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ABSTRACT 

This thesis reflects a unique task with significant business potential, on the edge of the 

wholesale and retail power market, i.e., progressive purchase of power derivatives by 

retail customers. The main emphasis is on the estimation of the oversold and overbought 

market utilizing various classification methods, and subsequent simulation of the 

progressive power purchase. For this purpose, the Czech power baseload yearly futures 

are used as a reference contract.  Continuous price fixing, which is a very popular and 

commonly used strategy ensuring an average profit-loss result, is used as a benchmark to 

evaluate benefits of the investigated methods.  

Due to the significant lack of publications in this area, the main contribution of this thesis 

is the comprehensive examination of methods in the context of the task, the thorough 

comparison and evaluation of their benefits, and the proposal of the most suitable 

solution. Ten well-established techniques are exploited for the purposes of data 

classification, namely, relative strength index, k-nearest neighbor, naive Bayes, support 

vector classifier, random forest, AdaBoost, 1-, 2- and 3-layer feed forward neural 

network, and long short-term memory. 

Even though all the examined models exceeded the defined benchmark, long short-term 

memory proved its exceptional qualities among the other methods in terms of consistent 

prediction performance and generalization abilities. Nevertheless, its weaknesses such as 

high requirements for programming capacity, long training time, sensitivity to 

initialization of parameters as well as limited possibility of results interpretation should 

be taken into account. As a result, a solution combining low maintenance and simplicity 

of relative strength index and high accuracy of long short-term memory was proposed to 

make the price fixing procedure more practical and efficient. Considering an average 

auctioned volume in the order of tens of thousands of MWhs, the estimated average 

savings when employing the proposed solution are estimated to reach value in the order 

of tens to hundreds of thousands of EUR per one auction in comparison to the defined 

benchmark. 

 

 

Key words: Czech power futures, retail market, progressive purchase, technical analysis,              

k-nearest neighbor, naive Bayes, support vector classifier, ensemble methods, neural 

network 
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ABSTRAKT 

Tato disertační práce se zaměřuje na úlohu s významným obchodním potenciálem, která 

je definována na rozhraní velkoobchodního a maloobchodního trhu s elektřinou. Jedná se 

o postupný nákup dlouhodobých kontraktů na dodávku elektřiny koncovými zákazníky. 

Hlavní důraz je kladen na odhad přeprodaného a překoupeného trhu s využitím různých 

klasifikačních metod a následnou simulaci postupného nákupu. Jako reference je 

použit roční kontrakt na dodávku elektřiny v základním pásmu v České republice. 

Analyzované metody jsou porovnány s již existující, velmi populární a hojně využívanou 

strategií nákupu, která naceňuje daný kontrakt dle průměru závěrečných cen.  

Vzhledem k nedostatečnému množství publikací adresujících tuto problematiku je 

hlavním přínosem této práce podrobná analýza metod v kontextu specifikované úlohy, 

posouzení a porovnání jejich přínosů, a návrh vhodného řešení. Pro účely klasifikace dat 

je využito deset etablovaných technik; jedná se o index relativní síly, algoritmus k-

nejbližších sousedů, naivní Bayes, metoda podpůrných vektorů, náhodný les, AdaBoost, 

1-, 2- a 3-vrstvá dopředná neuronová síť a long short-term memory. 

Přestože všechny zkoumané modely dosáhly lepšího výsledku oproti strategii využívající 

průměru závěrečných cen, long short-term memory prokázala v porovnání s ostatními 

metodami zvláště výjimečné kvality, především z hlediska konzistence přesnosti 

predikce a generalizačních schopností. Je však třeba uvážit také slabiny tohoto přístupu, 

jako jsou například vysoké požadavky na výpočetní výkon systému, pomalé učení 

modelu, citlivost na inicializaci parametrů, stejně tak jako obtížná interpretace výsledků. 

Z důvodu zachování co největší praktičnosti a efektivity řešení byl navržen přístup 

kombinující nenáročný provoz a jednoduchost výpočtu indexu relativní síly a značnou 

přesnost algoritmu long short-term memory. Předpokládáme-li průměrný poptávaný 

objem v řádu desítek tisíc MWh, odhadované průměrné úspory při použití navržené 

metody se pohybují v řádu desítek až stovek tisíc EUR na jednu aukci oproti běžně 

využívané strategii nákupu na základě průměru závěrečných cen. 

 

 

Klíčová slova: české energetické futures, maloobchodní trh, postupný nákup, technická 

analýza, k-nejbližších sousedů, naivní Bayes, metoda podpůrných vektorů, náhodný les, 

AdaBoost, neuronová síť 
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1 INTRODUCTION 

At the beginning of the nineties, the European energy sector went through a period of 

deregulation within which the government monopolies were eliminated. In contrast to the 

prior arrangement, in which the power producers also assumed the role of suppliers, 

liberalization enabled the entry of other subjects into the market. The sector became 

attractive to smaller power producers as well as to traders, who filled the blank space in 

the supplier chain. The increase in competition has been accompanied not only by the 

utilization of new technologies and the decrease in price, but also by the development of 

the power derivatives market [1]. 

The power market can be divided into wholesale and retail markets. The wholesale market 

is intended exclusively for power producers and traders, not for end-consumers. 

Therefore, the trading is exempt from any taxation as well as from any state-regulated 

fees. On the contrary, the main purpose of the retail market is the power supply to the 

end-consumers, and the state-regulation is applied here. Despite the considerable 

differences, retail prices can be derived from wholesale prices to a great extent [1]. 

This thesis reflects a unique task with significant business potential, on the edge of the 

wholesale and retail market, that is, purchase of power derivatives by retail customers. 

Due to the increased demand for the complexity of services from retail consumers, 

suppliers started to incorporate a specific requirement for progressive purchase into the 

bilateral power delivery agreements. This mechanism enables end-consumers to buy the 

demanded volume in many tranches for a price which is derived directly from the 

wholesale price, and, in this way, to diversify the price risk. Some of the consumers take 

a step further and use this opportunity to speculate on the development of wholesale 

prices. The so-called progressive purchase, in different forms, is becoming increasingly 

popular in Central Europe. Consequently, this methodology was also adopted by some of 

the regulated exchange platforms in the region, such as Power Exchange Central Europe, 

a.s., (PXE) [2] and Czech Moravian Commodity Exchange Kladno (CMCEK) [3]. The 

popularity of the method can be documented in figures from PXE; approximately one 

quarter of all power consumers have chosen the progressive purchase approach during 

the last three years. It corresponds to 88 % of the total volume traded on the PXE power 

retail market, indicating the considerable desirability of this procedure among clients with 

high consumption [2]. 

In Western Europe, the tendency during the last years seemed to be heading more 

intensively toward digitalization initiatives, e.g., real-time management of smart grids, 

where supply and consumption are priced against the spot market. Although progressive 

purchase does not offer the same level of pricing efficiency, it is a publicly recognized 

and very easily implemented solution to risk diversification without any additional costs 

for hardware or software equipment. Therefore, the business potential of this approach is 

believed to be significant and worth further research.  
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Due to recent events, price risks in the European energy market have strongly escalated, 

and the key question is, how the system would be coping with potential further energy 

shortages, and more importantly, whether the situation would be manageable without 

significant regulatory measures. For the purposes of this study, we assume that the liberal 

market conditions are met, and the pricing mechanisms are fairly efficient. 
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2 DEFINITION OF THE TASK 

For the purposes of the study, we will consider the following representative scenario: The 

retail customer demands a contract for a yearly electricity supply. Based on the delivery 

profile, the customer is offered a margin by the supplier defined in relative or absolute 

terms, i.e., the final price equals the margin multiplied or added to the wholesale price, 

respectively. Prior to contract confirmation, the customer can choose which wholesale 

contract will be used as a reference for price fixing. The customer has the possibility to 

purchase the demanded power volume in 𝑛 tranches and can fix the price 𝑘-times in one 

day, i.e., he is able to fix the price for the 𝑘/𝑛 portion of the whole delivery in one day. 

The final price is equal to the average of all fixed prices. In case the end-customer does 

not fix the price in the predefined number of steps, the fixing proceeds automatically at 

the furthest possible date(s). 

Even though the definition of the task as well as initial assumptions may seem highly 

complex, essentially, after the contract confirmation, the customer role is limited to 

providing supplier with purchase instructions and to speculate in this way on the 

wholesale market. Therefore, the main goal of this thesis can be simplified and narrowed 

down to the estimation of buying signals. An analysis will be exploited for the Czech 

power yearly baseload futures, with delivery in the front year, which are used by end 

customers as reference contracts most frequently. 

It is important to emphasize that contrary to speculative power traders, who can flexibly 

increase or decrease their risk exposure by managing their open position, retail customers 

do not have such a possibility, and thus, improvement in the efficiency of estimating 

trading signals in this business area has a significant potential from the risk management 

as well as economic perspective. 

Considering the input data are believed to include non-stationarity, non-linearity, and 

noise, price signals will be estimated with the use of different types of machine learning 

algorithms, i.e., one-, two- and three-layer feed-forward neural network with supervised 

learning, support vector classifier, random forest and AdaBoost. Assuming potential 

autocorrelation dependencies within the time-series, the long short-term memory neural 

network will be further exploited. Although these machine learning methods usually offer 

an exceptional performance in terms of prediction accuracy, the training process is slow 

and the interpretation of causal relationships within the models is very challenging. The 

threat of overfitting as well as of non-sufficient model robustness is thus more tangible. 

Therefore, also simpler techniques, such as k-nearest neighbor and Bayesian approach, 

specifically naive Bayes, which allow deeper model understanding, higher flexibility in 

terms of model adjustment as well as easier results interpretation, will also be used for 

the data classification. Furthermore, technical analysis will be utilized, specifically 

Relative Strength Index, which is well-established indicator among traders.  
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2.1 Case Study 

To clarify some of the specifics of the defined task, a practical example of different 

hedging strategies for the progressive power purchase will be presented in this chapter. 

Given a progressive purchase of a power supply, which is fixed against the wholesale 

reference yearly baseload contract with delivery in 2019 within one year before its 

delivery, let us assume the following three price fixing scenarios: 

1. Optimal four-step price fixing 

2. Evenly distributed four-step price fixing  

3. Continuous price fixing (i.e., fixing against everyday settlement price)  

 

 

 

 

 

 

The optimal way to fix the price would be to proceed with all four fixing steps on 

12.02.2018 for the yearly minimum price of 33.75 EUR/MWh. Given the 253 data 

samples and assuming uniform random selection of the buying signals, the probability of 

randomly choosing the optimal result is in the order of tenths of a percent. 

Considering the distribution of trading days, an evenly distributed four-step fixing on 

02.01.2018 (settlement price: 38.09 EUR/MWh), 02.05.2018 (settlement price: 39.62 

EUR/MWh), 03.09.2018 (settlement price: 51.06 EUR/MWh) and on 14.12.2018 

(settlement price: 57.82 EUR/MWh) would lead to the final price 46.65 EUR/MWh. This 

procedure presents a partial effect of price risk diversification. 
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Figure 2.1: Price development of Czech power with baseload delivery in 2019 (case study of price fixing scenarios) 
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Continuous price fixing can be represented as a simple cumulative moving average, that 

is, the average of all settlement prices available from the very beginning of the respective 

year. Fixing against the everyday settlement price provides the second-best result, i.e., 

45.34 EUR/MWh. This approach represents a very popular method of price fixing, which 

ensures on average profit-loss result. Officials of cities, municipalities and other 

important subjects responsible for power purchase are often exposed to significant public 

pressure and do not want to take the responsibility for any estimation of buying signals. 

Therefore, risk diversification strategies and algorithms that can be easily automated, 

such as this one, seem to be highly demanded. 

 

2.2 Benchmark 

The continuous price fixing presented in the previous chapter (see the third scenario), i.e., 

fixing against everyday settlement price, will be considered a benchmark for the purposes 

of further analysis and evaluation of the investigated methods. 

2.3 Goal of the Thesis 

The main goal of this dissertation thesis is to estimate oversold and overbought market 

conditions with use of various classification techniques in the context of the highly 

challenging task of hedging of power price risk by retail customers. The Czech power 

baseload yearly futures are used as the reference contract for this purpose.  

Figure 2.2: Graphical representation of workflow 
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For the purposes of data classification, ten well-established techniques are being 

exploited, namely relative strength index, k-nearest neighbor, naive Bayes, support vector 

classifier, random forest, AdaBoost, 1-, 2- and 3-layer feed forward neural network, and 

long short-term memory. 

After the models’ training and data classification, the predicted trading signals are utilized 

for the simulation of the progressive power purchase. Continuous price fixing, which is a 

very popular and commonly used method ensuring average profit-loss results, is used as 

a benchmark to evaluate the benefits of the exploited methods.  

The prediction performance of the different models is thereafter compared and evaluated 

against the established benchmark. This step is perceived to have the largest practical 

impact, and therefore, is assumed to be the most important part of the thesis contribution. 

For further details, see Figure 2.2 that shows the completed workflow. 
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3 DATA 

The data matrix consists of daily settlement prices from 02.01.2007 to 29.12.2021 and 

comprises 3904 samples. Within our research, the following fundamental as well as 

technical indicators will be examined. 

3.1 Fundamental Data 

• Price of the Czech Base Power Front Year (EUR/MWh) 

Power supply of 1 MW for a period of one year (delivery 24/7), with a place of 

delivery in the Czech Republic. 

• Price of the TRPC Coal API2 Front Year (EUR/Tonne) 

European API2 thermal coal yearly futures. 

• Price of the ICE Brent Front Month (EUR/Bbl) 

Monthly financial futures based on the ICE daily settlement price for Brent futures. 

• Price of the TTF Gas Front Year (EUR/MWh) 

Yearly gas futures with physical delivery in a virtual trading point the Title Transfer 

Facility. 

Considering that the task focuses primarily on the Czech power market, the CEGH 

or CZ VTP gas price might seem more reasonable to be utilized. However, the 

liquidity in these hubs is much lower, and thus TTF contract is used instead as an 

approximation.  

• Price of the ICE ECX EUA Front Year (EUR/Tonne) 

Entitlement to emit one tonne of carbon dioxide equivalent gas. 

• Clean Spark Spread (EUR/MWh) 

Spark spread is a margin of a gas-fired power plant from selling a unit of electricity, 

which can be expressed as the difference between the cost of feedstock gas and the 

equivalent price of electricity on a High Heating Value (HHV) basis. 

𝑠𝑝𝑎𝑟𝑘 𝑠𝑝𝑟𝑒𝑎𝑑
= 𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑 𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑖𝑐𝑒 − 𝑔𝑎𝑠 𝑝𝑟𝑖𝑐𝑒
÷ 𝑓𝑢𝑒𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (3.1.1) 

Countries that are covered by the European Union Emissions Trading Scheme have 

to include into their financial balance also the cost of carbon dioxide emission 

allowances. 

For the purposes of this study, the emission intensity factor is considered 0.18404 

mtCO2/MWh and gas plant efficiency is assumed to be 50 % HHV [4]. 

𝑐𝑙𝑒𝑎𝑛 𝑠𝑝𝑎𝑟𝑘 𝑠𝑝𝑟𝑒𝑎𝑑
= 𝑠𝑝𝑎𝑟𝑘 𝑠𝑝𝑟𝑒𝑎𝑑 − 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑟𝑖𝑐𝑒
∙ 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 ÷ 𝑓𝑢𝑒𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (3.1.2) 
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• Clean Dark Spread (EUR/MWh) 

Correspondingly to the spark spread, dark spread is defined as a difference between 

the cost of feedstock coal and the equivalent price of unit of electricity produced. 

    𝑑𝑎𝑟𝑘 𝑠𝑝𝑟𝑒𝑎𝑑 = 𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑 𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑖𝑐𝑒 − 𝑐𝑜𝑎𝑙 𝑝𝑟𝑖𝑐𝑒
÷ 𝑒𝑛𝑒𝑟𝑔𝑦 𝑐𝑜𝑛𝑣𝑒𝑟𝑠𝑖𝑜𝑛 𝑓𝑎𝑐𝑡𝑜𝑟 ÷ 𝑓𝑢𝑒𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (3.1.3) 

 

𝑐𝑙𝑒𝑎𝑛 𝑑𝑎𝑟𝑘 𝑠𝑝𝑟𝑒𝑎𝑑
= 𝑑𝑎𝑟𝑘 𝑠𝑝𝑟𝑒𝑎𝑑 − 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑟𝑖𝑐𝑒
∙ 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 ÷ 𝑓𝑢𝑒𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (3.1.4) 

where coal-to-power energy conversion is 6.978, the emission intensity factor is 

assumed 0.34056 mtCO2/MWh, and coal plant efficiency is considered to be 35 % 

LHV [4]. 

