Lagrange multipliers.23 It is emphasized
that the main focus of the present work is to minimize spurious oscillations (due largely to the Gibbs phenomena) of
discontinuous wave (eg, stress waves) and at the same track the wave fronts of solid wave components (such as axial,
shear, and surface waves) as accurately as possible. For continuous wave propagation the reader may consult standard
time integration literature (see, eg, the work of Newmark24).
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2 GOVERNING EQUATIONS

This section briefly reviews the fundamental equation of motion for the dynamic problem and the corresponding
component-wise partitioned equations of the longitudinal and shear stress waves in solids and the push-forward and
pullback explicit time integration algorithm.18,19,25,26

2.1 Strong form of dynamic problem in solids
Let (Ω ⊂ R3) be an open and bounded domain with piecewise smooth boundary Γ = 𝜕Ω. The strong formulation of
dynamic problem in solid is written as follows:

𝜌üi = 𝜎i𝑗,𝑗 + bi in Ω × [t0,T]

𝜎i𝑗 = Ci𝑗kluk,l

ui = gi on 𝚪Di × [t0,T]

𝜎i𝑗n𝑗 = hi on 𝚪Ni × [t0,T]

ui(x, t0) = u0
i for x ∈ 𝛀

.ui(x, t0) = .u0
i for x ∈ 𝛀,

(1)

where bi ∶ 𝛀 × [t0,T] → R, gi ∶ 𝚪Di × [t0,T] → R, hi ∶ 𝚪Ni × [t0,T] → R. In the aforementioned relationships,
the superimposed dots denote the derivatives with respect to time. Equation (1) has a meaning of the equation of motion
and 𝜎ij is the Cauchy stress tensor and Cijkl is the fourth-order tensor for the material constants. gi and hi prescribe the
kinematic (Dirichlet type) boundary conditions and the traction (Neumann type) boundary conditions, respectively. u0

i

and .u0
i are the initial displacement and velocity. Furthermore, the piecewise smooth boundary is denoted as Γ = 𝚪Di ∪ 𝚪Ni

and 𝚪Di ∩ 𝚪Ni = ∅.

2.2 Component-wise partitioned equations of motion in homogeneous solids
On the basis of the previous study,18 the total discrete displacement (u) in element-by-element level can be decomposed
into the discrete longitudinal and shear displacements (u𝜎,u𝜏) by the following formula:

u = u𝜎 + u𝜏

u𝜎 = D𝜎u
u𝜏 = D𝜏u,

(2)

where (D𝜎,D𝜏) are the component-wise partitioning operators for deriving the component-wise partitioned equations of
motion. Moreover, the subscripts 𝜎 and 𝜏 mean the longitudinal and shear components, respectively. It can be shown that
the component-wise partitioning matrices (D𝜎,D𝜏) possess the following properties:

Partition of unity: D𝜎 + D𝜏 = I,

Projector property: DT
𝜏 D𝜏 = D𝜏 , DT

𝜎D𝜎 = D𝜎

Symmetry: DT
𝜎 = D𝜎, DT

𝜏 = D𝜏

Orthogonality: D𝜎 D𝜏 = D𝜏 D𝜎 = 0

Element mass commutability: DT
𝜎M = MD𝜎, DT

𝜏 M = MD𝜏

Element mass orthogonality: DT
𝜎MD𝜏 = MD𝜎D𝜏 = 0

Element stiffness orthogonality: DT
𝜎KD𝜏 = DT

𝜏 KD𝜎 = 0

Element stiffness decomposition: K = K𝜎 + K𝜏 ,

K𝜎 = DT
𝜎KD𝜎, K𝜏 = DT

𝜏 KD𝜏 .

(3)

The properties had been rigorously validated by symbolic computations and the performance had been proven by several
examples as long as the element is rectangular.18,19
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The virtual work for a generic element may be written as follows:

𝛿Π(u) = 𝛿uT(f − Ku − Mü). (4)
The first step to affect component-wise partitioning of the aforementioned elemental virtual work is to insert the

partition of unity relation to obtain

𝛿Π(u) = 𝛿uT(DT
𝜎 + DT

𝜏
)2 (

f − K (D𝜎 + D𝜏)2u − M (D𝜎 + D𝜏)2ü
)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟
Employ the partition of unity relation(3)

⇓

=
(
𝛿uT

𝜎 + 𝛿uT
𝜏
) (

DT
𝜎 + DT

𝜏
)
[f − K (D𝜎 + D𝜏)(u𝜎 + u𝜏)

⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

−M (D𝜎 + D𝜏)(ü𝜎 + ü𝜏)]
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

Employ the component-wise decomposition(??)

.

(5)

Employing the element mass commutability, the element mass, and the stiffness orthogonality relations and substitut-
ing Equations (3) into Equation (5), the virtual work can be decomposed into the longitudinal and shear virtual work
(see, eg, the works of Cho et al18 and Kolman et al19), ie,

𝛿Π(u𝜎,u𝜏) = 𝛿uT
𝜎 (f𝜎 − K𝜎u𝜎 − Mü𝜎) + 𝛿uT

𝜏 (f𝜏 − K𝜏u𝜏 − Mü𝜏), (6)

where
f = f𝜎 + f𝜏 , f𝜎 = DT

𝜎 f , f𝜏 = DT
𝜏 f . (7)

From which one obtains the following equation set:

Longitudinal component equation ∶ Mü𝜎 + K𝜎u = f𝜎
Shear component equation ∶ Mü𝜏 + K𝜏u = f𝜏 .

(8)

In addition, the element total displacement (u) needs to be related to the assembled global displacement (w) via the
following assembly operator:

u = Lw
w = (LTL)−1LTu,

(9)

where L is the assembly Boolean matrix that is readily available in most finite element analysis codes.

2.3 Push-forward pullback time integration for component-wise partitioned equations
of motion
The explicit time integration algorithm for component-wise partitioned equations of motion has been proposed in the
works of Cho et al18 and Kolman et al.19 In this section, we briefly describe the algorithm for a general nonlinear dynamic
problem in homogeneous solid, and Figure 1 shows the relations between the three time steps for the proposed algorithm
in multidimensional problem.

Step 1: Assuming we have (wn, .wn, ẅn) at time t = tn, obtain the component-wise displacements at two critical time
steps (tn+C𝜎 = tn + ΔtC𝜎 , tn+C𝜏 = tn + ΔtC𝜏 ), ie,

wn+C𝜎 = wn + ΔtC𝜎

.wn +
Δt2

C𝜎

2
ẅn

wn+C𝜏 = wn + ΔtC𝜏

.wn +
Δt2

C𝜏

2
ẅn.

(10)

Step 2: Compute the accelerations at two critical time steps (longitudinal and shear components), ie,

ün+C𝜎
𝜎 = M−1

(
fn+C𝜎
𝜎 − K𝜎un+C𝜎

)

ün+C𝜏
𝜏 = M−1

(
fn+C𝜏
𝜏 − K𝜏un+C𝜏

)
.

(11)
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FIGURE 1 The relations between the three time steps in push-forward pullback time integration for component-wise partitioned
equations of motion [Colour figure can be viewed at wileyonlinelibrary.com]

Step 3: Perform the push-forward pullback time integration with a parameter 𝜃 ∈ [0, 1] (𝜃 = 1∕2 for the averaged
displacement of the push-forward and pullback time integrations, 𝜃 = 0 for the conventional CDM), ie,

un+1 = un + Δt .un + 𝛽1𝜎(ΔtC𝜎 )
2ün

𝜎 + 𝛽2𝜎(ΔtC𝜎 )
2ün+C𝜎

𝜎

+ 𝛽1𝜏(ΔtC𝜏 )
2ün

𝜏 + 𝛽2𝜏(ΔtC𝜏 )
2ün+C𝜏

𝜏

ün+1 = M−1(f − Kun+1)
.un+1 = .un + Δt{(1 − 𝛾)ün + 𝛾ün+1},

(12)

where

𝛼𝜎 = Δt∕ΔtC𝜎 , 𝛼𝜏 = Δt∕ΔtC𝜏

𝛽1𝜎 = 𝛼𝜎
6

(
3𝛼𝜎 + 𝜃 − 𝜃𝛼2

𝜎
)
, 𝛽2𝜎 = 𝜃𝛼𝜎

6
(
𝛼2
𝜎 − 1

)

𝛽1𝜏 =
𝛼𝜏
6

(
3𝛼𝜏 + 𝜃 − 𝜃𝛼2

𝜏
)
, 𝛽2𝜏 =

𝜃𝛼𝜏
6

(
𝛼2
𝜏 − 1

)

Stability condition ∶ Δt ≤ ΔtC𝜎 .

(13)

Step 4: Decompose the acceleration ün+1 to longitudinal and shear components ün+1
𝜎 and ün+1

𝜏 , ie,

ün+1 = ün+1
𝜎 + ün+1

𝜏 . (14)

Step 5: Obtain the assembled displacement, velocity, and acceleration, ie,

wn+1 = (LTL)−1LTun+1

.wn+1 = (LTL)−1LT .un+1

ẅn+1 = (LTL)−1LTün+1.
(15)
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FIGURE 2 Two dimensional heterogeneous solids including L-domain and S-domain [Colour figure can be viewed at
wileyonlinelibrary.com]

3 PARTITIONED EXPLICIT-EXPLICIT INTEGRATION FOR
TWO-DIMENSIONAL PROBLEM

Figure 2 shows two domains for two-dimensional heterogeneous problem. L-domain means a region with a larger time
step, and S-domain is a region with a smaller time step. ΓI is the interface boundary between the heterogeneous domains,
and uf denote the global displacement corresponding to the frame nodes in ΓI. Two localized Lagrange multipliers, 𝛌L
and 𝛌S, are the interface loads at the corresponding frame nodes between two domains.23

The equations of motion in two heterogeneous domains can be written as follows.

Component - wise partitioned equations of motion
(1) Extensional components

MLüL𝜎 + KL𝜎uL = DT
𝜎 (fL − BL𝛌L) in 𝛀L

MSüS𝜎 + KS𝜎uS = DT
𝜎 (fS − BS𝛌S) in 𝛀S.

(16)

(2) Shear components
MLüL𝜏 + KL𝜏uL = DT

𝜏 (fL − BL𝛌L) in 𝛀L

MSüS𝜏 + KS𝜏uS = DT
𝜏 (fS − BS𝛌S) in 𝛀S.

(17)

The subscripts (L and S) designate the larger time step domain and the smaller time step domain, respectively. Moreover,
BL and BS are the Boolean matrices that extracts the interface DOFs for each domains. The accelerations and the interface
loads at the interface DOFs should be continuous kinematically and kinetically as follows.

Kinematic interface continuities
BT

L üL − LLü𝑓 = 0 on ΓI

BT
S üS − LSü𝑓 = 0 on ΓI ;

(18)

Traction continuities
LT

L𝛌L + LT
S𝛌S = 0 on ΓI ,

(19)

where ü𝑓 and uf denote the global acceleration and displacement corresponding to the frame nodes. ΓI is the inter-
face boundary between two domains. LL and LS are the Boolean matrices that relates the interface DOFs to the global
acceleration and displacement, and these are obtained by removing columns with all zero elements from BT

L L and BT
S L,

respectively.
The aforementioned three equations are the continuity conditions for obtaining the Lagrange multipliers (𝛌L, 𝛌S and uf)

of the corresponding interface nodes at the current integration time step. However, when two solids are perfectly bonded
in highly heterogeneous materials, there is a possibility of “drifting” that the displacement and velocity at the correspond-
ing interface nodes of each material can differ during the actual time integration. Therefore, the following continuity
conditions are simply applied to each integration step (tn + 1) of L-domain to prevent such the drifting phenomenon.

Kinematic continuities to prevent the drifting
BT

L
.uL − LL

.u𝑓 = BT
L uL − LLu𝑓 = 0 on ΓI

BT
S

.uS − LL
.u𝑓 = BT

S uS − LSu𝑓 = 0 on ΓI .
(20)

Let us suppose that time step of large time step domain (L-domain) is two times larger than that of the small time
step domain (S-domain), as shown in Figure 3. In this case, during one time integration in the large time step domain,
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FIGURE 3 Procedures of multistep time integration for multidimensional heterogeneous solids [Colour figure can be viewed at
wileyonlinelibrary.com]

two time integration procedures should be separately done in small time step domain. Since we can skip one time
integration procedures at L-domain in Figure 3, we can reduce the total computing time.

The time step and the critical time step for L-domain are defined as follows:

Time at L − domain ∶ tn+1 = tn + Δtn+1
L

Δt𝜎CL = Le
min∕C𝜎

L = Critical time step size for longitudinal component
Δt𝜏CL = Le

min∕C𝜏
L = Critical time step size for shear component

Integration time step size in L − domain ∶ Δtn+1
L = ΔtL

Ratio of two time step sizes
𝛼𝜎

L = ΔtL∕Δt𝜎CL

𝛼𝜏
L = ΔtL∕Δt𝜏CL,

(21)

where Le
min means the minimum characteristic length of an element, and C𝜎

L and C𝜏
L are the propagation speed of

longitudinal and shear stress in L-domain, respectively.
The time step in S-domain can be defined, as shown in Equation (22), ie,

Time at S − domain ∶ tn+𝑗 = tn + kΔtn+𝑗

Δt𝜎CS = Le
min∕C𝜎

S = Critical time step size for longitudinal component
Δt𝜏CS = Le

min∕C𝜏
SCritical time step size for shear component

Integration time step size in sub − step ∶ Δtn+𝑗 = ΔtS

Ratio of two time step sizes
𝛼𝜎

S = ΔtS∕Δt𝜎CS

𝛼𝜏
S = ΔtS∕Δt𝜏CS,

(22)

where C𝜎
S and C𝜏

S are the propagation speed of longitudinal and shear stress in S-domain, respectively.
In addition, “j” means the kth integration substep in S-domain, and it is defined as follows:

𝑗 = k
m

for k = 1, 2, … ,m

m = ΔtL∕ΔtS,
(23)

where “m” is the ratio of two time step sizes and is the integer, and “k” is the order of substep in S-domain during a
time step in L-domain. Therefore, we can describe the displacement and acceleration at kth substep of S-domain before
computing the (n+1)th step of L-domain, which are shown as follows.



CHO ET AL. 283

All element on S-domain at tn + j = tn + kΔtS

un+𝑗
S = un+𝑗o

S + ΔtS
.un+𝑗o

S + 𝛽𝜎1S
(
Δt𝜎CS

)2ün+𝑗o
S𝜎 + 𝛽𝜎2S

(
Δt𝜎CS

)2ün+𝑗C𝜎
S

S𝜎

+ 𝛽𝜏1S
(
Δt𝜏CS

)2ün+𝑗o
S𝜏 + 𝛽𝜏2S

(
Δt𝜏CS

)2ün+𝑗C𝜏
S

S𝜏

ün+𝑗
S = M−1

S
(
fS − KSun+𝑗

S

)
− M−1

S BS𝛌n+𝑗
S = ̃̈un+𝑗

S − M−1
S BS𝛌n+𝑗

S

ün+𝑗C𝜎
S

S𝜎 = ̃̈un+𝑗C𝜎
S

S − M−1
S DT

𝜎BS𝛌
n+𝑗C𝜎

S
S

ün+𝑗C𝜏
S

S𝜏 = ̃̈un+𝑗C𝜏
S

S − M−1
S DT

𝜏 BS𝛌
n+𝑗C𝜏

S
S

un+𝑗C𝜎
S

S = un+𝑗o
S + Δt𝜎CS

.un+𝑗o
S + 1

2
(
Δt𝜎CS

)2ün+𝑗o
S

un+𝑗C𝜏
S

S = un+𝑗o
S + Δt𝜏CS

.un+𝑗o
S + 1

2
(
Δt𝜏CS

)2ün+𝑗o
S

̃̈un+𝑗
S = M−1

S
(
fn+𝑗

S − KSun+𝑗
S

)

̃̈un+𝑗C𝜎
S

S = M−1
S

(
fn+𝑗C𝜎

S
S − KSun+𝑗C𝜎

S
S

)

̃̈un+𝑗C𝜏
S

S = M−1
S

(
fn+𝑗C𝜏

S
S − KSun+𝑗C𝜏

S
S

)

𝑗o = k − 1
m

for k = 1, 2, … ,m

𝛼𝜎
S = ΔtS∕Δt𝜎CS

𝛼𝜏
S = ΔtS∕Δt𝜏CS

𝛽𝜎1S =
𝛼𝜎

S

6

(
3𝛼𝜎

S + 𝜃
(
𝛼𝜎

S
)2
)
, 𝛽𝜎2S =

𝜃𝛼𝜎
S

6

((
𝛼𝜎

S
)2 − 1

)

𝛽𝜏1S =
𝛼𝜏

S

6

(
3𝛼𝜏

S + 𝜃
(
𝛼𝜏

S
)2
)
, 𝛽𝜏2S =

𝜃𝛼𝜏
S

6

((
𝛼𝜏

S
)2 − 1

)
.

(24)

Since the kth integration substep in L-domain is not needed, we need only (n+1)th integration step, as shown in the
following.

All element on L-domain at tn + 1 = tn + ΔtL = tn + mΔtS

un+1
L = un

L + ΔtL
.un

S + 𝛽𝜎1L
(
Δt𝜎CL

)2ün
L𝜎 + 𝛽𝜎2L

(
Δt𝜎CL

)2ün+C𝜎
L

L𝜎

+ 𝛽𝜏1L(Δt𝜏CL)
2ün

L𝜏 + 𝛽𝜏2L
(
Δt𝜏CL

)2ün+C𝜏
L

L𝜏

ün+1
L = M−1

L
(
fL − KLun+1

L
)
− M−1

L BL𝛌n+1
L = ̃̈un+1

L − M−1
L BL𝛌n+1

L

ün+C𝜎
L

L𝜎 = ̃̈un+C𝜎
L

L − M−1
L DT

𝜎BS𝛌
n+C𝜎

L
L

ün+C𝜏
L

L𝜏 = ̃̈un+C𝜏
L

L − M−1
L DT

𝜏 BL𝛌
n+C𝜏

L
L

un+C𝜎
L

L = un
L + Δt𝜎CL

.un
L + 1

2
(
Δt𝜎CL

)2ün
L

un+C𝜏
S

L = un
L + Δt𝜏CL

.un
L + 1

2
(
Δt𝜏CL

)2ün
L

̃̈un+1
L = M−1

S
(
fn+1

L − KLun+1
L

)

̃̈un+C𝜎
L

L = M−1
L

(
fn+C𝜎

L
L − KLun+C𝜎

L
L

)

̃̈un+C𝜏
L

L = M−1
L

(
fn+C𝜏

L
L − KLun+C𝜏

L
L

)

𝛼𝜎
L = mΔtS∕Δt𝜎CL = ΔtL∕Δt𝜎CL

𝛼𝜏
L = mΔtS∕Δt𝜏CL = ΔtL∕Δt𝜏CL

𝛽𝜎1L =
𝛼𝜎

L

6

(
3𝛼𝜎

L + 𝜃 − 𝜃
(
𝛼𝜎

L
)2
)
, 𝛽𝜎2L =

𝜃𝛼𝜎
L

6

((
𝛼𝜎

L
)2 − 1

)

𝛽𝜏1L =
𝛼𝜏

L

6

(
3𝛼𝜏

L + 𝜃 − 𝜃
(
𝛼𝜏

L
)2
)
, 𝛽𝜏2L =

𝜃𝛼𝜏
L

6

((
𝛼𝜏

L
)2 − 1

)
.

(25)



284 CHO ET AL.

FIGURE 4 Two layers affecting on the interface loads 𝛌L and 𝛌S [Colour figure can be viewed at wileyonlinelibrary.com]

However, the conditions that the displacement and the reaction force are continuous between L-domain and S-domain
should be considered.14 For this purpose, it is not necessary to consider all of the entire L-domain to satisfy the continuity
conditions of Equations (18) and (19) during the kth integration substep of S-domain. Only two layers of L-domain next
to the interface boundary have only to satisfy the continuous conditions with S-domain for each substep, as shown in
Figure 4. The following Equation (26) is the kth substep of two layers of L-domain next to the interface boundary.

Two layer elements of L-domain adjacent to interface at tn + j = tn + kΔtS

un+𝑗
L = un

L + kΔtS
.un

L + 𝛽𝜎1L
(
Δt𝜎CL

)2ün
L𝜎 + 𝛽𝜎2L

(
Δt𝜎CL

)2ün+C𝜎
L

L𝜎

+ 𝛽𝜏1L
(
Δt𝜏CL

)2ün
L𝜏 + 𝛽𝜏2L

(
Δt𝜏CL

)2ün+C𝜏
L

L𝜏

ün+𝑗
L = M−1

L
(
fL − KLun+𝑗

L
)
− M−1

L BL𝛌n+𝑗
L = ̃̈un+𝑗

L − M−1
L BL𝛌n+𝑗

L

ün+C𝜎
L

L𝜎 = ̃̈un+C𝜎
L

L − M−1
L DT

𝜎BS𝛌
n+C𝜎

L
L

ün+C𝜏
L

L𝜏 = ̃̈un+C𝜏
L

L − M−1
L DT

𝜏 BL𝛌
n+C𝜏

L
L

un+C𝜎
L

L = un
L + Δt𝜎CL

.un
L + 1

2
(
Δt𝜎CL

)2ün
L

un+C𝜏
S

L = un
L + Δt𝜏CL

.un
L + 1

2
(
Δt𝜏CL

)2ün
L

𝛼𝜎
L = kΔtS∕Δt𝜎CL

𝛼𝜏
L = kΔtS∕Δt𝜏CL.

(26)

Two layers in L-domain are integrated at time (tn + j = tn + kΔtS) on the basis of time (tn), (tn + Δt𝜎CL) and (tn + Δt𝜏CL).
Therefore, the total calculation time can be reduced by integrating only two layers of L-domain at each substep. The
accelerations with “tilde” in Equation (26) can be obtained as same with Equation (25).

The next step is to find the variables (𝛌n+𝑗
S , 𝛌n+𝑗

L , ün+𝑗
𝑓 ) of the interface,ΓI. To do this, we first have to find the interface

reaction forces at the critical time to obtain those variables. The sequence of calculation of the respective variables on
interface, ΓI, is as follows: (

𝛌n+𝑗C𝜏
S

S , 𝛌n+𝑗C𝜎
S

S

)
→ ün+𝑗CS

S → 𝛌n+𝑗
S(

𝛌n+C𝜏
L

L , 𝛌n+C𝜎
L

L

)
→ ün+CL

L → 𝛌n+𝑗
L .

(27)

First, we obtain (𝛌n+𝑗C𝜏
S

S , 𝛌n+𝑗C𝜎
S

S ) at the interface of S-domain as follows.
Computation of 𝛌n+𝑗C𝜏

S
S at the interface ΓI of S-domain for k = 1 ∶ m

Δt ≜ Δt𝜏CS

⎡
⎢⎢⎣

BT
L M−1

L BL 0 LL

0 BT
S M−1

S BS LS

LT
L LT

S 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

𝛌L
𝛌S
ü𝑓

⎤
⎥⎥⎦

n+𝑗C𝜏
S

=
⎡
⎢⎢⎣

BT
L
̃̈uL

BT
S
̃̈uS

0

⎤
⎥⎥⎦

n+𝑗C𝜏
S

on ΓI

ün+𝑗C𝜏
S

𝑓 =
[
LT

L
(
BT

L M−1
L BL

)−1LL + LT
S
(
BT

S M−1
S BS

)−1LS

]−1

[
LT

L
(
BT

L M−1
L BL

)−1BT
L
̃̈un+𝑗C𝜏

S
L + LT

S
(
BT

S M−1
S BS

)−1BT
S
̃̈un+𝑗C𝜏

S
S

]

𝛌n+𝑗C𝜏
S

S =
(
BT

S M−1
S BS

)−1
(

BT
S
̃̈un+𝑗C𝜏

S
S − LSün+𝑗C𝜏

S
𝑓

)
.

(28)
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Computation of 𝛌n+𝑗C𝜎
S

S at the interface ΓI of S-domain for k = 1 ∶ m

Δt ≜ Δt𝜎CS

⎡
⎢⎢⎣

BT
L M−1

L BL 0 LL

0 BT
S M−1

S BS LS

LT
L LT

S 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

𝛌L
𝛌S
ü𝑓

⎤
⎥⎥⎦

n+𝑗C𝜎
S

=
⎡
⎢⎢⎣

BT
L
̃̈uL

BT
S
̃̈uS

0

⎤
⎥⎥⎦

n+𝑗C𝜎
S

on ΓI

ün+𝑗C𝜎
S

𝑓 =
[
LT

L
(
BT

L M−1
L BL

)−1LL + LT
S
(
BT

S M−1
S BS

)−1LS

]−1

[
LT

L
(
BT

L M−1
L BL

)−1BT
L
̃̈un+𝑗C𝜎

S
L + LT

S
(
BT

S M−1
S BS

)−1BT
S
̃̈un+𝑗C𝜎

S
S

]

𝛌n+𝑗C𝜎
S

S =
(
BT

S M−1
S BS

)−1
(

BT
S
̃̈un+𝑗C𝜎

S
S − LSün+𝑗C𝜎

S
𝑓

)
.

(29)

We can also get (𝛌n+C𝜏
L

L , 𝛌n+C𝜎
L

L ) at the interface of L-domain in the similar way as in S-domain. Different thing is that we
adopted the time level of S-domain as (tS = tn+𝑗0 ) for getting the stable solution of (𝛌n+C𝜏

L
L , 𝛌n+C𝜎

L
L ).

Computation of (𝛌n+C𝜏
L

L ) at the interface ΓI of L-domain for k = 1 ∶ m

Δt ≜ Δt𝜏CL

̃̈un+C𝜏
L

S → ̃̈un+𝑗0
S

⎡
⎢⎢⎣

BT
L M−1

L BL 0 LL

0 BT
S M−1

S BS LS

LT
L LT

S 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

𝛌L
𝛌S
ü𝑓

⎤
⎥⎥⎦

n+C𝜏
L

=
⎡
⎢⎢⎣

BT
L
̃̈uL

BT
S
̃̈uS

0

⎤
⎥⎥⎦

n+C𝜏
L

≜
⎡
⎢⎢⎢⎣

BT
L
̃̈un+C𝜏

L
L

BT
S
̃̈un+𝑗0

S
0

⎤
⎥⎥⎥⎦

on ΓI

ün+C𝜏
L

𝑓 =
[
LT

L
(
BT

L M−1
L BL

)−1LL + LT
S
(
BT

S M−1
S BS

)−1LS

]−1

[
LT

L
(
BT

L M−1
L BL

)−1BT
L
̃̈un+C𝜏

L
L + LT

S
(
BT

S M−1
S BS

)−1BT
S
̃̈un+𝑗0

S

]

𝛌n+C𝜏
L

L =
(
BT

L M−1
L BL

)−1
(

BT
L
̃̈un+C𝜏

L
L − LLün+C𝜏

L
𝑓

)
.

(30)

Computation of (𝛌n+C𝜎
L

L ) at the interface ΓI of L-domain for k = 1 ∶ m

Δt ≜ Δt𝜎CL

̃̈un+C𝜎
L

S → ̃̈un+𝑗0
S

⎡
⎢⎢⎣

BT
L M−1

L BL 0 LL

0 BT
S M−1

S BS LS

LT
L LT

S 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

𝛌L
𝛌S
ü𝑓

⎤
⎥⎥⎦

n+C𝜎
L

=
⎡
⎢⎢⎣

BT
L
̃̈uL

BT
S
̃̈uS

0

⎤
⎥⎥⎦

n+C𝜎
L

≜
⎡
⎢⎢⎢⎣

BT
L
̃̈un+C𝜎

L
L

BT
S
̃̈un+𝑗0

S
0

⎤
⎥⎥⎥⎦

on ΓI

ün+C𝜎
L

𝑓 =
[
LT

L
(
BT

L M−1
L BL

)−1LL + LT
S
(
BT

S M−1
S BS

)−1LS

]−1

[
LT

L
(
BT

L M−1
L BL

)−1BT
L
̃̈un+C𝜎

L
L + LT

S
(
BT

S M−1
S BS

)−1BT
S
̃̈un+𝑗0

S

]

𝛌n+C𝜎
L

L =
(
BT

L M−1
L BL

)−1
(

BT
L
̃̈un+C𝜎

L
L − LLün+C𝜎

L
𝑓

)
.

(31)

(𝛌n+𝑗C𝜎
S

S , 𝛌n+𝑗C𝜏
S

S ) are calculated explicitly in every substep, as shown in Equations (28)-(29). Furthermore, (𝛌n+C𝜎
L

L , 𝛌n+C𝜏
L

L )
of interface 𝚪I should be also updated in every substep, as shown in Equations (30)-(31), because (𝛌n+𝑗C𝜎

S
S , 𝛌n+𝑗C𝜏

S
S ) are

recalculated in each substep. Then, (𝛌n+𝑗
L , 𝛌n+𝑗

S ,un+𝑗
𝑓 ) are calculated at each interface nodes, as shown in Equation (32), ie,

⎡
⎢⎢⎣

BT
L M−1

L BL 0 LL

0 BT
S M−1

S BS LS

LT
L LT

S 0

⎤
⎥⎥⎦

⎡
⎢⎢⎣

𝛌L
𝛌S
u𝑓

⎤
⎥⎥⎦

n+𝑗

=
⎡
⎢⎢⎢⎣

BT
L
̃̈un+𝑗

L

BT
S
̃̈un+𝑗

S
0

⎤
⎥⎥⎥⎦

for k = 1 ∶ m on ΓI . (32)
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Equation (32) can be summarized as follows:
[
𝛌L
ü𝑓

]n+𝑗

=

[
BT

L M−1
L BL LL

LT
L −LT

S

(
BT

S M−1
S BS

)−1LS

]−1 [
BT

L
̃̈un+𝑗

L

−LT
S

(
BT

S M−1
S BS

)−1BT
S
̃̈un+𝑗

S

]

𝛌n+𝑗
S =

(
BT

S M−1
S BS

)−1
[
BT

S
̃̈un+𝑗

S − LSun+𝑗
𝑓

]
.

(33)

There is also an alternative method for obtaining (𝛌n+𝑗C𝜎
S

S , 𝛌n+𝑗C𝜏
S

S ) and (𝛌n+C𝜎
L

L , 𝛌n+C𝜏
L

L ), which is to use an extrapolation by
linear convex combination as following Equations (34)-(35) as a similar way with the work of Gravouil et al.22

Alternative method of computing(𝛌n+𝑗C𝜎
S

S , 𝛌n+𝑗C𝜏
S

S )on S - domain

𝛼𝜎 = ΔtS∕Δt𝜎CS

𝛼𝜏 = ΔtS∕Δt𝜏CS

𝛌n+𝑗
S = (1 − 𝛼𝜎)𝛌n+( 𝑗−1)

S + 𝛼𝜎𝛌
n+𝑗C𝜎

S
S

𝛌n+𝑗
S = (1 − 𝛼𝜏)𝛌n+( 𝑗−1)

S + 𝛼𝜏𝛌
n+𝑗C𝜏

S
S .

(34)

Alternative method of computing(𝛌n+C𝜎
L

L , 𝛌n+C𝜏
L

L )on L - domain
𝛼𝜎 = kΔtS∕Δt𝜎CL

𝛼𝜏 = kΔtS∕Δt𝜏CL

𝛌n+𝑗
L = (1 − 𝛼𝜎)𝛌n

L + 𝛼𝜎𝛌
n+C𝜎

L
L

𝛌n+𝑗
L = (1 − 𝛼𝜏)𝛌n

L + 𝛼𝜏𝛌
n+C𝜏

L
L .

(35)

However, our numerical experiment using the alternative method showed that 𝛌n+𝑗
S ≠ 𝛌n+𝑗

L in case of Δt𝜎CL >> Δt𝜎CS.
Therefore, we did not adopted the alternative method for obtaining more accurate solution in the present algorithm.
Despite our present algorithm is shown as more or less complicated, the present algorithm has the advantage that the
calculation time is drastically reduced because L-domain is computed only in two elements next to the internal interface
at each substep, and that the solution is more accurate especially even in case of Δt𝜎CL >> Δt𝜎CS. Finally, we describe the
flowchart of the multistep time integration for multidimensional problem.

Flowchart of multistep time integration for two-dimensional heterogeneous solids:
Start of main step n = 1 ∶ N on L-domain;
Step 1: Prepare (un

L,
.un

L, ün
L);

Start of substep k = 1 ∶ m on S-Domain);
Step 2: Prepare (un+𝑗o

S , .un+𝑗o
S , ün+𝑗o

S ) and (un+𝑗0
𝑓 , .un+𝑗0

𝑓 , ün+𝑗0
𝑓 );

Step 2.1: Compute (𝛌n+𝑗C𝜎
S

S , 𝛌n+𝑗C𝜏
S

S , 𝛌n+C𝜎
L

L , 𝛌n+C𝜏
L

L ) at the interface, ΓI;
Step 2.1.1: Compute (𝛌n+𝑗C𝜎

S
S , 𝛌n+𝑗C𝜏

S
S );

Step 2.1.2: Compute 𝛌n+C𝜎
L

L , 𝛌n+C𝜏
L

L );
Step 2.2: Compute (𝛌n+𝑗

S , 𝛌n+𝑗
L and ün+𝑗

𝑓 );
Step 2.3: Compute ( .un+𝑗

S , ün+𝑗
S )

ün+𝑗
S = ̃̈un+𝑗

S − M−1
S BS𝛌n+𝑗

S
.un+𝑗

S = .un+( 𝑗−1)
S + ΔtS

{
(1 − 𝛾)ün+( 𝑗−1)

S + 𝛾ün+𝑗
S

}
;

(36)

Step 2.4: Update (un+𝑗
𝑓 , .un+𝑗

𝑓 ) and ( .un+𝑗
S , ün+𝑗

S ) at the interface, ΓI,

.un+𝑗
𝑓 = .un+( 𝑗−1)

𝑓 + ΔtS

{
(1 − 𝛾)ün+( 𝑗−1)

𝑓 + 𝛾ün+𝑗
𝑓

}

un+𝑗
𝑓 = un+( 𝑗−1)

𝑓 + ΔtS
.un+𝑗
𝑓 ;

(37)

END of substep on S-domain.
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Step 3: Compute ( .un+1
L , ün+1

L ) on entire L-domain
Step 3.1: Compute ( .un+1

L , ün+1
L )

ün+1
L = ̃̈un+1

L − M−1
L BL𝛌n+1

L
.un+1

L = .un
L + ΔtL

{
(1 − 𝛾)ün

L + 𝛾ün+1
L

}
;

(38)

Step 3.2: Update (un+1
L , .un+1

L ) only at the interface, ΓI, to prevent the drifting of the interface

LLun+1
L = BT

L un+1
𝑓

LL
.un+1

L = BT
L

.un+1
𝑓 ;

(39)

END of main step on L-domain.

4 STABILITY AND ACCURACY ANALYSIS OF THE PRESENT ALGORITHM

Two important algorithmic properties of the present multiple integration algorithm are numerical stability limit and
wave-front tracking ability with minimal spurious oscillations. Computational efficiency of multiple explicit integration
is dictated by its stability limit with respect to the stiff partition. Although algorithmic accuracy (often measured in terms
of numerical damping and frequency distortion) is important for tracing continuous responses, the ability of wave-front
tracking is of primary importance in discontinuous wave propagation problems. Nevertheless, we will also assess the
damping and frequency errors. In order to elucidate the stability limit of the present multiple integration algorithm,
we will specialize the present multiple integration algorithm to one-dimensional wave propagation consisting of two
partitions whose maximum frequency ratio is two.

A rationale for assessing the stability limit of the proposed multiple integration algorithm as applied to one-dimensional
problem is as follows. For two- and three-dimensional problems, the fastest wave speeds are due to extensional waves
as the speeds of shear and surface waves are slower than that of the extensional waves. Thus, computational stability is
dictated by the stability limit of extensional wave propagation. As one-dimensional bar problem consists of only exten-
sional waves, it is deemed that one-dimensional stability analysis would offer essentially the stability limit for two- or
three-dimensional stability limits as well.

4.1 Partitioned equations of motion in one-dimensional heterogeneous solids
Figure 5 shows two domains for one-dimensional heterogeneous problem. L-domain means a region with a larger time
step, and S-domain is a region with a smaller time step. ΓI is the internal interface between two domains, and uf denotes
the global displacement corresponding to the frame nodes in ΓI. Two localized Lagrange multipliers, 𝛌L and 𝛌S, are the
internal interface loads at the corresponding frame nodes between two domains.23

Therefore, the equations of motion in two heterogeneous domains can be written as follows:

Equations of motion
MLüL + KLuL = fL − BL𝛌L in 𝛀L

MSüS + KSuS = fS − BS𝛌S in 𝛀S.
(40)

The subscripts L and S designate the larger time step domain and the smaller time step domain, respectively. BL and BS
are the Boolean matrices that extracts the interface DOFs for each domains.

FIGURE 5 One dimensional heterogeneous solids including L-domain and S-domain [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 6 Procedures of multistep time integration for one dimensional heterogeneous solids [Colour figure can be viewed at
wileyonlinelibrary.com]

The accelerations and the interface loads at the interface DOFs should be continuous kinematically and kineti-
cally as follows:

Kinematic interface continuities
BT

L üL − LLü𝑓 = 0 on ΓI

BT
S üS − LSü𝑓 = 0 on ΓI ,

(41)

Traction continuities
LT

L𝛌L + LT
S𝛌S = 0 on ΓI ,

(42)

where LL and LS are the Boolean matrices that relate the interface DOFs to the global acceleration and displacement,
and these are obtained by removing columns with all zero elements from BT

L L and BT
S L, respectively. Equation (41) and

Equation (42) satisfy all discontinuity conditions of displacement, strains, and stresses at the interface between the het-
erogeneous domains.14 The three continuity conditions is to obtain the Lagrange multipliers (𝛌L, 𝛌S and uf) at the current
integration time step. However, when two solids are perfectly bonded in highly heterogeneous materials, there is a possi-
bility of “the drifting” that the displacement and velocity at the corresponding interface can differ during the actual time
integration. Therefore, the kinematic continuity conditions to prevent the drifting are applied to each integration step
(tn + 1) of L-domain.

Kinematic continuities to prevent the drifting
BT

L
.uL − LL

.u𝑓 = BT
L uL − LLu𝑓 = 0 on ΓI

BT
S

.uS − LL
.u𝑓 = BT

S uS − LSu𝑓 = 0 on ΓI .
(43)

Let us suppose that time step of large time step domain (L-domain) is three times larger than that of the small time step
domain (S-domain), as shown in Figure 6. In this case, during one time integration in the large time step domain, three
time integration procedures should be separately done in small time step domain. Since we can skip two time integration
procedures at L-domain in Figure 6, we can reduce the total computing time.

The time step and the critical time step for L-domain are defined as follows:
Time at L − domain ∶ tn+1 = tn + Δtn+1

Critical time step size ∶ ΔtCL = Lmin∕CL, CL =
√

EL∕𝜌L

Integration time step size ∶ Δtn+1 = ΔtL

Ratio of two time step sizes ∶ 𝛼L = ΔtL∕ΔtCL.

(44)

As in L-domain, the information of time step in S-domain can be written as follows:

Time at S − domain ∶ tn+𝑗 = tn + kΔtn+𝑗

Critical time step size ∶ ΔtCS = Lmin∕CS, CS =
√

ES∕𝜌S

Integration time step size ∶ Δtn+𝑗 = ΔtS

Ratio of two time step sizes ∶ 𝛼S = ΔtS∕ΔtCS,

(45)
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where “j” means the kth integration substep in S-domain, and it is defined as follows:

𝑗 = k
m

≤ 1 for k = 1, 2, … ,m

m = ΔtL∕ΔtS,
(46)

where “m” is the ratio of two time step sizes and is the integer, and “k” is the order of substep in S-domain during a
time step in L-domain. Therefore, we can compute the displacement and acceleration of kth substep of S-domain during
(n+1)th step of L-domain as same way as multidimensional problem.

4.2 Stability and accuracy analysis of one-dimensional multistep time integration.
We asses the stability and accuracy of the proposed multistep time integration for one-dimensional heterogenous case
by assuming that the bar consists of soft (L-domain) and stiff (S-domain), as shown in Figure 7. The mass and stiffness
matrices of two materials are assumed for easy implementation of the interested analysis as Equation (47), ie,

ML = MS =
[

1 0
0 1

]

KL = 1
2

[
1 −1
−1 1

]

KS = 1
2

(
ΔtCL

ΔtCS

)2

KL.

(47)

From Equation (47), one can calculate the respective critical time steps of L-domain and S-domain, as Equation (48), ie,

𝜔max,S = 2 → ΔtCS = 2
𝜔max,S

= 1

𝜔max,L = 1 → ΔtCL = 2
𝜔max,L

= 2.
(48)

When the present algorithm (Equations (24)-(33)) is specialized to one-dimensional case (Equations (40)-(42)), the
following difference equation results

Yn+1 = AYn, YT =
[
YT

S YT
L YT

𝑓

]

YS = [uS
.uS üS]T =

[
u1

S u2
S

.u1
S

.u2
S ü1

S ü2
S
]T

YL = [uL
.uL üL]T =

[
u1

L u2
L

.u1
L

.u2
L ü1

L ü2
L
]T

Y𝑓 = [u𝑓
.u𝑓 ü𝑓 ]T .

(49)

Stability of the difference Equation (49) can be assessed by seeking the solution in the form of

Yn+1 = 𝛌Yn

⇓

[A − 𝛌I]Yn = 0 → det (A − 𝛌I) = 0
where |𝛌| ≤ 1 for stability.

(50)

FIGURE 7 Partitioned system (L-domain and S-domain) for the stability and accuracy analysis for one-dimensional multistep time
integration when ΔtCL∕ΔtCS = 2 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 8 Stability limits for the present one-dimensional multistep time integration when ΔtCL∕ΔtCS = 2 [Colour figure can be viewed
at wileyonlinelibrary.com]

FIGURE 9 Frequency errors for the present one-dimensional multistep time integration when ΔtCL∕ΔtCS = 2 [Colour figure can be
viewed at wileyonlinelibrary.com]

For assessing accuracy, the numerical damping and frequency per time step are given by

Frequency Error = tan−1
(

Im(𝛌
Re(𝛌)

)

|𝜆|max

∕ (𝜔maxT)

Damping Error = −
log (|𝜆|max)
𝜔maxT

.
(51)

Figure 8 shows the stability limits of the present method and the conventional CDM versus the step size (𝜔max,SΔt). The
stability limit of the CDM is given by

ΔtC ≤ 2
𝜔max

. (52)

It is observed from Figure 8 that the stability limit of the present multiple integration algorithm essentially maintains that
of the CDM. Figure 9 shows the frequency error results. the frequency error of the present algorithm is lower than that of
the CDM. It means the present multistep time integration can remove the spurious oscillation more than the CDM when
the discontinuous stress wave is propagated. Figure 10 shows the damping analysis results. While the CDM introduces
no damping, the present method does introduce the numerical damping error. Although the numerical damping error
(which is not insignificant) can contribute to artificial viscosity-like dissipation, for the purpose of front-wave tracking
simulations, we have not noticed significant compromise of the overall wave tracking ability of the present algorithm. For
continuous waves and long-time response computations, however, we do not recommend the proposed algorithm.
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FIGURE 10 Damping errors for the present one-dimensional multistep time integration when ΔtCL∕ΔtCS = 2 [Colour figure can be
viewed at wileyonlinelibrary.com]

5 NUMERICAL EXPERIMENTS

We choose two problems of discontinuous elastic wave propagation in heterogeneous solids to demonstrate the salient
features of the present algorithm: one-dimensional heterogeneous rods and a crack tip problems subjected to mode-II
loadings in a heterogeneous solid with plane strain condition. The simulation of the crack tip problems is chosen because
various types of discontinuous waves, including Rayleigh and Schmidt waves, will emanate from the crack tip and these
waves have high singularities at the crack tip.

5.1 Stress wave propagated from L-domain (soft) to S-domain (hard) in one-dimensional
heterogeneous rod
As a first example, we have chosen the stress wave propagation problem in a rod consisting of two materials. As shown
in Figure 11, the one-dimensional rod consists of a soft material on the left side (length=50 mm, density=8000 kg/m3,
the number of element=300) and a hard material on the right side (length=50 mm, density=8000 kg/m3, the number of
element=300). Since the elastic modulus of each material is 0.02 GPa and 200 GPa, the propagation speed of the stress
wave is 50 m/s and 5000 m/s, respectively. Thus, if the element sizes are equal in all elements of the two materials, the
ratio of their critical time steps is 100. The boundary condition is fixed at the right end, as shown in Figure 11. The initial
velocity of 10 m/s was imposed at the left end to allow the stress wave to propagate from the soft material (L-domain) to
the hard material (S-domain).

Figure 12 shows the reference solutions at time=2600 𝜇s and 3800 𝜇s, respectively, in terms of the velocity distribution
along the two materials. When the incident stress wave propagated from the left end reaches the interface(x=50 mm)
and continues to propagate into the right-half hard bar, due to the large difference of the wave speeds of the two bars,
the partially reflected wave propagates to the left end. Since the impedance difference between two materials is high, the
amplitude of the transmitted wave propagating in the right half of the bar becomes very small. When the transmitted wave
reflects reaches the fixed right boundary and reflects back toward the left bar, the amplitude of the reflected wave from
the right end becomes small, and this transmission and reflection phenomena continues with each reflection repeating
smaller and smaller waves. This is illustrated in Figure 12.

FIGURE 11 One-dimensional problem for the stress wave propagated from L-domain to S-domain [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 12 One-dimensional problem for the stress wave problem propagated from L-domain to S-domain at t = 2600 𝜇s and 3800 𝜇s:
Reference Solutions obtained from x-t diagram

FIGURE 13 One-dimensional problem for the stress wave problem propagated from L-domain to S-domain at t = 2600 𝜇s and 3800 𝜇s:
Central difference method (single step) in nonpartitioned system

FIGURE 14 One-dimensional problem for the stress wave problem propagated from L-domain to S-domain at t = 2600 𝜇s and 3800 𝜇s:
Push-forward pullback time integration (single step) in nonpartitioned system [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 15 One-dimensional problem for the stress wave problem propagated from L-domain to S-domain at t = 2600 𝜇s and 3800 𝜇s:
Central difference method (single step) in partitioned system
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FIGURE 16 One-dimensional problem for the stress wave problem propagated from L-domain to S-domain at t = 2600 𝜇s and 3800 𝜇s:
Push-forward pullback time integration (single step) in partitioned system [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 17 One-dimensional problem for the stress wave problem propagated from L-domain to S-domain at t = 2600 𝜇s and 3800 𝜇s:
Central difference method (multistep) in partitioned system

FIGURE 18 One-dimensional problem for the stress wave problem propagated from L-domain to S-domain at t = 2600 𝜇s and 3800 𝜇s:
Push-forward pullback time integration (multistep) in partitioned system (the present algorithm) [Colour figure can be viewed at
wileyonlinelibrary.com]

FIGURE 19 Plane strain rectangular model(mode-II) with initial crack tip subjected to a Heaviside initial velocity input: A, Geometry and
boundary conditions; B, Imposed velocity [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 20 Reference solution: A, t = 0.97 𝜇s; B, t = 2.26 𝜇s. (P: primary stress wave, S: shear stess wave, R: Rayleigh stress wave,
H: von-Schmidt (head) stress wave)

FIGURE 21 Maximum shear stress contour plots of central difference method (single step) in nonpartitioned system: A, t = 0.97 𝜇s;
B, t = 2.26 𝜇s [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 22 Maximum shear stress contour plots of push-forward pullback time integration (single step) in nonpartitioned system:
A, t = 0.97 𝜇s; B, t = 2.26 𝜇s [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 23 Maximum shear stress contour plots of central difference method (single step) in partitioned system: A, t = 0.97 𝜇s;
B, t = 2.26 𝜇s [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 24 Maximum shear stress contour plots of push-forward pullback time integration (single step) in partitioned system:
A, t = 0.97 𝜇s; B, t = 2.26 𝜇s [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 25 Maximum shear stress contour plots of central difference method (multistep) in partitioned system: A, t = 0.97 𝜇s;
B, t = 2.26 𝜇s [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 26 Maximum shear stress contour plots of push-forward pullback time integration (multistep) in partitioned system (the present
algorithm): A, t = 0.97 𝜇s; B, t = 2.26 𝜇s [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 27 Comparison results of the maximum shear stress distribution of single step time integration along Y-axis at X= 0.75 (mode-II
problem) in nonpartitioned system: A, t = 0.97 𝜇s; B, t = 2.26 𝜇s
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First, Figure 13 shows the results of the conventional CDM as applied with a single step integration in nonparti-
tioned system, which exhibit the deleterious pre-shock dispersion errors. It should be noted that, at time t = 2600 𝜇s
(shown at the left), the incoming wave is propagating from the left to the right, and, at time t = 3600 𝜇s, the
wave is reflecting back from the right fixed end. The same problem analyzed by the push-forward pullback time
integration method17 employing the nonpartitioned system is shown in Figure 14, which shows a significant reduc-
tion in spurious oscillations for both the incoming and reflecting waves. Second, the same problem is simulated
by single step time integration in the partitioned system via the method of Lagrange multipliers, employing the
CDM and the push-forward pullback time integration method, respectively. Figure 15 shows a similar level of dis-
persion errors to the CDM in nonpartitioned system. In addition, Figure 16 shows that the push-forward pullback
time integration method also shows an improved performance in terms of the spurious oscillations comparing with
that of the CDM, as shown in Figure 15. The problem is finally analyzed by multistep time integration, employing
the CDM and the push-forward pullback time integration method in the partitioned system. Although the disper-
sion error in the CDM is reduced a little comparing with those of the single step time integration of nonparti-
tioned system, the level of the dispersion error is still noticeable, as shown in Figure 17. Figure 18 shows that the
push-forward pullback time integration method also shows a more improved performance in terms of the spurious
oscillations comparing with those of the other methods. Especially, it is seen that a small oscillating reflection wave
generated from the hard material side appears conspicuously.

We have analyzed wave propagation from the left end to the right end of a heterogeneous bar whose left half is now made
of hard material and the right half is made of soft materials. The improved performance of the proposed multistep inte-

FIGURE 28 Comparison results of the maximum shear stress distribution of single step time integration along Y-axis at X= 0.75 (mode-II
problem) in partitioned system: A, t = 0.97 𝜇s; B, t = 2.26 𝜇s
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gration algorithm is similarly observed. Encouraged by the improved performance of the proposed multistep integration
algorithm as applied to one-dimensional problems, we now move on to two-dimensional problem discussed later.

5.2 Crack tip at the center of heterogeneous plate subjected to mode-II type
incident wave
The preceding one-dimensional wave propagation through heterogeneous materials analyzed by the present multistep
integration algorithm indicates that the proposed partitioned multistep explicit integration algorithm is accurate and
efficient compared to the conventional CDM-based multistep results. We now proceed to an analysis of discontinuous
wave propagation through two-dimensional heterogeneous materials.

A plane strain problem with crack tip between the heterogeneous solids is subjected to a mode-II type incident wave,
as shown in Figure 19. The upper part of the plate is a hard material and the lower part is a soft material. Since the elastic
modulus and density of each material are 200 GPa, 8000 kg/m3, and 2 GPa, 8000 kg/m3, the ratio of the critical time step
sizes is equal to 10 if the two materials have the same element size (the number of element=300x300).

Figure 20 shows the reference solution when the stress wave is propagated and reflected at the respective domains,
based on the respective wave speeds of the longitudinal stress and the shear stress waves. Figure 21 shows the results of the
maximum shear stress contour plots of the conventional CDM with a single step integration in nonpartitioned system for
both the stiff and soft (upper half and lower half in Figure 19) portions of the structure. Notice that the CDM fails to exhibit
the surface wave (viz, Rayleigh wave and von-Schmidt waves) in the stiff portion of the structure, as shown in Figure 21A.
Even for the lower soft part of the structure, significant computational dispersion is detected, as illustrated in Figure 21B.
This is clearly manifested when compared with the results obtained by the push-forward pullback time integration with a
single step integration in nonpartitioned system, as shown in Figures 22A and 22B, which clearly demonstrate the surface

FIGURE 29 Comparison results of the maximum shear stress distribution of Multistep Time Integration along Y-axis at X= 0.75 (mode-II
problem) in Partitioned System: A, t = 0.97 𝜇s; B, t = 2.26 𝜇s
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waves propagating in the upper stiff portion and relatively minor dispersion in the lower soft portion. Results for a single
step integration with the partitioned system are shown in Figures 23 and 24. Their results are similar to those reported
in Figures 21 and 22 with the same single time integration obtained in nonpartitioned system. Multistep integration with
the partitioned system via the method of Lagrange multipliers has been carried out, employing both the CDM and the
push-forward and pullback integration method. Figures 25 and 26 illustrate that the results are similar to those of the
single step integration in partitioned system as shown in Figures 23 and 24. There is a fraction of dissipation of the energy
being carried away by the surface waves, but not significant enough to affect the principal portion of the energy associated
with shear stress waves.

Second, the maximum shear stress distributions across the cross section at X = 0.75 mm are plotted in Figures 27, 28,
and 29 at two different times, t = 0.97 𝜇s and t = 2.26 𝜇s. The dispersion error in the CDM with the single step time inte-
gration of partitioned system is reduced a little comparing with those of the single step time integration of nonpartitioned
system a partitioned system, but the level of the dispersion error is still noticeable, as shown in Figures 27 and 28. In an
earlier work,18 it was demonstrated that the push-forward and pull-back integration method outperforms several explicit
methods in terms of capturing the predominant shear stress wave magnitudes. In this paper, the same superior perfor-
mance is also demonstrated especially in the multistep push-forward and pullback integration in the partitioned system,
as shown in 29.

Finally, we want to analyze how the time step size affects the analysis of discontinuous stress wave propagation when
the standard CDM and the present method are applied. Figure 30 shows the respective results versus various time step
size for the single step CDM in the nonpartitioned system. Even if the time step size is reduced to Cr=0.1 from Cr=0.9 in

FIGURE 30 Comparison results of the maximum shear stress distribution of Multistep Time Integration along Y-axis at X= 0.75 (mode-II
problem) in Partitioned System: A, t = 0.97 𝜇s; B, t = 2.26 𝜇s



300 CHO ET AL.

FIGURE 31 Comparison results of the maximum shear stress distribution of multistep time integration along Y-axis at X= 0.75 (mode-II
problem) in partitioned system (the present algorithm): A, t = 0.97 𝜇s; B, t = 2.26 𝜇s

terms of Courant number (Cr = Δt∕ΔtCr), the magnitude of the dispersion errors remains almost unchanged with only
a slight change in phase. Figure 31 also shows the results for the present multistep integration method in the partitioned
system. It shows very good results with little dispersion errors for all time step sizes. However, even if the time step size
is reduced to Cr=0.1 from Cr=0.9, the spurious oscillation errors do not decrease.

These results lead to the following conclusions that it does not apply in case of the discontinuous wave propagation
problem: the smaller the time step size, the more accurate the solution becomes.

6 CONCLUSIONS

An explicit-explicit multistep time integration algorithm for computing the discontinuous stress wave propagation for
heterogeneous solids is presented. The proposed algorithm reduces the front-shock and post–shock vibrations of discon-
tinuous stress waves and accurately traces the wave fronts propagated at various speeds in heterogeneous solids. The
present algorithm maintains its robustness up to 100 critical times step ratio and the results are comparable with those
integrated with a single critical step of the stiff materials, thus leading to significant computational savings. While numer-
ical experiments are carried out employing two-domain problems, the proposed algorithm can be extended to problems
consisting of several partitions, thus yielding significant computational savings for heterogenous systems subjected to
discontinuous loading conditions.
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Abstract

This paper presents a stabilization technique for the finite element modelling of contact-impact problems of elastic bars
via a bi-penalty method for enforcing contact constraints while employing an explicit predictor–corrector time integration
algorithms. The present proposed method combines three salient features in carrying out explicit transient analysis of contact-
impact problems: the addition of a penalty term associated with a kinetic energy expression of gap constraints, in addition
to the conventional internal energy penalty term of the gap constraints; an explicit integration method that alleviates spurious
oscillations; and, a judicious selection of two penalty parameters such that the stable time steps of the resulting explicit method
is least compromised. Numerical experiments have been carried out with three explicit methods: the standard central difference
method, the stabilized predictor–corrector method (Wu, 2003 [50]) and a method for mitigating spurious oscillations (Park
et al., 2012 [44]) as applied to simulate one-dimensional contact-impact problems of the Signorini problem and the impact of
two elastic bars. Results indicate that the proposed method can maintain the contact-free stability limit of the central difference
and yield improved accuracy compared with existing bi-penalty methods.
c⃝ 2021 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.

Keywords: Finite element method; Explicit integration; Contact-impact problems; Bi-penalty method; Stability analysis

1. Introduction

Obtaining fast, stable and accurate solutions of contact-impact problems remain at the forefront of computational
mechanics research. Applications in this field appear in real-world problems from mechanical and civil engineering,
bio-mechanics, ballistics, or aviation and aerospace engineering. In this paper, we focus on the finite element
modelling of contact-impact problems of elastic bars under the linear deformation theory without damping. In the
space discretization, linear finite elements and the consistent, lumped, and averaged mass matrices are employed.
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Fig. 1. Characteristic dependence of the stable time step size for the penalty and bi-penalty methods with optimal setting. In the penalty
method, the stable time step size is strongly affected by the penalty stiffness parameter βs while bi-penalty with optimal setting remains
unaffected.

Attention is paid only to the explicit time integration with a constant time step and its stability. For contact constraints
enforcement, the classical stiffness penalty method and the bi-penalty modification are considered.

Most frequently, penalty methods, Lagrange multipliers method, its localized variant and augmented Lagrangian
methods are applied for modelling dynamic contact problems in the context of the finite element analysis,
e.g. see [6,9,21,37]. In explicit finite element analysis, the penalty method is preferred due to its implementation
simplicity and fast evaluation of contact forces [6] which, in comparison to Lagrange Multipliers method, does not
increase the number of unknowns. It is also needed to mention the works related to efficient active set approaches in
contact problems as [15,48]. On the other hand, the main disadvantage of the penalty method in elastodynamics is
the fact that the stability limit of the explicit time integration scheme is destroyed by a large value of the numerical
stiffness penalty parameter used for contact constraints enforcement [6]. The stable time step size rapidly decreases
with increasing value of the penalty stiffness parameter as is depicted in Fig. 1.

A complete review of time integration strategies for contact-impact/dynamic contact problems in finite element
modelling can be found in [49]. In general, one can use implicit or explicit time integration schemes. In this
paper, we focus only on explicit time integration. For examples, the implicit time schemes have been applied in
impact-contact problems in [1,2,29,37,38,46]. On the other hands, the explicit time schemes for the contact-impact
problems have been employed in [6–9,23,24]. The explicit–implicit time scheme in contact-impact problems has
been adopted in [31]. The explicit predictor–corrector algorithm has been designed for dynamic contact with smooth
and non-smooth surface geometries in [12].

Moreover, it is well known that the results of contact problems modelled via the penalty-like methods depend on
the used value of the penalty parameter. The principle of the penalty method implies that impenetrability conditions
are always met only approximately. With a higher value of the penalty parameter, more precise fulfilment of
the impenetrability conditions occurs. We know that penalty methods are generally not consistent [49] within the
variational formulation of the problem and the final matrix form is ill-conditioned. Often, the solution of the contact
problem depends on the penalty parameters and the convergence to the correct solution is not guaranteed [49].
A direct consequence of only approximate fulfilment of the contact constraints is a non-zero penetration, which
causes the contact term to produce non-physical energy corresponding to the contact interfaces. A good solution
to the oscillations on contact forces is the application of time schemes based on predictor and corrector phases
for evaluating kinematical quantities. The regularization of the penalty approach in the finite element method of
the impact of elastic bars is presented in Otto’s work [39] and extension to the spectral 3D finite element method
with NURBS contact tying for contact surfaces is published in [40]. In these works, the nonlinear penalty stiffness
parameter is employed with explicit Runge–Kutta time integration of order 4. In this field, it is also important to
mention the works of C. Felippa [13,17,18].

Also, during the convergence process, final penetration is not exactly zero as corresponds to contact non-
penetration condition. As a consequence, there is lost energy included in the penalty contact term, which is not
a physical one and it is a product of numerical behaviour of the method. One way to eliminate this undesired
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numerical effect is to use the bi-penalty method [27]. In Fig. 1, the effect on the stability limit of the penalty
method is shown, as well as the optimal setting for the bi-penalty method, for details see [27,36].

In the bi-penalty method, an extra mass term is added into the mass distribution corresponding to a contact domain
of interest with a stiffness term at the same time as in the classical penalty method. This modification of the penalty
method is known from Asano [3] and later from Armero [2]. Excellent progress and different applications to several
problems have been made by Hetherington [25–27]. The penalty based method in multibody dynamics is also a
well-known technique for stabilization of constraints, for example, see the Park’s method [43] and Baumgarte’s
method [4]. In this area, the bi-penalty or tri-penalty modification is a common technique used for stabilization of
oscillations in the constraints connecting the bodies. In numerical analysis, the bi-penalty method is known as the
consistent penalty method, see [41].

Another important problem in the numerical modelling of contact-impact problems comes from spurious
oscillations of contact forces, often caused by activation and deactivation (zig-zag effect) of contact constraints
during the solution process. A lot of numerical techniques and strategies have been proposed in the literature for
elimination and stabilization of spurious oscillations in the contact forces. One can mention the work of Doyen [16],
the stabilized implicit Newmark method for non-smooth dynamics and contacts [14,31], mass redistribution
techniques [32], singular mass techniques [45,47] or the stabilized explicit scheme with the penalty method [51].
The last mentioned technique can be also applied in connection with the bi-penalty method for stabilization of
spurious oscillations of contact forces.

In this paper, we present an explicit time integration scheme for finite element solution of contact-impact
problems based on the central difference method [5], in particular, its stabilized version using the predictor–corrector
approach [49,51] and Park explicit time scheme with predictor–corrector stabilization of contact forces [44] in
combination with the bi-penalty formulation [36]. Superior behaviour of the presented method for modelling contact-
impact problems is demonstrated using the impact problem of elastic bars and the Signorini problem. The obtained
results are compared with the standard time integration scheme used in explicit finite element procedures for impact-
contact problems, the central difference method [5]. It is observed, the standard explicit central difference method
is not able to integrate accurately in time the wave propagation problem with a time step size smaller than the
stability limit. It is known that only the combination in explicit time integration via the central difference method
on the uniform linear finite element mesh, with lumped mass matrix and time step corresponding to the critical
time step size in a uniform gives exact results of wave propagation. Otherwise, the results are polluted by spurious
stress oscillations, provided that the time step size is smaller than the stability limit. Park explicit time scheme [44]
is able to track a wavefront eliminating the effect of time step size on accuracy so it is a suitable tool for modelling
contact-impact problems.

The paper is organized as follows. In Section 2, the governing equations for impact of elastic bars with the
definition of the gap function for contact interfaces are presented and introduced with strong and weak forms.
In Section 3, the finite element discretized equations for the motion of elastic bars with the bi-penalty method
are derived. The explicit time integration of contact-impact problems in the finite element method is presented in
Section 4 together with the stability limit. Also, the optimal setting for the penalty mass matrix is derived. Results for
numerical tests in one-dimensional case – the Signorini and Huněk tests – are presented in Section 5 with comments
on the behaviour and superior properties of the proposed methodology. The paper closes with the conclusions in
Section 6.

2. Formulation of the contact problem and governing equations

In this section, we define the strong and weak formulations of the impact-contact problem for elastic bars,
including the definition of a gap function to enforce the contact constraints with the bi-penalty method. In the
following, we assume that the elastic bars in contact are homogeneous with the same constant cross-section A,
Young modulus E and mass density ρ. The lengths are different for each bar as well as their initial velocities
of vi0.

2.1. Strong formulation of contact initial–boundary value problem in 1D

The correct mathematical formulation of the dynamic contact problems including the impenetrability condition
as well as the persistency condition is presented in [29]. The one-dimensional contact-impact problem for linear
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Fig. 2. Definition of domains of interest, their boundaries and the gap function.

isotropic homogeneous bars is governed by the following constrained initial–boundary value problem (IBVP)
[49]: ⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

Eu′′
= ρü in I × T

u(x, 0) = u0(x) in Ī
u̇(x, 0) = v0(x) in Ī
u(x, t) = ū(x) on Γu

Eu′(x, t) = σ̄ (x) on Γσ

g(t) ≤ 0 on Γc × T
pc ≥ 0 on Γc × T
g(t)pc = 0 on Γc × T
ġ(t)pc = 0 on Γc × T

(1)

where I =
⋃

i I i = (xℓ
i , xr

i ); i = 1, 2 is the union of intervals of spatial points xi ∈ I i ⊂ R defining the contacting
bodies (see Fig. 2), and T = (0, tend); tend ∈ R is the time interval. For one-bar contact problem with a rigid obstacle
only one body is considered and I = I1. In the first Eq. (1), which governs the balance of the linear momentum,
u(x, t) : I × T ↦→ R is the unknown displacement function, E ∈ R+ is Young’s elasticity modulus, and ρ ∈ R+

is the mass density. The penultimate condition in Eq. (1) is the classical KKT complementarity condition between
gap g(t) and pressure pc, requiring that surface forces exist only during actual contact (g = 0). The last condition
in Eq. (1) is termed the persistency condition, see [38]. Note that for the sake of simplicity, the second partial
derivative with respect to x is denoted by double prime, (•)′′, whereas the second partial derivative with respect to
t by superimposed dots, ¨(•).

