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Abstrakt: Pro zaručeńı dlouhé životnosti a bezpečného provozu lopatkového stroje
je nezbytné, aby byl jeho návrh proveden s pečlivým zohledněńım aeroelastických
jev̊u. Mezi největš́ı rizika patř́ı samobuzené kmitáńı, zvané flutter. Pokud dojde
k jeho vzniku, rychle se zvětšuj́ıćı výchylky kmit̊u mohou ve velmi krátkém čase
vést ke katastrofickému selháńı konstrukce. Tato práce se zabývá numerickou pre-
dikćı flutteru a zaměřuje se na okrajové podmı́nky zabraňuj́ıćı vzniku nežádoućıch
odraz̊u vln. Kompaktńı prostorové uspořádáńı turbostroj̊u zp̊usobuje, že perturbace
vytvořené na vstupńı či výstupńı hranici oblasti př́ımo ovlivňuj́ı proudové pole okolo
lopatek. Tento efekt nabývá na významu v souvislosti s trendem zvětšováńı pr̊uměru
rotor̊u posledńıch stupň̊u parńıch turb́ın za účelem dosažeńı vyšš́ıho výkonu. Vs-
tupńı prouděńı může pobĺıž špičky lopatky přesáhnout rychlost zvuku a utvořit
čelńı rázovou vlnu, což klade zvýšené nároky na definici vstupńı okrajové podmı́nky
schopné zabránit vzniku nežádoućıch odraz̊u.
Použitý aeroelastický model využ́ıvá předevš́ım energetickou metodu s předepsaným
harmonickým kmitáńım lopatek. Řešeńı nestacionárńıho prouděńı je založené na
Eulerových rovnićıch ve dvou dimenźıch, převedených do Arbitrary Lagrangian-
Eulerian (ALE) formulace a diskretizovaných metodou konečných objemů. Nevazké
toky jsou aproximované schématem AUSM+-up a pro zvýšeńı prostorové přesnosti
metody je použita rekonstrukce gradient̊u metodou vážených nejmenš́ıch čtverc̊u s
omezovačem toku. Integrace soustavy rovnic v čase je řešena pomoćı implicitńıho
schématu druhého řádu přesnosti za použit́ı lokálńıho časového kroku a impli-
citńıho vyhlazováńı rezidúı. Moderńı spektrálńı bezodrazová okrajová podmı́nka
(Spectral NRBC) je použita pro vstupńı a výstupńı hranici oblasti a porovnána s
daľśımi dvěma metodami. Numerický řešič byl od základu vyvinut a naprogramován
autorem této práce v jazyce C++.
Výpočetńı model je použit pro řešeńı aeroelastické stability osamoceného leteckého
profilu NACA 0012 a tř́ı lopatkových mř́ıž́ı se subsonickým (STCF10), trans-
sonickým (STCF4) a supersonickým (M8) režimem prouděńı. Je ukázáno, že
spektrálńı okrajová podmı́nka účinně zabraňuje nežádoućım odraz̊um vln a
umožňuje tak přesné vyhodnoceńı aerodynamického tlumeńı i pro komplexńı
proudová pole. Přestože odrazy vln nejsou vždy zcela potlačeny kv̊uli použitému lin-
earizovanému modelu, jejich intenzita je natolik ńızká, že nemaj́ı významný vliv na
proudové pole v okoĺı lopatek. Řešeńı se spektrálńı okrajovou podmı́nkou vykazuje
velmi ńızkou citlivost na velikost oblasti, což dovoluje zachovat přesnost výpočtu
i při posunut́ı vstupńı a výstupńı hranice bĺızko k lopatkám. Oproti tomu použit́ı
okrajové podmı́nky s horš́ımi bezodrazovými vlastnostmi může vést ke zcela ne-
správnému vyhodnoceńı aeroelastické stability.

Kĺıčová slova: Flutter turb́ınových lopatek, Bezodrazové okrajové podmı́nky, In-
terakce prouděńı s elastickým tělesem, Metoda Arbitrary Lagrange-
Euler, Výpočetńı mechanika tekutin, Metoda konečných objemů
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Abstract: The design of a turbomachine needs to be executed with a careful con-
sideration of aeroelastic effects in order to guarantee a long and safe operation. One
of the greatest risks represent self-excited vibrations, called flutter. Once initiated,
their rapidly increasing magnitude threatens to induce a catastrophic failure within
a very short time. This thesis deals with numerical prediction of flutter and fo-
cuses on the treatment of boundary conditions for the prevention of spurious wave
reflections. The compact spatial arrangement of turbomachines causes that any per-
turbation formed at the inlet or outlet boundary impacts directly the near-blade
flow solution. The issue is exacerbated by the recent trend of increasing the dia-
meter of last-stage steam turbine rotors in pursuit of a higher power output. As a
consequence, supersonic inflow conditions may be encountered at higher spans. The
upstream propagating bow shock, formed ahead of the blade leading edge, creates a
particularly challenging environment for a reflection-free definition of inlet boundary
conditions.
The present modelling approach is primarily based on the energy method with pre-
scribed harmonic blade oscillations. The solution of unsteady aerodynamics adopts
Euler equations in two dimensions, cast in the Arbitrary Lagrangian-Eulerian (ALE)
formulation and discretised with a finite volume approach. The AUSM+-up scheme
is employed for the approximation of inviscid fluxes and spatial accuracy is enhanced
by adopting a weighted least squares gradient reconstruction with flux limiting. The
system of equations is integrated in time with a second order accurate implicit
scheme with local time-stepping and implicit residual smoothing. The state-of-the-
art Spectral non-reflecting boundary condition (NRBC) is employed for inflow and
outflow and compared with two other formulations. The numerical solution proced-
ure is realised with an in-house solver implemented by the author in C++.
The computational model is used to predict aeroelastic stability of an isolated air-
foil NACA 0012 and of three blade cascades with a subsonic (STCF10), transonic
(STCF4) and supersonic (M8) flow regime. The Spectral NRBC is shown to be highly
successful in preventing the formation of spurious wave reflections and enables an
accurate evaluation of aerodynamic damping even for complex flow-fields. Although
the wave reflections are not always completely suppressed on account of the under-
lying linearised model, their magnitude is low enough to have only a minor effect on
the near-blade flow field. Flow solution adopting the Spectral NRBC exhibits only
a very mild sensitivity to the inflow and outflow positions, which allows employ-
ing highly truncated domains without compromising accuracy. The study further
demonstrates that using a boundary condition that fails to suppress the spurious
wave reflections can result in a fundamentally incorrect aeroelastic assessment.

Key words: Turbine blade flutter, Non-reflecting boundary conditions, Fluid-
structure interaction, Arbitrary Lagrangian-Eulerian method,
Computational fluid dynamics, Finite volume method
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Chapter 1

Introduction

Whether a turbomachine serves to propel an aircraft, generate electricity or carry
a jetpack flier towards the skies, the fundamental working principle is always the
same - to extract energy from a working fluid via a relative rotating motion of
multiple blade-rows and convert it to a form that can be exploited further. Yet it
is this continual blade passing, inherent to the operation of a turbomachine, that
may eventually inflict its destruction. Blade-row interactions may induce high-cycle
fatigue, leading to a preliminary termination of the operational life. Arguably an even
more serious danger represent self-excited vibrations, known as flutter. Triggered by
a small perturbation, their amplitude escalates quickly and threatens to cause an
immediate structural failure. Unlike vibrations caused by blade-row interactions,
self-excited oscillations are asynchronous and independent of engine orders, which
complicates their prediction. The issue of blade vibration has been present since the
outset of turbomachinery as an engineering discipline [170] and despite advances
achieved in its understanding, it remains no less pressing nowadays. Failures continue
to occur in final test phases or even during operation [170, 125], emphasising the
need for further research.

This work deals with the development of a numerical model for the prediction of
blade flutter and focuses on the treatment of boundary conditions. The compact
spatial arrangement of turbomachines causes that any perturbation formed at the
inlet or outlet boundary impacts directly the near-blade flow solution. The issue
is exacerbated by the recent trend of increasing the diameter of last-stage steam
turbine rotors in pursuit of a higher power output. As a consequence, supersonic
inflow conditions may be encountered at higher spans. The upstream propagating
bow shock, formed ahead of the blade leading edge, creates a particularly challenging
environment for a reflection-free definition of inlet boundary conditions.

The present modelling approach is primarily based on the energy method with pre-
scribed harmonic blade oscillations, but a fully coupled solution of fluid-structure
interaction with two structural degrees of freedom is also provided. The solution of
unsteady aerodynamics adopts Euler equations in two dimensions, cast in the Ar-
bitrary Lagrangian-Eulerian (ALE) formulation and discretised with a finite volume
approach. Three boundary condition formulations are implemented for inflow and
outflow, including the state-of-the-art Spectral NRBC [158]. Their ability to sup-
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press spurious wave reflections is extensively analysed on several demanding test
cases, including a turbine cascade with a supersonic inflow. The numerical solution
procedure is realised with an in-house solver written by the author in C++ and
compatible with the universal format CGNS for the storage of mesh and solution.

The thesis is structured as follows. Chapter 1 opens with the introduction and
Chapter 2 proceeds by outlining the most pressing aeroelastic problems in turboma-
chinery. The classification and brief description of each phenomenon is provided,
together with an overview of relevant parameters driving the aeroelastic behaviour.
This chapter further elaborates on computational methods for aeroelastic analysis,
ranging from the original simplified analytical approaches to the state-of-the-art
nonlinear fluid-structure coupled numerical simulations.

The objectives of this work are stated in Chapter 3.

Governing equations that form the core of the present computational model are
described in Chapter 4. Unsteady aerodynamics is modelled with Euler equations
that are derived in the Arbitrary Lagrangian-Eulerian reference frame in order to
facilitate solution on domains with moving boundaries. Boundary conditions are
discussed in a separate section, focusing mainly on the suppression of spurious wave
reflections at inflow and outflow. Together with the classical Exact Steady NRBC
of Giles [58], the novel Spectral NRBC of Schlüß et al. [158] for unsteady flows is
elaborately described. Two strategies for the solution of fluid-structure interaction
are presented, namely the energy method and a fully coupled model of an elastically
mounted body with two degrees of freedom.

Chapter 5 elaborates on the numerical methods implemented in the solver. The
description commences by presenting a grid motion algorithm for the case of an
oscillating isolated airfoil and proceeds by proposing its extension to blade cascades.
The main focus of this chapter is on the description of numerical techniques used
for the solution of unsteady aerodynamics, comprising the ALE formulation of a
finite volume method, strategies for flux approximation, gradient reconstruction and
limiting and for temporal integration. The non-reflecting boundary conditions are
described in a greater detail, as different paths can be taken at several points in their
implementation. The last section of this chapter encompasses numerical techniques
related to the structural part of the aeroelastic analysis, namely the approximation
of a deforming elastic structure with a rigid body motion and the algorithm for a
coupled solution of solid body motion and unsteady aerodynamics.

Chapter 6 discusses achieved results for four applications, presented in the order
from trivial to complex. The motivation is to test and validate various features of
the numerical model before proceeding to the most challenging test case, a supersonic
turbine blade cascade.

The first application is a NACA 0012 airfoil in a freestream flow. The presence of
a single solid body in the computational domain simplifies the grid deformation
procedure and as the flow conditions are subsonic, no discontinuities need to be
resolved by the finite volume scheme. Two configurations considered for the aer-
oelastic analysis are a harmonically oscillating airfoil and a fully coupled model of
an elastically mounted airfoil with two degrees of freedom. The computational model
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is validated by comparison with experimental data and with numerical solutions of
other authors.

The second test case is a compressor cascade STCF10, known for being prone to ar-
tificial wave reflections from the inlet and outlet boundaries with a significant effect
on the assessment of aeroelastic stability [146]. As such, it represents a suitable ap-
plication for analysing the performance of non-reflecting boundary conditions. It is
convenient that the flow conditions remain subsonic, detracting from the complexity
of the flow solution and enabling to focus on the analysis of boundary conditions.
More over, results obtained with the Spectral NRBC have already been published
in [157] for this test case, providing the opportunity to verify that its present imple-
mentation is correct. Flutter analysis is performed for a prescribed pitching mode
of oscillation.

The flow field complexity increases when proceeding to the transonic turbine cascade
STCF4, featuring downstream propagating shockwaves. The accuracy and stability
of the implemented gradient limiting strategies can thus be investigated. Aeroelastic
predictions are performed for blades undergoing bending oscillations and compared
with publicly available experimental data.

The last test case is a blade cascade M8, representing a near-tip section of a last-
stage low-pressure steam turbine rotor. The inflow conditions are supersonic, causing
a detached bow shock to form upstream of the blades and propagate towards the
inlet. Shockwaves are thus encountered at both the inlet and outlet boundary and
put the reflection properties of implemented boundary conditions to a demanding
test. The blades oscillate in a coupled bending-torsion eigenmode.

The thesis finishes by summarising achieved results, drawing conclusions and present-
ing research outlook in Chapter 7.
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Chapter 2

Aeroelasticity in Turbomachinery

The concept of aeroelasticity in the modern sense was established by Collar [27] in
the 1940s. He defined it as an engineering discipline which studies the interaction
between aerodynamic, elastic and inertial forces for a solid object submerged in a
fluid flow. Up to that point, the individual subjects of aerodynamics and struc-
tural deformation were usually treated in isolation, but Collar emphasised that they
are in fact inseparable and the matter of fluid-structure interaction (FSI) needs to
be regarded as one interconnected whole. He placed the most pressing aeroelastic
problems of that time within a triangle of forces, shown in Fig. 2.1. The depicted
phenomena indicate that the research of that time concentrated primarily on the
domain of aeronautics.

Aeroelastic problems have affected the development of airplanes since the early
beginnings. Several days before the Wright brothers performed the first sustained
flight of a heavier-than-air machine, Professor Samuel P. Langley tried to take off
with his monoplane by being catapulted from a houseboat on the Potomac river
near Washington on December 9, 1903. The wings dismounted and the machine was
wrecked. Although there is some controversy regarding the cause of the accident, it
is often ascribed to a torsional divergence of the wing, a problem that belongs to the
area of static aeroelasticity [91]. The lack of structural rigidity was later resolved
by the bi-plane design which became preferred during World War I. However, this
solution had the adverse effect in that the connecting wires were susceptible to the
dynamic aeroelastic phenomenon of flutter [93]. Comprehensive studies of aeroelastic
effects concerning airplanes were commenced in the 1930s, namely by Cox, Pugsley,
Duncan, Frazer and Collar (e.g. [28], [50]), and lead to a formation of stiffness criteria
for aircraft wings and components [27]. In the same period, Theodorsen devised an
analytical method for the prediction of wing and aileron flutter with three degrees
of freedom (DOF), published in [177] and [178]. A re-evaluation of the procedure
was recently presented by Perry [144].

Turbomachines have also encountered aeroelastic problems since their advent. Early
steam turbines featured damping wires to mitigate blade vibration problems [93].
Srinivasan amusingly quotes a resolution of Glenn Warren from 1914 to make a
gas turbine engine running without vibration before he quits [170]. Warren then
remained with the turbine division of General Electric till the end of his professional
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Figure 2.1: Triangle of forces and aeroelastic phenomena by Collar [27]

career. Jet engines have suffered from flutter problems since their early deployment
during World War II. The most afflicted parts were the first compressors stages,
open rotors, low-pressure turbines and later turbofans [39]. Particularly difficult-to-
predict failures occurred due to high-cycle fatigue (HCF), caused by a large number
of alternating stress cycles. The stress level is too small to induce any plastic de-
formation and the cracks propagate very rapidly [105]. HCF issues can account to
between 10% and 40% of total development problems in gas turbine engines [198]
and according to an estimation of the U.S. Air Force, they cause about 55% of
fighter jet engine mishaps and 30% of jet engine maintenance [131]. According to an
analysis presented by Sieg [161] in 2000, up to 46% of fighter aircrafts had been in-
operative in certain periods during the previous decades as a result of HCF related
problems. Srinivasan [170] mentions several incidents of jet engine failures which
occurred during qualification tests or even once the production has begun. An illus-
trative example is the in-flight ”primary failure” of a wide chord plane on the RB
211-524 G/H engine during a Cathay Pacific flight from Los Angeles. It was the first
incident of that kind for a design that had successfully served over 12 million engine
hours. Indeed, HCF problems are not exclusive to jet engines. A problem with steam
turbine blade root cracking due to flutter was recently reported by Masserey et al.
[125].

2.1 Aeroelastic Problems in Turbomachinery

Aeroelastic behaviour of turbomachines shares several important characteristics with
aircrafts. Same as the wing of an airplane, the blade of a turbomachine is a slender
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aerodynamic surface subjected to many conflicting requirements, such as perform-
ance, efficiency, low weight, reliability and structural integrity. Nevertheless, the
engineering analysis of each requires a substantially different approach. The aircraft
wing can be regarded as a self-standing elastic structure attached to a rigid fuselage
and facing a largely uniform incoming flow with only minor distortions. This ap-
proach served as a basis for the aeroelastic theory of Theodorsen [177] and it is still
applicable nowadays, at least for a preliminary analysis. In contrast, turbomachine
blades are arranged with close spacing into a blade row and their mutual interactions
are cardinal for the aeroelastic characteristics. In addition, strong aerodynamic and
acoustic coupling effects exist also between multiple blade rows. The relative rotat-
ing motion is a source of a strong periodic forcing. Further non-uniformities in the
flow-field may arise due to vortex shedding, in-passage shock movements, jet-engine
burner outputs and combustion instabilities, impacts of cooling jets etc., all of which
are convected throughout the machine.

The margin for engine optimization is becoming thinner, yet the pressure on im-
provements in efficiency, fuel consumption, environmental friendliness and cost re-
duction continues to grow. The boundaries of current designs are pushed and new
radical ones emerge. Their aeroelastic behaviour is often driven by previously un-
encountered mechanisms, which further increases the complexity of the problem.
One example of this trend is also addressed in the present work. In pursuit of a
higher power output, blades in the aft stages of low-pressure steam turbines are
becoming longer. Supersonic upstream conditions may thus be encountered in the
near-tip region of a blade-row and the shockwave pattern is dramatically changed.
Consequently, the empirical knowledge gained over long years of experience becomes
largely inapplicable and the need for highly accurate predictive analytical tools is in-
creased. Srinivasan [170] compiled a list of areas where advances are urgently needed
for an accurate aeroelastic analysis:

� Assessment of flow defects at the location they originate and as they are trans-
ported along

� Unsteady aerodynamics of cascades under a wide variety of flow conditions
expected in the operating range

� Structural vibration frequencies and modes of interest over the operating range

� Quantification of damping in the system due to non-aerodynamic sources

� Estimate of material properties (fatigue strength, ultimate strength, modulus
of elasticity, etc.) for the configuration at the temperatures expected in the
operating range, including the influence of processing, defects etc., leading to
the calculation of structural integrity

� Identification of dissimilarities in aerodynamic parameters (gap/chord ratio,
stagger, incidence, etc.) and structural parameters (frequencies, mode shapes
and damping, etc.) and accounting for their influence in a statistical sense
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Aeroelastic problems may be classified as either static or dynamic. Phenomena from
both categories with the greatest relevance for turbomachinery are discussed in the
remainder of this section.

2.1.1 Static Aeroelasticity

Static aeroelasticity is a category of fluid-structure interaction problems where the
evolution in time is moderate enough to approximate the process as quasi-steady.
Inertial forces are neglected and the problem is reduced to the interaction of aero-
dynamic and elastic forces. A typical example is the torsional divergence of aircraft
wings. Aerodynamic forces deform the wing, which in turn increases the aerody-
namic loading and induces further deformation. Structural stiffness of turboma-
chine blades is in general substantially higher than that of aircraft wings, hence the
static aeroelastic phenomena do not pose a threat regarding the structural integ-
rity. Nevertheless, they need to be taken into account for design and manufacturing.
Turbomachine components are subjected to varying operating conditions in terms
of rotational speeds and flow parameters. This is especially significant for jet engines
whose mode of operation changes substantially for take-off, climb, cruise, descent
and landing. Each phase of flight is characterised by different aerodynamic and cent-
rifugal loads that act on the blade and cause it to deform from the manufactured
shape. The deformation mainly occurs in a torsional mode, but a bending displace-
ment can also be present for higher aspect ratio blades. The elastic deformation
of the loaded blade needs to be considered when the manufactured (cold) shape
is being retrieved from the targeted in-operation geometry by a procedure called
unrunning [150].

2.1.2 Dynamic Aeroelasticity

Dynamic aeroelasticity is a discipline studying the complex interactions between
vibrating structures and the surrounding flow. All three forces defining the Collar’s
triangle are involved: aerodynamic, elastic and inertial. The behaviour of the system
can be further affected by the presence of mechanical or material damping. The most
relevant dynamic aeroelastic phenomena in turbomachinery are forced response and
flutter.

Forced Response

Flow conditions in a turbine or a compressor are inherently non-uniform both in
space and time. The spatial variations in the stationary reference frame are experi-
enced as unsteady distortions by a rotating blade row. The blades are subjected to
periodic fluctuations in pressure, velocity, temperature and flow angle. Further excit-
ations may be caused by the motion of shocks in blade passages, vortex shedding or
due to a number of mechanical sources [170]. All of these flow-field non-uniformities
act as an external periodic forcing on the blade at a frequency corresponding to
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Figure 2.2: Example of a Campbell diagram from [104]

engine orders (EO), multiples of the rotational frequency. A common tool for the
assessment of risks related to forced response vibrations is the Campbell diagram,
devised in 1924 by Wilfred Campbell [17] and still in use today.

An example of the diagram for a turbine rotor is shown in Fig. 2.2. One set of
lines represents natural frequencies corresponding to different modes of deforma-
tion in function of the rotational speed. Typically for a turbine, a slight decrease
in eigenfrequencies occurs for higher rotational speeds, as the increased temperat-
ure causes a reduction in modulus [131]. An opposite trend would be experienced
for fans and compressors, where the effect of centrifugal stiffening prevails and in-
creases the natural frequencies especially for bending modes [150]. Another set of
lines, characterised by a constant slope, marks the frequencies of various sources of
excitation. In the example, the distortions due to adjacent blade rows and burner
cans are included. Further flow-field non-uniformities may arise for example due to a
rotating stall, cooling jets and wakes from wings or pylons [105]. Mechanical sources
such as gear meshing or blade rubbing could also be relevant [170]. The crossings
between the two sets of lines identify the conditions where resonant response could
potentially occur. The excitations could induce sustained vibrations, imposing al-
ternating stress levels on the blades and leading eventually to a HCF. In order for
the resonance to occur, the excited mode shape of the structure must match the
circumferential and local excitation patterns [105]. Therefore only some crossings
are marked as resonant conditions.

While the effort must be to keep the potentially risky crossings out of the operation
range, it is impossible to do so for every one of them, especially for jet engines
operating in a wide range of speeds and often undergoing transient procedures. A
common design rule is to keep the first bending mode above the first or second EO
at top speed and to separate the first and second bending modes [170]. For the other
resonant conditions it has to be ensured that sufficient damping is present in the
system.
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Flutter

Flutter is an aeroelastic instability of a structure surrounded by fluid-flow, for which
a small perturbation can trigger self-sustained vibrations. A displacement of a blade
modifies the unsteady flow-field, which in turn alters the aerodynamic loading acting
on the blade. In the case that the energy absorbed during one cycle of oscillation is
greater than the energy dissipated by material or mechanical damping, the amplitude
of the motion may grow exponentially until it causes a structural failure. Flutter is
regarded as perhaps the most serious danger for blade failures [170], in particular
for two reasons. Firstly, the escalation of stresses leading to a failure may be very
rapid and usually cannot be stopped once initiated. And secondly, the oscillations
are asynchronous and independent of engine orders, which makes them harder to
predict in comparison with forced response.

Turbomachine blades bear a geometrical similarity to aircraft wings, but their flutter
mechanisms are substantially different. They are characterised by a significantly
higher mass ratio, a parameter that compares the mass of an airfoil cross-section
with that of a fluid contained in a circumcircle. Therefore, the blades may flutter in
a single mode as opposed to aircraft wings whose modes often coalesce [191]. The
aeroelastic behaviour of blades arranged on a wheel is also influenced by both a
mechanical and an aerodynamic coupling. The former is realized by shrouds located
at part-span or connecting the blade tips, either via an interlocking system or by
welding the blades together. The purpose of the structural constraints is to increase
mechanical stiffness and restrict the range of relative motion for neighbouring blades,
helping thus to suppress their susceptibility to flutter [190]. An adverse effect may
occur for the so-called blisks. They are manufactured from a single piece of material,
which removes mechanical damping from the system and leads to an increase of
oscillation amplitudes [131].

The aerodynamic coupling effects between the neighbouring blades cause the aer-
oelastic behaviour of the blade row to be different from that of an isolated blade.
The motion of each blade influences the surrounding instantaneous flow field and
affects directly the loads acting on its neighbours. The whole blade-row thus forms
an aerodynamically interconnected system. Studies have indicated that the stability
of an isolated blade and the coupling effects are equally important for flutter charac-
teristics of a blade-row [176]. It has been shown that a blade which is aeroelastically
stable in isolation might become unstable when arranged in a cascade [190].

Flutter problems in aircraft engines and power turbines are most likely to occur in
the front and aft parts of the machine [105], [190], [191]. Fans and low-pressure com-
pressors as well as low pressure turbines feature relatively long and slender blades
subjected to a high loading, which entails an unfavourable ratio of aerodynamic
forces and structural stiffness. Similarly, in steam turbines the rear low-pressure
stages are the ones most prone to flutter. The self-excited instabilities in compressors
are generally classified into 4 categories: subsonic/transonic stall flutter, choke flut-
ter, supersonic stall flutter and unstalled supersonic flutter [170]. The boundaries of
the flutter regions are depicted in Fig. 2.3, showing a typical axial-flow compressor
map where an operating point is defined by pressure ratio and mass-flow. Additional
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Figure 2.3: Compressor map with flutter boundaries [123]

types of flutter are sometimes considered, such as the acoustic flutter [150].

Subsonic/Transonic Stall Flutter is one of the most common instabilities and
occurs at part-speed operation near the surge limit [93]. The angle of incidence is
increased, until large separations emerge on the blade suction side. The instability
may affect fan blades [170] and up to the first three compressor stages [37]. It is
typically encountered for a commercial aircraft flying at subsonic speeds, but with
a relative inlet Mach number at fan blades reaching supersonic conditions [131].
The deformations may occur in bending or torsional modes with a sudden onset of
coupled modes [170].

Choke Flutter also occurs at a part-speed operation, but for negative incidence
angles inducing a choked flow. The region is located below the operation line in
the compressor map and the instability is typically encountered for the mid and aft
stages of compressors [170]. Strong compressibility effects are presumed to drive the
flutter mechanisms, as the in-passage shocks with the associated separation change
the effective throat location in time [37].

Supersonic Stall Flutter (high back pressure)may be encountered in fans [170]
during the operation at near 100% design speed with high angles of incidence. The
region is found above the operation line and it is characterised by a high pressure-
ratio, high positive angles of incidence and a strong blade loading. The inlet flow
conditions at blade tips are supersonic with a detached bow shock forming at the
entrance of each passage [37]. Stalling of the flow together with the shock motion is
assumed to influence the aeroelastic stability.

Supersonic Unstalled Flutter (low back pressure) is regarded as perhaps the
most serious one because its boundary crosses the operation line near a design point
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for the take-off power conditions. Hence it may impose a limit on the over-speed
capability of the engine [93]. The instability concerns fan blades with supersonic
relative flow speeds in the near-tip region. The rotation speed for the flutter onset
changes in function of the blade loading, which is ascribed to the stabilizing or
destabilizing effects of the shockwave structure inside the blade passage [37].

Acoustic Flutter describes a special condition when the acoustic waves generated
by the vibrating blade are reflected back onto the blade and further enhance the
instability of the system [150]. This behaviour can be encountered e.g. due to the
interaction between the fan blades and the engine intake.

The unsteady aerodynamics of low-pressure turbines is relatively simpler, as their
flow is comparatively cleaner and to a larger extent linear and two-dimensional [191].
Historically, most of the flutter investigations have been targeted at compressors [99]
and there is no universally accepted classification of flutter for turbines. A definition
of several types of flutter is given by [93]. Potential flutter is experienced for small
angles of incidence at a pressure ratio of≈ 1.5. The oscillations are sustained due to a
phase lag between the blade motion and the integral aerodynamic force. Shock flutter
is encountered for a higher pressure ratio ≈ 2.0 and the mechanism is presumed to
be a separation induced by the shock boundary layer interaction. And finally, for a
choked turbine at a pressure ratio above ≈ 3.0 a supersonic flutter may occur.

2.2 Blade Vibration Characteristics and Paramet-

ers

Blade vibration and interaction with the surrounding flow is a complex phenomenon,
driven by a combination of structural, aerodynamic, and in some cases also acoustic
aspects. Srinivasan [170] gives an exhaustive list of 20 parameters influencing the
aeroelastic behaviour. In order to gain a deeper understanding of flutter and forced
vibrations, the investigation must concentrate on the selection of the most important
ones. At the same time, no relevant aspect may be omitted. This section offers an
overview of characteristics, parameters and effects influencing blade vibrations and
a discussion of their relevance.

2.2.1 Mass Ratio

The relevance of the ratio of wing mass to the mass of the surrounding air was
recognised early in the investigation of aircraft wing flutter [190]. The mass ratio µ
compares the mass of a wing in cross-section to that of a fluid contained within a
circumcircle:

µ =
4m

πρairC2
, (2.1)

with m denoting mass per unit of blade span, ρair fluid density and C blade chord.
A graphical representation of the mass ratio is provided in Fig. 2.4. Turbomachine
blades are characterised by a substantially higher value of µ, hence the unsteady
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Figure 2.4: Graphical representation of mass ratio [190]

aerodynamic loading has a diminished influence on the structural modes and fre-
quencies. The aeroelastic analysis often goes as far as to neglect this influence entirely
and decouple the structural and aerodynamic analysis. In the energy method, the
eigenmodes and eigenfrequencies are determined in advance by considering the cent-
rifugal loading but not the aerodynamic forces. These in-vacuo characteristics are
then employed to prescribe the blade motion for an unsteady aerodynamic analysis,
whose primary goal is to evaluate the energy transfer between the blade and the
surrounding fluid. The work done during one vibration cycle is then expressed in
terms of an aerodynamic damping coefficient, whose value is positive in the case
that the flow has a stabilizing effect on the blade motion and negative otherwise.
It has been argued in the past that the underlying assumption of fluid-structure
decoupling may not always hold. Nevertheless, this approach is still popular to date
for its favourably low computational requirements and rapidity of evaluation [39]. It
needs to be stressed that the coupling effects may become non-negligible for modern
composite blades whose mass ratio is typically several times lower compared to a
common titanium blade [131].

2.2.2 Reduced Frequency

The reduced frequency ω̃ is an important parameter for characterising the unstead-
iness of the flow. Considering blade oscillations at an angular frequency ω, the
time-scale of the induced flow disturbance is 1/ω. A second time-scale is defined
to express the time taken by the flow perturbation to be convected past the blade.
Using a blade semichord [170] as a length-scale, this time-scale is given by C/(2V ).
The inlet relative velocity is commonly used as the convection speed in the case of
compressors, whereas for turbines the exit relative velocity is preferred [191]. The
ratio of these two time-scales yields the reduced frequency:

ω̃ =
ωC

2V
=

Convection time

Disturbance period
(2.2)

Another, equivalent interpretation [170] relates the chord length C to the wavelength
of a sinusoidal wake formed by the blade oscillations, l = V T = 2πV/ω (Fig. 2.5).
The ratio of these two length scales yields C/l = ω̃/π.

In either interpretation, high values of reduced frequency (ω̃ ≫ 1) imply that mul-
tiple blade oscillations occur as a particle passes along the blade, i.e. the flow varies in
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Figure 2.5: Graphical representation of reduced frequency [190]

time very quickly and it needs to be regarded as unsteady. On the other hand, when
the disturbance period is significantly longer then the convection time (ω̃ ≪ 1), the
temporal flow-field changes during the particle passing are negligible and the flow
becomes quasi-steady.

Critical reduced frequencies for turbomachine blades lie in the range 0.1 to 1.0
([170],[190],[99]), for which both the unsteady and the quasi-steady effects play an
important role. In general, blades characterised by lower reduced frequencies have a
higher tendency to self-excited oscillations [191], [131]. This needs to be considered
especially for the aft low-pressure turbine stages operating at high transonic or su-
personic flow regimes which yield particularly low values of ω̃. The current trends
in turbomachinery design further promote this issue, as the manufactures of aircraft
engines try to maximize the power-to-weight ratio in the endeavour to achieve a
better efficiency and fuel economy. Lighter blades with a reduced chord and blade
thickness have a lower natural frequency and thus also a decreased reduced fre-
quency. A similar shift of ω̃ occurs in the case of steam turbines, whose blade length
and relative flow velocity are increased in pursuit of higher power output.

2.2.3 Mode Shape

A turbomachine rotor is formed of individual blades mounted on a supporting struc-
ture, such as a hub or a disk. The dynamic behaviour of the assembly is a super-
position of blade-dominated and disk-dominated modes [190]. The former describe
the behaviour of a blade in isolation, whereas the latter characterise the rotor itself
with blades attached as passive masses.

Flutter usually occurs in the first few natural blade modes with lowest frequencies
[191], such as flexing modes, torsion modes, edgewise bending modes and plate
modes [105]. The deformation often happens in a coupled mode, comprising the
contents of multiple elementary modes [170]. The three-dimensional modes can be
approximated in two-dimensional cuts as a superposition of three fundamental rigid
body mode shapes: two orthogonal translations and a rotation with a spanwise-
varying amplitude. A systematic investigation of the mode shape relation to the
critical reduced frequency was performed by Panovsky and Kielb, who devised a
preliminary design tool called the Tie-Dye plot [140]. The fundamental idea is to
determine for each mode shape the critical frequency ω̃crit that corresponds to a
neutral aerodynamic damping.

Figure 2.6 gives an example of the Tie-Dye plot. An arbitrary rigid body motion of a
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Figure 2.6: An example of the Panovsky-Kielb Tie-Dye plot [191]. Contours of critical
reduced frequency in function of the blade torsion axis

2D section can be expressed as a single rotation with an appropriate axis of the pitch-
ing motion. The coordinate system is based on two orthogonal, chord-normalized
axes: the ξ-coordinate is parallel with the chord-line, the η-coordinate is perpen-
dicular to it and the origin of the coordinate system is at the blade leading edge.
For example, the axis position (ξ, η) = (0, 0) would represent pitching about leading
edge, whereas a bending perpendicular to the chord-line would be characterised by
(ξ, η) = (∞, 0). The contours show the value of the critical reduced frequency in
function of the torsion axis location, i.e. of the mode shape. In the case that the
reduced frequency drops below ω̃crit for the given position of torsion axis, the system
is aerodynamically unstable and there is a danger of flutter occurring.

Some regions in the plot are characterised by steep gradients of critical reduced
frequency, marking a dangerous zone where a slight shift of the torsion axis impacts
greatly the flutter boundary. This also illustrates the strong correlation between
the mode shape and aerodynamic stability. It has been demonstrated that the Tie-
Dye plots are qualitatively similar for different types of turbine geometries, which
makes them a useful tool for preliminary design before a more comprehensive but
time-consuming aeroelastic analysis is performed [190].

The significance of disk-dominated modes depends on the level of coupling in the
assembly. Mechanical coupling is realized via connection to the supporting hub or
disk and potentially also by the presence of shrouds. The blades might be tied
together to blade packages or over the whole circumference to increase mechanical
stiffness. Moreover, the relative motion of neighbouring blades is restricted to a few
interblade phase angles [190]. The bladed disk vibrates in assembly modes which
may exhibit circumferential variations of displacement amplitudes and thus form a
pattern. These modes may represent a standing wave, or a wave travelling in the
forward or backward direction relatively to the rotation speed. In the case that this
wave travels backwards exactly at the rotation speed, it is identified as a stationary
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Figure 2.7: Nodal diameter representation: ND = 1 (left) and ND = 3 (right)

wave and the corresponding rotor speed is denoted as resonant speed [170].

2.2.4 IBPA

One of the most common aeroelastic formulations for blade-row motion is the travel-
ling wave mode. Assuming that all blades are manufactured identically (a perfectly
tuned rotor), they will all oscillate with the same mode shape, frequency and amp-
litude, but with a constant phase-lag between each two neighbours. The concept was
first introduced by Lane [111] and used in the aerodynamic theory of Whitehead
[195]. The phase-shift is called the interblade phase angle (IBPA, denoted σ) and
due to a circumferential periodicity, it can only attain discrete values. The set of
allowable IBPAs is determined in function of the number of blades included in the
blade-row, Nb:

σ =
2π · ND
Nb

, ND = 1, 2, 3, ...Nb (2.3)

The nodal diameter (ND) represents the number of diametrical lines that can be
drawn to connect blades with zero displacements [150]. In other words, it is the
wave-number of the travelling wave [170], as illustrated in Fig. 2.7. According to a
convention, the IBPA is positive for a wave travelling in the direction of rotation
and negative in the opposite case.

The concept of the travelling wave with phase-shifted, identically oscillating blades
allows a great simplification of computational model. This representation is adop-
ted by frequency domain methods and it also enables reducing the computational
domain of time-marching methods to a single blade passage. However, the validity
of the model always needs to be carefully considered, because real blades are never
perfectly identical due to manufacturing tolerances and uneven wear in operation.
Some level of mistuning is therefore always present and the extent to which the
circumferential periodicity is disturbed needs to be assessed.
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2.2.5 Mechanical Damping

The classical technique for the assessment of flutter stability, the energy method,
evaluates aerodynamic damping during one cycle of oscillation. Even if the aerody-
namic damping is negative, it does not necessarily imply that the system becomes
aeroelastically unstable, as the present mechanical damping may be sufficient to sup-
press the aerodynamic excitation. The level of mechanical damping is also essential
to control forced response oscillations amplitude and prevent high cycle fatigue.

Inherent to the bladed disk assembly are material and friction damping. The former
describes the dissipation of energy to heat due to material deformation. Its mag-
nitude is proportional to the square of frequency [105], but the contribution to the
overall mechanical damping is usually negligible even for higher frequency modes,
given the materials typically used for blade manufacturing (titanium and nickel
based alloys) [170]. Material damping is therefore usually omitted in aeroelastic
models. The major part of mechanical damping is due to friction occurring at the
root structure attaching the blade to the disk, and at part-span or tip shrouds. The
rubbing at the interfaces is a complex, nonlinear phenomenon, difficult to include
in the computational model [170], [37]. The matter is further complicated by the
wearing-out of the material due to the friction contact, causing the characteristics to
change over time. Additional damping can be introduced into the system by adding
blade dampers, installed usually at the blade root. They do not disturb the flow
field, unlike shrouds, and they can be applied to blisks, characterised otherwise by
a lack of mechanical damping due to the absence of rubbing interfaces.

2.2.6 Mistuning

Mistuning describes the measure of deviation of aerodynamic and structural prop-
erties from the designed reference values [170]. Although most aeroelastic studies
consider an idealised model of a perfectly tuned rotor with identical blades, in real-
ity some level of mistuning always occurs. The causes comprise any circumferen-
tial asymmetry, whether dynamic (variation in eigenmodes and eigenfrequencies) or
aerodynamic (incoming flow disturbance, operational wear of aerodynamic surfaces).
While its presence introduces further complexity into the system, this phenomenon
can also be exploited to improve the aeroelastic properties.

