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Abstract

In this dissertation thesis, we study the complexity of games on graphs. The main goal is to
establish which settings of the problems are tractable and which settings are hard. To reach
these goals, we use algorithmization together with hardness reductions; and structural and
parameterized analysis.

First, we focus on a game variant of the domination number called the Eternal
domination number. We provide several new techniques that allow us to tackle the
problem. Using those we obtain an algorithm for determining the exact value of the
Eternal domination number for the class of cactus graphs.

We also study the Hat chromatic number problem which is related to graph color-
ing. We introduce its generalization and show its connection to the independence polyno-
mial on graphs. This connection then allows us to obtain a polynomial algorithm to solve
the problem on chordal graphs, give bounds based on maximal vertex degree, and solve
complete graphs, paths, and cycles.

Further, we investigate a game variant of Ramsey numbers called the Online Ramsey
numbers. The classical Ramsey number gives a lower bound on the size of the graph such
that it is guaranteed to contain some homogeneous structure. We show that the Online
Ramsey game gives an asymptotic advantage compared to the classical problem variant.
We also initiate the study of obtaining induced subgraphs within the game setting and
show solutions for paths, cycles, and several tree families.

Last, we show a generalization of the Group identification problem where a
process over a graph models spreading of secrets. The model of a single process is known
to be tractable, however, the generalization with several processes becomes NP-hard. We
provide a complete parameterized complexity analysis of four variants of this problem
showing P, FPT, and XP algorithms or W[1] and NP-hardness results via standard means.
We characterize which secondary measures of the input make the problem hard and which
make it tractable.

Keywords: combinatorial game theory, complexity theory, graph, domination number,
hat chromatic number, online Ramsey theory, group identification, parameterized com-
plexity, algorithmic game theory
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Abstrakt

V této disertační práci se zabýváme složitostí her na grafech. Hlavním cílem je zjistit, kdy
jsou problémy řešitelné a kdy jsou těžké. K dosažení těchto cílů používáme algoritmizaci
společně s těžkostními redukcemi; a strukturální i parametrizovanou analýzu.

Nejprve se zaměříme na herní variantu dominujícího čísla zvané Eternal domina-
tion. Poskytujeme několik nových technik, které nám umožňují problém řešit. Pomocí
těch získáme algoritmus pro určení přesné hodnoty Eternal domination pro třídu kak-
tusových grafů.

Studujeme také problém Bears with Hats, který souvisí s barvením grafů. Zavádíme
jeho zobecnění a ukazujeme jeho spojení s grafovým independence polynomem. Toto spo-
jení nám pak umožňuje získat polynomiální algoritmus pro chordalní grafy. Také díky
němu získáme meze na základě maximálního stupně grafu a zcela vyřešíme úplné grafy,
cesty a cykly.

Dále zkoumáme herní variantu Ramseyho čísel, která se nazývá Online Ramsey num-
bers. Klasické Ramseyho číslo udává spodní hranici velikosti grafu takovou, aby bylo
zaručeno, že obsahuje nějakou homogenní strukturu. Ukazujeme, že Online Ramsey hra
poskytuje asymptotickou výhodu v porovnání s klasickou variantou problému. Také za-
hajujeme studii získávání indukovaných podgrafů v rámci herního prostředí a ukazujeme
řešení cest, cyklů a několika rodin stromů.

Nakonec si ukážeme zobecnění Group Identification Problem, kdy proces přes
graf modeluje šíření tajemství. Je známo, že model jednoho procesu je řešitelný, nicméně
při zobecnění na více procesů se problém stává NP-těžkým. Poskytujeme kompletní para-
metrizovanou analýzu složitosti čtyř variant tohoto problému pomocí P, FPT a XP al-
goritmů a W[1] a NP-těžkosti zapomoci standardních nástrojů. Charakterizujeme, které
vlastnosti vstupu dělají tento problém těžký a díky kterým je řešitelný.

Klíčová slova: kombinatorická teorie her, teorie složitosti, grafy, dominující číslo, hat bar-
evnost, online Ramseyho teoreie, určování skupiny, parametrizovaná složitost, algoritmická
teorie her
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Chapter 1
Introduction

Computational problems are classically shown to be tractable or intractable in the following
way. On the one hand, the tractability of a problem is usually shown by implementing an
algorithm that solves the problem in polynomial time (computational class P). On the other
hand, the NP-hardness of a problem is shown by designing a reduction that reduces any
instance of an already known-to-be NP-complete problem to an instance of our problem.
Using these approaches, we may decide whether a problem is either in P or is NP-hard.

The problem of deciding whether P equals NP or not is at the center of classical complex-
ity theory. As no one was able to resolve this problem for over 50 years, it became standard
practice to obtain results that are based on the assumption that P ̸= NP. Moreover, several
even stricter assumptions were developed to get conditional results.

Modern approaches to obtaining results for NP-hard problems are via parameterized
complexity, structural restrictions, and approximation algorithms. The parameterized ana-
lysis considers the problem’s complexity with respect to not only the input size but also
the secondary measure – parameter. Such a finer-grained analysis can distinguish tract-
able and intractable variants of the problem assuming bounded parameter value. We can
also restrict the input structurally so that the NP-hard problem becomes tractable, e.g.,
by restricting the input graph to be acyclic. Approximation algorithms are another ap-
proach that gives us solutions that may be slightly worse than optimal, however, their
computational complexity is reasonable. The next tool may be shifting the attention to a
generalized problem to come up with novel solutions. These tools allow us to refine the
boundary between the tractable and intractable cases of given problems.

The game theory contains problems with complexity which usually far exceeds the
mentioned complexity classes used for classical decision problems. In games, we aim to
show that a problem is solvable in polynomial space (class PSPACE) or at least with the use
of (only) exponential time (class EXPTIME). When we want to obtain polynomial results
in this field we often have to restrict the problem.

1



1. Introduction

1.1 Complexity analysis

In complexity analysis of classical graph problems we aim to establish tractability and
hardness results for the best possible classes of graphs. “Best” in this context is relative
– we want to push tractability results to a class which encompasses as many graphs as
possible; and we want hardness results even in the most restricted cases. Restricting graph
structure can be done by focusing on a graph class, such as interval, chordal, cactus,
series-parallel, and sparse graphs.

Also, the structure may be restricted by graph parameters which include e.g. vertex
cover, tree-width, clique-width, tree-depth, and feedback vertex set; but also the novel
twin-width introduced in 2020 by Bonnet et al. [14]. There is a hierarchy of graph para-
meters (see [103]) and graph classes (see ISGCI1) which allow us to refine the boundary of
complexity for a given problem. See Figure 1.1 for classes relevant to this thesis.

grids planar

series-parallelouterplanarcactusChristmas cactus
tree chordal perfect

Figure 1.1: Graph classes mentioned in this thesis, their inclusions, and context within
well-known graph classes.

For graphs, there are many classical combinatorial problems. NP-hardness of many of
these problems was established by Karp [72] in 1972.

The complexity analysis experienced a fast development in the last three decades after
Downey and Fellows [39] established parameterized complexity in 1992. This analysis looks
at the problem from a finer-grained perspective than just P versus NP-hard. It moves some
of the secondary measures of the input to parameters. Then, we ask if the complexity is
polynomial for the input while it can be non-polynomial in the parameters. Such problems
are called fixed-parameter tractable (FPT) and their complexity is of the form f(t) · nO(1)

where f is a computable function, n is the size of the input, and t is the parameter.
To complement FPT, the field of parameterized complexity gives us tools to show that

a problem is W[1]-hard, which conditionally refutes the existence of an FPT algorithm; and
to develop OR-cross composition which refutes the existence of a polynomial kernel.

The Exponential Time Hypothesis (ETH) [68] poses that (in short) SAT cannot be
solved in subexponential time. Combined with W[1]-hardness reductions, we may obtain
conditional parameterized lower bounds on the time complexity of algorithms for NP-hard
problems. It is common to show that an elementary exponential algorithm is optimal with
respect to this conditional lower bound. It is widely believed that this hypothesis could be
true; it was not refuted in over 20 years. However, proving ETH is also not expected as it
would imply P ̸= NP.

For more details on parameterized complexity including kernelization, W[1]-hardness,
ETH, and graph parameters see Cygan et al. [35].

1https://www.graphclasses.org/
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1.2. Graph Theory

1.2 Graph Theory

We use standard graph theory notation, for more we refer to the book by Diestel [36].
By a graph G = (V,E) we mean an ordered pair of vertices and edges, where edges are
unordered pairs of vertices, i.e., V (G) is a set of elements, and E(G) ⊆

(
V
2

)
. We may

refer to V (G) and E(G) by V and E it the meaning is clear from the context. A vertex
u and an edge e are incident if and only if u ∈ e. Two vertices u and v are adjacent if
and only if {u, v} ∈ E(G). Neighbors (or neighborhood) N(u) of u is a set of all adjacent
vertices N(u) = {v | v is adjacent to u}. Degree of a vertex v ∈ V (G) is denoted by
deg(v) = |N(u)|. A closed neighborhood is N [u] = N(u) ∪ {u}. Graph has a maximum
degree ∆(G) = maxu deg(u) and a minimum degree δ(G) = maxu deg(u). An induced
subgraph G[A] = (A,E(G) ∩

(
A
2

)
). By G □ H we denote a graph Cartesian product, i.e.,

G □ H = (V (G)× V (H),
{
{(u1, v), (u2, v)} | (u1, u2) ∈ E(G)

}
∪

∪
{
{(u, v1), (u, v2)} | (v1, v2) ∈ E(H)

}
).

We use standard graphs: a complete graph Kn = ([n],
(
[n]
2

)
), a cycle Cn = ([n], {i, i +

1 mod n}n−1
i=0 ), and a path on n vertices Pn = ([n], {i, (i + 1)}n−2

i=0 ). A path on n edges is
also commonly used, so which one is means is usually explicitly stated to avoid confusion.

We shall introduce relevant notions and notation (mainly graph parameters) in respect-
ive chapters.

1.3 Goals and Problems

The combinatorial game theory is quite old. It developed through the 20th century. The
desire to understand basic games, such as tic-tac-toe, drove scientists to develop the basics
of what we now call combinatorial game theory. Gradually, a sophisticated theory to
analyze the complexity of game trees, decision trees, and state spaces was created, see
surveys [3, 11, 29]. Novel games are played over more complex combinatorial structures –
these are the ones we are interested in. In particular, we aim to

◦ establish tractability and hardness bounds for game theoretic problems,

◦ identify which natural and structural parameters make the problems tractable,

◦ show in which settings games exhibit significantly different computational complexity
compared to their graph-theoretic counterparts.

We now present a brief introduction into the problems we focused on in this thesis
along with our contributions.
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1. Introduction

m-Eternal Domination. A game variant of Dominating set that was introduced
by Goddard et al. [58]. In m-Eternal domination, the players are given a graph G
and a number k. Defender (first player) chooses where to initially place k vertex guards.
Each turn, Attacker (second player) chooses a vertex to attack. Now, Defender may move
each guard by at most one edge. After that, the attacked vertex must be occupied by
a guard. What is the minimum k such that G may be defended indefinitely? (Note the
difference from Eternal domination introduced by Burger et al. [20] where at most
one guard may be moved each turn.) At each point in time, the guards must constitute
a dominating set, otherwise, Attacker wins in the next turn. This topic is quite active,
with many recent papers getting bounds based on structural properties of the input graph
[42, 70, 84, 100, 101] while others try to generalize the problem [34].

Input: A graph G and a positive integer k.
Question: Is there a set X ⊆ V (G) of size at most k such that for every v ∈ V (G)

either v is in X or it is adjacent to some vertex from X?

Dominating set

Our contribution mainly consists obtaining auxiliary tools that can be used to devise
lower and upper bounds. Using these tools, we obtained an algorithm for determining
the m-Eternal domination number for the class of cactus graphs in polynomial time,
which is summed up in the following theorem.

Theorem 2.1.1 (B., Křišťan, Valla). Let G be a cactus graph on n vertices. Then there
exists a polynomial algorithm which computes γ∞

m (G).

Preliminary version of these results was published in:

[A.1] Václav Blažej, Jan Matyáš Křisťan, and Tomáš Valla. On the m-eternal domination
number of cactus graphs. Reachability Problems - 13th International Conference, RP
2019, volume 11674 of Lecture Notes in Computer Science, pages 33–47. Springer,
2019. doi:10.1007/978-3-030-30806-3_4.

Hat Chromatic Number. In the Hat chromatic number problem, the play-
ers are given a graph G and a number k. First player comes up with a function that
maps any combination of possible colorings of its neighborhood to a “guessed” color, i.e.,
fv : [k]

|N(v)| → [k] for each vertex v ∈ V (G). Then, the second player chooses a coloring
c of all vertices. First player wins if there is at least one vertex “guessed” correctly, i.e.,
fv(v) = c(v). This game is often introduced from a viewpoint of agents coming up with a
collective strategy to subdue a common adversary. This game was shown to have connec-
tions to coding theory [71], network coding [55], auctions [2], finite dynamical systems [53],
and circuits [108]. Recent publications focused on devising bounds or getting exact res-
ults on various classes of graphs and providing bounds on graphs that are constructed by
combining (in various ways) smaller graphs [16, 63, 80]
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Input: A graph G and a positive integer k.
Question: Is there a function ϕ : V (G) → [k] such that, if u and v are adjacent,

then ϕ(u) ̸= ϕ(v)?

Chromatic number

We introduce a natural generalization of this problem and show its connection to the
independence polynomial on graphs. This connection then allows us to obtain a polynomial
algorithm to solve the problem on chordal graphs, give bounds based on the maximal vertex
degree, and solve cliques, paths, and cycles exactly. We point out the following theorem.

Theorem 3.5.7 (B., Dvořák, Opler). There is an algorithm A such that given a chordal
graph G as an input, it approximates µ̂(G) up to an additive error 1/2k. The running time
of A is 2k · poly(n), where n is the number of vertices of G. Moreover, if µ̂(G) is rational,
then the algorithm A outputs the exact value of µ̂(G).

These results were published in:

[A.2] Václav Blažej, Pavel Dvořák, and Michal Opler. Bears with hats and independence
polynomials. Graph-Theoretic Concepts in Computer Science - 47th International
Workshop, WG 2021, volume 12911 of Lecture Notes in Computer Science, pages
283–295. Springer, 2021. doi:10.1007/978-3-030-86838-3_22.

Online Ramsey Number. The size-Ramsey number was introduced by Erdős,
Faudree, Rousseau, and Schelp [48] in 1978. Since then, it became a well-researched topic,
see the survey by Conlon, Fox, and Sudakov [27]. The field is of interest to extremal
graph theorists as it asks for a minimum size of a structure to guarantee the existence of
a specific substructure. Recent activity by major researchers [28] resolved several open
problems which were posed right at its creation. The Online Ramsey number looks at
the problem from a game-theoretic point of view.

Input: A graph H and a positive integer k.
Question: Does any two-edge-coloring of Kk contain a monochromatic copy of H?

Ramsey number

The Online Ramsey number problem was introduced by Beck [8]. In this game,
the players are given a graph H. The game is played on a graph G which has an infinite
number of vertices. In each turn, Builder (first player) creates an edge in G, and Painter
(second player) colors it either red or blue. Online Ramsey number is the minimum
number of rounds such that Builder can force a monochromatic copy of H in G.

In this game, the built structure can change in an online manner which gives the Builder
the ability to adapt. Hence, the Online Ramsey number is always at most the size-
Ramsey number and by that, they bound each other. Natural generalizations of the

5

https://doi.org/10.1007/978-3-030-86838-3_22
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Online Ramsey number are investigated, with a focus on establishing bounds for graph
classes, e.g. in [59, 60, 93]. If the structure of the built graph G has no other restrictions,
then by Ramsey theorem the game always ends in the victory of Painter. This prompted
investigations of graph classes to which one can restrict the graph G so that Builder is
restricted in what edges he may create. This topic is quite active with several recent
results [1, 19, 44].

We also study variant of the problem where the subgraph must be found induced (no
extra edges are present). We show asymptotically optimal solutions for paths, cycles, and
several tree families.

Theorem 4.1.1 (simplified) (B., Dvořák, Valla). r̃ind(Pn) = O(n) and r̃ind(Cn) = O(n).

One tree family in particular exhibits an asymptotic advantage compared to the classical
problem variant as their size-Ramsey number r(Sk,ℓ) = Ω(k2ℓ).

Theorem 4.5.2 (B., Dvořák, Valla). r̃ind(Sk,ℓ) ≤ O(kℓ).

These results were published in:

[A.3] Václav Blažej, Pavel Dvořák, and Tomáš Valla. On induced online Ramsey number
of paths, cycles, and trees. Computer Science - Theory and Applications - 14th
International Computer Science Symposium in Russia, CSR 2019, volume 11532 of
Lecture Notes in Computer Science, pages 60–69. Springer, 2019. doi:10.1007/
978-3-030-19955-5_6.

Group Identification. This problem is inspired by target set selection – a selection
model from algorithmic game theory that was introduced by Kempe et al. [74]. It can
be thought of as selecting starting vertices that spread an opinion throughout the entire
graph. Many variants of this problem were studied, one of which is manipulation of the
outcome to secure given targets [13, 47, 109]. While group identification problem for more
than one secret was studied [23, 56, 79] the secrets usually interact.

We study the problem where we want to control the target when more secrets spread at
the same time. Each secret spreads through its own graph, however, the graphs share the
same set of vertices. Through controlling participation of vertices in the spreading process
we want to achieve that certain set learns or does not learn the secret – these targets
may be set for each secret separately. This setting was studied for single secret and were
shown to be tractable [47, 109]. We show that all non-trivial combinations of two secrets
are NP-complete, while also providing a complete parameterized analysis over secondary
measures of the input: size of the solution, length of the process, and sizes of the target
sets. For all the settings we have NP-complete, XP and W[1]-hard, FPT, or P.

We show several approaches that solve the problem efficiently (while parameterized).
To complete the complexity picture we present NP-hardness or W[1]-hardness using reduc-
tions from Independent Set, 3-SAT, Partitioned Subgraph Isomorphism, Grid
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Tiling, and Grid Tiling with ≤. Where appropriate, the hardness results are accom-
panied with a conditional complexity lower bound derived from ETH. For a comprehensive
list of our complexity results we refer the reader to Table 5.1 on page 94.
Student abstract of these results was accepted to:

[A.4] Václav Blažej, Dušan Knop, and Šimon Schierreich. Controlling the spread of two
secrets in diverse social networks (student abstract). In Computer Science - The-
ory and Applications - 36th Conference on Artificial Intelligence, AAAI 2022, (to
appear), 2022.

1.4 Structure of the Dissertation Thesis

The chapters of this thesis are organized as follows.

◦ Introduction (Chapter 1). This chapter introduced the study field and the targets
that are a common point of our research. It also presented short descriptions of the
problems and our contribution to them.

◦ Problems (Chapters 2 to 5). Each problem of interest, their notation, and related
previous work, together with our contribution is introduced in depth in its own
chapter.

◦ Summary (Chapter 6). Reviews our contributions and suggests further research
directions.
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Chapter 2
m-eternal Domination Number of

Cactus Graphs

In m-eternal domination attacker and defender play on a graph. Initially, defender places
guards on vertices. Each round the attacker chooses a vertex to attack. Then, defender can
move each guard to a neighboring vertex, and must move a guard to the attacked vertex.
The m-eternal domination number is the minimum number of guards such that the graph
can be defended indefinitely.

In this chapter, we study the m-eternal domination number of cactus graphs. We
consider two variants of the m-eternal domination number: one allows multiple guards to
occupy a single vertex, second variant requires the guards to occupy distinct vertices. We
develop several tools for obtaining lower and upper bounds on these problems and we use
them to obtain an algorithm which computes the minimum number of required guards of
cactus graphs for both variants of the problem.

2.1 Introduction

Consider the following game, played by an attacker and a defender on graph G. The
defender controls a set of guards, which he initially places on the vertices of G. Each
vertex can be occupied by at most one guard.

In each round, the attacker first chooses one vertex, which he attacks. The defender then
must defend against the attack by moving some or all of his guards along their adjacent
edges, so that one of the guards moves to the attacked vertex.

If the attacked vertex is not occupied by a guard after the attack, the attacker wins.
The defender wins if he can defend indefinitely.

Defending a graph from attacks using guards for an infinite number of steps was in-
troduced by Burger et al. [20]. In this chapter we study the concept of the m-eternal
domination, which was introduced by Goddard et al. [58] (eternal domination was origin-
ally called eternal security). Here, the notion of the letter “m” emphasizes that multiple
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2. m-eternal Domination Number of Cactus Graphs

guards may move during each round. There is also a variant of the problem studied by
Goddard et al. [58] where only one guard may move during each round, which is not
considered in this work.

The m-eternal domination number γ∞
m (G) is the minimum number of guards which

defend against all attacks indefinitely. Goddard et al. [58] established γ∞
m exactly for paths,

cycles, complete graphs and complete bipartite graphs. Since then, several results have
focused on finding bounds on γ∞

m under different conditions or graph classes. Among the
studied graph classes are trees [76, 65, 78], grids [52, 106, 89, 70], and interval graphs [18].
For a good survey of other related results and topics, see Klostermeyer and Mynhardt [77].

Very little is known regarding the algorithmic aspects of m-eternal domination. The
decision problem (asking if γ∞

m (G) ≤ k) is NP-hard and belongs to EXPTIME, however, it
is not known whether it lies in the class PSPACE [77].

2.1.1 Original Results

In this chapter, we focus on the class of cactus graphs (connected graphs where each edge
lies in at most one cycle) and provide an algorithm for computing γ∞

m in cactus graphs. In
Section 2.4, we provide a set of tools with more general applications to proving upper and
lower bounds of γ∞

m . Those tools are then used in Section 2.5 to describe a set of reductions,
which allow us to compute γ∞

m of cactus graphs. This is a significant expansion of a basic
principles which were introduced by Klostermeyer and MacGillivray [75], in which they
provide an algorithm for computing γ∞

m of trees.
Our main result is summarized in the following theorem.

Theorem 2.1.1. Let G be a cactus graph on n vertices. Then there exists a polynomial
algorithm which computes γ∞

m (G).

2.1.2 Preliminaries

Let us now review all the standard concepts formally. A graph is a cactus if its every edge
lies on at most one cycle. For an undirected graph G let a configuration be a multiset
of its vertices C = {c1, . . . , cn | ci ∈ V (G)}. We will refer to the elements of config-
urations as guards. If a vertex is an element of a configuration, then it is occupied (by
a guard). Two configurations C1 and C2 of G are mutually traversable if there is some
set of pairs T (C1, C2) = {(v1, u1), (v2, u2), . . . , (vn, un)} such that C1 = {v1, . . . , vn} and
C2 = {u1, . . . , un} and {vi, ui} ∈ E(G) for all i from 1 to n. We perceive the guards as
tokens which move through the graph. The elements of T (C1, C2) are called movements
and a single ordered pair among them is a move of a guard. A guard that moves in
T (C1, C2) to the same vertex where he started is called stationary. A strategy in G is
a graph SG = (C,F) where C is a set of configurations over V (G) such that all of the
configurations have the same size and F ⊆ C2 describe possible transitions between the
configurations. The order of a strategy is the number of guards in each of its configuration.
In papers on this topic it is often assumed that the strategy edges are given implicitly as
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F =
{
{C1, C2} ∈ C2 | C1 and C2 are mutually traversable in G

}
. For our purposes, we

want to prescribe the strategy explicitly. We introduce the notions for exact strategy
prescription in Section 2.4.2.

We call the strategy SG to be defending against vertex attacks if for any C ∈ C the
configuration C and its neighbors in SG cover all vertices of G, i.e., when a vertex v ∈ V (G)
is “attacked” one can always respond by changing to a configuration which has a guard at
the vertex v. Formally, SG = (C,F) is defending if

(∀C ∈ C) (∀v ∈ V (G))
(
v ∈ C ∨ (∃C ′ ∈ C)({C,C ′} ∈ F ∧ v ∈ C ′)

)
.

Note that every configuration in a strategy which defends against vertex attacks induces
a dominating set in G as otherwise the attacker would win in the next round.

We investigate two variants of the game. The variants differ in whether they allow
multiple guards to occupy the same vertex. Let an m-Eternal Guard Strategy in G be a
strategy defending against vertex attacks in G.

Input: An undirected graph G = (V,E).
Question: What is the minimum number of guards γ∞

m such that there exists an
m-Eternal Guard Strategy SG where each vertex is occupied by at most
one guard that defends against vertex attacks in G?

m-Eternal Domination

Input: An undirected graph G = (V,E).
Question: What is the minimum number of guards Γ∞

m such that there exists an
m-Eternal Guard Strategy SG that defends against vertex attacks in G?

m-Eternal Guard Configuration

The open neighborhood of u in G will be denoted as NG(u). By Pn we denote a path
with n edges and n+1 vertices. By G[U ] we denote the subgraph of G induced by the set
of vertices U ⊆ V (G).

2.2 High-level Overview of the Proof

In order to solve the m-Eternal Domination and the m-Eternal Guard Config-
uration on cactus graphs, we use induction on the number of vertices. Base cases will be
presented in Definition 2.5.6. In the induction step, we show how to reduce cactus graph G
to a smaller cactus graph G′ while showing lower bound and upper bound in the following
ways. Reduction from G to G′ is done using Observations 2.4.3 and 2.4.8 to 2.4.10. These
directly show a lower bound Γ∞

m (G) ≥ Γ∞
m (G′)+K for some constant K. Then, we show an
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expansion from G′ to G. We assume that G′ has an optimal defending strategy that holds
several nice properties from the induction. We show that a part of the graph G′ along with
its strategy can be exchanged for a different one by showing that Definition 2.4.26 holds
for them. Such parts are then exchanged using Definition 2.4.28 which expands G′ into G
while showing that an upper bound devised by Observation 2.4.30 applies. This gets us an
upper bound γ∞

m (G) ≤ γ∞
m (G′) +K (the same K as in the lower bound). Combining the

lower and upper bound using Lemma 2.4.2 gets us the optimal number of guards for G.
The used reduction depends on a leaf component that the cactus graph contains by

Observation 2.5.3. One case is that the subgraphs is a tree and the second case is that
there is a leaf cycle – a cycle with leaves which is connected to the rest of the graph via a
single articulation. We split the reductions into three groups.

The first group called leaf reductions shown in Section 2.3 has a few simple reductions of
leaves which are not incident to a leaf cycle. These were shown to be sufficient to determine
the γ∞

m for any tree by Goddard, Hedetniemi, and Hedetniemi [58]. We reintroduce these
reductions in our framework and show more general results so that the reductions can be
used over tree subgraphs of non-tree graph classes. They also serve as an introductory
example of how to use the tools from Section 2.4.

Further reductions are more involved and require non-trivial manipulation with strate-
gies. It is beneficial to establish strategies with nice properties in the induction to allow
stronger induction step. In Section 2.5.2, we show the properties which are used in the two
other groups of reductions.

The last two groups called cycle reductions and constant component reductions are
shown in Sections 2.5.3 and 2.5.4. Cycle reductions concern substructures that appear on
leaf cycles. We fix a leaf cycle and use these reductions repeatedly on it. Each reduction
shortens the leaf cycle. Eventually, the cycle is very short and is reduced by constant
component reductions. After these reductions, the leaf cycle is removed entirely and only
zero, one, or two leaves are left in its place. Such leaves are then processed either as tree
leaves or leaf vertices adjacent to another leaf cycle.