The governing equation (1)1 is complement with the initial conditions (1)2,3, Dirichlet and Neumann boundary
conditions (1)4,5, contact conditions (1)6−8 and persistency condition (1)9, where g(t) and ġ(t) is the gap function
and its rate defined in the following section and pc(t) is the contact pressure. In the initial conditions, u0(x) : Ī ↦→ R
is the initial displacement function and v0(x) : Ī ↦→ R is the initial velocity function; both prescribed at time t = 0.
Similarly for the boundary conditions, ū(x) : Γu ↦→ R is the displacement function and σ̄ (x) : Γσ ↦→ R is the
traction function; both constant in time. Γu and Γσ are sets of boundary points where displacements and stresses
are prescribed.

2.2. Definition of the gap function

Finally the contact constraints are prescribed by the Signorini–Hertz–Moreau conditions (1)6−8, with the aid of
the gap function, g, and contact pressure, pc, on the set Γc = {x r

2, xℓ
1}. The contact pressure pc(x, t) : T̄ ↦→ R is

equal to −Eu′, assuming Hooke’s law, and the gap function g(t) : T̄ ↦→ R for the two-bar contact is defined as

g(t) = −
[
u(xℓ

1, t) − u(x r
2, t) + g0

]
(2)
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where g0 denotes the initial gap, cf. Fig. 2. For the one-bar contact the gap function can be considered as the
special case of (2), assuming x r

2 = 0 and u(x r
2, t) = 0

g(t) = −
[
u(xℓ

1, t) + g0
]

(3)

According to this definition, the gap function has a positive sign in the case of penetration. Therefore, the inequality
(1)6 is called the impenetrability condition.

In the contact-impact problems, constraints on the normal components of the velocities of points in the contact
are needed to include in the formulation. This condition is called the persistency condition. For 1D cases, the
persistency condition can be prescribed via the gap rate as

ġ(t) = −
[
u̇(xℓ

1, t) − u̇(x r
2, t)

]
(4)

which should fulfil the condition (1)9.
Note, that it was assumed that the first body is on the right and therefore its contact interface forms the left

boundary point, xℓ
1 . Analogously for the second body. For the one-bar contact Γc reduces to single-element set

Γc = {xℓ
1}. All three sets Γu,Γσ , and Γc disjointly cover the boundaries of intervals I i .

2.3. Weak form of contact-impact problem via bi-penalty method

In this section, we introduce the weak form of the contact-impact problems via the bi-penalty method, for details
see [36]. The Lagrangian functional, L(u, u̇) of the problem of interest corresponding to Eq. (1) is given as

L (u, u̇) = T (u̇) − (U (u) − W (u)) + Wc (u, u̇) , (5)

where

T (u̇) =

∫
I

1
2
ρ Au̇2 dx (6)

U (u) =

∫
I

1
2

E Au′2 dx (7)

W (u) =

∫
I

ubA dx +

∑
x∈Γσ

u Aσ̄ (8)

are the kinetic energy, the strain energy, and the work of external forces, respectively. Note, that the cross-section
area is marked by A.

Bi-penalty method adds the penalization term to the strain energy (7) to enforce the zero-gap on the contact
boundary [49] and at the same time, an extra term to the kinetic energy (6) to enforce the zero-velocity-gap on the
contact boundary. This way, we define a penalization term associated to the contact interface as

Wc (u, u̇) = −
1
2
ϵs A⟨g⟩

2
+

1
2
ϵm A⟨ġ⟩

2, (9)

where the operator ⟨•⟩ are the so-called Macaulay’s brackets defined as ⟨•⟩ =
|•|+•

2 . The parameters ϵs [kg m−2 s−2]
and ϵm [kg m−2] are the stiffness and mass penalty parameters, respectively.

The standard procedure for the stationary solution of (5), defined as δ
∫

T Lp (u, u̇) dt = 0, gives us∫
I
δuρü dx +

∫
I
δu′E Au′ dx + H (g)A [δg(ϵsg + ϵmg̈)] =

∫
I
δu Ab dx +

∑
x∈Γσ

δu Aσ̄ (10)

which is the framework for the finite element discretized equation of motion including the contact constraints by
the bi-penalty method. Note the identity ⟨g⟩ = gH (g), where H (g) is the Heaviside step function which ensures
that the penalization term is active only in the case of penetration.

It is known that the standard/classical (stiffness) penalty method is not consistent [49], because it allows non-
zero penetration at the contact interface. On the other hand, the zero-gap velocity condition represents a geometric
condition of velocities equality at the contact interface. This geometric condition is required by the true solution. It
is often enforced using the so-called persistence condition [38], where the product of the normal traction component
and the gap velocity is required to be equal to zero. Although the bi-penalty method in the derivation penalizes
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the gap velocity through the term which can be interpreted as kinetic energy in (9), however, after the application
of Hamilton’s variational principle, one gets a residual term that contains the second time derivative of the gap
functions. Geometric condition of velocity equality at the contact interface thus is imposed indirectly by penalizing
the second time derivative, which ultimately leads to smaller oscillations of the gap function and its velocity —
stabilization of contact problem.

3. Bi-penalty method in finite element method for contact-impact problems

In the finite element procedures [5] for elastodynamic problems with contact constraints, the equations of motion
yield the following system of nonlinear ordinary differential equations

Mü + Ku = r(t) − rc(u, ü) (11)

where M is the mass matrix, K is the stiffness matrix, u and ü are nodal displacements and accelerations, r is the
vector of external loading with time dependency, rc is the vector of contact forces. For a detailed derivation of the
discretized equation of motion Eq. (11) for the finite element method with the bi-penalty method see the work [36].

The linear FEM is applied in the rest of the paper for one-dimensional problems. The fully integrated elemental
stiffness is assumed as

K̂ =
E A
he

[
1 −1

−1 1

]
(12)

The averaged mass matrix M̂ as a linear combination of the consistent mass matrix

M̂C =
ρhe A

6

[
2 1
1 2

]
(13)

and the lumped mass matrix

M̂L =
ρhe A

2

[
1 0
0 1

]
(14)

is given as

M̂ = (1 − γ )M̂C + γ M̂L =
ρhe A

6

[
2 + γ 1 − γ

1 − γ 2 + γ

]
. (15)

In the previous text, it was assumed that cross-section area A, Young’s modulus E , and density ρ are constant. he
is the length of the finite element. As it is known the lumped mass matrices are preferred in explicit finite element
analysis, but in this paper, we study the effect of contact oscillations due to the choice of the mass matrix.

In the bi-penalty formulation [36], the global contact residual vector, rc, is assembled from the local counterparts
r̂c as the contribution of stiffness and mass terms to the contact residual vector which can be written as

r̂c(û, ¨̂u) = M̂p
¨̂u + K̂pû + f̂p (16)

where

M̂p =

∫
Γc

ϵm H (g)ZZT dS K̂p =

∫
Γc

ϵs H (g)ZZT dS f̂p =

∫
Γc

ϵs H (g)Zg0 dS (17)

Here, M̂p is the additional (penalized) elemental mass matrix due to inertia penalty, K̂p is the additional (penalized)
elemental stiffness matrix due to stiffness penalty, and f̂p is the part of the elemental contact force due to the
initial gap g0; g is the gap function; H (g) is the Heaviside step function for prescribing active or inactive contact
constraints; ϵm and ϵs are mass and stiffness penalty parameters; Γc is one of the contact surfaces, usually called
slave, on which the contact terms are evaluated; the matrix Z represents an operator from the displacement field u
to the gap function g in the contact

g = ZTu + g0 (18)

Remark. Note that the gap function g is positive in separation and the Heaviside function H (g) is one for g > 0.
This means that the penalty matrices are acting only during separation. This is solved by defining g ≥ 0 as the
penetration.
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The particular form of matrix Z follows from the considered contact discretization. A comprehensive overview
can be found e.g., in the textbook [49]. For the 1D case, see the definition of the gap function in (2), the
corresponding representation of the gap function g takes the form

g = ZTu + g0 =
[
1 −1

] [
ul

rr

]
+ g0 (19)

as well as for the Signorini problem (3)

g = ZTu + g0 =
[
1
] [

ul
]
+ g0 (20)

where ul and ur are the displacements of the contacted nodes in the contact pair.
For the particular case of two bodies in contact, integration of (17) results in the following additional stiffness

and mass matrices

K̂p = H (g)
βs E A

he

[
1 −1

−1 1

]
, M̂p = H (g)

βmρhe A
2

[
1 −1

−1 1

]
(21)

and for the Signorini problem

K̂p = H (g)
βs E A

he

[
1
]
, M̂p = H (g)βmρhe A

[
1
]
. (22)

Here we have defined dimensionless stiffness and mass penalty parameters for the one-dimensional case as βm and
βs, as follows

βs =
he

E A
ϵs, βm =

2
ρhe A

ϵm (23)

and their dimensionless penalty ratio

r =
1 + 2γ

6
βs

βm
. (24)

In the following, the necessary condition for the parameter r will be shown so that the stability limit for several
types of mass matrix is not affected.

Remark. The penalized mass matrix M̂p is singular and the corresponding total mass included in this mass matrix
is zero. This is very a good physical behaviour of M̂p.

4. Explicit time integration schemes for contact-impact problems

We now consider the time integration of the semi-discretized system (11) respecting the bi-penalty terms (16)
in the framework of the central difference method in time [5] as

(Mt
+ Mt

p)
ut+∆t

− 2ut
+ ut−∆t

∆t2 + (Kt
+ Kt

p)ut
+ ft

p − rt
= 0. (25)

Assuming that displacements are known at times t − ∆t and t , one can resolve unknown displacements at time
t + ∆t , where ∆t denotes the time step size. Note, that the matrices Mt

p and Kt
p are time-dependent because

they are associated with active contact constraints. In the following text, we mention the stability behaviour of the
bi-penalized system and explicit time integration of Eq. (25).

4.1. Stability limit of the bi-penalty method

It is known that the standard penalty method [6], where an additional stiffness term corresponding to contact
boundary conditions is applied, significantly attacks the stability limit (the critical time step size ∆tcr ) of the finite
element model. Note, the stability limit for explicit time integration by the central difference method [42] is given
as ∆tcr = 2/ωmax , where ωmax is the maximum eigenfrequency of the discretized model.

For the averaged mass matrix with arbitrary γ , the maximum eigen-frequency of the separated finite element is
given as

ωmax =

√
12

1 + 2γ

c0

he
, (26)
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Fig. 3. Stability limits for the bi-penalty method for the bi-penalized Signorini problem (on the left) and the symmetric contact problem
(on the right): Dependence of the critical Courant number Cr on the dimensionless stiffness penalty βs for selected dimensionless penalty
ratios r with the lumped mass matrix. For details see work [36].

therefore the stability limit is computed as

∆tcr = 2/ωmax =

√
1 + 2γ

3
he

c0
. (27)

where c0 =
√

E/ρ is the wave speed in a bar and he is the length of finite element.
The Courant number, let us define as

C =
∆t
∆tcr

(28)

where ∆t is the time step size using in wave propagation simulations and thus ∆t = C∆tcr .
Generally, the critical time step size ∆tcr rapidly decreases with increasing penalty stiffness [6]. On the other

hand, this numerical effect can be eliminated by a particular choice of additional mass penalty term [27]. The
stability limit for the bi-penalty method has been studied in work of Kopačka [36], where the optimal ratio of
stiffness and mass penalty parameters as r = 1 were found for one-dimensional problems with the lumped mass
matrix. The general problem with respect to the stability of bi-penalized terms has been studied in the work of
Hetherington [26]. The critical time step size ∆tcr associated with contact-free bodies are preserved for this optimal
setting of mass penalty parameter with respect to the stiffness penalty parameter. Thus stability limit for the contact
problem is not attacked by the stiffness penalty term. In principle, one can integrate contact-impact problems by an
arbitrary stable time step size ∆t < ∆tcr . In Fig. 3, one can see the stability graphs for the Signorini and two element
contact symmetric problems, where the dimensionless critical Courant number Cr is computed as Cr = c0∆tcr/he

for the lumped mass matrix. For details of the stability analysis see work [36], where numerical tests have verified
this stability analysis for the central difference method for direct time integration.

4.2. Optimal setting of the penalized mass matrix

From a general point of view, mass and stiffness penalty matrices present the same structure, see Eq. (17), where
only the constants εm and εs are different. This means that there exists a linear relationship between M̂p and K̂p.
Let us then analyse the frequency content of the mass penalty matrix expressed in the form

M̂p = αK̂p (29)

where α is a free parameter [1/s2]. Now, Let us find an “optimal” value of the parameter α, see [26] so that the
maximum eigen-frequency of the penalized dynamic system ωmax defined as

[−ω2
max (M + Mp) + (K + Kp)]Φmax = 0 (30)
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has the same maximum eigen-frequency ωmax and corresponding mode shape Φmax as the contact-free dynamic
system expressed as

[−ω2
max M + K]Φmax = 0. (31)

We assume that ωmax is nonzero and the previous relationships need to satisfy the following relationship

M̂p =
1

ω2
max

K̂p (32)

thus α = 1/ω2
max , which is in an agreement with [26]. This is a very simple formula that can be used for the

evaluation of the mass penalized matrix with arbitrary stiffness penalty parameters. Based on comparison of (21),
(24), (26) and (32), the optimal setting of dimensionless penalty ratio is found to be r = 1.

It is needed to mention that ωmax is the maximum eigen-frequency of the finite element mesh in contact and it
will be computed from

(−ω2M̂ + K̂)Φ̂ = 0 (33)

and ωmax for the 1D case studied in this paper is given by (26). It means that there is a strong coupling of the dynamic
behaviour of finite elements in contact constraints and dynamic behaviour of the bi-penalty terms corresponding
to contact constraints. The coupling of dynamics of contacted bodies and bi-penalty contact terms is through the
maximum eigen-frequency ωmax of the finite elements in the contact constraints. The condition shown in (32) is a
sufficient condition for the keeping of the same stability limit of a contact-free problem and bi-penalized contact
problem. For that reason, one can estimate the stable time step size of contact-impact problems without a knowledge
of contact constraints of bodies where the condition for penalized matrices (32) is valid. This evaluation of penalized
stiffness and mass matrices for the bi-penalty method is given on elemental level, and the global matrices are
assembled in a standard finite element process. In real computations, one can use the setting of the mass penalty
matrix M̂p = ∆t2K̂p, where ∆t is the time step size during the explicit time stepping.

4.3. Central difference scheme for contact-impact problems

In this paper, we use the following form of the central difference (C D) scheme for explicit direct time integration
of elastodynamic problems with contact constraints based on the bi-penalty method with the flowchart [5] as:

• Given ut , u̇t−∆t/2 satisfying Dirichlet boundary conditions, and computed external force rt

• Contact search for given ut , compute gap vector g and contact forces ft
p = −Kt

put
− f0

p
• Compute accelerations üt

= (Mt
+ Mt

p)−1(rt
− Kt ut

+ ft
p)

• Mid-point velocities u̇t+∆t/2
= u̇t−∆t/2

+ ∆t üt

• New displacements ut+∆t
= ut

+ ∆t u̇t+∆t/2

• t → t + ∆t

Here, we used the lumped version of the mass matrix M by the row-summing. In general, the bi-penalized
mass matrix Mt

p is a symmetrical block diagonal matrix with terms corresponding to nodes in contacts, thus the
inversion of total mass (Mt

+ Mt
p)−1 is a trivial numerical issue. For an efficient implementation of this approach,

the partitioned analysis of the contact-impact problems via the localized Lagrangian multipliers [21] can be adopted.

4.4. Stabilized explicit predictor–corrector scheme for contact-impact problems

In the works [50,51], characteristics of the fully explicit time integration scheme with a stabilized technique
for contact-impact problems were analysed. For the predictor–corrector time scheme [28], it is needed to split
the accelerations corresponding to the external/internal forces and accelerations corresponding to the contact forces
as mentioned in [49]. After that, the time integration of each acceleration field is integrated in time separately.
In essence, it is a predictor–corrector form for accelerations of corresponding external/internal forces and contact
forces as, see [49],

ü = üpred (bulk) + ücorr (contact) (34)
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where the predictor acceleration vector üpred corresponds to external/internal forces
(
rt

− Kut
)

and the corrector
acceleration vector üpred corresponds to the contact forces rt

c.
The mentioned time integration scheme takes the following flowchart with splitting of bulk (contact-free problem)

üpred and contact accelerations üt
corr :

• Given ut , u̇t−∆t/2, rt

• Compute accelerations of predictor phase üt
pred = M−1(rt

− Kut )

• Mid-point velocities of predictor phase u̇t+∆t/2
pred = u̇t−∆t/2

+ ∆t üt
pred

• Displacements of predictor phase ut+∆t
pred = ut

+ ∆t u̇t+∆t/2
pred

• Contact search for given ut+∆t
pred , compute gap vector g and contact forces fp pred = −Kput+∆t

pred − f0
p

• Compute accelerations of corrector phase üt
corr = (M + Mp)−1(fp pred )

• Compute total accelerations üt
= üt

pred + üt
corr

• Mid-point velocities of corrector phase u̇t+∆t/2
= u̇t+∆t/2

pred + ∆t üt
corr

• New displacements of corrector phase ut+∆t
= ut

+ ∆t u̇t+∆t/2

• Contact search for given ut+∆t , compute gap vector g and contact forces ft+∆t
p = −Kput+∆t

− Mpüt+∆t
− f0

p
• t → t + ∆t

In this two-time step scheme, bulk accelerations in the predictor phase üt
pred are computed due to internal and

external forces as a contact-free problem. It is calculated with the standard mass matrix M. After updating of
velocities and displacements, contact constraints are analysed and contact forces fp pred are evaluated. For these
contact forces, contact accelerations in the corrector phase üt

corr are computed with the additional penalized mass
matrix together with the mass matrix (M+Mp) which needs inversion of this total mass matrix. After, the velocities
and displacements are updated concerning these corrected accelerations taking into account contact constraints.
Finally, the contact forces are evaluated in the consistent way, see the Asano’s paper [3].

Remark. In the corrector phase, the contact nodal forces fp pred correspond to the nodes in the contact; thus, the
force vector is sparse. For that reason, the mass matrix M + Mp can be evaluated only for nodes in the contact and
inverse of the total mass matrix (M + Mp)−1 can be computed easily, because the matrix is blocked diagonal and
the dimension of this matrix is small.

Remark. It can also be used a diagonalized version of the penalized mass matrix Mp composed as a row-summing
of absolute values and the inversion of (M + Mp)−1 becomes a trivial operation. In this case, the extra penalty
masses are added only into the contact interfaces and the total mass is not preserved like in the consistent definition
of the penalty mass matrix given by the definition (17).

It is well known that the central difference method in time and linear finite element in space with the lumped
mass matrix is a good choice of temporal–spatial discretization due to dispersion behaviour [33]. If one uses the
time step size as a stability limit for regular mesh, the dispersion errors are eliminated and we are able to obtain
an exact solution of elastic wave propagation in the bar. On the other hand, when we integrate using a time step
size smaller than the stability limit, we obtain the stress distribution with stress spurious oscillations which are an
outcome of the temporal–spatial discretizations.

4.5. Stabilized Park time integration scheme for contact-impact problems

For the correct solution of the impact contact problem, it is also needed to eliminate the stress spurious
oscillations. An example of the time scheme, which is to be able to mitigate these numerical errors, is the Park
time scheme [44]. This scheme is based on front-shock and pullback integration, where the wave speed is preserved
and the numerical dispersion errors can be eliminated [35]. The time scheme has been presented in the work of
Park [44] for the 1D case, and for multi-dimensional cases for separate integration of longitudinal and shear waves
see [10,11,33]. Next, we plan to extend the Park time integration scheme to contact-impact problems in predictor–
corrector explicit time sense for elimination stress wave propagation inside the elastic bars and contact forces at
the same time.
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The algorithm adopted for linear wave propagation problems uses the following steps:

• Given ut , u̇t , üt , rt

• Front-shock displacement ut+∆tc
f s = ut

+ ∆tcu̇t
+

∆t2
c

2 üt for given ∆tc
• Front-shock acceleration üt+∆tc

f s = M−1[rt+∆tc − Kut+∆tc
f s ]

• Pullback interpolation ut+∆t
f s = ut

+ ∆t u̇t
+ ∆tc2β1(α)üt

+ ∆tc2β2(α)üt+∆tc
f s with α =

∆t
∆tc

, β1(α) =

1
6α

(
1 + 3α − α2

)
, β2(α) =

1
6α

(
α2

− 1
)

• Pushforward displacement ut+∆t
cd = ut

+ ∆t u̇t
+

∆t2

2 üt

• Averaged displacement as predictor phase ut+∆t
pred = θut+∆t

f s + (1 − θ )ut+∆t
cd for given θ

• Acceleration for predictor phase üt+∆t
pred = M−1

[
rt+∆t

− Kut+∆t
pred

]
• Velocity for predictor phase u̇t+∆t

pred = u̇t
+

∆t
2

(
üt

+ üt+∆t
pred

)
• Contact search for given ut+∆t

pred , compute gap vector g and contact forces fp pred = −Kput+∆t
pred − f0

p

• Compute accelerations of corrector phase üt+∆t
corr = (M + Mp)−1(fp pred )

• Compute total accelerations üt+∆t
= üt+∆t

pred + üt+∆t
corr

• Compute total velocities u̇t+∆
= u̇t+∆t

pred +
∆t
2 üt+∆t

corr

• Total displacement ut+∆t
= ut+∆t

pred
• Search contact for given ut+∆t , compute gap vector g and contact forces ft+∆t

p = −Kput+∆t
− Mpüt+∆t

− f0
p

• t → t + ∆t

The stabilized Park time integration scheme can be characterized as the three-time step scheme with two steps
for the wave propagation problem without including contact constraints, for details see [44]. The first step uses
the critical time step size ∆tcr and the second one the complete time step size ∆t which is smaller than ∆tcr .
The last step includes the contact constraints into the response without producing spurious oscillations in the stress
distribution along the bars. The scheme produces excellent results with the lumped mass matrix due to temporal–
spatial dispersion errors in the numerical model. We choice the time step size as ∆t = 0.5∆tcr and averaged
parameter as θ = 0.5 which is based on numerical tests in [44].

5. Numerical tests — impact of elastic bars

In this section, we present two tests for analysis of the behaviour of the suggested approach for finite element
modelling of contact-impact problems — the Signorini (impact of a bar on a rigid wall) and Huněk problems (impact
of two elastic bars).

5.1. Numerical test I — Signorini problem

In the first example, we study an one-dimensional impact problem of an elastic bar against a rigid wall. This
one-dimensional test is well known as the Signorini problem.

5.1.1. Problem definition
A scheme of this test is depicted in Fig. 4. The bar is moving to the right side with the constant velocity

v01 = 0.1 [m/s]. The geometrical, material and numerical parameters were set up as: the length L = 10 [m], the
Young’s modulus E = 100 [Pa], the mass density ρ = 0.01 [kg m−3], the cross-sectional area A = 1 [m2]. The
initial contact gap is g0 = 0 [m] and the duration time is T = 0.3 [s]. The value of the contact force from the
analytical prediction is F0 = Aρc0v0 = −0.1 [N] for t = 0 . . . 0.2 [s] and zero otherwise, see [22], where wave
speed in a bar c0 =

√
E/ρ = 100 [m/s].

5.1.2. Numerical parameters
For numerical verification of the methodology for this test, we set βs as follows βs = {1e0; 1e4; 1e8; 1.e12} and

βm is set with respect to optimal value given by Eq. (24) with r = 1 or equivalently via (32). The number of finite
linear elements for the bar, n = 100, thus the uniform finite element lengths are set up as he = 0.1 [m].
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R. Kolman, J. Kopačka, J.A. González et al. Mathematics and Computers in Simulation 189 (2021) 305–324

Fig. 4. A scheme of one-dimensional impact problem of an elastic bar against a rigid wall — the Signorini problem.

The time step size is chosen as ∆t = C∆tcr , where Courant dimensionless number is used C = 0.5. The critical
time step size is set with respect to (27) for given γ . This time step size is stable for all value of βs with optimal
setting of βm . We present results of the contact-impact problem in the form of the time history of kinetic and strain
energies and work of contact forces, the time history of dimensionless gap function g/he and the time history of
contact force. Results for the consistent (γ = 0), averaged (γ = 0.5) and lumped (γ = 1) mass matrices are
presented.

5.1.3. Results for CD method
In Fig. 5, one can see the results of the test obtained by the central difference method for the penalty stiffness

parameter βs = 1e0 and corresponding optimal βm . All three type of mass matrices were taken into account. The
histories of the contact forces show spurious oscillations. The consistent mass matrix produces a higher level of
spurious oscillation which is given by spurious oscillations of stress during wave processes in the bar. This effect is
not so evident for the lumped mass and averaged mass matrix due to better dispersion behaviour of FEM in wave
propagation. The relative gap is g/he = −1e−3. For βs = 1e0 the results are physically correct, where the penalty
stiffness has the same of order as the stiffness of finite elements in the contact. One can also see that the contact
energy comes to zero for βs = 1e0.

In Fig. 6, the results for the CD scheme, βs = 1e4 and the lumped mass matrix are presented. The results show
a stable solution but the spurious oscillations of gap function and contact forces are observed. Based on numerical
observation, there is a zig − zag effect in contact constraint where contact is switched-on and switched-off. It is
a product of a large value of penalty stiffness parameter. Naturally, one can see this behaviour for a large value
of βs independently of mass matrix type. The stress distributions in the bar for all three types of the mass matrix
are depicted in Fig. 7. In contact, the oscillations of stress occur. This behaviour relating to spurious oscillations of
contact forces was explained in [9] and it is an outcome of a one-time step scheme. Therefore, we employ in the
next text the stabilized predictor–corrector scheme and Park schemes, where the integration of bulk and contact
accelerations are split.

5.1.4. Results for the stabilized predictor–corrector scheme
In Fig. 8, we present the results obtained by the stabilized predictor–corrector scheme for βs = 1e4. One can

see the results of time histories of contact forces, gap functions and energy balance. The results are shown for
all three mass matrix types. One can see superior results for the lumped mass matrix. Based on several tests for
different values of βs = {1e0, 1e4, 1e8, 1e12}, the results are not influenced of the choice of the stiffness penalty
parameter βs with condition of the optimal setting of βm . The same results can be detected for the averaged mass
matrix. On the other hand, the consistent mass matrix produces the spurious oscillations at the end of the time
history of active contact force which is an outcome of spurious oscillations of stresses along the bar as a product
of dispersion behaviour of FEM. This effect is depicted in Fig. 9 as stress distribution along the bar for all three
types of the mass matrix. It is needed to mention that the stress oscillations on the contacted side were eliminated
by using the stabilized predictor–corrector time scheme. We can speak about the stabilization effect of this time
scheme on the stress and contact force results. The corresponding of the dimensionless gap values with respect to
the βs are g/he = {−1e−4, 1e−7, 1e−10, 1e−15} for all three mass matrix types. The convergence properties of
this predictor–corrector time scheme with the bi-penalty method are observed.

5.1.5. Results for Park method
The Park non-spurious time scheme with connection with the linear finite element and lumped mass matrix

has been analysed as a suitable approach for eliminating of stress spurious oscillations [44]. Therefore, we adopted
this scheme in the predictor–corrector form for contact-impact problems. We have to mention that this scheme
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Fig. 5. Results of the Signorini problem obtained by the central difference method with C = 0.5, βs = 1e0, optimal setting of βm , for
lumped (above), averaged (middle) and consistent (below) mass matrix: Balance of energy in time (on the left), the time history of gap
function (in the middle), the time history of contact force (on the right).
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Fig. 6. Results of the Signorini problem obtained by the central difference method with C = 0.5, βs = 1e4, optimal setting of βm , for
lumped mass matrix: Balance of energy in time (on the left), the time history of gap function (in the middle), the time history of contact
force (on the right).

Fig. 7. Stress distributions at the time t = 0.5 [s] as results of the Signorini problem obtained by the central difference method with C = 0.5,
βs = 1e4, optimal setting of βm , lumped (left), averaged (middle) and consistent (right) mass matrices. The analytical solution of wave
propagation is attached.

produces superior results of stress distributions for the lumped mass matrix and we apply only this mass matrix for
the computations in this part.

In Fig. 10, the results of the Park scheme with stabilization for contact-impact problems are presented for
βs = 1e4 with the optimal setting of βm . The computation gives excellent results for a time history of contact
forces. But only the oscillations can be seen at the initial time of contact activation. The same results are found for
the different values of βs and we could say that the results do not depend on βs . In Fig. 11, the stress distribution
along the bar is shown. One can see the distribution without dominant spurious oscillations inside the bar and also
no spurious oscillations at the contact area. Based on that results, the Park scheme with predictor–corrector explicit
time scheme can eliminate spurious oscillation effects of both, stress waves propagating along the bar, and contact
forces.

5.2. Numerical test II — Impact of two bars with different lengths (Huněk problem)

In the second example, we study an one-dimensional contact-impact problem of two elastic bars with different
lengths prescribed in the work of Huněk [30].

5.2.1. Problem definition
A scheme of this test is depicted in Fig. 12. The left bar is moving to the right with the constant velocity

v01 = 0.1 [m/s]. The right bar with fixed right-hand side is at the rest. The geometrical, material and numerical
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Fig. 8. Results of the Signorini problem obtained by the stabilized predictor–corrector method with C = 0.5, βs = 1e4, optimal setting of
βm , for lumped (above), averaged (middle) and consistent (below) mass matrix: Balance of energy in time (on the left), the time history of
gap function (in the middle), the time history of contact force (on the right).

parameters were set up: the lengths L1 = 10 [m] and L2 = 20 [m], the Young’s modulus E1 = E2 = 100 [Pa],
the mass density ρ1 = ρ2 = 0.01 [kg m−3], the cross-sectional area A1 = A2 = 1 [m2], the number of finite linear
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Fig. 9. Stress distributions at the time t = 0.5 [s] as results of the Signorini problem obtained by the stabilized predictor–corrector scheme
with C = 0.5, βs = 1e4, optimal setting of βm , lumped (left), averaged (middle) and consistent (right) mass matrices. The analytical solution
of wave propagation is attached.

Fig. 10. Results of the Signorini problem obtained by the stabilized Park method with C = 0.5, βs = 1e4, optimal setting of βm , for lumped
mass matrix.

Fig. 11. Stress distribution at the time t = 0.5 [s] as results of the Signorini problem obtained by the stabilized Park method with C = 0.5,
βs = 1e4, optimal setting of βm , lumped mass matrix.

elements for each bar n1 = 50, n2 = 100, thus the finite element lengths are set up as h1 = h2 = 0.2 [m], the
initial contact gap g0 = 0 [m], the duration time T = 0.7 [s]. The value of the contact force from the analytical
prediction is F0 = 0.05 [N] for t = 0 . . . 0.2 [s] and t = 0.4 . . . 0.6 [s] and zero otherwise, see [22].
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Fig. 12. A scheme of an one-dimensional impact of two bars with different lengths.

Fig. 13. Time history of contact force for impact of two bars with different lengths — CD (left), the stabilized predictor–corrector scheme
(middle) and Park (right) method with Courant number C = 0.5, βs = 1e4, optimal βm , lumped mass matrix.

5.2.2. Numerical parameters
In this test, we use the same definition of dimensionless stiffness and mass penalty parameters for the bi-penalty

method as in the previous case with r = 1. The mass matrix is of the lumped type. The dimensionless stiffness
penalty parameter was as follows: βs = {1e0; 1e4; 1e8; 1e12}. The time step size was also the same as in the
previous test.

5.2.3. Results
In Fig. 13, one can see the time histories of contact forces between two elastic bars from Fig. 12 computed by the

central difference method, the stabilized explicit predictor–corrector scheme and the Park scheme with stabilization
of contact forces. The value of βs = 1e4 was chosen, βm was set with respect to the optimal stability limit as
r = 1. For the CD method, the spurious oscillations occur as in the Signorini problems. Against, the solutions
for the stabilized explicit predictor–corrector scheme and Park schemes. The stabilized predictor–corrector scheme
gives the history of contact forces with the low level of spurious oscillations, which is an outcome of the stress
spurious oscillation inside the bar. The Park scheme gives the more correct history of contact forces due to the
elimination of stress spurious oscillations. One can observe the same character of the time history of contact forces
for all three time-schemes for different values of βs .

6. Conclusions

A numerical approach for one-dimensional contact-impact problems modelled by the finite element method
has been presented. The approach is based on the combination of the bi-penalty stabilization method with time
integration in a predictor–corrector form. Thanks to the bi-penalty method, we can retain the stability limit of
contact-free problems. We also have found evidence of the optimal setting of the ratio of mass and stiffness penalty
parameters for the bi-penalty term, that it depends on the maximum eigen-frequency of the finite element meshes in
contact. In time-stepping, a modification of the explicit method with the splitting of bulk and contact accelerations
has been used. In this case, we compare the results of the central difference method, its stabilized predictor–corrector
version and the Park scheme with predictor–corrector parts. Based on the results on numerical tests, one can see that
the bi-penalty stabilization works, and the predictor–corrector form of the time stepping is needed for elimination
of contact force oscillations.

Furthermore, we have proposed a method to eliminate spurious oscillations of contact forces in the impact of
elastic bars. The Park scheme gives us more accurate solutions concerning stress spurious oscillations and contact
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forces, and it is preferred in the numerical modelling of contact-impact problems concerning contact forces and
stress propagation.

Based on the numerical tests, we can conclude that a motivated approach is an efficient tool for accurate modelling
of contact-impact problems with minimum pollution of contact force by spurious oscillations. The results obtained
by the stabilized explicit schemes in the connection with the bi-penalty method are less sensitive to the choice of the
penalty parameter in contrast to the standard penalty approach. The gap function during the contact state converges
correctly to zero for higher values of the penalty stiffness parameter. This issue needs a mathematical proof as in
future work.

As the future work, we will focus on applications of the presented approach to multidimensional problems,
analysing its performance, stability and accuracy with more complicated geometries and higher-order spatial
discretization [34]. Also, the partitioned formulation of the presented approach connected with the direct inversion of
mass matrix with the mass scaling [19,20] is a promising tool for numerical modelling of contact-impact problems
in solids mechanics. An important remaining challenge is the solution of contact-impact problems of heterogeneous
bodies with different compliances and different mesh sizes, where the stability limits for each contacted bodies are
different.

Acknowledgements
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[35] R. Kolman, J. Plešek, J. Červ, M. Okrouhlík, P. Pařík, Temporal-spatial dispersion and stability analysis of finite element method in
explicit elastodynamics, Internat. J. Numer. Methods Engrg. 106 (2) (2016) 113–128, http://dx.doi.org/10.1002/nme.5010, arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1002/nme.5010, URL https://onlinelibrary.wiley.com/doi/abs/10.1002/nme.5010.
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Abstract

In this paper, we study the accuracy and robustness of the computational time reversal approach based on the explicit finite
element method for application in nondestructive testing in solids. The main goal of this paper is to find a methodology for
correct and accurate reconstruction of the original source time history. For numerical modeling of frontal (forward) and reverse
(backward) problems of elastic wave propagation, we use the finite element method and explicit time integration with the
lumped mass matrix. The suggested methodology is applicable in each finite element open source or commercial software.
A special attention is paid to prescription of boundary conditions/loading for the reverse problem for accurate reconstruction
of time history of the original source. For evaluation of the reconstruction quality, we suggest certain cost functions. Based on
several numerical tests, we show effects of prescription of boundary conditions/loading in time reversal, effect of mesh size
and time step size, an unknown obstacle, a number of sources, and environmental disturbance (noise) on the correctness of
reconstruction of the original source.
c⃝ 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.

Keywords: Time reversal; Nondestructive testing; Elastic wave propagation; Localization; Refocusing; Reconstruction; Explicit finite element
method

1. Introduction

Correct and robust localization of cracks and defects in bodies and structures in energetics, civil or aerospace
engineering is still an up to date topic despite the long history of this research. Moreover, this knowledge and
information about cracks are needed for practical applications for safe operation in several branches, as for power
plants, aircrafts, vehicles, satellites and many others. In this paper, we study the well-established time reversal (TR)
method for localization of cracks and defects in elastic bodies. The TR uses the reversibility property of wave
propagation to focus the energy to the original source location in space and time. If the original source is very
local, then this procedure is called refocusing.
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Fig. 1. Application of TR method in NDT.

The TR method is one of the members of the family of inverse methods in physics, based on properties of the
Hamiltonian system. TR was first formulated in 1960s with the name “matched signal processing” for underwater
acoustic communication of submarines, Parvulescu and Clay [36]. In 1990s, Fink and his collaborators, Fink
[15], have done a huge amount of work in their research in application in acoustics and renamed the method
to “time reversal (or time reversed acoustics)”. The TR method is a powerful tool applicable in various physical
fields involving wave propagation. Nowadays, the most important applications are in nondestructive testing (NDT),
underwater acoustics [23,41], biomedical ultrasound imaging [12], surgery and lithotripsy [17,18], or, last but not
least, seismology [29].

In ultrasonic NDT, the TR method can be employed for detection of defects in materials and cracks in bodies.
Depending on the approach, one can talk about passive and active detection. Generally, with passive detection, the
emerging defects are detected (forming/propagating cracks, impacts, leakage in pipe), using for example acoustic
emission, see e.g. [38]. With active detection, some “third” exciting signal is used for localization of the present
flaw behaving as a scatterer for propagating elastic wave (present crack, cavity). A crack, when exposed to a wave
passing through, acts as an additional source of waves and therefore can be localized, Mu et al. [33].

The computational TR method was widely employed, e.g. for localization of acoustic impact with temperature
effect [37], localization of scatterers [2,20,30], for damage identification in beam structure [34], shape reconstruction
of traction-free scatterers [25], or noise source localization in a road vehicle [28]. Noticeable progress has been made
in using experimental data for damage identification [31]. Several works are devoted to study or improvement of
the quality of reconstruction of the original source [3,4,35], but a methodology for performing TR in standard and
widely used numerical method such as finite element method (FEM) was still not fully established. This work
aims to improve the reconstruction of the exciting signal in time domain, meaning some present or forming flaw in
material, and to determine the correct procedure for deployment of TR in practice, i.e. in commercial finite element
(FE) software.

In practice, the process of localization is accomplished in two steps. The first step, based on forward propagation,
is measuring on a real structure. In the second step, the measured signals are reversed in time and transmitted
to the computational model, where based on backpropagation, energy is focused into the location of the original
source. The mentioned process is schematically shown in Fig. 1. Generally, one works only with partial information
(incomplete data from sensors), since it is not possible to record response signals in the whole structure. There are
two approaches of performing effective refocusing using TR method. The first one is using a substantial number
of transducers in combination with short record (and computational) time, the second one is the exact opposite —
using only one or several transducers combined with long record times. The second approach exploits reflections
from structure boundaries which are compensating a lack of the direct information, altogether creating a virtual
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time-reversal mirror, see [16]. In this paper, we also perform the frontal problem computationally, simulating the
experimental data.

The finite element method, e.g. like presented in [24], is used for spatial modeling of elastodynamic problems.
Several time schemes could be employed for direct time integration of frontal and reverse problems, but a suitable
time scheme must be reversible in time for correct modeling of time reversal in NDT. We know from the paper
of Givoli [19] that the central difference method in time is of the second order of accuracy and, primarily, reversible
in time. For that reason we apply this explicit time scheme for integration in time; it is needed to satisfy the stability
limit for time step size, see [7].

With this paper, we study the accuracy and robustness of the computational TR based on explicit time integration
of equation of motion discretized by the linear FEM with lumped mass matrix. In principle, we expand work of
Givoli and Turkel, namely [20]. We focus on a practical use of the TR method and emerging obstacles during the
whole process, and we pay a special attention to appropriate prescription of boundary conditions/loading.

The paper is organized as follows. In Section 2, governing equations of elastodynamics for frontal and reverse
problem are mentioned with definition of necessary initial and boundary conditions. The introduction into explicit
time integration for wave propagation problems in FEM is presented in Section 3. In Section 4, the cost functions for
evaluation of quality of source signal reconstruction are defined. Numerical experiments with results are presented
in Section 5. The paper closes with the conclusions in Section 6.

2. Problem definitions and governing equations

In this paper, we employ the classical theory of small deformations of elastic isotropic media for mathematical
description of elastic wave propagation in solids, which is applied for frontal and reverse problem for TR in this
section. For the problems definition, we follow the paper of Givoli [19].

2.1. Definition of the frontal problem

In the first step, we define the frontal problem with suitable boundary and initial conditions. We consider an open,
bounded domain Ω ∈ R3 with the smooth boundary ∂Ω . Also we consider the linear equations of elastodynamics
in the domain Ω and in the time t ∈ [0, T ]. The governing equations of elastodynamics, see [32], are given by the
kinematic relationship, the Hooke’s law, and the Cauchy equation without volume force, respectively, as

∇ · σ = ρ ü, σ = C : ε, ε =
1
2

(∇u + (∇u)⊺), 0 ≤ t ≤ T, x ∈ Ω , (1a)

with boundary conditions

Bu = 0 on ∂Ω , (1b)

and with initial conditions

u(x, t = 0) = u0(x), u̇(x, t = 0) = v0(x) x ∈ Ω . (1c)

In the aforesaid relationships, the superimposed dots, □̇, □̈, denote the derivatives with respect to time t and
operator ∇ = {

∂
∂x1

, ∂
∂x2

, ∂
∂x3

}, σ is the Cauchy stress tensor, ε is the infinitesimal strain tensor, C is the elastic
tensor, and ρ is the mass density. Further, u(x, t) is the displacement, u̇(x, t) is the velocity, and ü(x, t) is the
acceleration. For isotropic elastic medium, we consider the Hooke’s law as σ = λ tr(ε)I + 2Gε, where λ and G
are Lamé’s constants related to engineering constants λ = νE/ [(1 + ν) (1 − 2ν)] and G = E/ [2 (1 + ν)], where
E and ν are Young’s modulus and Poisson’s ratio, respectively.

Furthermore in (1b), B is some boundary operator on the displacement field u(x, t) as the operator prescribing
boundary conditions on Γ = ∂Ω . Neumann boundary conditions as stress-free boundary conditions are prescribed
on ΓN and Dirichlet boundary conditions are prescribed on ΓD, where ΓD ∪ ΓN = Γ and ΓD ∩ ΓN = 0. The initial
conditions are given by displacement field u0(x) and velocity field v0(x) at the initial time t = 0 as in (1c). In
future text, notations like u(x, t), ut (x), and ut are equivalent.

Relationships (1c) represent an initial condition and we assume that u0 and v0 have a support in ΩS ⊂ Ω , which
is only local, i.e., the region ΩS is much smaller than the whole domain Ω . Generally, we obtain the displacement
field u(x, t) as a solution of the problem defined in (1).
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Fig. 2. Scheme of TR problem. Ω is the domain of interest, ΩS is the support of the original source, and Ωm is the area of measurement.

In this paper, the frontal problem simulates numerically the real measurement on a real structure, normally the
time history of some displacement or velocity components. Here, we substitute the experimental data by recording
the response of FE model. During the frontal problem, we record time history of velocity u̇m(x, t) as a response in
domain Ωm, in time t ∈ [0, T ]. From now, we will call this response from frontal problem as ‘experimental data’.
The scheme of domain of interest for frontal and reverse problem is depicted in Fig. 2.

2.2. Definition of the reverse problem as a source identification problem

We consider the problem of TR as a passive detection of source in ΩS from the frontal problem in the domain
Ω with some information about the response in Ωm. We assume that the region ΩS is not known and we know the
‘experimental data’ um(x, t) or u̇m(x, t) in Ωm.

Firstly, we have to define the “reverse time” τ for the reverse problem. The reverse time τ is defined by
transformation in time as τ = T − t . It means that the time τ is going backwards with respect to the time t from
the frontal problem. We also define the “reversal field variable” – the displacement of the reverse problem w(x, τ ),
x ∈ Ω , τ ∈ [0, T ]. For the reverse problem, we keep the same geometry and material characteristics as for the frontal
problem. Also the boundary conditions defined by the operator B should be the same. Under these conditions, we
are able to satisfy the same wave speeds and boundary conditions for reflection and transmitted wave propagation
as in the frontal problem. It is a necessary condition for the correct application of the TR method in elastic wave
propagation problems. The boundary and initial conditions for the reversal displacement field w(x, τ ) are given
from the measurement data um and u̇m. And we have to take into account the time history of the measurement
data um and u̇m in the domain Ωm as an extra boundary condition in the domain Ωm, i.e. w(x, τ ) = um(x, t) and
ẇ(x, τ ) = −u̇m(x, t), x ∈ Ωm. In Section 4, we discuss two techniques how to apply these boundary conditions in
Dirichlet or Neumann sense for correct reversing in elastic wave propagation. In [19], there is mentioned that the
measured velocity v̄ should be take with the opposite sign due to time derivative with respect to time τ . The proof
can be found in the definition of time derivative ∂/∂τ = −∂/∂t , which comes from the definition of the reversal
time τ = T − t . For the following text, we use the bar, □̄, for marking of the reverse problem quantities.

The reverse problem then takes form

∇ · σ̄ = ρẅ, σ̄ = C : ε̄, ε̄ =
1
2

(∇w + (∇w)⊺), 0 ≤ τ ≤ T, x ∈ Ω , (2a)

with boundary conditions

Bw = 0 on ∂Ω , (2b)

with initial conditions

w(x, 0) = 0, ẇ(x, 0) = 0 x ∈ Ω , (2c)

and with kinematic conditions on Ωm for TR identification as follows

w(x, τ ) = um(x, t), ẇ(x, τ ) = −u̇m(x, t) x ∈ Ωm. (2d)

For details on the TR problem formulation, see the work of Givoli and Turkel [20]. Prescribing these kinematic
conditions w(x, τ ) and ẇ(x, τ ) on Ωm into the governing equations (2) provides the time reversal of the original
problem defined in Section 2.1.
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2.3. Application of kinematic conditions on Ωm in TR task

In simulations presented in this paper, we assume that we record only normal component of velocities on
boundary ∂Ωm – u̇m(x, t) – as a response from the frontal problem. That simulates recording of response in the
form of normal velocities on ∂Ωm by piezo-sensor or other measurement techniques. Then, ẇm(x, τ ) is computed
via (2d). This process is called the time reversal of the signal. In this way, we generate the ‘experimental data’ for
the TR task defined in (2d) by the numerical model. After that, we have to apply these boundary conditions in a
suitable form into the reverse problem. For application of the boundary conditions in Ωm in the FE simulation we
think about their application only on ∂Ωm in two forms as
Type I: loading by normal velocity components in the Dirichlet sense

ẇn
m(x, τ ) x ∈ ∂Ωm, 0 ≤ τ ≤ T, (3a)

Type II: loading by normal stress components in the Neumann sense

σ n
m(x, τ ) = σ n

m(x, τ )n = Aẇn
m(x, τ ) x ∈ ∂Ωm, 0 ≤ τ ≤ T . (3b)

Here, n is the outward normal direction to the boundary ∂Ωm. A is a constant with a suitable value depending on
material parameters. For this normal traction loading σ n we generate the external nodal force vector as f ext. In
this case, we could say that we transfer the Dirichlet boundary conditions of velocity ẇn

m meaning to Neumann
boundary condition as normal stress σ n

m in ∂Ωm.

Remark 1. If Ωm = Ω , an exact reconstruction of the initial wave field u(x, t = 0) can be found. In our case, where
we have only partial information of the wave field, u̇m(x, t), the reconstructed wave field is only an approximation
of the initial state u(x, t = 0).

3. Numerical methods for modeling of TR problems

In this section, we introduce numerical methods and techniques for modeling of forward and backward wave
propagation problems for needs of TR application in NDT. We focus only on elastic wave propagation in the context
of theory of small deformations and its finite element modeling.

3.1. Explicit finite element analysis

For the finite element simulation, we use the standard FEM based on displacement formulation with linear shape
functions, see [24]. As we know from [20], the central difference method as a time stepping technique, see [24], is
reversible in time. Therefore, we use the classical explicit time integration in the finite element modeling with the
lumped mass matrix. Also we include the one-point Gauss integration with hourglass control, which is a standard
approach in explicit time integration in FEM for reduction of computational cost. Due to reduced integration we
use hourglass control (Optimal Bending type) as described by Belytschko and Bachrach [7]. The procedure is such
that to the element stiffness matrix K1gp

el obtained by one-point Gauss integration is added a stabilization stiffness
matrix Kstab suppressing hourglass modes as Kel = K1gp

el + Kstab.
In FEM, we solve the system of equations of motion for elasto-dynamic problem, see e.g. [6],

Mq̈(t) + Kq(t) = fext(t)
+ prescribing kinematic (Dirichlet) boundary conditions and initial conditions

(4)

where M is the lumped mass matrix, K is the stiffness matrix, q(t) is the nodal displacement vector, q̈(t) is the
nodal acceleration vector, and fext(t) is the vector of external nodal forces at the time t . The mass matrix is lumped
using row-summing procedure, Hughes [24]. The matrices K and M are constant for the elastodynamic problems
under small deformation theory. For solving the system (4), we should include suitable Dirichlet and Neumann
boundary and initial conditions for frontal and reverse problems. In the finite element method, we could prescribe
the kinematic boundary conditions via given nodal displacement, velocity or acceleration controlling, for details
see [24] or [10].

In this paper, for explicit integration in time we use the central difference (CD) scheme as described in a book
of Belytschko et al. [8] where the update of nodal velocities in each time step is split into two half-steps, and
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the desired value of velocities can be prescribed directly. This approach is also called the leapfrog integration. To
summarize, in this paper we use the numerical approach for the modeling of elastic linear wave propagation problem
based on the finite element method with linear shape functions — the first-order convergence in space, and explicit
time integration via the central difference method — the second-order convergence in time.

We assume that we know quantities at the time t , q(t), q̇(t), q̈(t), and the task is to find the quantities at the time
t + ∆t , where ∆t is the time step. The CD scheme as the leapfrog integration takes the form presented in Alg. 1:
Initialize t0

= 0, q0, q̇0, assemble M, K, and compute q̈0
= M−1

(
f0
ext − Kq0

)
while t < T do

Setting of the time step size ∆t
q̇(t +

∆t
2 ) = q̇(t) + q̈(t)∆t

2 ;
q(t + ∆t) = q(t) + q̇(t +

∆t
2 )∆t ;

prescription of kinematic boundary conditions;
r(t + ∆t) = fext(t + ∆t) − Kq(t + ∆t);
q̈(t + ∆t) = M−1r(t + ∆t);
q̇(t + ∆t) = q̇(t +

∆t
2 ) + q̈(t + ∆t)∆t

2 ;
prescription of kinematic boundary conditions;
t = t + ∆t ;

end
Algorithm 1: The central difference scheme in the leapfrog form for direct time integration of elastodynamic
problems.

It is needed to mention, that the presented scheme is conditionally stable, see [24]. It means that the value of
∆t has to satisfy the stability limit ∆t < ∆tcr, where ∆tcr is the critical limit given as ∆tcr = 2/ωmax, with ωmax
being the maximum angular frequency of the discretized homogeneous system defined in (4). In following section
we present two ways of prescription of boundary conditions, marked as Type I and Type II defined in Section 2.2,
both called ‘loading’ for simplicity.

3.2. Explicit time integration in TR

In both following subsections, the prescribed quantities in CD schemes are meant to be prescribed only at some
nodes. This effect is not additionally emphasized in the used symbols for better readability. Further, the asterisk
in lower index, □∗, denotes the prescribed value in corresponding time, and symbol := means assignment of the
prescribed value.

3.2.1. Application of ‘loading’ Type I
We modify the CD scheme in order to include the measurement data in the form of normal velocities ẇnormal as

Type I. The following algorithm (5a)–(5e) shows use of CD scheme with marked spots where the desired values of
velocity are prescribed at the boundary ∂Ωm as q̇∗.

Application of ‘loading’ of TYPE I:

q̇
(
t +

∆t
2

)
= q̇(t) + q̈(t)∆t

2 (5a)

apply prescribed nodal velocity as q̇(t +
∆t
2 ) := q̇∗(t +

∆t
2 ) at ∂Ωm

q(t + ∆t) = q(t) + q̇
(
t +

∆t
2

)
∆t (5b)

r(t + ∆t) = fext(t + ∆t) − Kq(t + ∆t) (5c)

q̈(t + ∆t) = M−1r(t + ∆t) (5d)

q̇(t + ∆t) = q̇
(
t +

∆t
2

)
+ q̈(t + ∆t)∆t

2 (5e)
apply prescribed nodal velocity as q̇(t + ∆t) := q̇∗(t + ∆t) at ∂Ωm

3.2.2. Application of ‘loading’ Type II
In Type II we assume loading in the form of prescribed external nodal force fext,∗ on ∂Ωm due to normal

traction loading with the given time history. In the same principle as in the previous text, the following five
equations (6a)–(6e) show the same algorithm with spot where the desired values of nodal force are prescribed.
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Application of ‘loading’ of TYPE II:

q̇
(
t +

∆t
2

)
= q̇(t) + q̈(t)∆t

2 (6a)

q(t + ∆t) = q(t) + q̇
(
t +

∆t
2

)
∆t (6b)

apply prescribed nodal force as fext(t + ∆t) := fext(t + ∆t) + fext,∗(t + ∆t) at ∂Ωm

r(t + ∆t) = fext(t + ∆t) − Kq(t + ∆t) (6c)

q̈(t + ∆t) = M−1r(t + ∆t) (6d)

q̇(t + ∆t) = q̇
(
t +

∆t
2

)
+ q̈(t + ∆t)∆t

2 (6e)

In the following text, we test the both approaches for application of reversal boundary conditions in TR.

Remark 2. If we update prescribed velocity as Givoli and Turkel [20], i.e. q̇t
:= q̇t

+ q̇t
∗
, with a scaling parameter

C, while the choice of C is subjected to preservation of the linear momentum balance, for one node as mass point
with the mass m with prescribed value we get the relationship

q̇t+∆t
2 := q̇t

+ C · q̇
t+∆t

2
∗ . (7)

From impulse–linear momentum theorem

I =

∫ t+∆t

t
f∗(t)dt = p(t + ∆t) − p(t) = ∆p = m∆q̇ (8)

where I is the impulse of the force and p is the linear momentum defined as p = mq̇. Respecting using half-steps
for prescription of the velocity, we derive the relationship as

∆t
2

f∗ ≡ m · ∆q̇
∗
∆t
2

, (9)

where m is nodal mass, ∆q̇
∗
∆t
2

is the change of the nodal velocity between times t and t +
∆t
2 from Eq. (7), and f∗

is the acting equivalent nodal force. Hence, coefficient C =
2·m
∆t . It is apparent that with this way of prescription of

the nodal velocity with updating q̇t
:= q̇t

+Cq̇t
∗

we obtain the same result, with numerical accuracy, as with loading
by corresponding nodal force f∗ and no further scaling of recorded signals is necessary. Using C with different
value leads to the same signal with different magnitude, thanks to the linearity of the problem. This approach is
illustrated in Section 5.

3.3. Elimination of rigid body motion in TR

Whereas in a physical experiment the observed model is somehow “softly fixed in space” and the recorded signals
from transducers are relative to the model, in a numerical experiment the model floats in space and the recorded
signals are relative to the default coordinate system. Therefore we need to handle the fact that the model is also
undergoing rigid motion. For elimination of rigid motions or rigid body modes (RBMs) we use a method proposed
by Felippa and Park [14]. This elimination is well known for FETI method, Farhat and Roux [13], for domain
decomposition in structural mechanics or modeling of floating systems in aerospace applications. The RBMs are
eliminated from the resulting state after computation or for each computational step.

Based on Felippa and Park [14], the final nodal displacement vector u can be decomposed to rigid motion
component uR = RR⊺u and own deformation component d as u = uR + d. Thus, the deformation component is
computed as

d = u − RR⊺u = (I − RR⊺) u, (10)

where matrix R consists of rigid body modes Ri of number corresponding to total number of degrees of freedom
of the body. The decomposition is performed using the matrix R formed by eigen-vectors corresponding to RBM
frequencies or direct building from the nodal positions for each rigid body mode for translational and rotational
motion, see [14]. Vectors are ortho-normalized so that R⊺R = INR, with INR being the identity matrix of order
NR, where NR is a number of RBMs. Besides the artificial assembling of the vectors, they can be computed
numerically. On the contrary, computed vectors are generally linear combinations of all zero-frequency modes and
are not separated like from direct assembling. These linearly combined vectors can be ortho-normalized, e.g. by
Gram–Schmidt orthogonalization process, Arfken [5].
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M. Mračko, J. Kober, R. Kolman et al. Mathematics and Computers in Simulation 189 (2021) 163–190

Fig. 3. Time windows for cost functions Ci .

4. Definition of cost functions

In this section, we define three local cost functions Ci and one global cost function CG as a norm for
measurement of distance/nearness of two functions of interest – lower value of the cost function means more
accurate reconstruction in TR. In all costs we work with y-component of the reconstructed nodal velocity. We
use these costs in Section 5.3.3 for decision of what type of loading, i.e. Type I or Type II, gives more accurate
reconstruction of the loading pulse. We have found the inspiration for definition of cost functions in [20], but here
we observe distribution of some quantities of interest in time. We expect the reconstructed signal to appear at the
right position at the right time and measure the quality of reconstruction under these conditions. This assumption
is confirmed at the beginning of Section 5.

For definition of cost functions, we split the reconstructed signal into three sections and call them time windows
— W 0, W 1 and W 2, see Fig. 3 with an example. Time window W 0 (hatched) is cut off, since only the developed
signal gives as a relevant information, W 1 (light gray) we can call a window of the delivering signal, and W 2 (dark
gray) is the time window with the expected reconstructed pulse. The time window W 2 has the same length as the
loading signal L in the frontal problem. These costs operate with known source and cannot be used in real TR
problem with experimental data since the source signal, and therefore division into time windows, is not known in
advance. In the following text, we describe the used local cost functions Ci and global cost function CG.

The cost function C1 represents a ratio of kinetic energies of the observed FE nodes in time windows W 1 and
W 2. This so-called kinetic energy is computed as a root mean square (RMS) of velocity in the corresponding time
window. This procedure is known as signal to noise ratio in signal processing, Gonzalez [21]. The cost C1 simply
says whether the reconstructed pulse is distinguishable from surrounding signal as

C1 =
RMSW 1

RMSW 2
. (11)

Cost C2 measures the perpendicularity of the original pulse and the reconstructed pulse, or more precisely, their
parallelism. The vector of the original pulse L and the vector of the reconstructed pulse W 2 make an angle φ, while
calculation of cos φ is according to a well known formula from linear algebra described in (12), see e.g. [39], so

C2 = 1 − cos φ = 1 −
W 2 · L

|W 2| · |L|
. (12)

Cost C3 measures how the reconstructed pulse is shifted in time by comparing time-positions of the maximum
peaks of the original pulse and the reconstructed one. For computation of this cost, the time window W 2 is
considered to start in time t = 0 s. Here tmaxL and tmaxW2 are time-positions of the maximum peak of the loading
pulse and the reconstructed pulse, lenL is the length of the loading pulse (and also of the time window W 2). Since
the maximum peak of the loading pulse is right in the middle of the signal, only the half of the total length is taken
as a possible shift in time. This produces the cost C3 as

C3 =
| tmaxL − tmaxW2 |

lenL/2
. (13)
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Fig. 4. Scheme of the domain of interest, [m].

Remark 3. Using the cost functions C1, C2 and C3, where we need to know the time window W 2, has limitation
for real applications. In this paper, we use them for measuring of quality of reconstruction of known original sources
and we can define the time windows of the signals.

For the numerical tests in TR, we use the global cost function CG which is defined by the following equation

CG =
1∑
wi

(w1C1 + w2C2 + w3C3), (14)

where wi are weights of the local costs. Since we focus on the quality of reconstruction, the cost C2 is given
more importance. Hence, we choose weights as w1 = 1, w2 = 2, and w3 = 1. In the following numerical test
(Section 5.3), we have shown the sensitivity of each cost function C1, C2 and C3 on the global cost function CG .

5. Numerical experiments in TR

In this section, we study the accuracy of the suggested TR technology based on the FEM. We present a set of
numerical experiments to test the behavior of the proposed way of loading in TR. The specific details for each
experiment are described in corresponding subsections.

The computations take approximately 30 min for computation of the explicit dynamic problem with 126 002
degrees of freedom and 20 000 time steps on a laptop (Windows 10; in-house dynamic solver in Matlab R2019a;
Intel Core i7-7700HQ CPU @ 2.80 GHz, 16 GB RAM, NVIDIA GeForce GTX 1050).

5.1. Problem definition

For all numerical experiments we consider a two-dimensional square domain under plane stress condition with
stress-free boundary, see its dimensions in Fig. 4. In this Figure, the areas A and B mark the position of application
of the original source and position where the response is recorded, respectively. The locations of these areas were
chosen arbitrarily, but B should belong to the boundary. In A, 3 × 3 nodes are prescribed the loading, while in B,
the number of nodes varies and is mentioned in each task description. The length of the element edge is 0.4 mm,
thus the FE mesh consists of 62,500 bilinear four-noded square elements. The mesh was defined with respect to
the maximum frequency contained in the loading signal and the dispersion behavior of the finite element method,
see [26,27].

We assume a linear homogeneous isotropic material with Young’s modulus E = 2 · 1011 Pa, Poisson’s ratio
ν = 0.3, and mass density ρ = 7850 kg m−3, with neither material nor numerical damping. The longitudinal wave
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Fig. 5. Loading Ricker pulse with its parameters.

speed for plane stress problem is given as cL =

√
E

(1−ν2)ρ
.
= 5291.3 m s−1. Time step size ∆t is set to 4.009 ·10−8 s

resulting in the Courant number C .
= 0.75, where the Courant number is defined as C =

∆t cL/H , see [11]; H is
the characteristic dimension of the finite element given as H =

A/D , where A is the area of the element and D is
the length of its longest diagonal, see [22]. The critical time step size ∆tcrit is 5.345 · 10−8 s; for C = 1 according
to previously stated formula.

For loading function f ext(t) = A0 R(t) in the area A, with A0 being the amplitude of loading, we use the Ricker
pulse (Ricker wavelet), Wang [40], which is given by parametric formula with parameter p as

R(p) = −

√
2π · σ ·

(( p
σ

)2
− 1

)
· e

(
−0.5·( p

σ )
2
)

√
2π · σ

, (15)

where σ = 16 ·∆t and p = ⟨−93, 93⟩ ·∆t , the transformation between parameter p and time t is t = p + 93 ·∆t ,
and T is then 7.49683−6 s, see Fig. 5. Amplitude A0 = 1 in all numerical experiments.

We choose the Ricker pulse for the reason that this pulse is symmetrical and also the surfaces above and below
the horizontal zero line are the same. It means that the total impulse of the pulse is zero. This implies that loading
with Ricker pulse does not accelerate a free body and all kinematic quantities have a meaningful value. On the
contrary, a general loading signal accelerates a free body in space. In order to analyze the results, one must deal
with this rigid body motion, e.g., as described in Section 3.3.

5.2. Refocusing test

The first test of the paper is aiming on the analysis of refocusing of the original pulse. Several papers have been
focused on that topic in numerical sense, see [20], and [19]. In those papers, the quality of refocusing has been
studied.

For our test, we employ the geometry and material data mentioned in the previous section. In the frontal problem,
we apply the loading as TYPE I or TYPE II, where the y-component of velocities or y-component of nodal forces
are prescribed at the nodes of area corresponding to the point A, see Fig. 4, with the time function in the form
of the Ricker pulse. The loading applied at the point A generates wave processes and the normal velocities at the
point B are recorded. Then, the loading via TYPE I (applied normal velocity) and TYPE II (applied traction normal
force) generates the reverse wave processes and we could see the refocusing at the point of the original source, A.
The amplitudes of loading via TYPE I and TYPE II have been set so that they are not affected by rounding errors,
with the use of linearity of our problem. The aim of this study is to show that the maximum peak is reconstructed
at the location of the original source, A, and at the correct time.
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M. Mračko, J. Kober, R. Kolman et al. Mathematics and Computers in Simulation 189 (2021) 163–190

Fig. 6. A snapshot of y-component of velocity and total energy per volume distribution from the frontal problem for time 94∆t corresponding
to the maximum peak of loading pulse.

In Fig. 6 we show a snapshot of the y-component of velocity and the total energy per volume for the frontal
problem with the loading of TYPE I at the time 94∆t , which corresponds to the highest peak of the loading function
— Ricker pulse. In Fig. 7, snapshots of the reconstructed quantities as the y-component of velocity and total energy
per volume are presented for several times, where TM means the time of the highest peak of the reconstructed wave
field. The loading is by TYPE I — loading by the prescribed normal velocity. One can see that the backpropagation
leads to refocusing of the original source in the correct location. The same results, see Fig. 8, we obtain for the
task with loading by TYPE II given as the loading by prescribed normal stresses in the form of nodal forces in
the direction of outward normal to the surface ∂Ωm related to the point B. In Figs. 7 and 8 we also show how the
reconstructed maximum peak forms its shape from times “t = TM − 40∆t” to “t = TM”, and how it vanishes in
times “t = TM + 10∆t” and “t = TM + 20∆t”. In all sub-figures on the left, only y-component of velocity is
shown and is mapped into the z-direction for illustration.

Based on these results for the both loading types, one can see that the localization of the original source by FEM
based TR works very well and we can proceed to reconstruction of the source in time domain, and we can observe
the reconstructed signal directly at the point B.

5.3. Reconstruction test

In this test, we plan to analyze the effect of the prescription of the TR boundary conditions on accuracy of
reconstruction of the original source. The quality of reconstruction is measured by the cost functions defined
in Section 4. Based on this knowledge, we suggest a flowchart for implementation of the suitable scheme with
application of TR boundary conditions for accurate reconstruction in TR tasks.

5.3.1. Kinematic quantities at the loading point by TYPE II
Based on algorithm for application of reversal loading in the TR model defined in Section 3.2.1 and Section 3.2.2,

we prefer the loading via TYPE II as nodal forces, because it is simple to apply into the TR model and this
application of Neumann boundary conditions is implemented in each FE software. It means that the approach could
be applied without any modification of the FE code.

