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ABSTRACT

This thesis reflects a unique task with significant business potential, on the edge of the
wholesale and retail power market, i.e., progressive purchase of power derivatives by
retail customers. The main emphasis is on the estimation of the oversold and overbought
market utilizing various classification methods, and subsequent simulation of the
progressive power purchase. For this purpose, the Czech power baseload yearly futures
are used as a reference contract. Continuous price fixing, which is a very popular and
commonly used strategy ensuring an average profit-loss result, is used as a benchmark to
evaluate benefits of the investigated methods.

Due to the significant lack of publications in this area, the main contribution of this thesis
Is the comprehensive examination of methods in the context of the task, the thorough
comparison and evaluation of their benefits, and the proposal of the most suitable
solution. Ten well-established techniques are exploited for the purposes of data
classification, namely, relative strength index, k-nearest neighbor, naive Bayes, support
vector classifier, random forest, AdaBoost, 1-, 2- and 3-layer feed forward neural
network, and long short-term memory.

Even though all the examined models exceeded the defined benchmark, long short-term
memory proved its exceptional qualities among the other methods in terms of consistent
prediction performance and generalization abilities. Nevertheless, its weaknesses such as
high requirements for programming capacity, long training time, sensitivity to
initialization of parameters as well as limited possibility of results interpretation should
be taken into account. As a result, a solution combining low maintenance and simplicity
of relative strength index and high accuracy of long short-term memory was proposed to
make the price fixing procedure more practical and efficient. Considering an average
auctioned volume in the order of tens of thousands of MWhs, the estimated average
savings when employing the proposed solution are estimated to reach value in the order
of tens to hundreds of thousands of EUR per one auction in comparison to the defined
benchmark.

Key words: Czech power futures, retail market, progressive purchase, technical analysis,
k-nearest neighbor, naive Bayes, support vector classifier, ensemble methods, neural
network



ABSTRAKT

Tato disertacni prace se zamétuje na ulohu s vyznamnym obchodnim potencidlem, ktera
je definovana na rozhrani velkoobchodniho a maloobchodniho trhu s elektfinou. Jedna se
o postupny nakup dlouhodobych kontraktii na dodavku elektfiny koncovymi zékazniky.
Hlavni diraz je kladen na odhad pieprodaného a piekoupeného trhu s vyuzitim riznych
klasifikatnich metod a naslednou simulaci postupného nakupu. Jako reference je
pouzit roéni kontrakt na dodavku elektfiny v zikladnim pasmu v Ceské republice.
Analyzované metody jsou porovnany s jiz existujici, velmi popularni a hojné€ vyuzivanou
strategii nakupu, kterd nacenuje dany kontrakt dle priméru zavérecnych cen.

Vzhledem k nedostatecnému mnozstvi publikaci adresujicich tuto problematiku je
hlavnim pfinosem této prace podrobna analyza metod v kontextu specifikované tilohy,
posouzeni a porovnani jejich ptinost, a navrh vhodného feseni. Pro ucely klasifikace dat
je vyuzito deset etablovanych technik; jedna se o index relativni sily, algoritmus k-
nejblizsich sousedi, naivni Bayes, metoda podptrnych vektorti, ndhodny les, AdaBoost,
1-, 2- a 3-vrstva dopfedna neuronova sit’ a long short-term memory.

Prestoze vSechny zkoumané modely dosahly lepsiho vysledku oproti strategii vyuzivajici
priméru zavérecnych cen, long short-term memory prokazala v porovnani s ostatnimi
metodami zvlasté¢ vyjimecné kvality, predevSim z hlediska konzistence ptresnosti
predikce a generalizacnich schopnosti. Je vSak tieba uvazit také slabiny tohoto piistupu,
jako jsou napiiklad vysoké pozadavky na vypocetni vykon systému, pomalé uceni
modelu, citlivost na inicializaci parametrti, stejné tak jako obtizna interpretace vysledkd.
Z divodu zachovani co nejvétsi prakti¢nosti a efektivity feSeni byl navrzen piistup
kombinujici nendro¢ny provoz a jednoduchost vypoctu indexu relativni sily a zna¢nou
presnost algoritmu long short-term memory. Pfedpokladdme-li primérny poptavany
objem v fadu desitek tisic MWh, odhadované primérné tspory pii pouziti navrzené
metody se pohybuji v fadu desitek az stovek tisic EUR na jednu aukci oproti b&zné
vyuzivané strategii nakupu na zéklad¢ primeéru zavérecnych cen.

Klicova slova: Ceské energetické futures, maloobchodni trh, postupny nakup, technicka
analyza, k-nejblizsich sousedu, naivni Bayes, metoda podpurnych vektoru, nahodny les,
AdaBoost, neuronova sit



LIST OF ACRONYMS

AdaBoost Adaptive Boosting

Adam Adaptive Learning Rate Optimization Algorithm

ANN Avrtificial Neural Networks

Bagging Bootstrap Aggregating

Bbl Barrel of Crude Oil

CEGH Central European Gas Hub AG

CDS Clean Dark Spread

CLS Clean Lignite Spread

CNN Convolutional Neural Network

CSS Clean Spark Spread

CZ VTP Czech Virtual Trading Point

ECX European Climate Exchange

EUETS European Union Emissions Trading System

EUA European Union Allowance

GRU Gated Recurrent Unit

HHV High Heating Value

ICE The Intercontinental Exchange

KNN K-Nearest Neighbor

LR Learning Rate

LSTM Long Short-term Memory

MA Moving Average

MAE Mean Absolute Error

MSCI Morgan Stanley Capital International

MSE Mean Square Error

MtCO2 One Metric To_n of Carbon Dioxide
or Carbon-equivalent Greenhouse Gas

NN Neural Network

PCA Principal Component Analysis

PXE Power Exchange Central Europe

RBF Radial Basis Function

RMSE Root Mean Square Error

RNN Recurrent Neural Network

RSI Relative Strength Index

S&P Standard and Poor's 500

SO Stochastic Oscillator

SVC Support Vector Classifier

SVM Support Vector Machine

I\EFZC Coal Rotterdam Coal Futures

TTF Title Transfer Facility

YTD Year To Date
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1 INTRODUCTION

At the beginning of the nineties, the European energy sector went through a period of
deregulation within which the government monopolies were eliminated. In contrast to the
prior arrangement, in which the power producers also assumed the role of suppliers,
liberalization enabled the entry of other subjects into the market. The sector became
attractive to smaller power producers as well as to traders, who filled the blank space in
the supplier chain. The increase in competition has been accompanied not only by the
utilization of new technologies and the decrease in price, but also by the development of
the power derivatives market [1].

The power market can be divided into wholesale and retail markets. The wholesale market
is intended exclusively for power producers and traders, not for end-consumers.
Therefore, the trading is exempt from any taxation as well as from any state-regulated
fees. On the contrary, the main purpose of the retail market is the power supply to the
end-consumers, and the state-regulation is applied here. Despite the considerable
differences, retail prices can be derived from wholesale prices to a great extent [1].

This thesis reflects a unique task with significant business potential, on the edge of the
wholesale and retail market, that is, purchase of power derivatives by retail customers.
Due to the increased demand for the complexity of services from retail consumers,
suppliers started to incorporate a specific requirement for progressive purchase into the
bilateral power delivery agreements. This mechanism enables end-consumers to buy the
demanded volume in many tranches for a price which is derived directly from the
wholesale price, and, in this way, to diversify the price risk. Some of the consumers take
a step further and use this opportunity to speculate on the development of wholesale
prices. The so-called progressive purchase, in different forms, is becoming increasingly
popular in Central Europe. Consequently, this methodology was also adopted by some of
the regulated exchange platforms in the region, such as Power Exchange Central Europe,
a.s., (PXE) [2] and Czech Moravian Commodity Exchange Kladno (CMCEK) [3]. The
popularity of the method can be documented in figures from PXE; approximately one
quarter of all power consumers have chosen the progressive purchase approach during
the last three years. It corresponds to 88 % of the total volume traded on the PXE power
retail market, indicating the considerable desirability of this procedure among clients with
high consumption [2].

In Western Europe, the tendency during the last years seemed to be heading more
intensively toward digitalization initiatives, e.g., real-time management of smart grids,
where supply and consumption are priced against the spot market. Although progressive
purchase does not offer the same level of pricing efficiency, it is a publicly recognized
and very easily implemented solution to risk diversification without any additional costs
for hardware or software equipment. Therefore, the business potential of this approach is
believed to be significant and worth further research.



Due to recent events, price risks in the European energy market have strongly escalated,
and the key question is, how the system would be coping with potential further energy
shortages, and more importantly, whether the situation would be manageable without
significant regulatory measures. For the purposes of this study, we assume that the liberal
market conditions are met, and the pricing mechanisms are fairly efficient.
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2 DEFINITION OF THE TASK

For the purposes of the study, we will consider the following representative scenario: The
retail customer demands a contract for a yearly electricity supply. Based on the delivery
profile, the customer is offered a margin by the supplier defined in relative or absolute
terms, i.e., the final price equals the margin multiplied or added to the wholesale price,
respectively. Prior to contract confirmation, the customer can choose which wholesale
contract will be used as a reference for price fixing. The customer has the possibility to
purchase the demanded power volume in n tranches and can fix the price k-times in one
day, i.e., he is able to fix the price for the k/n portion of the whole delivery in one day.
The final price is equal to the average of all fixed prices. In case the end-customer does
not fix the price in the predefined number of steps, the fixing proceeds automatically at
the furthest possible date(s).

Even though the definition of the task as well as initial assumptions may seem highly
complex, essentially, after the contract confirmation, the customer role is limited to
providing supplier with purchase instructions and to speculate in this way on the
wholesale market. Therefore, the main goal of this thesis can be simplified and narrowed
down to the estimation of buying signals. An analysis will be exploited for the Czech
power yearly baseload futures, with delivery in the front year, which are used by end
customers as reference contracts most frequently.

It is important to emphasize that contrary to speculative power traders, who can flexibly
increase or decrease their risk exposure by managing their open position, retail customers
do not have such a possibility, and thus, improvement in the efficiency of estimating
trading signals in this business area has a significant potential from the risk management
as well as economic perspective.

Considering the input data are believed to include non-stationarity, non-linearity, and
noise, price signals will be estimated with the use of different types of machine learning
algorithms, i.e., one-, two- and three-layer feed-forward neural network with supervised
learning, support vector classifier, random forest and AdaBoost. Assuming potential
autocorrelation dependencies within the time-series, the long short-term memory neural
network will be further exploited. Although these machine learning methods usually offer
an exceptional performance in terms of prediction accuracy, the training process is slow
and the interpretation of causal relationships within the models is very challenging. The
threat of overfitting as well as of non-sufficient model robustness is thus more tangible.
Therefore, also simpler techniques, such as k-nearest neighbor and Bayesian approach,
specifically naive Bayes, which allow deeper model understanding, higher flexibility in
terms of model adjustment as well as easier results interpretation, will also be used for
the data classification. Furthermore, technical analysis will be utilized, specifically
Relative Strength Index, which is well-established indicator among traders.
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2.1 Case Study

To clarify some of the specifics of the defined task, a practical example of different
hedging strategies for the progressive power purchase will be presented in this chapter.

Given a progressive purchase of a power supply, which is fixed against the wholesale
reference yearly baseload contract with delivery in 2019 within one year before its
delivery, let us assume the following three price fixing scenarios:

1. Optimal four-step price fixing =
Evenly distributed four-step price fixing =
3. Continuous price fixing (i.e., fixing against everyday settlement price) s

Czech Power Base Year == ==Simple Avg. eecceee- Moving Avg. X1
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Figure 2.1: Price development of Czech power with baseload delivery in 2019 (case study of price fixing scenarios)

The optimal way to fix the price would be to proceed with all four fixing steps on
12.02.2018 for the yearly minimum price of 33.75 EUR/MWh. Given the 253 data
samples and assuming uniform random selection of the buying signals, the probability of
randomly choosing the optimal result is in the order of tenths of a percent.

Considering the distribution of trading days, an evenly distributed four-step fixing on
02.01.2018 (settlement price: 38.09 EUR/MWh), 02.05.2018 (settlement price: 39.62
EUR/MWh), 03.09.2018 (settlement price: 51.06 EUR/MWh) and on 14.12.2018
(settlement price: 57.82 EUR/MWh) would lead to the final price 46.65 EUR/MWh. This
procedure presents a partial effect of price risk diversification.