• Clean Lignite Spread (EUR/MWh) 

Compared to natural gas and hard coal, lignite power production is the most 

emissions intensive. Assuming an average net thermal efficiency of 38% (efficiency 

varies in range of 34%-43%), lignite-fired power plant emits approximately 1093 

gCO2/kWh (range 1221-966 respectively), which implies the emission intensity 

factor 0.4534 mtCO2/MWh. It is about 10% more of emission load than in case of 

hard coal and about three times more than in case of gas-fired power plant.  

The greatest part of variable costs of lignite power production is the cost of emission 

allowances. Therefore, price of lignite is usually neglected in the calculation of 

clean lignite spread [5]. 

𝑐𝑙𝑒𝑎𝑛 𝑙𝑖𝑔𝑛𝑖𝑡𝑒 𝑠𝑝𝑟𝑒𝑎𝑑
= 𝑏𝑎𝑠𝑒𝑙𝑜𝑎𝑑 𝑝𝑜𝑤𝑒𝑟 𝑝𝑟𝑖𝑐𝑒 − 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑝𝑟𝑖𝑐𝑒
∙ 𝑒𝑚𝑖𝑠𝑠𝑖𝑜𝑛𝑠 𝑖𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑓𝑎𝑐𝑡𝑜𝑟 ÷ 𝑓𝑢𝑒𝑙 𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑐𝑦 (3.1.5) 

• S&P Index (EUR) 

Stock market index of 500 of the largest publicly traded companies in the United 

States. 

 

The specific contracts and trading platforms were selected with respect to their liquidity 

to ensure as efficient pricing procedures as possible. The fundamental data are further 

discussed in Chapter 4. 

3.2 Technical Data 

• Relative Strength Index (RSI) 

• 14-day Moving Average 

• 14-day Volatility 

• Difference from the YTD Maximum Price 

• Difference from the YTD Minimum Price 
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3.3 Data Pre-processing 

Standardization was used as the data pre-processing technique in this study, during which 

the distribution of values of each feature is transformed so that its mean equals to zero 

and its standard deviation is one.  

x′ =
x − μ

σ
   (3.3.1) 

where μ is the mean and σ is the standard deviation of the training samples [6]. 

The statistics are estimated on samples in the training set and stored to be used later to 

transform the testing dataset during prediction. 

Furthermore, a robust standardization was examined for the training of neural networks, 

which are known to be exceptionally sensitive to outliers. Robust standardization is very 

similar to the standard scaling mentioned above, but instead of mean and variance, it 

utilizes median and quartiles, specifically in range between 25th and 75th quantile. In this 

way, the scaler ignores the most distant data points [7]. However, robust standardization 

in this case did not prove to offer any additional benefits. 

3.4 Output Specification 

The price of the Czech base power is classified into ten categories by dividing the interval 

of all the settlement prices within the respective year into 10 equally large sections (1st 

category representing very strong buy signal, 2nd strong buy signal, …, 10th being very 

strong sell signal), and is used in this form as the model output for the purposes of model 

training. 

Today´s model output, i.e., estimated trading signal, encompasses information about the 

short-term condition in the market, and is derived from current values of the input 

variables. Contrary to a prediction of future absolute price values, prediction of the actual 

trading signal is believed to increase model robustness, while preserving an added value 

for a market participant in a form of trend indication, which allows to enter profitable 

trading position. 

3.5 Source of Data 

The Thomson Reuters Eikon software provided by Refinitiv, which is a platform designed 

for financial professionals aggregating different types of market information, was used as 

a primary source of the input data mentioned above. However, the data can also be 

aggregated from other, publicly available sources, mainly from the webpages of the 

relevant exchanges, such as EEX, ICE and Powernext. Moreover, other publicly available 

platforms, such as TradingView.com, can also be exploited. 
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4 DATA ANALYSIS 

As anticipated, the prices of long-term contracts reflect the long-term market situation. 

They are mainly influenced by macro-economic events, infrastructure growth, which can 

be very difficult to quantify, and furthermore by the prices of power resources, which are 

present in the process of power production. Thus, it is important to identify the energy 

mix of power production in the relevant area.  

According to the national energy mix of the Czech Republic, brown coal covers about 

40% of the overall energy production. Therefore, the price of coal is one of the most 

important factors in the process of modelling power prices. As presented in Figure 4.1, 

the correlation between power and coal prices has been significant. Another variable 

closely related to the price of coal and considerably influencing power pricing is the price 

of emission allowances. The low price of emission allowances reduces the benefits of 

using less carbon-heavy technologies, and instead favours less expensive production from 

coal power plants [8]. Therefore, the power prices rise with the increase in price of 

emission allowances, and vice versa. The share of renewable energy resources on the total 

power production significantly differs from year to year, not only because of changes in 

weather fundamentals, but also due to high investments in this sector, and the abrupt 

development of new solar and wind power farms. In recent years, production from 

renewable power sources has covered from 4% to 12% of the overall energy production 

of the Czech Republic [9].   

 

Figure 4.1: Development of commodity prices 
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The third place is occupied by natural gas, whose share in production is about 8 % [9]. 

As can be observed in Figure 4.1, the correlation between power and gas prices is very 

strong, however, the volatility differs significantly. Historically, the volatility of gas 

prices was much lower because, contrary to power, gas is a storable commodity and thus 

the trading risks could be reduced. However, with the gradual departure from fossil fuels 

as well as nuclear power production on the European Union level, many states including 

the Czech Republic became much more dependent on natural gas, which was supposed 

to serve as a transitional resource on the path toward further decarbonization. 

Nuclear sources, which make up about 40 % of the production, should also be considered 

[9]. Although the operating costs of nuclear power plants are very low, coal power plants 

have a perceivable competitive advantage in the areas where the access to cheap resources 

is possible. This situation occurs not only in the Czech Republic, where coal mining fully 

covers the domestic consumption, but also in the United States, South Africa, Australia, 

India and China [10].  

 

Figure 4.2: Development of price of Czech base front year power contract 

Last but not least, an important source of information is the price of oil. Although oil 

covers only a negligible portion of the total power production of the Czech Republic [9], 

due to its crucial influence on the global economy, the oil market is an important indicator 

of macroeconomic events. Because of its efficiency, oil price usually reacts to events 

much earlier than in the case of other energy commodities, such as power or gas, and thus, 

usually allows to track significant changes in the price trend in the very beginning. 

Historically, an apparent dependency was observed between the prices of oil and gas, and 

consequently power, as presented in Figure 4.1. However, during the last years the 

correlation has been disrupted as a cause of political interventions in this sector.  

20.00

30.00

40.00

50.00

60.00

70.00

80.00

90.00

P
ri

ce
 (

E
U

R
/M

W
h

)

20.00

70.00

120.00

170.00

220.00

270.00

320.00

370.00



 20  

 

The effect of the global economy on Czech power prices is demonstrated in Figure 4.2. 

As can be observed, at the beginning of year 2009 prices reacted to the global financial 

crisis with a sharp and significant downtrend. In 2011, prices responded to other market 

uncertainty caused by the Fukushima nuclear disaster, which is perceived as an essential 

turning point for environmental movement, leading to a decision of gradual phase-out of 

nuclear power plants. After that we witnessed five years of price decrease, primarily 

caused by the decrease in the price of fossil fuels and by the significant support of 

renewable energy resources, whose prices were artificially suppressed due to the 

subsidies provided. However, at the beginning of 2016 the long-term trend changed, and 

prices started to increase due to the outage of nuclear power plants in France. The results 

of the Brexit referendum that took place in June 2016, causing further market uncertainty, 

provided additional bullish impulse. The increasing trend in power prices continued and 

was further supported by ambitious plans of environmental initiatives, which shaped the 

current form of the EU Emission Trading System (EU ETS). One of the most prominent 

recent events was the adoption of the “Fit for 55” package, which was proposed by the 

European Commission in July 2021, binding to reduce greenhouse gas emissions in 

energy, land use, transport and taxation by at least 55% by 2030 [11]. The effect of the 

global economy can also be captured by changes in price of oil, or by changes in price of 

stock market indices, such as S&P, MSCI or Dow Jones. For these purposes, the S&P 

index was chosen as the representative and is further examined in this study. 

As depicted in Figures 4.1, 4.2 and 4.3, the year 2021 fully revealed weaknesses of the 

energy system, which were demonstrated by exerting tremendous political pressure 

through a threat of disruption in fossil fuel deliveries by the Russian Federation, resulting 

in an abrupt increase in power and gas prices to an unprecedented level. This pressure 

escalated in February 2022 when Russia invaded Ukraine, causing the greatest 

humanitarian crisis in Europe since the Second World War.  
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The ongoing immense uncertainty on the energy market present from the end of 2021 is 

having a direct impact not only on the rapid increase in inflation but also on the deepening 

economic recession in Europe.  

To successfully estimate oversold or alternatively overbought market conditions, the 

concept of power pricing based on the cost of utilized technologies has to be introduced. 

As indicated in Chapter 3.1, three main indicators are recognized in the context of power 

production margin, that is, clean spark spread, clean dark spread, and clean lignite spread. 

These margins often act as price anchors, used by power producers not only to estimate 

potential profit, but more importantly to determine their hedging strategies. Whereas 

production from lignite was always highly profitable during the period examined, margins 

related to other technologies such as production from coal and gas were not always 

positive, see Figure 4.3. As can be observed, the profitability of gas and coal power 

production frequently competed with each other, making these two technologies the most 

prominent for the estimation of the price infection points.  

 

Table 4.1: Correlations among the analysed variables (2016-2020) 
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Czech Power Front Year 1.00              

Coal API2 Front Year 0.50 1.00             

ICE Brent Front Month 0.51 0.77 1.00            

TTF Gas Front Year 0.49 0.86 0.82 1.00           

EUA Front Year 0.87 0.06 0.19 0.08 1.00          

Clean Spark Spread 0.69 -0.08 -0.11 -0.28 0.84 1.00         

Clean Dark Spread -0.23 -0.21 -0.19 -0.01 -0.36 -0.18 1.00        

Clean Lignite Spread 0.20 0.87 0.63 0.80 -0.30 -0.33 0.26 1.00       

S&P 0.75 0.07 0.16 -0.07 0.88 0.84 -0.48 -0.31 1.00      

RSI 0.06 0.20 0.13 0.18 -0.02 -0.08 -0.09 0.16 -0.04 1.00     

14-day Moving Average 0.99 0.48 0.49 0.47 0.87 0.70 -0.23 0.19 0.74 -0.05 1.00    

14-day Volatility 0.45 0.24 0.13 0.30 0.38 0.23 -0.11 0.11 0.22 0.01 0.45 1.00   

Difference from YTD Minimum 0.40 0.59 0.34 0.62 0.11 -0.05 0.04 0.55 0.02 0.40 0.35 0.28 1.00  

Difference from YTD Maximum -0.19 0.36 0.25 0.36 -0.38 -0.49 -0.09 0.40 -0.39 0.53 -0.25 -0.11 0.27 1.00 

 

 

Presumably, there are other technologies playing a role in the power price settlement 

process, such as extremely cheap production from renewable resources, or on the 

contrary, very expensive power production from oil. Nevertheless, it is reasonable to 

assume that the impact of the first mentioned starts to manifest rather shortly before 
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delivery when the weather conditions are tangible and has only limited impact on the 

pricing of long-term contracts. On the other hand, in the event of extreme scarcity of 

resources, it is possible to settle the power price at the cost of power production from oil. 

This scenario is however rare and thus it is not investigated further. 

As was thoroughly discussed, there are some strong interrelations present among prices 

of different energy commodities. To avoid the issue of collinearity, it is important to 

quantify the degree of linear interdependencies among the model input variables. As 

presented in Table 4.1, there is a strong correlation among prices of gas, coal and oil, 

presumably due to a significant fuel-switching market mechanism. As the data from year 

2016 to 2020 show, the linear dependency of the Czech power price on the price of EUAs 

was also highly significant, as expected. With regard to large investments of hedge funds 

into the EU ETS market during the last years, the EUA price became much more 

correlated with stock market indexes, such as S&P. Last but not least, a substantial 

correlation was detected also in case of the moving average, due to its strong 

autocorrelation properties.  
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5 STATE-OF-THE-ART 

There are two main approaches used by professionals for the purposes of estimation of 

trading signals, i.e., technical analysis, which assumes recurrently appearing trends and 

patterns over time, and fundamental analysis aspiring to determine intrinsic value of an 

asset. 

Due to its very easy application as well as efficiency, technical analysis has gained 

importance over time and is now the most equally spread kind of analysis [12]. However, 

the efficiency of various indicators differs significantly among different types of assets. 

The effectiveness of Moving Average (MA) based indicators as well as many others is 

demonstrated for example in [13], [14], [15]. The ability to earn positive returns was also 

proved in the case of other indicators frequently used, such as Relative Strength Index 

(RSI) or Stochastic Oscillator (SO) [16]. Furthermore, in some cases RSI, SO as well as 

parabolic strategies even exceeded the performance of the MA-based indicators [17]. It 

is important to highlight that the profitability of technical indicators may be affected by 

volatility, e.g., as demonstrated in [18], some technical trading rules are most profitable 

during the period with the highest volatility and vice versa. Nevertheless, the use of 

technical indicators is still not fully standardized, and thus in most cases the expertise of 

the user is crucial. 

Research in the field of the energy industry appears to focus primarily on the analysis of 

the spot market [19], rather than the forward market, due to its impact on the physical 

portfolio dispatch and short-term optimisation decisions. Initially, widely used statistical 

methods such as autoregressive models and Markov models, as well as some artificial 

intelligence techniques such as support vector machine, random forest and decision trees, 

were in many cases outperformed by various types of Artificial Neural Networks [20], 

[21], [22], [23], [24], [25]. However, considering the benefits of specific network 

structures, the literature is not very united. In the context of spot market forecasting, the 

outstanding performance of machine learning models, especially deep neural networks, 

over statistical methods was thoroughly presented in [22], [25], [26]. As discussed in [21], 

[22] and [24], also GRU, Long Short-Term Memory Neutral Network and some of the 

hybrid neural networks show promising results in this area of research. On the other hand, 

according to [23], the best performance was achieved with the convolutional neural 

network. To summarize, the generalization capability of machine learning techniques 

provides in many cases an advantage over the conventional statistical methods. However, 

the network structure must be tailored to the specifics of the task;  for example, deep 

neural networks can provide outstanding performance only in the case of a sufficient 

number of data samples [22]. In the context of this study, that is, considering the 

availability of an extensive input dataset and possible autocorrelation dependencies of the 

time-series, the use of deep neural networks as well as recurrent networks seems 

reasonable. 



 24  

 

Neural networks applications are also very popular in the financial sector as financial 

services organizations are the second largest sponsors of research in this area [27]. Two 

main approaches can be taken to improve model accuracy, i.e., improvement of the model 

structure, and improvement of the input data quality and selection. Even though it seems 

rather logical that these two approaches have to go hand in hand to obtain reliable results, 

most of the reported analyses focus on improving the model structure while utilizing only 

historical samples of the output itself. This imbalance was pointed out and demonstrated, 

for example, in [28]. Nevertheless, even while using the PCA module, which is a popular 

feature extraction algorithm, the accuracy of the model was not improved, most probably 

due to the use of shallow ANNs. At the same time, a convolutional neural network 

exploiting popular filtering routine used in computer vision showed much worse results 

compared to other CNN structures, as well as compared to shallow ANN [28]. This 

analysis demonstrates a strong demand for task-dependent model structures and an 

adaptive approach to determining input variables. 

In general, publications referring to the estimation of trading signals in the financial sector 

point in a similar direction as the review of articles that focus exclusively on the power 

spot market. Certain structures of deep feed-forward neural network classifiers [29], 

convolutional neural networks [28], and recurrent neural networks, including long short-

term memory [30], proved to be powerful tools in this field worth further study. When 

accompanied with an extensive and suitable input data set, these methods are believed to 

improve the performance of other conventionally used methods. 