In this section, we study the effect of response to loading nodal forces for visualization of time history of nodal
displacement, velocity and acceleration for better understanding of an optimal application of reversed boundary
conditions in TR problem. In order to test how the proposed way of loading by TYPE II as normal stress via
nodal force behaves, algorithm presented in (6a)–(6e), we applied nodal force loading at the nodes of area A in
the y-direction with the time function of the Ricker pulse. Kinematic quantities as y-component of displacement,
velocity and acceleration of the central node of A are recorded, see Fig. 9. From numerical observation in Fig. 9,
we can conclude that the time history of the displacement at A corresponds to the time function of the loading nodal
force. Based on this knowledge for correct reconstruction, we suggest to add the time integration of the reversed
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Fig. 7. A snapshot of reconstruction of y-component of velocity and total energy per volume distribution from the reverse problem for time
of maximum peak TM and several other times; loading by TYPE I — “velocity loading”, computational time T = 100,000∆t .

174
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Fig. 8. A snapshot of reconstruction of y-component of velocity and total energy per volume distribution from the reverse problem for time
of maximum peak TM and several other times. Loading by TYPE II — “force nodal loading”, computational time T = 100,000∆t .
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Fig. 9. Output quantities at the y-direction at the middle point of loading by nodal force. The time function of nodal force (top-left) was
applied as a load, other graphs represent the response of FE model. Only the quantities in the middle node out of nine nodes in total at
point A were recorded.

pulse of velocity in Ωm, and after that apply this integrated pulse as loading by nodal force in Ωm into the TR task.
The following numerical test shows the verification of this idea for a correct time reversal.

5.3.2. Numerical verification of the boundary conditions via TYPE II
In this section, we analyze the effect of application of boundary condition in TR computations. Let us imagine

the same geometry as in Section 5.1. The nodes related to the point A are loaded via nodal forces with the time
history of the Ricker pulse defined in Section 5.1. Then, the normal velocity at the point B is recorded from the
forward task. The obtained signal is reversed in time and applied as the force loading via normal stress at the point
B. Finally the velocity response is recorded at the point A. In Fig. 10 (left), one can see the time response in
the form of velocity at the y-direction. In Fig. 10 (right), we show the original pulse needed to be reconstructed.
Also, the first and second time derivatives of the original pulse are included here. Based on the comparison, we
can say that the time history of the recorded velocity (left) corresponds to the second time derivative of the original
loading pulse (right). It means that during the numerical TR computations (forward and reverse tasks together) we
lost two time derivatives on the original pulse — each computation changes the time derivative of the output signal
with respect to the input signal. This phenomenon could be explained via the relationship (8) where there is the
relationship between the time history of applied force and velocity. For the correct reconstruction of the original
pulse, one need to precede time integration of the loading pulse before both frontal and reverse task of the TR
process. In the following text, we study this phenomenon in TR computations and the final form of the TR process
in FEM is suggested.

Now, we can analyze a sequence of time integration of the original pulse of loading (in our case the Ricker
pulse) and time integration of a velocity signal recorded at point A. The integrated Ricker pulse is depicted in
Fig. 11. Physically, it is a time history of the impulse of the external force with time history given by (15). Based
on this analysis we could find a suitable combination of modification of the pulses for a correct time reversal at the
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Fig. 10. Reconstruction of the original source (left); original loading pulse with its time derivatives (right), original pulse (red solid line), its
1st time derivative (orange dashed line), and its 2nd time derivative (brown dotted line); reconstructed pulse (gray solid line) is also added
here for clarity. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 11. An integrated Ricker pulse as a time integral
∫ T

0 R(t)dt .

point A with respect to the reversal signal at point B. This pulse is after the time reversing applied as nodal force
in normal direction in the reverse task. The amplitudes of loading at points A and B are chosen with respect to
the accuracy of computation and scale of the problems and material properties of the domain of interest.

We mark the computations in this section as Int − Int, Int − Orig, Orig − Int, Orig − Orig, where the first
key means the loading time function at point A for the forward problem, and the second key means the loading
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Fig. 12. Reconstructions of the original source for four different combinations of modification of loading signals in frontal and reverse
problems, denoted as Int and Orig. The first indication refers to frontal problem, the second one refers to reverse problem. The key Int
marks the time integration of the pulse and Orig marks the pulse without modification, i.e. without time integration. (For interpretation of
the references to color in this figure legend, the reader is referred to the web version of this article.)

time function at the point B for reverse problem after reversing of the signal in time. The keys Int marks the time
integration of the pulse and Orig marks the pulse without modification, i.e. without time integration. For example,
the combination Int − Orig means, that the time function at point A is integrated in time and the time function
recorded at point B is not integrated with respect to time and only reversed in time. Then it is applied into the reverse
problem. For the numerical time integration of the signal, the trapezoidal rule is employed with the time step size
as in the FE computation. Four combinations of keys occur (Int − Int, Int − Orig, Orig − Int, Orig − Orig) and
this leads to four reconstructed signals. In the following text, we will see the effect of the time integration of the
pulses on time reversal of the original pulse.

The results normalized with respect to the maximum value are presented in Fig. 12 (red/orange lines). In these
graphs, the time histories of velocity are summarized for all four combinations of both integrated and not integrated
loading signals. In Fig. 12, we show the time history of the y-components of the reconstructed velocity at the point
A after the TR simulations for all four combinations of keys. It is needed to say that combinations Int − Orig,
Orig − Int produce the same results due to the linearity of the problem. In all figures in Fig. 12, the corresponding
pulse for analytical time history is added as black lines. These lines correspond to time derivatives of the original
time function of loading by the nodal force. In Fig. 12(left), the black line corresponds to the Ricker pulse as
an original loading pulse, in Fig. 12(middle) corresponds to the first time derivative, and finally in Fig. 12(right)
corresponds to the second time derivative. We can say that the combination Int − Int produces the correct time
history of the original pulse of nodal velocity. The combination Int − Orig/ Orig − Int gives the first time derivative
of the original pulse, and combination Orig − Orig gives the second time derivative of the original pulse. The
differences between theoretical pulses and their time derivatives, and numerical results are given by spreading of
wave fronts in the reverse task where we use only partial information from the boundary of the domain of interest.

Based on the previous results, the variant Int − Int for reconstruction of the original time function is preferred
and this TR approach gives to us the correct information for reconstruction of the original source. Based on that
knowledge of behavior of time change (time integration) of pulse during the TR numerical experiments, we propose
an algorithm for computational TR, Alg. 2. This algorithm, if all steps are kept, leads to a correct reconstruction of
the original source. On the left side, one can see the flowchart for full computational approach for TR computations
with generating of the ‘experimental data’ on domain Ωm numerically. On the right side, one can see the flowchart
for application of TR using real experimental data in the sense of measured velocity.
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FRONTAL PROBLEM

OR

REVERSE PROBLEM

COMPUTATION
1. INTEGRATE LOADING SIGNAL OF

DESIRED VELOCITY
Integrate the loading signal e.g. by
trapezoidal rule.

2. PRESCRIBE LOADING AS NODAL
FORCE
Obtained time history of nodal velocity
corresponds to the first derivative of time
history of nodal force loading.

3. PERFORM COMPUTATION
Output from frontal problem is a time
history of nodal velocity from measurement
area.

EXPERIMENT
1. GET MEAUSERD SIGNAL

Get measured signal of velocity from
measurement area. This signal can be edited
using standard procedures by e.g. frequency
filter.

BOTH FROM COMPUTATION OR EXPERIMENT
4. MULTIPLY OUTPUT SIGNAL BY -1

Multiply the output signal of velocity by -1. This operation is given by TR
principle, see e.g. [20].

5. INTEGRATE SIGNAL
Integrate time history of velocity, same as in step 1.

6. REVERSE SIGNAL IN TIME
Reverse the output signal to create a loading signal.

7. USE SIGNAL AS LOADING BY NODAL FORCE
Same as in step 2, obtained time history of nodal velocity corresponds to
the first derivative of time history of nodal force loading.

8. PERFORM COMPUTATION
Compute the reverse problem.

9. REVERSE OUTPUT SIGNAL IN TIME
Take time history of nodal velocity from the original source location and
reverse it in time to compare with the loading pulse (of desired nodal
velocity).

Algorithm 2. Proposed algorithm for practical use of time reversal method. On the left, computational/computational approach, and on the
right, experimental/computational approach is presented.
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M. Mračko, J. Kober, R. Kolman et al. Mathematics and Computers in Simulation 189 (2021) 163–190

Fig. 13. Scheme of different ways of prescribing the loading values val. N nodes loaded (left), N nodes loaded — averaged (right).

Table 1
Table of computational times Ti .

Indication Number of Computational Number of
of task time steps time [s] reflections

T1 1,000 0.00004009 2.12
T2 2,000 0.00008018 4.24
T3 5,000 0.00020045 10.61
T4 10,000 0.00040090 21.21
T5 20,000 0.00080180 42.43
T6 30,000 0.00120270 63.64
T7 40,000 0.00160360 84.85
T8 50,000 0.00200450 106.06
T9 75,000 0.00300675 159.10
T10 100,000 0.00400900 212.13

5.3.3. Comparison of reconstruction accuracy for TYPE I and TYPE II and effect of size of domain Ωm
In this set of numerical experiments we compare two types of loading — TYPE I (nodal velocity) and TYPE

II (nodal force) for application in TR tasks. Also we compare an effect of number of active nodes for prescription
of nodal information into the reverse task, where five different numbers of loaded nodes are assumed — one node,
five nodes and eleven nodes with separate signals, and the same numbers with averaged signals, see Fig. 13.

Ten different computational times defined by the number of time steps, indicated as T1, . . . , T10 are assumed —
see Table 1 for the details. Ti means the time of computation both for frontal and reverse task. The time Ti can
be reported as a number of reflections of the longitudinal wave in the domain of interest, for example, the time T3
corresponds to approximately 10 reflections of longitudinal wave with wave speed cL between the opposite edges.

Figs. 14 and 15 show values of global cost CG from Section 4 for all tasks with different times of computation
Ti and different numbers of active nodes with/without averaging in reverse task. Fig. 14 presents results for loading
of TYPE I and Fig. 15 shows results for loading of TYPE II. Different numbers of active nodes and different
lengths of computational times show how the quality of reconstruction changes. Two different types of loading, by
nodal velocity and by nodal force, compare two approaches how to solve the problem with standard methods in
commercial FE software. Fig. 16 shows contributions of local costs C1, C2 and C3 into global cost for 11 loaded
nodes with individual loading signals. One can see that C1 and C2 have similar values of the cost functions in this
task. C3 is not dominant for this task. For the evaluation of the global function CG we prefer the main contribution
of C2 into CG defined in (14).

For loading of TYPE I, Fig. 14, one can see that the averaging of information causes loss of the accuracy of
reconstruction. There is also an effect of number of active nodes on quality of reconstruction. In the physical point
view, when we apply prescribed signal as nodal velocity, the boundary is moved with rigidly and this boundary
reflects the propagating waves as rigid boundary, which has opposite effect on reflection of stress than the stress-
free boundary conditions, see e.g. the Achenbach’s book on wave propagation in solids, Achenbach [1]. Therefore,
the TYPE II produces more stable results of reconstruction, see Fig. 15. For bigger amount of active nodes for
application of boundary conditions this effect even increases. The time related to T3 is enough for reconstruction.
Based on this numerical study, the TYPE II is preferred in TR technology and as benefit, there is no need to modify
the finite element code and only a suitable time integration of the reversed data is needed as a part of the flowchart.
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Fig. 14. Global cost CG, TYPE I - loading by nodal velocities.

Fig. 15. Global cost CG, TYPE II - loading by nodal forces.

For the local point of view at the localized point A, the time histories of the normalized velocity after TR
computation of the both types of loading are presented in Fig. 17 (loading by nodal velocity) and Fig. 18 (loading
by nodal force). The computations were realized for the time T10 and for all numbers of active nodes as mentioned in
the previous text. Each reconstructed signal is normalized such that the maximum value is equal to 1, again assuming
a linear system which can be scaled arbitrarily. Then the signals are reversed in time, although not necessary thanks
to the symmetry of the loading signal. This normalizing of signals enables at least some qualitative comparison of
the reconstruction.

For the loading by TYPE I, one can see a different arrival time of the maximum peak depending on number of
active nodes in reverse task and averaging of the reversed quantities. On the contrary, the results for the type of
loading by TYPE II show stable character and deviation of the signal is relatively small. It means that the TYPE
II is preferred for correct reconstruction of the original signal.

5.4. Numerical sensitivity study

We have performed five additional studies of numerical sensitivity, using presented algorithm, Alg. 2, (with
loading of Type II). We study the effects of the time step size, mesh size, number of transmitters, domain shape
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Fig. 16. Local costs C1 −C3 for both types of loading (TYPE I — nodal velocity, TYPE II — nodal force), 11 nodes loaded with individual
signal.

Fig. 17. Reconstructed pulse for time T10, loading of TYPE I - nodal velocities.
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Fig. 18. Reconstructed pulse for time T10, loading of TYPE II — nodal forces.

Table 2
Sensitivity study 1 - input values.

Courant number Time step size [s]

0.5 2.673 · 10−8

(reference) 0.75 4.009 · 10−8

0.99 5.282 · 10−8

(domain with a hole), and environmental disturbance (background noise) on reconstruction of the original pulse.
In each study we focus on the influence of the change of some parameter in reverse task and compare it with
the reference one. Again, we use the same FE model as shown in Fig. 1 and Ricker pulse for loading. Eventual
changes are commented in description of particular sensitivity study. The computational time for all studies was
T4 ∼ 10,000∆t . The quality of reconstruction is evaluated only visually here because for the usage of costs we do
not perform enough numerical experiments to show some reasonable trend. Following results are more illustrative
and show some practical aspects of computational TR.

5.4.1. Sensitivity study 1 - time step size
In Sensitivity study 1 we analyze the influence of the change of the time step size in the reverse problem compared

with the frontal problem. We use three different Courant numbers (time step sizes) in the reverse problem. One task
is a reference task with the same time step size as in the frontal task, and then one is smaller and the other one is
larger then the reference one. See Table 2 for details.

We can state that the change of time steps size has a minor effect on the quality of reconstruction, see Fig. 19.
There is only a small time and phase shift apparent which outcome of the temporal-space dispersive behavior of
the finite element method depending on time step size, Kolman et al. [27].

5.4.2. Sensitivity study 2 - mesh density
In Sensitivity study 2 we study the effect of changing the FE mesh density in the reverse problem. We use three

different meshes in the reverse problem, Courant number C .
= 0.75 in all cases, so the time step size had to be

changed. Again, one reverse task is reference with the same mesh as in the frontal task, then one mesh is coarser
and the other one is finer. See Table 3 for details.

Very significant impact on the result has the change of FE mesh density, see Fig. 20. Here, the time and phase
shift is more apparent than in Sensitivity study 1, though the reconstructed peak is still easily recognizable from the
surrounding signal. It can be explained so that the FE model has a dispersive behavior — numerical wave speed
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Fig. 19. Sensitivity study 1 - Reconstruction.

Fig. 20. Sensitivity study 2 - Reconstruction.

Table 3
Sensitivity study 2 - input values.

Element size [mm] Mesh density Time step size [s]

0.3125 mm 320 × 320 = 102,400 3.132 · 10−8

(reference) 0.4 mm 250 × 250 = 62,500 4.009 · 10−8

0.5 mm 200 × 200 = 40,000 5.011 · 10−8

depends on the mesh density, see [26], and by change of mesh density this effect is more dominant than the effect
of the time step size.

To summarize this sensitivity test, one can see a considerable sensitivity of the TR results on the chosen spatial
discretization — mesh size and quality of the finite element mesh. We have to say that the inverse crime, see [9], is
coming into our inverse problem in TR. This is a product of the numerical dispersive behavior of the finite element
method which depends on the mesh size setting with respect to the wavelength of the propagation elastic waves.
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Fig. 21. Sensitivity study 3 - positions of recording points.

Fig. 22. Sensitivity study 3 - Reconstruction.

5.4.3. Sensitivity study 3 - number of transmitters
In Sensitivity study 3 we study the quality of reconstruction depending on the number of positions used in the

frontal problem for recording of the output signals. In these positions the reverse problem is then loaded. The
positions are denoted as B1 - B3, and the coordinates are shown in Fig. 21. The positions were chosen randomly.
In these three tasks we use step-by-step one (B1), two (B1, B2), and three (B1, B2, B3) positions of transmitters
for recording of the signal used in TR task.

Based on Fig. 22, the number of points Bi does not cause any time shift. Using more points-transmitters for
loading slightly improves the quality of reconstruction.

5.4.4. Sensitivity study 4 - effect of unknown obstacle
Sensitivity study 4 represents a problem where the analyzed domain contains an unknown obstacle. The frontal

problem is same as e.g. the reference one in Sensitivity study 1 but besides the reference one we also use a domain
with a hole. The dimensions are shown in Fig. 23. See the comparison of velocity wave fields of domains with and
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Fig. 23. Sensitivity study 4 - scheme.

Fig. 24. A snapshot of velocity wave field from the frontal problem for time 300∆t , comparison of a domain without/with a hole.

without the hole at time 300∆t , Fig. 24. Both reverse tasks, with reversed signals from domains with and without
the hole, are performed on the domain without the hole.

For the successful reconstruction, wave reflections and time of computation play the key role, as says the
principal of the TR method. Present obstacle, a small rectangular hole here, behaves as a scatterer and brings
another reflections into the domain. This study shows a robustness of TR method and the used approach, as there
is only a small difference between reconstructed signals from pure domain and domain with a hole, see Fig. 25.

5.4.5. Sensitivity study 5 - environmental disturbance
In Sensitivity study 5 we study the influence of a preceding disturbance of the system. It is represented by a

pseudo random signal, see Fig. 26c, which creates a complex wave field before the Ricker pulse is transmitted. The
disturbance signal is a filtered white noise, so that it covers the frequency range of the Ricker pulse and retains
zero mean value. This study is designed to test the superposition principle and the robustness of time reversal to
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Fig. 25. Sensitivity study 4 - Reconstruction.

Fig. 26. Sensitivity study 5 - creation of noise.
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Fig. 27. Sensitivity study 5 - Reconstruction.

environmental disturbances. The computational time is doubled here (20,000∆t). At time t = 0∆t the pseudo-
random signal is prescribed as a load at arbitrarily chosen location D, marked in magenta in Fig. 26d. When
the classical loading by the Ricker pulse begins at t = 10,000∆t , a noise-like wave field is already present in the
system, see Fig. 26d. Then only the second half of the output signal is considered as relevant and sent back as a load
in the reverse problem. Compare energy conservation on Figs. 26a and 26b for tasks without and with disturbance
to see the effect in the total energy. Note that if the task ran until 20,000∆t , we would see a reconstruction of the
disturbance as well.

Result shows, see Fig. 27, that the environmental disturbance does not have any major effect on the quality of
reconstruction, which is a well known fact in experimental TR.

6. Conclusions

In this paper, we have proposed an algorithm for practical use of time reversal method in NDT problems in solids.
This algorithm, with a set of measured signals corresponding to different types of forming, or excited present defects,
should set a path to not only refocusing of energy into the location of some defect, but also to determination of the
type of the defect by reconstruction of its time function.

We have suggested a numerical approach based on the explicit finite element method with suitable prescription
of reversal boundary conditions. For that, we have performed several numerical tests to compare the behavior of
the proposed algorithm, using loading by nodal force, and loading by nodal velocity. For measurement of quality of
reconstruction of both types of loading, we have suggested several cost functions. Loading with nodal forces gives
more accurate reconstruction of the source and the accuracy increases with length of computation and number of
active nodes (size of measurement area). Loading with nodal velocity evinces different trend — reconstruction loses
its accuracy when the length of computation increases. On the other hand, both types of loading can be used for
localization of the source. In our tests, we have synthesized the measurement data numerically, but the use of our
algorithm with real experimental data should lead to correct reconstruction of the time history of the original source,
affected mainly by precise assessment of the input parameters. We have also tested the sensitivity of the suggested
TR approach to analyze its behavior in simulations of real applications of TR method.

In future work, we plan to employ real experimental data from sensors and use them as input data for TR analysis
of localization of cracks and defects in real subjects and structures. Also, we will pay attention to the sensitivity
study of material and geometrical parameters in numerical models for reverse tasks.
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A B S T R A C T

In the paper, the finite element method and the finite volume method are used in parallel for the simulation of a
pulse propagation in periodically layered composites beyond the validity of homogenization methods. The direct
numerical integration of a pulse propagation demonstrates dispersion effects and dynamic stress redistribution in
physical space on the example of a one-dimensional layered bar. Results of numerical simulations are compared
with the analytical solution constructed specifically for the considered problem. The analytical solution as well
as numerical computations show the strong influence of the composition of constituents on the dispersion of a
pulse in a heterogeneous bar and the equivalence of results obtained by two numerical methods.

1. Introduction

Wave propagation in a slender heterogeneous solid bar is the typical
test problem for models of composite materials [1–4, e.g.]. The mod-
eling is necessary because macroscopic properties of composite mate-
rials are strongly influenced by the properties of their constituents. The
macroscopic properties are usually determined by a homogenization,
which yields the effective stresses and strains acting on the effective
material.

The basic idea of homogenization consists in a replacement of a
heterogeneous solid by a homogeneous one which, from the macro-
scopic point of view, behaves in the same way, as do its constituents,
but with different, effective, values of the appropriate material con-
stants [5]. This idea reappeared many times in the last two centuries, as
it is indicated in recent reviews [5–8]. Mathematical details of classical
homogenization models can be found in [9].

Layered periodic materials represent the simplest possible pattern of
composites from the theoretical point of view. Their modeling also has
a rich history [10]. Constitutive models of effective properties for such
materials are still under development using either ensemble averaging
[11,12], or integration over unit cell [13,14], or scattering response
[15]. However, as it is pointed out by Willis [16], ”The broad conclu-
sion is that an ”effective medium” description of a composite medium
provides a reasonable approximation for its response, so long as the
predicted ”effective wavelength” is larger than two periods of

microstructure – say at least 2.5”. This is confirmed recently on the
example of Mindlin’s microelasticity theory [17]. It is worth therefore
to build tools for the analysis of the interaction between layers and
waves with the shorter wavelength. The natural choice for such tools is
provided by numerical methods due to their flexibility and universality.
However, we need to be insured in the accuracy and stability of them. It
is well known that numerical simulation of wave propagation even in a
homogeneous solid bar under shock loading is under discussion so far
both in the context of finite volume [18,19] and finite element methods
[20–23]. This is why two different numerical methods – finite element
method and finite volume method – are applied in the paper for the
simulation of a pulse propagation in a slender heterogeneous solid bar.
The pulse propagation is preferable from the practical point of view
[24], while theoretically only the behavior of dispersion curves is of
interest [25–27] e.g.

It should be repeated, following Zohdi [28] that ”solutions to partial
differential equations, of even linear material models, at infinitesimal
strains, describing the response of small bodies containing a few het-
erogeneities are still open problems”. Fortunately, the analytical solu-
tion is constructed specifically for the considered test problem by means
of the Laplace transform technique [29].

The objective of the paper is to demonstrate the influence of the
composition of alternating layers on the dispersion of a short pulse and
to compare results of simulation obtained by two different numerical
methods with the analytical solution of the problem.
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In this paper, we consider the propagation of a finite pulse, the
length of which is comparable with the size of heterogeneities. The
dispersion of the pulse is provided by the wave reflection and trans-
mission in periodic layered structure where each layer is dispersionless.
It is clearly demonstrated that strong dispersion effects depend not only
on the size of heterogeneities but also on their mutual position.

2. Formulation of the problem

We consider wave propagation in a bar of a constant cross section.
The motion is assumed being one-dimensional and considered within
the linear theory of elastodynamics [30, e.g.] It is governed by the
balance of linear momentum, which in the absence of body forces has
the form

∂
∂

− ∂
∂

=ρ v
t

σ
x

0, (1)

where ρ is the matter density, v is the particle velocity, σ is the one-
dimensional Cauchy stress. In the linear elasticity the Cauchy stress
obeys the Hooke law =σ E ε,where E is the Young modulus and ε is the
one-dimensional strain.. The wave speed in a bar is given for one-di-
mensional case by =c E ρ/ , therefore, the Hooke law has the fol-
lowing form

=σ ρc ε.2 (2)

The strain and velocity are related by the compatibility condition

∂
∂
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∂

ε
t

v
x

. (3)

In terms of the displacement, the balance of linear momentum is re-
presented in the form of the wave equation
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c u
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,
2

2
2

2

2 (4)

since the displacement u is connected to the strain and particle velocity
by

= ∂
∂

= ∂
∂

v u
t

ε u
x

, . (5)

It should be noted that the material parameters ρ and c are distinct in
different parts of the bar. However, they keep constant values for each
computational cell in numerical methods for the bar with a piecewise
constant distribution of material parameters such as Young modulus
and matter density.

It is assumed that the bar is occupied the interval ⩽ ⩽x L0 .
Initially, the bar is at rest. The left end of the bar is loaded by the pulse,
the shape of which is formed by an excitation of the stress for a limited
time period (Fig. 1). Then the stress at the left end is zero. The right end
of the bar is fixed.

For convenience, the bar is divided into three parts. The left and the
right parts of the bar are supposed to be homogeneous and made from
the same stiff material. The central part of the bar contains in-
homogeneity provided by inclusions of a more soft materials (see
Fig. 2). The solution of system of Eqs. (1)–(3) or Eq. (4) satisfying
formulated initial and boundary conditions is obtained by means of
analytical and numerical methods in the following sections.

3. Analytical solution

To verify the correctness and the accuracy of numerical results
presented in Section 4, the analytical solution of the above described

problem was derived. The main idea of the analytical procedure is
based on the fact that the final solution for a bar with a piecewise
constant distribution of material properties can be constructed from the
solutions derived for each of homogeneous parts of the bar combined
through the boundary conditions formulated at their interfaces.

It is clear that the propagation of longitudinal waves in arbitrary ith
homogeneous part is formally described by the same equation as (4).
The solution for such particular problem with general boundary con-
ditions can be simply derived based on the solution presented in [30].
Applying the Laplace transform in time [29] to (4) with zero initial
conditions one obtains a simple ODE the solution of which can be
written as

⎜ ⎟ ⎜ ⎟= ⎛
⎝

⎞
⎠

+ ⎛
⎝

⎞
⎠

u x p C p
px
c

C p
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c

( , ) ( )sinh ( )cosh ,i i i
i

i
i

i

i
1, 2,

(6)

where p is a complex number. The variable xi in (6) represents a local
coordinate defined for the ith part of the bar, the constant ci is the wave
speed in this part and the function u x p( , )i i denotes the Laplace trans-
form of the corresponding displacement u x t( , )i i . The unknown complex
functions C i1, and C i2, can then be determined through the boundary
conditions of the problem and through the conditions of displacement
and stress continuity formulated for each interface between two parts
with different material properties. It leads to a system of algebraic
equations in complex domain. Substituting its solution into (6) one
obtains the final solution of the problem in Laplace domain.

The last step of the analytical procedure consists in the inversion of
previously mentioned formulas back to time domain. It can be done
analytically by means of the residue theorem in this case or numerically
by using a suitable algorithm. Given the low computational demands
and the versatility, the latter approach was used in this work. In par-
ticular, an algorithm based on FFT and Wynn’s epsilon accelerator was
applied to manage the inverse Laplace transform problem. As proved in
[29], this algorithm is effective and robust and it gives very precise
results for various problems of elastodynamics. The analytical results
for specific study cases are presented together with the numerical so-
lutions in Section 5.

4. Numerical procedures

Application of numerical methods suggests a discretization in space
and time. For this purpose, the interval ⩽ ⩽x L0 is divided into N
elements of the same size. The state of each element is described dif-
ferently in distinct methods. In this paper, we compare results obtained
by the finite element method (FEM) and the finite volume method
(FVM) in case of explicit approaches of these methods.

4.1. Finite element method and explicit time integration

In this section, we shortly remind the basic of the finite element
method in the one-dimensional case for linear elastodynamics. Spatial
discretization of elastodynamics problems by the finite element method
leads to the matrix form [31]

+ = ∈t t t t TMd Kd F¨ ( ) ( ) ( ), [0, ], (7)

=d d(0) ,0 (8)

=d ḋ (0) ̇ .0 (9)

Here M denotes the mass matrix, K marks the stiffness matrix, F is the
time-dependent load vector, d d, ̇ and d̈ contain nodal variables,
namely, displacements, velocities, and accelerations, respectively, t is
the time and dots denote time derivatives. Initial values for displace-
ments and velocities are denoted by d0 and ḋ0. The initial acceleration
vector should satisfy the equation of motion at the time

+ =t Md Kd F: ¨0 0 0 0.
Practically, the stiffness matrix K and the mass matrix M areFig. 1. A scheme of the test problem - a pulse loaded free-fixed bar.

A. Berezovski et al. Composite Structures 204 (2018) 388–394

389



defined by the relationships

∫ ∫= =E ρK B B M N NdΩ, dΩ,
Ω

T
Ω

T
(10)

and the right hand side is given

∫ ∫ ∫= − −h E g ρgF N B B N NdΓ dΩ ¨ dΩ,
Γ

T
Ω

T
Ω

T
N (11)

where B is the strain–displacement matrix, N stores the displacement
shape functions, h is the traction prescribed on the boundary gΓ ,N is the
displacement prescribed as the Dirichlet boundary condition.

In this paper, we assume linear shape functions and diagonal mass
matrix obtained by row-summing of the consistent mass matrix given
by (10). The mass matrix, M, and the stiffness matrix, K, are evaluated
by the Gauss–Legendre quadrature formula [31].

For time integration, we use the central difference method [31]
which is based on the approximate relationships between the nodal
displacements d, velocities v and accelerations a so that

= −+ −
t

v d d1
2Δ

( ),k k k1 1
(12)

= − ++ −
t

a d d d1
(Δ )

( 2 ).k k k k
2

1 1
(13)

Here the superscript k denotes the time level and tΔ is the time step
size. Substituting relationships (12) and (13) into equations of motion
(7) at time t, we get a system of algebraic equations which we can solve
for displacements at the next time step +t tΔ

= − − −+ −t tMd F K M d Md(Δ ) ( (Δ ) 2 ) .n n n n1
2 2

1 (14)

Stress field +σ x t( , )n 1 is computed from the approximated displacement
field given by +dn 1.

This explicit method is only conditionally stable. The critical time
step tΔ cr securing the stability of the central difference method for a
linear undamped system is =t ωΔ 2/cr max [32], where ωmax being the
maximum eigenfrequency related to the maximum eigenvalue λmax of
the generalized eigenvalue problem = λKu Mu by =ω λ2 . In the one-
dimensional case with a structured mesh in a homogeneous material,

tΔ cr is exactly given by =t h cΔ /cr , where h is the finite element size and
c is the wave speed in an elastic bar. The time integration by the critical
time step produces results without numerical dispersion in 1D case, see
[33].

4.2. Finite volume method

In this section, we shortly introduce the finite volume scheme based
on the approach presented in [34]. In finite volume methods, the fields
of interest (stress and velocity fields) are uniform inside each element
[35]. This means that shape functions are piecewise constant. Though
this is not a good approximation, it can be interpreted in terms of
thermodynamic systems [36]. Since we cannot expect that this ther-
modynamic system is in equilibrium, its local equilibrium state is de-
scribed by averaged values of field quantities. Therefore, so-called ex-
cess quantities are introduced in the spirit of the thermodynamics of
discrete systems

= + = +σ σ v vΣ, .V (15)

Here overbars denote averaged quantity and Σ and V are the corre-
sponding excess quantities. Excess quantities represent the difference
between the values of entire and averaged fields.

Integrating the balance of linear momentum (1) over the compu-
tational cell under the assumption of constant material parameters
(Young modulus, matter density) per cell we have

∫∂
∂

= − = + − − = −+ − + − + −+ρ
t

vdx σ σ σ σΣ Σ Σ Σ ,
x

x
n n n n n n n n

n

n 1

(16)

where superscripts ”+” and ”-” denote values of the quantities at right
and left boundaries of the cell, respectively. The corresponding in-
tegration of the kinematic compatibility (3) results in

∫∂
∂

= − = + − − = −+ − + − + −+

t
εdx v v v v .

x

x
n n n n n n n n

n

n 1
V V V V (17)

Averaged quantities a defined as follows:

∫ ∫= =+ +v
x

v x t dx ε
x

ε x t dx1
Δ

( , ) , 1
Δ

( , ) .n x

x
k n x

x
k

n

n

n

n1 1

(18)

Standard approximation of time derivatives in (16) and (17) allows us
to write a first-order Godunov-type scheme in terms of averaged and
excess quantities

− = −+ + −ρv ρv t
x

( ) ( ) Δ
Δ

(Σ Σ ),n
k

n
k

n n
1

(19)

− = −+ + −ε ε t
x

Δ
Δ

( ).n
k

n
k

n n
1 V V (20)

Here the superscript k denotes time step and the subscript n denotes the
number of the computational cell.

Though excess quantities are determined formally everywhere in-
side elements, we need to know only their values at the boundaries of
the elements, where they describe the interactions between neighboring
elements. The values of excess quantities at the boundaries (numerical
fluxes) are determined by the continuity of entire fields

+ = +−
+

−
−σ σ( ) (Σ ) ( ) (Σ ) ,n n n n1 1 (21)

+ = +−
+

−
−v v( ) ( ) ( ) ( ) ,n n n n1 1V V (22)

and the conservation of the Riemann invariants [36]

+ =− −ρ c Σ 0,n n n nV (23)

− =− − −
+

−
+ρ c Σ 0.n n n n1 1 1 1V (24)

The obtained system of linear equations for excess quantities (21)–(24)
is solved exactly. Having the values of numerical fluxes, we can update
the state of each element for the next time step by means of numerical
scheme (19)–(20). The described procedure is in fact the conservative
wave-propagation algorithm [34]. As the result, the reflection and
transmission of waves at each interface are handled automatically. The
scheme is explicit and solved without a matrix solver. The mentioned
scheme is conditionally stable for the time step size tΔ satisfying the
stability condition in the form ⩽t x cΔ Δ / , where xΔ is the grid size.

In both mentioned explicit computational methods for wave

Fig. 2. Distribution of thick periodic layers. Yellow domain corresponds to material 1, green domain – to material 2. (For interpretation of the references to colour in
this figure legend, the reader is referred to the web version of this article.)
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propagation in heterogeneous bars, we choose the time step size as
=t x cΔ min(Δ / )cell cell0 over all cells.

5. Results of numerical simulations

In this section, we compare several results of simulations of wave
propagation in heterogeneous bars with corresponding analytical so-
lutions.

5.1. Two-phase layered composite

We start with the simulation of a pulse propagation in the so-called
two-phase layered composite following the terminology introduced in
[14]. This means that the heterogeneity is composed by alternating
layers of two different materials. The properties of the matrix material
for the test problem are chosen artificially. In the dimensionless setting
they are the following: = =ρ c1, 11 1 , with corresponding

= =E c ρ 11 1
2

1 . Accordingly, the dimensionless properties of embedded
layers are: = =ρ c0.6, 0.962 2 , with =E 0.552962 . The computational
domain is divided into 1500 elements of the same size. Choosing the
dimensionless length of the bar equal to 1, we have for the size of a
space step =xΔ 1/1500. The choice of the time step is indicated at the
end of the previous section. The thickness of each layer is equal to 90
space elements. The alternating layers are placed starting from 300th
space step until 1200th space step (Fig. 2). We focus on the propagation
of a pulse with finite time duration. Initial pulse is formed by the ex-
citation of stress at the left end of the bar

= = + −F t σ t π t( ) (0, ) 1
2

(1 cos( ( 20)/20)). (25)

The time duration of the initial pulse is set with respect to the size of
layers and wave speed in layers. The length of the initial pulse is shorter
than the size of layers in this case. Its shape is shown in Fig. 3. Its
frequency spectrum is given in the next figure with a zooming of small
frequencies area (Fig. 4).

Fig. 5 shows the evolution of the initial pulse in time due to inter-
action with layers of different materials. In this Fig., vertical lines dis-
play the boundaries of distinct layers and arrows indicate the direction
of propagation of the main pulse. Now we compare results of numerical
simulations with the analytical solution of the pulse propagation pro-
blem. We start with FEM simulation. The distribution of the stress at
1400th time step computed by FEM is shown in Fig. 6 together with the
initial pulse recorded at 200th time step. As one can see, there is
practically no difference in the results computed by FEM and obtained
analytically.

Similar great agreement between numerical and analytical results

have been obtained also in the case of FVM. The corresponding com-
parison with the analytical solution is presented in Fig. 7. A small
distinction in the distribution of the stress close to the left end of the bar
is due to a different handling of stress-free conditions in FEM and FVM.

It is clearly visible that in addition to many reflections, two main
transmitted stress pulses are formed by the periodic heterogeneity. This
demonstrates a strong dispersion provided by the alternating layers. In
the considered case, the amplitude of the leading pulse is greater than
the amplitude of the following one.

Now we turn to more thin alternating layers to study the influence
of the size of the heterogeneity. We apply the same loading as pre-
viously, but the thickness of each layer is reduced to 30 space elements.
In this case the length of the initial pulse is greater than the size of
layers. The periodic heterogeneity is placed in the same position as
previously, as it can be seen in Fig. 8.

The comparison of the analytical solution and results of computa-
tions by FEM is presented in Fig. 9. As in the previous case, results of
computations by FEM coincide with analytical predictions. Calculations
performed by means of FVM (Fig. 10) shows small differences from
analytical solution in the vicinity of the left end of the bar. This con-
firms once more the equivalence of finite element and finite volume
methods for smooth solutions, as it is pointed out by Idelsohn and
Oñate [37]. In contrast to the case of thick layers, here the leading
transmitted pulse is smaller in amplitude than the following one. The
difference in the shape and position of transmitted pulses for thick and
thin alternating layers indicates a strong influence of the size of the
heterogeneity on the wave dispersion.

It is clear that there exists an infinite number of relations between
the length of the pulse and the size of heterogeneity in layered mate-
rials, which are beyond the validity of homogenization methods. As it is
shown, all such cases can be computed precisely by means of accurate
numerical methods.

5.2. Three-phase layered composite

To illustrate the capabilities of numerical simulations, we consider
the so-called three-phase periodic composite. Considering first a sym-
metric composition, we assume that each thick layer presented in the
previous section is divided into three identical parts, and the central
part of each thick layer is occupied with the material of properties,
which are intermediate between the properties of hard and soft mate-
rials (Fig. 11).

Namely, we apply dimensionless values
= = =ρ c E0.8, 0.98, 0.768323 3 3 for the third material marked by the

violet color in Fig. 11. The initial and boundary conditions are the same
as in the previous cases. Analytical solution and numerical simulations
demonstrate again the strong dispersion manifested in the transfor-
mation of the initial pulse into two main transmitted pulses with almost
equal amplitudes (Fig. 12).

Now we change the arrangement of the layers keeping the volume
fractions of the layers unchanged. We assume that the layer with in-
termediate properties is moved into the beginning of each thick layer.
The resulting new composition is shown in Fig. 13. Analytical solution
as well as numerical simulations of the wave propagation under the
same loading as in the previous case show a completely different evo-
lution of the stress pulse: only a single transmitted pulse is formed after
the heterogeneous zone. Due to the dispersion, the amplitude of the
transmitted pulse is decreased in comparison with the initial pulse
(Fig. 14).

Of course, there is infinitely many possible arrangements of distinct
layers in composites. Each of them produces a specific shape of the
transmitted signal. As it is demonstrated, accurate numerical methods
are capable to predict any possible wave field in layered composites (at
least in the one-dimensional case). Additional examples of one-dimen-
sional wave dispersion in layered composites can be found in [38]. It is
worth to note that the change of material properties of the layers also
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affects the wave dispersion. This extends the area of possible applica-
tions but does not restrict the capabilities of the applied numerical
methods.

6. Conclusions

Composite materials are broadly applied in industry because of their
excellent designable characteristics. To meet a desired functionality,
the microstructure in a composite material can be architectured. The
recent advancement in additive manufacturing eased the fabrication of
complex structures with a very wide range of materials.

Dispersion is a characteristic feature of composites. It manifests it-
self in the change of the shape and/or of the length of a signal during its
propagation through composites or heterogeneous structures. For har-
monic waves, dispersion is expressed in the relation between frequency
and wave number. While it may be sufficient from the theoretical point
of view, it is also helpful to observe directly the transformation of a
signal due to heterogeneity in a material. This is why two different
numerical methods – FEM and FVM – are used for the simulation of a
pulse propagation in periodically layered composites beyond the va-
lidity of homogenization methods. The results of simulations of one-
dimensional pulse propagation by the two numerical approaches are
compared with the analytical solution and practically coincide in all

Fig. 4. Frequency spectrum of the initial pulse.
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considered cases. This coincidence with analytical solution ensures the
accuracy of the results obtained numerically. As it is shown, even a
simple rearrangement of the position of layers provides the possibility
of manipulation of the shape of a transmitted pulse. Though this result
can be qualitatively expected in advance, it is not easy to predict the
shape of the final pulse quantitatively.

Accurate numerical computation of the full-field solution for pulse
propagation in layered materials allows to analyze the influence of

heterogeneity beyond the possibilities of homogenization methods. The
difference in the transmitted signals due to a simple change of the
positions of the same layers, which is invisible from the point of view of
homogenized effective media, is demonstrated clearly.

The full scale direct simulation of wave dispersion in composites has
become increasingly feasible with advanced numerical techniques and
rapidly enhanced computing power. A major advantage of numerical
simulation is its generality, capable of predicting accurate wave fields
for any composite with arbitrarily distributed layers of different sizes.

In future work, we will focus on modelling of elastic wave propa-
gation in two- and three-dimensional specimens composed by hetero-
geneous and anisotropic materials with a special attention on Rayleigh-
edge waves [39] and wave propagation in metamaterials [40] and
piezomaterials [41].
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Abstract

In this paper, wave propagation in a two-layer composite strip is investigated analytically and numerically. The strip is
loaded by a very short transverse stress pulse. Three cases of the strip problem are assumed: (i) isotropic aluminum Al strip
and two-layer strips made of (ii) Al and the ceramics Al2O3 and (iii) the ceramics Al2O3 and Al. The analytical method is
based on Laplace and Fourier transform. The in-house finite element algorithm and thermodynamic consistent finite volume
scheme are employed for computations, while the explicit time stepping procedure is used in both cases. The comparison of
analytical and numerical results determines the degree of the accuracy of calculations, which is important for simulation of
complex wave propagation problems in general heterogeneous media.
c⃝ 2020 International Association for Mathematics and Computers in Simulation (IMACS). Published by Elsevier B.V. All rights

reserved.

Keywords: Wave propagation; Heterogeneous solids; Analytical solution; Finite element method; Finite volume method; Plane stress problem

1. Introduction

Application of elastic wave propagation to inspect the state of real structures and their damage localization is an
essential part of structural health monitoring [12]. For instance, acoustic emission testing is completely based on
elastic wave phenomena [17]. The acoustic emission testing is the broadly accepted approach for the localization
of defects in structures [14,23,27]. The validity of this approach has, however, certain limitations [20]. In fact, the
signal arrival time measurement is performed under the assumption that the propagation velocity is constant in all
directions (see, e.g., MISTRAS Acousto-Ultrasonics, https://www.mistrasgroup.com/products/technologies/acousto
ultrasonics.aspx). The wave propagation from a source to the sensor is supposed to be straight and uninterrupted.
These assumptions can be invalid due to various possible inhomogeneity effects that can reduce the accuracy of
this technique.

This is only one reason to have effective tools for the prediction of wave propagation in real materials
and structures. A key element in wave controlling is the prediction of the wavefield for any composite with
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Fig. 1. Sketch of the problem.

Table 1
Values of material properties.

Material Density
ρ [kg/m3]

Young modulus
E [GPa]

Poisson
ratio ν

Longitudinal
wave speed cp [m/s]

Shear
speed cs [m/s]

Source

Al 2700 70.6 0.345 6420 (5448) 3040 [34]
Al2O3 3970 401 0.24 10911.2 (10352.8) 6381.9 [15]

arbitrarily distributed scatterers of irregular shapes and sizes. It should be noted that classical works in wave
propagation [1,16,26] deal with the theoretical description of propagation, reflection, and transmission of elastic
waves in simplified situations. More recent works [4,5,25,29,32] demonstrate the applicability of numerical methods
to characterize wave propagation in inhomogeneous materials and structures.

This means that if the geometry of inhomogeneities and material properties of constituents are prescribed, then
the only problem is in the accuracy of calculations. The accuracy is determined by the comparison of an approximate
numerical solution with the true analytical one. However, analytical solutions are usually known for idealized
isotropic homogeneous materials and simplified geometry.

It is a great advantage of the paper that the analytical solution can be constructed for the dynamic transverse load
of a two-layer infinite strip following [2]. Having an analytical solution, its comparison with numerical solutions
can be performed. In the paper, calculations by the finite element method and by the finite volume method are
compared with the analytical solution to examine their accuracy on the example of a two-layer strip under dynamic
transverse loading. The paper is a continuation of the work performed on one-dimensional wave propagation in
layered bars [10].

2. Problem description

We will consider the transient response of a two-layer elastic strip to the transverse impulse loading. The sketch
of the problem is shown in Fig. 1. The infinite elastic strip is composed of two homogeneous isotropic layers of
different materials. Namely, the bottom layer 1 of the thickness d1 = 30 mm is made from aluminum Al and the
upper layer 2 of the thickness d2 = 10 mm is made from aluminum oxide Al2 O3 (ceramics). The properties of
materials are given in Table 1. The corresponding longitudinal and shear wave speeds are also stated there. The
values of longitudinal speed cp in parenthesis correspond to plane stress conditions. It is clear from the values
specified in Table 1 that the composite strip is made from two materials with highly different properties.

Initially, the strip is at rest. The stress loading p(x1, t), as normal pressure, is nonzero only for x2 = d1 + d2
and for x1 ∈ [−h, h]. All other parts of the strip boundaries were stress-free. The shape of the loading p(x1, t) is
a smooth cosine pulse of duration t0 with the amplitude σ0 changing according to cosine function in x1, namely,

p(x1, t) =
σ0

2
cos

(π

2
x1

h

)(
1 − cos

2π t
t0

)
[H (t) − H (t − t0)], (1)
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where H (t) denotes the Heaviside step function. Corresponding parameters contained in (1) were the following:
h = 2 mm, σ0 = 106 Pa, t0 = 2 · 10−6 s.

3. Governing equations

In this section, basic equations of dynamic problems in solids are specified for 2D case under plane stress
conditions. Let Ω ⊂ R3 be an open, bounded domain with a piecewise smooth boundary ∂Ω and t ∈ [0, T ]
is the time range of interest. Neglecting both geometrical and physical nonlinearities, we can write the bulk
equations (balance of linear momentum) of homogeneous linear isotropic elasticity in the absence of body forces
as follows [6]:

ρ
∂vi

∂t
=

∂σi j

∂x j
, on Ω × [0, T ]. (2)

The balance of linear momentum is complemented by the Hooke law in the form

∂σi j

∂t
= λ

∂vk

∂xk
δi j + µ

(
∂vi

∂x j
+

∂v j

∂xi

)
, (3)

where t is time, xi are spatial coordinates, vi are the velocity components, σi j denotes the Cauchy stress tensor, ρ

is the density, λ and µ are the Lamé coefficients given by λ = Eν/((1 + ν)(1 − 2ν)) and µ = E/(2(1 + ν)), E is
the Young modulus and ν is the Poisson ratio. We assume that E and ν could be different at each material point.

Since initially the strip is at rest, therefore the initial displacement and velocity fields are of zero values. The
Neumann boundary conditions are assumed as the pressure at the boundary ΓN = [−h, h] × [x2 = d1 + d2] with
the space distribution and time history given by Eq. (1). The strip is floating in the space, therefore the Dirichlet
boundary conditions is not taken into account.

3.1. Plane stress approximation

For the 2D problem, in our case of the strip geometry, we have Ω = (−∞, ∞) × [0, d1 + d2]. The strip is
supposed to be thin along the x3 direction then stresses on all parallel x3-planes are sufficiently small and can be
neglected, i.e.,

σi3 = 0, i = 1, 2, 3. (4)

This approximation is called plane stress approximation. Though the displacement u3 in the direction of x3 does
not vanish, the others (u1, u2) are independent of the coordinate x3; that is,

ui = ui (x1, x2), i = 1, 2. (5)

It follows that the strain tensor components, εi3, are

εi3 = 0, ε33 = −
ν

E
σi i , i = 1, 2. (6)

Equations of motion (2)–(3) specialized to plane stress conditions have the form

ρ
∂v1

∂t
=

∂σ11

∂x1
+

∂σ12

∂x2
, (7)

ρ
∂v2

∂t
=

∂σ21

∂x1
+

∂σ22

∂x2
. (8)

Accordingly, strain–velocity relationships are represented as
∂ε11

∂t
=

∂v1

∂x1
, (9)

∂ε12

∂t
=

1
2

(
∂v1

∂x2
+

∂v2

∂x1

)
, (10)

∂ε22

∂t
=

∂v2

∂x2
. (11)
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3.2. Stress–strain relation

Stress–strain relations (the Hooke law) which close the system of governing equations under plane stress
conditions have the form

σ11 = (λ + 2µ)ε11 + λε22, (12)

σ12 = σ21 = 2µε12, (13)

σ22 = (λ + 2µ)ε22 + λε11, (14)

where λ = 2µλ/(λ + 2µ). Time derivatives of the stress–strain relations together with compatibility conditions
determine relationships

∂σ11

∂t
= (λ + 2µ)

∂v1

∂x1
+ λ

∂v2

∂x2
, (15)

∂σ22

∂t
= λ

∂v1

∂x1
+ (λ + 2µ)

∂v2

∂x2
, (16)

∂σ12

∂t
=

∂σ21

∂t
= µ

(
∂v1

∂x2
+

∂v2

∂x1

)
. (17)

These equations together with the balance of linear momentum (7)–(8) form the system of equations, which is
convenient for the solution.

3.3. Wave speeds

The wave speeds under plane stress conditions are specified for the isotropic case as

cp =

√
E

(1 − ν2) ρ
, cs =

√
µ/ρ. (18)

In the case of heterogeneous media, material parameters depend on position of material points.

4. Analytical solution

In this Section, we set out the technique used for obtaining the analytical solution of the studied problem.

4.1. Derivation procedure and final formulas for transforms of stress components

To find the analytical solution of the problem formulated in Sections 2 and 3 , it is advantageous to introduce a
local coordinate system x1,L − x2,L for each Lth layer (L = 1, 2). The origins of these systems are localized in the
geometrical centers of layers, i.e., the domain of the Lth layer are defined as ( − ∞, +∞) × [ − dL/2, dL/2]. Then
one can use a procedure for the derivation of desired formulas of stress components similar to that employed in [2].
Taking the Laplace transform in time domain, we transfer the original systems of equations of motion for each
layer to spatial boundary value problems with a complex parameter p. The general solutions of obtained systems
can then be expressed by means of Fourier integrals. Taking into account the symmetry of the problem, the Laplace
transforms of all non-zero stress components denoted hereinafter by a hat are given for ω ∈ R by Fourier integrals
having the form

σ̂11,L (x1,L , x2,L , p) =
1
π

∫
∞

0

[(
A1,L sinh(x2,Lλ1,L ) + A2,L cosh(x2,Lλ1,L )

)
k1,L−

−
(

A3,L sinh(x2,Lλ2,L ) + A4,L cosh(x2,Lλ2,L )
)

k2,L
]

cos(ωx1,L )dω ,

(19)

σ̂22,L (x1,L , x2,L , p) =
1
π

∫
∞

0

[(
A1,L sinh(x2,Lλ1,L ) + A2,L cosh(x2,Lλ1,L )

)
k3,L+

+
(

A3,L sinh(x2,Lλ2,L ) + A4,L cosh(x2,Lλ2,L )
)

k2,L
]

cos(ωx1,L )dω ,

(20)
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σ̂12,L (x1,L , x2,L , p) = −
1
π

∫
∞

0

[(
A1,L cosh(x2,Lλ1,L ) + A2,L sinh(x2,Lλ1,L )

)
k4,L+

+
(

A3,L cosh(x2,Lλ2,L ) + A4,L sinh(x2,Lλ2,L )
)

k5,L
]

sin(ωx1,L )dω .

(21)

The complex functions involved in (19)–(21) are introduced by the following relations

λ1,L = ω

√
1 +

p2

ω2c2
p,L

, λ2,L = ω

√
1 +

p2

ω2c2
s,L

, k1,L =
ELνL

1 − ν2
L

−
2GLc2

p,Lω2

p2 ,

k2,L =
4GLc2

s,Lλ2,Lω

p2 , k3,L = 2

(
ω2c2

p,L

p2 + 1

)
GL +

ELνL

1 − ν2
L
,

k4,L =
2GLc2

p,Lλ1,Lω

p2 , k5,L = 2

(
2c2

s,Lω2

p2 + 1

)
GL ,

(22)

where GL denotes the shear modulus of the material in the Lth layer (L = 1, 2) and Ai,L = Ai,L (ω, p) for i = 1 . . . 4
and L = 1, 2 represent 8 unknown complex functions which need to be found using the Laplace transform of four
boundary conditions of the problem and four conditions defined at the interface of the strip layers. Following the
problem description given in Section 2, the Laplace transforms of mentioned conditions can be written as (in order
from the upper edge of the strip)

σ̂22,2(x1,2, d2/2, p) = p̂(x1,2, p) , σ̂12,2(x1,2, d2/2, p) = 0 ,

û1,1(x1,1, d1/2, p) = û1,2(x1,2, −d2/2, p) , û2,1(x1,1, d1/2, p) = û2,2(x1,2, −d2/2, p) ,

σ̂22,1(x1,1, d1/2, p) = σ̂22,2(x1,2, −d2/2, p) , σ̂12,1(x1,1, d1/2, p) = σ̂12,2(x1,2, −d2/2, p) ,

σ̂22,1(x1,1, −d1/2, p) = 0 , σ̂12,1(x1,1, −d1/2, p) = 0 .

(23)

4.2. Evaluation process and its precision

The evaluation process of derived relationships (19)–(21) is realized in two basic steps. Namely, these are the
Fourier integrals evaluation (FIE) and the inverse Laplace transform. The sequence of these steps may also be
interchanged due to the properties of the integrands in Eqs. (19)–(21). The first mentioned step was managed by
using the standard numerical Simpson rule with a constant integration step in this work. The second step has been
resolved by means of an algorithm for numerical inverse Laplace transform (NILT). Specifically, the procedure
based on FFT and Wynn’s epsilon algorithm was used (see [13] and [11] for more details).

Although the derived relationships (19)–(21) are exact, it is obvious that their evaluation will suffer from
numerical errors. The errors are caused not only by two numerical procedures mentioned above but also by the
precision limits of the software used for the evaluation. In this work, a Matlab code with double precision arithmetics
has been used. This limitation may come into play when the hyperbolic functions contained in the integrands of
derived Laplace transforms need to be evaluated for large arguments, i.e., for large values of the variable ω of the
Fourier integrals. The same concerns to the functions Ai,L (ω, p) evaluated from formulas which can be derived
exactly in this case of two-layer strip. These issues can be overcome by symbolic calculations of higher precision
but it is always redeemed by significantly higher demands on computational time.

The precision of the algorithm used for NILT is discussed in detail in [3]. We focus on the accuracy of FIE
process here. Even though there exist very sophisticated algorithms for numerical integration, we used the simple
straightforward Simpson rule with constant integration step, as mentioned above. This decision resulted from the
analysis of integrands appearing in Eqs. (19)–(21) after the NILT process. As expected, the precision of FIE is
principally influenced by the integration step dω and by the upper limit of integration ωmax . Their right choice is
predetermined by the behavior of integrands depending on t , x1 and x2.

We focus on t and x2 dependence first. For this purpose, we assume the strip mentioned in Section 2, i.e., the
strip composed of 30 mm of Al (1st layer) and of 10 mm of Al2 O3 (2nd layer). The dependencies of σ11 integrand
on t ∈ [0, 50] µs and ω ∈ [0, 2000] rad s−1 are shown for studied points A and B for x0 = 10 mm (i.e., for different
values of x2) in Fig. 2(a) and Fig. 2(b), respectively. It is obvious that contrary to the point A, the calculation of
the response at point B (x2 = 40 mm) for very short times requires ωmax > 2000 to take into account the integrand

130
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Fig. 2. The dependence of σ11 integrand in [Pa ·s] on t and ω: (a) point A, (b) point B.

Fig. 3. The dependence of σ11 integrand at point A on ω at specific times: (a) t .
= 10 µs, (b) t = 50 µs.

oscillations. On the other hand, to obtain good results for longer times, the values of ωmax can be reduced to about
2000 rad s−1 at both studied points, i.e., both for x2 = 0 mm and x2 = 40 mm.

The specific character of σ11 integrand oscillations at point A is obvious from Fig. 3. The curves presented in this
figure correspond to vertical cuts of Fig. 2(a) at times t .

= 10 µs and t = 50 µs. Such oscillations then determine
the size of the integration step dω. It is clear that calculations for larger values of t require smaller dω. Similar
dependence of dω on x1 can be deduced from Eqs. (19)–(21). Since the variables x1,L appear after the NILT process
still in the argument of sin or cos functions, the size of dω needs to be reduced with increasing x1.

It is clear from the previous discussion that the evaluation of Eqs. (19)–(21) is loaded by numerical errors. But
if the applied numerical approaches are used wisely, very precise results can be obtained. Their precision can then
be verified by means of the exact arrival times of P-waves to the points of interest. In the case of studied points A
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Fig. 4. The detailed views of σ11(t) with times of P-wave arrivals to (a) point A and (b) point B.

and B and the Al–Al2 O3 strip, these times can be calculated as

tA =
1

cp,Al2 O3

√
d2

2 +

[
(x0 − h)d2

d1 + d2

]2

+
1

cp,Al

√
d2

1 +

[
(x0 − h)d1

d1 + d2

]2
.
= 6.601 µs ,

tB =
x0 − h

cp,Al2 O3

.
= 0.7727 µs.

(24)

If we make a detailed view of σ11(t) at mentioned points, then we find out that the arrival times obtained from the
evaluated solution are in very good agreement with the theoretical ones given by Eq. (24). It is clearly visible from
Fig. 4 where the stress component σ11 at points A and B is shown. The times tA and tB are highlighted by vertical
dotted lines. Naturally, if one makes a detailed inspection of σ11 values calculated at points A and B at times t < tA

and t < tB , respectively, then the values are not exactly equal to zero. The differences from the zero value are more
than four (nearly six) orders smaller in magnitude than the maximal values of σ11 at point A (point B) on the time
interval [0, 50] µs. It is evident that the results of such precision can be used for the validation of numerical results
in the following sections.

5. Finite element procedure with explicit time integration

5.1. Weak formulation and spatial discretization

As the first step, we rewrite the equation of motion (2) in terms of displacements ui

ρ
∂2ui

∂t2 =
∂σi j

∂x j
. (25)

Next, we represent equation of motion (25) in the weak form by multiplying it by a virtual field δϕi and integrating
over the domain Ω using Green’s theorem∫

Ω

ρ
∂2ui

∂t2 δϕi dΩ +

∫
Ω

Ci jkl
∂uk

∂xl

∂δϕi

∂x j
dΩ =

∫
∂Ω

t∗

i δϕi d S, (26)

with a general stress–strain law σi j = Ci jklεkl and the traction t∗

i at the boundary ∂Ω .
Applying a spatial discretization

ui =

n∑
a=1

N aqa
i , δϕi =

n∑
a=1

N aδϕa
i , (27)
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we end up with∫
Ω

ρN b N a ∂2qb
i

∂t2 δϕa
i dΩ +

∫
Ω

Ci jkl
∂ N b

∂xl

∂ N a

∂x j
qb

k δϕa
i dΩ =

∫
∂Ω

t∗

i N aδϕa
i d S. (28)

Due to the arbitrariness of the virtual field δϕi , we can represent the latter relationship in the matrix form

Mq̈(t) + Kq(t) = fext (t), (29)

where q(t) is the nodal displacement vector, q̈(t) is the nodal acceleration vector, M is the mass matrix having the
form

M =

∫
Ω

ρN⊤N dΩ , (30)

K is the stiffness matrix

K =

∫
Ω

B⊤CB dΩ (31)

and fext is the load vector

fext =

∫
ΓN

NT t∗ dΓ . (32)

In linear elastodynamic problems, the matrices K and M are constant for each finite element but may differ for
distinct elements due to heterogeneous media. C is the elasticity matrix, B is the strain–displacement matrix, N
stores the displacement interpolation functions, for details see [21].

For the finite element simulation, we use the standard finite element based on displacement formulation with
linear shape functions [21]. The integrals in Eqs. (30)–(32) are evaluated by the Gauss integration procedure. To
reduce the integration cost for K, we use the one-point integration rule with the hourglass control as described in [7].
Elements stiffness matrix K1gp

el obtained by the one-point Gauss integration are complemented by a stabilization
stiffness matrix Kstab suppressing hourglass modes, i.e., Kel = K1gp

el + Kstab. The mass matrix M is lumped
using row-summing procedure [21], which is preferred in the explicit time integration due to temporal–spatial
dispersion [22].

5.2. Explicit time integration in FEM

In this paper, we use the central difference (CD) scheme for explicit time integration as described in the
book [8]. The update of nodal velocities at each time step is then split into two half-steps, and the desired values of
velocities can be prescribed directly. This approach is also called leapfrog integration. It is assumed that quantities
q(t), q̇(t), q̈(t) are known at the time instant t , and the task is to find their values at the next time step t +∆t . The
central difference scheme as the leapfrog integration procedure takes the form presented in Algorithm 1:
Initialize t0

= 0, q0, q̇0, assemble M, K, and compute q̈0
= M−1

(
f0
ext − Kq0

)
while t < T do

setting of the time step size ∆t
q̇(t +

∆t
2 ) = q̇(t) + q̈(t)∆t

2 ;
q(t + ∆t) = q(t) + q̇(t +

∆t
2 )∆t ;

application of boundary conditions;
r(t + ∆t) = fext (t + ∆t) − Kq(t + ∆t);
q̈(t + ∆t) = M−1r(t + ∆t);
q̇(t + ∆t) = q̇(t +

∆t
2 ) + q̈(t + ∆t)∆t

2 ;
application of boundary conditions;
t = t + ∆t ;

end
Algorithm 1: The central difference scheme in the leapfrog form for direct time integration of elastodynamic
problems

It should be noted that the presented scheme is conditionally stable [21]. This means that the value of the time
step ∆t has to satisfy the stability limit ∆t < ∆tcr , where ∆tcr is the critical limit given as ∆tcr = 2/ωmax . Here
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ωmax is the maximum angular frequency of the discretized homogeneous system (29). It is known that the maximum
eigenfrequency of the assembled finite element mesh is smaller than the maximum value of each separated finite
element consisted in the mesh [21], because this value is taken as a maximum over all values as ωmax ≈ max(ωe

max ).
Here ωe

max = 2ce
p/he is the maximum frequency of separated element with longitudinal wave speed ce

p and length
he for the case of the lumped mass matrix for regular meshes.

A regular mesh is preferred due to dispersion in the wave propagation problem. Suitable Dirichlet and Neumann
boundary conditions and initial conditions should be included for solving the problem. Dirichlet boundary conditions
are applied directly to nodal values of the displacement vector, velocity vector, acceleration vector, respectively, at
ΓD . Neumann boundary conditions are applied through the external nodal force fext (t). In the case of stress-free
boundary conditions, the nodal external force vector is zero for material points at the boundary. It is known that
Neumann boundary condition is only an approximation and goes to exact values as convergence properties of FEM
with decreasing mesh size. The final results of stress tensor σi j , computed at integration points inside the finite
element domain, are interpolated into the nodal values. This technique is called stress recovering. In the paper, we
use the ZZ (Zienkiewicz and Zhu) algorithm for the stress recovery [33], which evaluates the stress tensor σi j values
correctly.

6. Finite volume scheme

In the paper, the standard explicit finite volume scheme is employed following the observation by [19]: ”Explicit
schemes are often desirable due to their simplicity and efficiency. Furthermore, since the orders of the temporal and
the spatial operator are the same for conservation laws, explicit methods are often superior when measured in terms
of computational efficiency. For the multi-step schemes, the number of past steps can be very high for an efficient
scheme”.

For finite volume calculation, governing Eqs. (7)–(8) and (15)–(17) are presented in the conservation form [18]
∂U
∂t

+
∂F
∂x1

+
∂G
∂x2

= 0, (33)

with the vector of variables U and fluxes F and G defined as

U =

⎛⎜⎜⎜⎜⎝
ρv1
ρv2
σ11
σ12
σ22

⎞⎟⎟⎟⎟⎠ , F =

⎛⎜⎜⎜⎜⎝
σ11
σ12

(λ + 2µ)v1
µv2

λv1

⎞⎟⎟⎟⎟⎠ , G =

⎛⎜⎜⎜⎜⎝
σ12
σ22

λv2
µv1

(λ + 2µ)v2

⎞⎟⎟⎟⎟⎠ . (34)

For the discretization, a regular Cartesian grid of rectangular cells is used in space, and time is discretized by time
levels. Variables are approximated by averaged values over cells. The use of cell averages is the standard procedure
in the finite-volume method [18,24]. Integrating the governing equations over the control volume results in the
Godunov-type numerical scheme [18]

Uk+1
n,m = Uk

n,m +
∆t
∆x1

(
Fk

n+1,m − Fk
n,m

)
+

∆t
∆x2

(
Gk

n,m+1 − Gk
n,m

)
. (35)

Here the superscript k denotes time level and subscripts n and m indicate the number of cell in horizontal and
vertical directions, respectively.

The numerical fluxes Fk
n,m and Gk

n,m are computed by solving Riemann problems at interfaces between
cells [18,24]. Various methods have been proposed for the solution of Riemann problems [24,28,30,31]. In the paper,
the thermodynamically consistent version of the wave propagation algorithm [9] is applied using jump relations at
interfaces between computational cells, which express the continuity of true stresses and velocities. This algorithm
provides algebraic procedure for the solution of Riemann problems, second-order accuracy [9], and stability up to
values of Courant number close to unity.

