

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA BIOMEDICÍNSKÉHO INŽENÝRSVÍ Katedra biomedicínské techniky

Regionální radiofrekvenční hypertermie implementace a testování jednoho kanálu výkonového generátoru

Regional radiofrequency hyperthermia implementation and testing of one channel of a power generator

Diplomová práce

Studijní program: Biomedicínské inženýrství

Vedoucí práce: prof. doc. Dr.-Ing. Jan Vrba, MSc.

Bc. Jakub Kostinec

Kladno 2022

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Kostinec	Jméno:	Jakub	Osobní číslo:	465282		
Fakulta:	Fakulta biomedicínského inženýrství						
Garantující katedra:	Katedra biomedicínské techniky						
Studijní program:	Biomedicínské inže	nýrství					

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Regionální radiofrekvenční hypertermie - implementace a testování jednoho kanálu výkonového generátoru

Název diplomové práce anglicky:

Regional radiofrequency hyperthermia - implementation and testing of one channel of a power generator

Pokyny pro vypracování:

V prostředí MATLAB vytvořte grafické uživatelské rozhraní pro ovládání generátoru malých signálů, které umožní nastavit amplitudu a fázi generovaného signálu. Dále dle existujícího návrhu realizujte výkonový zesilovač o výstupním výkonu minimálně 50 W a frekvenci 70 MHz. Z generátoru a zesilovače sestavte jeden kanál radiofrekvenčního generátoru pro regionální hypertermii a otestujte jeho funkčnost na homogenním fantomu léčené oblasti. Měření realizujte pro min. 3 různé amplitudy a fáze vstupního signálu, každý experiment 5krát opakujte a jeho opakovatelnost vyhodnoťte.

Seznam doporučené literatury:

[1] D. M. Pozar, Microwave Engineering, ed. 3, Wiley John + Sons, 2004, ISBN 0471448788

[2] J. Vrba, Lékařské aplikace mikrovlnné techniky, ed. 1st, ČVUT Praha, 2003, ISBN 80-01-02705-8

[3] H. D. Trefná, P. Togni, R. Shiee, J. Vrba, M. Persson, Design of a wideband multi-channel system for time reversal hyperthermia, International Journal of Hyperthermia, ročník 28, číslo 2, 2012, 175-183 s.

Jméno a příjmení vedoucí(ho) diplomové práce:

prof. Dr.-Ing. Jan Vrba, M.Sc.

Jméno a příjmení konzultanta(ky) diplomové práce:

doc. Ing. David Vrba, Ph.D.

Datum zadání diplomové práce: **14.02.2022** Platnost zadání diplomové práce: **22.09.2023**

> doc. Ing. Martin Rožánek, Ph.D. vedoucí katedry

prof. MUDr. Jozef Rosina, Ph.D., MBA děkan

Prohlášení

Prohlašuji, že jsem diplomovou práci s názvem "Regionální radiofrekvenční hypertermie - implementace a testování jednoho kanálu výkonového generátoru" vypracoval samostatně a použil k tomu úplný výčet citací použitých pramenů, které uvádím v seznamu přiloženém k diplomové práci.

Nemám závažný důvod proti užití tohoto školního díla ve smyslu § 60 Zákona č. 121/2000 Sb., o právu autorském, o právech souvisejících s právem autorským a o změně některých zákonů (autorský zákon), ve znění pozdějších předpisů.

V Kladně dne

Bc. Jakub Kostinec

Poděkování

Rád bych touto cestou poděkoval vedoucímu své diplomové práce prof. Dr.-Ing. Janu Vrbovi, M.Sc. za jeho ochotný přístup a odborné vedení. Dále patří poděkování doc. Ing. Davidu Vrbovi, Ph.D., Ing. Tomáši Dřížďalovi, Ph.D. a M.Sc. Jesus Cumana za jejich důležité poznámky a rady, během tvoření této diplomové práce. Nakonec bych chtěl poděkovat rodině a své snoubence, která se mnou po celou dobu přípravy diplomové práce měla hodně trpělivosti.

ABSTRAKT

Regionální radiofrekvenční hypertermie - implementace a testování jednoho kanálu výkonového generátoru:

Diplomová práce se zabývá návrhem a implementací grafického uživatelského rozhraní pro ovládání generátoru malých signálů pro regionální hypertermický systém. Pro implementaci byl využit software MATLAB s podpůrným balíčkem MATLAB Support Package for Arduino Hardware. Vytvořený software umožňuje nastavit uživateli výkon a fázi, dále je schopný zobrazit generovaný dopředný výkon a fázi generovaného signálu. Byl vytvořen dle existujícího návrhu výkonový zesilovač, který dosahuje 80 W výstupního výkonu a frekvenci 70 MHz.

Z generátoru malých signálů a zesilovače byl sestaven jeden kanál radiofrekvenčního generátoru pro regionální hypertermii. Ten byl testován pro tři různé amplitudy a fáze. Maximální relativní chyba měřeného výkonu je 5,3 % a maximální relativní chyba měřené fáze je 5,7 %. Vytvořená souprava byla otestována na homogenním fantomu léčebné oblasti. Výstupy této práce včetně implementované metodiky budou složit k vytvoření vícekanálového radiofrekvenčního generátoru pro laboratorní prototyp radifrekvenčního hypertermického systému vyvíjeného na Fakultě biomedicínského inženýrství ČVUT.

Klíčová slova

regionální hypertermie, generátor malých signálů, výkonový zesilovač, radiofrekvenční generátor, MATLAB, Arduino

ABSTRACT

Regional radiofrequency hyperthermia - implementation and testing of one channel of a power generator:

This master's thesis deals with the design and implementation of a graphical user interface for controlling a small signal generator. For implementation was used MATLAB software with MATLAB Support Package for Arduino Hardware. The created software allows the user to set the power and phase, it is also able to read the generated forward power and phase of the generated signal. A power amplifier was created according to the existing design, which achieves 80 W output power and a frequency of 70 MHz.

Was assembled one radiofrequency channel generator for regional hyperthermia from the small signal generator and amplifier. Which was tested for three different amplitudes and phases. The maximum relative error of the measured power is 5.3 % and the maximum relative error of the measured phase is 5.7 %. The resulting kit was tested on a homogeneous phantom of the treatment area. The outputs of this work, including the implemented methodology, supplemented to create a multichannel radio frequency generator for a laboratory prototype of a radio frequency hyperthermic system at the Faculty of Biomedical Engineering CTU.

Key words

regional hyperthermia, small signal generator, power amplifier, radio frequency generator, MATLAB, Arduino

Obsah

Se	znan	n symbolů zkratek	8
Se	znan	n tabulek	9
Se	znan	1 obrázků	10
1	Úvo	\mathbf{d}	12
2	Přel	hled současného stavu	13
	2.1	Termoterapie	13
	2.2	Radiofrekvenční hyperthermie	14
	2.3	Souprava pro radiofrekvenční hypertermii	15
3	Cíle	práce	20
4	Met	ody	21
	4.1	Generátor malých signálů	21
	4.2	Přímá digitální syntéza (DDS)	21
	4.3	Arduino	22
	4.4	Schéma Gain Stage BGA614	24
	4.5	Schéma Pre-driver & driver NPTB00004	25
	4.6	Schéma výkonové části HPA MRF101AN	26
	4.7	Laboratorní zdroje	26
	4.8	Generátor funkcí	27
	4.9	Osciloskop	27
	4.10	Měřič výkonu	28
	4.11	Směrový vazební člen	29
	4.12	Vzorec pro převod z dBm na Watty	30
	4.13	Rovnice pro výpočet tepla požadovaného pro ohřev fantomu	30
	4.14	Nejistoty měření	30
5	Výs	ledky	32
	5.1	Zapojení a prvotní spuštění	32
	5.2	Výkonový generátor	34
		5.2.1 Generátor malých signálů AD9959	37
		5.2.2 Gain Stage BGA614	39
		5.2.3 Pre-driver & driver NPTB00004	40
		5.2.4 HPA MRF101AN	41
		5.2.5 Modul pro detekci fáze a výkonu	41
	5.3	Uživatelské rozhraní	41
	5.4	Testování vytvořené soupravy	44

6	Disł	xuse	49
	6.1	Diskuze komunikace řídicího počítače s generátorem malých signálů $% \mathcal{L}^{(n)}_{\mathcal{L}}$.	49
	6.2	Diskuze vytvořeného uživatelského prostředí ovládající vytvořenou	
		soupravu	50
	6.3	Diskuze testování vytvořené soupravy	51
	6.4	Diskuze shrnutí	52
7	Záv	ěr	53
Se	znan	n použité literatury	54
Př	íloha		58

Seznam symbolů a zkratek

Symbol	Jednotka	Význam
Р	W	výkon
f	MHz	frekvence
Р	dBm	jednotka absolutní úrovně vztažené k výkonu 1 mW (miliwatt)
U	V	napětí
Vpp	V	mezivrcholové napětí (peak-to-peak voltage)

Seznam symbolů

Seznam zkratek

Zkratka	Význam
RF	radiofrekvence
RT	radioterapie (radiotherapy)
CT	chemoterapie (chemotherapy)
HT	hypertermie (hyperthermia)
DDS	přímý digitální syntezátor (direct digital synthesizers)
USB	univerzální sériová sběrnice
SPI	Sériové periferní rozhraní
GUI	Grafické uživatelské rozhraní (Graphical User Interface)
PCB	deska plošných spojů (printed circuit board)

Seznam tabulek

4.1	Použité komponenty na vytvoření Gain Stage BGA614 [25]	24
4.2	Použité komponenty na vytvoření Pre-driver & driver NPTB00004 [25].	25
4.3	Použité komponenty na vytvoření HPA MRF101AN [25]	26
5.1	Zapojení pinů Arduina s piny generátoru	33
5.2	Zapojení pinů Arduina s piny na desce plošných spojů s čipem AD8302.	33
5.3	Naměřené hodnoty výkonu pomocí měřiče výkonu pro tři různé am-	
	plitudy	45
5.4	Průměrné hodnoty výkonu měřené měřičem výkonovým	45
5.5	Naměřené hodnoty výkonu pomocí desky plošných spojů s čipem	
	AD8302 pro tři různé hodnoty amplitudy.	46
5.6	Naměřené hodnoty fáze pomocí osciloskopu a deskou plošných spojů	
	s čipem AD8302 pro tři různé hodnoty fáze	47
5.7	Absolutní a relativní chyba fáze měřená čipem AD8302 pro tři různé	
	hodnoty fáze.	47