Unfortunately, analysis of the forward power market, which is the main subject of this 

study, seems to be rather neglected in the professional literature. Available sources do not 

sufficiently describe the fundamental pricing and analysis. Instead, many articles follow 

the risk premium model presented by Fama and French [31], where futures prices are 

derived as the sum of the expected spot price and risk premium. Unfortunately, a 

comparison of the power futures market with the power spot market is in certain aspects 

highly problematic. Contrary to power futures, power spot prices usually show strong 

autocorrelation dependencies, and as was documented above, their modelling is therefore 

usually highly efficient. 
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6 METHODS 

6.1 Bias-Variance Trade-Off 

Even though the concept of a bias-variance trade-off is routinely familiar, its importance 

massively increased with the expansion of machine learning techniques, which are in 

some cases prone to overfitting. This concept is one of the central tenets of the field 

implying that a model should find a balance between underfitting and overfitting [32]. 

 

 
                Figure 6.1: Visualization of bias-variance trade-off [32] 

Let us assume a linear model 𝑦 with a random noise 휀, where 𝑓(𝑥) is the estimate of the 

true value 𝑓(𝑥). 

𝑦 = 𝑓(𝑥) + 휀                                                       (6.1.1) 

휀 ~ 𝑁(0, 𝜎𝜀
2)                                                        (6.1.2) 

Then, the expected mean-squared error of the model is defined as [33] 

𝑀𝑆𝐸 = 𝐸 [(𝑦 − 𝑓(𝑥))
2
] = 𝐸 [(𝑓(𝑥) + 휀 − 𝑓(𝑥))

2
]  =  

= 𝐸 [(𝑓(𝑥) + 휀 − 𝑓(𝑥) + 𝑓̅(𝑥) − 𝑓̅(𝑥))
2
] = 

= 𝐸 [((𝑓(𝑥) − 𝑓̅(𝑥)) − (𝑓(𝑥) − 𝑓̅(𝑥)) + 휀)
2

],                             (6.1.3)   

where 𝑓(̅𝑥) = 𝐸[𝑓(𝑥)]. 
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After squaring, the mean-squared error can be further expressed as 

𝑀𝑆𝐸 = 𝐸 [(𝑓(𝑥) − 𝑓̅(𝑥))
2
] +  𝐸 [(𝑓(𝑥) − 𝑓̅(𝑥)) (휀 − (𝑓(𝑥) − 𝑓̅(𝑥)))] + 

+𝐸 [(𝑓(𝑥) − 𝑓̅(𝑥))
2
] −  𝐸 [(𝑓(𝑥) − 𝑓̅(𝑥)) (𝑓(𝑥) − 𝑓̅(𝑥) + 휀)] 

+𝐸[휀2] + 𝐸 [휀 (𝑓(𝑥) − 𝑓̅(𝑥) − (𝑓(𝑥) − 𝑓̅(𝑥)))]                            (6.1.4) 

The following identities apply 

𝐸[휀] = 0                                                            (6.1.5) 

𝐸[휀2] = 𝜎𝜀
2 + (𝐸[휀])2 = 𝜎𝜀

2                                             (6.1.6) 

𝑓̅(𝑥) = 𝐸[𝑓(𝑥)]                                                      (6.1.7) 

𝐸 [(𝑓(𝑥) − 𝑓̅(𝑥))] =  𝐸[𝑓(𝑥)] − 𝐸[𝑓̅(𝑥)] = 0                              (6.1.8) 

After their substitution into the equation 6.1.4, model error is derived as follows 

𝑀𝑆𝐸 = (𝑓(𝑥) − 𝑓̅(𝑥))
2
+  𝐸 [(𝑓(𝑥) − 𝑓̅(𝑥))

2
] + 𝜎𝜀

2 = 

= 𝑏𝑖𝑎𝑠2 + 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 + 𝑖𝑟𝑟𝑒𝑑𝑢𝑐𝑖𝑏𝑙𝑒 𝑒𝑟𝑟𝑜𝑟                                 (6.1.9) 

 

As was shown [33], the expected model error consists of three components, i.e., bias, 

variance, and irreducible error. Bias refers to the delta between the model predictions and 

the true values.  Variance in this context is not a measure of accuracy, but rather a proxy 

of model complexity, as presented in Figure 6.1. It represents a statistical variance of the 

predictor over all possible training sets. For example, in the case of overfitting, the models 

fitted on different training sets significantly differ from each other, i.e., show high 

variance. Last but not least, irreducible error represents a non-deterministic random noise, 

which should not be captured by the model. As depicted in Figure 6.1, it is not possible 

to achieve low bias as well as low variance at the same time. Hence, we attempt to find 

the sweet spot of the optimum model complexity, where the total error is minimal [32]. 

One of the essential methods used to optimize the bias-variance trade-off is cross-

validation that strives to minimize the test error, and consequently maximize the 

generalization abilities of the model.  

Due to the nature of power prices development, we consider the process a martingale 

displaying relevant degree of serial correlation, and therefore, in our case it would not be 

reasonable to split data into training and testing set without taking their sequence into 

account. Thus, the use of a random split or a k-fold algorithm is not an option. Instead, 

the dataset was divided chronologically. Due to the definition of target variable, the model 

parameters were recalculated at the turn of each year, when one fixing period ends, and 

the respective contract goes into delivery, as indicated in Figure 6.2. 
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Figure 6.2: Division of training and testing dataset 

 

6.2 Relative Strength Index 

This momentum indicator compares the magnitude of recent gains and losses to evaluate 

overbought or oversold conditions in the market. By its definition, the index lies within 0 

and 100, where a value below 30 represents oversold market, and value above 70 indicates 

overbought situation [34]. 

𝑅𝑆𝐼 = 100 −
100

1+𝑅𝑆
                                                    (6.2.1) 

𝑅𝑆 =
∑𝑈𝑝 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛

∑|𝐷𝑜𝑤𝑛 𝑐ℎ𝑎𝑛𝑔𝑒𝑠 𝑓𝑜𝑟 𝑡ℎ𝑒 𝑝𝑒𝑟𝑖𝑜𝑑 𝑢𝑛𝑑𝑒𝑟 𝑐𝑜𝑛𝑠𝑖𝑑𝑒𝑟𝑎𝑡𝑖𝑜𝑛|
                       (6.2.2) 

RSI is computed over a rolling time period. 14-day time window, which is suggested and 

widely used in most technical analysis software, was also used for the purposes of this 

study. 

6.3 K-Nearest Neighbor 

K-nearest neighbor (KNN) is a nonparametric supervised machine learning method, one 

of the simplest and easiest algorithms to implement, which memorizes the entire training 

data, finds a group of 𝑘 objects that are closest to the test object, and estimates a label 

based on the predominance of a specific class in this neighborhood. In other words, KNN 

is a lazy learner, it does not attempt to construct any general internal model, nor is there 

any explicit training phase of this algorithm. On the other hand, prediction can be 

computationally very expensive, especially for a large dataset [35] [36]. 

Despite its simplicity, as was shown by Cover and Hart [37], under certain reasonable 

assumptions the error of the nearest neighbor rule is capped by twice the Bayes error. 

Furthermore, the error of the general KNN asymptotically approaches that of the Bayes 

error; thus, it can be used for its approximation. 

Given a training dataset 𝐷 = (𝑥, 𝑦) and test object 𝑧 = (𝑥′, 𝑦′), the algorithm computes 

a distance 𝑑(𝑥′, 𝑥) between the test object and every other datapoint.  

 

                    

                    

                    

 

 

 

training dataset testing dataset   prediction
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Then 𝐷𝑧 ⊆ 𝐷 is selected, as a set of 𝑘 closest training objects to 𝑧, and classification is 

based on the majority class of this selection 

𝑦′ = argmax
𝜐

∑ 𝐼(𝜐 = 𝑦𝑖),
(𝑥𝑖,𝑦𝑖)∈𝐷𝑧

 (6.3.1) 

where 𝜐 is a class label, 𝑦𝑖 is the class label for the 𝑖𝑡ℎ nearest neighbor, and 𝐼(∙) is an 

indicator function that returns the value 1 if its argument is true and 0 otherwise [36]. 

However, majority vote approach presented in equation 6.3.1 can be problematic if the 

nearest neighbor significantly vary in their distance, and the closer ones more reliably 

indicate the class of the object. In this case an alternative distance-weighted vote, which 

is usually less sensitive to the choice of 𝑘, can be used. Weight factor is often defined as 

a reciprocal of the squared distance 𝑤𝑖 = 1 𝑑(𝑥′, 𝑥𝑖)
2⁄ , and consequently, the 

classification is estimated as 

𝑦′ = argmax
𝜐

∑ 𝑤𝑖 ⨯ 𝐼(𝜐 = 𝑦𝑖)

(𝑥𝑖,𝑦𝑖)∈𝐷𝑧

 (6.3.2) 

One of the most important aspects affecting the performance of KNN is the choice of 

hyperparameter 𝑘. If 𝑘 is too small, the model might be sensitive to noise, i.e., there is a 

danger of over-fitting. On the contrary, large 𝑘 can lead to oversimplification of the model 

and its high bias [36]. 

Finally, the choice of the distance measure is also very important. Even though the 

Euclidian distance is measure of choice for most applications, it is a well-known fact that 

it is not a suitable measure for high-dimensional data, furthermore, it is highly scale 

sensitive. Alternatively, other metrics can be exploited, such as Minkowski distance or 

cosine distance, which are neither that sensitive to scaling nor to the number of features 

[38]. 

𝑑𝑀 = (∑|𝑥𝑖 − 𝑦𝑖|
𝑝

𝑛

𝑖=1

)

1 𝑝⁄

 (6.3.3) 

cos 𝜃 =
�⃗� ∙ �⃗⃗�

‖�⃗�‖ ∙ ‖�⃗⃗�‖
 (6.3.4) 

 

Parameters setting 

The algorithm votes are based on the position of 50 nearest neighbors, as this choice of 

hyperparameter 𝑘 was experimentally proven to ensure the highest efficiency. The brute-

force search algorithm, where all points in each neighborhood are weighted equally, is 

exploited. Considering the number of input features, the Euclidean distance is exploited 

as a distance metric. 
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6.4 Gaussian Naive Bayes 

Naive Bayes classifier is a method of supervised learning, which is based on applying 

Bayes’ theorem with the ‘naive’ assumption of conditional independence between 

features. Even though it is one of the oldest formal classification algorithms, it has 

remained one of the most popular until now. This method is known for its exceptional 

robustness and easy implementation. It does not require high computation resources; no 

complicated iterative estimation of parameters is needed. Furthermore, the results are 

easily interpretable. Despite its simplicity and the strong assumption of conditional 

independence, it is often extremely efficient [35]. 

Given a class variable 𝑦 and dependent feature vector 𝑥 = (𝑥1, … , 𝑥𝑛), Bayes’ theorem 

is defined as [39] 

𝑃(𝑦|𝑥1, … , 𝑥𝑛) =
𝑃(𝑦)𝑃(𝑥1, … , 𝑥𝑛|𝑦)

𝑃(𝑥1, … , 𝑥𝑛)
   (6.4.1) 

 

The assumption of conditional independence implies 

𝑃(𝑥𝑖|𝑦, 𝑥1, … , 𝑥𝑖−1, 𝑥𝑖+1, … , 𝑥𝑛) = 𝑃(𝑥𝑖|𝑦)                       (6.4.2) 

And therefore, for all 𝑖, the relationship in Eq. I can be simplified to 

𝑃(𝑦|𝑥1, … , 𝑥𝑛) =
𝑃(𝑦)∏ 𝑃(𝑥𝑖|𝑦)

𝑛
𝑖=1

𝑃(𝑥1, … , 𝑥𝑛)
 

 

  (6.4.3) 

Since 𝑃(𝑥1, … , 𝑥𝑛) is a constant given the input data, we can exploit the following 

formula for classification purposes. To estimate 𝑃(𝑦) and 𝑃(𝑥𝑖|𝑦) we can use Maximum 

A Posteriori (MAP) method. 

𝑃(𝑦|𝑥1, … , 𝑥𝑛) ∝  𝑃(𝑦)∏𝑃(𝑥𝑖|𝑦)

𝑛

𝑖=1

 (6.4.4) 

�̂� = argmax
𝑦

𝑃(𝑦)∏𝑃(𝑥𝑖|𝑦)

𝑛

𝑖=1

 (6.4.5) 

For the purposes of this study, the likelihood of the features is assumed to be Gaussian 

𝑃(𝑥𝑖|𝑦) =
1

√2𝜋𝜎𝑦2
𝑒𝑥𝑝 (−

(𝑥𝑖 − 𝜇𝑦)
2

2𝜎𝑦2
) 

 

  (6.4.6) 

, where parameters 𝜎𝑦 and 𝜇𝑦 are estimated using maximum likelihood method. 
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Parameters setting 

Conveniently, Gaussian naive Bayes does not comprise any hyper parameters that require 

fine-tuning. To promote the calculation stability, a portion of the largest variance of all 

features was added to the other variance, specifically the factor of 10-9. 

6.5 Feed-forward Neural Network 

Despite their name, functioning of neural networks cannot be compared in the slightest 

to the highly complex processes that take place in the human brain, and therefore such 

exaggerated expectations should be moderated [40]. That being said, ANNs can to a 

limited extent mimic AI related features such as learning, generalization and abstraction, 

while achieving good performance in terms of model accuracy, processing speed, fault 

tolerance, latency, volume and scalability. Following Kolmogorov´s Theorem, a solution 

to a particular interpretation of Hilbert´s thirteenth problem, the feed-forward neural 

network containing a single hidden layer with a finite number of nodes can in theory 

approximate any continuous function [41]. Compared to other conventionally used 

classification methods such as logistic regression, SVM or decision trees, ANNs offer 

broader possibilities in terms of non-linear modelling of highly complex systems [42]. 

Let us assume a feed-forward neural network, where 𝑥 = (𝑥1, …, 𝑥𝑖) denotes a high-

dimensional input and 𝑦 a low-dimensional categorical output. Prediction �̂�(𝑥) is defined 

as                                      

𝑧0 = 𝑥,  𝑧1 = 𝜎1(𝑧0𝑊1 + 𝑏1),…,   𝑧𝐿 = 𝜎𝐿(𝑧𝐿−1𝑊𝐿 + 𝑏𝐿) (6.5.1) 

�̂�(𝑥) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑧𝐿𝑊𝐿+1 + 𝑏𝐿+1) (6.5.2) 

 

where 𝑊𝑙 ∈ 𝑅
𝑑𝑙⨯𝑑𝑙−1 is the weight matrix, 𝑏𝑙 ∈ 𝑅 is the bias term, 𝑑𝑙 is the number of 

neurons in layer 𝑙 and 𝜎𝑙 is the activation function [25].  

If it is desirable to exploit a multi-class classification task, as in the case of this study, the 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function is utilized instead of the 𝑠𝑖𝑔𝑚𝑜𝑖𝑑, which is on the contrary used only 

in the case of binary classification. The result of the 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 function is the probability 

with which the sample is assigned to a class 𝑘 (see equation 6.5.3). At the same time, this 

function ensures that all the predicted probabilities sum to one. 

𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑘) = 𝑃(𝑌 = 𝑘|𝑋) =
exp{𝑎𝑘}

exp{𝑎1} + exp{𝑎2} + ⋯+ exp{𝑎𝐾}
 (6.5.3) 
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6.5.1 Backpropagation 

For the purposes of network training the categorical cross-entropy loss function is being 

minimized  

𝐿 = −∑∑𝑡𝑛𝑘 log 𝑦𝑛𝑘

𝐾

𝑘=1

𝑁

𝑛=1

,    (6.5.4) 

 

where 𝑡𝑛𝑘 is target value and 𝑦𝑛𝑘 is the predicted probability of the 𝑛𝑡ℎ observation 

belonging to the 𝑘𝑡ℎ category. 

To demonstrate the backpropagation algorithm, i.e., short for the backward propagation 

of errors, which is a standard technique used for training of neural networks, let us assume 

a two-layer feed-forward neural network as presented in Figure 6.3. 𝑋 is an input layer 

represented by an input data matrix of size 𝑁𝑥𝐷, 𝑍 is a hidden layer consisting of 𝑀 

neurons and 𝑌 is an output layer, encompassing 𝐾 neurons. This structure utilizes weight 

matrixes 𝑊(1) and 𝑊(2) of sizes 𝐷𝑥𝑀 and 𝑀𝑥𝐾. Furthermore, a bias term is added at 

each node in the hidden layer as well as in the output layer, represented by vectors 𝑏(1) 

and 𝑏(2). Notice that index (1) is connected to the parameters used between the input and 

hidden layer, whereas index (2) is utilized for parameters between the hidden and output 

layer. Let us assume that 𝑡𝑎𝑛ℎ is used as an activation function in the hidden layer. 

