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The design of a turbomachine needs to be executed
with a careful consideration of aeroelastic effects in
order to guarantee a long and safe operation. One
of the greatest risks represent self-excited vibrations,
called flutter. Once initiated, their rapidly increasing
magnitude threatens to induce a catastrophic failure
within a very short time. An accurate prediction of the
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ture an upstream propagating bow-shock. This thesis
introduces a model for flutter prediction and focuses
on the treatment of non-reflecting boundary condi-

tions (NRBC).
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The aeroelastic analysis is primarily based on the en-
ergy method with prescribed harmonic blade oscilla-
fions, but a fully coupled solution of fluid-structure in-

teraction (FSI) with two structural degrees of freedom
(DOF) is also provided.
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e Fig. /. Steady-state Mach number contours, Exact Steady NRBC
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The solution of unsteady aerodynamics adopts Eu-
ler equations in 2D, cast in the Arbitrary Lagrangian-
Fulerian formulation and discretised with a FVM. The
iIn-house solver implemented in C++ features:

Fig. 5. Aerodynamic damping curve

= Steady-state results with the Exact Steady NRBC
and damping predictions with the Spectral NRBC
exhibit little sensitivity to domain extent

= Spectral NRBC predictions of aerodynamic damping
match numerical results of other authors

= Discrepancy between the Exact Steady NRBC and
the Spectral NRBC near acoustic resonance
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= The other two BCs produce spurious perturbations

= AUSM™-up scheme for inviscid fluxes (Liou, 2006)

= Gradient reconstruction with weighted least
squares method
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= Multidimensional face-based gradient limiter (Delis
and Nikolos, 2014)

= Temporal integration with an implicit second-order
accurate scheme compliant with the Geometric
Conservation Law
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= Local time-stepping and implicit residual smoothing S -2.

Fig. 6. Instantaneous unsteady pressure fluctuations, o = 120° Fig. 8. Aerodynamic damping curve

Boundary Conditions

The implemented NRBC for inflow and outflow are
based on the theory of Giles (1988). The flow equa-

tions are linearised:
0q 0q 0q
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= The Spectral NRBC is highly effective in

and the boundary flow-field is reconstructed as a su-
perposition of a mean state and perturbations in the
form:

q = Re(flei(kx%—my—l—wt)). (2)

Based on the solution of an eigenvalue problem, the in-
coming and outgoing waves can be distinguished. The
following boundary conditions are implemented:

= The Spectral NRBC (Schluf3 et al., 2016) prescribes
zero amplitude to all spatial and temporal modes of
Incoming waves

= The Exact Steady NRBC (Giles, 1988) treats only
spatial modes

= The Simple Turbomachinery BC is unrelated to Giles’
theory and lacks a non-reflecting treatment

suppressing wave reflections in complex flow
conditions, including a supersonic inflow

= \Wave reflections are not completely prevented, but
have insignificant effect on the near-blade flow-field

= The Spectral NRBC exhibits only a very mild
sensitivity to the inflow and outflow positions

= A BC with insufficient reflection properties (Exact
Steady NRBC, Simple Turbomachinery BC) can vield
fundamentally incorrect aeroelastic assessments

Research Outlook

= Replace the underlying linearised model of the
Spectral NRBC with a higher-order formulation

= Construct a NRBC for aperiodic flows
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