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ABSTRACT

Analysis of PSG in sleep paralysis

Sleep paralysis is a common type of sleep disorder that can be characterized by

a feeling of paralysis of the whole body and at the same time perception of the en-

vironment as awake. This unusual pathology could transmit the negative impact of

sleep on a person’s natural rhythm when awake. Sleep paralysis could cause disorders

of both physical and mental health. To date, there have been insufficient objective

studies to record and evaluate this disorder. This project aims to propose a method-

ology that finds the spectral characteristics of sleep paralysis from a data set of 19

patients with sleep paralysis. The methodology was proposed in the programming

language Python and the MATLAB environment. For the methodology implemen-

tations the ”MNE-Python”, ”FieldTrip”, ”NumPy” and ”SciPy” signal libraries

were utilized. The methodology includes signal preprocessing by analogue and dig-

ital filtering, spectral and statistical data analysis. A quantitative comparison of

the analyzed results was performed with a control group of individuals without sleep

paralysis. The EEG analysis output of the work is the specific nature of sleep paraly-

sis in the NREM2 phase of sleep with predominant theta activity. The ECG analysis

resulted in the specific time and frequency domain parameters. Time-domain pa-

rameters did not have any significant difference in the statistical comparison between

patients with sleep paralysis and the control group. Frequency-domain parameters

of heart rate variability displayed no correlation with distress values in patients with

sleep paralysis. Thus, the relationship between distress and sleep paralysis displayed

no physiological characteristics that would support the theory about the negative

impact of sleep paralysis on sleep beyond the occurrence of a sleep paralysis episode

during the night.

Key words

Sleep paralysis, EEG, polysomnography, spectral analysis, ECG, HRV, correlation

analysis, distress.



ABSTRAKT

Analýza PSG u spánkové obrny

Spánková obrna je často vyskytuj́ıćı druh poruchy spánku který je charakterizován

pocitem paralýzy celého těla, a zároveň vńımáńı okoĺı jako v bdělém stavu. Tato

neobvyklá patologie přenáš́ı negativńı dopad spánku na přirozený rytmus člověka

za bdělého stavu. Spánková obrna může být př́ıčinou poruch jak fyzického, tak

i duševńıho zdrávi. Doposud nebylo provedeno dostatečné množstv́ı objektivńıch

studii, které by zaznamenaly a vyhodnotily tuto poruchu. Ćılem této práce je návrh

metodiky, která nalezne spektrálńı charakteristiku spánkové obrny ze souboru dat 19

pacient̊u se spánkovou paralýzou. Metodika byla navržena v programovaćım jazyce

Python a prostřed́ı MATLAB. Pro implementaci metodiky byly využity knihovny

pro zpracováńı a analýzu signál̊u, a to ”MNE-Python”, ”FieldTrip”, ”NumPy”

a ”SciPy”. Metodika zahrnuje předzpracováńı signálu, analogovou a digitálńı fil-

traci, spektrálńı a statistické analýzy dat. Kvantitativńı porovnáńı analyzovaných

výsledk̊u proběhlo vyhodnoceńım spolu s kontrolńı skupinou jedinc̊u bez spánkové

obrny. Výstupem práce z EEG analýzy byla specifická povaha spánkové obrny mimo

ataku ve fázi NREM2 spánku s převládaj́ıćı theta aktivitou. Výsledkem analýzy

EKG byly specifické parametry v časové a frekvenčńı doméně. Parametry časové

domény neměly žádný významný rozd́ıl ve statistickém srovnáńı mezi pacienty se

spánkovou paralýzou a kontrolńı skupinou. Parametry variability srdečńı frekvence

ve frekvenčńı oblasti nevykazovaly žádnou korelaci s hodnotami úzkosti u pacient̊u

se spánkovou paralýzou. Vztah mezi úzkost́ı a spánkovou paralýzou tedy nevyka-

zoval žádné fyziologické charakteristiky, které by podporovaly teorii o negativńım

dopadu spánkové paralýzy na spánek mimo epizodu spánkové paralýzy během noci.

Kĺıčová slova

Spánková obrna, EEG, polysomnografie, spektrálńı analýza, EKG, HRV, korrelacni

analýza, distress.
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List of symbols and abbreviations

List of symbols

Symbol Unit Description

Mean RR in-
terval

ms Mean of RR intervals

NN50 - Successive RR intervals that differ by more than 50
ms

Mean HR bpm Mean heart rate value of an sleep phase
STD HR bpm Standard deviation heart rate value of an sleep

phase
Min HR bpm Minimal heart rate value of an sleep phase
Max HR bpm Maximal heart rate value of an sleep phase
SDNN ms Standard deviation of NN intervals
SDRR ms Standard deviation of RR intervals
SDANN ms Standard deviation of the average NN intervals for

each 5 min segment of a 24 h HRV recording
SDNNI ms Mean of the standard deviations of all the NN inter-

vals for each 5 min segment of a 24 h HRV recording
pNN50 % Percentage of successive RR intervals that differ by

more than 50 ms
RMSSD ms Root mean square of successive RR interval differ-

ences
HRV TI - Integral of the density of the RR interval histogram

divided by its height
TINN ms Baseline width of the RR interval histogram
VLF ms2 Power in VLF range
LF ms2 Power in LF range
HF ms2 Power in HF range
LF norm nu LF power in normalized units
HF norm nu HF power in normalized units
LF/HF - Ratio LF[ms2]/HF[ms2]
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List of Abbreviation

Abbreviation Description

REM Rapid eye movement
NREM Non-rapid eye movement
PSG Polysomnograph
EEG Electroencephalograph
EOG Electrooculograph
EKG Electrocardiograph
EMG Electromiograph
ICSD International Classification of Sleep Disorders
HLA Human Leucocyte Antigen
NAR Narcolepsy
SOREMP Sleep-onset REM period
SP Sleep paralysis
FIR Finite impulse response
HLA Human Leukocyte Antigen
VLF Very low frequencies
LF Low frequencies
HF High frequencies
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1 Introduction

Nowadays exists a large amount of scientific publications and researchers which

make attempts to understand the principles of human brain functionality. This

physiological riddle can be broken into smaller parts. These parts, for example,

include mechanisms of thoughts and emotions, learning and sleep. The last one is

a physiological process, that has not been fully described and understood. Sleep can

be defined as a state of unconsciousness that can be changed. In this state, a person

is more responsive to internal stimuli than external. Researchers suggest that sleep

is essential for a human being. Sleep has an impact on a person’s physiological

or psychological health. A lack of appropriate night sleep decreases the ability to

concentrate and has a negative impact on the learning process. Furthermore, it

could attenuate a person’s immune system which causes vulnerability to infections.

Consequently, more frequent lack of night sleep, which is called sleep deprivation,

could be a start for more severe diseases like diabetes, hypertension, depression and

obesity. [1, 2]

Sleep deprivation could be caused by a person’s lifestyle or because of a difficult

job. On the other hand, a human being might not be the only origin of sleep

deprivation. These sources could be more complex problems called sleep pathologies.