 

Figure 6.3: Structure of two-layer feed-forward neural network 

Utilizing the gradient decent method, the respective derivatives of the loss function will 

be derived in this chapter [43] [44]. Let us start with recalling the mathematical form of 

log-likelihood function 𝐽, input to the hidden layer 𝛼𝑛𝑚, output from the hidden layer 

𝑧𝑛𝑚, input to the last layer 𝑎𝑛𝑘, and model prediction 𝑦𝑛𝑘  

                                   

         

         

  x 
(1)

     
(2)

   (   )  (   )   (   )

  
(1)

  
(2)
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𝐽 = −𝐿 = ∑∑𝑡𝑛𝑘 log 𝑦𝑛𝑘

𝐾

𝑘=1

𝑁

𝑛=1

 (6.5.5) 

𝑎𝑛𝑚
(1)
= 𝑊(1)

𝑑𝑚𝑥𝑛𝑑 + 𝑏𝑚
(1)

 (6.5.6) 

𝑧𝑛𝑚 = 𝜎(𝛼) (6.5.7) 

𝑎𝑛𝑘
(2)
= 𝑊:,𝑘

(2)
𝑧𝑛 + 𝑏𝑘

(2)
 (6.5.8) 

𝑦𝑛 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑎𝑛
(2)
) (6.5.9) 

 

Firstly, we will focus on the parameters utilized between the hidden and output layer. 

Using the chain rule, derivatives of the model parameters can be expressed as 

𝜕𝐽

𝜕𝑊𝑚𝑘
(2)
= ∑∑

𝜕𝐽𝑛𝑘′
𝜕𝑦𝑛𝑘′

𝜕𝑦𝑛𝑘′
𝜕𝑎𝑛𝑘

𝐾

𝑘′=1

𝑁

𝑛=1

𝜕𝑎𝑛𝑘
(2)

𝑊𝑚𝑘
(2)

 

 

(6.5.10) 

𝜕𝐽

𝜕𝑏𝑘
(2)
= ∑∑

𝜕𝐽𝑛𝑘′
𝜕𝑦𝑛𝑘′

𝜕𝑦𝑛𝑘′
𝜕𝑎𝑛𝑘

𝐾

𝑘′=1

𝑁

𝑛=1

𝜕𝑎𝑛𝑘
(2)

𝜕𝑏𝑘
(2)

 

 

(6.5.11) 

Derivatives of 𝜕𝐽𝑛𝑘′ and 𝜕𝑎𝑛𝑘 are very easy to determine 

𝜕𝐽𝑛𝑘′
𝜕𝑦𝑛𝑘′

=
𝑡𝑛𝑘′
𝑦𝑛𝑘′

 
(6.5.12) 

𝜕𝑎𝑛𝑘
(2)

𝑊𝑚𝑘
(2)
= 𝑧𝑛𝑚 

(6.5.13) 

𝜕𝑎𝑛𝑘
(2)

𝜕𝑏𝑘
(2)
= 1 (6.5.14) 

 

However, derivation of 𝜕𝑦𝑛𝑘′ is slightly more challenging. In order to efficiently deduct 

the softmax function, a dummy variable 𝑘′ was introduced. In case 𝑘′ ≠ 𝑘, the derivative 

of 𝜕𝑦𝑛𝑘′ is calculated 

𝜕𝑦𝑛𝑘′

𝜕𝑎𝑛𝑘
(2)
= (−1)

exp{𝑎
𝑛𝑘′
(2)
}

∑ exp {𝑎𝑛𝑗
(2)
}𝑗

exp{𝑎𝑛𝑘
(2)
}

∑ exp {𝑎𝑛𝑗
(2)
}𝑗

= − 𝑦𝑛𝑘′𝑦𝑛𝑘   (6.5.15) 
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From the definition, if 𝑘′ = 𝑘 we can write 

𝜕𝑦𝑛𝑘′

𝜕𝑎𝑛𝑘
(2)
=

exp{𝑎𝑛𝑘
(2)
}

∑ exp {𝑎𝑛𝑗
(2)
}𝑗

−
exp{𝑎𝑛𝑘

(2)
}
2

(∑ exp {𝑎𝑛𝑗
(2)
}𝑗 )
2 = 𝑦𝑛𝑘(1 − 𝑦𝑛𝑘)   (6.5.16) 

Both these expressions can be combined using the Kronecker delta function 

𝜕𝑦𝑛𝑘′

𝜕𝑎𝑛𝑘
(2)
= 𝑦𝑛𝑘′(𝛿𝑘𝑘′ − 𝑦𝑛𝑘)   (6.5.17) 

where 𝛿𝑘𝑘′ = 1 if 𝑘′ = 𝑘, and 𝛿𝑘𝑘′ = 0 if 𝑘′ ≠ 𝑘. 

Combining the expressions mentioned above, the derivative of model parameters is 

calculated as 

𝜕𝐽

𝜕𝑊𝑚𝑘
(2)
=∑(𝑡𝑛𝑘 − 𝑦𝑛𝑘)

𝑁

𝑛=1

𝑧𝑛𝑚 (6.5.18) 

𝜕𝐽

𝜕𝑏𝑘
(2)
=∑(𝑡𝑛𝑘 − 𝑦𝑛𝑘)

𝑁

𝑛=1

 (6.5.19) 

In the upcoming part, the focus will be on estimation of the parameters between the input 

and hidden layer. Using the law of total derivatives, they can be formulated as 

𝜕𝐽

𝜕𝑊𝑑𝑚
(1)
=∑∑∑

𝜕𝐽𝑛𝑘′
𝜕𝑦𝑛𝑘′

𝜕𝑦𝑛𝑘′

𝜕𝑎𝑛𝑘
(2)

𝐾

𝑘′=1

𝑁

𝑛=1

𝜕𝑎𝑛𝑘
(2)

𝜕𝑧𝑛𝑚

𝜕𝑧𝑛𝑚

𝜕𝑎𝑛𝑚
(1)

𝜕𝑎𝑛𝑚
(1)

𝜕𝑊𝑑𝑚

𝐾

𝑘=1

 (6.5.20) 

𝜕𝐽

𝜕𝑏𝑚
(1)
=∑∑∑

𝜕𝐽𝑛𝑘′
𝜕𝑦𝑛𝑘′

𝜕𝑦𝑛𝑘′

𝜕𝑎𝑛𝑘
(2)

𝐾

𝑘′=1

𝑁

𝑛=1

𝜕𝑎𝑛𝑘
(2)

𝜕𝑧𝑛𝑚

𝜕𝑧𝑛𝑚

𝜕𝑎𝑛𝑚
(1)

𝜕𝑎𝑛𝑚
(1)

𝜕𝑏𝑚
(1)

𝐾

𝑘=1

 (6.5.21) 

The remaining derivatives are expressed as follows 

𝜕𝑎𝑛𝑘
(2)

𝜕𝑧𝑛𝑚
= 𝑊𝑚𝑘

(2)
 (6.5.22) 

𝜕𝑧𝑛𝑚

𝜕𝑎𝑛𝑚
(1)
= 1 − 𝑧𝑛𝑚

2 (6.5.23) 

𝜕𝑎𝑛𝑚
(1)

𝜕𝑊𝑑𝑚
= 𝑥𝑛𝑑 (6.5.24) 

Therefore, the respective derivatives of the log-likelihood function are 

𝜕𝐽

𝜕𝑊𝑑𝑚
(1)
=∑∑(𝑡𝑛𝑘 − 𝑦𝑛𝑘)

𝑁

𝑛=1

𝐾

𝑘=1

𝑊𝑚𝑘
(2)(1 − 𝑧𝑛𝑚

2) 𝑥𝑛𝑑 (6.5.25) 
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𝜕𝐽

𝜕𝑏𝑚
(1)
=∑∑(𝑡𝑛𝑘 − 𝑦𝑛𝑘)

𝑁

𝑛=1

𝐾

𝑘=1

𝑊𝑚𝑘
(2)(1 − 𝑧𝑛𝑚

2) (6.5.26) 

The most important thing which should be observed is that the calculation of derivatives 

is recursive, and thus, following the same pattern they can also be easily deducted for 

neural network with more hidden layers, as demonstrated below  

∇𝑊(𝑙)𝐽 = 𝑧(𝑙−1)𝑇𝛿(𝑙) (6.5.27) 

𝛿𝑛𝑘
(𝐿)
= 𝑡𝑛𝑘 − 𝑦𝑛𝑘 (6.5.28) 

𝛿
𝑛𝑚(𝑙)

(𝑙)
= ∑ 𝛿

𝑛𝑚(𝑙+1)

(𝑙+1)
𝑊
𝑚(𝑙)𝑚(𝑙+1)

(𝑙+1)

𝑀(𝑙+1)

𝑚(𝑙+1)=1

𝑧
𝑛𝑚(𝑙)

(𝑙)′
  , 𝑓𝑜𝑟 𝑙 = 1,… , 𝐿 − 1  (6.5.29) 

 

The adjustment of model parameters 𝜃 during the training phase is proportionate to the 

estimated error, i.e., the value ∇𝜃 of the gradient calculated with respect to certain 

parameter, and to the learning rate 𝜂. The adjustment can be expressed as 

𝜃 ← 𝜃 − 𝜂∇𝜃𝐿   (6.5.30) 

Parameters setting 

For the purposes of this study, one-, two- and three-layer feed-forward neural network 

will be examined, i.e., with zero, one and two hidden layers, respectively. It should be 

noted that the classification with the one-layer neural network is equivalent to a simple 

logistic regression. The hyperbolic tangent is used as an activation function in the hidden 

layers. Given the output is categorized into 10 classes, the softmax function is used as an 

activation function in the output layer. Thus, the topology of the examined networks can 

be expressed as (𝑑1, 10), (𝑑1, 𝑑2, 10) and (𝑑1, 𝑑2, 𝑑3, 10), where 𝑑1 = 𝑑2 = 𝑑3 =

𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑖𝑛𝑝𝑢𝑡 𝑣𝑎𝑟𝑖𝑎𝑏𝑙𝑒𝑠. 

The Adam algorithm, which combines benefits of Momentum (equations 6.5.31 and 

6.5.32) as well as Adaptive Learning Rate (equations 6.5.33 and 6.5.34), is used as an 

optimizer [45].  

𝑚𝑡 = 𝛽1𝑚𝑡−1 + (1 − 𝛽1)∆𝑡                                          (6.5.31) 

𝜃𝑡 = 𝜃𝑡−1 + 𝜂𝑚𝑡                                                     (6.5.32) 

where 𝑚𝑡 is the estimate of momentum, i.e., first moment of gradient ∆, 𝛽1 is a hyper-

parameter which takes values from 0 to 1, 𝜃𝑡 is the vector of model parameters and 𝜂 is 

the learning rate. 

𝑣𝑡 = 𝛽2𝑣𝑡−1 + (1 − 𝛽2)∆𝑡
2                                            (6.5.33) 

𝜃𝑡 = 𝜃𝑡−1 − 𝜂
∆𝑡

√𝑣𝑡 + 휀
 ,   (6.5.34) 
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where 𝑣𝑡 is the estimate of second moment of gradient ∆, 𝛽2 and 휀 are other hyper-

parameters. Bias-corrected first and second moment estimates are thereafter computed as 

follows 

�̂�𝑡 =
𝑚𝑡

1 − 𝛽1
𝑡 (6.5.35) 

𝑣𝑡 =
𝑣𝑡

1 − 𝛽2
𝑡 (6.5.36) 

When combining the equations above, the Adam optimizer can be expressed as 

𝜃𝑡 = 𝜃𝑡−1 − 𝜂
�̂�𝑡

√𝑣𝑡 + 휀
   (6.5.37) 

Learning is processed in maximum of 200 epochs. In case there is no improvement of the 

testing loss detected in fifty consecutive iterations, the model training is preliminary 

stopped before the maximum number of epochs is reached. Learning rate is set to 0.001, 

𝛽1 and 𝛽2 is set to 0.9 and 0.999 respectively, and epsilon equals 10 −7. 

Sparse categorical cross entropy, allowing multi-class classification without data 

transformation to one-hot encoding, is used as the loss function [46]. 

6.6 Long Short-Term Memory 

Recurrent neural network (RNN) differs from the feed-forward structure by the use of a 

hidden layer with an autoregressive component; let us denote it ℎ𝑡−1. A particular type of 

RNN called long short-term memory (LSTM) allows a network to learn which of the 

previous states can be forgotten [47].  

 

Figure 6.4: Hidden layer of a long short-term memory model 

The hidden state is generated by another hidden cell state 𝑐𝑡, which allows the model to 

remember long-term dependencies. Output is generated as  

ℎ𝑡 = 𝑜𝑡 ∗ tanh(𝑐𝑡)                                                   (6.6.1) 

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑘𝑡                                                (6.6.2) 

𝑘𝑡 = tanh (𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐),                                         (6.6.3) 
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where ∗ denotes the pointwise multiplication, while 𝑓𝑡 ∗ 𝑐𝑡−1 represents the long-range 

dependence. 

State equations can be expressed as 

(
𝑓𝑡
𝑖𝑡
𝑜𝑡

) = 𝜎(𝑊𝑐[ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐),   (6.6.4) 

where 𝑓𝑡, 𝑖𝑡 and 𝑜𝑡 are input, forget and output states [25]. 

Parameters setting 

For the purposes of this study, a network with one hidden LSTM layer consisting of 𝑑 

neurons is used, where 𝑑 is a number of input variables. The 14-day time window was 

exploited to predict the target class. Also in this case, the Adam optimizer with the same 

set of hyper-parameters is utilized, learning is processed in maximum of 200 epochs, and 

sparse categorical cross entropy is used as the loss function.  

6.7 Support Vector Classifier 

Since the 1990´s, when support vector machines (SVMs) were introduced by Vapnik and 

his colleagues [48] [49] [50], they have gained substantial importance, mainly due to their 

strong generalization abilities and empirical performance, as well as their advantageous 

mathematical representations and the possibility of geometrical explanations [51] [52]. 

As will be demonstrated, SVMs utilize the transformation of the task into a higher-

dimensional space where classes are linearly separable. The use of linear classification 

makes them more robust, easier to train, and less prone to over-fitting. In this way, SVMs 

often combine the advantages of more complex techniques, while preserving lower 

computational requirements [51] [52]. 

6.7.1 Linear SVM (primal problem) 

The objective of the task is to maximize the minimum distance between the separating 

hyperplane and all points, i.e., SVM is considered a ’maximum margin classifier’. In the 

following paragraph, two different types of margin will be discussed [53]. 

Let us assume, prediction is correct if  

𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏) > 0                                        (6.7.1) 

the bigger value on the left-hand side of the equation, the higher confidence of prediction. 

Let us denote 𝛾(𝑖)a functional margin, which quantifies the prediction confidence. 

𝛾(𝑖) = 𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏)                                      (6.7.2) 
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Let us also define the functional margin with respect to the training set 𝐷 =

{(𝑥1, 𝑦1),… , (𝑥𝑁 , 𝑦𝑁)} 

𝛾 = min
𝑖=1,…,𝑁

𝛾(𝑖)                                              (6.7.3) 

The magnitude of the functional margin is dependent on the scale of 𝑤 and 𝑏. Thus, it is 

also convenient to define the geometric margin 𝛾(𝑖), which expresses the actual distance 

between the line and a data point. The relationship between geometric and functional 

margins can be expressed as 

𝛾(𝑖) =
𝛾(𝑖)

‖𝑤‖
)   (6.7.4) 

In a similar way we define a geometric margin with respect to training set                           

𝐷 = {(𝑥1, 𝑦1),… , (𝑥𝑁 , 𝑦𝑁)} 

𝛾 = min
𝑖=1,…,𝑁

𝛾(𝑖)                                             (6.7.5) 

Consequently, the objective of the linear SVM classification can be defined as 

max  𝛾
𝛾,𝑤,𝑏

                                                    (6.7.6) 

𝑠. 𝑡.  𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏) ≥ 𝛾, ∀𝑖 = 1,… ,𝑁                          (6.7.7) 

The objective can also be rewritten to more convenient form 

min
1

2
‖𝑤‖2

𝑤,𝑏

                                                (6.7.8) 

𝑠. 𝑡.  𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏) ≥ 1, ∀𝑖 = 1,… ,𝑁                          (6.7.9) 

To get the ’Soft-Margin SVM’ we introduce a slack variable 𝜉, which enables to meet 

optimization constrains even if a few points are misclassified, i.e., it acts as a 

misclassification penalty, and in this way reduces the likelihood of overfitting. 

min
𝑤,𝑏

1

2
‖𝑤‖2 + 𝐶∑𝜉(𝑖)

𝑁

𝑖=1

 (6.7.10) 

𝑠. 𝑡. 𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏) ≥ 1 − 𝜉(𝑖), ∀𝑖 = 1,… ,𝑁 (6.7.11) 

𝜉(𝑖) ≥ 0, ∀𝑖 = 1,… ,𝑁 (6.7.12) 

If 𝜉(𝑖) = 0, the point is either on the margin or further away, i.e., is correctly classified. 