Several researchers have investigated alternate frequency mistuning, in which the
blade row comprises two sets of blades with distinct eigenfrequencies, arranged in
an alternating pattern. Such an arrangement is simple to both analyse and to imple-
ment in praxis. Kielb and Kaza [108] show that the locus of the system eigenvalues,
characterising the frequency and damping for different IBPAs, develops a waist and
breaks into two separate loci when the frequency difference between the two blade
sets is increased. Nowinski and Panovsky [139] demonstrated that alternate mistun-
ing can help to reduce susceptibility to flutter in a low pressure turbine. Similar
conclusions were reached by Silkowski et al. [162], who have found that any level of
alternate stiffness mistuning is beneficial for flutter suppression. Crawley and Hall
[29] developed a design procedure to find an optimum pattern of structural mis-
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tuning and concluded that it resembled an alternate pattern, but broken down at
several locations around the rotor. While it offered superior damping compared to
the alternate pattern, it was also more sensitive to the level of mistuning and there-
fore less suitable for practical implementation. The authors also pointed out that
unless the blade in isolation is self-damped, no mistuning can achieve aerodynamic
stability.

A successful application of deliberate mistuning was performed by the turbine man-
ufacturer Alstom to resolve a flutter instability causing root cracking of last stage
steam turbine blades [125]. The potential to aid flutter stability has also been demon-
strated for aerodynamic mistuning. Hoyniak and Fleeter [96] presented a model for
the analysis of a finite blade cascade with circumferentially alternating blade spacing
and found that the region of stability can be enhanced with this type of mistuning.

Overall, mistuning has beneficial effects on the suppression of self-excited vibrations.
A flutter analysis using a tuned cascade model is conservative, as any unanticipated
mistuning that will inevitably be present in the system will further promote the
flutter stability. However, contrary effects have been reported for forced response
vibrations. Miyakozawa [131] found that frequency mistuning can amplify the blade
vibrations due to structural coupling effects at small nodal diameters. Aerodynamic
mistuning also amplified the forced response of a single blade, but the inclusion of
structural coupling largely suppressed this effect.

2.2.7 Steady Loading Parameters

Steady loading conditions play a just as prominent role as reduced frequency or
mode shape in driving the flutter stability. The parameters that seem to have the
most dominant effect are the incidence angle, pressure difference across the blade,
flow separation and shock location. Indeed, it is difficult to observe the contributions
of individual parameters in isolation, as they are mutually interconnected. A change
in the incidence angle modifies the blade loading, affects the shock structure and
may induce flow separation. A review of the past research in this area was presented
by Vogt [190] and more recently by Waite [191].

The angle of attack, directly influencing the mean loading, was shown to affect
negatively the aerodynamic damping of a linear subsonic compressor by Carta and
St. Hilaire [21]. Szechenyi [176] observed a reduction of aerodynamic self-damping
with the increase of incidence for a compressor blade in subsonic to transonic flow.
The coupling coefficients were on the other hand less affected. An increase of the
angle of attack can also induce flow separation on the leading edge. He [82] found
that the separation bubble has a destabilizing effect on the blade, which is however
largely counteracted by a stabilizing influence in the region downstream of the reat-
tachment point. Experimental investigation of LPT flutter, performed by Nowinski
and Panovski [139], didn’t show the stability to be significantly affected by angle of
incidence. Instead, the blade loading was identified as the most influential steady
flow condition. An interesting conclusion regarding the influence of steady loading
on LPT flutter stability was drawn by Waite [191]. An increase of loading would
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have a beneficial effect for some modes, whereas for others it would contribute to
a destabilization of the system. The targeted loading might therefore dictate the
allowable mode shapes for the turbine designer. Passage shock formation was iden-
tified as the key factor that drives the mode-dependent flutter sensitivity to loading.
A study of the influence of shock pattern on transonic fan flutter was performed by
Srivastava [171]. The presence of a normal shock may have both a stabilizing and a
destabilizing effect on the blade row stability, depending on the shock location and
interblade phase angle.

2.2.8 Acoustic Resonance

Acoustic resonance describes a limit state for which the acoustic waves generated
by blade oscillations are on the verge of propagating throughout the domain. The
energy transfer due to pressure waves in axial direction affects forced response,
whereas the circumferential waves are important for self-excited oscillations [39].
Whitehead [196] divides flutter into three regions based on the axial acoustic wave
propagation:

1. Subcritical flutter - no acoustic waves can propagate

2. Acoustic resonance flutter - a pair of acoustic waves is on the verge of propagat-
ing

3. Supercritical flutter - at least one pair of acoustic waves can propagate

The plot of aerodynamic damping vs. IBPA is in general a nearly sinusoidal curve.
In fact, when only the blade-on-itself damping and the contributions due to the two
neighbouring blades are considered, it takes on the shape of an exact sinusoid [140].
In the case that the acoustic resonance conditions occur, this sinusoid is distorted by
a sharp and narrow peak, referred to as the flutter bite. Its effect on flutter stability
may be either beneficial or detrimental. Given that the flutter stability is determined
by the minimum aerodynamic damping over the set of allowable IBPAs, the presence
of the flutter bite can affect significantly the overall aeroelastic behaviour. Sharp
reductions of flutter stability margin were reported by Wu et al. [199] for a jet engine
fan. The authors ascribed the occurrence of the flutter bites to the aeroacoustic
interaction of the fan with the intake duct.

Lane and Friedman [111] studied the propagation of acoustic waves in a 2D flat
plate cascade and derived analytically the acoustic resonant condition. An equival-
ent formulation may be obtained by setting the time of circumferential propagation
of a disturbance equal to an integral number of oscillations plus the phase lag cor-
responding to the interblade phase angle [39]. The resonant IBPAs are calculated
using the relation:

σr =
(
Mη ±

√
1−M2

ξ

) Mω̃P

(1−M2)C
, (2.4)
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where Mξ and Mη are the axial and tangential Mach numbers respectively, ω̃ is the
reduced frequency, P the blade-to-blade spacing and C the chord. Using either the
inlet or the outlet Mach number and reduced frequency, we obtain two pairs of reson-
ant IBPAs. Although the flat plate cascade model used in the derivation is strongly
simplified and doesn’t account for the flow non-uniformity, actual blade geometry
or viscous effects, it has been shown to give predictions matching reasonably well
with CFD [191].

2.2.9 3D Effects

Three-dimensional flow effects in low-pressure turbines (LPT) are of a lesser im-
portance than in compressors. Past LPT flutter studies have commonly used planar
models and also the most extensive publicly available database of flutter measure-
ments, the Standard Configurations of EPFL, contains 2D flutter data [16]. Since
approximately the 2000s, the potential relevance of three-dimensionality for aer-
oelastic stability has started to gain attention.

Sanders et al. [154] investigated numerically and experimentally the flutter stabil-
ity of a transonic fan. They found the tip clearance to affect significantly both the
magnitude and the phase angle of unsteady surface pressure distribution in the tip re-
gion, although the effect on time-averaged loading was small. Huang [99] discovered
a strong three-dimensionality in the unsteady behaviour of flow in an oscillating
linear turbine cascade. In contrast, the tip clearance value exhibited a negligible
effect on the aeroelastic stability. An extensive analysis of 3D flutter mechanisms
in a LPT was presented by Vogt [190]. Oscillations in bending modes manifested
spanwise variations in response magnitude, while the hub and casing proximity ef-
fects were observed in a torsion mode. The latter resulted in distinct variations in
local stability behaviour. A comparison of 2D and 3D calculations showed a fair
agreement in aeroelastic response magnitude, but greater discrepancies were found
in terms of phase. McBean et al. [128] validated the results of two-dimensional,
three-dimensional, viscous and inviscid simulations against experimental data for a
transonic turbine cascade. He concluded that only the 3D Navier-Stoke computa-
tions captured correctly the phase angle of unsteady surface pressure distributions,
essential for an accurate evaluation of aerodynamic damping. The presented results,
however, do not entirely support this conclusion. More recently, a three-dimensional
viscous flow flutter analysis for a turbine cascade was presented by Micallef et al.
[129]. The investigation concentrated primarily on the evaluation and validation of
the performance of two numerical solvers, but a brief assessment of a tip clearance
influence on aeroelastic stability was also included. It was found to have a very small
effect on the steady aerodynamics at midspan and to be nearly negligible for the
aerodynamic damping evaluation.

2.2.10 Multirow Effects

Although flutter stability is often investigated for an isolated blade cascade, in a real
turbomachine the interactions with adjacent blade rows may become important. The
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unsteadiness induced by the relative blade row motion is superimposed with the flow
disturbances generated by the self-excited vibrations, diffusing thus the boundary
between flutter and forced response. More over, the pressure waves generated by the
oscillating motion of blades may be partially reflected back onto the cascade and
influence the flutter stability.

The combined effect of a gust and flutter was investigated by Frey and Fleeter [51]
for a three-stage axial flow research compressor. The interaction of the two phenom-
ena depended strongly on the gust-blade motion phase angle, affecting the unsteady
lift and moment magnitudes either in a constructive or in a destructive manner.
An approach for an efficient capturing of the blade-row interactions was developed
by Hall and Silkowski [71]. The unsteady aerodynamic interactions were modelled
by pressure and vorticity waves of different circumferential wave numbers and fre-
quencies, denoted spinning modes. Reflection and transmission coefficients were then
calculated for each mode in each blade row and the individual modes were coupled at
the row interfaces. The coupling effects were found to affect significantly the aerody-
namic damping and to depend strongly on the axial spacing. A similar observation
was made by Li and He [116], who used a three-dimensional time-marching Navier
Stokes solver to study the multirow coupling effects on the aeroelastic behaviour of
a vibrating compressor rotor. The aerodynamic damping showed a non-monotonic
dependence on the axial gap, suggesting the existence of an optimum gap size for
flutter stability.

Hall and Ekici [74] employed the method of spinning modes to analyse multistage
coupling effects for a flat plate cascade and for a three-stage compressor. They
concluded that only the two nearest neighbours had a profound influence on the
aerodynamic response of a vibrating blade row. This behaviour was confirmed by
Saiz [150], who employed a time-linearised computational model to analyse the mul-
tirow coupling effects in a turbine. The blade-row interactions changed the aerody-
namic damping by more then 100% for some modal diameters and they were found
to have an overall stabilizing effect. Huang [99] studied the influence of upstream
stator blades on aeroelastic stability of a low pressure steam turbine rotor. A two-
dimensional analysis showed a strong variation of the rotor aerodynamic damping
in function of the axial gap. The presence of the upstream stator changed the rotor
aerodynamic damping by 35% according to a three-dimensional study.

2.3 Computational Methods - State of the Art

2.3.1 Analytical Approaches

The earliest attempts to solve aeroelastic problems employed analytical methods,
based typically on a linearised potential flow theory. Given the complexity of the
phenomenon, major simplifications needed to be undertaken to obtain an analytical
or semi-analytical solution. The structure was usually represented as a flat plate
with zero thickness, facing an inviscid, uniform, incompressible flow either in the
subsonic or in the supersonic regime. One may ask whether such simplified models
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remain relevant for the modern turbomachines, characterised by a high blade load-
ing, non-uniform three-dimensional flow-field, inherent unsteadiness and complex
shock structures. In these conditions, the analytical approaches cannot be expected
to yield accurate predictions of aeroelastic instability. However, their computational
efficiency allows one to perform large parametrization studies in a short time, which
may help to gain insight into the effect of individual parameters. They may also
serve to verify novel numerical approaches on basic test-cases.

One of the earliest comprehensive analytical models is Theodorsen’s theory [177]
which describes flutter onset for an aircraft wing with aileron. The aerodynamic
formulation is based on a linearised unsteady potential flow. The theory assumes
a sinusoidal motion with infinitely small amplitudes about the position of equilib-
rium, considering up to three degrees of freedom for the wing-aileron system. Only
primary effects are of interest and any secondary effects are neglected (finite wing
span, section shape and deviations from potential flow, twisting and bending of ac-
tual wing instead of pure torsion and deflection, friction). The aim of the theory
is to determine the borderline case for loss of stability, i.e. unstable equilibrium.
Theodorsen determines the velocity potentials due to position and velocity of the
individual parts in the wing-aileron system, from which the pressure distribution,
forces and moments acting on the airfoil and aileron are obtained. The aerody-
namic forces and moments are then set into differential equations of motion with
the assumption of a purely sinusoidal translation and rotation. The resulting set of
equations can be used to calculate the velocity at which the loss of stability occurs.
The original report of Theodorsen contains some unclarities and numerical errors,
not surprisingly given the complexity of the theory and the limited computational
resources at the time of creation. A comprehensive review of the report with newly
recomputed results was published by Perry [144].

Several authors later extended Theodorsen’s theory for application on blade cas-
cades. Among the most prominent works are that of Lane and Friedman [111] and
Whitehead [195]. Strong simplifications remained regarding the representation of
both the geometry and the flow. Blades were modelled as flat plates with zero
thickness and zero mean incidence, oscillating in a harmonic motion of infinitesimal
amplitude. The flow was approximated as inviscid, irrotational and isentropic.

Further development ensued to expand the applicability of the method. The effect
of a non-zero mean flow deflection was included by Whitehead [194], while Attasi
and Akkai [7, 5] accounted for the actual geometry of the airfoils and the cascade
parameters. Both models were, however, based on the assumption of an incompress-
ible flow. Whitehead [196] later adapted the model to compressible flows, although
with the restriction of zero mean flow deflection. He showed the increase of Mach
number in the subsonic regime to suppress the tendency to flutter predicted by the
incompressible theory. A model allowing to investigate the compressibility effect in
combination with a non-zero flow deflection was devised by Namba [136].

The need to analyse the aeroelastic behaviour for tips of low-pressure compressor
blades motivated a formulation for supersonic flows. Typically, the axial flow is sub-
sonic in turbomachinery flows even with supersonic relative Mach numbers, which
complicates the solution. Another difficulty arises in devising a solution for an infinite
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cascade [37]. The first model to overcome these complications was developed by Ver-
don and McCune [188], employing the assumption of an inviscid, two-dimensional,
linearised flow-field and neglecting the blade thickness, camber and flow deflection.
A similar method was proposed by Nagashima and Whitehead [133], who employed
the pressure potential instead of the velocity potential in order to simplify the math-
ematical formulation. The agreement between the two approaches was shown to be
very close. Both works assumed a supersonic underlying flow. However, as pointed
out by Goldstein et al. [62], the in-passage shocks in modern compressor and fan
tip sections may be strong enough to violate the assumption of an approximately
uniform supersonic flow. Hence they introduced an approach treating separately
the subsonic and supersonic regions and employing the Rankine-Hugoniot condi-
tion across the interface. Unlike the theory for a completely supersonic flow, this
model was able to predict the occurrence of a supersonic bending flutter. Another
model combining different formulations for subsonic and supersonic regions was in-
troduced by Imregun [102], employing respectively the linearised cascade theories of
Smith [167] and of Nagashima and Whitehead [133]. Flutter stability was evaluated
with aeroelastic frequency response functions that were obtained by inverting the
dynamic stiffness matrix of the aeroelastic system.

The models discussed up to this point operated with the assumption of a two-
dimensional flow. Namba and Ishikawa [135] analysed the importance of three-
dimensional effects in fan and compressor stages, where the flow varies from subsonic
at the hub to supersonic at the tip. They used a lifting surface theory to develop a
model applicable to unsteady three-dimensional flows in rotating subsonic, transonic
and supersonic annular cascades. They concluded that although the strip theory pre-
dicts aerodynamic forces with a good accuracy in supersonic cascades, near the sonic
span the three-dimensional effects become substantial. Further development of the
approach brought the inclusion of multiple blade-rows, enabling to study the effect
of neighbouring blade-rows on flutter characteristics [134].

2.3.2 Frequency Domain Time-Linearised Methods

In spite of the considerable progress in classical methods, even the most advanced
ones adopt simplifications that are too restricting to accurately predict aeroelastic
behaviour in modern turbomachines. The need to include the effects of the steady
blade loading, flow nonlinearity and nonuniformity, viscosity and three-dimensionality
yields the search for an analytical or at least semi-analytical solution fruitless. The
need for models providing more reliable predictions was felt urgently at a time when
performing a discrete non-linear time-marching computation was out of the question
due to a lack of computational resources. And to a considerable extent, this lim-
itation still persists today, at least in the industrial sphere which requires running
many simulations in as short a time as possible.

The time-linearised models represent the next logical step from the classical the-
ories, as they enable improving the model fidelity while retaining reasonably low
computational requirements. An illustrative description of the method is provided
e.g. in [37] or [150]. The fundamental concept of flow linearisation in time is shared
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with the classical methods. The instantaneous flow-field is represented as a super-
position of a steady-state flow and a small unsteady perturbation. Importantly, the
underlying flow field may be modelled as nonlinear and nonuniform, enabling to
account for geometry effects and transonic shockwave patterns. The superimposed
perturbation is assumed as periodic in time, hence it can be expressed as a sum of
Fourier modes proportional to eiωnt. By inserting this representation into the flow
equations, the time derivative ∂

∂t
is replaced by iωn and one obtains an additional

set of equations for each harmonic. These become mathematically steady and they
can be solved with conventional numerical methods, such as finite differences, finite
volumes or finite elements. The blade eigenmodes and eigenfrequencies serve as an
input for the computation and they need to be obtained a priori from a structural
analysis. Aeroelastic stability is then evaluated using the energy method.

The time-linearised formulation offers considerable benefits in terms of computa-
tional requirements. The assumption of a chorochronic (temporal and spatial) peri-
odicity allows restricting the domain to a single blade passage for an arbitrary num-
ber of blades on the wheel and an arbitrary IBPA. The well-tried acceleration tech-
niques for steady-state computations are applicable, such as preconditioning, local
time-stepping and multigrid [150]. The demands on computational resources are thus
significantly lower compared to the nonlinear time-marching unsteady simulations,
although still much higher than those of the classical methods.

The time-linearised approach may be applied to various aerodynamic theories of dif-
ferent complexity, ranging from a planar potential flow to three-dimensional Navier-
Stokes equations. The mean solution may thus account for complex flow characterist-
ics, such as the formation of shocks, boundary layers or turbulence effects. However,
the basic assumption of small perturbations superimposed to a steady-state solu-
tion remains, regardless of how sophisticated the aerodynamic theory may be. This
simplification seems justified for the analysis of flutter onset, but its application to
forced response and limit cycle oscillations is more questionable [105]. Moreover, the
method does not consider any influence of the unsteady perturbations on the mean
flow, hence the time-average of the solution is in fact equal to the steady-state flow.
This assumption may yield inaccurate results in the case that strong nonlinearities
are present, such as a flow separation or a shock-boundary layer interaction [37].

Linearised Potential Flow Solvers

Potential methods assume that there exists a scalar function ψ such that the flow
velocity can be defined as u = ∇ψ. The flow is inviscid, irrotational and isen-
tropic [150]. The latter assumption makes the model unsuitable for computations
of transonic flows, as in reality entropy changes across a shock according to the
Rankine-Hugoniot relations. An error whose magnitude depends on the strength of
the shock is thus introduced into the solution. Moreover, the actual position of the
shock is ambiguous since it is not determined by the entropy condition.

Among the first applications of the time-linearised potential flow solvers were the
works of Verdon and Caspar [187] and of Whitehead [193]. They studied flutter in
torsional and bending modes with a two-dimesional model. Verdon and Caspar used
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shock-fitting techniques with supersonic regions embedded on a subsonic flow field
and discretised the potential flow equations with an implicit finite difference ap-
proximation. The model of Whitehead relied instead on a shock capturing strategy,
using the finite element method for discretisation. The effect of entropic, vortical
and acoustic gusts on the aerodynamic response of a subsonic cascade was studied
by Hall and Verdon [76]. Although linearised Euler methods had already begun to
gain popularity at that time, they argued that the potential flow approach is more
efficient. Nevertheless, the need to model three-dimensional, rotational flows with
strong shocks was never satisfied with the potential methods and caused a shift
towards models based on Euler equations.

Linearised Euler Solvers

Techniques based on Euler equations enable capturing accurately shock positions
and to resolve correctly the jumps in flow variables across the discontinuity. There-
fore, they are much more suitable for the simulation of transonic flows than potential
methods. However, the application of time-linearised Euler solvers to unsteady flows
with shocks is still problematic due to the assumption of small perturbations. Even
a small shift of the shock position induces local jumps in flow variables which cannot
be regarded as small relatively to the steady-state flow.

One of the pioneering works on time-linearised Euler-based solvers was performed
by Ni and Sisto [137]. Using the assumption of a homentropic flow, they studied
unsteady aerodynamics of two-dimensional flat plate cascades in both subsonic and
supersonic regimes. Although the presented test-case was rather basic, the method
was directly extendable to real geometries and nonuniform inlet flows. Hall and
Crawley [73] based their code on Euler equations for a general flow and analysed
gust response and self-excited vibrations of a turbine cascade with a realistic blade
geometry. The authors used a shock fitting technique requiring that the shock be
aligned with a computational grid line on a logically rectangular grid. While this
method ensured a good resolution of discontinuities even on a fairly coarse grid, it
prevented the applicability to transonic flows on staggered cascades.

A shock capturing scheme would provide a greater flexibility and easier implement-
ation, but its viability in conjunction with the time-linearised methods first needed
to be verified. Lindquist and Giles [119] demonstrated the equivalence of the shock
fitting and shock capturing approaches for conservative schemes on a shock tube
problem and on a variable-area duct. An application of the shock capturing tech-
nique to more complex cases was presented by Hall et al. [69], who analysed two-
and three-dimensional unsteady transonic flows in cascades. They stressed the re-
quirement of scheme conservativity and observed that the time-linearised solutions
were in an excellent agreement with non-linear time-accurate methods. An improve-
ment in accuracy was brought by performing the calculations on deforming grids,
such that the grid points on the blade surface moved together with the blade. This
procedure was employed by Holmes and Chuang [94] and by Hall and Lorence [70] in
order to eliminate the error in extrapolation of flow variables from the grid boundary
to the instantaneous airfoil position. Multiple works on turbomachine aeroelasticity
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using a three-dimensional time-linearised Euler method with moving grid have since
been published, for example the paper of Marshal and Giles [124].

Linearised Navier-Stokes Solvers

Euler-based methods cannot account for viscous effects such as wakes, boundary
layers, flow separation and stall, secondary flows, etc. For this reason, some time-
linearised solvers incorporated the Reynolds-Averaged Navier-Stokes equations
(RANS). Among the first was the two-dimensional model of Clark and Hall [26],
based on RANS equations with the Spalart-Allmaras turbulence model. Their pa-
per presented an analysis of flutter stability for a fan at design point and at an
off-design condition with high-incidence stall. They validated the model by com-
parison with experimental data and with the results of a nonlinear time-domain
Navier-Stokes solver and observed a satisfactory agreement, in spite of the limita-
tions coming from the two-dimensionality of the model. A three-dimensional study
was performed by Sbardella and Imregun [155], who discussed the correct approach
for the linearisation of the turbulence model and wall functions. Campobasso and
Giles encountered a numerical instability using preconditioned multigrid iteration in
their time-linearised NS solver and evaluated the behaviour of complex stabilization
algorithms in a series of papers [19, 18, 20]. A more recent example of aeroelastic
analysis using a time-linearised Navier-Stokes code was shown by Petrie-Repar et
al. [145]. They performed flutter computations of a last-stage steam turbine blade
in 3D, employing the Spalart-Allmaras turbulence model, an equilibrium wet-steam
gas model and a three-dimensional non-reflecting boundary condition.

2.3.3 Nonlinear Frequency-Domain Methods

The time-linearised methods offer great benefits in computational costs compared
to time-domain approaches. Casting the equations into the frequency domain al-
lows one to limit the computational domain to a single blade passage and to apply
acceleration techniques developed for steady state solvers. However, the nonlinear
interactions between the unsteady perturbations and the mean flow are completely
neglected. It is assumed that the time-averaged flow-field is exactly the same as the
steady-state one. Therefore, the technique is limited to small-disturbance flows, for
example flutter onset. Cases with large unsteady displacements, such as limit-cycle
oscillations, cannot be simulated with this approach. Further research concentrated
on techniques which would exploit the advantages of frequency-domain methods
while capturing the nonlinear unsteady interactions. An illustrative review of the
most popular approaches is provided by Saiz [150].

SLIQ Approach

Among the first efforts to incorporate nonlinear unsteady effects in the time-averaged
solution was the SLiQ (Steady Linear Quadratic) method of Giles [57], based on an
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earlier work by Adamczyk [4]. In contrast with the traditional time-linearised ap-
proach, the expansion series of the flow variables includes also the quadratic term.
The time-average of this term is non-zero, therefore the mean-flow solution is no
longer identical to the steady state flow. The method requires that three sets of
equations are solved. The steady-state flow and the first order unsteadiness are cal-
culated analogically to the time-linearised methods and an additional set of equa-
tions is used to determine the second order term. Finally, the time-average of the
quadratic term serves to correct the solution of the mean flow.

An essential drawback of the SLiQ approach is that the loop is not closed and there
is no feedback from the corrected time-averaged flow onto the unsteady flow perturb-
ations. The implications are twofold. Firstly, the corrections to the steady-state flow
due to unsteadiness are based solely on the steady-state solution and the linearised
perturbations, although the assumption of their inadequacy is the actual reason for
choosing this method over the traditional time-linearised approach. Secondly, applic-
ation of this technique does not affect the linearised unsteady terms, hence it does
not offer any benefits over the time-linearised methods for an aeroelastic analysis.
Instead, it is rather suited for unsteady multistage flow calculations it was originally
developed for.

In spite of these drawbacks, the method still enjoys some popularity to this day
thanks to the low computational costs. Jocker [105] employed the SLiQ approach
for the unsteady flow analysis of a transonic high-pressure turbine stage with a pre-
scribed incoming gust. One of the more recent applications was shown by Torkaman
et al. [181] regarding a flutter analysis of the 4th stage of an industrial gas turbine.

Nonlinear Harmonics

Aiming to address the shortcomings of the time-linearised techniques and of the
SLiQ approach, Ning and He [138] developed the nonlinear harmonic method (NLH).
The harmonic series approximating the unsteady flow is expanded around the time-
averaged flow rather than the steady-state one. Similarly to the time-linearised ap-
proach, one obtains equations for the mean flow and for the individual harmonics.
However, extra terms are generated in the momentum and energy equations for the
mean flow, in the same manner that Reynolds stress terms appear in RANS equa-
tions. These terms are referred to as deterministic stresses [150] and they convey the
effect of flow unsteadiness on the time-averaged solution. The equations are closely
coupled and they need to be solved interactively, preferably via a simultaneous
pseudo-time marching procedure.

The NLH technique retains most of the advantages of the time-linearised methods in
terms of computational costs. The equations are mathematically steady, hence the
traditional acceleration techniques for steady flow solvers are applicable, such as mul-
tigrid or local time-stepping. Moreover, the domain can be limited to a single blade
passage even for multistage computations with arbitrary blade counts. Although the
CPU time increases by about 60% compared to the time-linearised harmonic meth-
ods [138], it is still much lower than in the case of nonlinear time-marching solvers.
Depending on the number of included harmonics, the reduction of computational
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time may account up to one or two orders of magnitude [189, 192].

In their original publication, Ning and He [138] demonstrated the benefits of the NLH
approach on the case of a supersonic compressor cascade with oscillating blades.
The results were compared with a time-linearised method and with a nonlinear
time-marching computation. A substantial improvement in accuracy over the time-
linearised approach was shown, as the unsteady blade-pressure distributions achieved
a much closer agreement with the time-marching solution.

The method was originally developed as a single blade-row model, but it was soon
extended to multirow calculations. Chen et al. [24] employed NLH to study a three-
dimensional stator/rotor compressor stage and found a good agreement with the
results of a nonlinear time-marching computation. Compared to a steady-state com-
putation, NLH was able to recover 90% of the interface mixing loss generated when
the first two harmonics were included. He et al. [86] showed that the method can be
successfully employed for the analysis of a circumferential aperiodicity in multi-stage
simulations. The authors evaluated clocking effects in a two-and-a-half-stage tran-
sonic compressor, concluding that the rotor-rotor interaction is much stronger than
the stator-stator one. The interference between upstream rotor wakes and down-
stream rotor passage shockwaves was proposed as the possible mechanism behind
this behaviour.

Thanks to its advantageous combination of low computational demands and capab-
ility of capturing nonlinear unsteady effects, the method became widely used also
outside of the academic environment. Vilmin et al. [189] presented the implementa-
tion of NLH into the commercial RANS solver Numeca FINE/Turbo. They provided
several analytical examples for validation as well as two more complex industrial ap-
plications of a radial turbine and a 4-stage transonic compressor. The method was
shown to improve substantially the time-averaged flow predictions and to resolve un-
steadiness accurately, providing that a sufficient number of harmonics was included.
The FINE/Turbo package was also used by Wang and Liu [192] to study a counter-
rotating research compressor, comprising the inlet guide vane, two rotors and the
outlet guide vane. The results of the NLH computations were validated by compar-
ison with experimental data and with time-domain simulations. The performance of
the compressor was analysed at the design point and at off-design conditions. The
authors concluded that the NLH predictions achieved a good accuracy especially for
the design point, while reducing the computational demands considerably compared
to the time-domain approach.

Harmonic Balance Method

The nonlinear harmonic method offers a substantial improvement in fidelity com-
pared to the time-linearised approach. It accounts for nonlinear unsteady effects and
treats accurately cases with large displacements. However, a certain limitation per-
sists in that there is no direct interaction between unsteady phenomena of different
frequencies. The only connection between different temporal harmonics is via the
time-averaged flow. This shortcoming is addressed by the harmonic balance (HB)
method of Hall [75] which accounts for the nonlinear interaction between several
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harmonics at the same time.

The approach exploits the assumption of temporal periodicity to represent the
flow variables with a temporal Fourier series whose coefficients vary spatially. The
straightforward approach would be to substitute this representation into the flow
equations and obtain a harmonic balance form for the unknown vector of Fourier
series coefficients. Although the method can be applied in this form and produces
accurate flow solutions, it has some major drawbacks. The calculation of harmonic
fluxes is difficult and computationally expensive, requiring N3 operations (N being
the number of harmonics included in the Fourier series). Moreover, the approach is
not applicable to complex turbulence models [72].

The authors proposed an alternative technique. The Fourier coefficients can be re-
constructed from the knowledge of the temporal behaviour of conserved variables
and fluxes at 2N + 1 equally spaced points over one temporal period. The solution
procedure starts with generating grids for 2N + 1 time levels. On each of these
grids, the solution is calculated conventionally by pseudo-time marching to a steady
state condition. The solutions on the different time levels are coupled via a spectral
derivative term and via periodic boundary conditions. A notable drawback of this
approach is that the need to compute 2N+1 steady-state solutions increases signific-
antly the CPU cost compared to the time-linearised techniques. The computational
demands are thus brought closer to the nonlinear time-marching methods. Another
potential limitation is found in the number of harmonics that can be included in the
solution. Hall et al. [75] performed tests with 1, 3, 5 and 7 harmonics and experi-
enced a failure to converge for the case N = 7. They concluded that this did not
represent a serious problem, as a lower number of harmonics is sufficient to capture
accurately the zeroth and the first harmonic components of the unsteady flow.

The harmonic balance method achieves a significant improvement in fidelity com-
pared to the conventional harmonic time-linearised techniques. The nonlinear in-
teractions are modelled not only between the time-averaged solution and the har-
monic unsteady perturbations, but also between the different temporal harmonics.
No assumption is made about the size of the unsteadiness, which enables treating
phenomena characterized by large displacements, such as limit cycle oscillations.
As Hall et al. [75] point out, the method bears some similarities to the dual time
stepping method. However, thanks to using the spectral time derivative instead of
a finite difference scheme, the number of time levels per period may be reduced
significantly.

The approach has been successfully applied for example to the simulation of a tran-
sonic front stage compressor with oscillating blades [75], a study of nonlinear effects
in relation to flutter onset and limit cycle oscillations of a transonic airfoil [179]
and a multirow computation of an axial turbine with 1.5 stages [32]. The authors of
the latter paper performed the simulations with an implementation of the harmonic
balance method in the commercial solver Star-CCM+. Overall, the studies demon-
strate that the harmonic balance method yields results in close agreement with the
time-marching techniques. In spite of the increased computational demands in com-
parison with the time-linearised techniques, the method still achieves a considerable
CPU time reduction relatively to the time-domain simulations. Depending on the
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test-case configuration, the computational cost may be decreased by more than one
order of magnitude [32].

2.3.4 Nonlinear Time Marching Methods

The most comprehensive approach for the simulation of unsteady flows is represen-
ted by the nonlinear time-marching methods. No assumptions are made regarding
the size of unsteadiness, which enables performing large-displacement aeroelastic
computations with all types of nonlinear effects included. While the state-of-the-art
frequency domain techniques can also be employed successfully for such simulations,
the time-marching approach in addition permits to calculate transient phases and to
account for aperiodic phenomena. The major drawback of this high-fidelity approach
is in the increased computational costs, especially in the case of three-dimensional,
viscous multi blade-row simulations. Even nowadays, it is prohibitively expensive
for a routine application in the industry.

The use of the Direct Numerical Simulation (DNS) or Large Eddy Simulation (LES)
for aeroelastic analysis is usually too costly even in the academic environment. The
flow equations are therefore typically solved with the RANS approach, employing
various turbulence models. The governing equations are integrated in time, starting
from initial conditions, until a periodic flow pattern is established. The computa-
tional time depends on the number of iterations and thus on the timestep size. Its
selection is limited by the requirements to retain numerical stability and to achieve
the desired temporal accuracy. Time is a meaningful physical quantity in unsteady
simulations, which rules out the application of local time-stepping, commonly used
for the acceleration of steady-state computations. The maximum allowable timestep
for the traditional explicit time integration schemes is thus determined by the sta-
bility limit of the finest cells. In the case of viscous simulations, these are found in
the near-wall regions and they need to be very thin in order to resolve the bound-
ary layers. The timestep thus becomes too small for practical use. Moreover, the
global time-stepping also yields the multigrid acceleration technique ineffective [97].
Several techniques have therefore been proposed to accelerate the computations.
He [81] devised a time-consistent scheme, employing two meshes. The motivation
was to achieve spatial accuracy corresponding to a basic fine mesh, while a coarse
mesh was applied locally in the near-wall regions to increase the allowable timestep
length. This method is not fully time-accurate and it has been shown to produce
some discrepancies in modelling the time-resolved skin friction and pressure distri-
bution on stator and rotor blades [97]. An alternative strategy is the fully implicit
dual time-stepping method of Jameson [103]. The integration in physical time is
realized via external Newton iterations, while a pseudo-time is introduced to drive
the solution to convergence within each external iteration. The pseudo-time integra-
tion enables using acceleration techniques developed for steady state flows and the
physical timestep restriction is relaxed thanks to the implicit outer iterations.

An important issue related to the time-domain aeroelastic computations is account-
ing for the time-varying computational domain due to the movement and deforma-
tion of solid bodies. Traditionally, fluid dynamics solutions employ Eulerian repres-
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entation where the mesh is fixed in space and the fluid particles travel from one cell
to another. On the other hand, Lagrangian formulations with cell vertices follow-
ing the motion of associated material points are usually used in solid dynamics. In
order to account for the deforming fluid-domain boundaries while preserving the in-
dependence of particle and mesh motion, the Arbitrary Lagrangian Eulerian (ALE)
technique was devised [92]. It allows one to choose arbitrarily the motion of the
grid vertices in a way deemed suitable for the particular problem. In the case of an
aeroelastic analysis, the grid vertices on the solid surface typically follow its motion
in a Lagrangian fashion and the inlet and outlet boundaries remain fixed in space
analogically to an Eulerian representation. The motion of the inner mesh vertices
represents an additional problem to the investigated fluid-structure interaction. The
remeshing algorithm needs to be fast as the vertex movement is performed in every
iteration. It also needs to be robust and fully automatic, without requiring any
user input throughout the run of the simulation. And finally, good cell quality has
to be ensured in order to maintain satisfactory solution accuracy and avoid solver
divergence.

Various strategies have been devised in the past to address the problem of mesh
movement due to domain deformation. Batina [9] developed a linear spring analogy
algorithm for unstructured grids, modelling each edge of a tetrahedron as a spring
with stiffness inversely proportional to the edge length. In each step, the mesh mo-
tion was realized by an iterative predictor-corrector algorithm. This method was
successfully applied to computations of oscillating wings and airfoils with relatively
small displacements [46, 30], but it was prone to produce invalid triangulations in
the case that significant deformations were involved. Degand and Farhat therefore
proposed a more robust torsional spring method, designed to prevent a vertex from
crossing an edge or a face of an element [33]. Structured grid movement on a single-
block domain may also be realized by a transfinite interpolation (TFI) [44]. Hybrid
strategies have been used for multiblock meshes, employing the TFI within each
block and the spring analogy [77] or a master/slave strategy [107] to move the block
boundary vertices. A popular approach is based on treating the mesh as an elastic
solid body and solving partial differential equations to obtain an updated configur-
ation in each iteration. The desired characteristics of the mesh movement can be
achieved by selectively adjusting the stiffness of individual elements based on their
shape and volume changes [173]. An optimization step may also be included in order
to improve the cell quality or to cluster cells in regions with large solution gradients
[151, 98]. If the domain deformation becomes too large, it may no longer be possible
to achieve satisfactory cell quality only by the movement of nodes. In that case it
may be necessary to remesh the region completely and interpolate the solution from
the original mesh onto the new one.

We have outlined in the Sec. 2.3.2 that the frequency domain methods have pro-
gressed from employing a simple flow representation, such as potential equations
for planar flow, to complex flow models accounting for three-dimensional geomet-
ries, compressible effects, blade-row interactions and viscous phenomena. A sim-
ilar historical development can be observed also for the nonlinear time-marching
calculations. The pioneering time-domain analyses of aeroelastic effects employed
two-dimensional Euler equations, such as the work of Fransson and Pandolfi [48]
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on vibrating cascades with thin blades in a subsonic compressible flow. Extensions
to quasi three-dimensional models were soon presented for example by Gerolymos
[55] and by He [80] and a fully three-dimensional analysis of vibrating transonic
compressor cascades ensued [54]. These early works relied on the generally accep-
ted assumption that viscous effects are not relevant for aeroelastic investigations,
except in the stall and choke flutter problems [11]. Later research showed that they
may significantly affect aerodynamic damping in some cases, driving its value in
either direction. Grüber and Carstens [64] identified the underlying mechanism as
the viscous shock - boundary layer interaction. In order to reduce the increase of
computational demands due to the inclusion of viscous effects, simplified formula-
tions were initially used before proceeding to full Navier-Stokes equations. He and
Denton modelled viscous effects by coupling integral boundary layer equations with
inviscid Euler equations [83, 84] or by neglecting the viscous term in the energy
equation and employing the thin-layer assumption for the viscous terms in the mo-
mentum equations [85]. One of the first time-domain aeroelastic models based on
RANS equations was developed by Huff [101], who computed two-dimensional tran-
sonic flow over isolated and cascaded airfoils using the Baldwin-Lomax turbulence
model. Further progress in turbulence modelling and the increase of computational
power enabled capturing the viscous effects with ever-increasing fidelity and three-
dimensional RANS computations have since become widely used in aeroelastic ana-
lysis [162, 156].

While the evolution of the aerodynamic model bears similarity with the frequency
domain techniques, an aspect specific to the time-domain methods concerns the ef-
forts to alleviate the CPU demands by reducing the computational domain. The
most straightforward approach is to employ a whole-annulus model containing the
complete blade-rows in the computational domain. However, this technique is too
costly for most applications, which stimulated the development of more efficient
models exploiting the inherent chorochronic periodicity of turbomachinery flows.
The core of the solution strategy, such as spatial discretisation and temporal integ-
ration, is adopted from the whole-annulus model. However, the formulation of special
boundary conditions allows one to reduce the domain extent to a single passage per
blade row in some cases.