12



Continuous price fixing can be represented as a simple cumulative moving average, that
Is, the average of all settlement prices available from the very beginning of the respective
year. Fixing against the everyday settlement price provides the second-best result, i.e.,
45.34 EUR/MWh. This approach represents a very popular method of price fixing, which
ensures on average profit-loss result. Officials of cities, municipalities and other
important subjects responsible for power purchase are often exposed to significant public
pressure and do not want to take the responsibility for any estimation of buying signals.
Therefore, risk diversification strategies and algorithms that can be easily automated,
such as this one, seem to be highly demanded.

1. DATA CLASSIFICATION
(Estimation of Trading Signals)

| K-Nearest Neighbors I

| Naive Bayes |
| 1-layer Neural Network I 2. SIMULATION 3. ASSESSMENT
| 2-layer Neural Network I

Evaluation of Results
| 3-layer Neural Network I | | Simulation of Gradual Power |

[ Purchase |
Comparison of Prediction

| Long Short-term Memory I Performance

| Support Vector Classifier I

| Random Forest I

| AdaBoost I

Figure 2.2: Graphical representation of workflow

2.2 Benchmark

The continuous price fixing presented in the previous chapter (see the third scenario), i.e.,
fixing against everyday settlement price, will be considered a benchmark for the purposes
of further analysis and evaluation of the investigated methods.

2.3 Goal of the Thesis

The main goal of this dissertation thesis is to estimate oversold and overbought market
conditions with use of various classification techniques in the context of the highly
challenging task of hedging of power price risk by retail customers. The Czech power
baseload yearly futures are used as the reference contract for this purpose.
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For the purposes of data classification, ten well-established techniques are being
exploited, namely relative strength index, k-nearest neighbor, naive Bayes, support vector
classifier, random forest, AdaBoost, 1-, 2- and 3-layer feed forward neural network, and
long short-term memory.

After the models’ training and data classification, the predicted trading signals are utilized
for the simulation of the progressive power purchase. Continuous price fixing, which is a
very popular and commonly used method ensuring average profit-loss results, is used as
a benchmark to evaluate the benefits of the exploited methods.

The prediction performance of the different models is thereafter compared and evaluated
against the established benchmark. This step is perceived to have the largest practical
impact, and therefore, is assumed to be the most important part of the thesis contribution.
For further details, see Figure 2.2 that shows the completed workflow.
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3

DATA

The data matrix consists of daily settlement prices from 02.01.2007 to 29.12.2021 and
comprises 3904 samples. Within our research, the following fundamental as well as
technical indicators will be examined.

3.1

Fundamental Data

Price of the Czech Base Power Front Year (EUR/MWh)
Power supply of 1 MW for a period of one year (delivery 24/7), with a place of
delivery in the Czech Republic.

Price of the TRPC Coal API2 Front Year (EUR/Tonne)
European API2 thermal coal yearly futures.

Price of the ICE Brent Front Month (EUR/BDI)
Monthly financial futures based on the ICE daily settlement price for Brent futures.

Price of the TTF Gas Front Year (EUR/MWh)
Yearly gas futures with physical delivery in a virtual trading point the Title Transfer
Facility.

Considering that the task focuses primarily on the Czech power market, the CEGH
or CZ VTP gas price might seem more reasonable to be utilized. However, the
liquidity in these hubs is much lower, and thus TTF contract is used instead as an
approximation.

Price of the ICE ECX EUA Front Year (EUR/Tonne)
Entitlement to emit one tonne of carbon dioxide equivalent gas.

Clean Spark Spread (EUR/MWh)

Spark spread is a margin of a gas-fired power plant from selling a unit of electricity,
which can be expressed as the difference between the cost of feedstock gas and the
equivalent price of electricity on a High Heating Value (HHV) basis.

spark spread
= baseload power price — gas price
+ fuel ef ficiency (3.1.1)

clean spark spread
= spark spread — emissions price
- emissions intensity factor + fuel ef ficiency  (3.1.2)

Countries that are covered by the European Union Emissions Trading Scheme have
to include into their financial balance also the cost of carbon dioxide emission
allowances.

For the purposes of this study, the emission intensity factor is considered 0.18404
mtCO2/MWh and gas plant efficiency is assumed to be 50 % HHV [4].

15



Clean Dark Spread (EUR/MWh)
Correspondingly to the spark spread, dark spread is defined as a difference between
the cost of feedstock coal and the equivalent price of unit of electricity produced.

dark spread = baseload power price — coal price
<+ energy conversion factor <+ fuel ef ficiency (3.1.3)

clean dark spread
= dark spread — emissions price
- emissions intensity factor + fuel ef ficiency (3.1.4)

where coal-to-power energy conversion is 6.978, the emission intensity factor is
assumed 0.34056 mtCO2/MWh, and coal plant efficiency is considered to be 35 %
LHV [4].

Clean Lignite Spread (EUR/MWh)

Compared to natural gas and hard coal, lignite power production is the most
emissions intensive. Assuming an average net thermal efficiency of 38% (efficiency
varies in range of 34%-43%), lignite-fired power plant emits approximately 1093
gCO2/kWh (range 1221-966 respectively), which implies the emission intensity
factor 0.4534 mtCO2/MWh. It is about 10% more of emission load than in case of
hard coal and about three times more than in case of gas-fired power plant.

The greatest part of variable costs of lignite power production is the cost of emission
allowances. Therefore, price of lignite is usually neglected in the calculation of
clean lignite spread [5].

clean lignite spread

= baseload power price — emissions price
- emissions intensity factor + fuel ef ficiency (3.1.5)

S&P Index (EUR)
Stock market index of 500 of the largest publicly traded companies in the United
States.

The specific contracts and trading platforms were selected with respect to their liquidity
to ensure as efficient pricing procedures as possible. The fundamental data are further
discussed in Chapter 4.

3.2

Technical Data

Relative Strength Index (RSI)

14-day Moving Average

14-day Volatility

Difference from the YTD Maximum Price
Difference from the YTD Minimum Price

16



3.3 Data Pre-processing

Standardization was used as the data pre-processing technique in this study, during which
the distribution of values of each feature is transformed so that its mean equals to zero
and its standard deviation is one.

x = (3.3.1)

where p is the mean and o is the standard deviation of the training samples [6].

The statistics are estimated on samples in the training set and stored to be used later to
transform the testing dataset during prediction.

Furthermore, a robust standardization was examined for the training of neural networks,
which are known to be exceptionally sensitive to outliers. Robust standardization is very
similar to the standard scaling mentioned above, but instead of mean and variance, it
utilizes median and quartiles, specifically in range between 25" and 75" quantile. In this
way, the scaler ignores the most distant data points [7]. However, robust standardization
in this case did not prove to offer any additional benefits.

3.4 Output Specification

The price of the Czech base power is classified into ten categories by dividing the interval
of all the settlement prices within the respective year into 10 equally large sections (1%
category representing very strong buy signal, 2" strong buy signal, ..., 10" being very
strong sell signal), and is used in this form as the model output for the purposes of model
training.

Today’s model output, i.e., estimated trading signal, encompasses information about the
short-term condition in the market, and is derived from current values of the input
variables. Contrary to a prediction of future absolute price values, prediction of the actual
trading signal is believed to increase model robustness, while preserving an added value
for a market participant in a form of trend indication, which allows to enter profitable
trading position.

3.5 Source of Data

The Thomson Reuters Eikon software provided by Refinitiv, which is a platform designed
for financial professionals aggregating different types of market information, was used as
a primary source of the input data mentioned above. However, the data can also be
aggregated from other, publicly available sources, mainly from the webpages of the
relevant exchanges, such as EEX, ICE and Powernext. Moreover, other publicly available
platforms, such as TradingView.com, can also be exploited.
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4 DATA ANALYSIS

As anticipated, the prices of long-term contracts reflect the long-term market situation.
They are mainly influenced by macro-economic events, infrastructure growth, which can
be very difficult to quantify, and furthermore by the prices of power resources, which are
present in the process of power production. Thus, it is important to identify the energy
mix of power production in the relevant area.

According to the national energy mix of the Czech Republic, brown coal covers about
40% of the overall energy production. Therefore, the price of coal is one of the most
important factors in the process of modelling power prices. As presented in Figure 4.1,
the correlation between power and coal prices has been significant. Another variable
closely related to the price of coal and considerably influencing power pricing is the price
of emission allowances. The low price of emission allowances reduces the benefits of
using less carbon-heavy technologies, and instead favours less expensive production from
coal power plants [8]. Therefore, the power prices rise with the increase in price of
emission allowances, and vice versa. The share of renewable energy resources on the total
power production significantly differs from year to year, not only because of changes in
weather fundamentals, but also due to high investments in this sector, and the abrupt
development of new solar and wind power farms. In recent years, production from
renewable power sources has covered from 4% to 12% of the overall energy production
of the Czech Republic [9].

—— Czech Power Front Year (EUR/MWh) Coal API2 Front Year (EUR/Tonne)

—— TTF Gas Front Year (EUR/MWHh) —— |EU ECX EUA Front Year (EUR/Tonne)
ICE Brent Front Month (EUR/BbI)

140.00

120.00

100.00

80.00

60.00

Price (EUR/lot)

40.00

Figure 4.1: Development of commodity prices

18




The third place is occupied by natural gas, whose share in production is about 8 % [9].
As can be observed in Figure 4.1, the correlation between power and gas prices is very
strong, however, the volatility differs significantly. Historically, the volatility of gas
prices was much lower because, contrary to power, gas is a storable commodity and thus
the trading risks could be reduced. However, with the gradual departure from fossil fuels
as well as nuclear power production on the European Union level, many states including
the Czech Republic became much more dependent on natural gas, which was supposed
to serve as a transitional resource on the path toward further decarbonization.

Nuclear sources, which make up about 40 % of the production, should also be considered
[9]. Although the operating costs of nuclear power plants are very low, coal power plants
have a perceivable competitive advantage in the areas where the access to cheap resources
Is possible. This situation occurs not only in the Czech Republic, where coal mining fully
covers the domestic consumption, but also in the United States, South Africa, Australia,
India and China [10].
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Figure 4.2: Development of price of Czech base front year power contract

Last but not least, an important source of information is the price of oil. Although oil
covers only a negligible portion of the total power production of the Czech Republic [9],
due to its crucial influence on the global economy, the oil market is an important indicator
of macroeconomic events. Because of its efficiency, oil price usually reacts to events
much earlier than in the case of other energy commodities, such as power or gas, and thus,
usually allows to track significant changes in the price trend in the very beginning.
Historically, an apparent dependency was observed between the prices of oil and gas, and
consequently power, as presented in Figure 4.1. However, during the last years the
correlation has been disrupted as a cause of political interventions in this sector.
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The effect of the global economy on Czech power prices is demonstrated in Figure 4.2.
As can be observed, at the beginning of year 2009 prices reacted to the global financial
crisis with a sharp and significant downtrend. In 2011, prices responded to other market
uncertainty caused by the Fukushima nuclear disaster, which is perceived as an essential
turning point for environmental movement, leading to a decision of gradual phase-out of
nuclear power plants. After that we witnessed five years of price decrease, primarily
caused by the decrease in the price of fossil fuels and by the significant support of
renewable energy resources, whose prices were artificially suppressed due to the
subsidies provided. However, at the beginning of 2016 the long-term trend changed, and
prices started to increase due to the outage of nuclear power plants in France. The results
of the Brexit referendum that took place in June 2016, causing further market uncertainty,
provided additional bullish impulse. The increasing trend in power prices continued and
was further supported by ambitious plans of environmental initiatives, which shaped the
current form of the EU Emission Trading System (EU ETS). One of the most prominent
recent events was the adoption of the “Fit for 55” package, which was proposed by the
European Commission in July 2021, binding to reduce greenhouse gas emissions in
energy, land use, transport and taxation by at least 55% by 2030 [11]. The effect of the
global economy can also be captured by changes in price of oil, or by changes in price of
stock market indices, such as S&P, MSCI or Dow Jones. For these purposes, the S&P
index was chosen as the representative and is further examined in this study.

As depicted in Figures 4.1, 4.2 and 4.3, the year 2021 fully revealed weaknesses of the
energy system, which were demonstrated by exerting tremendous political pressure
through a threat of disruption in fossil fuel deliveries by the Russian Federation, resulting
in an abrupt increase in power and gas prices to an unprecedented level. This pressure
escalated in February 2022 when Russia invaded Ukraine, causing the greatest
humanitarian crisis in Europe since the Second World War.
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Figure 4.3: Variable margins of gas-, coal- and lignite-fired power plant
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The ongoing immense uncertainty on the energy market present from the end of 2021 is
having a direct impact not only on the rapid increase in inflation but also on the deepening
economic recession in Europe.