6.1. Boundary conditions

To be able to perform the calculation of a particular problem we need to specify initial and boundary conditions.
Initial conditions fix the state of each cell at a chosen time instant. We suppose that initially the strip is at rest, which
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assumes zero values for all wanted fields. Boundary conditions are imposed by means of ghost cells following [24].
At the loaded upper boundary, the value of the normal stress in each cell and at each time step is given in advance.
At the stress-free bottom boundary, the value of the normal stress is zero. Lateral boundary conditions are not
specified because the length of the strip is chosen such that the influence of these boundaries is absent.

7. Numerical results and comparison with the analytical solution

In this Section, we present the results of numerical solution of pulse propagation in the homogeneous and
heterogeneous strip. The results obtained by the in-house finite element algorithm and by the finite volume scheme
specified above are compared to the analytical solution. The comparison of non-dimensional stress component
σ11/σ0 is made at two selected points A and B for x0 = 10 mm (see the problem sketch in Fig. 1). Note that
stress components σ22 and σ12 have zero values at the points A and B, therefore only the normal stress σ11 is of
interest.

We start with the homogeneous case and continue with the heterogeneous case of a layered strip composed by
two different materials as specified in Section 2.

7.1. Homogeneous aluminum strip

Based on the geometry of the problem shown in Fig. 1, the values of parameters used for the numerical
simulations are chosen as follows:

• Loading size h = 2 mm = 10∆x1;
• Strip thickness d1 + d2 = 40 mm = 200∆x1;
• Strip length = 120 mm = 600∆x2;
• Space step (mesh size) ∆x1 = ∆x2 = 0.2 mm;
• Distance x0 = 10 mm = 50∆x1.

The time step ∆t for explicit schemes is determined by the maximum of longitudinal velocity in the studied
material. For pure aluminum, the value of the longitudinal wave velocity is 5448 m/s (see Table 1), which determines

∆t = ∆x1/cp = 2 · 10−4/5448 = 3.67 · 10−8 s.

Correspondingly, the duration of the loafing is

t0 = 200/3.67 = 54∆t.

The characteristic time T0 is then

T0 = 0.04/5448 = 7.34 · 10−6
= 200∆t.

Calculations are performed for 500 time steps providing the absence of influence of lateral boundaries of the strip.
The obtained results are shown in Figs. 5–6. Here blue lines correspond to the analytical solution, red lines

represent the finite element simulation, and magenta lines denote results obtained by the finite volume calculations.
As one can see, there is almost no difference between the results of finite element computations and the analytical
solution.

At the same time, results of the finite volume simulation are qualitatively similar but quantitatively have
observable distinctions. The reason is in the imposing of boundary conditions. The finite volume calculations are
performed with the value of the Courant number less than unity due to stability demand. Keeping the same size
for time and space steps as in the finite element computations, we arrive at the delay in the time variation of the
loading, as it is demonstrated in Fig. 7. Here the blue line corresponds to the value of the Courant number equal
to unity used in the finite element solution and the magenta line shows the representation of the same pulse for
Co = 0.83 employed in the finite volume calculations. The initial delay in input causes the delay in the response.
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Fig. 5. Time history of the normalized stress σ11 at point A in homogeneous aluminum strip.

Fig. 6. Time history of the normalized stress σ11 at point B in homogeneous aluminum strip.

7.2. Composite strip Al–Al2 O3

Now we compare the results of numerical simulations with the analytical solution in the case of the layered
strip. First, we consider the case where pure aluminum is in the layer 1, and the layer 2 is made from the ceramics
Al2 O3. Since the longitudinal wave speed for Al2 O3 is 10352.8 m/s, the time step ∆t for the simulation is

∆t = ∆x/cp = 2 · 10−4/10352.8 = 1.93 · 10−8 s.

Accordingly, the duration of the loafing is

t0 = 200/1.93 = 104∆t,

and the characteristic time T0 is then

T0 = 0.04/10352.8 = 3.86 · 10−6
= 200∆t.

The comparison of numerical and analytical solutions for the time history of the normalized stress σ11 at points
A and B, in this case, is presented in Figs. 8–9. The finite element and analytical results are practically coincided
in the considered case. Even finite volume calculations are closer to analytical and finite element outcomes.

136
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Fig. 7. Time variation of loading pulse along the vertical central line.

Fig. 8. Time history of the normalized stress σ11 at point A in two-layer Al–Al2 O3 strip.

7.3. Composite strip Al2 O3–Al

Now we alter the placement of the layers to see how this alteration affects the comparison. This means that the
layer 1 is made from the ceramic Al2 O3 and the layer 2 is made from pure aluminum. The parameters used in
simulations are the same as in the previous case because the only placement of layers is changed. The comparison
of numerical and analytical solutions for the time history of the longitudinal stress at points A and B is presented
in Figs. 10–11.

Again, blue lines in mentioned figures still correspond to the analytical solutions, the red ones show the results
of finite element computations and the magenta lines denote the results obtained by finite volume calculations. It
is clear that the variation of stresses in time is changed, but finite element results are in a perfect agreement with
the analytical ones. As before, finite volume calculations provide less accurate results due to the reasons mentioned
above.

137
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Fig. 9. Time history of the normalized stress σ11 at point B in two-layer Al–Al2 O3 strip.

Fig. 10. Time history of the longitudinal stress at point A in two-layer Al2 O3–Al strip.

Fig. 11. Time history of the longitudinal stress at point B in two-layer Al2 O3–Al strip.
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8. Conclusions

The main goal of the paper was to examine how accurate are numerical calculations in the comparison with the
analytical solution of two-dimensional transverse pulse propagation in a two-layer strip fabricated from materials
with highly distinct properties. Time histories of stresses at two different points placed at boundaries of the strip
were used for the comparison. It is demonstrated that the in-house finite element algorithm provides the perfect
coincidence between analytical and numerical results for all considered examples. The agreement with the results
by the finite volume scheme is less definitive due to the distinction in the posing of loading conditions. The main
conclusion is that the used numerical algorithms can be applied to the prediction of signal propagation in more
complex practical situations.

This work provides the basis for the application of elaborated numerical methods to heterogeneous media with
several layers, to graded media, and to media with inclusions. The influence of a microstructure on dispersive
behavior of waves in structures can be analyzed by these numerical approaches, where we can control the accuracy.
A special attention has to be paid on discontinuous wave propagation in heterogeneous cases which is still an open
problem in numerical modeling of composite structures.
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a b s t r a c t

Two-dimensional wave propagation in an aluminium strip is examined experimentally, analytically, and
numerically in this paper. The high-frequency pulse is generated by a piezoelectric transducer, and the
velocity component normal to the strip edge is measured by the non-contact vibrometer system. In-
plane waves are then investigated under plane stress conditions using the analytical method based on
Laplace and Fourier transforms. For numerical solution, explicit variants of finite element and finite vol-
ume solvers are utilized. It is shown that the used numerical algorithms confirm the analytical results and
that they are suitable to represent the transient wavefield observed in the experiment including several
wave reflections from upper and bottom strip boundaries.

� 2021 Elsevier Ltd. All rights reserved.

1. Introduction

The simplest possible scheme of ultrasonic nondestructive test-
ing (such as presented in Fig. 1) suggests that the signal issued by a
transmitter is recorded by a receiver. The difference in the shape
and phase between initial and reflected signals can be interpreted
as the existence of a defect inside the specimen.

As a rule, the exciting signal is a windowed wave packet cen-
tered at certain frequency [19, e.g.], and only first recorded reflec-
tion is considered. Much longer records at the receiver are used if a
time-reversal procedure is expected [11, e.g.]. In an ideal situation,
the wave propagates with constant velocity and its propagation
from the transmitter to the sensor is straight and can be inter-
rupted only by the investigated defect. However, even if we restrict
ourselves to a two-dimensional strip setting, we cannot find the
analytical solution for wave propagation in a finite homogeneous
strip. The exact analytical approach is feasible only in the case of
an infinite strip as shown by [22] for a strip with distributed
transversal excitation and by [8] for a suddenly applied transversal
point force. Numerical studies dealing with two-dimensional strip

problems are more common. One can mention for instance the
work [23] where the propagation of acoustic emission signal is
investigated using the finite element approach.

It should be noted that the strip geometry is closely related to
propagation of Lamb waves in thin plates [16,4], which are widely
applied to structural health monitoring problems [10]. Modeling of
Lamb waves with the desired accuracy, reliability, and efficiency is
a valuable part of the methodology, software, and hardware for
non-destructive evaluation and structural health monitoring [24].
Various numerical methods have been used for their simulations
[16,21,13,18,4, e.g]. However, as it is demonstrated in [15], the
existing computational packages (ANSYS, COMSOL, ABAQUS) are
unable to represent wavefield in laminates adequately. The reason
is that the commercial software use one-step time schemes which
are not able to prescribe wave propagation in heterogeneous
media accurately due to spatial dispersion and transmission/reflec-
tion effects on interfaces.

It is, therefore, highly desired to have correct descriptive and
computational tools for the prediction of wave propagation in a
basic setting. The paper presents the results of the experimental,
theoretical, and computational study of the propagation of tran-
sient elastic waves from a localized source in a homogeneous alu-
minium strip. The main goal is to examine and verify the suitability
of numerical procedures to represent the transient wavefield
observed during the experiment. Section 2 is devoted to the

https://doi.org/10.1016/j.apacoust.2021.107983
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description of the experimental setup and procedure. Governing
equations corresponding to linear elasticity are presented in Sec-
tion 3. Analytical solution and numerical methods are shortly
described in Section 4. In Section 5, the comparison of analytical,
numerical, and experimental results are presented. Conclusions
and discussion are included in the last Section.

2. Experimental setup

Measurements of wave propagation in an elastic strip of finite
length were done in the Laboratory of Non-Destructive Testing of
the Institute of Thermomechanics of the Czech Academy of
Sciences. The elastic strip was made from a homogeneous isotropic
Al alloy D16-ATV. Material parameters that are necessary for wave
investigation in such a medium are summarized in Table 1. The
value of longitudinal speed cp corresponds to plane stress
conditions.

Dimensions of the strip suspended on thin UHMWPE Dyneema
filaments were 399� 50� 1:35mm. To induce a loading pulse, the
piezoelectric transducer Dakel IDK09 of diameter 6mm was glued
in the middle of the strip from the bottom side (see Fig. 2). The NI
PXI test system includes NI PXI 5105 digitizer and NI PXI 5412 gen-
erator connected with a custom power pulse amplifier. For the
non-contact vibration record, the Polytec vibrometer system was

used. The OFV-5000 controller decodes the sensor OVF-505 head’s
signals in real time. The automated ultrasonic Starmans scanning
stage DIO 200 system was applied for the signal inspection. The
mentioned device enabled the lengthwise scanning along the
upper edge at points of a regular grid with the step of 1mm. The
response measured up to 750ls was represented by 15 000 sam-
ples at frequency 20MHz, i.e. the sampling time step was
Dt ¼ 5 � 10�8s.

The input signal to the transducer causing the strip loading cor-
responds to a smooth pulse of duration t0 ¼ 9 ls with maximal
amplitude r0 ¼ 0:72MPa. Its amplitude changes according to
cosine train 333kHz with 0:25 cosine window. This pulse can be
expressed as

r tð Þ ¼

r0
2 cos pt

30

� �
1� cos pt

22

� �� �
for t 6 23Dt;

r0 cos pt
30

� �
for 23Dt 6 t 6 157Dt;

r0
2 cos pt

30

� �
1� cos p 180�tð Þ

22

� �� �
for 157Dt 6 t 6 180Dt;

0 for t P 180Dt:

8>>>><
>>>>:

The time history of this input signal is shown in Fig. 3 (curve Ideal
pulse). The more precise experimental investigation shows that
the input signal does not correspond to the real signal exciting
the strip (see Fig. 3, curve Real pulse). This real pulse is the result
of the normal velocity measurement in the center of the transducer
surface using a vibrometer. The difference between the ideal pulse
(input electric signal into the transducer) and real pulse (corre-
sponding to the normal velocity measured on the transducer sur-
face) is due to complex wave processes inside the transducer,
piezo-electric response, and piezo-electric/mechanical coupling.
Moreover, the information about the time history of the normal
velocity on the transducer surface can be implemented into the
finite element model as a time-varying Dirichlet boundary condi-
tion. In parallel, the normal stress loading will be applied via Neu-
mann boundary conditions.

In reality, one has to think also about a non-ideal connection
between the transducer and the strip under investigation. This
effect is neglected both in numerical and analytical solutions of
the problem, so an ideal connection between the transducer and
the strip is assumed.

3. Model description and mathematical formulation

The problem lies in the investigation of the transient response
of an elastic strip to a transversal loading, as mentioned previously.
The sketch of the model corresponding to the described measured
problem is shown in Fig. 4.

Fig. 1. Transmitter – receiver scheme for structural health monitoring.

Table 1
Material properties of the strip under investigation.

Material Density Young
modulus

Poisson
ratio

Longitudinal
speed

Shear
speed

q kg=m3
� �

E GPað Þ m cp m=sð Þ cs m=sð Þ

Al alloy
D16-ATV

2770 72 0.333 5401 3126

Fig. 2. Experimental setup. Fig. 3. Shape of ideal and real loading pulses.
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According to the introduced coordinate system and to the
experiment description given in Section 2, the stress loading
p x; tð Þ is nonzero only for y ¼ �d=2 and x 2 �h=2;h=2½ �. It will be
approximated by p x; tð Þ ¼ H xþ h=2ð Þ � H x� h=2ð Þð Þr tð Þ, where
H xð Þ denotes the Heaviside function in x and r tð Þ stands for the
ideal or real pulse from Fig. 3. The problem was solved as the sym-
metric one and the evaluation of vertical velocity component up to
time tmax ¼ 750ls was primarily made at points A, B, and C for
comparison with experimental data. The position of these points
is shown in Fig. 4 and the distance between them is 13:5 mm each.

The problem is considered in the framework of small strain
elasticity theory. For thin strip, we use the plane stress approxima-
tion suggesting that stress normal to the strip plane and appropri-
ate shear stresses can be neglected, i.e.,

ri3 ¼ 0; i ¼ 1;2;3: ð1Þ
The governing equations of homogeneous linear isotropic elasticity
in the absence of body forces specialized to plane stress conditions
have the form [20]

q
@v1

@t
¼ @r11

@x
þ @r12

@y
; ð2Þ

q
@v2

@t
¼ @r21

@x
þ @r22

@y
; ð3Þ

where t is time, v i are the components of the velocity vector, rij is
the Cauchy stress tensor and q is the density.

Accordingly, compatibility conditions for strains are repre-
sented as
@e11
@t

¼ @v1

@x
; ð4Þ

@e12
@t

¼ 1
2

@v1

@y
þ @v2

@x

� �
; ð5Þ

@e22
@t

¼ @v2

@y
: ð6Þ

The Hooke law defining the stress–strain relation is modified as fol-
lows [20]:

r11 ¼ kþ 2l
� �

e11 þ ke22; ð7Þ

r12 ¼ r21 ¼ 2le12; ð8Þ

r22 ¼ kþ 2l
� �

e22 þ ke11; ð9Þ
where k ¼ 2lk= kþ 2lð Þ and k and l are the Lamé coefficients. Com-
patibility conditions (4)–(6) allow to eliminate strains in time
derivatives of stress–strain relations

@r11

@t
¼ kþ 2l

� � @v1

@x
þ k

@v2

@y
; ð10Þ

@r22

@t
¼ k

@v1

@x
þ kþ 2l
� � @v2

@y
; ð11Þ

@r12

@t
¼ @r21

@t
¼ l @v1

@y
þ @v2

@x

� �
: ð12Þ

Together with the balance of linear momentum (2)–(3), latter equa-
tions form the system of equations, which is convenient for the
solution.

4. Solution methods

4.1. Analytical solution

As mentioned in Section 1, there exists the analytical solution of
an infinite elastic strip problem derived by [22]. In our study, we
generalized this solution to an arbitrary type of external loading
even in the variable x1, see Fig. 4. Analogously to [1], the Laplace
transform of the vertical velocity component v2 can be written as

�v2 x; y; pð Þ ¼ � p
p

Z 1

0
C1 sinh k1yð Þ þ C2 cosh k1yð Þð Þk1½

þ C3 cosh k2yð Þ þ C4 sinh k2yð Þð Þk2� cos xxð Þdx; ð13Þ
where p 2 C denotes the variable of Laplace transform and the rel-
evant complex functions are defined by

k1 x;pð Þ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ p2

c2p

s
; k2 x;pð Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
x2 þ p2

c2s

s
; ð14Þ

k1 x; pð Þ ¼ c2pk1 x;pð Þ
p2 ; k2 x;pð Þ ¼ 2c2sx

p2 : ð15Þ

The complex unknowns Ci x;pð Þ for i ¼ 1; . . . ;4 in (13) can be deter-
mined using the boundary conditions of the problem. The evalua-
tion procedure of the formula (13) is similar to that presented in
the work [1]. This two-step procedure involves the inverse Laplace
transform and the evaluation of Fourier integral. The latter one
issue is addressed by classical Simpson’s rule with a regular integra-
tion grid while the first one is resolved by the application of an algo-
rithm based on fast Fourier transform and Wynn’s epsilon
accelerator. This accelerator is used to speed up the summation of
infinite series involved in the inversion process, see [7]. The preci-
sion and the stability of this procedure is discussed in detail in [2].

4.2. Finite volume computations

Among finite volume methods, the most suitable for our pur-
pose is the wave propagation algorithm [17]. Its two-dimensional
implementation is applied for the simulation of wave propagation
in the finite elastic strip. The thermodynamically consistent ver-
sion of the algorithm [6] is employed with values of the Courant
number close to unity. The applied method is second-order accu-
rate on smooth solutions [3]. Boundary conditions are imposed
using ghost cells following [17].

4.3. Finite element computations

In the finite element computations based on an in–house code,
we use the displacement formulation with linear shape functions
[12], which are preferred in explicit time integration with the
lumped mass matrix. The central difference method for direct time
integration is employed, therefore the stability limit according to
the Courant–Friedrichs–Lewy condition should be satisfied, see
[9]. For evaluation of the stiffness matrix, the one-Gauss point inte-

Fig. 4. Sketch of the problem.
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gration with the hourglass stabilization [5] is utilized. For the max-
imum frequency contained in the loading pulse, the length of the
finite element edge is set to 0:25mm due to the spatial dispersion
of the finite element method [14]. The time step size corresponds
to the Courant number Co ¼ 0:97.

5. Infinite strip

To validate the accuracy of both numerical methods, it is
instructive to start with the problem of an infinite strip for which
the analytical solution exists. According to the experimental setup,
the time step Dt ¼ 5 � 10�8s and the ideal pulse of duration
t0 ¼ 180Dt ¼ 9ls are used at first. Space step for explicit schemes
corresponds to the Courant number Co ¼ 1 determined by the
maximum of longitudinal velocity in material. In the case of Al
alloy D16-ATV, the longitudinal wave velocity is equal to
5401 m=s which means that Dx ¼ cp � Dt ¼ 0:27 mm. It follows
then that the strip width d ¼ 50 mm ¼ 185Dx and the loading
length h ¼ 6 mm ¼ 22Dx.

Using these values, the computation of wave propagation in the
strip under ideal loading via the normal stress shown in Fig. 3 was
performed analytically and by finite volume and finite element
methods. Results of numerical simulations and analytical solution
are compared at all three points. The comparison at point A that
corresponds to the middle of the strip is presented in Fig. 5. As
one can see, the results of simulations by finite volume and finite
element methods are almost coinciding with the analytical solu-
tion up to 2000 time steps (100 ls), i.e., at early stages of the signal
propagation. Similar results have been obtained also for points B
and C. After 2000 time steps, the results start to diverge due to
the influence of lateral vertical boundaries of the strip used in
numerical models. Based on this comparison, we can conclude that
the chosen finite element and finite volume methods are suitable
for the elastic wave propagation problem in the strip.

The same coincidence between the analytical and numerical
solutions was achieved also for the real pulse excitation. Making
such verification of applied approaches, the obtained results can
be compared with the measured strip response to the real pulse.
This comparison is presented in Fig. 6, Fig. 7, Fig. 8 for all three
studied points. Due to the mentioned coincidence between analyt-
ical and numerical solutions, only analytical and experimental
results are shown.

It is seen that the very good agreement with the measured data
occurs for the first 1000 time steps (i.e. up to time 50 ls), espe-
cially at point B (see Fig. 7). Considering the time history for the
vertical velocity at point C (Fig. 8), we cannot say that the agree-
ment with the experiment is as good as at the previous points even
for the short time simulations. Also for longer times, the dispersion

properties of the real strip and the real structure of the strip mate-
rial make the differences between both responses more significant
at all three points.

The application of the Dirichlet boundary condition for the nor-
mal velocity is also checked in the finite element simulations. The
results of the time history of the normal velocity at the point B are
depicted in Fig. 9 as an example. One can see that the results for
Dirichlet and Neumann boundary conditions are very close to each
other. So it can be said that both types of boundary conditions can
be used for correct representation of transducer loading.

Fig. 5. The response to the ideal pulse: analytical solution vs numerical simulations. Fig. 6. The response to the real pulse at point A: analytical and numerical solution
vs experimental data.

Fig. 7. The response to the real pulse at point B: analytical and numerical solution
vs experimental data.

Fig. 8. The response to the real pulse at point C: analytical and numerical solution
vs experimental data.
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Having the verified analytical and numerical models for short
time response of the real strip, one can use these models to visual-
ize the wavefield the consequences of which have been measured
at the strip edge. For this purpose, the snapshots of the mean veloc-

ity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2

1 þ v2
2

q
at various time instants obtained by the analytical

solution are shown in Fig. 10. This picture demonstrates how the
wave field is varied due to reflections from upper and bottom
boundaries and internal interferences. A clear separation between
the longitudinal wave and the pattern of remaining wave interfer-
ence is observed.

6. Finite strip

In the case of finite strip, we need to take into account the
reflections from the lateral vertical boundaries. It requires compu-
tations for a longer time. The comparison of experimental data
with analytical solution and numerical results obtained by the
finite element method is shown in Fig. 11. The results of finite vol-
ume simulation are not presented because they are nearly identical
to analytical ones up to about 2000 time steps and for longer times
they do not conserve the total energy of the signal. It is clear from
Fig. 11 that all results coincide quite well up to about 2500 time

steps. After this time instant, the analytical solution does not rep-
resent the real response due to the absence of lateral strip bound-
aries influence. The results of finite element computations take the
reflections from lateral boundaries into account, but uncertainties
in experimental setup prevent the detailed coincidence.

Fig. 9. The response to the real pulse at point B obtained by the stress and velocity
loading.

Fig. 10. Distribution of the mean velocity
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v2
1 þ v2

2

q
inside the strip. Snapshots of the analytical solution for t ¼ 186Dt;420Dt;561Dt;753Dtf g.

Fig. 11. Measured response vs analytical solution and finite element computation
for longer time.

Fig. 12. Comparison of results for finite element 2D and 3D simulation.
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In an attempt to improve the agreement between numerical
simulations and experimental data, the 3D computation of the
problem was performed using the in–house finite element code.
Unfortunately, the results of 3D calculation differ from those in
2D only slightly, as it can be clearly seen in Fig. 12. From one side,
it confirms that the applied plane stress approximation is applica-
ble for the considered problem. From another side, it does not
assure that 3D computing will improve the results of numerical
modeling significantly.

7. Conclusions

Experimental measurements and numerical simulations were
performed to examine the accuracy of the plane stress approxi-
mation in the description of elastic waves in a finite strip. The
comparison of experimental data with the analytical solution
and numerical simulations demonstrates the ability of standard
numerical methods to reproduce the signal propagation in a
homogeneous strip only for short time computations. The
obtained results confirm the suitability of existing nondestructive
evaluation methods and pose certain questions concerning the
time-reversal technique using long-time computing. All the
results presented in this study can be used as a benchmark data
for the investigation of transient waves in a two-dimensional
elastic medium to validate other numerical or semi-analytical
methods.
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[14] Kolman R, Plešek J, Červ J, Okrouhlík M, Pařík P. Temporal-spatial dispersion
and stability analysis of finite element method in explicit elastodynamics. Int J
Numer Methods Eng 106:2016;113–128.

[15] Leckey CA, Wheeler KR, Hafiychuk VN, Hafiychuk H, Timuçin DA. Simulation of
guided-wave ultrasound propagation in composite laminates: Benchmark
comparisons of numerical codes and experiment. Ultrasonics
2018;84:187–200.

[16] Lee B, Staszewski W. Lamb wave propagation modelling for damage detection:
I. two-dimensional analysis. Smart Mater Struct 2007;16:249–59.

[17] LeVeque RJ. Finite Volume Methods for Hyperbolic Problems. vol. 31.
Cambridge University Press; 2002. .

[18] Maio L, Memmolo V, Ricci F, Boffa N, Monaco E, Pecora R. Ultrasonic wave
propagation in composite laminates by numerical simulation. Compos Struct
2015;121:64–74.

[19] Rose JL. Ultrasonic Guided Waves in Solid Media. Cambridge University Press;
2014.

[20] Sadd MH. Elasticity: Theory, Applications, and Numerics. 2nd ed. Elsevier,
Academic Press; 2009.

[21] Sundararaman S, Adams DE. Accuracy and convergence using a local
interaction simulation approach in one, two, and three dimensions. J Appl
Mech 2009;76:031008.

[22] Valeš F, Šebková H. The state of stress in non-stationary loaded thin belt. Acta
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M. Mračko, V. Adámek, A. Berezovski et al. Applied Acoustics 178 (2021) 107983

6



j m a t e r r e s t e c h n o l . 2 0 2 0;9(4):9457–9477

www.jmrt .com.br

Available online at www.sciencedirect.com

Review Article

Residual  stress  analysis  of additive  manufacturing
of metallic  parts  using  ultrasonic  waves:
State of  the art  review

R. Acevedoa,∗, P. Sedlakb, R. Kolmanb, M. Fredela

a Federal University of Santa Catarina, Mechanical Engineering Center, Campus David Ferreira Lima, Florianopolis, SC, Brazil
b Institute of Thermomechanics, Academy of Sciences of the Czech Republic, Dolejskova, 1402/5, Praha, Czech Republic

a  r  t  i  c  l  e  i  n  f  o

Article history:

Received 21 October 2019

Accepted 24 May 2020

Available online 10 June 2020

Keywords:

Residual Stress (RS)

Additive Manufacturing (AM)

Non-destructive Testing (NDT)

Ultrasonic Testing (UT)

a  b  s  t  r  a  c  t

Additive manufacturing has become a major growing field in materials engineering, fol-

lowing a new tendency for custom, high precision and on-demand fabrication. Residual

stresses are prone to appear in any production technique, which remain a challenge to be

measured. These stresses can lead to a reduction on mechanical performance and even

cause  premature failure. Thus, a wide understanding of residual stress is critical for greater

part reliability. Among Non-destructive Testing (NDT) techniques, acoustic and ultrasonic

waves remain widely used to determine stresses, voids and defects in a wide array of parts.

In  this contribution, Ultrasonic Testing (UT) is highlighted as an alternative for measuring

residual stress both during and after fabrication.

© 2020 Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND

license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1.  Introduction

According to a joint effort between the International Orga-
nization for Standardization (ISO) and the American Society
for Testing and Materials (ASTM), standard 52900 (substitut-
ing previous norm ASTM F42), Additive Manufacturing (AM)
is defined as “the process of joining materials to make parts
from 3D model data, usually layer upon layer, as opposed
to subtractive manufacturing and formative manufacturing
technologies” [1]. This process is regarded as one of the major
forces in the so-called 4th Industrial Revolution, in which
connected machines, complex shapes, topological optimiza-
tion, and on-demand fabrication are brought together in new
innovative processes. Even so, just as in conventional manu-

facturing methods, AM produces residual stresses (RS) in the
fabricated parts.

Using sound to characterize and identify materials, how-
ever, has been a common practice since early ages. For
instance, manufacturers of ceramic materials could detect
the presence of voids and defects by producing a sound on
two different parts of the ceramic. This method was later
used to create devices such as the tuning fork. In the past
100 years, major developments were observed in sound-based
Non-Destructive Testing (NDT) techniques, such as its appli-
cation in the industrial field for testing casting, as proposed
by Sokolov [2]. Hellier [3] cited the following historical devel-
opments: after WWII, several companies and researchers
entered the Ultrasonic NDT field, such as Siemens, Lehfeldt,
Kretztechnik, Krautkrämer, Sonatest, Karl Deutsch, Gilardoni,
and Mitsubishi; in 1947, D. Sproule created a transducer capa-
ble of generating shear waves in materials, paving the way
for weld inspection and other applications; later on, during
the 1950s, J. Kaiser did an important contribution in the field
with the introduction of Acoustic Emission (AE) as a new NDT
method. Currently, those enterprises and new players com-
pete to provide advanced solutions to improve industrially
produced parts [4].

RS can be artificially introduced in materials. For instance,
in tempered glass, one side of the material receives a thermal
shock, creating a compressive stress zone that significantly
toughens it [5]. On the other hand, RS can produce similar
effects to those created by stress concentration that are critical
to the life cycle of components. In welded parts, the presence
of RS combined with further loading stresses can significantly
reduce fatigue resistance and cause distortion (Fig. 1a) as well
as delamination, cracks (Fig. 1b), and other structural failures
[6–9].

To save resources, time, and improve quality control, there
is a growing need to integrate online characterization of AM
parts. Still, as pointed out by Everton et al. [11], further devel-
opments are required. Even if laser-based ultrasonic waves
(UW) are effective in monitoring defects in AM,  there is
another challenge for optimizing process parameters: a wider
communication/data exchange between ultrasonic wave gen-
erator devices and AM machines. Besides, complex part
geometry, microstructure and surface condition are important
influencing factors for UT of AM parts. By successfully meet-
ing all these requirements, it would be possible to correct and
minimize RS and defects before the part is finished.

Different fabrication methods used in AM are summarized
in Table 1. Powder Bed Fusion methods – Laser (L-PBF) and
Electron beam (E-PBF) – have similar functioning principles
and account for 80% of all metal AM systems worldwide [12].
A modulable energy source (laser or electron beam) is used to
sinter and locally melt powder particles, layer by layer, until
the designed part is finished, as shown in Fig. 2. Typically, pro-
ductivity and roughness are lower than in the Directed Energy
Deposition (DED) methods, but dimensional accuracy and pro-
cessing time are higher. In the case of Powder (P-DED) and Wire
(W-DED), several energy sources can be applied: laser, electron
beam, or electric discharge (Fig. 2). In comparison with PBF, all
DED processes have higher productivity, can form bigger parts,
and can be used to perform repair and coating on several mate-
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Fig. 1 – Direct consequences of residual stresses in AM parts - (a) distortion and separation from the base plate; (b) crack
formation [10].

Table 1 – Fabrication methods in Additive Manufacturing (adapted from Ref. [5,6]).

ASTM designation Terminology Commercial name Manufacturer(s)

Powder Bed Fusion
(PBF)

Laser PBF
(L-PBF)

Direct  Metal Laser Sintering
(DMLS)
LaserCusing
Laser Metal Fusion (LMF)
Selective Laser Melting (SLM)

EOS
ConceptLaser
Sisma Group
Matsuura/MTT/Phenix/
Renishaw/ Realizer/SLM
Solutions

Electron beam PBF
(E-PBF)

Electron beam melting (EBM) Arcam

Directed Energy
Deposition
(DED)

Powder DED
(P-DED)

Direct Metal Deposition (DMD)

Laser Engineer Net Shaping (LENS)

Laser consolidation

Laser deposition/cladding/ Laser
Metal Deposition (LMD)

POM

Optomec

Accufusion

Huffman/Irepa/
Trumpf

Wire DED
(W-DED)

Electron Beam Direct Melting
(EBDM)

Ion Fusion Formation (IFF)

Plasma Transferred Arc Selected
(PTAS -FFF)

Rapid Plasma Deposition (RPD)

Shape Metal Deposition (SMD)

Sciaky

Honeywell

MER

Norsk Titanium

Rolls-Royce

rials. However, they produce higher surface roughness, as well
as more  defects and voids. On both PBF and DED processes,
thermal stresses are elevated due to the rapid heat transfer
between the energy source and the material (in powder or
wire  form), producing a complex state of RS in the finished
part. Each process will, however, create a different type and
distribution of RS. When a material is processed by two dif-
ferent techniques, namely SLM and DMLS, RS profiles will be
completely different in each case [13].

The present work aims at creating an updated state of the
art on acoustic waves  NDT applied to AM metallic parts. Dif-
ferent measurement techniques are compared to ultrasonic
waves non-destructive testing (UT) regarding both their capa-

bilities and limitations. Also, fundamental aspects of RS and
UT are discussed in-depth.

2.  Residual  stress  (RS)

Residual stresses are self-equilibrating stresses which remain
in the part after its manufacture even without supplemen-
tary thermal gradient and external forces. These stresses arise
from misfits in the shape of parts of both different regions
and different phases within a part, or even because of local
variations in elastic constants, or thermal and mechanical
properties [14]. RS can result in several undesirable con-
sequences on the part’s properties, such as poor fatigue
resistance, critical failure during operation, lower chemical
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Fig. 2 – Additive Manufacturing methods - (a) Powder Based Fusion (laser/electron beam); Direct Energy Deposition (b)
powder & (c) wire.

Fig. 3 – Effects of Residual Stress in materials (adapted from
Ref. [15]).

resistance, lower magnetization, lower resistance to defor-
mation, and diminished static and dynamic strength, as
summarized in Fig. 3 [15].

Service loading can also lead to the creation of RS and,
consequently, originate inhomogeneous plastic deformation.
These stresses can be found not only in the finished parts
but in the unprocessed raw material. The origin of RS can be
classified into four main categories [16]:

� Differential plastic flow

� High cooling/heating rates
� Phase transformations with a volume change
� Chemical-induced misfits

In most of the additive manufacturing processes, the
rapid heating due to the power source (laser/electron/plasma)
leads to the sintering/melting and further solidification of
the metal/alloy (powder or wire-based). Repeated heating and
cooling affects the local structure and properties of the com-
ponents [17]. Because of such high cooling and heating rates,
RS are produced and may cause deformation, cracks, and
limit the performance of the materials produced by AM.  Also,
another direct consequence of RS is the strong anisotropic
behavior created in these materials [16]. The origins of RS in
AM can be explained by the Temperature Gradient Mechanism
(TGM), shown in Fig. 4. Upon heating, the power source creates
a series of local elastoplastic deformations (represented by �pl,
�el and �yield) and further tensile stress in the irradiated zone.
During the cooldown of the molten top layers, thermal con-
traction causes shrinkage and leads to the creation of tensile
and compressive RS regions (upper and lower layers, respec-
tively) [17,18]. Since the AM process is very complex, TGM
model represents only a simplification of how RS are gener-
ated [18]. Many factors affect the intensity and creation of RS:
material properties (grain size, heat capacity, porosity/voids,
phase composition), geometry of specimens, support struc-
ture (when required), and process parameters (laser/electron
beam power, preheating type, scan strategies and speed, and



j m a t e r r e s t e c h n o l . 2 0 2 0;9(4):9457–9477 9461

Fig. 4 – Temperature Gradient Mechanism (TGM). Stresses and deformation during heating (a) and cooling down  (b) in the
irradiated zone [18].

Table 2 – Sources of error in the measurement of RS [19].

Sources of uncertainties
and accuracy of calculation
of Residual Stresses

Elastic constants
Nonlinearity due to texture
Stress gradients with depth
Microstresses due to plastic
deformation or grain
interactions

layer thickness) [16,18]. Furthermore, many  factors — summa-
rized in Table 2 — influence the estimation of RS [19].

RS can be classified according to the length scale on which
they occur [20]:

� Type I: Macro RS, which equilibrate over large distances and
deform the part if boundary conditions are changed.

� Type II: Micro RS, that occur over the grain scale because of
the formation of different phases in the structure. They are
frequently observed in a polycrystalline material because
of the different grain orientation and the anisotropy of a
crystal structure.

� Type III: Micro RS inside a grain (over atomic dimensions),
which occur because of defects such as dislocations, vacan-
cies, or alien atoms distorting the crystal lattice in the
crystal structure.

In DED and PBF methods, some in-process strategies can
be implemented to minimize RS (see Section 2.3). By pre-
heating the powder/wire, thermal gradients are minimized
[18]. Another alternative is to reduce scan tracks or optimize
scanning paths (in the case of laser or electron beam), leading
to smaller thermal gradients [17,18,21]. This has a signifi-
cant – direct or indirect – influence on RS distribution [13].

Table 3 – In-process techniques for relieving of RS.

Strategy Authors

Mechanisms of reduction
/redistribution /elimination of
Residual Stresses (in-process)

Reduction of scan
tracks

[17,18]

Optimization of
scanning paths
using the inherent
strain method

[21]

Pre-heating of
powder/wire
treatment

[22]

Laser Shock Peening
(LSP)

[23]

Table 3 summarizes the existing in-process strategies avail-
able to reduce the influence of RS.

Carlsson et al. [24,25] proposed a power-law relation – Eq. (1)
for residual surface stress (uniaxial stress-strain), considering
both theoretical and experimental analysis. This equation was
tested for aluminum alloy Al4120-14 and vessel steel A508B
and proved to be in good agreement with experimental results
[25].

�RS = kεn (1)

For each AM process and material there is a specific distri-
bution of RS. Therefore, two samples from the same material
produced by different techniques, e.g. EBM and SLM, will not
have a similar distribution of RS [13]. Those processes create
complex distributions of stress fields, creating high anisotropy
of RS. Additionally, as most of the material properties are not
constant and isotropic through the volume, RS distribution
and magnitudes are also concerned. Besides, microstructure is
another source of anisotropy: typically, due to the fabrication
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Table 4 – Post-processing techniques for relieving of
Residual stresses.

Strategy Authors

Mechanisms of reduction
/redistribution
/elimination of RS
(post-process)

Peening: ultrasonic,
laser shock,
hammer, shot, heat
treatment

[35]

Machining [36]
Explosive treatment [36]
Annealing [28]

of parts by superposition of layers, AM parts have predomi-
nantly columnar grains with a mix  of cellular dendrites; as
the grains grow in the build direction, more  anisotropy and
micro RS are created in the part [26]. Common strategies to
minimize undesired anisotropic effects include the superpo-
sition of layers in different build directions such as [0, 45◦, 90◦,
135◦, . . . 315◦], bidirectional scan strategies regarding one axis
and two axes [27]; as well as annealing treatments at higher
temperatures (1160 ◦C during four hours – Inconel 718 samples
made by L-PBF method) [28].

Furthermore, during fabrication, phase transformation
strains, microstructural evolution and material properties can
drastically influence RS. In this sense, a low material thermal
diffusivity implies in high magnitude of strains [29]. Thermal
diffusivity is affected by material density (�), thermal conduc-
tivity (k) and specific heat (c); besides, it can be presented as
in Eq. (2):

Dt = k

�c
(2)

If thermal conductivity (k) is low, and the product �c has a
high value, residual strains are incremented. Complementar-
ily, high thermal expansion coefficient (�) also increases the
distribution of strain and stress [29]. Bartlett et al. [30] discov-
ered that RS have a linear relation with Dt and k, which was
expected from solidification theory. Finally, some AM process
parameters can be strongly affected by material-dependent
properties: Kruth et al. [18] performed layer post-scanning in
Ti6Al4V and 316 L SLM samples: as a result, Ti parts presented
8% less distortion whilst no reduction was observed in 316 L
samples. Thus, the complex nature of material and process
parameters relationships require more  theoretical and exper-
imental developments.

In AM fabrication, stresses are higher in the perpendicular
direction than in the scanning direction, by a factor between
1.5–2.5 [31–34], which could be related to the anisotropy
induced by AM processing and material properties. In pro-
cesses that Electrical Discharge Machining (EDM) cutting is
required (especially in SLM and EBM), strong tensile stresses
are introduced in the depth of around 40 �m from the cut sur-
face [14]. Post-processing techniques, however, can be applied
to reduce, redistribute, or even eliminate RS. These methods
are described in Table 4 and are further discussed in Section
2.4.

Part geometry is also a feature that influence distribution
and magnitude of RS. Salmi et al. [37] performed a series of RS
measurement using Hole Drilling (HD) method in AlSi10Mg
parts made by SLM process. Several geometries were pro-

duced, comprising flat (plates and hollow square cylinder) and
curved (circular and semi-circular hollow cylinders). It was
found that RS were slightly higher in curved walls than in flat
walls, which is probably due to lower hatch spacing. More-
over, in open geometries, RS can be dissipated with more  ease
than in the closed geometries cases. Complementarily, sup-
port structures play a significant role, by allowing heat transfer
during the build, and progressively decreasing the stress state.
Thus, an optimization of supports is an important tool to mit-
igate and control RS.

PBF process variables that affect RS are brought together
in Fig. 5. Beam/laser parameters and scan strategy can be
adjusted during fabrication. On the other hand, some pro-
cess conditions can not be easily modified in-situ, such as
part geometry and supports. Among these variables, pow-
der bed pre-heating is one of the most important factors
since it significantly diminishes thermal gradients part dis-
tortion, improve dimensional accuracy, density and enhance
mechanical properties [38]. Still, this parameter has to be bal-
anced with other variables to avoid undesired effects such
as excessive grain growth, recrystallization and precipitation
[30]. Beam power and scan speed also have dominant roles in
the mitigation of RS, regardless of the material: higher beam
power increases RS [39–41]; in the other hand, greater scan
speed diminishes RS [39–44]. Finally, scan strategy and related
parameters (Fig. 5) result in complex effect on stress, both
regarding its distribution and direction but also its magnitude
[30]. Nevertheless, these effects are different for single and
multiple layers (RS in-plane anisotropy) and build direction
(variations in strain/stress) [45].

Along with the rise of RS, several defects can also be
observed: balling, cracks, inclusions, microstructural anoma-
lies, porosity, etc. [46]. Typically, porosity (designed or
undesired) is the most frequent defect observed in AM. Exces-
sive porosity can lead to failure and produce detrimental
changes in mechanical properties of the manufactured com-
ponent. There are two main origins for this undesired porosity:
lack of fusion (LOF) and trapped gas in the material. LOF
porosity (irregular pores) occurs due to an inadequate set of
processing parameters, which leads to a partial melting of
the material and lower densification of the part. On the other
hand, gas porosity (spherical pores) is due to the presence of
gas trapped in the raw material or trapped inert gas (nitrogen,
argon, helium) during fabrication [47]. Despite not being as fre-
quent as the former porosity types, keyhole porosity is also a
concern in AM.  During fabrication, if a threshold of process-
ing parameters (laser power, scanning speed and beam size)
is reached, this could lead to the evaporation of metal and for-
mation of plasma. In the following, a vapor cavity is created
with greater laser absorptivity, that enables the laser beam to
reach deeper sections of the melting pool and form voids as
the cavities collapse [48]. This type of porosity has been stud-
ied in SLM [48–50], in laser or electron beam welding [51] and
other single-track L-PBF process combined with Finite Volume
Method [52].

Several strategies can be applied to eliminate or attenuate
the presence of these porosities in AM processes: processing
parameters optimization (laser power, scanning speed, laser
spot size, hatch distance); pre-heating of the powder mate-
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Fig. 5 – Process variables (PBF methods) influencing RS (adapted from Ref. [30]).

rial – some of the available SLM and EBM equipment present
this feature and are able to keep chamber heated at tempera-
ture ranges of 100–500 ◦C and 300–1100 ◦C, respectively [53–55].
Consequently, EBM parts show much lower RS than SLM spec-
imens, which is due to lower thermal gradients [30].

Temperature of pre-heating is dependent on the powder
properties and type (pure metal or alloy) [55]. Cooling rate is
an important feature that can also be controlled, with higher
precision in EBM, enabling to process brittle materials such as
TiAl and hard intermetallics [54]; in the other hand, heat treat-
ment of the part, is a post-processing step performed under
vacuum to avoid material oxidation [47].

2.1.  Predictive  models  of  RS  in  AM

A significant effort has been put out by the scientific commu-
nity to create and enhance models capable of describing the
dynamics of RS in AM processes. A great number of computer
models based on Finite Element Method (FEM) are reported
in the literature, including a series of different approaches
intended to optimize computational expense [30]:

• Grouping many  thin layers into a small quantity of thicker
layers: this results in fast calculation of RS with the expense
of 10% deviation from experimental data [56].

• Single-pass beam scanning models: this model ignore mul-
tilayer effects and focus on the analysis of the influence of
scanning strategies, scan speed and beam power on RS [40].

• Uniformly heated layers without beam motion: this model
considers multilayer effects, also, it is effective to estimate
average RS and stresses in the build direction. Nevertheless,
in-plane anisotropy is not considered [57].

• Simulation of few-layer builds for multilayer effects: in this
model a total of 8 scanning strategies were employed to
build 3-layer parts. Among all scanning strategies, the use
of the 45◦ inclined line case produced the greatest reduction
of RS in both X and Y directions [58].

• Multiscale models: these models are divided in four main
categories – micro-scale (follows the microstructure evolu-
tion); particle-scale (laser-powder interaction); meso-scale
(simulation of one or many  layers); meso-scale (simulation

of the whole process). Despite that great computational
resources are required and scaling difficulties may appear,
crucial and accurate information on distortion, microstruc-
ture, porosity, RS and temperature history can be obtained
with the use of one or more  models [26,59,60].

Furthermore, analytical and semi-analytical models can
also be coupled to computer models in the prediction of RS
in AM. A common approach is the use of linear stress pro-
files in each layer height [43,61]. These estimations of RS
(stress distributions are easier to assess than stress values)
are quite accurate compared with numerical simulation and
experimental results. Finally, commercial software which use
multi-approach models such as Ansys, ABAQUS, Autodesk,
Simufact are developing and enhancing tools to predict RS in
AM parts.

2.2.  RS  measurement  methods

Fundamentally, RS measurement methods can be divided into
three major groups: non-destructive, semi-destructive, and
destructive. Some examples of each type are presented in
Fig. 6. The measurement process introduces a perturbation in
the stress state of a sample, which is especially pronounced
in destructive and semi-destructive testing. In all cases, resid-
ual strain is measured and then, by linear elastic theory for
homogeneous isotropic solids, residual stresses are obtained
[62].

In non-destructive methods (NDT), such as neutron diffrac-
tion and XRD (Fig. 6), the crystal lattice strain is measured.
Then, the corresponding RS are estimated using elastic con-
stants, assuming linear elastic deformation of the crystal
lattice. NDT techniques can provide information on a series
of material properties: tensile modulus, fracture toughness,
microstructure and defects, etc. (Table 5). Typically, these
methods bring great flexibility of use and repeatability, besides
of high accuracy. Nevertheless, there are some disadvantages:
such as limited penetration and reflection of waves/rays and
resolution, as observed in UT, detailed in Section 3. Addition-
ally, sample size can be critical in some cases and operation
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Fig. 6 – Residual Stress measurement techniques.

Table 5 – Field of application for NDT in materials
characterization (adapted from Ref. [64]).

Mechanical properties Physical properties

Tensile modulus Microstructure
Shear modulus Grain size
Tensile strength Phase composition
Yield strength Porosity/voids
Fracture toughness Inclusions
Hardness Anisotropy

Hardening depth
Residual stress
Thermal history

cost is a major concern, especially regarding neutron diffrac-
tion [63].

Destructive methods, such as sectioning, consist of remov-
ing specific portions of a sample to relieve RS. Then,
deformations are created and the corresponding stresses can
be determined. Typically, these methods require Finite Ele-
ment Method (FEM) tools to analyze deformation behavior
and, then, obtain RS values [63]. As an intermediary case,
semi-destructive methods (Fig. 5) induce fewer properties
modifications than destructive methods. Among those, hole
drilling (HD) is the most used. It consists of cutting a portion
(hole) of a part and installing strain gauges to measure stress
profiles. In most modern approaches, Digital Image  Correla-
tion (DIC) can be coupled to HD and provide more  precise
information on the stress behavior [65]. As a complemen-
tary method to acquire knowledge on RS, FEM simulations
can be used. Different authors [32,66,67] compared the results
obtained by experiments with a linear elastic model created
on a specific FEM software. In the majority of cases, it was
considered that most of the properties of the materials are
temperature-dependent. Using specific models from ABAQUS
and ANSYS software, thermally-induced stresses can be cre-
ated, and the correlated effect on the part can be modeled.

Currently, most of the RS measurement in AM is performed
by HD and X-rays diffraction (XRD), which is due to the eas-
iness of measurement, high number of standardized norms
(ASTM, ISO, etc.) and availability of equipment. Despite both
methods have good accuracy and reliability, there are some
limitations: in the case of XRD, samples are limited in size
and surface roughness (polished surfaces are optimal for mea-
surements), and penetration of X-rays is limited to a few
micrometers [39]. In the other hand, HD is a semi-destructive
technique which suffers from errors due to plasticity effects
of the material and stress concentration around the hole, and,
in the Incremental Hole-drilling variant (IHD) there is an error
correlated to each increment depth and a major difficulty to
correctly assess RS at the surface [68].

In recent years, a significant effort has been performed to
develop UT of RS and defects. This will be detailed in the Sec-
tion 3.3.

2.3.  RS  in-process  control

Several methods, summarized in Table 6, can be used to reduce
or even eliminate RS. According to Li et al. [69], preheating the
powder at temperatures higher than 570 ◦C could eliminate RS
and create beneficial compressive stresses. On the other hand,
when the base plate was heated at 160 ◦C, only a 40% reduction
of RS was observed [70]. Yet, in another study by Buchbinder
et al. [22], a preheating temperature of 250 ◦C was employed
in AlSi10Mg cantilevers made by SLM, which resulted in no
defects or distortions. Also, because of lower thermal gradi-
ents, fewer RS were formed in these parts. Following that,
Ali et al. [71] used preheating temperatures in the range of
370–770 ◦C and found that in SLM part production, the minimal
quantity of RS was found around 570 ◦C. At preheating temper-
atures of 570–770 ◦C, compressive RS were observed in several
samples, including I beam geometries [72].  Moreover, cooling
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Table 6 – Strategies of in situ RS reduction (adapted from Ref. [69]).

Mechanical control Laser Shock Peening (LSP) Rolling

Mechanisms of RS reduction (in situ) Thermal control Preheating of powder bed

Scan strategy control Algorithms (LaserCUSING®)
Feedback control IR cameras

rates were diminished during fabrication and, consequently,
high yield strength (1176 MPa)  parts were obtained.

Ali [73] produced a series of I beam geometries by SLM using
different layer thicknesses of 25, 50 and 75 �m.  In this inves-
tigation, different values of exposure time, laser power and
pre-heating of powder bed were combined with the aforemen-
tioned layer thicknesses. This author discovered that parts
produced with thicker layer (75 �m)  coupled with 133 �s of
exposure time, 150 W of laser power, and 570 ◦C of powder
bed pre-heating, presented fewer RS than thinner layer thick-
nesses using similar fabrication parameters.

The control of thermal gradients can tailor the forma-
tion of RS. Some solutions can be applied, including specific
algorithms that optimize scan trajectories to reduce thermal
stresses, such as LaserCusing®, developed by ConceptLaser.
Similarly, rescanning each layer promotes a 55% relief on RS
[43]. Lu et al. [74] used a novel scanning strategy called “island”
to create Inconel 718 parts by SLM, and, to understand how
this parameter affects the microstructure, mechanical prop-
erties, and RS. This particular scanning strategy consists in
separating one layer in many  small portions – islands – and
then randomly melting shorter scan tracks through the melt
pool (Fig. 7 a–c). It was found that parts made by 2 × 2 mm2

islands presented less RS than other strategies, followed by
5 × 5, 7 × 7, and 3 × 3 mm2 islands. Another approach to con-
trol and mitigate RS is the use of Laser Shock Peening (LSP),
creating compressive stresses to cancel out preexisting ones.
This method can be implemented during AM processing: as
each layer is finished, LSP is performed on the present layer,
reducing the effect of thermal stresses. By controlling laser
power and focus, the RS field can be modified: higher laser
power creates non-equi-biaxial RS, while lower laser power
generates equi-biaxial RS. Besides, small laser focus implies
in higher compressive RS at the surface [75].

In PBF routes, as powder layers are deposited, a stress
redistribution is observed. Consequently, the highest tensile
stresses are detected in the last deposited layers [76]. Thus,
finer control of layer deposition can effectively reduce RS. In
W-DED routes, rolling can be implemented to reduce RS. Mar-
tina et al. [77] showed that Ti6Al4V samples produced by Wire
Arc Additive Manufacturing (WAAM), when combined with
high pressure rolling of each layer, had lower tensile RS than
unrolled specimens. Peaks of tensile stress were 200 MPa and
500 MPa,  respectively. Also, compressive RS zones were gener-
ated in rolled specimens, which were 150 and 250 MPa higher
than in the unrolled ones [77].

Chen et al. [21] performed a numerical study of scanning
path optimization in AM processes. Using Adaptative Level
Set Adjustment (ALSA) strategy, stress distributions can be
minimized and this accurate model is scalable to complex
geometries composed of multiple layers. Still, phenomena
such as LOF and porosities are problematic to treat due to gaps
in the scanning path algorithm. This type of path optimization

- combined with preheating of powder bed - has a great poten-
tial to be used in many  AM processes and improve control on
RS.

Current SLM systems are able to predict and quickly change
processing parameters for support structures and their outer
surface. In contrast, for anticipated geometry-related stresses
and sensitive zones within a part, there is no possible adap-
tation. Further developments through software and in-situ
measurement would allow to increase process reactivity (swift
parameter change), reduction of RS and improvement of fab-
rication quality [72].

An alternative approach to reduce the effect of RS is
through the development of Metal Matrix Nanocomposites
(MMNC) materials for AM processes. This topic has been
extensively discussed in a review by Yu et al. [78]. Since
nanoparticles ensure the refinement of the powder structure
and there are strengthening-related mechanisms, fabrication
of MMNC parts by SLM could bring several advantages such as
more resistance to crack propagation and improved strength.
Several alloys available in AM have been tested with dif-
ferent nanoparticles: 316 L steel matrix reinforced with TiC
nanoparticles; AlSi10Mg matrix reinforced with WC  nanopar-
ticles; Ti6Al4V matrix reinforced with ZrH2 nanoparticles and
pure Ti matrix reinforced with TiC nanoparticles. Still, due
to the inherent tendency of agglomeration by nanoparticles,
which creates an inhomogeneous distribution of reinforce-
ment phases throughout the matrix, challenging limitations
appear in the repeatability of microstructure. Besides, wet-
tability between matrix and reinforcement phase is also a
critical issue. Research in the field of MMNC fabricated by
AM is very promising but requires much more  advancements
concerning both theoretical and technological matters.

Lastly, through thermography (infrared – IR – or near-
infrared), specific cameras can be installed inside the build
chamber to monitor temperature during fabrication. By this
method, lack or excess of fusion and homogenization of ther-
mal  gradients can be determined. This method results in high
speed, good spatial resolution and can be used to analyze parts
immersed in fluids [79]. Still, it has limited penetration (few
millimeters) and needs a detailed calibration. When combined
with high-speed image  analysis, IR and near-IR sensors allow
the accurate detection of defects [80,81].

2.4.  RS  post-process  control

A common solution to reduce RS is to perform a heat treat-
ment after part fabrication, which helps to homogenize the
microstructure. In AM parts, this post-process step can reduce
RS up to 70% when the treatment is performed in the
600–700 ◦C range [82]. Annealing promotes a redistribution of
stresses and homogenization of microstructure. Besides, sev-
eral other properties can be tailored, such as tensile strength,
ductility, and hardness [71]. Newell et al. [28] performed a
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Fig. 7 – Island scanning strategy for Inconel 718 parts (adapted from Ref. [74]).

series of heat treatments in Inconel 718 to promote reduc-
tion of RS: it was discovered that heating the nickel-based
superalloy at 1160 ◦C during four hours produced a significant
reduction in RS, through recrystallization and grain growth.

Moreover, several other strategies can be employed to
diminish RS. Machining (e.g., grinding and hard turning) pro-
motes a redistribution of stress by creating compressive RS
on the machined subsurface and surface, resulting in a sig-
nificant reduction of RS [83,84]. Parameters such as cutting
speed and feed rate have a significant influence on the final
RS: Tang et al. [85] discovered that higher cutting speeds result
in shallower RS layers. On the other hand, changes in the
feed rate presented fewer variations in RS. By combining heat
treatment and machining, Oyelola et al. [86] discovered that
a 22% increase in compressive surface RS could be obtained
in the case of Ti6Al4V produced by DED. An innovative solu-
tion pointed out by Yamaguchi et al. [87] uses a magnetic field
to finish SLM parts and diminish RS: through motion con-
trol of the magnetic tool, RS can be eliminated, mitigating the
stresses created by the laser during the SLM process.

Another mechanical post-process to control and minimize
the effect of RS is the Surface Mechanical Attrition Treatment
(SMAT), a technique similar to LSP. However, in SMAT, the
impacting balls travel in multiple directions and not only nor-
mal  to the surface as in LSP. Portella et al. [88] measured RS
in 316 L stainless steel samples after SMAT  and noted that
regions of compressive RS were created. These stresses were
in the range of −170 to −280 MPa,  values lower than the ten-
sile RS observed in 316 L parts without SMAT,  which ranged
from 90 to 140 MPa [88]. Compared to LSP, SMAT generates
deeper compressive RS zones [89]. Ultrasonic waves  can also
be employed to modify the stress profile of samples: in a study
by Gao et al. [90], structural steel samples were treated by
Ultrasonic Impact Treatment (UIT). As a direct consequence,
RS were redistributed and softened, with more  pronounced
effect in deformed regions (stress concentration zones). Also,
it was stated that ultrasonic waves  modify RS in depth up to
16 mm.

Hybrid methods that combine production and stress relief
process can also be employed, as mentioned by Kalentics et al.
[91,92]. First, LSP was used on the surface of the SLM part dur-
ing the fabrication process. Then, RS was significantly reduced
by switching tensile to compressive RS in a depth of 1 mm
from the part’s surface [92]. Additionally, low energy pulsed
lasers with high frequency and small spot size are well suited

to optimize compressive RS, both in depth and in magnitude
[91].

3.  Ultrasonic  waves

Ultrasonic waves  (UW) testing uses mechanical waves, which
are oscillations of material particles that need a material
medium to propagate [93]. These waves  are used in many
fields of application: medical, mechanical structural measure-
ment (NDT), sensors, sonars, and weapons. Typically, UW have
a frequency higher than 20 kHz, corresponding to the upper
limit of the human hearing range (high pitch). Its utilization
in NDT has several advantages, such as good accuracy, high
speed, reliability, repeatability, affordability and capability to
use in several environments such as liquids [94]. Also, it is
non-destructive and does not require direct contact with the
part being tested, which makes it suitable for in-situ monitor-
ing systems in AM.  Finally, there is no limitation in terms of
the type of material being tested or its geometric complexity
(thin films or large components), and it is minimally influ-
enced by temperature [16,95]. Still, UT has some challenges to
be overcome: as such, it has limited spatial resolution when
compared to other RS measurement methods (Fig. 8), and it
is difficult to separate multi-axial stresses, measure RS in the
whole volume of the part, which makes it more  suitable for
macro-stresses (RS Type I) [16,96–98].

Several aspects can be characterized by employing acoustic
and ultrasonic waves: microstructure, defects (cracks, voids,
inclusions, impurities, and porosity), mechanical properties,
geometric accuracy, phase transition, acoustoelastic parame-
ters, surface roughness, and RS [99–102]. Nevertheless, there
are limitations for each method, as shown in Table 7 [103].

According to the frequency and the correlated wavelength
of UT, some characterization aspects will provide limited infor-
mation, especially on cracks, porosity, and voids. Typically, if
the average dimensions of these defects are below 1 mm,  sev-
eral difficulties can appear in their detection. Besides, there is
a significant surface effect which influence all the properties
listed in Table 7: an irregular surface brings a major challenge
in the signal acquisition of backscattered UW.

The basis of acoustic and ultrasonic wave NDT (UT) is the
laws of acoustoelastic theory, which states that the velocity
of elastic wave  propagation depends on mechanical stress,
and of wave  propagation in bodies with initial stresses [a].
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Fig. 8 – Spatial resolution and penetration of RS measurement techniques (adapted from Ref. [16]).

Table 7 – Ultrasonic and acoustic waves characterization fields (Adapted from Ref. [103]).

Microstructure Cracks, porosity,
voids

Mechanical
properties

Geometric
accuracy

Surface
roughness

Residual
stress

Ultrasonic waves App. SS, I App. App.* NApp. App.*
Acoustic waves App. App.* App. App.* App.* App.*

App.: Applicable (* with restrictions).
SS: surface sensitive.
I: internal or through thickness.
NApp.: not applicable.

Table 8 – UT evaluation of material properties [64].

Material property Ultrasonic measurement Applicable materials

Longitudinal modulus Longitudinal velocity Most engineering solids
Grain size, microstructure Attenuation Polycrystalline metals,ceramics
Porosity, voids Velocity, attenuation Fiber composites, ceramics
Residual stress Velocity Most engineering solids
Yield strength Frequency-dependent attenuation Polycrystalline metals

This theory corresponds to the third-order effect. Since the
acoustoelastic effect is a weak nonlinear phenomenon, there
are many  influencing factors in acoustic NDT: temperature,
roughness, plasticity, anisotropy, and micro-inhomogeneity
[104]. Also, material properties have a significant role in
the wave  propagation velocity [105] and, as a consequence,
several material properties can be obtained by using spe-
cific ultrasonic measurements, as specified in Table 8 [64]. It
is worth noting that the measurement of ultrasonic waves
speed can be used to analyze RS in most of the engineering
solids.

Murnaghan [106] developed a study on elasticity theory
applied to solids. In his paper, a finite deformation theory is
proposed for the case of a unidirectional deformed isotropic
solid. A new set of constants, called the third-order elas-
tic constants, was proposed. Later, Crecraft [107] improved
the mathematical formulation and Takahashi et al. [108–111]
explored the engineering applications of the third-order elas-
tic constants proposed in Murnaghan’s papers. After intense
mathematical analysis, the relations between the velocity of
elastic wave  propagation and the localized stress of a solid
were introduced. To measure the velocity of wave  propagation,
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a specimen undergoing tensile testing was used. Transducers
were mounted to evaluate transverse and longitudinal elastic
waves in the specimen. After applying several mathematical
operations and considering wave  propagation, Eq. (3) was pro-
posed [110]:

Vij = V0(1 + ˛ij
T11

E
)  (3)

According to this equation, the propagation velocity of elas-
tic waves  depends on the ratio T11

E and the second or the

third-order elastic modulus. The element Tij = Ji˛
∂(�0ϕ)
∂�˛j

is the

static stress and it is linked to strain (�˛j), the free energy
per unit of volume of deformed isotropic solid (�0ϕ) and the
Jacobian matrix (Ji˛). V0 is the propagation velocity of the
non-loaded object and ˛ij corresponds to the strain depen-
dence coefficient. Employing simple calculations, coefficients
˛11, ˛22, ˛23 can be obtained by measuring Vij, V0. Then, Mur-
naghan’s third-order elastic constants l, m,  and n (TOEC)
can be calculated. Those constants, when combined with the
measurement of elastic wave  propagation times, allow the
estimation of the stress in various locations through the mate-
rial [110].

The Time of flight (TOF) has a linear relationship with the
material stress. In the case of a CRLW wave,  TOF (t0) is linked
with stress by Eq. (4) [69]:

� = B (t0 − t) (4)

Where B is a constant defined as Stress to Acoustic Time Differ-
ence (SATD). B is composed of several factors: material density,
2nd and 3rd order elastic constants of material. The combina-
tion of acoustoelastic constant (K) and TOF (t0) results in the
mathematical definition of B: B = 1/Kt0. Moreover, B can be
obtained from experimental data fitting, typically from strain
gauges [69].

Li et al. [69], used CRLW method and Eq. (4) cited above to
study structural steel samples. Further on, the reliability of the
CRLW method was validated with the strain gauge method
and the measured difference was within 5% in all samples.
Nevertheless, a detailed calibration is critical to have accurate
and reproducible results.

3.1.  Ultrasonic  waves  types

Different types of ultrasonic waves  can be employed to
measure internal stress. Typically, the frequency range of
ultrasound is between 20 kHz and 5 GHz, when propagating
in air. Those waves  can be combined in several modes to char-
acterize stress:

1 TOF method: In this group, the time of flight (TOF) is directly
considered focusing on longitudinal waves. From exper-
imental results, it was discovered that ultrasonic wave
velocity has an inverse correlation with stress. This method
is more  accurate since it uses only the value of the axial
load calculated from the ratio of TOF in the stressed state.
Nevertheless, many  factors influence its efficiency, such as
microstructure, noise, and bonding layer thickness [108].

2 Longitudinal and transverse waves  combination: In this
method, stress is measured using a birefringence approach.
TOF of both longitudinal and shear waves traveling per-
pendicularly to the acoustic stress field are measured. Still,
there are some disadvantages: Implementation of this tech-
nique is difficult and time-consuming, there is information
only on the mean stress value of the measured part, and
there is no available information on variations of stress in
the material [108].

3 Critically refracted longitudinal waves  (CRLW): The main
advantage of this technique is a higher sensitivity for stress
changes due to the greater variations on CRLW velocity
when compared to other wave  types. Besides, there is no
need to measure second and third-order constants. Nev-
ertheless, there are some limitations: first, the measured
stress is an average value in a given wave path, which
results in poor information on regions far away from the
travel path; second, the measurement’s accuracy can be
affected by many  factors, such as temperature, grain size,
and material texture. Third, when �r = 90◦, the refracted
wave corresponds to the CRLW [112]. Finally, this wave  is a
combination of shear, longitudinal, Rayleigh, and incident
components (see Fig. 9) [108].