2.3 Reducing Trees

In this section, we intuitively present tools to achieve lower and upper bounds and which
will be formally introduced in Section 2.4. We focus on tree reductions, which were first
described by Goddard, Hedetniemi, and Hedetniemi [58] as a part of the linear algorithm
for computing the m-eternal domination number γ∞

m on trees. We now show this set of
reductions along with the proofs of their correctness in Lemmas 2.3.1 to 2.3.3.

For a graph G, let us have a vertex u ∈ V (G) which is adjacent to ℓ ≥ 1 leaves and has
degree d. Let v be one of the leaves adjacent to u. We define three leaf reductions of G to
G′ as follows. See Table 2.1 for illustration of respective bound proofs.

Reduction 1. t1 If ℓ = 1 and d ≤ 2, let G′ = G \ {u, v}.
Reduction 2. t2 If ℓ > 2, let G′ = G \ {v}.
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Reduction 3. t3 If ℓ = 2 and d = 3, let G′ = G \ {all leaves adjacent to u}.
Reductions t2 and t3 can be joined to a single reduction which removes all leaves of a

vertex with ℓ ≥ 2 and d = ℓ + 1 (used in [58]). However, Reduction t2 may be used in
wider range of scenarios as it does not require a specific value of d.

Assume now, that we know the optimum number of guards for G′ (for both Γ∞
m and

γ∞
m ). Our goal is to show two things. By showing that G always uses at least K more

guards than G′ we get a lower bound on the number of guards necessary for G. By showing
that there is a strategy for G which uses at most K more guards than an optimum strategy
on G′ we get a upper bound on the number of guards on G. Together, these bounds give us
an optimum number of guards for G. This concept is formally introduced in Lemma 2.4.2.

Table 2.1: Leaf reductions; Lower bound side depicts clique reductions (removal of marked
vertices and joining its neighborhood with a clique); Upper bound side labels vertices with
Greek letters of states where they belong, and arrows show how one state transitions to
another. The marked groups of vertices are created with Definition 2.4.31.

Reduction Lower bound Upper bound

t1

−1
v

u

aa

v

α

β

u
+1

a a

t2

−0

u u

v
+0

u Ω′

α′
β′w

u Ω

α βw v
γ

t3

uu
−1

v

a a

u

β

u
+1

aa α′

β′

α

Ω

v
w

Having the reductions in hand see Figure 2.1 for an example of how the reductions are
used to construct a strategy for a tree.

We now proceed to show the bounds obtained from these reductions. Generally, the
proofs contain lower bound and upper bound portion, see Table 2.1 for accompanying
illustrations. Lower bounds can be shown quite easily – delimit a connected part of a
graph which is guaranteed to contain K guards, remove it, and join its neighborhood with
a clique. Upper bounds are more tricky – we assume some optimal strategy on G′, which
has nice properties, then we expand it to G while preserving the properties. The notation
used in the following proofs is defined in Section 2.4.

We say that graph G is defended with k guards if k = γ∞
m (G) = Γ∞

m (G) and the strategy
using k guards is proper in the sense of Property 2.5.11, which is defined in Section 2.5.
This allows us the state the lemmas concisely. Let us now see the proofs for the three leaf
reductions.

13



2. m-eternal Domination Number of Cactus Graphs
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β4
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t2
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Figure 2.1: An example application of leaf reductions on a tree graph. Dotted lines signify
that the strategy does not use that edge, and the strategies on subtrees are independent,
which is caused by Reduction t1. Note how Reduction t3 can be used even when there is
no vertex a.

Lemma 2.3.1. Let G′ be G after application of Reduction t1. G is defended with 1 more
guard than G′.

Proof. As {u, v} is a leaf and its neighbor, there is always at least one guard so we may
apply Observation 2.4.8 on {u, v} to get a lower bound of Γ∞

m (G) ≥ Γ∞
m (G′) + 1. To

get an upper bound γ∞
m (G) ≤ γ∞

m (G′) + 1, we dedicate one new guard to defend {u, v}
independently on the rest of the strategy. Putting the lower bound and upper bound
together using Lemma 2.4.2 we get that G is defended with 1 more guard than G′.

Note, that the final strategy graph after Reduction t1 is a Cartesian product of the
strategy graph on G′ and a graph with single edge. Cartesian product is a basis for Defin-
ition 2.4.31 where we introduce an operation which joins strategies even if the strategies
are not entirely independent. We shall use this operation along with a property shown in
Lemma 2.4.38 – that a strategy can be altered so that a vertex adjacent to at multiple
leaves is always occupied.

To ease notation, we shall reserve the prime symbol (′) to denote structures of the
reduced instance such as the graph G′, defending strategy B′, strategy graph S ′

G′ , its states
(vertices) Ω′ and transitions (edges) F′, etc.

Lemma 2.3.2. Let G′ be G after application of Reduction t2. G is defended with the
same number of guards as G′.

Proof. Lower bound of 0 is obtained by using Observation 2.4.3 to identify v with u so
Γ∞
m (G) ≥ Γ∞

m (G′).
For upper bound, from induction we have a defending labelled strategy B′ of G′. We

wish to alter it so it defends vertex v as well. We apply Lemma 2.4.38 to alter B′ so that u
is occupied in each state of Ω′. Let w be a leaf adjacent to u distinct from v. We partition
all states (vertices) of the strategy S ′

G′ as follows. A state α′ belongs to S ′(w) if in α′

vertex w is occupied.
Now we perform graph Cartesian product of S ′

G′ with a single edge {α, β} over subset
S ′(w) (Definition 2.4.31). Written in short as SG′ = S ′

G′ □S′(w) {α, β}. This splits all
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vertices of the strategy where w is occupied into two. We denote the new sets as α and β.
This got us a new strategy graph SG′ over the reduced graph G′. Now we expand from G′

to G while altering the strategy slightly. In β we substitute the guard on w with a guard
on v. The guards shall transition between states of α and β as T (α, β) = {(w, u), (u, v)}
while the rest of them shall not move. As w and v are siblings it follows that we can
transition from any γ ∈ Ω to w the same way as to v if they were swapped. This remains
defending by Lemma 2.4.33. Hence, γ∞

m (G) ≤ γ∞
m (G′) and by Lemma 2.4.2 we get that G

is defended with the same number of guards as G′.

The shown strategy basically defends v in the “same way” it defends w. We can do this
when one can transition from one to the other in a single step while the remaining guards
remain stationary. For a detailed explanation see Definition 2.4.31 and its lemmas that
show its properties.

The previous reduction bounds were proven with extensive explanation. In the following
we just use the tools to arrive at the result directly. Note that the very similar argument
could be used to obtain an arbitrary number of leaves.

Lemma 2.3.3. Let G′ be G after application of Reduction t3. G is defended with 1 more
guard than G′.

Proof. Lower bound of 1 is obtained by using Observation 2.4.8 on vertices {u, v}, which
results in a graph isomorphic to one that is created by removing all leaves adjacent to u
which gets us Γ∞

m (G) ≥ Γ∞
m (G′)+1. For upper bound, we apply Lemma 2.4.34 which adds

the two leaves to u using one extra guard which directly results in γ∞
m (G) ≤ γ∞

m (G′) + 1.
Using Lemma 2.4.2 we get that G is defended with 1 more guard than G′.

Note that the bounds devised for Reductions t1, t2, and t3 do not require the graph to
be a tree. We may use these reductions in any graph class. Hence, we may reduce any
leaves in subtrees which appear as parts of other graphs. In particular, Reduction t2 may
be also used to reduce the number of leaves adjacent to any vertex to 2 because connections
of u to other vertices do not interfere with the reduction. Note that in that case, we obtain
lower bounds for the m-Eternal Guard Configuration and upper bounds for the
m-Eternal Domination.

It was previously shown by Goddard, Hedetniemi, and Hedetniemi [58] that these
reductions (originally given in slightly different form) are sufficient to solve any tree graph.
Note that this can be shown by rooting the tree and repeatedly applying Reductions t1,
t2, and t3 on the parent of the deepest leaf.

Also note, that the reductions t1 and t3 do not require the rest of the graph (signified
by vertex a) to be there at all, hence, these solve base-cases where only a single edge or a
star remain.

When the reductions are used on a tree we get a partitioning of vertices into subtrees
which are defended independently. These components constitute a neo-colonization, a
notion introduced by Goddard et al. [58] and often used in contemporary papers.
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2. m-eternal Domination Number of Cactus Graphs

2.4 The m-eternal domination Toolbox

This section gives tools to show lower and upper bounds for the m-eternal domination
problem. Before we present the approach in detail we show several key ideas and a detailed
structure for the rest of this section. Throughout this chapter, we reserve prime (e.g. G′

and α′) to denote structures of the reduced instance.

Observation 2.4.1. γ(G) ≤ Γ∞
m (G) ≤ γ∞

m (G) ≤ 2 · γ(G) for any graph G.

Proof. Every m-Eternal Domination strategy can be applied as an m-Eternal Guard Con-
figuration strategy so γ∞

m ≥ Γ∞
m . Every configuration in each of these strategies must

induce a dominating set. Therefore, they are all lower bound by the domination number
γ.

It is also known that an m-Eternal Domination strategy can be constructed by defending
neighborhood of each vertex in the dominating set independently of each other (with a
simple strategy for stars) that uses at most 2 · γ(G) guards as shown by Klostermeyer and
Mynhardt. [77].

We now show the lemma which sums up how the bounds on the optimal strategies are
obtained.

Lemma 2.4.2. Let us assume that for graphs G, G′, and an integer constant k

γ∞
m (G) ≤ γ∞

m (G′) + k, (2.1)
Γ∞
m (G) ≥ Γ∞

m (G′) + k, (2.2)
γ∞
m (G′) = Γ∞

m (G′). (2.3)

Then γ∞
m (G) = Γ∞

m (G) = γ∞
m (G′) + k = Γ∞

m (G′) + k.

Proof. Given the assumptions, we have

γ∞
m (G)

(2.1)
≤ γ∞

m (G′) + k
(2.3)
= Γ∞

m (G′) + k
(2.2)
≤ Γ∞

m (G)
Obs. 2.4.1

≤ γ∞
m (G).

As the first and the last term is identical all these values are equal.

Hence, it suffices to prove that for G and its reduction G′ we have γ∞
m (G) ≤ γ∞

m (G′)+k
and Γ∞

m (G′) ≤ Γ∞
m (G) − k. If we already have the optimal strategy for G′, then our

constructive upper bounds together with Lemma 2.4.2 give us an optimal strategy for G.
We present the tools for obtaining lower bounds in Section 2.4.1, terminology and new

concepts for upper bounds in Section 2.4.2, and tools which use the new concepts to obtain
upper bounds in Section 2.4.3. See Figure 2.2 for a detailed section overview.
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Section 2.4.1 Lower bounds

Observation 2.4.3 Vertex identification

Observation 2.4.4 Substitute guard

Definition 2.4.5 Clique reduction

Lemma 2.4.6 Lower bound lemma

Lemma 2.4.7 Ink lemma

Observation 2.4.8 Leaf lower bound

Observation 2.4.9 Star lower bound

Observation 2.4.10 Path lower bound

Section 2.4.2 Upper bounds

Definitions 2.4.11 to 2.4.14, 2.4.17 and 2.4.20:
State, Movement, Interface, Transition,
(Partial) Defended graph and subgraph

Property 2.4.18 Symmetry

Definition 2.4.22 Compatible

Definition 2.4.23 Cutting

Definition 2.4.24 Composing

Lemma 2.4.25 Composing compatible

Definition 2.4.26 Interface equivalent

Lemma 2.4.27 Transferred compatibility

Definition 2.4.28 Expansion

Lemma 2.4.29 Equivalency constant

Observation 2.4.30 Upper bound

Section 2.4.3 Tools for altering strategies

Definition 2.4.31 Cartesian product over subset

Lemma 2.4.34 Leaves addition

Definition 2.4.36 Group state

Figure 2.2: Overview of Section 2.4. Boxes represent respective subsections; Arrows on
the left side show which notions are used to prove other notions; Right arrows show which
notions are frequently used in Section 2.5 to obtain results for cactus graphs.

2.4.1 Lower Bounds

We start this section with a few elementary observations about strategies. Then, we show
a pair of lemmas which are the main tools in obtaining lower bounds. Last, using these
lemmas, we obtain three lower bound observations which we use frequently in Section 2.5.

We say that G′ is a result of identifying u with v in G if it is a result of removing u
while adding the edges so that NG′(v) = NG(u) ∪NG(v).

Observation 2.4.3 (Vertex identification). Let G be a graph and u and v be its two
distinct vertices. Then for a graph G′, which is a result of identifying u with v in G,
Γ∞
m (G′) ≤ Γ∞

m (G).

Proof. Let v′ ∈ V (G′) be the vertex created by identifying u with v in G. Let SG be an
optimal strategy of G. Let SG′ be a strategy on G′ which is the same as SG except that in
every configuration each u and v is substituted by v′.

Any pair of traversable configurations in SG is still traversable in SG′ as in every move-
ment u and v can be replaced by v′. Any attack on V (G′) \ {v′} is defended by a config-
uration in SG′ which was created from a respective configuration of SG, and v′ is defended
by configuration which defended u in G.

Observation 2.4.4. If a graph has a clique on distinct vertices u, v, w, then guard move-
ments (u, v) and (v, w) can be substituted with movement (u,w) and a stationary guard
on v.

Along with vertex identification the following reduction is the main tool for obtaining
lower bounds.
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2. m-eternal Domination Number of Cactus Graphs

Definition 2.4.5 (Clique reduction). Let G be a graph and H be its non-empty induced
connected subgraph. By clique reduction of H in G we mean creation of a new graph G′

that is the result of removing H from G and mutually connecting all neighbors of H in
G \H by an edge.

See Figure 2.3 for an illustration of a clique reduction. Using Observations 2.4.3
and 2.4.4 we now show that the clique reduction implies a lower bound on G which can be
later used to show tight strategy lower bounds.

Lemma 2.4.6 (Lower bound lemma). Let G be a graph and H be its non-empty induced
connected subgraph such that in at least one optimal m-eternal guard strategy, there are
always at least k guards present on H. Let G′ be the result of a clique reduction of H in
G. Then

Γ∞
m (G′) ≤ Γ∞

m (G)− k.

Proof. If there is no neighbor of H in G, then clique reduction removes H and adds no
edges. We can remove all the guards which were standing on H so G′ is clearly defended
by Γ∞

m (G)− k guards.
Otherwise, there is a neighbor of H in G \ H, say v. Let SG = (C,F) be an optimal

strategy on G. We use Observation 2.4.3 to identify all vertices V (H) with v in G to obtain
a subgraph of G′ along with a strategy SG′ . Note that in G′ each configuration of SG′ has
at least k guards on v because before identification H always contained k guards. Also,
configurations which defend v in SG′ have at least k+1 guards on v by the same argument.

Let S−
G′ be a strategy which is the same as SG′ , except it has k less guard on v in

each configuration. We see that each configuration which defended v in SG had at least
k + 1 guards on v so it defends v in S−

G′ . Guards which defended V (G) \ (V (H) ∪ {v})
remain unchanged. It remains to check whether configurations which were traversable in
SG remain traversable in S−

G′ .
Our goal is to show that there exists a set of movements between each configurations

of SG′ which have k stationary guards on v which are not needed for defense of G′. Such
guards then may be removed to obtain S−

G′ and the remaining movements show that the
respective configurations are traversable.

Each movement (u, h) and (h,w) such that h ∈ V (H) in SG has its respective pair of
movements (u, v), (v, w) in SG′ . As u and w are neighbors of V (H) then there is an edge
{u,w} ∈ E(G′) added by the construction of G′. By Observation 2.4.4 we may substitute
movements (u, v), (v, w) with (u,w) and a stationary guard on v.

Assume there are less than k stationary guards on v in SG′ after applying the substi-
tution exhaustively. Then there must be at most k − 1 stationary guards and at least one
guard which leaves v or at least one guard which arrives to v, but there may not be both
(one leaving and one arriving) as they would form (u, v), (v, w) pair and the substitution
could be applied. When the guard is leaving or arriving there are at most k − 1 guards in
the final or starting configuration, respectively, which is a contradiction because there are
at least k guards on v.
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2.4. The m-eternal domination Toolbox

Removing k guards from v in SG′ yields S−
G′ where each configuration pair remains

traversable, which concludes the proof.

To use Lemma 2.4.6 we need to show that an induced subgraph H of G is always
occupied by at least k guards. To do that we have the following lemma.

Lemma 2.4.7 (Ink lemma). Let H be an induced subgraph of G. Let (v1, v2, . . . , vk)
be a sequence of vertices in H such that it holds d(u, vi) > i for every i and for every
u ∈ V (G) \ V (H), and also for every j < i it holds that d(vj, vi) > i − j. Then there are
at least k guards on H in every defending m-eternal guard configuration.

Proof. Let C be any fixed configuration of a defending strategy. We show that C contains
at least k guards on H.

Assume that the attacker performed a sequence of attacks (v1, v2, . . . , vk) one by one.
At the i-th step of the attack sequence the following is true. Guards who were standing
on V (G) \ V (H) at the beginning of the attack sequence are more than i edges far from
vi so they cannot reach vi in time to defend it. Similarly, any guard that defended vj with
j < i can not defend the attack on vi as their distance from vi is more than i − j at the
time they defended vj. Therefore, none of the guards can reach vi in time and we need an
additional guard placed on H.

In total, we need k guards on H in a configuration to be able to defend the attack
sequence. This is true for any configuration so every defending strategy must have k
guards on H in every configuration.

The operation in Lemma 2.4.6 together with the lower bound obtained from Lemma 2.4.7
allows us to make a graph smaller while showing that the removed part required some min-
imum number of guards. See an example usage of Lemmas 2.4.6 and 2.4.7 in Figure 2.3.

G

H

G′

Figure 2.3: A graph G with an induced subgraph H. Graph G′ is obtained by a clique
reduction from Definition 2.4.5. By Lemma 2.4.7 we have that every configuration contains
at least 1 guard on H. Hence, by Lemma 2.4.6 we have Γ∞

m (G) ≥ Γ∞
m (G′) + 1.

Observation 2.4.8. In graph G, let v be a leaf vertex and let u be its neighbor, and
let H = G[{u, v}]. By Lemma 2.4.7 with a sequence (v) we obtain that 1 guard is on
H. In other words, the closed neighborhood of every leaf must contain at least one guard
otherwise an attack on the leaf could not be defended. Let G′ be a graph obtained by
using operation of Lemma 2.4.6 on H, this gives us Γ∞

m (G) ≥ Γ∞
m (G′) + 1.
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2. m-eternal Domination Number of Cactus Graphs

Observation 2.4.9. In graph G, let u be a vertex which is adjacent to at least two leaves
{v1, v2, . . . }, and let H = N [u] denote the closed neighborhood of u. By Lemma 2.4.7
with a sequence (v1, v2) we obtain that 2 guards are on H. In other words, the closed
neighborhood of u must contain at least 2 guards otherwise two consecutive attacks on
different leaves adjacent to u could not be defended. Let G′ be a graph obtained by using
operation of Lemma 2.4.6 on H, this gives us Γ∞

m (G) ≥ Γ∞
m (G′) + 2.

Observation 2.4.10. Let us have a graph G and its induced subgraph H that is isomorphic
to a path on three vertices. We label these three vertices of H as u1, u2, u3 (in order). By
Lemma 2.4.7 with a sequence (u2) we have lower bound of 1 on the number of guards on
H. Let G′ be a graph obtained by using operation of Lemma 2.4.6 on {u1, u2, u3}. This
gives us Γ∞

m (G) ≥ Γ∞
m (G′) + 1.

2.4.2 Upper Bounds

This section introduces notation to describe strategies which are used to achieve upper
bounds for γ∞

m . We assume that we have a graph G and its reduced copy G′. The main
idea is that a strategy for G′ can be locally changed to obtain a strategy for G. To
accommodate this local change, we show how to cut and compose parts of the graph while
preserving its strategy. At the end of this section, we present a set of sufficient rules that
allow such a local change. Then, in Section 2.4.3, we present tools which we use to obtain
upper bounds.

In our constructions, we need to have control over movements of the guards. We also
need a way to represent only part of the strategy over an induced subgraph of G. To do
so, we introduce states (labelled configurations) and labelled strategy that prescribes the
guard movements on state transition.

Definition 2.4.11 (States). Let states be a set of labels Ω and let state vertex mapping
P of Ω to V (G) be P : Ω → 2V (G), i.e., a state α ∈ Ω represents a subset of vertices
P (α) ⊆ V (G) (also called guards) of a graph G. Let S(v) = {β | β ∈ Ω, v ∈ P (β)} (states
that contain v) for every v ∈ V (G).

We will use Greek letters such as α, β, γ, δ, φ to signify states or sets of states. Move
of a guard is still an ordered pair of vertices (u, v) such that {u, v} ∈ E(G) or u = v
(stationary guard).

Building towards a comprehensive definition of a labelled strategy, we first build a more
general concept – partial labelled strategy. This will allow us to do cutting and composing
with a well defined strategy over a subgraph.

Definition 2.4.12 (Interface). Let an interface R of a graph G with respect to its super-
graph H be a subset of vertices such that

R =
{
u | (∃v)u, v ∈ V (H), {u, v} ∈ E(H), u ∈ V (G), v ̸∈ V (G)

}
,

i.e., those vertices of G which have a neighbor in V (H) \ V (G) in H .
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H

G

R

G

R

α

α

α β

β

β
β

α

α
βα

α
β

u v

w

Figure 2.4: Left: An interface R of G with respect to H. Bold edges signify the cut between
V (G) and V (H)\V (G) that is responsible for the vertices in R; Right: Transition T (α, β)
from α to β. Arrows signify movements of the transition. All vertices in states α and β
must be paired up with a movement if they are not in the interface R. In the interface, a
guard moves from u to the rest of the graph outside of G so a movement is missing for u.
Note the difference between v and w: in w the same guard stays on the vertex, in v (as
there is no (v, v) movement) the guard on v moves out and a different one moves to v.

See Figure 2.4 for an example of an interface. The interface marks the vertices where
the strategy may be incomplete. The transitions between states incorporate the interface
by allowing the moves to be incomplete in the following way.

Definition 2.4.13 (Transition). For states α and β and a graph G with an interface R,
let a transition (from α to β) denoted by T (α, β) be a set of moves such that

◦ T (α, β) ⊆
{
(u, v) | u ∈ P (α), v ∈ P (β), {u, v} ∈ E(G) ∨ u = v

}
,

◦ for each u ∈ P (α) \R there exists exactly one (u, v) ∈ T (α, β),

◦ for each v ∈ P (β) \R there exists exactly one (u, v) ∈ T (α, β),

◦ for each u ∈ P (α) ∩R there exists at most one (u, v) ∈ T (α, β), and

◦ for each v ∈ P (β) ∩R there exists at most one (u, v) ∈ T (α, β).

See Figure 2.4 for an example of a transition and how it interacts with an interface.
Note that if the interface R is empty, then the transition yields a bijection between guards
of the states, which gives an exact prescription on how they move between the two states.

Transition gives us that each guard can be in relation with at most one other guard.
In our case, there is at most one guard on each vertex. Hence, we may use the standard
relation terminology for the set of pairs defined by a transition.

Definition 2.4.14 (Partial labelled strategy). A partial labelled strategy is (G,SG, P, T , R)
where G is a graph, SG = (Ω,F) is a strategy graph such that Ω is a set of vertices (states)
and F is a set of edges, P is a state vertex mapping of Ω to V (G), R ⊆ V (G) is an interface
of G, and T maps orientations (α, β) and (β, α) of every edge {α, β} ∈ F to transitions
T (α, β) and T (β, α), respectively.
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2. m-eternal Domination Number of Cactus Graphs

For various purposes, it may be beneficial to think of the strategy graph SG as an ori-
ented graph (allowing non-symmetric transitions, see Property 2.4.18), or even multigraph
(allowing multiple different transitions between the same set of states).

The labelled strategy may defend attacks indefinitely if it is in accordance with the
following definition.

Definition 2.4.15 (Defending). A partial labelled strategy (G, (Ω,F), P, T , R) is defending
G if for every state α ∈ Ω and each vertex v ∈ V (G) there is β ∈ Ω such that {α, β} ∈ F
and v ∈ P (β).

In other words, Definition 2.4.15 says that for each vertex of the graph every state is
either occupying it or a state which occupies it is reachable with only one transition. This
directly leads to the following observation. Recall that S(u) denotes set of states that
contain u.

Observation 2.4.16. A strategy is defending a graph if for every u ∈ V (G) set S(u) is a
dominating set of the strategy graph SG.

Definition 2.4.17 (Labelled strategy). A labelled strategy is D = (G,SG, P, T ) such that
(G,SG, P, T , ∅) is a partial labelled strategy.

Note, that all the states in the labelled strategy must contain the same number of
guards because the transitions are bijections. When the strategy is optimal the number of
guards corresponds to γ∞

m .
Partial labelled strategies can have several nice properties, which we present now. When

the strategy graph is unoriented it is natural to require symmetry of transitions.

Property 2.4.18 (Symmetry). A partial labelled strategy B = (G, (Ω,F), P, T , R) is
symmetrical if and only if T (α, β) is a converse relation to T (β, α) (i.e., T (α, β) = {(a, b) |
(b, a) ∈ T (β, α)}) for every {α, β} ∈ F.

Lemma 2.4.19. For each partial labelled strategy B = (G, (Ω,F), P, T , R) there exists a
symmetrical partial labelled strategy B′ = (G, (Ω,F), P, T ′, R).

Proof. For each pair of states {α, β} ∈ F fix an arbitrary orientation (α, β) and take the
T (α, β) with an interface R which gives us T (α, β). Note that by swapping u with v and
α with β in Definition 2.4.13 we obtain the same definition but for T (β, α). We substitute
the transition T (β, α) for this newly found transition. Performing this substitution for
every pair of states in F gives us the desired T ′.

By Lemma 2.4.19, we will always assume that the partial labelled strategy is sym-
metrical. We also use this property to infer transitions. We show only one direction of
the transition mapping and let the other direction be the converse transition given by
symmetry.

It is not easy to grasp the labelled strategy description only from the formal notation so
we shall draw many auxiliary pictures. Vertices and edges shall be depicted by small circles
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2.4. The m-eternal domination Toolbox

(or squares) and line segments, respectively; vertices may be labelled by their letter name;
by Greek letters we signify the states which contain respective vertices; guard moves in
transitions are depicted by differently styled arrows on edges which point between the state
labels (Note that the arrows are always shown only in one direction because we assume
Property 2.4.18.); the interface vertices are marked by gray-filled areas; see Figure 2.5 for
an example of a labelled strategy.