They also cloud harm physical and mental health. Additionally, sleep pathologies

without opportune diagnostic and treatment could be fatal. Diagnostic and research

in such a difficult area could be time demanding and problematic for hardware to

process. Apart from that, benefits are immeasurable. Polysomnography is the latest

technology for sleep measuring. It combines various devices to measure electrical

activity on different parts of the body. As a result, polysomnography enables precise

recording of the signal. Until today, researchers have been discovered more than 100

sleep pathologies.

Sleep paralysis is one of the pathologies described and discussed in this project.

This project aims to conduct a preprocessing and analysis of polysomnographic

EEG recordings of sleep paralysis using available libraries for Python and Matlab.

Additionally, in the EEG segments for sleep paralysis analysis is also determined

the heart rate from the ECG channel and evaluated its variability. The obtained

results are quantitatively compared with a control group of healthy patients.
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2 Overview of the current state

This section provides general descriptions of the sleep process and recording de-

vices. It also contains a usual sleep pathologies classification. In the final part of

this section, sleep paralysis, its relationship with stress and research in this field is

described.

2.1 Sleep

An adult human being needs approximately seven to eight hours of proper night’s

sleep. Children and adolescents require more than eight hours. Despite these av-

erage numbers sufficient amount of night sleep is individual for a person and is

defined by its ”internal biological clocks”. So-called circadian rhythms are man-

aged by multiple parts of the brain. Circadian rhythm is 24 hours cycle, during

which the person accumulates fatigue throughout the day, which reaches its peak

in the evening, forcing the person to fall asleep [3]. This is happening because of

a stress hormone which is called adenosine. The hormone is produced by a basal

forebrain and is accumulated during the day. Another part of the brain involved

in the sleep mechanism is called the hypothalamus. It is a peanut-sized structure

deep inside the brain made of nerve cells that control sleep and arousal processes.

Additionally, within the hypothalamus is the suprachiasmatic nuclei. Such a clus-

ter of cells receives light information that helps to differentiate between daylight,

night light and artificial light. The signals from the described organs help a person’s

brain to use another hormone called melatonin, which is a cause of sleepiness. After

a night sleep, the human body produces cortisol, a hormone that awakes a person.

[1, 4, 5]

Sleep is a dynamic process that consists of two main phases. Rapid eye move-

ment or REM and Non-rapid eye movement or NREM. Each of them has its unique

electrical activity of the brain, which is possible to monitor by electroencephalog-

raphy (EEG). During a night’s sleep, these REM and NREM phases exchange each

other and their duration is also changing. At the beginning of the night’s sleep,

the NREM phase is prevalent. On the other hand, with upcoming morning REM

sleep is dominant. Additionally, NREM sleep is divided into three stages. Laying

down in a bed and start falling asleep initiates the NREM1 stage. Its duration is

from one to five minutes. In such a short time a person’s breathing, heart rate

(HR) and eyes movement will slow down, all muscles will be relaxed. Furthermore,

this stage is characterised by small random muscles spasm. The brain’s electrical

activity is also slowing. Right after that, the NREM2 stage proceed. A person falls

into a deeper sleep, physiological activity continues slowing, body temperature is

dropping, eyes movement stops. In the first sleep cycle, this stage is 10-15 minutes

10



long and with other cycles, the duration is prolonged. Generally, the NREM2 stage

takes up half of a person’s sleep during the night. NREM3 stage is more known

as deep sleep. During this stage, a person is not concise and does not recognize

any external stimuli. Muscles’ tonus, breath and heart rate are as slow as possible.

Monitoring this sleep stage with the EEG shows a predominance of delta activity

and is often seen during the first half of the night. NREM3 is very important for

the renovations of a person’s organism. The duration of this stage is 20-40 minutes

and along the night becomes shorter. REM sleep could firstly appear throughout

the first 90 minutes of sleep. On the EEG this stage is described with the dominance

of the alpha brain activity. Moreover, such an EEG pattern is also accurate for con-

cise adults with closed eyes. REM sleep is characterised by whole-body paralysis

except eyes’ and breathing muscles. This is a stage of the colourful dreams. [1, 3, 5]

2.2 EEG and ECG

In depth understanding of such a dynamic process as sleep requires a powerful

technology. The technology should accurately depict this process and afterwards

qualitatively and quantitatively evaluate results.

Electroencephalogram (EEG) is a record of a brain’s electrical activity. It rep-

resents a summary of a brain’s electrical activity. EEG is a rapidly changing, non-

linear, stochastic, multi-channel signal. This technology is used by doctors and

scientists for a better understanding of brain functionality and identifying the na-

ture of brain disorders like epilepsy, insomnia, physiological or neurological disorders

and brain injuries. Extensive sleep studies require more than just one EEG device.

It requires a combination of different devices that monitor electrical activity of dif-

ferent organs. Such a device is called polysomnograph (PSG). Usually, PSG includes

a combination of EEG, electrooculography (EOG), electromyography (EMG) and

electrocardiography (ECG), which record the electrical activity of eyes, muscles and

heart respectively. The aim of PSG usage is an analysis of sleep phases and diagnosis

of sleep pathologies. PSG is a golden standard for whole-night sleep studies, which

brings a priceless advantage to a person’s health. [6, 7]

EOG measures electrical potential generated by some changes in the eye’s retina,

which allow us to monitor the eyes’ movements. Those movements might interfere

with EEG frontal channels signal, which is close to the eyes, and cause artefacts.

Preprocessing with EOG signals enables removing such artefacts from EEG signals.

EMG measures the electrical activity of muscles generated by movements of a body.

During sleep, a person might move the body causing artefacts in the EEG record.

[7]
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A recording of heart electrical activity or electrocardiogram (ECG), on which

we see the time course of changes in the electrical potential of the heart that origins

at the sinoatrial node. The ECG serves as a basic diagnostic element to detect

heart disorders. It stores signal in both the time and frequency domain, thanks to

which we are able to perform ECG analysis, even for purposes other than cardiol-

ogy. Unfortunately, its raw form can be distorted and contaminated with unwanted

elements and other artefacts. So that we can perform an analysis or extract useful

features from the ECG, we must process the signal. After preprocessing is performed

the ECG signal could be used for feature extraction. These features are P-wave, T-

wave, R peaks and, the most popular, QRS complex detection, see 2.2. There are

various techniques of feature detection such as wavelet transformation, differenti-

ation, thresholding and neural networks. Apart from cardiology, this noninvasive

diagnostic method is also used in sleep analysis to evaluate epileptic spikes. [6, 8, 9]

Figure 2.1: Example of a QRS complex in an ECG recording.

2.3 Pathology

Unfortunately, each of the physiological processes has some irregularity and sleep is

not an exception.

Generally, sleep pathology is a state which affects the quality, duration and tim-

ing of the sleep process. Consequently, this state leads to a negative effect on natural

processes during the daytime. Sometimes sleep pathologies could result in a disease,

which at first glance does not correlate with sleep at all. In 1990, the International
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Classification of Sleep Disorders (ICSD) [10] was created for a better understanding

of already discovered sleep disorders and as a motivation to find new pathologies.