If 0 < 𝜉(𝑖) < 1, the point is inside the margin boundaries, but is correctly classified. And 

for 𝜉(𝑖) > 1, the point is on the wrong side of the decision boundary, i.e., is misclassified 

[54]. 
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From the above mentioned, it is apparent that loss function for the linear SVM can be 

defined as a sum of the large weights penalty and the misclassification penalty. So called 

Hinge loss function can be also seen as an approximation of the logistic loss function 

𝐿𝑜𝑠𝑠 =
1

2
𝑤𝑇𝑤+𝐶∑max (0, 1 −

𝑁

𝑖=1

𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏))   (6.7.13) 

Gradient decent method is used for estimation of model parameters. Note that only 

samples which violate the margin contribute to the gradient 

∇𝑤𝐿 = 𝑤 − 𝐶 ∑ 𝑦(𝑖)𝑥(𝑖)

𝑖:𝜉(𝑖)>0

 (6.7.14) 

∇𝑏𝐿 = − 𝐶 ∑ 𝑦(𝑖)

𝑖:𝜉(𝑖)>0

 (6.7.15) 

6.7.2 Non-linear SVM (dual problem) 

To transform the discussed primal problem into the corresponding dual problem, we start 

with defining a general form of Lagrangian for the following optimization task [55] [53] 

max
𝑥
𝑓(𝑥) (6.7.16) 

𝑠. 𝑡.  𝑔𝑖(𝑥) ≤ 0, ∀𝑖 = 1,… ,𝑁 (6.7.17) 

 ℎ𝑗(𝑥) = 0, ∀𝑗 = 1, … ,𝑀 (6.7.18) 

𝐿(𝑥, 𝛼, 𝜆) = 𝑓(𝑥) +∑𝛼𝑖𝑔𝑖(𝑥)

𝑁

𝑖=1

+∑𝜆𝑗ℎ𝑗(𝑥)

𝑀

𝑗=1

 (6.7.19) 

 

In this case, the parameters are estimated with the use of Karush-Kuhn-Tucker conditions. 

𝜕𝐿

𝜕𝑥𝑑
= 0, ∀𝑑 = 1,… , 𝐷 (6.7.20) 

𝜕𝐿

𝜕𝜆𝑗
= 0, ∀𝑗 = 1,… ,𝑀 (6.7.21) 

𝛼𝑖𝑔𝑖(𝑥) = 0, ∀𝑖 = 1,… ,𝑁                                   (6.7.22) 

𝑔𝑖(𝑥) ≤ 0, ∀𝑖 = 1,… ,𝑁                                    (6.7.23) 

𝛼𝑖 ≥ 0, ∀𝑖 = 1,… ,𝑁                                       (6.7.24) 
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The corresponding Lagrangian form is expressed as 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
‖𝑤‖2 +∑𝛼𝑖

𝑁

𝑖=1

[1 − 𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏)] = 

=
1

2
‖𝑤‖2 +∑𝛼𝑖

𝑁

𝑖=1

−∑𝛼𝑖

𝑁

𝑖=1

𝑦(𝑖)𝑤𝑇𝑥(𝑖) −∑𝛼𝑖

𝑁

𝑖=1

𝑦(𝑖)𝑏 
(6.7.25) 

 

From the Karush-Kuhn-Tucker conditions we can derive 

∇𝑤𝐿(𝑤, 𝑏, 𝛼) = 𝑤 −∑𝛼𝑖

𝑁

𝑖=1

𝑦(𝑖)𝑥(𝑖) = 0    ⇒     𝑤 =∑𝛼𝑖

𝑁

𝑖=1

𝑦(𝑖)𝑥(𝑖) (6.7.26) 

∇𝑏𝐿(𝑤, 𝑏, 𝛼) =∑𝛼𝑖

𝑁

𝑖=1

𝑦(𝑖) = 0 (6.7.27) 

After substitution of equation 6.7.26 and 6.7.27 into the Lagrangian, we get the definition 

of the dual problem. Note that there is only one unknown variable, i.e., alpha. 

𝐿(𝑤, 𝑏, 𝛼) =
1

2
𝑤𝑇𝑤 +∑𝛼𝑖

𝑁

𝑖=1

− 𝑤𝑇𝑤 =∑𝛼𝑖

𝑁

𝑖=1

−
1

2
𝑤𝑇𝑤 =

=∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝑦(𝑖)𝑦(𝑗)𝑥(𝑖)𝑇𝑥(𝑗) (6.7.28) 

max
𝛼
∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝑦(𝑖)𝑦(𝑗)𝑥(𝑖)𝑇𝑥(𝑗) (6.7.29) 

𝑠. 𝑡. 𝛼𝑖 ≥ 0, ∀𝑖 = 1,… ,𝑁 (6.7.30) 

∑𝛼𝑖

𝑁

𝑖=1

𝑦(𝑖) = 0 (6.7.31) 

 

Prediction is therefore expressed as 

𝑤𝑇𝑥 + 𝑏 =∑𝛼𝑖

𝑁

𝑖=1 

𝑦(𝑖)𝑥(𝑖)𝑇𝑥 + 𝑏 (6.7.32) 

𝑤 = ∑ 𝛼𝑖

𝑁

𝑖 𝑤ℎ𝑒𝑟𝑒 𝛼𝑖>0 

𝑦(𝑖)𝑥(𝑖) (6.7.33) 

𝑏 = 𝑦(𝑖) − 𝑤𝑇𝑥(𝑖)                                           (6.7.34) 
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At this point the only thing which is missing is the integration of a slack variable that 

allows misclassification of a few data points. The final form of the dual task is then 

derived as 

min
𝑤,𝑏

1

2
‖𝑤‖2 + 𝐶∑𝜉(𝑖)

𝑁

𝑖=1

 (6.7.35) 

𝑠. 𝑡. 𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏) ≥ 1 − 𝜉(𝑖), ∀𝑖 = 1,… ,𝑁 (6.7.36) 

𝜉(𝑖) ≥ 0, ∀𝑖 = 1,… ,𝑁 (6.7.37) 

𝐿(𝑤, 𝑏, 𝜉, 𝛼, 𝛽) =
1

2
𝑤𝑇𝑤 + 𝐶∑𝜉(𝑖) +

𝑁

𝑖=1

+∑𝛼𝑖[1 − 𝜉
(𝑖) − 𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏)]

𝑁

𝑖=1

−∑𝛽𝑖𝜉
(𝑖)

𝑁

𝑖=1

 (6.7.38) 

 

From the Karush-Kuhn-Tucker conditions we can derive 

∇𝑤𝐿(𝑤, 𝑏, 𝜉, 𝛼, 𝛽) = 𝑤 −∑𝛼𝑖

𝑁

𝑖=1

𝑦(𝑖)𝑥(𝑖) = 0    ⇒     𝑤 =∑𝛼𝑖

𝑁

𝑖=1

𝑦(𝑖)𝑥(𝑖) (6.7.39) 

∇𝑏𝐿(𝑤, 𝑏, 𝜉, 𝛼, 𝛽) =∑𝛼𝑖

𝑁

𝑖=1

𝑦(𝑖) = 0 (6.7.40) 

∇𝜉𝐿(𝑤, 𝑏, 𝜉, 𝛼, 𝛽) = 𝐶 − 𝛼𝑖 − 𝛽𝑖 = 0    ⇒     𝛼𝑖 + 𝛽𝑖 = 𝐶                 (6.7.41) 

𝛼𝑖[1 − 𝜉
(𝑖) − 𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏)] = 0                                (6.7.42) 

𝛽𝑖𝜉
(𝑖) = 0                                                      (6.7.43) 

After substitution of equations 6.7.39 and 6.7.40 into the Lagrangian we get 

max
𝛼
∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝑦(𝑖)𝑦(𝑗)𝑥(𝑖)𝑇𝑥(𝑗) (6.7.44) 

𝑠. 𝑡. 0 ≤ 𝛼𝑖 ≤ 𝐶, ∀𝑖 = 1,… , 𝑁 (6.7.45) 

∑𝛼𝑖

𝑁

𝑖=1

𝑦(𝑖) = 0 (6.7.46) 

 

The expressions 6.7.41 – 6.7.43 imply 

𝐼𝑓 𝛽𝑖 > 0, 𝑡ℎ𝑒𝑛 𝜉
(𝑖) = 0                                       (6.7.47) 

𝐼𝑓 𝛽𝑖 > 0, 𝑡ℎ𝑒𝑛 𝛼𝑖 < 𝐶                                        (6.7.48) 

𝜉(𝑖) = 0    ⇒     𝛼𝑖[1 − 𝑦
(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏)] = 0                     (6.7.49) 
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Consequently, from equations 6.7.47 – 6.7.49 we can conclude that 

0 < 𝛼𝑖 < 𝐶    ⇒     𝑦
(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏) = 1 ⇒ 𝑑𝑎𝑡𝑎 𝑙𝑖𝑒𝑠 𝑜𝑛 𝑡ℎ𝑒 𝑚𝑎𝑟𝑔𝑖𝑛 𝑙𝑖𝑛𝑒     (6.7.50) 

𝛼𝑖 = 0    ⇒     𝛽𝑖 = 𝐶 ∧  𝜉
(𝑖) = 0 ∧  1 − 𝑦(𝑖)(𝑤𝑇𝑥(𝑖) + 𝑏) < 0 

⇒ 𝑑𝑎𝑡𝑎 𝑙𝑖𝑒𝑠 𝑏𝑒𝑦𝑜𝑛𝑑 𝑡ℎ𝑒 𝑚𝑎𝑟𝑔𝑖𝑛 𝑙𝑖𝑛𝑒                         (6.7.51) 

As was shown [53], when alpha equals zero, the data lie beyond the margin line. When 

alpha lies between zero and 𝐶, the data are placed directly on the margin line. And in case 

alpha is equal to 𝐶, the data violate the margin.  

It is apparent that while the primal problem represents a 𝑚𝑖𝑛𝑚𝑎𝑥 optimization task, in 

contrast, the dual problem is expressed as a 𝑚𝑎𝑥𝑚𝑖𝑛 optimization 

𝑝𝑟𝑖𝑚𝑎𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 ~min
𝑤,𝑏

max
𝛼
𝐿(𝑤, 𝑏, 𝛼)                      (6.7.52) 

𝑑𝑢𝑎𝑙 𝑝𝑟𝑜𝑏𝑙𝑒𝑚 ~max
𝛼
min
𝑤,𝑏

𝐿(𝑤, 𝑏, 𝛼),                       (6.7.53) 

where min
𝑤,𝑏

max
𝛼
𝐿(𝑤, 𝑏, 𝛼) is always bigger or equal than max

𝛼
min
𝑤,𝑏

𝐿(𝑤, 𝑏, 𝛼). 

6.7.3 Kernel Methods 

As was demonstrated in the previous chapter, the training as well as prediction phases 

can be expressed only in terms of the inner products of 𝑥. This is an important 

characteristic when we want to transform our linear SVM into a non-linear SVM by 

applying a nonlinear feature expansion, i.e., the so called Kernel Trick [52] [53].  

After replacing the inner products of 𝑥 with a kernel function 𝐾, the training phase can 

be expressed as 

max
𝛼
∑𝛼𝑖

𝑁

𝑖=1

−
1

2
∑∑𝛼𝑖𝛼𝑗

𝑁

𝑗=1

𝑁

𝑖=1

𝑦(𝑖)𝑦(𝑗)𝐾(𝑥(𝑖), 𝑥(𝑗)) (6.7.54) 

𝑠. 𝑡. 𝛼𝑖 ≥ 0, ∀𝑖 = 1,… ,𝑁 (6.7.55) 

∑𝛼𝑖

𝑁

𝑖=1

𝑦(𝑖) = 0 (6.7.56) 

 

The prediction phase is derived as 

�̂� = 𝑠𝑖𝑔𝑛 (∑𝛼𝑖

𝑁

𝑖=1 

𝑦(𝑖)𝐾(𝑥(𝑖), 𝑥) + 𝑏) (6.7.57) 
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Parameters setting 

For the purposes of this study, we will use a Gaussian kernel, also known as Radial Basis 

Function (RBF) [56].  

𝐾(𝑥, 𝑥′) = 𝑒−𝛾‖𝑥−𝑥
′‖
2

 (6.7.58) 

𝛾 =
1

𝑁𝑜. 𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠 ∙ 𝜎2
 

 

(6.7.59) 

where ‖𝑥 − 𝑥′‖2 is the Euclidean distance between two feature vectors, 𝛾 can be 

perceived as a precision (inverse variance). Therefore, higher values of 𝛾 represent the 

skinnier bell curve and vice versa.  

The Gaussian kernel corresponds to infinite-dimensional features, i.e., it can be expressed 

as infinite summation of polynomial kernels. Note that the kernel value only depends on 

the relative distance between two points, that is, it changes as we move radially outward 

[56]. Hence, it is often compared to the weighted nearest neighbour model, which was 

discussed in the previous chapter. 

6.8 Ensemble Methods 

Ensemble methods, such as random forest, bagging or boosting, are learning algorithms 

combining multiple weaker learners. Classification is then proceeded as a weighted vote 

of their predictions. Unique and highly desirable characteristics of ensemble methods is 

a convergence of its generalization error to a certain limit as the number of base models 

increases. In other words, with model complexity the train and test error decreases, i.e., 

its bias as well as variance, contrary to non-ensemble methods, for which train error 

usually decreases as test error increases [57] [58]. 

Ensemble methods typically require very little tuning as they are not that sensitive to 

choices of hyperparameters, compared to other types of machine learning techniques, for 

instance neural networks. Not only is their performance in many cases exceptional, but, 

moreover, the algorithm training is fast, does not require a lot of computational resources, 

and the results are easily interpretable [59]. 

6.8.1 Bootstrap Estimation & Bagging 

Bootstrapping is an important technique used in ensemble modelling. Essentially, it is an 

input data sampling with replacement, which can under certain conditions significantly 

reduce variance of the model, as will be demonstrated in this chapter [59]. 

Given vector 𝑥 = (𝑥1, 𝑥2, … , 𝑥𝑛), 𝜃𝑖 is defined as a sample with replacement from 𝑥 of 

size 𝑁, for 𝑖 = 1…𝐵. 
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As presented below, the expected value of the bootstrapped parameter is equal to the 

parameter 

𝐸[�̅�𝐵] = 𝐸 [
1

𝐵
∑𝜃𝑖

𝐵

𝑏=1

] = 𝐸 [
1

𝐵
(𝜃1 +⋯+ 𝜃𝐵)] =

1

𝐵
𝐵𝐸[𝜃] = 𝜃, (6.8.1) 

where �̅�𝐵 is a sample mean of resampled sample means, and 𝜃𝑖 is a sample mean of 

bootstrap sample 𝑖. 

Given a mean 𝜇 of 𝜃, correlation 𝜌 between bootstrap samples 𝜃𝑖 and 𝜃𝑗 , and variance 𝜎2 

of 𝜃𝑖, can be defined as 

𝜇 = 𝐸[𝜃] (6.8.2) 

𝜌 = 𝑐𝑜𝑟𝑟(𝜃𝑖 , 𝜃𝑗) =
𝐸[(𝜃𝑖 − 𝜇)(𝜃𝑗 − 𝜇)]

𝜎2
=
𝐸[𝜃𝑖𝜃𝑗] − 𝜇

2

𝜎2
 (6.8.3) 

𝜎2 = 𝑣𝑎𝑟(𝜃𝑖) = 𝐸 [(𝜃𝑖 − 𝜇)
2
] = 𝐸 [𝜃𝑖

2
] − 𝜇2 (6.8.4) 

The expression of 𝑣𝑎𝑟 will be simplifier by using substitution 𝑆𝐵. 