Whole Annulus Model

The whole-annulus representation is the most comprehensive and enables capturing
complex unsteady flow fields inclusive of aperiodic phenomena. However, the high
modelling fidelity comes at the cost of increased computational requirements, espe-
cially in the case of multi blade-row simulations. A common practice is therefore
to find periodically repeating sectors and to reduce the computational domain to a
single one of them, applying direct periodicity boundary conditions. For example,
in the case of a single-stage computation with 46 stator blades and 69 rotor blades,
the highest common factor is 23 and the domain can be truncated to just 2 stator
and 3 rotor blade-passages. This approach has some notable limitations. Firstly,
one forsakes modelling of aperiodic effects, occurring for example in multirow com-
putations with more than 2 stages [150]. For the same reason, the method cannot
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be used for an aeroelastic analysis of mistuned blades. Perhaps more importantly,
the domain truncation often cannot be applied to real turbomachines, as the blade
counts typically have no high common dividing factors.

In order to resolve the latter issue, a domain scaling technique became widely used
in the industry. The blade counts are altered, such that the greatest common factor
is increased and the computational domain can be reduced more substantially. This
modification inevitably results in a change of the stage geometrical properties, such
as the pitch to throat ratio, pitch to chord ratio, blade curvature or trailing edge
thickness. The blades are either restaggered, reskewed or scaled, depending on which
parameters are chosen to be preserved [159]. However, strong evidence has been
produced that although this approach achieves reasonable accuracy for the time-
averaged results, the unsteady flow field may be predicted incorrectly in terms of
the magnitude and phase of the unsteadiness [25]. The domain scaling approach is
therefore not at all suitable for aeroelastic computations where the accurate predic-
tion of unsteady blade pressure phase and magnitude is of essence.

The remarkable rise in computational power has only recently allowed three-dimensional,
viscous flow flutter studies on whole-annulus domains to be performed. Peng [143]
investigated the effect of tip clearance on compressor rotor flutter induced by tip
vortices. He first computed a steady-state solution with a multirow single-passage
model and used it to prescribe the initial and boundary conditions for a whole-
annulus single-blade-row flutter computation. Salles and Vahdati [152] analysed the
effects of mistuning on fan flutter. They performed whole-annulus time marching
computations to validate their aerodynamic influence coefficient method developed
for rapid aeroelastic evaluations.

Single Blade-Passage Model

The efforts to reduce the computational domain to a single blade passage per blade-
row can be traced back to the earliest unsteady nonlinear time-marching computa-
tions. The approach first appeared in the work of Erdos [43], who calculated a 2D
inviscid unsteady flow in a transonic fan stage. He formulated phase-shifted bound-
ary conditions using the inherent chorochronic periodicity. In the case of steady-state
flows, or unsteady flows with an equal stator and rotor pitch P , the periodic bound-
ary condition simply expresses that the solution at one periodic boundary is equal
to the solution at the other periodic boundary:

ϕ(x, y, t) = ϕ(x, y + P, t) (2.5)

If we consider an arbitrary pitch ratio, a relation between the two periodic boundaries
still exists, but now it needs to take into account the time lag ∆t given by:

∆t =
Ps − Pr
ωrotr

, (2.6)

where Ps and Pr are the stator and rotor pitches respectively, ωrot is the rotational
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speed and r radius. The lagged periodic boundary condition for the rotor is then
expressed as [60]:

ϕ(x, y, t) = ϕ(x, y + Pr, t+∆t) (2.7)

Although the phase-shifted boundary conditions were derived to calculate unsteady
blade-row interactions, they are just as well applicable to flutter computations using
the travelling wave mode with a constant interblade phase angle. The implementa-
tion of Erdos required storing the solution history at both periodic boundaries over
the course of the last period and reintroducing it later to update the solution. This
technique, which became known as the direct store method, offered a substantial
reduction of CPU time compared to whole-annulus simulations. On the other hand,
the necessity to store the solution histories imposed large requirements on computer
memory.

An alternative method for reducing the domain extent to a single blade passage,
called time-inclination or time-tilting, was introduced by Giles [60]. The motivation
behind this approach is to enable imposing a simple spatial periodicity condition to
unsteady flows, just as it is possible in the steady-state case. Instead of considering
all points in the computational domain to be at the same physical time-level in the
given iteration, the computational plane is sloped in time. If a point at one periodic
boundary is at a time t, the corresponding point at the other boundary is at a time
t + ∆t, with ∆t being the time lag given by Eq. 2.6. In mathematical terms, the
idea is to perform a coordinate transformation:

x̃ = x, ỹ = y, t̃ = t−
(
∆t

Pr

)
y (2.8)

The computational plane at each iteration is now given by t̃ = const and simple
periodic boundary conditions can be applied, disposing of the large memory require-
ments characteristic for the direct store method. However, there exists a limitation
on the slope of the time-inclination, given by the characteristics of the governing
equations. For stator-rotor interaction computations with single blade passage per
blade-row, the pitch ratio must not exceed the value of 1.5. This also imposes a
significant restriction for the application range of IBPA in flutter simulations.

Another formulation of the phase-shifted boundary conditions for single-passage
computations was proposed by He [80] as a shape-correction method. In order to
dispose of the excessive memory load required by the direct store method of Erdos,
the temporal evolution of the variables at periodic boundaries is represented by a
Fourier series. Only the first few Fourier coefficients are stored as opposed to the
entire solution history over the last period. The memory saving is thus comparable
to the time-tilted approach of Giles without the limitations on blade count ratio or
IBPA. Moreover, the shape-correction method was later updated to include multiple
perturbations [87]. Its applicability hence extends to computations with multiple
rotating blade-rows that are not possible with the other two methods.

Each perturbation is assumed to have its own phase-shifted periodicity, character-
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ised by a spatial wavelength and a constant circumferential travelling speed. The
unsteady change of flow variables induced by the i-th perturbation can be approx-
imated by Fourier series according to the following relation:

ϕi(x, y, z, t) =

Nfou∑
n=1

[Ani(x, y, z)sin(nωit) +Bni(x, y, z)cos(nωit)] , (2.9)

where ωi is the disturbance frequency and Nfou is the number of included harmonics.
The unsteady flow at any point of the periodic boundary can be expressed by adding
a time-averaged part ϕ0 to the sum of all considered disturbances:

ϕ(x, y, z, t) = ϕ0 +

Ndst∑
i=1

ϕi(x, y, z, t) (2.10)

In a typical flutter computation based on the travelling wave formulation with a
constant IBPA, the number of disturbances Ndst would be equal to one. In the cases
where there are multiple phenomena of different frequencies present, such as flutter
under distortion or multirow interactions, one needs to consider carefully the number
of disturbances. If the nonlinear interactions between the fundamental perturbations
are strong, it may be necessary to include not only the fundamental frequencies, but
also their combinations [87].

The shape-correction method was applied successfully to investigate oscillating blades
subjected to inlet and outlet perturbations [87, 86] or intra-row interactions in
a one-and-a-half stage transonic compressor [117]. Both applications required the
treatment of multiple perturbations with different frequencies and wavelengths,
which is not possible with the direct-store and time-tilting techniques. Moreover,
the shape-correction method does not impose excessive memory requirements un-
like the direct-store technique. In spite of the extra effort related to the boundary
condition treatment, a reduction of computational time by the factor of 5-10 was
observed in comparison with whole annulus simulations [86]. At the same time, it
achieves a comparable accuracy, providing that each perturbation can be represen-
ted by a constant frequency and interblade phase angle. This may not be the case
for multi blade-row simulations with more than two rows. It has been shown that
a three blade-row simulation includes some aperiodicity generated by the unsteady
interaction between the first and the last blade-row, hence the shape-correction is
not completely accurate for such applications [150].

Non-Reflecting Boundary Conditions

The compact spatial arrangement of turbomachines requires that the inlet and outlet
boundaries are placed close to the blades. Any perturbation formed at the boundary
thus directly impacts the near-blade flow solution. Great attention therefore needs
to be paid to the formulation of boundary conditions, such that the contamination
of flow solution with spurious wave reflections is prevented. Most often, the issue is
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addressed either by adding a buffer layer to absorb the propagating waves, or by
adopting a boundary condition designed to suppress the wave reflections.

The first approach, involving a modification of the computational grid or the govern-
ing flow equations, is found for example in the works of Hayder et al. [79] or Zhang
et al. [201]. The latter strategy typically builds upon the theory of non-reflecting
boundary conditions formulated by Giles [58, 61, 59]. The theoretical foundations
for his research stem from the work of Kreis [110] who examined the well-posedness
of initial boundary value problems for hyperbolic systems. A physical interpretation
in terms of wave propagation was subsequently provided by Higdon [89]. Engquist
and Majda [42] introduced a hierarchy of non-reflecting boundary conditions for
multi-dimensional problems.

A majority of the previously published literature on non-reflecting boundary con-
ditions had been written by mathematicians for mathematicians, which reduced its
accessibility to those with an engineering background. Giles’ major contribution is
in formulating the theory such that its understanding doesn’t require the knowledge
of a complex mathematical apparatus and in presenting an application to Euler
equations. His work reached wide popularity and gave impulse to further research
on non-reflecting boundary conditions.

The methodology of Giles is based on linearised Euler equations and the assumption
of wave-like perturbations around a mean flow state. An eigenvalue problem solu-
tion allows one to distinguish between the waves entering and leaving the domain
for each spatial and temporal perturbation mode. The boundary condition can thus
be defined such that undesired incoming perturbations are avoided. The general for-
mulation is non-local both in time and space, which lead Giles to propose several
simplified definitions. The 2D Exact Steady NRBC considers only spatial perturb-
ations and disposes of the necessity to perform the temporal decomposition. For
unsteady flows, a 2D Approximate Unsteady NRBC is suggested, local both in time
and space and based on a second-order Taylor series expansion about a 1D bound-
ary condition. However, its non-reflecting properties are compromised for the sake
of well-posedness, and spurious reflections may be produced for modes with large
circumferential wave numbers [61]. A higher-order approximation was introduced by
Hagstrom [67] and shown by Henninger et al. [88] to achieve superior non-reflecting
properties compared to the original formulation of Giles.

Chassaing and Gerolymos [23] presented an implementation of Spectral boundary
conditions in a time-domain solver. The method is exact for linearised Euler equa-
tions and involves two-dimensional space-time Fourier transforms. The authors tested
its behaviour on the propagation of acoustic waves in a uniform mean flow, where
it exhibited superior reflection properties to Giles’ approximate condition, albeit
at the cost of slower convergence. Schlüß et al. [158] and Schlüß and Frey [156,
157] reimplemented the Spectral boundary condition with the purpose of enhan-
cing its applicability by taking into account the specifics of time-domain solvers.
They applied the Spectral NRBC to a flutter computation of a steam turbine stage
and highlighted its favourable non-reflecting properties. While the method required
about twice as many steps to converge as the one-dimensional boundary condi-
tion, no stability issues were encountered in contrast to previous implementations.
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Moreover, the results showed little sensitivity to boundary position, allowing one to
use a truncated domain and reduce the computational effort per step thanks to a
lower number of cells. Sivel [163] exploited the possibility to decrease the computa-
tional requirements of the Spectral NRBC by reducing the set of temporal harmonics
employed in the modal decomposition.

2.3.5 Fluid-Structure Coupled Methods

Uncoupled approaches, such as the energy method, are widely used for aeroelastic
analysis in turbomachinery. It is assumed that the effect of aerodynamic forces on
the change of structural dynamics can be neglected thanks to the large density
ratio between fluid and structure. The analysis is performed only for one mode and
frequency at a time, ignoring thus any potential mode coupling. While the underlying
assumptions may hold for conventional turbomachinery blades with high mass ratio
and stiffness, their validity has been questioned for modern lightweight designs with
long and slender blades, fabricated possibly from composite materials. For such
applications, it may be necessary to include the full fluid-structure coupling in order
to obtain realistic results.

Several studies have been published on the validity of uncoupled methods for modern
blade designs. Li and Sheng [118] combined unsteady potential flow solution with a
two DOF structural model to investigate the stall flutter of a transonic fan. They
emphasized the importance of bending and torsion coupling effects which cannot
be modelled with the single-mode energy method. A similar conclusion was reached
by Srivastava and Reddy [172] in their study comparing three flutter prediction
methods. Moyroud et al. [132] investigated the limitations of the energy method in
relation to the fan blade material. Significant discrepancies appeared in the predic-
tions obtained with the coupled and uncoupled approaches. The errors associated
with the natural frequency assumption and with the single-mode assumption were
of a similar gravity. A shift in the blade vibration frequency from its natural fre-
quency was observed also by Sadeghi and Liu [149], the effect being more pronounced
for lower mass-ratio configurations. Chahine et al. [22] investigated the discrepancy
between coupled and uncoupled flutter predictions by a parametric variation of mass
ratio and blade stiffness. The two approaches showed a very good agreement in the
case that only one parameter in isolation was varied from the baseline full titanium
blade. However, a combined variation of both parameters magnified the coupling
effects and caused a substantial decline in accuracy of the energy method.

In order to capture the fluid-structure coupled problems in all its complexity, one
needs to resort to discrete time-marching methods. Flow is represented by a non-
linear model based on the Euler or Navier-Stokes equations, while the structural
dynamics is usually sufficiently approximated by a linear elastic model. The dy-
namic equation of the body motion is given by [22]:

M ẍ+Bẋ+Kx = F (2.11)

Here the mass matrix M , the structural damping matrix B and the stiffness matrix
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K characterize the structure, while the aerodynamic force F , corresponding to the
nodal displacement vector x, is obtained from the flow solution. This formulation
allows a certain flexibility in selecting a particular model for the approximation of
either part. For example, the structural models can range from solid blade sections
to 3D finite elements and the aerodynamic solution may vary from a 2D potential
flow model to 3D RANS equations. An important part of the solution procedure
is the exchange of information between the structural and aerodynamic domains.
Based on the degree of coupling, the aeroelastic models can be generally classified
as directly or weakly coupled.

Directly Coupled Methods

The governing equations for fluid and structure are solved simultaneously within
an interconnected time-marching procedure. A full two-way coupling is ensured
throughout the computation by transferring the aerodynamic loads onto the struc-
ture and by using the instantaneous surface displacements to deform the flow solu-
tion domain. In order to eliminate any error during the transfer of information
across the interface, it is beneficial to employ the same discretisation techniques for
both domains. However, the separate historical development of computational fluid
dynamics (CFD) and computational structural mechanics (CSM) has lead to the
formation of specific techniques for each discipline, differing in both the discretisa-
tion and the solution methods.

Solid mechanics problems are formulated in a Lagrangian representation, expressing
the deformations as a function of the initial configuration and time. The equations
are usually discretised with high-order finite element (FE) methods. Although it-
erative solvers are popular, the assembled system of equations may also be solved
directly [164]. Flow problems, on the other hand, are traditionally treated in an Eu-
lerian representation. The stiffness of the associated matrices is therefore by orders
of magnitude lower compared to structural problems [66]. The discretisation is most
often performed with the finite volume (FV) methods, whose spatial accuracy is typ-
ically limited to second order. Structured meshes are employed where possible and
the solution procedure is iterative. Due to the rather disparate solution procedures
for CSM and CFD, the development of directly coupled fluid-structure interaction
solvers has split into two separate paths.

One group of researchers has strived to achieve compatibility of the existing solution
methods by employing a suitable interfacing technique for the transfer of data from
one mesh to another. Guruswamy and Byun [66] coupled finite difference solution of
Euler equations to a shell FE structural discretisation. The transfer of aerodynamic
loads onto the structure was realized either by a simple bilinear interpolation or by a
virtual surface treatment, capable of preserving the work done by aerodynamic forces
due to structural deformations. The authors presented an application of the model
to the flutter analysis of a fighter-type wing. Garcia and Guruswamy [53] combined
nonlinear models for both structure and aerodynamics in their 3D aeroelastic ana-
lysis of a transonic wing under large deformations. Nonlinear beam elements were
used to model the wing and a finite difference discretisation of thin-layer RANS was
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employed for the flow solution.

The second option is to employ a unified discretisation technique for the complete
multiphysics problem, avoiding thus the issue of interpolation on the interface. This
requires that either finite volumes are adapted for structural computations, or finite
elements for flow solution. The former approach was pursued by Slone et al. [165,
164], who developed a single FV discretisation strategy for flow and solid mechanics
problems on unstructured meshes. They presented a computational example of a
three-dimensional cantilever surrounded by flow, with the ultimate goal of applying
the code to flutter analysis of turbines and aircraft wings. The FE discretisation
strategy was, on the other hand, chosen by Sanches and Coda [153]. They coupled
a flow solver in an arbitrary Lagrangian-Eulerian formulation to a Lagrangian shell
solver for geometric nonlinear dynamics. In spite of both problems being solved via
a FE formulation, a coupling procedure was implemented to allow for the use of
meshes with non-matching nodes as well as different time steps in each domain.
The computational method was successfully tested on the aeroelastic behaviour of
a vertical plate exposed to shock and of a rocket nozzle at start-up.

The direct coupling enables modelling the fluid-structure interaction accurately, but
it comes with the downside of higher computational costs. The equation of motion
(Eq. 2.11) represents a coupled system of nonlinear equations, whose size is equal
to the number of degrees of freedom given by the system discretisation. In the
state-of-the-art turbomachinery simulations, it is not rare for this number to reach
tens of millions. The cost of solving the full system of equations makes it often
prohibitively expensive for routine computations in the industrial environment, and
less demanding approaches are taken instead.

Weakly Coupled Methods

In the classification of fluid-structure coupled techniques where the closest coupling
is achieved with the directly coupled methods, the opposite end of the spectrum is
occupied by the weakly coupled approaches. Rather than developing a single code for
a simultaneous solution of flow and structure equations, the computations are per-
formed with a set of already existing solvers, connected via an interfacing technique.
A multidisciplinary computing environment is formed, comprising different modules
that can be suitably combined for the particular multiphysics problem. The benefit
of this approach is in the use of highly efficient and extensively validated codes.
Additionally, the programming effort required for the implementation of an interfa-
cing technique is marginal compared to the development of a bespoke fluid-structure
interaction solver. However, the use of completely independent solvers may lead to
problems regarding their compatibility on the interface and a subsequent loss of
accuracy in the communication procedure. The exchange of information is typic-
ally realized only after a partial or complete convergence, hence the coupling effects
may not be captured in their full extent. The weakly coupled approach is therefore
suitable mainly for small perturbations and problems with a moderate nonlinearity
[107].

An example of combining independent codes into a multiphysics computing envir-
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onment for the purpose of aeroelastic simulations was presented by Harrand et al.
[106]. They coupled a computational fluid dynamics module CFD-FASTRAN with a
finite element/modal analysis module FEMSTRESS. They compared several differ-
ent interfacing techniques and performed a flutter analysis of the AGARD 445 wing.
Doi and Alonso [38] applied a similar approach to predict the aeroelastic response of
the NASA Rotor 67. The flow was resolved with a three-dimensional Navier-Stokes
code TFLO, while the structural analysis was performed with a finite-element pack-
age MSC/NASTRAN. The two modules were connected via an interfacing strategy
capable of conserving loads and energy. The authors concluded that their approach
was able to predict successfully the time history of blade displacements in function
of operating conditions.

Coupled Eigenmode Methods

The eigenmode approach offers a way to decrease greatly the computational costs
associated with the directly coupled methods while maintaining a strong fluid-
structure coupling. Providing that the structural dynamics model is linear, such
as given by Eq. 2.11, the system of structural equations can be decoupled by trans-
formation into a modal eigenspace. Only a few low order modes need to be retained
to capture the structural dynamics of turbomachinery blades with sufficient accuracy
[22]. The number of equations can therefore be reduced substantially.

The derivation of modal equations can be found for example in [148], [202] or
[22]. The first step is to obtain the matrix of in-vacuo natural mode shapes χ =
[χ1,χ2, ...,χN ] with a conventional FE analysis. The blade displacement can be
written as a linear combination of the mode shapes:

x = χq, (2.12)

where q is the modal displacement vector. The eigenvectors are orthogonal with
respect to the stiffness matrix K and mass matrix M , and assuming that the damp-
ing matrix D can be expressed as a linear combination of M and K (e.g. Rayleigh
damping), the corresponding modal matrices are diagonal:

χTMχ = diag(m), χTDχ = diag(d), χTKχ = diag(k) (2.13)

The modeshapes are usually scaled to obtain a unity modal mass matrix, diag(m) =
I. Consequently, the elements of k are equal to the square of natural frequency,
ki = ω2

i . After substituting Eq. 2.12 to Eq. 2.11, premultiplied by χT , we obtain the
following set of decoupled equations:

q̈i + diq̇i + ω2
i qi = fi, i = 1, 2, ..., N, (2.14)

where fi = χTi F is the modal aerodynamic force. Up to this point, the derivation
was performed for the full set of N natural shapes. However, as only the first Ñ most
influential eigenmodes need to be included (Ñ ≪ N), and thanks to the decoupling,
the number of equations may be reduced significantly.
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In the simplest implementation of the eigenmode approach, the blades are modelled
in 2D or quasi-3D as solids with two degrees of freedom allowing for torsion and
bending. This approach was employed by Sadeghi and Liu [149] in their study on
the influence of coupling, viscosity and nonlinearity on turbomachinery cascade flut-
ter. Although they introduced a structural model with two degrees of freedom, the
analysis of the coupling effects was limited to the torsional DOF. Sváček et al. [174]
investigated the aeroelastic stability of the NACA 632 - 415 airfoil. The flow solution
was based on laminar Navier-Stokes equations discretised with a FE method, while
the airfoil was modelled as a solid structure with two DOF.

In general, the eigenmode technique may be applied applied to 3D computations
with an arbitrary number of natural shapes included in the analysis. Vahdati and
Imregun [183] were among the first to use this approach for a full 3D viscous investig-
ation of fan flutter. The flow solver was based on a FE discretisation of Navier-Stokes
equations and the first five modes were included in the structural model. The trends
predicted by the flutter analysis of NASA Rotor 67 matched expectations, although
no experimental data were available for validation. An overview of computational
methods for fluid-structure coupled simulations was presented by Kamakoti and
Shyy, concentrating on grid movement techniques, interfacing procedures and integ-
ration schemes [107]. They presented a computational example of the AGARD 445.6
wing, using a 3D multiblock RANS solver within the coupled eigenmode technique.
Sadeghi and Liu [148] strived to decrease the computational costs by implementing
a variety of acceleration techniques, such as implicit dual-time integration, multi-
grid discretisation and parallelisation. They investigated the aeroelastic behaviour of
NASA Rotor 67 and their assertion of its stability matched the conclusions drawn by
Vahdati and Imregun [183]. Vahdati et al. [184] employed the eigenmode approach
for the investigation of combined effects of stall and acoustic fan flutter. Acoustic
flutter was suppressed by blade-only damping when occurring on its own, without a
flow separation. However, the presence of acoustic reflections from intake was shown
to amplify stall flutter. A computational study regarding forced response and flutter
boundary of a transonic compressor rotor was published by Zhang et al. [200]. They
discovered the self-excited instability to be initiated by tip leakage vortex shedding.
The effect of the tip clearance on flutter changed from destabilizing to stabilizing
with an increase of the gap size. All blades were found to vibrate at the same mode
and frequency, conforming approximately to a travelling wave mode. However, the
vibration pattern showed circumferential asymmetry in terms of a varying oscillation
amplitude and IBPA.
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Chapter 3

Aims of the Thesis

This work elaborates on the numerical solution of self-excited vibrations in turboma-
chinery blade cascades. The targeted applications include supersonic flow regimes,
characterised by shockwaves propagating both upstream and downstream. Great at-
tention therefore needs to be paid to the use of non-reflecting boundary conditions.
The analysis of their ability to suppress spurious wave reflections in complex flow
conditions and to produce an accurate assessment of aeroelastic stability even on
truncated domains forms a primary goal of this study.

The subtasks defined for reaching the main objective are arranged in two groups.
The first one concerns the implementation of a numerical solver for the simula-
tion of turbine blade flutter, while the second one involves analysis of non-reflecting
boundary conditions in application to several flutter test-cases. This study focuses
primarily on the unsteady aerodynamic part of the aeroelastic problem, hence the
solution strategy adopts the energy method with prescribed harmonic blade oscilla-
tions. This choice is also motivated by the use of Spectral non-reflecting boundary
conditions (NRBC) that require temporal periodicity of the flow. Transonic and
supersonic flows on blade cascades are strongly nonlinear due to the presence of
shockwaves, therefore the computational model is based on nonlinear flow equations
solved with a time-marching strategy. With this approach, a high number of simu-
lated oscillation cycles may be required to reach convergence. In order to maintain
low computational costs enabling an extensive study with a large number of evalu-
ations, a two-dimensional inviscid flow model is adopted. The following objectives
are related to the implementation of the flow solver:

� Devise a mesh motion strategy for flow solution on deforming do-
mains. The time-marching solution procedure requires the mesh to be updated
in each time step, therefore the mesh motion strategy needs to be computa-
tionally efficient. At the same time, it is crucial to maintain high mesh quality
even for large blade displacements, in order to guarantee stability and accuracy
of the solution.

� Analyse techniques for gradient reconstruction and limiting. The
method employed for the extrapolation of cell-center variables to cell faces
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affects substantially the stability of numerical solution and the sharpness of re-
solved discontinuities. The goal is to analyse and compare available approaches
and select the one most suited for the present applications.

� Implement non-reflecting boundary conditions. Spurious wave reflec-
tions on inflow and outflow boundaries can entail an inaccurate assessment
of aeroelastic stability. This issue is exacerbated on blade cascades with a su-
personic inflow, as they are typically highly sensitive to inlet conditions and
feature upstream propagating shockwaves. Boundary conditions capable of
minimizing spurious wave reflections in unsteady turbomachinery flows need
to be implemented in the solver.

� Validate the computational model. Comparison of obtained results with
available experimental and numerical data is necessary to gain confidence in
the fidelity of the computational model.

In the second part, the performance of non-reflecting boundary conditions is in-
vestigated on several flutter test-cases. The applications are chosen such that they
cover a wide range of flow conditions and modes of blade oscillation. Importantly,
a turbine blade cascade with a supersonic inflow is among the selected test-cases.
Several subtasks are formulated for this part:

� Analyse the performance of the Spectral NRBC in nonlinear flows.
The Spectral NRBC of Schlüß et al. [158] represents a state-of-the-art method
for the prevention of spurious wave reflections in unsteady flows. However, the
approach is based on the linearised form of governing flow equations, which
requires that its applicability to the strongly nonlinear flow conditions of the
present test cases is verified.

� Quantify the impact of unsuppressed wave reflections on aeroelastic
assessments. The Spectral NRBC is compared with two boundary conditions
with a limited ability to suppress wave reflections, namely the Simple Tur-
bomachinery BC and the Exact Steady NRBC. The purpose is to establish
how the failure to prevent wave reflections affects the evaluation of aeroelastic
stability.

� Analyse the sensitivity of flutter predictions to domain extent. The
inlet and outlet boundaries are typically placed in a close vicinity of the blade
row, whether to reflect the compact design of the turbomachine or to decrease
computational requirements by reducing the mesh size and accelerating con-
vergence. This can affect the accuracy of a numerical solution, especially if
wave reflections are formed on the boundaries. This investigation aims to de-
termine how close the boundaries can be placed without compromising the
accuracy of aeroelastic assessments.

42



Chapter 4

Mathematical Model

This chapter describes the governing equations that form the foundation of the
computational model. The focus is predominantly on the modelling of unsteady
aerodynamics, including the specifics of flow solution on deforming domains. A sep-
arate section is dedicated to the formulation of boundary conditions with emphasis
on the suppression of spurious wave reflections at inflow and outflow. A description
of two approaches for flutter analysis concludes the chapter.

4.1 Flow Model

Steam and gas turbine flows are generally characterized by high Mach numbers
associated with strong compressibility effects. Transonic or supersonic regimes are
common, hence the aerodynamic model needs to account for the transition from
subsonic to supersonic conditions and for the possible occurrence of shockwaves. The
mathematical formulation is based on Euler equations in two dimensions in order
to achieve lower computational costs compared to a three-dimensional viscous flow
model. Although inviscid mechanisms are predominant in most aeroelastic problems
[11], a future inclusion of turbulence modelling could further enhance the fidelity of
the aerodynamic model.

4.1.1 Euler Equations

The system of Euler equations is derived by considering the conservation of mass,
momentum and energy. The derivation can be found in numerous fluid dynamics
textbooks, e.g. [90, 14]. It is assumed that the fluid has a high enough particle
number density to justify its approximation as a continuum. Any infinitesimally
small element is supposed to contain a sufficient number of particles to allow the
specification of a mean velocity and a mean kinetic energy. The formulation of Euler
equations will be given in an integral form which has the desirable property of
remaining valid in the presence of flow field discontinuities, such as shockwaves or
contact discontinuities. Moreover, the integral formulation is a starting point for the
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derivation of the finite volume method.

Starting with the derivation of a scalar conservation law, we define an arbitrary
control volume Ω, fixed in space and bounded by a closed surface ∂Ω. A surface
element of ∂Ω will be denoted as dS and the associated outward normal vector as
n = [nx, ny]

T . The temporal variation of the total amount of a scalar quantity ϕ
within Ω is expressed as

∂

∂t

∫
Ω

ϕdΩ. (4.1)

and it is equal to the sum of contributions due to fluxes through the control volume
boundary and due to volume and surface sources. There are two types of fluxes,
the convective and the diffusive flux. However, since we are dealing with an inviscid
fluid, we consider only the convective flux expressing the amount of ϕ entering the
control volume through its boundary at the velocity u = [u, v]T . The flux is defined
by F c = ϕu, hence its contribution to the change of ϕ is obtained as

−
∮
∂Ω

F c · ndS = −
∮
∂Ω

ϕu · ndS, (4.2)

The second contribution is due to the volume and surface sources, Qv and Qs:∫
Ω

QvdΩ +

∮
∂Ω

Qs · ndS. (4.3)

The sum of all contributions yields the general form of the scalar conservation law
for an inviscid fluid:

∂

∂t

∫
Ω

ϕdΩ +

∮
∂Ω

F c · ndS =

∫
Ω

QvdΩ +

∮
∂Ω

Qs · ndS. (4.4)

The conservation law can also be formulated for a vector quantity ϕ by considering
the scalar form for each of its components. The result is formally equal to the scalar

law, except that the convective flux is now a tensor F c = ϕ ⊗ u and the volume
and surface fluxes are a vector and a tensor respectively. The vector form of the
conservation law is hence given by:

∂

∂t

∫
Ω

ϕdΩ +

∮
∂Ω

F c · ndS =

∫
Ω

QvdΩ +

∮
∂Ω

Qs · ndS. (4.5)

The system of Euler equations is obtained by writing the conservation laws for mass,
momentum and energy.

Mass conservation. The mass conservation law, also referred to as the continuity
equation, expresses the fact that mass can neither disappear nor be created. The
quantity ϕ is substituted by the fluid density ρ and the convective flux is given
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by Fc = ρu. There are no surface or volume sources of mass. Using the scalar
conservation law, we obtain the continuity equation

∂

∂t

∫
Ω

ρdΩ +

∮
∂Ω

ρu · ndS = 0. (4.6)

Momentum conservation. The conservation of momentum is obtained by apply-
ing Newton’s second law, stating that the change of momentum corresponds to the
sum of forces acting on the mass element. The conserved quantity is momentum

ρu, and the corresponding convective flux Fc = ρu ⊗ u. Volume sources, such as
the gravitational, buoyancy, Coriolis, electromagnetic or centrifugal forces, may be
considered. The total contribution due to external forces will be summarized in the
term Qv = ρf e. In the present case of an inviscid fluid, the surface source term is

limited to the contribution of pressure Qs = −pI. Substituting all the terms in the
vector conservation law yields

∂

∂t

∫
Ω

ρudΩ +

∮
∂Ω

ρu(u · n)dS =

∫
Ω

ρf edΩ−
∮
∂Ω

pndS. (4.7)

Energy conservation. The first law of thermodynamics states that the variation
of total energy inside a volume is equal to the sum of the work of forces acting on
the volume and of the heat transmitted to the volume. Total energy per unit mass,
e0, is composed of internal and kinetic energy:

e0 = e+
||u||2

2
. (4.8)

The conserved quantity is total energy per unit volume, ρe0, with the inviscid flux
defined as F c = ρe0u. Since the Euler equations describe an inviscid fluid, there
is no diffusive flux, otherwise representing the diffusion of heat due to molecular
thermal conduction. The volume sources account for the rate of work done by body
forces and, if present, also for the volumetric heating due to radiation or chemical
reactions. Together, they are expressed as Qv = ρf e · u+ q̇h. As there are no shear
stresses in an inviscid fluid and no heat conduction is considered, the surface source
term comprises only the rate of work done by pressure:

Qs = −pu (4.9)

Summing all the contributions, we obtain the energy conservation equation:

∂

∂t

∫
Ω

ρe0dΩ +

∮
∂Ω

ρe0(u · n)dS =

∫
Ω

(ρf e · u+ q̇h)dΩ−
∮
∂Ω

p(u · n)dS. (4.10)

It is often advantageous to write the Euler equations in a more compact vector form.
Density, momentum and total energy are encompassed in the vector of conserved
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variables, denoted W . The momentum and energy conservation laws include pres-
sure source terms, but it is a common practice to include them in the flux vector
F together with the actual convective flux terms. Further, F in the following rep-
resents the flux normal to the volume boundary, i.e. it is obtained by performing
the scalar product of the original flux with the unit normal n. Lastly, we define a
volume source term Q, comprising all contributions due to body forces and volu-
metric heating. Using these definitions together with the general vector conservation
law (Eq. 4.5) and the conservation laws for mass (Eq. 4.6), momentum (Eq. 4.7) and
energy (Eq. 4.10), we arrive at the vector form of Euler equations

∂

∂t

∫
Ω

W dΩ +

∮
∂Ω

F dS =

∫
Ω

Q, (4.11)

where the vector of conserved variablesW , the flux vector F and the volume source
term Q are respectively given by:

W =

 ρ

ρu

ρe0

 , F = (u · n)

 ρ

ρu

ρe0 + p

+

 0

pn

0

 , Q =

 0

ρf e
ρf e · u+ q̇h

 . (4.12)

We will not consider any source terms in the present model, hence the right-hand
side of Eq. 4.11 will be equal to zero.

4.1.2 Arbitrary Lagrangian-Eulerian Formulation

The governing equations for fluid dynamics problems are typically formulated in the
Eulerian reference frame, as is also the case of Euler equations derived in Sec. 4.1.1.
The quantities of interest are defined as functions of coordinates fixed in space and
the computational domain does not vary in time. This approach allows particles to
enter and leave arbitrarily without distorting the domain, hence it is convenient for
flow solutions. Structural problems, on the other hand, typically feature relatively
small displacements, making it more appropriate to cast the equations in the Lag-
rangian reference frame. The motion of each particle is followed and the quantities
are defined in material coordinates with respect to a reference configuration.

Neither of these approaches is, however, particularly suitable for the solution of
unsteady aerodynamics in fluid-structure interaction problems, characterised by de-
forming domains. The Eulerian reference frame does not allow for a straightforward
implementation of moving boundaries, while the Lagrangian approach would very
quickly lead to excessive domain and mesh distortions. The desired flexibility is
provided by the Arbitrary Lagrangian Eulerian (ALE) method (See e.g. [92, 113,
166, 95]). The grid vertices are neither fixed nor they follow material points and their
motion may be chosen arbitrarily, at least to some extent. Both the Eulerian and
the Lagrangian representations can be obtained as a particular case of the general
ALE formulation.
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Let Ωt be the computational domain occupied by fluid at a time t ∈ ⟨0, T ⟩. A refer-
ence configuration Ωref is considered, taken for example as the initial configuration
Ωref = Ωt=0. An ALE mapping from the reference configuration onto the current
configuration is introduced:

At : Ωref → Ωt, X → x(X, t) = At(X), (4.13)

describing the time-dependent position x ∈ Ωt of a point from the reference domain
X ∈ Ωref . The ALE mapping should be continuous and bijective on the closure
of Ωref [95]. The points x = At(X), comprising the grid vertices of a discretised
domain, move with the ALE velocity defined as:

s(x, t) =
∂

∂t
x(X, t) =

∂

∂t
At(X), t ∈ ⟨0, T ⟩, X ∈ Ωref (4.14)

The set of Euler equations recast in the ALE formulation formally corresponds to
the original Eulerian representation [166]:

∂

∂t

∫
Ω(t)

W dΩ +

∮
∂Ω(t)

F ALEdS = 0. (4.15)

However, the flux vector F ALE is now modified to account for the change of con-
vective terms due to the motion of the control volume boundary:

F ALE = F − (s · n)W = (u− s) · n

 ρ
ρu

ρe0 + p

+

 0
pn
ps · n

 . (4.16)

4.1.3 Ideal Gas Law

The system of Euler equations for planar flows comprises one equation for mass con-
servation, two equations for momentum conservation in x and y directions, and one
equation for energy conservation. Hence we have four equations, but five unknowns:
density, two components of the velocity vector, total energy and static pressure.
In order to obtain a unique solution, we need to introduce an additional equation
defining the relation between the state variables.

For the applications presented in this work, the working fluid can be approximated
with sufficient accuracy as an ideal gas. The relation between static pressure p,
density ρ and static temperature T is expressed by the perfect gas law, or thermal
equation of state [112]:

p = ρRT, (4.17)

where R denotes the specific gas constant that is unique for each gas. A fluid sat-
isfying the perfect gas law is referred to as thermally perfect, while for calorically
perfect gases the caloric equation of state is valid:

e = cvT, (4.18)
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where cv is the constant volume specific heat, or alternatively

h = cpT, (4.19)

with h denoting enthalpy and cp the constant pressure specific heat. A fluid which
satisfies both the thermal and the caloric equations of state is called an ideal gas.

For the purpose of flow computations, it is advantageous to combine the above
relations into a single formula, expressed in terms of the state variables appearing
in the Euler equations (Eq. 4.15). Hence we introduce the ratio of specific heats

γ =
cp
cv

(4.20)

and Mayer’s formula:
cp = cv +R (4.21)

and use these two relations in combination with the caloric equation of state (Eq.
4.18) to express the specific internal energy as:

e =
R

γ − 1
T (4.22)

Substituting T from Eq. 4.22 into the thermal equation of state (Eq. 4.17) and
recalling the definition of specific total energy (Eq. 4.8) yields:

p = (γ − 1)ρe = (γ − 1)

[
ρe0 −

1

2
ρ
(
u2 + v2

)]
(4.23)

The perfect gas model also allows for a simple evaluation of the speed of sound,
defined as follows:

a =
√
γRT =

√
γp

ρ
. (4.24)

4.2 Boundary Conditions

The governing equations must be supplemented by a set of boundary conditions
(BC) in order to obtain a correctly defined problem with a unique solution. The
computational domain is truncated at a finite distance from the blade rows, creating
thus artificial inlet and outlet boundaries that do not exist in the physical domain.
Only one or several blade channels are usually included in the simulations, instead
of the whole annulus, which requires that some form of periodicity is imposed. The
computational domain is also naturally bounded by the solid walls of blades and
other components exposed to the flow. A sketch of 2D computational domains for
turbomachinery and for external aerodynamics is provided in Fig 4.1.

The correct definition of boundary conditions depends on the mathematical nature
of the governing equations. The present solution procedure is based on marching the
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Figure 4.1: Examples of computational domains for a blade channel (left) and an
airfoil (right)

unsteady Euler equations in time, with either the converged steady-state solution or
the unsteady flow behaviour being of interest. The governing equations are therefore
always hyperbolic, regardless of whether the flow is locally subsonic or supersonic
[14]. There are four dependent variables that need to be determined at the inlet and
outlet boundaries, either by extrapolation from inside the domain, or by specifying
their value. The theory of characteristics shows that the number of quantities that
need to be prescribed explicitly is equal to the number of characteristics entering
the domain. The direction of propagation is determined by the sign of eigenvalues
of the convective flux Jacobians (for more detail see e.g. [90, 14]). For the system of
Euler equations in two dimensions, the eigenvalues are:

λ1 = λ2 = u · n, λ3 = u · n+ a, λ4 = u · n− a, (4.25)

where n is a unit vector normal to the boundary, pointing inside the domain. The
number of variables imposed at the boundary is given by the number of positive
eigenvalues.