Seznam obrázků

2.1	Seznam studií, které se zabývaly rozdílem mezi léčbou nádorových	
	onemocnění použitím hyperthermie s další léčebnou metodou a léčbou	
	bez použití hypertermie [10]	14
2.2	Obecné blokové schéma regionálního hypertermického systému [13].	16
2.3	Blokové schéma RF hypertermického generátoru [12].	16
2.4	Komerční produkt ALBA ON 4000 využívaný pro povrchovou hyper-	
	termickou léčbu od firmy ALBA Hyperthermia System [15].	17
2.5	Komerční produkt ALBA 4D využívaný pro regionální hypertermic-	
	kou léčbu od firmy ALBA Hyperthermia System [15]	18
2.6	Komerční produkt BSD 2000 s aplikátorem Sigma 60 pro regionální	
	hypertermickou léčbu od firmy Pyrexar Medical [16].	18
2.7	Kapacitní radiofrekvenční (8 MHz) hypertermický přístroj (Thermo-	
	tron RF 8) [17]	19
4.1	AD9959 vyhodnocovací deska plošných spojů [18]	21
4.2	Komponenty přímého digitálního syntezátoru [19]	22
4.3	Deska Arduino Due [22]	22
4.4	Deska Arduino Uno [23]	23
4.5	Deska plošných spojů s čipem AD8302 [24].	23
4.6	Schéma zapojení BGA614 [25].	24
4.7	Schéma zapojení NPTB00004 [25].	25
4.8	Schéma zapojení výkonové části HPA MRF101AN [25]	26
4.9	TEKTRONIX AFG3102, programovatelný arbitrary funkční generátor	
	do 100MHz [29]	27
4.10	VOLTCRAFT DSO-3204 USB osciloskop 200 MHz 4kanálový 250	
	MSa/s 16 kpts 8 Bit s pamětí (DSO) [30]	28
4.11	GDS-1102B (CE) 2CH GW INSTEK [31]	28
4.12	Měřič výkonu (power meter) [32]	29
4.13	Směrový vazební člen PULSAR C40-27-481/AN [34]	29
5.1	Blokové schéma vytvořeného jednoho kanálu výkonového generátoru.	32
5.2	Složka obsahující instalační soubor.	33
5.3	Vytvořený jeden kanál radiofrekvenčního generátoru pro regionální	
	hypertermii při testování maximálního výkonu	34
5.4	Detail obrázku 5.3, se zaměřením na měření výkonu pomocí měřičem	
	výkonu (80,85 W) a deskou plošných spojů s čipem AD8302 (80,74 W).	35
5.5	Detail obrázku 5.3, se zaměřením na propojení desky Arduino Due s	
	vyhodnocovací deskou plošných spojů AD9959 a desky Arduino Uno	
	s deskou plošných spojů AD8302	35
5.6	Detail obrázku 5.3 se zaměřením na laboratorní zdroje, generátoru	
	funkcí a vytvořeného výkonového zesilovače.	36

5.7	Detail obrázku 5.3 se zaměřením na osciloskop, který ukazuje refe-	
	renční signál (modrý) a signál vedený ze směrového vazebního členu	
	$(\check{z}lut\acute{y})$	36
5.8	Deska s čipem AD9959 s Arduinem DUE	37
5.9	Část mapy registru v manuálu k čipu AD9959 [18].	38
5.10	Část kódu zodpovědná za zahájení komunikace s Arduinem Due a zápisen	1
	nastavení hodnoty frekvence v binárním čísle.	38
5.11	Ukázka části kódu převádějící hodnotu zadanou uživatelem do binárního	
	čísla	39
5.12	Deska plošných spojů ziskového členu osázeného diskrétními obvo-	
	dovými prvky dle návrhu 4.6.	39
5.13	Deska plošných spojů ziskového členu osázeného diskrétními obvo-	
	dovými prvky dle návrhu 4.7.	40
5.14	Deska plošných spojů ziskového členu osázeného diskrétními obvo-	
	dovými prvky dle návrhu 4.7.	40
5.15	Deska plošných spojů výkonového členu osázeného diskrétními obvo-	
	dovými prvky dle návrhu 4.8	41
5.16	Uživatelské rozhraní záložka "Připojení"	42
5.17	Určení připojených desek Arduino na příslušných COM portů	42
5.18	Uživatelské rozhraní záložka "Ovládání"	43
5.19	Uživatelské rozhraní záložka "Ovládání" zadání hodnoty mimo interval.	44
5.20	Souprava upravená pro testování fáze	46
5.21	Zahřívání fantomu pomocí vytvořeného výkonového generátoru	48

1 Úvod

Druhým nejčastější důvodem úmrtí ve světě a České republice je nádorové onemocnění (první příčinou jsou onemocnění kardiovaskulárního systému). Léčba rakoviny je jedna z nejnáročnějších oblastí medicíny. Za rok 2020 se celosvětově eviduje 18 094 716 nových případů rakovinového onemocnění (ženy i muži). Nejčastěji se vyskytující tumory prsu (2 261 419 nových případů), plic (2 206 771 nových případů) a kolorektální nádory (1 931 590). Náležitá léčba rakoviny musí být komplexní a účinná. Moderní onkologická léčba se zaměřuje na nejzazší detekci nádoru a poskytuje několik typů léčby. Mezi nejpoužívanější léčebné postupy můžeme řadit operaci, chemoterapii, radioterapii a hormonální léčbu. V dnešní době se často využívá více léčebných postupů dohromady například kombinace mikrovlnné hypertermie s chemoterapií a radiační léčbou [1, 2].

Kombinace radioterapie současně s mikrovlnnou hypertermií umožňuje zvýšit celkovou efektivitu léčby nebo snížit nezbytnou dávku ionizujícího záření o polovinu a zvyšuje úspěšnost celkové léčby [1]. Tento efekt je způsoben vzájemným doplněním těchto metod, jak na úrovni buněčné, tak na tkáňové úrovni [3, 4].

Diplomová práce se zabývá tvorbou grafického uživatelského rozhraní pro ovládání generátoru malých signálů, které umožní nastavit amplitudu a fázi generovaného signálu. Dále se zabývá realizací výkonového zesilovače o výstupním výkonu minimálně 50 W pro mikrovlnný hypertermický systém, pracující na frekvenci 70 MHz.

2 Přehled současného stavu

2.1 Termoterapie

Termoterapie je léčebná metoda, která se zaměřuje na ohřívání nebo chlazení léčené oblasti. V této práci se budeme zabývat pouze částí termoterapie a to kde tkáně zahříváme. Tuto metodu můžeme dělit dle velikosti léčené oblasti na lokální a regionální, nebo podle teploty dosažené v léčebné oblasti [5, 6]:

- Fyzioterapie $(38 41 \ ^{\circ}C)$
- Hypertermie $(41 45 \ ^{\circ}C)$
- Koagulace (50 60 °C)
- Tepelná ablace (60 90 °C)

Hypertermie zahřívá nádorovou tkáň na teplotu od 43 °C do 45 °C. Nádor je vystaven tepelné energii od 40 do 90 minut, v některých případech mohou být tyto časy delší [1]. Použitím výše zmíněných teplot se zpomaluje buněčné dělení nádoru a současně se snižuje jeho prokrvení [7]. Zasažené zdravé buňky jsou schopny přežít krátkodobou expozici do 45 °C. Nejčastěji se využívá v kombinaci s chemoterapií nebo radioterapií [1, 5, 8]. Na obrázku 2.1 je seznam několika studií, které porovnávají způsob léčby nádorových onemocnění použitím hypertermie v kombinaci s radioterapií nebo chemoterapií se způsobem léčby bez použití hypertermie. Větší nádory jsou převážné méně okysličené než zdravá tkáň (hypoxie). Hypoxie v nádorové tkáni je způsobena jejím nadměrně rychlím růstem. Cévy nejsou dostatečně rozvinuty a nestíhají tkáň zásobovat okysličenou krví. Toto nerozvinuté řečiště není dostatečně schopné rychle vyrovnávat teplotní změny a proto se snadněji zahřívá. Bylo zjištěno, že hypoxické nádory jsou více odolné vůči radioterapii [9, 4]. Hypertermickou léčbu je možné rozdělit podle zahřívaného objemu na: povrchovou, regionální, intrakavitární, intersticiální a celotělovou [1].

Referencies	Tumour type	Treatment modality	Patients (lesions)	Endpoint	Effect with HT	Effect without HT
Valdagni et al., 1993	Lymphnodes of head & neck tumours	RT+/-HT	41 (44)	CR 5-yrlocal control 5-yr survival	83% 69% 53%	4196 2496 096
Overgaard et al.,1995	Melanoma	RT+/-HT	70 (138)	CR rate 2-yr local control	62% 46%	35% 28%
Vernon et al., 1996	Breast	RT+/-HT	306	CR	59%	4196
EL Jones et al., 2005	Breast	RT+/-HT	108	CR Local control	66% 48%	4296 2596
Sneed et al., 1998	Glioblastoma multiforme	RT+/-HT postoperative	68	Median survival 2-yr survival	85 weeks 31%	76 weeks 15%
Van der Zee et al.,2000	Bladder, cervix and rectum	RT+/-HT	358	CR 3-yr survival	55% 30%	39% 24%
Van der Zee et al.,2000	Cervix	RT+/-HT	114	CR 3-yr survival	83% 51%	5796 2796
Frankena et al., 2008 (follow up)	Cervix	RT+/HT	114	Local control Overall survival	56% 37%	3796 2096
Datta et al.,1997	Cervix	RT+/-HT	64	CR	55%	31%
Harima et al., 2001	Cervix	RT+/-HT	40	CR	85%	50%
Berdov et al.,1990	Rectum	RT+/-HT preoperative	115	5-yr survival	36%	7%
Kakehi et al.,1990	Rectum	RT+/-HT	14	Response	100%	20%
You Q-S et al.,1993	Rectum	RT+/-HT preoperative	122	CR	23%	5%
Strotsky et al., 1991	Bladder	RT+/-HT preoperative	102	3-yr survival	94%	67%
Wang et al., 1996	Oesophagus	RT+/-HT	125	3-yr survival	42%	24%
Egawa et al., 1989	Various superficial	RT+/-HT	92	Response	82%	63%
Colombo et al.,1996	Bladder	CT+/-HT preoperative	52	CR	66%	22%
Colombo et al., 2003	Bladder	CT+/-HT postoperative	83	2-yr relapse free survival	82%	38%
Colombo et al., 2010 (Follow up)	Bladder	CT+/-HT postoperative	83	10-yr disease-free survival	53%	1 596
Issels et al., 2010	Soft tissueរីរូ½ sarcoma	CT+/-HT	341	Response 2-yr local progression free survival 4-yr�local progression	28,8% 76% 66%	12,7% 61% 55%
				free survival 2-yr disease free survival 4-yr disease	58% 42%	44% 35%
				2-yr overall survival	78%	7296
Kitamura et al1995	Oesophagus	RT+CT+/-HT	66	CR	25%	6%
Sugimachi et al.,1992	Oesophagus	RT+CT+/-HT	53	Palliation	70%	896
-		preoperative				

Obrázek 2.1: Seznam studií, které se zabývaly rozdílem mezi léčbou nádorových onemocnění použitím hyperthermie s další léčebnou metodou a léčbou bez použití hypertermie [10].