To successfully estimate oversold or alternatively overbought market conditions, the
concept of power pricing based on the cost of utilized technologies has to be introduced.
As indicated in Chapter 3.1, three main indicators are recognized in the context of power
production margin, that is, clean spark spread, clean dark spread, and clean lignite spread.
These margins often act as price anchors, used by power producers not only to estimate
potential profit, but more importantly to determine their hedging strategies. Whereas
production from lignite was always highly profitable during the period examined, margins
related to other technologies such as production from coal and gas were not always
positive, see Figure 4.3. As can be observed, the profitability of gas and coal power
production frequently competed with each other, making these two technologies the most
prominent for the estimation of the price infection points.

Table 4.1: Correlations among the analysed variables (2016-2020)
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Czech Power Front Year 1.00
Coal API2 Front Year 0.50 | 1.00
ICE Brent Front Month 0.51 | 0.77 | 1.00
TTF Gas Front Year 0.49 | 0.86 | 0.82 | 1.00
EUA Front Year 0.87 | 0.06 | 0.19 | 0.08 | 1.00
Clean Spark Spread 0.69 | -0.08 | -0.11 | -0.28 | 0.84 | 1.00
Clean Dark Spread -0.23 | -0.21 | -0.19 | -0.01 | -0.36 | -0.18 | 1.00
Clean Lignite Spread 0.20 | 0.87 | 0.63 | 0.80 | -0.30 | -0.33 | 0.26 | 1.00
S&P 0.75 | 0.07 | 0.16 | -0.07 | 0.88 | 0.84 | -0.48 | -0.31 | 1.00
RSI 0.06 | 0.20 | 0.13 | 0.18 | -0.02 | -0.08 | -0.09 | 0.16 | -0.04 | 1.00
14-day Moving Average 0.99 | 0.48 | 049 | 0.47 | 0.87 | 0.70 | -0.23 | 0.19 | 0.74 | -0.05 | 1.00
14-day Volatility 0.45 | 0.24 | 0.13 | 0.30 | 0.38 | 0.23 | -0.11 | 0.11 | 0.22 | 0.01 | 0.45 | 1.00
Difference from YTD Minimum | 0.40 | 0.59 | 0.34 | 0.62 | 0.11 | -0.05 | 0.04 | 0.55 | 0.02 | 0.40 | 0.35 | 0.28 | 1.00
Difference from YTD Maximum | -0.19 | 0.36 | 0.25 | 0.36 | -0.38 | -0.49 | -0.09 | 0.40 | -0.39 | 0.53 [ -0.25 | -0.11 | 0.27 | 1.00

Presumably, there are other technologies playing a role in the power price settlement
process, such as extremely cheap production from renewable resources, or on the
contrary, very expensive power production from oil. Nevertheless, it is reasonable to
assume that the impact of the first mentioned starts to manifest rather shortly before
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delivery when the weather conditions are tangible and has only limited impact on the
pricing of long-term contracts. On the other hand, in the event of extreme scarcity of
resources, it is possible to settle the power price at the cost of power production from oil.
This scenario is however rare and thus it is not investigated further.

As was thoroughly discussed, there are some strong interrelations present among prices
of different energy commodities. To avoid the issue of collinearity, it is important to
quantify the degree of linear interdependencies among the model input variables. As
presented in Table 4.1, there is a strong correlation among prices of gas, coal and oil,
presumably due to a significant fuel-switching market mechanism. As the data from year
2016 to 2020 show, the linear dependency of the Czech power price on the price of EUAS
was also highly significant, as expected. With regard to large investments of hedge funds
into the EU ETS market during the last years, the EUA price became much more
correlated with stock market indexes, such as S&P. Last but not least, a substantial
correlation was detected also in case of the moving average, due to its strong
autocorrelation properties.
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5 STATE-OF-THE-ART

There are two main approaches used by professionals for the purposes of estimation of
trading signals, i.e., technical analysis, which assumes recurrently appearing trends and
patterns over time, and fundamental analysis aspiring to determine intrinsic value of an
asset.

Due to its very easy application as well as efficiency, technical analysis has gained
importance over time and is now the most equally spread kind of analysis [12]. However,
the efficiency of various indicators differs significantly among different types of assets.
The effectiveness of Moving Average (MA) based indicators as well as many others is
demonstrated for example in [13], [14], [15]. The ability to earn positive returns was also
proved in the case of other indicators frequently used, such as Relative Strength Index
(RSI) or Stochastic Oscillator (SO) [16]. Furthermore, in some cases RSI, SO as well as
parabolic strategies even exceeded the performance of the MA-based indicators [17]. It
is important to highlight that the profitability of technical indicators may be affected by
volatility, e.g., as demonstrated in [18], some technical trading rules are most profitable
during the period with the highest volatility and vice versa. Nevertheless, the use of
technical indicators is still not fully standardized, and thus in most cases the expertise of
the user is crucial.

Research in the field of the energy industry appears to focus primarily on the analysis of
the spot market [19], rather than the forward market, due to its impact on the physical
portfolio dispatch and short-term optimisation decisions. Initially, widely used statistical
methods such as autoregressive models and Markov models, as well as some artificial
intelligence techniques such as support vector machine, random forest and decision trees,
were in many cases outperformed by various types of Artificial Neural Networks [20],
[21], [22], [23], [24], [25]. However, considering the benefits of specific network
structures, the literature is not very united. In the context of spot market forecasting, the
outstanding performance of machine learning models, especially deep neural networks,
over statistical methods was thoroughly presented in [22], [25], [26]. As discussed in [21],
[22] and [24], also GRU, Long Short-Term Memory Neutral Network and some of the
hybrid neural networks show promising results in this area of research. On the other hand,
according to [23], the best performance was achieved with the convolutional neural
network. To summarize, the generalization capability of machine learning techniques
provides in many cases an advantage over the conventional statistical methods. However,
the network structure must be tailored to the specifics of the task; for example, deep
neural networks can provide outstanding performance only in the case of a sufficient
number of data samples [22]. In the context of this study, that is, considering the
availability of an extensive input dataset and possible autocorrelation dependencies of the
time-series, the use of deep neural networks as well as recurrent networks seems
reasonable.
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Neural networks applications are also very popular in the financial sector as financial
services organizations are the second largest sponsors of research in this area [27]. Two
main approaches can be taken to improve model accuracy, i.e., improvement of the model
structure, and improvement of the input data quality and selection. Even though it seems
rather logical that these two approaches have to go hand in hand to obtain reliable results,
most of the reported analyses focus on improving the model structure while utilizing only
historical samples of the output itself. This imbalance was pointed out and demonstrated,
for example, in [28]. Nevertheless, even while using the PCA module, which is a popular
feature extraction algorithm, the accuracy of the model was not improved, most probably
due to the use of shallow ANNs. At the same time, a convolutional neural network
exploiting popular filtering routine used in computer vision showed much worse results
compared to other CNN structures, as well as compared to shallow ANN [28]. This
analysis demonstrates a strong demand for task-dependent model structures and an
adaptive approach to determining input variables.

In general, publications referring to the estimation of trading signals in the financial sector
point in a similar direction as the review of articles that focus exclusively on the power
spot market. Certain structures of deep feed-forward neural network classifiers [29],
convolutional neural networks [28], and recurrent neural networks, including long short-
term memory [30], proved to be powerful tools in this field worth further study. When
accompanied with an extensive and suitable input data set, these methods are believed to
improve the performance of other conventionally used methods.

Unfortunately, analysis of the forward power market, which is the main subject of this
study, seems to be rather neglected in the professional literature. Available sources do not
sufficiently describe the fundamental pricing and analysis. Instead, many articles follow
the risk premium model presented by Fama and French [31], where futures prices are
derived as the sum of the expected spot price and risk premium. Unfortunately, a
comparison of the power futures market with the power spot market is in certain aspects
highly problematic. Contrary to power futures, power spot prices usually show strong
autocorrelation dependencies, and as was documented above, their modelling is therefore
usually highly efficient.
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6 METHODS

6.1 Bias-Variance Trade-Off

Even though the concept of a bias-variance trade-off is routinely familiar, its importance
massively increased with the expansion of machine learning techniques, which are in
some cases prone to overfitting. This concept is one of the central tenets of the field
implying that a model should find a balance between underfitting and overfitting [32].

Total Error

Variance

Optimum Model Complexity

Error

Bias®

v

Model Complexity

Figure 6.1: Visualization of bias-variance trade-off [32]

Let us assume a linear model y with a random noise &, where f(x) is the estimate of the
true value f(x).

y=f(x)+¢ (6.1.1)
e~ N(0,02) (6.1.2)

Then, the expected mean-squared error of the model is defined as [33]

MSE = E [(y - f(x))z] =E [(f(x) +e— f(x))z] =

=£[(fe0+e-fo+F@ - @) | =

N

=F [((f(x) - f@) - (fe - F) +¢) ] (6.1.3)

where f(x) = E[f(x)].
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After squaring, the mean-squared error can be further expressed as
MsE = E|(£00 - f00) | + E[(£60 - F00) (e = (Fo0 - Fe0) )| +

+E (70 - F00) | - E[(Fe0 - 7)) r) - ) + )]

+EE2] + B [2 (£ - F00 - (F@) - F) )| (6.14)
The following identities apply
E[e] =0 (6.1.5)
E[e?] = 02 + (E[e])? = 62 (6.1.6)
f) =E[f(x)] (6.1.7)
E[(fe0 - F@)| = E[f 0] - E[f ()] = 0 (6.1.8)

After their substitution into the equation 6.1.4, model error is derived as follows
_ 2 n _ 2 2
MSE = () = 7)) + E[(Feo - ) | + 02 =
= bias? + variance + irreducible error (6.1.9)

As was shown [33], the expected model error consists of three components, i.e., bias,
variance, and irreducible error. Bias refers to the delta between the model predictions and
the true values. Variance in this context is not a measure of accuracy, but rather a proxy
of model complexity, as presented in Figure 6.1. It represents a statistical variance of the
predictor over all possible training sets. For example, in the case of overfitting, the models
fitted on different training sets significantly differ from each other, i.e., show high
variance. Last but not least, irreducible error represents a non-deterministic random noise,
which should not be captured by the model. As depicted in Figure 6.1, it is not possible
to achieve low bias as well as low variance at the same time. Hence, we attempt to find
the sweet spot of the optimum model complexity, where the total error is minimal [32].

One of the essential methods used to optimize the bias-variance trade-off is cross-
validation that strives to minimize the test error, and consequently maximize the
generalization abilities of the model.

Due to the nature of power prices development, we consider the process a martingale
displaying relevant degree of serial correlation, and therefore, in our case it would not be
reasonable to split data into training and testing set without taking their sequence into
account. Thus, the use of a random split or a k-fold algorithm is not an option. Instead,
the dataset was divided chronologically. Due to the definition of target variable, the model
parameters were recalculated at the turn of each year, when one fixing period ends, and
the respective contract goes into delivery, as indicated in Figure 6.2.
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e training dataset =l testing dataset / prediction
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Figure 6.2: Division of training and testing dataset

6.2 Relative Strength Index

This momentum indicator compares the magnitude of recent gains and losses to evaluate
overbought or oversold conditions in the market. By its definition, the index lies within 0
and 100, where a value below 30 represents oversold market, and value above 70 indicates
overbought situation [34].

100

RSI = 100 — —— (6.2.1)

1+RS

RS = Y Up changes for the period under consideration (6 2 2)
- Y|Down changes for the period under consideration| o

RSI is computed over a rolling time period. 14-day time window, which is suggested and
widely used in most technical analysis software, was also used for the purposes of this
study.

6.3 K-Nearest Neighbor

K-nearest neighbor (KNN) is a nonparametric supervised machine learning method, one
of the simplest and easiest algorithms to implement, which memorizes the entire training
data, finds a group of k objects that are closest to the test object, and estimates a label
based on the predominance of a specific class in this neighborhood. In other words, KNN
is a lazy learner, it does not attempt to construct any general internal model, nor is there
any explicit training phase of this algorithm. On the other hand, prediction can be
computationally very expensive, especially for a large dataset [35] [36].

Despite its simplicity, as was shown by Cover and Hart [37], under certain reasonable
assumptions the error of the nearest neighbor rule is capped by twice the Bayes error.
Furthermore, the error of the general KNN asymptotically approaches that of the Bayes
error; thus, it can be used for its approximation.

Given a training dataset D = (x,y) and test object z = (x', '), the algorithm computes
a distance d(x’, x) between the test object and every other datapoint.
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Then D, € D is selected, as a set of k closest training objects to z, and classification is
based on the majority class of this selection

y' = argmax Z (v =y), (6.3.1)

v
(x;,y:)ED,

where v is a class label, y; is the class label for the it" nearest neighbor, and I(-) is an
indicator function that returns the value 1 if its argument is true and 0 otherwise [36].