The formulation of boundary conditions requires a particular care in the case of the
artificial inflow and outflow boundaries, since they are typically placed in a close
vicinity of the analysed blade-rows. Any flow perturbations propagating from inside
the domain are therefore likely to reach these boundaries with a nearly undiminished
magnitude. Unless a special treatment is applied to the inlet and outlet boundary
conditions, unphysical reflections of the perturbations may occur and introduce an
error into the solution. Simulations of low-pressure turbine near-tip sections are
especially challenging in this regard, as the inlet flow may be supersonic. Additionally
to the downstream propagating in-passage shock, typical for transonic turbine flows,
a detached shock forms upstream of the blade leading edge and propagates towards
the inlet.

Different boundary conditions are considered for the artificial boundaries in simula-
tions of external aerodynamics and of internal turbomachinery flows. In the former
case, either the freestream or the farfield boundary condition with an optional vortex
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correction is applied. Blade cascade simulations are performed either with the Simple
Turbomachinery BC, or with one of the two implemented non-reflecting boundary
conditions (NRBC) based on linearised Euler equations.

4.2.1 Solid Wall

No flow may penetrate the wall, therefore only λ3 is positive and only one physical
condition is imposed. The relative velocity normal to the wall is required to be zero,
which for simulations on fixed domains simply reads:

u · n |∂Ωwall
= 0 (4.26)

If we are dealing with simulations on deforming domains, the velocity of wall motion
s needs to be taken into account:

(u− s) · n |∂Ωwall
= 0 (4.27)

The tangential component of flow velocity is extrapolated from the domain interior
together with state variables, therefore the boundary condition is called free-slip.
Enforcing the free-slip boundary condition in fact translates into setting the con-
vective flux to zero. The only remaining contributions to flux are the pressure terms
found in the momentum equation, and in the case of a deforming domain also in the
energy equation.

4.2.2 Periodicity

The need to reduce computational requirements motivates the effort to limit the
computational domain to as few blade channels per blade row as possible. The re-
striction to a single blade passage is straightforward in steady computations, where
the inherent flow periodicity is exploited by applying direct periodic boundary con-
ditions between the lower and upper boundaries:

W
∣∣
∂Ωper,l

=W
∣∣
∂Ωper,u (4.28)

Unsteady computations are in the present work performed with the travelling wave
approach. The concept of direct periodicity is still applicable, but it requires the
inclusion of multiple blade passages in the computational domain in function of the
IBPA value. The number of blade passages to be included is calculated as follows:

Npassages =
360◦

GCD(σ, 360◦)
, (4.29)

where σ denotes the IBPA and GCD() is the greatest common divisor.
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4.2.3 Farfield Boundary for External Flows

In simulations of external aerodynamics, the investigated body is typically placed
in a uniform flow-field denoted the freestream. The artificial domain boundaries
are located as close to the body as possible in pursuit of low computational de-
mands. Therefore, the body-induced perturbation of the freestream flow needs to
be considered and a farfield boundary condition is imposed. The number of incom-
ing characteristics depends on the flow direction relatively to the boundary and on
the local Mach number. Altogether, we have four possible combinations: a subsonic
inflow, a supersonic inflow, a subsonic outflow and a supersonic outflow. The compu-
tations of external aerodynamics in the present work are limited to subsonic flows,
therefore only two of these cases need to be treated.

Subsonic Inflow

The fourth eigenvalue is negative and the other three are positive, hence we need
to prescribe three boundary conditions. According to the theory of characteristics,
entropy and vorticity perturbations are convected with the flow, together with one
acoustic mode. The farfield boundary conditions for inlet are given as [6]:

∆p− ρrefaref∆(u · n) = 0

∆p− a2ref∆ρ = 0

∆(u · t) = 0,

(4.30)

where ∆ is a difference between the freestream flow and the local state, the subscript

ref denotes a reference quantity evaluated either in freestream or at the local state,
and the unit vectors n and t point respectively in the outward normal and tangential
directions relatively to the boundary.

Primitive variables at the boundary can be calculated with the use of the following
formulas [14]:

pbd =
1

2
[pFS + pint − ρFSaFS(uFS − uint) · n]

ρbd = ρFS + (pbd − pFS)/a
2
FS

ubd = uFS + (pbd − pFS)n/(ρFSaFS),

(4.31)

where the subscript FS denotes the freestream state and the subscript int quantities
extrapolated from the domain interior.

Subsonic Outflow

The three eigenvalues λ1, λ2 and λ3 are positive and only one acoustic mode is
transported into the domain. A single boundary condition is required, obtained
from the theory of characteristics as follows [6]:

∆p− ρrefaref∆(u · n) = 0 (4.32)
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The formulas for the outlet boundary state are then given by [14]:

pbd = pFS

ρbd = ρint + (pbd − pint)/a
2
FS

ubd = uint − (pbd − pint)n/(ρFSaFS).

(4.33)

Vortex Correction

The farfield definition in Eqs. 4.31 and 4.33 operated directly with the uniform
freestream flow. However, a uniform flow-field is characterised by zero circulation,
which is incorrect for a lifting body in a subsonic flow [14]. In order to obtain
accurate results without having to extend the domain very far from the body, a
vortex correction must be implemented. The vortex is assumed to be centered on
the airfoil chord, usually at one quarter from the leading edge, and its strength is
proportional to the produced lift.

We employ the approach introduced by Usab and Murman [197]. First, the airfoil
lift coefficient needs to be determined:

CL =
Fy

1

2
ρFS||uFS||2C

, (4.34)

where Fy is the lift force obtained by integrating pressure along the airfoil surface,
C is the airfoil chord and the subscript FS denotes freestream quantities. Using the
Kutta-Joukowsky theorem, we obtain circulation:

Γ =
1

2
CLC||uFS|| =

Fy
ρFS||uFS||

. (4.35)

The corrected freestream state is then calculated using the following relations:

ũFS = uFS +

(
Γ
√

1−M2
FS

2πr

)
1

1−M2
FSsin

2(θ − α)
sin θ

ṽFS = vFS −

(
Γ
√

1−M2
FS

2πr

)
1

1−M2
FSsin

2(θ − α)
cos θ

p̃FS =

[
p
(γ−1)/γ
FS +

(
γ − 1

γ

)
ρFS(||uFS||2 − ||ũFS||2)

2p
1/γ
FS

]γ/(γ−1)

ρ̃FS = ρFS

(
p̃FS
pFS

)1/γ

(4.36)

where [r, θ] are polar coordinates with origin at the vortex center and α is the angle
of attack.
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4.2.4 Simple Turbomachinery Boundary Conditions

The definition of boundary conditions in turbine simulations is alike to an exper-
imental setup. At the inlet we have a reservoir with a known total temperature
and total pressure, while at the outlet is an environment characterised by the am-
bient static pressure. The number of imposed conditions is based on the charac-
teristic theory, hence we need to distinguish between inflow/outflow and axially
subsonic/supersonic flow. Only axially subsonic cases are considered here, as flows
with a supersonic axial component are not common in turbomachinery.

A rather straightforward definition of subsonic inlet boundary conditions may be
obtained by assuming that the fluid undergoes an isentropic state change between
the reservoir and the inflow. At the outlet, the average static pressure value is
imposed.

Subsonic Inlet

The theory of characteristics dictates that three conditions are imposed and one
quantity is extrapolated from the domain interior. The total state provides two
conditions, the total pressure p0 and the total temperature T0, while the third one
is defined by fixing the inlet flow angle β. We choose the Mach number Mint to
be extrapolated from the domain interior and assume an isentropic expansion from
total conditions to the inlet flow state. Using the ideal gas model, the following
relations can be derived for the calculation of inflow variables [68]:

ρbd =

(
1 +

γ − 1

2
M2

int

) 1
1−γ

ρ0

(ρu)bd =

(
1 +

γ − 1

2
M2

int

) 1
1−γ

− 1
2

Mintρ0a0 cos β

(ρv)bd =

(
1 +

γ − 1

2
M2

int

) 1
1−γ

− 1
2

Mintρ0a0 sin β

(ρe0)bd =

(
1 +

γ − 1

2
M2

int

) 1
1−γ
(

1

γ(γ − 1)
+
M2

int

2

)
ρ0a

2
0,

(4.37)

Subsonic Outlet

The outlet static pressure pout represents the single boundary condition needed for
the axially subsonic outflow. Using the ideal gas equation 4.23, the specified static
pressure is employed to correct the value of total energy:

(ρe0)bd =
pout
γ − 1

+
1

2
ρint(u

2
int + v2int), (4.38)

where quantities subscripted with int are extrapolated from the domain interior.
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However, imposing a uniform static pressure profile may lead to spurious wave re-
flections if the flow field downstream of a blade row features significant pressure
gradients. The boundary condition formulation is therefore altered to impose only
the average value and to allow for variations of static pressure along the boundary.
The static pressure profile pint(ξ), extrapolated from the domain interior, is scaled
to match the average value p̄int with the prescribed outlet pressure pout:

p̄int =
1

Ξ

∫ Ξ

0

pint(ξ)dξ, p̃out(ξ) = pint(ξ)
pout
p̄int

, (4.39)

where ξ ∈ ⟨0; Ξ⟩ is a coordinate along the boundary ∂Ωout. This scaled profile is
then substituted into Eq. 4.38:

(ρe0)bd(ξ) =
p̃out(ξ)

γ − 1
+

1

2
ρint(u

2
int + v2int), (4.40)

The other conserved variables are simply extrapolated from the domain interior.

4.2.5 Non-Reflecting Boundary Conditions for Turbomachinery

The simple inlet and outlet boundary conditions described in Sec. 4.2.4 may pro-
duce spurious wave reflections that contaminate the flow solution. This issue can
be addressed by using suitable non-reflecting boundary conditions. Two such for-
mulations are implemented in the present computational model: the Exact Steady
NRBC of Giles [58] and the Spectral NRBC of Schlüß et al. [158]. Both methods
are derived from Giles’ theory of NRBC, presented in the papers [58, 61, 59]. The
Spectral NRBC for time-domain solvers was devised by Chassaing and Gerolymos
[23] and the presently used updated version was recently published by Schlüß et
al. [158, 156, 157]. This section provides a brief overview of the theory of NRBC
described in the aforementioned papers of Giles and Schlüß et al. Specific details of
the present implementation are given in Sec. 5.2.6.

General Approach

The boundary flow-field, varying both in time and space, is approximated by a
superposition of a mean state and perturbations. The perturbation amplitude is
assumed to be sufficiently small to allow for linearisation of the governing equations.
Without loss of generality, we consider a coordinate system aligned such that the
axis x is normal to the boundary and oriented in the flow direction (i.e. it points
in the inward normal direction at the inlet, outward normal at the outlet) and the
axis y is oriented along the boundary in the pitchwise direction. We denote the
vector of perturbations in primitive variables q = [ρ, u, v, p]T , where u and v are
respectively the x− and y−components of the velocity vector. The set of linearised
Euler equations reads:
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∂q

∂t
+ A

∂q

∂x
+B

∂q

∂y
= 0, (4.41)

where the matrices A, B are functions of the mean state only:

A =


ū ρ̄ 0 0
0 ū 0 1/ρ̄
0 0 ū 0
0 γp̄ 0 ū

 , B =


v̄ 0 ρ̄ 0
0 v̄ 0 0
0 0 v̄ 1/ρ̄
0 0 γp̄ v̄

 (4.42)

The mean flow q = [ρ, u, v, p]T represents a spatial (along the boundary) as well as
temporal average. Within the linearised theory, any flow state may be constructed
as a superposition of wave-like perturbations

q = Re(q̂ei(kx+my+ωt)) (4.43)

and the mean flow q. Here k and m are wave numbers along x and y respectively
and ω denotes angular frequency. Note that ω in 4.43 is sometimes considered with
an opposite sign [58, 158], i.e.:

q = Re(q̂ei(kx+my−ωt)). (4.44)

However, for the purpose of implementing a discrete Fourier transform in the solver,
the form 4.43 is more convenient. Substituting the perturbation q into linearised
Euler equations 4.41, we obtain:

(ωI + kA+mB)q̂ = 0, (4.45)

which for non-trivial solutions yields the dispersion relation

det(ωI + kA+mB) = 0, (4.46)

or equivalently

det(ωA−1 + kI +mA−1B) = 0. (4.47)

The dispersion relation is a polynomial equation of degree four in each of ω, k, and
m. We are interested in the roots kj for a fixed ω and m. Equation 4.47 can be
interpreted as an eigenvalue problem

(ωA−1 +mA−1B)rj = −kjrj (4.48)

with eigenvalues −k and right eigenvectors rj. Analogously, the eigenvalue problem
can be defined using left eigenvectors lj:
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lj(ωA
−1 +mA−1B) = −kjlj. (4.49)

The purpose of performing the eigenvalue analysis is to distinguish between the
waves entering and leaving the domain. The flow solution at the boundary is de-
composed into a sum of Fourier modes q̂ with distinct values of ω and m. Each
of these modes comprises a set of four fundamental waves, one for each kj. As the
wave numbers k correspond to waves normal to the boundary, they may be used to
determine whether the wave propagates into or out of the domain.

The dispersion relation for two-dimensional linearised Euler equations yields the
following eigenvalues:

k1,2 = −ω +mv̄

ū
, k3 =

(ω +mv̄)(−āψ + ū)

ā2 − ū2
, k4 =

(ω +mv̄)(āψ + ū)

ā2 − ū2
, (4.50)

with

ψ =

{√
∆ if ∆ > 0

−i sign(ω +mv̄)
√
−∆ if ∆ < 0

, (4.51)

and

∆ = 1− (ā2 − ū2)m2

(ω +mv̄)2
(4.52)

The first two eigenvalues correspond to perturbations propagating convectively in
the flow direction and they represent incoming waves at inflow and outgoing waves
at outflow. For the third and fourth wave, it needs to be distinguished between flows
with a subsonic and with a supersonic velocity component normal to the boundary.
In the case of normally subsonic flows, providing that ∆ ̸= 0, the third wave propag-
ates also with the flow direction, but the fourth one travels upstream. Note that Eq.
4.51 is in the original paper of Schlüß, Frey and Ashcroft [158] incorrectly given
with an opposite sign for ∆ < 0. In this case, ψ is complex, hence the sign needs to
be chosen such that k3 is the root with a positive imaginary component in order to
uphold the convention that k3 corresponds to a downstream-running wave and k4
to an upstream running wave [61].

Acoustic resonance occurs for ∆ = 0 and represents additional challenges for the con-
struction of boundary conditions. This case is, however, not considered here. Neither
are considered axially supersonic flows with all four waves propagating downstream,
due to their rarity in turbomachinery applications.

Since the first two eigenvalues are identical, the determination of corresponding
eigenvectors is not unique. A convenient choice is to define r1 as an entropy per-
turbation and r2 as a vorticity wave, which fulfils the required orthogonality. The
third and fourth eigenvectors represent downstream and upstream running acoustic
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waves. Defining κ = m
ω
, the matrix of right eigenvectors R =

[
r1 r2 r3 r4

]
reads [158]

R =


−ρ̄ 0 ρ̄(1−(1+v̄κ)Mxψ)

2(1−Mx)
ρ̄(1+(1+v̄κ)Mxψ)

2(1+Mx)

0 −āūκ ā(1+v̄κ)(ψ−Mx)
2(1−Mx)

−ā(1+v̄κ)(ψ+Mx)
2(1+Mx)

0 ā(1 + v̄κ) − ā2(1−M2
x)κ

2(1−Mx)
− ā2(1−M2

x)κ
2(1+Mx)

0 0 ρ̄ā2(1−(1+v̄κ)Mxψ)
2(1−Mx)

ρ̄ā2(1+(1+v̄κ)Mxψ)
2(1+Mx)

 , (4.53)

where Mx = u
a
is the boundary-normal Mach number. The left eigenvector matrix

may be obtained by inverting R:

L =


l1
l2
l3
l4

 = R−1 =


−1
ρ̄

0 0 1
ρ̄ā2

0 ūκ
ā

1+v̄κ
ā

κ
ρ̄ā

0 1+v̄κ
ā

− ūκ
ā

(1+v̄κ)ψ
ρ̄ā2

0 −1+v̄κ
ā

ūκ
ā

(1+v̄κ)ψ
ρ̄ā2

 , (4.54)

The right eigenvectors form a set of linearly independent basis vectors. Every per-
turbation from a mean state can thus be expressed as a linear combination of right
eigenvectors with weights αj:

q = Re

([
4∑
j=1

αjrje
ikjx

]
ei(my+ωt)

)
(4.55)

The left and right eigenvectors are constructed such that ljrk = 0 for j ̸= k. There-
fore, the left eigenvectors represent the share of their corresponding right vector in
any arbitrary perturbation and the weight of the right eigenvector is αj = ljq̂. In
order to achieve a non-reflecting behaviour, the weight of the right eigenvector has
to be zero for all incoming waves. The non-reflecting boundary condition is finally
expressed by the requirement that, for any combination of m and ω, for each lj
representing an incoming wave

l(ω,m)j · q̂(ω,m) = 0. (4.56)

Transformation to characteristic variables

For the considered case of a normally subsonic flow, there are both outgoing and
incoming waves at the boundary. The outgoing perturbations therefore need to be
extrapolated to the boundary faces from the domain interior [158]. One-dimensional
characteristic variables c = [c1, c2, c3, c4]

T are introduced for this purpose. By defin-
ition, these characteristics coincide with the weights αj in Eq. 4.55 for planar waves
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propagating in the direction normal to the boundary (κ = 0). The forward and
backward transforms are given by

c = L1dq, q = R1dc (4.57)

respectively, with the transformation matrices defined as

L1d = L(κ = 0) =


−1
ρ̄

0 0 1
ρ̄ā2

0 0 1
ā

0

0 1
ā

0 1
ρ̄ā2

0 − 1
ā

0 1
ρ̄ā2

 (4.58)

R1d = R(κ = 0) =


−ρ̄ 0 ρ̄

2
ρ̄
2

0 0 ā
2

− ā
2

0 ā 0 0

0 0 ρ̄ā2

2
ρ̄ā2

2

 (4.59)

We further introduce notation distinguishing between the incoming and outgoing
characteristics, which will allow us to define the inflow and outflow boundary condi-
tions in a unified compact form. At a normally subsonic inlet boundary, three waves
enter the domain and one exits:

 Lin

Lout

 =


l1
l2
l3
l4

 ,
 cin

cout

 =


c1
c2
c3
c4

 , [Rin|Rout] =
[
r1 r2 r3 r4

]
(4.60)

At a normally subsonic outlet boundary, in contrast, there are three outgoing waves
and one incoming:

 Lout

Lin

 =


l1
l2
l3
l4

 ,
 cout
cin

 =


c1
c2
c3
c4

 , [Rout|Rin] =
[
r1 r2 r3 r4

]
(4.61)

Spectral NRBC

The Spectral NRBC is given by Eq. 4.56. Expressed in characteristic variables, the
condition becomes
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Lin(ω,m)q̂(ω,m) = Lin(ω,m)

(
Rin

1dĉ
in
(ω,m),target +Rout

1d ĉ
out
(ω,m)

)
= 0. (4.62)

The outgoing characteristics ĉout(ω,m) are extrapolated from the domain interior. Hence
the target values of the incoming characteristics for achieving a non-reflecting be-
haviour are the only unknowns. Rearranging Eq. 4.62 yields the formula

ĉin(ω,m),target = −
(
Lin(ω,m)R

in
1D

)−1
Lin(ω,m)R

out
1D ĉ

out
(ω,m). (4.63)

This equation serves to obtain the Fourier coefficients of incoming characteristics
for every combination of ω and m. The only exception is the mode ω = 0, m = 0,
representing the temporally and spatially mean value. This mode is treated differ-
ently in order to uphold the user-prescribed values at the boundary. A description
of this procedure is given in Sec. 4.2.5.

Equation 4.63 provides a unified compact formulation of the Spectral NRBC for
both the inflow and the outflow boundary. Substituting for the respective matrices
for incoming and outgoing waves from Eqs. 4.60, 4.61 yields the following expanded
formulations.

Inlet Spectral NRBC:

 ĉ1
ĉ2
ĉ3

in
target

=


0

κ(κv+1)(ψu−a)
(ψ+1)(κv+1)2+κ2u(a+u)

ĉ4

− (ψ−1)(κv+1)2+κ2u(a−u)
(ψ+1)(κv+1)2+κ2u(a+u)

ĉ4

 (4.64)

Outlet Spectral NRBC:

ĉin4,target = − 2κu

(ψ + 1)(κv + 1)
ĉ2 −

ψ − 1

ψ + 1
ĉ3 (4.65)

Exact Steady NRBC

The original Exact Steady NRBC of Giles [58] is derived by considering only spatial
modes withm ̸= 0, ω = 0. The left eigenvector matrix for steady state flows becomes

Ls = lim
κ→∞

L(κ) =


−1
ρ

0 0 1
ρa2

0 − u
a2

− v
a2

− 1
ρa2

0 − v
a2

u
a2

β
ρa3

0 v
a2

− u
a2

β
ρa3

 (4.66)

with
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β =

{
−sign(v)

√
(u2 + v2)− a2 for u2 + v2 > a2

i sign(m)
√
a2 − (u2 + v2) for u2 + v2 < a2

. (4.67)

Analogously to the Spectral NRBC, the Exact Steady NRBC is given in a unified
compact form for both the inlet and outlet boundaries:

ĉin(m),target = −
(
Lins(m)R

in
1D

)−1
Lins(m)R

out
1D ĉ

out
(m) (4.68)

The expanded formulations of Exact Steady NRBC for each boundary are given
below.

Inlet Exact Steady NRBC:

 ĉ1
ĉ2
ĉ3

in
target

=


0

−β+v
a+u

ĉ4(
β+v
a+u

)2
ĉ4

 (4.69)

Outlet Exact Steady NRBC:

ĉin4,target =
2u

β − v
ĉ2 −

β + v

β − v
ĉ3 (4.70)

Mean Flow Treatment

The mode ω = 0, m = 0 is treated separately from all other modes to ensure that
the user-prescribed values at the boundary are respected. The procedure is nearly
identical for the Spectral and Exact Steady NRBC. The only difference is in the
definition of mean value, which is obtained by averaging either only spatially (Exact
Steady NRBC), or both spatially and temporally (Spectral NRBC).

The deviation of the average boundary state from the prescribed values is expressed
by the residual vector R:

R|inlet =

 p̄(s̄− sbd)
ρ̄ā(v̄ − ūtan(βbd))
ρ̄(h̄t − h̄t,bd)

 , R|outlet = p̄− pbd, (4.71)

where s is specific entropy, h0 specific total enthalpy and β is flow angle relatively to
the axial downstream direction. Averaged quantities at the boundary are denoted
with a bar and prescribed values with a subscript bd.

The residuals are driven to zero using a single step of Newton-Raphson iteration
procedure:

R+
∂R

∂cin
δcin = 0. (4.72)
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The Jacobian matrix may be written as a product of two matrices

∂R

∂cin
=
∂R

∂q

∂q

∂cin
=
∂R

∂q
Rin

1d, (4.73)

which yields

R+
∂R

∂q
Rin

1dδc
in = 0. (4.74)

It remains to determine the matrices ∂R
∂q

for both boundary conditions. The terms
proportional to the residual may be neglected, as they are zero in the converged
limit [59]. Hence we obtain for the inflow boundary

∂R

∂q

∣∣∣∣
inlet

=


p
∂s

∂ρ

∣∣∣∣
p

0 0 p
∂s

∂p

∣∣∣∣
ρ

0 −ρatan(βbd) ρa 0

ρ
∂h0
∂ρ

∣∣∣∣
u,v,p

ρu ρv ρ
∂h0
∂p

∣∣∣∣
ρ,u,v

 . (4.75)

Given that the fluid is represented by an ideal gas model, the partial derivatives of
entropy and total enthalpy may be easily expressed, yielding

∂R

∂q

∣∣∣∣
inlet

=


−cva2 0 0 cv

0 −ρatan(βbd) ρa 0

− a2

γ − 1
ρu ρv

γ

γ − 1

 . (4.76)

Analogically, we obtain for the outlet

∂R

∂q

∣∣∣∣
outlet

=
[
0 0 0 1

]
. (4.77)

4.3 Aeroelastic Analysis

The three-dimensional deformation of an elastic body needs to be represented with
the two-dimensional computational model. The fundamental eigenmodes of flexing,
torsion and edgewise bending are in the two-dimensional section expressed with two
orthogonal translations and a rotation. The airfoil or blade profile is modelled as a
rigid body with no distortion.
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4.3.1 Energy Method

The energy method is based on the assumption that the effect of aerodynamic forces
on the change of structural dynamic properties can be neglected. The necessary
prerequisite for the validity of this assumption is a large density ratio between fluid
and structure, which is usually fulfilled in turbomachines.

The eigenmodes and eigenfrequencies of a blade are determined in advance with a
structural solver and serve to prescribe its motion as a boundary condition for an
unsteady fluid dynamics solver. It is further assumed that all blades in the blade row
are perfectly identical and thus they are subjected to the same motion, only with
a constant phase shift between each two neighbouring blades (IBPA). The energy
transfer between fluid and structure during one cycle of oscillation is quantified by
the aerodynamic damping coefficient Ξ. We are adopting two different definitions,
depending on the type of blade motion. In the case of a torsion mode where the
blade undergoes pitching oscillations, the following formula is used [157]:

Ξ =
−Waero

πb(∆αC)2(p01 − p2)
(4.78)

Here Waero is the work of aerodynamic forces, b and C are the blade span and chord
respectively, ∆α is the pitching magnitude in radians, p01 denotes the inlet total
pressure and p2 the outlet static pressure. On the other hand, if the blade vibrates
in a bending mode or in a general coupled mode, the damping coefficient is defined
as follows [156]:

Ξ =
−Waero

πbh2(p01 − p2)
, (4.79)

where h is the maximum displacement of all points on blade surface during the
oscillation cycle and reduces simply to the translatory motion amplitude in the case
of a bending mode. A positive value of Ξ indicates a stable flutter behaviour. Out
of the set of all admissible IBPAs, the one with the lowest value of Ξ determines the
overall aeroelastic stability.

4.3.2 Elastically Mounted Solid Body

The fluid-structure coupled computations consider an elastically mounted solid body
with two degrees of freedom. The body may be vertically translated in representation
of a flexing mode, or rotated about the elastic axis (EA) to express torsion. A
sketch of the body in the reference and displaced configurations is provided in Fig.
4.2. The translatory motion is defined by the EA displacement ∆yEA, while the
angle of rotation is denoted ϕ . The elastic axis is located at ξEA and the center of
gravity (CG) at ξCG, measured along the chord C from the leading edge (LE). The
pressure exerted on the airfoil surface ∂Ωw by the surrounding flow-field results into
a horizontal drag force Fx, vertical lift force Fy and torsional moment M acting on
the body:

62



EAref CGref

C

ΔyEA

ϕ

ξEA

ξCG

M

Fy

x

y

EA

CG

Figure 4.2: Solid body with two degrees of freedom

Fy =

∮
∂Ωw

−p nydS, Fx =

∮
∂Ωw

−p nxdS, M =

∮
∂Ωw

[
xEA − x
y − yEA

]
·np dS, (4.80)

where [x, y]T are the surface coordinates, [xEA, yEA]
T is the instantaneous position

of the EA and n = [nx, ny]
T is the unit outward normal to the surface.

Equations of motion can be derived for the solid body from the Lagrange equations
of second kind [95]:

d

dt

∂EK
∂q̇j

− ∂EK
∂qj

+
∂EP
∂qj

= Qj, j = 1, 2 (4.81)

where qj are the generalized coordinates, in this case q1 = ∆yEA and q2 = ϕ, and
Qj are the generalized forces, Q1 = Fy and Q2 = M . The potential energy EP is
defined as

EP =
1

2
ky∆y

2
EA +

1

2
kϕϕ

2, (4.82)

where ky is the bending stiffness and kϕ is the torsional stiffness of the supporting
springs. Denoting ρl(ξ) the linear density of the body, such that its total mass is
given by

m =

∫ C

0

ρl(ξ)dξ, (4.83)

we can define the static (Sϕ) and inertia (Iϕ) moments around EA:

Sϕ =

∫ C

0

(ξ − ξEA)ρl(ξ)dξ, Iϕ =

∫ C

0

(ξ − ξEA)
2ρl(ξ)dξ. (4.84)
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Hence the kinetic energy EK can be expressed as [95]

EK =
1

2
∆ẏ2EAm+∆ẏEAϕ̇ cosϕSϕ +

1

2
ϕ̇2Iϕ. (4.85)

Substituting EP from Eq. 4.82 and EK from Eq. 4.85 into Eq. 4.81, we obtain a
set of two nonlinear ordinary differential equations describing the motion of a body
with two degrees of freedom:

m∆ÿEA + Sϕϕ̈ cosϕ− Sϕϕ̇
2 sinϕ+ ky∆yEA = Fy

Sϕ∆ÿEA cosϕ+ Iϕϕ̈+ kϕϕ =M.
(4.86)

Additionally, structural damping may be considered, yielding the following set of
equations:

m∆ÿEA + Sϕϕ̈ cosϕ− Sϕϕ̇
2 sinϕ+ ky∆yEA + by∆ẏEA = Fy

Sϕ∆ÿEA cosϕ+ Iϕϕ̈+ kϕϕ+ bϕϕ̇ =M,
(4.87)

with the coefficients of structural damping in bending and in torsion denoted by, bϕ
respectively.

The equations of motion can be linearised under the assumption of small angular
displacements. As shown in author’s paper [1], linearisation has a nearly negligible
effect on the predicted temporal evolution of airfoil displacement in the applica-
tions considered in this work. However, since the equations of motion are solved
numerically, there is no benefit in using the linearised version.

64



Chapter 5

Numerical Solution

Numerical results presented in this thesis were obtained with a finite volume code
written in C++ by the author. This chapter provides a description of numerical
methods implemented in the solver. First, a grid motion algorithm for computations
with oscillating bodies is presented. The core of the computational model is the solu-
tion of unsteady aerodynamics. A brief account of the finite volume method is given,
followed by a description of schemes used for spatial and temporal discretisation.
Aeroelastic evaluations use either the energy method, or a fluid-structure coupled
model with elastically mounted solid bodies. A description of the numerical solution
of body motion and its coupling with flow solver in the time-stepping procedure
concludes the chapter.

5.1 Domain Discretisation and Grid Motion

All computations were performed on two-dimensional unstructured grids generated
with ANSYS® ICEM 19.1. The grids used for the simulation of external aerodynam-
ics were created as C-type structured, but converted to unstructured representation
before being loaded by the solver. The domain discretisation was performed with
either triangular elements, quadrilateral elements, or a combination of both. The
universal CGNS format was used for storing the grid as well as the flow solution and
convergence history. Functions of the CGNS mid-level library [147] were employed
for reading and exporting the data.

Aeroelastic computations are performed on domains with moving boundaries, re-
quiring the positions of grid nodes to be updated accordingly in each iteration. The
procedure for calculating the node coordinates needs to be highly efficient, in order
not to extend the computational time notably. At the same time, a satisfactory mesh
quality needs to be guaranteed even for large domain deformations. The implemen-
ted algorithm exploits the representation of the oscillating structure as a rigid body
and interpolates its motion onto the mesh vertices within the domain.

65



Figure 5.1: Mesh movement subdomains, isolated airfoil

5.1.1 Isolated Airfoil

Let us first consider the case of an isolated airfoil. The computational domain is
divided into three subdomains labelled A, B and C, as shown in Fig. 5.1. The
depicted position of the airfoil will be considered as a reference configuration. Grid
vertices inside the subdomain A move together with the airfoil as a rigid body,
vertices in C remain at their reference position, and the motion of vertices in B is
obtained by interpolating between A and C. The borders between A, B and between
B, C are formed by curves equidistant to the airfoil surface, at a distance defined
by the lower (lmin) and upper (lmax) movement limits respectively.

The instantaneous position of the airfoil is defined by the translation ∆xEA =
[∆xEA,∆yEA]

T of elastic axis (EA) and by the angle of rotation about EA, denoted
ϕ. The displacement of a vertex V on the airfoil surface, with respect to its position
in the reference configuration xrefV , is calculated as

∆xrigidV = xV − xrefV = xrefEA +∆xEA +Q(xrefV − xrefEA)− x
ref
V , (5.1)

where Q is a matrix of rotation by angle ϕ:

Q =

[
cosϕ − sinϕ
sinϕ cosϕ

]
. (5.2)

In order to obtain the displacement of the mesh vertices inside the domain, the rigid
body motion given by Eq. 5.1 is multiplied with a coefficient qV , whose value is equal
to 1 in the subdomain A and equal to 0 in the subdomain C. In the subdomain B,
it is varied linearly in function of the vertex distance from airfoil surface dV :
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Figure 5.2: Isolated airfoil mesh and q distribution in reference (left) and displaced
(right) configurations

qV =


1 for dV ≤ lmin, i.e. V ∈ A
dV − lmin

lmax − lmin
for lmin < dV < lmax, i.e. V ∈ B

0 for dV ≥ lmax, i.e. V ∈ C

(5.3)

The distance dV needs to be known for each grid vertex. Its calculation is com-
putationally expensive on large meshes, but since it is performed only once during
initialization, it impacts negligibly the overall computational time. A formula for
the instantaneous position of an arbitrary vertex in any of the three subdomains
then reads:

xV = xrefV + qV∆x
rigid
V = xrefV + qV

[
xrefEA +∆xEA +Q(xrefV − xrefEA)− x

ref
V

]
(5.4)

5.1.2 Blade Cascade

The mesh motion algorithm for a single airfoil, described in Sec. 5.1.1, can be exten-
ded to blade cascades with an arbitrary number of blades in a relatively straightfor-
ward manner. The instantaneous position of a mesh vertex V is obtained by adding
the contributions due to individual blade movements to its reference position:

xV = xrefV +

Nb∑
j=1

∆xV,j, (5.5)

where Nb is the number of blades in the cascade and the contribution due to a blade
j reads

67



Figure 5.3: Mesh movement subdomains of blade 1. Original (left) and modified
(right) definition of subdomain boundaries

∆xV,j = qV,j

[
xrefEA,j +∆xEA,j +Qj(x

ref
V − xrefEA,j)− x

ref
V

]
. (5.6)

It only remains to establish the coefficients qV,j. The fundamental idea of decom-
posing the computational domain into the three subdomains Aj, Bj and Cj for each
blade j is retained. However, the subdomain borders cannot be constructed simply
as curves equidistant to the blade surface, as shown in Fig. 5.3 left. The subdomain
B1 includes a part of the blade 2 surface as well as a part of the lower periodic
boundary ∂Ωper,l. Since the coefficient qV,1 is non-zero in B1, a movement of blade
1 would shift some of the points forming the blade 2 surface and thus deform its
shape. Moreover, a part of the lower periodic boundary would also be displaced,
whereas its upper counterpart ∂Ωper,u would remain unaffected, resulting in a loss
of spatial periodicity at the boundaries.

A trivial solution would be to choose dmax1 sufficiently low, such that that there is no
intersection of the subdomain B1 with either a blade surface or a domain boundary.
However, this would prevent from spreading the mesh deformation sufficiently far
throughout the domain and the resulting mesh quality would be compromised, with
a possible occurrence of negative cell volumes.

The intersections of the subdomains Bj with other blades are addressed by defining
the upper movement limit as a function of the vertex distance to the nearest blade
instead of taking a constant value. The modified upper movement limit at a vertex
V , used to evaluate the movement coefficient qV,j, is defined as:

l̃maxV,j = min{lmax, dV,j +min
k ̸=j

(dV,k)− lmin}, (5.7)

where lmax is the user-defined upper movement limit, dV,k is a distance of the vertex
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Figure 5.4: Virtual blades for mesh movement
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V to the surface of a blade k, and lmin is the lower movement limit. The coefficient
qV,j is then calculated with the following formula:

qV,j =


1 for dV,j ≤ lmin, i.e. V ∈ Aj
dV,j − lmin

l̃maxV,j − lmin
for lmin < dV,j < l̃maxV,j , i.e. V ∈ Bj

0 for dV,j ≥ l̃maxV,j , i.e. V ∈ Cj

(5.8)

This definition guarantees that if a vertex V is located in the inner subdomain Aj
of a blade j, i.e. dV,j ≤ lmin, then all the movement coefficients of other blades
qk(V ), k ̸= j, are set to zero. Hence all the vertices inside Aj are displaced only
when the blade j itself moves, including those forming the blade surface. The blade
1 movement subdomains constructed with the modified definition are shown in Fig.
5.3 right.

The loss of spatial periodicity due to the periodic boundary deformation is resolved
by the addition of virtual blades. These are copies of the blades physically present
in the computational domain and they undergo the same motion, but their axes are
shifted vertically by the domain pitch. Let us consider a cascade featuring Nb blades,
visualised in Fig 5.4. The virtual blade Nb has the same instantaneous displacement
and rotation angle as blade Nb, but the reference position of its elastic axis is defined
as

[
xrefEA,Nb,virtual

yrefEA,Nb,virtual

]
=

[
xrefEA,Nb

yrefEA,Nb
−Nb · P

]
, (5.9)

where P is the pitch of a single blade passage. Analogically, the elastic axis of the
virtual blade 1 is in the reference configuration located at:

[
xrefEA,1,virtual
yrefEA,1,virtual

]
=

[
xrefEA,1
yrefEA,1 +Nb · P

]
. (5.10)

By including the contribution due to the virtual blades to the total displacement
of grid vertices in Eq. 5.5, it is ensured that the corresponding points at periodic
boundaries undergo exactly the same motion and the spatial periodicity is thus
preserved. An example of a deformed mesh for a blade cascade featuring 6 blades is
shown in Fig. 5.5.

5.2 Unsteady Aerodynamics

5.2.1 Finite Volume Method

The system of Euler equations in two dimensions is discretised with a cell-centered
finite volume method (FVM) in ALE formulation. The governing equations are
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Figure 5.5: Deformed mesh of a blade cascade. Contours of the q coefficient, differ-
entiated for individual blades by color, on the left (darker hue marks higher value
of q on the scale from 0 to 1). Details of the displaced mesh on the right
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written in the integral form

∂

∂t

∫
Ω(t)

W dΩ +

∮
∂Ω(t)

F ALEdS = 0, (5.11)

with the definitions of the vector of conserved variables W and of the inviscid flux
vector F ALE given in Eq. 4.16. The computational domain Ω is divided into a set of
non-overlapping subsets Ωi (finite volumes or cells) which must cover it completely.
The integral conservation law 5.11 has to be satisfied in each finite volume cell. Let
us denote W i the average of W over a cell Ωi:

W i(t) =
1

|Ωi|

∫
Ωi(t)

W (x, t)dΩ, (5.12)

where |Ωi| is the volume of the cell Ωi. Surface integral of the inviscid flux F ALE

may be written as a sum of fluxes crossing the faces ∂Ωij of the cell Ωi:

∮
∂Ωi(t)

F ALE(x, t)dS =

NF∑
j=1

∫
∂Ωij(t)

F ALE(x, t)dS, (5.13)

where NF is the number of cell faces. Next, we perform spatial discretisation and
approximate the flux F ALE as a function of the states W i, W j in the cells Ωi, Ωj

adjacent to the face ∂Ωij:∫
∂Ωij(t)

F ALE(x, t)dS ≈ FALE
ij (W i(t),W j(t))∆Sij(t) (5.14)

The numerical flux is required to be conservative, consistent with the conservation
laws and Lipschitz continuous (for details see e.g. [114]). Substituting from Eqs. 5.12,
5.13 and 5.14 into the system of Euler equations 5.11, we obtain a semi-discrete form
of the FVM:

d

dt
(W i|Ωi|) = −

NF∑
j=1

FALE
ij ∆Sij = −Ri, (5.15)

where Ri denotes a residual vector. In order to obtain a fully discrete FVM scheme,
the temporal derivative needs to be discretised and a suitable approximation has
to be selected for the inviscid fluxes. This approach of discretising the governing
equations separately in space and time is referred to as a method of lines [14]. For
a more comprehensive description of the FVM, the reader is referred e.g. to [114],
[90] or [14].