α

β

γ
a

b

c

u
v

a

b

c

u
v

+ u

B A C
cutting

composing

γ

β

α
α

β

γ

γ

β

γ

β

α

Figure 2.5: Example of a labelled strategy B and two partial labelled strategies A
and C; the full formal description of the labelled strategy B = (G, (Ω,F), P, T ) is
G = (V,E), V = {a, b, c, u, v}, E =

{
{a, b}, {b, u}, {u, v}, {a, c}, {c, u}

}
, Ω = {α, β, γ},

F =
{
{α, β}, {α, γ}, {β, γ}

}
, P (α) = {v, a}, P (β) = {u, b}, P (γ) = {u, c}, (R = ∅),

T (α, β) = {(a, b), (v, u)}, T (α, γ) = {(a, c), (v, u)}, T (β, γ) = {(b, u), (u, c)}; the formal
descriptions of partial labelled strategies A and C are similar while restricted to their sub-
graph and they contain an interface R = {u}.

We will need to cut part of the labelled strategy and put something slightly different
in its place. To tackle that we put forward the following notions.

Definition 2.4.20 (Partial labelled substrategy). The partial labelled substrategy B′ of
a labelled strategy B = (G, (Ω,F), P, T ) for some induced subgraph G′ of G is a partial
labelled strategy B′ = (G′, (Ω,F), P ′, T ′, R) where R is an interface of G′ with respect to
G, for all α ∈ Ω it holds P ′(α) = P (α) ∩ V (G′), and for all β, γ ∈ Ω it holds T ′(β, γ) =
{(a, b) | (a, b) ∈ T (β, γ) ∧ a, b ∈ V (G′)}.

It is not immediately obvious that the Definition 2.4.20 made a partial labelled sub-
strategy in a way that it constitutes a partial labelled strategy; so we show that next.

Observation 2.4.21. A partial labelled substrategy B′ = (G′, (Ω,F), P ′, T ′, R) of a la-
belled strategy B = (G, (Ω,F), P, T ) is a partial labelled strategy.

Proof. G′ is a graph, Ω is a set of labels, and R is subset of V (G′) which is in accordance
to Definition 2.4.14. P ′ was created by restricting P to the vertices of V (G′). We only
removed some guards from the mapping so this is okay by Definition 2.4.14. Last, the only
guards which are not included in T ′ are those whose moves in T went outside of G′. Assume
such guard on vertex u with a move (u, v) where v ̸∈ G′, hence, u ∈ R by Definition 2.4.12.
As stated in Definition 2.4.13 any guard in R does not have to be included in a move so
any partial labelled substrategy is a partial labelled strategy.
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Now we present conditions which are necessary to be able to combine two partial
labelled strategies into one labelled strategy. Based on that, we show how to split a
labelled strategy into two partial labelled strategies. Figure 2.5 shows an example of the
following operations.

Definition 2.4.22 (Compatible). Two partial labelled strategies B1 and B2 (denoted as
Bi = (Gi, (Ωi,Fi), Pi,Mi, Ri)) are called compatible if the following conditions hold true.

◦ R1 = R2 = V (G1) ∩ V (G2), i.e., their graphs overlap exactly in the interface,

◦ (Ω1,F1) = (Ω2,F2), i.e., the strategy graphs are the same,

◦ M1(α, β)∪M2(α, β) is a bijection between P1(α)∪P2(α) and P1(β)∪P2(β) for every
α, β ∈ Ω1.

The conditions for compatible partial labelled strategies ensure that the interfaces over-
lap in a way that a composed function will be a bijection which allows us to cut and compose
them in the following way.

Definition 2.4.23 (Cut). Let us have a labelled strategy B and a vertex cut R which
partitions the vertices of G(B) into R, A and C in such a way that there are no edges
between A and C. We say B is cut along R into two partial labelled substrategies A and C
where A is a partial labelled substrategy induced by V (G(A)) = R ∪ A and C is a partial
labelled substrategy induced by V (G(C)) = R ∪ C such that A and C are compatible.

Definition 2.4.24 (Composing). By composing two partial labelled strategies B1 and B2

(Bi = (Gi, (Ωi,Fi), Pi,Mi, Ri)) we mean getting (G∗, (Ω,F), P ∗, T ∗) where G∗ =
(
V (G1) ∪

V (G2), E(G1)∪E(G2)
)
, Ω = Ω1∪Ω2, F = F1∪F2, ∀γ ∈ Ω we have P ∗(γ) = P1(γ)∪P2(γ),

and T ∗(α, β) = M1(α, β) ∪M2(α, β) for every α, β ∈ Ω.

Lemma 2.4.25. Composing two compatible partial labelled strategies yields a labelled
strategy.

Proof. Let us use the notation of Definitions 2.4.22 and 2.4.24. We need to check whether
(G∗, (Ω,F), P ∗, T ∗, ∅) is a partial labelled strategy. First, G∗ is a graph where we unite
vertices and edges, while only the interface vertices are overlapping; this constitutes a well
defined graph without multiedges and loops. The states Ω1 are the same for the compatible
B1 and B2. Next, mapping of the states to vertices is done by uniting the individual sets
P1(γ) ∪ P2(γ) for each γ ∈ Ω1. Each vertex is now guarded in the union of states it was
guarded before. Last, we check whether the union of M1 and M2 always maps to a well
defined transition, however, this is ensured by compatibility conditions over Pi and Mi in
Definition 2.4.22.

We define an equivalency relation (reflexive, symmetric, and transitive) with respect to
the interfaces as follows.
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Definition 2.4.26 (Interface equivalent). Two partial labelled strategies B1 and B2 (Bi =
(Gi, (Ωi,Fi), Pi,Mi, Ri)) are interface equivalent if G[R1] = G[R2], Ω1 = Ω2, F1 = F2, for all
α ∈ Ω1 we have P1(α)∩R1 = P2(α)∩R2, and we have (a, b) ∈ M1(β, γ) ⇔ (a, b) ∈ M2(β, γ)
for all u such that a = u ∨ b = u for all β, γ ∈ Ω1.

Interface equivalent partial labelled strategies have the same states with respect to the
interface. This allows us to infer compatibility as stated in the following lemma.

Lemma 2.4.27. For three partial labelled strategies B1, B2, and B3 if B1 is compatible
with B2, B2 is interface equivalent with B3, and V (G(B1))∩V (G(B3)) = R(B3), then B1 is
compatible with B3.

Proof. Let Bi = (Gi, (Ωi,Fi), Pi,Mi, Ri). We will check the conditions stated in Defini-
tion 2.4.22. As V (G1) ∩ V (G3) = R3 and R3 = R2 by interface equivalency, and R2 = R1

by compatibility, the first condition holds. As G3[R3] = G2[R2] and V (G1) ∩ V (G3) = R3

there are no possible edges which would be shared by G1 and G3 outside of R3. Ω1 = Ω2

by their compatibility, Ω2 = Ω3 by interface equivalency, so Ω1 = Ω3. The B3 is a partial
labelled strategy so each guard on vertex in V (G3) \ R3 is covered by M3 exactly once.
The guards on R3 are covered exactly when they were covered on R2. As B1 and B2 are
compatible the guards on R2 were covered by M1 exactly when they were not covered by
M2 and vice-versa. Hence, this property still holds for B1 and B3.

The culmination of the previous notions and lemmas is the following procedure which
we use as one major part for proving upper bounds.

Definition 2.4.28 (Expansion). Let us have a labelled strategy B with a partial labelled
substrategy C. Let us also have a partial labelled strategy C ′ which is interface equivalent
with C. An expansion of B from C to C ′ is the following sequence of operations.

◦ Cutting B along R(C) into C and D (see Definition 2.4.23),

◦ composing D with C ′ into a labelled strategy R (see Definition 2.4.24).

Partial labelled strategies D and C ′ are compatible due to Lemma 2.4.27. The result R is
a labelled strategy due to Lemma 2.4.25.

To establish the difference in the number of guards used to defend B and R we have
the following lemma.

Lemma 2.4.29. For two interface equivalent partial labelled strategy B1 and B2 (as in
Definition 2.4.26) there is some constant K(P1, P2) ∈ Z such that for all α ∈ Ω1 we have

K(P1, P2) = |P2(α)| − |P1(α)|.

Proof. Suppose we have arbitrary states α, β ∈ Ω1 and let Kα = |P2(α)| − |P1(α)| and
Kβ = |P2(β)| − |P1(β)|. Let M1(α, β) be part of B1 and M2(α, β) part of B2. Each defines
a pairing of guards in respective states. However, the guards on the interface are not
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required to participate in the pairing. So we have |P1(α)| + g1(α, β) = |P1(β)| + g1(β, α)
where gi is the number of guards that do not participate in the pairing of respective Mi (we
assume symmetric moves). Similarly for B2 we have |P2(α)|+g2(α, β) = |P2(β)|+g2(β, α).

As the partial labelled strategies are interface equivalent, the sets of guards which do
not participate in the pairings is the same, so g1(γ, δ) = g2(γ, δ) for all γ, δ ∈ Ω1. We get

Kα = |P2(α)| − |P1(α)|
= |P2(β)|+ g1(β, α)− g1(α, β)− (|P1(β)|+ g2(β, α)− g2(α, β))

= |P2(β)| − |P1(β)|+ (g1(β, α)− g2(β, α)) + (g2(α, β)− g1(α, β))

= |P2(β)| − |P1(β)| = Kβ.

We set K(P1, P2) = Kα as we showed that this value is the same irrespective of the chosen
α.

To be able to use an expansion we need to select a partial labelled substrategy C of B
and then show that C is interface equivalent with C ′. The expansion then proceeds as in
Definition 2.4.28 and an upper bound is obtained from the following observation.

Observation 2.4.30. Let us have an expansion of B from C to C ′ (Definition 2.4.28) which
results in a labelled strategy R. The expansion increases the number of used guards by
K(P (C), P (C ′)) due to Lemma 2.4.29. Assuming that B is an optimal strategy we obtain
γ∞
m (G(R)) ≤ γ∞

m (G(B)) +K(P (C), P (C ′)).

We showed a way to describe a labelled strategy and how we can exchange the under-
lying defended graph. However, to be able to do this we need the strategy to be the same
for the original and expanded graph. So before we start expansion we alter the strategy
on the original graph. This is discussed in the following section.

2.4.3 Tools for Altering Strategies

In this section, we introduce further notions useful for working with strategies when build-
ing upper bound constructions. The typical upper bound proof uses tools introduced in
this section to alter the strategy and then applies expansion (Definition 2.4.28) which gives
the upper bound by Observation 2.4.30.

First, let us note that all the notions can be thought of as “up to isomorphism” because
we can relabel graph or strategy vertices and relabeling does not fundamentally change
them. We skipped this in definitions for the sake of readability. Let us also set from now
on B = (G,SG, P, T , R) and SG = (Ω,F), and similarly for B′ and B∗ have respective
graphs G′ and G∗, strategies, mappings, etc.

Now we present the main operation for altering strategy graphs.

Definition 2.4.31 (Graph Cartesian product over subset). Let us have graph G1 and G2

while A ⊆ V (G1). The graph Cartesian product over subset A denoted as G1 □A G2 is a
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graph H such that

V (H) = {(u, ∅) | u ∈ V (G1) \ A} ∪ {(u, v) | u ∈ A, v ∈ V (G2)},
{(a, b), (c, d)} ∈ E(H) ⇔

(
(a = c) ∧ (a ∈ A) ∧ ({b, d} ∈ E(G2))

)
∨

∨
(
{a, c} ∈ E(G1) ∧ ((b = d) ∨ (b = ∅) ∨ (d = ∅))

)
.

The operation in Definition 2.4.31 can be thought of as a Cartesian product where the
sets of vertices created from G1 which are not present in A are identified to a single vertex.
Equivalently, H can be constructed by taking the graph Cartesian product of G[A] and
H, adding G[V (G) \ A], relabeling each new vertex u as (u, ∅) and connecting each such
(u, ∅) ∈ V (G) \ A to all (v, x) ∈ A × V (H) such that v ∈ NG1(u). This operations will
prove very useful when altering strategy graphs – we will see it used soon in Lemma 2.4.38
and many times in Section 2.5. The aim of this operation is to defend parts of the graph
almost independently. The edges created from G1 represent changes of guard positions
within one part of the graph and edges from G2 represent changes in another part. While
guards move within one part of the graph then the guards in the other part will remain
stationary. Necessity of the set A comes from the fact that the strategy in one part assumes
that a guard occupies vertex (e.g. u) so then the altered part is restricted to vertices where
the guard is present on the vertex (A = S(u)). See Figure 2.6 for an example application
of the Cartesian product over subset.

A =
A

G1 G2 H

Figure 2.6: Example of a graph Cartesian product of G1 and G2 over subset A.

We shall use the Cartesian product of G′ and complete graph over subset very often so
we will use short notation that allows us to focus on what happens in the created strategy.

Definition 2.4.32 (Short notation). Let G □A {α1, α2, . . . , αn} = G □A Kn where
V (Kn) = {β1, . . . , βn} and αi denotes sets of states created from βi, i.e., αi = {(a, βi) | a ∈
A}.

The Cartesian product over subset will be used to first alter the strategy graph. The
multiplied states shall defend the same set of vertices as before. Then, during expansion,
the guards shall be moved in order to defend new parts of the graph. There, we need to
ensure that the strategy remains defending. For this, we have the following lemma that
tackles the unchanged and changed states in separate cases.

Lemma 2.4.33. Let us have H = G1 □A G2 with vertices labelled as in Definition 2.4.31.
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1. If C is a dominating set of G1, then {(c, b) | (c, b) ∈ V (H), c ∈ C, b = ∅ ∨ b ∈ A} is a
dominating set of H.

2. If A is a dominating set of G1 and B is a dominating set of G2, then A × B (i.e.,
{(a, b) | a ∈ A, b ∈ B}) is a dominating set of H.

Proof. Let us have a vertex (x, y) in V (H).
In Case 1, there is a c ∈ C that dominates x in G1. Therefore, (c, y′) with y′ = ∅ if

c ̸∈ A or with y′ = y if c ∈ A dominates (x, y).
In Case 2, if x ̸∈ A (so y = ∅), then there is some a ∈ A that dominates x in G1. As

|B| ≥ 1 there is (a, b) ∈ A × B that dominates (x, y) in H. Otherwise x ∈ A so there is
b ∈ B that dominates y in G2. Hence, (x, y) is dominated by (x, b) ∈ A×B in H.

When changing the strategy, we want to keep the properties of Lemma 2.4.33 to ensure
that labelled strategy is defending.

The following lemma shows the second major operation for changing strategies. It
allows us to add leaves to arbitrary vertex and defend the new graph with one more guard.

Lemma 2.4.34 (Leaves addition). Let us have a graph G and let u ∈ V (G) such that
it has ℓ ≥ 1 adjacent leaf vertices v1, . . . , vℓ. Let G′ be a graph G with vertices v1, . . . , vℓ
removed. For any defending labelled strategy B′ there is a defending labelled strategy B
with strategy graph SG = S ′

G′ □S(u) Kℓ that uses one more guard than B′.

Proof. First, let SG′ = S ′
G′ □S(u) {α1, . . . , αℓ} (see short notation Definition 2.4.32). As u

must be defended S(u) ̸= ∅. By its construction, all guards of strategy SG′ are stationary
on T (αi, αj). Let δ′ = Ω′ \ {α1, . . . , αℓ}. We expand the strategy over SG′ to G by adding
u to δ (i.e., P (δ) = P ′(δ′) ∪ {u}) and adding vi to αi. We set T (αi, αj) = {(vi, u), (u, vj)}
and we extend T (δ, αi) with (u, vi).

As αi dominates the clique and S ′(u) dominates S ′
G′ we have by Lemma 2.4.33 that B

is a defending labelled strategy for G.

Observation 2.4.35. In Lemma 2.4.34 the construction works the same for any number
of leaves, hence, we may add additional leaves after its use retroactively.

We shall build strategies where vast majority of leaves are defended with Lemma 2.4.34.
This gives a merit to treat all such states in the same way as their transitions with respect
to the rest of the graph are isomorphic. To do this we put forward the following notion.

Definition 2.4.36 (Group state). Let a group defense be a set of states which were created
by Cartesian product of G and a clique Kn over a subset.

We shall use group defense only to describe groups of leaves. By Observation 2.4.35 we
will be able to add new leaves to such group at any point of the construction.

In group states, but also in general strategies we investigated, it seems that vertices
which are adjacent to multiple leaves are often permanently occupied. To get a concrete
result from this observation let us show how to alter an m-Eternal Domination strategy
such that such vertices are permanently occupied.
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Definition 2.4.37 (Permanently defended). A vertex u is permanently defended (perman-
ently occupied) in B if S(u) = Ω, i.e., u ∈ P (α) for every α ∈ Ω.

Lemma 2.4.38. For a graph G and its arbitrary defending labelled strategy B′ we may
create a defending labelled strategy B which uses the same number of guards and where
each vertex adjacent to at least 2 leaves is permanently defended.

Proof. Let vertex u be a vertex with at least 2 adjacent leaves such that u is not perman-
ently occupied in in strategy B′. Let α′ be a state where no guard occupies u. In P ′(α′),
there must be a guard on each leaf adjacent to u. Let v and w be two of the leaves adjacent
to u in G′. Let SG′ = S ′

G′ □Ω′\S′(u) {αv, αw} (see short notation Definition 2.4.32). Let
P ′(αv) = P (α′) ∪ {u} \ {w} and P ′(αw) = P (α′) ∪ {u} \ {v}, so P (αv) occupies v and
P (αw) occupies w.

To create transitions T , we keep all transitions between states within S ′(u) the same.
For all β ∈ Ω \ S ′(u), we set T (αv, β) as T (α′, β) with w in each movement substituted
by u. Such substitution still constitutes movements as N [w] ⊆ N [u]. Similarly, we create
the transitions for T (αw, β). Furthermore, we set T (αw, αv) = {(v, u), (u,w)}. Note, that
the transitions in reverse direction are derived from symmetry. This shows that there are
valid transitions for all edges of the created strategy graph SG.

In the obtained strategy B vertex u is permanently defended. As we use Cartesian
product with a complete graph over a dominating subset it follows from Lemma 2.4.33
that the strategy is still defending.

We repeat the above procedure for each vertex adjacent to at least 2 leaves until all
such vertices are permanently defended.

2.5 Reducing Cactus Graphs

In this section, we prove that Γ∞
m (G) = γ∞

m (G) for cactus graphs by showing optimal
strategies and unconditional lower bounds. The main idea is to repeatedly use reductions
on the cactus graph G to produce smaller cactus graph G′. Then we prove that a strategy
for G uses a fixed number of guards more than an optimal strategy for G′. Respective lower
bound then shows that the strategy for G is indeed also optimal. We will describe precise
way we get such results in Section 2.5.1 but before that, we show the overall structure of
the proof.

The proof uses an induction on the number of vertices. The base case is a small graph
(1 or 2 vertices) where the optimal strategy is elementary (see Definition 2.5.6). The
induction step is described in detail later. Now we show several structural properties of
cactus graphs which allow us to do the induction.

Definition 2.5.1 (Leaf cycle). Leaf cycle is a cycle which has at most one vertex (called
connecting vertex ) which has neighbor such that it is not a vertex of the cycle nor a leaf.

See a leaf cycle on Figure 2.8.
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2. m-eternal Domination Number of Cactus Graphs

Definition 2.5.2 (Leaf component). By a leaf component we mean either a leaf cycle or
a leaf vertex which is not adjacent to a leaf cycle.

Observation 2.5.3. Every cactus graph with at least 3 vertices contains a leaf component.

Proof. Let us obtain the block-cut tree T representation of the cactus graph and root it
in an arbitrary block node (see [61, block-cutpoint trees, page 36]). Each block node of T
either represents a single edge or a cycle. We observe the deepest nodes of T to get the
following three cases, see Figure 2.7.

A There is a deepest node which represents a cycle.

B A deepest node’s grandparent block is a single edge block.

C A deepest node’s grandparent block is a cycle block.

D No deepest node has a grandparent.

A B C D

or

Figure 2.7: Example subtrees for structures which always appear in the block-cut tree of a
cactus graph. Big squares represent cycle nodes, small full circles represent articulations,
and small empty circles represent single edge nodes.

Note that in cases A and C the graph contains a leaf cycle, in case B it contains a leaf
vertex which is not adjacent to a leaf cycle. The case D is trivial and the graph is either a
cycle or a single edge. Hence, a cactus graph always contains a leaf component.

Definition 2.5.4 (Vertex colors). A non-connecting vertex v of a leaf cycle C is labeled
with a color col(v) which depends on the number of adjacent leaves in the following way.

col(v) is





0̂ if v is adjacent to 0 leaves
1̂ if v is adjacent to 1 leaf
2̂ if v is adjacent to at least 2 leaves

We shall label v as col(v) = X̂ if v is the connecting vertex of C. When a vertex can have
different colors (to cover several cases at once) we list them by set of colors. For that
purpose, we may write 0̂ instead of {0̂}, and similarly for 1̂, 2̂, and X̂. Also, we use a
shortcut to denote all colors _̂ = {0̂, 1̂, 2̂, X̂}.

See Figure 2.8 for an example of 0̂, 1̂, and 2̂ vertices.
To describe reductions over leaf components we will use a concise notation for the

leaf cycles which just lists the colors of consecutive vertices of the cycle as follows. See
Figure 2.8 for an example.
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a b

c
d

G

e

0̂ 1̂

2̂

X̂

⋆̂

Figure 2.8: A leaf cycle of a graph G with a
partial labelled strategy B containing vertices
a, b, c, d, and e with colors 0̂, 1̂, 2̂, X̂, and
_̂, respectively. The original graph was bigger
and its rest was connected to d. To look at
the leaf cycle in isolation, the graph was cut
in vertex d that now constitutes interface of B.
This cycle would be denoted by a leaf sequence
(X̂, _̂, 0̂, 1̂, 2̂, X̂) (or reversed).

Definition 2.5.5 (Leaf sequence). Let (v1, . . . , vn) be n consecutive vertices of a leaf cycle.
The leaf sequence of vertices (v1, . . . , vn) is (col(v1), . . . , col(vn)) where col(vi) ⊆ {0̂, 1̂, 2̂, X̂}.
Moreover, given two leaf sequences A and B and a graph G which contains a leaf cycle
with a leaf sequence A, let A → B denote a reduction of subgraph with leaf sequence A to
one with leaf sequence B in G to obtain G′.

Note that if the leaf sequence starts and ends with a connecting vertex and contains
no _̂, then it describes the whole cycle because colors correspond to the number of leaves
and there is only one connecting vertex in a leaf cycle.

Now, we show the base case and the overview of the induction step.

Definition 2.5.6 (Base cases). Let the base cases be the following graphs along with their
optimal defending labelled strategies.

◦ A single isolated vertex with no edges defended by labelled strategy
(
({u}, ∅), ({α}, ∅), {α → {u}}, ∅

)
.

◦ A single isolated edge is defended by labelled strategy
((

{u, v}, {{u, v}}
)
,
(
{α, β}, {{α, β}}

)
,
{
α → {u}, β → {v}

}
,
{
(α, β) → {(u, v)}

})
.

2.5.1 Technique and Overview

For the induction step, every reduction takes the cactus graph G and changes it to G′

which has smaller number of vertices. Reductions will be performed on a leaf component
which by Observation 2.5.3 is always present in a cactus graph on at least three vertices.
The two cactus graphs which have at most two vertices are covered by base cases from
Definition 2.5.6.

More precisely, every reduction shows lower bound and upper bound. Lower bound is
shown for the m-Eternal Guard Configuration and involves using Observations 2.4.3
and 2.4.8 to 2.4.10. These tools make the graph smaller and show that in any defending
strategy the removed parts required some minimum number of guards; they give us lower
bound Γ∞

m (G) ≥ Γ∞
m (G′) +K for some constant K.
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Upper bounds are shown for the m-Eternal Domination and usually involve two
separate steps. First step takes the reduced graph G′ and its optimal strategy S ′

G′ and
shows how to alter the strategy by tools shown in Section 2.4.3. This does not change the
number of guards, but only structure of the defense. Second step uses the framework shown
in Section 2.4.2. It takes part of the graph we intend to expand (Definition 2.4.28), cuts
it, and replaces with an interface equivalent (Definition 2.4.26) partial labelled strategy,
as described in Observation 2.4.30. During the expansion, the strategy graph SG does not
change (so SG = SG′), however the graph and mapping does change. The labelled strategy
now maps strategy graph states so that there are new guards and some states have guards
moved to other vertices of the graph. We also show how the transitions change between
states that were altered. When the defense of the graph is managed with K additional
guards, this gives us an upper bound γ∞

m (G) ≤ γ∞
m (G′) +K (the same K as in the lower

bound).
Combining the lower and upper bound using Lemma 2.4.2 results in an optimal number

of guards for G for m-Eternal Domination and m-Eternal Guard Configuration.
The used reduction depends on a leaf component that the cactus graph contains by

Observation 2.5.3. If the deepest node is not adjacent to a leaf cycle, then we use leaf
reductions shown in Section 2.3. Using these reduction exhaustively results in having a
leaf cycle (or a base case) – we will show this soon in Lemma 2.5.7.

To reduce leaf cycles we will need additional properties on edges of the leaf cycle. This
involves being able to forbid movement along an edge, and forcing move along an edge. We
achieve this by partitioning all states of the strategy graph into tree groups which ensure
these properties. The properties are established in Section 2.5.2.

Having the properties we take the leaf cycle and look at its vertex colors. If a color
pattern is listed among reductions then we have a way to remove it. The reductions are
split into two groups. First recognizes just a small part of the cycle, making it shorter –
these are called cycle reductions Section 2.5.3. The second recognizes the whole cycle and
removes it entirely, leaving just a few leaves in its place – these are constant component
reductions shown in Section 2.5.4. We show that one of these reductions may always be
used by exhaustive search of all possibilities in depicted in Figure 2.14; and doubling this
function, we show a slightly different proof in Lemma 2.5.19.

We end this section with the aforementioned proof of the cactus graph structure after
application of leaf reductions in Lemma 2.5.7 and a diagram overview of the remaining
sections in Figure 2.9.

Lemma 2.5.7. Exhaustive application of Reductions t1, t2, and t3 on a cactus graph G
results in reaching the base case or it results in a cactus graph with a leaf cycle.

Proof. We saw in Observation 2.5.3 that in every cactus there either is a leaf cycle or there
is a set of ℓ ≥ 1 leaves with a common parent which is connected to the rest of the graph
with a single edge. The number ℓ directly implies which tree reduction may be applied. If
ℓ = 1, then we may use Reduction t1; if ℓ = 2, then we use Reduction t3; and last, if ℓ > 2,
then we use Reduction t2. After exhaustive application we either reach the base case or
the other case applies – we have a leaf cycle.
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Section 2.4.1 Lower bounds

Observation 2.4.3 Vertex identification

Observation 2.4.8 Leaf lower bound

Observation 2.4.9 Star lower bound

Observation 2.4.10 Path lower bound

Section 2.5.2 Properties of cycle edges

Property 2.5.11 Proper labelled strategy

Section 2.4.3 Tools for altering strategies

Definition 2.4.31 Cartesian product over subset

Lemma 2.4.34 Leaves addition

Definition 2.4.36 Group state Section 2.3 Leaf reductions

Lemma 2.3.1 Reduction t1

Lemma 2.3.2 Reduction t2

Lemma 2.3.3 Reduction t3

Section 2.5.3 Cycle reductions

Lemma 2.5.12 Reduction c1

Lemma 2.5.13 Reductions c2 and c3

Lemma 2.5.14 Reduction c4

Lemma 2.5.15 Reduction c5

Lemma 2.5.18 Reduction c6

Section 2.5.4 Constant component reductions

Definition 2.5.21 Cactus multigraph

Lemma 2.5.22 Reduction m1

Lemma 2.5.23 Reduction m2

Lemma 2.5.24 Reduction r1

Lemma 2.5.25 Reduction r2

Lemma 2.5.26 Reduction r3

Lemma 2.5.27 Reduction r4

Lemma 2.5.28 Reduction r5

Figure 2.9: Overview of Section 2.5. Left boxes represent tools obtained in Section 2.4
(see Figure 2.2) and properties we introduce in Section 2.5.2; Right box shows structure of
Section 2.5; Left-to-right arrows show which tools are used for which results. Right-to-right
(green) arrows show that the reduction is partially based on or uses another reduction.