However, majority vote approach presented in equation 6.3.1 can be problematic if the
nearest neighbor significantly vary in their distance, and the closer ones more reliably
indicate the class of the object. In this case an alternative distance-weighted vote, which
is usually less sensitive to the choice of k, can be used. Weight factor is often defined as
a reciprocal of the squared distance w; = 1/d(x',x;)?, and consequently, the
classification is estimated as

y' = argmax Z w; x [(v = ;) (6.3.2)

v
(x,yi)ED,

One of the most important aspects affecting the performance of KNN is the choice of
hyperparameter k. If k is too small, the model might be sensitive to noise, i.e., there is a
danger of over-fitting. On the contrary, large k can lead to oversimplification of the model
and its high bias [36].

Finally, the choice of the distance measure is also very important. Even though the
Euclidian distance is measure of choice for most applications, it is a well-known fact that
it is not a suitable measure for high-dimensional data, furthermore, it is highly scale
sensitive. Alternatively, other metrics can be exploited, such as Minkowski distance or
cosine distance, which are neither that sensitive to scaling nor to the number of features
[38].

n 1/p
dy = <lei - in”> (6.3.3)
i=1

5 7

g _2b (6.3.4)
CosU = ——mm—— 0.
llall - ||l

Parameters setting

The algorithm votes are based on the position of 50 nearest neighbors, as this choice of
hyperparameter k was experimentally proven to ensure the highest efficiency. The brute-
force search algorithm, where all points in each neighborhood are weighted equally, is
exploited. Considering the number of input features, the Euclidean distance is exploited
as a distance metric.
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6.4 Gaussian Naive Bayes

Naive Bayes classifier is a method of supervised learning, which is based on applying
Bayes’ theorem with the ‘naive’ assumption of conditional independence between
features. Even though it is one of the oldest formal classification algorithms, it has
remained one of the most popular until now. This method is known for its exceptional
robustness and easy implementation. It does not require high computation resources; no
complicated iterative estimation of parameters is needed. Furthermore, the results are
easily interpretable. Despite its simplicity and the strong assumption of conditional
independence, it is often extremely efficient [35].

Given a class variable y and dependent feature vector x = (x4, ..., x,), Bayes’ theorem
is defined as [39]

_ P(y)P(xl' rxnly)

P = 6.4.1
(ylxll leL) P(xl, ".’xn) ( )
The assumption of conditional independence implies
P(xily, X1y ooy Xj—1, Xi4 1) "'ﬂxn) = P(xlly) (642)
And therefore, for all i, the relationship in Eq. | can be simplified to
POyl ) = Py) ITi=1 P(xily)
YIX1 0 Xn P(xq, ..., Xp) (6.4.3)

Since P(x,...,x,) is a constant given the input data, we can exploit the following
formula for classification purposes. To estimate P(y) and P (x;|y) we can use Maximum
A Posteriori (MAP) method.

POIxs )« POY | | PGaily) (64.4)
g = argmax (y)];[ Gxily) (645)

For the purposes of this study, the likelihood of the features is assumed to be Gaussian

1 (xi —u )2
P(xily) = Tmo? exp (— Tyf) (6.4.6)

, Where parameters o,, and u,, are estimated using maximum likelihood method.
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Parameters setting

Conveniently, Gaussian naive Bayes does not comprise any hyper parameters that require
fine-tuning. To promote the calculation stability, a portion of the largest variance of all
features was added to the other variance, specifically the factor of 10°°.

6.5 Feed-forward Neural Network

Despite their name, functioning of neural networks cannot be compared in the slightest
to the highly complex processes that take place in the human brain, and therefore such
exaggerated expectations should be moderated [40]. That being said, ANNs can to a
limited extent mimic Al related features such as learning, generalization and abstraction,
while achieving good performance in terms of model accuracy, processing speed, fault
tolerance, latency, volume and scalability. Following Kolmogorov's Theorem, a solution
to a particular interpretation of Hilbert’s thirteenth problem, the feed-forward neural
network containing a single hidden layer with a finite number of nodes can in theory
approximate any continuous function [41]. Compared to other conventionally used
classification methods such as logistic regression, SVM or decision trees, ANNs offer
broader possibilities in terms of non-linear modelling of highly complex systems [42].

Let us assume a feed-forward neural network, where x = (x4, ..., x;) denotes a high-
dimensional input and y a low-dimensional categorical output. Prediction y(x) is defined
as

Zog =X, Z1 = 0'1(Z0W1 + bl)r e 2L = UL(ZL—1WL + bL) (6-5-1)
y(x) = softmax(z W41 + b+1) (6.5.2)

where W, € R%*%i-1 js the weight matrix, b, € R is the bias term, d, is the number of
neurons in layer [ and g; is the activation function [25].

If it is desirable to exploit a multi-class classification task, as in the case of this study, the
softmax function is utilized instead of the sigmoid, which is on the contrary used only
in the case of binary classification. The result of the softmax function is the probability
with which the sample is assigned to a class k (see equation 6.5.3). At the same time, this
function ensures that all the predicted probabilities sum to one.

exp{ay}
exp{a,} + exp{a,} + - + exp{ax}

softmax(a;) = P(Y = k|X) = (6.5.3)
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6.5.1 Backpropagation

For the purposes of network training the categorical cross-entropy loss function is being

minimized
N K
L==>"> tulogyu (65.4)

n=1k=1

where t,;, is target value and y,,, is the predicted probability of the nt" observation
belonging to the k" category.

To demonstrate the backpropagation algorithm, i.e., short for the backward propagation
of errors, which is a standard technique used for training of neural networks, let us assume
a two-layer feed-forward neural network as presented in Figure 6.3. X is an input layer
represented by an input data matrix of size NxD, Z is a hidden layer consisting of M
neurons and Y is an output layer, encompassing K neurons. This structure utilizes weight
matrixes W@ and W® of sizes DxM and MxK. Furthermore, a bias term is added at
each node in the hidden layer as well as in the output layer, represented by vectors b
and b® . Notice that index (1) is connected to the parameters used between the input and
hidden layer, whereas index (2) is utilized for parameters between the hidden and output
layer. Let us assume that tanh is used as an activation function in the hidden layer.

X (NxD) Z(NxM) Y (NxK)

Figure 6.3: Structure of two-layer feed-forward neural network
Utilizing the gradient decent method, the respective derivatives of the loss function will
be derived in this chapter [43] [44]. Let us start with recalling the mathematical form of

log-likelihood function J, input to the hidden layer «,,,,, output from the hidden layer
Znm, INpUt to the last layer a,,;, and model prediction y,,,
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N K
= Z Z thk logynk

n=1k=1
1 1
agn?t = W(l)dmxnd + br(n)
Zpym = o(a)
@ = WPz, +b®
n

Yy = softmax(a( ))

(6.5.5)

(6.5.6)
(6.5.7)
(6.5.8)

(6.5.9)

Firstly, we will focus on the parameters utilized between the hidden and output layer.

Using the chain rule, derivatives of the model parameters can be expressed as

()

Z Z 0Jnir OYnks aa
BW(Z) aynkl aank W"(j()

n=1kr=

Z z a]nkl aynk! aafk)
(’)b(z) 0Ynks 0y 9b>)

n=1kr=

Derivatives of d/,,;, and da,,, are very easy to determine

a]nkl _ tnkl

OVnkr  Ynks

(6.5.10)

(6.5.11)

(6.5.12)

(6.5.13)

(6.5.14)

However, derivation of dy,,, is slightly more challenging. In order to efficiently deduct
the softmax function, a dummy variable k" was introduced. In case k' # k, the derivative

of 0y, is calculated

v, oeled)_oofe)
9a® Z]exp{ }Z]exp{ (2 )}
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From the definition, if k' = k we can write

i exp{ (2)} exp{ ()}

ol Do ld) (@ ewlel)

Both these expressions can be combined using the Kronecker delta function

ynk(l - Ynk) (6-5-16)

OYnks
o = Y’ Grae’ = V) (6.5.17)

nk
where 6, = 1if k' = k,and §;,» = 0if k' # k.

Combining the expressions mentioned above, the derivative of model parameters is
calculated as

N
aJ
@) = Z(tnk — Ynk) Znm (6.5.18)
oaw —
J ~
@ Z(tnk — Ynk) (6.5.19)
ob,; ~

In the upcoming part, the focus will be on estimation of the parameters between the input
and hidden layer. Using the law of total derivatives, they can be formulated as

O N Vo 0 002 02,y 90D
:ZZZ nkr OYnikr nm 00nm (6.5.20)

awd(rln) k=1n=1kr= 0Ynis aa( ) aan aa( ) OWym
9 NARAY OJnkr 0Yns aa(z) 0Zpm 0a (1)
@ Z Z Z ¢ ) [€)) (1) (6.5.21)
db OYnier aa 0Znm aa ab

The remaining derivatives are expressed as follows

@
0k _ 1@

T A, (6.5.22)
% =1—Znm” (6.5.23)
% = X (6.5.24)
Therefore, the respective derivatives of the log-likelihood function are
OW(l) Z Z(tnk Vi) Wrr(jc)(l ~ Znm?”) Xna (6.5.25)

=1n=1
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K N
aj
EY) = z Z(tnk - ynk) Wn(ﬁ()(l - anz) (6.5.26)
abm k=1n=1

The most important thing which should be observed is that the calculation of derivatives
Is recursive, and thus, following the same pattern they can also be easily deducted for
neural network with more hidden layers, as demonstrated below

Vyol = PAGEINO (6.5.27)
5% =t — Vo (6.5.28)
M+
l l l Y
50 ) = Z s WD 2V forl=1,.,0-1 (65.29)
mFD=1

The adjustment of model parameters 8 during the training phase is proportionate to the
estimated error, i.e., the value V, of the gradient calculated with respect to certain
parameter, and to the learning rate n. The adjustment can be expressed as

0«6 —nVylL (6.5.30)
Parameters setting

For the purposes of this study, one-, two- and three-layer feed-forward neural network
will be examined, i.e., with zero, one and two hidden layers, respectively. It should be
noted that the classification with the one-layer neural network is equivalent to a simple
logistic regression. The hyperbolic tangent is used as an activation function in the hidden
layers. Given the output is categorized into 10 classes, the softmax function is used as an
activation function in the output layer. Thus, the topology of the examined networks can
be expressed as (d,10), (dy,d;,10) and (d,,d,,ds,10), where d, =d, =d; =
number of input variables.

The Adam algorithm, which combines benefits of Momentum (equations 6.5.31 and
6.5.32) as well as Adaptive Learning Rate (equations 6.5.33 and 6.5.34), is used as an
optimizer [45].

my = Bime_q + (1 — B1)A; (6.5.31)
0, = 6;_1 +1my (6.5.32)

where m, is the estimate of momentum, i.e., first moment of gradient A, B, is a hyper-
parameter which takes values from 0 to 1, 6, is the vector of model parameters and n is
the learning rate.

v = Bave-1 + (1 — B2)AF (6.5.33)
A

Uy
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where v, is the estimate of second moment of gradient A, B, and & are other hyper-
parameters. Bias-corrected first and second moment estimates are thereafter computed as
follows

L My
My =7 Y (6.5.35)
~ Ve
U =7 Y (6.5.36)
When combining the equations above, the Adam optimizer can be expressed as
my
Oy = 6,1 —1 (6.5.37)

\/ﬁ—t+e

Learning is processed in maximum of 200 epochs. In case there is no improvement of the
testing loss detected in fifty consecutive iterations, the model training is preliminary
stopped before the maximum number of epochs is reached. Learning rate is set to 0.001,
B and B, is set to 0.9 and 0.999 respectively, and epsilon equals 10 7.

Sparse categorical cross entropy, allowing multi-class classification without data
transformation to one-hot encoding, is used as the loss function [46].

6.6 Long Short-Term Memory

Recurrent neural network (RNN) differs from the feed-forward structure by the use of a
hidden layer with an autoregressive component; let us denote it h;_;. A particular type of
RNN called long short-term memory (LSTM) allows a network to learn which of the
previous states can be forgotten [47].

~
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Figure 6.4: Hidden layer of a long short-term memory model

The hidden state is generated by another hidden cell state c;, which allows the model to
remember long-term dependencies. Output is generated as

hs = o; * tanh(c;) (6.6.1)
Ct = ft *Cr_q + it * kt (662)
k; = tanh (W,[hy_y, %,] + b, (6.6.3)
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where * denotes the pointwise multiplication, while f;  c,_, represents the long-range
dependence.

State equations can be expressed as
fe
it = O-(M/C[ht—llxt] + bc)l (664)
Ot

where f, i; and o, are input, forget and output states [25].