𝑆𝐵 =∑𝜃𝑖

𝐵

𝑖=1

 (6.8.5) 

�̅�𝐵 =
1

𝐵
𝑆𝐵 (6.8.6) 

𝑣𝑎𝑟(�̅�𝐵) = 𝐸 [(
1

𝐵
𝑆𝐵 − 𝜇)

2

] =  
1

𝐵2
𝐸[(𝑆𝐵 − 𝜇𝐵)

2]

=
1

𝐵2
𝐸[𝑆𝐵

2 − 2𝜇𝐵𝑆𝐵 + 𝜇
2𝐵2] =

1

𝐵2
𝐸[𝑆𝐵

2]−𝜇2 
(6.8.7) 

𝐸[𝑆𝐵
2] = 𝐸[(𝜃1 +⋯+ 𝜃𝐵)(𝜃1 +⋯+ 𝜃𝐵)] =

= 𝐵𝐸[𝜃𝑖
2] + 𝐵(𝐵 − 1)𝐸𝑖≠𝑗[𝜃𝑖𝜃𝑗] (6.8.8) 

After substitution of 𝜌 and 𝜎2 from the equations 6.8.3 and 6.8.4, we get 

𝐸[𝑆𝐵
2] = 𝐵(𝜎2 + 𝜇2) + 𝐵(𝐵 − 1)(𝜌𝜎2 + 𝜇2) = 𝐵𝜎2 + 𝐵(𝐵 − 1)𝜌𝜎2 + 𝜇2𝐵2    (6.8.9) 

𝑣𝑎𝑟(�̅�𝐵) =
1

𝐵2
(𝐵𝜎2 + 𝐵(𝐵 − 1)𝜌𝜎2 + 𝜇2𝐵2)−𝜇2 =

1−𝜌

𝐵
𝜎2 + 𝜌𝜎2        (6.8.10) 

It is important to emphasize that for 𝜌 = 1, 𝑣𝑎𝑟(�̅�𝐵) is equal to the original variance. 

However, if there is no correlation between bootstrap samples, that is 𝜌 = 0, the variance 

decreases by factor 1 𝐵⁄ . 

The most significant advantage of bootstrapping appears when highly non-linear models 

are used, such as decision trees, which produce very irregular decision boundaries. For 

comparison, it can be shown that in the case of a linear model the correlation is defined 

as 𝜌 = 𝑁 (2𝑁 − 1)⁄ , which can be approximated by 0.5 [59]. 
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The bagging algorithm, also known as bootstrap aggregating, utilizes the bootstrap 

distribution to generate different base learners, which are then aggregated. In the case of 

classification, the voting strategy is exploited for the aggregation, i.e., the original dataset 

𝑋 is fed into the set of base models created, and the final result is the label predicted most 

frequently [60]. 

As can be shown, the probability that the 𝑖𝑡ℎ training sample is selected can be 

approximated by Poisson distribution with 𝜆 = 1, therefore, the probability that the 𝑖𝑡ℎ 

sample is chosen at least once is 1 − 1 𝑒⁄ ≈ 0.632. This means that in bagging, every 

base classifier omits approximately one third of original data samples during its training 

[60]. 

6.8.2 Stacking [59] 

Stacking is a procedure that assumes different influences of each base model, and thus, 

they are combined by weighting their output, so that better learners have higher weights 

and vice versa. 

𝑓(𝑥) = ∑ 𝑤𝑚𝑓𝑚(𝑥)

𝑀

𝑚=1

 (6.8.11) 

 

Unfortunately, it is not possible to solve the optimization task by minimizing the mean 

square error, because the probability distribution is not known, and therefore, we cannot 

estimate its expected value. 

�̂� = argmin
𝑤

𝐸𝑃𝑂𝑃 [(𝑌 − 𝑓(𝑋))
2
] = argmin

𝑤
𝐸𝑃𝑂𝑃 [(𝑌 − ∑ 𝑤𝑚𝑓𝑚(𝑋)

𝑀

𝑚=1

)

2

] =

= 𝐸𝑃𝑂𝑃 [(𝐹(𝑋)
𝑇𝐹(𝑋))

−1
𝐹(𝑋)𝑇𝑌] (6.8.12) 

As an alternative, an error over each 𝑖𝑡ℎ data pair is calculated as follows 

�̂�𝑠𝑡𝑎𝑐𝑘 = argmin
𝑤

∑(𝑦𝑖 − ∑ 𝑤𝑚𝑓𝑚
−𝑖(𝑥𝑖)

𝑀

𝑚=1

)

2𝑁

𝑖=1

 (6.8.13) 

 

where 𝑓𝑚
−𝑖(𝑥𝑖) is the 𝑚𝑡ℎ model, which is trained on all input data except (𝑥𝑖, 𝑦𝑖). 

Similarly to SVM, this problem leads to a quadratic programming task 

min∑(𝑦𝑖 − ∑ 𝑤𝑚𝑓𝑚
−𝑖(𝑥𝑖)

𝑀

𝑚=1

)

2𝑁

𝑖=1

 (6.8.14) 

𝑠. 𝑡. 𝑤𝑚 ≥ 0, ∀𝑚 = 1,… ,𝑀 (6.8.15) 

∑ 𝑤𝑚

𝑀

𝑚=1

= 1 (6.8.16) 



 45  

 

6.8.3 Random Forest 

Random forest is an extension of bagging procedure and is usually referred to as one of 

the state-of-the-art ensemble methods.  

It also aims to reduce the correlation between base models, i.e., create a set of decorrelated 

trees and, in this way, reduce model variance. For this purpose, not only samples, but also 

features, are randomly chosen for training. The randomized feature selection is one of the 

main differences which distinguishes random forest from bagging and usually helps it 

achieve better performance during the training stage as well as lower test error [60]. 

From a structural perspective, decision tree is a set of nested if-statements of arbitrary 

depth splitting space orthogonally to axes of the coordinate system. At each node, a 

sample with replacement 𝜃𝑏 is first chosen from the input data, and then 𝑑 features are 

randomly selected. For the purposes of classification, it is recommended that the number 

of chosen features is equal to floor of √𝐷. Based on a preferred criterion, the best split is 

determined, for example, utilizing the maximum information gain objective. The process 

is repeated until a terminal node or specified maximum depth is reached [61]. 

6.8.4 Information Entropy & Information Gain [60] 

At each non-leaf tree node, the information gain criterion is employed to select a split, 

which maximizes reduction of model uncertainty. Therefore, we define entropy, a 

measure of how much information we get from finding the value of the random variable. 

Given a training set 𝑋, the entropy is expressed as 

𝐻(𝑋) = −∑𝑃(𝑦|𝑋) log𝑏 𝑃(𝑦|𝑋)

𝑦∈𝑌

 (6.8.17) 

 

where logarithm base 𝑏 is usually set to 2. 

Let the training set 𝑋 be divided into subsets 𝑋1, … , 𝑋𝑘, then the information gain of 𝑋 is 

defined as a reduction of information entropy 

𝐼𝐺(𝑋; 𝑋1, … , 𝑋𝑘) = 𝐻(𝑋) −∑
|𝑋𝑘|

|𝑋|
𝐻(𝑋𝑘)

𝑘

𝑖=1

 (6.8.18) 

Hence, the feature-value pair with the largest information gain is selected for a split. If 

the information gain is equal to zero, it means that there is no gain from splitting the node, 

and consequently, the node should be made a leaf. 

As the definition suggests, features which acquire a lot of different values are favoured, 

disregarding their factual influence on the classification. To battle this issue, some of the 

algorithms use a gain ratio instead of the information gain criterion, which normalizes 

the number of feature values, and in this way prioritize among features with information 

gains that are better than average. 
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𝐺𝑅(𝑋; 𝑋1, … , 𝑋𝑘) = 𝐼𝐺(𝑋; 𝑋1, … , 𝑋𝑘) ∙ (−∑
|𝑋𝑘|

|𝑋|
log
|𝑋𝑘|

|𝑋|

𝑘

𝑖=1

)

−1

 (6.8.19) 

 

One of the most popular criterions used for split selection is maximization of Gini index. 

𝐺(𝑋; 𝑋1, … , 𝑋𝑘) = 𝐼(𝑋) −∑
|𝑋𝑘|

|𝑋|
𝐼(𝑋𝑘)

𝑘

𝑖=1

 (6.8.20) 

𝐼(𝑋) = 1 −∑𝑃(𝑦|𝑋)2

𝑦∈𝑌

 (6.8.21) 

Parameters Setting 

The number of trees in the random forest was set by our empirical analysis at 100. When 

building the trees, a bootstrap sampling is applied. The maximum depth of the tree was 

not limited, i.e., the nodes were expanded until all leaves were pure, or until the minimum 

of two samples was reached. The Gini impurity is used as a criterion for split selection, 

and the number of features considered for the best split was set to the square root of the 

number of features. 

6.8.5 AdaBoost 

AdaBoost, short for adaptive boosting, is one of the most powerful ensemble methods in 

existence. The main objective of ensemble methods usually is to create a low bias and 

high variance base models; on the contrary, AdaBoost aims to create high bias base 

learners with accuracy around 50% to 60%. The premise is that by combining many 

relatively weak and inaccurate learners, a model with high prediction power can be 

obtained. A decision stump, which divides space into two parts, or logistic regression are 

examples of the most used weak learners [58]. 

Formally, the model is defined as [59] 

𝐹𝑀(𝑥) = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑚𝑓𝑚(𝑥)

𝑀

𝑚=1

), (6.8.22) 

 

where 𝐹𝑀 is the ensemble model with 𝑀 base learners and 𝑓𝑚 is the 𝑚𝑡ℎ base learner, 

which is weighted by 𝛼𝑚. 

Contrary to random forest, the AdaBoost model is trained on all data samples without 

utilizing any bootstrapping technique. Instead, a weight 𝑤𝑖, ∀𝑖 = 1,… ,𝑁 representing 

significance is assigned to every sample. If the 𝑦𝑖 is incorrectly classified based on 𝑥𝑖 

during training, the 𝑤𝑖 is increased and vice versa. After training, the base model error 

weighted by 𝑤𝑖 is estimated, and then the weight 𝛼𝑚 is derived as a function of the error 

[58].  
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휀𝑚 =
∑ 𝑤𝑖𝐼(𝑦𝑖 ≠ 𝑓𝑚(𝑥𝑖))
𝑁
𝑖=1

∑ 𝑤𝑖
𝑁
𝑖=1

 (6.8.23) 

𝛼𝑚 =
1

2
ln (

1 − 휀𝑚
휀𝑚

) (6.8.24) 

 

If the prediction is correct, i.e., 𝑦𝑖 = 𝑓𝑚(𝑥𝑖), 𝑤𝑖 is decreased and vice versa. 

𝑤𝑖 = 𝑤𝑖 exp(−𝛼𝑚𝑦𝑖𝑓𝑚(𝑥𝑖)) , 𝑖 = 1,… ,𝑁                    (6.8.25) 

Then 𝑤𝑖 is normalized. 

𝑤𝑖 =
𝑤𝑖

∑ 𝑤𝑗
𝑁
𝑗=1

 (6.8.26) 

 

The additive model is fitted with the use of forward stagewise additive modelling 

algorithm. At each stage, a new base model is added without modifying the existing base 

learners [59].  

(𝛼𝑚
′ , 𝜃𝑚

′ ) = argmin
𝛼𝑚,𝜃𝑚

∑𝐿(𝑦𝑖, 𝐹𝑚−1(𝑥𝑖) + 𝛼𝑚𝑓𝑚(𝑥𝑖, 𝜃𝑚))

𝑁

𝑖=1

 (6.8.27) 

𝐹𝑚(𝑥) = 𝐹𝑚−1(𝑥) + 𝛼𝑚
′ 𝑓𝑚(𝑥, 𝜃𝑚) (6.8.28) 

 

where 𝐿 is the loss function, 𝑓𝑚 is the 𝑚𝑡ℎ base model, and 𝐹(𝑥) is the full model. 

For the model parameters estimation, AdaBoost usually greedily minimizes the 

exponential loss function 

𝐿(𝑦, 𝑓(𝑥)) = 𝑒𝑥𝑝(−𝑦𝑓(𝑥))                                  (6.8.29) 

If the prediction is correct, i.e., the sign of 𝑓(𝑥) is the same as the correct label 𝑦, the loss 

function is very small, if not, the loss function acquires a great value [60]. 

After substitution of loss function into the equation, the following expression is obtained 

(𝛼𝑚
′ , 𝑓𝑚

′ ) = argmin
𝛼𝑚,𝑓𝑚

∑exp{−𝑦𝑖(𝐹𝑚−1(𝑥𝑖) + 𝛼𝑚𝑓𝑚(𝑥𝑖))} =

𝑁

𝑖=1

= argmin
𝛼𝑚,𝑓𝑚

∑exp{−𝑦𝑖𝐹𝑚−1(𝑥𝑖)} + exp{−𝑦𝑖𝛼𝑚𝑓𝑚(𝑥𝑖)}

𝑁

𝑖=1

=

= argmin
𝛼𝑚,𝑓𝑚

∑𝑤𝑖
(𝑚)

exp{−𝑦𝑖𝛼𝑚𝑓𝑚(𝑥𝑖)}

𝑁

𝑖=1

 (6.8.30) 
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𝐽 =∑exp{−𝑦𝑖(𝐹𝑚−1(𝑥𝑖) + 𝛼𝑚𝑓𝑚(𝑥𝑖))} =

𝑁

𝑖=1

=∑exp{−𝑦𝑖𝐹𝑚−1(𝑥𝑖)} + exp{−𝑦𝑖𝛼𝑚𝑓𝑚(𝑥𝑖)}

𝑁

𝑖=1

=

= 𝑒−𝛼𝑚 ∑ 𝑤𝑖
(𝑚)

+ 𝑒𝛼𝑚 ∑ 𝑤𝑖
(𝑚)

𝑦𝑖≠𝑓𝑚(𝑥𝑖)𝑦𝑖=𝑓𝑚(𝑥𝑖)

 (6.8.31) 

After substituting the summations and setting the derivative of 𝐽 with respect to 𝛼 to zero, 

we get the expression for 𝛼 [59]. 

𝜕𝐽

𝜕𝛼
= 𝑒−𝛼𝑚𝐴 + 𝑒𝛼𝑚𝐵 = 0 (6.8.32) 

 

where A is the weighted number of correct predictions, and B is the weighted number of 

incorrect predictions. 

After solving the equation, the formula 6.8.24 was proven 

𝛼𝑚 =
1

2
ln (

𝐴

𝐵
) =

1

2
ln (

1 − 휀𝑚
휀𝑚

) (6.8.33) 

 

Parameters Setting 

Two hundred base learners, i.e., decision trees with maximum depth of 2, are utilized in 

the case of AdaBoost classification. Specifically, the SAMME.R real boosting algorithm, 

which was designed particularly for the purposes of multi-class classification problem 

with 𝐾 classes is exploited as follows [62] 

1. Initialization of the observation weights 𝑤𝑖 =
1
𝑛⁄ , 𝑖 = 1,2, … , 𝑛 

2. From m=1 to M: 

(a) A classifier 𝑓𝑚(𝑥) is fitted to the training data by adjustment of weights 𝑤𝑖 

(b) The weighted class probability estimates are obtained as follows 

𝑝𝑚,𝑘(𝑥) = 𝑃𝑤(𝑐 = 𝑘|𝑥), 𝑘 = 1,… , 𝐾                  (6.8.34) 

(c) Set 

ℎ𝑚,𝑘(𝑥) ← (𝐾 − 1)(𝑙𝑜𝑔 𝑝𝑚,𝑘(𝑥) −
1

𝐾
∑𝑙𝑜𝑔 𝑝𝑚,𝑘′(𝑥)

𝑘′

) , 𝑘 = 1, … , 𝐾 (6.8.35) 

where ℎ𝑚,𝑘(𝑥) is the solution of Lagrange for minimizing the exponential loss of 

𝐾-class classification problem 

𝑚𝑖𝑛
ℎ(𝑥)

𝐸 [𝑒𝑥𝑝 (−
1

𝐾
𝑦𝑇(𝑓𝑚−1(𝑥) + ℎ(𝑥))) |𝑥] (6.8.36) 

𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜 ℎ1(𝑥) + ⋯+ ℎ𝐾(𝑥) = 0                     (6.8.37) 
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(d) Set 

𝑤𝑖 ← 𝑤𝑖 ∙ 𝑒𝑥𝑝 {−
𝐾 − 1

𝐾
𝑦𝑖
𝑇 𝑙𝑜𝑔 𝑝(𝑚)(𝑥𝑖)} , 𝑖 = 1,… , 𝑛 (6.8.38) 

 

(e) Renormalization of 𝑤𝑖 

3. Calculation of output 

𝐶(𝑥) = 𝑎𝑟𝑔𝑚𝑎𝑥
𝑘

∑ ℎ𝑚,𝑘(𝑥)

𝑀

𝑚=1

 (6.8.39) 

6.9 Programming Environment 

Data classification was proceeded in a Python programming environment. In case of k-

nearest neighbor, Gaussian naive Bayes, random forest and AdaBoost, calculations were 

processed with the use of scikit-learn software machine learning library. Feed forward as 

well as recurrent neural networks were computed utilizing the Keras software that covers 

implementation of frequently used neural-network building blocks, such as layers, 

objectives, activation functions and optimizers. Keras acts as an interface for the 

TensorFlow library. Subsequent data analysis was processed in the Microsoft Office 

Suite. 