2.5.2 Properties of Cycle Edges

We shall assume that the built strategy over the graph holds some properties which allow
us to make stronger induction step. More precisely, these properties shall be necessary to
show Reductions c1, c4, and c5.

Definition 2.5.8 (Edge states). By edge states of (u, v) in Ω (where {u, v} ∈ E(G)) we
mean creating sets Lu,v, Ru,v, and Nu,v such that

α ∈ Lu,v if ∃β ∈ Ω, (u, v) ∈ T (α, β),

α ∈ Ru,v if ∃β ∈ Ω, (v, u) ∈ T (α, β),

Nu,v = Ω \ (Lu,v ∪Ru,v)

Note that because the orientation of the edge plays a role in these definitions, we have
La,b = Rb,a, Ra,b = Lb,a, and Na,b = Nb,a. The names of the sets reflect from which side a
guard can traverse the edge. Also note, that if we assume symmetry then when moving to
and from Nu,v the edge {u, v} cannot be traversed. We propose the following edge property
which is somewhat similar to Observation 2.4.16.
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Property 2.5.9 (Proper edge states). For a strategy B over graph G an edge {u, v}
holds Property 2.5.9 if and only if its edge states Lu,v, Ru,v, and Nu,v are all non-empty,
Lu,v ∩Ru,v = ∅, and each of them is a dominating set over SG.

There are several ramifications of an edge having Property 2.5.9. Because of Lu,v ∩
Ru,v = ∅ there is no state where we may choose to move over (u, v) or (v, u), i.e., at most
one of these movements is available. At the same time, as each of these sets is dominating
SG, it follows that we may get into any of these sets in one transition. Last, as each set is
non-empty we may force the strategy to forbid to move over {u, v} in the current and one
future transition by moving to Nu,v at any point. Additionally, we may force a movement
over (u, v) by moving first to some α ∈ Lu,v and then to β ∈ Ru,v such that (u, v) ∈ T (α, β)
as per Definition 2.5.8.

All the properties that proper edge states additionally have compared to non-proper
edge states are true irrespective of permutations of Lu,v, Ru,v, and Nu,v. Hence, we may
use the same sets on different edges by permuting them and checking that they constitute
edge states of the new edge.

Observation 2.5.10. For edges {u, v} and {a, b} if we map proper edge states Lu,v, Ru,v,
and Nu,v to new sets La,b, Ra,b, and Na,b (with possibly permuting them) then these con-
stitute proper edge states of {a, b} if and only if they constitute edge states of {a, b}.

Proof. If the new edge states La,b, Ra,b, and Na,b do not constitute edge states then they
trivially cannot be proper edge states. When Lu,v, Ru,v, and Nu,v are proper edge states
then they are disjoint and nonempty. These properties do not depend on their order so as
long as the new states are edge states they will be proper.

Our goal will be to have Property 2.5.9 on all edges that lie on a leaf cycle that are
incident to at least one 0̂ or X̂ vertex. We shall also show that it holds in some special
cases to make several reductions easier.

In reductions, we will check that an edge has Property 2.5.9, however, the intuition
about it is as follows. We need to check whether each cycle edge is traversed at least once
and whether it is not traversed at all by at least one state. Also, it is usually trivial, but
we should check that the edge cannot be traversed in both directions from some state.

Property 2.5.11 (Proper labelled strategy). A partial labelled strategy B over a cactus
graph G has Property 2.5.11 if and only if Property 2.5.9 holds for each edge that lie on a
cycle and

◦ is incident to a 0̂ or a X̂ vertex,

◦ or is on a leaf cycle (X̂, 2̂, 2̂, X̂),

◦ or is incident to a X̂ vertex while not being a edge which lies between X̂ and a 2̂ vertex
on leaf cycle (X̂, 2̂, 0̂, 0̂, 2̂, X̂) or (X̂, 0̂, 0̂, 2̂, X̂).
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Our goal is to keep our cactus graph proper (as per Property 2.5.11) in all steps of
reducing. For simplicity, we shall work with reductions as if all edges on cycles which are
incident to 0̂ or X̂ vertex have Property 2.5.9 and we shall tackle the exceptions to this rule
separately in Observation 2.5.20 and Lemma 2.5.29.

2.5.3 Cycle Reductions

Due to Lemma 2.5.7 we know that applying tree reductions may result in either solving the
instance entirely or we obtain a leaf cycle. In this section, we will tackle leaf cycles with
cycle reductions which results in a leaf cycle of constant size. Constant-sized leaf cycles
are then resolved in Section 2.5.4.

Let C denote a leaf cycle where vertices are labeled with colors according to Defin-
ition 2.5.4. Cycle reductions consist of the following reductions (see notation in Defin-
ition 2.5.5). E.g., Reduction c1 describes that a graph G with a leaf cycle that con-
tains consecutive vertices U with colors (_̂, 1̂, _̂) may be changed to G′ by substituting
U with a vertices of colors (_̂, _̂) (so just 1̂ was removed). At the same time, it claims
that γ∞

m (G) ≤ γ∞
m (G′) + 1 and Γ∞

m (G) ≥ Γ∞
m (G′) + 1. All of this is concisely written as

(_̂, 1̂, _̂) → (_̂, _̂) + 1.

Reduction 4. c1 (_̂, 1̂, _̂) → (_̂, _̂) + 1 where (_̂, _̂) has Property 2.5.9.

Reduction 5. c2 (2̂, 1̂, _̂) → (2̂, _̂) + 1

Reduction 6. c3 (2̂, 2̂, _̂) → (2̂, _̂) + 1

Reduction 7. c4 (_̂, 0̂, 0̂, 0̂, _̂) → (_̂, _̂) + 1 where (_̂, _̂) has Property 2.5.9.

Reduction 8. c5 (_̂, 0̂, 2̂, 0̂, _̂) → (_̂, _̂) + 2 where (_̂, _̂) has Property 2.5.9.

Reduction 9. c6 (X̂, 2̂, [0̂, 2̂]2k, X̂) → (1̂) + 3k + 1 and (X̂, 2̂, [0̂, 2̂]2k+1, X̂) → (2̂) + 3k + 2

Let a and b be the first and the last vertex of the leaf cycle in G′, respectively, that
are described by the reduction. It is clear that these reductions may be used in cases
where a and b are non-connected disjoint vertices. We note that the reductions will be
used when {a, b} ∈ E(G′) though the result contains a pair of multiedges between a and
b in G. Moreover, these reductions may be used even in case where a = b. Applying the
reduction in such a case results in a loop in a within G′. Though loops and multiedges may
be created by the process they will be immediately removed. These cases will be addressed
in Section 2.5.4.1.

Reductions c1, c4, and c5 require the edge that is being expended (edge {a, b} in G′)
holds Property 2.5.9. We shall ensure this by keeping Property 2.5.11 for G′ while ensuring
that during every expansion this property is preserved.

Lemma 2.5.12. Let G′ be G after application of Reduction c1. G is defended with 1
more guard than G′.
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Table 2.2: List of the cycle reductions; notation is the same as in Table 2.1

Reduction Lower bound Upper bound

c1 a b

−1

u

v

a b

v

ua b
α β

γ

γ

a b

α′
β′

+1

c2

−1

ua ba b a ua b

γ′ γ+1

β′ βΩ
Ω

b

c3

−1

ua ba b a ua b

γ′ γ+1

β′ βΩ
Ω

b

c4 a b

−1

ua b a b
α β

αβ
u
γ

+1

c da b

α′
β′

c5 a b

−2

u
ba a b

α β
αβ

u
Ω

+2

c d

γ

a b

α′
β′

c6 See Figures 2.10 and 2.11

Proof. Let us label the vertices of colors (_̂, 1̂, _̂) by a, u, b, respectively. Let v be the
leaf adjacent to u. By using Observation 2.4.8 on vertices {u, v} we get lower bound
Γ∞
m (G) ≥ Γ∞

m (G′) + 1.
For upper bound, let La,b, Ra,b, and Na,b be edge states of the edge a, b in the strategy

of G′ obtained as stated in Definition 2.5.8. We extend all states of La,b and Ra,b by adding
u to them, and we add v to Na,b. We substitute movements (a, b) with {(a, u), (u, b)} in
T (La,b, Ra,b) and we add (u, v) to T (La,b ∪ Ra,b, Na,b). The new vertices are defended as
La,b and Na,b are dominating the strategy graph because Property 2.5.9 holds for {a, b} in
G′. The edge states for the new edges {a, u} and {u, b} in G remain the same as for {a, b}
in G′. Therefore, these edges now hold Property 2.5.9 in G. By extending all states with
one guard we got a defending labelled strategy, so γ∞

m (G) ≤ γ∞
m (G′) + 1. By Lemma 2.4.2

we get that G is defended with one more guard than G′.

Reductions c2 and c3 merge a group of consecutive red and pink vertices and defend
leaves adjacent to them by a group state (Definition 2.4.36).

Lemma 2.5.13. Let G′ be G after application of Reduction c2 or c3. G is defended with
1 more guard than G′.

Proof. The reductions are separate for the sake of future argument but they are proven in
the same way. Let us label the vertices of colors (2̂, {1̂, 2̂}, _̂) by a, u, b, respectively. Let
R1 denote all leaves adjacent to u. By applying Observation 2.4.8 on R1∪{u} we get lower
bound Γ∞

m (G) ≥ Γ∞
m (G′) + 1.
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2.5. Reducing Cactus Graphs

For upper bound, let γ′ be the group state for leaves adjacent to a. We add to leaves
R1 two new vertices which are defended by γ′ as pointed out in Lemma 2.4.34. Now we
split u from a, taking its leaves with it that we now label by R2. Transitions between
leaves is extended to T (R1, R2) = {(R1, a), (a, u), (u,R2)} and similarly, we extend all
transitions which used a. The transitions that interacted with a and b are preserved, so
the reduction expands interface equivalent partial labelled strategies. Though we did not
need Property 2.5.9 the graph still has Property 2.5.11 because the new edge {u, b} takes
on exact transitions that {a, b} had. So if {a, b} held the property in G′, then {b, u} holds
it in G.

We added one guard so γ∞
m (G) ≤ γ∞

m (G′) + 1 and by Lemma 2.4.2 we get that G is
defended with one more guard than G′.

Lemma 2.5.14. Let G′ be G after application of Reduction c4. G is defended with 1
more guard than G′.

Proof. Let us label the vertices of colors (_̂, 0̂, 0̂, 0̂, _̂) by a, c, u, d, b, respectively. Using
Observation 2.4.10 on {c, u, d} we get lower bound Γ∞

m (G) ≥ Γ∞
m (G′) + 1.

For upper bound, let L′
a,b, R′

a,b, and N ′
a,b be edge states of the edge a, b in the strategy

of G′ obtained from Definition 2.5.8. These are proper edge states as {a, b} holds Prop-
erty 2.5.9 in G′. We extend the states by adding d to all states of L′

a,b, c to R′
a,b, and u

to N ′
a,b; this creates sets La,b, Ra,b, and Na,b. We substitute movements along (a, b) with

{(a, c), (d, b)} in T (La,b, Ra,b), hence, the exchanged parts of the graph are interface equi-
valent. We add (c, u) to T (Ra,b, Na,b) and (d, u) to T (La,b, Na,b). The new {c, u, d} vertices
are defended by the nonempty sets Ra,b, Na,b, and La,b, respectively. The edge states for
the new edges are as follows.

La,b = La,c = Ld,b = Nc,u = Ld,u

Ra,b = Ra,c = Rd,b = Lc,u = Nd,u (2.4)
Na,b = Na,c = Nd,b = Rc,u = Rd,u

As these are only permutations of the edge sets by Observation 2.5.10 they hold Prop-
erty 2.5.9. We get γ∞

m (G) ≤ γ∞
m (G′) + 1. By Lemma 2.4.2 we get that G is defended with

one more guard than G′.

Lemma 2.5.15. Let G′ be G after application of Reduction c5. G is defended with 2 more
guards than G′.

Proof. The proof goes very similarly as the proof of Lemma 2.5.14, but all states Na,b shall
group defend leaves adjacent to u while u will be permanently occupied.

We label the vertices of colors (_̂, 0̂, 2̂, 0̂, _̂) by a, c, u, d, b, respectively. Let R be the
leaves neighboring u. Using Observation 2.4.9 on u and its neighborhood we get lower
bound Γ∞

m (G) ≥ Γ∞
m (G′) + 2.

Repeat the same sequence of steps as in the proof of Lemma 2.5.14 which uses one
guard and then add leaves adjacent to u by Lemma 2.4.34 using one extra guard. This
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does not change transitions over the edges which are not incident to the leaves so by
Observation 2.5.10 they still hold Property 2.5.9. We get γ∞

m (G) ≤ γ∞
m (G′) + 2. By

Lemma 2.4.2 we get that G is defended with two more guards than G′.

We remark that using reductions t1, t2, t3, c1, c4, and a small set of constant component
reductions is sufficient to solve so-called Christmas cactus graphs (graphs where each edge
is in at most one cycle and each vertex is in at most two 2-connected components) for
which the optimal strategy we presented in [?]. The remaining reductions tackle vertices
of color 2̂, which are not present in the class of Christmas cactus graphs.

The last cycle reduction is a curious special case, let us recall it first.

Reduction 9. c6 (X̂, 2̂, [0̂, 2̂]2k, X̂) → (1̂) + 3k + 1 and (X̂, 2̂, [0̂, 2̂]2k+1, X̂) → (2̂) + 3k + 2

We shall use all the other cycle reductions first and if none of them can be used, then
we use Reduction c6. This allows us to assume a particular structure which we define and
prove now. The reason behind this structure may also be well understood from decision
diagram of reduction application in Figure 2.14.

Definition 2.5.16 (RW-cycle). A leaf cycle C is a RW-cycle if it consists of vertices with al-
ternating 2̂ and 0̂ colors such that the first and last is 2̂, i.e., C = (X̂, 2̂, 0̂, 2̂, 0̂, . . . , 2̂, 0̂, 2̂, X̂).

Lemma 2.5.17. Assume a leaf cycle C where Reductions c1, c2, c3, c4, and c5 cannot be
applied anywhere. Then, |C| ≤ 6 or C is a RW-cycle.

Proof. First, note that if the leaf cycle contains 1̂ vertices, then there always is a 1̂ ver-
tex which neighbors 0̂ or X̂, in that case we use Reduction c1, or it neighbors 2̂, we use
Reduction c2. Hence, all 1̂ vertices are removed if Reductions c1 and c2 were exhaustively
used.

Next, as only 2̂, 0̂, and X̂ vertices remain, exhaustively using Reduction c3 ensures
that there are no two adjacent 2̂ vertices. (Note that if only red vertices remained, than
we end up with (X̂, 2̂, X̂) which removes the multiedge by Reduction m2 and then uses
Reduction t3.)

Last, if there is a (2̂, 0̂, 0̂) part of a leaf cycle then the 2̂ vertex is either also adjacent
to X̂ or Reduction c5 can be used as would (_̂, 0̂, 2̂, 0̂, 0̂) necessarily occur. Exhaustively
using Reduction c4 ensures that such cases do not occur. So whenever there are two 0̂
adjacent vertices the X̂ vertex is at distance at most 2 from them. This means that either
the cycle has at most 5 vertices or the vertices of colors 2̂ and 0̂ alternate and constitute
a RW-cycle.

The lower bound for an RW-cycle will not be much harder than for other reductions,
however, for the upper bound we will need a strategy made just right for such a cycle.

Lemma 2.5.18. Reduction c6 is correct.

Proof. Let us label the vertices along the cycle as u1, u2, . . . , un with u1 being the connecting
vertex (so that 2̂ vertices are even). Let un+1 = u1. Let R2, R4, etc. be the leaves adjacent
to the red vertices u2, u4, and so on.
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2.5. Reducing Cactus Graphs

First, we use Observation 2.4.8 on {u6} ∪ R6; second, we use Observation 2.4.9 on
N [u4]. We shortened the cycle by 4 and got lower bound of 3. By repeating the argument
k times we end up with a cycle G′ of constant size 2 or 4. The cycle of size 2 gets reduced
by m2 and then t3 which results in a lower bound of 1. The RW-cycle of size 4 has form
(X̂, 2̂, 0̂, 2̂, X̂) and its lower bound is shown in Reduction r4 to be 2. Putting the 3k for every
4 vertices together with 1 and 2 lower bound for respective sizes of the cycle, we get the
desired lower bounds. See Figure 2.10 for an illustration of shortening the cycle by 4.

−3

u2 u4

R2

u8

R6 R8

u7
u6

u1
u2

R1

u8

R8

u7u1

R4

u3 u5

Figure 2.10: Part of the lower bound proof for Reduction c6

Strategy for the upper bound is quite tricky to describe so let us define a few new
notions just for its description. Let red-parity of an even number i be the parity of i/2.
This divides red vertices of the RW-cycle into red-odd and red-even, based on the red-
parity. Let reverse labeling be the labeling of the RW-cycle in opposite ordering, i.e., if
u′
1 = un+1, u′

2 = un, u′
3 = un−1, . . . , u′

n = u2, and u′
n+1 = u1, then u′

1, . . . , u
′
n is the reverse

labeling with respect to labeling u1, . . . , un.
For the upper bound, we distinguish two cases depending on the size of the RW-cycle.

First case is that the size is n = 4k + 2, the second has n = 4k.
We now focus on the first case, where the RW-cycle has size n = 4k + 2. Note that in

RW-cycle of this size reverse labeling does not change the red-parity of red vertices. We
alter the strategy by gradually expanding the states as follows.

S∗
G′ = S ′

G′ □S′(u1) {α1, α2, β4, β8, . . . , β4k} and SG′ = S∗
G′ □Ω\S′(u1) {β2, β6, . . . , β4k+2}

Now we perform expansion from G′ to G and set the states Ω of SG as follows.

P (α1) =
k⋃

x=0

{u4x+3} P (α2) =
k⋃

x=0

{u4x+1}

P (β4x) =
(
(P (α2) ∩ {uj}j<i) ∪ (P (α1) ∩ {uj}j>i)

)
∪ {R4x} (2.5)

P (β4x+2) =
(
(P (α1) ∩ {uj}j<i) ∪ (P (α2) ∩ {uj}j>i)

)
∪ {R4x+2} \ {u1}

Notice that u1 ∈ P (α2) as u4x+1 = u1 for x = 0 and u1 ∈ P (α1) as u4x+3 = u4k+3 =
un+1 = u1 for x = k. For P (β4x+2) the intersections imply that u1 is not contained, but we
mention it explicitly for clarity (as we do not consider un+1 to be uj for j < i even though
it equals u1). The state β2i group defends leaves adjacent to u2i. Note that they behave
differently based on their their red-parity.

Now for the transitions. To make the notation concise let us shorten consecutive move-
ments through red vertices as Fi = {(ui, ui+1), (ui+1, ui+2)} and Bi = {(ui, ui−1), (ui−1, ui−2)}
(as forward and backward). Note that we use Fi and Bi only for odd values of i.
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Let us have integers x and y and assume, without loss of generality, that x ≤ y. We
set the movements of transitions as follows. If 2x and 2y have the same red-parity, then

T (β2x, β2y) = {(R2x, u2x), (u2x, u2x+1)} ∪
y−4⋃

i=x

F2i+3 ∪ {(u2y−1, u2y), (u2y, R2y)}. (2.6)

Otherwise, 2x and 2y have different red-parity. If x is odd (so y is even), then their
transition is defined as follows.

T (β2x, β2y) = {(R2x, u2x), (u2x, u2x−1)} ∪
x⋃

i=2

B2i−3 ∪
2k−1⋃

i=y+1

B2i+3 ∪ {(u2y+1, u2y), (u2y, R2y)}

If the red-parity is different and x is even, then in reverse labeling and swapping x with y we
end up in the case where the red-parity is still different, but x is odd. This case was already
solved. The other direction of these transitions is filled in by symmetry (Property 2.4.18).

It remains to describe transitions with α1 and α2.

T (α1, α2) = {(u1, u1)} ∪
k−1⋃

i=0

F4i+3

T (β4x, α1) = {(R4x, u4x), (u4x, u4x−1)} ∪
x−1⋃

i=1

B4i+1 (2.7)

T (β4x+2, α2) = {(R4x+2, u4x+2), (u4x+2, u4x+1)} ∪
x⋃

i=1

B4i−1 (2.8)

Note that α1 is α2 in reverse labeling. Hence, the case T (β4x, α2) is equivalent to T (β4x, α1)
in reverse labeling. Similarly, the case T (β4x+2, α1) is equivalent to T (β4x+2, α2) in reverse
labeling. See a part of this strategy on Figure 2.11.

u1
u2

u3
u4

u5

u6
u7

u8
u9

u10u11
u12u13

u14
u15

u16
u17

u18 u19 = u1

β2 β4 β8 β10 β12 β14 β16 β18β6

α1 α1 α1 α1α1,2, β4k
α2 α2 α2 α2

β6 β12

α1 α2

Figure 2.11: Part of a strategy on a RW-cycle of red-odd size 18 with guards (shown purple)
placed on P (β6). A few selected transitions are shown as an example.

For the interface equivalency, note that in α1, α2, and β4k occupy u1 and states β4k+2 do
not occupy u1. We showed how to transition between every pair of states, so the strategies
are interface equivalent with a single pink vertex with expanded states as in SG′ .

Now for the second case, where the RW-cycle has size n = 4k. Note that in RW-cycle
of this size reverse labeling changes the red-parity of red vertices, which was not true in the
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first case. The difference in the construction of the strategy is that now we expand from a
red vertex. Let u′

1 and u′
2 be the two leaves of the red vertex. Let δ′ = Ω′ \ (S(u′

1)∪S(u′
2)).

We gradually alter the strategy in the following way.

S1
G′ = S ′

G′ □S(u′
1)
{γ, β4, β8, β12, . . . , βn}

S2
G′ = S1

G′ □S(u′
2)
{α1, β2, β6, . . . , βn−2}

SG′ = S2
G′ □δ′ {α2}

We perform the expansion to get SG such that all the states have exactly the same defin-
itions as in the first case, see Equation (2.5). We note a major difference: in the second
case, u1 is not an element of P (α1). We added one extra state γ which has P (γ) = P (α1).
There will be a major significance for this state when proving edge properties.

Now we describe the transitions for the the strategy on G. For 2x and 2y of the same
red-parity, the transition Equation (2.6) still holds. In case 2x and 2y (with x < y) have
different red-parity, then we consider two separate cases based on red-parity of 2x.

T (β4x, β4y+2) = {(R4x, u4x), (u4x, u4x−1)} ∪
x−1⋃

i=1

B4i+1 ∪
k⋃

i=y+2

B4i−1 ∪

∪ {(u4y+1, y4y+2, (u4y+2, R4y+2)}

T (β4x+2, β4y) = {(R4x+2, u4x+2), (u4x+2, u4x+1)} ∪
x−1⋃

i=0

B4i+3 ∪
k+1⋃

i=y+2

B4i−3 ∪

∪ {(u4y−1, y4y, (u4y, R4y)}

Notice the difference in u1 – transition T (β4x, β4y+2) does not move through u1 so there
u1 is stationary during it; in T (β4x+2, β4y) movements {(u2, u1), (u1, un)} happen. To fill
all possibilities of mutual transitions among β2x we add transitions obtained by reversed
labeling and symmetry.

Now we show the transitions with α1 and α2. Note that reversed labeling does not
change these two states. For β4x+2 we can apply Equation (2.8) to get T (β4x+2, α2), and
by reversing the labeling this gives us also T (β4x, α2). Note that after this transition there
is one less guard on G as it leaves through the interface {u1}. In particular, T (β2x, α2)
moves to u1 via (u2, u1) if 2x is red-odd, and via (un, un+1) if 2x is red-even.

Similarly, for β4x we can apply Equation (2.7) to get T (β4x, α1), and by reversing the
labeling we get T (β4x+2, α1). This transition did not interact with the interface. The
transition among the two states is as follows.

T (α1, α2) =
k−1⋃

i=0

F4i+3

Note that this again results in a move (un, un+1).
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Last, we introduce the new state γ which has the same guard configuration as α1, but
differs in one transition. So T (γ, β2x) = T (α1, β2x), and T (γ, α2) = ∅ (all guards are
stationary), but T (γ, α2) shall be T (α1, α2) in reverse labeling. More precisely,

T (γ, α2) =
k−1⋃

i=0

B4i+3.

This contains a move (u2, u1). See how movements interact with the interface in Figure 2.12.

u1 u1red-odd red-even

Figure 2.12: Movements through the X̂ vertex in red-odd and red-even RW-cycle.

We discussed the interface impact of all transitions and note that they are equivalent
to those in SG′ , hence, the exchanged strategy is interface equivalent.

It remains to show that SG is a proper strategy in both cases. The strategy started
S ′
G′ was a clique and by Cartesian product over single vertices it remained a clique. Thus,

it suffices to say that there is at least one state in Lui,ui+1
, Rui,ui+1

, and Nui,ui+1
, and that

Lui,ui+1
∩ Rui,ui+1

= ∅ for every i ∈ {1, . . . , n}, as any non-empty subset of vertices of the
clique is dominating.

Now we show the partitioning of the states into Lux,ux+1 , Rux,ux+1 , and Nux,ux+1 for
each x ∈ {1, . . . , n}, see Figure 2.13 for an illustration. First, observe that all closed
neighborhoods of u2x for 4 ≤ 2x ≤ n−2 contain exactly 2 guards in all the states we defined
for this strategy. Let x be an even integer such that 4 ≤ x ≤ n− 2. Let e = {ux+1, ux+2}.

N R L R L RL R L R L

e1 e2
Figure 2.13: The states of β2x that belong to Le, Re, Ne for e equal to the edges e1 and e2.

We show that βx ∈ Ne by a contradiction. Assume that in some transition from βx a
guard moved through e. As in βx vertex ux+1 is not occupied the guard must have moved
from ux+1. However, then N [ux] would have 3 guards after the transition which cannot
happen as we observed; a contradiction.

For edges that could not be addressed in the argument because they are too close to
the X̂ vertex – e1 = {u1, u2} and e2 = {u3, u4}. We observe that for red-even RW-cycles
α1 ∈ Ne1 and γ ∈ Ne2 . For red-odd RW-cycles β2 ∈ Ne2 and βn ∈ Ne1 .
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Now we claim that for any even x such that 2 ≤ x ≤ n, e = {ux+1, ux+2}, the states βy

where y ̸= x are in Le if and only if ux+1 ∈ P (βy), and they are in Re otherwise. We shall
prove this more intuitively, as otherwise the claim can be proved by exhaustively listing
all edges in all the transitions. First notice, that all movements from βy which are not
incident to leaves are performed over a continuous part of the cycle which starts in uy, and
that they move “away” from uy towards the other end of the part. The movements always
move an occupied 0̂ to 2̂ and if the part continues then moves the 2̂ to the adjacent 0̂ (this
is true even when moving through the X̂ vertex). Hence, if e (that is not incident to X̂)
is included in the part of the movement, then we move (ux+1, ux+2) if and only if xx+1 is
occupied, and we move (ux+2, ux+1) if and only if ux+1 was unoccupied. This proves the
claim.