5.2.2 Flux Approximation

The inviscid fluxes on cell interfaces are approximated with a numerical scheme
from the family of advection upstream splitting methods (AUSM), first introduced
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by Liou and Steffen [122]. The choice of the scheme is motivated by its ability to
capture sharply shockwaves and contact discontinuities. A modified version called
AUSM+ was published by Liou [121], boasting improved accuracy in comparison
with the original formulation. However, one notable deficiency persisted also in the
newer version, in that it was found to produce pressure oscillations in a grid direction
with a very small velocity component. The phenomenon occurs for example in the
direction normal to a boundary layer and it is amplified in regions of low speed
flow. This behaviour motivated Liou [120] to develop the AUSM+-up variant of the
scheme which prevents the formation of pressure oscillations from the outset and is
applicable to all speed regimes. The improved formulation was shown to address the
issue of pressure oscillations also in author’s publication [1] and it is implemented
in the present computational model.

The pivotal idea of the AUSM schemes is to decompose the inviscid flux vector into
a purely convective term and a pressure term:

FALE = F c +P1/2 =M1/2a1/2ψL/R +P1/2. (5.16)

The two parts are physically distinct, hence the approaches taken for their discret-
isation differ. The first term expresses convection of the vector

ψ =


ρ
ρu
ρv

ρet + p

 (5.17)

across the cell interface. Depending on the flow direction, either the state in the left
(L) or in the right (R) face-adjacent cell is considered, in a purely upwind manner:

ψL/R =

{
ψL if M1/2 > 0,

ψR otherwise.
(5.18)

The pressure term [166]

P1/2 =


0

p1/2nx
p1/2ny
p1/2s · n

 , (5.19)

on the other hand, is governed by the acoustic wave speed. It depends on both states
in the subsonic case, becoming fully upwind only for a supersonic flow [14]. Note that
the definition of P1/2 in ALE reference frame differs from an Eulerian formulation
in the fourth component, p1/2s · n. On a stationary grid, this term becomes zero
and the Eulerian formulation is recovered. The vector n = [nx, ny]

T is a unit normal
vector to the interface, pointing towards the right cell.

The interface speed of sound is given by

a1/2 = min(âL, âR), (5.20)
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where

âL = a∗
2

/max(a∗, unL), âR = a∗
2

/max(a∗,−unR) (5.21)

and a∗ is the critical speed of sound, evaluated when the local Mach number is unity:

a∗
2

=
2(γ − 1)

γ + 1
ht. (5.22)

The contravariant velocity unL/R is obtained by projecting the flow velocity relative
to the local grid velocity in the face-normal direction:

unL/R = (uL/R − s) · n. (5.23)

In conjunction with the interface speed of sound, it serves to define the local Mach
number in the face-adjacent cells:

ML/R =
unL/R
a1/2

, (5.24)

The interface Mach number is given by the following formula:

M1/2 = M+
(4)(ML) + M−

(4)(MR)−
Kp

fa
max(1− σM̄2, 0)

pR − pL
ρ1/2a21/2

, (5.25)

where the split Mach numbers M±
(4)(M) are polynomial functions ofM and the third

term represents pressure diffusion, introduced to enhance calculations in low Mach
number regions. The formula for the split Mach number reads

M±
(4)(M) =

{
M±

(1) if |M | ≥ 1,

M±
(2)(1∓ 16βM∓

(2)) otherwise,
(5.26)

with
M±

(1)(M) = 1
2
(M + |M |) and M±

(2)(M) = ±1
4
(M ± 1)2. (5.27)

The pressure diffusion term requires evaluating the mean local Mach number M̄ :

M̄2 =
u2L + u2R
2a21/2

, (5.28)

and the scaling function fa together with the reference Mach number Mo:

fa(Mo) =Mo(2−Mo), M2
o = min

(
1,max(M̄2,M2

∞)
)
, (5.29)
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where M∞ denotes the freestream Mach number. The interface density is defined
simply as

ρ1/2 = (ρL + ρR)/2. (5.30)

The interface pressure p1/2 is defined in a similar manner as the interface Mach
number:

p1/2 = P+
(5)(ML)pL+P−

(5)(MR)pR−KuP
+
(5)P

−
(5)(ρL+ρR)(faa1/2)(uR−uL). (5.31)

The fifth-degree polynomials P±
(5) are again expressed in terms of split Mach number

functions:

P±
(5)(M) =

{
1
M

M±
(1) if |M | ≥ 1,

M±
(2)

[
(±2−M)∓ 16αMM∓

(2)

] (5.32)

and the third term in 5.31 represents velocity diffusion.

There are five constants whose values need to be prescribed. The constants α, β
that appear already in the previous AUSM+ scheme are now set to

α =
3

16
(−4 + 5f 2

a ), β =
1

8
. (5.33)

The remaining three constants are bounded by the following inequalities:

0 ≤ Kp ≤ 1, 0 ≤ Ku ≤ 1, σ ≤ 1. (5.34)

We retain the setting recommended by Liou [120] and employ the values Kp = 0.25,
Ku = 0.75 and σ = 1.0.

5.2.3 Gradient Reconstruction

The cell-centered finite volume representation requires that variables stored at cell
centroids are extrapolated to cell faces in order to obtain the left and right states for
flux computation. In the most basic form, the variables are considered as constant
within each cell and the cell-centered value is employed directly to evaluate the
fluxes. However, this zeroth-order extrapolation results into an overly dissipative
scheme with only a first order spatial accuracy. A common strategy is to use a first-
order accurate linear reconstruction, followed by the application of a limiter to avoid
spurious oscillations at discontinuities. This section presents the numerical method
employed for gradient reconstruction, while limiters are discussed in Sec. 5.2.4.

Gradients are most commonly approximated using either a Green-Gauss (GG) method,
or a least squares minimization (LSQ) [168]. The GG techniques further differ by
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the scheme used to interpolate cell-face values, while the least squares employ vari-
ous stencils and may be either weighted or unweighted. In order to evaluate the
fluxes with a second order of accuracy, the gradient approximation needs to be at
least first-order accurate [13]. Mavriplis [126] found that unweighted least squares
underpredict severely normal gradients on some meshes, which could be remedied
by the use of inverse distance weighting or by resorting to a Green-Gauss method.
Sozer et al. [168] compared three GG-based approaches with a LSQ minimization
and a curvilinear gradient method and demonstrated that the commonly used GG
technique with either a simple or an inverse-distance weighted averaging is incon-
sistent and zeroth order accurate on irregular meshes. They further found gradient
operators with compact stencils to exhibit generally lower errors. The unsatisfactory
performance of the GG method with simple averaging was confirmed by Mishriky
and Walsh [130], who derived analytically that it has a zeroth order of accuracy on
meshes with an arbitrary spacing. They also showed that the GG method with a
more suitable face-value interpolation achieves a first order of accuracy, similarly to
the unweighted LSQ method. Syrakos at al. [175] also concluded that a first order
of accuracy can be achieved with a GG method via a suitable choice of face-value
interpolation. They found the inverse distance weighted LSQ approach to be at least
first order accurate and, with a particular choice of the weighting exponent (-3/2),
up to second order accurate on some types of meshes. This setting achieved super-
ior accuracy also in an analysis performed by the author, although of a lesser than
second order [2].

The weighted LSQ gradient approximation is implemented in the present solver.
Linear approximation of a variable ϕ over a cell Ωi is given by

ϕ(x)|i = ϕi + (∇ϕ)i · (x− xi), (5.35)

where (∇ϕ)i = [∂ϕ/∂x, ∂ϕ/∂y]Ti denotes the gradient and ϕi the cell-average value
stored at the cell centroid with coordinates xi = [xi, yi]

T . Substituting for x and
ϕ(x) the centroid coordinates and ϕ averages of neighbouring cells, we obtain the
following over-determined system of linear equations


∆xi1 ∆yi1
∆xi2 ∆yi2
...

...
∆xim ∆yim

(∇ϕ)i=


∆ϕi1

∆ϕi2
...

∆ϕim

 , (5.36)

where ∆(·)ij = (·)j − (·)i and m is the number of adjacent cells. The stencil may
be either face-based or vertex-based, as illustrated in Fig 5.6. In order to increase
accuracy of the reconstruction, each equation is multiplied by a weighting factor
wij which takes into account the distance of the neighbouring cell centroid to the
centroid of Ωi:
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Figure 5.6: Face-based (left) and vertex-based (right) stencils for gradient recon-
struction with weighted LSQ.


wi1∆xi1 wi1∆yi1
wi2∆xi2 wi2∆yi2

...
...

wim∆xim wim∆yim

(∇ϕ)i=


wi1∆ϕi1

wi2∆ϕi2
...

wim∆ϕim

 , (5.37)

with

wij =

[√
(∆xij)2 + (∆yij)2

]−k
. (5.38)

When the inverse-distance exponent k is set to zero, one obtains the unweighted
system of equations 5.36. Common choices for the exponent are k ∈ {0, 1, 3

2
, 2}.

The system of linear equations 5.37 may be written as A(∇ϕ)i = b and solved in the
least squares sense, i.e. to minimize the L2 norm of the error b−A(∇ϕ)i. A common
approach is to multiply the system of equations by AT , which yields a system of
normal equations that has a unique solution, providing that A has independent
columns [175]. However, this approach is not suitable, as the system of normal
equations may be ill-conditioned on highly stretched grids [78]. Therefore, a QR-
decomposition using the Gram-Schmidt method is employed instead. The matrix
A is decomposed into a product of an orthogonal matrix Q ∈ Rm×2 and an upper
triangular matrix R ∈ R2×2:

A = QR (5.39)

For a derivation of the decomposition see e.g. [78], we shall only give the final formula
for the gradient calculation:
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(∇ϕ)i = R−1QT b =
m∑
j=1


w2
ij

r211
∆xij −

r12
r11r22

w2
ij

(
∆yij −

r12
r11

∆xij

)
w2
ij

r222
∆yij −

r12
r11r22

w2
ij∆xij

∆ϕij, (5.40)

where the components of the matrix R are:

r11 =

√√√√ m∑
j=1

w2
ij(∆xij)

2

r12 =
1

r11

m∑
j=1

w2
ij∆xij∆yij

r22 =

√√√√ m∑
j=1

w2
ij(∆yij)

2 − r212

. (5.41)

An extension of the approach to three dimensions can be found in [14].

5.2.4 Limiter Functions

Higher-order accurate gradient reconstructions may introduce new extrema into the
solution, leading to a formation of spurious oscillations near discontinuities such
as shockwaves. A gradient limiting strategy needs to be introduced to ensure that
the numerical scheme is monotonicity preserving, i.e. to guarantee that the local
maxima in the flow-field are non-increasing, the local minima non-decreasing and
no new extrema are created [14]. According to Godunov’s theorem [115], any linear,
monotonicity preserving method is at most first order accurate, hence nonlinear
limiter functions need to be employed. The fundamental principle of the limiter is
to reduce reconstructed slopes in order to constrain solution variations. At strong
discontinuities, the gradient is reduced to zero and the numerical scheme becomes
locally first order accurate. In smooth flow regions, on the other hand, the limiter
remains inactive and the original order of accuracy of the gradient reconstruction is
recovered.

Limiting strategies for conservation laws in one dimension are often based on some
form of total variation diminishing (TVD) [115]. However, the TVD principle has
been found overly restrictive for solutions on multidimensional Cartesian grids and
not necessary to prove positivity or convergence to the correct entropy solution
[10]. A theorem of Goodman and Leveque [115] states that TVD methods in two
space dimensions are at most first order accurate. Moreover, the definition of the
total variation on unstructured grids is problematic. The TVD condition for multi-
dimensional schemes is often relaxed to a discrete form of the maximum principle
(MP), requiring that the reconstructed values are bounded by extrema within the
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local stencil of neighbouring cells. The simplest method to impose the maximum
principle is to multiply the reconstructed gradient by a suitable scalar limiter ζ:

ϕ(x)|0 = ϕ0 + ζ(∇ϕ)0 · (x− x0). (5.42)

This approach was successfully implemented by Barth and Jespersen [8] in cre-
ation of a truly multidimensional limiter for unstructured grids. However, their
method suffered from problems with convergence because the limiter reacted to
a low-amplitude numerical noise in smooth flow regions. Moreover, the strategy of
multiplying the gradient by a scalar was found excessively dissipative, as the lim-
iting triggered by one face degrades the gradient in all directions [13]. Numerous
approaches have since been introduced with the aim to take into account the full
multidimensionality of the problem. For example, Hubbard [100] applied a projec-
tion of the gradient to the maximum principle region, Berger and Aftosmis [13]
solved directional limiting as a linear programming problem and Delis and Nikolos
[36] introduced an edge-based limiter. The remainder of this section gives a brief
overview of the limiters implemented in the present solver.

Barth & Jespersen limiter

The limiter of Barth and Jespersen [8] was constructed by an extension of Spekreijse’s
multidimensional limiter [169] to unstructured grids. The strategy invokes the max-
imum principle on a faced-based stencil of neighbouring cells to construct a mono-
tonicity preserving scheme. The left part of Fig. 5.7 shows an example of the Barth
and Jepsersen stencil, formed by the grey-coloured neighbouring cells together with

the concerned cell Ω0 that is highlighted in red. Let us denote ϕ
min

0 , ϕ
max

0 respectively
the minimum and the maximum of the cell-average values ϕj within the stencil. The
condition for reconstruction on cell Ω0 then reads:

ϕ
min

0 ≤ ϕ(x)|0 ≤ ϕ
max

0 (5.43)

This condition needs to be verified at cell vertices, since that is where extrema occur
in the case of a linear reconstruction. By defining

∆BJ
max = ϕ

max

0 − ϕ0, ∆BJ
min = ϕ

min

0 − ϕ0, ∆i = (∇ϕ)0 · r0i, (5.44)

where r0i denotes a vector from the cell Ω0 centroid to the vertex Vi, we obtain the
following condition for the limiter:

ϕ
min

0 − ϕ0

(∇ϕ)0 · r0i
≤ ζ0 ≤

ϕ
max

0 − ϕ0

(∇ϕ)0 · r0i
or

∆BJ
min

∆i

≤ ζ0 ≤
∆BJ

max

∆i

. (5.45)

The above condition needs to be fulfilled at each vertex, hence the Barth and Jes-
persen limiter is formulated as follows:
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Figure 5.7: Stencil of the Barth & Jespersen limiter with vertex-based (left) and
face-based (right) MP conditions

ζBJ
0 = min

∀Vi∈Ω0


ζ̃
(

∆BJ
max

∆i

)BJ

if ∆i > 0

ζ̃
(

∆BJ
min

∆i

)BJ

if ∆i < 0

1 if ∆i = 0

(5.46)

with

ζ̃
(

∆+

∆−

)BJ

= min

(
1,

∆+

∆−

)
(5.47)

Once the value of the limiter is determined, it is substituted into Eq. 5.42 to obtain
the limited reconstruction within the concerned cell. A less stringent version of the
limiter can be constructed by requiring that the condition 5.45 is satisfied at face
midpoints instead of vertices (Fig. 5.7-right). Since fluxes are evaluated at face mid-
points rather than at vertices, the maximum principle is not violated. This modified
version is implemented in the present solver.

Venkatakrishnan limiter

The Barth and Jespersen limiter suffers from poor convergence, because it reacts to
machine-level noise in smooth flow regions [78]. Aiming to address this deficiency,
Venkatakrishnan [185] modified the formulation by employing a smooth limiter func-
tion analogous to the van Albada limiter. The limiter function ζ̃BJ in Eq. 5.46 is
replaced with

ζ̃
(

∆+

∆−

)Venk
=

1

∆−

[
(∆2

+ + ϵ2)∆− + 2∆2
−∆+

∆2
+ + 2∆2

− +∆+∆− + ϵ2

]
(5.48)
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Figure 5.8: Stencil of the MLP. Cells in the local stencil for vertex V1 highlighted in
blue, other cells within the Ω0 stencil shown in grey.

where ϵ2 = (K∆x)3, K is a constant and ∆x is a measure of the local grid spacing,
calculated in two dimensions as a square root of the cell volume. The rest of the
procedure remains unaltered. As suggested by Venkatakrishnan in order to avoid
division by zero, ∆i is replaced by sign(∆i)(|∆i| + µ) in the implementation, with
µ corresponding to the machine accuracy. There is no general recommendation on
the value of the constant K. It needs to be tuned for each computational case to
achieve the desired balance between the diffusivity of the limiter and its convergence
behaviour.

Multidimensional Limiting Process (MLP)

Park et al. [142, 141] devised a limiting strategy for unstructured grids within the
MUSCL (Monotone Upstream-centered Schemes for Conservation Laws) framework.
The maximum principle is invoked to obtain a monotonic solution, similarly to
the limiters of Barth and Jespersen or Venkatakrishnan. The MLP technique is
distinguished by considering more profoundly the multi-dimensionality of the flow
when constructing the MP region.

Let us consider a cell Ω0 and denote the reconstructed values at its vertices ϕ0i. The
MLP is expressed with the following condition:

ϕ
min

0i ≤ ϕ0i ≤ ϕ
max

0i , (5.49)

where (ϕ
min

0i , ϕ
max

0i ) are the minimum and maximum cell-average values within the
neighbouring cells sharing the vertex Vi. An example of the local stencil is shown
in in Fig. 5.8, where the cells sharing the vertex V1 are highlighted in blue. This
approach yields different bounds for reconstruction at each vertex, in contrast to
the Barth and Jespersen limiter where a single set of bounds is considered for the
entire cell.
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Applying the MLP condition 5.49 to the limited linear reconstruction, Eq. 5.42, we
obtain a permissible range for the scalar limiter ζ0:

ϕ
min

0i − ϕ0

(∇ϕ)0 · r0i
≤ ζ0 ≤

ϕ
max

0i − ϕ0

(∇ϕ)0 · r0i
or

∆MLP
min

∆i

≤ ζ0 ≤
∆MLP

max

∆i

. (5.50)

The definition of the MLP limiter formally resembles the Barth and Jespersen and
Venkataktrishnan limiters, with the difference that (∆MLP

max ,∆
MLP
min ) is taken instead

of (∆BJ
max,∆

BJ
min):

ζMLP
0 = min

∀Vi∈Ω0


ζ̃
(

∆MLP
max

∆i

)
if ∆i > 0

ζ̃
(

∆MLP
min

∆i

)
if ∆i < 0

1 if ∆i = 0

(5.51)

Park, Yoon and Kim [142] proposed two variants of the limiting strategy, distin-
guished by the formulation of ζ̃. The first one, denoted MLP-u1, represents the
steepest slope in the allowable limiting region:

ζ̃
(

∆+

∆−

)MLP−u1

= ζ̃
(

∆+

∆−

)BJ

= min

(
1,

∆+

∆−

)
. (5.52)

However, due to its non-differentiability, it may suffer from convergence problems
similarly to the original Barth and Jespersen approach. Hence the modification
devised by Venkataktrishnan for the Barth and Jespersen limiter is employed within
the MLP framework, creating the differentiable MLP-u2 version:

ζ̃
(

∆+

∆−

)MLP−u2

= ζ̃
(

∆+

∆−

)Venk
=

1

∆−

[
(∆2

+ + ϵ2)∆− + 2∆2
−∆+

∆2
+ + 2∆2

− +∆+∆− + ϵ2

]
(5.53)

It is again required to set the constant K empirically in order to calculate ϵ2 =
(K∆x)3.

Face-based limiter of Delis et al.

The limiters of Barth and Jespersen [8], Venkatakrishnan [185] and Park et al. [142]
act by multiplying the reconstructed gradient with a scalar. Limiting required in
one direction affects all components of the gradient and the resulting scheme that
may be unnecessarily dissipative. Therefore, Delis et al. [35, 34, 36] developed a
procedure which performs the limiting individually for each face of the cell. Their
strategy effectively applies the concept of one-dimensional MUSCL-type limiters to
multidimensional flows on unstructured grids.

Let us consider the limiter application within a cell Ω0, for a face shared with
a neighbouring cell Ωq (Fig. 5.9). The procedure comprises two steps. First, the
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Figure 5.9: The first (left) and the second (right) step of the limiting procedure by
Delis et al.

limiting is performed along a line connecting the centroids of Ω0 and Ωq with the
goal to obtain the value at a point D, i.e. at the intersection between this line and
the concerned face. If this point coincided with the face midpointM , this value could
be used directly for the flux computation. However, as this is not true on a general
unstructured grid, a second reconstruction and limiting step needs to be executed
from D to M in order to achieve a second order accuracy.

1. Reconstruction at the intersection point D. The first step of the pro-
cedure is performed along a line l1, connecting the centroids of Ω0 and Ωq.
In order to apply a one-dimensional limiter function, two consecutive gradient
projections to the line l1 need to be evaluated. Based on the knowledge of the
cell-average values in the face-adjacent cells, we can easily define a projection
of the gradient (∇ϕ)cnt,10 that is central to the point D:

(∇ϕ)cnt,10 · r0Q = ϕQ − ϕ0 (5.54)

Next, we construct a virtual node P on the line l1, such that the centroid of
Ω0 is the midpoint of PQ. This virtual node then serves to define a projection
of the upwind gradient (∇ϕ)upw,10 :

(∇ϕ)upw,10 · rP0 = ϕ0 − ϕP = (ϕ0 − ϕQ) + (ϕQ − ϕP ) =

= ϕ0 − ϕQ + 2(∇ϕ)0 · r0Q,
(5.55)

where (∇ϕ)0 is the gradient on Ω0 reconstructed with the weighted least
squares method. Once the two gradient projections are determined, the limited
value at D can be calculated:

ϕD = ϕ0 +
||r0D||
||r0Q||

L
(
(∇ϕ)upw,10 · r0Q, (∇ϕ)cnt,10 · r0Q

)
(5.56)
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Here L is a one-dimensional limiter function which will be defined later.

2. Reconstruction at the face midpoint M . The second step is realized
along a line l2, parallel to DM and intersecting the centroid of Ω0. In the
first step of the limiting procedure, the downwind value was known, as it was
simply represented by the cell-average of the cell Ωq, i.e. by ϕq. Definition of
the downwind value is more complicated in the second step, as it needs to
be interpolated between the neighbouring cells. First, out of the two vertices
belonging to the face between Ω0 and Ωq, we identify a downwind vertex Vd
as the one that is more distant from D. Let us denote Ωkj all cells sharing the
vertex Vd, other than Ω0. Note that among them is also the cell previously
denoted as Ωq, which will now be referred to as Ωk1 to simplify the notation
(see Fig. 5.9). From the set of Ωkj , we choose the cell for which the angle
between the line l2 and the centroid-connecting vector r0kj is the smallest. In
the depicted case, this criterion selects the cell Ωk3 . A projection of its centroid,
K3, onto the line l2 crates a virtual node S. The point S is the sought downwind
node. We approximate the value of ϕ at S with:

ϕS = ϕk3 + rK3S · (∇ϕ)k3 . (5.57)

The remaining steps follow the procedure employed previously for the recon-
struction at the point D, with the definition of the central gradient projection
as

(∇ϕ)cnt,20 · r0S = ϕS − ϕ0, (5.58)

and of the upwind gradient projection as

(∇ϕ)upw,20 · r0S = ϕS − ϕ0 + 2(∇ϕ)0 · r0S, (5.59)

to finally determine the limited value at the face-center M :

ϕM = ϕD +
||rDM ||
||r0k2||

L
(
(∇ϕ)upw,20 · r0S, (∇ϕ)cnt,20 · r0S

)
(5.60)

The limiter function L may be chosen arbitrarily from the existing and extens-
ively researched family of 1D limiters. Two limiter functions are implemented in the
present solver. The MinMod limiter is defined as:

LMinMod(∆1,∆2) =

{
∆2max

(
0,min

(
∆1

∆2
, 1
))

if ∆2 ̸= 0

0 if ∆2 = 0,
(5.61)

and the van Albada - van Leer limiter reads [34]

LVAVL(∆1,∆2) =


(∆2

1 + ϵ)∆2 + (∆2
2 + ϵ)∆1

∆2
1 +∆2

2 + 2ϵ
if ∆1∆2 > 0

0 if ∆1∆2 ≤ 0.
(5.62)
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Here ϵ, 0 < ϵ ≪ 1, is a constant preventing indeterminacy of the limiter function
in smooth flow regions where the gradients ∆1, ∆2 approach zero. In the present
implementation, ϵ = 10−16.

5.2.5 Temporal Integration

The method of lines, applied to the governing flow equations, yields a system of
coupled ordinary differential equations in the form

d

dt
(W i|Ωi|) = −Ri, i = 1 . . . Ncells. (5.63)

The system of equations is integrated in time, either to reach a steady-state solution
characterised by the residuals Ri approaching zero, or to capture the temporal
evolution of an unsteady flow. Time-marching flutter computations are performed
on moving grids, which imposes additional constraints on the integration method to
guarantee conservativity. This condition, known as the Geometric Conservation Law
(GCL), is discussed at the beginning of this section. Next, the implemented explicit
and implicit time-integration schemes are presented. The section is concluded by a
description of acceleration techniques that serve to reduce the computational time.

Geometric Conservation Law

Computations on moving grids require that some geometric quantities are evaluated
in each iteration, such as the positions and velocities of grid vertices and the normals
to cell faces. The method for calculating these quantities may not be chosen arbit-
rarily, as it needs to be defined with respect to the temporal integration scheme.
The essential condition to consider is the Geometric Conservation Law (GCL), first
formulated by Thomas and Lombard [180]. It requires the geometric parameters
of the numerical scheme to be calculated such that a uniform flow state is always
exactly preserved, independently of grid deformation.

The implications of the GCL for the stability and accuracy of the ALE method have
been widely discussed. Koobus and Farhat [109] performed aeroelastic simulations
with several numerical schemes and reported a severe degradation of accuracy in
cases where the GCL was violated. On the other hand, some evidence has been
shown that if the time-step is sufficiently small, the use of a GCL non-compliant
scheme may not affect the solution strongly [15]. Moreover, as demonstrated by
Geuzaine et al. [56], GCL is not a necessary condition for achieving the design
accuracy of a numerical scheme on moving grids. Nevertheless, respecting the GCL
guarantees several desirable properties for the numerical method. It is a necessary
and sufficient condition for the numerical scheme to preserve non-linear stability [45],
and it further ensures accuracy of at least a first order [65]. Nevertheless, the GCL
should not be considered strictly in relation to the order of accuracy. Instead, the
concept is similar to the conservativity of numerical schemes for spatial discretisation
[127].
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It is convenient for the finite volume method to consider the geometric conservation
law in integral form. Its derivation can be found e.g. in [46] or [37]. Let us denote
∆t the chosen time step and tn = n∆t the time level at the n-th iteration with the
solution W n =W (tn). Integrating Eq. 4.15 between tn and tn+1 yields

∫ tn+1

tn

∂

∂t

∫
Ω(t)

W dΩdt+

∫ tn+1

tn

∮
∂Ω(t)

F ALEdSdt = 0, (5.64)

∫
Ω(tn+1)

W n+1dΩ−
∫
Ω(tn)

W ndΩ +

∫ tn+1

tn

∮
∂Ω(t)

F ALEdSdt = 0, (5.65)

Let us denoteW ∗ a given uniform state of flow. The GCL states that such solution
needs to be exactly preserved, hence we substitute W n =W n+1 =W ∗ in Eq. 5.65
and obtain:

W ∗
[∫

Ω(tn+1)

dΩ−
∫
Ω(tn)

dΩ

]
= −

∫ tn+1

tn

∮
∂Ω(t)

F ALEdSdt (5.66)

Let us recall that the flux F ALE consists of two contributions, where the first one
is equal to the convective flux in Eulerian representation and the other accounts for
the flux induced by the control volume boundary motion (Eq. 4.16). The former
term disappears due to flow uniformity, therefore the flux integral reads:

∮
∂Ω(t)

F ALEdS = −
∮
∂Ω(t)

W ∗(s · n)dS (5.67)

It should be noted that although we are considering inviscid flow equations, the
derivation of the GCL is equivalent for viscous flows, as the viscous flux terms
disappear due to flow uniformity. Substituting Eq. 5.67 into Eq. 5.66, we finally
obtain the integral form of the geometric conservation law:

Ωn+1 − Ωn =

∫ tn+1

tn

∮
∂Ω(t)

(s · n)dSdt (5.68)

The geometrical meaning of the law is that the change in volume of each cell between
tn and tn+1 must be equal to the volume swept by the cell boundary during ∆t [46].
This requirement has the following implications for numerical integration in time
[109]:

� Equation 5.68 must hold when the temporal integration on the right side is
performed with the same technique as applied to the governing equations (Eq.
5.63)

� The calculation of grid vertex positions and velocities is not as arbitrary as the
acronym ALE suggests. It needs to be performed in a fashion that together
with the temporal integration method ensures compliance with the GCL.
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Explicit Euler Scheme

The temporal derivative in Eq. 5.63 is approximated by the explicit Euler scheme
as:

d

dt
(W i|Ωi|) ≈

W n+1
i |Ωi|n+1 −W n

i |Ωi|n

∆t
, (5.69)

where ∆t is a timestep and the superscripts n, n+ 1 denote quantities evaluated at
the time-levels tn = n∆t, tn+1 = (n+1)∆t respectively. In order to comply with the
GCL, the residual vector needs to be evaluated at a midpoint configuration whose
grid coordinates and velocities are calculated as follows [113]:

xn+1/2 =
xn + xn+1

2
, sn+1/2 =

xn+1 − xn

∆t
. (5.70)

Substituting Eq. 5.69 in Eq. 5.63 yields a formula for calculating a new iteration:

W n+1
i =

1

|Ωi|n+1

[
W n

i |Ωi|n −∆tRi(x
n+1/2, sn+1/2,W n)

]
. (5.71)

While the explicit Euler scheme is easily implemented, its practical applicability
is limited as it achieves only a first-order accuracy. Another limitation, typically
proving itself as even more severe, arises from the conditional stability which puts
a constraint on the maximum time-step. The Courant-Friedrichs-Lewy (CFL) con-
dition for a system of linearised Euler equations in 1D reads [14]

∆t ≤ CFL
∆x

|u|+ a
. (5.72)

Here |u| + a is the spectral radius of the convective flux Jacobian, i.e. the highest
propagation speed. The term ∆x/(|u|+a) represents convection time over a cell with
the dimension ∆x for a wave travelling at the velocity |u|+ a. The generalization of
the CFL constraint to computations on unstructured grids in multiple dimensions
is not unique. The condition used in the present work bounds the maximum local
time-step in a cell Ω as follows:

∆t ≤ min
Mj∈Ω

CFL
2||rSMj

||∣∣∣(u− s) · rSMj

||rSMj
||

∣∣∣+ a

 , (5.73)

where rSMj
denotes a vector from the cell centroid S to a face midpoint Mj, u and

s are the flow and grid velocities respectively and a is the local speed of sound.

Practical experience has shown that given the second-order spatial discretisation
with gradient reconstruction and limiting implemented in the present solver, the
upper stability bound for the CFL value on unstructured grids is approximately
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0.35. Unsteady computations require the use of a global time-step, obtained by
evaluating the condition 5.73 in each cell of the grid and taking the minimum value.
Steady-state computations may be accelerated with the use of local time-stepping
described in Sec. 5.2.5.

Runge-Kutta Scheme

An explicit low-storage l−stage Runge-Kutta method between the time-levels n and
n+ 1 can be expressed as

W
(0)
i =W n

i ,

W
(k)
i =

1

|Ωi|(k)
[
W

(0)
i |Ωi|(0) − αk∆tRi(x

(k/2), s(k/2),W (k−1))
]
,

k = 1 . . . l,

W n+1
i =W

(l)
i .

(5.74)

Similarly to the explicit Euler scheme, the residuals are evaluated on a midpoint
grid. However, instead of considering the iterations n and n + 1, the definition of
the midpoint grid is based on the time-levels tn and t(k):

x(k) = xn + αk(x
n+1 − xn), x(k/2) =

xn + x(k)

2
, s(k/2) =

x(k) − xn

αk∆t
(5.75)

In the present work, a four-stage Runge-Kutta scheme (RK4) with the coefficients
set to α1 = 1/4, α2 = 1/3, α3 = 1/2 and α4 = 1 is adopted. The scheme is fourth-
order time accurate for a system of linear equations [166]. Since the RK4 scheme is
conditionally stable, there is a limitation on the maximum time-step similarly to the
Euler method. The time-step is again determined by Eq. 5.73, but the CFL number
may be increased to 1.0 as opposed to 0.35 used for the Euler scheme. However, as
a single iteration of the RK4 scheme requires four evaluations of the residual vector,
the overall computational costs are not reduced.

Implicit Integration with Dual Time-Stepping

An implicit discretisation of Euler equations in the semi-discrete form 5.63 may be
expressed as [41]:

β1(W |Ω|)n+1 + β0(W |Ω|)n + β−1(W |Ω|)n−1

∆t
+ γ1R(xn+1, sn+1,W n+1) + γ0R(xn, sn,W n) = 0. (5.76)
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Note that we omit the cell-denoting subscript i forW andR to simplify the notation.
The coefficients β−1, β0, β1, γ0 and γ1 are selected in function of the target accuracy
and stability. A second order backward difference method is obtained by setting the
coefficients to

β−1 =
1

2
, β0 = −2, β1 =

3

2
, γ0 = 0, γ1 = 1. (5.77)

The method is A-stable and well suited also for large time-steps [40].

Equation 5.76 is solved with a dual time-stepping approach. For each advancement
in the physical time t, a loop of inner iterations is performed to solve the steady-state
problem

|Ω|n+1dW
∗

dτ
+R∗(W ∗) = 0, (5.78)

by marching in a pseudo-time τ . The residual R∗ is defined as

R∗(W ∗) =
β1|Ω|n+1

∆t
W ∗ + γ1R(xn+1, sn+1,W ∗) +Q, (5.79)

where the terms from iterations n−1, n are encompassed in the source term Q that
is constant during the inner cycle:

Q =
β0W

n|Ω|n + β−1W
n−1|Ω|n−1

∆t
+ γ0R(xn, sn,W n) (5.80)

The set of ordinary differential equations 5.78 is solved with the explicit Runge-
Kutta method described above. As the residual R∗ is diminished, the solution of
the steady-state problem converges to W n+1:

dW ∗

dτ
→ 0 =⇒ W ∗ →W n+1. (5.81)

In order to achieve the desired temporal accuracy of the scheme, convergence needs
to be established in each internal loop before advancing to the next physical time
level. The drop in the residual R∗ during the inner cycle, required to achieve a
temporal accuracy of the order m, is a function (∆t)m−1 [41]. This means that for
a second order accuracy, the necessary reduction of the residual scales linearly with
the time-step of the outer iterations. Hence there is no general value of the residual
that could serve as a termination criterion for the inner loop. The required number
of inner iterations is instead determined with respect to convergence of integral
parameters of interest, such as work-per-cycle in flutter calculations.

The procedure requires that grid velocities are evaluated at the time-levels n and
n+ 1. A second order accurate backward difference is used for that purpose:
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sn+1 =
3xn+1 − 4xn + xn−1

2∆t
. (5.82)

Acceleration Techniques

The solver features local time-stepping and implicit residual smoothing for acceler-
ating convergence and reducing the computational time. Both techniques are applic-
able to the explicit integration methods for steady computations and to the inner
iteration cycle of the implicit integration method for time-accurate computations.

When local time-stepping is employed, the largest possible time-step is used locally
in each cell to integrate the governing equations, instead of adopting a global value
for all cells. The transient solution is consequently no longer accurate. However, this
is no hindrance, since only the converged solution of a steady-state problem is of
interest.

Residual smoothing serves to increase the maximum allowable CFL number of the
explicit time-stepping scheme. A central implicit residual smoothing [14, 40] is ob-
tained by applying the Laplacian operator to the residual. The originally computed
residual R0 in a cell Ω0 is replaced with a new smoothed residual R̃0, defined by

(1 +Nϵ)R̃0 − ϵ
N∑
i=1

R̃i = R0, (5.83)

where the subscript i denotes each of the N cells adjacent to Ω0. The system of linear
equations is solved iteratively by performing five steps of the Jacobi method. Blažek
[14] notes that two Jacobi iterations are usually sufficient. However, according to
the author’s experience, better convergence achieved thanks to the higher number
of steps allows for a greater increase of the CFL number without a significant penalty
in the overall computational time. The constant ϵ is set to 0.75, which enables raising
the CFL by up to a factor of two [40].

5.2.6 Implementation of Non-Reflecting Boundary Condi-
tions

This section provides a step-by-step description of the NRBC implementation in
the present solver. Giving an accurate account is especially important for the Spec-
tral NRBC, as the procedure is relatively complex and notable differences between
individual implementations may arise.

Note that Fourier transforms, required at multiple steps of the algorithm, are realized
by means of the Fastest Fourier Transform in the West (FFTW) library, version 3.3.9
[52].
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Exact Steady NRBC

1. Calculate the average state. The instantaneous flow-field at the domain
boundary is spatially averaged. The cell-face values used in the averaging are
extrapolated from the domain interior with the same MUSCL-type procedure
as employed to reconstruct the left and right states at inner cell interfaces.
The nonlinearity of Euler equations raises the question of a correct method
for averaging. Giles [59] suggests a mixed-out averaging as the only rigorous
procedure. However, as Cumpsty and Horlock [31] demonstrate, the matter is
not so trivial and a work averaging is preferable for turbomachines. A simple
area-averaging procedure is used in the current computational model, as the
averaging method is not essential for the non-reflecting behaviour of the bound-
ary conditions. Since a discrete Fourier transform will be applied later in the
procedure, the mesh spacing along the boundary needs to be uniform. Hence
the area averaging reduces to the arithmetic average

ϕ =
1

Ny

∑
j

ϕj, (5.84)

where Ny is the number of cell faces forming the boundary. The averaging is
applied to primitive variables, whose mean values are subsequently used to
calculate other thermodynamic quantities, such as entropy or total enthalpy.

2. Calculate perturbations in characteristic variables. The perturbation
δqj at a cell-face j is defined as a local difference from the mean state q.
The perturbation in primitive variables is then transformed to a characteristic
perturbation cj:

δqj =


ρj − ρ
uj − u
vj − v
pj − p

 , cj = L1dδqj (5.85)

3. Transform to the frequency domain. A spatial discrete Fourier transform
(DFT) of the characteristic perturbations is performed. For a wave-number
ml =

2πl
P
, where P is the domain pitch, the Fourier coefficient ĉml

is given by

ĉml
=

1

Ny

Ny−1∑
j=0

cj e
− i2πjl

Ny , l = 1...Ny − 1 (5.86)

The procedure is realized with the FFTW library. The Fourier coefficient for
ml = 0, representing the spatial average, is set to zero.

4. Apply the non-reflecting condition. The non-reflecting condition, ex-
pressed by Eq. 4.69 for inlet and by Eq. 4.70 for outlet, is applied to each
Fourier mode of the incoming characteristics, yielding ĉ(target)ml

. The outgoing
characteristics remain unchanged.
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5. Transform back to the physical domain. The target local perturbations in
the spatial domain are obtained by performing an inverse DFT of the Fourier
coefficients:

c
(target)
j = Re

(
Ny−1∑
l=0

ĉ(target)ml
e

i2πjl
Ny

)
(5.87)

The FFTW library is employed also for this step.

6. Calculate global changes in characteristic variables. The global change
in characteristic variables, δcin, applied to uphold the user-prescribed values
at the boundary, is obtained by performing one step of the Newton-Rhapson
procedure given by Eq. 4.74.