6.10 Simulation of Price Fixing 

Prices which were estimated to belong to the 1st and 2nd categories, representing a very 

strong buy signal, will be utilized with highest priority for the purposes of the simulated 

price fixing procedure. However, in case the examined model does not distinguish any 

prices as the strong buying opportunity in the first two quarters of the respective year, the 

third class is considered for the price fixing, and in case none of those is distinguished 

during the first three quarters, the fourth category is taken into account. If the procedure 

fails and no buying signal is recognized, price fixing is automatically proceeded 15 days 

before the end of contract expiry, as it is a common practice. 
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7 RESULTS 

Based on empirical research conducted, the most relevant variables were estimated to be 

the absolute value of Czech power price, a year-to-date minimum and maximum price of 

Czech power, the clean spark spread and the clean dark spread, i.e., the vector of input 

variables unites fundamental as well as technical indicators, and can be defined as 𝑥 =

(𝑥𝐶𝑍_𝑝𝑜𝑤𝑒𝑟, 𝑥min _𝑌𝑇𝐷, 𝑥max _𝑌𝑇𝐷 , 𝑥𝐶𝑆𝑆, 𝑥𝐶𝐷𝑆). Due to the nature of the task, the model 

parameters were recalculated at the turn of each year, when one fixing period ends, and 

the respective contract goes into delivery, as specified earlier in Chapter 6.1, Figure 6.2. 

7.1 Evaluation Metrics 

While solving a classification task, the commonly used evaluation metric is a percentage 

of correctly classified data, i.e., accuracy. However, in case of a multinominal 

classification problem, which can be perceived as a generalization of logistic regression, 

it is highly beneficial to calculate other types of evaluation metrics, which are commonly 

used in the context of estimating continuous output, such as mean absolute error (MAE), 

mean square error (MSE) or root mean square error (RMSE). Furthermore, confusion 

matrices will be presented, allowing a deeper understanding of the model generalization 

abilities. 

For the purposes of this study, model estimates need to be evaluated not only from a 

quantitative but also from qualitative perspective. Even when low prediction accuracy is 

achieved, the model could still offer a significant improvement in the context of price 

fixing. However, in this case, the RMSE should be lower than 4, considering the number 

of output classes. Thus, in the following chapter accuracy as well as RMSE are 

scrutinized. To fully demonstrate the generalization abilities of the models, accuracy with 

the error tolerance of one class is also examined. 

7.2 Prediction Performance 

To ensure a sufficient number of data samples for model training, the prediction 

performance is evaluated mainly with the emphasis on later fixing periods, specifically, 

aggregated statistics for years 2016 till 2020 were calculated. As indicated in Chapter 4, 

year 2021 was also avoided for the evaluation purposes because of the ongoing 

unprecedented changes in causalities of the pricing mechanisms, which took place 

especially in the second half of that year. It corresponds to the results obtained, showing 

that none of the investigated methods was able to provide a satisfactory prediction 

performance in that year. 

Even though the testing accuracies might seem relatively low at first sight, considering 

the number of classes the predictions are far away from a random selection, as will be 

thoroughly discussed in this chapter. Table 7.2, which shows the validation accuracy of 

models with error tolerance of one class, provides further evidence of the solid prediction 
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performance of the methods. Additionally, it is important to emphasize that due to the 

nature of defined task, results of simulation of power purchase are primarily sensitive to 

correct estimation of strong buy trading signals; however, if strong sell signal is falsely 

detected, it is not reflected in the results of simulation. 

Upon examination of Tables 7.1, 7.2 and 7.3, it is apparent that the model accuracy and 

the RMSE do not necessarily improve with increasing complexity of the model structure. 

In terms of the highest accuracy, naive Bayes, 1-, 2- and 3-layer feed forward neural 

network, AdaBoost and long short-term memory show the best prediction performance, 

i.e., its average between years 2016 and 2020 varies from 23.7% to 32.9%. Their qualities 

are further emphasized by the results of validation accuracy with an error tolerance of one 

class, which spans from 58% to 68%. As expected, RMSE of these methods also acquire 

low values between 1.66 and 2.13. Although the k-nearest neighbor, support vector and 

random forest classifier show rather below the average accuracy compared to the other 

techniques, looking at the RMSE, they provide good results of 1.81, 2.25 and 2.18 

respectively, and thus require our further attention.  

Especially the long short-term memory shows exceptional performance compared to any 

other method, which is manifested in excellent, and more importantly much more 

consistent, prediction accuracy as well as low RMSE throughout the whole dataset. 

As can be seen in Table 7.1, the random forest is heavily overfitted during the training 

phase. Assuming a convergence of the generalization error of the ensemble methods to a 

certain limit as the number of base models increases, the complexity of the structure of 

the ensemble models was intentionally boosted, and thus low training error was expected. 

Nevertheless, contrary to our premise, the testing error was not considerably improved, 

neither in the case of random forest, nor AdaBoost. Significant difference between 

training and testing error can also be observed when k-nearest neighbor and support 

vector classifier algorithms were utilized, implying a non-negligible degree of overfitting, 

and, therefore, lower generalization capabilities. Training and testing accuracies for 

different types of neural networks and naive Bayes seem to be in proportion with our 

expectations.  
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Even though some of the methods might be favoured based on the discussed accuracy 

measures, their generalization ability still must be thoroughly examined. Hence, 

confusion matrixes of the classification results in the period 2016-2020 are presented in 

Figures 7.1 – 7.10.  

As can be observed, even though the relative strength index maps the distribution of 

classes decently, it does not capture sufficiently the extremes, which is a crucial feature 

in the case of this specific task. This is reflected during the simulation of price fixing, 

when relative strength index offers on average the worst savings compared to the usual 

fixing procedure, both in relative (-8.6%) and absolute terms (-3.48 EUR/MWh). 

K-nearest neighbor as well as naive Bayes show reasonable accuracy and generalization 

abilities (see Figures 7.2 and 7.3), despite the exceptional simplicity of the algorithms. 

The average cost reduction lies in the range of 10%-11%, which implies average savings 

of around -4 EUR/MWh in the period 2016-2020. 

Despite the fact that the support vector classifier displays slightly worse RMSE and 

accuracy among the other presented methods, its generalization abilities, especially for 

the marginal classes, seem to be one of the best (see Figure 7.4). The average savings 

calculated between years 2016 and 2020 in this case achieve a value of -11.2%, which 

corresponds to -4.20 EUR/MWh. 

The ensemble methods, namely random forest and AdaBoost, represents another group 

of algorithms examined. As in the case of the support vector classifier, these also show 

slightly worse results in terms of accuracy and RMSE. However, random forest does a 

great job in capturing the extremes of the distribution of classes, as is documented in 

Figure 7.5, resulting in average savings of -11.4%, i.e., -4.26 EUR/MWh. Even though 

AdaBoost is often thought of as one of the best out-of-box classifiers, its prediction 

performance is one of the worst from all the methods analysed. As presented in Figure 

7.6, it maps the marginal classes very poorly, which is reflected in lower average savings 

of -9.9%, i.e., -3.81 EUR/MWh. 

The last and largest group of algorithms examined are neural networks. Figures 7.7 – 7.10 

show a superior prediction performance of 1-, 2-, and 3-layer feed forward neural 

network, and long short-term memory, compared to the other models. Between years 

2016 and 2020, the average savings for the 1-, 2- and 3- layer neural network would reach 

-11.6% (-4.42 EUR/MWh), -11.4% (-4.23 EUR/MWh) and -11.4% (-4.32 EUR/MWh), 

respectively. Although the benefits connected to price fixing are comparable for these 

methods, the more complex structures seem to offer better generalization abilities, as 

demonstrated by one of the highest classification accuracies and the lowest RMSE 

achieved. Furthermore, there are other considerable differences which should be taken 

into account. First, contrary to the 1-layer neural network, 2- and 3- layer neural networks 

were able to provide more consistent results throughout the whole dataset. That being 

said, the 3-layer feed forward neural network unfortunately failed to provide a strong buy 

trading signal in four consecutive years (2010-2013), which is more than any other model. 
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This insufficiency represents a high risk for purposes of the subsequent price fixing 

procedure, and thus, should be adequately penalized.  

The efficiency of the optimization process can also be assessed based on the development 

of the loss function and the accuracy during the training process of neural networks. It is 

apparent that the 1-layer neural network converges to an optimum much smoother than 

the 2- and 3-layer neural network (Figures 7.11 and 7.12), and without any signs of 

overfitting. The more complex structures seem to converge to an optimum much faster, 

and approximately after the 30th iteration the models start to get overfitted, as presented 

by the increase in validation loss (see Figures 7.13 and 7.17). However, as was proved by 

additional experiments, in our case this issue can be easily eliminated by decreasing the 

learning rate value (see Figures 7.15 and 7.19), i.e., for the 2-layer neural network 

learning rate equal to 0.0005 and for 3-layer neural network learning rate of 0.0001 seems 

to be the most favourable. 

Long short-term memory achieves the highest accuracy and one of the lowest root mean-

square-error among all the examined methods. Average savings of -10.8% (-4.09 

EUR/MWh) match the exceptional generalization abilities presented in Figure 7.10. From 

the development of loss function during training it can be deduced that the long             

short-term memory is considerably less prone to overfitting than the 2- and 3-layer neural 

network (Figure 7.21).  

 

T
ru

e 
la

b
el

 

0 3 10 28 20 12 34 8 1 0 0 

1 12 5 27 23 29 18 21 11 4 0 

2 6 0 7 14 27 43 34 12 3 4 

3 1 6 21 31 49 24 29 14 8 2 

4 0 13 15 32 44 45 34 22 2 2 

5 0 4 11 15 26 28 21 18 8 1 

6 0 0 9 9 14 18 30 12 8 4 

7 0 0 5 12 13 17 26 19 8 4 

8 0 0 0 4 21 32 25 10 2 0 

9 0 0 0 0 2 4 26 19 6 2 

    0 10 20 30 40 50 60 70 80 90 

    RSI 
 

T
ru

e 
la

b
el

 

0 0 105 11 0 0 0 0 0 0 0 

1 0 48 75 25 0 2 0 0 0 0 

2 0 25 29 68 10 2 12 4 0 0 

3 0 24 14 45 17 46 10 1 28 0 

4 0 15 28 3 38 15 79 0 31 0 

5 0 9 3 0 32 44 17 15 3 9 

6 0 2 5 2 17 30 33 10 0 5 

7 0 0 7 0 6 10 49 23 0 9 

8 0 0 0 0 3 2 33 32 0 24 

9 0 0 0 0 2 2 13 32 0 10 

    0 1 2 3 4 5 6 7 8 9 

    Predicted label 
 

 

Figure 7.1: Classification with relative strength index 

 

Figure 7.2: Classification with k-nearest neighbor 
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Figure 7.3: Classification with naive Bayes Figure 7.4: Classification with support vector classifier 
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Figure 7.5: Classification with random forest Figure 7.6: Classification with AdaBoost 
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Figure 7.7: Classification with one-layer feed forward 

neural network 

Figure 7.8: Classification with two-layer feed forward 

neural network 
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Figure 7.9: Classification with three-layer feed forward 

neural network 

Figure 7.10: Classification with long short-term memory 

 

  
Figure 7.11: Development of loss function during the 

training and validation phase of 1-layer neural network 

(lr=0.001) 

Figure 7.12: Development of accuracy during the 

training and validation phase of 1-layer neural network 

(lr=0.001) 
 

  
Figure 7.13: Development of loss function during the 

training and validation phase of 2-layer neural network 

(lr=0.001) 

Figure 7.14: Development of accuracy during the 

training and validation phase of 2-layer neural network 

(lr=0.001) 
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Figure 7.15: Development of loss function during the 

training and validation phase of 2-layer neural network 

(lr=0.0005) 

Figure 7.16: Development of accuracy during the 

training and validation phase of 2-layer neural network 

(lr=0.0005) 
 

  
Figure 7.17: Development of loss function during the 

training and validation phase of 3-layer neural network 

(lr=0.001) 

Figure 7.18: Development of accuracy during the 

training and validation phase of 3-layer neural network 

(lr=0.001) 
 

 
 

Figure 7.19: Development of loss function during the 

training and validation phase of 3-layer neural network 

(lr=0.0001) 

Figure 7.20: Development of accuracy during the 

training and validation phase of 3-layer neural network 

(lr=0.0001) 
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7.3 Simulation of Price Fixing 

The simulation of price fixing was conducted according to the procedure described in 

detail in Chapter 6.10. Unfortunately, in some cases models failed to provide a buy signal 

throughout the whole fixing period, which results in fixing at last instance, i.e., 15 

business days before the contract expiry, regardless of the actual price. These instances 

are displayed in red. However, this problem appears mainly during the first year, most 

likely due to the lack of training samples (see Table 7.4). 

As can be observed in Table 7.4, all of the investigated methods exceeded the defined 

benchmark, i.e., resulted in substantially lower cost compared to the usual price fixing 

procedure. Nevertheless, long short-term memory seems to be superior among all the 

analysed techniques. It provided exceptional results in terms of most of the criteria 

examined. It not only excelled in accuracy and RMSE statistics, but most importantly it 

offered high prediction performance with the greatest consistency. Significant 

generalization capabilities were also presented in the confusion matrix in Figure 7.10, 

which emphasized the low error of the predictions. Furthermore, long short-term memory 

managed to estimate strong buy signal in most of the years, and in this way eliminated 

risks of price fixing in the last instance. On the other hand, the disadvantages of this 

method cannot be neglected. The most prominent weaknesses are high requirements for 

programming capacity, long training time, sensitivity to initialization of parameters as 

well as limited possibility of results interpretation. Thus, utilization and maintenance of 

long short-term memory on an everyday basis might be challenging. To make the 

procedure more practical and accessible, another solution combining two methods is 

proposed and discussed in detail in the following chapter.  

  
Figure 7.21: Development of loss function during the 

training and validation phase of long short-term memory 

network (lr=0.001) 

Figure 7.22: Development of accuracy during the 

training and validation phase of long short-term 

memory network (lr=0.001) 
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7.4 Combination of Methods 

From a practical point of view, it seems highly convenient to combine a simple model 

with a more complex technique. The simple model in this case serves for an elementary 

detection of oversold market conditions on a day-to-day basis, considering its lower 

accuracy and larger variance compared to other methods. If oversold conditions are 

recognized, the trading signal will be confirmed or disproved by a complementary model 

with greater prediction performance, but larger processing requirements.  

Understandably, the relative strength index, k-nearest neighbor and naive Bayes were 

examined as potential candidates for the simple method. The greatest benefits are 

achieved when the RSI is used as the base model. Combination of RSI with other methods 

not only saves computational resources, but also results in a further small decrease in cost 

during the price fixing procedure. Table 7.5 depicts the results of price fixing using the 

combined approach as well as the percentage decrease of costs compared to classification 

with a single method. 

The benefits of the proposed combined approach during the years 2008 to 2020 are clearly 

depicted in Figure 7.23. At the first sight it is apparent that the solution offers significantly 

better results compared to the usual fixing procedure, and in most cases successfully 

detects the oversold market conditions. However, as was outlined, in the year 2021 all of 

the examined methods failed to provide sufficient classification accuracy. This year is not 

displayed to ensure better readability of the Figure 7.23. 

 

Figure 7.23: Points of the estimated price fixing (combining RSI with LSTM) 
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8 DISCUSSION 

Trading signals were estimated with the use of ten well-established methods, varying 

from simple technical analysis to more sophisticated Bayesian techniques, and finally to 

highly complex machine learning algorithms, such as ensemble methods or neural 

networks. 