Remainder of the edges which start at even positions and their N , L, and R sets can
be obtained by the same argument on reversed labelling.

2.5.4 Constant Component Reductions

The following lemma shows that considering the constant component cases completes the
list of all necessary reductions.

Lemma 2.5.19. Let us have a cactus graph G. After an exhaustive application of leaf
and cycle reductions the reduced cactus graph G′ is either a base case or it contains a leaf
cycle of constant size.

Proof. First, by Observation 2.5.3 the cactus always contains a leaf component. If we
exhaustively apply tree reductions, then by Lemma 2.5.7 we are either done or there is
a leaf cycle C. In 2.5.17 we saw that an exhaustive application of the cycle rules results
either in a base case or a cycle with alternating 2̂ and 0̂ vertices, which gets tackled
by Reduction c6. The cases that remain are cycles of constant sizes where none of the
reductions may be applied.

We obtain the list of constant leaf cycles by the following procedure. First, we apply
Reductions c1 and c2 exhaustively. This removes all pink vertices from the leaf cycle. Now,
let us scan over the vertices of the leaf cycle in a linear order of vertices along the cycle,
starting from the connecting vertex. On the one hand, whenever there is a cycle reduction
applicable on the vertices which were scanned so far, then we can apply it. Hence, such a
leaf cycle does not belong to constant leaf cycle cases. On the other hand, when the cycle
returns back to the connecting vertex and still no cycle reduction may be used, then this
cycle constitutes a constant leaf cycle. We present a full search diagram in Figure 2.14.

Again, we shall denote the reductions concisely as defined by Definition 2.5.5. However,
in constant component reductions the leaf sequence describes the whole leaf cycle and the
connecting vertex is listed as the first and the last vertex. The vertices of the leaf cycle
will be denoted by u, u1, u2, . . . , un−1, u where u is the connecting vertex. Let R1, . . . , Rn−1

denote sets of all leaves adjacent to vertices u1, . . . , un−1, respectively. Note that the size
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Figure 2.14: Case analysis of applied reductions on a leaf cycle. Vertices 1̂ were removed
first by exhaustively applying their reductions. Scanning over vertices of a leaf cycle in
order from the connecting vertex we identify these cases. The leaves show which reduction
should be used for the scanned leaf cycle. Labels c1 up to c5 (yellow leaves) signify cycle
reductions; labels mi and ri (red leaves) signify constant component reductions; nodes with
a star ∗ require Observation 2.5.20. We can check that all the cases are covered by seeing
that all inner (empty) nodes have outgoing edges labelled 0̂, 2̂, and X̂.

0 ≤ |Ri| ≤ 2 and directly coincides with color of respective vertex ui. See Figure 2.15 for
an example of a leaf sequence of constant leaf cycle and notation of its vertices.

Recall that the cycle reductions may be used even when the result does not create a
simple graph, which is resolved in Section 2.5.4.1.

Observation 2.5.20. A strategy for a leaf cycle (u, u1, u2, u) with colors (X̂, 2̂, 2̂, X̂) is built
in such a way that the edge (u1, u2) holds Property 2.5.9 (even though it is not incident to
a 0̂ vertex) which makes an expansion of Reductions c4 or c5 over this edge possible.

Proof. This leaf cycle gets reduced by Reduction c3, then m2, and last with tree reduction
t3. We show that in the strategy resulting for expansions holds Property 2.5.9 on edges
{u, u1} and {u, u2}. See Figure 2.15 for an illustration. Checking the exact movements of
this strategy, we have that

(u1, u2) ̸∈ T (Lu,u1 , Ru,u1), (u1, u2) ̸∈ T (Lu,u1 , Nu,u1), (u1, u2) ∈ T (Ru,u1 , Nu,u1).

In particular, we may set Lu,u1 = Nu1,u2 , Ru,u1 = Lu1,u2 , and Nu,u1 = Ru1,u2 . As the edge
move sets for {u, u1} holds the properties which require all these sets to be non-empty, we
have that they hold for {u1, u2} as well.

From Observation 2.5.20 we know that the cases (X̂, 2̂, 0̂, 0̂, 0̂, 2̂, X̂) and (X̂, 2̂, 0̂, 2̂, 0̂, 2̂, X̂)
can be reduced by Reductions c4 and c5, respectively. See these cases in Figure 2.14.
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Figure 2.15: Left: Building the strategy for a (X̂, 2̂, 2̂, X̂) leaf cycle. The states α, β,
and γ are representants of sets Lu,a, Ru,a, and Nu,a, respectively. Right: Example guard
configurations for states α, β, and γ.

2.5.4.1 Loops and Multiedges

Similarly to Observation 2.5.20, for the constant cases where we need to show that the
properties hold. By allowing cycle reductions to apply in cases where the vertices a and b
are adjacent, or even identical, we allowed the result of the reduction to contain multiedges
or loops. This intermediate form of the graph can be thought of as a generalized cactus
graph.

Definition 2.5.21 (Cactus multigraph). Let the cactus multigraph be a multigraph (pos-
sibly with loops) that is connected and its every edge lies on at most one cycle.

A cactus multigraph differs from a cactus graph by allowing loops on arbitrary vertices
(cycles of size 1) and allowing 2 multiedges between some vertices (cycles of size 2). The
cactus multigraph may be changed to a cactus graph by removing multiedges and loops.
The following two reductions take care of that.

Reduction 10. m1 Let G′ be G with one loop removed.

Reduction 11. m2 Let G′ be G with a multiedge {u, v} (2 edges) where v has degree 2 (1
neighbor) changed to a single edge.

u u u

v

u

v

Figure 2.16: Left: loop reduction m1; Right: multiedge reduction m2

Observe these reductions on Figure 2.16. We now prove that they do not need any
additional guards.

Lemma 2.5.22. Let G′ be G after application of Reduction m1. G is defended with the
same number of guards as G′.

Proof. The strategy on G can be easily adapted to G′ by replacing any guard movement
along the loop of u by not moving the guard on u, thus Γ∞

m (G′) ≤ Γ∞
m (G). At the same

time, any strategy on G′ is applicable on G, so γ∞
m (G) ≤ γ∞

m (G′). The equality follows
from Lemma 2.4.2. However, we would like the loop in u to have Property 2.5.9.
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Intuitively, to keep the properties, we could say that at any configuration where u is
occupied the guard can be moved along the loop in any direction or to be forbidden from
moving along it while the configuration stays the same. Formally, we can achieve the same
by setting SG = S ′

G′ □S′u {α, β, γ}. We now set that T (α, β) = {(u, u)}. This creates
Lu,u = α, Ru,u = β, and Qu,u = Ω \ {α, β}. This altered strategy holds Property 2.5.9 for
the loop of u as the sets Lu,u, Ru,u, and Nu,u are non-empty and dominating SG because
S ′(u) dominates S ′

G′ .

In our case, Reduction m1 gets used after Reduction c4 is used on (X̂, 0̂, 0̂, 0̂, X̂) or after
Reduction c5 is used on (X̂, 0̂, 2̂, 0̂, X̂). It could also be used on (X̂, 1̂, X̂) after Reduction c1;
but in that case we can remove the multiedge first.

Lemma 2.5.23. Let G′ be G after application of Reduction m2. G is defended with the
same number of guards as G′.

Proof. Let e1, e2 be the two different edges {u, v} oriented as (u, v) in G. We assume that
G′ is G with e2 removed. Lower and upper bound are clear as every move along e2 can be
changed to a move along e1 and the strategy on G′ is applicable to G without change. The
challenge is, again, to show that Property 2.5.9 holds for e1 and e2 in G.

Let β′ = S ′(v) and α′ = Ω′ \ β. To prove the property on e1 and e2, we will modify
the strategy on G′ in the following way. If β′ ̸= Ω′, then there is a move along e1 in G′.
In that case, we set SG′ = S ′

G′ □β′ {β, γ} while we alter the movements T (α, γ) to move
along e2 instead of e1. The edge states have α ∈ Le1 , β ∈ Re1 , and γ ∈ Ne1 , and similarly
for e2 (with swapped β and γ).

Second case is that β′ = Ω′ while α′ ̸= Ω′. Here, we alter the strategy such that for all
states where u is not occupied, we move the guard from v to u. This makes it so that v is
occupied in states α which we now split into α1 and α2 in the same way as in the previous
case.

The last case is β′ = Ω′ while α′ ̸= Ω′. Here we set SG′ = S ′
G′ □Ω′ {α1, α2, α3}

and setting T ({α1, α2}) = {(u, v), (v, u)}, i.e., transitioning along e1 and e2 in opposite
directions. Also T (α1, α3) and T (α2, α3) have all guards stationary. This makes edge
states as α1 ∈ Le1 , α2 ∈ Re1 , and α3 ∈ Ne1 while the exact same edge states work for e2.

In all the cases the edge states are non-empty, hence, Property 2.5.9 holds for e1 and
e2 after Reduction m2.

αα′

β′
m2

β γ α1Ω

Ω

Ω

Ω

α2 Ω

Ω
e1 e1 e2

α′u

v

Figure 2.17: Cases of Reduction m2. Left: There is a movement along the edge. Middle:
Leaf is permanently occupied. Right: Leaf and its neighbor are permanently occupied.

We note that in our strategy the case where v is permanently defended shall not occur.
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If we did not use Reduction m2 the number of constant size leaf cycle reductions
would be significantly bigger. It gets used after reduction of (X̂, 0̂, 1̂, X̂) or (X̂, 1̂, 1̂, X̂) by c1,
(X̂, 2̂, 1̂, X̂) by c2, (X̂, 2̂, 2̂, X̂) by c3, (X̂, 0̂, 0̂, 0̂, 0̂, X̂) or (X̂, 0̂, 0̂, 0̂, 2̂, X̂) by c4, (X̂, 0̂, 0̂, 2̂, 0̂, X̂) or
(X̂, 0̂, 2̂, 0̂, 2̂, X̂) by c5. Without Reduction m2 each of these cases would have to be analyzed
separately.

2.5.4.2 Constant Size Leaf Cycle Reductions

By Lemma 2.5.19 the last cases that have to be resolved are covered by the following reduc-
tions. See Table 2.3 for accompanying lower bound and upper bound proof illustrations.
Also see Figure 2.9 for diagram of notions used within proofs of these reductions.

Reduction 12. r1 (X̂, 0̂, 0̂, X̂) → (1̂) + 0

Reduction 13. r2 (X̂, 0̂, 2̂, X̂) → (1̂) + 1

Reduction 14. r3 (X̂, 0̂, 0̂, 2̂, X̂) → (2̂) + 1

Reduction 15. r4 (X̂, 2̂, 0̂, 2̂, X̂) → (2̂) + 2

Reduction 16. r5 (X̂, 2̂, 0̂, 0̂, 2̂, X̂) → (2̂) + 2

Table 2.3: List of constant component reductions; thick red edges do not hold Prop-
erty 2.5.9.

Reduction Lower bound Upper bound
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Now we proceed to show correctness of these reductions. First group consists of reduc-
tions where a leaf cycle is reduced to 1̂ vertex u and its leaf v. The vertices of the expended
leaf cycle are denoted by u, u1, u2, . . . , un−1, u.
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Lemma 2.5.24. Let G′ be G after application of Reduction r1. G is defended with the
same number of guards as G′.

Proof. Using Observation 2.4.3 to identify u2 with u1 then using Reduction m2 results in
lower bound of 0.

For the upper bound, we first expand {u, v} to multiedges e1 and e2 as per Reduc-
tion m2. Then we take G′ and change it to G by splitting v into two vertices u1 and
u2. We create β by substituting all occurrences of v in P (β′) with u1, and create γ by
substituting all occurrences of v in P (γ′) with u2. The transition between them becomes
T (β, γ) = {(u1, u2)}. The strategy is interface equivalent as the strategy did not change
states or transitions of the interface.

We set Lu1,u2 = Nu,u1 , Ru1,u2 = Nu,u1 , and Nu1,u2 = Lu,u1 so the new edge {u1, u2} holds
Property 2.5.9 and the strategy for G holds Property 2.5.11.

No guard was added so γ∞
m (G) ≤ γ∞

m (G′) and by Lemma 2.4.2 we get that G is defended
with the same number of guards as G′.

We recall that by Ri we denote all leaves adjacent to ui.

Lemma 2.5.25. Let G′ be G after application of Reduction r2. G is defended with 1
more guard than G′.

Proof. Using Observation 2.4.8 on {u2} ∪ R2 then using Reduction m2 results in lower
bound of 1.

We do the same expansion as in the proof of Lemma 2.5.24. After that, we use
Lemma 2.4.34 to add leaves R2 to u2 while using one extra guard to defend it. Graph
holds Property 2.5.11 by the same argument as in the proof of Lemma 2.5.24. We added
one extra guard which results in γ∞

m (G) ≤ γ∞
m (G′) + 1 and by Lemma 2.4.2 we get that G

is defended with one more guard than G′.

We now prove correctness of the other three cases. The reduced graph G′ now consists
of a single 2̂ vertex u (and its leaves). The partial labelled strategy on G′ has states α′

and β′ that defend the two leaves adjacent to u. Also, let δ′ = Ω′ \ (α′ ∪ β′), which may be
an empty set.

Lemma 2.5.26. Let G′ be G after application of Reduction r3. G is defended with 1
more guard than G′.

Proof. Using Observation 2.4.8 on u3 and one of its leaves, identifying u2 with u using
Observation 2.4.3, and using Reductions m1 and m2 to remove loops and multiedges results
in lower bound of 1.

For the upper bound, let u1 and u3 be the two leaves adjacent to u in G′. Let α′ = S ′(u1)
and β′ = S ′(u3). We make SG′ = S ′

G′ □β′ {β, γ}. Now we expand the graph G′ by first
applying Lemma 2.4.34 on u3, adding 2 new leaves to it using one additional guard. Next,
we add a vertex u2 while connecting it to u1 and u3 and we move γ from R3 to u2 which
is easy as u2 is a neighbor of u3. The only major change in transitions is that T (α, γ) =
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{(u1, u2), (u, u), (u3, u3)} instead of {(u1, u), (u, u3), (u3, u2)}. No other transitions change,
and u behaves the same, so the exchanged graphs are interface equivalent. See Figure 2.18
for strategy SG.
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Figure 2.18: Strategy for (X̂, 0̂, 0̂, 2̂, X̂) leaf cycle

We note that each is traversed at some point and that α ∈ Nu2,u3 , β ∈ Nu1,u2 , and
γ ∈ Nu,u1 so these edges hold Property 2.5.9 and the strategy for G holds Property 2.5.11.
The edge {u, u3} does not need to hold the property as it is a special case tackled in
Lemma 2.5.29.

We got that γ∞
m (G) ≤ γ∞

m (G′) + 1 and by Lemma 2.4.2 we get that G is defended with
one more guard than G′.

Lemma 2.5.27. Let G′ be G after application of Reduction r4. G is defended with 2 more
guards than G′.

Proof. Using Observation 2.4.8 first on {u1, v1} where v1 ∈ R1, then again on {u3, v3}
where v3 ∈ R3, identifying u2 with u using Observation 2.4.3, and using Reductions m1

and m2 to remove loops and multiedges results in lower bound of 2.
For upper bound, repeat exactly the expansion from Lemma 2.5.26 on G′ which uses

one extra guard. Continue by applying Lemma 2.4.34 on u1 which adds the leaves R1 using
one extra guard while returning the defending labelled strategy on G. The properties for
edges {u1, u2}, {u2, u3}, and interface equivalency still hold from Lemma 2.5.26. However,
we can split γ into two states γ1 and γ2 which dictates whether T (γi, δ) traverses through
{(u2, u1), (u1, u)} or {(u2, u3), (u3, u)}. This ensures Property 2.5.11 for {u, u1} and {u, u3}
as former cannot be traversed from γ2 and latter from γ1. Hence, we have γ∞

m (G) ≤
γ∞
m (G′) + 2 and by Lemma 2.4.2 we get that G is defended with two more guards than

G′.

Lemma 2.5.28. Let G′ be G after application of Reduction r5. G is defended with 2 more
guards than G′.

Proof. Using Observation 2.4.8 first on {u1, v1} where v1 ∈ R1, then again on {u4, v4}
where v4 ∈ R4, and last identifying u2 and u3 with u using Observation 2.4.3 results in
lower bound of 2.

For upper bound, repeat exactly the expansion from Lemma 2.5.27 on G′ which uses
two extra guards (we do not use part of the proof which proved the property). Then we
make SG′ = S ′

G′ □S′(u2) {γ1, γ2}, i.e., splitting γ into γ1 and γ2. We expand G′ to G by
splitting u2 into u2 and u3 (while renaming u3 to u4). We preserve a guard of γ1 on u2 and
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Figure 2.19: Strategy for (X̂, 2̂, 0̂, 0̂, 2̂, X̂) leaf cycle

γ2 on u3. Transition between them will be T (γ1, γ2) = {(u2, u3), (u, u)}. This is interface
equivalent. See Figure 2.19 for strategy SG.

We have Property 2.5.11 as each edge is traversed and {u1, u2} cannot be traversed from
γ2, {u2, u3} from α, and {u3, u4} cannot be traversed from γ1. We note that the other two
cycle edges {u, u1} and {u, u4} are part of the exception which is tackled in Lemma 2.5.29.
Hence, we have γ∞

m (G) ≤ γ∞
m (G′) + 2 and by Lemma 2.4.2 we get that G is defended with

two more guards than G′.

Now we tackle the exception in Property 2.5.11 which influences Reductions r3 and r5.

Lemma 2.5.29. The order of reductions can be changed so that in a (X̂, 0̂, 0̂, 2̂, X̂) or
(X̂, 2̂, 0̂, 0̂, 2̂, X̂) leaf cycle Property 2.5.9 is not required for edges that connect a X̂ and a 2̂
vertex.

Proof. Let us label by e an edge which connects a X̂ and a 2̂ vertex. Reductions which
require the Property 2.5.9 on an edge are Reductions c1, c4, and c5. If e is not a result of
any of these reductions then there is no need for e to hold Property 2.5.9. Otherwise, let
us analyze the cases separately.

◦ Reduction c1 resulted in e – before reduction we had (X̂, 1̂, 2̂, . . . ) where we can use
Reduction c2 instead. This results in (X̂, 2̂, . . . ) without needing the property for e.

◦ Reduction c4 resulted in e – before reduction we had (X̂, 0̂, 0̂, 0̂, 2̂, 0̂, 0̂, [2̂, ] X̂). Hence,
we may use Reduction c5 instead. This results in (X̂, 0̂, 0̂, 0̂, [2̂, ] X̂) where e has the
property.

◦ Reduction c5 resulted in e – before reduction we had (X̂, 0̂, 2̂, 0̂, 2̂, 0̂, 0̂, [2̂, ] X̂) so we
may use Reduction c5 on the second 2̂ vertex instead. This results in (X̂, 0̂, 2̂, 0̂, [2̂, ] X̂)
where e has the property.

We used other reductions to avoid reaching these leaf components by reductions that would
require Property 2.5.9. The first described case can be used at any point. The last two
described cases are used on constant leaf components and as the result is different, it follows
that their edges hold the property.

This concludes the constant component reductions which together with cycle com-
ponents and approach described in Section 2.5.1 give us a polynomial algorithm to solve
m-Eternal Domination.
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2.6 Future Work

The presented tools could be useful in a future study of the m-Eternal Domination on
different graph classes. For instance, grids of size {3, 5} × n were extensively studied [89,
106]. We believe it would interesting to see to which extent the tools could by applied in
study of grids of less restricted dimensions.

Another noteworthy class of graphs are the so called dually chordal graphs, for which
many domination related problems are polynomial time solvable. It would be interesting
to see whether m-Eternal Domination remains polynomial time solvable as well.

Furthermore, the computational complexity of the decision variant of the m-eternal
domination problem is still mostly unknown as mentioned in the introduction. It remains
open whether the problem is in PSPACE and whether it is PSPACE-hard.

2.7 Additional observations

In this short section to discuss several notions connected to complete strategies.

2.7.1 Complete Strategies

We note that if the strategy SG was a complete graph, then strategy S ′
G created by the

application of Lemma 2.4.38 is also a complete graph.

Property 2.7.1. A partial labelled strategy B = (G,SG, P, T , R) is complete if SG is a
complete graph, i.e., there is {α, β} ∈ F for every α, β ∈ Ω.

We note that there are graphs where every optimal strategy is not complete, see Sec-
tion 2.7.2 for such an example. Complete strategies can be effectively pruned to contain
at most |V (G)| states in the following way.

Lemma 2.7.2. For any complete defending labelled strategy of cardinality k with the
minimum number of vertices of SG it holds |V (SG)| ≤ |V (G)| − k + 1.

Proof. Pick an arbitrary complete defending strategy SG which uses k guards. For each
v ∈ V (G) we shall pick one state αv ∈ V (SG) such that v ∈ P (α). First, pick any
α ∈ V (SG) and assign it as state to each v ∈ P (α). Then, for every v ∈ V (G) \ P (α)
assign αv ∈ S(v) as its state. We just picked |V (G)| − k + 1 states such that they form
a strategy where every pair of states is traversable and which is defending as it covers all
the vertices of G.

Similar to completeness of a strategy we may talk about the graph class of SG to
describe its properties.

51



2. m-eternal Domination Number of Cactus Graphs

2.7.2 Non-complete Strategy

Observation 2.7.3. An optimal m-Eternal Domination strategy on 5×5 grid uses at least
7 guards.

Proof. Let us denote vertices of the grid by ui,j where 1 ≤ i, j ≤ 5.
First, we show a lower bound of 7. Assume for a contradiction that there is a defending

strategy S6 with at most 6 guards. Any state of S6 needs to dominate all 25 vertices.
There must exist a state C where u2,2 is occupied. In C there also must be at least one
guard in the closed neighborhood of each corner (u1,1, u5,1, u1,5, and u5,5). In the grid a
vertex may dominate at most 5 vertices and a vertex on the side of the grid may dominate
at most 4 vertices. All vertices in the closed neighborhood of corners are on the side of the
grid. Additionally, vertex which dominates u1,1 may dominate at most 2 new vertices, as
u2,2 already dominates many of vertices in its neighborhood. In total, the 6 guards of C
may dominate at most 2 · 5 + 3 · 4 + 2 = 24, a contradiction.

The upper bound can be shown by construction of a strategy, however, we have no
good tools to show that all the strategies are not complete graphs – we found this using
a full strategy-space search. A construction which uses 7 guards contains three states and
majority of their reflections and rotations, see them on Figure 2.20. In this case, we do not
show the strategy, as it contains roughly 20 states (depending on a slight optimization, it
may be less) that would contain 190 transitions.

Figure 2.20: The 5× 5 grid has 19 m-eternal dominating sets. Each of the configurations
can be expressed as a combination of rotations and reflections of exactly one of these 3
basic configurations. Each of the 19 configurations is necessary for the strategy and can
move into at most 12 other states.
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Chapter 3
Bears with Hats

Consider the following hat guessing game. A bear sits on each vertex of a graph G, and
a demon puts on each bear a hat colored by one of h colors. Each bear sees only the hat
colors of his neighbors. Based on this information only, each bear has to guess g colors and
he guesses correctly if his hat color is included in his guesses. The bears win if at least one
bear guesses correctly for any hat arrangement.

We introduce a new parameter – fractional hat chromatic number µ̂, arising from the
hat guessing game. The parameter µ̂ is related to the hat chromatic number which has
been studied before. We present a surprising connection between the hat guessing game
and the independence polynomial of graphs. This connection allows us to compute the
fractional hat chromatic number of chordal graphs in polynomial time, to bound fractional
hat chromatic number by a function of maximum degree of G, and to compute the exact
value of µ̂ of cliques, paths, and cycles.

3.1 Introduction

In this chapter, we study a variant of a hat guessing game. In these types of games, there
are some entities – players, pirates, sages, or, as in our case, bears. A bear sits on each
vertex of graph G. There is some adversary (a demon in our case) that puts a colored
hat on the head of each bear. A bear on a vertex v sees only the hats of bears on the
neighboring vertices of v but he does not know the color of his own hat. Now to defeat
the demon, the bears should guess correctly the color of their hats. However, the bears
can only discuss their strategy before they are given the hats. After they get them, no
communication is allowed, each bear can only guess his hat color. The variants of the game
differ in the bears’ winning condition.

The first variant was introduced by Ebert [45]. In this version, each bear gets a red or
blue hat (chosen uniformly and independently) and they can either guess a color or pass.
The bears see each other, i.e. they stay on vertices of a clique. They win if at least one
bear guesses his color correctly and no bear guesses a wrong color. The question is what

53



3. Bears with Hats

is the highest probability that the bears win achievable by some strategy. Soon, the game
became quite popular and it was even mentioned in NY Times [97].

Winkler [107] studied a variant where the bears cannot pass and the objective is how
many of them guess correctly their hat color. A generalization of this variant for more
than two colors was studied by Feige [51] and Aggarwal [2]. Butler et al. [21] studied a
variant where the bears are sitting on vertices of a general graph, not only a clique. For a
survey of various hat guessing games, we refer to theses of Farnik [50].

In this chapter, we study a variant of the game introduced by Farnik [50], where each
bear has to guess and they win if at least one bear guesses correctly. He introduced a hat
guessing number HG of a graph G (also named as hat chromatic number and denoted µ
in later works) which is defined as the maximum h such that bears win the game with h
hat colors. We study a variant where each bear can guess multiple times and we consider
that a bear guesses correctly if the color of his hat is included in his guesses. We introduce
a parameter fractional hat chromatic number µ̂ of a graph G, which we define as the
supremum of h

g
such that each bear has g guesses and they win the game with h hat colors.

Albeit the hat guessing game looks like a recreational puzzle, connections to more
“serious” areas of mathematics and computer science were shown – like coding theory [46,
71], network coding [55, 96], auctions [2], finite dynamical systems [53], and circuits [108].
We exhibit a connection between the hat guessing game and the independence polynomial
of graphs, which is our main result. This connection allows us to compute the optimal
strategy of bears (and thus the value of µ̂) of an arbitrary chordal graph in polynomial
time. We also prove that the fractional hat chromatic number µ̂ is asymptotically equal,
up to a logarithmic factor, to the maximum degree of a graph. Finally, we compute the
exact value of µ̂ of graphs from some classes, like paths, cycles, and cliques.