2.2 Radiofrekvenční hyperthermie

RF je metoda ohřevu, při které se využívá vysokofrekvenční elektromagnetické pole. Radioterapie působí na tělesné tkáně, ionty, molekuly s elektrickým nábojem. To má za následek vibrační tření částic tam a zpět pod vysokofrekvenčním elektromagnetickým polem. Tímto dochází k přeměně elektrické energie na tepelnou energii, která se nazývá endogenní teplo. Radiofrekvenční (RF) energie elektromagnetické vlny jsou absorbovány normální i rakovinnou tkání. Kvůli špatnému rozptylu tepla rakovinné tkáně a její citlivosti na hyperpyrexii, je dříve usmrcena aniž by došlo k poškození normální tkáně. Mezi frekvence radiofrekvenčních elektromagnetických vln běžně používaných v lékařství patří 70 MHz, 40,68 MHz, 27,12 MHz a 13,56 MHz, stejně jako 8 MHz a přibližně 100 MHz. RF je hlavní metoda ohřevu pro střední hloubku v současné konvenční hypertermii [6, 8, 11]. V současné době někteří výzkumníci provádějí celotělovou hypertermii pomocí regionální technologie RF hypertermie, při udržování teploty 39,5 °C – 41,5 °C po dobu delší než 2 hodiny [11].

Technologie vysokofrekvenčního ohřevu se dělí především na kapacitní ohřev, indukční ohřev a kombinaci kapacitního a indukčního ohřevu. Kapacitní ohřev má za cíl ohřívat léčenou oblast mezi dvěma a třemi polárními deskami. Přidáním rádiové frekvence na polární desky, nebo se vkládá mnoho párů lineárních elektrod do tělesných tkání a přidává se radiační napětí tak, aby radiofrekvenční proud generoval joulovo teplo a střední ztrátové teplo skrz tkáněmi. Hloubka kapacitního ohřevu je vyšší než u mikrovln. Při indukčním ohřevu jsou indukční cívky umístěny na povrchu těla a napájeny vysokofrekvenčním proudem, takže magnetické pole vířivých proudů generované vysokofrekvenčním proudem může indukovat vířivý proud pro ohřev v těle. Jeho hloubka ohřevu je menší než u kapacitního ohřevu, ale tuk nepřehřeje. Hybridní režim ohřevu s kapacitou a indukcí je stále ve fázi výzkumu [11].

2.3 Souprava pro radiofrekvenční hypertermii

Radiofrekvenční souprava pro hyperthermii se skládá z radiofrekvenčního generátoru, soupravy pro měření teploty, vodní pumpy, vodní lázně, aplikátoru, vodního bolu a řídícího počítače viz obrázek 2.2. Vodní bolus, který je napájen z vodní lázně se vkládá mezi pacienta a aplikátor [1]. Jakožto ochrana proti vytváření horkých míst. Vodní bolus dále napomáhá k dosažení impedančního přizpůsobení mezi generátorem a biologickou tkání [1, 12]. Na obrázku 2.3 je zobrazeno blokové schéma RF soupravy. Jedná se o 8kanálový fázově a amplitudově řízený RF generátorový systém.

Obrázek 2.2: Obecné blokové schéma regionálního hypertermického systému [13].

Obrázek 2.3: Blokové schéma RF hypertermického generátoru [12].

V současnosti existují dostupné komerční systémy, které jsou používány v klinické praxi. Mezi největší výrobce v hypertermické oblasti patří ALBA Hyperthermia a Pyrexar Medical. Výše zmíněné firmy se zaobírají vývojem, výzkumem a produkcí hypertermických systémů pro povrchovou a pro hloubkovou hypertermii. Systémy jsou vytvářeny jako jeden celek. Tento komplet obsahuje řídící software, mikrovlnný generátor, aplikátory a teplotní senzory. Cena těchto systémů se pohybuje v řádech vyšších jednotek stovek tisíc EUR, proto se tyto systémy nevyužívají ve výzkumných laboratořích a cena brání i dalšímu rozšíření jinak velmi perspektivní metody. [14]. Na obrázcích 2.4, 2.5, 2.6 a 2.7 jsou dostupné některé komerční přístroje.

Obrázek 2.4: Komerční produkt ALBA ON 4000 využívaný pro povrchovou hypertermickou léčbu od firmy ALBA Hyperthermia System [15].

Obrázek 2.5: Komerční produkt ALBA 4D využívaný pro regionální hypertermickou léčbu od firmy ALBA Hyperthermia System [15].

Obrázek 2.6: Komerční produkt BSD 2000 s aplikátorem Sigma 60 pro regionální hypertermickou léčbu od firmy Pyrexar Medical [16].

Obrázek 2.7: Kapacitní radiofrekvenční (8 MHz) hypertermický přístroj (Thermotron RF 8) [17].

3 Cíle práce

Hlavním cílem této diplomové práce je realizovat výkonový zesilovač o výstupním výkonu minimálně 50 W pro radiofrekvenční regionální hypertermický systém, pracující na frekvenci 70 MHz. V prostředí MATLAB vytvořit grafické uživatelské rozhraní pro ovládání generátoru malých signálů, které umožní nastavit amplitudu a fázi generovaného signálu. Otestovat funkčnost vytvořené jednokanálové sestavy na homogenním fantomu. Měření realizovat pro min. 3 různé amplitudy a fáze vstupního signálu, každý experiment 5 krát zopakovat a jeho opakovatelnost vyhodnotit.

4 Metody

4.1 Generátor malých signálů

V rámci této diplomové práce byla použita vyhodnocovací deska plošných spojů s čipem AD9959 od firmy Analog Devices, jakožto generátor malých signálů viz obrázek 4.1. Desku je možné ovládat přímo pomocí USB anebo další možností je ovládání přes dostupný komunikační protokol SPI. AD9959 se skládá ze čtyř jader přímého digitálního syntezátoru (DDS), který poskytují nezávislé ovládání frekvence, fáze a amplitudy na každém kanálu. Výrobce poskytuje na svých webových stránkách ovládací program, který využívá spojení USB mezi deskou a počítačem.

Obrázek 4.1: AD9959 vyhodnocovací deska plošných spojů [18].

4.2 Přímá digitální syntéza (DDS)

Přímá digitální syntéza (DDS) je metoda generování analogového signálu. Získává se generováním časově proměnlivého signálu v digitální formě a poté digitálněanalogová konverzí, na obrázku 4.2 je blokové schéma přímého digitálního syntezátoru. Operace v zařízení DDS jsou hlavně digitální, tím nabízí rychlé přepínání mezi výstupními frekvencemi, jemné frekvenční rozlišení a provoz v širokém spektru frekvencí. V dnešní době zařízení DDS jsou velmi kompaktní a spotřebovávají málo energie [19].

Obrázek 4.2: Komponenty přímého digitálního syntezátoru [19].

4.3 Arduino

Arduino je open-source elektronická platforma založená na snadno použitelném hardwaru a softwaru. Desky Arduino jsou schopny číst vstupy – světlo na senzoru, prst na tlačítku nebo zprávu na Twitteru – a přeměnit je na výstup – aktivovat motor, rozsvítit LED, publikovat něco online. Pomocí zasláním sady instrukcí do mikrokontroléru na desce [20].

V této diplomové práci byla použita deska Arduino Due (obrázek 4.3) s knihovnou SPI. Sériové periferní rozhraní (SPI) je jedním z nejpoužívanějších rozhraní mezi mikrokontrolérem a periferií. SPI je synchronní, plně duplexní rozhraní. Data jsou synchronizována na vzestupné nebo sestupné hraně hodinového signálu. Rozhraní SPI může mít 3 vodiče nebo čtyři vodiče [21].

Obrázek 4.3: Deska Arduino Due [22].

Dále bylo použita deska Arduino Uno (obrázek 4.4), která snímá na dvou analogových vstupech hodnoty elektrického napětí, generovaného na výstupech desky plošných spojů s čipem AD8302 (obrázek 4.5).

Obrázek 4.4: Deska Arduino Uno [23].

Obrázek 4.5: Deska plošných spojů s čipem AD8302 [24].

4.4 Schéma Gain Stage BGA614

Obrázek 4.6: Schéma zapojení BGA614 [25].

Tabulka 4.1: Použité komponenty na vy	ytvoření Gain Stage BGA614 [25].
---------------------------------------	------------------------------	------

Součástka	Popis	Číslo dílu	Výrobce
R1,R3	Odpor 100 ohm, 0805	ERJ-LU06J101V	Panasonic
R2	Odpor 66.5 ohm, 0805	ERJ-6ENF66R5V	Panasonic
R4	Odpor 68 ohm, 0805	ERJ-U06J680V	Panasonic
C1,C2	Čipový kondenzátor 8.2 nF, 25V, 0805	08053C822KAT2A	AVX
C3	Čipový kondenzátor 100 pF, 25V, 0805	08052A101KAT2A	AVX
C4	Čipový kondenzátor 1000 pF, 25V, 0805	08052C102M4T2A	AVX
C5	Čipový kondenzátor 2.2 uF, 25V, 0805	12101C225KAT4A	AVX
C6,C7	X	X	х
L1	Čipový induktor 270 nH, 0,42A, 0805	805HP-271XGRBA	Coilcraft
Q1	širokopásmový MMIC zesilovač, SOT343	BGA614H6327XTSA1	Infineon Technologie

4.5 Schéma Pre-driver & driver NPTB00004

Obrázek 4.7: Schéma zapojení NPTB00004 [25].

Tabulka	4.2:	Použité	komponenty	na	vytvoření	Pre-driver	&	driver
NPTB0000)4 [25].							

Součástka	Popis	Číslo dílu	Výrobce
R1,R3	Odpor 430 ohm, 0805	ERJ-6ENF4300V	Panasonic
R2	Odpor 12 ohm, 0805	ERJ-6GEYJ120V	Panasonic
R4	Odpor 16 ohm, 0805	ERJ-ERJ-6GEYJ160V	Panasonic
R5	Odpor 100 ohm, 0805	ERJ-U06J101V	Panasonic
R6	Odpor 1.2k ohm, 0805	CRGH2010J1K2	Panasonic
R7	Odpor 0 ohm, 0805	ERJ-6GEY0R00V	Panasonic
C1	Čipový kondenzátor 820 pF, 0805	08051C821J4T2A	AVX
C2	Čipový kondenzátor 2.2 pF, 0805	08051A2R2DAT2A	AVX
C3	Čipový kondenzátor 15 pF, 25V, 0805	08052A150JAT2A	AVX
C4, C9	Čipový kondenzátor 330 pF, 0805	08055C331K4Z2A	AVX
C5,C10, C18 C19	Čipový kondenzátor 470 pF, 1210	08051A471K4T4H	AVX
C6,C13	Čipový kondenzátor 0.01 uF, 0805	FS051C103K4Z2A	AVX
C7,C14	Čipový kondenzátor 0.1 uF, 0805	08051C104J4T4A	AVX
C8	Čipový kondenzátor 1 uF, 0805	08051C105K4T2A	AVX
C11,C12	Čipový kondenzátor 1000 pF, 0805	08052C102M4T2A	AVX
C15	Čipový kondenzátor 1 uF, 1210	12101C105KAT2A	AVX
C16	Čipový kondenzátor 100 uF,SMD 35V, 0805	EEE-TQV101XAP	AVX
C17	Čipový kondenzátor 1.8 pF, 0805	08051A1R8DAT2A	AVX
L1	Čipový induktor 18 nH, 1.2A, 0805	0805HP-18NXGRB	Coilcraft
L2	Čipový induktor 680 nH, 0,6A, 0805	80805AF-681XJRB	Coilcraft
L3	Čipový induktor 33 nH, 1.1A, 0805	0805HP-33NXGRB	Coilcraft
L4	Čipový induktor 680 nH, 0,590A, 0805	0805LS-681XJLC	Coilcraft
L5	Čipový induktor 6.8 nH, 0,42A, 0805	0805HP-6N8XJRB	Coilcraft
X1	Feritové perličky 43 SM, 470 ohm 100Mhz	2743019447	Coilcraft
Q1	VF JFET DC-6.0GHz 5W Gain 16dB GaN HEMT	NPTB00004A	MACOM

4.6 Schéma výkonové části HPA MRF101AN

Obrázek 4.8: Schéma zapojení výkonové části HPA MRF101AN [25].