The publication aimed to simplify communication between international sleep re-

searchers. The ICSD consists of 8 categories: insomnia, breath related disorders

during sleep, hypersomnia, parasomnia, movement-related disorders during sleep

and others. Each category describes a pathology from a diagnostic, epidemiologic

and pathophysiologic perspective. [10]

Insomnias are chronic disorders that are related to the processes of falling asleep

or staying asleep and overall sleep quality. Such pathologies could cause sleepiness

or even worth things, for example mental problems. Breath related disorders dur-

ing sleep are different variations of sleep apnea. During the night a person with

sleep apnea suddenly stops breathing which causes an awakening. This event could

appear repeatedly which causes worsening of sleep scores. Hypersomnia is linked

to a daytime sleep of a person. A person with hypersomnia could suddenly fall

asleep during the day despite good night’s sleep. There are known serious types

of hypersomnia where a person could fall asleep during some activity, for example

driving a car. A parasomnia is a group of sleep disorders that could cause unwanted

and unusual behaviour during sleep. An event could occur during different sleep

stages and sometimes is dangerous for the physical and mental health of a person.

Examples of parasomnia are sleepwalking, sleep terrors and sleep talking. [11]

2.4 Sleep Paralysis

Sleep paralysis (SP) is a common kind of parasomnia. During sleep paralysis, a per-

son usually experiences a negative event. Sleep paralysis occurs in a moment of

falling asleep or arousal from sleep. Throughout the course of the event, a person

is conscious and simultaneously feels whole-body paralysis. Additionally, SP could

be accompanied by hallucinations, for example, levitation, a feeling of somebody’s

presence or someone is pressing a person’s chest. [12]

The ICSD defines sleep paralysis as REM-sleep parasomnia or a transitional

state between sleep and consciousness with elements of REM sleep [13]. There

were signs of sleep paralysis even in the ancient world but what causes SP or its

mechanism is unknown. A little number of objective studies were held, because of

the complexity of sleep paralysis. It is difficult to find a large enough dataset for

an objective study. Even more difficult to record such a short and unpredictable

event in a sleep laboratory. [12, 14]

My research of the literature in the field of sleep paralysis showed that most

of the studies utilized interview or questionnaire methods to acquire and compare

data. These studies were mostly interested in the occurrence of SP episodes and their
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difference in a person’s demographic, gender and age. In the work ”A systematic

review of variables associated with sleep paralysis” written by Denis D. et al were

compared 42 different scientific publications related to sleep paralysis [12]. Most of

them were using interview or questionnaire methods mentioned above. Denis D. et

al did not find a significant difference in the demographic, gender or age of a person

with SP [12]. The study also compared such variables as alcohol or coffee intake and

smoking, where the occurrence of SP episodes is higher in people who drink alcohol

and smoke than others. An interesting observation was found about coffee intake

and its little impact on SP occurrence despite its known bad infancy on sleep in

general. Other variables are stress, mental traumas, inheritance and physical health.

All of the variables are important in sleep paralysis research. Unfortunately, there

were a small number of objective studies which successfully record sleep paralysis in

a sleep laboratory. All of them used PSG as a golden standard in their work.

Walther and Schulz [15] compared 10 patients with SP and 10 patients with

narcolepsy (NAR) and 10 healthy persons (CON). They found that sleep latency

duration was bigger in a group with SP compared to others (SP 40.6 ± 25.3 min;

NAR: 19.5 ± 8.8 min; CON: 19.2 ± 15.6 min). A conclusion of the study was a

discovery of variables that differentiate SP as a symptom of narcolepsy from SP as

an isolated pathology. The variables are inherited alleles of Human Leukocyte Anti-

gen (HLA), sleep latency and REM latency. Additionally, they mentioned the dis-

ability to record SP episodes during night sleep. Hence, there is still a question

about the connection between the REM sleep phase and SP. [15]

Another study manages to measure SP episodes in 16 participants for seven

nights in the laboratory. Takeuchi T et al. [16] induce SP episodes by means of

systematic sleep interruption. In the first of 40 minutes of sleep, when a person’s

sleep phase transitions from NREM to REM. Right after a person’s sleep phase

changed to REM the person was awakened and completed a brain performance test

then went to sleep again. During the study, the authors conducted sleep interruption

64 times and recorded only six SP episodes. Each episode occurred after the brain

performance test and in the moment of falling asleep. One of six SP episodes

showed non-physiological behaviour when a person immediately fell into the REM

sleep phase, which was called the sleep-onset REM period (SOREMP). The same

author confirmed a connection between SOREMP a sleep paralysis in his later study.

A method of systematic sleep interruption was used again. Eight SP episodes were

induced from 184 sleep interruptions in the later study. The main assumption from

both studies was a close connection between the REM sleep phase and SP episodes.

Stress influence on SP episodes occurrence remained unknown. [16, 14]

The last study, held by Mainieri et al [17] investigated spectral characteristics of

sleep paralysis. Their results were five SP episodes from five patients. The recorded

14



data were separated into three seconds long mini-epochs. The data from an EEG

spectral analysis were compared with the health group. EEG spectrum of alpha,

delta and theta activity in SP episodes were without deviation from spectral power

of physiological REM sleep. The fundamental discovery was a predominance of theta

activity in mini-epochs’ spectral analysis. The authors concluded that a person’s

brain is more in a sleep state than in a conscious state. The limitation of this study

was the small number of EEG channels and participants. Hence, they could not

create a topological map of an electrical potential location.

2.5 Distress and Sleep Paralysis

According to a newspaper the Lancet [18] the prevalence of sleep paralysis is 5-62 %.

The numbers include isolated episodes and also recurrent episodes of sleep paralysis.

Referring to subsection 2.1, sleep is an essential process its deficiency or even absence

could result in dangerous health and mental issues. The appearance of sleep paralysis

episodes was linked with sleep deprivation and sleep cycle disturbance. Patients

diagnosed with this sleep pathology usually report aggressive and terrifying dreams.

Hence, such a negative experience from a vital process such as sleep gives rise to

harmful stress or so-called distress. [12, 18]

Psychological distress is a general term used to describe unpleasant feelings or

emotions that impact a person’s level of functioning. In other words, it is psycholog-

ical discomfort that interferes with his or her activities of daily living. Psychological

distress can result in negative views of the environment, others, and the self. Sad-

ness, anxiety, distraction, and symptoms of mental illness are manifestations of

psychological distress. So, no two people experience one event the same way. Psy-

chological distress is a subjective experience. That is, the severity of psychological

distress is dependent upon the situation and how a person perceives it. Traumatic

experiences are causes of psychological distress. Psychological distress occurs be-

cause of the inability to cope with external events or stressors. In general, scientists

believe that physiological, cognitive and social influence take a part in causing dis-

tress since those factors form person-environmental interaction. [19]

As stated by Denis D. [20] 10 % of the human population who experienced

sleep paralysis episodes had a significant level of distress. Solomonova E. et al. [21]

agree with this statement. Furthermore, she adds that the prevalence of distress

within sleep paralysis patients is bigger in hallucination type of episodes, more

precisely filling of an intruder’s presence. As mentioned above, two persons’ reactions

to the same stressor are different. Additionally, Solomonova claims that distress

predisposition increase distress appearance during and SP episode.
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2.6 Heart Rate Variability

Stress is a body response to some changes in the environment that can be stimu-

lating or devastating [19]. Psychological distress might affect biological processes

contributing to existing health problems or developing new ones [22]. Such a re-

sponse is fully autonomous neural activity. Sympathetic activity, which is a part of

the autonomous nervous system, predominantly is the cause of such responses [23].