We would like to point out that the existence of the algorithm computing µ̂ of a chordal
graph is far from obvious. Butler et al. [21] asked how hard is to compute µ(G) and
the optimal strategy for the bears. Note that a trivial non-deterministic algorithm for
computing the optimal strategy (or just the value of µ(G) or µ̂(G)) needs exponential
time because a strategy of a bear on v is a function of hat colors of bears on neighbors
of v (we formally define the strategy in Section 3.2). It is not clear if the existence of a
strategy for bears would imply a strategy for bears where each bear computes his guesses
by some efficiently computable function (like linear, computable by a polynomial circuit,
etc.). This would allow us to put the problem of computing µ into some level of the
polynomial hierarchy, as noted by Butler et al. [21]. On the other hand, we are not aware
of any hardness results for the hat guessing games. The maximum degree bound for µ̂ does
not imply an exact efficient algorithm computing µ̂(G) as well. This phenomenon can be
illustrated by the edge chromatic number χ′ of graphs. By Vizing’s theorem [36, Chapter
5], it holds for any graph G that ∆(G) ≤ χ′(G) ≤ ∆(G) + 1. However, it is NP-hard to
distinguish between these two cases [67].

Organization of this chapter. We finish this section with a summary of results about
the variant of the hat guessing game we are studying. In the next section, we present notions
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used in this chapter and we define formally the hat guessing game. In Section 3.3, we
formally define the fractional hat chromatic number µ̂ and compare it to µ. In Section 3.4,
we generalize some previous results to the multi-guess setting. We use these tools to
prove our main result in Section 3.5 including the poly-time algorithm that computes µ̂
for chordal graphs. The maximum degree bound for µ̂ and computation of exact values of
paths and cycles are provided in Section 3.6.

3.1.1 Related and Follow-up Works

As mentioned above, Farnik [50] introduced a hat chromatic number µ(G) of a graph G
as the maximum number of colors h such that the bears win the hat guessing game with
h colors and played on G. He proved that µ(G) ≤ O

(
∆(G)

)
where ∆(G) is the maximum

degree of G.
Since then, the parameter µ(G) was extensively studied. The parameter µ for multipart-

ite graphs was studied by Gadouleau and Georgiu [54] and by Alon et al. [4]. Szczechla [104]
proved that µ of cycles is equal to 3 if and only if the length of the cycle is 4 or it is divis-
ible by 3 (otherwise it is 2). Bosek et al. [17] gave bounds of µ for some graphs, like trees
and cliques. They also provided some connections between µ(G) and other parameters
like chromatic number and degeneracy. They conjectured that µ(G) is bounded by some
function of the degeneracy d(G) of the graph G. They showed that such function has to
be at least exponential as for every d ≥ 1 they presented a graph G of d(G) = d such
that µ(G) ≥ 2d. This result was improved by He and Li [64] who showed that for every
d ≥ 1 there is a graph G of d(G) = d and µ(G) ≥ 22

d(G)−1 . Since µ̂(G) is lower-bounded
by Ω

(
∆(G)/ log∆(G)

)
(as we show in Section 3.6) it holds that µ̂ can not be bounded by

any function of degeneracy as there are graph classes of unbounded maximum degree and
bounded degeneracy (e.g. trees or planar graphs). Recently, Kokhas et al. [82, 83] studied
a non-uniform version of the game, i.e., for each bear, there could be a different number
of colors of the hat. They considered cliques and almost cliques. They also provided a
technique to build a strategy for a graph G whenever G is made up by combining G1

and G2 with known strategies. We generalize some of their results and use them as “basic
blocks” for our main result.

After the presentation of the preliminary version of our results in [A.2], Latyshev and
Kokhas [87] extended ideas presented in this chapter to reason about the standard hat
chromatic number. In particular, they found a family of graphs of unbounded maximum
degree such that for each graph G in the family holds that µ(G) = 4

3
∆(G), thus they

disproved a conjecture by Alon et al. [4] that µ(G) ≤ ∆(G) + 1.

3.2 Preliminaries

We use standard notions of the graph theory. For an introduction to this topic, we refer to
the book by Diestel [36]. We denote a clique as Kn, a cycle as Cn, and a path as Pn, each
on n vertices. The maximum degree of a graph G is denoted by ∆(G), where we shorten it
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to ∆ if the graph G is clear from the context. The neighbors of a vertex v are denoted by
N(v). We use N [v] to denote the closed neighborhood of v, i.e. N [v] = N(v) ∪ {v}. For a
set U of vertices of a graph G, we denote G \U a graph induced by vertices V (G) \U , i.e.,
a graph arising from G by removing the vertices in U .

A hat guessing game is a triple H = (G, h, g) where

◦ G = (V,E) is an undirected graph, called the visibility graph,

◦ h ∈ N is a hatness that determines the number of different possible hat colors for
each bear, and

◦ g ∈ N is a guessing number that determines the number of guesses each bear is
allowed to make.

The rules of the game are defined as follows. On each vertex of G sits a bear. The
demon puts a hat on the head of each bear. Each hat has one of h colors. We would like
to point out, that it is allowed that bears on adjacent vertices get a hat of the same color.
The only information the bear on a vertex v knows are the colors of hats put on bears
sitting on neighbors of v. Based on this information only, the bear has to guess a set of
g colors according to a deterministic strategy agreed to in advance. We say bear guesses
correctly if he included the color of his hat in his guesses. The bears win if at least one
bear guesses correctly.

Formally, we associate the colors with natural numbers and say that each bear can
receive a hat colored by a color from the set S = [h] = {0, . . . , h− 1}. A hats arrangement
is a function φ : V → S. A strategy of a bear on v is a function Γv : S

|N(v)| →
(
S
g

)
, and

a strategy for H is a collection of strategies for all vertices, i.e. (Γv)v∈V . We say that a
strategy is winning if for any possible hats arrangement φ : V → S there exists at least one
vertex v such that φ(v) is contained in the image of Γv on φ, i.e., φ(v) ∈ Γv

(
(φ(u))u∈N(v)

)
.

Finally, the game H is winning if there exists a winning strategy of the bears.
As a classical example, we describe a winning strategy for the hat guessing game

(K3, 3, 1). Let us denote the vertices of K3 by v0, v1 and v2 and fix a hats arrangement φ.
For every i ∈ [3], the bear on the vertex vi assumes that the sum

∑
j∈[3] φ(vj) is equal to

i modulo 3 and computes its guess accordingly. It follows that for any hat arrangement φ
there is always exactly one bear that guesses correctly, namely the bear on the vertex vi
for i =

∑
j φ(vj) (mod 3).

Some of our results are stated for a non-uniform variant of the hat guessing game. A
non-uniform game is a triple

(
G = (V,E),h,g

)
where h = (hv)v∈V and g = (gv)v∈V are

vectors of natural numbers indexed by the vertices of G and a bear on v gets a hat of one
of hv colors and is allowed to guess exactly gv colors. Other rules are the same as in the
standard hat guessing game. To distinguish between the uniform and non-uniform games,
we always use plain letters h and g for the hatness and the guessing number, respectively,
and bold letters (e.g. h,g) for vectors indexed by the vertices of G.

For our proofs we use two classical results. First one is the inclusion-exclusion principle
for computing a size of a union of sets.

56



3.3. Fractional Hat Chromatic Number

Proposition 3.2.1 (folklore). For a union A of sets A1, . . . , An holds that

|A| =
∑

∅≠I⊆{1,...,n}

(−1)|I|+1

∣∣∣∣∣
⋂

i∈I

Ai

∣∣∣∣∣ .

The other one is the rational root theorem, which we use to derive an algorithm for
computing an exact value of µ̂, if the value is rational.

Theorem 3.2.2 (Rational root theorem [86]). If a polynomial anxn + · · · + a1x + a0 has
integer coefficients, then every rational root is of the form p/q where p and q are coprimes,
p is a divisor of a0, and q is a divisor of an.

3.3 Fractional Hat Chromatic Number

From the hat guessing games, we can derive parameters of the underlying visibility graph
G. Namely, the hat chromatic number µ(G) is the maximum integer h for which the hat
guessing game (G, h, 1) is winning, i.e., each bear gets a hat colored by one of h colors and
each bear has only one guess – we call such game a single-guessing game. In this chapter,
we study a parameter fractional hat chromatic number µ̂(G) which arises from the hat
multi-guessing game and is defined as

µ̂(G) = sup

{
h

g

∣∣∣∣ (G, h, g) is a winning game
}
.

Observe that µ(G) ≤ µ̂(G). Farnik [50] and Bosek et al. [17] also study multi-guessing
games. They considered a parameter µg(G) that is the maximum number of colors h such
that the bears win the game (G, h, g). The difference between µg and µ̂ is the following. If
µg(G) ≥ k, then the bears win the game (G, k, g) and µ̂ ≥ k

g
. If µ̂(G) ≥ p

q
, then there are

h, g ∈ N such that p
q
= h

g
and the bears win the game (G, h, g). However, it does not imply

that the bears would win the game (G, p, q). In this section, we prove that if the bears
win the game (G, h, g) then they win the game (G, kh, kg) for any constant k ∈ N. The
opposite implication does not hold – we discuss a counterexample at the end of this section.
Unfortunately, this property prevents us from using our algorithm, which computes µ̂, to
compute also µ of chordal graphs.

Moreover, by definition, the parameter µ̂ does not even have to be a rational number.
In such a case, for each p, q ∈ N, it holds that

◦ If p
q
< µ̂(G) then there are h, g ∈ N such that p

q
= h

g
and the bears win the game

(G, h, g).

◦ If p
q
> µ̂(G) then the demon wins the game (G, p, q).

For example, the fractional hat chromatic number µ̂(P3) of the path P3 is irrational. In
the case of an irrational µ̂(G), our algorithm computing the value of µ̂ of chordal graphs
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outputs an estimate of µ̂(G) with arbitrary precision. We finish this section with a proof
that the multi-guessing game is in some sense monotone.

Observation 3.3.1. Let k ∈ N. If a game H = (G, h, g) is winning, then the game
Hk = (G, k · h, k · g) is winning as well.

Proof. We derive a winning strategy for the game Hk from a winning strategy for H. Each
bear interprets a color in [k · h] as a pair (i, c) where i ∈ [k] and c ∈ [h]. Let Av be guesses
of the bear on v in the game H. For the game Hk, a strategy of the bear on v is to make
guesses

{
(i, c) | i ∈ [k], c ∈ Av

}
. It is straight-forward to verify that this is a winning

strategy for Hk.

Lemma 3.3.2. Let
(
G = (V,E), h, g

)
be a winning hat guessing game. Let r′ be a rational

number such that r′ ≤ h/g. Then, there exist numbers h′, g′ ∈ N such that h′/g′ = r′ and
the hat guessing game (G, h′, g′) is winning.

Proof. Let p, q ∈ N such that r′ = p/q and GCD(p, q) = 1. Let1 ℓ = LCM(h, p).
Let h̄ = ℓ, ḡ = ℓ · g/h. By Observation 3.3.1 for k = ℓ/h, the game (G, h̄, ḡ) is winning.

Let h′ = ℓ and g′ = ℓ · q/p. Since p/q ≤ h/g by the assumption, it holds that g′ ≥ ḡ.
Thus, the bears have a strategy for (G, h′, g′), as we increased the number of guesses and
the hatness does not change (h′ = h̄ = ℓ). Moreover, h′/g′ = p/q = r′.

It is straight-forward to prove a generalization of Lemma 3.3.2 for non-uniform games.
However, for simplicity, we state it only for the uniform games. By the proof of the previous
lemma, we know that we can use a strategy for (G, h, g) to create a strategy for a game
(G, k · h, k · g + ℓ) for arbitrary k, ℓ ∈ N. A question is if we can do it in general: Can
we derive a winning strategy if we decrease the fraction h/g, but the hatness h and the
guessing number g are changed arbitrarily? It is true for cliques. We show in Section 3.4
that the bears win the game (Kn, h, g) if and only if h/g ≤ n. However, it is not true in
general. For example, for n large enough it holds that µ̂(Pn) ≥ 3, as we show in Section 3.6
that µ̂(Pn) converges to 4 when n goes to infinity. However, Butler et al. [21] proved that
µ(T ) = 2 for any tree T . Thus, the bears lose the game (Pn, 3, 1).

3.4 Basic Blocks

In this section, we generalize some results of Kokhas et al. [82, 83] about cliques and
strategies for graph products, which we use for proving our main result. The single-
guessing version of the next theorem (without the algorithmic consequences) was proved
by Kokhas et al. [82, 83].

Theorem 3.4.1. Bears win a game
(
Kn = (V,E),h,g

)
if and only if

∑

v∈V

gv
hv

≥ 1.

1GCD stands for the greatest common divisor and LCM stands for the least common multiple.
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Moreover, if there is a winning strategy, then there is a winning strategy (Γv)v∈V such that
each Γv can be described by two linear inequalities whose coefficients can be computed in
linear time.

Proof. The proof follows the proof of Kokhas et al. [83] for the single-guessing game. First,
suppose that

∑
v∈V gv/hv < 1 and fix some strategy of bears. A bear on v guesses correctly

the color of his hat in exactly (gv/hv)-fraction of all possible hat arrangements. Thus, if
the sum is smaller than one, there is a hat arrangement where no bear guesses the color of
his hat correctly.

Now suppose the opposite inequality holds, i.e.,
∑

v∈V gv/hv ≥ 1. Let V (Kn) =
{v1, . . . , vn}. For simplicity, we denote hi = hvi and gi = gvi . Let ℓ = LCM(h1, . . . , hn).
and di = ℓ/hi (note that di ∈ N). Let the bear on vi get a hat of color ci ∈ [hi] and

s =
∑

1≤i≤n

ci · di (mod ℓ).

The bears cover the set [ℓ] by disjoint intervals Qi of length di · gi. A bear on vi makes
his guesses according to a hypothesis that s is in an interval Qi and we will show that he
guesses correctly if s ∈ Qi. More formally, for bi =

∑
j<i dj · gj we define the interval Qi

as {bi, . . . , bi + di · gi − 1}. Note that the union of intervals Q1, . . . , Qi−1 is exactly the set
[bi]. A bear on vi computes si =

∑
v ̸=vi

cv ·dv. Then, he guesses all such colors ai such that
si + ai · di (mod ℓ) is in Qi. Since Qi contains di · gi consecutive natural numbers and ℓ is
divisible by di, he makes at most gi guesses. If s is in Qi then the bear on vi guesses the
color of his hat correctly, because s = si + ci · di (mod ℓ) and thus the bear on vi includes
the color ci in his guesses.

Note that the union Q of all intervals Qi is exactly the set
{
0, . . . ,

∑

1≤i≤n

ℓ · gi
hi

− 1

}
.

By assumption, we have that {0, . . . , ℓ− 1} ⊆ Q. Since 0 ≤ s < ℓ by definition, it follows
that s has to be in some interval Qi.

For the “moreover” part, the bear on a vertex vi guesses all colors ai ∈ [hi] such that

bi ≤ (si + ai · di) mod ℓ < bi + di · gi.

Observe that si is a linear function of hat colors of bears sitting on the vertices different
from v and the coefficients bi and dj can be computed in linear time.

By Theorem 3.4.1, we can conclude the following corollary.

Corollary 3.4.2. For each n ∈ N, it holds that µ̂(Kn) = n.

Kokhas et al. [82] provided another proof of analogue of Theorem 3.4.1 for the single-
guessing game, which can be generalized with similar ideas. However, the second proof
does not imply a polynomial time algorithm for computing the strategy on cliques.
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3.4.1 Graph Products

Further, we generalize a result of Kokhas and Latyshev [82]. In particular, we provide a
new way to combine two hat guessing games on graphs G1 and G2 into a hat guessing
game on graph obtained by gluing G1 and G2 together in a specific way.

Let G1 = (V1, E1) and G2 = (V2, E2) be graphs, let S ⊆ V1 be a set of vertices inducing
a clique in G1, and let v ∈ V2 be an arbitrary vertex of G2. The clique join of graphs G1

and G2 with respect to S and v is the graph G = (V,E) such that V = V1∪V2 \{v}; and E
contains all the edges of E1, all the edges of E2 that do not contain v, and an edge between
every w ∈ S and every neighbor of v in G2. See Figure 3.1 for a sketch of a clique join.

G1 G2

S
v

G

S

Figure 3.1: The clique join of graphs G1 and G2 with respect to S and v.

Lemma 3.4.3. Let H1 =
(
G1 = (V1, E1),h

1,g1
)

and H2 =
(
G2 = (V2, E2),h

2,g2
)

be two
hat guessing games and let S ⊆ V1 be a set inducing a clique in G1 and v ∈ V2. Set G to
be the clique join of graphs G1 and G2 with respect to S and v. If the bears win the games
H1 and H2, then they also win the game H = (G,h,g) where

hu =





h1
u u ∈ V1 \ S

h2
u u ∈ V2 \ {v}

h1
u · h2

v u ∈ S, and
gu =





g1u u ∈ V1 \ S
g2u u ∈ V2 \ {v}
g1u · g2v u ∈ S.

Proof. Using winning strategies (Γ1
v)v∈V1 and (Γ2

v)v∈V2 for H1 and H2 respectively, let us
construct a winning strategy for H. For every bear u ∈ S, we interpret his color as a tuple
(c1u, c

2
u) where c1u ∈ [h1

u] and c2u ∈ [h2
v]. Moreover, we define an imaginary hat color of the

bear on vertex v as s = (
∑

u∈S c
2
u) mod h2

v.
Every bear on w ∈ V1 \S plays according to the strategy Γ1

w using only the color c1u for
his every neighbor u ∈ S. Every bear on w ∈ V2 \ {v} plays according to the strategy Γ2

w

using the imaginary hat color s of v. And finally, every bear on vertex w ∈ S computes a
set of guesses Aw by playing the strategy Γ1

w and a set of guesses B by playing the strategy
Γ2
v. Since the bear on w can see every other vertex of S, he computes the set

Bw =
{(

c−∑u∈S\{w} c
2
u

)
mod h2

v | c ∈ B
}
.

Finally, the bear on w guesses the set Aw ×Bw.
Fix an arbitrary hat arrangement. In the simulated hat guessing game H1, there is a

vertex u1 such that the bear on u1 guessed correctly. If u1 ̸∈ S then it also guessed correctly
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in H. Likewise, there is a bear on a vertex u2 in the simulated hat guessing game H2 that
guessed correctly and we are done if u2 ̸= v. The remaining case is when u1 ∈ S and
u2 = v. Thus, the bear on v includes the color s in his guesses in the game H2. It follows
that for each w ∈ S holds that if (c1w, c2w) is a hat color of the bear on w, then c2w ∈ Bw.
Since u1 ∈ S, the bear on u1 includes his hat color (c1u1

, c2u2
) in his guesses Au1 ×Bu1 .

We remark that Lemma 3.4.3 generalizes Theorem 3.1 and Theorem 3.5 of [82] not
only by introducing multiple guesses but also by allowing for more general ways to glue
two graphs together. Thus, it provides new constructions of winning games even for single-
guessing games.

+ G =

3

3 3

3 3

3
3

3

3

3

3

9

9

v

S

Figure 3.2: Applying Lemma 3.4.3 on winning hat guessing games (C4, 3, 1) (see [104])
and (K3, 3, 1), we obtain a winning hat guessing game (G,h, 1) where G is the result of
identifying an edge in C4 and K4, and h is given in the picture.

3.5 Independence Polynomial

The multivariate independence polynomial of a graph G = (V,E) on variables x = (xv)v∈V
is

PG(x) =
∑

I⊆V
I independent set

∏

v∈I

xv.

First, we describe informally the connection between the multi-guessing game and the
independence polynomial. Consider the game (G, h, g) and fix a strategy of bears. Suppose
that the demon put on the head of each bear a hat of random color (chosen uniformly and
independently). Let Av be an event that the bear on the vertex v guesses correctly. Then,
the probability of Av is exactly g/h. Moreover, for any independent set I holds that Av is
independent on all events Aw for w ∈ I, w ̸= v. Thus, we can use the inclusion-exclusion
principle (Proposition 3.2.1) to compute the probability that Av occurs for at least one
v ∈ I, i.e., at least one bear sitting on some vertex of I guesses correctly.

Assume that no two bears on adjacent vertices guess correctly their hat colors at once;
it turns out that if we plug −g/h into all variables of the non-constant terms of −PG,
then we get exactly the fraction of all hat arrangements on which the bears win. The
non-constant terms of PG correspond (up to sign) to the terms of the formula from the
inclusion-exclusion principle. Because of that, we have to plug −g/h into the polynomial
PG.
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To avoid confusion with the negative fraction −g/h, we define signed independence
polynomial as ZG(x) = PG(−x), i.e.,

ZG(x) =
∑

I⊆V
I independent set

(−1)|I|
∏

v∈I

xv.

We also introduce the monovariate signed independence polynomial UG(x) obtained by
plugging x for each variable xv of ZG.

Note that the constant term of any independence polynomial PG(x) equals to 1, arising
from taking I = ∅ in the sum from the definition of PG. When UG(g/h) = 0 and no two
adjacent bears guess correctly at the same time, then the bears win the game (G, h, g)
because the fraction of all hat arrangements, on which at least one bear guesses correctly,
is exactly 1, however, the proof is far from trivial.

Slightly abusing the notation, we use ZG′(x) to denote the independence polynomial of
an induced subgraph G′ with variables x restricted to the vertices of G′. The independence
polynomial PG can be expanded according to a vertex v ∈ V in the following way.

PG(x) = PG\{v}(x) + xvPG\N [v](x)

The analogous expansions hold for the polynomials ZG and UG as well. This expansion
follows from the fact that for any independent set I of G, it holds that either v is not in
I (the first term of the expansion), or v is in I but in that case, no neighbor of v is in I
(the second term). The formal proof of this expansion of PG was provided by Hoede and
Li [66].

For a graph G, we let R(G) denote the set of all vectors r ∈ [0,∞)V such that ZG(w) >
0 for all 0 ≤ w ≤ r, where the comparison is done entry-wise. For the monovariate
independence polynomial UG, an analogous set to R(G) would be exactly the real interval
[0, r) where r is the smallest positive root of UG. (Note that ZG(0) = 1 and UG(0) = 1.)

Our first connection of the independence polynomial to the hat guessing game comes
in the shape of a sufficient condition for bears to lose. Consider the following beautiful
connection between Lovász Local Lemma and independence polynomial due to Scott and
Sokal [99].

Theorem 3.5.1 ([99] Theorem 4.1). Let G = (V,E) be a graph and let (Av)v∈V be a family
of events on some probability space such that for every v, the event Av is independent of
{Aw | w ̸∈ N [v]}. Suppose that p ∈ [0, 1]V is a vector of real numbers such that for each
v we have P (Av) ≤ pv and p ∈ R(G). Then

P
(⋂

v∈V

Āv

)
≥ ZG(p) > 0.

Proposition 3.5.2. A hat guessing game H = (G = (V,E),h,g) is losing whenever
r ∈ R(G) where r = (gv/hv)v∈V .
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3.5. Independence Polynomial

Proof. Suppose for a contradiction that H is winning and fix a strategy of the bears. We
let the demon assign hat to each bear uniformly at random and independently from the
other bears. Let Av be the event that the bear on the vertex v guesses correctly. Observe,
that P (Av) =

gv
hv

and the probability that the bears lose is precisely P
(⋂

v∈V Āv

)
.

Let us show that the event Av is independent of all events Aw such that w ̸∈ N [v].
Observe, that fixing arbitrary hat arrangement φ on V \ {v} uniquely determines the
guesses of bears on all vertices except for N(v). In particular, for every vertex w ̸∈ N [v], we
know whether the bear on w guessed correctly and thus the probability of Aw conditioned
by φ is either 0 or 1. On the other hand, the probability of Av conditioned by φ is still gv

hv
.

Therefore, Av is independent of any subset of {Aw | w ̸∈ N [v]}.
The claim follows since the graph G and vector r satisfies the conditions of Theorem

3.5.1 and we obtain that P (
⋂

v∈V Āv) ≥ ZG(r) > 0. Therefore, there exists some hat
arrangement in which all bears guess incorrectly.

A strategy for a hat guessing game H is perfect if it is winning and in every hat
arrangement, no two bears that guess correctly are on adjacent vertices. We remark that
perfect strategies exist, for example the strategy for a single-guessing game on a clique
Kn and exactly n colors [82], or for a multi-guessing game on a clique Kn and h/g = n
(Corollary 3.4.2). The following proposition shows that a perfect strategy can occur only
when r = (gv/hv)v∈V lies in some sense just outside of R(G).

Proposition 3.5.3. If there is a perfect strategy for the hat guessing game (G,h,g) then
for r = (gv/hv)v∈V we have that ZG(r) = 0 and ZG(w) ≥ 0 for every 0 ≤ w ≤ r.

Proof. Fix a perfect strategy and set m =
∏

v∈V hv to be the total number of possible hat
arrangements. For any subset S ⊆ V , let nS be the number of hat arrangements such that
every bear on vertex v ∈ S guesses correctly (other bears are not forbidden from guessing
correctly). We claim that for any independent set I ⊆ V , we have nI = m ·∏v∈I

gv
hv

.
Observe that by assigning the hats to the bears on V \ I, we fix the guesses of all

bears on I. Every bear on a vertex v ∈ I guesses correctly exactly gv out of hv of his
hat assignments. Thus the total number of hat arrangements where every bear on the
independent set I guesses correctly is exactly

nI =
∏

v∈V \I

hv ·
∏

v∈I

gv = m ·
∏

v∈I

gv
hv

.

On the other hand, the perfect strategy guarantees that for any non-empty S that is
not an independent set, nS = 0. This allows us to use the inclusion-exclusion principle
and count the exact total amount of hat arrangements such that at least one bear guesses
correctly

∑

∅≠S⊆V

(−1)|S|+1nS =
∑

∅≠I⊆V
I independent

(−1)|I|+1nI = m ·
∑

∅̸=I⊆V
I independent

(−1)|I|+1
∏

v∈I

gv
hv

= m · (1− ZG(r)).
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3. Bears with Hats

Finally, the total amount of hat arrangements when at least one bear guesses correctly
must be exactly m since the bears win. Therefore, we get ZG(r) = 0.

We prove the remaining claim in two steps. First, we show that for every induced
subgraph G′ of G it holds that ZG′(r) ≥ 0. To that end, consider a modified hat guessing
game where only bears on the vertices of G′ are allowed to guess and they play according
to the original perfect strategy. By the same argument as before, we can count the total
amount of hat arrangements that are guessed correctly by this modified strategy as m ·
(1− ZG′(r)). It implies ZG′(r) ≥ 0 as the total number of hat arrangements is m.

Now consider any 0 ≤ w ≤ r. Let v1, . . . , vn be an arbitrary ordering of the vertices of
G and let us define vectors wi for 0 ≤ i ≤ n as

wi
u =

{
wu if u = vj for j ≤ i,
ru if u = vj for j > i.

Notice that w0 = r, wn = w, and the vectors wi correspond to switching the coordinates
of r into the coordinates of w one by one. We prove by induction on i that for every
induced subgraph G′ of G it holds that ZG′(wi) ≥ 0.

We already proved the fact for i = 0. Let i ≥ 1 and let G′ be an arbitrary induced
subgraph of G. If G′ does not contain vi then ZG′(wi) = ZG′(wi−1) ≥ 0 and we are done.
Otherwise, we have

ZG′(wi) = ZG′\{vi}(w
i)− wviZG′\N [vi](w

i)

≥ ZG′\{vi}(w
i−1)− rviZG′\N [vi](w

i−1) = ZG′(wi−1) ≥ 0

where we first partition the independent sets of G′ according to their incidence with vi and
then replace wi with wi−1 where the inequality holds since wvi ≤ rvi and ZG′\N(vi)(w

i−1) ≥
0 from induction. Finally, we notice that we obtained the independent polynomial ZG′

evaluated in wi−1 and apply induction. Thus, ZG(w) ≥ 0 as w = wn and G is an induced
subgraph of itself.