Součástka	Popis	Číslo dílu	Výrobce
L1	Čipový induktor 39 nH, 1.1A, 0805	0805HQ-39NXJLB	Coilcraft
L2	Čipový induktor 82 nH, 0.82A, 0805	0805HP-82NXJRB	Coilcraft
L3	Čipový induktor 33 nH, 4.8A, 1111	1111SQ-33NGEB	Coilcraft
L4	Čipový induktor 68 nH, 5.5A 1515	1515SQ-68NGEC	Coilcraft
L5	Čipový induktor 130 nH, 5.7A, 2222	2222SQ-131GEC	Coilcraft
C1	Čipový kondenzátor 390 pF, 25V, 0805	08053A391JAT2A	AVX
C2	Čipový kondenzátor 270 pF, 50V, 0805	08055C271K4T2A	AVX
C3=C31//C32	Čipový kondenzátory 56pF//56 pF, 0805	ATC600F	AVX
C4=C41//C42	Čipový kondenzátory $20//22$ pF, 0805	1111C	PPI
C5, C7, C8, C12, C13	Čipový kondenzátor 510 pF, 0805	GRM2165C2A511JA01D	Murata
C6	Čipový kondenzátor 1 uF, 100V, 0805	08051C105K4Z2A	AVX
C9	х	х	х
C10	Čipový kondenzátor 0.01 uF, 100V, 0805	FS051C103K4Z2A	AVX
C11	Čipový kondenzátor 1 uF, 100V, 1206	C3216X7R2A105K160AA	TDK
R1	Odpor 75 ohm, 0.5W 0805	SG73P2ATTD75R0F	KOA Speer
B1	43 SM Bead, Z=47Ohm@100MHz, 10A,	2743019447	Fair.Rite
Q1	VF MOSFET transistor	MRF101AN	NXP

Tabulka 4.3: Použité komponenty na vytvoření HPA MRF101AN [25].

4.7 Laboratorní zdroje

Použitím čtyř laboratorních zdrojů (Aim TTi CPX400DP, 2x ROHDE & SCHWARZ NGE100 a Aim TTi QPX1200S) se zajistilo napájení komponent jednoho kanálu. Dohromady bylo zapotřebí devět kanálů pro celkové napájení soupravy. Generátor malých signálu potřebuje externí napájení s napětím 1,80 V a 3,30 V [18]. Třetí kanál byl použit k napájení zesilovače BGA614 pomocí 5 V [26]. Čtvrtý a pátý kanál byl použit na první ze dvou PCB desek s tranzistory NPTB00004, kolektorové napětí

(Drain source) 28 V a hradlové napětí (Gate source) -0,77 V [27]. Druhá PCB deska potřebovala kolektorové napětí 28 V a hradlové napětí -0,78 V [27]. Poslední dva kanály byly použity k napájení PCB desky s mosfet tranzistorem MRF101AN, kdy napětí mezi kolektorem a emitorem je 50 V a mezi hradlem a emitorem je 3,41 V [28].

4.8 Generátor funkcí

Byl použit generátor funkcí od firmy Tektronix (obrázek 4.9) jako referenční oscilátor, který poskytuje generátoru malých signálu stabilní časovou základnu a určuje frekvenční přesnost DDS. Generuje se sinusový signál s frekvencí 25 MHz a amplitudou 2 Vpp [18].

Obrázek 4.9: TEKTRONIX AFG3102, programovatelný arbitrary funkční generátor do 100MHz [29].

4.9 Osciloskop

Pro ověření správné funkčnosti vytvořeného kódu v rámci tvoření uživatelského rozhraní byl použit USB osciloskop od firmy VOLTCRAFT viz obrázek 4.10. Výrobce také poskytuje vlastní uživatelské rozhraní (DSO-3204), které je na internetu volně ke stažení. Z důvodu chybějící funkce měření fáze USB osciloskopem, byl použit pro testování osciloskop GDS-1102B (CE) 2CH od firmy GW INSTEK obrázek 4.11.

Obrázek 4.10: VOLTCRAFT DSO-3204 USB osciloskop 200 MHz 4kanálový 250 MSa/s 16 kpts 8 Bit s pamětí (DSO) [30].

Obrázek 4.11: GDS-1102B (CE) 2CH GW INSTEK [31].

4.10 Měřič výkonu

Měření aktuálního generovaného výkonu bylo zajištěné snímačem frekvence a výkonu od firmy Mini-Circuits (obrázek 4.12). Bylo použito výrobcem dodávané uživatelského rozhraní, které je volně ke stažení na stránkách výrobku. Maximální měřená hodnota je 20 dBm, což odpovídá výkonu 0,1 W. V této práci je cílem dosáhnout minimálního výkonu 50 W a proto je potřeba použít atenuátory aby nedošlo k poškození měřiče výkonu.

Obrázek 4.12: Měřič výkonu (power meter) [32].

4.11 Směrový vazební člen

Směrový vazební člen (directional coupler) je pasivní zařízení, které odvádí část vysílacího výkonu o známou hodnotu přes jiný port [33]. Na obrázku 4.13 je použitý směrový vazební člen od firmy PULSAR C40-27-481/AN.

Obrázek 4.13: Směrový vazební člen PULSAR C40-27-481/AN [34].

4.12 Vzorec pro převod z dBm na Watty

$$P(W) = \frac{10^{\frac{P(dBm)}{10}}}{1000} \tag{4.1}$$

kde P(W) je hodnota výkonu ve Wattech, P(dBm) je hodnota logaritmického výkonu v dBm (jednotka absolutní úrovně vztažené k výkonu 1 mW).

4.13 Rovnice pro výpočet tepla požadovaného pro ohřev fantomu

$$Q = m \cdot c \cdot \Delta t \tag{4.2}$$

kde Q je hodnota tepla v Joulech, m je hodnota hmotnosti fantomu, c je měrná tepelná kapacita, Δt změna teploty .

4.14 Nejistoty měření

Nejistota měření je parametr, který je vyjádřením statistického rozptylu hodnot, které lze racionálně přiřadit k měřené veličině. Nejistota měření bere v úvahu naměřené výsledky, použité měřicí přístroje, hodnoty konstant, korekcí a dalších veličin, na kterých nejistota výsledku závisí. Předpokladem je určité rozdělení pravděpodobnost, které udává, jak se měřená hodnota odlišuje od skutečné hodnoty [35].

Nejistota typu A pokrývá jak náhodné chyby, tak i odchylky (systematické chyby). Postup vyhodnocení je založen na statistické analýze dat [35].

$$u_A = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \overline{x})^2}{n \cdot (n-1)}}$$
(4.3)

kde u_A je nejistota typu A, n je počet měření, x_i je měřená hodnota, \overline{x} je průměrná hodnota měřených hodnot.

Nejistota typu B je způsobena známými a odhadnutelnými vlivy, je nezávislá na počtu měření. Hlavními zdroji bývají nedokonalosti měřících přístrojů, vliv operátora a použité metody měření [35].

$$u_B = \frac{\Delta}{\sqrt{3}} \tag{4.4}$$

kde u_B je nejistota typu B, Δ je absolutní chyba veličiny, $\sqrt{3}$ plyne z vlastností rovnoměrného rozdělení.

Kombinovaná standardní nejistota určuje interval, ve kterém se s pravděpodobností 68 % může nacházet skutečná hodnota [35].

$$u_C = \sqrt{u_A^2 + u_B^2} \tag{4.5}$$

kde u_C je nejistota typu C.

Rozšířená standardní nejistota umožňuje zvětšení pravděpodobnosti správného výsledku měření. Je možné ji získat vynásobením kombinované nejistoty u_C koeficientem rozšíření k_u . Pro hodnotu $k_u = 2$ normální rozdělení odpovídá pravděpodobnosti pokrytí asi 95 % a pro hodnotu $k_u = 3$ normální rozdělení odpovídá pravděpodobnosti pokrytí zhruba 99,7 % [35].

$$U = k_u \cdot u_C \tag{4.6}$$

kdeU je rozšířená standardní nejistota, u_C je nejistota typu C, k_u koeficientem rozšíření.

5 Výsledky

V této kapitole jsou uvedeny dosažené výsledky jednotlivých dílčích kroků, které musely být provedeny, pro vytvoření výkonového generátoru a grafického uživatelského rozhraní. Dosažené cíle jsou rozděleny do podkapitol. První podkapitola 5.1 se zabývá zapojením celé soupravy a instalací uživatelského rozhraní. V druhé podkapitole 5.2 je uveden vytvořený jeden kanál výkonového generátoru a jsou zde uvedeny jednotlivé části. Vytvořený kód pro ovládání a detekci je přiložen v příloze. Třetí podkapitola 5.3 se věnuje vytvořenému grafickému uživatelskému rozhraní. Poslední kapitola 5.4 je zaměřena na testování vytvořeného jednoho kanálu výkonového generátoru a uživatelského rozhraní.

5.1 Zapojení a prvotní spuštění

Bylo vytvořeno blokové schéma zapojení jednotlivých komponent (obrázek 5.1). Použité DC napájení je popsané v kapitole 4.7. Desky Arduino a měřič výkonu jsou připojeny k řídicímu počítači pomocí USB. Propojení mezi Arduinem Due a generátorem malých signálů je řešeno pomocí SPI komunikace, v tabulce 5.1 je spojení jednotlivých pinů. Modul pro detekci fáze a amplitudy je propojen s Arduinem Uno, do kterého jsou přivedeny dva analogové vstupy z modulu. V tabulce 5.2 je jejich zapojení. Na výstupech pro detekci fáze a zesílení jsou měřeny změny v hodnotách napětí, které detekuje Arduino Uno. Pomocí vytvořeného kódu a převodního vztahu je možnost detekovat změnu fáze a zesílení.

Obrázek 5.1: Blokové schéma vytvořeného jednoho kanálu výkonového generátoru.