4 Lamb/plate waves: guided waves  produced in thin metal
whose thickness is comparable to the wavelength of ultra-
sonic wave (smaller than 1.9 cm). Unlike bulk waves,
the acoustoelastic behavior of plate waves  is frequency-
dependent. Besides, lamb waves  propagate over longer
distances than other bulk waves  (longitudinal, transverse,
Rayleigh) and, still, are sensitive to damage, stress, surface
condition and temperature changes [113–117]. As pointed
out in a paper by Gandhi et al [118], the use of several Lamb
wave modes and frequencies for a uniaxial loaded alu-
minum  plate resulted in an experimental data set in good
agreement with theoretical predictions. Still, more  work in
third order constant calculation for specific materials would
be helpful to reduce the gap between theoretical predictions
and experimental results [118].

Among these three methods, the TOF is the most used
one, followed by CRLW. The longitudinal and transverse waves
combination is still not achievable in practice. Another pos-
sibility is the measurement of acoustoelastic birefringence,
schematically shown in Fig. 10. In this case, there is one P-wave
(longitudinal) and two T-waves (transversal) with orthogo-
nal polarizations propagating at different velocities [110]. The
acoustoelastic birefringence is based on the double refraction
of waves. The phenomenon is also observed in optics, where
rays of incident light split in two as they pass through certain
types of materials [119].

3.2.  Ultrasonic  waves  sources

A laser source can generate both acoustic and ultrasonic
waves, according to the frequency of the signal. The func-
tioning principle of this device, as illustrated in Fig. 11a, at
first there is a pulsed laser – typically represented by Nd:YAG
apparatus using a 1064 nm wavelength [120] - that creates
an ultrasonic wave directed to the sample. Then, a separate
continuous wave  (CW) laser ultrasonic receiver detects this
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Fig. 9 – Wave components in a specimen (adapted from Ref. [112]).

Fig. 10 – Schematics of acoustoelastic birefringence measurements using P-wave and two T-waves [109].

Fig. 11 – Schematics of Laser Ultrasound generator (adapted from Ref. [121]).

generated wave  as it scatters from the surface of the sample
[121]. Fig. 11b illustrates how Rayleigh surface waves  can locate
a shallow defect: Rayleigh (R) and Shear (s) waves  are gener-
ated on the left of the surface and travel through the material
until a defect is found. Then, after partially scattering from the
defect, Shear (s) and compressional (p) waves  are created and
reach the surface on which they are detected [121]. Combining
surface R waves  with Volume waves  allows the measurement
of more  complex fields of RS [122]. The processed signal allows
the detection of internal defects such as voids, cracks, and

pores. In laser-based ultrasound, the signal of interest is oscil-
lating bursts. One of the advantages of using laser is its greater
flexibility, which allows performing measurements on curved
or recessed surfaces [121]. Since laser ultrasound was success-
fully implemented for the detection of shallow pores or voids
[121], a similar analysis could be performed to study RS.

In ultrasonic waves  applied to NDT, Critically Refracted
Longitudinal Wave (CRLW) method is the most used. After cal-
ibration and further calculation of acoustoelastic coefficients,
the wave traveling speed (longitudinal and transverse) is mea-
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sured. Then, using Eqs. (5), macro stresses can be determined
along the wave  path over large volumes of material, typically
a few cubic millimeters [20].

Vpp − V0
L

V0
L

= k1�p + k2 (�q + �s)
Vpq − V0

T

V0
T

= k3�p + k4�q + k5�s

(5)

Vij is the wave  velocity in the direction i and polarized in j. V0
L

and V0
T are the isotropic longitudinal and transverse speeds,

respectively. Directions p (longitudinal), s (shear), and q are
orthogonal. Finally, kn (n = 1. . .5) are coupling constants. As the
wave propagates parallel to stress, more  data is obtained. This
method has high efficiency because wave  velocity depends
on microstructural inhomogeneities. As a consequence, voids,
defects, or RS imply in different signal intensity and pattern
[20,45].

Yan et al. [123] considered the measurement of stress
in SLM-made 316 L stainless steel samples using the CRLW
method. The UT test setup consisted in a set of transducers –
transmitter and receiver (bandwidth: 2,7 – 7,5 MHz; diameter:
6 mm;  central frequency: 5 MHz); an ultrasonic pulse trans-
mitting instrument and an oscilloscope (sampling frequency:
2,5 GHz). As AM parts are highly anisotropic, one of the main
concerns of their work was regarding the reliability of this UT
method. Authors found that as each of the samples is scanned,
the acoustoelastic coefficients are linked to the SLM scan-
ning strategy. Besides, anisotropic microstructure will produce
small changes in the acoustic time, which can lead to signif-
icant fluctuations in stress measurement. In this sense, it is
necessary to consider a correction factor in the linear acous-
toelastic formula when using CRLW method for the stress
analysis of SLM samples.

Another method to generate acoustic waves  for NDT is
the Impulsive Stimulated Thermal Scattering (ISTS). It con-
sists of the optical excitation of a material using a YAG:Nd
laser in the infrared range and detection of the narrowband
Surface Acoustic Waves (SAW). This technique can be widely
implemented for repeated measurements in a single point of a
sample since there is no local ablation and low surface heating
by the action of the laser [95].

3.3.  UT  assessment  of  RS  in  AM  processes

In a study by Guz’ et al. [46], parts were analyzed using UT,
with an emphasis on biaxial RS measurement. A long strip
made of aluminum alloy AMG6 (Al - 6% Mg)  was evaluated
under the influence of different additional machining, aim-
ing for RS relieving (Fig. 12). Initially, a measurement of RS –
at a frequency of 5 MHz  [122] – is made right after the depo-
sition of a bead along the edge of the strip (curve 1). Then,
the part is subjected to a stress of 50 % �y - yield stress
(curve 2, first machining step) and, finally, a stress of 100%
�y (curve 3, second machining step). Considering all measured
RS curves (Fig. 12), it can be stated that further machining pro-
cesses decrease RS. In analogous cases, parts were subjected to
heat and explosive treatments and were then analyzed by UT.
Measurements indicated a significant reduction of RS (both
biaxial and triaxial). Nevertheless, RS measurement accuracy
and error are around 10−5 [36].

Fig. 12 – RS measurement of samples by ultrasonic-based
NDT (adapted from Ref. [36]).

As most of the measurements occur in finished parts,
Cerniglia et al. [124] performed an analysis of defects in Laser
Metal Deposition (LMD) Inconel components. By combining
FEM with laser ultrasonic measurements, near surface and
surface defects with a size greater than 100 �m and depth up to
700 �m were successfully characterized. This same approach
could be applied to study RS – type I – macrostresses (Fig. 8),
including high precision analysis.

Spatially Resolved Acoustic Spectroscopy (SRAS) is a fast
and high-resolution NDT method, based on laser ultrasound.
Typically, SRAS apparatus uses two separate lasers (Fig. 13):
one for thermoelastic generation of a SAW onto a specific
sample and the other for the measurement of corresponding
signal, making it able to detect surface and near subsurface
features [125]. This technique is applicable to samples of any
size, including varying degrees of surface finish and in differ-
ent depths, typically in the 10–100 �m range. Recent research
in the field is enhancing SRAS capability to treat rougher
surfaces, one of such advances is the inclusion of a Fabry-
Pierot interferometer and a broad array of sensors in the SRAS
hardware. Since this method allows the monitoring of grain
structures and has good spatial resolution (typically around
50 �m)  [126], in principle, RS could be monitored by acoustic
background correlation.

Finally, SRAS has great potential to become an in-situ NDT
tool in AM processes, due to its compact size, good spa-
tial capability, and reliability. Still, as pointed out by authors
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Fig. 13 – Typical SRAS apparatus configuration (adapted
from Ref. [125]).

Hirsch et al. [125] and Smith et al. [127], SRAS measure-
ment speeds, effects of surface roughness and data exchange
between AM machine and SRAS are the most critical issues
that require further work to obtain a competitive in-situ
method for RS and defects monitoring.

Another alternative to assess RS is the hybrid method pro-
posed by Bescond et al. [128,129], which results from the
combination of a SAW with Laser-generated Surface Skim-
ming Longitudinal Wave (LSSLW), which is more  sensible to
RS. By this method - based on monitoring the small ultrasonic
velocity changes - RS of shot peened samples were determined
and were found to be in good agreement with X-ray experi-
ment. Still, as measurements were performed, the surfaces of
the samples were damaged.

In two recent studies by Zhan et al. [130,131], RS of TC4 Ti
alloy and 7075-Al alloy samples are assessed by a laser ultra-
sonic technique and hole-drilling method. As in the previous
study by [129], the functioning principle of the laser ultrasonic
system is based on the measurement of small velocity changes
of laser-generated SAW.

Concerning the investigation on RS of TC4 Ti parts [131],
the laser ultrasonic system setup has some of the features
observed in Fig. 13: a laser generator of ultrasonic waves  and
a laser vibrometer for signal detection, with the inclusion of
a pre-stress loading device – for acoustoelastic constant mea-
surement and creation of stress fields in the samples. Then,
RS is measured by laser ultrasound and compared with exper-
imental data from hole-drilling method which proved to be
equivalent. The influence of process parameters – heat input,
welding speed and heat treatment – in the RS was observed.

The results showed that heat input has major influence on the
RS of TC4 Ti parts.

As for the study on 7075 aluminum parts [130], a similar
experimental setup from [131] was used. As in the previous
study, the influence of process parameters on the RS was ana-
lyzed and showed that welding speed is the most relevant
factor. Finally, RS experimental results from laser ultrasound
and hole drilling methods presented small differences, high-
lighting the capability of the ultrasonic technique.

Rieder et al. [132] proposed an online monitoring tool for
SLM process (which share the same functioning principle as
DMLS). Several types of defects, such as voids and cracks can
be determined during SLM part fabrication: as each layer is
scanned by acoustic waves, spectra are obtained and perturba-
tions can reveal the presence of anomalies (Fig. 14). Moreover,
a qualitative evaluation seems to be possible on the RS – with
the proper setup [132].

Complementarily, Cerniglia et al. [133] proposed an in-line
UT inspection device of Laser Powder Deposition (LPD, sim-
ilar to the DMD process) components. The authors coupled
an Nd: YAG pulsed laser (source of acoustic waves) and an
interferometric unit (laser receiver) to an LPD machine. Dur-
ing fabrication of Inconel parts, several induced flaws  were
accurately detected using UW (Rayleigh) up to 30 MHz  and
corresponding shortest wavelength of 9.6 �m.  The prototype
proved to be competitive with X-Ray computed tomography,
with the additional advantage of inspecting each layer imme-
diately after solidification. Still, some challenges need to be
overcome, especially in the surface roughness effect and auto-
mated data exchange and analysis.

In another study by Cerniglia et al. [134], a new laser ultra-
sound device is evaluated to observe defects in LMD-Inconel
600 components. At first, sample 1 was analyzed only by
laser ultrasound (wavelength: 532 nm;  detection bandwidth:
1–50 MHz and laser spot: 200 micrometers), resulting in a total
of four defects detected, whose diameter range is [420, 640]
(micrometer) and depth range is [0.6, 1.3] (mm).  In the fol-
lowing, sample 1 was analyzed using Laser Thermography,
resulting in similar experimental data as observed in Laser
Ultrasound. Then, both techniques were used to analyze sam-
ple 2, and three defects were spotted. The diameter range is
[200, 490] (micrometer) and depth range is [0, 0.3] (millimeter).
As such, this new technique allows more  accurate evaluation
of defects (through B-scan image  analysis), higher sensitiv-
ity and wide detection bandwidth. Still, there are limitations
regarding the range of defect size/depth ratio combination,
high cost of equipment hardware and software, and, signal-
to-noise is relied to the light collected

In recent work by Bond et al. [135], an ultrasonic in-situ
system is tested for monitoring Directed Energy Deposition
(DED) process. During the DED fabrication, acoustic signals
were obtained from piezoelectric acoustic sensors coupled
to the build plate. These signals were found in the 150 kHz
to 2 MHz range. Further on, a spectral feature-based cluster-
ing method was used to analyze acoustic signals and create
a specific signature for different DED processing conditions.
This method has potential to detect anomalies such as defects
and fabrication faults, and, can be implemented for parameter
optimization and control.
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Fig. 14 – Defect detection using ultrasonic signals [132].

A novel approach to monitor AM parts during fabrication
has been outlined by Xu et al. [96]: instead of scanning a sin-
gle layer from a part, as performed in the publications cited
above, Xu et al. focused on the spectral characteristics of ultra-
sonic elastic wave  propagation, such as sample frequency and
wave speed. Using an ultrasonic testing instrument and a
series of transducers, a series of periodic phononic crystal
artifact (PCA) – Polylactic Acid samples produced by Fused
Filament Fabrication (FFF) were studied. This specific type of
structure reproduces the complexities of the build and reveal
some of the features present in AM processes and materials,
such as defects and roughness. Finally, authors stated that
this methodology can be implemented in any AM available
technologies; monitor defects, mechanical characteristics and
material internal structures [136]; and, it is able to perform
process corrections in real time.

Further developments are required to enhance exchange
between manufacturing units and ultrasonic systems. Lastly,
the effect of the surface is critical: excessive surface roughness
and poor surface finish increase signal noise and attenuation,
ultrasonic wave  dispersion, besides of not producing further
relevant information and lowering the quality of ultrasonic
signals [137,138]. Thus, UT is being more  intensively applied
in parts with lower surface roughness (10−20 �m),  produced
with PBF methods rather than DED process (average roughness
around 80 �m).

4.  Summary  and  perspectives

In this study, the advantages and limitations of UT were pre-
sented. This method has great potential to be employed in
the next generation of metal-AM machines, focusing on the
measurement of RS, voids, roughness, and defects. The most
remarkable challenges remain in the field of data exchange,
surface effects and spatial resolution [11,139]. Namely, the
optimization of the link between UT apparatus and the AM
hardware is required.

The complexity of AM parts brings another challenge to UT,
since it is limited to simple geometries. Moreover, detected
sound signatures have to be compared to a reference sound

signature and, there is any precise information on the origin
of sound signature changes (microstructure, stresses, material
properties change) [79].

Existing in-situ monitoring tools for commercial systems
are quickly evolving: EOSTATE Meltpool® is able to monitor
the entire building process through four separate and inde-
pendent modules (Base, PowderBed, Meltpool, Exposure OT),
increasing control on machine parameters and part quality.
Besides, in a recent development with MTU Aero, a promising
contact UT device was created including high spatial res-
olution (40 �m)  and capability to measure porosities [140].
Furthermore, ARCAM LayerQam® allow to monitor porosity
and defects up to 100 �m over all build chamber regard-
ing before and after each layer. Another interesting tool is
ARCAM xQam, an X-ray automated detector employed to cal-
ibrate the electron beam of EBM machines and it has the
potential to be used in material characterization [141]. At
present, most of these solutions are based on high-speed
and high-resolution cameras, IR/near IR cameras and X-ray
backscatter sensors. Nevertheless, UT-based alternatives such
as Surface Resolved Acoustic Spectroscopy (SRAS), backscatter
ultrasound, and Surface Resolved Acoustic Microscopy (SRAM)
are under intense development, enhancing their features and
are expected to meet higher standards in the short to medium
term [142].

As abnormalities - voids, defects, and excessive RS - are
detected during fabrication, AM machine parameters have to
be quickly updated and their effects (individually or combined)
on RS have to be understood. Also, discerning the relationship
between multiple variables such as material properties and
AM parameters is crucial to a more  precise analysis and con-
trol of RS [30]. Solving this issue is critical to increase quality
and accuracy (DED methods), and productivity (PBF methods).

Table 9 summarizes actual UT capabilities, regarding accu-
racy, frequencies and spatial resolution.

Research in the field of RS is advancing. Nevertheless, many
aspects require attention, such as the influence of RS on the
properties (durability and fatigue, creep, and corrosion resis-
tance) of AM parts. In this sense, the development of a broad
thermomechanical model in good agreement with experimen-
tal data would enhance the control and mitigation of these
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Table 9 – UT techniques and respective capabilities.

Technique Wave frequency (MHz) Accuracy Resolution (micrometer) Reference

LSSLW 150 5 × 10−4 – [127]
SRAS 14 Speed-dependent 20 [124]
UT based on Nd:YAG pulsed laser 30 10−5 100–800 [123]

stresses, especially in the field of AM [143]. Moreover, there is
a growing need of finer control of these stresses in AM tech-
nologies: new developments such as hybrid instrumentation,
involving different NDT methods, could bring more  informa-
tion on part abnormalities and increase production speed [11].

A specific set of norms for NDT of AM parts is in progress
under the ISO/ASTM – DTR 52905 initiative. This will bring
more knowledge on how to perform NDT in AM parts, with
high levels of accuracy and repeatability, considering the intri-
cate nature of AM.
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AW:  Acoustic Waves
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DIC: Digital Image  Correlation
DMLS: Direct Metal Laser Sintering
EBDM: Electron Beam Direct Melting
EBM: Electron Beam Melting
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FEM: Finite Element Method
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IFF: Ion Fusion Formation
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L-DED: Laser-based Directed Energy Deposition
LENS: Laser Engineering Net Shaping
LMD: Laser Metal Deposition
LMF: Laser Metal Fusion
L-PBF: Laser-based Powder Bed Fusion
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LSSLW: Laser-generated surface skimming longitudinal wave
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Summary

An efficient method for generating the mass matrix inverse of structural
dynamic problems is presented, which can be tailored to improve the accu-
racy of target frequency ranges and/or wave contents. The present method
bypasses the use of biorthogonal construction of a kernel inverse mass matrix
that requires special procedures for boundary conditions and free edges or sur-
faces and constructs the free-free inverse mass matrix using the standard FEM
procedure. The various boundary conditions are realized by the the method of
localized Lagrange multipliers. In particular, the present paper constructs the
kernel inverse matrix by using the standard FEM elemental mass matrices. It
is shown that the accuracy of the present inverse mass matrix is almost identi-
cal to that of a conventional consistent mass matrix or a combination of lumped
and consistent mass matrices. Numerical experiments with the proposed inverse
mass matrix are conducted to validate its effectiveness when applied to vibration
analysis of bars, beams, and plain stress problems.

KEYWORDS

explicit time integration, inverse mass matrix, localized Lagrange multipliers, partitioned analysis

1 INTRODUCTION

Recently, improvements of FEM mass matrices have been receiving an intense attention in the computational mechan-
ics community.1-5 The need for mass matrix improvements comes from 2 distinct motivations: efficient large explicit
time integration step lengths for the analysis of highly nonlinear transient structural dynamics and dispersion accuracy
improvements for wave propagation analysis.6-10 The first one has been addressed by adopting lumped mass matrices that
improves computational efficiency and at the same time decreases the highest frequency (often equalling to the high-
est mesh frequency). The second need arises from the requirements of high accuracy in the transmitting forces with
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high-frequency stress waves. This is where a diagonalized mass matrix may not yield sufficiently accurate results, hence
the search for nondiagonal mass matrix continues to date.

Ideally, an inverse mass matrix should possess the following properties:

1. It should accurately capture both low and intermediate-frequency response components.
2. Except for discontinuous wave propagation problems, its numerically stable explicit integration step size should be

much larger than using the standard mass matrix.
3. Its inverse should be inexpensive to generate, preferably without factorization computations.

Recently, Tkachuk and Bischoff5 presented an innovative method for constructing an inverse mass matrix based on
Hamilton's principle with momentum and displacement (p,u) variables. A key idea in their work is the discretization of
the momentum-based kinetic energy in terms of a set of biorthogonal basis functions corresponding to the displacement
basis functions. The method proposed in Tkachuk and Bischoff5 resorts to nonstandard finite element construction with
special tailoring for treating the Dirichlet boundary terms. Hence, considerable modifications of the existing finite element
software modules are required. When one contemplates element-by-element construction of the inverse of the global mass
matrix, many degrees of freedom belong to the cross points and boundary nodes, which implies that one has to replace
the existing mass matrix routines by specially constructed mass matrix inverse.

The present method, while using the same momentum-velocity formulation as adopted in Tkachuk and Bischoff5

only as a formulation vehicle, uses standard FEM procedures, thus alleviates the special treatments associated the use
of biorthogonal construction and mass matrix modification via a penalty procedure. Specifically, we outline the present
method as follows:

First, we abandon the biorthogonal generation of the elemental kernel inverse mass matrix. Instead, we use the standard
FEM mass matrix with a diagonalized mass-like matrix to construct the elemental kernel inverse matrix.

Second, the present proposed method does not require the penalty insertion to improve the accuracy of the procedure
presented in Tkachuk and Bischoff.5 It is shown that the accuracy of the present method is almost identical to that of a
weighted elemental mass matrix of a lumped and consistent elemental mass matrix.

Third, boundary conditions are enforced by the method of localized Lagrange multipliers,11-14 hence the present method
needs only free-free inverse matrices. This makes the present method applicable to all the existing element types. Since
the number of boundary degrees of freedom is usually substantially smaller than the those of the resulting size of the
unknown equations, the cost associated with the enforcement of the boundary conditions via the localized method of
Lagrange multipliers is insignificant as will be shown subsequently.

The paper is organized as follows. Section 2 derives from Hamilton's principle the (p,u) mixed equations of elas-
todynamics and describes the direct construction of inverse mass matrices through biorthogonal basis functions. The
incorporation of boundary conditions into the inverse mass matrix is described in Section 3, together with its mathe-
matical formalization through the use of a projector. Furthermore, a new method for selective mass scaling that reduces
the maximum frequencies is described in Section 4. In Section 5, a series of numerical examples is solved and compared
with analytical solutions to demonstrate the accuracy of the proposed methodology. Finally, Section 6 closes with some
concluding remarks.

2 BASIS FOR CONSTRUCTING INVERSE MASS MATRIX VIA THE
LOCALIZED LAGRANGE MULTIPLIERS

The prevailing practice for computing the mass matrix M in the finite element method is to use a bilinear form of the
system kinetic energy T, viz,

T = ∫Ω

1
2
𝜌v(x, t) · v(x, t) dΩ ≈ 1

2
u̇(t)TM u̇(t), (1)

where v(x, t) and u̇(t) are the continuum velocity and discrete approximate velocity, respectively. Since our objective is to
generate the inverse mass matrix directly, instead of using matrix inversion, we use a dual form of the kinetic energy:

T = ∫Ω

1
2𝜌

p(x, t) · p(x, t) dΩ ≈ 1
2

p(t)TCp(t), (2)

where p(x, t) and p(t) are, respectively, the continuum and discrete approximate momentum vectors, and C is defined as
the reciprocal mass matrix (RMM).
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It will be shown that an inverse of the mass matrix can be obtained via

M−1 = A−TCA−1, (3)

where A is the dual-base projection matrix, that can be transformed into a diagonal area/volume-like matrix, hence the
computational simplicity of obtaining an inverse of the mass matrix via this new route.

To this end, we invoke Hamilton's principle for constrained elastodynamic problems. This principle states that “the
path followed by a dynamic system is the one which minimizes the action integral of the Lagrangian” condition that can
be expressed using the following three-field variational form:

𝛿H(u,p,𝓁) = ∫
t2

t1

𝛿 {T(u̇,p) − U(u,𝓁) + W(u)} dt = 0, (4)

where 𝛿T is the virtual kinetic energy, 𝛿U the virtual elastic energy, and 𝛿W the virtual work done by the external loads,
magnitudes that can be expressed:

𝛿T = ∫Ω
𝛿(1

2
p · u̇) dΩ, (5)

𝛿U = ∫Ω
𝛿𝜺 ∶ 𝝈 dΩ + ∫Γ

𝛿 {𝓁 · (u − ub)} dΓ, (6)

𝛿W = ∫Ω
𝛿u · f dΩ (7)

with known displacement boundary conditions ub imposed at interface𝛤 by using a field of localized Lagrange multipliers
𝓁 and external body forces per unit volume f acting on 𝛺.

By making use of the momentum-velocity relation (p = 𝜌u̇) in the following identity:

1
2

p · u̇ = p · u̇ − 1
2𝜌

p · p, (8)

we can obtain an equivalent expression for the virtual kinetic energy per unit volume:

𝛿
(1

2
p · u̇

)
= 𝛿u̇ · p + 𝛿p ·

(
u̇ − 1

𝜌
p
)

(9)

and finally performing an integration by parts of the second term of the last equation yields:

∫
t2

t1

𝛿u̇ · p dt = −∫
t2

t1

𝛿u · ṗ dt (10)

relation that can be used to eliminate the virtual velocity field from the formulation.
Introducing previous identities, (9) and (10), into the principle of stationary action 4, we obtain the final 3-field

variational form of the Hamilton principle for constrained elastodynamics:

𝛿H(u,p,𝓁) = ∫
t2

t1

{
∫Ω

𝛿p ·
(

u̇ − 1
𝜌

p
)

dΩ − ∫Ω
(𝛿u · ṗ + 𝛿𝜺 ∶ 𝝈) dΩ + ∫Ω

𝛿u · f dΩ

+∫Γ
𝛿u · 𝓁 dΓ − ∫Γ

𝛿𝓁 · (u − ub) dΓ
}

dt = 0,
(11)

expression that will be used to derive the equations of motion.
Discretization in space of this mixed form is performed by using independent shape functions for displacements,

momenta, and Lagrangian multipliers. We conduct then a standard mixed FEM discretization with independent shape
functions for the 3 fields:

u = Nuu, p = Npp, 𝓁 = N𝜆𝝀, (12)
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and introducing these approximations in (11), one obtains the following set of semidiscrete equations:

ATu̇ − Cp = 0 Momentum equation, (13)

Aṗ + B𝝀 = r Equilibrium equation, (14)

BTu − Lbub = 0 Boundary (and interface) constraints, (15)

−LT
b𝝀 = 0 Newton's 3rd law on the boundaries, (16)

where vector r = f − f int is the external-internal forces residual, and the matrix components are expressed:

A = ∫Ω
NT

u Np dΩ, (17)

C = ∫Ω

1
𝜌

NT
p Np dΩ, (18)

B = ∫Γ
NT

u N𝜆 dΓ, (19)

Lb = ∫Γ
NT

𝜆 Nub dΓ, (20)

where A is the global projection matrix, C the global reciprocal mass matrix, B the boundary assembly operator, and Lb
is the Localized multipliers assembly matrix.

Eliminating symbolically the momentum variable (p) from (13) and (14), one obtains the classical equation of motion
expressed in terms of displacements:

(
AC−1AT) ü + B𝝀 = r (21)

with the mass matrix approximated as
M = AC−1AT (22)

and observe that there must exist an inverse mass matrix (denoted as M−1) given by:

M−1 = A−TCA−1 (23)

assuming that the global projection matrix is invertible.
Since the objective of the present paper is to obtain inverse mass matrices in efficient and accurate ways, one must

insist on easily to invert diagonal or narrowly banded projection matrices. This can be accomplished by diagonal-
izing the projection A-matrix given in (17), leaving the task of constructing the reciprocal C-matrix efficiently and
accurately.

2.1 Biorthogonal basis functions
Observing (17) and (23), we realize that a careful selection of the basis functions can simplify the calculation of the mass
matrix inverse. For this task, Tkachuk et al5 proposed the use of biorthogonal basis functions15 because they produce a
diagonal projection matrix in the form:

Ae = ∫Ωe

NT
uNp dΩ, where [Ae]ij = 0 for i ≠ j (24)

with a trivial inverse that permits to compute the inverse mass matrix directly from the RMM. We exemplify this in the
following simple example.
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Example 1. Evaluate the projection matrix and the reciprocal mass matrix for a 1-D 2-node linear bar element of
length Le and density per unit length 𝜌e.

For a 2-node linear element with one DOF per node, the basis functions are expressed:

Nu =
[

1
2
(1 − 𝜉) 1

2
(1 + 𝜉)

]
,

and their associated biorthogonal basis functions are given by

Np =
[

1
2
(1 − 3𝜉) 1

2
(1 + 3𝜉)

]
,

hence the projection matrix 17 is evaluated as

Ae = ∫
1

−1

[ 1
4
(1 − 𝜉)(1 − 3𝜉) 1

4
(1 − 𝜉)(1 + 3𝜉)

1
4
(1 + 𝜉)(1 − 3𝜉) 1

4
(1 + 𝜉)(1 + 3𝜉)

]
Le

2
d𝜉 = Le

2

[
1 0
0 1

]
,

where we observe that the projection matrix Ae is diagonal (by design) and indeed equal to the lumped mass matrix
(LMM) computed with unit density. Next, we evaluate analytically the reciprocal mass matrix from its definition 18:

Ce = ∫
1

−1

1
𝜌e

[
1
4
(1 − 3𝜉)2 1

4
(1 − 3𝜉)(1 + 3𝜉)

1
4
(1 + 3𝜉)(1 − 3𝜉) 1

4
(1 + 3𝜉)2

]
Le

2
d𝜉 = Le

2𝜌e

[
2 −1
−1 2

]

and finally use expression 23 to obtain the inverse mass matrix:

M−1
e = A−T

e Ce A−1
e = 2

𝜌eLe

[
2 −1
−1 2

]

to confirm that this is exactly the analytical inverse of the consistent mass matrix (CMM). From this simple example,
we conclude that it is possible to compute the inverse of the mass matrix without expensive matrix inversions and
that, at least for simple linear elements, the result is exact. At the same time, we realize that the projection matrix can
be effectively computed from the LMM.

However, in presence of Dirichlet boundary conditions or cross points, things get more complicated because the diago-
nalization property of the biorthogonal basis functions is lost for the constrained DOFs and the biorthogonal bases need
to be modified accordingly.15 This problem has been extensively studied by Tkachuk et al5 that proposed a solution using
the following velocity-momentum relation:

u =
{

uf
ū

}
→

[
I AT

d

]{ u̇f
v̄

}
= Cp, (25)

where the total displacements u have been partitioned into free uf and fixed ū. The constrained DOFs produce a populated
matrix Ad that requires special construction, depending upon the element types used and the BC configuration.

Reference5 discusses various ways of constructing matrices Ad and C this way, namely, by using biorthogonal shape
functions and inserting penalty terms with adjustable parameters together with somewhat complicated ways of account-
ing for boundary conditions, etc. This process complicates enormously the formulation. Hence, it is not possible to use, in
a straightforward manner, the existing FEM software without considerable modifications. In the present paper, we bypass
this procedure and use standard FEM data structure.

2.2 An alternative method
For the calculation of the inverse mass matrix, biorthogonal basis functions must be first build for each particular finite
element. However, basis functions are known for a limited number of elements, such as line, triangular, quadrilateral, and
tetrahedral elements. Therefore, we propose a different route for the evaluation of the mass matrix inverse that bypasses
this necessity through the following steps:

1. Consider all the structures as free-floating.
2. Approximate the element projection matrix Ae by a lumping of the element mass matrix.
3. Compute the element reciprocal mass matrix Ce from a direct inversion of the element mass matrix.
4. Assemble the global projection and reciprocal matrices and compute the global mass matrix inverse.
5. Impose boundary conditions using localized Lagrange multipliers.
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The first 4 steps of this process are described next and the last step, which is a little bit more involved, will be analyzed
in the next section.

First, we consider an element at a time by using the element mass matrices existing in standard FEM software systems.
Second, we use the element mass matrix to approximate the element projection matrix by diagonalization, viz,

[Ae]ii =
1
𝜌e

∑
j
[Me]ij, (26)

assuming that the density is constant inside the element. Third, the elemental reciprocal mass matrix is evaluated
inverting numerically the element mass matrix:

Ce = AT
e M−1

e Ae, (27)

where (Ae,Ce,Me) are elemental matrices, and particularly, Ae is a diagonalized matrix.
Finally, we proceed with the assembly of the global reciprocal mass matrix:

C =
ne
A

e=1
Ce, (28)

and the global projection matrix

A =
ne
A

e=1
Ae, (29)

observing that as long as the elemental Ae is diagonal, so is the assembled matrix A and its inverse. These steps permit to
evaluate the inverse of the global mass matrix through expression 23 in an efficient way.

3 INCORPORATION OF BOUNDARY CONDITIONS

As we mentioned, in presence of Dirichlet boundary conditions, a direct computation of the mass inverse requires compli-
cated modifications of the biorthogonal shape functions. We eliminate the necessity of these modifications by considering
the structures as free-floating and applying the boundary conditions through localized Lagrangian multipliers.11-14 To
explain the enforcement of boundary conditions, we reorganize the semidiscrete equations of motions 13 to (16) to obtain
the following partitioned equation set:

⎡
⎢⎢⎣

M B 0
BT 0 −Lb
0 −LT

b 0

⎤
⎥⎥⎦

{ ü
𝝀
üb

}
=

{ r
0
0

}
, (30)

where the second equation is simply twice time-differentiated expression of (15).
Let us assume now that the boundary acceleration vector (üb) consists of entirely the prescribed boundary quantities,

regardless whether they are zero or nonzero (eg, ground excitations of earthquakes or car tires rolling on the road). In this
case, we obtain the accelerations (ü) from the first equation of (30) as

ü = M−1 (r − B𝝀) , (31)

in which once again we emphasize that the computation of M−1 = A−TCA−1 does not require additional computational
effort because the global projection matrix A is diagonal.

Then, substitute the accelerations obtained above into the second equation of (30):

BTM−1 (r − B𝝀) − Lbüb = 0 (32)

to compute the Lagrange multipliers
𝝀 =

[
BTM−1B

]−1 (BTM−1r − Lbüb
)

(33)

and substitute them back in (31) to obtain the final accelerations

ü = M−1
b r + M−1B

[
BTM−1B

]−1Lbüb (34)

with a constrained inverse mass matrix:

M−1
b = M−1 − M−1B

[
BTM−1B

]−1BTM−1, (35)
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defined as the inverse mass matrix incorporating the applied boundary conditions. Once again, since the size of
[
BTM−1B

]
is small, pertaining to the boundary degrees of freedom, its inversion is trivial. Notice that when the structure is free-free,
one has B = 0 so that M−1

b is simply the inverse mass matrix.
It is also noted that the degrees of freedom for ü consists of not only the interior ones but also the constrained boundary

displacements. Consequently, M−1
b would be singular corresponding to the constrained boundary degrees of freedom.

One way to eliminate the almost singular mass matrix is simply to eliminate the rows and columns of M−1
b corresponding

to the boundary degrees of freedom. Its justification will be examined next.

3.1 Projection of the mass matrix
The proposed element-independent and biorthogonal-free derivation of the global inverse mass matrix described in
section 2.2 and subsequent evaluation of final accelerations through (34) can be elegantly expressed as

ü = M−1
b r + (I − )Lbüb, (36)

where we understand the constrained inverse 35 as a projection of the free-floating inverse mass matrix on a subspace
incorporating the boundary constrains, ie,

M−1
b = M−1, (37)

with an operator
 = I − M−1B

[
BTM−1B

]−1BT (38)

that projects any acceleration vector on the subspace of accelerations, automatically fulfilling the zero boundary
conditions (üb = 0).

Projector 38 presents the following 2 interesting properties:

BT = 0, (39)

M−1B = 0 (40)

that will be used next to derive some important conclusions.

Proposition 2. The rows and columns of M−1
b corresponding to constrained DOFs are identically zero.

Proof. Note that premultiplication and postmultiplication by the boundary extraction operator B selects the rows and
columns corresponding to constrained DOF positions. Thanks to properties 39 and 40 we find that

BTM−1B = 0.

Proposition 3. Projector  applied to the free-floating body accelerations of the system afree = M−1r, imposes zero
Dirichlet boundary conditions to the constrained DOFs.

Proof. Note from (36) that, if the boundary conditions are zero (üb = 0), the final accelerations can be written as

ü = afree,

and thanks to property 40 we also observe that the projector filters out the unbalanced-force components (Br)
associated to the fixed DOFs, ie,

ü = M−1 [Br + (I − B)r] = M−1 (I − B) r,

where (I − B)r is the external-internal residual forces of the free DOFs.

As a summary, the complete process followed to obtain the inverse mass matrix M−1 and the projector  is contained
in Table 1. Note that in dynamic analyses, the product of these 2 matrices M−1

b is never evaluated explicitly. Hence, the
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TABLE 1 Procedure for the computation of the
constrained inverse mass matrix M−1

b

Step 1: Assemble diagonal projection matrix:

[Ae]ii =
1
𝜌e

∑
j
[Me]ij → A =

ne
A

e=1
Ae

Step 2: Assemble reciprocal mass matrix:

Ce = AT
e M−1

e Ae → C =
ne
A

e=1
Ce

Step 3: Evaluate free-floating inverse mass matrix:
M−1 = A−TCA−1

Step 4: Compute projector:
 = I − M−1B

[
BTM−1B

]−1BT

Step 5: Apply boundary conditions by projection:
M−1

b = M−1

Step 6: Eliminate rows and columns of M−1
b .

2-step solution process consists of multiplying the residual by the mass inverse to compute free-floating body accelerations
and later by the projector to apply boundary conditions. Multiplication of the projector times a vector requires also the
factorization of BTM−1B, but this is a small matrix of size equal to the number of BCs.

4 SELECTIVE MASS SCALING

In classical explicit time-integration methods, maximum time-step size for stability is controlled by the highest natural
frequency of the system.16 The basic idea behind selective mass scaling17-21 is to alter the mass matrix artificially to reduce
the high frequencies of the dynamical system without affecting the low-mid frequencies.

In this section, we propose a simple method to reduce the highest frequencies of the system that can be combined with
the proposed mass matrix inverse method for best efficiency. The mass scaling process is applied element by element. To
start, the original mode shapes of the element are first computed by solving the eigenvalue problem:

KeXe = MeXeΛe, (41)

where Xe is the matrix containing the orthogonal mode shapes of the element and the diagonal matrix Λe = XT
e KeXe

contains the original eigenfrequencies of the problem.
The n orthogonal mode shapes of the element can be separated into high- and low-frequency modes in the form

Xe = [Φl, Φh] , (42)

where we have r retained low-frequency modes 𝜱l and s = n − r scaled high-frequency modes 𝜱h.
To scale only the high-frequency modes of the element, without affecting the low frequency modes at the same time,

we define a new projector:
e = I − Φl

[
ΦT

l Φl
]−1ΦT

l , (43)
with the following filtering property

eXe = [0, Φh] , (44)
and then modify the element mass matrix in the form

M𝛼
e = Me + 𝛼T

e Mee, (45)

where 𝛼 ≥ 0 is a mass scaling parameter.

Proposition 4. With the mass scaled matrix M𝛼
e , the high frequencies of the element are scaled by a factor (1 + 𝛼)−1

maintaining the element low frequencies unaffected, ie, the new element eigenvalues are given by the diagonal matrix:

Λ𝛼
e =

[
Ir 0
0 (1 + 𝛼)−1Is

]
Λe,

with the same modes Xe than the original element.
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Proof. It is very simple to demonstrate that the new scaled-mass eigenvalue problem

KeXe =
(
Me + 𝛼T

e Mee
)

XeΛ𝛼
e

has exactly the same eigenvectors than the original one, with the same r low frequencies and s reduced high
frequencies. This is demonstrated premultiplying by XT

e that produces, thanks to property 44, the new eigenvalues

Λe =
(
In + 𝛼[0, Φh]TMe [0, Φh]

)
Λ𝛼

e =
(

In +
[

0r 0
0 𝛼Is

])
Λ𝛼

e ,

from where we can obtain Λ𝛼
e inverting a simple diagonal matrix.

It remains the selection of appropriated values for the scaling parameter 𝛼 and the number of modes to scale s that will
be analyzed in the next section.

It is important to mention that, although different mass-scaling methods have been proposed by other authors,22-24 the
proposed mass-scaling technique is defined as selective in the sense that we can choose the number of modes to scale,
and this scaling is performed at the element level.

5 NUMERICAL EXPERIMENTS

Although the proposed techniques for mass matrix inversion and scaling can be equally applied to linear and nonlinear
constitutive models, we will assume linear-elastic materials in our numerical experiments with internal forces simply
given by the linear relation fint = Ku. We have assessed the performance of the present mass matrix inverse for bar, beam,
solid, and shell structural elements, in both free-free states and cantilevered conditions. In so doing, for the derivation of
elemental reciprocal mass matrix Ce, we have used a parametrized elemental mass matrix expressed in the form

Me = (1 − 𝛽)Mc
e + 𝛽Ml

e, (46)

in which a parameter 𝛽 ∈ [0, 1] is used to balance between the consistent element mass matrix Mc
e and the lumped

element mass matrix Ml
e. Using 𝛽 = {0, 0.5, 1}, the element mass matrix is then easily reduced, respectively, to the CMM,

averaged mass matrix (AMM), and LMM. Unless otherwise stated, in the following numerical experiments, we use AMM
as a reference and compute the mass matrix inverse using RMM with 𝛽 = 0.5 to test the proposed methodology. There are
several ways to parametrize mass matrices, for example, see Felippa et al4 for an exhaustive classification. Among them,
spectral parametrization 45 and matrix-weighted linear parametrization 46 are the simplest choices.

For vibration analyses, we seek for an harmonic solutions that satisfy the EOM and fulfill the boundary conditions
ub = 0. These solutions are obtained by solving the following eigenvalue problem:

[
M−1

b Kb − 𝜔2I
]
𝝓 = 0, (47)

where M−1
b is the inverse mass matrix computed as described in Section 3 and Kb is the stiffness matrix incorporating the

applied boundary conditions. From the solution of this eigenvalue problem, we obtain the vibration frequencies 𝜔i of the
system and its associated mode shapes 𝝓i for mode number i = 1, … n.

In time-domain analyses, for time integration of the semidiscrete equations of elastodynamics, we use the classi-
cal explicit central difference scheme.25-27 This method is among the most popular explicit methods in computational
mechanics28 and can be summarized in the following steps:

1. Knowing from previous time un and u̇n− 1
2 .

2. Evaluate the forces residual rn = fn − Kbun.
3. Compute accelerations ün = M−1

b rn.
4. Update nodal velocities u̇n+ 1

2 = u̇n− 1
2 + Δtün.

5. Update nodal displacements un+1 = un + Δtu̇n+ 1
2 .

6. Advance time n ← n + 1.

repeating these basic steps until the total simulation time has been reached.
It is well known that the explicit central difference scheme in linear dynamics is conditionally stable, so the time-step

𝛥t must be chosen below a critical value 𝛥tcrit = 2∕𝜔max, where 𝜔max is the maximum frequency of the system. Selective
mass scaling techniques, like the one proposed in Section 4, permits a localized reduction of the highest eigenvalues of
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the system by a certain factor. This reduction automatically increases the critical time step, improving computational
efficiency.

5.1 Frequencies of a free-free and a fixed-free bar
In this first example, we consider a long bar of length L = 1m with a rectangular section of width b = 0.05 m and
thickness h = 0.01 m. The material of the bar is linear elastic, with Young modulus E = 69 GPa and a constant density
𝜌 = 2700kg/m3. We discretize the bar using a uniform mesh of 40 two-node linear bar elements and compute the vibration
modes of the structure with different approximations for the mass matrix inverse. In particular, we investigate differences
in the use of the LMM, AMM, and the proposed mass matrix inverse computed through RMM with 𝛽 = 0.5.

The results of the eigenvalue analysis are presented in Figure 1 for 2 different boundary conditions, free-free case (left)
and fixed-free case (right). We start with the free-free case, by comparing the numerical frequencies with the exact solution
obtained from continuum theory. The exact frequencies of this problem are 𝜔exact

i =
√

E∕𝜌(𝜋∕L)(i − 1) rad/second for
mode number i = 1, … n, and the first eigenfrequency is zero, corresponding to the horizontal rigid body motion. We
observe that the present method, using the RMM, yields far better accuracy than the LMM and approximates very well to
the AMM results for all frequencies.

For the fixed-free case, we obtain very similar results. The only difference now is in the restriction of the rigid body
motion and the shift of exact frequencies to 𝜔exact

i =
√

E∕𝜌(𝜋∕L)(i − 1∕2) rad/second for mode number i = 1, … n.
We corroborate that the AMM and its approximation through the RMM with 𝛽 = 0.5 provide exactly the same result.
This means that the present method using the inverse mass matrix yields far better accuracy than the LMM with similar
computational effort.

It can also be observed that LMM produces a maximum frequency around 20% lower than AMM, so the critical time-step
for explicit time integration can be reduced by the same amount using a diagonal mass matrix. As we will see later, even
higher gains can be obtained with the selective mass-scaling technique proposed in Section 4, maintaining at the same
time the advantages in terms of accuracy of using a nondiagonal mass matrix.

5.1.1 Free-free heterogeneous bar
The effect of material heterogeneity in the accuracy of the direct mass inverse is next investigated by dividing the free-free
bar into 2 segments of different density; see Figure 2 (left) for a description of the new configuration. The exact angular fre-
quencies for this new case are obtained from the equation (c2E1A1) sin(k1L1) cos (k2L2) + (c1E2A2) sin(k2L2) cos(k1L1) = 0
where kj = 𝜔j∕cj and cj =

√
Ej∕𝜌j with j = 1, 2 respectively are the wave number and the velocity of compressional waves

in material j.
A relatively coarse regular mesh of 5 elements is selected to discretize each part of the bar, and the frequencies are

recalculated first using AMM and RMM (𝛽 = 0.5) without partitioning the domain. The results are represented in Figure 2
(right) together with the numerical values contained in Table 2. In general, the accuracy of the 6 first nonzero modes is

FIGURE 1 Bar vibration problem. Frequencies for the free-free (left) and fixed-free (right) cases. Comparison of exact frequencies and
numerical frequencies obtained with: lumped mass matrix (LMM), average mass matrix (AMM), and the proposed inverse mass matrix
(RMM, 𝛽 = 0.5)
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FIGURE 2 Heterogenous bar problem. Setup of the free-free bimaterial bar (left). Comparison of the exact angular frequencies with
numerical frequencies computed using the average mass matrix (AMM) and the proposed inverse mass matrix (RMM, 𝛽 = 0.5) without
partitioning the domain (right)

TABLE 2 Free-free 2 material rod. Frequencies of the first 6 nonzero modes obtained
with the AMM and the proposed RMM using one domain and partitioning the bar into 2
subdomains

Frequency (Hz) ×10−4 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6 Mode 7

AMM 0.1848 0.3213 0.5033 0.6757 0.8112 0.9383
RMM no partitioning 0.1853 0.3235 0.5116 0.6871 0.8234 0.9468
RMM partitioning 0.1853 0.3233 0.5114 0.6851 0.8224 0.9468

Abbreviations: AMM, average mass matrix; RMM, proposed reciprocal mass matrix.

very good, but a congruent application of the proposed methodology to this case requires a partitioning the domain into
different homogenous subdomains interconnected using localized Lagrange multipliers. In this case, a computation of
frequencies with RMM (𝛽 = 0.5) partitioning the problem into 2 different subdomains produces exactly the same global
frequencies, contained in the third row of Table 2.

5.2 Frequencies of a free-free and a fixed-free beam
In this second case, we consider the same geometry of the previous example, but now, it is discretized using 20
Euler-Bernoulli beam elements with two DOFs per node, ie, deflection and rotation. We know that the shape functions
for the Euler-Bernoulli beam require C1-continuity for deflections and rotations, hence cubic Hermite polynomials are
used as interpolation functions. This means that we would need to derive biorthogonal basis functions for the Hermite
cubic shape functions to compute the reciprocal mass matrix Ce from its definition 18. As previously described, we bypass
this complex derivation obtaining the projection matrix Ae from the diagonalization of the element mass matrix.

In Figure 3 (left), we analyze the frequencies obtained for the free-free beam case. The exact frequen-
cies of this problem obtained from continuum theory are 𝜔exact

i =
√

EI∕𝜌A(ci∕L)2 rad/second with c =
{0, 0, 4.73, 7.853, 10.996, 14.137, 17.279, … } for mode number i = 1, … n and 2 zero frequencies corresponding to the
displacement and rotation rigid-body motions. We solve again the problem with exact LMM and AMM inverse mass
matrices and then using the proposed RMM with 𝛽 = 0.5. Results illustrate, first, that the consistent AMM gives far better
accuracy than diagonal LMM for this particular case, specially in the high-frequency range, and, second, that the present
RMM method using the inverse mass matrix yields the same accuracy than the consistent AMM.

The results for the fixed-free alternative of this problem are represented in Figure 3 (right). The exact frequencies of
this case ia 𝜔exact

i =
√

EI∕𝜌A(ci∕L)2 rad/second with c = {1.875, 4.694, 7.854, 10.995, 14.131, 17.278, … }. Exactly the
same precision is observed in the free-free and fixed-free solutions. This convinces us to the conclusion that the described
method for generating the inverse of mass matrices M−1

b , yields almost the same resonant frequencies as those obtained
by the consistent mass matrices, as evidenced from Figure 3, thus confirming the validity of the present formulation.



288 GONZÁLEZ ET AL.

FIGURE 3 Beam vibration problem. Frequencies for the free-free (left) and fixed-free (right) cases. Comparison of exact frequencies and
numerical frequencies obtained with lumped mass matrix (LMM), average mass matrix (AMM), and the proposed inverse mass matrix
(RMM, 𝛽 = 0.5)

FIGURE 4 NAFEMS benchmark case FV32. Geometry, mesh, and dimensions in meters. The thickness of the plate is t = 0.05 m and zero
boundary displacements are imposed on the lateral side

5.3 Frequency analysis of a cantilevered tapered plate
Our third example is a plane-stress test proposed by the National Agency for Finite Element Methods and Standards.29 In
particular, the dynamic case FV32, where the natural frequencies of a trapezoidal elastic plate are analyzed. The geometry
and dimensions of the plate are represented in Figure 4 together with the boundary conditions. A linear elastic material
with Young modulus E = 200 GPa, Poisson ratio 𝜈 = 0.3, and density 𝜌 = 8000kg/m3 is assumed. The plate is discretized
using a regular mesh composed of 231 nodes and 400 triangular linear finite elements, constraining the horizontal and
vertical displacements of the 11 nodes located at x = 0, a lateral side of the plate. Note that this is a more refined mesh
than the one proposed in the original NAFEMS benchmark case, which uses quadrilateral elements instead of triangles
and doubles the element size.

We perform a frequency analysis solving the eigenvalue problem 47 using different mass matrices. In particular, we
consider the CMM and the average mass matrix AMM, which are compared with their equivalent RMMs obtained with
𝛽 = 0 and 𝛽 = 0.5.

The first 6 mode shapes of the plate are illustrated in Figure 5, and their associated frequencies, obtained with the
different mass matrices, arranged in Table 3. Notice that, in the original NAFEMS results, mode shapes 5 and 6 are inter-
changed. In our case, mode 5 appears at a little higher frequency because it is a pure longitudinal symmetric mode and
our mesh made of triangles is not symmetric.

Tkachuk et al5 solved this problem using the same mesh and the RMM. When comparing with their results, the max-
imum difference is obtained in the sixth frequency with an error below 2% while the best fit is obtained for RMM with
𝛽 = 0.5. On the other hand, comparing the frequencies obtained using our exact implementation of the CMM with
the reciprocal mass-inverse RMM technique, errors reduce to the second decimal digit. It is also observed that averag-
ing the mass matrix increases slightly the error to a 0.6% in the sixth mode. In general, it is verified that the proposed
mass-inversion process gives very accurate approximations of the CMM and AMM inverses.
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FIGURE 5 NAFEMS benchmark case FV32. Representation of the 6 lowest vibration modes occurring at frequencies contained in Table 3.
Results correspond to proposed reciprocal mass matrix with 𝛽 = 0.5

TABLE 3 Plane-stress case from NAFEMS

Frequency (Hz) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

NAFEMS 44.623 130.03 162.70 246.05 379.90 391.44
Tkachuk et al.5 45.499 133.55 162.89 255.37 393.16 398.56
CMM 45.42 132.60 162.73 251.40 387.40 391.16
RMM (𝛽 = 0) 45.42 132.60 162.73 251.40 387.40 391.18
AMM 45.46 133.08 162.81 253.36 391.72 393.32
RMM (𝛽 = 0.5) 45.48 133.33 162.85 254.37 392.56 395.68

Six lowest frequencies obtained with different mass matrices.

Abbreviations: AMM, averaged mass matrix; CMM, consistent mass matrix; RMM, proposed
reciprocal mass matrix.

FIGURE 6 Cantilever beam with tip load. Geometry, mesh, and dimensions

5.4 Transient analysis of a cantilever beam under tip load
To test the solid tetrahedral element, we use the cantilever beam with vertical load proposed by Olovsson et al19 also
studied by Tkachuk et al5 to investigate the accuracy of direct mass-inverse methods. The geometrical definition of the
problem is shown in Figure 6, where a cantilever beam of length L = 0.1 m and section height b = 0.003 m with thickness
t = 0.001 m is considered. Material properties of the beam are E = 207 GPa, 𝜈 = 0.3, and 𝜌 = 7800kg/m3.
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The beam is discretized using a regular mesh of 408 nodes and 900 tetrahedral elements, with 50 × 3 × 1 divisions per
side. One end of the beam is completely fixed, and the other side has 2 vertical point loads of value f = −1 N.

In this case, we perform a time-domain analysis integrating in time the response of the beam using the explicit central
difference method. Initial conditions of the beam are assumed to be zero displacements and velocities, applying the tip
load completely at the initial time step. We have selected for comparison the exact AMM and the proposed inverse through
RMM computed with 𝛽 = 0.5.

The results are shown in Figure 7, where it is represented the evolution of the tip deflection of the beam obtained with
both mass matrices (left). We also compare the time evolution of total internal U, external W, and kinetic T energies of
the beam (right).

Figure 8 (left) represented the relative error (u − uexact)∕|uexact| of the tip displacement, computing u with the RMM
inverse mass matrix and uexact with the exact AMM. The error remains under 0.003% during the 0.002 seconds of sim-
ulation, indicating a perfect agreement. Displacement contours obtained with both methods at time t = 1.16 ms are
represented in Figure 8 (right). Differences between RMM displacements (top) and AMM displacements (bottom) can
not be perceived. It is also noted that, although the problem is perfectly symmetric, a small lateral displacement appears
in the solution due to the asymmetry introduced by the mesh.

FIGURE 7 Results of the tip-loaded cantilever beam. Tip deflection |uz| computed with the exact averaged mass matrix (AMM) and the
reciprocal mass matrix (RMM) (𝛽 = 0.5) (left). Evolution of the internal, external, and kinetic energies in the beam (right). Solutions obtained
using the proposed RMM inverse matrix are represented with dots

FIGURE 8 Error of the cantilever beam solution. Error evolution of the beam tip deflection computed with proposed reciprocal mass
matrix (RMM) (𝛽 = 0.5) compared to average mass matrix (AMM). Displacement contours at t = 0.0016s (right), computed with the exact
AMM (bottom) and the RMM (𝛽 = 0.5) (top)
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5.5 Transient analysis of a panel
In this example, we analyze the inverse mass matrix of a structural 3-node shell element with 6 DOFs per node. The CMM
of the 18 DOF shell element is computed by separating membrane and bending contributions, where the membrane
component is obtained from the plane triangular linear element while the normal and bending mass from three equivalent
fictitious beams located on the element edges. Therefore, we are applying the proposed mass-inverse methodology to a
complicated structural mass matrix that would be difficult to invert by other means.

The selected test problem is represented in Figure 9, a simply supported panel constructed using a square plate of side
length L = 1 m and 4 longitudinal stiffeners separated a constant distance B = 0.2 m. The stiffeners, attached on one side
the plate, have a section height a = 0.05 m, and all components have the same thickness t = 0.01 m. For the material
properties, we consider a steel with Young modulus E = 207 GPa, Poisson coefficient 𝜈 = 0.3, and density 𝜌 = 7850kg/m3.

The plate is modeled using a regular mesh of 20 × 20 × 2 elements and each stiffener has 20 × 2 × 2 elements, with a
total number of 1120 shell elements and 609 nodes. All the boundary nodes of the plate have restricted displacements in
the 3 directions, and the panel is loaded by a transversal constant line load of value q = 200 N/m that is abruptly applied
at time zero.

An explicit time integration of the problem is performed for 10 ms using the central difference method. The results
are shown in Figure 10 (left) where it is compared the deflection in the center of the plate obtained with the AMM and
the reciprocal mass matrix (RMM) inverse with 𝛽 = 0.5. Figure 10 (right) represents the evolution of the total kinetic,
internal, and external energies computed with both methods.

In this case, although some small differences are observed in the solutions, the error is perfectly acceptable for engi-
neering purposes. The deflection errors obtained in the center of the plate, see Figure 11 (left), remain under 0.6%
during the simulation period, and the structural deformations obtained with AMM and RMM inverses are completely
indistinguishable, as demonstrated by the contour solutions at time t = 5 ms compared side by side in Figure 11 (right).

FIGURE 9 Geometrical definition of a simply supported plate with 4 stiffeners and loaded by a constant line load at the center of the plate

FIGURE 10 Results of the stiffened plate problem. Deflection at the center of the plate (left) and evolution of the total kinetic, internal and
external energies (left) computed with the average mass matrix (AMM) and the reciprocal mass matrix (RMM) inverse
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FIGURE 11 Error in the deflection obtained with exact mass matrix and using proposed inverse mass (right). Displacement contours at
t = 5 ms (right) obtained with exact average mass matrix (bottom) and using proposed inverse through the consistent mass matrix (top)

FIGURE 12 First six mode shapes of the 3-D cantilever plate model. Representation of the 6 lowest vibration modes occurring at frequencies
contained in Table 4. Results correspond to proposed reciprocal mass matrix with 18-scaled modes and a scaling parameter 𝛼 = 100

TABLE 4 Cantilever plate model

Frequency (Hz) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

No scaling 6.7703 12.0809 42.0886 47.7580 50.3711 54.6703
Scaling (𝛼 = 1) 6.8151 12.3473 43.7787 50.6586 53.0128 54.9494
Scaling (𝛼 = 10) 6.8147 12.3399 43.7571 50.5726 52.8431 54.8953
Scaling (𝛼 = 100) 6.8141 12.3356 43.7325 50.5274 52.7784 54.8702

Effect of mass scaling on the first 6 natural frequencies of the system.

These results correspond to the case s = 12 scaled modes, represented in Figure 13 (right).

5.6 Mass scaling of a cantilever plate
The purpose of this last example is to test the selective mass-scaling technique proposed in Section 4. For that, we consider
a square cantilever plate of side length L = 10 m and thickness t = 0.5 m, made of a structural steel with Young modulus
E = 207 GPa, Poisson coefficient 𝜈 = 0.3 and 𝜌 = 7800kg/m3.

The plate is discretized with 3-dimensional 8-node solid elements, using a structured mesh of 10 elements per side and
4 elements across the thickness, with a total of 400 brick elements and 605 nodes. Zero displacement boundary conditions
are imposed in the 3 directions to all the nodes lying on one side of the plate, and the eigenvalue problem 47 is solved for
all the frequencies with a scaled mass matrix. The vibration mode shapes of the plate are represented in Figure 12 for the
6 lowest frequencies, and their associated frequencies are contained in the first row of Table 4.

With the intention of reducing the highest frequencies of the resulting FEM equations, corresponding to the so-called
mesh frequencies, without affecting the lower physical frequencies, we proceed with a scaling of the mass matrix increas-
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FIGURE 13 Relation of scaled/exact frequencies for the cantilever plate model. Effect of the scaling parameter 𝛼 and the number of scaled
modes s on the complete range of system frequencies. Number of scaled element modes are s = 6 (left) and s = 12 (right) and the highest
element modes are scaled by a factor (1 + 𝛼)−1

ing the values of the scaling parameter to 𝛼 = {1, 10, 100}. This is made for 2 different cases by scaling s = 6 and s = 12
of the highest element modes.

Independently of the number of element frequencies scaled, we demonstrate in Table 4 that the lowest structural fre-
quencies of the plate are not considerably affected. Observing the complete range of frequencies in Figure 13, we deduce
that a mass scaling factor 𝛼 = 10 reduces the maximum frequency in the order of 2.5, speeding the computational cost
for explicit dynamics more than 50%. However, there exists a saturation limit in the scaling with this methodology, since
a further increase of the scaling parameter, compare 𝛼 = 10 and 𝛼 = 100 in Figure 13, does not improve the benefit and
will start to produce an ill-conditioning of the mass matrix.

Another important effect to observe in Figure 13 is the influence of the number of scaled element modes s on the
frequencies. Increasing the number of scaled modes for a fixed 𝛼 does not affect the gain in the highest frequency but
can degrade significantly the approximation in the mid frequency range. We conclude that we should use a minimum
number of scaled modes to improve the accuracy.

Finally, it is important to mention that similar gains have been obtained by other scaling techniques proposed in the
literature.5,22 But in these references, the mass scaling is made by augmentation of the RMM without discriminating higher
and lower element modes. In fact, this separation has been found to be important to improve the approximation of the
mid frequency range.

6 CONCLUSIONS

A new methodology for direct generation of the inverse mass matrix for discrete finite element equations of elastodynam-
ics is presented, which is completely element-independent and does not require any special treatment of the elements
adjacent to Dirichlet boundaries. In the present method, the Dirichlet boundary conditions are handled by the method
of localized Lagrange multipliers. This process is found to be computationally efficient, because matrices are sparse and
only the factorization of a small matrix associated with the constrained DOFs is required. In structural dynamics, classi-
cal explicit time-integration methods equipped with a direct solver require an initial factorization of the mass matrix and
the solution of a new free term every time step. If we choose Cholesky factorization, for example, the total cost is around
1
3

n3 flops plus 2n2 operations per time step for each forward-backward substitution. With the proposed direct mass matrix
inverse, factorization is not needed and operation count per time step is reduced to a sparse-matrix vector multiplication
with nm flops, where m is the average number of nonzero entries per row.

The proposed inverse mass matrices have been tested for rod, beam, solid, and shell elements, demonstrating excellent
accuracy in terms of frequencies and time evolution of the DOFs obtained with explicit time-integration methods.

In addition, a new mass-scaling technique is offered, which can be applied element-by-element and is frequency selec-
tive. Usage of scaled mass matrices reduces the maximum frequency of the system and thus increases the critical time
step. Preliminary results demonstrate that the proposed selective mass scaling can attain reductions up to 40% in the high-
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est frequencies without significantly affecting the low-mid frequency ranges. Further work along the line of the scaling
technique will bring about a significant reduction of explicit transient analysis time. Work in this direction is underway.

ACKNOWLEDGMENTS

The work of R. Kolman was supported by the Centre of Excellence for nonlinear dynamic behavior of advanced materials
in engineering CZ.02.1.01/0.0/0.0/15 003/0000493 (Excellent Research Teams) in the framework of Operational Program
Research, Development and Education, and the grant project of the Czech Science Foundation, 17-22615S, within institu-
tional support RVO:61388998. S.S. Cho was partially supported by the Nuclear Safety Research Program through the Korea
Foundation of Nuclear Safety (KOFONS), granted financial resource from the Nuclear Safety and Security Commission
(NSSC), Republic of Korea (No. 1503003).

REFERENCES
1. Hinton E, Rock T, Zienkiewicz OC. A note on mass lumping and related processes in the finite element method. Earthquake Eng Struct

Dyn. 1976;4(3):245-9.
2. Lombardo M, Askes H. Lumped mass finite element implementation of continuum theories with micro-inertia. Int J Numer Methods Eng.

2013;96(7):448-466.
3. Hetherington J, Askes H. A mass matrix formulation for cohesive surface elements. Theor Appl Fract Mech. 2014;69:110-117.
4. Felippa CA, Guo Q, Park KC. Mass matrix templates: general description and 1D examples. Arch Comput Methods Eng. 2015;22:1-65.
5. Tkachuk A, Bischoff M. Direct and sparse construction of consistent inverse mass matrices: general variational formulation and

application to selective mass scaling. Int J Numer Methods Eng. 2015;101:435-469.
6. Krenk S. Dispersion-corrected explicit integration of the wave equation. Comput Methods Appl Mech Eng. 2001;191(8–10):975-987.
7. Gravouil A, Elguedj T, Maigre H. An explicit dynamics extended finite element method. Part 2: element-by-element stable-explicit/explicit

dynamic scheme. J Comput Appl Math. 2009;198:2318-2328.
8. Idesman A, Schmidt M, Foley J. Accurate finite element modeling of linear elastodynamics problems with the reduced dispersion error.

Comput Mech. 2011;47(5):555-572.
9. Park KC, Lim SJ, Huh H. A method for computation of discontinuous wave propagation in heterogeneous solids: basic algorithm

description and application to one-dimensional problems. Int J Numer Methods Eng. 2012;91:622-643.
10. Cho SS, Park KC, Huh H. A method for multidimensional wave propagation analysis via component-wise partition of longitudinal and

shear waves. Int J Numer Methods Eng. 2013;95:212-237.
11. Park KC, Felippa CA. A variational framework for solution method developments in structural mechanics. J Appl Mech.

1998;65(1):242-249.
12. Park KC, Felippa CA. A variational principle for the formulation of partitioned structural systems. Int J Numer Methods Eng.

2000;47:395-418.
13. Park KC, Felippa CA, Gumaste UA. A localized version of the method of Lagrange multipliers and its applications. Comput Mech.

2000;24(6):476-490.
14. Gonzalez JA, Park KC, Felippa CA, Abascal R. A formulation based on localized Lagrange multipliers for BEM-FEM coupling in contact

problems. Comput Methods Appl Mech Eng. 2007;197(6–8):623-640.
15. Wohlmuth B. A mortar finite element method using dual spaces for the Lagrange multiplier. SIAM J Numer Anal. 2000;38:989-1012.
16. Courant R, Friedrichs K, Lewy H. On the partial difference equations of mathematical physics. IBM Journal of Research and Devel-

opment. 1967;11(2):215-234. English translation of the 1928 German original, Courant R, Friedrichs K, Lewy H. Über die partiellen
Differenzengleichungen der mathematischen Physik. doi:10.1147/rd.112.0215.

17. Macek RW, Aubert BH. A mass penalty technique to control the critical time increment in explicit dynamic finite element analyses.
Earthquake Eng Struct Dyn. 1995;24(10):1315-1331.