Parameters setting

For the purposes of this study, a network with one hidden LSTM layer consisting of d
neurons is used, where d is a number of input variables. The 14-day time window was
exploited to predict the target class. Also in this case, the Adam optimizer with the same
set of hyper-parameters is utilized, learning is processed in maximum of 200 epochs, and
sparse categorical cross entropy is used as the loss function.

6.7 Support Vector Classifier

Since the 1990°s, when support vector machines (SVMs) were introduced by Vapnik and
his colleagues [48] [49] [50], they have gained substantial importance, mainly due to their
strong generalization abilities and empirical performance, as well as their advantageous
mathematical representations and the possibility of geometrical explanations [51] [52].

As will be demonstrated, SVMs utilize the transformation of the task into a higher-
dimensional space where classes are linearly separable. The use of linear classification
makes them more robust, easier to train, and less prone to over-fitting. In this way, SVMs
often combine the advantages of more complex techniques, while preserving lower
computational requirements [51] [52].

6.7.1 Linear SVM (primal problem)

The objective of the task is to maximize the minimum distance between the separating
hyperplane and all points, i.e., SVM is considered a *maximum margin classifier’. In the
following paragraph, two different types of margin will be discussed [53].

Let us assume, prediction is correct if
yO(wTx® +b) >0 (6.7.1)

the bigger value on the left-hand side of the equation, the higher confidence of prediction.
Let us denote 7®a functional margin, which quantifies the prediction confidence.

7O = yO(wTx® 4+ p) (6.7.2)
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Let us also define the functional margin with respect to the training set D =
{CcnL Y1) s vy yn) }

7= min, 70 679

The magnitude of the functional margin is dependent on the scale of w and b. Thus, it is
also convenient to define the geometric margin ¥, which expresses the actual distance
between the line and a data point. The relationship between geometric and functional
margins can be expressed as

?(i)

Iwll

In a similar way we define a geometric margin with respect to training set
D = {(x1,¥1) -, (xn, yn)}

v = miny® 6.15)

Consequently, the objective of the linear SVM classification can be defined as

max y (6.7.6)
Y.w,b
s.t. yOwTx® +p) >p,vi=1,..,N (6.7.7)

The objective can also be rewritten to more convenient form

min  ||wl|? (6.7.8)
w,b
s.t. yOwTx® +p) > 1,vi=1,..,N (6.7.9)

To get the *Soft-Margin SVM’ we introduce a slack variable &, which enables to meet
optimization constrains even if a few points are misclassified, i.e., it acts as a
misclassification penalty, and in this way reduces the likelihood of overfitting.

N
1 .
min= [w||? + C Z 0 (6.7.10)
wb 2 '
=1
s.ty@wix® +p)>21-¢O vi=1,..,N (6.7.11)
§020vi=1,..,N (6.7.12)

If €O = 0, the point is either on the margin or further away, i.e., is correctly classified.
If 0 < £® < 1, the point is inside the margin boundaries, but is correctly classified. And
for §® > 1, the point is on the wrong side of the decision boundary, i.e., is misclassified
[54].
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From the above mentioned, it is apparent that loss function for the linear SVM can be
defined as a sum of the large weights penalty and the misclassification penalty. So called
Hinge loss function can be also seen as an approximation of the logistic loss function

N
1 . .
Loss = EWTW +C Z max (0,1 —y®@(wTx® + b)) (6.7.13)

i=1

Gradient decent method is used for estimation of model parameters. Note that only
samples which violate the margin contribute to the gradient

o 30
Yl =w-C Z yOat (6.7.14)
i:6W>0
Vol =—C Z y® (6.7.15)
i:6W>0

6.7.2 Non-linear SVM (dual problem)

To transform the discussed primal problem into the corresponding dual problem, we start
with defining a general form of Lagrangian for the following optimization task [55] [53]

m);sle(x) (6.7.16)
s.t. i) <0Vi=1,..,N (6.7.17)
h()=0,Yj=1,..,M (6.7.18)
N M
L(x,a,2) = f(x) + ; :9: (%) + ;Ajhj(x) (6.7.19)

In this case, the parameters are estimated with the use of Karush-Kuhn-Tucker conditions.

o ovd=1,..,D (6.7.20)

aXd — U, - 1, .., B
oL =0,vj=1 M 6.7.21
alj_’]_’m' (6.7.21)
a;,gi(x) =0,vi=1,..,N (6.7.22)
gix)<o0vi=1,..,N (6.7.23)
@ >0,Vi=1,..,N (6.7.24)
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The corresponding Lagrangian form is expressed as

L(w,b,a) = —||W||2 +z 1= yOwx® +b)] =

= 2wl _ DT @ _ N 2@
Ll +za z a; ywTx z a;y*b (6.7.25)

From the Karush-Kuhn-Tucker conditions we can derive

N N
Vol(w,b,a) =w — z a;yOPxD =0 = w= 2 a; yOx®  (6.7.26)

N

V,L(w, b, a) = Z ay® =0 (6.7.27)

i=1

After substitution of equation 6.7.26 and 6.7.27 into the Lagrangian, we get the definition
of the dual problem. Note that there is only one unknown variable, i.e., alpha.

1 % S 1
L(Wba)—iw W+Zdl wliw = Zal SWw =
i=1 i=1
N 1 N N
Z“‘ Ezz a;t; y Oy DxOT 2O (6.7.28)
i=1 i=1 j=
N 1 N N
maxzai EZZ“ IO OMOLING (6.7.29)
“ i=1 i=1j=1
s.t.a; 20,vi=1,...,N (6.7.30)
N
z a;y® =0 (6.7.31)
i=1
Prediction is therefore expressed as
wlix+b= Z a; yOxOTx + b (6.7.32)
i=1
N
w = Z a; yOx® (6.7.33)
i where a;>0
b=y® _—wlx® (6.7.34)
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At this point the only thing which is missing is the integration of a slack variable that
allows misclassification of a few data points. The final form of the dual task is then

derived as

N
1 )
-~ 2 ®
atior e 3
i=1
sit.y@(wix® +p)>1-¢D)vi=1,..,N

D >0,vi=1,..,N

N
1 )
Lw,b,§ @, f) = swiw+C ) 0+
i=1

2
N N

n Z a;[1 - ED — y®(wTx® 4 p)] - Z B.E®
i=1 i=1

From the Karush-Kuhn-Tucker conditions we can derive

N N
V,L(w,b,& a,B) =w— Z ayDxD =0 = w= z a; yOx®
i=1 N i=1

Vol(w,b§, ) = ) @iy =0
VeLw,b & aB) = C—ai—fi=0 = a+pi=C
a;[1— & —yO(wTx® + p)] =0
piEW =0
After substitution of equations 6.7.39 and 6.7.40 into the Lagrangian we get

N N
z z ERROMONOLNG)

i=1j=1

N =

max
a

N
a; —
=1

l

s.t.0<eg; <CVi=1,.. N

N

Z a;y® =0
i=1
The expressions 6.7.41 — 6.7.43 imply
If B; > 0,thené® =0

If B; > 0,thena; < C

D=0 = a[1-yO@Ww'xD+b)]=0
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(6.7.35)

(6.7.36)

(6.7.37)

(6.7.38)

(6.7.39)

(6.7.40)

(6.7.41)
(6.7.42)
(6.7.43)

(6.7.44)

(6.7.45)

(6.7.46)

(6.7.47)
(6.7.48)

(6.7.49)



Consequently, from equations 6.7.47 — 6.7.49 we can conclude that
0<aq;<C = yOwlx® +b)=1 = datalies on the margin line (6.7.50)
;=0 = B=CAED=0A1-yD(wx® +h)<0
= data lies beyond the margin line (6.7.51)

As was shown [53], when alpha equals zero, the data lie beyond the margin line. When
alpha lies between zero and C, the data are placed directly on the margin line. And in case
alpha is equal to C, the data violate the margin.

It is apparent that while the primal problem represents a minmax optimization task, in
contrast, the dual problem is expressed as a maxmin optimization

primal problem ~ migl max L(w, b, a) (6.7.52)
w, a
dual problem ~ max migl L(w,b,a), (6.7.53)
a w,

where migl max L(w, b, @) is always bigger or equal than max mil? L(w,b,@).
w, a a w,

6.7.3 Kernel Methods

As was demonstrated in the previous chapter, the training as well as prediction phases
can be expressed only in terms of the inner products of x. This is an important
characteristic when we want to transform our linear SVM into a non-linear SVM by
applying a nonlinear feature expansion, i.e., the so called Kernel Trick [52] [53].

After replacing the inner products of x with a kernel function K, the training phase can
be expressed as

N 1 N N
maxz ;- Ezz a;a; y Dy DK (x®, x0) (6.7.54)
a .
i=1 i=1 j=1
s.t.a; 20,vVi=1,..,N (6.7.55)
N
Z a;y® =0 (6.7.56)
i=1

The prediction phase is derived as

N
9 = sign <Z a; yOK(x®,x) + b) (6.7.57)

i=1
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Parameters setting

For the purposes of this study, we will use a Gaussian kernel, also known as Radial Basis
Function (RBF) [56].

K(x,x") = e ¥l=x'| (6.7.58)
_ 1
"~ No. features - 02 (6.7.59)

|4

where ||x — x'[|? is the Euclidean distance between two feature vectors, ¥ can be
perceived as a precision (inverse variance). Therefore, higher values of y represent the
skinnier bell curve and vice versa.

The Gaussian kernel corresponds to infinite-dimensional features, i.e., it can be expressed
as infinite summation of polynomial kernels. Note that the kernel value only depends on
the relative distance between two points, that is, it changes as we move radially outward
[56]. Hence, it is often compared to the weighted nearest neighbour model, which was
discussed in the previous chapter.

6.8 Ensemble Methods

Ensemble methods, such as random forest, bagging or boosting, are learning algorithms
combining multiple weaker learners. Classification is then proceeded as a weighted vote
of their predictions. Unique and highly desirable characteristics of ensemble methods is
a convergence of its generalization error to a certain limit as the number of base models
increases. In other words, with model complexity the train and test error decreases, i.e.,
its bias as well as variance, contrary to non-ensemble methods, for which train error
usually decreases as test error increases [57] [58].

Ensemble methods typically require very little tuning as they are not that sensitive to
choices of hyperparameters, compared to other types of machine learning techniques, for
instance neural networks. Not only is their performance in many cases exceptional, but,
moreover, the algorithm training is fast, does not require a lot of computational resources,
and the results are easily interpretable [59].

6.8.1 Bootstrap Estimation & Bagging

Bootstrapping is an important technique used in ensemble modelling. Essentially, it is an
input data sampling with replacement, which can under certain conditions significantly
reduce variance of the model, as will be demonstrated in this chapter [59].

Given vector x = (xq, x5, ..., X5), 0; is defined as a sample with replacement from x of
size N,fori =1..B.
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As presented below, the expected value of the bootstrapped parameter is equal to the
parameter

B

1 1 1
= > 0;|=E|<(6,++8z)|==<BE[8] =6, (681)
Bbzzl ] [B ! B] B

E[6;] = E

where 8 is a sample mean of resampled sample means, and 8; is a sample mean of
bootstrap sample i.

Given a mean u of 8, correlation p between bootstrap samples 8; and éj and variance o2
of 8;, can be defined as

u=E[6] (6.8.2)
p = corr(6,,8;) = E[(6: - /“;)2(91' — )] _ E[‘gitgoj-]2 — U (6.8.3)
o =var(6;) = E [(éi - ll)z] =E [91'2] — p? (6.8.4)

The expression of var will be simplifier by using substitution S.

B
)
g, = %sB (6.8.6)
_ 1 2 1
var(6g) = E l(ESB — ,u> l = ﬁE[(SB — uB)?]

= iE[s2 — 2uBSgy + u?B?] = i15[52]—;12
Bz "B B Bz~ "B (6.8.7)

E[Sg] == E[(él + -+ éB)(él R éB)] -
= BE|6?] + B(B — 1)E;.;[8,6,] (6.8.8)
After substitution of p and a2 from the equations 6.8.3 and 6.8.4, we get

E[SZ] = B(6? + u?) + B(B — 1)(po? + u?) = Ba? + B(B — 1)po? + u?B* (6.8.9)

var(0p) = %(Ba2 + B(B — 1)po? + u?B?)—u? = l;fpaz + po? (6.8.10)
It is important to emphasize that for p = 1, var(8g) is equal to the original variance.
However, if there is no correlation between bootstrap samples, that is p = 0, the variance
decreases by factor 1/B.