The human heart might be a good indicator of stress since it is regulated through

an autonomous neural system (ANS). Additionally, an indication of the involuntarily

regulation of the heart is heart rate variability (HRV) [24]. HRV is a measurement

of the variability of the intervals between consecutive heartbeats and not heartbeats

themselves. Much literature was written evaluating the fitness of HRV metrics to be

a good stress indicator [25, 26]. Few literature concluded that psychological distress

affects HRV. Others studied sleep pathologies like sleep apnea and insomnia and

concluded their influence on physiological HRV values [27].

HRV can be characterized by the time and frequency domain parameters. Time-

domain parameters are used for the analysis of heartbeat or an interval between

them. For the calculation of time-domain parameters, the QRS complex detection

on a continuous ECG signal is utilised. The detection result is then used mainly

for HR or RR intervals calculation. RR interval is an interval between R-R peaks.

Mean RR interval value, mean HR value, the difference between longest RR and

shortest RR, and the difference between HR value in day and night time are usual

parameters. Additional parameters can be calculated from the simple time-domain

parameters with the help of statistical methods. The table 2.1 represents regular

statistical HRV time-domain measures. [28, 22, 29]
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Table 2.1: HRV time-domain metrics [29]
Parameter Unit Description

SDNN ms Standard deviation of NN intervals

SDRR ms Standard deviation of RR intervals

SDANN ms
Standard deviation of the average NN intervals
for each 5 min segment of a 24 h HRV recording

SDNN index (SDNNI) ms
Mean of the standard deviations of all the NN
intervals for each 5 min segment of a 24 h HRV
recording

pNN50 %
Percentage of successive RR intervals that differ
by more than 50 ms

HR Max - HR Min bpm
Average difference between the highest and low-
est heart rates during each respiratory cycle

RMSSD ms
Root mean square of successive RR interval dif-
ferences

HRV triangular index -
Integral of the density of the RR interval his-
togram divided by its height

TINN ms Baseline width of the RR interval histogram

Spectral parameters of HRV are frequency ranges of the spectrum that describes

an influence of either parasympathetic or sympathetic activity. HRV spectral char-

acteristics can be used not only for the assessment of parasympathetic and sympa-

thetic influence on heart rate but also as parameters of the tone (tonus) of the au-

tonomous nervous system. Spectral characteristics have more information about

physiological processes than time-domain characteristics in short-term recording,

less than 24 hours. Typically the power spectral density (PSD) is calculated by

means of non-parametric and parametric methods. The table 2.2 represents regular

frequency-domain parameters. [30, 31, 28]

Table 2.2: HRV frequency-domain metrics [29]
Parameter Unit Description
VLF ms2 Power in VLF range (≤0.04 Hz)
LF ms2 Power in LF range (0.04 - 0.15 Hz)
HF ms2 Power in HF range (0.15 - 0.40 Hz)
LF norm - LF power in normalized units
HF norm - HF power in normalized units
LF/HF - Ratio LF [ms2]/HF [ms2]

Concluding the above studies, the mechanism of sleep paralysis is unknown.

A danger to the physical and mental health of a person that holds this pathology is

also yet to be fully described. Such finding is a motivation for quantitative research

of sleep by means of biological signals and a more robust dataset.
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3 Aims of the project

The aim of this project is to propose a methodology for the analysis of PSG in

patients with sleep paralysis in the Python programming language and MATLAB

environment. The methodology will include processing and analysis of the ECG

and EEG data using the ”MNE-Python”, ”FieldTrip”, ”NumPy” and ”SciPy” sig-

nal libraries. The results of the methodology should help to explain part of the

mechanism of sleep paralysis together with a comparison of parameters found in

previous studies.

The EEG processing will result in the spectral characteristics of sleep paralysis.

ECG processing will result in heart rate variability metrics in the time and frequency

domain. The signal processing will utilize a data set with 19 patients with sleep

paralysis. A quantitative comparison will be performed together with a control group

of individuals without SP. The findings should help explain part of the mechanism of

sleep paralysis together with a comparison of parameters found in previous studies.
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4 Methods

Within the Methods chapter, the used data set of sleep EEG records and distress

questionnaire is described. Subsequently, this chapter describes the methods of

preprocessing, spectral and statistical analysis of the EEG and ECG data in the

programming environment Matlab [32], programming language Python [33] and the

usage of the publicly available libraries for signal processing like MNE-Python [34],

SciPy [35] and NumPy [36].

4.1 Experiment and Data

Data files containing sleep records in subjects suffering from sleep paralysis were

measured in the National Sleep Laboratory Institute of Mental Health during the

years 2018-2020. The measurement involved 19 probands with sleep paralysis and

19 healthy individuals as a control group. Individual measurements were performed

using a standard routine - polysomnographic recording during the night.

The EEG assembly was unipolar - the electrodes were connected to the ref-

erence electrode [6]. The placement of the electrodes was arranged according to

the international system 10-20. The provided data were checked and the individ-

ual sleep phases were described (scored) by the physician. One of the outputs of

the classification process is a graph that displays an overview of the interchangeable

sleep phases called a hypnogram, see figure 4.1. No SP episode occurred during

measurements and was confirmed by the doctor. For this project 19 recordings was

used for preprocessing and analysis.
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Figure 4.1: Hypnogram for one of the PSG recordings

The mean sample length of the data is 6546726 samples or approximately seven

and a half hours. Figure 4.2 shows a 30 second segment [37] from the original signal

of one patient with SP. Original data files were transformed to a specific format

supported by the MNE-Python library. FIF-file were exported from MATLAB’s

mat-file with all its information. MATLAB’s mat-file was utilized as well.

Figure 4.2: Polysomnogram recording of the 10 seconds length of one of the patients
before filtration.
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Additionally to PSG measurements, participants undergo an adjusted Fearful

Isolated Sleep Paralysis Interview. The interview aims to evaluate the frequency

and stress level of the SP episodes for each person in general [38]. Every person

in this dataset was interviewed to evaluate their stress level from experience with

SP episodes. The results were numbers from one and without a limit, where one

represents no stress and anything other represents the severity of the distress caused

by SP episodes.

4.2 Data processing

The subsection dives into details of the EEG and ECG signals preprocessing. Addi-

tionally, the subsection explains the selection, extraction and calculation of the pa-

rameters of interest from the EEG and ECG signals.

4.2.1 Filtration

Biological signals have a quasi-stationary to a non-stationary character. In addition,

each biological signal could be contaminated with unwanted artefacts. In the case of

EEG, these are line noise, electrical circuit noise, blinking, limb or head movement.

In order to analyze the measured data and obtain relevant results, it is necessary

to get rid of these undesirable properties of biological signals using analogue and

digital filtering.