18. Olovsson L, Unosson M, Simonsson K. Selective mass scaling for thin walled structures modeled with tri-linear solid elements. Comput
Mech. 2004;34:134-136.

19. Olovsson L, Simonsson K, Unosson M. Selective mass scaling for explicit finite element analyses. Int J Numer Methods Eng.
2005;63(10):1436-1445.

20. Askes H, Nguyen D, Tyas A. Increasing the critical time step: micro-inertia, inertia penalties and mass scaling. Comput Mech.
2011;47:657-667.

21. Cocchetti G, Pagani M, Perego U. Selective mass scaling and critical time-step estimate for explicit dynamics analyses with solid-shell
elements. Comput Struct. 2013;127:39-52.

22. Tkachuk A, Bischoff M. Variational methods for selective mass scaling. Comput Mech. 2013;52:563-570.
23. Tkachuk A, Bischoff M. Local and global strategies for optimal selective mass scaling. Comput Mech. 2014;53(6):1197-1207.
24. Frias G, Aquino W, Pierson K, Heinstein M, Spencer B. A multiscale mass scaling approach for explicit time integration using proper

orthogonal decomposition. Int J Numer Methods Eng. 2014;97:799-818.
25. Park KC. Practical aspects of numerical time integration. Comput Struct. 1977;7:343-353.



GONZÁLEZ ET AL. 295

26. Hulbert G, Chung J. Explicit time integration algorithms for structural dynamics with optimal numerical dissipation. Comput Methods
Appl Mech Eng. 1996;137:175-188.

27. Chang SY. An explicit method with improved stability property. Int J Numer Methods Eng. 2008;77(8):1100-1120.
28. Belytschko T, Liu WK, Moran B, Elkhodary K. Nonlinear Finite Elements for Continua and Structures, Chichester, West Sussex, UK: John

Wiley & Sons, Ltd; 2014.
29. NAFEMS. The standard NAFEMS benchmarks. National Agency for Finite Element Methods & Standards. East Kilbride, Glasgow, UK:

NAFEMS; 1990.

How to cite this article: González JA, Kolman R, Cho SS, Felippa CA, Park KC. Inverse mass
matrix via the method of localized lagrange multipliers. Int J Numer Meth Engng. 2018;113:277–295.
https://doi.org/10.1002/nme.5613



Received: 12 July 2018 Revised: 22 October 2018 Accepted: 1 November 2018

DOI: 10.1002/nme.5986

R E S E A R C H A R T I C L E

Inverse mass matrix for isogeometric explicit transient
analysis via the method of localized Lagrange multipliers
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Abstract

A variational framework is employed to generate inverse mass matrices for iso-
geometric analysis (IGA). As different dual bases impact not only accuracy but
also computational overhead, several dual bases are extensively investigated.
Specifically, locally discontinuous biorthogonal basis functions are evaluated
in detail for B-splines of high continuity and Bézier elements with a standard
C0 continuous finite element structure. The boundary conditions are enforced
by the method of localized Lagrangian multipliers after generating the inverse
mass matrix for completely free body. Thus, unlike inverse mass matrix meth-
ods without employing the method of Lagrange multipliers, no modifications
in the reciprocal basis functions are needed to account for the boundary con-
ditions. Hence, the present method does not require internal modifications of
existing IGA software structures. Numerical examples show that globally con-
tinuous dual basis functions yield better accuracy than locally discontinuous
biorthogonal functions, but with much higher computational overhead. Locally
discontinuous dual basis functions are found to be an economical alternative to
lumped mass matrices when combined with mass parameterization. The result-
ing inverse mass matrices are tested in several vibration problems and applied
to explicit transient analysis of structures.

KEYWORDS

Bézier extraction, explicit transient analysis, free vibration, inverse mass matrix, isogeometric
analysis, localized Lagrange multipliers

1 INTRODUCTION

Efficient explicit time integration of structural dynamics equations calls for the availability of diagonal mass matrices. This
is because the computational cost associated with the use of consistent/nondiagonal mass matrices in an explicit integra-
tion is equivalent with that of implicit time integration procedures, whose time step sizes can be chosen much larger than
for explicit integration procedures. Specifically, explicit time integration methods in transient dynamics require a repeated
application of the inverse mass matrix to obtain accelerations at every time step. For example, computing the inverse of a
consistent mass matrix (CMM) requires (n3) flops. This has led to the adoption of the diagonalized lumped mass matrix

Int J Numer Methods Eng. 2019;117:939–966. wileyonlinelibrary.com/journal/nme © 2018 John Wiley & Sons, Ltd. 939
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(LMM) that is typically obtained by a row sum of the CMM. However, even though the accuracy of LMM is acceptable for
capturing low-frequency response components, it is unable to track high-frequency components.1-5 Another shortcoming
of LMM for higher-order elements is that most of the mass is lumped at the center node, causing very strange behavior
when high-order modes are excited. These deficiencies motivated researchers to find ways of generating the inverse of
CMM in a consistent and efficient way.6-8

From the viewpoint of principles in dynamics, there are two ways for computing the mass matrices, which need to be
inverted for efficient explicit time integration. One approach is to directly discretize system kinetic energy. The second
is to exploit Hamilton's principle (or Hamilton's equations) that require discretization of both momentum ( p) and dis-
placement (u). In this case, the inverse mass matrix (M−1) is obtained as a second-order tensor product, where only a
diagonalized projection operator (A which will be detailed later in this paper) needs to inverted, viz,

⎛
⎜⎜⎝∫Ω

1
𝜌
𝛿p · p dΩ ≈ 𝛿p C p, ∫

Ω

𝛿p · u dΩ ≈ 𝛿p A⊤ u
⎞
⎟⎟⎠

⇒ M−1 = A−⊤CA−1, (1)

where C is labeled as a momentum matrix, p denotes discretized momentum vector. Hence, inversion of mass matrix is
accomplished via the generation of the momentum matrix (C) followed by a push-forward projection operation.

Thus, an efficient generation of consistent inverse mass matrices depends on how efficiently the projection operator
(A) can be generated and inverted. This, in turn, requires that the interpolation functions for the momentum must be
biorthogonal with respect to the displacement interpolation functions so that the resulting projection matrix (A) becomes
diagonal. While derivations of biorthogonal basis functions are straightforward for most interpolation functions for the
interior elements, for the elements bordering the boundaries, special biorthogonal basis functions need to be constructed.
This construction has to performed for each of the corresponding u-interpolation functions. It should be noted that, by
the very nature of finite element method, elements bordering the boundaries do not need to be specialized.

The preceding complications in generating biorthogonal basis functions for the momentum vector in treating the
boundary conditions were alleviated in the work of González et al9 for FEM by introducing the method of localized
Lagrange multipliers (LLMs).10-13 In that work, the system is considered completely free floating such that no special
treatment is required for generating the biorthogonal interpolation of the momentum vector. Enforcement of boundary
conditions is simply accomplished via constraining the boundary conditions. We believe that the same ideas used for the
obtention of FEM inverse mass matrices can be extended to the more general framework of isogeometric analysis (IGA).

Particularly for IGA, different approaches have been proposed in the literature to address this difficulty present in the
mass matrix inversion. First contributions in explicit dynamics were developed for B-spline collocation methods, treating
the equations of motion (EOMs) in strong form and obtaining one-point quadrature mass matrices.14,15 Solutions to the
mass inversion problem were then suggested at the time-integration solution algorithm level, introducing a predictor
multicorrector scheme that predicts accelerations with LMM on the left-hand side of the linear system and corrects the
residual using the CMM. This method is iterative in essence and energy stability is not guaranteed.

Other methods benefit from the regularity of the reference patches used in IGA, taking advantage of the tensor product
separable form of the mass matrix associated to these structured meshes. For example, at the linear solver level with
a CMM, Gao and Calo16 proposed using a preconditioned conjugate gradient method with special preconditioners that
achieves a complexity of (n) flops. However, this procedure is not completely general and nonseparable mass matrices
require a carefully designed preconditioner that adds significant complexity and computational cost to the linear solver.
New preconditioning and multigrid techniques with linear cost17-19 could also be considered for that task.

In the context of multipatch discontinuous Galerkin IGA for acoustic wave propagation and linear advection, a recent
work of Chan and Evans20 aims to approximate the mass matrix inverse by a computable weight-adjusted mass matrix
that is pre-post multiplied by an easily invertible affine mass matrix obtained from the tensor product of one-dimensional
(1D) inverses. Although not derived from energy principles, the proposed algebraic approximation is demonstrated to be
high-order accurate only for sufficiently regular discretizations.

A different approach, the methodology used in this paper belongs to this last group, tries to derive a reciprocal mass
matrix (RMM) directly from parameterized variational principles and dual-space shape functions.21 The idea here is to
derive variationally consistent RMMs from a parameterized functional and adjust the value of these parameters to con-
struct customizable RMMs with desired properties, like high accuracy on certain frequency ranges or extending the critical
time step needed for time integration stability.

The objective of the present paper is to extend the procedure for generating FEM inverse mass matrices presented in
the work of González et al9 for explicit transient analysis by utilizing existing IGA capabilities.22-25 To this end, this paper



GONZÁLEZ ET AL. 941

is organized as follows. Section 2 briefly reviews some basic concepts on B-splines, NURBS, and Bézier elements inter-
polation. Section 3 derives the displacement-momentum mixed equations of elastodynamics from Hamilton's principle,
and Section 4 describes the direct construction of inverse mass matrices through biorthogonal basis functions. Sections 5
and 6 categorize and analyze the construction of dual basis functions. Section 7 discusses the incorporation of boundary
conditions into the inverse mass matrix via the method of LLMs. Finally, in Section 8, we present several numerical exam-
ples, where we test the accuracy of the proposed mass matrix inverse in vibration and transient analyses, and Section 9
closes with the conclusions.

2 A BRIEF REVIEW OF BASICS OF IGA

In this section, we review the basic concepts of the IGA techniques that will be used to construct the proposed RMMs. We
start with the classical B-spline and NURBS approximation and next outline the basics of the Bézier extraction technique.
This last technique is utilized to produce a finite element data structure of the geometry with the same approximation
than the B-spline basis functions.

2.1 B-splines and NURBS-based functions
In NURBS-based Galerkin IGA, the approximation of a displacement field u(x) uses the same mathematical repre-
sentation than the geometry based on spline-like approximation techniques.26 For three-dimensional (3D) problems in
particular, the geometry of a domain Ω ∈ R3 is described by the tensor product formula

x(𝜉, 𝜂, 𝜁 ) =
n∑

i=1

m∑
𝑗=1

l∑
k=1

Rp,q,r
i,𝑗,k (𝜉, 𝜂, 𝜁 )Pi,𝑗,k, (2)

where x ∈ Ω marks the position of point of interest in the physical space, (𝜉, 𝜂, 𝜁 ) are its associated coordinates in the
parametric space, Rp,q,r

i,𝑗,k are NURBS basis functions of orders ( p, q, r) on each dimension, and Pi, j,k with i = 1, … ,n, j =
1, … ,m, k = 1, … , l is a matrix with the three coordinates of the control points defining the geometry.

An associated displacement field u(x) is then approximated as follows:

u (x(𝜉, 𝜂, 𝜁 )) =
n∑

i=1

m∑
𝑗=1

l∑
k=1

Rp,q,r
i,𝑗,k (𝜉, 𝜂, 𝜁 )u

P
i,𝑗,k, (3)

where uP
i,𝑗,k are now the displacements corresponding to the control point indicated by indices i, j, k.

For NURBS solids, the shape functions are described by the tensor product as

Rp,q,r
i,𝑗,k (𝜉, 𝜂, 𝜁 ) =

Np
i (𝜉)N

q
𝑗 (𝜂)N

r
k(𝜁 )wi,𝑗,k

∑n
î=1

∑m
𝑗=1

∑l
k̂=1Np

î
(𝜉)Nq

𝑗
(𝜂)Nr

k̂
(𝜁 )wî,𝑗,k̂

, (4)

where wi, j,k is referred to as the ith, jth, kth weight corresponding to the ith, jth, kth control point, and Np
i (𝜉),Nq

𝑗 (𝜂),Nr
k(𝜁 )

are univariate B-spline basis functions of orders p, q, and r corresponding to the knot vectors Ξ, , , respectively.27

Let us define a knot vector in 1D case as a nondecreasing set of coordinates in the parametric space, written as Ξ =
{𝜉1, 𝜉2, … , 𝜉mk}, where 𝜉i ∈ ℝ is the ith knot, i is the knot index, i = 1, 2, … ,mk, number of knots mk = n + p + 1,
order p is the polynomial degree, and n is the number of basis functions (control points) used to construct the B-spline
curve. Associated B-spline basis functions Np

i (𝜉), see Figure 1, are Cp− k continuous piecewise polynomials defined by
the Cox-de Boor recursion formula.28 Observe that Np

i are Cp− k continuous piecewise polynomials, where k is the knot
multiplicity and that continuity can be controlled by the multiplicity of a knot in the knot vector Ξ.

Finally, the NURBS-based interpolation in ℝ3 of a displacement field u(x) can then be expressed in matrix form as

u(𝝃) =
n∑

i=1
Np

i (𝝃)uP
i = Nu(𝝃) u, (5)

where the matrix of interpolation functions Nu(𝝃) is constructed by using B-spline basis functions of a given degree p and
vector u groups the unknown discrete values at the control points.
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FIGURE 1 Standard one-dimensional quadratic p= 2 (left) and cubic p= 3 (right) B-spline basis functions Np
u (𝜉) in the normalized

parameter space for an open knot vector with internal values Ξ = {0, 0.2, 0.4, 0.6, 0.8, 1} [Colour figure can be viewed at
wileyonlinelibrary.com]
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FIGURE 2 Result of the application of the Bézier extraction process to the original quadratic p= 2 (left) and cubic p= 3 (right) B-spline
basis functions represented in Figure 1. After knot insertion, Ξ = {0, 0.2, 0.2, 0.4, 0.4, 0.6, 0.6, 0.8, 0.8, 1} for p = 2, the original B-spline basis
functions can be expressed as a linear combination of the new Bézier interpolation functions with compact support [Colour figure can be
viewed at wileyonlinelibrary.com]

2.2 Bézier extraction: transformation of NURBS-based mesh into Bézier-based mesh
As mentioned in the previous section, the support of a B-spline basis function Np

i is compact and contained over p + 1
knot spans in the interval [𝜉i, 𝜉i + p + 1]. As a result (see Figure 2), it is not possible to use the concept of a single par-
ent finite element with locally defined shape functions that is mapped onto individual knot intervals, complicating the
implementation. One solution to circumvent this difficulty is the Bézier's extraction process.29

In the same way that NURBS are a generalization of B-Splines, B-Splines represent the generalization of Bézier splines
(based on Bernstein polynomials), and as such, the Bézier representation of a domain can be written in the form

x(𝜉, 𝜂, 𝜁 ) =
n∑

i=1

m∑
𝑗=1

l∑
k=1

Bp,q,r
i,𝑗,k (𝜉, 𝜂, 𝜁 )P

B
i,𝑗,k, (6)

where PB
i,𝑗,k are new coordinates of control points for a Bézier-based representation and Bp,q,r

i,𝑗,k are the shape functions based
on the Bernstein polynomials of order p, q, r.

By Bézier extraction, it is meant the construction of a mesh of isogeometric Bézier elements from a NURBS represen-
tation. This process provides a local element support structure for IGA that can be easily incorporated into existing finite
element codes, see Figure 3. Following this technique, the B-spline functions N(𝝃) can be unambiguously written as linear
combination of Bernstein polynomials B(𝝃), expressed in matrix form

N(𝝃) = CBB(𝝃), (7)
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(A) (B)

(C)

FIGURE 3 Bézier extraction operation performed in a two-dimensional cubic ( p = 3) B-spline curve. The shape of the initial C2

continuous curve (A) is defined by six control points and six basis functions, and its associated knot vector is
Ξ = {0, 0, 0, 0, 1∕3, 2∕3, 1, 1, 1, 1}. After a first repetition of knot values, one gets the curve with C1 continuity (B) with eight control
points/basis functions and knot vector Ξ = {0, 0, 0, 0, 1∕3, 1∕3, 2∕3, 2∕3, 1, 1, 1, 1}. Finally, p repetitions of the knot values results in the C0

continuous curve (C) with 10 control points/basis functions and knot vector Ξ = {0, 0, 0, 0, 1∕3, 1∕3, 1∕3, 2∕3, 2∕3, 2∕3, 1, 1, 1, 1}. Now, the
basis functions are the same for all the knot intervals; therefore, the curve can be constructed through a systematic assembling of Bézier
elements with Bernstein polynomials as shape functions [Colour figure can be viewed at wileyonlinelibrary.com]

where matrix CB is the extraction operator that is uniquely associated to a particular knot vector.29

Technically, the new mesh is constructed step-by-step repeating all the knots contained in the original knot vector up
to multiplicity p + 1, reducing at the same time continuity to C0, by following the process described in Figure 3. Then,
for each B-spline segment, an expression like (7) can be expressed in local form. Furthermore, new position and weights
of the Bézier mesh, PB and wB, can be computed directly from the position of control points and weights, P and w,
corresponding to the NURBS mesh as

PB = W−1
B C⊤

B WP, wB = C⊤
B w, (8)

where matrices WB and W are diagonal matrices storing the weight vectors wb and w, for more details, see the work of
Borden et al.29

In a typical two-dimensional (2D) case, like the one represented in Figure 4, Bézier analysis starts with an IGA mesh.
Then, one can use the previous transformations to convert step-by-step the NURBS-based mesh into a Bézier mesh
by repeating knots in the two parametric directions. Finally, a finite element mesh is obtained with C0 continuity of
neighboring elements with Bernstein polynomials as shape functions.

3 HAMILTON'S PRINCIPLE WITH THE METHOD OF LOCALIZED
LAGRANGE MULTIPLIERS

We consider the evolution in time of the displacement and momentum fields u,p ∈ ℝd, where d = 1, 2, 3 is the number
of space dimensions, of a body with domain Ω and boundary Γ for a total time T. The body is subjected to prescribed
interface displacements ub on part of its boundary Γb, to the traction t on the rest of its boundary Γt and to a body force b
per unit volume. Initial conditions that are compatible with the boundary conditions define the displacement and velocity
field, respectively, at time t = 0. The initial boundary value problem of elastodynamics expressed in strong form can be
formulated as follows:

𝛁 · 𝝈 + b = ṗ in Ω × [0,T] ,
u = ub on Γb × [0,T] ,

𝝈 · n = t on Γt × [0,T] ,
u|t=0 = u0 in Ω,
u̇|t=0 = u̇0 in Ω,

(9)
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FIGURE 4 Illustration of the Bézier extraction operation performed in a two-dimensional patch of quadratic B-splines. The Bézier
extraction operator maps a piecewise Bernstein polynomials basis (right) onto a B-spline basis (left). This transformation makes it possible to
create Bézier elements as the finite element representation of B-splines or NURBS [Colour figure can be viewed at wileyonlinelibrary.com]

where p = 𝜌u̇ is the momentum per unit volume and 𝝈 is the stress tensor that, in the case of linear elasticity is linearly
related with the deformation tensor 𝜺 = 1

2
[∇u + ∇⊤u] by the fourth-order constitutive tensor  through the constitutive

relation 𝝈 =  ∶ 𝜺. This is an initial value problem to be solved for all time t in the interval [0,T].
The strong form of the of the initial value problem (9) can be transformed into an equivalent weak variational form. To

this end, we invoke Hamilton's principle for constrained elastodynamic problems. This principle states that the path fol-
lowed by a dynamic system is the one which minimizes the action integral of the Lagrangian; condition that can be expressed
using the following three-field variational form:

𝛿H(u,p,𝓵) =

t2

∫
t1

𝛿 {T(u̇,p) − U(u,𝓵) + W(u)} dt = 0, (10)

where 𝛿T is the virtual kinetic energy, 𝛿U is the virtual elastic energy, and 𝛿W is the virtual work done by the external
loads, magnitudes that can be expressed

𝛿T = ∫
Ω

𝛿
(1

2
p · u̇

)
dΩ, (11)

𝛿U = ∫
Ω

𝛿𝜺 ∶ 𝝈 dΩ + ∫
Γb

𝛿 {𝓵 · (u − ub)} dΓ, (12)

𝛿W = ∫
Ω

𝛿u · b dΩ, (13)

with known displacement boundary conditions ub imposed at interface Γ by using a field of LLMs 𝓵 and external body
forces per unit volume b acting on Ω.

By making use of the momentum-velocity relation ( p = 𝜌u̇) in the following identity:

1
2

p · u̇ = p · u̇ − 1
2𝜌

p · p, (14)

we can obtain an equivalent expression for the virtual kinetic energy per unit volume

𝛿
(1

2
p · u̇

)
= 𝛿u̇ · p + 𝛿p ·

(
u̇ − 1

𝜌
p
)
, (15)



GONZÁLEZ ET AL. 945

and finally, performing an integration by parts of the second term of the last equation yields:
t2

∫
t1

𝛿u̇ · pdt = −

t2

∫
t1

𝛿u · ṗdt, (16)

relation that can be used to eliminate the virtual velocity field from the formulation.
Introducing previous identities, (15) and (16), into the principle of stationary action (10), we obtain the final the

three-field variational form of the Hamilton's principle for constrained elastodynamics

𝛿H(u,p,𝓵) =

t2

∫
t1

⎧
⎪⎨⎪⎩
∫
Ω

𝛿p ·
(

u̇ − 1
𝜌

p
)

dΩ − ∫
Ω

(𝛿u · ṗ + 𝛿𝜺 ∶ 𝝈) dΩ + ∫
Ω

𝛿u · bdΩ

+∫
Γb

𝛿u · 𝓵dΓ − ∫
Γb

𝛿𝓵 · (u − ub) dΓ
⎫
⎪⎬⎪⎭

dt = 0, (17)

expression that will be used to derive the discrete EOMs.

Remark 1. Through the use of a parameterized form of the kinematic energy with three free parameters (C1,C2,C3),
Schaeuble et al21 proposed a general template for obtaining variationally scaled and customized consistent
and RMMs. Variational equation (17) can be considered a particular case of their general template form for
{C1 = −1,C2 = 0,C3 = 0}. An important difference with that work lies on the use of a volume-specific linear momen-
tum instead of a mass-specific linear momentum and the consistent-lumped parameterization of the mass matrix that
will be introduced later.

4 CONSTRUCTING INVERSE MASS MATRIX VIA THE LOCALIZED
LAGRANGE MULTIPLIERS

Discretization in space of the mixed variational form (17) is performed by using independent interpolation functions for
displacements, momenta, and Lagrangian multipliers. For this purpose, we carry out a standard IGA discretization (5)
with independent B-spline shape functions for the three fields

u(𝝃) = Nu(𝝃)u, p(𝝃) = Np(𝝃)p, 𝓵(𝝃) = N𝜆(𝝃)𝝀, (18)

and we introduce these discrete approximations in the variational form (17) to obtain, after imposing the stationarity
condition, the following set of semidiscrete equations:

Aṗ + B𝝀 = r Equilibrium equation, (19)

A⊤u̇ − Cp = 0 Momentum equation, (20)

B⊤u − Lbub = 0 Boundar𝑦 (and inter𝑓ace) constraints, (21)

−L⊤
b 𝝀 = 0 Newton′s 𝑡ℎ𝑖𝑟𝑑 law on the boundaries, (22)

where vector r = f − f int is the external-internal forces residual, A is the global projection matrix, C is the global RMM,
B the boundary assembly operator, and Lb is the localized multipliers assembly matrix. These matrices are constituted by
an element-by-element assembly of the element matrices

Ae = ∫
Ωe

N⊤
u NpdΩ, Ce = ∫

Ωe

1
𝜌

N⊤
p NpdΩ, (23)

Be = ∫
Γe

N⊤
u N𝜆dΓ, Le = ∫

Γe

N⊤
𝜆 NudΓ, (24)
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the first two needed for the construction of the element reciprocal mass and the last ones used to enforce interface compat-
ibility and equilibrium. Moreover, it is important to mention that we assume constant mass density along every physical
patch.

Going one step forward by eliminating symbolically the momentum variable p from (19) and (20), one obtains the
classical equation of motion expressed in terms of displacements

(
AC−1A⊤) ü + B𝝀 = r (25)

with the mass matrix approximated as

M = AC−1A⊤ (26)

and observe that there must exists an inverse mass matrix (denoted by equivalence as M−1) given by

M−1 = A−⊤CA−1 (27)

assuming that the global projection matrix is invertible.
Since the objective of the present paper is to obtain inverse mass matrices for IGA in efficient and accurate ways, one

must seek for easily to invert diagonal or narrowly banded projection matrices. This certainly can be accomplished in
(27) with a diagonal projection A-matrix, leaving only the task of constructing the reciprocal C-matrix efficiently and
accurately.

5 DUAL BASIS FUNCTIONS

Observing again the expression obtained for the mass matrix inverse (27), we realize that a careful selection of the basis
functions can simplify its calculation. Dual bases can be local or global, continuous or discontinuous, and satisfy exactly the
orthogonality condition or not. In particular, by using displacement and momentum biorthogonal interpolation functions,
we are able to construct a diagonal projection matrix in the form

[Ae]i𝑗 = ∫
Ωe

N⊤
ui

Np𝑗 dΩ = di𝛿i𝑗 , where [Ae]i𝑗 = 0 for i ≠ 𝑗, (28)

with a trivial inverse that permits to compute the inverse mass matrix directly from the momentum matrix. Different
local and global dual interpolation functions of this kind, originally designed and tested for mortar methods, have been
recently proposed in the literature30-32 for NURBS and B-spline interpolations. Specifically for the construction of RMMs,
biorthogonal basis functions have been proposed under the framework of FEM8,9 and also IGA.21 The different options
available for the construction of dual bases are discussed next.

5.1 Local dual bases
These dual basis functions entail minimal support, ie, the support of the dual basis is equal to the support of the original
B-spline basis, that for the case of B-splines covers p + 1 knot spans. Analytical expressions for the construction of local
continuous (LC) biorthogonal dual basis exist in the literature for 1D B-splines,32-34 but they are difficult to generalize for
multidimensions, restricting their application to our case.

For higher dimensions, the simplest alternative is the use of a local discontinuous (LD) biorthogonal dual basis31,35

obtained via an elementwise linear combination of the primal shape functions, providing discontinuous reciprocal basis
functions that fulfill the partition of unity with the same support than their primal counterparts. A dual basis Np(𝝃) of
this type, orthogonal to the B-spline displacement interpolation functions Nu(𝝃), can be written in matrix form as

Np(𝝃) = Nu(𝝃)M−1
e ML

e (29)

constructed by using the knot intervals as independent elements and where Me is an element-by-element constructed
mass matrix, with ML

e = diag
(∑

𝑗[Me]i𝑗
)

being the LMM obtained by row sum of its components.
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FIGURE 5 Representation of local discontinuous quadratic p= 2 (left) and cubic p= 3 (right) orthogonal B-spline basis functions Np
p (𝜉) in

the normalized parameter space for an open knot vector with internal values Ξ = {0, 0.2, 0.4, 0.6, 0.8, 1}. These dual interpolation functions
are locally orthogonal to the basis Np

u (𝜉) represented in Figure 1 [Colour figure can be viewed at wileyonlinelibrary.com]

Orthogonality of these interpolation functions is easily demonstrated evaluating the projection matrix (28) at the
element level

Ae = ∫
Ωe

N⊤
u NpdΩ =

⎧
⎪⎨⎪⎩
∫
Ωe

N⊤
u NudΩ

⎫
⎪⎬⎪⎭

M−1
e ML

e = 1
𝜌

ML
e (30)

obtaining by design a diagonal projection matrix Ae that is equal to the lumped element mass matrix computed with unit
density. As an example, Figure 5 represents the discontinuous interpolation functions Np

p (𝜉) locally orthogonal to the
B-spline basis Np

u(𝜉) contained in Figure 1 for quadratic ( p= 2) and cubic ( p= 3) B-spline interpolations.
Finally, we can evaluate analytically the elemental momentum mass matrix from its definition (23), by substituting (29)

and considering (30), with a very simple expression

Ce = ∫
Ωe

1
𝜌

N⊤
p NpdΩ = A⊤

e M−1
e Ae, (31)

confirming that it is possible to compute an RMM element by element without expensive operations.

Remark 2. Expression (30), with the element projection matrix Ae equal to the lumped element mass matrix, was
originally proposed by González et al9 for the construction of RMMs in the context of FEM. The same projection
matrix was later employed by Schaeuble et al21 to construct variationally consistent masses and reciprocal masses for
IGA, eliminating the density inverse from its definition by introducing a momentum velocity field instead of a pure
momentum field.

A similar elementwise construction process can be applied to Bézier elements, obtaining a basis with compact support
restricted to the knot intervals that presents C0 continuity at the element interfaces. In this case, see Figure 6, the local
dual basis presents the same support than the original basis and the element-by-element compact support is well defined.

5.2 Global dual bases
On the contrary, global dual basis functions present complete support along the parametric space. A common technique to
compute global continuous (GC) bases is to write the dual functions as linear combination of the primal shape functions,
finding the coefficients by enforcing the orthogonality condition. Accelerated algorithms36 exist for this task, exploiting the
mathematical properties of the dual bases that can reduce the algorithm complexity, from (n3) flops needed to compute
a full inverse, to (n2) flops.

Another possibility to determine GC dual basis functions for B-spline basis functions is the inversion of the Gram
matrix.32,37 In this case, the first step in the calculation of the dual basis requires the computation of the Gramian matrix
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FIGURE 6 Form of the quadratic p= 2 (left) and cubic p= 3 (right) local discontinuous dual basis functions Np(𝜉) locally orthogonal to the
Bézier element basis Np

u (𝜉) represented in Figure 2 [Colour figure can be viewed at wileyonlinelibrary.com]
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FIGURE 7 Representation of quadratic p= 2 (left) and cubic p= 3 (right) B-spline global continuous dual basis functions Np
p (𝜉) in the

normalized parameter space for an open knot vector with internal values Ξ = {0, 0.2, 0.4, 0.6, 0.8, 1}. These interpolation functions are
orthogonal to the basis Np

u (𝜉) represented in Figure 1 [Colour figure can be viewed at wileyonlinelibrary.com]

for the primal basis

GNu,Nu =
⎡
⎢⎢⎢⎣

𝜉n+p+1

∫
𝜉1

Nui (𝜉)Nu𝑗 (𝜉)ds
⎤
⎥⎥⎥⎦(i=1,… ,n;𝑗=1,… ,n)

(32)

that integrates cross products of primal B-spline functions along the complete parametric space. The resulting Gram
matrix is symmetric, block-diagonal, and always invertible. Then, the Gram matrix needs to be efficiently inverted to
obtain the dual basis

Np(𝝃) = G−1
Nu,Nu

Nu(𝝃), (33)

where a full populated inverse G−1
Nu,Nu

produces a dual basis with global support. The resulting GC biorthogonal basis
functions yield the optimal reproduction degree but increase the number of operations and storage needed to compute
the inverse mass matrix due to their full support, see Figure 7.

Compared to local reciprocal bases, global dual basis functions produce full RMMs that are computationally more
expensive. In particular, the RMM computed with the inverse of the Gram dual basis (33) yields very accurate numerical
results, but at significantly higher computational cost than local dual bases.

5.3 Convenient dual bases
We incorporate into this final category bases that are not strictly orthogonal but can simplify the computation of the mass
inverse due to the exploitation of a convenient property. One example is the approximate dual basis based on wavelets
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proposed in the work of Dornisch et al32 for mortar coupling methods that are able to produce semicompact approxima-
tions of an orthogonal basis.

Another example is the inverse mass matrix approximation proposed by Chan and Evans,20 in the context of discon-
tinuous Galerkin IGA for wave propagation, where an approximated weight-adjusted RMM is derived empirically. It is
interesting to note that the same inverse mass matrix is obtained if we apply the proposed variational framework to the
LC ansatz basis

Np(𝝃) = Nu(𝝃)J−1(𝝃), (34)

where J(𝝃) is the Jacobian determinant of the physical to parametrical domain transformation and Ω̂ represents the para-
metric domain. This basis is not biorthogonal, but a simple scaling of the primal basis and its advantage resides in the
elimination of the physical domain influence from the projection matrix (23),

A = ∫
Ω

N⊤
u NpdΩ = ∫̂

Ω

N⊤
u NudΩ̂ = MΩ̂ (35)

a mass matrix that is not diagonal but is constant for a particular patch and its inversion can be automatized for regular
structured patches or affine transformations. The associated momentum matrix is then computed as

C = ∫
Ω

N⊤
u NuJ−1(𝝃)dΩ, (36)

and from (27), the inverse mass matrix presents the form

M−1 = M−1
Ω̂

CM−1
Ω̂
, (37)

where the mass inverse of the parametric domain can be written as the tensor product

M−1
Ω̂

= M−1
1D ⊗ · · ·⊗ M−1

1D, (38)

when the parametric domain Ω̂ is regular with the same structure on each dimension. In this specific case, the inverse
mass matrix in one direction M−1

1D is very cheap to compute and the complete patch inverse presents a Kronecker delta
structure.

6 ASSESSMENT OF LOCAL DISCONTINUOUS DUAL BASES

From all the possible dual basis functions discussed in Section 5, the elementwise computation of an LD biorthogonal
basis seems a perfect candidate, due to its simplicity and good results demonstrated in FEM and IGA mortar methods. LD
biorthogonal bases produce diagonal projection matrices and sparse inverse mass matrices. In this section, we describe in
detail its implementation and integration into the proposed variational framework. It also performed a dispersion study
that reveals the weakness of this type of basis under certain conditions, together with a parameterization method of the
mass matrix that palliates this defect.

6.1 Procedure to obtain IGA RMMs
The procedure used for the evaluation of the inverse mass matrix for IGA can be summarized in the following steps.

1. Consider all the open patches independently as free-floating substructures.
2. Compute element by element a parameterized mass matrix Me using (43) for example.
3. Approximate the element projection matrix Ae by lumping the element mass matrix.
4. Compute the element RMM Ce from a direct inversion of the element mass matrix.
5. Assemble the global projection and reciprocal matrices and compute the global mass matrix inverse.
6. Impose boundary conditions between patches using LLMs.

The first four steps of this process are described next, and the last step, which is a little bit more involved, will be analyzed
in Section 7.
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First, we consider an element of the patch at a time and compute the parameterized element mass matrix. Second, we
use the element LMM to obtain the element projection matrix by diagonalization, viz,

Ae =
1
𝜌

ML
e (39)

assuming that the density is constant in the patch. Third, the elemental RMM is evaluated inverting numerically the
element mass matrix

Ce = A⊤
e M−1

e Ae, (40)

where (Ae,Ce,Me) are elemental matrices, and particularly, Ae is a diagonal matrix, so this operation is very cheap.
Finally, we proceed with the assembly of the global RMM

C =
Ne

A
e=1

Ce (41)

and the global projection matrix

A =
Ne

A
e=1

Ae (42)

observing that as long as the elemental Ae is diagonal, so is the assembled matrix A and its inverse. These steps permit to
evaluate the inverse of the global mass matrix through expression (27) in an efficient way.

Remark 3. The same process can be applied to obtain RMMs for the FEM. The details of the methodology, as well as
its application to solid and structural elements, were investigated by the authors9 in a previous paper.

6.2 Mass matrix parameterization
A family of RMMs can be constructed by incorporating mass matrix parameterization7,8,38 into the previous process. Intro-
ducing free parameters, we can create a family of inverses and later select the members of this family with best properties
for different applications. There exist several ways to parameterize mass matrices at the element level, see the work of
Felippa et al39 for an exhaustive classification,39 being a consistent-lumped linear combination the simplest choice

Me = (1 − 𝛽)MC
e + 𝛽ML

e , (43)

in which a parameter 𝛽 ∈ [0, 1] is used to balance between the element CMM MC
e and LMM ML

e . For example, using
𝛽 = {0, 1∕2, 1}, the element mass matrix is then easily reduced respectively to the CMM, averaged mass matrix,
and LMM.

In particular, the case 𝛽 = 1 is of no interest because it reduces the reciprocal matrix to the common diagonal LMM with
a trivial inverse. LMM computed for IGA by the row-sum technique is very popular in explicit dynamics.15 Unfortunately,
the LMM does not maintain the accuracy of the CMM for high frequencies and finding better options would suppose an
important advantage for explicit dynamics. It is well known that the frequencies by CMM converge from above, whereas
the frequencies by LMM converge from below. Then, it remains the task of selecting an appropriated parameter 𝛽 for
B-spline interpolations of different degree with the objective of beating the LMM accuracy with equivalent computational
costs. This point will be addressed in the following section.

6.3 Dispersion analysis
The introduction of a consistent LMM parameterization in the RMM makes it possible to tune the free parameter 𝛽 for
different objectives, like maximum accuracy for certain frequency ranges. The tool used for evaluating the accuracy of a
particular reciprocal mass is Fourier analysis.39,40 For this task, we assume a monochromatic compressive steady wave of
frequency 𝜔 traveling in a uniform and infinite 1D bar.

The governing equation for longitudinal vibration in an elastic bar has the form

𝜕
𝜕x

(
EA𝜕u

𝜕x

)
− 𝜌A𝜕2u

𝜕t2 = 0, (44)

where u(x, t) is the axial displacement, x ∈ (−∞,∞) is the axial coordinate, t ≥ 0 denotes the time, 𝜌 is the mass density,
A is the area of a cross-section, and E denotes the Young's modulus. The exact speed of longitudinal waves in an elastic
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FIGURE 8 A compression wave with velocity c and length 𝜆 is assumed to travel in a discretized uniform bar. Infinite one-dimensional
lattice of equidistant control points (left) and associated quadratic B-spline interpolation functions (right) used for dispersion analysis
[Colour figure can be viewed at wileyonlinelibrary.com]

bar41 is c0 =
√

E∕𝜌. Then, we discretize the problem with a uniform infinite mesh of equidistant knots, see Figure 8, to
study the effect of IGA discretization and parameterization in the numerically calculated wave speed c for different wave
numbers k.

Assuming an interpolation of B-spline functions of order p in an infinite patch, with uniformly distributed knots and
characteristic element length h, we can compute analytically the stiffness and mass matrices and later use expression
(40) to obtain the elemental momentum matrix. This process starts obtaining the element matrices, for example, for the
linear case

Ae =
Ah
2

[
1 0
0 1

]
, Ce =

Ah
2(1 + 2𝛽)𝜌

[
(𝛽 + 2) (𝛽 − 1)
(𝛽 − 1) (𝛽 + 2)

]
(46)

and for quadratic B-splines

Ce =
Ah

12(1 + 3𝛽)(1 + 39𝛽)𝜌

⎡⎢⎢⎣

39𝛽2 + 250𝛽 + 31 52(3𝛽 + 1)(𝛽 − 1) (39𝛽 − 23)(𝛽 − 1)
52(3𝛽 + 1)(𝛽 − 1) 16(3𝛽 + 1)(13𝛽 + 7) 52(3𝛽 + 1)(𝛽 − 1)
(39𝛽 − 23)(𝛽 − 1) 52(3𝛽 + 1)(𝛽 − 1) 39𝛽2 + 250𝛽 + 31

⎤⎥⎥⎦
(48)

with the momentum matrix expressed as a function of the weighting parameter 𝛽, used to interpolate between CMM
and LMM.

These element matrices are then used to assemble the discrete EOMs, obtained from momentum (20) and equilibrium
(19) equations, particularized for the infinite lattice in the form

Aṗ + Ku = 0
A⊤u̇ − Cp = 0

}
→

(
A−⊤CA−1K

)
u − ü = 0 (49)

from where we have eliminated the momentum variable to finally write the dynamic equilibrium only in terms of
displacements.

Next, we force a harmonic solution for the axial displacement in the form

u(x, t) = Uei(kx−𝜔t) = Uei(𝜅𝜉−Ωc0t)∕h (50)

with the dimensionless wavenumber 𝜅 and frequency Ω respectively defined as 𝜅 = kh and Ω = 𝜔h∕c0. Then, we
particularize it at the control point coordinates xi = {… ,−2h,−h, 0, h, 2h, …} and substitute back in the equilibrium
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FIGURE 9 Analytical dispersion diagrams for an infinite bar modeled with quadratic p= 2 B-splines (left) and cubic p= 3 B-splines (right)
using different mass scaling parameters. Note that 𝜅 = 𝜋

2
corresponds to a resolution of four elements per wave length. Divergence is

observed for 𝛽 = 0 and a minimum dispersion error is obtained for 𝛽 = 2∕5 [Colour figure can be viewed at wileyonlinelibrary.com]

equation (49) to obtain [
A−⊤CA−1K −

(
Ωc0

h

)2

I

]
uh = 0 (51)

with a discrete solution vector for displacements

uh = U
[
· · · e−2i𝜅e−i𝜅1ei𝜅e2i𝜅 · · ·

]⊤ (52)

obtaining a discrete system that repeats the same equilibrium equation at each location xi of the lattice.
Finally, the extraction of ith row of system (51) provides us with the sought dispersion equation, relating the dimen-

sionless numerical frequency Ω with the wave number 𝜅 and parameter 𝛽. This relation is represented in Figure 9 for
quadratic (left) and cubic (right) B-spline interpolations and compared with the exact solution for an infinite elastic bar.
We observe a divergent result for 𝛽 = 0 (CMM), which invalidates the use of that particular RMM for practical pur-
poses. However, it is also observed that convergence is recovered for some positive values of the mass averaging parameter
(𝛽 > 0). In particular, a good low-mid frequency fitting is obtained for 𝛽 = 1∕2, clearly outperforming the accuracy of
the LMM (𝛽 = 1).

In order to investigate this divergence issue, we perform a Taylor series expansion of (51) around 𝜅 = 0. For p = 1,
traditional C0 linear finite element shape functions, Fourier analysis using element matrices (45) and (46) yields the
dispersion relation

Ω2 = 𝜅2 + 5 − 8𝛽
12(1 + 2𝛽)

𝜅4 + (𝜅6) (53)

revealing that, for lower frequencies, the RMM obtained with mass parameterization diverges for 𝛽 ∈ [0, 5∕8). In
particular, it is fourth-order accurate for 𝛽 = 5∕8 and produce acceptable results for 𝛽 ∈ [5∕8, 1].

Similarly, for quadratic B-splines, with element matrices given by (47) and (48), the Taylor expansion with respect to
wavenumber 𝜅 yields the dispersion relation

Ω2 = 𝜅2 + 3 − 7𝛽
4(1 + 3𝛽)

𝜅4 + (𝜅6), (54)

where it is observed that fourth-order approximation can be achieved by using 𝛽 = 3∕7 and the admissible interval of
the averaging parameter is extended to 𝛽 ∈ [3∕7, 1]. Moreover, an optimization of parameter 𝛽 for higher frequencies,
see Figure 9, reveals that the best approximation is obtained for 𝛽 = 2∕5. Using 𝛽 = 2∕5 is a compromise to improve
accuracy for the higher frequencies, maintaining second-order approximation for the lower frequencies. This value has
been obtained empirically, minimizing by numerical experiment the dispersion error at 𝜅 = 𝜋∕2.

Remark 4. For B-splines, the RMM obtained with an elementwise LD dual basis is very cheap to compute but should
be used with care. It diverges for 𝛽 = 0 (CMM) and is not able to provide accurate results. However, the use of mass
parameterization with 𝛽 ∈ [2∕5, 1) always provides a better approximation than the LMM diagonal mass inverse,
although p-convergence property is not preserved.
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It is worthy to mention that this type of LD B-spline dual basis has also been studied mathematically in the context of
IGA mortar methods for contact problems by Seitz et al,31 observing that LD bases generated elementwise only guarantee
partition of unity, and consequently, the global approximation order is limited to one in the L2-norm, independently of
the local approximation order. This defect in the approximation order of the B-spline dual basis causes that optimal con-
vergence rates cannot be guaranteed. Obviously, our elementwise dual basis reproduce the same convergence problems
when utilized for inverse mass matrix computations, but these difficulties can be palliated with mass matrix parameteri-
zation techniques.21 Finally, it has been also investigated the use of sixth-order accurate element mass matrices42-44 instead
of the fourth-order approximation given by (43) for 𝛽 = 0. By adopting these high-order mass matrices, it is possible to
increase the accuracy of the RMM, but the improvement is still not enough for its practical use with LD dual bases.

Remark 5. Because the RMM C is by definition positive definite, the unsymmetric eigenvalue problem[
A−⊤CA−1K − 𝜔2

i I
]
𝝓i = 0 represented by Equation (51) can be converted into a symmetric eigenvalue problem by

a Cholesky decomposition of the RMM with C = LL⊤, where Ld is a lower triangular matrix. Then, the equivalent
symmetric eigenvalue problem is obtained

[
L⊤A−1KA−⊤L − 𝜔2

i I
]
𝝋i = 0, (55)

which has different eigenvectors but the same eigenvalues as the original unsymmetric problem.

7 INCORPORATION OF BOUNDARY CONDITIONS WITH LAGRANGE
MULTIPLIERS

As we mentioned earlier, in the connection with other patches or presence of Dirichlet boundary conditions, a direct com-
putation of the mass inverse requires complicated modifications of the biorthogonal shape functions. We eliminate the
necessity of these modifications by considering the patches as free-floating substructures and applying the boundary con-
ditions through localized Lagrangian multipliers.10-13 To explain the enforcement of boundary conditions, we reorganize
the semidiscrete EOMs (20)-(22) to obtain the following partitioned equation set:

⎡
⎢⎢⎣

M B 0
B⊤ 0 −Lb

0 −L⊤
b 0

⎤
⎥⎥⎦

⎧
⎪⎨⎪⎩

ü
𝝀
üb

⎫
⎪⎬⎪⎭
=
⎧
⎪⎨⎪⎩

r
0
0

⎫
⎪⎬⎪⎭
, (56)

where the second equation is simply twice time-differentiated expression of (21).
Let us assume now that the boundary acceleration vector (üb) consists of entirely the prescribed boundary quantities,

regardless whether they are zero or nonzero. In this case, we obtain the accelerations (ü) from the first equation of (56) as

ü = M−1 (r − B𝝀) , (57)

in which, once again, we emphasize that the computation of M−1 = A−⊤CA−1 does not require additional computational
effort because the global projection matrix A is diagonal.

Then, substitute the accelerations obtained above into the second equation of (56)

B⊤M−1 (r − B𝝀) − Lbüb = 0 (58)

to compute the Lagrange multipliers
𝝀 =

[
B⊤M−1B

]−1 (B⊤M−1r − Lbüb
)

(59)

as a function of the forces residual and the boundary conditions. Finally, substitute the multipliers back in the equilibrium
equation (57) to obtain the final accelerations

ü = M−1
b r + M−1B

[
BTM−1B

]−1Lbüb (60)

with a constrained inverse mass matrix

M−1
b = M−1 − M−1B

[
B⊤M−1B

]−1B⊤M−1 (61)

incorporating the applied boundary conditions. This transformation can also be understood as a projection of the
free-floating mass matrix inverse.9
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Once again, since the size of
[
BTM−1B

]
is small, pertaining only to the constrained degrees of freedom, its inversion

is very cheap. It is also noted that ü contains not only the interior but also the constrained degrees of freedom, and the
imposition of boundary conditions will produce zeros in the associated rows and columns of M−1

b making it singular.
These zero rows and columns, corresponding to restricted degrees of freedom, can be simply eliminated.

8 NUMERICAL TESTS

In the following examples, for vibration analyses, we seek for an harmonic solutions that satisfy the EOM and fulfill the
boundary conditions ub = 0. These solutions are obtained by solving the following eigenvalue problem:

[
M−1

b Kb − 𝜔2I
]
𝝓 = 0, (62)

where M−1
b is the inverse mass matrix computed as described in Section 7 and Kb is the stiffness matrix incorporating the

applied boundary conditions. From the solution of this eigenvalue problem, we obtain the vibration frequencies 𝜔i of the
system and its associated mode shapes 𝝓i for mode number i = 1, … ,n.

In time-domain analyses, for time integration of the semidiscrete equations of elastodynamics, we use the classi-
cal explicit central difference scheme.45-47 This method is among the most popular explicit methods in computational
mechanics,4 based on a repetition of the basic steps summarized in Algorithm 2 until the total simulation time has been
reached.
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It is well known that the explicit central difference scheme in linear dynamics is conditionally stable, so the time step
Δt must be chosen below a critical value Δtcrit = 2∕𝜔max, where 𝜔max is the maximum frequency of the system. We
have seen that the proposed RMM with parameterization, obtained following the process described in Section 4, is able
to retain the accuracy for lower frequencies reducing highest frequencies at the same time. This reduction automatically
increases the critical time step, allowing the use of larger time steps and improving the computational efficiency.

To evaluate all element matrices we have used a Gauss-Legendre quadrature formula1 of degree p + 1 over the knot
intervals, where p is the order of the used B-spline or Bézier interpolation function. For the presentation of results, we
have adopted the following nomenclature. Plots with labels IGA and IGA-BE are used as a reference, indicating results
obtained with the exact IGA mass matrix inverse, computed respectively with B-splines or Bézier extraction. The pro-
posed reciprocal matrix is referred as RMM and RMM-BE depending on the interpolation functions, B-splines or Bézier
elements, respectively.

8.1 Free vibration of a bar
In this first example, we analyze the accuracy of the proposed method for direct computation or RMMs by analyzing
the free vibration of elastic bars. For this purpose, we consider we consider a long bar of length L = 1 m of uniform
section. The material of the bar is linear elastic, with Young's modulus E = 69 GPa and constant volumetric mass density
𝜌 = 2700 kg/m3.

The bar is discretized using a linear parameterization of 43 control points to investigate the accuracy of the RMM for
quadratic and cubic p = 2, 3 orders of longitudinal displacement discretization. In particular, we investigate differences
in the use of exact IGA inverses of the CMM and LMM matrices and the proposed approximation of the mass matrix
inverse RMM computed with an optimized 𝛽.

8.1.1 Free-free case
We start with the free-free case, by comparing the numerical frequencies with exact solutions obtained from continuum
theory. The exact frequencies of this problem are 𝜔exact

n = (n − 1)c0𝜋∕L rad∕s for mode number n = 1, 2, … , where
c0 =

√
E∕𝜌 is the wave speed of compressive waves and n = 0 provides a zero eigenfrequency corresponding to the free

rigid body motion.
Results for this case are presented in Figure 10 for two orders of approximation, quadratic p = 2 on the left and cubic

p = 3 on the right, and two different discretization methods, B-splines on the top and Bézier extraction at the bottom. We
include frequencies for the exact inverse of the IGA mass matrix, for CMM 𝛽 = 0, optimized 𝛽 = 2∕5 and LLM 𝛽 = 1
cases. For comparison, the RMM computed with the proposed method and optimized parameter 𝛽 = 2∕5 is also included.

It is well known27,48 and evident from inspection of Figure 10 (top) that, by increasing the order p of the LMM inverse,
higher-order accuracy is not achieved. We also observe that the present method, using the RMM with 𝛽 = 2∕5, yields far
better accuracy than the LMM for all frequencies. With quadratic B-splines, the optimized RMM is able to approximate
almost half of the spectrum with good accuracy, first 20 modes are below 5% error, while for cubic order, it is reduced to
the 15 first modes approximately. However, in general, increasing the approximation order either for B-spline or Bézier
approximations, expands the nonzero elements of the banded mass matrix and reduces the accuracy in the mid and high
frequency range.

The RMM for Bézier elements, on the contrary, is completely stable for 𝛽 = 0 conserving the p-convergence property,
see Figure 10 (bottom) for cases p= 2, 3. It can also be observed that although Bézier extraction introduces higher branch-
ing in the spectrum,49 its accuracy is very close to the B-splines approximation. This branching is caused by the two distinct
types of equations for the Bézier-based elements: those corresponding to nodes located at the element boundaries, and
those corresponding to the internal nodes located inside the element.27 Note that the number of branches coincide with
the Bézier element degree.

Moreover, RMM produces a maximum frequency around 40% lower than the exact IGA consistent matrix (IGA 𝛽 = 0),
so the critical time step for explicit time integration with the RMM can be reduced by the same amount. This is close to
the 55% reduction of the diagonal LMM but without so much degradation of the accuracy for the low frequencies.

Finally, we explore the accuracy of GC dual bases in the bar frequencies. In particular, we use the inverse Gram matrix
and the weight-adjusted to compute the RMM for different B-spline basis orders. The results are shown in Figure 11, where
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FIGURE 10 Free-free bar vibration problem computed with local discontinuous dual basis. Error in the frequencies for quadratic p = 2
(left) and cubic p = 3 (right) orders using B-splines (top) and Bézier extraction discretizations (bottom). The RMM with 𝛽 = 0 (CMM)
produces divergent results for B-splines and p-convergent behaviour for Bézier elements. In all cases, RMM with an optimized parameter
𝛽 = 2∕5 are able to capture correctly the low frequency band providing higher accuracy than LMM (𝛽 = 1) for the full frequency spectrum.
CMM, consistent mass matrix; IGA, isogeometric analysis; LMM, lumped mass matrix; RMM, reciprocal mass matrix

it is observed that the frequency error is totally equivalent to the IGA mass matrix and p-converge is maintained. Once
again, note that the evaluation of these two reciprocal bases requires two costly operations, invert the Gramian matrix
(left) and invert the mass matrix of the parametric domain (right), but, nevertheless, these operations are cheaper than
the inversion of the original mass matrix.

8.1.2 Fixed-free bar
Now, to test the proposed technique for applying boundary conditions using LLMs described in Section 7, we proceed
to fix the displacement of the first control point located on the left side of the bar. In terms of frequencies, the only
difference with the free-free case is in the restriction of the rigid body motion of the bar and the shift of exact frequencies
to 𝜔exact

n = (n − 1∕2)c0𝜋∕L for mode number n = 1, 2, … .
Figure 12 contains the results obtained for this case. We corroborate that accuracy is not affected by the imposition

of boundary conditions through LLMs and the results are completely equivalent. In this case, we have tested the RMM
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FIGURE 11 Error in the natural frequencies of a free-free bar computed using GC dual bases. The inverse Gram matrix (left) and the
weight-adjusted (GC-WA) basis (right) produce p-convergent approximations. These GC bases provide high accuracy, but at the price of
elevated computational cost in the case of the Gram matrix and loss of generality for the weight-adjusted basis. GC, global continuous;
IGA, isogeometric analysis

with 𝛽 = 2∕5 that provides very similar approximation of the bar frequencies. The results confirm that using the present
method to approximate the inverse mass matrix yields much better accuracy than the LMM with similar computational
effort.

8.2 Free vibration of a cantilevered tapered plate: FV32 test
This example is a plane-stress test proposed by the National Agency for Finite Element Methods and Standards.50 In partic-
ular, the dynamic case FV32 for checking the accuracy of flexural and longitudinal modes, where the natural frequencies
of a trapezoidal elastic plate are analyzed. The geometry and dimensions of the plate are represented in Figure 13 together
with the boundary conditions. It is assumed a linear elastic material with Young's modulus E = 200 GPa, Poisson's ratio
𝜈 = 0.3, and density 𝜌 = 8000 kg/m3.

First, the plate is discretized using a single patch with a regular mesh of 10 × 10 control points and quadratic isoge-
ometric NURBS-based elements, constraining the horizontal and vertical displacements of the 10 control points located
at x = 0, a lateral side of the plate. The knot points vector Ξ = {0, 0, 0, 0.125, 0.25, 0.375, 0.5, 0.625, 0.75, 0.875, 1, 1, 1} is
used in each direction to construct a regular 2D patch Ξ × Ξ with B-splines of order p = 2.

Next, the Bézier extraction process is applied to the patch of quadratic B-splines, see Figure 14, producing a mesh of
5 × 5 Bézier elements with 11 × 11 nodes. Note that, in both cases, these are more refined meshes than the one proposed
in the original NAFEMS benchmark case that uses quadrilateral finite elements.

This is a particular example where the weight-adjusted dual basis (34) is readily applicable, because the parametric
domain is completely regular and the parametrical-to-physical geometrical transformation is an affine mapping, hence
Jacobian of the transformation is constant.

The first nine mode shapes of the plate are illustrated in Figure 15 and their associated frequencies, obtained with
different mass matrix inverses, arranged in Table 1. As a reference, we use the frequencies computed with the original
mass matrix, IGA or IGA-BE (CMM). These frequencies are very close to the NAFEMS test for FEM and results from
other authors obtained with different RMM proposals.

First, we note that GC-Gram and GC-WA bases produce exactly the same frequencies and are able to approximate the
correct values with negligible error, confirming once again the superiority of these GC bases over the LD ones. Neverthe-
less, the LD-RMM computed with 𝛽 = 2∕5 provides a very good fit, with maximum difference obtained respectively in
the fourth mode with 1.8% error and the fifth mode with 4.9% error. Note that they correspond to flexural modes that are
more difficult to capture than extension modes, see Figure 15. For Bézier elements, maximum errors correspond to the
same flexural modes with values under 8%.



958 GONZÁLEZ ET AL.

5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

5 10 15 20 25 30 35 40
0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

FIGURE 12 Fixed-free bar problem computed with local discontinuous dual basis. Error in the frequencies for quadratic p = 2 (left) and
cubic p = 3 (right) orders using B-splines (top) and Bézier extraction discretizations (bottom). We observe that RMM with 𝛽 = 0 (CMM)
produces divergent results for B-splines and p-convergent behaviour for Bézier elements. In all cases, RMM with an optimized parameter
𝛽 = 2∕5 are able to capture correctly the low frequency band providing higher accuracy than LMM (𝛽 = 1) for the full frequency spectrum.
CMM, consistent mass matrix; IGA, isogeometric analysis; LMM, lumped mass matrix; RMM, reciprocal mass matrix

In general, it is verified that the proposed RMM obtained with LD bases and mass matrix parameterization is a better
alternative than the LMM for all modes.

8.3 Free vibration of a clamped thin circular plate
This numerical example is inspired by the work of Cottrell et al,22 where the problem of free vibration of a thin circular
plate is solved. The purpose of this example is to show the behavior of the proposed method also for a domain with a
curved boundary. The circular plate has a radius r = 2 m and thickness t = 0.02 mm. Although it would seem natural
to model the plate using shell finite elements, we follow the aforementioned work22 and model the circular plate as a 3D
body. Material of the plate is considered to be linear elastic with Young's modulus E = 30 GPa, Poisson's ratio 𝜈 = 0.2,
and density 𝜌 = 2320 kg/m3.

Similar to the preceding example, the plate is first discretized using a single patch with a regular mesh of 18 × 18 × 3
control points and quadratic isogeometric NURBS-based elements, clamping of the control points located at x2 + y2 = r2

as represented in Figure 16. The knot vectors Ξ1 = Ξ2 = {0, 0, 0, 1∕16, 2∕16, … , 15∕16, 1, 1, 1} and Ξ3 = {0, 0, 0, 1, 1, 1}
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FIGURE 13 NAFEMS benchmark case FV32. Geometry with dimensions in meters and zero boundary displacements imposed on the
lateral side of the plate at x = 0. The isogeometric analysis regular mesh presents l × m = 10 × 10 control points, indicated in blue, and
uses quadratic B-spline interpolation functions in both directions

FIGURE 14 A computational isogeometric analysis mesh based on B-spline shape functions (on the left) and based on Beziér shape
functions after Beziér extrapolation (on the right) [Colour figure can be viewed at wileyonlinelibrary.com]

Mode 1 Mode 2 Mode 3

Mode 4 Mode 5 Mode 6

Mode 7 Mode 8 Mode 9

FIGURE 15 NAFEMS benchmark case FV32. Representation of the nine lowest vibration modes occurring at frequencies contained in
Table 1. Results correspond to the proposed reciprocal mass matrix with parameter 𝛽 = 2∕5 computed with quadratic B-splines [Colour
figure can be viewed at wileyonlinelibrary.com]

are used in each parametric direction to construct a 3D patch Ξ1 × Ξ2 × Ξ3 with NURBS of order p = 2. Details regarding
the used parameterization can be found in the work of Anděl et al.51
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TABLE 1 Plane-stress case FV-32 from NAFEMS. Six lowest frequencies obtained with different
mass matrices

Frequency (Hz) Mode 1 Mode 2 Mode 3 Mode 4 Mode 5 Mode 6

NAFEMS50 (FEM) 44.623 130.03 162.70 246.05 379.90 391.44
Tkachuk and Bischoff 8 (FEM) 45.499 133.55 162.89 255.37 393.16 398.56
Schaeuble et al21 (IGA) VSRMS† 44.615 128.489 162.860 235.104 335.874 385.989
IGA 𝛽 = 0 (CMM) 44.634 130.107 162.709 246.639 382.937 391.525
IGA 𝛽 = 1 (LMM) 44.022 122.936 161.413 218.492 308.210 373.077
LD-RMM 𝛽 = 2∕5 44.645 129.581 162.720 241.956 363.728 390.592
GC-Gram 44.634 130.107 162.709 246.639 382.937 391.525
GC-WA 44.634 130.107 162.709 246.641 382.961 391.526
IGA-BE 𝛽 = 0 (CMM) 44.651 130.343 162.730 248.396 389.846 391.848
IGA-BE 𝛽 = 1 (LMM) 44.096 123.304 161.532 219.363 309.573 374.468
LD-RMM-BE 𝛽 = 2∕5 44.544 128.531 162.489 238.999 358.320 387.791

The cited references use different meshes and methods.
†Variationally scaled consistent inverse mass matrices.
Abbreviations: CMM, consistent mass matrix; GC, global continuous; IGA, isogeometric analysis; LD, local
discontinuous; LMM, lumped mass matrix; RMM, reciprocal mass matrix; WA, weight-adjusted.

FIGURE 16 Clamped thin circular plate. Geometry with diameter in meters and zero boundary displacements imposed on the lateral side
of the plate at x2 + y2 = 4. The isogeometric analysis mesh presents l × m × n = 18 × 18 × 3 control points, indicated in blue, and uses
quadratic NURBS interpolation functions in all three directions

Again, the Bézier extraction process is applied to the patch of quadratic B-splines, see Figure 17, producing a mesh of
8 × 8 × 1 Bézier elements with 17 × 17 × 3 control points.

The three first symmetric 𝜔01, 𝜔11 and antisymmetric 𝜔02 eigenmodes22 are illustrated in Figure 18, and their associated
frequencies, obtained with different mass matrix inverses, are summarized in Table 2. Classical IGA with CMM gives the
first three eigenmodes at frequencies 𝜔01 = 57.636 rad/s, 𝜔11 = 127.061 rad/s, and 𝜔02 = 260.913 rad/s that are used
as a reference. Note that GC-Gram basis produces again a perfect approximation. As predicted by dispersion analysis, the
LD-RMM with best fit is obtained for 𝛽 = 2∕5, see IGA RMM results in Table 2, presenting discrepancies of 0.05%, 0.04%,
and 0.2%, respectively.

Observing now the IGE-BE (CMM) solution, a slightly poorer approximation is obtained for the Bézier extraction
results, compared to IGA with NURBS basis functions. The average relative errors for the Bézier extraction for eigen-
frequencies 𝜔01, 𝜔11, and 𝜔02 are 0.3%, 0.8%, and 2%, respectively. It is important to mention again that the accuracy of
the results for LC-RMM crucially depends on the selection of an appropriated value for the parameterization factor 𝛽. Its
value has been derived from 1D dispersion analyses and its optimization for 2D cases deserves further study.
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FIGURE 17 A computational isogeometric analysis mesh based on NURBS basis functions (on the left) and based on Beziér shape
functions after Beziér extrapolation (on the right) [Colour figure can be viewed at wileyonlinelibrary.com]

FIGURE 18 Clamped thin circular plate. Two symmetric and one antisymmetric vibration modes corresponding respectively to
frequencies 𝜔01, 𝜔02, and 𝜔11 [Colour figure can be viewed at wileyonlinelibrary.com]

TABLE 2 Clamped thin circular plate. Three lowest eigenfrequencies obtained
with different mass matrices

IGA Bézier Extraction
Frequency (rad/s) 𝝎01 𝝎11 𝝎02 𝝎01 𝝎11 𝝎02

IGA 𝛽 = 0 (CMM) 57.636 127.061 260.913 55.933 119.250 231.591
IGA 𝛽 = 1 (LMM) 56.947 123.291 245.604 55.022 114.317 211.815
LD-RMM 𝛽 = 2∕5 57.666 127.114 260.358 55.774 118.274 226.896
GC-Gram 57.636 127.061 260.914 - - -

Abbreviations: CMM, consistent mass matrix; GC, global continuous; IGA, isogeometric
analysis; LD, local discontinuous; LMM, lumped mass matrix.

8.4 Transient analysis of a cantilever beam under self weight
Finally, to test the RMM with a transient case, we consider a 3D cantilever beam under self weight with a sudden appli-
cation of the gravity load at time t = 0 seconds. The geometrical definition of the problem is shown in Figure 19 (left),
where a cantilever beam of length L = 10 m and section width b = 4 m with height h = 2 m are considered. The elas-
tic material properties of the beam are E = 10 MPa, 𝜈 = 0.3, and density 𝜌 = 100 kg/m3 with a gravity acceleration
g = 9.81 m/s2.

The parametric domain is defined by a 3D patch constructed with knot spans on each direction Ξ1 = {𝜉1, … , 𝜉l + p + 1}
with Δ𝜉 = 1∕19, Ξ2 = {𝜂1, … , 𝜂m + p + 1} with Δ𝜂 = 1∕5, and Ξ3 = {𝜇1, … , 𝜇n + p + 1} with Δ𝜇 = 1∕3. Quadratic
B-splines with p = 2 are used in the three directions. Elements are defined in the parametric space Ξ1 × Ξ2 × Ξ3 as
nonzero knot spans, [𝜉i, 𝜉i + 1] × [𝜂i, 𝜂i + 1] × [𝜇i, 𝜇i + 1] and elements in the physical space are images of their parametric
counterparts.
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FIGURE 19 Cantilever beam under sudden gravity load. Geometry, dimensions, and mesh with elements defined in the physical space.
Deformation with contours of vertical displacement at time t = 1.5 seconds computed with the reciprocal mass matrix (RMM) (left).
Comparison of tip deflections |uz| obtained with explicit isogeometric analysis (IGA) and critical time step, IGA with large time step and the
reciprocal mass matrix RMM with 𝛽 = 2∕5 (right)

FIGURE 20 Results of the tip loaded cantilever beam. Evolution of the internal, external and kinetic energies in the beam (left). Solutions
obtained using the proposed reciprocal mass matrix (RMM) inverse matrix are represented with dots. Error evolution of the beam tip
deflection computed with RMM 𝛽 = 2∕5 (right)

This patch describes the physical domain with a mesh of l × m × n = 21 × 7 × 5 = 735 control points, producing a
total number of 735 × 3 = 2205 unknowns except for those control points located at the plane x = 0 that are restricted
in the three directions of space.