7. Calculate the target boundary values. The local perturbations c
(target)
j

are summed with the mean change δcin and transformed to primitive variables:

δq
(target)
j = R1d(δcin + c

(target)
j ), (5.88)

Finally, adding the primitive perturbations δqj to the mean flow yields the
target boundary values:

qj = q + δq
(target)
j (5.89)

Giles [59] originally proposed to apply under-relaxation in this step to guar-
antee well-posedness of the mathematical formulation:

q
(n+1)
j = σ(q + δq

(target)
j ) + (1− σ)q

(n)
j , (5.90)

where σ ∈ (0, 1) is an under-relaxation factor. However, the need for under-
relaxation has been found unnecessary for the present solver and the newly
computed value from Eq. 5.89 is imposed directly.

Spectral NRBC

A crucial aspect regarding the implementation of the Spectral NRBC is the cal-
culation of temporal Fourier coefficients. A straightforward approach would be to
store the entire solution history of the boundary flow field over the last period. In
order to alleviate computational requirements, Fourier transform may subsequently
be performed only for a selected set of most relevant harmonics [163]. Alternatively,
the temporal Fourier coefficients may be determined iteratively in a manner similar
to He’s method for phase-lagged boundary conditions [87]. The latter approach was
found superior in terms of convergence and computational demands in [156] and it
is implemented in the present solver.

1. Calculate the average state. The averaging procedure is analogical to the
Exact Steady NRBC, with the difference that the averaging is now performed
spatially along the boundary as well as temporally over the last period. The
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boundary grid spacing is uniform and the time-marching solver uses a fixed
time-step, hence the mean value is given by an arithmetic average:

ϕ =
1

NtNy

Nt−1∑
k=0

Ny−1∑
j=0

ϕkj, (5.91)

where ϕkj is a the quantity ϕ evaluated at a cell face j and a time level k, Nt

denotes the number of time-steps per period and Ny the number of cell faces
forming the boundary.

2. Calculate perturbations in characteristic variables. The primitive and
characteristic perturbations are now defined with respect to the spatially and
temporally averaged mean flow. The perturbation at a time-level k and cell
face j is defined as:

δqkj =


ρkj − ρ
ukj − u
vkj − v
pkj − p

 , ckj = L1dδqkj (5.92)

3. Perform Fourier transform in time. The temporal Fourier coefficients are
initialized to zero and subsequently updated at each time level with an iterat-
ive procedure, similar to the phase lag method of He [87]. Since we will now
be dealing with 2D Fourier transforms, additional notation needs to be intro-
duced. In order to distinguish between the temporal-only transformation and
the space-and-time transformation, the temporal Fourier coefficients will be
denoted as ĉτ , whereas the 2D Fourier coefficients will be marked by ĉτy. Re-
minding that ml =

2πl
P

is the wave-number of a spatial harmonic l, analogically

ωp =
2πp
T

denotes the angular frequency of a temporal harmonic p.

The updating procedure starts by reconstructing the solution at the current
time-step k for each cell-face j, using the latest set of temporal Fourier coeffi-
cients ĉ

τ(old)
ωp,j

:

c
(rec)
kj = Re

(
Nt−1∑
p=0

ĉ
τ(old)
ωp,j

e
i2πkp
Nt

)
. (5.93)

Next, an updated set of temporal Fourier coefficients is obtained by taking
into account the difference between the reconstructed value and the actual
flow state at the current time-step [156]:

ĉ
τ(new)
ωp,j

= ĉ
τ(old)
ωp,j

+
1

Nt

(
ckj − c(rec)kj

)
e
− i2πkp

Nt . (5.94)

4. Perform Fourier transform in space.A spatial Fourier transform is applied
to the updated temporal coefficients:
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ĉτyωpml
=

Ny−1∑
j=0

ĉ
τ(new)
ωp,j

e
− i2πjl

Ny (5.95)

The FFTW library is used for this step. The coefficient ĉτy0,0 is set to zero.

5. Apply the non-reflecting condition. The non-reflecting condition, given
by Eq. 4.64 for inlet and by Eq. 4.65 for outlet, needs to be applied to every
mode, i.e to each combination of ω andm, with the exception of the space-time
average mode ĉτy0,0. In the case of modes with ω = 0, Eqs. 4.64 and 4.65 contain
undefined expressions, as κ = m

ω
goes to infinity. The limit case for κ → ∞

is the Exact Steady NRBC, hence the target perturbations for these modes
are calculated from Eqs. 4.69 and 4.70 instead. The non-reflecting treatment
is applied to incoming characteristics only, whereas the outgoing ones remain
unchanged.

6. Transform back to the physical domain. We need to obtain the target
perturbations only at the current time-step k, therefore it would be superflu-
ous to perform a complete 2D inverse Fourier transform. An inverse Fourier
transform of the 2D Fourier coefficients is first performed in space only, yield-
ing a set of target temporal Fourier coefficients ĉ

τ(target)
ωp,j

at each cell-face j. A
temporal inverse Fourier transform is then used to calculate the target char-
acteristic perturbations at the current time-level k only:

c
(target)
kj = Re

(
Nt−1∑
p=0

ĉ
τ(target)
ωp,j

e
i2πkp
Nt

)
. (5.96)

7. Calculate global changes in characteristic variables, sum with the
local changes and determine the target boundary values. The re-
mainder of the procedure is equivalent to steps 6 and 7 of the Exact Steady
NRBC algorithm. The global change in characteristic variables is obtained
with one step of a Newton-Rhapson procedure and added to the local target
characteristic perturbations. Finally, a transformation to primitive variables
(Eq. 5.88) and a superposition of the target primitive perturbations with the
spatially and temporally averaged flow (Eq. 5.89) follow.

5.3 Aeroelastic Analysis

Elastic solid bodies, either wings or blades, are represented by two dimensional
sections which undergo an oscillatory motion but do not experience any distortion.
The motion is either defined a priori in the case of energy method (Sec. 4.3.1), or
it becomes a part of the solution if the fully coupled approach is employed (Sec.
4.3.2). This section elaborates on the numerical methods adopted by each approach
that concern the solid body motion. In the first case, the prescribed rigid body
oscillations are obtained by approximating an eigenmode determined in a structural
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Figure 5.10: Solid body in a reference and displaced configuration

analysis. The fluid-structure coupled methodology, on the other hand, requires that
ordinary differential equations describing the motion of an elastically mounted body
are integrated simultaneously with the solution of unsteady aerodynamics.

5.3.1 Rigid Body Approximation

The position of a two-dimensional rigid body is defined by the displacement of elastic
axis (EA), ∆xEA = [∆xEA,∆yEA]

T , and by the angle of rotation ϕ about EA,
see Fig. 5.10. An aeroelastic analysis using the energy method requires that these
parameters are defined a priori as functions of time. The investigation is usually
performed either to validate the computational model on an experimental test-case,
or to investigate aeroelastic properties of a newly created design. In the former case,
the solid body is typically excited by an actuator in a harmonic motion, hence the
mode of oscillation is known and it may be readily used in the computational model.
In the latter case, a FEM analysis is usually employed to determine eigenmodes and
eigenfrequencies of the solid body. The natural modes may also comprise distortion
of the two-dimensional section, hence they cannot be used directly in the present
computational model which considers the section as a rigid body. The FEM data
need to be approximated to obtain the definition of ∆xEA(t) and ϕ(t).

Let us consider the output of FEM analysis in the form of complex displacements
[∆x̂refj ,∆ŷrefj ]T for each point j on the solid body surface, such that its instantaneous
position at a time t is calculated as[

xj
yj

]
=

[
xrefj
yrefj

]
+

[
∆xj
∆yj

]
=

[
xrefj
yrefj

]
+Re

([
∆x̂j
∆ŷj

]
eiωt
)
. (5.97)

Here [xrefj , yrefj ]T are the point coordinates in a reference configuration, [∆xj,∆yj]
T
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is the instantaneous displacement and ω denotes the angular frequency. At the same
time, if the structure is represented by a rigid body, the motion of each points can
be defined as

[
x
y

]
=

[
xref +∆x
yref +∆y

]
=

[
xrefEA +∆xEA
yrefEA +∆yEA

]
+Q

[
xref − xrefEA
yref − yrefEA

]
, (5.98)

where the rotation matrix reads

Q =

[
cosϕ − sinϕ
sinϕ cosϕ

]
. (5.99)

Hence for the displacement [∆x,∆y]T we obtain

[
∆x
∆y

]
=

[
∆xEA + (cosϕ− 1)(xref − xrefEA)− sinϕ(yref − yrefEA)

∆yEA + (cosϕ− 1)(yref − yrefEA) + sinϕ(xref − xrefEA)

]
. (5.100)

Providing that the angle of rotation is small, the equations may be linearised by
setting cosϕ ≈ 1 and sinϕ ≈ ϕ, which yields

[
∆x
∆y

]
≈
[
∆xEA − ϕ(yref − yrefEA)

∆yEA + ϕ(xref − xrefEA)

]
. (5.101)

Writing Eq. 5.101 for each point j whose complex displacement [∆x̂refj ,∆ŷrefj ]T is
known from FEM, we obtain the following system of linear equations:



1 0 −(yref1 − yrefEA)
...

...
...

1 0 −(yrefN − yrefEA)

0 1 (xref1 − xrefEA)
...

...
...

0 1 (xrefN − xrefEA)


 ∆x̂EA

∆ŷEA
ϕ̂

 =



∆x̂1
...

∆x̂N
∆ŷ1
...

∆ŷN


(5.102)

which can be formally written as Aq = b. Since we have 2N equations for the three
unknowns ∆x̂EA, ∆ŷEA and ϕ̂, and typically N ≫ 1, the system is overdetermined.
A solution in the least squares sense is obtained by multiplying Eq. 5.102 with AT

and solving the following regular system of normal equations :
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 N 0 −
∑

(yrefj −yrefEA)

0 N
∑

(xrefj −xrefEA)
−
∑

(yrefj −yrefEA)
∑

(xrefj −xrefEA)
∑

[(xrefj −xrefEA)2+(yrefj −yrefEA)
2]


·

 ∆x̂EA
∆ŷEA
ϕ̂

 =

 ∑
∆x̂j∑
∆ŷj∑

[−(yrefj −yrefEA)∆x̂j+(xrefj −xrefEA)∆ŷj]

 . (5.103)

All summations are performed over the index j ranging from 1 to N . Note that due
to linearisation, the reference position of elastic axis [xrefEA, y

ref
EA]

T is not a part of the
solution and it needs to be specified a priori.

5.3.2 Fluid-Structure Coupled Computations

The motion of a solid body is described with the set of two second-order ordin-
ary differential equations (ODE) 4.87. They are integrated in time using the same
explicit four-stage Runge-Kutta method that is also implemented within the FVM
solution of unsteady aerodynamics (Sec. 5.2.5). The second order ODE of motion
are first transformed to a set of first-order ODE. Defining a vector of unknowns z:

z = [∆yEA, ϕ,∆ẏEA, ϕ̇]
T , (5.104)

we receive a set of four first-order ODE:

ż1 = z3, ż2 = z4,[
ż3
ż4

]
=

[
m Sϕ cos z2

Sϕ cos z2 Iϕ

]−1 [
Fy + Sϕz

2
4 sin z2 − kyz1 − byz3

M − kϕz2 − bϕz4

]
(5.105)

.

An explicit Runge-Kutta method may be written as

z
(0)
i =zni ,

z
(k)
i =zni + αk∆tf(z

(k−1)), k = 1 . . . l,

zn+1 =z(l),

(5.106)

where for the present four-stage scheme l = 4, α1 = 1/4, α2 = 1/3, α3 = 1/2 and
α4 = 1.

The solution of equations of motion is performed simultaneously with the computa-
tion of unsteady aerodynamics in order to obtain a strongly coupled method. The
time-marching algorithm is outlined in Fig. 5.11. At the beginning of each iteration,
aerodynamic forces acting on the solid bodies are calculated by integrating the sur-
face pressure. The solution of equations of motion yields the position of solid bodies
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Figure 5.11: Algorithm of fluid-structure coupled computations
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at the next time-level and the computational grid is updated accordingly. The posi-
tion and velocity of solid bodies also represents a boundary condition for the solution
of unsteady aerodynamics with the finite volume method. Once the flow-field at the
new time-level is obtained, the procedure is repeated. The computation stops upon
fulfilling the predefined criteria, such as reaching the target solution time.
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Chapter 6

Application and Analysis

6.1 NACA 0012 Airfoil

The computational model is first tested on the case of an isolated airfoil submerged
in a freestream flow, before proceeding to the more complex problem of blade cas-
cades. The NACA 0012 airfoil is a suitable test-case for this purpose thanks to a
wide availability of experimental data. The results are presented for three config-
urations. First, a steady-state solution is performed to establish grid convergence
and evaluate the solution sensitivity to domain extent for three types of boundary
conditions. Solution of unsteady aerodynamics for a harmonically oscillating airfoil
follows. The assessment is focused on the unsteady pressure distribution on air-
foil surface, as its correct resolution is crucial for the characterisation of aeroelastic
stability. And finally, results of fluid-structure coupled computations for an airfoil
with two degrees of freedom are shown. Since experimental data are not available
for this configuration, a comparison with numerical predictions of other authors is
included instead. A part of the results was published by the author in [1], but they
are extended and updated in this thesis.

The time-marching solution procedure adopted the dual-time implicit scheme. The
acceleration techniques of local time-stepping and implicit residual smoothing were
enabled and the CFL number was set to 2.0. The inverse distance weighting exponent
of the least squares gradient reconstruction procedure was set to 3/2. The limiting
technique of Delis et al. [34] was applied to the reconstructed gradients, utilizing
the MinMod limiter function. Other gradient limiting methods implemented in the
solver were not tested for this application, as the limiter choice has only a minor
effect on the solution due to the subsonic flow conditions.

6.1.1 Steady-State Flow

The computational domain for a steady-state solution is shaped to facilitate gener-
ation of a C-type structured grid (Fig. 6.1). The inlet boundary ∂Ωin is formed by
a half-circle centered around the airfoil leading edge (LE) and two tangentially con-
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Figure 6.1: NACA 0012 computational domain with farfield boundaries located at
the distance of five chords.

Farfield distance 5C 20C 100C
Refinement level 3 1 2 3 4 3
Number of cells 27192 7992 18480 41998 95250 64478

Table 6.1: NACA 0012 grid cell-counts

nected horizontal lines. The outlet boundary ∂Ωout comprises a single vertical line.
Although the inlet and outlet boundaries are referred to individually, an identical
boundary condition treatment was used for both. The distinction between inflow
and outflow is based on the local flow direction relatively to the boundary, rather
than on the geometrical configuration alone. The inlet arc radius and the distance
between the airfoil trailing edge (TE) and the outlet boundary are set to an equal
dimension, called farfield distance (dff ). Its value will be given in multiples of airfoil
chord C.

Domain discretisation was performed with quadrilateral C-type structured grids,
generated in ANSYS® ICEM 19.1 and converted to an unstructured representation.
A grid convergence study was performed on a set of grids with farfield distance 20C.
Starting on level 1 with 7992 cells, the mesh is progressively refined up to level
4 with 95250 cells. In each transition to the next refinement level, the cell size is
reduced by 1.5. The computational grid is depicted in Fig. 6.2 with insets showing
the refinement levels. Table 6.1 provides an overview of cell counts for all meshes.

The grid convergence study considered a steady-state flow with inlet Mach num-
ber 0.15 and airfoil angle of incidence 6◦. Ideal gas properties were set to R =
287 J kg−1K−1 and γ = 1.4 in approximation of dry air. An overview of the test-case
parameters is given in Tab. 6.2. A farfield boundary condition with vortex correc-
tion (FFVC) was imposed at the inlet and outlet boundaries ∂Ωin, ∂Ωout, while a

101



Figure 6.2: NACA 0012 domain discretisation. The overall mesh view on the left
is provided for the 20-chord domain and for the level 2 refinement out of the four
levels shown in the insets.

Parameter Symbol Unit Value
Airfoil chord C [m] 0.3
Angle of incidence α [◦] 6
Specific heat ratio γ [-] 1.4
Specific gas constant R [J kg−1K−1] 287
Freestream density ρFS [kgm−3] 1.204
Freestream velocity in x direction uFS [m s−1] 51.48
Freestream velocity in y direction vFS [m s−1] 0
Freestream pressure pFS [Pa] 101325

Table 6.2: Parameters of NACA 0012 steady-state flow
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Figure 6.3: Steady-state flow solution in function of grid refinement. Lift coefficient
presented on the left and blade surface distribution of pressure coefficient on the
right. Experimental data from Gregory and O’Reilly [63].

free-slip condition was applied on the airfoil surface ∂Ωw.

The assessment of grid convergence was based on the lift coefficient CL (Eq. 4.34).
Figure 6.3-left shows that CL converges monotonously with grid refinement. Richard-
son extrapolation performed on the three finest levels yields an estimation of the
converged value CL = 0.707. The coarsest grid solution underpredicts lift by 6.76%
relatively to the converged value, while on the level 4 mesh the error is reduced to
0.36%. The plot also provides a comparison with the experiment of Gregory and
O’Reilly [63]. They measured a value of CL = 0.67, which differs from the numerical
prediction by 5.8%.

Pressure distribution on the airfoil surface is plotted in Fig. 6.3-right, using a pres-
sure coefficient Cp with the following definition:

Cp =
p− p1
p01 − p1

. (6.1)

Here the subscript 1 denotes the inlet state defined with the freestream quantities, p0
is the total pressure and p the static pressure. The pressure distribution is captured
consistently on all four refinement levels. Over most of the airfoil surface, the coarsest
and finest grid solutions differ only by a small offset in Cp, amounting to less than
0.06 on the suction side and 0.014 on the pressure side. In the vicinity of the leading
edge, the grid refinement affects how sharply the suction side pressure minimum is
resolved. While the coarsest grid yields a prediction of Cp = −2.26, on the finest
grid Cp = −2.61 is reached. A notable effect of grid refinement is observed also
in the aft 5% of both pressure and suction side. A nearly constant distribution is
obtained with the level 1 discretisation, whereas on the finer grids a local pressure
rise culminating at the TE is captured.

The calculated Cp distribution is in a very good agreement with the measurements
of Gregory and O’Reilly [63]. The only significant discrepancy is observed at the
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Figure 6.4: Contours of pressure coefficient (left) and Mach number (right) from a
steady-state solution on the 20-chord domain.

aft-most experimental data-point, located directly at the TE. The experiment does
not indicate the presence of a pressure rise predicted here by the numerical solution.

Based on the grid convergence study, the level 3 discretisation was concluded to offer
sufficient accuracy. The lift coefficient is predicted within 0.81% of the converged
value and a further cell-size reduction does not alter qualitatively the airfoil pressure
distribution.

The near-airfoil flow solution obtained on the level 3 grid is visualised in Fig. 6.4.
Contours of pressure coefficient are shown on the left and contours of Mach number
on the right. The solution was obtained with 600 steps of the implicit integration
scheme, using 180 iterations in the inner cycle. Convergence history of average re-
siduals during the computation run is shown in Fig. 6.5. Convergence does not stall
and the residuals continue decreasing until the last iteration. A drop of over 5 orders
of magnitude is observed for both momentum components, while the density and
energy residuals are reduced by approximately 7 orders of magnitude. Together with
the drop of residuals, an important criterion for terminating the simulation is the
convergence of global aerodynamic parameters. The lift force arrives within 0.1% of
the converged value after 250 time-steps.

A numerical solution performed on a truncated domain approximates a theoretical
case with an infinitely large domain. Positioning the farfield boundary at a finite
distance from the airfoil contaminates the solution with a perturbation, whose mag-
nitude depends on the farfield distance and on the boundary condition formulation.
While a larger domain reduces the effect of the perturbation, it also increases com-
putational demands due to a higher cell-count and slower convergence. An invest-
igation was performed to determine a suitable domain size and boundary condition
treatment. Farfield distances of 5C, 20C and 100C were considered, in combination
with three boundary condition formulations: farfield (FF), farfield with vortex cor-

104



Figure 6.5: Convergence history of a steady-state solution on the 20-chord domain
with α = 6◦ and M = 0.15

rection (FFVC) and freestream (FS). The FF and FFVC definitions are described
in Sec. 4.2.3. The FS condition is imposed by prescribing directly the full set of
four primitive variables defining the freestream state, regardless of the relative flow
direction.

Figure 6.6 shows the farfield distance effect on CL variation for the three boundary
conditions. The FS and FF boundary conditions performed similarly, underestim-
ating the aerodynamic lift when the boundary is positioned closer to the airfoil.
On the most truncated domain, the discrepancy with the largest domain solution
amounted to 4.2% and 5.4% respectively, while on the 20C domain it reduced to
1.8% and 2%.

The underestimation of the lift force is to a large extent remedied by employing a
vortex correction for the farfield boundary condition. On the 5C domain, CL was
overpredicted by 0.4%, whereas a 20C domain yielded an underprediction of 0.7%.
The vortex correction thus enables the use of more severely truncated domains
without compromising the solution accuracy. However, it may not be employed for
unsteady computations, as it uses the instantaneous lift force to calculate the cor-
rection terms applied at the boundary. An unsteady perturbation in the pressure
field surrounding the airfoil thus immediately affects the flow at the boundary, im-
plying an infinite speed of propagation in contradiction with physics. The farfield
boundary condition without vortex correction was therefore adopted in unsteady
computations.

Computational time increased approximately linearly with the farfield distance, as
shown in Fig. 6.7. The plot displays CPU time needed to arrive within 0.1% of
the converged lift coefficient value. The 20C domain was found to offer the best
compromise between accurate lift quantification and computational demands.
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Figure 6.6: Lift coefficient variation with
farfield distance for three boundary con-
ditions: farfield (FF), farfield with vor-
tex correction (FFVC) and freestream
(FS).

Figure 6.7: CPU time in function of far-
field distance (FFVC boundary condi-
tion).

6.1.2 Harmonic Airfoil Oscillations

Simulations of a harmonically oscillating NACA 0012 airfoil were performed to val-
idate the solution of unsteady aerodynamics, crucial for an accurate aeroelastic
analysis. The test-case configuration was selected to match the experimental setup
reported by Benetka [12]. An airfoil with a chord length C = 0.1322m is placed in
a rectangular 0.9× 0.6m test-section and subjected to a pitching motion. The angle
of attack is varied harmonically in time according to the formula

α(t) = ∆αsin(2πf) (6.2)

with a pitching amplitude ∆α = 1.25◦ and frequency f = 43Hz. The pivoting point

Parameter Symbol Unit Value
Domain height H [m] 0.6
Domain length L [m] 0.9
Airfoil chord C [m] 0.1322
Elastic axis chordwise position ξEA [m] 0.3C
Pitching amplitude ∆α [◦] 1.25
Pitching frequency f [Hz] 43
Freestream density ρFS [kgm−3] 1.081
Freestream velocity in x direction uFS [m s−1] 136.1
Freestream velocity in y direction vFS [m s−1] 0
Freestream pressure pFS [Pa] 89410

Table 6.3: Parameters of NACA 0012 harmonic oscillations
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Figure 6.8: Computational domain for simulations of a harmonically oscillating
NACA 0012 airfoil.

of oscillations is placed on the profile chord at 0.3C from the leading edge (LE). Flow
conditions are subsonic, characterised by a freestream Mach number MFS = 0.4. A
summary of the test-case parameters is provided in Tab. 6.3.

The computational domain shown in Fig. 6.8 has a rectangular shape with the
airfoil placed in its center, in approximation of the experimental setup. The left and
right boundaries ∂Ωin, ∂Ωout represent inflow and outflow respectively, and a farfield
boundary condition without vortex correction is applied at both. The bottom and
top boundaries ∂Ωw,botom, ∂Ωw,top are modelled as solid walls, same as the airfoil
surface ∂Ωw,airfoil.

The domain was discretised with a triangular unstructured grid. Rather than per-
forming a separate grid convergence study, the cell sizing was selected according to
the findings obtained for the structured grid (Sec. 6.1.1). The number of elements
on the airfoil surface was set to 268, matching the level 3 refinement. As the cells
are triangular, the resulting discretisation is in fact finer than an equivalent level 3
structured quadrilateral grid with the same face size. The total cell-count is 35288
and a view of the mesh is presented in Fig. 6.9.

Unsteady computations require that a sufficiently fine discretisation is used not
only for the spatial domain, but also for the time-marching procedure. Two physical
time-step sizes were considered, corresponding to 100 and 200 steps per period of
profile oscillation T . In both cases, the number of inner iterations in the dual time-
stepping procedure was varied to establish convergence of the inner cycle. Results
were quantified in terms of the aerodynamic damping coefficient Ξ for pitching mode
(Eq. 4.78), plotted in Fig. 6.10. With 100 time-steps per period, sufficient inner cycle
convergence was reached after 640 inner iterations. Reducing the time-step to half
brought a corresponding drop in the number of required inner iterations, hence
the overall computational time was nearly unaffected by the time-step choice. The
aerodynamic damping coefficient changed only by 0.09% in reducing the time-step
from T/100 to T/200, showing that further temporal refinement is not needed. The
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Figure 6.9: Grid for simulations of a harmonically oscillating NACA 0012 airfoil,
insets showing in detail the airfoil and the LE region.

Figure 6.10: Convergence of the aerodynamic damping coefficient Ξ with physical
time-step ∆t and with the number of inner iterations. Values normalised by Ξ ob-
tained with 200 time-steps per period and 640 inner iterations.
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Figure 6.11: Distribution of the real (C ′
p(1), left) and imaginary (C ′′

p(1), right) parts

of the 1st unsteady pressure harmonic on airfoil surface. Comparison of the present
computation with experimental data reported by Benetka [12] and with Triebstein’s
theory and measurements [182].

results presented in the remainder of this section were obtained with ∆t = T/200
and Ninner = 640. The predicted damping coefficient value was Ξ = 0.198, which
means that the investigated configuration is aeroelastically stable.

The unsteady pressure distribution on airfoil surface is characterised in Fig. 6.11.
The left and right plots show respectively the real (C ′

p(1)) and imaginary (C ′′
p(1)) parts

of the 1st unsteady pressure harmonic coefficient, defined as:

C ′
p(1) = Re

(
p̂(1)

∆α(p01 − p1)

)
, C ′′

p(1) = Im

(
p̂(1)

∆α(p01 − p1)

)
, (6.3)

where p̂(1) is the 1st harmonic of unsteady pressure. For the purpose of validation,
the measurements of Benetka [12] and the theoretical and experimental data of
Triebstein [182] are included. Note that the test-case considered by Triebstein does
not exactly correspond to the present one, as he assumed a freestream Mach number
0.7, an oscillation frequency 30Hz and a pitching axis position at 25% chord. The
plot therefore shows an altered dataset available in [12], scaled to the presentMFS =
0.4 using the Prandtl-Glauert formula.

The distributions of both the real and the imaginary part are characterised by a peak
in the vicinity of the leading edge. Further downstream, they nearly monotonously
drop towards zero at the trailing edge. All datasets capture this trend in agreement,
although some differences arise locally in the magnitude. The present results match
the measurements satisfactorily, deviating in general by less than is the discrepancy
between the two experimental datasets.
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Parameter Symbol Unit Value
Airfoil chord C [m] 0.3
Elastic axis chordwise position ξEA [m] 0.4C
Wing span b [m] 1
Wing weight m [kg] 1.7324
Static moment about EA Sϕ [kgm] -0.01559
Moment of inertia about EA Iϕ [kgm2] 0.009746
Bending stiffness ky [Nm−1] 2102.18
Torsional stiffness kϕ [Nm rad−1] 73.9116
Structural damping in bending by [kg s−1] 2.1022
Structural damping in torsion bϕ [kgm2 s−1 rad−1] 0.07391
Initial vertical displacement ∆yEA,0 [m] 0.05
Initial angle of incidence ϕ0 [◦] 6

Initial vertical displacement velocity ∆̇yEA,0 [m s−1] 0

Initial angular velocity ϕ̇0 [◦ s−1] 0
Freestream temperature TFS [K] 293.15
Freestream velocity in x direction uFS [m s−1] 30–45
Freestream velocity in y direction vFS [m s−1] 0
Freestream density ρFS [kgm−3] 1.2043

Table 6.4: Parameters of NACA 0012 oscillations with two degrees of freedom

6.1.3 Airfoil Motion with Two Degrees of Freedom

The investigation of the NACA 0012 airfoil is concluded by modelling the un-
steady fluid-structure interaction for a system with two degrees of freedom. The
fully coupled aeroelastic model considers the airfoil as a rigid body, flexibly suppor-
ted by springs allowing for a vertical translation and for a pitching motion about
the elastic axis (EA). The set of ordinary differential equations describing the beha-
viour of the system is given in Sec. 4.3.2. The numerical solution procedure for the
equations of motion and its coupling with the flow solver is discussed in Sec. 5.3.2.

The considered test-case was adopted from the works of Honzátko [95] and Sváček
[174]. The airfoil with a chord length 0.3m and EA located at 40% chord is vertically
displaced by 0.05m and rotated by 6◦. A steady-state flow solution is computed for
this configuration and used as initial condition for a transient solution, starting at
the time t = 0 by releasing the airfoil from the displaced position. Based on the
temporal development of the vertical displacement and rotation angle, whose amp-
litudes may be either increasing, constant, or converging to an equilibrium position,
the aeroelastic stability of the system can be assessed. The considered freestream
flow velocities were in the range from 30 to 45m s−1. The mechanical properties of
the elastically mounted airfoil are given in Tab. 6.4, together with other relevant
parameters.

The computational domain and mesh ware adopted from the steady-state analysis.
The farfield boundary was positioned to 20C from the airfoil and the level 3 mesh
with 41998 cells was employed. A farfield boundary condition without vortex cor-
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Figure 6.12: Convergence of the two-degree-of-freedom computations with the phys-
ical time-step ∆t and with the inner cycle residuum Resinner. From left to right,
the plots show the instantaneous displacement y and rotation angle ϕ at t = 0.5 s
and the integral aerodynamic work Waero. All values are normalized by the results
obtained with ∆t = 6.25× 10−5 s, Resinner = 10−4.

rection was used at the inlet and outlet boundaries, as the vortex correction given
by Eq. 4.36 is not applicable to unsteady flows.

A sufficiently fine temporal discretisation is essential for the accuracy of fluid-
structure coupled computations. In contrast to the harmonically oscillating airfoil,
the solid body motion is not prescribed a priori. Instead, it is obtained by solving
the equations of motion, using aerodynamic forces as a source term. Inaccurately
resolved unsteady aerodynamics therefore introduces an error into their solution,
that is further combined with the error of the temporal integration method. The
predicted solid body position at the next time-level in turn affects the solution of
unsteady aerodynamics. The fully coupled solution procedure can thus be expected
to manifest high sensitivity to time-step size.

The analysis of temporal refinement was performed with a freestream velocity uFS =
40ms−1, considering physical time-steps 2.5×10−4 s, 1.25×10−4 s and 6.25×10−5 s.
The criterion for terminating the inner iteration cycle was based on the value of
residuals of momentum, as opposed to the fixed number iterations employed in
the case of prescribed harmonic airfoil oscillations. This choice was motivated by
the variable rate of flow unsteadiness experienced in the coupled computations.
Depending on the aeroelastic stability of the particular configuration, the amplitude
of airfoil oscillations may converge to zero or grow exponentially in time, hence the
number of iterations required for the convergence of inner cycle changes accordingly.

The effect of temporal discretisation on the prediction of airfoil motion is shown in
Fig. 6.12. The plots on the left and in the middle display respectively the instantan-
eous airfoil displacement and rotation angle at the time t1 = 0.5 s, when the airfoil
has undergone approximately 4.5 oscillation cycles. The right-most plot shows the
work of aerodynamic forces integrated between t0 = 0 s and t1. The results are dis-
played for a matrix of nine configurations, obtained by varying the time-step size
and the target inner cycle residual of momentum.

The instantaneous vertical displacement manifests the lowest sensitivity out of the
three parameters. Its value changes by less than 3% when altering either of the
settings within the considered intervals, whereas variations in the instantaneous
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Figure 6.13: Temporal evolutions of the vertical displacement of elastic axis (left)
and of the pitching angle (right) for different freestream velocities.

rotation angle and in the integral aerodynamic work amount to 14% and 19% re-
spectively. Considering only the two finest settings of both parameters, i.e. target
residuals 10−3 and 10−4 and time-step sizes 1.25× 10−4 s and 6.25× 10−5 s, the vari-
ations in each of the observed quantities are less than 5%. As the analysis is focused
on evaluating aeroelastic stability and an exact resolution of the transient behaviour
of the system is of a secondary interest, this variation is considered as sufficiently
small and a further temporal refinement is not performed. The results presented
below were obtained with ∆t = 1.25× 10−4 s and a terminating inner-cycle residual
10−4.

Let us consider the temporal refinement study in view of the results obtained for
the harmonically oscillating airfoil. As shown in Sec. 6.1.2, a change of temporal
refinement from 100 to 200 time-steps per period alters the prediction of aerody-
namic work per cycle by less than 0.09%. In the case of the fluid-structure coupled
computations, the change of aerodynamic work with ∆t reduced from 1.25× 10−4 s
(≈ 900 time-steps per period) to 6.25 × 10−5 s (≈ 1800 time-steps per period) is
3.8%. Hence the variation is approximately 40 times higher, in spite of employing a
nearly 10 times finer temporal discretisation.

Figure 6.13 shows the temporal evolution of the aeroelastic system for different
freestream velocities. The vertical displacement of elastic axis is shown on the left
and the pitching angle on the right. The motion is monitored for a duration of
0.7 s, commencing at t = 0 s by releasing the airfoil from the fixed position defined
by yEA = 0.05m and ϕ = 6◦. With the lowest setting of the freestream velocity,
uFS = 30m s−1, the system is damped and the amplitudes of vertical displacement
and pitching angle both converge quickly to zero. A similar behaviour is observed
when the freestream velocity rises to 35m s−1, with the difference that the system
becomes less damped and converges to the equilibrium position less rapidly.

The damping is sufficient to attenuate oscillations also for uFS = 40m s−1, yet the
vertical displacement and the pitching angle grow in time. This is a manifestation of
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a static aeroelastic phenomenon called torsional divergence. Torsional stiffness of the
structure is overcome by aerodynamic loading generated with the increment in angle
of attack. Naturally, torsional divergence occurs also in the other two cases with even
higher freestream velocities. The exponential departure from equilibrium position
is accelerated with increased flow velocity. Moreover, the oscillations become less
damped, indicating that flutter conditions are approached. As the effect is combined
with torsional divergence, it is not clear whether the oscillations have already become
unstable at 42.5m s−1 or 45m s−1.

Note that for the two highest freestream velocities, the pitching angle travels past
the stall angle, reported experimentally at approximately 16◦ for a steady state flow
[160]. When stall occurs, the flow no longer remains attached to the airfoil surface
and separates, inducing a significant drop of lift force. The inviscid flow model is
incapable of capturing such effects accurately, hence the temporal evolutions may no
longer be regarded as physically correct once the stall angle is exceeded. Therefore,
they are marked with a dash-dotted line in the figure.

The present predictions of aeroelastic stability with varying freestream velocity agree
well with the numerical results reported by Sváček et al. [174] and by Honzátko [95].
A NASTRAN prediction is also given in both publications, stating that torsional
divergence should occur at uFS = 37.7m s−1 and flutter at uFS = 42.4m s−1, which
is consistent with the present results.

6.2 Tenth Standard Configuration

One of the key aspects of aeroelastic modelling in turbomachinery applications is
the implementation of boundary conditions that prevent wave reflections from the
artificial inlet and outlet boundaries. In the present work, the Spectral NRBC of
Schlüß et al. [158] is employed. Due to the complexity of its formulation, it is vital
to verify that it is implemented correctly. A convenient test-case for this purpose
is the Tenth Standard Configuration (STCF10) from the collection of turboma-
chinery flutter experiments formed in the 1980’s at École Polytechnique Fédérale
de Lausanne. The Tenth Standard Configuration represents a two-dimensional com-
pressor cascade operating at subsonic inlet and outlet conditions. The geometries
and experimental data were made public in [49] and they are partly available in a
digitized form at [47]. Although there are no experimental data available in the open
literature, numerical results of other authors can be used as a reference (e.g. [186,
146, 157]).

There are several reasons that render STCF10 as a particularly suitable application
for testing the boundary condition implementation. Most importantly, Schlüß and
Frey, the authors of the Spectral NRBC, have recently applied it to this test case and
published the results in [157]. A direct comparison with the present implementation
can thus be performed. Schlüß and Frey considered subsonic operating conditions,
which reduces the complexity of flow field solution in comparison with transonic
applications and highlights the role of boundary condition treatment. More over,
this test-case is prone to artificial wave reflections from boundaries [146] and reveals
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Figure 6.14: Single-blade computational domain of STCF10

thus any deficiency in the reflection properties of boundary conditions. Any major
discrepancy between the present results and [157] would most likely indicate an error
in the Spectral NRBC implementation, whereas a good agreement would give a high
level of confidence in its correctness.

The compressor cascade is formed by modified NACA 0006 profiles whose definition
is together with operating conditions provided in [49]. The blades are positioned at a
stagger angle δ = 45◦ with a spacing equal to their chord. A single blade is included
in the computational domain for steady-state simulations. In flutter computations,
the number of blades is varied in function of the interblade phase angle (IBPA) so as
to achieve direct periodicity between the ∂Ωper,l and ∂Ωper,u boundaries (Fig. 6.14).
In order to maintain consistency with the work of Schlüß and Frey [157], the inlet
and outlet boundaries ∂Ωin, ∂Ωout are located at a distance of one chord from the
blades.

The operating conditions in [49] are specified for two configurations with inlet Mach
numbers 0.7 and 0.8. The present analysis adopts the lower setting, for which the flow
conditions remain subsonic in the entire domain. Only the inlet Mach number and
flow angle are specified [49], whereas the numerical solution requires the definition
of total conditions and flow angle at the inlet and static pressure at the outlet. The
inlet total conditions were set to T01 = 293.15K, p01 = 101 325Pa, while the outlet
static pressure p2 = 88 499Pa was determined iteratively so as to achieve the target
inlet Mach number. The working medium is an ideal gas approximating dry air with
R = 287 J kg−1K−1 and γ = 1.4. An overview of relevant test-case parameters is
provided in Tab. 6.5.

The solver setup was adopted from the NACA 0012 simulations, employing the im-
plicit integration scheme with local time-stepping and implicit residual smoothing
and the limiting procedure of Delis et al. with the MinMod limiter. A notable alter-
ation was made in the weighted least squares reconstruction of gradients. The initial
setting of the inverse distance weighting exponent k = 3

2
caused solver divergence in

the blade trailing edge area, which was resolved by reducing the value to k = 1.0.
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Parameter Symbol Unit Value
Blade chord C [m] 0.1
Blade spacing (pitch) P [m] 0.1
Stagger angle δ [◦] 45
Inlet Mach number M1 [-] 0.7
Inlet flow angle β1 [◦] 55
Inlet total pressure p01 [Pa] 101325
Inlet total temperature T01 [K] 293.15
Outlet static pressure p2 [Pa] 88499
Specific heat ratio γ [-] 1.4
Specific gas constant R [J kg−1K−1] 287
EA position (chordwise coord.) ξEA [m] 0.5C
EA position (chord-normal coord.) ηEA [m] 0.05C
Pitching amplitude ∆α [◦] 1
Reduced frequency ω̃ [-] 0.5
Frequency f [Hz] 382.356

Table 6.5: Overview of STCF10 parameters

Although this modification may in some cases decrease the accuracy of gradient
reconstruction, it is still sufficient to provide the target second-order accurate flux
evaluation [175]. The CFL number was set to 3.0.

6.2.1 Steady-State Flow

The domain was discretised with unstructured triangular grids, generated in ANSYS®

ICEM 19.1. Three discretisation levels were considered, reducing the cell size by a
factor of 1.3 with each refinement. The cell-count per blade channel starts at 10477
on the coarsest level 1 mesh and increases to 16878 and 28585 with the level 2 and
level 3 refinements respectively. All three mesh levels are shown in Fig. 6.15.