Scott and Sokal [99, Corollary 2.20] proved that ZG(w) ≥ 0 for every 0 ≤ w ≤ r if
and only if r lies in the closure of R(G). Therefore, Proposition 3.5.3 further implies that
if a perfect strategy for game (G,h,g) exists, then r = (gv/hv)v∈V lies in the closure of
R(G). And since r cannot lie inside R(G) due to Proposition 3.5.2, it must belong to the
boundary of the set R(G).

The natural question is what happens outside of the closure of R(G). We proceed to
answer this question for chordal graphs.

A graph G is chordal if every cycle of length at least 4 has a chord. For our purposes,
it is more convenient to work with a different equivalent definition of chordal graphs. For
a graph G = (V,E), a clique tree of G is a tree T whose vertex set is precisely the subsets
of V that induce maximal cliques in G and for each v ∈ V the vertices of T containing
v induces a connected subtree. Gavril [57] showed that G is chordal if and only if there
exists a clique tree of G.
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3.5. Independence Polynomial

Theorem 3.5.4. Let G = (V,E) be a chordal graph and let r = (rv)v∈V be a vector of
rational numbers from the interval [0, 1]. If r ̸∈ R(G) then there are vectors g,h ∈ NV

such that gv/hv ≤ rv for every v ∈ V and the hat guessing game (G,h,g) is winning.

Proof. We prove the theorem by induction on the size of the clique tree of G. Let 0 ≤ w ≤ r
be a witness that r ̸∈ R(G), i.e., ZG(w) ≤ 0.

If G is itself a complete graph, then ZG(w) ≤ 0 implies that
∑

v∈V wv ≥ 1 and∑
v∈V rv ≥ ∑

v∈V wv ≥ 1. Thus, if we take the minimal vectors g,h ∈ NV such that
gv/hv = rv for each v, the assumptions of Theorem 3.4.1 are satisfied and the hat guessing
game (G,h,g) is winning.

Otherwise, the clique tree of G contains at least 2 vertices and we pick its arbitrary leaf
C. Let R be the set of vertices such that they belong only to the clique C and S the set of
vertices C \R. We aim to split the graph into G′ = G[V \R] and G[C], apply induction to
obtain winning strategies on these graphs, and then combine them into a winning strategy
on G.

If
∑

v∈C rv ≥ 1, then the game is winning already on the clique G[C] due to The-
orem 3.4.1. Therefore, we can assume

∑
v∈C rv < 1 which implies

∑
v∈C wv < 1. We define

vectors w′ = (w′
v)v∈V \R and r′ = (r′v)v∈V \R as

w′
v =

{
wv/αw if v ∈ S,
wv otherwise, and

r′v =

{
rv/αr if v ∈ S,
rv otherwise,

where αr = 1−∑v∈R rv and αw = 1−∑v∈R wv. Observe that 0 < αr ≤ αw and that for
every v ∈ V \ R we have 0 ≤ w′

v ≤ r′v ≤ 1. In other words, r′ and w′ are both vectors of
numbers from [0, 1] such that w′ ≤ r′.

To simplify the rest of the proof, we introduce the following notation. For any u ∈ V ,
let ZG(x;u) denote the independence polynomial restricted only to the independent sets
containing u, i.e.,

ZG(x;u) =
∑

u∈I⊆V
I independent

(−1)|I|
∏

v∈I

xv.

With this in hand, we proceed to show that ZG′(w′) = ZG(w)/αw.

ZG(w) =
∑

v∈R

ZG(w; v) +
∑

v∈S

ZG(w; v) + ZG\C(w) (3.1)

=

(
1−

∑

v∈R

wv

)
· ZG\C(w) +

∑

v∈S

ZG\R(w; v) (3.2)

= αw · ZG\C(w
′) + αw ·

∑

v∈S

ZG\R(w
′; v) (3.3)

= αw · ZG\R(w
′) = αw · ZG′(w′) (3.4)
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In (3.1), we partition the independent sets in G depending on their incidence with C.
The line (3.2) follows since every independent set intersecting R in G can be written as a
union of v ∈ R and an independent set in G \ C which allows us to collect the first and
third terms. At the same time, all independent sets intersecting S in G can be regarded
as independent sets intersecting S in G \ R. In (3.3), we replace w with w′ which scales
each term in the second sum by the factor wv/w

′
v = αw. Finally, notice that the terms in

(3.3) describe (up to scaling by αw) the independent sets in G \ R partitioned according
to their incidence with S. We collect them in (3.4).

Since αw > 0 and ZG(w) ≤ 0, we have ZG′(w′) ≤ 0 which witnesses that r′ ̸∈ R(G′).
Therefore, we can apply induction on G′ and r′ to obtain functions h′,g′ such that the hat
guessing game (G′,h′,g′) is winning and g′v/h

′
v ≤ r′v for each vertex v.

Let G′′ be the graph obtained from the clique G[C] by contracting S to a single vertex
u and define the vector r′′ = (r′′v)v∈R∪{u} as

r′′v =

{
rv if v ∈ R,
αr if v = u.

Observe that G is precisely the clique join of G′ and G′′ with respect to S and w. Since
r′′u +

∑
v∈R r′′v = 1, we can take the minimal vectors h′′,g′′ ∈ NV such that g′′v/h

′′
v = rv for

every v and apply Theorem 3.4.1 on G′′ to show that the hat guessing game (G′′,h′′,g′′) is
winning. Finally, we construct the desired winning strategy by combining the two graphs
and their respective strategies using Lemma 3.4.3 since r′v · r′′v = rv for every v ∈ S.
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Figure 3.3: Application of Theorem 3.4.1 on a chordal graph G with vector r ∈ R(G).
In each step, we highlight the clique S and vertex w that are used for Lemma 3.4.3 to
inductively build a strategy for G from strategies on cliques given by Theorem 3.4.1.

Theorem 3.5.4 applied for the uniform polynomial UG immediately gives us the following
corollary.

Corollary 3.5.5. For any chordal graph G, the fractional hat chromatic number µ̂(G) is
equal to 1/r where r is the smallest positive root of UG(x).

Proof. Theorem 3.5.4 implies that µ̂(G) ≥ 1/r. For the other direction, let (wi)i∈N be
a sequence of rational numbers such that wi < r for every i and limi→∞ wi = r. Set
wi = (wi)v∈V . Scott and Sokal [99, Thereom 2.10] prove that r ∈ R(G) if and only if there

66



3.5. Independence Polynomial

is a path in [0,∞)V connecting 0 and r such that ZG(p) > 0 for any p on the path. Taking
the path {λwi | λ ∈ [0, 1]}, we see that ZG(λwi) = UG(λ ·wi) > 0 and thus wi ∈ R(G) for
every i. Therefore by Proposition 3.5.2, the hat guessing game (G, h, g) is losing for any
h, g such that g/h = wi and µ̂(G) ≤ 1/wi for every i. It follows that µ̂(G) ≤ 1/r.

We would like to remark that the proof of Theorem 3.5.4 (and also Theorem 3.4.1)
is constructive in the sense that given a graph G and a vector r it either greedily finds
vectors g,h ∈ NV such that gv/hv ≤ rv together with a succinct representation of a winning
strategy on (G,h,g) or it reaches a contradiction if r ∈ R(G). Moreover, it is easy to see
that it can be implemented to run in polynomial time if the clique tree of G is provided.
Combining it with the well-known fact that a clique tree of a chordal graph can be obtained
in polynomial time (see Blair and Peyton [12]) we get the following corollary.

Corollary 3.5.6. There is a polynomial-time algorithm that for a chordal graph G =
(V,E) and vector r decides whether r ∈ R(G). Moreover, if r ̸∈ R(G) it outputs vec-
tors h,g ∈ NV such that gv/hv ≤ rv for every v ∈ V , together with a polynomial-size
representation of a winning strategy for the hat guessing game (G,h,g).

This result is consistent with the fact that chordal graphs are in general well-behaved
with respect to Lovász Local Lemma – Pegden [92] showed that for a chordal graph G,
we can decide in polynomial time whether a given vector r belongs to R(G). We finish
this section by presenting an algorithm that computes hat chromatic number of chordal
graphs.

Theorem 3.5.7. There is an algorithm A such that given a chordal graph G as an input,
it approximates µ̂(G) up to an additive error 1/2k. The running time of A is 2k · poly(n),
where n is the number of vertices of G. Moreover, if µ̂(G) is rational, then the algorithm
A outputs the exact value of µ̂(G).

Proof. First, suppose that µ̂(G) is rational. Let µ̂(G) = q/p for coprimes p, q ∈ N. By
Corollary 3.5.5, 1/µ̂(G) = p/q is the smallest positive root of the polynomial UG. Let
UG(x) = adx

d + · · · + a1x + a0. Note that a0 = 1 and for each i ≤ d holds that |ai| ≤ 2n

because |ai| is exactly the number of independent sets of size i in the graph G. By the
rational root theorem (Theorem 3.2.2), it holds that p = 1 and q ≤ 2n.

The algorithm A repeats a halving procedure which works as follows. We set the initial
bounds ℓ0 = 0 and u0 = 1. In a step i, let ri = (ℓi + ui)/2. We run the algorithm
by Corollary 3.5.6 to test if there are hi, gi ∈ N such that gi/hi ≤ ri and the game
Hi = (G, hi, gi) is winning. If so, we set new bounds ℓi+1 = ℓi and ui+1 = ri. On the other
hand, if Hi is not winning then we set ℓi+1 = ri and ui+1 = ui. Thus, for each i it holds
that ℓi ≤ 1/µ̂(G) ≤ ui.

We make s = max{2k, 3n} steps. The length of the real interval Is = [ℓs, us] is at most
1/23n. It is easy to verify that the interval Is contains at most one rational number 1/q for
q ≤ 2n. If so, we output the number q. Otherwise, we output a number t such that 1/t is
an arbitrary number in Is.
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If µ̂(G) is rational, then by Corollary 3.5.5 and by the discussion above we found its
value. Otherwise, we know that |1/µ̂(G) − 1/t| ≤ 1/2s as the length of Is is exactly
1/2s. Since s ≥ 3n and 1/t ≥ 1/n by Corollary 3.4.2, it follows by easy calculation that
|µ̂(G) − t| ≤ 1/2s/2 ≤ 1/2k. Thus, even if µ̂(G) is irrational, then we estimate it with
precision 1/2k.

We ran the halving procedure at most 2k-times and during each step we run the poly-
time algorithm given by Corollary 3.5.6. Thus, the running time of A is at most 2k ·
poly(n).

3.6 Applications

In this section, we present applications of the relation between the hat guessing game and
independence polynomials which was presented in the previous section.

3.6.1 Fractional Hat Chromatic Number is Almost Linear in the
Maximum Degree

First, we prove that µ̂(G) is asymptotically equal to ∆(G) up to a logarithmic factor.

Proposition 3.6.1. The fractional hat chromatic number of any graph G = (V,E) is at
least Ω(∆/ log∆).

Proof. Let H be a subgraph of G. Note that µ̂(H) ≤ µ̂(G) as the bears can use a winning
strategy for H in G. Let S be a star of ∆(G) = ∆ leaves. The graph G contains S as a
subgraph. We prove the proposition by giving a lower bound for µ̂(S).

By Corollary 3.5.5, we have that r = 1/µ̂(S) is the smallest positive root of US(x). The
independence polynomial of S is

US(x) = −x+
∆∑

i=0

(
∆

i

)
(−x)i = (1− x)∆ − x.

The term −x is given by the independent set containing only the vertex of degree ∆. The
sum is given by all independent sets consisting of leaves of S. Thus, it must hold that
(1− r)∆ = r. By simple calculation, we conclude that r = Θ

(
log∆/∆

)
, which implies the

assertion of the proposition.

Farnik [50] proved that µg(G) ∈ O
(
g ·∆(G)

)
, from which we can deduce that µ̂(G) ∈

O
(
∆(G)

)
. It gives with Proposition 3.6.1 the following corollary that µ̂(G) is almost linear

in ∆(G).

Corollary 3.6.2. For any graph G, it holds that µ̂(G) ∈ Ω(∆/ log∆) and µ̂(G) ∈ O(∆).
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3.6.2 Paths and Cycles

In this section, we discuss the precise value of µ̂ of paths and cycles. It follows from
Corollary 3.6.2, that µ̂(Pn) and µ̂(Cn) are some constants. We prove that the fractional
hat chromatic number of paths and cycles goes to 4 with their increasing length.

For a proof, we need a version of Lovász local lemma proved by Shearer.

Lemma 3.6.3 (Shearer [102]). Let A1, . . . , An be events such that each event is independ-
ent on all but at most d other events. Let the probability of any events Ai is at most
p. If d > 1 and p < (d−1)d−1

dd
, then there is non-zero probability that none of the events

A1, . . . , An occurs.

Proposition 3.6.4. limn→∞ µ̂(Pn) = limn→∞ µ̂(Cn) = 4

Proof. First, we prove the lower bound for paths. Let ε > 0. We construct a sufficiently
long path P = (V,E) and vectors h,g ∈ NV such that a hat guessing game (P,h,g) is
winning and gv/hv ≤ 1/4 + ε. Thus, we can conclude that for every δ > 0 there is n such
that µ̂(Pn) ≥ 4− δ, i.e., limn→∞ µ̂(Pn) ≥ 4. The same lower bound holds for cycles as they
contain paths as subgraphs.

We construct the path P iteratively. Let P 0 be a path consisting of one edge e0 =
{v0, u0}. We set g0

v0
= g0

u0
= 1 and h0

v0
= h0

u0
= 2. By Theorem 3.4.1, the game

(P 0,h0,g0) is winning.
Now, we want to construct a game Hi+1 = (P i+1,hi+1,gi+1) from (P i,hi,gi). Let vi

and ui be the endpoints of P i. We will maintain the invariant that givi = giui
and hi

vi
= hi

ui

and let us denote the ratio givi/h
i
vi

by ri. We construct the paths P i in a way such that
ri =

1
2
− i · ε. Note that this equality holds for the game (P 0,h0,g0).

Let P ′ be a path consisting of one edge e′ = {w,w′} and we set g′ and h′ in such a way
that g′w/h

′
w = 1/2 + (i + 1) · ε and g′w′/h′

w′ = 1/2 − (i + 1) · ε. Again by Theorem 3.4.1,
the game (P ′,h′,g′) is winning. To create the path P i+1, we join two copies of P ′ to P i

using Lemma 3.4.3. More formally, we join one copy of P ′ by identifying w and ui and the
second copy by identifying w and vi. Thus, the endpoints ui+1 and vi+1 of P i+1 are copies
of w′. By Lemma 3.4.3, we get a winning game Hi+1 = (P i+1,hi+1,gi+1). For a sketch of
construction of the game Hi+1, see Figure 3.4. Note that indeed ri+1 =

1
2
− (i+ 1) · ε.

We end this process after k =
⌈

1
4ε

⌉
steps. Thus, it holds that rk = 1

2
− k · ε ≤ 1

4
. On

the other hand, it holds for each 0 ≤ i < k by Lemma 3.4.3 that

gkvi
hk
vi

=
gkui

hk
ui

=

(
1

2
− i · ε

)
·
(
1

2
+ (i+ 1) · ε

)
=

1

4
+

ε

2
− i(i+ 1)ε2.

Thus, for each vertex v of P k holds that gkv
hk
v
≤ 1

4
+ ε as claimed.

Now, we prove the upper bound. Let H = (G, h, g) be a game such that G is
a path or a cycle and h

g
> 4. We will prove that bears lose H, which implies that

limn→∞ µ̂(Pn), limn→∞ µ̂(Cn) ≤ 4. Let us fix some strategy of bears and the demon gives
each bear a hat of random color (chosen uniformly and independently). We denote Av an
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u0 v0ui vi

P i

1
4 + ε

2
1
4 + ε

2
1
2 − i · ε 1

2 − i · ε

1
2 + (i+ 1) · ε1

2 − (i+ 1) · ε

ww′ P ′

1
2 − (i+ 1) · ε1

2 + (i+ 1) · ε

w w′P ′

u0 v0ui vi

P i+1

1
4 + ε

2 − i(i+ 1)ε2 1
4 + ε

2 − i(i+ 1)ε2

ui+1 vi+1

1
2 − (i+ 1) · ε 1

2 − (i+ 1) · ε

Figure 3.4: A sketch of construction of the game Hi+1. The formulas below vertices are
the fractions gv/hv.

event that the bear on v guesses correctly. Then, Pr[Av] =
g
h
< 1

4
. Since the maximum de-

gree in G is 2, each event Av might depend only on at most 2 other events. By Lemma 3.6.3,
for events (Av)v∈V (G) and d = 2, we have that no event Av occurs with non-zero probability.
Thus, there is a hat arrangement such that no bear guesses correctly.

We remark that Proposition 3.6.4 follows also from the results of Scott and Sokal [99] as
they proved that the small positive roots of UPn and UCn go to 1/4 when n goes to infinity.
However, their proof is purely algebraic whereas we provide a combinatorial proof.

Further, we discuss the value of µ̂ = µ̂(P3). By Corollary 3.5.5, we have that 1/µ̂ is the
smallest positive root of UP3(x) = x2−3x+1. Thus, 1/µ̂ = (3−

√
5)/2. By Theorem 3.5.4,

it holds that for any p, q ∈ N such that µ̂ ≤ p/q there are g, h ∈ N such that p/q = h/g and
the game (P3, h, g) is winning. However, the strategy from the proof gives us h = p · (p− q)
and g = q · (p− q). We present a sequence (hi/gi)i∈N such that the sequence goes to µ̂, for
each i the numbers hi and gi are coprime, and the game (P3, hi, gi) is winning for each i.
Thus, we present a strategy that is in some sense more efficient than the strategy given by
the proof of Theorem 3.5.4 as the general strategy for P3 does not produce numbers g and
h which are coprimes.

First, we present the strategy for P3. Note that if 1 ≥ g/h ≥ 1/µ̂ (for g, h ∈ N) then
UP3 (g/h) = (g/h)2−3g/h+1 < 0. We change the inequality to g2−3gh+h2 < 0 and prove
that for each g and h, which satisfy the previous inequality, there is a winning strategy for
(P3, h, g).

Lemma 3.6.5. Let g, h ∈ N such that g2 − 3gh + h2 < 0. Then, the bears win the game
(P3, h, g).

Proof. Let V (P3) = {u, v, w} where v and w are the endpoints of the path P3. We identify
the colors with a set C = {0, . . . , h − 1}. Let the bear on v get a hat of color cv. The
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bear on u makes guesses Au =
{
cv, cv − 1, . . . , cv − (g− 1)

}
. The bear on w makes guesses

Aw =
{
cv, cv − ⌊h/g⌉ , . . . , cv − ⌊(g − 1) · h/g⌉

}
, where ⌊x⌉ is the nearest integer to x (i.e.,

standard rounding). We compute the guessed colors modulo h.
The bear on v computes two sets of colors Iu and Iw based on the hat colors of bears

on u and w such that he will not guess the colors from Iu ∪ Iw because if cv ∈ Iu ∪ Iw
then the bear on u or the bear on w would guess correctly (or maybe both of them). The
guesses of the bear on u is an interval in the set C. However, the guesses of the bear on
w are spread through C as evenly as possible. Thus, the intersection Iu ∩ Iw is small and
Iu ∪ Iw is large.

More formally, let cu and cw be hat colors of the bears on u and w, respectively. Then,
Iu = {cu, cu + 1, . . . , cu + (g − 1)}, and Iw = {cw, cw + ⌊h/g⌉, . . . , cw + (g − 1) · ⌊h/g⌉}.
Again, we compute the elements in the sets modulo h. Note that if cv ∈ Iu then the bear
on u guesses correctly because in that case cv = cu + t (mod h) for some t < g and thus
cu ∈ Au. An analogous property holds for cw. Thus, the bear on v does not have to guess
the colors from Iu ∪ Iw.

We will prove that
∣∣C \ (Iu ∪ Iw)

∣∣ ≤ g. Thus, the bear on v can guess all colors
outside Iu and Iw and makes at most g guesses. First, we prove that |Iu ∩ Iw| ≤ 3g − h.
Suppose opposite, that |Iu ∩ Iw| > 3g − h. In such a case, there must be k such that
both colors cw + ⌊k · h/g⌉ and cw + ⌊(k + 3g − h) · h/g⌉ belong to Iu. This implies that
⌊(k+3g−h) ·h/g⌉− ⌊k ·h/g⌉ ≤ g− 1. Applying bounds on the rounded terms, we obtain

g − 1 ≥
⌊
(k + 3g − h) · h

g

⌉
−
⌊
k · h

g

⌉

≥ (k + 3g − h) · h
g
− 0.5− k · h

g
− 0.5

= (3g − h) · h
g
− 1.

The final inequality implies g2 − 3gh+ h2 ≥ 0 which contradicts the assumption of the
lemma. Therefore, the size of the intersection Iu ∩ Iw is at most 3g−h. It follows that the
size of the union Iu ∪ Iw is at least 2g − (3g − h) = h− g and

∣∣C \ (Iu ∪ Iw)
∣∣ ≤ g.

Let Fi be the i-th Fibonacci number2. We define hi = F2i and gi = F2i−2. Now, we
prove the sequence (gi/hi)i∈N has the sought properties.

Lemma 3.6.6. For each i ∈ N it holds that hi

gi
≤ µ̂. Moreover,

lim
i→∞

hi

gi
= µ̂.

Proof. Note that 1/µ̂ = 1−
√
5−1
2

= 1− 1
φ
, where φ is the golden ratio, i.e., φ = 1+

√
5

2
. It is

well-known that fractions Fi

Fi−1
go to φ. Moreover, F2i

F2i−1
≥ φ. Thus, for each i ∈ N it holds

2F0 = F1 = 1 and Fi+1 = Fi−1 + Fi.
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3. Bears with Hats

that
1

µ̂
= 1− 1

φ
≤ 1− F2i−1

F2i

=
F2i−2

F2i

=
gi
hi

.

and the fractions hi

gi
indeed go to µ̂.

Lemma 3.6.7. For each i ∈ N holds that

g2i − 3gihi + h2
i = −1. (3.5)

Proof. By definition hi = F2i and gi = F2i−2. We use the closed form expression for
Fibonacci numbers

Fn =
φn+1

√
5

− (1− φ)n+1

√
5

.

We plug it into the left-hand side of Equation 3.5.

F 2
2i−2 − 3F2i−2F2i + F 2

2i =

1

5
·
(
φ2(2i−1) − 2φ2i−1(1− φ)2i−1 + (1− φ)2(2i−1)

− 3
(
φ2i−1 − (1− φ)2i−1

)(
φ2i+1 − (1− φ)2i+1

)

+ φ2(2i+1) − 2φ2i+1(1− φ)2i+1 + (1− φ)2(2i+1)
)

We rearrange this expression by powers of φ and (1− φ).

1

5
·
(
φ2(2i−1)

(
1− 3φ2 + φ4

)

+ φ2i−1(1− φ)2i−1
(
−2 + 3(1− φ)2 + 3φ2 − 2φ2(1− φ)2

)

+ (1− φ)2(2i−1)
(
1− 3(1− φ)2 + (1− φ)4

))

By plugging φ = 1+
√
5

2
we get the following equations.

1− 3φ2 + φ4 = 0

1− 3(1− φ)2 + (1− φ)4 = 0

−2 + 3(1− φ)2 + 3φ2 − 2φ2(1− φ)2 = 5

φ · (1− φ) = −1

From these equations and the expression above follows that the left-hand side of Equa-
tion 3.5 is equal to −1.

Observation 3.6.8. For each i ∈ N the numbers hi and gi are coprime.

Proof. By definition, gi = F2i−2 and hi = F2i.

GCD(F2i−2, F2i) = GCD(F2i−2, F2i−1 + F2i−2) = GCD(F2i−2, F2i−1)

It is easy to prove by induction that for each i ∈ N it holds that GCD(Fi−1, Fi) = 1.
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Chapter 4
Online Ramsey Numbers

An online Ramsey game is a game between Builder and Painter, alternating in turns. They
are given a fixed graph H and an infinite set of independent vertices G. In each round
Builder draws a new edge in G and the Painter colors it either red or blue. Builder wins if
after some finite round there is a monochromatic copy of the graph H, otherwise, Painter
wins. The online Ramsey number r̃(H) is the minimum number of rounds such that Builder
can force a monochromatic copy of H in G. This is an analogy to the size-Ramsey number
r(H) defined as the minimum number such that there exists graph G with r(H) edges
where for any edge two-coloring G contains a monochromatic copy of H.

In this chapter, we introduce the concept of induced online Ramsey numbers: the
induced online Ramsey number r̃ind(H) is the minimum number of rounds Builder can
force an induced monochromatic copy of H in G. We prove asymptotically tight bounds
on the induced online Ramsey numbers of paths, cycles and two families of trees. Moreover,
we provide a result analogous to Conlon [On-line Ramsey Numbers, SIAM J. Discr. Math.
2009], showing that there is an infinite family of trees T1, T2, . . . , |Ti| < |Ti+1| for i ≥ 1,
such that

lim
i→∞

r̃(Ti)

r(Ti)
= 0.

4.1 Introduction

For a graph H, the Ramsey number r(H) is the smallest integer n such that in any two-
coloring of edges of the complete graph Kn, there is a monochromatic copy of H. The
size-Ramsey number r(H), introduced by Erdős, Faudree, Rousseau, and Schelp [48], is
the smallest integer m such that there exists a graph G with m edges such that for any
two-coloring of the edges of G one will always find a monochromatic copy of H.

There are many interesting variants of the usual Ramsey function. One important
concept is the induced Ramsey number rind(H), which is the smallest integer n for which
there is a graph G on n vertices such that every edge two-coloring of G contains an induced
monochromatic copy of H. Erdős [49] conjectured the existence of a constant c such that
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4. Online Ramsey Numbers

every graph H with n vertices satisfies rind(H) ≤ 2cn, which would be best possible. In
2012, Conlon, Fox and Sudakov [26] proved that there is a constant c such that every
graph H with n vertices satisfies rind(H) ≤ 2cn logn. The proof uses a construction of
explicit pseudorandom graphs, as opposed to random graph construction techniques used
by previous attempts. For more on the topic see the excellent review by Conlon, Fox, and
Sudakov [27].

The induced size-Ramsey number rind(H) is an analog of the size-Ramsey number: we
define rind(H) as the smallest integer m such that there exists a graph G with m edges such
that for any two-coloring of the edges of G there is always a monochromatic copy of H.
In 1983, Beck [6], using probabilistic methods, proved the surprising fact that r̃(Pn) ≤ cn,
where Pn is a path of length n and c is an absolute constant. An even more surprising
result came by Haxell, Kohayakawa, and Łuczak [62], who studied the induced size-Ramsey
number of cycles showing that rind(Cn) = O(n). However, the proof uses random graph
techniques and regularity lemma and does not provide any reasonably small multiplicative
constant.