An exact eigenvalue analysis of the problem with a CMM reveals that the maximum frequency of the structure is𝜔max =
3510.5 rad/s; hence, the critical time step for stability of the central difference scheme is ΔtIGA

crit = 5.7× 10−4 seconds. This
critical time step is utilized to compute the reference solution of the problem. The use of RMM with 𝛽 = 2∕5 reduces the
maximum frequency to 𝜔max = 1554.8 rad/s, increasing the critical time step to ΔtRMM

crit = 0.0013 seconds, ie, 2.3 times
larger than the initial critical time step. Then, a time stepΔt = 0.001 seconds is selected to perform time-domain analysis,
integrating in time the response of the beam with the explicit central difference method described in Algorithm 2. It is
observed in Figure 19 (right) that this large time step Δt ≫ ΔtIGA

crit produces unstable results with classical IGA, while the
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FIGURE 21 Results of the tip loaded cantilever beam discretized by the Bézier elements. Comparison of tip deflections |uz| obtained with
the exact consistent and lumped mass matrices (isogeometric analysis [IGA]) and the reciprocal mass matrix (RMM) with parameters
𝛽 = 1∕2 and 𝛽 = 2∕5 (left). Evolution of the internal, external and kinetic energies in the beam (right)

RMM with Δt ≤ ΔtRMM
crit is able to obtain a stable and very accurate solution. In all the cases, initial conditions of the beam

are assumed to be zero displacements and velocities, applying the full gravity load at the initial time step.
The results are shown in Figures 19 and 20 for NURBS and Figure 21 for Bézier elements. We have selected for com-

parison the RMM computed with different values of the parameter 𝛽 = {0, 2∕5, 1∕2, 1}, representing the evolution of the
tip deflection of the beam with both approximation methods in Figures 19 (right) and 21 (left). We also compare the time
evolution of total internal U, external W, and kinetic T energies.

Finally, in Figure 20 (right), it is represented the relative error (u − uexact)∕|uexact| of the tip displacement u, computed
with the proposed RMM (𝛽 = 2∕5). It is observed that the error remains under 0.12% during the 1.5 seconds of simulation,
indicating a very good agreement with the reference solution.

9 CONCLUSIONS

In structural dynamics, classical explicit time-integration methods equipped with a direct solver require an initial factor-
ization of the mass matrix and repeat subsequent forward and backward substitution operations every time step. If we
choose Cholesky factorization, for example, the total cost of this process is around (n3∕3) flops plus (2n2) operations
per time step for each forward-backward substitution. With a direct approximation of the inverse mass matrix, factoriza-
tion cost is eliminated and operation count per time step is reduced to a sparse matrix-vector multiplication (mn) flops,
where m is the average number of nonzero entries per row.

This work presents a variational framework for the direct generation of inverse mass matrices that can be used for the
IGA of elastodynamic problems. The method requires the definition of an appropriated dual basis for the momentum
field and the influence of the selected reciprocal basis in the efficiency and accuracy of the results has been analyzed for
the case of B-splines and Bézier elements. In particular, three types of dual bases have been studied: one LD and two GC
based, respectively, on the inverse Gram matrix and a weight-adjustment of the primal basis through the Jacobian of the
transformation.

It is observed that, in terms of computational efficiency and accuracy, LD dual basis combined with mass matrix param-
eterization produces an RMM that can be a better alternative than the LMM for all frequencies and IGA approximation
orders. However, elementwise construction of LD dual basis functions for B-splines with the CMM (𝛽 = 0), produces
divergent results. That is not the case for other approximations with C0 continuity, like Bézier and high-order isopara-
metric finite elements for example, that produce RMMs that retain the p-convergence property for 𝛽 = 0. In general,
the combination of mass averaging (𝛽 > 0) with LD bases forbids p-convergence for B-spline and Bézier elements of
order p ≥ 2. On the contrary, the GC Gram basis is able to achieve high accuracy for any approximation order. Nev-
ertheless, global dual bases produce fully populated inverses and entail higher computational costs. The inverse Gram
basis requires the inversion of a block-diagonal symmetric matrix and weight-adjusted dual basis computational efficiency
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greatly depends on the regularity of the mesh defined on the parametric space. Moreover, the final inverse mass matrix
becomes a fully populated symmetric matrix.

In the present method, inter-patch compatibility and Dirichlet boundary conditions are handled by the method of LLMs.
This process is completely general, avoids the need for dual basis function modifications near the boundary conditions,
and is found to be computationally efficient because it only requires the factorization of a small element-like matrix
associated with the constrained DOFs.

In conclusion, the proposed variational framework for the computation of IGA inverse mass matrices is completely
general but, in terms of accuracy and efficiency, its results are influenced by a proper selection of the dual basis. The
investigation of analytical LC basis for high-dimensional NURBS and more efficient algorithms for the GC dual basis
computation remain an open issue, which we will consider in future work.
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Summary

The stability and reflection-transmission properties of the bipenalty method
are studied in application to explicit finite element analysis of one-dimensional
contact-impact problems. It is known that the standard penalty method, where
an additional stiffness term corresponding to contact boundary conditions is
applied, attacks the stability limit of finite element model. Generally, the crit-
ical time step size rapidly decreases with increasing penalty stiffness. Recent
comprehensive studies have shown that the so-called bipenalty technique, using
mass penalty together with standard stiffness penalty, preserves the critical
time step size associated to contact-free bodies. In this paper, the influence of
the penalty ratio (ratio of stiffness and mass penalty parameters) on stability
and reflection-transmission properties in one-dimensional contact-impact prob-
lems using the same material and mesh size for both domains is studied. The
paper closes with numerical examples, which demonstrate the stability and
reflection-transmission behavior of the bipenalty method in one-dimensional
contact-impact and wave propagation problems of homogeneous materials.

KEYWORDS

bipenalty method, explicit time integration, finite element method, penalty method,
reflection-transmission analysis, stability analysis

1 INTRODUCTION

In contact-impact problems, the contact constraints are often enforced either by the Lagrange multiplier method or by the
stiffness penalty method. In practice, the latter approach has gained substantial popularity in explicit dynamics, because
its implementation is straightforward and does not require assembly and solution of a linear system of equations in each
time step as in the Lagrange multiplier method, see details in Carpenter et al and Zhong.1,2 Moreover, the finite interface
stiffness can be physically motivated. On the other hand, the choice of the penalty parameter influences the accuracy of
the approximate solution. In addition, in contact-impact applications, the stiffness penalty method tends to decrease the
critical time step size in conditionally stable time integration schemes like the central difference method (CDM).3 This
is due to the fact that the stiffness-type penalty method can greatly increase the maximum eigenfrequency of a system.
Note that this effect is not observed in enforcing of contact constraints by the Lagrange multiplier method. Modification
of the penalty method with ephemeral penalty functions for contact-impact dynamics has been presented in de la Fuente

Int J Numer Meth Engng. 2018;113:1607–1629. wileyonlinelibrary.com/journal/nme Copyright © 2017 John Wiley & Sons, Ltd. 1607



1608 KOPAČKA ET AL.

and Felippa,4 error analysis of penalty function techniques for constraint definition in linear algebraic systems has been
published in Felippa,5 and iterative procedures for improving penalty function solutions of algebraic systems have been
studied in Felippa.6

Generally, in the penalty method, an additional stiffness term corresponding to contact boundary conditions is applied
to prevent penetration of the contacting bodies. In this sense, the penalty method can be viewed as a relaxation of the
impenetrability condition. This is a new boundary condition with respect to the actual situation of penetration of bodies,
and the penalty parameter can be interpreted as a spring stiffness corresponding to a contact boundary condition.

The penalty approach can be applied not only to the stiffness term but also to the inertia of the contact boundary
condition. This technique is known as the mass penalty or the inertia penalty method. When both additional terms are
involved, the method is called the bipenalty method. In the bipenalty method, one adds an extra mass term into the mass
distribution corresponding to a contact domain of interest with a stiffness term at the same time. By means of adding
the bipenalty terms (additional mass and stiffness terms concurrently) into the equations of motion corresponding to the
contact pairs, we obtain a modified local dynamic system. In principle, we attune a frequency character of the equations
of motion corresponding to the nodes for which contact conditions apply. In a special case, one can find a particular
choice for the ratio of additional stiffness and mass parameters such that the frequency character of the boundary with the
bipenalty term is not affected by the additional stiffness term, as it is the case in the standard penalty method. Moreover,
in the bipenalty method, this frequency character is the same as the one of contact-free bodies. For this reason, we can
determine a stability limit in explicit contact-impact finite element analysis neglecting contact constraints. This means
we determine a stability limit for contact-free discretized bodies respecting only Dirichlet boundary conditions. This is
the main motivation for using the bipenalty method in contact-impact problems solved by explicit finite element analysis.

The bipenalty method initially gained popularity for frequency domain problems, see Ilanko7 and Ilanko and
Monterrubio.8 In contrast to the stiffness penalty approach, it significantly reduces one or more eigenfrequencies. In
Askes et al,9 the bipenalty technique was introduced for time domain problems, where both penalty formulations are
used simultaneously. The goal of this method is to find the optimum of the so-called critical penalty ratio (CPR), defined
as the ratio of stiffness and mass penalty parameters, so that the maximum eigenfrequency and the critical time step
size of a contact-free discretized body are preserved. The calculation of CPR requires an analysis of the full bipenalized
problem. Owing to mathematical difficulty, it limits the classes of elements that can be taken into account. To overcome
this problem, a simple relationship between the CPR of an element and its maximum unpenalized eigenfrequency was
derived in Hetherington et al.10 Thus, the multiple constraints and more complex element formulations can be directly
accounted for Hetherington et al.11 The effect of the penalty stiffness on the accuracy in contact problems has been studied
in Huněk12 and in Hetherington et al,11 where also the effect of damping penalty parameters has been analyzed.

The original ideas of the bipenalty method were independently developed for stabilizing numerical solutions for
differential-algebraic equation systems (eg, in constrained multibody dynamics), like the Baumgarte method.13 In this
method, the system of constraint equations 𝚽 = 0 is modified, and the equation system �̈� + 2𝛼�̇� + 𝛽2𝚽 = 0, 𝛼 and
𝛽 being positive parameters, is solved instead of the equation system �̈� = 0 during the numerical solution of the index
one differential-algebraic equation systems. In principle, the constraint forces are computed as sum of stiffness, damping,
and inertia penalty terms for a general holonomic constraint. For an application of the Baumgarte method for multi-
body dynamic problems, see Lin and Huang.14,15 The stability of the Baumgarte method has been studied in Chiou et al16

and the optimal choice of numerical parameters has been analyzed in Lin and Huang.17 However, the motivation of
this development was the reduction of the differential index of the system and more robust implicit integration of the
differential-algebraic equation system. The effect of the penalty and damping parameters for multibody systems is ana-
lyzed in detail in previous studies.14,16-18 The staggered penalty method in multibody problems has been used in Park and
Chiou.19

In this paper, the bipenalty approach is studied for one-dimensional contact-impact problems in explicit finite element
analysis. We study contact-impact problems of homogeneous bars with the same material parameters and cross-section.
The attention is focused on the stability and accuracy properties including numerical artifacts of this algorithm, mainly
on the reflection-transmission properties of waves running through discretized finite element domains connected by a
bipenalized term. The paper is organized as follows: In Section 2.1, the formulation of the contact initial boundary value
problem is presented, followed by the variational formulation in Section 2.2. The idea of the bipenalty approach for
imposing contact constraints is described in Section 2.3. Finite element discretization is outlined in Section 2.4. Numer-
ical stability of the explicit time integration scheme is discussed in Section 2.5. Next, the reflection-transmission error
(RTE) analysis is briefly introduced in Section 4, and results of such an analysis are presented for the homogeneous case.
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In addition, the spurious reflection for dimensionless penalty factors below 1 is discussed. Section 5 presents a stability
test of the algorithm for the dynamic Signorini problem and the Huněk test as well as a numerical study of RTEs, followed
by concluding remarks in Section 6.

2 PROBLEM DESCRIPTION AND GOVERNING EQUATIONS

In this section, an overview of the fundamental equations of elastodynamic problems in solids, the variational formula-
tion of the contact problem and the finite element method with the bipenalty method in contact problems are described
alongside the basic description of the CDM as the most common explicit integrator with a stability limit. This description
follows a previous work.20 Both the 2 bodies contact problem and the Signorini contact problem, ie, the contact of a single
body on a rigid obstacle, are considered.

2.1 Contact initial/boundary value problem
A one-dimensional contact-impact problem of linear isotropic homogeneous bars is governed by the balance of linear
momentum

Eu′′ + b = 𝜌ü in I × T, (1)

where I =
⋃

i Ii = (x𝓁i , xr
i ), i = 1, 2 is the union of intervals of spatial points xi ∈ Ii defining the contacting bodies (see

Figure 1), and T = (0, tend) is the time interval. Indeed, for the Signorini problem, depicted in Figure 1B, only one body
is considered I = I1. In Equation 1, u(x, t) ∶ I × T → R is the unknown displacement function, b(x, t) ∶ Ī × T̄ → R is
the prescribed volume intensity of body forces, where ̄(•) denotes closure of a set. Further, E ∈ R is Young's elasticity
modulus, and 𝜌(x) ∶ Ī → R is the density.

For the sake of simplicity, the second partial derivative with respect to x is denoted by double prime, (•)′′, and the second
partial derivative with respect to t by superimposed dots, ̈(•).

The governing Equation 1 is complemented by the initial and boundary conditions. The initial conditions are

u(x, 0) = u0(x) in Ī, (2)

u̇(x, 0) = v0(x) in Ī, (3)

where u0(x) ∶ Ī → R is the initial displacement function and v0(x) ∶ Ī → R is the initial velocity function, both prescribed
at time t = 0. The boundary conditions of Dirichlet and Neumann type are

u(x, t) = ū(x) in Γu, (4)

Eu′(x, t) = �̄�(x) in Γ𝜎, (5)

where ū(x) ∶ Γu → R is the displacement function and �̄�(x) ∶ Γ𝜎 → R is the traction function, both constant in time.
Γu and Γ𝜎 are sets of boundary points where displacements and stresses are prescribed. Further, the set Γc = {xr

2, x𝓁1 } of
points on the contact interface is introduced for the formulation of 2 bodies contact problem, cf Figure 1A. Note that here,
we have assumed that the first body is on the right, and therefore, its contact interface forms the left boundary point, x𝓁1 .

(A) (B)

FIGURE 1 Definition of domains of interest, their boundaries, and the gap function
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Analogously for the second body, for the Signorini problem, Γc reduces to single-element set Γc = {x𝓁1 }, cf Figure 1B. All
3 sets Γu,Γ𝜎 , and Γc disjointly cover the boundaries of intervals Ii, ie,

Γu ∪ Γ𝜎 ∪ Γc = 𝜕I, (6)

Γu ∩ Γ𝜎 ∩ Γc = ∅. (7)

Let us define the so-called gap function g(t) ∶ T̄ → R, which measures the distance between contacting points. For the
2 bodies contact problem, it is

g(t) = −
{[

x𝓁1 + u(x𝓁1 , t)
]
−
[
xr

2 + u(xr
2, t)
]}

= −
[
u(x𝓁1 , t) − u(xr

2, t) + x𝓁1 − xr
2
]

= −
[
u(x𝓁1 , t) − u(xr

2, t) + g0
]
,

(8)

where g0 denotes the initial gap. For the Signorini problem, the gap function can be considered as the special case of (8),
assuming xr

2 = 0 and u(xr
2, t) = 0

g(t) = −
[
u(x𝓁1 , t) + g0

]
. (9)

With the aid of the gap function, the contact constraints are prescribed by the Signorini-Hertz-Moreau conditions

g(t) ≤ 0 pc(x, t) ≥ 0 g(t)pc = 0 t ∈ T, x ∈ Γc (10)

also known as the Karush-Kuhn-Tucker (KKT) conditions. Here, assuming Hook's law, pc(x, t) = −Eu′ is the contact
pressure.

Note that the gap function has the positive sign in the case of penetration. Therefore, the inequality (10)1 is called the
impenetrability condition.

The second condition (10)2 asserts a positive contact pressure. And finally, the equality (10)3 is called the complemen-
tarity condition ensuring the complementarity between the gap function and the contact pressure.

2.2 Variational formulation
For the finite element discretization, it is necessary to reformulate the strong form of the contact initial boundary value
problem presented in the preceding section in a weak sense. The Hamilton's principle is a powerful tool that can be utilized
to derive a discretized dynamic system of equations. It states that out of all admissible time histories of the displacement
field, the solution is the one that minimizes the action functional

u = arg min
(
∫T

 (u, u̇) dt
)

subject to g ≤ 0, (11)

where the Lagrangian function, (u, u̇), is defined as

 (u, u̇) =  (u̇) − ( (u) − (u)) (12)

and where

 (u̇) = ∫I

1
2
𝜌Au̇2 dx (13)

 (u) = ∫I

1
2

EAu′2 dx (14)

 (u) = ∫I
ubA dx +

∑
x∈Γ𝜎

uA�̄� (15)

are the kinetic energy, the strain energy, and the work done by the external forces, respectively. Note that the cross-section
area function A(x) ∶ Ī → R has been introduced.
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2.3 Bipenalty method
In dynamics, the simultaneous use of stiffness penalties and inertia (mass) penalties, called the bipenalty method, was
originally proposed in Askes et al.9 Therein, the penalty ratio is defined as

R = 𝜖s

𝜖m

[
s−2] , (16)

where 𝜖s [kg·m−2·s−2] and 𝜖m [kg m−2] are the stiffness and mass penalty parameter, respectively. Moreover, optimum
values of the penalty ratios—the so-called CPRs—have been derived for a number of finite elements such that the critical
time step size of the penalized system remains unaffected. A new method of calculating the CPR associated with a finite
element formulation was developed in Hetherington et al.10 Recently, this research was extended to include systems with
an arbitrary set of multipoint constraints11 and to cohesive zone (surface) elements.21

The standard stiffness penalty method adds an extra term to the strain energy (14) to enforce the zero gap on the contact
boundary

p (u) = ∫I

1
2

EAu′2 dx + 1
2
𝜖sA⟨g⟩2, (17)

where the operator ⟨•⟩ are the so-called Macaulay's brackets defined as

⟨•⟩ = |•| + •
2

. (18)

Thus, in the particular case of Equation 17, this operator returns zero for a negative value of the gap function (ie,
separation), and it returns the value of the gap function itself in the case of penetration.

Further, the inertia penalty term can also be added to the kinetic energy (13) to enforce a zero gap rate on the contact
interface

p (u̇) = ∫I

1
2
𝜌Au̇2 dx + 1

2
𝜖mAġ2H(g), (19)

where H(g) is the Heaviside step function, which ensures that the penalization term is active only in the case of
penetration. Note the identity ⟨g⟩ = gH(g) . Now, the penalized Lagrangian functional can be defined as

p(u, u̇) = p(u̇) − [p(u) −(u)]. (20)

The unknown displacement function u(x, t) is sought through minimizing the action functional taking the form

𝛿∫T
p (u, u̇) dt = 0, (21)

where 𝛿 denotes the first variation.
Using the standard procedures, one arrives at the principle of virtual displacements

∫I
𝛿u𝜌ü dx + ∫I

𝛿u′EAu′ dx + 𝛿gAH(g)[𝜖mg̈ + 𝜀sg] = ∫I
𝛿uAb dx +

∑
x∈Γ𝜎

𝛿uA�̄�, (22)

which provides the base for the finite element discretization. The terms in Equation 22 represent the virtual work of the
inertia forces, internal forces, contact forces, body forces, and traction forces, respectively. It is worth noting that the term
of the virtual contact work is expressed with the aid of the inertia and the stiffness penalty.

2.4 Finite element method
In the following, the continuous Galerkin approximation method with linear shape functions is exploited. The interval I
is subdivided into smaller intervals, which serve as the parent domains for finite elements

I =
nel⋃
e=1

Ie, (23)
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where Ie =
[
x𝓁e , xr

e
]

and the length of each element is he = xr
e − x𝓁e . On each of the finite elements, the linear shape

functions are defined as

N1(x) =
xr

e − x
he

N2(x) =
x − x𝓁e

he
x ∈ Ie. (24)

With the aid of these shape functions, the unknown displacement function and its variation and derivative are
discretized as

u(x, t) ≈ uh(x, t) =
2∑

a=1
Na(x)ue

a(t) = HTue x ∈ Ie, t ∈ T, (25)

𝛿u(x) ≈ 𝛿uh(x) =
2∑

a=1
Na(x)𝛿ue

a = HT𝛿ue x ∈ Ie, (26)

u′(x, t) ≈
(

uh)′(x, t) =
2∑

a=1
N′

a(x)ue
a(t) = BTue x ∈ Ie, t ∈ T, (27)

where the newly introduced matrices have the form

H =
[

N1

N2

]
B =

[N′
1

N′
2

]
ue =

[ ue
1

ue
2

]
𝛿ue =

[ 𝛿ue
1

𝛿ue
2

]
. (28)

Similarly, the gap function and its variation are discretized as

g(t) ≈ gh(t) = −NTû(t) − g0 t ∈ T, (29)

𝛿g ≈ 𝛿gh = −NT𝛿û, (30)

where 3 new matrices have been defined. For the gap function (8) of the 2 bodies contact problem, they are defined as

N =
[

1
−1

]
û =

[
uh(xr

1, t)
uh(x𝓁2 , t)

]
𝛿û =

[
𝛿uh(xr

1)
𝛿uh(x𝓁2 )

]
, (31)

and for the gap function (9) of the Signorini problem, they simplify to

N =
[

1
]

û =
[

uh(xr
1, t)
]

𝛿û =
[
𝛿uh(xr

1)
]
. (32)

Using the just introduced discretized functions together with standard finite element procedures to the variational
formulation (22) yields the following system of nonlinear ordinary differential equations

Mü + Ku + Rc(u, ü) = R, (33)

where u, u̇, ü mark the global vectors of nodal displacements, velocities, and accelerations, respectively. M is the global
mass matrix, K is the global stiffness matrix, and Rc is the global contact residual vector, which is the source of the
nonlinearity. Further, R is the time-dependent global load vector. The global vectors and matrices are assembled in the
usual fashion from the local (elemental) contributions. The element mass and stiffness matrices are given by

Me = ∫Ie

𝜌AHHT dx Ke = ∫Ie

EABBT dx. (34)

The fully integrated elemental stiffness and consistent mass matrices are given as

Ke =
EA
he

[
1 −1

−1 1

]
(35)

and
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Me =
𝜌heA

6

[
2 1
1 2

]
, (36)

where it was assumed that cross-section area A, Young's modulus E, and density 𝜌 are constant. In the following, we will
exclusively use the row-sum lumped mass matrix

Me =
𝜌heA

2

[
1 0
0 1

]
, (37)

which is preferred in explicit finite element analysis.
The global contact residual vector Rc is assembled from the local counterpart R̂c, which can be written as

R̂c(û, ̈̂u) = M̂p ̈̂u + K̂pû + f̂p (38)

where

M̂p = 𝜖mAH(g)NNT K̂p = 𝜖sAH(g)NNT f̂p = 𝜖sAH(g)Ng0. (39)

Here, M̂p is the additional elemental mass matrix due to inertia penalty, K̂p is the additional elemental stiffness matrix
due to stiffness penalty, and f̂p is the part of the elemental contact force due to the initial gap g0. An extension of the
bipenalty method to a penalty formulations and to the large sliding case, ie, given in Belytschko and Neal22 and Gabriel
et al,23 is also possible.

Again, provided that the global vectors and matrices, Mp, Kp, fp, and u are assembled in the usual fashion from
the elemental contributions M̂p, K̂p, f̂p, and û, the final form of the equations of motion for the bipenalty method in
contact-impact problems is

(M + Mp)ü + (K + Kp)u + fp − R = 0, (40)

which is solved numerically with respect to boundary and initial conditions, see Section 2.5.
Let us define dimensionless stiffness and mass penalty parameters for the one-dimensional case, 𝛽m and 𝛽s, as follows

𝛽s =
he

E
𝜖s, 𝛽m = 2

𝜌he
𝜖m, (41)

where he is the length of the element whose node is on the contact interface. For the 2 bodies contact problem, this results
in the following additional stiffness and mass matrices

K̂p =
EAH(g)𝛽s

he

[
1 −1

−1 1

]
, (42)

M̂p =
𝜌heAH(g)𝛽m

2

[
1 −1

−1 1

]
. (43)

As already mentioned, the diagonalized (lumped) mass matrix is preferred in explicit time integration. The corre-
sponding diagonalized version of the additional mass matrix (43) obtained from row-sum lumping of absolute values of
terms is

M̂p = 𝜌heAH(g)𝛽m

[
1 0
0 1

]
. (44)

Note that for the Signorini problem, they simplify to one-by-one matrices

K̂p =
EAH(g)𝛽s

he

[
1
]
, (45)

M̂p =
𝜌heAH(g)𝛽m

2
[

1
]
. (46)
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In the following, we will study the effect of the numerical parameters 𝛽m and 𝛽s on stability of the bipenalty method.
The effect of the diagonalized mass matrix Mp on stability of the bipenalty method in one-dimensional contact-impact
problems is investigated in Section 3.

2.5 Explicit time integration and numerical stability
We now consider the time integration of the semidiscretized system (33) by the CDM24

(Mt + Mt
p)

ut+Δt − 2ut + ut−Δt

Δt2 + (Kt + Kt
p)ut + f t

p − Rt = 0. (47)

Assuming that displacements are known at time t − Δt and t, one can resolve unknown displacements at time t + Δt,
where Δt marks the time step size. Note that the matrices Mt

p and Kt
p are time-dependent because they are associated

with active contact constraints. This fact causes the system to be nonlinear.
In this paper, we use the following form of the central difference scheme for solving elastodynamic problems with

contact constrains:

• Given ut, u̇t−Δt∕2, Rt

• For given ut analyze contact, compute gap g, and contact forces f t
p = −Kt

put + f0
p

• Compute accelerations üt = (Mt + Mt
p)−1(Rt − Ktut + f t

p)
• Midpoint velocities u̇t+Δt∕2 = u̇t−Δt∕2 + Δtüt

• New displacements ut+Δt = ut + Δtu̇t+Δt∕2

• t → t + Δt

It is well known that the CDM for a linear system is conditionally stable. The linear stability theory establishes the
upper bound of the time step size as

Δt ≤ 2
𝜔max

, (48)

where 𝜔max is the maximum eigenfrequency of the finite element mesh. Indeed, the computation of even a single eigen-
value of a large systems may be expensive. Therefore, it would be advantageous to have an estimate of the maximum
eigenvalue that is easy to compute. Such an estimate is provided by the element eigenvalue inequality22

𝜔max < max
e

𝜔e
max . (49)

Note that the element eigenvalue inequality (49) is not limited to element level submatrices. The submatrices may be
also an assembly of elements.

3 STABILITY ANALYSIS OF BIPENALIZED ONE-DIMENSIONAL SYSTEMS

In this section, the stability limit for several one-dimensional bipenalized discreted finite element systems was computed,
namely, the Signorini problem, the symmetric contact problem, and the double-sided contact problem. Special attention
was paid to the effect of the bipenalty ratio on the stability behavior. In this paper, we find the optimum of the so-called
CPR defined as the ratio of stiffness and mass penalty parameters so that the maximum eigenfrequency and the critical
time step size are preserved.

3.1 A Signorini problem—a truss finite element in one-side contact
Unfortunately, there are no stability theorems for contact-impact problems.24 In this case, the stability theory for linear
problems can be applied carefully. In practice, for example, the stability may be preserved by checking the energy balance
during a nonlinear computation. In Belytschko and Neal,22 an upper bound for the stiffness penalty was derived. Moreover,
it was shown that the stiffness penalty always decreases the stable time step size. In this work, we adopt this estimate for
the bipenalty method following the Belytschko approach22 and previous work.20

Let us consider a simple dynamic system, depicted in Figure 2, with 2 degrees of freedom. The system consists of one
1D constant strain truss element with lumped mass matrix. The active contact constraint is set at node 1 and initial gap



KOPAČKA ET AL. 1615

FIGURE 2 A scheme of the bipenalized Signorini problem

g0 is considered to be equal to zero. The aim is to determine the maximum eigenfrequency of this system to estimate the
stable time step size in the form (48). To this end, the eigenvalue problem can be formulated as

EA
h

[
1 + H(g)𝛽s −1

−1 1

]
u = 𝜔2 𝜌Ah

2

[
1 + H(g)𝛽m 0

0 1

]
u, (50)

where the displacement vector has the form u = [u1,u2]T. The additional stiffness matrix, (45), and mass matrix, (46),
have been utilized during assembling of the global matrices of the bipenalized 2-degrees-of-freedom system. In what
follows, the constant value of the Heaviside function H(g) = 1 is considered, so it is assumed that the contact interface
will not open and, consequently, linear theory of stability can be applied. Let us define the maximum angular velocity of
a separate linear finite element with the lumped mass matrix as 𝜔0

max = 2c0∕h, where c0 marks the wave speed in a bar
given by c0 =

√
E∕𝜌. Then the corresponding critical time step size is given as Δt0

c = 2∕𝜔0
max = h∕c0.

The maximum eigenfrequency of the problem (50) is given by the relationship

𝜔max = c0

h

√√√√1 + (1 + 𝛽s)
(1 + 𝛽m)

+

√
1 + (1 + 𝛽s)2

(1 + 𝛽m)2 + 2(1 − 𝛽s)
(1 + 𝛽m)

. (51)

Now, it is useful to introduce a new dimensionless penalty ratio r as

r = 1
2
𝛽s

𝛽m
= h2

4c2
0

R (52)

and the Courant dimensionless number C is defined as

C = c0Δt
h

. (53)

It should be mentioned that the well-known CFL (Courant-Friedrichs-Levy) condition for the linear finite element
method with lumped mass matrices in the one-dimensional case reaches the value C0

r = c0Δt0
c∕h = 1.

Substituting (51) into (48) using (53), the critical Courant number Cr for the model depicted in Figure 2 for the bipenalty
method is obtained as

Cr =
c0Δtc

h
= 2√

1 + (1+𝛽s)
(1+𝛽m)

+
√

1 + 2(1−𝛽s)
(1+𝛽m)

+ (1+𝛽s)2

(1+𝛽m)2

(54)

with the property that the critical Courant number for the bipenalty ratio r = 1 reaches the value Cr = 1, and it is
independent on the chosen stiffness penalty 𝛽s. It should be pointed out that this is the main advantage of the bipenalty
method.

The dependence of the critical Courant number Cr on the dimensionless stiffness penalty 𝛽s is plotted in Figure 3, where
the dimensionless penalty ratio r is used as the parameter. The curve for r → ∞ (ie, 𝛽m → 0) corresponds to the stan-
dard stiffness penalty method. It illustrates the main disadvantages of the standard stiffness penalty method: The critical
Courant number Cr rapidly decreases with increasing dimensionless stiffness penalty 𝛽s. On the other hand, the curve
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FIGURE 3 Bipenalized Signorini problem: dependence of the critical Courant number Cr on the dimensionless stiffness penalty 𝛽s for
selected dimensionless penalty ratios r

FIGURE 4 A scheme of the bipenalized symmetric one-dimensional contact problem

for r = 1 confirms the existence of the CPR, for which the stable time step size remains unchanged for an arbitrary value
of the dimensionless stiffness penalty 𝛽s. In addition, there are more curves in Figure 3 for dimensionless penalty ratios
r = 1, 2, 4, 8, 16, and ∞. For each of them, there are limits of the Courant number Cr for 𝛽s → ∞ on the right edge of
the picture. Taking dimensionless ratios r < 1 does not decrease the critical time step size below the level of the uncon-
strained system. However, as it will be shown in the following section, this leads to a spurious reflection of the wave on
the selected frequencies. It is clear that the bipenalty method with the penalty ratio equal to the CPR is superior over the
standard stiffness penalty method.

3.2 Symmetric contact problem
The next example of practical importance of a one-dimensional contact-impact problem is the symmetric contact model
illustrated in Figure 4, where the bipenalty term joins 2 identical linear finite elements with lumped mass distribution.
The lengths h are the same for both finite elements, as well as the geometrical and material quantities A, E, and 𝜌.

The corresponding eigenvalue problem for the bipenalty method in symmetric contact problem yields

EA
h

⎡
⎢⎢⎢⎢⎣

1 −1 0 0
−1 1 + 𝛽s −𝛽s 0
0 −𝛽s 1 + 𝛽s −1
0 0 −1 1

⎤
⎥⎥⎥⎥⎦

u = 𝜔2 𝜌Ah
2

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 + 𝛽m −𝛽m 0
0 −𝛽m 1 + 𝛽m 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦

u (55)

and the corresponding eigenvalue problem with respect to the diagonalized version of the mass bipenalty term Mp takes
the form

EA
h

⎡
⎢⎢⎢⎢⎣

1 −1 0 0
−1 1 + 𝛽s −𝛽s 0
0 −𝛽s 1 + 𝛽s −1
0 0 −1 1

⎤
⎥⎥⎥⎥⎦

u = 𝜔2 𝜌Ah
2

⎡
⎢⎢⎢⎢⎣

1 0 0 0
0 1 + 2𝛽m 0 0
0 0 1 + 2𝛽m 0
0 0 0 1

⎤
⎥⎥⎥⎥⎦

u, (56)

where the displacement vector is in the form u = [u1,u2,u3,u4]T, see Figure 4.
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It was observed that the same stability results for this contact problem were obtained when using the consistent
bipenalty mass matrix Mp(43) instead of the diagonalized one. Therefore, the diagonalized matrix Mp given by (44) is
preferred since the inversion of (M + Mp) is trivial in the case of diagonal M. Notes that by using diagonalized version of
Mp given by (44), we artificially increase the total mass of the bipenalty mass term, and the kinetical energy is affected,
but the stability behavior does not change.

For that case, the maximum eigenvalue and corresponding critical time step size are not easy to compute analytically,
and therefore, the values have been obtained numerically. The dependence of the critical Courant number Cr is plotted in
Figure 5 for selected dimensionless penalty ratios r = 1, 2, 4, 8, 16, and ∞. The thin dashed lines in Figure 5 correspond to
the Signorini problem. It should be noted that graphs both for the Signorini problem and the symmetric contact problem
have similar character. However, the symmetric contact problem shows smaller values of the critical Courant number.
On the other hand, the line corresponding to the penalty ratio r = 1 reaches an ideal case, ie, Cr = 1. It means that the
bipenalty method with the penalty ratio r = 1 does not change the stability limit of the contact-free problem.

3.3 Double-sided contact problem
Finally, the behavior of a double-sided contact problem is studied with the application of the bipenalty method. The
scheme of the bipenalized double-sided contact problem is illustrated in Figure 6.

The eigenvalue problem for the double-sided bipenalized contact problem can be formulated as

EA
h

[
1 + 𝛽s −1
−1 1 + 𝛽s

]
u = 𝜔2 𝜌Ah

2

[
1 + 𝛽m 0

0 1 + 𝛽m

]
u, (57)

where the displacement vector has the form u = [u1,u2]T.
The dependence of the critical Courant number Cr is plotted in Figure 7 for selected dimensionless penalty ratios r =

1, 2, 4, 8, 16, and ∞. The thin dashed lines in Figure 7 correspond to the Signorini problem. In principle, graphs both for
the Signorini problem and the double-sided contact problem have similar character. For that reason, it can be concluded

FIGURE 5 Bipenalized symmetric contact problem: dependence of the critical Courant number Cr on the dimensionless stiffness penalty
𝛽s for selected dimensionless penalty ratios r. The thin dashed lines correspond to the Signorini problem

FIGURE 6 A scheme of the bipenalized double-sided one-dimensional contact problem
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FIGURE 7 Bipenalized double-sided contact problem: dependence of the critical Courant number Cr on the dimensionless stiffness
penalty 𝛽s for selected dimensionless penalty ratios r. The thin dashed lines correspond to the Signorini problem

that the analytical estimates of the stability limit for the Signorini problem can be directly applied to the double-sided
contact problem.

4 REFLECTION-TRANSMISSION ERROR ANALYSIS

The contact interface introduces a discontinuity in the numerical model. Numerical treatment of this discontinuity has
major effect on the accuracy. This effect is measured here by the error of transmission and reflection of a monochromatic
plane wave assuming the persistent contact. In this analysis, we follow the textbook,25 but the effect of bipenalty method
is carefully investigated.

4.1 Basic setup in 1D
Consider 2 elastic semi-infinite bars with a uniform cross-section persistently connected at the interface surface x = 0,
see Figure 8. The bars are made of materials with Young's moduli E1 and E2, mass densities 𝜌1 and 𝜌2, respectively.

A monochromatic plane wave of frequency 𝜔 with a unit amplitude propagates in material 1 and falls on the interface.
At the interface, the wave is partially transmitted and reflected. Thus, the solution in materials 1 and 2 can be written as

u1(x, t) = 1 · ei(𝜔t−k1x) + R · ei(𝜔t+k1x) u2(x, t) = T · ei(𝜔t−k2x), (58)

where R and T are the reflected and transmitted amplitudes, k1 and k2 are the wavenumbers in the corresponding material,
and i is the imaginary unit. For the continuum 1D bar, the linear dispersion relation ki = 𝜔∕c0i is valid with wave speed
c0i =

√
Ei∕𝜌i, i = 1, 2. The solution above satisfies equilibrium inside each material. The unknown amplitudes R and T

must only satisfy continuity and equilibrium at the interface

u1(0, t) = u2(0, t) 𝜎1(0, t) = 𝜎2(0, t), (59)

which yields the system of 2 equations{
1 · ei(𝜔t−k1·0) + R · ei(𝜔t+k1·0) = T · ei(𝜔t−k2·0)

k1E1(1 · ei(𝜔t−k1·0) − R · ei(𝜔t+k1·0)) = k2E2T · ei(𝜔t−k2·0). (60)

The latter system yields a well-known relation

T = 2Z1

Z1 + Z2
R = Z1 − Z2

Z1 + Z2
(61)

with Zi =
√

Ei𝜌i being the acoustic impedance for each material. In case of the spatially semidiscretized equation, the
dispersion relation is not linear, and the discrete counterpart of the interface conditions (59) is to be considered. This
results in discrete coefficients Rh and Th, which are different from the exact ones (61).
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FIGURE 8 Scheme of semi-infinite bars with a uniform cross-section connected at an interface surface

FIGURE 9 Scheme of semi-infinite discretized bars coupled by a bipenalty term

4.2 Reflection-transmission analysis between 2 bars with the same material
Consider the 2 semi-infinite bars with element size h and the same material coupled with the bipenalty method, see
Figure 9.

The solution in each domain is assumed to be
{

Uj = 1 · ei(𝜔t−kh
1 ·hj) + Rh · ei(𝜔t+kh

1 ·hj) j ≤ 0
Uj = Th · ei(𝜔t−kh

1 ·h( j−1)) j ≥ 1
(62)

with Uj being the displacement in the jth node and kh
1 h = 2 arcsin( 𝜔h

2c01
) being the nonlinear dispersion relation for the

2-node bar with the lumped mass matrix.25 The nodes with indices j = 0 and j = 1 are coupled using the bipenalty method.
The equilibrium of nodes 0 and 1 reads

{
(cos(kh

1 h) − 1)(1 + Rh + 𝛽m(1 + Rh − Th)) + 1 − eikh
1 h + Rh(1 − e−ikh

1 h) + 𝛽s(1 + Rh − Th) = 0
(cos(kh

1 h) − 1)(Th − 𝛽m(1 + Rh − Th)) + Th(1 − e−ikh
1 h) − 𝛽s(1 + Rh − Th) = 0

. (63)

Solving the latter for the numerical reflection and transmission amplitudes yields
{

Rh = cos2(kh
1 h)−1

D

Th = −2i(𝛽s+𝛽m(cos(kh
1 h)−1)) sin(kh

1 h)
D

(64)

with
D = 2𝛽m

(
cos2 (kh

1 h
)
− cos

(
kh

1 h
)

e−ikh
1 h − cos

(
kh

1 h
)
+ e−ikh

1 h
)

+ 2𝛽s

(
cos
(

kh
1 h
)
− e−ikh

1 h
)
+ cos2 (kh

1 h
)
− 2 cos

(
kh

1 h
)

e−ikh
1 h + e−2 ikh

1 h.
(65)

Note that the result in Equation 64 reduces to penalty formulation in case 𝛽m = 0. The Taylor series expansions of Th

and Rh for small kh
1 h (long wave approximation) yields

Th = 1 − i
2𝛽s

kh
1 h − 1

4𝛽2
s
(kh

1 h)2 +
i
(
2 𝛽2

s − 6 𝛽m𝛽s + 3
)

24𝛽3
s

(kh
1 h)3 + O

(
(kh

1 h)4) , (66)

Rh = i
2𝛽s

kh
1 h + 1

4𝛽2
s
(kh

1 h)2 −
i
(
2 𝛽2

s − 6 𝛽m𝛽s + 3
)

2
4𝛽3

s (kh
1 h)3 + O

(
(kh

1 h)4) . (67)

Note that exact the value of the transmission T and reflection R amplitudes for Z1 = Z2 are one and zero, respectively.
Analysis of the Taylor expansion allows the following conclusions on the basis of the leading term of error Th − T =
−i∕(2𝛽s)kh

1 h

• The error is of first order in the element size h.
• The error constant decays quickly with increasing stiffness penalty parameter.
• The error is purely imaginary with negative sign, ie, phase shift (delay) of the front of the transmitted wave is expected.
• The mass penalty parameter 𝛽m does not influence the leading term.
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Further analysis is done with respect to energy density and amplitude of the transmitted wave. The energy density of
the incident wave (unit amplitude) is W = 𝜌A𝜔2 · 12 while energy density and amplitude of the transmitted wave read

W h = 𝜌A𝜔2|Th|2 = W
(

1 − 1
4𝛽2

s
(kh

1 h)2 +
4𝛽2

s − 12𝛽m𝛽s + 3
48𝛽4

s
(kh

1 h)4 + O(kh
1 h)6
)
, (68)

|Th| = 1 − 1
8𝛽2

s
(kh

1 h)2 + O(kh
1 h)4. (69)

Equations 66 to 69 provide a fast estimate of the error for long wave approximations. Below, the error is examined for
whole range of wavenumbers 0 < kh

1 h < 𝜋.
Exact dependencies of the transmitted and reflected amplitude on the wavenumber and penalty ratios are given in

Figure 10. Only a marginal error in transmission is observed for r > 1 (Figure 10B). For r < 1, transmission is close to
one for all wavenumbers except a narrow frequency band (Figure 10A). At this narrow band, a spurious total reflection
is observed. It is a special numerical artifact of the bipenalty method, and it can be easily quantified for this case. The
numerator of the transmitted amplitude in (64) can be zero if and only if the multiplier (𝛽s + 𝛽m(cos(kh

1 h) − 1)) is zero.
This can be satisfied only if

kh
1 h = arccos

(
𝛽m − 𝛽s

𝛽m

)
= arccos(1 − 2r) ≡ 2 arcsin

(√
r
)

(70)

and allows to obtain the frequency of the total spurious reflection

𝜔tsr =
c01

h
√

r. (71)

(A) (B)

(C) (D)

FIGURE 10 Amplitudes of the transmitted and reflected waves in dependency of dimensionless wavenumber k1
hh for the stiffness penalty

𝛽s = 100 and for selected dimensionless penalty ratios r
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At this frequency, the falling wave resonates with the bipenalty mass-stiffness subsystem and the bipenalty subsystem
works as a free-end in a steady-state regime.7 A confirmation for this phenomenon is given in the numerical example
in Section 5.3. The dependence of kh

1,tsr on r for r < 1 and the absence of the total spurious reflection for r > 1 can be
observed in Figure 10C and 10D, respectively. The total spurious reflection for r equal to 0.05, 0.5, and 1.0 is observed at
the dimensionless wavenumber 0.45103, 𝜋∕2, and 𝜋, respectively, which is predicted by Equation 70.

It seems purely artificial to use r < 1 because increasing the mass penalty beyond r = 1 does not influence the critical
time step size any more. But it may be relevant in case of contact of soft tissues. The stiffness penalty factor is driven
by the bulk modulus. The mass penalty factor is then adjusted to that high value. At the same time, this magnitude of
mass penalty is excessive for shear waves, where stiffness is driven by the shear modulus. This issue will be studied in the
future work.

5 NUMERICAL EXAMPLES

In this chapter, the properties of the bipenalty method in one-dimensional contact problems—the dynamic Signorini
problem and the Huněk test—are numerically tested. Furthermore, a numerical study of RTEs on a numerical test is
performed.

5.1 Dynamic Signorini problem
In this section, the stability of explicit contact-impact algorithm using bipenalty technique was studied on the dynamic
Signorini problem, which is represented by the motion of a bar that comes into contact with a rigid obstacle, see Figure 11.
The bar of length L = 1 [m] with the initial velocity v0 = 1 [m · s−1] is situated at a distance of g0 = 0 [m] in front of the
obstacle. The area of the bar section A [m2], Young's modulus E [MPa] and density 𝜌 [kg ·m−3] are chosen to be unity. The
setup of the example follows a previous work.20

The bar is discretized by a regular finite element mesh containing one hundred 1D constant strain truss elements. The
row-sum lumped mass matrices are used in combination with the CDM method for the time integration. The maximum
eigenvalue of the mesh is 𝜆max = 4e4 [s−2] and the corresponding eigenfrequency is 𝜔max = 200 [s−1].

Let us introduce the following dimensionless quantities

t∗ = c0t
L

x∗ = x
L

u∗ = u(0, t)
L

F∗
c = c0Fc

v0EA
𝜎∗ = 𝜎A

Fc
, (72)

where t∗, x∗,u∗,F∗
c , 𝜎∗ are the dimensionless time, coordinate, contact displacement, contact force, and stress, respectively.

Fc marks the contact force at the contact boundary. In the following figures, the results for the standard penalty method
(left) and the bipenalty method (right) are plotted.

The dimensionless stiffness penalty 𝛽s is chosen to 1.5. To verify the derived formula for the stability (54) defined
by the critical Courant number Cr, the Courant number is set to C = 0.82, which is slightly higher than the criti-
cal value Cr = 0.81649658 for the penalty method. The results are shown in Figure 12A, where time distributions of
the kinetic energy, the potential energy, the total energy, and the work done by contact forces are plotted. It is con-
firmed that the stability of the CDM is lost for the penalty method, whereas the solution obtained by the bipenalty
method still perfectly conserved the total energy. When the Courant number C is set to 0.5, both methods are stable
(see Figure 13).

FIGURE 11 1D dynamic Signorini problem
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(A) (B)

FIGURE 12 Time distribution of the balance of energy for 𝛽s = 1.5 and C = 0.82.  marks the kinetic energy,  the strain energy, cont

the work of the contact force, Total is the total energy, 0 is the kinetic energy at the initial time t0 = 0

(A) (B)

FIGURE 13 Time distribution of the balance of energy for 𝛽s = 1.5 and C = 0.5

Note that the work of the contact force Wcont is almost zero. In fact, it should be exactly zero because the displace-
ment is restricted to zero by the rigid obstacle. However, in the penalty-like methods, contact forces perform a spurious
work on penetrations. This work converges to zero as 𝛽s tends to infinity. Nevertheless, a finite value of the stiffness
penalty parameter always results in a nonzero work of the contact force. One can also notice the presence of oscillations
in the distributions of the potential energy and the work of contact forces, which result in oscillations in the distribu-
tions of the total energy. This phenomenon is primarily caused by the oscillations in the gap function, which will be
discussed further.

Figure 14 shows the time distribution of the dimensionless contact displacement u∗ (ie, the displacement of the node
subject to a contact condition) for 𝛽s = 1.5 and C = 0.5. The gap should be equal to zero during the impact, which is
indicated by the exact solution in Figure 14. It is well known that penalty-like methods allow certain penetration of contact
interfaces. As a result, the oscillations of kinematic and stress quantities can occur in impact problems. Figure 14B displays
an attenuation of the oscillations for the bipenalty approach in comparison with the penalty method. However, from a
certain value of the dimensionless stiffness penalty 𝛽s, it is observed that the amplitude of oscillations are even higher
for the bipenalty method than for the penalty method. An example is shown in Figure 15, where 𝛽s = 3.5 is considered.
The reason is probably that the oscillation of the contact displacement overshoot zero value. Thus, the contact constraint
was deactivated, and the contact force disappears. In subsequent time steps, the contact constraint is again activated.
Therefore, the system switches between 2 states, which generates the oscillations.

This phenomenon can also be observed in Figure 16, where the time distribution of the dimensionless contact force is
plotted. Both distributions are bounded by zero. On the other hand, for the previously chosen value of the dimensionless
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(A) (B)

FIGURE 14 Time distribution of the dimensionless contact displacement for 𝛽s = 1.5 and C = 0.5

(A) (B)

FIGURE 15 Time distribution of the dimensionless contact displacement for 𝛽s = 3.5 and C = 0.5

(A) (B)

FIGURE 16 Time distribution of the dimensionless contact force for 𝛽s = 3.5 and C = 0.5

stiffness penalty 𝛽s = 1.5 time dependence of the dimensionless contact force oscillate around the exact solution as
indicated in Figure 17. Similar to the distribution of the contact displacement in Figure 14B, the bipenalty method dumpes
oscillations in the distribution of the contact force depicted in Figure 17B.

5.2 One-dimensional impact of 2 bars with different lengths—the Huněk test
In this example, we follow the work by Huněk,12 where the contact-impact problem of 2 bars of identical materials and
with different lengths is studied. A scheme of this test is depicted in Figure 18. The left bar is moving to the right with
a constant velocity v01. The right bar with fixed right-hand side is at the rest. The geometrical, material, and numerical
parameters were adopted from Huněk12 as follows: the lengths L1 = 10 [m] and L2 = 20 [m], the Young's modulus
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(A) (B)

FIGURE 17 Time distribution of the dimensionless contact force for 𝛽s = 1.5 and C = 0.5

FIGURE 18 A scheme of the Huněk test

E1 = E2 = 100 [Pa], the mass density 𝜌1 = 𝜌2 = 0.01 [kg · m−3], the cross-sectional area A1 = A2 = 1 [m2], the initial
impact velocities v01 = 0.1 [m∕s] and v02 = 0 [m∕s], and the number of elements n1 = 50, n2 = 100, thus, the finite
element lengths are set up as h1 = h2 = 0.2 [m], the initial contact gap g0 = 0 [m], the duration time T = 0.7 [s]. The
value of the contact force from the analytical prediction is F = 0.05 [N] for t = 0 … 0.2 [s] and t = 0.4 … 0.6 [s] and
zero otherwise.

The both consistent and diagonalized additional mass matrices of the bipenalty term have been tested in this test. We
can conclude that the results are identical, but in the case of diagonalized Mp, the total mass of bipenalty mass term
increases and the kinetical energy of the bipenalty system is disrupted.

Figures 19 and 20 show the time distributions of the contact force on the contacting node of the left bar for the Courant
numbers C = 0.2 and C = 0.999, respectively. The influence of the stiffness penalty parameters 𝛽s = 0.125, 0.25 and 1
together with the corresponding mass penalty parameters r = ∞ (for the penalty method) and r = 1 (for the bipenalty
method with CPR) is investigated. The results for C = 0.2 (see Figure 19) given by both methods exhibit a stable character,
which could be expected from the results obtained for the double-sided contact problem shown in Figure 5. Both the
penalty and the bipenalty method suffer from oscillations for values of the stiffness parameter 𝛽s ⩾ 1. On the other hand,
the results show a delay effect in the contact force distribution for smaller values of the stiffness parameters (see the results
for 𝛽s = 0.125 and 𝛽s = 0.25). This effect could be theoretically explained based on the reflection-transmission analysis
discussed in Section 4. The results for the penalty method (r = ∞) with C = 0.999 (see Figure 20) show an unstable
character. Here, the bipenalty method with CPR exhibits a stable behavior regardless of the choice of stiffness parameters
𝛽s. However, the time distributions of contact forces for the bipenalty method with higher values of stiffness parameters
𝛽s indicate oscillations. This effect will be analyzed in the future.

5.3 Numerical study of reflection-transmission errors
Consider a uniform bar artificially split into 2 equal parts in the middle and coupled with the bipenalty method, see
Figure 21. The right end of the bar is free while the left end is subjected to a harmonic force, which generates a monochro-
matic wave propagating toward the interface. The quantities of interest are stress evolution at points A and B that lie
before and behind the interface, respectively.
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(A) (B)

(C) (D)

(E) (F)

FIGURE 19 Results of the Huněk test: time history of contact forces for the penalty (r = ∞) and bipenalty (r = 1) methods for several
stiffness parameters 𝛽m and time step size corresponding to Courant number C = 0.2

We adopted geometrical, material, and numerical parameters of the test as follows: the length L = 20 [m], the Young's
modulus E = 1 [Pa], the mass density 𝜌 = 1 [kg · m−3], the cross-sectional area A = 1 [m2], the amplitude of the external
force F0 = 1 [N] , the number of elements in both halves of the bar n1 = 800, n2 = 800 (h1 = h2 = 0.0125 [m]),
and bipenalty parameters 𝛽s = 2 and 𝛽m = 200. Three values of excitation frequencies are considered: 6.7882 [rad∕s],
11.3137 [rad∕s], and 15.8392 [rad∕s]. They correspond to 60%, 100%, and 140% of the total spurious reflection given in
Equation 71. Rayleigh damping and bulk viscosity is excluded from the simulation. Termination time tend is chosen
to be 1.375 L∕c0. This choice prevents reflected signals at the points of interest: exitation at the left end—transmitted
at the interface—reflected at the right end—arrive at point B (path length 1.375 L), exitation at the left end—reflected
at the interface—reflected at the left end—arrive at point A (path length 1.375 L). The expressions from the analytical
solution for the stress at points A and B read 𝜎A = H(t − tA) sin(𝜔(t − tA)) [Pa] and 𝜎B = H(t − tB) sin(𝜔(t − tB)) [Pa] with
tA = 0.4375 L∕c0 and tB = 0.5625 L∕c0 being arrival times for the wave and H(t) being the Heaviside function.
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(A) (B)

(C) (D)

(E) (F)

FIGURE 20 Results of the Huněk test: time history of contact forces for the penalty (r = ∞) and bipenalty (r = 1) methods for several
stiffness parameters 𝛽m and time step size corresponding to Courant number C = 0.999

Results for reflection-transmission of the stress wave are presented in Figure 22. Correct arrival times are observed at
points A and B for all frequencies of the external force. If the frequency of the wave does not match the frequency of the
total spurious reflection, then the wave is transmitted with the correct amplitude at point B and no superposition with
the reflected wave at point A is observed. If the frequency exactly matches 𝜔tsr then the amplitude of the transmitted wave
exponentially decays to zero with increasing time. In addition, clear superposition of the spuriously reflected wave with
primary signal is observed at point A starting from the theoretically predicted time 0.5625 L∕c0. By the end time, the stress
amplitude at point A reaches twice the correct one.

This example confirms the existence of the artifact of total spurious reflection and verifies correctness of the for-
mula (71) for the frequency of the total spurious reflection. Moreover, it illustrates that the steady solution is reached
after 20 periods of the falling wave.
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FIGURE 21 Setup of reflection-transmission error example

(A) (B)

(C) (D)

(E) (F)

FIGURE 22 Stress histories at points A and B for different frequencies of excitation. Bipenalty parameters 𝛽s = 2, 𝛽m = 200. The Courant
number is chosen as C = 0.999
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6 CONCLUSIONS

In this paper, the stability of an explicit contact-impact algorithm using the existing bipenalty approach in finite element
analysis has been studied and analyzed for one-dimensional problems. The main attention has been paid on an upper
bound estimation of the stable Courant number for the bipenalty method with respect to stiffness penalty and mass
penalty parameters. This analysis is performed for several basic contact cases in one-dimensional problems. It is shown
that the critical Courant number tends toward zero for the stiffness penalty parameter approaching infinity, whereas the
mass penalty parameter is considered to be zero, ie, when only a pure penalty formulation is considered. On the other
hand, setting the penalty ratio between mass and stiffness penalty parameters to the critical penalty ratio introduced by
Askes in Askes et al9 preserves the stable Courant number at the level of the unpenalized system for an arbitrary value of
the stiffness penalty parameter. The original method for computation of the critical penalty ratio is based on the highest
frequency of a one-element subproblem with one active constraint with a rigid body. It considers cases for 2-node bar,
Euler-Bernoulli beam and two-dimensional solid elements with lumped and consistent mass matrix approximations. In
this paper, this method is extended to double-sided contact with 2 rigid bodies and to contact of 2 homogeneous deformable
bodies in one dimension with lumped mass matrices.

The theoretical derivations in the first part of the paper are verified via numerical examples. The stability esti-
mates give correct critical Courant numbers for a simple 1D dynamic Signorini problem and the Huněk test. Predicted
dependencies of the critical time step size are confirmed: Pure penalty method decreases the critical time step size
and the bipenalty method with critical penalty ratio preserves the critical time step size. It is an excellent property of
the bipenalty method, which can be used in real numerical solutions of contact-impact problems. The two numeri-
cal contact-impact examples also revealed that both (penalty and bipenalty) methods caused spurious oscillations in
the distributions of displacement and the contact force. This effect was especially obvious for higher values of stiff-
ness penalty parameters, where contact damping is often used.24 Solutions with bipenalty method tend to have less
spurious oscillations.

Further, RTE analysis is performed in case of persistent contact for a monochromatic wave excitation. Analytical
expressions for amplitudes of the transmitted and reflected waves are obtained and their dependency on stiffness and
mass penalty are presented. First, this allows to compute the leading term of the transmission error. It is of the first
order in element size and proportional to the inverse of the penalty stiffness. Moreover, this term is purely imaginary,
ie, the main effect of the bipenalty coupling for long waves is a delay in the arrival time. This finding is relevant
to explanation of the smearing of the contact force step in examples with low-penalty stiffness. Second, a spuri-
ous total reflection was found for dimensionless penalty ratios r less than one, which was also demonstrated with a
transient example.

The estimation of the penalty parameter ensuring nonoscillating behavior of both methods will be investigated in
further work together with implementation and testing the bipenalty method in multidimensional contact-impact
problems. For example, it can be based on an existing symmetry preserving formulation for penalty contact given in
Gabriel et al,23 which is implemented in an in-house general purpose finite element code PMD.26 Furthermore, the
analysis of the bipenalty method in contact-impact problems for one-dimensional and multidimensional heterogeneous
bodies will be investigated in detail. A preliminary study shows that the phenomenon of the total spurious reflec-
tion is also expected in these cases, and the local estimators are capable of accurate estimation of the critical penalty
ratio. Finally, the bipenalty method will be adopted for a constraint stabilization technique for multibody dynam-
ics with holonomic and nonholonomic constraints and compared with Baumgarte13 and Park and Chiou.19 Also our
focus will be paid on correct diagonalization of bipenalty mass term without disruption of kinetical energy of the
bipenalty system.
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José A. González1 Ján Kopačka2 Radek Kolman2 Kwang-Chun Park3

1Escuela Técnica Superior de Ingeniería,
Universidad de Sevilla, Seville, Spain
2Institute of Thermomechanics, Academy
of Sciences of the Czech Republic, Prague,
Czech Republic
3Ann and H. J. Smead Aerospace
Engineering Sciences, University of
Colorado, Boulder, Colorado, USA

Correspondence
José A. González, Camino de los
Descubrimientos s/n, Seville E-41092,
Spain.
Email: japerez@us.es

Funding information
European Structural and Investment
Funds, Operational Programme Research,
Development and Education of the
European Union, Grant/Award Number:
CZ.02.1.01/0.0/0.0/15_003/0000493;
Grantová Agentura České Republiky,
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Abstract
This work presents an efficient and accuracy-improved time explicit solution
methodology for the simulation of contact-impact problems with finite ele-
ments. The proposed solution process combines four different existent tech-
niques. First, the contact constraints are modeled by a bipenalty contact-impact
formulation that incorporates stiffness and mass penalties preserving the stabil-
ity limit of contact-free problems for efficient explicit time integration. Second, a
method of localized Lagrange multipliers is employed, which facilitates the par-
titioned governing equations for each substructure along with the completely
localized contact penalty forces pertaining to each free substructure. Third, a
method for the direct construction of sparse inverse mass matrices of the free
bodies in contact is combined with the localized Lagrange multipliers approach.
Finally, an element-by-element mass matrix scaling technique that allows the
extension of the time integration step is adopted to improve the overall perfor-
mance of the algorithm. A judicious synthesis of the four numerical techniques
has resulted in an increased stable explicit step-size that boosts the perfor-
mance of the bipenalty method for contact problems. Classical contact-impact
numerical examples are used to demonstrate the effectiveness of the proposed
methodology.

K E Y W O R D S

bipenalty contact, explicit time integration, inverse mass matrix, localized Lagrange multipliers,
partitioned analysis

1 INTRODUCTION

The task of simulating dynamic impact problems with penalty methods in a robust and efficient way, remains as one
of the most elusive problems in computational contact mechanics. Among the different solution techniques available
for the explicit solution of dynamic contact problems, the stiffness-penalty method is very popular mainly due to its
efficiency and implementation simplicity. The principle of the penalty method implies that the contact impenetrability
condition is satisfied only approximately, achieving a more precise fulfillment using stiffer penalty parameters. This makes
penalty methods generally not consistent1 within the variational formulation of the problem and the final matrix form is
ill-conditioned.

Moreover, it is well known that the results of contact problems obtained via penalty-like methods are very sensi-
tive to the magnitude of the penalty parameter. A direct consequence of an inexact fulfillment of the contact constraints
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is nonzero penetration, which causes the contact stresses to produce nonphysical energy associated to the contact
interfaces. Different rules of thumb, strongly based on experience, are then used in penalty methods to decide sta-
ble values for the stiffness penalty accompanied, at the same time, with acceptable violation of the contact constraints
and affordable time integration steps. But these rules are problem dependent and it does not exist a general and the-
oretically sound solution to avoid all these effects, clearly limiting the applicability of penalty methods in contact
applications.

Particularly in contact-impact problems, explicit time integration methods are normally preferred over implicit
methods. In this article, we focus only on explicit time integration. A list of time integration strategies
for contact-impact/dynamic contact problems in finite element modeling is mentioned in Reference 1. The
explicit time schemes for the contact-impact problems have been employed in References 2-7. The explicit
predictor–corrector algorithm has been designed for dynamic contact with smooth and nonsmooth surface geometries
in Reference 8.

The reason for this is merely the efficiency gained by employing diagonal mass matrices to evaluate nodal accelera-
tions, although explicit methods are conditionally stable and present a maximum time-step size limitation defined by the
Courant restriction.9 However, sudden contact-impact events normally produce stress waves with high frequency content
and a small time-step is required to accurately track the propagation of these waves in the solids. Also the use of diagonal
mass matrices produces dispersion error and slower wave velocities, especially for the higher frequencies, representing
its use a sacrifice of accuracy in the benefit of efficiency.

In general, the two most important concerns regarding the solution of contact-impact problems with explicit penalty
methods are robustness and efficiency. In this context, robustness is mainly defined by the stability of the solution and
the control of possible contact stress oscillations that are triggered by the impact, while efficiency refers to the group of
techniques devised to reduce the total computational effort required per time step.

Starting with the stability issue, the main problem of the explicit penalty method in elastodynamics is that the stabil-
ity limit of the time integration scheme can be seriously affected when large values of the stiffness penalty are used to
enforce the fulfillment of the kinematic contact constraints.4 In fact, the critical time step for a stable solution is inversely
proportional to the maximum system frequency and this frequency increases with higher values of the penalty stiffness
parameter. To deal with this difficulty, in this work we adopt a mass–stiffness two-penalty approach or bipenalty method
(BPM). In BPM, an extra term penalizing the kinetic energy associated to the violation of the contact velocity constraints is
added to the variational form of the classical penalty method. Using the extra mass penalty, it is possible to control the high
frequency spectrum and the maximum system frequency that defines the stability limit of the explicit time integration pro-
cess. Furthermore, by selecting an optimal ratio for the mass and stiffness penalty parameters, it is demonstrated that the
same stability limit can be preserved as the original problem without contact constraints. The stabilization of constraints
through combined penalization of internal and kinetic energy terms was first proposed by Baumgarte10 in the context of
multibody dynamics. The idea was later extended to contact-impact problems by Asano11 and Armero.12 In numerical
analysis, BPM is known as the consistent penalty method13,14 and has been used for imposition of dynamic boundary con-
ditions. Hetherington et al.15-17 extended the BPM for dynamical problems with constraints, contact problems and also
applied the method to improve the stability limit of explicit time integration schemes. The BPM formulation proposed
here, follows the work of Kopačka et al.18,19 for one-dimensional contact problems and extends it to the multidimensional
case within the partitioned formulation.