For the EEG signal, a FIR (Finite impulse response) filter of the order of 1000

was used as a bandpass in the defined frequency band, from 0.5 Hz to 40 Hz. For

the ECG signal, an IIR (Infinite impulse response) filter of the order of 16 was also

used as a bandpass in the defined frequency band, from 0.5 Hz to 20 Hz. This

eliminated the slow changes (drift) of the EEG and ECG signals, line noise, and

frequencies outside the scope of this sleep research. Baseline correction and linear

trend suppression from the data were also performed.

4.2.2 Epochs creation and artifacts rejection

In fulfilment of successful analysis, long and continuous EEG and ECG signals need

to be divided into smaller epochs. For this purpose, additional information such as

epochs’ labels and their duration were extracted in a special format from original

mat-files. A file with epochs information was also loaded to MNE-Python [34]. After

filtration, the continuous recording was divided into 30-second epochs and arranged

into individual groups according to the sleep phase. The original data structure was

separated into four data structures corresponding to these sleep phases: NREM1,
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NREM2, NREM3 and REM [37]. The awake phase was not taken into account due

to the irrelevancy with SP. As the filtration did not remove all the artefacts in EEG,

muscle artefacts were a significant problem.

Therefore, an amplitude-assisted signal thresholding function implemented in

the MNE-Python library was used. Using an iterative mechanism, the function

scans each sample in each EEG channel and removes entire epochs in which any

value exceeds amplitudes greater than 150 or less than -150, see 4.3. This procedure

extracted signals for further analysis that did not contain significant artefacts.

Figure 4.3: Example of an amplitude-assisted signal threshold

4.2.3 R-peaks detection

Component detection is an essential part on which the evaluation of an ECG record-

ing is based. The goal of detection is to reliably identify and locate specific compo-

nents, which are the subject of ECG analysis. Thanks to the detected components,

the signal can be segmented and evaluated.

The filtered and segmented ECG signal was used for the detection procedure.

Identification of the heart rate variability metrics needs R-peaks detection. The de-

tection procedure was performed by means of a function called find peaks() from

a signal processing library SciPy [35]. The function searches for the local maxima

of an ECG signal depending on the specified threshold amplitude and the minimum

distance between successive R waves. The amplitude threshold was chosen to be
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0,9 mV and a minimum distance between two peaks was 150 samples. The figure

4.4 illustrates an example of the output from this function.

Figure 4.4: Example of the R-peaks detection

The R-peaks information is used as raw data for the calculation of heart rate

(HR) and RR intervals. Those two are intermediate steps for the final calculation

of different parameters in the time and frequency domain for ECG and cardiac

condition analysis. A RR interval is a difference between consecutive R-peaks. This

difference was calculated utilizing a function called ediff1d() from the NumPy

library. For this project, RR intervals were calculated for each sleep phase and

subject separately. Since the whole continuous PSG recording was divided into

30 seconds epochs (see 4.2.2), the obtained RR intervals values were very short.

Separately from EEG epochs, RR intervals were combined into 5 minutes epochs.

From the extracted RR intervals a tachogram was created. Tachogram represents

RR interval duration as a function of progressive beats. Due to the physiology of

the cardiac oscillation, the RR intervals are not equally spaced in time [28]. Thus,

for proper exploitation of the tachogram for the spectral analysis RR intervals were

normalized as:

Ik =
Ik − Imean

Imean

(4.1)

, where Ik is a consecutive duration of a RR interval and Imean is a mean duration

of RR intervals per a 5-minute recording. The normalized tachogram was finally

resampled on 1024 samples per 5-minute epoch. The result is an equally spaced

tachogram of 5 minutes. [28, 39, 40]
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4.2.4 Spectral analysis

The filtered EEG signal and tachogram were converted from the time domain to

the frequency domain using different methods in Python and MATLAB.

The function called ft freqanalysis() was used in the MATLAB environment

from Fieldtrip library for the conversion of the EEG signal to the frequency domain.

This function performs frequency analysis of any time epoch using a conventional

single window or, in this case, were used multiple windows based on discrete prolate

spheroidal sequences or Slepian sequences (DPSS) [41, 42]. As mentioned in subsec-

tion 4.2.2, the signal was divided into 30-second epochs, which is the standard length

when describing sleep EEG data [6, 14]. Sleep, in the EEG, is divided into several

bands according to the individual frequencies that prevail in a given band. For the

evaluation of data in this work, I selected three frequency bands that correspond

to separate EEG activities. These are the delta, theta, and alpha bands, which

correspond to ranges 1-4 Hz, 5-8 Hz, and 9-12 Hz, respectively. The output of the

spectral analysis is a data structure containing these three EEG bands of interest

for each sleep phase. Power spectral density has absolute units that were converted

to relative units and relative spectral density, respectively. Hence, relative spectrum

represents a percentage of power in a frequency band and enables precise statisti-

cal comparison [6]. Conversion to relative spectrum was utilizing a newly created

function in MATLAB called relpowerband(). The mathematical description of this

function states as:

RP =
Pfb

Pf

(4.2)

,where Pfb is a power of a specific frequency band, Pf is a sum of power across

the whole spectrum. The output is a relative spectrum for specific sleep phase.

The tachogram obtained from the subsection 4.2.3 was converted to the fre-

quency domain as well. A function from the SciPy library in Python programming

language was exploited. This function computes a power spectral density by means

of the periodogram method. The function’s parameters were set to use a single Hann

window, a sampling frequency of four hertz and a constant detrending method.

4.2.5 HRV characteristics

RR intervals were used for subsequent extraction of HRV metrics in both the time

and frequency domain. Parameters in the time domain are chosen because of their

frequent clinical use and simple computation [29]. Parameters in the frequency do-

main are chosen because of the comprehensive representation of autonomous physi-

ological processes [28].
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Full list of the time domain parameters that were chosen for HRV analysis in

this project are listed below.

• RR [ms] – Mean of RR intervals

• SDRR [ms] – Standard deviation of RR intervals

• RMSSD [ms] – Root mean square of successive RR interval differences

• NN50 [-] – successive RR intervals that differ by more than 50 ms

• pNN50 [%] – percentage of successive RR intervals that differ by more than

50 ms

• HR [bpm] – mean heart rate value of a sleep phase

• STDHR [bpm] – standard deviation heart rate value of a sleep phase

• MinHR [bpm] – minimal heart rate value of a sleep phase

• MaxHR [bpm] – maximal heart rate value of a sleep phase

Full list of the frequency domain parameters that were chosen for HRV analysis

in this project are listed below.

• LF [ms2] – Power in LF range (0.04-0.15 Hz)

• HF [ms2] – Power in LF range (0.15-0.40 Hz)

• LFnu [-] – LF power in normalized units

• HFnu [-] – HF power in normalized units

• LF/HF [-] – Ratio LF [ms2]/HF [ms2]

Mean RR interval was computed according to [29] as:

RR =
1

N

N∑
i=1

RRi (4.3)

,where RR is the calculated average of RR intervals and N is the number of RR

intervals.

Standard deviation of RR intervals (SDRR) was computed according to [29] as:

SDRR =

√√√√ 1

N − 1

N∑
i=1

(RRi −RR)2 (4.4)
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,where RR is the calculated average of RR intervals, RRi is a successive RR interval

and N is the number of RR intervals.