The suitable grid refinement level was determined by evaluating the variation of
blade forces. The study employed the Exact Steady NRBC at the inlet and outlet
boundaries. Convergence of the axial (Fx) and circumferential (Fy) aerodynamic
forces with grid refinement is shown in Fig. 6.16. According to a Richardson ex-
trapolation, both forces are quantified within 0.2% of converged value on the finest
mesh. Moreover, the alteration in blade pressure distribution between the level 2
and level 3 solutions is virtually indiscernible. The finest grid was thus concluded to
achieve a sufficient resolution and it was employed in further presented steady-state
computations.

A comparison of the present simulation with numerical results reported by Petrie-
Repar et al. [146] is provided in Fig. 6.17. The figure shows isentropic Mach number
distribution on blade surface in function of normalized chord distance. The Tenth
Standard Configuration was originally conceived as a two-dimensional test-case, but
an extension to three dimensions was devised later. The present 2D inviscid solution
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Figure 6.15: STCF10 single-blade domain discretisation with refinement levels 1, 2
and 3 from bottom to top

Figure 6.16: Axial (Fx) and circumfer-
ential (Fy) aerodynamic blade forces in
function of grid refinement. Values nor-
malized by the finest grid results.

Figure 6.17: Isentropic Mach number dis-
tribution on blade surface. Present solu-
tion compared with numerical results of
Petrie-Repar et al. [146].
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Figure 6.18: Mach number contours from a steady-state solution, obtained with the
Simple Turbomachinery BC (left) and the Exact Steady NRBC (right).

is plotted together with the results of 2D viscous and 3D inviscid computations
published by Petrie-Repar et al. There is a close agreement between the present
results and the reported 3D inviscid solution. The only notable discrepancy is found
in the nearly constant offset of ∆Mis ≈ 0.012 along the pressure side. This can
be accounted to a slight difference in the pressure ratio adopted here and in the
reference.

While the 2D and 3D inviscid simulations match closely, a more profound difference
is observed with the inclusion of viscous flow effects. The isentropic Mach number
distribution obtained by Petrie-Repar et al. with the 2D viscous model rises in the aft
part of the blade pressure side, whereas both inviscid predictions yield a plateau in
this region. The discrepancy between the viscous and inviscid predictions culminates
at the trailing edge where it amounts to ∆Mis ≈ 0.05.

The solution plotted in Fig. 6.17 was obtained with the Exact Steady NRBC imposed
at the inlet and outlet boundaries. Changing the boundary condition definition to
the Simple Turbomachinery BC brings virtually no difference to the blade surface
Mis distribution, hence the result is not included in the figure. The nearly perfect
match between the two solutions is confirmed by plotting Mach number contours in
Fig. 6.18. The only discrepancy is observed at the inlet boundary, where the Simple
Turbomachinery BC distorts slightly the Mach number contours. The flow remains
subsonic in the whole domain, reaching a peak Mach number 0.907 on the blade
suction side at 12.5% chord.

6.2.2 Torsion Mode Oscillations

The Tenth Standard Configuration provides a set of flutter test-cases either in a
torsion mode or in a chord-normal bending mode, each at four different reduced
frequencies. The present analysis is performed for pitching oscillations at a reduced
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Figure 6.19: Convergence of the aerodynamic damping coefficient with grid refine-
ment level and with the number of inner iterations for σ = 0◦

frequency ω̃ = 0.5, referred to as cases 2 and 3 in the literature [49]. These two cases
are characterised by interblade phase angles of 0◦ and 90◦ respectively, whereas the
present simulations are conducted for the whole IBPA range with a step of 30◦.
The pitching axis is located at [0.5C, 0.05C] in profile coordinates. The amplitude
of the pitching motion is set to ∆α = 1deg to be consistent with the setup adopted
by Schlüß and Frey [157], in contrast to ∆α = 2deg given in the original STCF10
definition [49]. Operating conditions are retained from the steady-state test case.
For an overview of relevant parameters see Tab. 6.5.

The grid independence study shown in the previous section yielded the conclusion
that the level 3 discretisation is sufficiently refined to resolve a steady-state flow. It
remains to be verified whether this refinement is also sufficient for an accurate aer-
oelastic analysis. Additionally, a suitable time-step needs to selected. The temporal
discretisation is refined consistently with the spatial one, increasing the number of
time-steps per period also by the ratio of ≈ 1.3. Starting with 100 time-steps per
period on the level 1 grid, this number is raised to 132 and 172 on the level 2 and
3 grids respectively. The variation of the aerodynamic damping coefficient Ξ with
discretisation level is used as a measure for the required spatial and temporal refine-
ment. The definition of Ξ for pitching oscillations from Eq. 4.78 is employed. The
interblade phase angle of 0◦ is imposed and the Spectral NRBC is prescribed at the
inlet and outlet boundaries.

Figure 6.19 shows convergence of Ξ with refinement level and with the number of
inner-cycle iterations. On all three discretisation levels, 40 iterations are sufficient to
achieve inner cycle convergence, as further doubling their number alters the predicted
aerodynamic damping by less than 0.07%. According to a Richardson extrapolation,
computation on the finest discretisation level yields aerodynamic damping prediction
with an error of ≈ 0.5%, which is sufficient for the present investigation. All results
presented further in this section were obtained on the level 3 grid.

The predicted aerodynamic damping is plotted in Fig. 6.20 in function of the inter-
blade phase angle. Due to the lack of available experimental data for this test-case,
two sets of numerical results of other authors are included instead as a reference.
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Figure 6.20: Aerodynamic damping curve, present computations with different
boundary conditions and results of Schlüß et al.[157] and Verdon [186].

The data reported by Verdon [186] were obtained by solving linearised unsteady
aerodynamic theory which considers the unsteady flow as a small perturbation to a
fully nonuniform isentropic and irrotational background steady flow. More recently,
Schlüß et al.[157] published results from a nonlinear unsteady solver based on RANS
equations with a laminar to turbulent transition model. Importantly, they applied
the Spectral NRBC at the inlet and outlet boundaries, providing thus a reference for
the validation of its present implementation. Both datasets match well and predict
two distinct peaks in aerodynamic damping at σ ≈ −30◦ and σ ≈ 120◦, ascribed
to acoustic resonance [157]. The close agreement between the reference numerical
predictions provides confidence in their correctness, especially considering that it
was achieved in spite of employing two substantially different models.

The present computations were performed with three different boundary condition
formulations for inflow and outflow. The Simple Turbomachinery BC imposes uni-
form total conditions at the inlet and average static pressure at the outlet, without
applying any non-reflecting treatment. The other two boundary conditions aim to
suppress reflections of perturbations, using the theory of Giles [58] based on linear-
ised Euler equations. Only spatial flow perturbations are considered in the Exact
Steady NRBC, whereas the Spectral NRBC treats also the temporal ones. Flow
linearisation should not represent a severe limitation for the performance of non-
reflecting boundary conditions in this case, as the flow is subsonic and the blade
vibration amplitude is small.

The aerodynamic damping curve obtained with the Spectral NRBC matches very
well the reference results. For some IBPAs, the predictions are closer to those of
Schlüß et al., while for others a better match with Verdon’s results is achieved. This
can be accounted to the fact that the present computational model shares some
features with either of the references. Fully nonlinear unsteady flow equations, a
time-marching solution procedure and the Spectral NRBC are employed similarly to
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Schlüß et al., whereas an inviscid flow assumption is shared with Verdon. Crucially,
the agreement between the present and the reference results holds also in the vicinity
of acoustic resonance peaks in aerodynamic damping, found at σ ≈ −30◦ and σ ≈
120◦. Here the correct suppression of wave reflections is especially important, as
manifested by the poor performance of the Simple Turbomachinery BC and the
Exact Steady NRBC. In contrast, it plays a less significant role in the case that
both the inlet and outlet pressure waves are cut-off. This is observed in the IBPA
range σ ≈ −180◦ to σ ≈ −60◦ where all three boundary conditions give consistent
results. Overall, the Simple Turbomachinery BC deviates less from the Spectral
NRBC predictions (up to 39%) than the Exact Steady NRBC (up to 215%). Both
of them fail to capture the acoustic resonance peaks.

A representative set of IBPAs−90◦, 0◦ and 120◦ was selected for a closer examination
of the results. Figure 6.21 shows snapshots of instantaneous pressure fluctuations for
the three IBPAs and the three boundary condition formulations. The fluctuations
are expressed in terms of a coefficient

C̃p(x, t) =
p(x, t)− p(x)

∆α(p01 − p2)
, (6.4)

where p(x) is the local time-average of pressure over a period of oscillation. The
instantaneous pressure contours are supplemented with Fig. 6.22 showing the un-
steady pressure distribution on blade surface, in terms of the amplitude (left) and
phase (right) of the first harmonic coefficient.

The case of σ = −90◦ falls in the IBPA range where both the upstream and down-
stream pressure waves are cut-off and all three boundary conditions yield consistent
values of the aerodynamic damping coefficient. With this particular IBPA, the pre-
dictions agree within 7%. Also the first pressure harmonic distributions in Fig. 6.22a
match closely, showing the same trends and only a minor offset. Examination of the
pressure fluctuation contours in Fig. 6.21a, however, reveals the performance of the
Exact Steady NRBC and the Simple Turbomachinery BC to be unsatisfactory. Pro-
nounced pressure wave reflections are formed at the outlet boundary, and to a lesser
extent also at the inlet boundary. In contrast, no distinctive wave reflections are
observed with the Spectral NRBC.

When all blades oscillate in phase, i.e. σ = 0◦, both the upstream and downstream
pressure waves are cut-on and travel perpendicularly to the inlet and outlet bound-
aries [157]. The Exact Steady NRBC and the Simple Turbomachinery BC yield a
virtually identical flow solution, as evidenced by the pressure distribution on the
blade as well as in the whole domain. The agreement is so close that the first pres-
sure harmonic plots in Fig. 6.22b overlap and the aerodynamic damping coefficient
is evaluated within 1%. The difference in damping quantification between these two
boundary conditions and the Spectral NRBC is relatively minor at 2.7%, but the
agreement is limited to the integral value. There is an offset of 40◦ to 60◦ in resolving
the phase on the blade pressure side (Fig. 6.22b) and the contours of instantaneous
pressure fluctuations are qualitatively different (Fig. 6.21b).

Acoustic resonance conditions occur near the σ = 120◦, producing a peak in the
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(a) σ = −90◦

(b) σ = 0◦

(c) σ = 120◦

Figure 6.21: Contours of instantaneous unsteady pressure fluctuations.
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(a) σ = −90◦

(b) σ = 0◦

(c) σ = 120◦

Figure 6.22: Distribution of amplitude (|Cp(1)|, left) and phase (ϕp(1), right) of the
1st unsteady pressure harmonic on blade surface.
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(a) σ = 0◦ (b) σ = 120◦

Figure 6.23: Convergence of the aerodynamic damping coefficient

aerodynamic damping curve. The downstream pressure wave is cut-off, whereas the
upstream wave is on the verge of propagating. This is evidenced by the contours of
pressure fluctuations obtained with the Spectral NRBC (Fig. 6.21c). The perturb-
ation propagating towards the inlet has a nearly straight wave-front, whereas the
downstream wave is curved and dissipates quickly. The other two boundary condi-
tions perform poorly in suppressing the wave reflections and introduce a significant
distortion into the pressure field, contaminating thus the solution far into the in-
terblade channels. Both the amplitude and the phase of unsteady blade pressure
distribution are affected to a greater extent on the suction side than on the pressure
side (Fig. 6.22c).

The Spectral NRBC has been reported to exhibit slower convergence in compar-
ison with other approaches, such as one-dimensional and approximate non-reflecting
boundary conditions [156]. However, this behaviour wasn’t observed in the present
test-case. Two examples of a temporal evolution of the aerodynamic damping coef-
ficient Ξ are provided in Fig. 6.23 for IBPAs 0◦ and 120◦. The damping coefficient is
normalised by the value reached after 10 periods of oscillation T . In the case that all
blades oscillate in phase, the Spectral NRBC achieves the fastest convergence, with
Ξ arriving within 0.1% of the converged value after 5 periods of oscillation (Fig.
6.23a). In contrast, the temporal evolutions obtained with the other two boundary
conditions are characterised by fluctuations with a slowly diminishing amplitude. In
the case of σ = 120◦ (Fig. 6.23b), the fastest convergence is observed for the Simple
Turbomachinery BC, requiring 5 periods for the 0.1% convergence, whereas 7 peri-
ods are needed for the Spectral NRBC. The Exact Steady NRBC manifests strong
fluctuations in the temporal development of the damping coefficient, similarly to the
previous case.

The two examples shown in Fig. 6.23 are illustrative of the convergence behaviour
experienced generally in this application. The Spectral NRBC performs consistently
for all IBPAs and exhibits no stability issues. Although the two other boundary
conditions provide faster convergence in a few cases, they suffer from slowly vanishing
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Figure 6.24: STCF4 single-blade computational domain

fluctuations in others. This can be accounted to the poor suppression of reflections
inhibiting the convergence.

6.3 Fourth Standard Configuration

The Fourth Standard Configuration (STCF4) is another turbomachinery flutter test-
case from the collection of EPFL [49]. Experimental data are publicly available at
[47], providing thus a reference for the validation of the present computational model.
The experimental rig featured a non-rotating annular low-pressure turbine cascade
with 20 blades. The inflow remained subsonic in all tested operating conditions, while
the exit flow ranged from subsonic to supersonic. The following analysis focuses on
Test Case 628 with a supersonic outflow. Due to the presence of shockwaves in the
transonic flow field, this is a challenging test-case for the non-reflecting boundary
conditions as well as for the whole computational model. The present results are an
updated and extended version of the findings published by the author in [3, 2].

The computations were performed on a 2D domain, obtained from the 3D exper-
imental geometry by performing a circumferential section at blade midspan. The
resulting computational domain with the inlet and outlet boundaries positioned at
the distance of one chord from the blade is shown in Fig. 6.24. Its axial extent
was varied in the present investigation to assess the effect on the flow solution.
The domains will be further denoted according to the inflow and outflow boundary
positions, such that e.g. 0.5C1C refers to a domain with the inlet located at 0.5C
upstream of the blade leading edge (LE) and the outlet at 1C downstream of the
trailing edge (TE).

Operating conditions reported in the documentation of the measurements [47] com-
prise the inlet total pressure p01, the inlet flow angle β1 and the outlet static pressure
p2. However, the inlet total temperature T01 is not specified. This study uses the
setting T01 = 330K as adopted by Waite [191]. He notes that although the actual
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Parameter Symbol Unit Value
Blade chord C [m] 0.072
Blade spacing (pitch) P [m] 0.05625
Stagger angle δ [◦] -56.6
Inlet total pressure p01 [Pa] 217100
Inlet total temperature T01 [K] 330
Inlet flow angle β1 [◦] -28
Outlet static pressure, steady p2,st [Pa] 69200
Outlet static pressure, oscillations p2,oscil [Pa] 66200
Specific heat ratio γ [-] 1.4
Specific gas constant R [J kg−1K−1] 287

Table 6.6: Overview of STCF4 parameters

experimental value was probably closer to T01 = 360K, the effect of this discrep-
ancy on the resolution of Mach number and flow angle seems to be negligible. The
flow solution is more sensitive to the inlet flow angle, whose value β1 = 12◦ is
provided, but it was found to yield a rather poor agreement with the measure-
ments in subsequent computational studies according to Waite. This discrepancy
was ascribed to the upstream pressure probe being placed too close to the blade
LE (5mm) in the experimental rig, causing the measurements to be obtained with
an error. Waite reports that imposing β1 = 28◦ produces a better match with the
experiments, hence this value was adopted in the present work. The ideal gas model
with R = 287 J kg−1K−1 and γ = 1.4 was employed for the working fluid. Relevant
test-case parameters are listed in Tab. 6.6.

In contrast to the NACA 0012 (Sec. 6.1) and STCF10 (Sec. 6.2) test-cases, the flow
field of the Test Case 628 of STCF4 is transonic and features distinct shock-waves.
The presence of steep gradients implies that the choice of a limiting strategy in
the gradient reconstructing procedure plays an important role. The sharpness of
shockwave resolution as well as the rate of convergence are affected. A set of differ-
ent limiters was therefore tested on a steady flow solution and the most favourably
performing one was subsequently adopted in unsteady simulations. The study also
concentrates on the behaviour of different boundary condition formulations, compar-
ing the Simple Turbomachinery BC, the Exact Steady NRBC, and for the unsteady
analysis also the Spectral NRBC. The time-marching procedure employed the im-
plicit integration scheme with local time-stepping and implicit residual smoothing
and the least-squares gradient reconstruction adopted the setting of inverse distance
weighting exponent k = 1.0. The CFL number 3.0 was used throughout in the
computations.
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Figure 6.25: STCF4 single-blade domain discretisation with refinement levels 1 to 4
from bottom to top. Inlet and outlet boundaries positioned at 1 chord from blades.
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Figure 6.26: Pseudo-schlieren image (left) and Mach number contours (right) on the
level 4 grid.

6.3.1 Steady-State Flow

Grid Independence Study

The commercial grid generator ANSYS® ICEM 19.1 was employed to discretise
the domain with unstructured triangular grids. The grid independence study was
performed on four refinement levels of the 1C1C domain, imposing the Exact Steady
NRBC at the inlet and outlet boundaries. In each transition to the next refinement
level, the cell dimension was reduced by a factor of 1.3. The cell-counts amount to
12340, 20119, 33415 and 58892 when listed from the coarsest (level 1) to the finest
(level 4) discretisation. The meshes are shown in Fig. 6.25 with insets zooming on
the LE and TE regions.

Flow solution on the finest grid is presented in Fig. 6.26. On the left, contours
of density gradient mimicking a schlieren photography highlight the presence of
shockwaves in the flow field. On the right, Mach number contours are plotted in a
colormap discerning between subsonic and supersonic regions. The inlet flow field
is subsonic at M ≈ 0.21 and highly uniform. The flow is accelerated in the blade
passage and reaches a peak Mach number 1.7 before encountering a right-running
shockwave that emanates from the upper blade TE. The shockwave impinges on the
suction side (SS) of the lower blade at ≈ 60% chord and its reflection propagates
towards the outlet at an angle of −32◦ from axial direction. A left-running shockwave
also forms at the TE and propagates downstream at −18◦. Another non-uniformity
represent blade wakes, constituting a perturbation in density and temperature, but
not in pressure. Only very slight shockwave reflections from the outlet boundary
can be discerned in the pseudo-schlieren plot. This indicates that the Exact Steady
NRBC formulation is effective, although unable to suppress all reflections completely.

Figure 6.27 shows that the effect of grid refinement on the flow solution is limited to
the sharpness of shockwave resolution. Pressure coefficient on blade surface is plotted
in function of chord and exhibits negligible variation with refinement everywhere but
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Figure 6.27: Distribution of pressure coef-
ficient on blade surface with different
grid refinement levels. Experimental data
from [47], McBean’s results from [128].

Figure 6.28: Axial (Fx) and circumfer-
ential (Fy) aerodynamic blade forces in
function of grid refinement. Values nor-
malized by the finest grid results.

in the vicinity of shockwave impingement at≈ 60% SS. Here the distribution reaches
a local minimum, followed by a pressure rise and a plateau that extends until the
trailing edge. On the coarser grids, the pressure distribution becomes smeared and
the minimum less distinct. A mild variation can be observed even between the two
finest mesh levels, indicating that a further refinement might be needed to obtain a
fully converged solution.

The computed blade pressure distribution is compared with the results of invis-
cid and viscous simulations published by McBean et al. [128] and with measure-
ments from [47]. All datasets are in a close agreement on the whole pressure side
and on a portion of the suction side upstream of the shockwave impingement. The
present solution matches the experimental data also in terms of the shock position
at ≈ 0.6C, but the pressure levels immediately before and after the shock are under-
predicted. Further downstream, the agreement with experimental data is renewed.
Both numerical solutions published by Waite et al. also exhibit this local pressure
underprediction, but they additionally deviate in the shock impingement position.
It is predicted to occur at different positions by the inviscid and viscous models, but
in both cases further downstream captured by the measurements.

The sharpness of shock resolution affects the evaluation of integral aerodynamic
forces acting on the blade. However, as shown in Fig. 6.28, the influence is only
minor. The variation of axial and circumferential forces on the four mesh levels
amounts respectively to 0.07% and 0.39% overall and to 0.03% and 0.21% in the
final refinement. Even on the coarsest grid, the flow-field prediction is qualitatively
consistent with the finest one.
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Figure 6.29: Blade surface pressure coefficient distributions (left) and convergence
histories (right) obtained with different limiters.

Flux Limiter Comparison

The resolution of discontinuities, such as shockwaves, is affected by the gradient
limiting strategy employed in the evaluation of inviscid fluxes. The method of Barth
and Jespersen [8], its modification by Venkatakrishnan [185], two variants of the face-
based approach of Delis et al. [35] and two variants of the Multidimensional Limiting
Process by Park et al. [142, 141] are implemented in the solver. Their comparison is
presented in this section, focusing on the sharpness of shockwave resolution and on
convergence behaviour. All computations were performed on the level 2 mesh.

Figure 6.29-left show pressure coefficient distributions on blade surface, obtained
with the six different limiters. Additionally, the result of a first order solution is
shown, in which the gradient reconstruction step is omitted and the cell-center values
are used directly in flux evaluation. The highly dissipative first order method nearly
failed to register the local pressure minimum induced by the impingement of the
right running TE shockwave on the SS. The sharpness of the shockwave signature
also highlights the differences between the individual gradient limiting methods,
negligible elsewhere on the blade. Although the location of the pressure minimum is
captured consistently, its magnitude varies depending on the employed limiter. The
sharpest resolution was obtained with the Barth and Jespersen technique, whereas
the MinMod variation of the method devised by Delis et al. is shown to be the
most dissipative. The other limiters are found in between of those two in terms of
dissipativeness, but rather closer to the method of Barth and Jespersen.

While the Barth and Jespersen limiter achieved the sharpest resolution of discon-
tinuities, it suffered from a poor convergence behaviour. As shown in Fig. 6.29-right,
the average density residuum decreased by less than four orders of magnitude be-
fore its convergence stalled. This well-known shortcoming of the limiter is caused
by its activity in smooth flow regions triggered by numerical noise, as described for
example by Haselbacher [78]. Venkatakrishnan’s modification addresses this issue
to some extent and achieves a further reduction of the residuum by one and a half
orders of magnitude with the setting K = 10. The value of this constant was varied,
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(a) Simple Turbomachinery BC (b) Exact Steady NRBC

Figure 6.30: Contours of Mach number (top) and density gradient (bottom) on
domains with different axial extents. Domains from top to bottom: 1C0.5C, 0.5C1C,
1C1C and 1C2C.
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but no major improvement of convergence was observed. Since the need for tuning
K in each test-case individually is impractical, the effect of its variation was not
investigated further. The MLP derives from the limiters of Barth and Jespersen
and of Venkatakrishnan in its u1 and u2 variants respectively. In both cases, the
convergence behaviour was similar to that of the original limiters. A notably im-
proved performance was achieved with the approach of Delis et al. When combining
it with the dissipative MinMod limiter, the residuum dropped by seven orders of
magnitude, while a decrease of fourteen orders of magnitude was accomplished in
conjunction with the van Albada-van Leer (VAVL) limiter. The reduction of resid-
uals thus nearly matched that of the first order method. The combination of a sharp
shockwave resolution and a superior convergence behaviour renders the technique
of Delis et al. in combination with the VAVL limiter as the most advantageous for
the present application.

Sensitivity to Domain Extent

Turbomachinery computations are often performed on truncated domains with the
inlet and outlet boundaries positioned close to the internal components. This ar-
rangement approximates the tight packaging typical for the real machines and helps
to alleviate computational requirements by reducing the mesh cell-count. The inlet
and outlet boundary conditions should thus ideally be formulated such that the flow
solution is not affected by the axial position of the boundary, even if it is moved to
a close vicinity of the blade-row.

Figure 6.30 shows the effect of boundary position on flow field predictions obtained
with the Simple Turbomachinery BC and with the Exact Steady NRBC. The top
plots of Mach number contours are supplemented by the density gradient contours
on the bottom to highlight the shockwave pattern. The axial location of each bound-
ary was varied individually in order to view its influence in isolation. The boundary
condition values were not imposed directly as listed in Tab. 6.6, instead they were
altered so as to maintain the operating point regardless of the domain extent. The
values to be prescribed were determined by performing an iterative procedure, tar-
geting to match the circumferential averages of total pressure, total temperature and
flow angle at 0.5C upstream of the blade, and of static pressure at 0.5C downstream
of the blade.

The inlet flow field is highly uniform in terms of both the stagnation quantities and
the flow angle and the solutions obtained with the two boundary conditions match
closely upstream of the blades. Moving the inflow boundary between 1C and 0.5C
upstream of the blade LE has a negligible effect in both cases. The outlet flow field, in
contrast, features strong non-uniformities due to the downstream propagation of the
left-running TE shockwave, the reflected right-running TE shockwave and the blade
wake. The Simple Turbomachinery BC produces spurious shockwave reflections that
are particularly pronounced on the 1C0.5C and 1C2C domains, but distinctly present
in all cases. The perturbations propagate upstream towards the blades and distort
the pressure distribution on the aft portion of the SS. In contrast, the Exact Steady
NRBC produces consistent flow field predictions with all tested outlet positions.
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Figure 6.31: Sketch of STCF4 bending mode oscillations.

Parameter Symbol Unit Value
Oscillation angle from axis αbend [◦] -117
Oscillation amplitude h [mm] 0.292
Reduced frequency ω̃ [-] 0.082
Frequency f [Hz] 152

Table 6.7: Parameters of STCF4 bending mode oscillations.

Although the reflections of the left-running TE shockwaves from the outlet boundary
are not suppressed entirely, their intensity is low and they have a very limited effect
on the near-blade flow field. A physically valid solution can thus be obtained with
the Exact Steady NRBC even on highly truncated domains.

6.3.2 Bending Mode Oscillations

The Test Case 628 of the Fourth Standard Configuration represents bending mode
oscillations at an angle of −117◦ from the machine axis and with a reduced frequency
ω̃ = 0.082. A sketch of the configuration is shown in Fig. 6.31 and parameters of the
oscillations are summarised in Tab. 6.7. The experimental rig comprises 20 blades,
hence the IBPA can be varied with an increment of 18◦. Note that the operating
point differs from the steady-state case, as the outlet static pressure is decreased by
3 kPa to 66 200Pa.

Grid Independence Study

The grid independence study performed for the unsteady solution targeted conver-
gence of the aerodynamic damping coefficient Ξ. All four mesh levels were considered
in the assessment and the temporal discretisation was refined consistently with the
spatial one, adopting a ratio of ≈ 1.3 between the time-steps on each two consecutive
mesh levels. The number of time-steps per period was thus progressively increased
from 100 to 132, 172 and 220. The analysis was performed for σ = 180◦, employ-
ing the 1C1C domain with the Spectral NRBC imposed at the inlet and outlet
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Figure 6.32: Convergence of the aerodynamic damping coefficient with refinement
level and with the number of inner iterations for σ = 180◦.

boundaries.

The aerodynamic damping coefficient was evaluated with Eq. 4.79 where the max-
imum displacement is given by the oscillation amplitude h. Convergence of Ξ with
grid refinement is plotted in Fig. 6.32 for computations adopting 40, 80 and 160
inner-cycle iterations in the implicit integration scheme. It was found that the inner
cycle may be terminated after 80 iterations, as executing additional 80 iterations
altered the quantification of Ξ by less than 0.08% in all cases. The aeroelastic as-
sessment exhibited a higher sensitivity to grid refinement than found in the STCF10
test-case. The three coarsest mesh levels feature similar cell-counts on both geomet-
ries and they produce a variation of Ξ by 3.7% in the present case as opposed to
1.5% in the case of STCF10. This variation is also notably higher than that of the
static aerodynamic blade forces which amounts to 0.4%.

A more detailed insight into the effect of grid refinement onto the unsteady flow
solution is provided by plotting distributions of unsteady pressure fluctuations on
blade surface. The unsteady pressure coefficient for bending-mode oscillations is
defined as:

C̃p(x, t) =
p(x, t)− p(x)

h

C
(p01 − p2)

. (6.5)

Figure 6.33 shows the amplitude (left) and phase (right) of the first harmonic of C̃p(t)
on blade surface in function of chord. Differences between the solutions on the four
meshes are negligible on the whole PS and on the SS portion upstream of 0.55C.
Further downstream, the right-running TE shockwave of the neighbouring blade
impinges on the SS and produces a distinct peak in the unsteady pressure amplitude.
The sharpness of the peak resolution is notably affected by grid refinement, but the
discrepancy is locally bounded and the pressure amplitude is captured consistently
further downstream. In contrast, phase is affected on the whole aft portion of the
SS. The distributions feature strong fluctuations whose pattern changes in function
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Figure 6.33: Distributions of amplitude (|Cp(1)|, left) and phase (ϕp(1), right) of the
1st unsteady pressure harmonic on blade surface for σ = 180◦. Experimental data
from [47].

of the discretisation level. However, as the local unsteady pressure amplitude is
relatively low, the resulting effect on the prediction of Ξ is only minor. It varies by
less than 0.3% between the two finest meshes, which proves the level 3 discretisation
to be sufficiently refined for the purpose of this study.

Experimental data from [47] are included in the plots as a reference. The computa-
tion achieves close agreement with the measurements on the whole PS and on the
portion of SS upstream of the shockwave impingement, i.e. in the same areas where
the solution exhibits low sensitivity to mesh refinement. On the aft part of SS, the
numerical prediction of amplitude also matches the experimental data well, but the
discrepancy in phase amounts locally up to 120◦. McBean et al. [128] showed that
phase of pressure fluctuations is influenced by viscous effects in this region. In their
comparison of inviscid and viscous computations, the inclusion of viscous effects in
the model brought a closer match of phase prediction with experimental data, but
at the same time the disagreement in amplitude increased. Based on these findings,
it can be concluded that enhancing the present solver with turbulence modelling has
the potential to alleviate the discrepancy observed in phase prediction.

Sensitivity to Domain Extent

The influence of axial domain extent on the unsteady flow solution is investigated in
this section, comparing results obtained with the Spectral NRBC, the Exact Steady
NRBC and the Simple Turbomachinery BC. The study was performed independently
for the inlet and outlet boundaries, such that the position of one boundary was varied
while the other remained fixed at the distance of one chord from the blade. The case
of σ = 180◦ was considered and the domain was discretised with the level 3 mesh.
The sensitivity of aeroelastic predictions to domain extent was quantified in terms
of the aerodynamic damping coefficient Ξ.

The variation of Ξ with the inlet and outlet positions is shown respectively on the
left and on the right of Fig. 6.34. The subsonic incoming flow-field is characterised by
very mild gradients, which contributes to the relatively low sensitivity of damping
predictions to the inlet boundary position. For the considered upstream domain
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Figure 6.34: Variation of the aerodynamic damping coefficient in function of the
inlet (left) and outlet (right) boundary distance from blades for σ = 180◦.

extents of 2C, 1C and 0.5C, the predictions obtained with the Spectral NRBC vary
by 0.25%. The Exact Steady NRBC exhibits only a slightly higher sensitivity at
∆Ξ = 0.7%, while the Simple Turbomachinery BC produces by far the highest
variation of ∆Ξ = 4.6%.

The outlet flow field features distinct perturbations in the form of shockwaves and
blade wakes. In case that the boundary condition fails to suppress spurious reflections
of the perturbations, these propagate upstream and contaminate the flow solution
in blade passages. The quantification of aerodynamic damping coefficient is thus
significantly affected. Moving the outlet boundary modifies the pattern of these
reflections, resulting in a changed damping prediction. This phenomenon can also be
observed in the steady-state flow field in Fig. 6.30 where the Simple Turbomachinery
BC produces reflected shockwave patterns of different structure and intensity in
function of the outlet boundary position. In contrast, an effective non-reflecting
boundary condition treatment should minimize the influence of domain extent on
the aeroelastic assessment.

As can be expected due to the outflow non-uniformity, the solutions with all three
boundary conditions exhibit a notably higher sensitivity to the boundary position
than in the case of inlet. The downstream distance of the outlet boundary from the
blade TE is varied between 0.5C and 4C. The Spectral NRBC and the Exact Steady
NRBC perform consistently also in this case, although the respective damping vari-
ations of 6.2% and 5.3% are higher in absolute values. The Simple Turbomachinery
BC fails to suppress the wave reflections, which causes the damping predictions to
vary by 43.2%.

Figure 6.35 shows how the boundary position affects unsteady pressure fluctuations
on blade surface. Distributions of amplitude and phase of the first pressure har-
monic are plotted for each of the three boundary conditions on the 1C1C, 0.5C1C,
1C0.5C and 1C4C domains. Whether the inlet or the outlet boundary is moved,
and regardless of the boundary condition, the influence of axial domain extent is
confined to the aft portion of the SS, downstream of the shockwave impingement.
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(a) Spectral NRBC

(b) Exact Steady NRBC

(c) Simple Turbomachinery BC

Figure 6.35: Distributions of amplitude (|Cp(1)|, left) and phase (ϕp(1), right) of the
1st unsteady pressure harmonic on blade surface for σ = 180◦, using different domain
sizes and boundary conditions.
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The Spectral NRBC and the Exact Steady NRBC yield nearly identical results,
which indicates a predominance of modes with a high ratio of circumferential to
temporal wave number. With either of the non-reflecting boundary conditions, the
inlet position induces only a very small and locally bounded variation of phase
around 0.9C of the blade SS. Amplitude remains virtually unaffected. In contrast,
changing the downstream domain extent produces greater variations of both amp-
litude (max. ∆|Cp(1)| = 0.3 outside of the shock impingement peak) and phase (max.
∆Φp(1) = 45◦). The Simple Turbomachinery BC exhibits higher sensitivity in both
cases, but especially for the outflow, whose position alters the predictions by up to
∆|Cp(1)| = 1.5 and ∆Φp(1) = 150◦.

Analysis of Aeroelastic Stability

The experimental annular turbine cascade features 20 blades, therefore the travelling-
wave oscillations can occur only in a discrete set of IBPAs spaced by 18◦. In the
present analysis, every other vibration mode is considered and the IBPA range is
covered with increments of 36◦. Aerodynamic damping curve predictions obtained
with the three boundary condition formulations are shown in Fig. 6.36a together
with experimental data from [47]. Computations using the Simple Turbomachinery
BC diverged in all cases but σ = 0◦ and σ = 180◦, hence only these two data-points
are plotted. The results shown here were obtained on the 1C2C domain.

The Spectral NRBC and the Exact Steady NRBC yield a closely matching quanti-
fication of the aerodynamic damping coefficient, with a discrepancy of ∆Ξ < 0.03
in all cases but σ = 0◦ where ∆Ξ = 0.07. Here the blades vibrate in phase and the
waves propagate perpendicularly to the boundaries. As the Exact Steady NRBC
considers only circumferential modes, it cannot suppress reflections of such waves,
in contrast with the Spectral NRBC which accounts for all modes. The close match
observed at all other IBPAs indicates a predominance of circumferential wave-modes
in these cases.

The aerodynamic damping curve obtained with either of the non-reflecting bound-
ary conditions is qualitatively consistent with experimental data. The agreement is
achieved in terms of its nearly sinusoidal shape, free of any distinct local peaks, as
well as in the extent of negative damping range from −140◦ to −18◦. The evaluation
of aeroelastic stability yields the same conclusion, i.e. the blade cascade is unstable,
whether it is based on the measurements or on the numerical results. Quantitat-
ively, the simulations yield positively offset values relatively to the measurements.
The discrepancy falls in the range ∆Ξ ∈ [0.04, 0.19] in most cases, but it rises to
∆Ξ ≈ 0.3 for σ ∈ [72◦, 144◦].

In order to determine why the mismatch increases in this range, it is useful to
examine the unsteady blade pressure distributions plotted in Fig. 6.37. For each
investigated IBPA, the calculated amplitude and phase of the first harmonic are
shown, together with experimental data from [47]. The conclusions regarding the
comparison of numerical and experimental results drawn above for σ = 180◦ are
to a large extent valid generally. Namely, numerical predictions agree closely with
measurements on the whole pressure side and on the front portion of the suction
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(a) Aerodynamic damping curve obtained on the 1C2C domain, experimental data from
[47].

(b) Discrepancy between results on short-outlet (1C0.5C) and long-outlet (1C2C) domains.

Figure 6.36: Aerodynamic damping versus IBPA.
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(a) σ = −144◦

(b) σ = −108◦

(c) σ = −72◦

(d) σ = −36◦
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(e) σ = 0◦

(f) σ = 36◦

(g) σ = 72◦

(h) σ = 108◦
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(i) σ = 144◦

(j) σ = 180◦

Figure 6.37: Distributions of amplitude (|Cp(1)|, left) and phase (ϕp(1), right) of the 1
st

unsteady blade pressure harmonic on a long-outlet (”L”, 1C2C) and a short-outlet
(”S”, 1C0.5C) domain.
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side, whereas greater differences are found downstream of the shock impingement
on the suction side. A partial exception from this trend is observed in the cases
σ = −36◦, σ = 36◦ and σ = 72◦. Experimental data show an abrupt change in
phase on the PS, occurring in the three cases respectively at 0.2C, 0.4C and 0.6C,
in contrast to the smooth distributions predicted numerically. This discrepancy is
limited only to the phase of pressure fluctuations, whereas amplitude predictions are
consistent with the measurements. It is unclear what mechanism could cause such
a sudden phase-only alteration, considering that the PS surface is smoothly curved
and faces a subsonic flow field. Possibly, the measurements could be affected by the
presence of an external perturbation.

The highest discrepancy between numerical and experimental results in terms of the
unsteady pressure distribution occurs at different IBPAs than in terms of the aero-
dynamic damping coefficient. Since the latter is an integral evaluation of the former,
the lack of correlation indicates that there is a considerable error in calculating Ξ
from the measured unsteady pressure distributions. Neglecting higher harmonics,
the aerodynamic damping coefficient of a blade oscillating in a bending mode can
be approximated with the following formula:

Ξ = −
N∑
i=1

∣∣Cp(1),i∣∣ sin (ϕp(1),i) (ei · ni)∆Si
h(p01 − p2)

, (6.6)

where N is the number of data points (i.e. pressure probes), ei denotes a unit
vector in the bending direction, ni a unit surface normal vector and ∆Si the area
element of a data point i. The accuracy of this approximation is highly dependent
on the number of data points, which there were in the experimental campaign only
5 on the blade pressure side and 6 on the suction side. Considering further that
the unsteady pressure distributions are highly non-uniform and feature sharp peaks,
the experimental evaluation of Ξ is bound to suffer from a substantial numerical
error. To a large extent, the disagreement between the numerical and experimental
quantification of the aerodynamic damping coefficient can be attributed to this error.

The sensitivity of aerodynamic damping prediction to the domain extent was dis-
cussed above for the case σ = 180◦. In order to verify whether the conclusions are
valid generally for the STCF4 cascade, the aerodynamic damping curve was com-
puted on a 1C2C domain as well as on a truncated 1C0.5C domain. The alteration
of Ξ due to the downstream domain extent is plotted in Fig. 6.36b for computations
using the Spectral NRBC and the Exact Steady NRBC. The damping coefficient for
σ = 180◦ on the 1C2C domain is used as a reference value for normalisation. The
analysis was not extended to the inlet position effect, as the previous results showed
it to be insignificant.

In most cases, the change in aerodynamic damping with the outlet position is similar
for both boundary conditions. A notable exception occurs for σ = −36◦ where the
Exact NRBC produces a variation of 15.7% as opposed to 5.2% yielded by the
Spectral NRBC. Also the overall maximum variation of Ξ is lower when using the
Spectral NRBC (9.7%) than the Exact Steady NRBC (15.7%). Figure 6.37 shows
that the unsteady blade pressure distributions are altered only on the aft portion of
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Figure 6.38: Convergence of the aerodynamic damping coefficient for σ = 180◦.

the SS, downstream of the shockwave impingement.