The most significant advantage of bootstrapping appears when highly non-linear models
are used, such as decision trees, which produce very irregular decision boundaries. For
comparison, it can be shown that in the case of a linear model the correlation is defined
asp = N/(2N — 1), which can be approximated by 0.5 [59].
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The bagging algorithm, also known as bootstrap aggregating, utilizes the bootstrap
distribution to generate different base learners, which are then aggregated. In the case of
classification, the voting strategy is exploited for the aggregation, i.e., the original dataset
X is fed into the set of base models created, and the final result is the label predicted most
frequently [60].

As can be shown, the probability that the i*" training sample is selected can be
approximated by Poisson distribution with 1 = 1, therefore, the probability that the i
sample is chosen at least once is 1 — 1/e = 0.632. This means that in bagging, every
base classifier omits approximately one third of original data samples during its training
[60].

6.8.2 Stacking [59]

Stacking is a procedure that assumes different influences of each base model, and thus,
they are combined by weighting their output, so that better learners have higher weights
and vice versa.

M
)= ) W fon () (68.11)

Unfortunately, it is not possible to solve the optimization task by minimizing the mean
square error, because the probability distribution is not known, and therefore, we cannot
estimate its expected value.

M 2
w = argmin Eppp [(Y - f(X))Z] = argmin Epop (Y - Z Wmfm(X)) =

-1
= Eppp [(F(X)TF(X)) F(X)TY] (6.8.12)
As an alternative, an error over each it" data pair is calculated as follows

2

N M
Wstack = argminz <yi - z Wmfm_i(xi)> (6.8.13)
w

i=1 m=1
where fm_i(xl-) is the m** model, which is trained on all input data except (x;, y;).

Similarly to SVM, this problem leads to a quadratic programming task

2

N M
minz (yi - Z Wmfm_i(xi)> (6'8'14)
i=1 m=1
s.tw,=>0vVm=1,.,M (6.8.15)
M
Wy =1 (6.8.16)
m=1



6.8.3 Random Forest

Random forest is an extension of bagging procedure and is usually referred to as one of
the state-of-the-art ensemble methods.

It also aims to reduce the correlation between base models, i.e., create a set of decorrelated
trees and, in this way, reduce model variance. For this purpose, not only samples, but also
features, are randomly chosen for training. The randomized feature selection is one of the
main differences which distinguishes random forest from bagging and usually helps it
achieve better performance during the training stage as well as lower test error [60].

From a structural perspective, decision tree is a set of nested if-statements of arbitrary
depth splitting space orthogonally to axes of the coordinate system. At each node, a
sample with replacement 8, is first chosen from the input data, and then d features are
randomly selected. For the purposes of classification, it is recommended that the number
of chosen features is equal to floor of +/D. Based on a preferred criterion, the best split is
determined, for example, utilizing the maximum information gain objective. The process
is repeated until a terminal node or specified maximum depth is reached [61].

6.8.4 Information Entropy & Information Gain [60]

At each non-leaf tree node, the information gain criterion is employed to select a split,
which maximizes reduction of model uncertainty. Therefore, we define entropy, a
measure of how much information we get from finding the value of the random variable.

Given a training set X, the entropy is expressed as

HXO) = = ) PO log, P(YIX) (68.17)

yEeY

where logarithm base b is usually set to 2.

Let the training set X be divided into subsets X4, ..., Xj, then the information gain of X is
defined as a reduction of information entropy

k
| Xkl

IG(X; Xy, o, Xp) = H(X) — X
i=1

H(X}) (6.8.18)
Hence, the feature-value pair with the largest information gain is selected for a split. If
the information gain is equal to zero, it means that there is no gain from splitting the node,
and consequently, the node should be made a leaf.

As the definition suggests, features which acquire a lot of different values are favoured,
disregarding their factual influence on the classification. To battle this issue, some of the
algorithms use a gain ratio instead of the information gain criterion, which normalizes
the number of feature values, and in this way prioritize among features with information
gains that are better than average.
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k
X X
GR(X; Xy, .., Xi) = IG(X;Xl,...,Xk)'<— ||Xk||1°g lIXkll) (6.8.19)
i=1

One of the most popular criterions used for split selection is maximization of Gini index.

k

G(X; Xy, o, Xp) = 1(X) — Z ||)§(’(||I(Xk) (6.8.20)
i=1

IX)=1- Z P(y1X)* (6.8.21)

YEY
Parameters Setting

The number of trees in the random forest was set by our empirical analysis at 100. When
building the trees, a bootstrap sampling is applied. The maximum depth of the tree was
not limited, i.e., the nodes were expanded until all leaves were pure, or until the minimum
of two samples was reached. The Gini impurity is used as a criterion for split selection,
and the number of features considered for the best split was set to the square root of the
number of features.

6.8.5 AdaBoost

AdaBoost, short for adaptive boosting, is one of the most powerful ensemble methods in
existence. The main objective of ensemble methods usually is to create a low bias and
high variance base models; on the contrary, AdaBoost aims to create high bias base
learners with accuracy around 50% to 60%. The premise is that by combining many
relatively weak and inaccurate learners, a model with high prediction power can be
obtained. A decision stump, which divides space into two parts, or logistic regression are
examples of the most used weak learners [58].

Formally, the model is defined as [59]

M
Fy(x) = sign (Z amfm(x)>, (6.8.22)

m=1

where F,, is the ensemble model with M base learners and f,, is the m*" base learner,
which is weighted by «a,,.

Contrary to random forest, the AdaBoost model is trained on all data samples without
utilizing any bootstrapping technique. Instead, a weight w;, Vi = 1, ..., N representing
significance is assigned to every sample. If the y; is incorrectly classified based on x;
during training, the w; is increased and vice versa. After training, the base model error
weighted by w; is estimated, and then the weight «,,, is derived as a function of the error
[58].
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1 Wil(}’i * fm (xi))

£ = (6.8.23)
" Zév=1 Wi
1 1—¢
=1 ( "‘) 8.24
A > n 0 (6.8.24)
If the prediction is correct, i.e., y; = fin(x;), w; is decreased and vice versa.
w; = w;exp(—ayifin(x)),i=1,..,N (6.8.25)
Then w; is normalized.
. (6.8.26)
j=1%j

The additive model is fitted with the use of forward stagewise additive modelling
algorithm. At each stage, a new base model is added without modifying the existing base
learners [59].

N
(am, O) = argminz L(yi,Fm_l(xl-) + @ fon (X1, 0m)) (6.8.27)

@mbm 1=

Fn(x) = Fpeq (%) + @ frn (x, 6,) (6.8.28)

where L is the loss function, f;, is the mt" base model, and F(x) is the full model.

For the model parameters estimation, AdaBoost usually greedily minimizes the
exponential loss function

L(y, f(x)) = exp(=yf(x)) (6.8.29)

If the prediction is correct, i.e., the sign of f(x) is the same as the correct label y, the loss
function is very small, if not, the loss function acquires a great value [60].

After substitution of loss function into the equation, the following expression is obtained

N

(@ fi) = argmin > exp{=yi(Fn1 () + i fn ()} =

am.fm =1

N
= argmin Z exp{—yiFm-1(x)} + exp{—yianm fm(x)} =

am.fm =1
N

= argmin Z Wi(m) exp{—yitmfm(x)} (6.8.30)

am.fm =1
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N
= el (s o) =
i=1

N
= ) exp{=yiFm-1 ()} + expl=yittm fin (0} =
i=1
= g %m Z Wl-(m) + e%m z Wi(m) (6.8.31)

Yi=fm(xi) Yi#fm(x)

After substituting the summations and setting the derivative of ] with respect to « to zero,
we get the expression for a [59].

U _ pmamg 4 eamp = 0 (6.8.32)

Jda

where A is the weighted number of correct predictions, and B is the weighted number of
incorrect predictions.

After solving the equation, the formula 6.8.24 was proven

1 4\ 1 [l—¢,
—In(4) 22 (6.8.33)
*m Zln (B) Zm( Em )

Parameters Setting

Two hundred base learners, i.e., decision trees with maximum depth of 2, are utilized in
the case of AdaBoost classification. Specifically, the SAMME.R real boosting algorithm,
which was designed particularly for the purposes of multi-class classification problem
with K classes is exploited as follows [62]
1. Initialization of the observation weights w; = 1/n,i =12,..,n
2. Fromm=1to M:
(a) A classifier f;,,(x) is fitted to the training data by adjustment of weights w;

(b) The weighted class probability estimates are obtained as follows
Pmir(x) =B, (c =kl|x),k=1,..,K (6.8.34)
(c) Set

1
hme(x) <« (K —1) (log P (X) — Ez log pm,k,(x)>,k =1,..,K (6.8.35)
k’

where h,, ;. (x) is the solution of Lagrange for minimizing the exponential loss of
K-class classification problem

. 1,
Thrgcr)lE [exp (— P4 (fm_l(x) + h(x))) le (6.8.36)

subject to hy(x) + -+ hg(x) =0 (6.8.37)
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(d) Set

K-1
Wi < Wi - exp {—Tyf log p(m)(xi)},i =1,..,n (6.8.38)

(e) Renormalization of w;

3. Calculation of output

M
C(x) = argmax z P (X) (6.8.39)
k m=1

6.9 Programming Environment

Data classification was proceeded in a Python programming environment. In case of k-
nearest neighbor, Gaussian naive Bayes, random forest and AdaBoost, calculations were
processed with the use of scikit-learn software machine learning library. Feed forward as
well as recurrent neural networks were computed utilizing the Keras software that covers
implementation of frequently used neural-network building blocks, such as layers,
objectives, activation functions and optimizers. Keras acts as an interface for the
TensorFlow library. Subsequent data analysis was processed in the Microsoft Office
Suite.

6.10 Simulation of Price Fixing

Prices which were estimated to belong to the 1%t and 2" categories, representing a very
strong buy signal, will be utilized with highest priority for the purposes of the simulated
price fixing procedure. However, in case the examined model does not distinguish any
prices as the strong buying opportunity in the first two quarters of the respective year, the
third class is considered for the price fixing, and in case none of those is distinguished
during the first three quarters, the fourth category is taken into account. If the procedure
fails and no buying signal is recognized, price fixing is automatically proceeded 15 days
before the end of contract expiry, as it is a common practice.
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7 RESULTS

Based on empirical research conducted, the most relevant variables were estimated to be
the absolute value of Czech power price, a year-to-date minimum and maximum price of
Czech power, the clean spark spread and the clean dark spread, i.e., the vector of input
variables unites fundamental as well as technical indicators, and can be defined as x =
(Xcz power» Xmin yTD»Xmax yTD»Xcss» Xcps)- Due to the nature of the task, the model
parameters were recalculated at the turn of each year, when one fixing period ends, and
the respective contract goes into delivery, as specified earlier in Chapter 6.1, Figure 6.2.

7.1 Evaluation Metrics

While solving a classification task, the commonly used evaluation metric is a percentage
of correctly classified data, i.e., accuracy. However, in case of a multinominal
classification problem, which can be perceived as a generalization of logistic regression,
it is highly beneficial to calculate other types of evaluation metrics, which are commonly
used in the context of estimating continuous output, such as mean absolute error (MAE),
mean square error (MSE) or root mean square error (RMSE). Furthermore, confusion
matrices will be presented, allowing a deeper understanding of the model generalization
abilities.

For the purposes of this study, model estimates need to be evaluated not only from a
quantitative but also from qualitative perspective. Even when low prediction accuracy is
achieved, the model could still offer a significant improvement in the context of price
fixing. However, in this case, the RMSE should be lower than 4, considering the number
of output classes. Thus, in the following chapter accuracy as well as RMSE are
scrutinized. To fully demonstrate the generalization abilities of the models, accuracy with
the error tolerance of one class is also examined.

7.2 Prediction Performance

To ensure a sufficient number of data samples for model training, the prediction
performance is evaluated mainly with the emphasis on later fixing periods, specifically,
aggregated statistics for years 2016 till 2020 were calculated. As indicated in Chapter 4,
year 2021 was also avoided for the evaluation purposes because of the ongoing
unprecedented changes in causalities of the pricing mechanisms, which took place
especially in the second half of that year. It corresponds to the results obtained, showing
that none of the investigated methods was able to provide a satisfactory prediction
performance in that year.

Even though the testing accuracies might seem relatively low at first sight, considering
the number of classes the predictions are far away from a random selection, as will be
thoroughly discussed in this chapter. Table 7.2, which shows the validation accuracy of
models with error tolerance of one class, provides further evidence of the solid prediction
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performance of the methods. Additionally, it is important to emphasize that due to the
nature of defined task, results of simulation of power purchase are primarily sensitive to
correct estimation of strong buy trading signals; however, if strong sell signal is falsely
detected, it is not reflected in the results of simulation.