Piny Arduino Due	Piny generátoru malých signálů
MOSI	SDIO_0
SCK	SCLK
4	CS
7	Update
2	Reset
GND	P_Down
GND	GND
3,3 V	3,3 V

Tabulka 5.1: Zapojení pinů Arduina s piny generátoru.

Tabulka 5.2: Zapojení pinů Arduina s piny na desce plošných spojů s čipem AD8302.

Piny Arduino Uno	Piny desky plošných spojů s čipem AD8302
5 V	VS
GND	GND
A1	VM
A0	VP
GND	GD

Pro spuštění uživatelského rozhraní pro uživatele, kteří nemají na svých systémech nainstalovaný MATLAB byla vytvořena samostatná desková aplikace. Instalace proběhne po spuštění Runtime_package_web.exe obrázek 5.2. Současně bude nainstalován knihovna MATLAB Runtime, která zajistí fungování vytvořené aplikace bez nainstalovaného programu MATLAB.

Název	Datum změny	Тур	Velikost
Radiofrequency_hyperthermia_70_MHz.e	07.05.2022 10:48	Aplikace	3 791 kB
antime_package_web.exe	05.05.2022 16:42	Aplikace	4 767 kB
splash.png	25.06.2015 15:08	Soubor PNG	52 kB

Obrázek 5.2: Složka obsahující instalační soubor.

5.2 Výkonový generátor

Na obrázku 5.3 je vytvořena souprava jednoho kanálu výkonového generátoru, detailní fotky jsou na obrázcích 5.4, 5.5, 5.6, 5.7. Výkonový generátor je složen z částí, které jsou uvedeny na obrázcích 5.12, 5.13, 5.14 a 5.15. Jednotlivými částmi, které byly potřeba pro vytvoření funkčního jednoho kanálu jsou obsaženy v následujících podkapitolách.

Obrázek 5.3: Vytvořený jeden kanál radiofrekvenčního generátoru pro regionální hypertermii při testování maximálního výkonu.

Арр	- 🗆 ×	Mini-Circuits Smart RF Power Meter (Ver E3X2)	×
Ovládání		US8 Control	The second se
Kanal 1	Kanal 2	Format Device Temp: -/ Freq (1 - 6000 MHz): Fester	Add Sensor
Výkon 100 % nahrání	Výkon 100 %	G Watt	Reset Connection
Faze 0° spuštění	Faze 0°	Case of the second seco	1
		80,85 W	Record
8		Offset value: 69, dB (Dynamic Range: 1uW to 100mW)	Measurement
Měřený výkon	0.74 W	G9 (dB)	Applications
měřená fáze		OffactFile 0.00 dBm Power Sensor Model: Serial Number:	Compact View Always on top
	2,02 Utium z rozbocovace 50,08 dB	Ignore Rel. Table PWR-SEN-6GHS 11907040247	
STOP		C Display Graph	
		the second second second second second	
and the second second second second			
		E Contraction of the second	
			Meter
		▲ @ D @ ¢1 1154 10.052022	

Obrázek 5.4: Detail obrázku 5.3, se zaměřením na měření výkonu pomocí měřičem výkonu (80,85 W) a deskou plošných spojů s čipem AD8302 (80,74 W).

Obrázek 5.5: Detail obrázku 5.3, se zaměřením na propojení desky Arduino Due s vyhodnocovací deskou plošných spojů AD9959 a desky Arduino Uno s deskou plošných spojů AD8302.

Obrázek 5.6: Detail obrázku 5.3 se zaměřením na laboratorní zdroje, generátoru funkcí a vytvořeného výkonového zesilovače.

Obrázek 5.7: Detail obrázku 5.3 se zaměřením na osciloskop, který ukazuje referenční signál (modrý) a signál vedený ze směrového vazebního členu (žlutý).

5.2.1 Generátor malých signálů AD9959

Generování malých signálů je zajištěno pomocí vyhodnocovací desky plošných spojů s čipem AD9959. Pro ovládání této desky bylo využito spojení Arduina DUE viz obrázek 5.8 a podpůrného balíčku MATLAB Support Package for Arduino Hardware. Pro dosažení vygenerovaného signálu, byla použita mapa registru a popis jednotlivých bitů uvedených v data-sheetu. Obrázek 5.9 ukazuje část této mapy. Nejdříve byl vytvořen skript podle již zmíněné mapy registrů a popisu jednotlivých bitů, který byl schopen generovat signály ze dvou kanálů (obrázek 5.10). Aby uživatel nemusel měnit jednotlivé bity, byl vytvořen převodník, který převáděl uživatelem zadané decimální hodnoty do binárních hodnot (obrázek 5.11). Poté byly provedeny menší změny ve skriptu tak aby se dal použít pomocí app designeru k vytvoření uživatelského rozhraní. Celý skript je poté uveden v příloze.

Obrázek 5.8: Deska s čipem AD9959 s Arduinem DUE.

Table 29. 0	Channel R	egister Map	,							
Register Name (Serial Address)	Bit Range	Bit 7 (MSB)	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0 (LSB)	Default Value
Channel Function	[23:16]	Amplitude (AFP) sele	freq. phase ect[23:22]		Open[21:16]					0x00
Register ¹ (CFR) (0x03)	[15:8]	Linear sweep no-dwell	Linear sweep enable	Load SRR at I/O_UPDATE	Open	[12:11]	Must be 0	DAC full-scale control[e current 9:8]	0x03
	[7:0]	Digital power- down	DAC power- down	Matched pipe delays active	Autoclear sweep accumulator	Clear sweep accumulator	Autoclear phase accumulator	Clear phase accumulator ²	Sine wave output enable	0x02
Channel	[31:24]				Frequency Tu	ning Word 0(31:	24]	10.0		0x00
Frequency	[23:16]				Frequency Tu	ning Word 0[23:1	16]			N/A
Tuning Word 0 ¹	[15:8]				Frequency Tu	ining Word 0[15:	:8]			N/A
(CFTW0) (0x04)	[7:0]		10010101010	Frequency Tuning Word 0[7:0]						N/A
Channel	[15:8]	Open[15:14]		Phase Offset Word 0[13:8]					
Phase Offset Word 0 ¹ (CPOW0) (0x05)	[7:0]			Phase Offset Word 0[7:0]					0x00	

Obrázek 5.9: Část mapy registru v manuálu k čipu AD9959 [18].

Obrázek 5.10: Část kódu zodpovědná za zahájení komunikace s Arduinem Due a zápisem nastavení hodnoty frekvence v binárním čísle.

```
instructionACR = 0b00000110; %vybrání registru pro zadání amplitudy
70 -
                                                                                                         ^
71 -
       writeACR1_1 = 0b00000000; %12.bit amplitude enable
72 -
       x = (314/1023); %krokování 1 bin = 0.3066 mV (x=hodnota uživatele/0.3066)
73 -
       uzivatel = 157; %simulování vstup uživatele zadávájící hodnotu amplitudy mVpp
74 -
       value = round(uzivatel/x); %kvůli následujícímu převodu na binární číslo, nemůže být
75
                                  %desetinné číslo
76 -
       value1 = 1024+value; % přičtení 1000000000 k číslu co zadá uživatel a pak tu jedničku odstranit
77
       % a zbytek rozdělit
78 -
       prepocet=dec2bin(value1); %převedení decimálního čísla na binární
79
80 -
       pat = ""; %funkce dec2bin vrací hodnotu binárního čísla ve formátu char
       N = split(prepocet,pat); %odstranění "" a vrátí první pozici prázdnou
81 -
82 -
       N = N(strlength(N) > 0); %odstranění prázdné první pozice
83 -
       N1 = N(2:3)'; %chci pouze první dvě bin čísla
84 -
       N2 = N(4:end)'; %zbytek bin čísla
85
86 -
       N11=num2str(cell2mat(N1)); %převod zpět na string
87 -
       N22=num2str(cell2mat(N2)); %převod zpět na string
88
89 -
       ampl = "0b000100";
90 -
       str = append(ampl,N11); %formování binárního čísla
91 -
        str2 = append('0b',N22); %formování binárního čísla
92 -
       writeACR1_2= uint8(bin2dec(str)) %převod na 8bitové celočíslené pole bez znaménka
93 -
       writeACR1_3 _ uint8(bin2dec(str2)) %převod na 8bitové celočíslené pole bez znaménka
94
```

Obrázek 5.11: Ukázka části kódu převádějící hodnotu zadanou uživatelem do binárního čísla.

5.2.2 Gain Stage BGA614

Obrázek 5.12: Deska plošných spojů ziskového členu osázeného diskrétními obvodovými prvky dle návrhu 4.6.

5.2.3 Pre-driver & driver NPTB00004

Obrázek 5.13: Deska plošných spojů ziskového členu osázeného diskrétními obvodovými prvky dle návrhu 4.7.

Obrázek 5.14: Deska plošných spojů ziskového členu osázeného diskrétními obvodovými prvky dle návrhu 4.7.

5.2.4 HPA MRF101AN

Obrázek 5.15: Deska plošných spojů výkonového členu osázeného diskrétními obvodovými prvky dle návrhu 4.8.

5.2.5 Modul pro detekci fáze a výkonu

Detekování měřeného dopředného výkonu výkonu a fáze je realizováno čipem AD8302, který porovnává dva signály mezi sebou. Na kanál A byl přiveden signál ze směrového vazebního členu. Na kanál B byl připojen referenční signál (amplituda 311 mVpp, fáze 0°), který byl pro tento účel vygenerován na druhém kanálu generátoru malých signálů. Na výstupech čipu se vyčítají hodnoty napětí, které odpovídají zesílení/zeslabení a fázovému posunu mezi kanálem A a kanálem B.

5.3 Uživatelské rozhraní

V programovací platformě MATLAB s použitím App Designer bylo vytvořeno uživatelské rozhraní (GUI) pro ovládání generátoru malých signálů a vyčítání aktuálního výkonu a fáze generovaného signálu. Uživatelské rozhraní je rozděleno na dvě záložky "Připojení" a "Ovládání". Na obrázku 5.16 je záložka "Připojení", ve které si uživatel vybere porty k připojení desky Arduino Uno a Due. K zjištění využívaných COM portů Arduino deskami se musí uživatel podívat do systémového nastavení viz obrázek 5.17. Po vybrání příslušných portů klikne uživatel na tlačítka připojení, po úspěšném připojení se změní červené světlo na zelené.

MATLAB	Арр			-		×
Připojení	Ovládání					
Arduino DUE	(generátor signálů) COM3 připojení	Arduine	o UNO (měření fáze a Port COM3 připojení	a zesílení ▼	()	

Obrázek 5.16: Uživatelské rozhraní záložka "Připojení".

Obrázek 5.17: Určení připojených desek Arduino na příslušných COM portů.