Even though the list of methods might seem highly extensive, each of them provide 

significantly different advantages and disadvantages which might be relevant in the 

context of the analysed task. Due to the lack of published results connected to the 

progressive power purchase, it seemed necessary to approach the task in a complex way. 

Before the results presented above are thoroughly discussed and compared, we would like 

to dedicate a few chapters to a discussion of potential insufficiencies of the input data, as 

well as a comparison of models’ structure and loss functions, which can explain certain 

similarities and differences in performance of the methods utilized. 

8.1 Input Data 

This subchapter is dedicated to a discussion of the potential insufficiencies of the input 

data. One of the most prominent criticisms might be the difference in the timing of the 

daily settlements among different commodities and/or exchanges. Due to the fact that the 

examined settlements of prices of power are determined approximately one hour earlier 

compared to the other commodities, there might be a small distortion present among the 

relationship of these variables. Another bias might be connected to the behaviour of 

market participants, who have the ability to push the market in certain direction or hold 

prices in a certain range during the settlement period, due to their specific trading 

positions or business commitments. However, these deviations are perceived small 

enough to be considered negligible in the context of the defined task. 

Another alternative would be to utilize intraday data and track all changes of orders. This 

solution would offer more samples for model calibration and allow price fixing during 

the day. 

All of these deficiencies might be prevented by creating a separate database with 

snapshots of prices with certain time stamps, but financial as well as personal expenses 

connected to such a solution are extensive. Therefore, the presented solution based on 

daily settlement prices is perceived as a happy medium, offering a more accessible 

solution for a wider community of experts while ensuring a considerable degree of 

relevance. 
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8.2 Comparison of Models’ Structure 

Despite deep learning and AdaBoost being considered highly distinct techniques, there 

are some strong similarities that might be observed. Let us compare the base structural 

unit of both classifiers below [36] 

𝑧 = tanh (𝑊𝑇𝑥) (8.2.1) 

𝑦 = sign(𝛼𝑇𝑧)   or   tanh (𝛼𝑇𝑧) (8.2.2) 

As can be observed, neural networks are essentially networks of linear classifiers, i.e., 

each of the hidden units play a role of a logistic regressor. 

When using a linear classifier as the base learner, the AdaBoost output is defined as 

�̂� = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑚𝑠𝑖𝑔𝑛(𝑤𝑚
𝑇𝑥)

𝑀

𝑚=1

) (8.2.3) 

Notice how similar the structure of AdaBoost output is to the output of neural network.  

�̂� = 𝑠𝑖𝑔𝑛 (∑ 𝛼𝑚𝑡𝑎𝑛ℎ(𝑤𝑚
𝑇𝑥)

𝑀

𝑚=1

) 

 

(8.2.4) 

The main difference appears to be in the use of a ’hard sign’ function in the case of 

AdaBoost, which returns values -1 or +1, compared to the neural network that utilizes a 

’soft sign’ function, i.e., a hyperbolic tangent, returning values from the <-1, 1> interval. 

The output of the AdaBoost algorithm has a similar structure as the output of a neural 

network with one hidden layer. However, AdaBoost training is greedy, i.e., model 

parameters are set based on the values of the previous parameters only. In contrast, the 

aspiration of the neural network training process is to find a global optimum, thus, all 

parameters are adjusted concurrently [36].  

Surprisingly, similarities with deep learning can also be defined in the case of support 

vector classifier, which is often considered superior to perceptron because of its ability 

not only to classify data accurately, but also to separate the classes with suitable linear 

functions. On the contrary, the perceptron is navigated during training only by the 

measure of accuracy, and therefore, in many cases, the training is often terminated before 

the appropriate separating function is found [36]. 

In case the support vector classifier utilizes the sigmoid kernel (equation 8.2.5), which 

implies the 𝑡𝑎𝑛ℎ function, its structure seems to be very similar to deep learning (equation 

8.2.6). 

�̂� = 𝑠𝑖𝑔𝑛 (∑𝛼𝑖𝑦
(𝑖) tanh (𝛾𝑥(𝑖)

𝑇
𝑥 + 𝑟)⏟            

𝑖𝑛𝑝𝑢𝑡

+ 𝑏

𝑖

) (8.2.5) 
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�̂� = 𝜎 (∑𝛼𝑖 tanh(𝑤𝑖
𝑇𝑥 + 𝑟𝑖)⏟          

𝑖𝑛𝑝𝑢𝑡

+ 𝑏

𝑖

) (8.2.6) 

Let us first discuss the differences between the two expressions observed in their input. 

While 𝛾 and 𝑟 are hyperparameters chosen by the user that are static during the entire 

training process, parameters 𝑤𝑖 and 𝑟𝑖 are being derived by the gradient decent procedure, 

during which their values are dynamically changing. Next, we compare the 𝑠𝑖𝑔𝑛 function 

with the 𝑡𝑎𝑛ℎ activation function. Besides some minor differences, the hyperbolic tangent 

can be in this context interpreted as an approximation of the 𝑠𝑖𝑔𝑛 function [36]. 

8.3 Comparison of Loss Functions 

The loss functions are another important factor having a great effect on the algorithm 

efficiency during its training, and thus, will be a subject of more detailed analysis in this 

chapter. Apparently, no training in a conventional sense takes place when using RSI and 

the k-nearest neighbor, and thus no loss function is considered in these cases.  

 
Figure 8.1: Comparison of different types of loss functions 

As was verified by Domingos and Pazzani [63], contrary to the squared error loss, when 

the zero-one loss function is exploited, the naive Bayesian classifier performs quite well 

even if the independence assumption is violated by a wide margin. Consequently, in this 

case it has much broader applicability than might be expected. As it was also documented 

by the results of our study, the Gaussian Bayes classifier showed strong prediction 

performance, and strong competitiveness against much more complex methods. 

For the purposes of neural networks training, the sparse categorical entropy was utilized 

as the loss function. Due to shape of the activation function, i.e., hyperbolic tangent, the 

derivation of loss function acquires much higher values around zero, around which the 

-2

-1

0

1

2

3

4

-3 -2.5 -2 -1.5 -1 -0.5 0 0.5 1 1.5 2 2.5 3

L
o

ss

Margin

Misclassification Hinge Exponential Squared Error Cross-entropy



 69  

 

weights are initialized. As a consequence, the adjustment of the parameters at the 

beginning of training is large and decreases directly with the decrease in the magnitude 

of the prediction error, giving this loss a competitive advantage. On the contrary, the 

derivation of the mean square error loss is very small around zero, which causes 

inefficiencies and poor model performance during the first stages of training [64]. 

The support vector classifier utilizes the hinge loss, which penalizes predictions not only 

when they are false, but also when they are correct but not confident. As mentioned in 

Chapter 6.7, in practice it means that the loss function equals zero only when the sign of 

prediction and target match, and the score is bigger or equal to one. Hence, hinge loss 

strives to classify each point with the emphasis not only on the correctness of 

classification, but also on its confidence. On the contrary, the cross-entropy loss is derived 

from a maximum likelihood estimate of the model parameters. For that reason, cross 

entropy in many cases evokes a larger loss than hinge loss and might result in a less robust 

prediction efficiency [64]. 

In the context of AdaBoost algorithm, an exponential loss function was introduced, which 

converges to zero when prediction and target have the same sign, and converges to infinity 

in case the sign is opposite. Thus, it has an asymptotic effect very similar to the cross-

entropy loss function, as shown in Figure 8.1 [59]. 

8.4 Comparison of Results 

One of the most prominent observations is that the prediction efficiency did not 

necessarily improve with the increasing complexity of the technique utilized. All of the 

analysed methods exceeded the defined benchmark and achieved steadily better results 

through the vast majority of the examined years compared to the usual fixing procedure. 

It underlines the extraordinary consistency of prediction performance of all the 

investigated methods in the context of the defined task.  

Although the indication of the oversold and overbought market provided by the relative 

strength index showed the highest level of variance, the exceptional simplicity of its 

calculation and implementation certainly justifies its importance. From 2016 to 2020, 

average savings against the defined benchmark were -8.6%. This method is perceived to 

be a very useful tool for everyday usage, which offers an initial information on the market 

conditions that might serve as input for further careful analysis. 

The k-nearest neighbor represents the second simplest approach analysed in this thesis. 

Although this algorithm is very simplistic, it provided sufficient results in terms of model 

accuracy. Between the years 2016 and 2020 examined, this method achieved average 

savings of -10.9% compared to the benchmark. Nevertheless, as anticipated the 

classification was slightly more time consuming, as the complexity of brute-force 

computation of distances between all pairs of data samples approach scale of 𝑂[𝐷𝑁2]. 

Despite its large requirements on memory, this method proved to be satisfactory within 
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the scope of our task, but with increasing number of samples the brute-force approach 

might quickly become unfeasible. 

The naive Bayes classifier is our only representative of a generative model, which 

excelled by its simplicity, high training speed, and yet delivered strong prediction 

performance and average savings of -10.2%. Although the prediction by naive Bayes was 

less accurate compared to neural networks, its robustness and possibility of reasonable 

model interpretation grounded in the utilization of probabilistic approach make it a very 

powerful technique in the context of the defined task. 

The support vector classifier shows very similar generalization abilities to the naive 

Bayes, as well as benefits related to price fixing, which in this case counted for -11.2%. 

Contrary to the k-nearest neighbor, the processing of this algorithm was very fast and not 

as memory consuming. 

Ensemble methods, including random forest and AdaBoost, are often thought of as the 

best out-of-box classifiers, mainly because of the proved convergence of its 

generalization error to a specific limit. Therefore, the relatively weak prediction accuracy 

of those methods, especially in the random forest, was quite surprising. Even though the 

results of price fixing simulation show average savings of -11.4% and -9.9% respectively, 

the generalization abilities of the models are one of the worst among all the methods 

investigated. Furthermore, these algorithms are highly demanding on the time as well as 

processing costs, and results are less interpretable. 

The last group of algorithms, i.e., neural networks, achieved the best performance among 

all the methods examined in terms of prediction accuracy as well as savings against the 

defined benchmark varying from -4.09 to -4.42 EUR/MWh. However, the exceptional 

generalization capabilities are redeemed by significant processing disadvantages, such as 

high memory requirements, low training speed and sensitivity to random initiation of 

parameters. Furthermore, the interpretability of the results is highly limited. Even though 

in our case the often-inflected threat of overfitting could have been significantly mitigated 

by an adjustment of learning rate, robustness of the optimization process is generally 

lower compared to the other algorithms. Long short-term memory was determined as the 

most appropriate technique for the defined task, combining larger prediction robustness 

that is manifested in higher consistency of the above-normal results of price fixing 

simulation. The main edge that long short-term memory has compared to the other 

techniques is the presence of a feedback loop, i.e., it is able to process sequences of data 

instead of single points, recognize autocorrelation dependencies, and in this way partially 

capture time-dependent features of the process.  

Due to the significant amount of resources required by LSTM, it seems not convenient to 

use this algorithm on its own on an everyday basis. Therefore, another approach was 

proposed that combines the simplicity and low maintenance requirements of the relative 

strength index and exceptional accuracy of the long short-term memory. The combined 

approach not only saves valuable computational resources, but also proved to slightly 

increase the expected value of savings during the price fixing procedure. The average 
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savings against the defined benchmark for years 2016 to 2020 in this case count for              

-12.10%. 

Despite various techniques that were analysed to find the most beneficial solution for 

power price fixing, one important approach was left out, i.e., the progressive purchase 

managed by an expert. Although we did not have the possibility to arrange a simulation 

of such a kind, there is only a little doubt that an expert judgement would not exceed all 

the methods studied. Especially in extreme situations where causalities between variables 

can change rapidly, an expert usually offers an outstanding level of adaptability compared 

to an artificial system. However, the price of expert is also several times higher than costs 

connected to the management of an automated system. Considering the typical group of 

potential customers targeted by this study, i.e., municipalities, factories, hospitals etc., 

which generally demand a small to medium-size volume of power, the cost of expert 

seems to be excessive compared to the size of a contract. Therefore, a middle-ground 

solution offering a substantial value of savings compared to the defined benchmark 

without an excessive maintenance requirement is preferred. 

Considering an average auctioned volume in the order of tens of thousands of MWhs, the 

potential average savings while utilizing the proposed solution reach a value in the order 

of tens to hundreds of thousands of EUR per one auction in comparison to the benchmark. 

8.5 Reflection on Future Work 

Due to the exceptional advantages of long short-term memory with reference to the 

defined task, it is proposed to focus in further detail on methods that are capable of mining 

dynamical features of time-series. Therefore, for future research purposes, it is highly 

recommended to examine, for example, k-nearest neighbor with dynamic time warping, 

interval-based time-series prediction, time series forest or convolutional neural networks 

[65]. 

Furthermore, year 2021 fully revealed weaknesses of the analysed methods. 

Unfortunately, none of them succeeded to provide sufficient prediction accuracy, and 

consequently, reliable results in terms of progressive power purchase in that year. 

Therefore, it seems highly convenient to investigate tools which would help to detect 

dynamic changes in causalities of the system, such as the change point detection method. 
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9 CONCLUSION 

The main goal of this dissertation thesis was to estimate oversold and overbought market 

conditions with the use of various classification techniques in the context of the highly 

challenging task of hedging of the power price by retail customers. The Czech power 

baseload yearly futures are used as a reference contract for this purpose. Continuous price 

fixing, which is a very popular and commonly used method for ensuring average profit-

loss result, was used as a benchmark to evaluate the benefits of the exploited methods. 

To increase model robustness, the price of the reference contract was discretized for each 

fixing period into ten categories, which represented various market conditions, i.e., scale 

from strongly oversold to strongly overbought territory. The input dataset consisted of 

carefully selected variables, which combined the fundamental and technical approach, 

and were tested not to contain any significant collinearities. Ten well-established 

techniques were thereafter exploited for data classification, i.e., estimation of trading 

signals, namely relative strength index, k-nearest neighbor, naive Bayes, support vector 

classifier, random forest, AdaBoost, 1-, 2- and 3-layer feed forward neural network, and 

long short-term memory. 

Although all of the models examined exceeded the defined benchmark, long short-term 

memory proved its exceptional qualities among the other methods in terms of consistent 

prediction performance and generalization abilities. Furthermore, compared to other 

structures of neural networks, it was proved to be less prone to overfitting. Nevertheless, 

its weaknesses, such as high requirements for programming capacity, long training time, 

sensitivity to initialization of parameters as well as limited possibility of results 

interpretation, should be taken into account. As a result, a solution combining low 

maintenance and simplicity of relative strength index and high accuracy of long short-

term memory was proposed to make the price fixing procedure more practical and 

efficient. Considering an average auctioned volume in the order of tens of thousands of 

MWhs, the potential average savings when employing the proposed solution are 

estimated to reach value in order of tens to hundreds of thousands of EUR per one auction 

in comparison to the defined benchmark. 

In this last paragraph, I would like to briefly look back and recall the very first sentence 

of this thesis, which was written a few years ago. The text emphasized the importance of 

market liberalization, which substantially contributes to the efficiency of pricing 

mechanisms as well as technical progress within the field, without which this thesis would 

never have been created. Due to recent extreme political tensions, radically amplified by 

the war in Ukraine, we are now witnesses of an entirely unprecedented situation, which 

exposed dreadful weaknesses of the European energy system and which can partially or 

fully compromise liberal principles of the market. Even though no one can tell with 

certainty what the future arrangement will look like, we are inevitably starting to write a 

brand-new chapter of the European energy sector.  
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9.1 Contributions of the Dissertation Thesis 

This thesis unfolds a highly challenging task of progressive power purchase by retail 

customers, i.e., a risk mitigating tool deriving the cost based on several price fixing steps. 

Due to the lack of publications focusing on this problematic and its increasing importance, 

especially among small to medium-sized consumers, this thesis successfully contributed 

to the following areas: 

• Variables relevant in the process of estimating overbought/oversold conditions of 

the Czech power derivatives market were successfully established. 

• Causalities and relationships among these variables were examined. 

• Ten different classification methods, ranging from a simplistic technical analysis 

to highly complex machine learning techniques, were analysed in the context of 

the defined task, and most importantly their performance was comprehensively 

compared and evaluated. 

• Taking into account the specific properties of the utilized methods as well as the 

practicalities of the price fixing procedure, an approach combining relative 

strength index with the long short-term memory was proposed. 

• With regard to the conclusions of our research, a course of further research was 

suggested. 
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