Root mean square of successive RR interval differences (RMSSD) was computed

according to [29] as:

RMSSD =

√√√√ 1

N − 1

N∑
i=1

(RRi+1 −RRi)2 (4.5)

,where RRi+1 and RRi are successive RR intervals and N is the number of RR

intervals.

Percentage of successive RR intervals that differ by more than 50 ms (pNN50)

was computed according to [29] as:

pNN50 =
NN50

N − 1
· 100% (4.6)

,where NN50 is a count of successive RR intervals that differ by more than 50 ms

and NN is the number of RR intervals.

Mean heart rate value of an sleep phase was computed according to [29] as:

HR =
1

N

N∑
i=1

HRi (4.7)

,where HRi an HR value and N is the number of HR values.

Standard deviation of a heart rate value of an sleep phase was computed ac-

cording to [29] as:

STDHR =

√√√√ 1

N − 1

N∑
i=1

(HRi −HR)2 (4.8)

,where HR is the mean heart rate value, HRi is a successive HR value and N is

the number of HR values.

Power in LF and HF range was calculated utilizing implementation of a numer-

ical integration method in NumPy library [36] in programming language Python.

Parameters of the function called numpy.trapz() were power spectral density values

and a range of frequencies that defines the boundaries of an integral [43]. Compu-

tation of LF power in normalized units was conducted as:

LFnu =
LF

LF +HF
· 100 (4.9)
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Same logic was used for the computation of HF power in normalized units:

LFnu =
LF

LF +HF
· 100 (4.10)

4.3 Statistical analysis

Statistical analysis was performed on the extracted data set, see section 4.2. The com-

parison was made at the level between groups, where the unit of analysis is a sin-

gle person. This comparison makes it possible to extract sleep paralysis informa-

tion across subjects. For the EEG analysis were used spectral characteristics. On

the other hand, HRV metrics were used to perform ECG statistical analysis. The uti-

lized dataset contains 19 subjects with sleep paralysis. The same number of subjects

was in the control group.

It was decided to use non-parametric testing for the given set of sleep data,

more precisely permutation testing. In the Fieldtrip library in MATLAB, this sta-

tistical analysis is implemented within the function cfg.method = ’montecarlo’

and the number of randomisation was selected as cfg.numrandomization=1000.

The classical independention of T-test was used to calculate the test statistics, which

is marked in the library as follows cfg.statistic = ’indepsamplesT’. [44, 45]

HRV metrics in the time domain were tested in the SciPy library. This sta-

tistical analysis is implemented within the function ttest ind(parameters). It

takes many parameters such as numbers of randomization for permutation testing,

the equivalence of variance and whether it creates a two-side or one-side alternative

hypothesis. [35]

Another setting for statistical analysis is the selection of the multiple comparison

correction method. The False discovery rate (FDR) method was used for the EEG

data analysis, which obtains the division constant from the probability distribution.

For the time domain HRV metrics, Bonferroni correction was used, which does

the same but with different relation to p-values. [46]. Both corrections checks

the probability of a type I error and thus determines the critical p-value. [45]

Finally, a correlation analysis was performed between distress values in patient

with SP and frequency domain HRV characteristics (see 4.1 and 4.2.5). A function in

NumPy library called corrcoef() was used. The function return Pearson product-

moment correlation coefficients.
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5 Results

In this chapter, the outputs from the signal processing, spectral and statistical

analysis subsections were described (see 4.2, 4.2.4 and 4.3).

5.1 Signal processing

The raw data after the experiment in the sleep laboratory of the National Institute

of Mental Health was subjected to the filtration method described above, see 4.2.1.

Figure 4.2 shows a 10 seconds sample of a polysomnogram recording of one of the

patients before filtration, where all channels are visible. Amplitude of each EEG

channel on the figure is in microvolts. In Figure 5.1. is a similar example of a record

but a filtered signal from a polysomnogram of the same patient of the same length.

Figure 5.1: Polysomnogram recording of the 10 seconds length of one of the patients
after filtration.

The next two figures listed below (figures 5.2 and 5.3) represent a complete

overview of the filtration results by visualization of a one channel. Figures 5.2 and 5.3

present the records from the Fp1 electrode of one of the patients without filtration

and after filtration. The record length is 10 seconds. An amplitude reduction is

visible in some areas on the figure 5.3 in comparison to the figure 5.2. Unfortunately,

muscle artefacts continued to exist.
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Figure 5.2: Fp1 channel recording of the length of 10 seconds of one of the patients
before filtration.

Figure 5.3: Fp1 channel recording of the length of 10 seconds of one of the patients
after filtration.

Figures 5.4 and 5.5 show a 10 seconds example of an ECG channel recording of

one of the patients before and after the filtration.
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Figure 5.4: ECG channel recording of the length of 10 seconds of one of the patients
before filtration.

Figure 5.5: ECG channel recording of the length of 10 seconds of one of the patients
after filtration.
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After filtration, the continuous signal was divided into 30-second epochs and

assigned to the appropriate phase of sleep. Figure 5.7 shows how the created epochs

are located on the filtered signal.

Figure 5.6: Epochs assignment example

5.2 Spectral analysis of the tachogram

Results from the spectral analysis of the tachogram were visualized as PSD. Since

the output from the spectral analysis of the tachogram yield 18 PSDs for each

sleep phase of interest. One for every subject. The PSDs were averaged for better

representation. The next figures (5.7, 5.8, 5.9, 5.10) represent a PSD for one sleep

phase of interest. Each PSD has coloured areas that represent the frequency range

of the VLF, LF and HF parameters. See section 4.2.5 for more details on the

calculation of the spectral HRV parameters of interest.

In these four figures, we can distinguish the difference in the power between

REM (fig. 5.7), NREM1 (fig. 5.8), NREM2 (fig. 5.9), and NREM3 (fig. 5.10)

stages of sleep. Stating with the NREM1 (fig. 5.8) stage the total power was

decreasing with each following stage and become very low in the NREM3 (fig. 5.10)

stage which corresponds to the deep sleep.
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Figure 5.7: PSD of the tachogram for REM sleep phase

The difference in total power between NREM1 (figure 5.8) and REM (figure

5.7) stages is small in comparison to others. That is because NREM1 and REM is

closer to the awake state then others.

Figure 5.8: PSD of the tachogram for NREM1 sleep phase
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Figure 5.9: PSD of the tachogram for NREM2 sleep phase

Figure 5.10: PSD of the tachogram for NREM3 sleep phase

5.3 Statistical analysis of HRV characteristics

Results from the chosen time domain HRV measures were visualized using the box-

plot method. Each figure illustrates one of the time domain HRV metrics to each

sleep phase. For each sleep phase was created two boxes for SP patient and health
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person respectively. Each square box represents the median; the top of the bar

indicates 75 percentile; the bottom of the bar indicates 25 percentile. [47]

Figure 5.11: Mean of RR intervals of SP and CON for sleep phases of interest

Figure 5.11 indicates the mean RR intervals of patients with SP and control

group for each sleep phase of interest. At the first sight, there is a small difference

between groups, but on a confidence level of 5 % there is no statistical significant

difference between groups.