Ve druhé záložce "Ovládání" (viz obrázek 5.18) uživatel nalezne ovládání dvou kanálů. Požadovaný vstup je zadání hodnoty výkonu generátoru malých signálů v procentech místo zadávání hodnoty amplitudy. Zadaný výkon uživatelem je potom v programu přepočítán na hodnotu amplitudy, kterou generuje generátor malých signálů. Druhou hodnotu, která je vyžadována od uživatele je fáze ve stupních. Zadávací pole uživatelem byla omezena, u výkonu na interval od 0 do 100 % a u fáze od 0 do 180°. Na obrázku 5.19 je zadaná hodnota výkonu mimo interval. Program upozorní uživatele, že zadal hodnotu mimo interval a zobrazí interval hodnot, která se mohou zadat. To samé se zobrazí uživateli u zadání hodnoty fáze mimo interval. Třetí hodnotu, kterou uživatel musí zadat pro správné měření výkonu je útlum ze směrového vazebního členu. Po vyplnění požadovaných hodnot uživatelem a spuštění generovaní signálu je potřeba kliknout na tlačítko "nahrání" a potom na tlačítko "spuštění". Pro změnu hodnot uživatel zadá požadovaný výkon a fázi znovu klikne na tlačítko "nahrání" a "spuštění". Dále jsou zde výstupy pro měření výkonu a pro měření fáze. Tyto hodnoty jsou měřeny vůči referenčnímu signálu, který je v této diplomové práci generován druhým kanálem generátoru malých signálů AD9959. Pro ukončení generování výkonu může uživatel změnit hodnotu výkonu na nulu a kliknout na tlačítka "nahrání" a "spuštění", nebo pro rychlejší ukončení stačí kliknout na tlačítko "STOP", které přinutí generátor malých signálů přestat generovat. Komunikace není přerušena a tak pro znovu spuštění generování stačí kliknout na tlačítka "nahrání" a "spuštění". Pro vypnutí aplikace slouží křížek v pravém horním rohu. Tímto se vypne generování výkonu a aplikace se zavře.

	Арр					-		×
Připojení	Ovládání							
	Kanal 1				Kana	al 2		
	Výkon 0 %		nahrání		Výkon		%	
	Faze 0 °		spuštění		Faze	(•	
		Měřený výkon	0	W				
		Wereny vykon			203 255			
		měřená fáze	0	0	Útlum z rozb	očovače	0 d	В
			STOP					

Obrázek 5.18: Uživatelské rozhraní záložka "Ovládání".

🔺 MATLA	В Арр								×
Připojení	Ovládání								
	Kanal	1				Kana	12		
	Výkon	500 < Value	e must be bet	ween 0 and 100		Výkon		0 %	
	Faze	0 °	(spuštění		Faze		• 0	
		Mě	řený výkon	0	W				
		r	něřená fáze	0	۰	Útlum z rozb	očovače	0	dB
			_						

Obrázek 5.19: Uživatelské rozhraní záložka "Ovládání" zadání hodnoty mimo interval.

5.4 Testování vytvořené soupravy

Pro testování výkonu vytvořeného jednoho kanálu výkonového generátoru, byla použit směrový vazební člen PULSAR C40-27-481/AN. Která z generovaného signálu je schopna odvést část vysílacího výkonu o známou hodnotu (-40 dB) přes jiný port, ten je poté napojen na 10 dB atenuátor, který je připojen k detektoru výkonu a fáze (čip AD8302). Zbytek výkonu procházel skrz atenuátory, ve kterých došlo k útlumu 69 dB k měřiči výkonu. V tabulce 5.3 jsou uvedeny tři různé amplitudy a jejich naměřené výkony pomocí měřiče výkonu. Měřené hodnoty výkonu deskou plošných spojů s čipem AD8302 jsou uvedeny v tabulce 5.5.

Číslo pokusu	Amplituda (Vpp)	Měřený výkon (W)
	0,314	78,14
1	0,242	61,24
	$0,\!210$	$51,\!29$
	0,314	78,63
2	0,242	61,07
	$0,\!210$	$51,\!58$
	0,314	78,14
3	0,242	61,02
	$0,\!210$	$50,\!47$
	0,314	78,14
4	$0,\!242$	61,12
	$0,\!210$	$50,\!97$
	0,314	78,14
5	$0,\!242$	64,48
	$0,\!210$	50,85

Tabulka 5.3: Naměřené hodnoty výkonu pomocí měřiče výkonu pro tři různé amplitudy.

Pro výpočet generovaného výkonu čipem AD8302 je potřeba znát parametry referenčního signálu a vazbu směrového vazebního členu, atenuátoru, kabelů a adaptérů. Výsledkem této operace je výkon na desce plošných spojů s čipem AD8302 v jednotkách dBm. K vypočtení generovaného výkonu, který procházel směrovou spojku bylo potřeba zjistit celkový útlum odvedeného signálu. Tento útlum byl 50,08 dB. Následně se tyto hodnoty sečetly a výsledkem byla hodnota výkonu generovaného signálu v dBm. Použitím vztahu 4.1, byly jednotky převedeny na W. Pro jednotlivé měřené amplitudy měřičem výkonu byla spočtena průměrná hodnota a rozšířená standardní nejistota s $k_u = 2$ (95% pokrytí) viz tabulka 5.4. S použitím průměrných hodnot a vypočtených hodnot výkonu pro jednotlivé amplitudy, byla stanovena absolutní chyba měření a z té potom relativní chyba viz tabulka 5.5. Všechny naměřené hodnoty výkonu se nacházely v rozptylu hodnot měřiče výkonu.

Tabulka 5.4: Průměrné hodnoty výkonu měřené měřičem výkonovým.

Amplituda (Vpp)	Průměrná hodnota výkonu (W)
0,314	$(78,4 \pm 5,4)$
0,242	$(61,2 \pm 5,4)$
0,210	$(51,0\pm 5,4)$

Tabulka 5.5: Naměřené hodnoty výkonu pomocí desky plošných spojů s čipem AD8302 pro tři různé hodnoty amplitudy.

Číslo pokusu	Amplituda (Vpp)	Výkon měřený AD8302(W)	Absolutní chyba (W)	Relativní chyba (%)
1	0,314	76,2	1,9	2,5
	0,242	58,2	3,0	4,9
	0,210	48,7	2,6	5,1
	0,314	76,2	2,4	3,1
2	0,242	58,2	2,8	4,7
	0,210	48,7	2,7	5,3
3	0,314	76,2	2,1	2,7
	0,242	58,2	2,8	4,6
	0,210	48,7	1,8	3,6
	0,314	76,2	2,1	2,7
4	0,242	58,2	2,9	4,7
	0,210	48,7	2,3	4,5
	0,314	76,2	2,4	3,0
5	0,242	60,3	1,2	1,9
	0,210	48,7	2,2	4,3

Aby bylo možné testovat měření fáze, bylo zapotřebí soupravu upravit viz obrázek 5.20. Byly použity dva adaptéry typu T, jeden ze směrového vazebního členu na desku plošných spojů s čipem AD8302 a do osciloskopu. Druhý adaptér byl použit na generovaný referenční signál, který směřoval na druhý kanál desky plošných spojů s čipem AD8302 a druhý kanál osciloskopu.

Obrázek 5.20: Souprava upravená pro testování fáze.

Na výstupu generátoru malých signálů, měl signál nulou fázi. Na výstupu směrové spojky, který šel do osciloskopu měl signál průměrnou fázi posunutou vůči nulové referenci o $(-81,6\pm3,8)^{\circ}$. Signál měřený pomocí desky plošných spojů s čipem AD8302 byl posunut vůči referenci o $-73,6^{\circ}$. V tabulce 5.6 jsou uvedeny průměrné hodnoty snímané osciloskopem a čipem AD8302. Tabulka 5.7 obsahuje absolutní chyby měření a relativní chyby měření desky plošných spojů s čipem AD8302. Všechny naměřené hodnoty fáze se nacházely v rozptylu hodnot osciloskopu.

Tabulka 5.6: Naměřené hodnoty fáze pomocí osciloskopu a deskou plošných spojů s čipem AD8302 pro tři různé hodnoty fáze.

Číslo pokusu	Zadaná hodnota fáze (°)	Fáze měřená osciloskopem (°)	Fáze měřená čipem AD8302(°)
	10,0	10,0	10,6
1	30,0	31,6	31,5
	65,0	67,5	66,9
2	10,0	10,5	10,4
	30,0	31,4	31,5
	65,0	68,2	66,9
3	10,0	10,5	10,6
	30,0	32,1	31,5
	65,0	67,3	66,9
4	10,0	10,5	10,6
	30,0	32,1	31,5
	65,0	67,3	66,9
5	10,0	10,1	10,6
	30,0	30,9	31,5
	65,0	67,0	66,9

Tabulka 5.7: Absolutní a relativní chyba fáze měřená čipem AD8302 pro tři různé hodnoty fáze.

Číslo pokusu	Zadaná hodnota fáze (°)	Absolutní chyba měření (°)	Relativní chyba měření (%)
	10,0	0,6	5,7
1	30,0	0,1	0,4
	65,0	0,6	0,9
2	10,0	0,1	1,1
	30,0	0,1	0,4
	65,0	1,3	1,9
3	10,0	0,1	1,1
	30,0	0,6	2,0
	65,0	0,4	0,6
4	10,0	0,1	1,1
	30,0	0,6	1,8
	65,0	0,4	0,6
5	10,0	0,5	4,7
	30,0	0,6	2,0
	65,0	0,1	0,2

Na obrázku 5.21 je vidět testování vytvořené soupravy na fantomu. Podařilo se zvýšit teplotu fantomu o 0,5 °C za 10 minut, kdy byl odražený výkon okolo 13 W, tedy dopadající výkon na fantom byl 67 W. Odražený výkon byl měřen pomocí měřiče výkonu.

Obrázek 5.21: Zahřívání fantomu pomocí vytvořeného výkonového generátoru.

6 Diskuse

Hlavním výstupem diplomové práce je funkční jeden kanál pro radiofrekvenční regionální hypertermický systém, jehož výstupní výkon dosahuje 80 W a pracuje na frekvenci 70 MHz. Zahrnuta byla realizace výkonového zesilovače, dle existujícího návrhu. Byl vytvořen skript v programovací platformě MATLAB pro ovládání generátoru malých signálů, který byl následně převeden na grafické uživatelské rozhraní pomocí rozšíření App Designer. Byla implementována komunikace řídicího počítače s generátorem malých signálů pomocí SPI komunikace a zobrazení zesílení signálu a fáze vůči referenci. Výsledky této práce budou v budoucnu použity k vytvoření vícekanálového radiofrekvenčního generátoru laboratorního prototypu radifrekvenčního hypertermického systému. Navržená metodika řešení brala v potaz existující návrh výkonového zesilovače a dostupné podpůrné zařízení.

Diplomová práce je dělena na čtyři hlavní části a to zapojení a prvotní spuštění, výkonový generátor, uživatelské rozhraní a testování vytvořené soupravy. Bylo stanovveno, že veškeré ovládání a vyčítání budou prováděny pouze v prostředí MATLAB a jeho rozšíření App Designer, který slouží k vytváření grafických uživatelských prostředí. Veškerá implementovaná komunikace s generátorem malých signálů musela být vytvořena, protože je v tomto programovém prostředí zatím nikdo nevytvářel.