The Spectral NRBC exhibited in general slower convergence than the Exact Steady
NRBC. An illustrative example of the convergence behaviour is provided in Fig. 6.38
for σ = 180◦. Let us consider the computation as converged when increasing the
simulated time by a factor of two would alter the aerodynamic damping coefficient
by less than 0.1%. Computations employing the Spectral NRBC converged after
2.5 to 5.3 oscillation cycles, about twice as many as needed with the Exact Steady
NRBC. The Simple Turbomachinery BC failed to converge in all but two cases.

Convergence can potentially be accelerated by moving the inlet and outlet bound-
aries closer to the blades. In the present case, using the shorter 1C0.5C domain
allowed the number of time-steps to be reduced by up to 28% for some IBPAs, but
brought negligible benefit for others. This effect was similar with either of the two
non-reflecting boundary conditions.

6.4 Turbine Cascade M8

The investigated blade cascade represents a near-tip section of a Doosan Škoda
Power steam turbine rotor M8. Typically for a low-pressure turbine stage, the blade
length is considerable at 1.4m. High peripheral velocities are therefore reached at
a higher span, causing the relative inflow conditions to be supersonic. Additionally
to the shockwaves originating in the blade passage and propagating downstream,
as found in transonic blade cascades, a detached bow shock can be expected to
form upstream of the blade leading edge and propagate towards the inlet boundary.
This configuration thus places high demands on the formulation of non-reflecting
boundary conditions for both inflow and outflow. The flow analysis presented in
this section considers only the Exact Steady NRBC and the Spectral NRBC, as the
Simple Turbomachinery BC diverged even in a steady-state solution. Aeroelastic
stability of the cascade was investigated for a coupled bending-torsion mode of blade
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Figure 6.39: M8 single-blade computational domain.

oscillation.

An aeroelastic analysis of the M8 blade cascade was published by the author in
[2]. The inlet and outlet boundaries were not treated with non-reflecting boundary
conditions, therefore only a lower-span section with subsonic inlet conditions could
be investigated. The results shown in this work consider a supersonic 93% span
section and they were partially presented at [3].

Figure 6.39 shows a single-blade domain with the inlet and outlet boundaries placed
at the distance of one chord from the blade. In accordance with the notation intro-
duced for STCF4, this domain is referred to as 1C1C. Basic dimensions, operating
conditions and fluid parameters are listed in Tab. 6.8. The working medium was
modelled as an ideal gas with R = 438.4 J kg−1K−1 and γ = 1.0707. Solver settings
were based on the analysis performed for the STCF4 test-case. Evaluation of inviscid

Parameter Symbol Unit Value
Blade chord C [m] 0.2945
Blade spacing (pitch) P [m] 0.2764
Stagger angle δ [◦] -78.135
Inlet total pressure p01 [Pa] 55013
Inlet total temperature T01 [K] 356.87
Inlet flow angle β1 [◦] -80.58
Outlet static pressure p2 [Pa] 10272
Specific heat ratio γ [-] 1.0707
Specific gas constant R [J kg−1K−1] 438.4

Table 6.8: Overview of M8 parameters
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Figure 6.40: M8 single-blade domain discretisation with refinement levels 1 to 3 from
bottom to top. Inlet and outlet boundaries positioned at 1 chord from the blades.
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Figure 6.41: Pseudo-schlieren image (left) and Mach number contours (right) on the
level 3 grid.

fluxes was preceded by a least squares gradient reconstruction procedure, using the
inverse distance weighting exponent k = 1.0 and the van Albada-van Leer variant of
the Delis et al. limiter. The time-marching solution procedure employed the implicit
integration scheme with local time-stepping and implicit residual smoothing and the
CFL number was set to 3.0.

6.4.1 Steady-State Flow

Grid Independence Study

Convergence of the steady-state solution with grid refinement was investigated on
three levels of unstructured triangular discretisation generated in ANSYS® ICEM
19.1. The cell dimension was reduced by a factor of 1.69 in each refinement, produ-
cing cell counts of 13897, 39820 and 114952 per blade passage on the 1C1C domain.
Figure 6.40 presents the three mesh levels with insets focusing on the LE and TE
regions. The grid independence study was performed with the Exact Steady NRBC
imposed at the inflow and outflow boundaries.

The complex flow field topology is illustrated in Fig. 6.41 by plotting contours of
density gradient (left) and Mach number (right) on the finest, level 3 mesh. The
flow is accelerated in the blade cascade from an average inlet Mach number 1.34
to an average outlet Mach number 1.73. Similarly to the transonic blade cascade
STCF4, a pair of shockwaves emanates from the blade TE. The right-running one
impinges on the suction side surface of the neighbouring blade near 50% chord,
while the other propagates directly towards the outlet boundary. The inlet flow field
features a detached bow shock, formed upstream of the blade LE. One branch of
the shockwave propagates directly towards the inflow boundary, whereas the other
reaches the outflow boundary after a couple of reflections, occurring at ≈ 95%
chord on the upper blade PS and at ≈ 27% chord on the lower blade SS. The
flow is supersonic everywhere but in three small patches. One is found near the
blade LE immediately downstream of the bow shock, another near the blade TE
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Figure 6.42: Blade surface Mach num-
ber distribution with different grid refine-
ment levels.

Figure 6.43: Axial (Fx) and circumferen-
tial (Fy) aerodynamic blade force in func-
tion of grid refinement. Forces normalized
by the finest grid results.

downstream of the bow shock impingement on the PS, and the last in a small portion
of the blade wake. The Exact Steady NRBC is based on linearised Euler equations,
whereas the present flow field is strongly nonlinear. In spite of this limitation, the
boundary condition works highly effectively in preventing the formation of spurious
wave reflections and only minor perturbations appear in the contour plots.

Figure 6.42 provides a comparison of blade surface Mach number distributions on
the three mesh levels. There is very little difference in resolving the pressure side
distribution, including the shockwave impingement at 0.98C. On the suction side,
the effect of grid refinement is more pronounced. The Mach number predictions
exhibit an offset on the front portion of the surface, upstream of the reflected bow-
shock impingement at 0.27C. The finer the mesh resolution, the higher Mach level
is reached, with the difference between the level 1 and level 3 meshes amounting to
∆M ≈ 0.07. The sharpness of the Mach number peak that precedes the right running
TE shockwave impingement at 0.5C is also notably affected. The coarsest grid yields
a Mach number maximum 1.88 at this location, while values of 1.94 and 1.98 are
obtained on the level 2 and level 3 grids respectively. Elsewhere on the suction side,
all three predictions match closely. Crucially, the Mach number distribution is in the
second refinement step altered less than in the first one, evidencing that the flow
solution has a converging trend.

The variation of blade forces with refinement is plotted in Fig. 6.43. Due to the
increased complexity of the flow field, the sensitivity to cell-size is higher than in
the STCF4 test-case. Between the level 2 and level 3 meshes, the axial and circum-
ferential aerodynamic loads change by 0.8% and 1.5% respectively. The forces vary
nearly linearly with grid refinement and do not exhibit a converging trend. How-
ever, flow features are captured consistently on all three meshes and the blade Mach
number distributions converge locally, as shown in Fig 6.42. The level 2 refinement
provides a sufficient resolution of the steady-state flow for the purpose of this study.
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(a) Varying inlet position, from top to bot-
tom domains 0.5C1C, 1C1C, 2C1C, 3C1C,
4C1C.

(b) Varying outlet position, from top to bot-
tom domains 1C0.5C, 1C1C, 1C2C, 1C3C,
1C4C.

Figure 6.44: Contours of Mach number (top) and density gradient (bottom) with
different domain extents.
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Sensitivity to Domain Extent

The inlet flow field of subsonic and transonic blade cascades, such as STCF10 in Sec.
6.2 and STCF4 in Sec. 6.3, is nearly uniform when viewed at a sufficient distance
upstream of the blades. In contrast, the supersonic cascade M8 features an upstream
propagating bow-shock, which places increased demands on the inlet boundary con-
dition treatment. The Simple Turbomachinery BC failed to converge in such de-
manding flow conditions, hence the analysis of the steady-state solution sensitivity
to domain extent was performed only with the Exact Steady NRBC.

Figure 6.44 shows contours of Mach number (top) and density gradient (bottom)
on domains with different axial extents, discretised with the level 2 mesh. In order
to isolate the effect of inflow and outflow positions, each of the boundaries is moved
individually while the other one remains fixed at a distance of one chord from the
blades. In both cases, the range considered for the boundary-to-blade distance is
from 0.5C to 4C.

The outlet flow field resembles qualitatively the transonic STCF4 cascade, on which
the Exact Steady NRBC has been shown to exhibit little sensitivity to the boundary
position (Sec. 6.3). A similar behaviour is observed also in the present case, as
evidenced by the contour plots in Fig. 6.44b. Even with the outlet boundary placed
at a half-chord distance from the blades, no significant wave reflections are observed
and the density gradient and Mach number distributions match closely the long-
domain solutions.

Results obtained with different upstream domain extents are also consistent and
show little variation in either the Mach number or the density gradient pattern
(Fig. 6.44a). However, the spurious reflections of upstream propagating bow-shocks
are more pronounced than the perturbations observed at the outlet boundary. They
are most evident on the shortest domain 0.5C1C and lose on intensity as the inlet
boundary moves further away from the blades. Similarly as in the case of the outlet
boundary, these perturbations have little effect on the prediction of the blade-channel
flow field. Using the Exact Steady NRBC thus enables truncating the domain extent
both upstream and downstream of the blade cascade without compromising notably
the accuracy of the solution.

6.4.2 Coupled Mode Oscillations

The investigation of aeroelastic stability was performed for a coupled mode of os-
cillation, provided by a three-dimensional finite element model. The evaluation of
natural modes and frequencies was performed in vacuo, i.e. without the considera-
tion of aerodynamic forces. The output of the finite element analysis in the form of
complex displacements for points forming the three-dimensional blade surface was
interpolated onto the 93% span section. Neglecting the profile deformation, a general
two-dimensional eigenmode can be approximated with a rigid body motion, using
the procedure described in Sec. 5.3.1. The blade vibrates in a coupled mode, such
that it undergoes a pitching motion while its elastic axis (EA) follows a trajectory in
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Figure 6.45: Sketch of coupled-mode oscillations of M8. Displacement scaled by a
factor of two.

Parameter Symbol Unit Value
Horizontal EA displacement amplitude ∆xEA [mm] 8.168
Horizontal EA displacement phase ϕxEA

[◦] -56.13
Vertical EA displacement amplitude ∆yEA [mm] 0.307
Vertical EA displacement phase ϕyEA

[◦] -29.74
Pitching amplitude ∆α [◦] 1.75
Pitching phase ϕα [◦] -149.09
Reduced frequency ω̃ [-] 0.194
Frequency f [Hz] 141.312

Table 6.9: Parameters of M8 coupled-mode oscillations.

the shape of an ellipse. Figure 6.45 shows snapshots of the displaced and reference
blade positions at four time instants during an oscillation cycle. The elastic axis is
placed at the midpoint of camberline and the harmonic vibrations are characterised
by a reduced frequency ω̃ = 0.194. The amplitude and phase of the horizontal and
vertical EA displacements and of the pitching angle are listed in Tab. 6.9.

Grid Independence Study

Independence of the unsteady flow solution on domain discretisation was investig-
ated on the same set of meshes as used for the steady-state flow in Sec. 6.4.1. The
number of time-steps per period of oscillation was varied in accordance with mesh
refinement, starting with 100 on the coarsest grid and proceeding via 172 to 288.
The study was performed for the configuration of in-phase oscillating blades, i.e.
σ = 0◦, and adopted the 1C1C domain with the Spectral NRBC imposed at inflow
and outflow.

The key parameter for assessing aeroelastic stability is the aerodynamic damping
coefficient Ξ. Its convergence with grid refinement and with the number of inner-
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Figure 6.46: Convergence of the aerodynamic damping coefficient with grid refine-
ment level and with the number of inner iterations for σ = 0◦.

cycle iterations is plotted in Fig. 6.46. The implicit integration scheme was found
to converge after 80 inner iterations, as performing an additional set of 80 altered
the quantification of Ξ by less than 0.01% in all cases. The change in aerodynamic
damping with grid refinement amounts to 0.11% between levels 1 and 2 and to
0.14% between levels 2 and 3. These variations are lower than on the STCF4 and
STCF10 blade cascades with comparably refined meshes, but they do not exhibit
a converging trend. It needs to be established whether the flow solution converges
locally in spite of the trend in integral quantification.

Figure 6.47 shows amplitude (left) and phase (right) of the first harmonic of un-
steady pressure coefficient (Eq. 6.5) in function of chord. The solutions on all three
mesh levels are in a close agreement. The predictions of amplitude differ mainly in
the peaks at 0.4C and 0.52C, whose resolution is smeared on the coarsest grid, but
nearly unchanged between levels 2 and 3. The distribution of phase varies predom-
inantly on the aft portion of the suction side, where more pronounced fluctuations
appear with grid refinement. Their pattern is a signature of unsuppressed wave
reflections emanating from the outlet boundary. On the coarsest grid, the perturb-
ations dissipate before reaching the blade channel. As the cell-size is reduced, they

Figure 6.47: Distributions of amplitude (|Cp(1)|, left) and phase (ϕp(1), right) of the
1st unsteady pressure harmonic on blade surface for σ = 0◦.
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Figure 6.48: Variation of the aerodynamic damping coefficient in function of the
inlet (left) and outlet (right) boundary distances from blades for σ = 0◦.

become more sharply resolved and prevent the phase distribution from converging
in this region. The effect of the spurious wave reflections on the unsteady blade
pressure prediction is only mild, as amplitude remains nearly unchanged and phase
is altered by less than ≈ 8◦ between two consecutive grid levels.

The second grid refinement step brings negligible alterations of the unsteady blade
pressure distribution everywhere but in phase on the aft part of the SS. Considering
additionally that the change in the aerodynamic damping coefficient is insignificant
at 0.14%, the level 2 mesh is found to provide a sufficiently fine discretisation for
an accurate aeroelastic analysis.

Sensitivity to Domain Extent

The influence of domain size on the unsteady flow solution was investigated on the
same set of domains as in the steady-state case in Sec. 6.4.1. The analysis could
thus be performed individually for the inflow and outflow boundaries. Only the
Exact Steady NRBC and the Spectral NRBC were tested, as computations using
the Simple Turbomachinery BC failed to converge. The discretisation was performed
with the level 2 refinement and the IBPA of 0◦ was imposed for the blade oscillations.

Figure 6.48 shows how the inlet (left) and outlet (right) boundary positions affect
the quantification of the aerodynamic damping coefficient Ξ. The distance of either
boundary from the blades is varied between 0.5C and 4C. The Spectral NRBC
exhibits little sensitivity to domain extent, with the changes in Ξ amounting to
2.1% and 1% in the case of inflow and outflow respectively. These results show that
the boundary condition is highly effective in suppressing spurious wave reflections
even in the presence of shockwaves propagating both upstream and downstream.
In contrast, the Exact Steady NRBC yields inconsistent results on the different
domains. There is over a threefold difference between the lowest and highest damping
prediction when moving the inlet boundary, and more than a fivefold difference in
the case of outlet.
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(a) Spectral NRBC

(b) Exact Steady NRBC

Figure 6.49: Distributions of amplitude (|Cp(1)|, left) and phase (ϕp(1), right) of the
1st unsteady pressure harmonic on blade surface with different domain sizes and
boundary conditions for σ = 0◦.

Results obtained with the Spectral NRBC exhibit low sensitivity to domain extent
also in terms of the unsteady blade pressure distribution in Fig. 6.49a. Amplitude
and phase of the first harmonic are plotted on the left and right of the figure respect-
ively. Solutions on five domains are shown, selected such that the nearest (0.5C) and
furthest (4C) positions of each boundary are included, together with the 1C1C do-
main. There are only locally bounded differences of a small magnitude between the
solutions. A truncation of either the upstream or the downstream domain extent to
0.5C amplifies the spurious wave reflections and induces a fluctuation in amplitude
by ∆|Cp(1)| ≈ 0.15 near 0.9C. Phase is affected mainly on the aft 40% of the SS, by
up to 38◦.

The sensitivity of unsteady solution to domain extent increases notably with the
use of the Exact Steady NRBC (Fig. 6.49b). The outlet boundary position affects
mainly the aft 55% of the SS, where it induces an offset of ∆|Cp(1)| ≈ 0.4 and
∆|ϕp(1)| ≈ 50◦. The changes caused by moving the inlet boundary are even more
profound, in terms of both magnitude and spatial extent. The unsteady pressure
distribution is altered almost on the entire blade surface by up to ∆|Cp(1)| = 0.57
and ∆|ϕp(1)| = 115◦. An entirely different solution is thus obtained by changing the
position of either boundary. This behaviour highlights the importance of employing
a boundary condition with good reflecting properties for the accuracy of aeroelastic
predictions.
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Analysis of Aeroelastic Stability

The investigation of aeroelastic stability was performed with an IBPA resolution
of 30◦. Either the Exact Steady NRBC or the Spectral NRBC were imposed, the
former only in combination with a 2C2C domain and the latter also with truncated
0.5C2C and 2C0.5C domains. The selection of these configurations was motivated
by two main targets of the analysis. Firstly, to establish how the lack of temporal
wave-modes in the formulation of NRBC impacts the assessment of aeroelastic sta-
bility over a range of IBPAs. And secondly, to investigate the influence of domain
truncation on the accuracy of damping curve prediction with the Spectral NRBC.

The results are plotted in Fig. 6.50, whose part (a) shows damping coefficient pre-
dictions and part (b) relative differences to a reference computation, performed on
the 2C2C domain with the Spectral NRBC. All results are consistent in character-
ising the aeroelastic behaviour as unstable over the whole IBPA range. The reference
damping curve exhibits an approximately sinusoidal shape that is, however, disrup-
ted for σ ∈ [−90◦,−30◦]. The three cases within this range are found in the vicinity
of acoustic resonance conditions that have a stabilizing effect and shift the damping
coefficient towards zero. A notable discrepancy of up to 26% appears here between
the results obtained with the Spectral NRBC and the Exact Steady NRBC. A sim-
ilar behaviour was observed also on the STCF10 blade cascade (Sec. 6.2) where the
Exact Steady NRBC likewise failed to predict the acoustic resonance peaks. An even
higher discrepancy of 38% appears at σ = 0◦, similarly to the STCF4 cascade (Sec.
6.3). The in-phase blade vibrations excite waves that propagate perpendicularly to
the inlet and outlet boundaries and as such are not accounted for by the Exact
Steady NRBC. Apart from these four IBPAs, the two boundary conditions differ by
less than 10% in the prediction of Ξ.

Figure 6.51 presents blade surface distributions of the first unsteady pressure coeffi-
cient harmonic for all investigated IBPAs. The results obtained with the two different
boundary conditions on the 2C2C domain match closely for σ ∈ [30◦, 180◦], but sub-
stantial differences arise outside of this range. Typically, an offset in amplitude and
phase is found either on the entire PS (σ ∈ [−150◦,−90◦]), on the aft half of the SS
(σ ∈ [−60◦,−30◦]), or in both of these areas (σ = 0◦). The discrepancy is especially
significant in the latter case, not only as it encompasses most of the blade surface,
but also due to its magnitude. The two solutions differ by up to ∆Cp(1) = 0.75
and ∆ϕp(1) = 120◦. This case thus highlights that a substantial error can be intro-
duced by considering only spatial wave modes in the formulation of non-reflecting
boundary conditions.

The Spectral NRBC produces consistent results on all three domains. Figure 6.50b
shows that changing the outlet boundary position alters the quantification of Ξ
by less than 6% in all cases. Truncating analogically the domain inflow brings a
similarly low alteration ∆Ξ < 7% for all IBPAs but σ = −120◦. Here it rises
to 20% and forms thus a singular exception from the overall trend which will be
discussed further.

The unsteady blade pressure distributions exhibit low sensitivity to the position
of either boundary (Figure 6.51). A change of the upstream domain extent from
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(a) Aerodynamic damping curve predictions using different domain extents and boundary
conditions.

(b) Relative difference to a reference computation performed on the 2C2C domain with
the Spectral NRBC.

Figure 6.50: Aerodynamic damping versus IBPA.
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(a) σ = −150◦

(b) σ = −120◦

(c) σ = −90◦

(d) σ = −60◦
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(e) σ = −30◦

(f) σ = 0◦

(g) σ = 30◦

(h) σ = 60◦
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(i) σ = 90◦

(j) σ = 120◦

(k) σ = 150◦

(l) σ = 180◦

Figure 6.51: Distributions of amplitude (|Cp(1)|, left) and phase (ϕp(1), right) of the
1st unsteady blade pressure harmonic.
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Figure 6.52: Contours of instantaneous pressure fluctuations on the 2C2C (left)
and 0.5C2C (right) domains for σ = −120◦ with the Spectral NRBC. Dashed line
indicates the position of the 0.5C2C domain inlet.

2C to 0.5C induces only a minor offset in the PS distributions (∆Cp(1) < 0.1,
∆ϕp(1) < 10◦), while the SS predictions remain virtually unaffected. An analogical
outflow truncation produces fluctuations in the aft SS distributions on account of
stronger reflections of the downstream propagating shockwaves. The peak discrep-
ancy between the long and short outflow solutions amounts to ∆Cp(1) ≈ 0.2 and
∆ϕp(1) ≈ 90◦, but only locally on a very small extent of the blade surface. Its effect
on the integral damping quantification is therefore limited.

The case of σ = −120◦ stands out from the overall trend by yielding a nearly
three times higher sensitivity of Ξ to the inflow extent than in any other case.
However, the plots of unsteady blade pressure distribution in Fig. 6.51b do not show
any qualitative difference to other IBPAs. The change of inlet boundary position
produces an offset in both phase and amplitude over most of the PS while having
nearly no effect on the SS distribution. At ∆Cp(1) ≈ 0.1 and ∆ϕp(1) ≈ 9◦, neither
offset is larger than at other IBPAs. The difference is that both of the offsets are
present and they cover a larger portion of the blade surface, which results in a higher
alteration of the aerodynamic damping coefficient.

The absence of a major qualitative change with upstream domain truncation is fur-
ther documented in Fig. 6.52. Solutions on the reference 2C2C (left) and truncated
0.5C2C (right) domains are compared in terms of instantaneous pressure fluctuation
contours. The following definition of pressure coefficient is used:

C̃p(t) =
p(t)− p(t)

h

C
(p01 − p2)

. (6.7)

The upstream domain extent affects mainly the amplitude of pressure fluctuations
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and not their pattern. They are more pronounced on the 0.5C2C domain, as already
shown in the plots of unsteady blade surface pressure distribution (Fig. 6.51b).
Qualitative differences are limited to the topology of bow-shock reflections emanat-
ing from the inlet boundary. As a result, they impact the blade surface in a different
spot.

The variation in aerodynamic damping with inflow position is partly caused by a
mismatched operating point. The values of total pressure, total temperature and
flow angle, prescribed at the inlet of the truncated domain, are based on corres-
ponding circumferential averages extracted from a steady-state computation on the
2C2C domain. Due to the nonlinearity of the flow field, there is a small difference
between the circumferential averages extracted from a steady-state computation
and from a time-averaged unsteady computation. In the case of σ = −120◦, this
difference amounts to ∆p01 = 17Pa, ∆T01 = 0.03K and ∆β1 = 0.04◦. Although
the discrepancy may seem small enough to be insignificant, it affects notably the
quantification of aerodynamic damping. An additional short-inlet computation was
performed for this IBPA, using the corrected boundary conditions based on the un-
steady long-inlet solution. The difference between the 2C2C and 0.5C2C damping
predictions, amounting originally to 19.8%, decreased to 12.9%. Such impact of a
slight modification of the inlet boundary conditions manifests how extremely sens-
itive the unsteady flow solution of a supersonic blade cascade is to the prescribed
inflow state.

The supersonic turbine cascade manifested a markedly slower convergence than the
subsonic and transonic test-cases STCF10 and STCF4. The temporal evolution of
the aerodynamic damping coefficient exhibited strong fluctuations with a slowly
diminishing amplitude, although a one-period moving average typically converged
within several oscillation cycles. The solution was considered as converged when Ξ
varied by less than 0.1% during the last oscillation cycle and when its moving average
changed by less than 0.1% in the last 5 oscillation cycles. Depending on the IBPA,
convergence on the 2C2C domain was reached after 7 to 30 cycles with the Spectral
NRBC and after 8 to 35 cycles with the Exact Steady NRBC. The Spectral NRBC
thus did not exhibit a worse convergence rate, in contrast to what has been reported
for some applications in the past and attributed to the phase-lagged calculation of
temporal harmonics [156].

A representative example of the convergence behaviour is provided in Fig. 6.53
for σ = 0◦. Temporal evolution of the aerodynamic damping coefficient is shown
for both boundary conditions on the reference domain and for the Spectral NRBC
additionally on the two truncated domains. On the 2C2C domain, the damping
coefficient arrives within 1% of the converged value already after 4 oscillation cycles
with the Spectral NRBC and after 6 cycles with the Exact Steady NRBC. However,
in order to obtain a convergence within 0.1%, the number of simulated cycles needs
to be significantly higher at 15 and 13 respectively.

One might expect that faster convergence would be achieved by reducing the domain
extent, but the results of this action are ambivalent on the M8 cascade. In the
example shown in Fig. 6.53, moving the inlet closer to the blade accelerates the
0.1% convergence from 15 to 10 cycles, but changing analogically the outlet position
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Figure 6.53: Convergence of the aerodynamic damping coefficient for σ = 0◦

stretches it to 16 cycles. At other investigated IBPAs, the effect of truncating the
domain on either end was sometimes beneficial and sometimes detrimental. The
0.1% convergence was always reached at the latest after 30 cycles.

161



Chapter 7

Conclusions and Future Work

7.1 Conclusions

This thesis deals with a numerical prediction of flutter in turbomachinery blade cas-
cades. A bespoke unsteady flow solver for computations on deforming domains has
been developed and implemented in C++ by the author. After testing the computa-
tional model on the case of an isolated airfoil, it was applied to the assessment of aer-
oelastic stability for three blade cascades with a subsonic, transonic and supersonic
flow regime. The analysis focused primarily on the performance of non-reflecting
boundary conditions, motivated by the high sensitivity of flutter predictions to per-
turbations emanating from the inflow and outflow boundaries. The Spectral NRBC
was shown to be highly successful in preventing the formation of spurious wave re-
flections, providing thus an accurate prediction of aerodynamic damping even for
complex flow-fields. Although the wave reflections are not always completely sup-
pressed on account of the underlying linearised model, their magnitude is low enough
to have only a minor effect on the near-blade flow field. The solution exhibits only
a very mild sensitivity to the inflow and outflow positions, which enables employing
highly truncated domains without compromising accuracy. The study has further
demonstrated that using a boundary condition that fails to suppress the spurious
wave reflections can result in a fundamentally incorrect aeroelastic assessment.

Numerical solution methods. The finite volume discretisation employs Liou’s
AUSM+-up scheme [120] for the evaluation of inviscid fluxes. This approach was
selected for its applicability to a wide range of flow regimes, as the investigated test
cases comprise a low subsonic airfoil with a freestream M = 0.15 as well as a super-
sonic blade cascade with a maximum M = 1.95. In both of these cases, the scheme
contributed to a satisfactory convergence behaviour and did not produce spurious
pressure oscillations in low-speed regions, known to afflict the original AUSM+ ver-
sion [121]. A gradient reconstruction and limiting procedure was applied to increase
the spatial order of accuracy. A least squares approximation of gradients with a
vertex-based stencil was used, employing initially an inverse distance weighting ex-
ponent k = 3

2
. However, this value was found to cause the solution to diverge in

some cases, which was resolved by modifying the setting to k = 1. Although this
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modification may on some meshes decrease the accuracy of gradient reconstruction,
it is still sufficient to provide a second-order accurate flux evaluation. Gradient re-
construction is followed by imposing a limiter to prevent the formation of oscillations
near discontinuities. Based on a comparison of six gradient limiting strategies, the
face-based technique of Delis and Nikolos [36] in combination with the van Albada-
van Leer limiter was adopted. It was shown to produce a sharp shockwave resolution
and achieve fast convergence, absent of residual stall.

Aeroelastic analysis of an isolated airfoil. The computational model was first
tested on the case of an isolated NACA 0012 airfoil, before proceeding to the more
complex problem of blade cascades. The analysis included a steady-state case, pre-
scribed torsion-mode vibrations and fully coupled oscillations with two degrees of
freedom. In the first two cases, the numerical solution was validated by comparison
with experimental data. The predictions of blade pressure distribution achieved a
close agreement with the measurements, in terms of both the steady-state flow and
the unsteady fluctuations. It was shown that adding a vortex correction to the far-
field boundary condition improves the accuracy of aerodynamic force prediction on
truncated domains. However, this method is not applicable to unsteady flows. The
fully coupled simulations of airfoil oscillations with two degrees of freedom predicted
that as the freestream velocity is increases, the system undergoes a transition from
damped oscillations through torsional divergence to flutter instability. The trends as
well as the onset velocities were consistent with numerical results of other authors.

Non-reflecting boundary conditions in steady-state flows. A steady-state
solution was first performed for each of the blade cascades investigated on aeroelastic
stability, i.e. for a subsonic compressor cascade STCF10, a transonic turbine cascade
STCF4 and a supersonic turbine cascade M8. The steady-state predictions obtained
with the Exact Steady NRBC and with the Simple Turbomachinery BC were nearly
identical in subsonic flow conditions, found at both boundaries of STCF10 and at
the inlet of STCF4. However, profound differences occurred in the presence of shock-
waves, characterising the outlet of STCF4 and both boundaries of M8. The solution
produced by the Exact Steady NRBC was nearly free of spurious wave reflections
and exhibited little sensitivity to the boundary position. Although the perturbations
gained slightly on intensity as the boundaries were moved closer to the blades, the
near-blade flow field remained largely unaffected. The axial domain extent could
thus be reduced to half a chord upstream and downstream of the blades without
compromising accuracy of the solution, even in the case of the M8 cascade with
a supersonic inflow. In contrast, the Simple Turbomachinery BC produced strong
shockwave reflections at the STCF4 outlet, with an intensity and topology varying in
function of the domain extent. These perturbations propagated upstream and mod-
ified the near-blade flow-field, introducing a substantial error into the aerodynamic
characterisation of the cascade. On the M8 cascade, the Simple Turbomachinery BC
failed to produce a converged solution.

Non-reflecting boundary conditions in flutter predictions. The Spectral
NRBC exhibited good reflection properties in unsteady flow solutions on all three
blade cascades. On the subsonic cascade STCF10, the predicted aerodynamic damp-
ing curve matched closely numerical results of other authors even in the vicinity of
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acoustic resonance peaks. An examination of the unsteady flow field did not show
any evidence of reflected waves. A satisfactory agreement of calculated aerodynamic
damping with experimental data was achieved on the transonic STCF4 cascade.
Although weak shockwave reflections were found to emanate from the outlet bound-
ary and propagate upstream, they did not affect the quantification of aerodynamic
damping significantly. Similar observations were made also for the M8 cascade. This
test case is challenging due to the supersonic inflow conditions, inducing the form-
ation of a detached bow shock that propagates towards the inlet boundary. The
Spectral NRBC, being based on the linearised form of Euler equations, did not
achieve a full suppression of spurious shockwave reflections in the highly nonlinear
flow field. However, the weak perturbations formed at the boundaries had only a
very limited impact on the unsteady flow solution in blade vicinity.

A comparison of the Spectral NRBC with the Exact Steady NRBC and the Simple
Turbomachinery BC demonstrated that the use of boundary conditions with good
reflection properties is vital for the accuracy of aeroelastic evaluations. Importantly,
this conclusion applies also to blade cascades with a subsonic flow regime. There
the spurious wave reflections may not be imminently obvious, in contrast to flows
featuring shockwaves, yet they can have a profound effect on the unsteady flow
solution. The Exact Steady NRBC predicted the damping coefficient in a reasonable
agreement with the Spectral NRBC only in cases with predominant circumferential
wave-modes, such as at most IBPAs of the transonic STCF4 cascade. However,
even if the integral damping value was similar, clear evidence of unsuppressed wave
reflections could be found in the flow-field obtained with the Exact Steady NRBC.
The damping predictions deviated from the Spectral NRBC solution the furthest
near acoustic resonance conditions and in the case of in-phase blade vibrations,
characterised by a boundary-normal wave propagation. The discrepancy amounted
up to 215% on the subsonic cascade STCF10, 51% on the transonic cascade STCF4
and 38% on the supersonic cascade M8. The Simple Turbomachinery BC provided
on the STCF10 cascade a similarly unsatisfactory performance as the Exact Steady
NRBC and mostly failed to converge in the other two test-cases.

Solution sensitivity to domain extent. The sensitivity of aeroelastic assessments
to axial domain extent is highly dependent on the presence of strong gradients and
discontinuities in the flow-field. Results obtained with the Spectral NRBC were
virtually unaffected by the inlet boundary position of STCF4 thanks to the highly
uniform subsonic inflow. In supersonic flows featuring shockwaves, such as at the
outlet of STCF4 and at both boundaries of M8, the effect of domain truncation
gained on significance. Maximum variations of the aerodynamic damping coefficient
amounted to 9.7% (STCF4 outlet), 5.7% (M8 outlet) and 12.9% (M8 inlet). In spite
of the quantitative change in damping, the unsteady flow-field remained qualitatively
consistent. Although the shockwave reflections became more pronounced with the
boundaries moved closer to the blades, they remained relatively weak even with a
half-chord boundary distance. The Exact Steady NRBC exhibited similar sensitivity
to domain extent on STCF4, but in case of the supersonic cascade M8, the position
of either boundary affected the damping quantification by more than 300%.

Effect of boundary conditions on convergence. It has been reported in the
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past that the Spectral NRBC suffers from slower convergence on account of the
phase-lagged updating procedure of temporal Fourier coefficients [158]. This issue
did not appear in the present applications where the number of oscillation cycles to
reach convergence was comparable to the other two boundary conditions. Overall,
the slowest convergence of the aerodynamic damping coefficient was experienced on
the supersonic cascade M8, where up to 35 oscillation cycles needed to be simulated.
Domain truncation helped to accelerate convergence in some cases, but it had an
adverse effect in others.

7.2 Review of Objectives

Objectives related to the implementation of the computational model:

� Devise a mesh motion strategy for flow solution on deforming do-
mains. A computationally inexpensive analytical method for grid motion on
domains with oscillating blades was implemented. The technique managed to
maintain high mesh quality even with large blade displacements.

� Analyse techniques for gradient reconstruction and limiting.A weighted
least squares method was employed for the reconstruction of gradients. The
inverse distance weighting exponent set to k = 1 achieved an optimal com-
bination of accuracy and stability. Six techniques were investigated for the
subsequent gradient limiting step. The approach of Delis and Nikolos [36] ad-
opting the van Albada-van Leer limiter was found as the most advantageous
for the considered applications.

� Implement non-reflecting boundary conditions. Two non-reflecting bound-
ary condition formulations were successfully implemented, namely the Exact
Steady NRBC of Giles [58] for steady flows and the Spectral NRBC of Schlüß
for periodic unsteady flows.

� Validate the computational model. The solver was extensively validated
by comparing the present predictions with experimental data and with nu-
merical results of other authors. Overall, a very good agreement was achieved,
although some discrepancy appeared in predicting the phase of unsteady pres-
sure fluctuations downstream of a shockwave. This mismatch was ascribed to
the inviscid flow model.

Objectives related to solver validation and analysis of non-reflecting boundary con-
ditions for aeroelastic assessment:

� Analyse the performance of Spectral NRBC in nonlinear flows. The
Spectral NRBC was shown to have good reflection properties even in applic-
ations with a highly nonlinear flow-field, including a blade cascade with a
supersonic inflow. Although weak shockwave reflections were discernible in
some cases, their effect on the near-blade flow solution and on the aeroelastic
assessment was insignificant.
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� Quantify the impact of unsuppressed wave reflections on aeroelastic
assessments. A comparison of the Spectral NRBC with two other boundary
conditions demonstrated that an effective suppression of wave reflections is
essential for the accurate prediction of aerodynamic damping. Perturbations
emanating from the inlet and outlet boundaries may produce a fundamentally
unphysical solution or cause the solver to diverge.

� Analyse sensitivity of flutter predictions to domain extent. The influ-
ence of boundary position was analysed by comparing solutions on domains
with different axial lengths. The quantification of aerodynamic damping varied
significantly when using boundary conditions with inferior reflection proper-
ties. In contrast, the Spectral NRBC yielded consistent predictions without a
qualitative alteration of the unsteady flow field. Thus it enables the adoption
of highly truncated domains without compromising the solution accuracy.

7.3 Future Work Recommendations

The outcomes of this thesis can serve as a basis for future research, targeted primarily
to improve the fidelity of the present unsteady flow solver and to enhance further
the applicability of non-reflecting boundary conditions.

� The present computational model describes an inviscid two-dimensional flow.
The inclusion of turbulence modelling could further improve the fidelity of
aeroelastic assessments. In particular, according to findings presented in Sec.
6.3, a more accurate prediction of unsteady pressure phase downstream of
a shock impingement on the blade surface could be achieved. Extending the
model to three dimensions would open up the possibility to study a wide range
of intriguing aeroelastic problems, such as for example the effect of tip leakage
flows on turbine blade flutter.

� A part of this study is the assessment of solution sensitivity to domain extent.
When the position of either the inlet or the outlet boundary is changed, the
imposed average values of total pressure, total temperature, flow angle and
static pressure need to be slightly altered in order to maintain a constant
operating point. As finding the target modified values is a lengthy iterative
procedure, it is not feasible to perform it individually for each investigated
IBPA. Instead, the matching of operating point was performed only once for
the steady-state solution and the outcome was then employed in all unsteady
flow simulations. Due to the strong nonlinearity of transonic and supersonic
turbomachinery flows, this can cause a slight alteration of the operating point
across the IBPA range and affect the aerodynamic damping prediction. A
particularly sensitive to the exact operating point setting is the turbine cascade
M8 with a supersonic inflow, for which altering the inlet boundary condition
by ∆p01 = 17Pa, ∆T01 = 0.03K and ∆β1 = 0.04◦ modified the damping
prediction by nearly 7%. Therefore, it would be desirable to devise a more
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elaborate matching procedure that would reduce the variation of operating
point with IBPA.

� The Spectral NRBC was shown to exhibit good reflection properties even in
strongly nonlinear unsteady flows. Nevertheless, reflections of shockwaves were
not eliminated completely and generated weak perturbations, discernible in the
density gradient field and in unsteady pressure distributions on the aft portion
of blade suction side. A mild variation of aerodynamic damping predictions
with domain extent was also observed. These deficiencies were ascribed to
the inherent limitation of the Spectral NRBC, resulting from its derivation
using linearised Euler equations. In order to improve further the suppression
of wave reflections, development of a higher order extension could be beneficial.
However, it needs to be considered that even in the present form the Spectral
NRBC is highly complex and intricate to implement.

� A second limitation of the Spectral NRBC arises from the requirement that
the flow is periodic in both space and time. This restricts its applicability in
aeroelastic analysis exclusively to the uncoupled energy method, prescribing
harmonic blade oscillations based on an a priori structural analysis. While
the uncoupled approach is known to yield sufficiently accurate predictions
for conventional blades, novel designs may require the use of fully coupled
fluid-structure interaction simulations. Moreover, the transient behaviour of
the system may also be of interest. The Spectral NRBC cannot be used in
these cases and the available alternatives, such as temporally local approximate
boundary conditions, may produce unphysical wave reflections leading to an
inaccurate aeroelastic assessment [157]. The development of an improved non-
reflecting boundary condition formulation for aperiodic flows therefore remains
an open challenge.
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