Upon examination of Tables 7.1, 7.2 and 7.3, it is apparent that the model accuracy and
the RMSE do not necessarily improve with increasing complexity of the model structure.
In terms of the highest accuracy, naive Bayes, 1-, 2- and 3-layer feed forward neural
network, AdaBoost and long short-term memory show the best prediction performance,
i.e., its average between years 2016 and 2020 varies from 23.7% to 32.9%. Their qualities
are further emphasized by the results of validation accuracy with an error tolerance of one
class, which spans from 58% to 68%. As expected, RMSE of these methods also acquire
low values between 1.66 and 2.13. Although the k-nearest neighbor, support vector and
random forest classifier show rather below the average accuracy compared to the other
techniques, looking at the RMSE, they provide good results of 1.81, 2.25 and 2.18
respectively, and thus require our further attention.

Especially the long short-term memory shows exceptional performance compared to any
other method, which is manifested in excellent, and more importantly much more
consistent, prediction accuracy as well as low RMSE throughout the whole dataset.

As can be seen in Table 7.1, the random forest is heavily overfitted during the training
phase. Assuming a convergence of the generalization error of the ensemble methods to a
certain limit as the number of base models increases, the complexity of the structure of
the ensemble models was intentionally boosted, and thus low training error was expected.
Nevertheless, contrary to our premise, the testing error was not considerably improved,
neither in the case of random forest, nor AdaBoost. Significant difference between
training and testing error can also be observed when k-nearest neighbor and support
vector classifier algorithms were utilized, implying a non-negligible degree of overfitting,
and, therefore, lower generalization capabilities. Training and testing accuracies for
different types of neural networks and naive Bayes seem to be in proportion with our
expectations.
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Even though some of the methods might be favoured based on the discussed accuracy
measures, their generalization ability still must be thoroughly examined. Hence,
confusion matrixes of the classification results in the period 2016-2020 are presented in
Figures 7.1 — 7.10.

As can be observed, even though the relative strength index maps the distribution of
classes decently, it does not capture sufficiently the extremes, which is a crucial feature
in the case of this specific task. This is reflected during the simulation of price fixing,
when relative strength index offers on average the worst savings compared to the usual
fixing procedure, both in relative (-8.6%) and absolute terms (-3.48 EUR/MWh).

K-nearest neighbor as well as naive Bayes show reasonable accuracy and generalization
abilities (see Figures 7.2 and 7.3), despite the exceptional simplicity of the algorithms.
The average cost reduction lies in the range of 10%-11%, which implies average savings
of around -4 EUR/MWh in the period 2016-2020.

Despite the fact that the support vector classifier displays slightly worse RMSE and
accuracy among the other presented methods, its generalization abilities, especially for
the marginal classes, seem to be one of the best (see Figure 7.4). The average savings
calculated between years 2016 and 2020 in this case achieve a value of -11.2%, which
corresponds to -4.20 EUR/MWh.

The ensemble methods, namely random forest and AdaBoost, represents another group
of algorithms examined. As in the case of the support vector classifier, these also show
slightly worse results in terms of accuracy and RMSE. However, random forest does a
great job in capturing the extremes of the distribution of classes, as is documented in
Figure 7.5, resulting in average savings of -11.4%, i.e., -4.26 EUR/MWh. Even though
AdaBoost is often thought of as one of the best out-of-box classifiers, its prediction
performance is one of the worst from all the methods analysed. As presented in Figure
7.6, it maps the marginal classes very poorly, which is reflected in lower average savings
of -9.9%, i.e., -3.81 EUR/MWh.

The last and largest group of algorithms examined are neural networks. Figures 7.7 —7.10
show a superior prediction performance of 1-, 2-, and 3-layer feed forward neural
network, and long short-term memory, compared to the other models. Between years
2016 and 2020, the average savings for the 1-, 2- and 3- layer neural network would reach
-11.6% (-4.42 EUR/MWHh), -11.4% (-4.23 EUR/MWh) and -11.4% (-4.32 EUR/MWHh),
respectively. Although the benefits connected to price fixing are comparable for these
methods, the more complex structures seem to offer better generalization abilities, as
demonstrated by one of the highest classification accuracies and the lowest RMSE
achieved. Furthermore, there are other considerable differences which should be taken
into account. First, contrary to the 1-layer neural network, 2- and 3- layer neural networks
were able to provide more consistent results throughout the whole dataset. That being
said, the 3-layer feed forward neural network unfortunately failed to provide a strong buy
trading signal in four consecutive years (2010-2013), which is more than any other model.
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This insufficiency represents a high risk for purposes of the subsequent price fixing
procedure, and thus, should be adequately penalized.

The efficiency of the optimization process can also be assessed based on the development
of the loss function and the accuracy during the training process of neural networks. It is
apparent that the 1-layer neural network converges to an optimum much smoother than
the 2- and 3-layer neural network (Figures 7.11 and 7.12), and without any signs of
overfitting. The more complex structures seem to converge to an optimum much faster,
and approximately after the 30" iteration the models start to get overfitted, as presented
by the increase in validation loss (see Figures 7.13 and 7.17). However, as was proved by
additional experiments, in our case this issue can be easily eliminated by decreasing the
learning rate value (see Figures 7.15 and 7.19), i.e., for the 2-layer neural network
learning rate equal to 0.0005 and for 3-layer neural network learning rate of 0.0001 seems
to be the most favourable.

Long short-term memory achieves the highest accuracy and one of the lowest root mean-
square-error among all the examined methods. Average savings of -10.8% (-4.09
EUR/MWh) match the exceptional generalization abilities presented in Figure 7.10. From
the development of loss function during training it can be deduced that the long
short-term memory is considerably less prone to overfitting than the 2- and 3-layer neural
network (Figure 7.21).
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Figure 7.1: Classification with relative strength index Figure 7.2: Classification with k-nearest neighbor
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Figure 7.9: Classification with three-layer feed forward Figure 7.10: Classification with long short-term memory

neural network

Validation Loss

Training Loss

2.7
2.6
2.5
24
2.3
2.2
2.1

2
19
1.8

1.7 r T T T T T T T T T
0 20 40 60 80 100 120 140 160 180

Figure 7.11: Development of loss function during the
training and validation phase of 1-layer neural network
(Ir=0.001)
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Figure 7.13: Development of loss function during the
training and validation phase of 2-layer neural network
(Ir=0.001)
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Figure 7.12: Development of accuracy during the
training and validation phase of 1-layer neural network
(Ir=0.001)

Training Acc. [%] Validation Acc. [%]
40%
35%
30%
25%
20%
15%
10%
5%

0%
0 10 20 30 40 50 60 70
Figure 7.14: Development of accuracy during the

training and validation phase of 2-layer neural network
(Ir=0.001)
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Figure 7.15: Development of loss function during the
training and validation phase of 2-layer neural network
(Ir=0.0005)
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Figure 7.17: Development of loss function during the
training and validation phase of 3-layer neural network
(Ir=0.001)

Training Loss Validation Loss

26
25
24
2.3
2.2
2.1

2
19
18

1.7 r T T T T T T T T T
0 20 40 60 80 100 120 140 160 180

Figure 7.19: Development of loss function during the
training and validation phase of 3-layer neural network
(Ir=0.0001)
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Figure 7.16: Development of accuracy during the
training and validation phase of 2-layer neural network
(Ir=0.0005)
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Figure 7.18: Development of accuracy during the
training and validation phase of 3-layer neural network
(Ir=0.001)
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Figure 7.20: Development of accuracy during the
training and validation phase of 3-layer neural network
(Ir=0.0001)
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Figure 7.21: Development of loss function during the Figure 7.22: Development of accuracy during the
training and validation phase of long short-term memory training and validation phase of long short-term
network (Ir=0.001) memory network (Ir=0.001)

7.3 Simulation of Price Fixing

The simulation of price fixing was conducted according to the procedure described in
detail in Chapter 6.10. Unfortunately, in some cases models failed to provide a buy signal
throughout the whole fixing period, which results in fixing at last instance, i.e., 15
business days before the contract expiry, regardless of the actual price. These instances
are displayed in red. However, this problem appears mainly during the first year, most
likely due to the lack of training samples (see Table 7.4).

As can be observed in Table 7.4, all of the investigated methods exceeded the defined
benchmark, i.e., resulted in substantially lower cost compared to the usual price fixing
procedure. Nevertheless, long short-term memory seems to be superior among all the
analysed techniques. It provided exceptional results in terms of most of the criteria
examined. It not only excelled in accuracy and RMSE statistics, but most importantly it
offered high prediction performance with the greatest consistency. Significant
generalization capabilities were also presented in the confusion matrix in Figure 7.10,
which emphasized the low error of the predictions. Furthermore, long short-term memory
managed to estimate strong buy signal in most of the years, and in this way eliminated
risks of price fixing in the last instance. On the other hand, the disadvantages of this
method cannot be neglected. The most prominent weaknesses are high requirements for
programming capacity, long training time, sensitivity to initialization of parameters as
well as limited possibility of results interpretation. Thus, utilization and maintenance of
long short-term memory on an everyday basis might be challenging. To make the
procedure more practical and accessible, another solution combining two methods is
proposed and discussed in detail in the following chapter.
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7.4 Combination of Methods

From a practical point of view, it seems highly convenient to combine a simple model
with a more complex technique. The simple model in this case serves for an elementary
detection of oversold market conditions on a day-to-day basis, considering its lower
accuracy and larger variance compared to other methods. If oversold conditions are
recognized, the trading signal will be confirmed or disproved by a complementary model
with greater prediction performance, but larger processing requirements.

Understandably, the relative strength index, k-nearest neighbor and naive Bayes were
examined as potential candidates for the simple method. The greatest benefits are
achieved when the RSl is used as the base model. Combination of RSI with other methods
not only saves computational resources, but also results in a further small decrease in cost
during the price fixing procedure. Table 7.5 depicts the results of price fixing using the
combined approach as well as the percentage decrease of costs compared to classification
with a single method.

The benefits of the proposed combined approach during the years 2008 to 2020 are clearly
depicted in Figure 7.23. At the first sight it is apparent that the solution offers significantly
better results compared to the usual fixing procedure, and in most cases successfully
detects the oversold market conditions. However, as was outlined, in the year 2021 all of
the examined methods failed to provide sufficient classification accuracy. This year is not
displayed to ensure better readability of the Figure 7.23.
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Figure 7.23: Points of the estimated price fixing (combining RSI with LSTM)
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8 DISCUSSION

Trading signals were estimated with the use of ten well-established methods, varying
from simple technical analysis to more sophisticated Bayesian techniques, and finally to
highly complex machine learning algorithms, such as ensemble methods or neural
networks.

Even though the list of methods might seem highly extensive, each of them provide
significantly different advantages and disadvantages which might be relevant in the
context of the analysed task. Due to the lack of published results connected to the
progressive power purchase, it seemed necessary to approach the task in a complex way.

Before the results presented above are thoroughly discussed and compared, we would like
to dedicate a few chapters to a discussion of potential insufficiencies of the input data, as
well as a comparison of models’ structure and loss functions, which can explain certain
similarities and differences in performance of the methods utilized.

8.1 Input Data

This subchapter is dedicated to a discussion of the potential insufficiencies of the input
data. One of the most prominent criticisms might be the difference in the timing of the
daily settlements among different commodities and/or exchanges. Due to the fact that the
examined settlements of prices of power are determined approximately one hour earlier
compared to the other commodities, there might be a small distortion present among the
relationship of these variables. Another bias might be connected to the behaviour of
market participants, who have the ability to push the market in certain direction or hold
prices in a certain range during the settlement period, due to their specific trading
positions or business commitments. However, these deviations are perceived small
enough to be considered negligible in the context of the defined task.

Another alternative would be to utilize intraday data and track all changes of orders. This
solution would offer more samples for model calibration and allow price fixing during
the day.

All of these deficiencies might be prevented by creating a separate database with
snapshots of prices with certain time stamps, but financial as well as personal expenses
connected to such a solution are extensive. Therefore, the presented solution based on
daily settlement prices is perceived as a happy medium, offering a more accessible
solution for a wider community of experts while ensuring a considerable degree of
relevance.

66



8.2 Comparison of Models’ Structure

Despite deep learning and AdaBoost being considered highly distinct techniques, there
are some strong similarities that might be observed. Let us compare the base structural
unit of both classifiers below [36]

z = tanh (WTx) (8.2.1)
y = sign(a’z) or tanh (a’z) (8.2.2)

As can be observed, neural networks are essentially networks of linear classifiers, i.e.,
each of the hidden units play a role of a logistic regressor.

When using a linear classifier as the base learner, the AdaBoost output is defined as

M
y = sign <Z amsign(wf,"lx)> (8.2.3)

m=1

Notice how similar the structure of AdaBoost output is to the output of neural network.