Another important aspect affecting the robustness of contact-impact dynamic solution algorithms is the emergence
of spurious oscillations in the contact stresses, characterized by a zig-zag effect consisting of a consecutive activa-
tion/deactivation of the contact constraints at consecutive time steps. These oscillations can propagate to the interior of
the bodies leading to significant errors and a wrong prediction of the complete system response. This undesirable effect
is attributed to the nonsmooth character of the normal contact law, generating an instantaneous change of velocities at
the contact zone, associated to infinite accelerations and cause of oscillations in the contact stresses. Several numerical
techniques and strategies have been proposed in the literature to control these spurious oscillations. Examples are the
work of Doyen,20 the stabilized implicit Newmark method for nonsmooth dynamics and contact problems,21,22 inter-
face mass redistribution techniques,23,24 singular mass techniques,25 and more recently, the regularization of the penalty
constraint with a smooth contact stress transition.26,27 Another solution to the oscillation of contact stresses is the appli-
cation of time explicit schemes based on a judicious combination of predictor and corrector phases for evaluating the
kinematical quantities and states, like the stabilized explicit scheme with stiffness penalties proposed by Wu28 for con-
tact problems with large deformations. A modified predictor–corrector algorithm of this kind is proposed in this work
for BPM.
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On the other hand, we have all the factors affecting the overall efficiency of the numerical algorithm.
In this category we group the reduction of the numerical cost per iteration and the extension critical
time-step.

The most time consuming part of an explicit time integration method, sometimes after the evaluation of the
vector of internal forces, comes with the solution of the linear system of equations. Theoretically, a multipli-
cation of the inverse mass matrix by the vector of total forces is needed to compute the nodal accelerations
at every time step. The inverse of a populated matrix is computationally expensive and the final inverse mass
matrix is full while the original mass matrix is sparse. For this reason, even though the variationally consis-
tent mass matrix (CMM) leads to optimal error estimates, a lumped mass matrix (LMM) obtained by row sum
of the CMM or other diagonalized mass matrices are generally preferred.29 Unfortunately, many impact prob-
lems normally include wave propagation with broad frequency content and even though the accuracy of LMM
is acceptable for capturing the low-frequency response, it is unable to track high-frequency components. This
makes contact-impact a typical application where the higher dispersion accuracy of CMM over LMM can be
desirable.

A good solution to this dilemma is to employ a reciprocal mass matrix (RMM), that is, an approximation of
the mass matrix inverse that is directly assembled without expensive operations. By using this inverse, only a cheap
sparse matrix-vector multiplication is required to explicitly compute accelerations and advance the integration in time.
The key idea of a RMM was introduced by Tkachuk and Bischoff30,31 and it is basically to exploit Hamilton’s prin-
ciple, discretizing both displacement and momentum fields with biorthogonal shape functions, to produce a RMM
in the form of a second-order tensor product where only a diagonal projection operator needs to be inverted. This
basic procedure also requires some cumbersome modifications of the RMM for the application of boundary condi-
tions, a difficulty that can be circumvented by using localized Lagrange multipliers.32 Therefore, for explicit time
integration of contact problems, the combination of RMM with BPM reveals as a perfect marriage for accuracy
and stability. However, incorporating the mass penalties into the RMM is not direct and presents a new difficulty
due to the fact that mass-inverse is not an additive property. Also note that if the global mass matrix is mod-
ified with mass-penalties, the inverse mass matrix needs to be recalculated every time there is a change in the
contact conditions. In this work, these problems are solved in a consistent way by employing localized Lagrange
multipliers.

The method of localized Lagrange multipliers (LLM) is a general variational framework used to solve partitioned
systems in structural mechanics, also applicable to contact problems,33-35 that introduces between the solids in con-
tact an intermediate surface endowed with independent degrees of freedom and treated with a FEM discretization
to approximate the interface variables. Finally, this auxiliary contact surface is connected to the solids using classi-
cal Lagrange multipliers defined on the interface nodes, obtaining a formulation that naturally allows to uncouple
the body equations of motion from the contact conditions. Adopting this approach, the RMM appearing in the solid
equations and the mass penalty terms associated with the contact conditions can be consistently combined. The
benefit of using LLM is then twofold. First, it alleviates the special treatments needed for the construction of an
RMM. Second, it allows to separate the interface contact problem from the solid body equations. This way, the con-
structed inverse mass matrix appears unaltered in the equilibrium equations of the contacting bodies and it is not
affected by the mass penalties, that remain exclusively in the partitioned equations of motion obtained for the contact
interface.

Finally, an additional method is proposed to improve the efficiency of explicit time integration methods based on
the extension of the critical time-step size. For this task and in order to alleviate the step-size limitations imposed
by the mesh frequencies, whose response components contribute very little when low modes dominate the tran-
sient response, various mass matrix scaling techniques have been proposed. The basic idea behind a selective mass
scaling (SMS)36-42 is to alter the element mass matrix artificially in order to reduce the high frequencies of the
dynamical system without affecting the low-mid frequencies. Most of these methods require either replacing exist-
ing elements by tailored elements and/or adopt element component-dependent time stepping procedures, leading
to either elemental and/or global approaches, depending on how the modification of the mass matrix is made.
Other techniques, like variationally selective mass scaling (VSMS)43-45 are based on templated variational forms of
the elastodynamic problem with free parameters that are tuned for optimal mass scaling. For our particular appli-
cation, SMS should be made compatible with the construction of the RMM, hence an element-by-element mass
scaling is adopted to reduce/filter out the high frequencies of the dynamical system without affecting the low-mid
frequencies.32,46
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In summary, the present study addresses in multiple fronts the explicit solution process of contact-impact problems
with the objective of improving its applicability to real-life applications by integrating the following four algorithmic
components:

1. The contact constraints are modeled by a bipenalty contact-impact formulation18 that incorporates stiffness and mass
penalties preserving the stability limit of contact-free problems for efficient explicit time integration;

2. A method of localized Lagrange multipliers47 is employed, which facilitates the partitioned governing equations for
each substructure along with the completely localized contact penalty forces pertaining to each free substructure;

3. A method for the direct construction of sparse inverse mass matrices of the free bodies in contact32 is combined with
the localized Lagrange multipliers approach;

4. An element-by-element mass matrix scaling technique48 that allows the extension of the time integration step is
adopted to improve the overall performance of the algorithm.

It will be shown that a judicious integration of these four algorithmic components produces an extremely efficient
explicit contact-impact formulation that maintains stability and produces accurate results even near the critical time-step,
under conditions totally forbidden for the standard stiffness penalty method heretofore.

The article is organized as follows. Section 2 formulates the contact problem and Section 3 formalizes the combination
of the BPM with RMM through localized Lagrange multipliers. The RMM construction using dual basis functions is
described in Section 4, while the final partitioned formulation of the contact problem with BPM is obtained in Section 5.
Section 6 is dedicated to the derivation of an optimal mass-penalty ratio for BPM. Time integration using an explicit
predictor–corrector algorithm to avoid oscillations is described in Section 7. The performance enhancement by extension
of the critical time-step with SMS is discussed in Section 8. Finally, in Section 9, we present several numerical examples,
where we test the accuracy of the proposed techniques, and Section 10 closes with the conclusions.

2 FORMULATION OF THE CONTACT-IMPACT PROBLEM

At this point, the initial-boundary value problem of linear elastodynamics with consideration of frictionless contact is
formulated in a strong sense. Without loss of generality, suppose two deformable bodies that can potentially be in contact
at any time t ∈ [0, T], see Figure 1. The position of the material particles of these bodies is described by means of posi-
tion vectors x(i), i = 1, 2 from the domain Ω = Ω(1) ∪ Ω(2). The outer surface of this domain is disjointly covered by the
boundaries ΓD, ΓN , and Γc, where boundary conditions of Dirichlet, Neumann, and contact type, respectively, are pre-
scribed. The physical requirement of impenetrability of bodies is formulated using the basic contact kinematic quantity,
the so-called gap function:

gN = −
[(

x(2) + u(2)) −
(

x(1)(𝝃) + u(1)(𝝃)
)]

⋅ n(1)(𝝃) = −
(

u(2) − u(1)(𝝃)
)
⋅ n(1)(𝝃) − g0

N , (1)

which for given slave point x(2) ∈ Γ(2)
c gives the signed distance to its closes point projection, x(1)(𝝃) ∈ Γ(1)

c , where 𝝃 is
the convective coordinate that parameterizes Γ(1)

c and the bar denotes the closest point projection coordinate, n(1) is the

F I G U R E 1 Representation of two
bodies with domain Ω(i) (i= 1, 2) in
potential contact and definition of the
normal gap function gN . Localized
Lagrange multipliers 𝝀(i) are introduced
on both sides Γ(i)

c of the contact interface
to separate the solid equilibrium
equations from the interface contact
problem. Contact zones and body
surfaces are represented separately for
better visualization
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outer normal vector at the current master point x(1) + u(1)(𝝃). Note that by the above definition, the gap is open for a
negative value of the gap function. The problem of linear elastodynamics is governed by the balance of linear momentum
supplemented by boundary and initial conditions:

𝜵 ⋅ 𝝈 + f =
𝜕p
𝜕t

(x, t) ∈ Ω × [0,T], (2)

u(x, t) = û(x, t) (x, t) ∈ ΓD × [0,T], (3)
t(x, t) = t̂(x, t) (x, t) ∈ ΓN × [0,T], (4)

u(x, t)|t=0 = u0(x) x ∈ Ω, (5)
u̇(x, t)|t=0 = v0(x) x ∈ Ω (6)

with the displacement field u(x, t) as a primary unknown, that is tied to the Cauchy stress tensor, 𝝈, through the
symmetric part of the gradient of deformation, 𝜺 = symm (𝜵u), using Hooke’s law 𝝈 = C ∶ 𝜺, where C is the fourth-order
tensor of elastic constants. Further, f is the vector of body forces per unit volume and p = 𝜌u̇ is the momentum vector.
The boundary condition of Dirichlet type (3) prescribes displacement field on ΓD at all times t ∈ [0, T]. Similarly, the
Neumann boundary condition (4) prescribes the value of the spatial derivative of the displacement field by means of a
traction vector t = 𝝈 ⋅ n, where n is the outer normal vector to ΓN . Initial conditions (5) and (6) prescribe displacement
and velocity fields at time t = 0 on the domain Ω.

On the other hand, we have the interface contact constraints expressed by the so-called Hertz–Signorini–Moreau
conditions:

pc(x, t) ≥ 0 (x, t) ∈ Γc × [0,T], (7)
gN(x, t) ≤ 0 (x, t) ∈ Γc × [0,T], (8)

pc(x, t)gN(x, t) = 0 (x, t) ∈ Γc × [0,T] (9)

which can be understood at a more general level of constrained optimization as the KKT (Karush–Kuhn–Tucker) con-
ditions. Condition (9), known as the complementarity condition, imposes that nonzero contact pressure, pc = −t ⋅ n, can
only exist during contact and that separation is always accompanied by zero contact stresses. A final condition needs to
be satisfied by the time integration strategy in order to achieve energy conservation:

pc(x, t)ġN(x, t) = 0 (x, t) ∈ Γc × [0,T] (10)

enforcing that pressure may only be generated during persistent contact, and therefore this equation is called the
persistency condition.49

Note that in addition to the displacement field, u(x, t), the scalar field of contact pressure, pc(x, t) ∈ Γc × [0,T], is also
unknown in the given formulation. To get rid of this dependence, the penalty method is used to regularize the contact
conditions. This regularization consists in replacing the contact pressure with the expression:

pc(x, t) = 𝜖s ⟨gN(x, t)⟩ , (11)

where 𝜖s is the stiffness penalty parameter and the operator ⟨•⟩ denotes the so-called Macaulay’s brackets defined as
⟨•⟩ = |•|+•

2
. If persistency condition (10) is also regularized, it leads to the bipenalty method, as will be explained in the

following section.

3 BIPENALTY METHOD WITH RECIPROCAL MASS MATRIX AND
LOCALIZED LAGRANGE MULTIPLIERS

To formulate the contact problem and for the reasons that will be explained later, instead of considering a direct inter-
action across the external surfaces of the two bodies, we duplicate the potential contact areas Γc ⊂ Γ and tie them
to the original solid surfaces using Lagrange multipliers. The contact problem is then reformulated in terms of an
interaction between these auxiliary surfaces. To this end, we invoke Hamilton’s principle for partitioned constrained
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elastodynamics32 including penalized contact constraints.18 The variational form of the Hamiltonian can then be written
using the following four-field expression:

𝛿H (u,p,uc,𝓵) =

t2

∫
t1

𝛿 {T (u̇,p) − U (u) + W (u) + Wc (u,uc,𝓵)} dt = 0, (12)

where the vector fields u(x, t), p(x, t), uc(xc, t), and 𝓵(xc, t) respectively represent the continuum displacement, momen-
tum, contact interface displacements, and Lagrange multipliers, functions of the particle position x ∈ Ω, contact surface
location xc ∈ Γc and time t ∈ [0,T].

In the components of the Hamiltonian action integral, 𝛿T is the virtual kinetic energy, 𝛿U the virtual potential energy,
𝛿W the virtual work done by the external loads and 𝛿Wc the virtual work due to contact constraints; magnitudes that can
be respectively expressed:

𝛿T (u̇,p) = ∫
Ω

𝛿
(1

2
p ⋅ u̇

)
dΩ, 𝛿U (u) = ∫

Ω

𝛿𝜺 ∶ 𝝈 dΩ, 𝛿W (u) = ∫
Ω

𝛿u ⋅ f dΩ + ∫
ΓN

𝛿u ⋅ t̂ dΓ (13)

𝛿Wc (u,uc,𝓵) = −∫
Γc

𝛿
(1

2
𝜖s⟨gN⟩2

)
dΓ + ∫

Γc

𝛿
(1

2
𝜖m⟨ġN⟩2

)
dΓ − ∫

Γc

𝛿 {𝓵 ⋅ (u − uc)} dΓ (14)

with contact interface displacements uc defined only at the contact zone Γc and compatibilized with the body surface
displacements u by using a field of localized Lagrange multipliers 𝓵. As external loads, we consider body forces per unit
volume f acting on the domain Ω with density 𝜌. Contact penalty terms enforce regularized contact conditions (7)–(10)
by penalizing both the nonzero gap and the gap rate by introducing two quadratic penalty potentials into the variational
formulation. This way, two different stiffness and mass penalty parameters are introduced and defined respectively as 𝜖s
(kg/m2/s2) and 𝜖m (kg/m2).

Then, some manipulation is needed to eliminate the virtual velocity from the virtual kinetic energy term in (13). By
making use of the momentum-velocity relation (p = 𝜌u̇) in the following identity:

1
2

p ⋅ u̇ = p ⋅ u̇ − 1
2𝜌

p ⋅ p (15)

we can obtain an equivalent expression for the virtual kinetic energy per unit volume:

𝛿
(1

2
p ⋅ u̇

)
= 𝛿u̇ ⋅ p + 𝛿p ⋅

(
u̇ − 1

𝜌
p
)

(16)

and finally performing an integration by parts of the second term of the last equation yields:
t2

∫
t1

𝛿u̇ ⋅ p dt = −

t2

∫
t1

𝛿u ⋅ ṗ dt (17)

relation that can be used to eliminate the virtual velocity field from the formulation.
Introducing previous identities, (16) and (17), into the principle of stationary action (12), we obtain the final four-field

variational form of the Hamilton’s principle for constrained elastodynamics with contact penalties:

𝛿H (u,p,uc,𝓵) =

t2

∫
t1

⎧⎪⎨⎪⎩
∫
Ω

𝛿p ⋅
(

u̇ − 1
𝜌

p
)

dΩ − ∫
Ω

(𝛿u ⋅ ṗ + 𝛿𝜺 ∶ 𝝈) dΩ + ∫
Ω

𝛿u ⋅ f dΩ + ∫
ΓN

𝛿u ⋅ t̂ dΓ

−∫
Γc

𝛿u ⋅ 𝓵dΓ − ∫
Γc

𝛿𝓵 ⋅ (u − uc) dΓ + ∫
Γc

𝛿uc ⋅ 𝓵dΓ − ∫
Γc

𝛿gN H (gN)
(
𝜖mg̈N + 𝜖sgN

)
dΓ
⎫⎪⎬⎪⎭

dt = 0 (18)

expression that will be used to derive the equations of motion.
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Discretization in space of this mixed variational form is performed by using independent shape functions for displace-
ments, momenta, and Lagrangian multipliers. We carry out then a standard mixed FEM discretization with independent
shape functions for the different fields:

u(𝝃) = Nu(𝝃)u, p(𝝃) = Np(𝝃)p, uc(𝝃) = Nu(𝝃)uc 𝓵(𝝃) = N𝜆(𝝃)𝝀 (19)

but adopting compatible displacement shape functions between the solid boundary and the contact surface. Note also,
see Figure 1, that the penetration can be related to the normal projection of the boundary displacement and expressed:

gN (uc) = Huc − g0
N ≤ 0, (20)

where Huc = u(1)
c n(1) − u(2)

c n(1) and matrix H represents a geometrical operator from the boundary displacement field to
the gap function. The particular form of this operator follows from the assumed contact discretization. The second time
derivative of the gap function g̈N is then in general:

g̈N (uc, u̇c, üc, t) = Ḧ(t)uc + 2Ḣ(t)u̇c + H(t)üc (21)

and in the following, the nonlinear matrices Ḧ and Ḣ are omitted so that:

g̈N (uc) = Hüc (22)

including only the linear term. This means that we are assuming at the contact zone a slow variation of the normal vector
during contact. It is needed to mention that these high-order terms should not be neglected in the case of fast changing
normal direction, because tangential spurious oscillations could occur at the contacting points.

Introducing all these approximations in (18) one obtains the following set of semidiscrete equations:

ATu̇ − Cp = 0 Momentum equation, (23)
Aṗ + B𝝀 = ru Equilibrium equation, (24)

BTu − Lcuc = 0 Boundary and interface constraints, (25)
LT

c𝝀 = rc Equilibrium on the contact boundaries, (26)

where vector ru = f− fint is the external–internal forces residual, internal forces for linear problems are simply given by
fint =Ku with K the stiffness matrix, while the elemental matrix components are expressed:

Ae = ∫
Ωe

NT
u NpdΩ, Ce = ∫

Ωe

𝜌−1NT
p NpdΩ, (27)

Be = ∫
Γe

NT
u N𝜆dΓ, Lce = ∫

Γe

NT
𝜆 NudΓ, (28)

where A is the global projection matrix, C is the global reciprocal mass matrix, B is the boundary assembly operator, and
Lc is the localized multipliers assembly matrix.

The contact residual vector present in (26) can be written:

rc (üc,uc) = Mpüc + rp (uc) , (29)

where rp (uc) = Kpuc − fp in the case of geometrically linear kinematics, with:

Mp = ∫
Γc

𝜖mH (gN)HTH dΓ, Kp = ∫
Γc

𝜖sH (gN)HTH dΓ, fp = ∫
Γc

𝜖sH (gN)H g0 dΓ (30)

being Mp the additional mass matrix due to inertia penalty, Kp the additional stiffness matrix due to stiffness penalty,
vector fp the contribution to the contact force of to the initial gap g0, and H(x) is the Heaviside function.
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Finally, by eliminating symbolically the momentum variable (p) from (23) and (24), one finds the classical equation
of motion expressed in terms of displacements:

(
AC−1AT

)
ü + B𝝀 = ru (31)

with the mass matrix approximated as:

M = AC−1AT (32)

and observe that there must exist an inverse mass matrix, in the following denoted as M−1 and expressed:

M−1 = A−TCA−1 (33)

assuming that the global projection matrix is invertible. Since our objective is to obtain inverse mass-matrices in effi-
cient and accurate ways, we must find easily invertible diagonal or narrowly banded projection matrices. This can be
accomplished by diagonalizing the projection matrix A defined in (27) using

(
Nu,Np

)
biorthogonal shape functions.30,32

Remark 1. Considering the structure of matrix H defined in (20) that involves the same normal vector with opposite sign
on each side of the contact areas, it is easy to deduce that the penalty matrix (30) contains identical pairs of rows and
columns with opposite sign. Hence this matrix is singular by design, introducing opposite penalty forces on both sides of
the contact interface.

4 DUAL BASIS FUNCTIONS

Observing the expression obtained for the mass matrix inverse (33), we realize that a careful selection of the
(
Nu,Np

)
basis

functions can simplify its calculation. In particular, by using displacement and momentum biorthogonal interpolation
functions, we are able to construct a diagonal projection matrix in the form:

[Ae]ij = ∫
Ωe

[Nu]i
[
Np
]

jdΩ = 𝛼i𝛿ij, where[Ae]ij = 0 for i ≠ j (34)

with a trivial inverse that permits to compute the inverse mass matrix directly from the momentum matrix. Different
dual interpolation functions of this kind, originally designed and tested for mortar methods, have been proposed in the
literature. Specifically for the construction of reciprocal mass matrices, biorthogonal basis functions have been proposed
under the framework of FEM30,32 and also IGA.45

For the construction of our dual basis, the simplest alternative is the use of a local discontinuous biorthogonal
dual basis50,51 obtained via an elementwise linear combination of the primal shape functions, providing discontinu-
ous reciprocal basis functions that fulfill the partition of unity with the same support than their primal counterparts.
A density-weighted dual basis Np(𝝃) of this type, orthogonal to the displacement interpolation functions Nu(𝝃), can be
written in matrix form as:

Np(𝝃) = 𝜌(𝝃)Nu(𝝃)M−1
e ML

e (35)

valid for independent elements and where Me is an element-by-element constructed mass matrix:

Me = ∫
Ωe

𝜌(𝝃)NT
u(𝝃) Nu(𝝃)dΩ, (36)

with ML
e defined as the lumped mass matrix obtained by row-sum of its components. The diagonal terms of ML

e correspond
to values:

ML
e = ∫

Ωe

𝜌(𝝃)Nu(𝝃)dΩ, (37)
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which are the 𝜌-weighted volumes under the shape functions. In this article, we focus on the linear shape functions,
which produce these mass terms positive and ML

e is still positive-definitive mass matrix.
Linear finite element shape functions Nu(𝜉) and their associated dual basis functions Np(𝜉) are represented in Figure 2.

The orthogonality of these interpolation functions is easily demonstrated evaluating the projection matrix (34) at the
element level:

Ae = ∫
Ωe

NT
u(𝝃)Np(𝝃)dΩ =

⎧⎪⎨⎪⎩
∫
Ωe

𝜌(𝝃)NT
u(𝝃)Nu(𝝃)dΩ

⎫⎪⎬⎪⎭
M−1

e ML
e = ML

e (38)

obtaining by design a simple diagonal projection matrix Ae that is equal to the lumped element mass matrix.
Finally, we can evaluate analytically the elemental momentum mass matrix from its definition (27), by substituting

(35) and considering (38), with a very simple expression:

Ce = ∫
Ωe

𝜌(𝝃)−1NT
p(𝝃)Np(𝝃)dΩ = ML

e M−1
e

⎧
⎪⎨⎪⎩
∫
Ωe

𝜌(𝝃)NT
u(𝝃)Nu(𝝃)dΩ

⎫
⎪⎬⎪⎭

M−1
e ML

e = ML
e M−1

e ML
e (39)

confirming that it is possible to compute a RMM element-by-element without expensive operations.
The procedure followed for a direct assembly of the global inverse mass matrix M−1 is described in Algorithm 1, where

the consistent element mass matrix MC
e and the lumped element mass matrix ML

e are linearly combined as described in
Section 8.1 and then scaled as explained in Section 8.2 to finally obtain the element RMM using relation (39).

Remark 2. The same projection matrix (38) but divided by the element’s density, was proposed in a previous work32 for the
construction of FEM reciprocal mass matrices under the assumption of constant density. For the general case of variable
density, it was pointed out by Schaeuble et al.45 that the construction of reciprocal matrices requires density to be included
in the local support of the momentum field in order to satisfy mass conservation. This is now done in (35), producing a
new expression for the elemental projection matrix Ae.

It is finally noted that the production of RMMs requires the diagonal projection matrix Ae to be positive def-
inite. This means that the volume integrals of the shape functions over the finite element domain (37) should
be positive. This condition is satisfied by linear FEM and IGA, but not by serendipity higher order elements,
where a direct mass lumping procedure produces negative mass diagonal terms associated to the intermediate
nodes.

F I G U R E 2 Representation in a normalized parameter space of linear shape functions Nu(𝜉) used for discretization of the displacement
field (left) and their associated orthogonal basis functions Np(𝜉) employed for approximation of momentum (right) for the particular case of
constant density
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Algorithm 1. Procedure for a direct assembly of the RMM

for e = 1…Ne do elements loop ⊳ Element by element assembly
Me = (1 − 𝛽)MC

e + 𝛽ML
e ⊳ Element mass matrix parametrization

‚Me = Me + MeΦhShΦ𝖳
hMe ⊳ Element mass matrix scaling

Ae = M̂L
e −→ A =

Ne

A
e=1

Ae ⊳ Assemble diagonal projection matrix

Ce = M̂L
e M̂−1

e M̂L
e −→ C =

Ne

A
e=1

Ce ⊳ Assemble reciprocal mass matrix
end for
M−1 = A−TCA−1 ⊳ Compute global inverse mass matrix

5 PARTITIONED FORMULATION OF THE CONTACT PROBLEM

A monolithic explicit BPM solution algorithm, without separating the contact conditions from the body equations, would
require a reiterated inversion of the penalized global mass matrix (M+Mp), that is, the free-body mass matrix plus some
inertia penalties changing in time due to different contact conditions. When the body mass matrix M is not diagonal, this
solution procedure involves solving linear systems of size equal to the total number of DOFs. This is extremely inefficient,
hence we propose instead a partitioning strategy to uncouple the interface contact problem from the free-body equations.
Moreover, in presence of contact conditions, a direct computation of the RMM through classical techniques would require
complicated modifications of the biorthogonal shape functions.30 We eliminate all these inconveniences by considering
the structures as free-floating and applying the contact boundary conditions through localized Lagrangian multipliers.35

The partitioning strategy works as follows. First, we reorganize the semidiscrete partitioned equations of motion
(23)–(26) to obtain the following partitioned equation set:

⎡
⎢⎢⎢⎣

M B 0
BT 0 −Lc

0 −LT
c Mp

⎤
⎥⎥⎥⎦

⎧
⎪⎨⎪⎩

ü
𝝀
üc

⎫
⎪⎬⎪⎭
=
⎧
⎪⎨⎪⎩

ru

0
− rp

⎫
⎪⎬⎪⎭
, (40)

where the second equation is simply a twice time-differentiated version of (25). These are the partitioned equations of
motion including mass penalization, where vector rp contains the classical stiffness penalty forces coming from the con-
tact conditions. For the solution of these equations, it is important to remember that the mass penalty matrix Mp is
singular by design, for example, for total separation it is identically zero.

Now, with the intention of reducing the problem only to the contact boundary variables, let us isolate the partition
accelerations from the first row of (40) to write the equation:

ü = M−1 (ru − B𝝀) (41)

in which once again we emphasize that the computation of M−1 = A−TCA−1 does not require additional computational
effort because the global projection matrix A is diagonal. Then, the localized multipliers can be obtained from the second
equation:

𝝀 = Mbb
(
BTM−1ru − Lcüc

)
(42)

with a reduced-to-the-boundary mass matrix Mbb =
[
BTM−1B

]−1 that is simply obtained by extracting the boundary
components of the RMM and computing its inverse. Finally, substituting in the third row of (40) we find:

üc = M̂−1
p
(
LT

c MbbBTM−1ru − rp
)

(43)

with an effective penalty mass matrix:

M̂p = Mp + LT
c MbbLc (44)
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of a smaller dimension and pertaining only to the contact DOFs, therefore, its inversion or factorization is affordable.
This is the equation we use to compute the contact zone accelerations directly from internal and penalty forces. Once the
contact accelerations üc are known, multipliers 𝝀 and global accelerations ü can be subsequently calculated from (42)
and (41).

Finally, note that to evaluate the normal gap gN(uc) and define the contact conditions, we need first to compute
the contact zone displacements uc. These displacements can be obtained from an explicit time integration of the global
accelerations vector üc. However, this integration should be done carefully in order to avoid spurious oscillations in the
contact states. A predictor–corrector time integration approach is adopted for this task that will be described later.

6 OPTIMAL INERTIA PENALTY

We seek now an optimal setting for the penalty mass matrix with respect to a given stiffness penalty matrix, with the
condition that the maximum frequency of the bipenalized contact problem and the contact-free problem are identical.
If the maximum frequencies of these two problems are the same, the stability limit of the bipenalty problem will not be
affected by the stiffness penalties activated at each contact constraint.

Proposition 1. For one elastic solid with fixed normal contact conditions, the maximum frequencies of the bipenalized
contact problem and the contact-free problem will be the same provided that the mass penalty matrix Mp and the stiffness
penalty matrix Kp satisfy the relation:

Mp = 1
𝜔2

max
Kp with K𝝓 = 𝜔2

maxM𝝓,

where 𝜔max is the maximum frequency of the linearized contact-free problem and 𝝓 its associated vibration mode.

Proof. Assuming zero external loads and zero initial contact forces, f= 0 and fp = 0, we perform a linearization of the
governing equation for the interface accelerations (43) obtaining:

(
Mp + LT

c MbbLc
)

üc = −LT
c MbbBTM−1Ku − Kpuc,

where we have substituted ru =−Ku and rp =Kpuc as the linearization terms of free-body and contact internal forces.
Then, we imagine the system vibrating at the maximum frequency with global and contact interface modes

(
𝝓,𝝓c

)
and a

boundary displacement compatibility equation (25) relating them in the form BT𝝓 = Lc𝝓c. Because the free-body global
vibration mode 𝝓 corresponds to the maximum frequency 𝜔max, it is also fulfilled BTM−1K𝝓 = 𝜔2

maxLc𝝓c and we can
finally write:

−𝜔2
max

(
Mp + LT

c MbbLc
)
𝝓c = −𝜔2

maxLT
c MbbLc𝝓c − Kp𝝓c

from where it is derived the sought relation. ▪

Additionally, it is also interesting to study what happens to the Lagrangian multipliers at this highest frequency with
an optimal selection of the mass penalty matrix. For this, we first perform the linearization of (42):

M−1
bb 𝝀 = BTM−1Ku − Lcüc (45)

and substitute the vibration mode corresponding to the maximum frequency, to yield:

M−1
bb 𝝀 = −𝜔2

maxBT𝝓 + 𝜔2
maxLc𝝓c = 0 (46)

showing null contact forces corresponding to that particular mode shape.
In conclusion, the relationship Mp = Kp∕𝜔2

max for an optimal selection of the penalty mass matrix is valid for an
arbitrary mass matrix, either exact inverse or reciprocal mass matrix. For its computation, it is only needed the maximum
frequency of the linearized system. In this case, the maximum frequency of the bipenalized contact problem is not affected
by the stiffness penalty term and the stability limit is the same than the contact-free problem. In real computations,
one can use the setting of the mass penalty matrix Mp = Δt2Kp, where Δt is the time step size during the explicit time
stepping.
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7 EXPLICIT PREDICTOR–CORRECTOR TIME INTEGRATION

Time integration of the semidiscrete equations of motion (40) is performed using a predictor–corrector scheme with split-
ting of body and contact accelerations,52 by following the process described in Algorithm 2. We adopt the central difference
scheme, assuming that time integration has progressed until time tn, with known displacements un and velocities at time
tn− 1

2 = tn − Δt
2

defined as u̇n− 1
2 , to advance the solution one step further with time step size Δt = tn+1 − tn to obtain u̇n+ 1

2

and un+1.
In this process, to compute the contact boundary accelerations, we divide the computation of the current acceleration

(43) into predicted and corrected terms in the form:

ün
c = M̂−1

p LT
c MbbBTM−1rn

u
⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏞⏟

prediction

− M̂−1
p rn+1

p
⏟⏞⏟⏞⏟

correction

= ün
c,pred − ün

c,corr. (47)

In the proposed splitting scheme, bulk accelerations in the predictor phase ün
c,pred and the correction accelerations

ün
c,corr are computed using a constant direct inverse mass matrix (33) without interference of the mass penalties in Mp,

that are included through the localized Lagrange multipliers in a small problem reduced to the contact unknowns.

Algorithm 2. Stabilized explicit predictor–corrector algorithm

u0, u̇0, u̇
1
2 = u̇0 + Δt

2
ü0 ⊳ Initial conditions

u0
c =

[
L𝖳

c Lc
]−1 L𝖳

c B𝖳u0, u̇0
c =

[
L𝖳

c Lc
]−1 L𝖳

c B𝖳u̇0 ⊳ Initial conditions
for n = 1…nsteps do time loop ⊳ Time integration loop

un = un−1 + Δt u̇n− 1
2 , un

c = un−1
c + Δt u̇

n− 1
2

c ⊳ Explicit displacements
ün

c, pred = M̂−1
p L𝖳

c MbbB𝖳M−1rn
u ⊳ Predicted contact accelerations

u̇
n+ 1

2
c, pred = u̇

n− 1
2

c + Δt ün
c, pred ⊳ Predicted mid-point contact velocities

un+1
c, pred = un

c + Δt u̇
n+ 1

2
c, pred ⊳ Predicted displacements

rn+1
p = Kpun+1

c, pred − fp ⊳ Evaluate stiffness penalty forces

ün
c, corr = M̂−1

p rn+1
p ⊳ Contact correction of boundary accelerations

ün
c = ün

c, pred − ün
c, corr ⊳ Corrected contact accelerations

𝜆n = Mbb
(
B𝖳M−1rn

u − Lcün
c
)

⊳ Compute localized multipliers
ün = M−1 (rn

u − B𝜆n) ⊳ Obtain accelerations

u̇n+ 1
2 = u̇n− 1

2 + Δt ün, u̇
n+ 1

2
c = u̇

n− 1
2

c + Δt ün
c ⊳ Update mid-point velocities

end for

8 ACCURACY AND PERFORMANCE IMPROVEMENTS

In this section, two different techniques are applied at the element level and combined to enhance the accuracy and
performance of the BPM. These techniques are mass matrix parametrization used to improve the accuracy at higher
frequencies of the reciprocal mass matrix and SMS introduced to extend the critical time step by modification of the
nonphysical mesh frequencies of the element.

8.1 Mass matrix parametrization

Parametrization can be used to improve the accuracy of reciprocal mass matrices. For example,30,43,44 a family of recip-
rocal mass matrices can be constructed by incorporating parametrization into the variational form of the problem. By
introducing free parameters, it is possible to create a family of mass inverses and later select the members of this fam-
ily with best properties for different applications. Hence, the idea is to employ for the construction of matrices (38)
and (39) a templated version of the element mass matrix. There exist several ways to parametrize mass matrices at the
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element level, see Felippa et al.53 for an exhaustive classification, being a consistent-lumped linear combination the
simplest choice:

Me = (1 − 𝛽)MC
e + 𝛽ML

e 𝛽 ∈ [0, 1] (48)

in which a parameter 𝛽 ∈ [0, 1] is used to balance between the element consistent mass matrix MC
e and lumped mass

matrix ML
e . For example, using 𝛽 = {0, 1

2
, 1} the element mass matrix is then easily reduced respectively to the consistent

mass matrix (CMM), averaged mass matrix (AMM), and lumped mass matrix (LMM).
In particular, for the construction of our RMM, the case 𝛽 = 1 is not interesting because it reduces the reciprocal matrix

to the common diagonal LMM with a trivial inverse. We mentioned that LMM computed by the row-sum technique is
very popular in explicit dynamics.54 Unfortunately, see Figure 3, the lumped mass matrix does not maintain the accuracy
of the consistent mass matrix for high frequencies and finding better options would suppose an important advantage for
explicit dynamics. It is well known that the frequencies of CMM converge from above, whereas the frequencies of LMM
converge from below. Then, it remains the task of selecting an appropriated parameter 𝛽 with the objective of beating the
LMM accuracy with equivalent computational costs. Figure 3 shows that the RMM constructed with 𝛽 = 1

2
outperforms

the accuracy of LMM and CMM. The dispersion-corrected RMM with 𝛽 = 1
2

reproduces the same behavior observed by
Krenk55 for the AMM in the one-dimensional wave equation modeled with linear finite elements.

8.2 Element-by-element SMS

We describe here a simple method to reduce the highest frequencies of the system that can be combined with the proposed
RMM for better efficiency. The mass scaling process is applied element by element although it could also be applied in a
partitioned manner.48 We start examining the original mode shapes of an element with n DOFs. These modes are obtained
by solving the generalized eigenvalue problem:

Ke𝚽e = Me𝚽e𝚲e (49)

with the well-known eigendecomposition properties,

{
𝚽T

e Ke𝚽e = 𝚲e

𝚽T
e Me𝚽e = In

, (50)

where n is the number of element DOFs, 𝚽e ∈ Rn×n is a square matrix with the orthogonal mode shapes of the element,
In is the identity matrix of size n, and the diagonal matrix 𝚲e ∈ Rn×n contains the original element eigenfrequencies, that
is, 𝚲e = diag

(
𝜔2

1, 𝜔
2
2 … 𝜔2

n
)
.

F I G U R E 3 Analytical dispersion diagram of the proposed reciprocal
mass matrix for an infinite bar modeled with linear elements and using
different mass scaling parameters. Three values of 𝛽 =

{
0, 1

2
, 1
}

are considered,
corresponding to CMM, AMM, and LMM, respectively. A lower dispersion error
is observed in the high frequency range for 𝛽 = 1

2
. Note that a dimensionless

wave number 𝜅 = 𝜋 corresponds to a resolution of two elements per wave length
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Then, after ordering the element frequencies in𝚲e, the n orthogonal mode shapes can be separated into r and m=n− r
low and high frequency mode shapes, respectively, in the form:

𝚽e =
[
𝚽l 𝚽h

]
, (51)

where𝚽l ∈ Rn×r groups low-frequency modes whose responses are to be retained and𝚽h ∈ Rn×m collects high-frequency
modes whose responses are to be filtered out. These orthogonal modes now fulfill,

𝚲e =

[
𝚽T

l Ke𝚽l 0
0 𝚽T

hKe𝚽h

]
=

[
𝚲l 0
0 𝚲h

]
, (52)

where 𝚲l ∈ Rr×r and 𝚲h ∈ Rm×m are diagonal matrices grouping with the corresponding low and high element frequen-
cies.

The n orthogonal mode shapes of the element can be separated into high and low frequency modes in the form:

𝚽e =
[
𝚽l 𝚽h,

]
(53)

where we have r retained low-frequency modes 𝚽l and s=n− r scaled high frequency modes 𝚽h.
In order to scale only the high frequency modes of the element, without affecting the low frequency modes at the

same time, we modify the element mass matrix in the form:

M̂e = Me + Me𝚽hSh𝚽T
hMe, (54)

using the diagonal scaling matrix,

Sh = diag (s1, s2 … sm), (55)

where 𝚽h ∈ Rn×m is now a retained set of higher mode shapes whose frequencies are deemed to be mesh frequencies
and therefore to be filtered out; Sh ∈ Rm×m is a diagonal matrix to be discussed subsequently and m is the number of the
higher mode shapes utilized.

Proposition 2. The modified element mass matrix M̂e scales the high frequencies of the element by a factor (Im + Sh)−1,
maintaining the element low frequencies unaffected, that is, the new element eigenvalues are given by the diagonal matrix:

�̂�e =

[
Ir 0
0 (Im + Sh)−1

]
𝚲e

with the same mode shapes Xe than the original element.

Proof. It is very simple to demonstrate that the new tailored-mass eigenvalue problem:

Ke𝚽e = M̂e𝚽e�̂�e

has exactly the same eigenvectors than the original one, with the same r low frequencies and s reduced high frequen-
cies. This is demonstrated premultiplying by 𝚽T

e the previous expression, thanks to properties (50), revealing the new
eigenvalues:

𝚲e = 𝚽T
e

(
Me + Me

[
𝚽l 𝚽h

] [0 0
0 Sh

] [
𝚽l 𝚽h

]TMe

)
𝚽e�̂�e =

(
In +

[
0 0
0 Sh

])
�̂�e

from where we can obtain �̂�h inverting a simple diagonal matrix. ▪
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It remains only the selection of the scaling parameters {s1, s2 … sm} and the number of modes to scale m. It is also
important to mention that, although different mass-scaling methods have been proposed by other authors,43,44,56 the
proposed mass-scaling technique is defined as selective in the sense that we can choose the number of modes to scale and
this scaling is performed at the element level.

8.3 Design of the scaling matrix

Finally, we seek an expression for the scaling matrix (55). Of several possible choices to construct Sh, we propose the
following formula:

Sh = 𝜔−2
cut𝚲h − Im, (56)

where 𝜔cut is a user-specified cut-off frequency beyond which all the higher frequencies will be filtered out. Substituting
(56) in the result of Proposition 2, we observe that the modified frequencies take the form:

�̂�e =

[
𝚲l 0
0 𝜔2

cutIm

]
. (57)

It is observed from the preceding result that, while the lower modes and their mode shapes are preserved, the higher
modes which are expected to consist of mesh frequencies are effectively filtered out and replaced by the cut-off frequency,
𝜔cut.

9 NUMERICAL EXAMPLES

In this section, we present three classical contact-impact examples that are used to demonstrate how the proposed for-
mulation can be used in practice. Our goal is twofold. First, we want to confirm that a combined mass–stiffness penalty
approximation is able to reduce instabilities and increase the quality of the solution. That is, we want to demonstrate
how spurious oscillations of the contact stresses can be effectively controlled by introducing optimal mass penal-
ties combined with the predictor–corrector time integration scheme. Second, we wish to demonstrate how the RMM
and SMS techniques presented here can be used to increase computational efficiency, without severely affecting the
accuracy.

9.1 Impact of two bars

In our first example, we study a benchmark contact-impact problem proposed by Huněk57 consisting of two elastic
one-dimensional bars of different lengths. A scheme of the test is shown in Figure 4, presenting a first bar moving to the
right with constant velocity v01 = 0.1 m/s that impacts on the second bar, initially at rest and fixed on its right side. The
bar lengths are L1 = 10 m and L2 = 20 m, with identical cross-sectional areas A1 =A2 = 1 m2 and the same material prop-
erties: Young’s modulus E1 =E2 = 100 Pa and density 𝜌1 = 𝜌2 = 0.01 kg∕m3. Uniform linear finite element discretizations
of constant element size h1 = h2 = 0.2 m are used for the bars, producing meshes of n1 = 50 and n2 = 100 finite elements.
The bars are supposed to initiate contact at time t = 0 and therefore the initial gap g0

N is zero. The total simulation time
is set to T = 0.7 s, the solution integrated with Courant number C = 0.5 and we focus on the contact forces occurring at
the interface. There exists analytical solution for the contact forces of this particular example, consult Graff’s book,58

corresponding to a constant contact force of value F0 = 0.05 N maintained for t = 0 … 0.2 s and t = 0.4 … 0.6 s, and zero
otherwise.

To apply the bipenalty method, the stiffness penalty parameter 𝜖s is first normalized by the relation 𝜖∗s = 𝜖she∕
(
𝜌c2

0A
)
,

where c0 =
√

E∕𝜌 is the wave velocity, to consider four different values of the dimensionless stiffness penalty corre-
sponding to log10𝜖∗s = {1, 4, 8, 12}. The construction of a constant RMM is then made via Algorithm 1, starting from
the average element mass matrix computed with 𝛽 = 0.5. After this, an optimal mass penalty matrix Mp is calculated as
described in Section 6. In this case, it is observed that the stability limit of BPM is not affected by the stiffness penalty 𝜖∗s .
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F I G U R E 4 Scheme of the one-dimensional impact of two
elastic bars with different length and material properties

F I G U R E 5 Time history of contact forces after the impact of two elastic bars, comparison of the solutions obtained for 𝜖∗s = 10 with
classical stiffness penalty method (left) and BPM with very large stiffness penalty 𝜖∗s = 1 × 1012 and optimal mass penalty (right). BPM is able
to improve the stability of the solution even for high values of the stiffness penalty. At the same time, the predictor–corrector time integration
algorithm controls the swinging of contact forces

A cut-off frequency 𝜔cut for mass scaling is finally introduced so that the critical time step size is extended by factor 1.68
with respect to the nonscaled case.

After several numerical tests with different values of 𝜖∗s with different combination of mass matrices, we conclude
that the results in the form of the time history of the contact forces do not depend on the particular value of 𝜖∗s
and the stability limit of the contact-free problem is always preserved. In Figure 5, it is compared a time history of
contact forces obtained with the traditional stiffness penalty method (left) and BPM (right). It is clear that more sta-
ble results are obtained with BPM, although the solution still presents some small oscillations at the contact force
discontinuities attributed to the mesh resolution and Gibbs phenomenon. It is possible to reduce these nonspurious
force oscillations equipping the time integration algorithm with a discontinuity capturing procedure, for example, Park
scheme.59

As a demonstration of the effect of combining RMM and SMS, we present in Figure 6 the contact forces obtained
after reducing the maximum element frequency to 𝜔cut. We can see some improvement on the contact forces with
mass scaling, the oscillations are not removed completely but have reduced their frequency. These stress spurious
oscillations are a product of the temporal–spatial dispersion behavior of the finite element within the explicit time
integration.60

Finally, the energy balance during the contact process is shown in Figure 6. For its computation, the work associated
to the contact constraint through the bipenalty term is evaluated as:

Wc = H(gN)
(1

2
u̇T

c Mpu̇c +
1
2

uT
c Kpuc

)
, (58)

where H(gN ) is a Heaviside function with unit value when the contact constraint is activated. In contact-impact
problems, it is important to verify that the work associated to the contact constraints W c remains numerically very
small, ideally it should be zero, thus no energy is dissipated by the penalty terms during the enforcement of the con-
tact constraints. We have checked on several numerical experiments that this condition is perfectly satisfied, after
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F I G U R E 6 Effect of mass scaling in the time history of contact forces due to the impact of two elastic bars (left). Energy balance
obtained using the scaled reciprocal mass matrix (right) expressed in terms of kinetic energy T, potential energy U, work of contact forces
W c, and total energy T +U +W c

F I G U R E 7 Scheme of the Taylor test of an elastic cylinder of radius a and
uniform velocity v0 impacting on a rigid wall. Only a domain Ω(1) of size 1.2a× a
is modeled and discretized using a regular mesh of 100× 50 axisymmetric
quadrilateral elements

combining an optimal selection of the penalized bipenalty mass matrix Mp with the predictor–corrector explicit
time integration described in Algorithm 2. Kinetic and potential energies are simply computed by integration on the
FEM domains.

9.2 Taylor test of a perfectly elastic cylinder

As a second benchmark problem we adopt the Taylor test of a perfectly elastic cylinder, a classical problem with semi-
analytical solution.61 In particular, we consider the case of a cylinder with radius a= 1m and initial velocity v0 = 1m/s
impacting on a rigid wall, as schematically represented in Figure 7. The problem is treated as axisymmetric, meshing
only a rectangular domain Ω(1) near the contact zone of length L= 1.2 a using a regular mesh of 100× 50 fully integrated
quadrilateral finite elements.

The material is considered purely elastic steel, with Young modulus E = 210GPa, Poisson coefficient 𝜈 = 0.3 and mass
density 𝜌 = 7850kg∕m3. The velocity of primary and secondary waves in the cylinder can be respectively expressed by the
elastic constants of the propagating medium as cL =

√
(𝜆 + 2G)∕𝜌 for the longitudinal and cT =

√
G∕𝜌 for the transverse

wave speed, where 𝜆 is the first Lamé parameter of the material and G the shear modulus.

9.2.1 Time integration stability limit

It is well known from classical penalty contact methods, that an increase of the dimensionless penalty stiffness
𝜖∗s = 𝜖she∕

(
𝜌c2

L
)

without mass penalties 𝜖m = 0 affects very significantly the stability limit of the time integration
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algorithm used.18 In general, the critical Courant number Ccr = Δtp
cr∕Δtcr, defined as the ratio between the critical time

step after penalization Δtp
cr and the critical time step without penalization Δtcr, is lower than one and decreases rapidly

with the penalty stiffness parameter 𝜖∗s . This effect is observed in Figure 8 for r =∞, where this stability limit has been
computed.

In the bipenalty case, the ratio between stiffness and mass penalty is controlled by the nondimensional parameter:

r = 𝜖s

2𝜖m

(
he

2cL

)2

, (59)

where cL is the speed of elastic longitudinal waves and he is the finite element size. This definition produces bipenalty
with similar mass and stiffness penalty coefficients for r → 1. The value 2cL/he corresponds to maximum angular
frequency 𝜔max for infinite two-dimensional mesh of bilinear finite elements with the lumped mass matrix, see work.60

As it is known from Reference 16, the optimal ratio is given as r = 1 and it is related to 𝜔max of finite elements in
contact.

In Figure 8, it is represented the reduction of the critical Courant number Cp
cr∕Ccr for different values of the stiffness

penalties ratio obtained for our benchmark problem. Note that, for a fixed stiffness penalty 𝜖∗s , it is possible to find the
exact mass–stiffness penalty ratio r needed to achieve a critical Courant number necessary for stability. This value of the
ratio r defines our required mass penalty 𝜖m for stability.

9.2.2 Classical stiffness penalty contact analysis

First, as a reference, we solve the impact problem by imposing a zero horizontal displacement boundary condition
to the nodes located at the contact zone. The results are presented in Figure 9 (top) in the form of dimensionless
normal contact pressure 𝜎∗

z = 𝜎xcL∕ (𝜆v0) obtained at equispaced radial locations r*= r/a for different nondimensional
values of time t*= tcL/a. Eigenvalue analysis of the constrained mesh, reveals a maximum frequency with critical
time step Δt∗cr = 0.0033 and the solution is computed with a stable Courant number C = 0.9 using a time-step size
Δt∗ = 0.003.

We verify in Figure 9 (top-left) that the computed numerical solution is very close to the semianalytical solution
obtained by Červ et al.61 for three representative values of time t∗ = {0.25, 1, 2}. On the right, it is represented the evolution
of contact pressure in the contact zone. The wave propagation, after an instant contact occurring at t*= 0, is defined by
a plane pressure dilatational wave or primary P-wave that starts to propagate with velocity cL along the cylinder, leaving
behind the same state of stress caused by the impact of a half-space. At the same time, the size of this constant stress
region is successively decreased by an unloading pressure wave generated at the contact edge of the rod r*= 1 that arrives
to the center of the cylinder at t*= 1. This unloading dilatational wave is then followed by slower shear waves propagating
from the same point at the velocity of transverse waves cT .

F I G U R E 8 Stability limit of the Taylor impact problem
represented as a function of the dimensionless stiffness penalty 𝜖∗s
and the mass–stiffness penalty ratio r. The curve for r =∞
corresponds to the classical penalty method 𝜖m = 0 and r = 1
represents the optimal bipenalty selection
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F I G U R E 9 Taylor impact problem. Comparison with semianalytical solution of the contact pressures 𝜎∗
z at three particular instants

t∗ = {0.25, 1, 2} (left) and evolution of the contact pressure (right), computed by imposing a zero horizontal displacement boundary
condition (top) and with the classical penalty contact algorithm approach r =∞ (bottom). The standard stiffness penalty method (bottom)
produces oscillations in the contact stresses that propagate inside the cylinder spoiling the temporal accuracy

Now, we try to solve the same situation with the classical stiffness penalty approach by using a dimensionless stiffness
penalty 𝜖∗s = 50 with factor r →∞, eliminating this way the mass penalty. In this new case and compared with the perfectly
rigid contact case, some flexibilization of the contact constraint is introduced reducing the maximum frequency of the
system and extending the critical time-step toΔt∗cr = 0.0095. Then, the time integration step is selected from an admissible
value C = 0.87 of the Courant number and the solution integrated withΔt∗ = 0.0083. The new results, obtained exclusively
with stiffness penalization, are presented in Figure 9 (bottom) where the initiation of contact pressure oscillations is
clearly observed. This type of contact dynamic instabilities are immediately propagated to the interior of the domain
degrading the solution.

9.2.3 Contact analysis with BPM

We revisit the problem maintaining the same dimensionless stiffness penalty 𝜖∗s = 50 but this time introducing bipenalty
stabilization, with an optimal mass–stiffness penalty ratio r = 1, as described in Algorithm 2. The addition of mass penal-
ties to the contact conditions slightly increases the critical time step to Δt∗cr = 0.0098, therefore we are able to solve the
problem with the same time step Δt∗ = 0.0083 used previously for the r →∞ case. The results are presented in Figure 10
(top), where we observe that mass stabilization is able to recover accuracy and suppress the spurious oscillations. The
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F I G U R E 10 Taylor test solutions computed with optimal mass–stiffness BPM stabilization (r = 1). Results for different time instants
obtained with exact AMM inverse (top) and the proposed RMM (bottom). Undesired oscillations on the contact stresses can be effectively
reduced with BPM stabilization

combination of stiffness and mass penalties has the benefit of stabilizing the oscillation of stresses occurring at the con-
tact zone. It is also noticed that the artificial contact flexibility introduced by the stiffness penalty is responsible for a short
delay in the contact initiation, making the unloading pressure wave originated at the contact edge to arrive a little bit later
to the center axis of the cylinder.

The small penetrations made by the contact surface of the cylinder into the rigid wall are finally evaluated by comput-
ing the evolution of the dimensionless normal gap g∗N = gN∕r in the contact area, see Figure 11. The normal gaps obtained
with the exact AMM inverse (left) and the proposed RMM (right) are very similar, demonstrating for this problem that
the introduction of the RMM does not affect the penetration values.

9.2.4 RMM and SMS

Next, we turn our attention to the issue of computational performance. Note that the previous results required to compute
an expensive factorization of the average mass matrix for the free cylinder. We repeat the experiment but using the pro-
posed RMM, an efficient sparse approximation of the inverse mass matrix, directly computed as described in Algorithm
1. This new method of approximation of M−1, that is needed to obtain the body final accelerations, reduces drastically
the number of operations to perform per time step. The new solutions are presented in Figure 10 (bottom), where we can
barely appreciate differences with the results obtained using the exact AMM inverse, same figure (top).
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F I G U R E 11 Evolution in the contact zone of the normal gap g∗N for the Taylor test solved with BPM. The exact AMM inverse (left) and
the proposed RMM (right) produce almost identical results in terms of violation of the normal gap condition (8)

F I G U R E 12 Taylor test computed with bipenalty stabilization, scaled element mass matrix, and reciprocal mass matrix. The three
highest element frequencies have been reduced to 55% of the initial maximum element frequency and this reduction allows to double the time
integration step. We observe that this reduction does not seriously affect accuracy (left) and maintains stability in the contact stresses (right)

An extra performance enhancement can be achieved with an extension of the critical time through element SMS.
For this purpose, we apply the technique described in Section 8 and start by performing an eigenvalue analysis of
the basic quadrilateral finite element used in the discretization. This computation reveals a dimensionless maximum
element frequency 𝜔∗

e = 0.6785, with 𝜔∗
e = 𝜔ehe∕ (2𝜋cL) where 𝜔e is the dimensional element frequency and he the

element size.
Starting from a parametrized element mass matrix Me with 𝛽 = 1

2
, a scaled element mass matrix M̂e is constructed

using Algorithm 1. The scaled element eigenvalues are defined through (56), by adopting a cut-off frequency𝜔∗
cut = 0.3713

and scaling only the three highest element modes. With this modification, the complete system eigenvalue analysis reveals
a higher critical time step Δt∗cr = 0.0171 and finally the problem is solved using Δt∗ = 0.0167, a time integration step two
times larger than the previous one. The results obtained by combining these three different techniques at the same time:
BPM stabilization, RMM and SMS, are presented in Figure 12. We observe that the reduction of the maximum element
frequencies does not seriously affect accuracy and maintains stable the contact stresses.
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In conclusion, the results obtained for the Taylor problem exclusively with stiffness penalization r =∞, contained in
Figure 9 (bottom), demonstrate that the standard stiffness penalty contact method is not always able to produce stable
results, even integrating in time with a Courant number C < 1. On the other hand, Figure 10 reveals that BPM with
optimal ratio r = 1 yields completely stable solutions. Furthermore, the performance of BPM can be greatly improved by
constructing free-body reciprocal mass matrices from scaled element mass matrices, with very similar results as shown
in Figure 12.

9.3 2D Hertz problem

Finally, we test the performance of the solution algorithm with nonconformal contact and nonmatching meshes.
For this task, we choose the 2D dynamic Hertz problem between elastic cylinders. In our case, see Figure 13 (left),
both cylinders have the same geometry and material parameters but different discretizations. The radius of cylin-
ders is R= 4 m and a linear elastic material with Young’s modulus E = 1000 Pa, Poisson’s ratio 𝜈 = 0.2, and density
𝜌 = 1 kg∕m3 is considered. The initial velocity of the approaching cylinders is given by uniform velocity fields v(1)0 =
{0,−v0}T and v(2)0 = {0, v0}T with v0 = 2 m/s. The problem is modeled as a two-dimensional solid under plane strain
condition.

The same problem has been studied by Miyazaki and Park34 and Otto et al.,27 where an analytical approximate solution
based on Hertz hypotheses is derived for the distance between the center of the two cylinders and the total contact force
as a function of time. This analytical solution is used to assess the quality of the proposed procedure. For this case, the
total contact force and energy histories are the monitored quantities.

Nonconformal meshes with different mesh sizes of bilinear four-node and fully integrated quadrilateral elements are
used to discretize the cylinders, with a size ratio of master-slave contact elements of 0.75, as represented in Figure 13
(right). The Gauss-point-to-segment (GPTS) contact algorithm described by Otto et al.27 is used, with twenty quadrature
points per contact segment, considering the upper cylinder with coarser mesh as the master surface and the lower one
with finer mesh the slave.

This problem differs from the previous numerical examples in that the contact boundary is not known a priori and
the size of the contact zone changes with time. It is, therefore, a full-fledged contact process that introduces certain
difficulties. Mainly, the evolving contact boundary that activates different contact quadrature points/contact nodes in
successive time steps. In this case, it has been observed that a larger time step increases the error of contact boundary
estimation in the predictor part of the predictor–corrector algorithm. As a result, although the time step is selected close

F I G U R E 13 Scheme of the dynamic Hertz problem of two elastic cylinders of the same radius R impacting each other with initial
velocity v0 (left). The domains Ω(1) and Ω(2) are considered as the master and slave body, respectively. Nonconforming meshes are used, with
a size ratio of master/slave contact elements of 0.75. Detail of the nonmatching cylinder meshes and contour of vertical stresses at time
t = 0.379 s for Poisson’s ratio 𝜈 = 0.2 (middle), and the quasi-incompressible case 𝜈 = 0.495 (right)
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to the critical time step with respect to the stability limit, the solution may include oscillations caused by inaccurate
prediction of the contact boundary. It has been observed that these oscillations disappear for lower values of the time step.

9.3.1 Classical stiffness penalty and BPM

Like in the previous example, the problem is solved first using the classical stiffness penalty approach. The dimensionless
penalty parameter is chosen to be 𝜖∗s = 4.7 which, according to the graph of Figure 8, corresponds to a critical Courant
number Ccr = 0.75 for the classical stiffness penalty method, that is, with factor r →∞. Eigenvalue analysis of the uncon-
strained mesh reveals a maximum frequency with critical time step Δtcr = 1.12 ms. To ensure the stability of the time
integration, a stable value of the Courant number C = 0.707 was chosen and the solution is computed using the time-step
size Δt = 0.79 ms. At the same time, the problem is solved with identical dimensionless penalty parameter, 𝜖∗s = 4.7, and
the time step size, Δtcr = 0.79 ms, using a monolithic BPM contact algorithm without decoupling the contact zone from
the body equations and with factor r = 1.

The results of both approaches are compared in Figure 14. On the left, we see the time course of the contact force and
on the right the energy balance. The evolution of the contact force for the classical stiffness penalty method in Figure 14
(upper left) shows considerable oscillations. From the course of the energy balance in Figure 14 (upper right), we can see
that the loss of stability of the time integration occurred only at the end during the unloading of the cylinders just before
the end of the impact. It can, therefore, be assumed that this behavior is due to the geometric instability caused by the
changing contact boundary.

In contrast, the time course of the contact force for the monolithic BPM contact analysis shown in Figure 14 (bottom
left) shows no oscillations and closely matches the numerical result obtained by Otto et al.27 using a nonlinear penalty
regularization. From the course of the energy balance in Figure 14 (bottom right), we see that the total energy is conserved

F I G U R E 14 Dynamic Hertz problem solved with Courant number C = 0.707 and exact CMM. Results obtained using the classical
stiffness penalty method (top) and BPM with r = 1 (bottom)
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throughout the time integration. Note that the work done by the contact forces is very small, which indicates that the
contact restrictions are satisfied with almost zero penetration.

The Hertz analytical solution assumes that the contact surfaces are small and that the inertial forces are equally
distributed in the cylinders. As a result, the propagation of elastic waves in the cylinders is not considered. This analytical
solution thus underestimates the contact forces at the beginning of the impact, when the inertia of the body near the
contact interface increases the contact forces and, during the unloading of the impact, overestimates the contact forces,
when the velocity of the cylinder centers decreases. The omission of the effect of elastic wave propagation is clearly visible
at time t = 4R/cL = 0.48 s, 14 (bottom left), when the oscillation caused by the reflection of the longitudinal elastic wave
occurs and that is only captured by the numerical solution. Logically, Hertz’s solution is not able to reproduce this small
oscillation in the contact force and in general any phenomena associated to wave propagation.

9.3.2 RMM and SMS

Although the results obtained with the monolithic BPM analysis and exact CMM are qualitatively satisfactory, it is noted
that a repeated inversion of the penalized global mass matrix is required every time the contact conditions change. This
process is inadequate from the point of view of numerical performance and the proposed RMM approach is much more
efficient. Specifically, to increase the accuracy, AMM is employed and the RMM calculated using Algorithm 1. The inver-
sion of the penalized global mass matrix is then avoided by adopting the partitioned formulation described in Algorithm 2.
Eigenvalue analysis of the unconstrained mesh with averaged mass matrix reveals a critical time step Δtcr = 0.9 ms
which is about twenty percent smaller than that the time-step needed for a LMM. Considering the same stable value of
the Courant number, C = 0.7, the solution is computed using the time-step size Δt = 0.64 ms. The results for the input
parameters defined in this way are shown in Figure 15 (top).

F I G U R E 15 Dynamic Hertz problem solved with Courant number C = 0.707 and the averaged reciprocal mass matrix. Results
obtained using bipenalty with the complete RMM (top) and RMM scaled with a cut-off frequency 𝜔cut = 1600 rad∕s (bottom)
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In addition, if the SMS technique introduced in this article is employed, the time step can be further increased. In
Figure 15 (bottom) the results for the cut-off angular frequency 𝜔cut = 1600 rad∕s are presented. This value of cut-off
frequency leads to a time-step size Δt = 0.81 ms which is slightly larger than the case with a diagonal LMM. Except for a
single oscillation of the contact force, the results in Figure 15 agree well with the solution obtained using the monolithic
BPM without partitioning. This leads us to the conclusion that the proposed approach greatly improves the numerical
performance of the stabilized BPM for contact analysis.

Finally, the same problem is analyzed with Poisson’s ratio 𝜈 = 0.495 to model a quasi-incompressible elastic material.
Due to the new incompressibility constraint, the velocity of the longitudinal waves is multiplied by a factor cL2/cL1 = 5.5137
while the transverse wave speed is slightly reduced to cT 2/cT 1 = 0.8959. Hertz theory also predicts a 12.7% increment of
the maximum contact pressure. The cylinders are discretized using the same nonmatching meshes as in the previous case
and the mean dilation method is applied to alleviate the volumetric locking effects. Figure 13 (right) contains the results
for a RMM constructed with 𝛽 = 1

2
and applying SMS with 𝜔cut = 1600 rad∕s. Specifically, the contours of vertical stresses

produced at the instant of maximum contact force t = 0.378 s are shown in this figure.

10 CONCLUSIONS

A combination of four related techniques for the solution of contact-impact problems has been proposed, which consists
of mass–stiffness bipenalty method (BPM) for stabilization of the contact constraints, reciprocal mass matrices (RMM) to
improve computational efficiency, localized Lagrange multipliers (LMM) for a simpler combination of the two previous
methods, prediction–correction-based time integration for the control of oscillations and selective mass scaling (SMS) to
extend the critical time-step. The resulting methodology is completely element-independent and can be easily adapted to
different contact formulation approaches.

In view of the results obtained from the solutions of benchmark problems, we can conclude the following:

• In BPM, for an arbitrary value of the stiffness penalty parameter, by setting the mass–stiffness penalty ratio to the
critical value r = 1 it is possible to preserve a stable Courant number at the level of the unpenalized system. Contrary to
what occurs with the classical penalty method, the BPM variants permit to increase the stiffness penalty and maintain
stability without reducing the critical time-step.

• BPM and RMM can be effectively combined by using a partitioned approach based on LLM. This way, mass matrix
factorizations are not needed and the operation count per time-step of explicit integration methods is reduced to a
sparse-matrix vector multiplication with nm flops, where n in the number of DOFs and m is the average number of
nonzero entries per row. This allows to use nondiagonal global mass matrices in an efficient way, increasing accuracy
for contact-impact problems.

• For high values of the stiffness penalty, BPM cures the stability problems while a predictor–corrector contact
algorithm can be an effective tool to control oscillations in the contact stresses associated to the nonsmooth char-
acter of the normal contact law. However, this condition is not fulfilled by other time integration schemes. For
example, BPM combined with classical central differences would preserve stability but not eliminate the contact
oscillations.

• The proposed element-by-element SMS allows to multiply the critical time step by a factor of two without severe degra-
dation of the solution. Although this seems a modest improvement, note that combined with BPM we are doubling
the critical time-step corresponding to the case without penalization. This gain may be further increased by adopting
partition-by-partition SMS strategies.48

• With BPM and scaling the RMM it is possible to make computations with larger time-steps than the critical time-step for
a diagonal lumped mass matrix with better accuracy. Also the computational effort per time-step would be comparable
to the use of diagonal mass matrices.

In conclusion, the proposed methodology is nonintrusive and simple to implement, hence it can be easily adapted
to existent explicit codes with the objective of improving their performance and accuracy in the simulation of
penalty contact-impact problems. As future work, we plan to extend the formulation for contact-impact problems
under nonlinear mechanical behaviors (e.g., large plasticity problems) including dynamic instability problems and
friction.
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