Figure 5.12: SDRR of SP and CON for sleep phases of interest
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Figure 5.12 indicates standard deviation of RR intervals of patients with SP

and control group for each sleep phase of interest. From the first sight there is

a small difference between groups, but there on a confidence level of 5 % there is no

statistical significant difference between groups.

Figure 5.13: RMSSD of SP and CON for sleep phases of interest

Figure 5.13 indicates RMSSD of RR intervals of patients with SP and control

group for each sleep phase of interest. From the first sight there is a small difference

between groups, but on a confidence level of 5 % there is no statistical significant

difference between groups.
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Figure 5.14: NN50 of SP and CON for sleep phases of interest

Figure 5.14 indicates NN50 of RR intervals of patients with SP and control

group for each sleep phase of interest. From the first sight there is a small difference

between groups, but on a confidence level of 5 % there is no statistical significant

difference between groups.

Figure 5.15: pNN50 of SP and CON for sleep phases of interest
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Figure 5.15 indicates pNN50 of RR intervals of patients with SP and control

group for each sleep phase of interest. From the first sight there is a small difference

between groups, but on a confidence level of 5 % there is no statistical significant

difference between groups.

Figure 5.16: Mean of HR value of SP and CON for sleep phases of interest

Figure 5.16 Mean of HR values of patients with SP and control group for each

sleep phase of interest. From the first sight there is a small difference between

groups, but on a confidence level of 5 % there is no statistical significant difference

between groups.
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Figure 5.17: Standard deviation of HR value of SP and CON for sleep phases of
interest

Figure 5.17 Standard deviation of HR values of patients with SP and control

group for each sleep phase of interest. From the first sight there is a small difference

between groups, but on a confidence level of 5 % there is no statistical significant

difference between groups.

Figure 5.18: Minimal HR value of SP and CON for sleep phases of interest
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Figure 5.18 Minimal HR value of patients with SP and control group for each

sleep phase of interest. From the first sight there is a small difference between

groups, but on a confidence level of 5 % there is no statistical significant difference

between groups.

Figure 5.19 Maximal HR value of patients with SP and control group for each

sleep phase of interest. From the first sight there is a small difference between

groups, but on a confidence level of 5 % there is no statistical significant difference

between groups.

Figure 5.19: Maximal HR value of SP and CON for sleep phases of interest

The frequency-domain HRV characteristics underwent a correlation analysis

with distress values in patients with SP acquired from FISPI interviews, see sections

4.3 and 4.1. Table 5.1 represents Pearson’s correlation coefficients of the spectral

parameters of interest for each sleep phase.

Table 5.1: Results form the correlation analysis
Sleep
stages

HRV spectral parameters
LF [ms2] HF [ms2] LF nu [-] HF nu [-] LF/HF

REM 0.14836501 0.26751616 -0.28124906 0.28124906 -0.22015227
NREM1 0.31613668 0.3100433 -0.19916464 0.19916464 0.07766186
NREM2 0.38807724 0.36010269 -0.19765156 0.19765156 0.05467698
NREM3 0.32999391 0.31153337 -0.0668048 0.0668048 0.14786891
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Correlation analysis yielded no correlation between distress values in patients

with SP and spectral HRV characteristics. Correlation coefficient values from the

table 5.1 were in −0.39 ≤ x ≤ 0.39 range and was considered as no correlation.

5.4 Statistical analysis of EEG spectral characteristics

The results of the statistical analysis of EEG data were represented by topographic

mapping, see 4.3 for a detailed overview of the statistical analysis methods used.

The comparison was made between patients and a control group of healthy individ-

uals. The colour scale follows the same principle. Red to brown colour represents

higher relative spectral performance in patients with sleep paralysis. The blue colour

represents the predominance of the relative spectrum in the control group of healthy

individuals. Statistically significant results at the site of individual electrodes are

highlighted with a white asterisk ”*”.

Figure 5.20: Topographic map of statistical results

The image 5.20 shows a larger amount of statistics of significant results, espe-

cially in the sleep phase NREM2. For a more detailed overview, the individual brain

activities in the NREM2 phase are shown below.
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Figure 5.21: Topographic map of delta activity in NREM2 sleep

Statistical results in the figure 5.21 show the predominance of delta activity in

the control group of individuals compared to giant sleep patients.

Figure 5.22: Topographic map of theta activity in NREM2 sleep

The figure 5.22 represents the predominance of theta activity in patients with

sleep paralysis in contrast to the control group.
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Figure 5.23: Topographic map of alpha activity in NREM2 sleep

The figure 5.23 shows a similar result as figure 5.21 but the predominance of

alpha activity in the frontal brain of the control group compared to patients with

sleep paralysis.
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6 Discussion

The project proposed a methodology in Python programming language and the

MATLAB environment for preprocessing, spectral and statistical analysis of the

unique data set of 19 patients with sleep paralysis. It is so far the only data set that

surpasses its predecessors [16], [14], [17], [15] in the main limitation, in terms of the

number of subjects. On the other hand, 19 subjects in the data set are not enough

and it is more appropriate from a statistical point of view to have a larger sample

of subjects in the future studies.

For the implementation of the methodology was chosen Python programming

language which is currently very popular in the scientific field. Additionally, SciPy

and Numpy libraries written in Python have diverse functionality not only for signal

processing but also for spectral and statistical analysis. In the proposed methodology

MNE-Python liberally was also used. MNE-Python is used mainly for neuroscience

purposes. I used it for EEG and ECG filtration and tried to use it for spectral

analysis. MNE-Python has a lot of functionality for time-frequency analysis and less

for spectral analysis alone. Hence, MATLAB environment with Fieldtrip library was

used. It gives greater flexibility regarding spectral analysis. Additionally, statistical

capabilities were stronger in Fieldtrip than in MNE-Python for this project. [41,

33, 34, 35, 36]

The decision was made to go with standard procedures of the signal filtration

because of the tolerably clean measurements results [45, 6, 41, 48, 49]. Filtration

was followed by splitting the continuous record into 30-seconds segments, which is

the standard for sleep scoring [50, 9]. Some authors are using even smaller segments

which depends on the project’s aims [17]. For this project, epochs with a smaller

length than 30-seconds were unnecessary. Subsequently, the EEG epochs were sub-

jected to amplitude-assisted signal thresholding because of the remained muscle

artefacts after filtration. An undesirable effect of the utilization of this function was

the loss of data, namely the erasure of the entire epoch when a threshold value in the

signal amplitude was found. The function enables the usage of various parameters

making the output severe or gentle. In this project, I exploited standard exploitation

recommendations [34]. However, It will be better to set up gentle parameters for

this function in the future. In addition, manually examine the signal, for example,

by visual inspection due to false-positive artefacts.

The detection of the R peaks was performed using the threshold method. This

method was chosen after visual inspection of the filtered ECG signal which was not

contaminated with a lot of artefacts. Furthermore, the method was chosen because

of its stability and speed. The function in SciPy library (see 4.2.3) also gives the

resources to enhance the complexity of the function like an adaptive threshold, which
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was unnecessary for this signal but might be useful with contaminated signal [35].