9 = sign (Z amtanh(w,zx)> (8.2.4)

m=1

The main difference appears to be in the use of a ’hard sign’ function in the case of
AdaBoost, which returns values -1 or +1, compared to the neural network that utilizes a
’soft sign’ function, i.e., a hyperbolic tangent, returning values from the <-1, 1> interval.

The output of the AdaBoost algorithm has a similar structure as the output of a neural
network with one hidden layer. However, AdaBoost training is greedy, i.e., model
parameters are set based on the values of the previous parameters only. In contrast, the
aspiration of the neural network training process is to find a global optimum, thus, all
parameters are adjusted concurrently [36].

Surprisingly, similarities with deep learning can also be defined in the case of support
vector classifier, which is often considered superior to perceptron because of its ability
not only to classify data accurately, but also to separate the classes with suitable linear
functions. On the contrary, the perceptron is navigated during training only by the
measure of accuracy, and therefore, in many cases, the training is often terminated before
the appropriate separating function is found [36].

In case the support vector classifier utilizes the sigmoid kernel (equation 8.2.5), which
implies the tanh function, its structure seems to be very similar to deep learning (equation
8.2.6).

9= sign| > ay®tanh (yx® x+ 1) +b (8.2.5)

i

input
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y=o0 (Z a; tanh(w;Tx +1;) + b) (8.2.6)

i input

Let us first discuss the differences between the two expressions observed in their input.
While y and r are hyperparameters chosen by the user that are static during the entire
training process, parameters w; and r; are being derived by the gradient decent procedure,
during which their values are dynamically changing. Next, we compare the sign function
with the tanh activation function. Besides some minor differences, the hyperbolic tangent
can be in this context interpreted as an approximation of the sign function [36].

8.3 Comparison of Loss Functions

The loss functions are another important factor having a great effect on the algorithm
efficiency during its training, and thus, will be a subject of more detailed analysis in this
chapter. Apparently, no training in a conventional sense takes place when using RSI and
the k-nearest neighbor, and thus no loss function is considered in these cases.

- Misclassification = Hinge Exponential Squared Error Cross-entropy

w

Loss
-

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 15 2 2.5 3

Margin

Figure 8.1: Comparison of different types of loss functions

As was verified by Domingos and Pazzani [63], contrary to the squared error loss, when
the zero-one loss function is exploited, the naive Bayesian classifier performs quite well
even if the independence assumption is violated by a wide margin. Consequently, in this
case it has much broader applicability than might be expected. As it was also documented
by the results of our study, the Gaussian Bayes classifier showed strong prediction
performance, and strong competitiveness against much more complex methods.

For the purposes of neural networks training, the sparse categorical entropy was utilized
as the loss function. Due to shape of the activation function, i.e., hyperbolic tangent, the
derivation of loss function acquires much higher values around zero, around which the
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weights are initialized. As a consequence, the adjustment of the parameters at the
beginning of training is large and decreases directly with the decrease in the magnitude
of the prediction error, giving this loss a competitive advantage. On the contrary, the
derivation of the mean square error loss is very small around zero, which causes
inefficiencies and poor model performance during the first stages of training [64].

The support vector classifier utilizes the hinge loss, which penalizes predictions not only
when they are false, but also when they are correct but not confident. As mentioned in
Chapter 6.7, in practice it means that the loss function equals zero only when the sign of
prediction and target match, and the score is bigger or equal to one. Hence, hinge loss
strives to classify each point with the emphasis not only on the correctness of
classification, but also on its confidence. On the contrary, the cross-entropy loss is derived
from a maximum likelihood estimate of the model parameters. For that reason, cross
entropy in many cases evokes a larger loss than hinge loss and might result in a less robust
prediction efficiency [64].

In the context of AdaBoost algorithm, an exponential loss function was introduced, which
converges to zero when prediction and target have the same sign, and converges to infinity
in case the sign is opposite. Thus, it has an asymptotic effect very similar to the cross-
entropy loss function, as shown in Figure 8.1 [59].

8.4 Comparison of Results

One of the most prominent observations is that the prediction efficiency did not
necessarily improve with the increasing complexity of the technique utilized. All of the
analysed methods exceeded the defined benchmark and achieved steadily better results
through the vast majority of the examined years compared to the usual fixing procedure.
It underlines the extraordinary consistency of prediction performance of all the
investigated methods in the context of the defined task.

Although the indication of the oversold and overbought market provided by the relative
strength index showed the highest level of variance, the exceptional simplicity of its
calculation and implementation certainly justifies its importance. From 2016 to 2020,
average savings against the defined benchmark were -8.6%. This method is perceived to
be a very useful tool for everyday usage, which offers an initial information on the market
conditions that might serve as input for further careful analysis.

The k-nearest neighbor represents the second simplest approach analysed in this thesis.
Although this algorithm is very simplistic, it provided sufficient results in terms of model
accuracy. Between the years 2016 and 2020 examined, this method achieved average
savings of -10.9% compared to the benchmark. Nevertheless, as anticipated the
classification was slightly more time consuming, as the complexity of brute-force
computation of distances between all pairs of data samples approach scale of O[DN?].
Despite its large requirements on memory, this method proved to be satisfactory within
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the scope of our task, but with increasing number of samples the brute-force approach
might quickly become unfeasible.

The naive Bayes classifier is our only representative of a generative model, which
excelled by its simplicity, high training speed, and yet delivered strong prediction
performance and average savings of -10.2%. Although the prediction by naive Bayes was
less accurate compared to neural networks, its robustness and possibility of reasonable
model interpretation grounded in the utilization of probabilistic approach make it a very
powerful technique in the context of the defined task.

The support vector classifier shows very similar generalization abilities to the naive
Bayes, as well as benefits related to price fixing, which in this case counted for -11.2%.
Contrary to the k-nearest neighbor, the processing of this algorithm was very fast and not
as memory consuming.

Ensemble methods, including random forest and AdaBoost, are often thought of as the
best out-of-box classifiers, mainly because of the proved convergence of its
generalization error to a specific limit. Therefore, the relatively weak prediction accuracy
of those methods, especially in the random forest, was quite surprising. Even though the
results of price fixing simulation show average savings of -11.4% and -9.9% respectively,
the generalization abilities of the models are one of the worst among all the methods
investigated. Furthermore, these algorithms are highly demanding on the time as well as
processing costs, and results are less interpretable.

The last group of algorithms, i.e., neural networks, achieved the best performance among
all the methods examined in terms of prediction accuracy as well as savings against the
defined benchmark varying from -4.09 to -4.42 EUR/MWh. However, the exceptional
generalization capabilities are redeemed by significant processing disadvantages, such as
high memory requirements, low training speed and sensitivity to random initiation of
parameters. Furthermore, the interpretability of the results is highly limited. Even though
in our case the often-inflected threat of overfitting could have been significantly mitigated
by an adjustment of learning rate, robustness of the optimization process is generally
lower compared to the other algorithms. Long short-term memory was determined as the
most appropriate technique for the defined task, combining larger prediction robustness
that is manifested in higher consistency of the above-normal results of price fixing
simulation. The main edge that long short-term memory has compared to the other
techniques is the presence of a feedback loop, i.e., it is able to process sequences of data
instead of single points, recognize autocorrelation dependencies, and in this way partially
capture time-dependent features of the process.

Due to the significant amount of resources required by LSTM, it seems not convenient to
use this algorithm on its own on an everyday basis. Therefore, another approach was
proposed that combines the simplicity and low maintenance requirements of the relative
strength index and exceptional accuracy of the long short-term memory. The combined
approach not only saves valuable computational resources, but also proved to slightly
increase the expected value of savings during the price fixing procedure. The average
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savings against the defined benchmark for years 2016 to 2020 in this case count for
-12.10%.

Despite various techniques that were analysed to find the most beneficial solution for
power price fixing, one important approach was left out, i.e., the progressive purchase
managed by an expert. Although we did not have the possibility to arrange a simulation
of such a kind, there is only a little doubt that an expert judgement would not exceed all
the methods studied. Especially in extreme situations where causalities between variables
can change rapidly, an expert usually offers an outstanding level of adaptability compared
to an artificial system. However, the price of expert is also several times higher than costs
connected to the management of an automated system. Considering the typical group of
potential customers targeted by this study, i.e., municipalities, factories, hospitals etc.,
which generally demand a small to medium-size volume of power, the cost of expert
seems to be excessive compared to the size of a contract. Therefore, a middle-ground
solution offering a substantial value of savings compared to the defined benchmark
without an excessive maintenance requirement is preferred.

Considering an average auctioned volume in the order of tens of thousands of MWhs, the
potential average savings while utilizing the proposed solution reach a value in the order
of tens to hundreds of thousands of EUR per one auction in comparison to the benchmark.

8.5 Reflection on Future Work

Due to the exceptional advantages of long short-term memory with reference to the
defined task, it is proposed to focus in further detail on methods that are capable of mining
dynamical features of time-series. Therefore, for future research purposes, it is highly
recommended to examine, for example, k-nearest neighbor with dynamic time warping,
interval-based time-series prediction, time series forest or convolutional neural networks
[65].

Furthermore, year 2021 fully revealed weaknesses of the analysed methods.
Unfortunately, none of them succeeded to provide sufficient prediction accuracy, and
consequently, reliable results in terms of progressive power purchase in that year.
Therefore, it seems highly convenient to investigate tools which would help to detect
dynamic changes in causalities of the system, such as the change point detection method.
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9 CONCLUSION

The main goal of this dissertation thesis was to estimate oversold and overbought market
conditions with the use of various classification techniques in the context of the highly
challenging task of hedging of the power price by retail customers. The Czech power
baseload yearly futures are used as a reference contract for this purpose. Continuous price
fixing, which is a very popular and commonly used method for ensuring average profit-
loss result, was used as a benchmark to evaluate the benefits of the exploited methods.

To increase model robustness, the price of the reference contract was discretized for each
fixing period into ten categories, which represented various market conditions, i.e., scale
from strongly oversold to strongly overbought territory. The input dataset consisted of
carefully selected variables, which combined the fundamental and technical approach,
and were tested not to contain any significant collinearities. Ten well-established
techniques were thereafter exploited for data classification, i.e., estimation of trading
signals, namely relative strength index, k-nearest neighbor, naive Bayes, support vector
classifier, random forest, AdaBoost, 1-, 2- and 3-layer feed forward neural network, and
long short-term memory.

Although all of the models examined exceeded the defined benchmark, long short-term
memory proved its exceptional qualities among the other methods in terms of consistent
prediction performance and generalization abilities. Furthermore, compared to other
structures of neural networks, it was proved to be less prone to overfitting. Nevertheless,
its weaknesses, such as high requirements for programming capacity, long training time,
sensitivity to initialization of parameters as well as limited possibility of results
interpretation, should be taken into account. As a result, a solution combining low
maintenance and simplicity of relative strength index and high accuracy of long short-
term memory was proposed to make the price fixing procedure more practical and
efficient. Considering an average auctioned volume in the order of tens of thousands of
MWhs, the potential average savings when employing the proposed solution are
estimated to reach value in order of tens to hundreds of thousands of EUR per one auction
in comparison to the defined benchmark.

In this last paragraph, | would like to briefly look back and recall the very first sentence
of this thesis, which was written a few years ago. The text emphasized the importance of
market liberalization, which substantially contributes to the efficiency of pricing
mechanisms as well as technical progress within the field, without which this thesis would
never have been created. Due to recent extreme political tensions, radically amplified by
the war in Ukraine, we are now witnesses of an entirely unprecedented situation, which
exposed dreadful weaknesses of the European energy system and which can partially or
fully compromise liberal principles of the market. Even though no one can tell with
certainty what the future arrangement will look like, we are inevitably starting to write a
brand-new chapter of the European energy sector.
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9.1 Contributions of the Dissertation Thesis

This thesis unfolds a highly challenging task of progressive power purchase by retail
customers, i.e., a risk mitigating tool deriving the cost based on several price fixing steps.
Due to the lack of publications focusing on this problematic and its increasing importance,
especially among small to medium-sized consumers, this thesis successfully contributed
to the following areas:

e Variables relevant in the process of estimating overbought/oversold conditions of
the Czech power derivatives market were successfully established.

e Causalities and relationships among these variables were examined.

e Ten different classification methods, ranging from a simplistic technical analysis
to highly complex machine learning techniques, were analysed in the context of
the defined task, and most importantly their performance was comprehensively
compared and evaluated.

e Taking into account the specific properties of the utilized methods as well as the
practicalities of the price fixing procedure, an approach combining relative
strength index with the long short-term memory was proposed.

e With regard to the conclusions of our research, a course of further research was
suggested.
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