6.1 Diskuze komunikace řídicího počítače s generátorem malých signálů

Generátor malých signál nabízí dva způsoby ovládání a to přes USB a nebo manuální řízení vstupu/výstupu. Během testování vyhodnocovací desky plošných spojů s čipem AD9959 probíhala komunikace s řídicím počítačem pomocí připojení USB. Bylo použito grafické rozhraní vytvořené výrobcem čipu Analog Devices. Z tohoto důvodu se vývoj vlastního grafického rozhraní uchyloval ke komunikaci pomocí USB. Bohužel se nepodařila navázat komunikace mezi programem MATLAB a generátorem malých signálů. Pro manuální ovládání bylo potřeba vytvořit propojení s řídicím počítačem. Tento problém vyřešilo Arduino DUE, které je propojené s generátorem malých signálů pomocí SPI komunikace (tabulka 5.1) a s řídicím počítačem pomocí USB. Veškeré programování probíhalo v prostředí MATLAB, které bylo rozšířeno o podpůrný balíček MATLAB Support Package for Arduino Hardware.

Nejznámější alternativa, která by se dala použít místo Arduin je myDAQ od korporace National Instruments, které využívá platformu LabVIEW pro návrh systému a vývojového prostředí pomocí vizuálního programovacího jazyku od National Instruments [36]. Tato alternativa by byla použita, kdyby se nepodařila vytvořit komunikace pomocí MATLABu. Další podobnou alternativou k Arduino je Raspberry Pi. Tento minipočítač byl vyvinut nadací Raspberry Pi Foundation ve Velké Británii. Využívá operační software Linux, ale také poskytuje sadu GPIO (general purpose input/output) pinů, které umožňují ovládat elektronické komponenty [37].

6.2 Diskuze vytvořeného uživatelského prostředí ovládající vytvořenou soupravu

Uživatelské rozhraní je rozděleno do dvou záložek "Připojení" a "Ovládání". V první záložce viz obrázek 5.16 si uživatel vybírá COM porty k připojení desek Arduino. Byly použité dvě tlačítka pro připojení, z důvodu lepšího řešení případného nepřipojení jedné ze dvou desek. Takto uživatel ví přesně, která z desek je připojená nebo nepřipojená. Byly provedeny pokusy s tlačítkem, kterým by bylo možné odpojit desky, ale bohužel ani jeden z pokusů se nepovedl. Když by uživatel chtěl přerušit komunikaci s deskami Arduino, musí uzavřít aplikaci pomocí křížku. Na obrázku 5.18 je hlavní ovládání. Je zde možnost pro uživatele ovládat dva kanály generátoru malých signálů, nastavit hodnotu výkonu v procentech, hodnotu fáze ve stupních a zadat útlum z rozbočovače. Do celkového řešení byla implementována ochranná funkce, jejíž cílem je zamezit původu nechtěných účinků na tkáni pacienta, poranění obsluhy a nebo poškození samotné soupravy. Jedná se o omezení rozsahu zadávaných hodnot výkonu od 0 do 100 % a fáze od 0 do 180 °. Pokud se nachází za rozbočovačem atenuátor může jeho útlum sečíst s útlumem z rozbočovače. Další možnost, kterou rozbočovač nabízí kromě odvedení dopředného výkonu je odvedení odraženého výkonu. Měření odraženého výkonu bylo realizováno pomocí měřiče výkonu. Implementace toho měření do uživatelského rozhraní nebyla přidána z časových důvodů. Postup pro její implementaci by byl obdobný jako je řešení pro měření dopředného výkonu.

Pro úspěšné generování signálu je od uživatele vyžadováno zadat jeho zvolené hodnoty a kliknout na tlačítko "nahrání" a "spuštění". Původní řešení mělo obsahovat pouze jedno tlačítko. Důvod je ten, že se zadané hodnoty nepropisovaly v kódu generátoru malých signálů a ten poté nefungoval a nebo jenom částečně. Proběhly různé pokusy se zpomalením kódu, úpravou, změnou referenčního signálu, ale bohužel neúspěšně. Až po rozdělení celkového kódu na sekci, která zapisuje hodnoty zadané uživatelem do proměnných a sekci, která jenom tyto proměnné odešle, se povedlo vygenerovat chtěný signál. Poté sekce se zápisem hodnot a sekce s odesíláním, byly implementovány do tlačítek "nahrání" a "spuštění". Pro zastavení generování bylo vytvořené tlačítko "STOP", které využívá reset pin. Ten je aktivní při logické jedničce a vynutí nastavení interních registrů čipu AD9959 do výchozího stavu, jak je popsáno v jeho datasheetu v sekci Mapy registrů a popisech bitů [18].

6.3 Diskuze testování vytvořené soupravy

Na obrázku 5.3 je souprava pro testování měřeného výkonu. Jedno měření výkonu probíhalo tak, že se zadal požadovaný výkon v % spustilo se generování a po 5 minutách nepřetržitého generování proběhl odečet výkonu. Po odečtu se vypnulo generování a 5 minut probíhalo chlazení. V průběhu měření se neměnily nastavené hodnoty napětí na laboratorních zdrojích, které jsou uvedeny v kapitole 4.7. Naměřené hodnoty pomocí měřičem výkonu jsou v tabulce 5.3, ze kterých byly vypočteny průměrné hodnoty a nejistoty měření. Měření pomocí měřiče výkonu bylo v této práci bráno za přesné. Naměřené hodnoty výkonu čipem jsou uvedeny v tabulce 5.5, dále je zde absolutní chyba a relativní chyba. Je zde vidět, že všechna měření výkonu jsou v intervalu rozptylu hodnot s maximální relativní chybou 5,3 %. Můžeme měření výkonu pomocí desky plošných spojů s čipem AD8302 označit relativně za přesné.

V průběhu měření bylo zjištěno, že při nastavení stoprocentního výkonu se tranzistor MRF101AN začíná velmi zahřívat a omezuje generovaný výkon. Z tohoto důvodu byl použit aktivně chlazený hliníkový profil, který odváděl přebytečné generované teplo. Tento způsob byl velmi přínosný pro udržení stabilního výkonu, ale výkon po nějaké době začal opět klesat. Pomocí termokamery bylo zjištěno, že cívka L3 na obrázku 5.15 dosahuje mnohem větší teploty, než je její maximální hodnota uvedená výrobcem. Tyto problémy byly po pár minutách pozorovatelné i u ostatních nastavených výkonech. Možná řešení jsou vyměnit přehřívající se cívky, přidání aktivního chlazení a zvětšení pasivního chladiče.

Pro ověření měřené fáze deskou plošných spojů s čipem AD8302 musela být souprava upravena viz obrázek 5.20. Byly přidány dva rozbočovače signálu, první rozbočuje referenční signál do osciloskopu a vstup B čipu AD8302. Druhý rozbočovač byl vložen na výstup směrové spojky, ze kterého vychází zeslabený signál, ten rozbočuje tento signál do osciloskopu a na vstup A čipu AD8302. Při zadání nulové fáze generovaného signálu a reference, byl změřen osciloskopem fázový posun (-81,6±3,8)°. Změřený posun čipem AD8302 byl -73,6 °. Rozdíl bude způsoben rozdílnými cestami signálů. Cesta referenčního signálu je pouze přes rozbočovač, kdežto cesta generovaného signálu je přes výkonový zesilovač do směrového vazebního členu. Byla provedena korekce v kódu podle získané hodnoty fáze pro měření čipem AD8302.

V tabulce 5.6 jsou uvedeny naměřené fáze pomocí osciloskopu a čipem AD8302. Pro odečítání měřené fáze z osciloskopu bylo využito tlačítka s funkcí signle (sběr dat v jednom cyklu). Pro každou fázi bylo zapsáno deset hodnot a vytvořila z nich průměrná hodnota. Od té se vždy musela odečíst hodnota -81,6 °aby bylo dosaženo správné fáze. Od fáze měřené čipem se nemuselo nic odečítat, korekce byla provedena v kódu. Fázi měřenou osciloskopem bylo v této práci bráno za přesné. Tabulka 5.7 obsahuje absolutní a relativní chybu měření. Všechny naměřené hodnoty se nacházejí v intervalu rozptylu hodnot osciloskopu a je možné toto měření označit za relativně přesné, s maximální relativní chybou 5,7 %.

Testování vytvořené soupravy proběhlo také na agarovém fantomu viz obrázek 5.21, který měl celkový objem 14 l. Důvodem, proč nebyl použit menší fantom je chybějící malý aplikátor pro frekvenci 70 MHz. Tomuto fantomu se podařilo při maximálním výkonu zvýšit teplotu o 0,5 °C za 10 minut. Abychom zvýšili teplotu o jeden stupeň za 10 minut bylo by potřeba aplikovat dopředný výkon o 97,98 W. Maximální hodnota výkonu vytvořeného generátoru je 80 W, při testování byl odražený výkon 13 W, tedy dopadající výkon byl 67 W. Při tomto výkonu by měla teplota vzrůst o 0,68 °C. Důvodem, proč nebylo dosaženo této hodnoty je ochlazování fantomu okolním vzduchem.

6.4 Diskuze shrnutí

Dle navržené metodiky lze vytvořit funkční uživatelské rozhraní pro ovládání jednoho kanálu výkonového generátoru. Pokud by tato metodika měla být použita pro radiofrekvenční hyperthermie s jinou frekvencí bude zapotřebí upravit vytvořený kód v místech, kde se zadává hodnota frekvence v binárním čísle. Generátor malých signálů je schopen generovat signál o maximální frekvenci 500 MHz [18], pro větší frekvence je zapotřebí zvolit jiný generátor malých signálů. V budoucnu výkonovou část generátoru upraví Jesus Cumana a bude použit tranzistor o výkonu 300 W.

7 Závěr

Cílem diplomové práce bylo vytvořit grafické uživatelské rozhraní pro ovládání generátoru malých signálů, které umožní nastavit amplitudu a fázi generovaného signálu v prostředí MATLAB. Realizace výkonového zesilovače o výstupním výkonu minimálně 50 W a frekvenci 70 MHz. Z generátoru a zesilovače sestavit jeden kanál radiofrekvenčního generátoru pro regionální hypertermii a otestovat jeho funkčnost na homogenním fantomu léčené oblasti. Pro tuto diplomovou práci byl použit návrh výkonového zesilovače od Jesuse Cumana.

Pro uživatele byl vytvořen instalační program se softwarovou aplikací v programovém prostředí MATLAB ve formátu .exe. Program je možné nainstalovat pouze na operační systémy Windows. Vytvořená softwarová aplikace obsahuje řídicí program, který umožňuje nastavit uživateli výkon (v procentech) a fázi (ve stupních) generovaného signálu. Aplikace je schopná měřit dopadající výkon a fázi. Bylo vloženo ochranné opatření, které omezuje rozsah zadávaných výkonu a fáze.