The outcomes of the detection process were sufficient for this project.[9]

Results from the detection procedure were subsequently used for HRV metrics

calculation in the time and frequency domain. Usually, HRV analysis utilizes 24-

hour ECG recording and many time-domain parameters are much more accurate for

a longer duration of an ECG recording. Depending on the ECG measurement dura-

tion, some HRV metrics in the time and frequency domain might be interchangeable.

HRV characteristics derived from long ECG recordings correlate in both domains,

but spectral characteristics from long recordings are hard to interpret. That is be-

cause of non-stationary cardiac cycle modulation and day-night difference. On the

other hand, time-domain parameters like RMSSD, pNN50 or NN50 are better

estimates for short term recording. Additionally, they highly correlate with the

HF power. Hence, HRV metrics listed in section 4.2.5 were mainly chosen to be

a short term due to the duration of the ECG recording, which was less then 24

hours (approximately seven hours). [28, 29]

Spectral analysis of the EEG signal was performed using functions in FieltTrip

library and their implementation of the Fast Fourier Transform algorithm, see 4.2.4.

In this setting, the DPSS window was chosen due to satisfactory results for use in

other spectral-related projects EEG signal analysis. [41, 51, 52, 53, 54]

EEG data often do not meet the condition of normality of data distribution,

therefore non-parametric tests are widely used. Unlike parametric testing, non-

parametric permutation tests do not consider assumptions about data distribution

and do not take into account the characteristics describing the distribution of the

evaluated data. This guarantees the possibility of comparison between conditions.

The given type of testing determines the distribution from the analyzed data by

calculating test statistics and finding values where the null hypothesis is fulfilled,

i.e. there is no difference between the conditions [45]. Permutation testing ideally

requires an infinite amount of random data sorting and calculation of test statis-

tics for each distribution. The result of these random steps is a permuted data

distribution and a corresponding permutation p-value. In practice, however, it is

not possible to perform a permutation test with an infinite number of permutation

operations. Maris and Oostenveld offered to approximate the extracted p-value us-

ing a Monte Carlo estimate. It performs the final but a large number of the above

operations and also compares the obtained random test statistics with the original

test statistics before randomization. The Monte Carlo estimate used in this project

is a proportion of randomizations where the observed test statistic is greater than

the value selected from the permutation distribution of the data. Thus, the complex

nature of sleep paralysis and obtained EEG signal requires sophisticated statistical
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analysis. The proposed statistical model is found to be satisfactory for the purpose

of this project. [44, 45]

In addition to its advantages, this setting also brings disadvantages associated

with multiple comparisons. Such an effect on the p-value can cause skewed results

of the statistical analysis. There are many methods to correct this problem such as

Bonferroni correction, Holm-Bonferroni correction and my FDR correction. FDR

correction was used, which is less critical in p-value correction [45]

Spectral analysis of EEG signal resulted in a symptom of sleep paralysis in the

NREM2 phase of sleep with predominant theta activity, see 5.4. Theta activity alone

represents sleep transition between sleep and waking. Brain awakening can be seen

in 5.22 as faster frequencies increase. At the same time, however, the brain remains

inhibited due to slow theta waves. This result is partially identical to previous

work on the topic, see 2.4. Recent studies also describe the predominance of theta

activity [17]. In contrast to this project, mini-epochs were not studied, but the

standard 30-second and also sleep phases were designated REM and not NREM2.

The comparison raises the question of the connection between sleep paralysis and

both phases of sleep in terms of its transition during one sleep cycle.

On the other hand, statistical analysis of cardiac conditions in time-domain pa-

rameters between groups did not find any significant difference. From the figures

represented in subsection 5.3, a small difference between groups can be observed.

Additionally, each of the figures contains small dots that represent outliners. For

future improvement of statistical test performance, they must be removed but only

with the increase in the number of subjects. Frequency-domain HRV characteristics

were in physiological range but outliers were also present. They also need to be

removed in future studies with bigger subject dataset. Spectral HRV metrics sub-

serviently underwent a correlation analysis to evaluate the relationship between the

distress values in patients with SP and fluctuation in HRV power spectra. Pearson’s

correlation coefficient display no correlation, see 5.1. Distress values obtained from

the FISPI interviews represent only a general evaluation of a person’s stress related

to the SP episodes occurrences over lifetime and not after episode itself. [55, 56]

It is also worth mentioning that during every PSG measurement no SP episode

was captured. On the other hand, inability to capture such short and complex

process is understandable Some authors tried to artificially produce an SP episode

during whole-night PSG measurement which might produce biased results [16], [14],

[17]. Thus, interpretation of the result of this project is more generally related. The

results suggests appearance of the negative symptoms of sleep paralysis only with the

occurrence of an episode during the night and having no symptoms during normal

night’s sleep. The ideal future studies would be with a sufficient number of subjects

and at least one captured SP episode during whole-night PSG measurement.
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7 Conclusions

This project proposed a methodology for the analysis of sleep paralysis in the Python

programming language and MATLAB environment. The methodology includes pro-

cessing and analysis of the ECG and EEG signals.

Signal processing was made in Python for ECG and EEG as well as in MATLAB

only for EEG. Popular signal processing libraries were used in Python, namely

”MNE-Python”, ”NumPy” and ”SciPy”. In the MATLAB environment, only the

”FieldTrip” library was used. Spectral analysis of the EEG was made in both

programming languages but only the results from the MATLAB FieldTrip were

used. Spectral analysis of the ECG signal was made only in Python with the help

of ”MNE-Python”, ”NumPy” and ”SciPy” libraries. Statistical analysis of the EEG

spectral characteristics was made in MATLAB FieldTrip. A quantitative comparison

was performed together with a control group of individuals without SP. Statistical

analysis of the time and frequency domain ECG parameters was made in Python.

The EEG analysis resulted in the spectral characteristics of sleep paralysis.

Specifically in the unusual brain activity or a sign of sleep paralysis in the NREM2

phase of sleep with predominant theta activity. ECG analysis resulted in heart rate

variability metrics in the time and frequency domain. The signals for processing

were used on a data set with 19 patients with sleep paralysis. Time-domain param-

eters were in the physiological range and were compared with the same parameters

of the control group. The comparison resulted in a slight difference between the pa-

rameters which was not statistically significant. Frequency-domain HRV parameters

also were in the physiological range. Correlation analysis was performed between

distress values in a patient with SP and obtained frequency-domain HRV param-

eters. Finally, the Pearson’s correlation coefficients for different frequency-domain

HRV parameters display no correlation in any of them.

The findings can be interpreted as an explanation of the part of the mechanism of

sleep paralysis. Absence of the correlation between distress values in a patient with

SP and obtained frequency-domain HRV parameters means that a sleep paralysis

episode might be harmful to a person only while experiencing the episode during

the night. In other words, if a person was not experiencing a sleep paralysis episode,

he or she could have a regular night’s sleep without any harm to a person’s health.
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ScriptsPy......................................Python notebooks
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HRV spectr.ipynb

BT Py requirements.txt

ScriptsM..........................................Matlab scripts
Preproc Freq analysis.m

relpowerband.m

stat analysis.m

thesis................Source code of the bachelor’s thesis in LATEX
doc

abstract cs.txt...............................Abstract in Czech
abstract en.txt..............................Abstract in English
BTassignment.pdf .............Bachelor’s thesis assinment in PDF
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