Byl realizován výkonový zesilovač o výstupním výkonu 80 W a frekvenci 70 MHz. Z generátoru a zesilovače byl sestaven jeden kanál radiofrekvenčního generátoru pro regionální hypertermii. Celkem byly testovány tři různé amplitudy s maximální relativní chybou 5,3 % a tři různé fáze s maximální relativní chybou 5,7 %. Byla otestovaná funkčnost radiofrekvenčního generátoru pro regionální hypertermii na homogenním fantomu léčené oblasti. Fantom léčené oblasti se podařilo zahřát o 0,5 °C za 10 minut. Výstupy této práce včetně implementované metodiky budou složit k vytvoření vícekanálového radiofrekvenčního generátoru pro laboratorní prototyp radifrekvenčního hypertermického systému vyvíjeného na Fakultě biomedicínského inženýrství ČVUT.

Seznam použité literatury

- 1. VRBA, Jan. *Lékařské aplikace mikrovlnné techniky*. Praha: České vysoké učení technické v Praze, 2003. ISBN 8001027058.
- FIŠER, O. Microwave Hyperthermia for Treatment of Head and Neck Tumors Controlled by Non-invasive Temperature Monitoring Based on UWB Radar. Kladno, 2018.
- ZOUL, Zdeněk. Hypertermie v léčbě nádorových onemocnění [(https://www. tribune.cz/clanek/28524-hypertermie-v-lecbe-nadorovych-onemocneni)]. 2012. Online; cit. [2019-23-11].
- STREFFER, C. Aspects of Metabolic Change After Hyperthermia. In: Application of Hyperthermia in the Treatment of Cancer. Berlin, Heidelberg: Springer Berlin Heidelberg, 1988, s. 7–16. ISBN 978-3-642-83260-4.
- CHICHEŁ, Adam; SKOWRONEK, Janusz; KUBASZEWSKA, Magda; KA-NIKOWSKI, Marek. Hyperthermia – description of a method and a review of clinical applications. *Reports of Practical Oncology & Radiotherapy*. 2007, roč. 12, č. 5, s. 267–275. Dostupné z DOI: https://doi.org/10.1016/S1507-1367(10)60065-X).
- SENTURK, Fatih; KOCUM, I. Cengiz; OZTURK, Goknur Guler. Stepwise implementation of a low-cost and portable radiofrequency hyperthermia system for in vitro/in vivo cancer studies. *Instrumentation Science & Technology*. 2021, roč. 49, č. 6, s. 629–641. Dostupné z DOI: (10.1080/10739149.2021.1927075).
- HORSMAN, Michael R. Tissue physiology and the response to heat. International Journal of Hyperthermia. 2006, roč. 22, č. 3, s. 197–203. Dostupné z DOI: (10.1080/02656730600689066). PMID: 16754339.
- CREZEE, Johannes; ZWEIJE, Remko; SIJBRANDS, Jan; KOK, H. Petra. Dedicated 70 MHz RF systems for hyperthermia of challenging tumor locations. International Journal of Microwave and Wireless Technologies. 2020, roč. 12, č. 9, s. 839–847. Dostupné z DOI: (10.1017/S1759078720000318).
- 9. KUBEŠ, Jiří. Imunomodulační účinky hypertermie v léčbě nádorů [(https://is.cuni.cz/webapps/zzp/detail/13527/)]. 2007. Online; cit. [2020-15-03].
- SYSTEM, ALBA Hyperthermia. THE SCIENCE BEHIND HYPERTHER-MIA Introduction [(http://www.albahyperthermia.com/hyperthermiaoverview.html)]. Online; cit. [2020-15-03].
- 11. PANG, Clifford LK. Hyperthermia in oncology. CRC Press, 2015.

- ZWEIJE, Remko; KOK, H. Petra; BAKKER, Akke; BEL, Arjan; CREZEE, Johannes. Technical and Clinical Evaluation of the ALBA-4D 70MHz Loco-Regional Hyperthermia System. In: 2018 48th European Microwave Conference (EuMC). 2018, s. 328–331. Dostupné z DOI: (10.23919/EuMC.2018.8541673).
- 13. VRBA, D. Nové technologie pro termo-terapeutické metody založené na aplikaci mikrovlnného výkonu do léčené oblasti. Kladno, 2017.
- 14. KOSTINEC, J. PROTOTYP LABORATORNÍ SOUPRAVY PRO LOKÁLNÍ POVRCHOVOU MIKROVLNNOU HYPERTERMII. Kladno, 2020.
- SYSTEM, ALBA Hyperthermia. ALBA HYPERTHERMIA SYSTEM ON 4000 [(http://www.albahyperthermia.com/hyperthermia-ON4000.html)]. Online; cit. [2020-15-03].
- 16. MEDICAL, Pyrexar. *BSD-2000 Deep Regional Hyperthermia* [(https://www.pyrexar.com/hyperthermia/bsd-2000)]. Online; cit. [2022-24-03].
- YAMAMOTO VINITA CO., Ltd. Thermotron RF-8 [(http://www.vinita.co. jp/medical_div/medical/product/)]. Online; cit. [2022-20-03].
- ANALOG DEVICES, Inc. Evaluation Board for 4-Channel 500 MSPS DDS with 10-Bit DACs [(https://www.analog.com/media/en/technical-documentation/ user-guides/eval-ad9959.pdf)]. Online; cit. [2022-23-03].
- MURPHY, Eva; SLATTERY, Colm. Ask The Application Engineer—33, All About Direct Digital Synthesis [https://www.analog.com/media/en/analogdialogue/volume-38/number-3/articles/all-about-direct-digital-synthesis. pdf)]. Online; cit. [2022-24-03].
- 20. ARDUINO.CC. What is Arduino? [(https://www.arduino.cc/en/Guide/ Introduction)]. Online; cit. [2022-24-03].
- DHAKER, Piyu. Introduction to SPI Interface [(https://www.analog.com/ media / en / analog - dialogue / volume - 52 / number - 3 / introduction - to - spi interface.pdf)]. Online; cit. [2022-24-03].
- CHUTKI. Arduino Due SPI [(https://forum.arduino.cc/t/arduino-due-spi/460498)]. Online; cit. [2022-24-03].
- ARDUINO.CCI. Arduino Uno [(https://store.arduino.cc/products/arduinouno-rev3)]. Online; cit. [2022-24-03].
- 24. WWW.BANGGOOD.COM. AD8302 Wideband Amplitude Phase Detection Impedance Analysis Module Amplifier Filter Mixer Loss and Phase Measurement [<a href="https://www.banggood.com/AD8302-Wideband-Amplitude-Phase-Detection-Impedance-Analysis-Module-Amplifier-Filter-Mixer-Loss-and-Phase-Measurement-p-1487276.html?utm_source=googleshopping&utm_medium=cpc_organic&gmcCountry=CZ&utm_content=minha&utm_

campaign=minha-cz-en-pc¤cy=CZK&cur_warehouse=CN&createTmp= 1&utm_source=googleshopping&utm_medium=cpc_ar&utm_content=kun& utm_campaign=kun-co-pmax-cz-en-bgfeed-shopping-val-0408&ad_id= &gclid=Cj0KCQjwxtSSBhDYARIsAEn0thT5j5gT2OodmHIMk5whYJMizjMBeePKVGlO01 wcB)]. Online; cit. [2022-24-03].

- 25. CUMANA, J. BOM_Driver_Rev2.pdf. cit. [20222403].
- AG, Infineon Technologies. BGA614 Silicon Germanium Broadband MMIC Amplifier [(https://cz.mouser.com/datasheet/2/196/BGA614-74226.pdf)]. Online; cit. [2022-24-03].
- 27. INC, MACOM Technology Solutions. GaN Power Transistor, 28 V, 5 W DC 6 GHz [(https://cz.mouser.com/datasheet/2/249/NPTB00004A-1109174.pdf)]. Online; cit. [2022-24-03].
- SEMICONDUCTORS, NXP. RF Power LDMOS Transistors High Ruggedness N-Channel Enhancement-Mode Lateral MOSFETs [(https://cz.mouser.com/ datasheet/2/302/MRF101AN-1510799.pdf)]. Online; cit. [2022-24-03].
- S.R.O., ELEX elektronik. TEKTRONIX AFG3102, programovatelný arbitrary funkční generátor do 100MHz [(https://www.elexbrno.cz/detail.php?proId= 922&secId=103)]. Online; cit. [2022-24-03].
- 30. ELECTRONIC, Conrad. VOLTCRAFT DSO-3204 USB osciloskop 200 MHz 4kanálový 250 MSa/s 16 kpts 8 Bit s pamětí (DSO), spektrální analyzátor 1 ks [(https://www.conrad.cz/p/voltcraft-dso-3204-usb-osciloskop-200-mhz-4kanalovy-250-msas-16-kpts-8-bit-s-pameti-dso-spektralni-analyzator-1-ks-1490962?&vat=true&gclid=Cj0KCQjwr-SSBhC9ARIsANhzu14Nm2ovCHGsoUNNnZebI2D d8i-lPdaJlPkyi8QAaAjtgEALw_wcB)]. Online; cit. [2022-24-03].
- 31. TME CZECH REPUBLIC, s.r.o. GDS-1102B (CE) 2CH GW INSTEK [(https: //www.tme.eu/cz/details/gds-1102b/digitalni-osciloskopy/gw-instek/gds-1102b-ce-2ch/)]. Online; cit. [2022-24-03].
- MINI-CIRCUITS. User Guide Integrated Frequency Counter & Power Meter [(https://www.minicircuits.com/softwaredownload/AN-49-010_FCPM_User_ guide.pdf)]. Online; cit. [2022-24-03].
- WOLFF, Christian. Directional Coupler [(https://www.radartutorial.eu/17. bauteile/bt26.en.html)]. Online; cit. [2022-24-03].
- CORPORATION, Pulsar Microwave. High Power 40 dB Type N Dual Directional Coupler, 80-1000 MHz [(https://www.pulsarmicrowave.com/product/ directional_coupler/C40-27-481-4N)]. Online; cit. [2022-24-03].

- 35. LUDVÍK, Ing. Vladimír. NEJISTOTY MĚŘENÍ, PŘESNOST MĚŘENÍ, SPRÁ VNOST MĚŘENÍ A OTÁZKY SPOJENÉ SE VZÁJEMNOU POROVNATELNOSTÍ VÝSLEDKŮ MĚŘENÍ A S PROHLÁŠENÍM O SHODĚ S TECHNICKÝMI SPECIFIKACEMI. SBORNÍKY TECHNICKÉ HARMONIZACE 2005, 2005.
- INSTRUMENTS, National. What Is LabVIEW? [(https://www.ni.com/cs-cz/shop/labview.html)]. Online; cit. [2022-24-03].
- 37. OPENSOURCE. What is a Raspberry Pi? [(https://opensource.com/resources/ raspberry-pi)]. Online; cit. [2022-24-03].

Příloha

- Soubor ZIP s řídícím programem pro ovládání generátoru malých signálů (zdrojový kód) a skripty v MATLABu.
- Soubor ZIP s instalačním programem se softwarovou aplikací ve formátu EXE, která obsahuje řídící program (needitovatelná zkompilovaná verze).