In this chapter, we study the online variant of size Ramsey number which was introduced
independently by Beck [8] and Kurek and Ruciński [85]. The best way to define it is in
term of a game between two players, Builder and Painter. An infinite set of vertices is
given, in each round Builder draws a new edge and immediately it is colored by Painter in
either red or blue. The goal of Builder is to force Painter to obtain a monochromatic copy
of a fixed graph H (called target graph). The minimum number of edges which Builder
must draw in order to obtain such monochromatic copy of H, assuming optimal strategy of
Painter, is known as the online Ramsey number r̃(H). The graph G, which is being built
by Builder, is called background graph. The online Ramsey number is guaranteed to exist
because Builder can simply create a big complete graph Kr(H), which by Ramsey theorem
trivially contains a monochromatic copy of H.

The winning condition for Builder is to obtain a copy of the target graph H.

Input: A graph H
Question: r̃(H) – the minimum number of rounds of the Builder-Painter game

Builder has a strategy to obtain a monochromatic subgraph H in G.

online Ramsey number

However, there are more different notions of “being a copy”. This leads us to the
following definitions. See Figure 4.1 for an illustration.
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Subgraph Weakly induced Strongly induced

Figure 4.1: Various notions of C4 being a copy in G

Input: A graph H
Question: r̃ind(H) – the minimum number of rounds of the Builder-Painter game

such that Builder has a strategy to obtain a monochromatic induced
subgraph H in G.

(strongly) induced online Ramsey number

Input: A graph H
Question: r̃wind(H) – the minimum number of rounds of the Builder-Painter game

such that Builder has a strategy providing a color c such that G restricted
to edges of color c contains an induced subgraph H.

weakly induced online Ramsey number

If there is no strategy of Builder to obtain the copy of H, we define the respective
number as ∞.

Note that for any graph H we have r̃(H) ≤ r̃wind(H) ≤ r̃ind(H). Also, these online
Ramsey numbers lower bound respective size-Ramsey numbers.

In 2008 Grytczuk, Kierstead, and Prałat [60] studied the online Ramsey number of
paths, obtaining r̃(Pn) ≤ 4n − 3, where Pn is a path with n edges, providing an inter-
esting counterpart to the result of Beck [6]. Also, the result by Haxell, Kohayakawa, and
Łuczak. [62] on induced size-Ramsey number of cycles naturally bounds the online version
as well, but with no reasonable multiplicative constant.

In this chapter, we study the induced online Ramsey number of paths, cycles, and trees.
The summary of the results for paths and cycles is as follows.

Theorem 4.1.1. Let Pn denote the path of length n and let Cn denote a cycle with n
vertices. Then

◦ r̃ind(Pn) ≤ 28n− 27,

◦ r̃ind(Cn) ≤ 367n− 27 for even n,

◦ r̃ind(Cn) ≤ 735n− 27 for odd n.
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4. Online Ramsey Numbers

A spider σk,ℓ is a union of k paths of length ℓ sharing exactly one common endpoint.
We further show that r̃ind(σk,ℓ) = Θ(k2ℓ) and r̃(σk,ℓ) = Θ(k2ℓ).

Although we know that r̃(H) ≤ r(H), it is a challenging task to identify classes of
graphs for which there is an asymptotic gap between both numbers. For complete graphs,
Chvátal observed (see [48]) that r(Kt) =

(
r(Kt)

2

)
. The basic question, attributed to Rödl

(see [85]), is to show limt→∞ r̃(Kt)/r(Kt), or put differently, to show that r̃(Kt) = o(
(
r(Kt)

2

)
).

This conjecture remains open, but in 2009 Conlon [25] showed there exists c > 1 such that
for infinitely many t,

r̃(Kt) ≤ c−t

(
r(Kt)

2

)
.

In this chapter, we contribute to this topic by showing that there is an infinite family of
trees T1, T2, . . . , with |Ti| < |Ti+1| for i ≥ 1, such that

lim
i→∞

r̃(Ti)

r(Ti)
= 0,

thus exhibiting the desired asymptotic gap. In fact, we prove a stronger statement, exhib-
iting the asymptotic gap even for the induced online Ramsey number.

4.2 Induced Paths

In this section, we present an upper bound on the induced online Ramsey number of paths.
This is the main building block for induced strategies we obtain later.

Theorem 4.2.1. Let Pn be a path of length n. Then r̃ind(Pn) ≤ 28n− 27.

Proof. First we build the set I of 2(7n − 7) − 1 isolated edges, then at least 7n − 7 have
the same color, we say this color is abundant in I.

Let R0 and B0 be the initial paths of lengths 0. In s-th step we have a red induced path
Rs = (r0, {r0, r1}, r1, . . . , ri) of length i and a blue induced path Bs = (b0, {b0, b1}, b1, . . . , bj)
of length j. We denote the concatenation of paths P and Q by P ∪ Q. The removal of
vertices and incident edges is denoted by P \ {v}. We define the potential of s-th step
ps = 3a + 4o where a is the length of the path in color which is abundant in I and o is
the length of path in the other color. Further, we show that we are able to maintain the
invariant that there are no edges between Rs and Bs and that ps+1 > ps.

Assume, without loss of generality, that the blue edges are abundant in I. Let g = {x, y}
be an unused blue edge from I. One step of Builder is as follows. Builder creates an edge
e = {ri, bj}. If Painter colored e red then Builder creates an edge f = {bj, x}, however if e
is blue then Builder creates f = {ri, x}.

Depending on how edges e and f were colored we end up in one of the following four
scenarios.
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4.3. Cycles and Induced Cycles

(Bs+1, Rs+1) =





(
Bs ∪ (e, ri, f, x, g, y), R

s \ {ri, ri−1}
)

if e and f are blue(
Bs \ {bj}, Rs ∪ (f, x)

)
if e is blue and f is red(

Bs ∪ (f, x, g, y), Rs \ {ri}
)

if e is red and f is blue(
Bs \ {bj, bj−1}, Rs ∪ (e, bj, f, x)

)
if e and f are red

These different cases are also depicted in Figure 4.2. Each of these scenarios lead to a
following change in potential.

ps+1 =





3
(
|Bs|+ 3

)
+ 4
(
|Rs| − 2

)
= ps + 1 if e and f are blue

3
(
|Bs| − 1

)
+ 4
(
|Rs|+ 1

)
= ps + 1 if e is blue and f is red

3
(
|Bs|+ 2

)
+ 4
(
|Rs| − 1

)
= ps + 2 if e is red and f is blue

3
(
|Bs| − 2

)
+ 4
(
|Rs|+ 2

)
= ps + 2 if e and f are red

bj ri

x

y
g

Bs Rs

e

f f

Figure 4.2: One step in creating an induced monochromatic Pn

We obtained a pair of paths Bs+1, Rs+1 such that ps+1 > ps and the invariant holds.
The maximum potential for which Builder did not win yet is ps = 7n − 7. Therefore,
there are no more than 7n − 6 steps to finish one monochromatic induced path of length
n. To create the initial set I Builder creates 2(7n − 7) − 1 isolated edges. In each step,
Builder creates two edges. The total number of edges created by Builder is no more than
2(7n− 6) + 2(7n− 7)− 1 = 28n− 27.

4.3 Cycles and Induced Cycles

In this section, we present a linear constructive upper bound on the online Ramsey number
of cycles r̃(Cn) and induced cycles r̃ind(Cn).
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Theorem 4.3.1. Let Cn be a cycle on n vertices, where n is even. Then, r̃ind(Cn) ≤
367n− 27.

Proof. First, Builder obtains disjoint paths ρ1, ρ2, . . . , ρ9 of length 4n/3−1 and one path ρ10
of length n− 2. Instead of using Theorem 4.2.1 to create these paths separately it is more
efficient to create a P13n using at most 28(13n)− 27 edges and define paths ρ1, ρ2, . . . , ρ10
as an induced subgraph of P13n. Let the P13n be without loss of generality red. Let ρi,j
denote the j-th vertex of path ρi.

In the procedure, Builder will either create a red Cn using ρ1, ρ2, . . . , ρ10 or three blue
paths of length n/2 which all start in u and end in either ρ10,1 or ρ10,n−1. Two of the three
paths necessarily share both endpoint and will form a blue Cn. Each blue path will be
built within a separate triplet of paths from ρ1, ρ2, . . . , ρ9 and alternate between them with
each added vertex.

Let us run the following procedure three times – once for each k ∈ {1, 2, 3}. Let us set
p = ρ3k−2, q = ρ3k−1 and r = ρ3k (for each run separately). Let us define cyclic order of
these paths to be (p, q, r, p) which defines a natural successor for each path. Builder does
the following three steps, which are also depicted in Figure 4.3.

1. Create edges {u, p1} and {u, pn−1}. If both of these edges are red, Builder wins
immediately. If that is not the case, then at least one edge {u, v1} where v1 ∈
{p1, pn−1} is blue.

2. Now for i from 1 to n/2− 1 we do as follows.

◦ Let j := 2⌊i/3⌋, i.e., every three steps we move by 2 vertices. Let t ∈ {p, q, r}
such that vi ∈ t and set s to be the successor of t.

◦ We create edges {vi, sj+1} and {vi, sj+n−1}. If both are red, Builder wins, oth-
erwise take an edge {vi, vi+1} where vi+1 ∈ {sj+1, sj+n−1} is blue.

3. Finish the path (u, v1, v2, . . . , vn/2−1) by creating {vn/2−1, ρ10,1} and {vn/2−1, ρ10,n−1}.
Again, if both edges are red, Builder wins immediately. Otherwise, Builder creates
a blue path from u to ρ10,1 or to ρ10,n−1.

If the final circle is red, then it is induced because the initial path is induced and we neither
create edges connecting two vertices of ρk to itself, nor edges connecting vi to any vertices
between endpoints of the cycle. If the blue cycle is created, then it is induced because we
use only odd vertices on ρ1, ρ2, . . . , ρ9 for creating the three blue paths and no edges are
created between vertices which are further than 1 apart on these blue paths.

Note that the length of paths ρ1, ρ2, . . . , ρ9 is sufficient because they need to be at least
2
⌊n/2−1

3

⌋
+ (n− 2) ≤ 4n−8

3
≤ 4n/3− 1.

By Theorem 4.2.1 we can create the initial induced P13n in 28(13n) − 27 rounds. For
each blue path we used at most n edges so there are at most 3n additional edges, hence,
r̃(Cn) ≤ 367n− 27.

78



4.3. Cycles and Induced Cycles

u
p

q

r

ρ10

Figure 4.3: Creation of ρn/2 for n = 18.

Theorem 4.3.2. Let Cn be a cycle on n vertices, where n is odd. Then r̃ind(Cn) ≤
r̃ind(C2n) + n.

Proof. First, we create a monochromatic cycle C2n. Assume without loss of generality that
this cycle is blue. Let c0, c1, . . . , c2n−1 denote vertices on the C2n in the natural cyclic order
and let ci for any i ≥ 2n denote vertex cj, j = i mod 2n. We join two vertices which lie
n− 1 apart on the even cycle by creating an edge {c0, cn−1}. If the edge is blue it forms a
blue Cn with part of the blue even cycle, see Figure 4.4. If the edge is red we can continue
and create an edge {cn−1, c2(n−1)} and use the same argument. This procedure can be
repeated n times finishing with the edge {c(n−1)(n−1), cn(n−1)} where cn(n−1) = c0 because
GCD(n− 1, 2n) = 2 and we visit only even vertex.

Figure 4.4: The two cases which arise after the final step of building C9.

Let E be all the new red edges we just created, i.e., E =
{
{ci, ci+n−1} | i ∈ J

}
where

J =
{
j(n− 1) | j ∈ {0, 1, . . . , n− 1}

}
. Since GCD(n− 1, 2n) = 2 it follows that the edges

of E complete a cycle C
′
n =

(
{c0, c2, . . . , c2n−2}, E

)
, see Figure 4.4.

Since the C2n is induced then it follows that the target Cn will be induced as well.
We first used Theorem 4.3.1 to create an even cycle C2n then we added n edges to form

the C
′ . This gives us an upper bound for induced odd cycles r̃ind(Cn) ≤ r̃ind(C2n) + n ≤

735n− 27.
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Non-induced Cycles

Although the induced cycle strategies are asymptotically tight we can get better constants
for the non-induced cycles. For even cycles, we can use the non-induced path strategy to
create the initial P17n/2 in 4(17n/2) − 3 rounds. Then we add 3n/2 edges in the similar
fashion as for the induced cycles however we can squeeze them more tightly as depicted in
the Figure 4.5.

. . .

. . .

. . .

. . .

. . .

Figure 4.5: More efficient construction for even non-induced cycles.

Using this method the paths ρ1, ρ2, . . . , ρ6 need only 5n/4 vertices each, therefore the
initial path P17n/2 is sufficient. This gives us r̃(Cn) ≤ 71n/2− 3 for even n which directly
translates to odd cycles and gives us r̃(Cn) ≤ r̃(C2n) + n ≤ 72n− 3 for odd n.

4.4 Tight Bounds for a Family of Trees

We first prove a general lower bound for the online Ramsey number of graphs. It will be
used to show the tightness of bounds in this section.

Lemma 4.4.1. The r̃(H) is at least VC(H) · (∆(H)− 1)/2 + |E(H)| where VC(H) is the
vertex cover, ∆(H) is the maximum degree in H, and |E(H)| is the number of edges.

Proof. Let degb(v) be the number of blue edges incident to the vertex v. Let us define the
Painter’s strategy against the target graph H as follows.

1. If both incident vertices have degb < ∆(H)− 1 then color the edge blue,

2. otherwise color the edge red.

It is clear that Builder cannot create H in blue color because the blue graph can contain
only vertices with degree at most ∆(H) − 1. To obtain a red edge it has to have at least
one incident vertex with high blue degree. The minimum number of vertices with high
blue degree which are required to complete H is VC(H), therefore, Builder has to create at
least VC(H) · (∆(H)− 1)/2 blue edges. Then Builder has to create at least |E(H)| edges
to complete the target graph in red color.

Let us define a spider σk,ℓ for k ≥ 3 and ℓ ≥ 2 as a union of k paths of length ℓ that
share exactly one common endpoint. Let a center of σk,ℓ denote the only vertex with degree
equal to k.

In the following theorem, we obtain an upper bound on r̃(σk,ℓ) that asymptotically
matches the lower bound from Lemma 4.4.1.

80



4.4. Tight Bounds for a Family of Trees

Theorem 4.4.2. r̃ind(σk,ℓ) = Θ(k2ℓ).

Proof. We describe Builder’s strategy for obtaining an induced monochromatic σk,ℓ. We
start by creating an induced monochromatic path of length k2(2ℓ + 1) which is without
loss of generality blue. This path contains k2 copies of P2ℓ as an induced subgraph. Let
Pi,j denote the j-th vertex on path Pi. Let P1,P2, . . . ,Pk be k sets where each contains k
disjoint induced paths. Let u be a previously unused vertex. Now for each Pj we do the
following procedure, see Figure 4.6 for an illustration.

1. Let {P 1, P 2, . . . , P k} = Pj.

2. Create edges
{
{u,w} | w ∈ {P 1

1 , P
2
1 , . . . , P

k
1 }
}
. If there are k blue edges there is a

σk,ℓ with the center in u. If that is not the case, then there is at least one red edge
e1 = {u, v1} where v1 ∈ {P 1

1 , P
2
1 , . . . , P

k
1 }.

3. For i from 2 to ℓ we do as follows.

◦ For vi−1 ∈ P z create edges
{
{vi−1, w} | w ∈ {P 1

i , P
2
i , . . . , P

k
i } − P z

i

}
. If all of

these edges are blue we have a σk,ℓ with the center in vi−1, otherwise there is a
red edge {vi−1, vi} where vi ∈ {P 1

i , P
2
i , . . . , P

k
i }.

4. We obtained a red induced path Lj =
(
u, {u, v1}, . . . , vℓ

)
.

u

Figure 4.6: Building one red leg of a spider σ4,5.

If all iterations end up in obtaining a path Lj we have k induced paths of length ℓ
which all start in u and together they form a σk,ℓ with the center in u.

We built a path Pk2(2ℓ+1) using Theorem 4.2.1 using at most 28
(
k2(2ℓ+1)

)
− 27 edges.

During iterations, we created at most kℓ(k− 1) edges. Therefore, we either got a blue σk,ℓ

during the process or a red σk,ℓ after using no more than r̃ind(σk,ℓ) ≤ 57k2ℓ+28k2−kℓ−27 =
O(k2ℓ) rounds.

The lower bound of Lemma 4.4.1 gives us Ω(k2ℓ) so r̃ind(σk,ℓ) = Θ(k2ℓ).

We can get the bound on non-induced spiders in a similar way, however, we can use
several tricks to get a bound which is not far from the lower bound.

Theorem 4.4.3. r̃(σk,ℓ) ≤ k2ℓ+ 15kℓ+ 2k − 12 = O(k2ℓ).

Proof. We create a path P4kℓ using strategy by Grytczuk et al. [60] in 4(4kℓ) − 3 rounds
and split it into 2k paths of length 2ℓ. We follow the same strategy as in the induced case,
however, we work over the same set of paths in all iterations and we exclude those vertices
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which are already used by some path. Choosing 2k paths guarantees that we have big
enough set even for the last iteration. We create 2k edges from u and then we use kℓ(k−1)
to create the red paths. We either get a blue σk,ℓ in the process or a red σk,ℓ after using
no more than k2ℓ+ 15kℓ+ 2k − 12 rounds.

4.5 Family of Induced Trees with an Asymptotic Gap

In 2009 Conlon [25] showed that the online Ramsey number and the size-Ramsey number
differ asymptotically for an infinite number of cliques. In this section, we present a family
of trees which exhibit the same property, i.e., their induced online Ramsey number and
size-Ramsey number differ asymptotically.

Definition 4.5.1. Let centipede Sk,ℓ be a tree consisting of a path Pℓ of length ℓ where
each of its vertices has k adjacent leaves, i.e., a thorn-regular caterpillar.

Note that Sk,ℓ has (k + 1)(ℓ + 1) vertices and its maximum degree is k + 2. We will
show that Sk,ℓ exhibits a small induced online Ramsey number.

The proof uses the potential method to bound the number of created edges. We proceed
in steps where each step either makes the centipede longer or we get a vertex which has k
incident edges in both colors (so-called colorful star). When the potential reaches a certain
threshold we either get sufficiently long centipede or enough of the colorful stars to run the
induced path strategy, which enforces an induced monochromatic centipede.

Theorem 4.5.2. r̃ind(Sk,ℓ) ≤ 678kℓ− 652k + 476ℓ− 434 = O(kℓ).

Proof. We will need a “degree-type” notion. Let G = (V,E) be a graph whose edges are
colored red and blue. Let U ⊆ V . For a vertex v ∈ V let deg(v, U) be a degree outside U ,
i.e., deg(v, U) = |N(v) \U |. Let degb(v, U) and degr(v, U) be a vertex degree outside U in
blue or red color, respectively. Formally,

degb(v, U) =
∣∣∣
{
u ∈ N(v) \ U : {u, v} is blue

}∣∣∣,

and similarly for degr(v, U).
A center of a star Sk is the vertex of degree k. A center of a union of stars are centers

of all stars in the union. A colorful star is a star such that for its center v holds that
degb(v) ≥ k and degr(v) ≥ k. Let H be a centipede or a union of stars. We denote a
center of H by c(H).

We will proceed in steps. Let a superscript X i of any set X denote the state of the set
in i-th step. Also, let X i+1 = X i if not mentioned otherwise.

We will gradually build two centipedes (one red, one blue) and a set of colorful stars.
Let Ri (Bi) be a red (blue) centipede in i-th step. First, we assume that both Ri and
Bi are nonempty. We show later a strategy for the case where Ri or Bi is empty (i.e.,
centipede of length 0).
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Let Qi
r be a union of colorful stars such that for each star S ∈ Qi

r we have c(S) ∈ c(Rj)
for some j < i, i.e., the center of S were in the center of the red centipede in some previous
step. The Qi

b is defined similarly, it is a union of colorful stars such that for each star
S ∈ Qi

b we have c(S) ∈ c(Bj) for some j < i. Let U i = Ri∪Bi∪Qi
r∪Qi

b. For v ∈ c(Ri) let
dego(v) be degb(v, U i), i.e., blue degree of v outside centipedes and colorful stars. Similarly,
let dego(v) be degr(v, U

i) for v ∈ c(Bi) (o stands for the “other” color). In each step, we
either make one centipede longer by 1, add one colorful star to Qr or Qb, or increase dego(v)
of v ∈ c(Ri) ∪ c(Bi). One step will proceed as follows.

1. Let u and v be endpoints of c(Ri) and c(Bi) respectively.

2. Create an edge e = {u, x} where x is a previously unused vertex.

3. If e is blue set w := u, if e is red create an edge f = {v, x} and set w := v.

4. Perform one of the following steps.

a) If e is red and f is blue, create edges from x until k of them are in the same
color and then add x to respective centipede center set.

b) Either e is blue, or both e and f are red,
i. if dego(w) < k, the dego(w) was increased by 1,
ii. or dego(w) ≥ k, we have a colorful star with center in w, therefore we move

w from its centipede center set to respective colorful star set, i.e., c(Qi+1
r ) =

c(Qi
r) ∪ {u} and c(Ri+1) = c(Ri) \ {u} if w = u, or c(Qi+1

b ) = c(Qi
b) ∪ {v}

and c(Bi+1) = c(Bi) \ {v} if w = v.

See Figure 4.7 for an illustration of various cases during one step.
Let pi be a potential in i-th step defined as

pi =
(
|c(Ri)|+ |c(Bi)|

)
(k + 2) +

(
|c(Qi

r)|+ |c(Qi
b)|
)
(3k + 2) + 2

∑

v∈c(Ri)∪c(Bi)

dego(v).

For all the outcomes of one step the potential will increase by at least the number of created
edges.

◦ In case 4a we create 2 + k +m edges. k + 1 edges extend one centipede by one star,
one edge is not used, and m ≤ k− 1 edges are additional edges of the other color on
the star. Extending one centipede by a star with m edges in other color increases p
by (k + 2) + 2m.

◦ In case 4(b)i we create at most 2 edges, increasing dego of one vertex by one, which
increases p by 2.

◦ In case 4(b)ii we create at most 2 edges, making one centipede shorter by one, however
adding one colorful star to either Qr or Qb so p increases by (3k+2)−(k+2)−2(k−1) =
2.
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Figure 4.7: One step of building a Sk,ℓ where k = 3

Note that the graphs induced by c(Ri) and c(Bi) are paths. These graphs are altered by
adding one vertex at the end or moving end-vertex to respective c(Qi) set. It follows that
the graphs induced by c(Qi

r) and c(Qi
b) are forests.

Assume that after many steps we end up with
∣∣c(Ri)

∣∣ =
∣∣c(Bi)

∣∣ = ℓ,
∣∣c(Qi

r)
∣∣ =

∣∣c(Qi
b)
∣∣ =

4(28ℓ− 27)− 1, dego(v) = k− 1 for all v ∈ c(Ri)∪ c(Bi), and we did not win yet. In such
situation the potential is

pi = 2ℓ(k + 2) + 2
(
4(28ℓ− 27)− 1

)
(3k + 2) + 2(k − 1)2ℓ

= 678kℓ− 654k + 448ℓ− 436.

We now perform one last step. If the last step did not result in a win then either Qi+1
r or

Qi+1
b contains 4(28ℓ−27) colorful stars. As star centers form forests, there is an independent

set which contains at least half of them. We take the 2(28ℓ− 27) independent colorful star
centers and perform the induced path strategy on them (each edge of the strategy uses at
most 2 vertices). This takes 28ℓ− 27 additional edges. An induced path over colorful star
centers creates the desired centipede.

The final step might add various number of rounds to our strategy depending on the
case which we end up in. Case 4a demands at most 1 + 2k edges to win. Case 4(b)i
cannot happen because dego(v) = dego(u) = k−1. And case 4(b)ii demands that we add 2
edges and then perform the path strategy using at most r̃ind(Pℓ) ≤ 28ℓ− 27 edges. Taking
maximum over the number of moves we get the final upper bound on the number of edges
r̃ind(Sk,ℓ) ≤ 678kℓ− 652k + 476ℓ− 434 which is O(kℓ).

We now discuss why the final centipede is induced. First, let us partition all vertices
used in the strategy into three groups: R = c(R)∪ c(Qr), B = c(B)∪ c(Qb), and O (which
contains all the remaining vertices). Note that in each step some vertices are added to the
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groups but once assigned they never change their group. Vertices in R and B are always
added to c(R) or c(B) and then they might be moved into c(Qr) and c(Qb), respectively.
Vertices in O are used during one step and are never used again. Specifically, in case 4a
there are k+m vertices created and all of them are connected to one center vertex (in c(R)
or c(B)); in case 4b one new vertex is connected to at most one vertex from R and another
one from B. Assume that the centipede is in red color (the argument is the same for blue).
The centipede either appears with centers in c(R) or c(Qr). If the former occurred, then
the centers of c(R) induce a path. If the latter occurred, then the vertices of c(Qr) we used
in the induced path strategy were independent. In both cases, the leaves of the centipede
appear in O. These vertices have at most one edge to R and have no edges between each
other.

If R or B is empty then the strategy changes slightly. In all the cases we omit creation
of edge e if R = ∅ and f if B = ∅. If e is omitted the algorithm assumes it exists and it
was colored red when deciding what edges to draw next. The same is done for omitted f
by assuming it was blue. We observe that all the steps stay the same and the potential
increases in the same manner but we created fewer edges which does not break the obtained
upper bound.

Due to Beck [7] we have a lower bound for trees T which is r(T ) ≥ β(T )/4 where β(T )
is defined as

β(T ) = |T0|∆(T0) + |T1|∆(T1),

where T0 and T1 are partitions of the unique bipartitioning of T . Our family of trees
have β(Sk,ℓ) ≈ (ℓ/2 + kℓ/2) (k + 2) = Θ(k2ℓ), which gives us the lower bound on their
size-Ramsey number r(Sk,ℓ) = Ω(k2ℓ).

Since by Theorem 4.5.2 we have r̃ind(Sk,ℓ) = O(kℓ) the online Ramsey number for Sk,ℓ

is asymptotically smaller than its size-Ramsey number. The induced variants bound the
non-induced ones as r̃(Sk,ℓ) ≤ r̃ind(Sk,ℓ) and r(G) ≤ rind(G). This implies an asymptotic
gap between r(Sk,ℓ) and r(Sk,ℓ) as well as a gap between r̃ind(Sk,ℓ) and rind(Sk,ℓ).

Corollary 4.5.3. There is an infinite sequence of trees T1, T2, . . . such that |Ti| < |Ti+1|
for each i ≥ 1 and

lim
i→∞

r̃(Ti)

r(Ti)
= 0 and lim

i→∞

r̃ind(Ti)

rind(Ti)
= 0.
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Chapter 5
Group Identification

Information diffusion in social networks is a well-studied concept in social choice theory.
We propose the study of the diffusion of two secrets in a heterogeneous environment, that
is, there are two different networks with the same set of agents (e.g., the structure of the
set of followers might be different in two distinct social networks).

Formally, our model combines two group identification processes for which we do have
independent desiderata – either constructive, where we would like a given group of agents
to be exposed to a secret, or destructive, where a given group of agents should not be
exposed to a secret. To be able to reach these targets, we can either delete an agent or
introduce a previously latent agent.

As the problem is NP-hard for multiple settings, we propose a parameterized study with
respect to most of the natural parameters, the number of influenced agents, the size of the
required/protected agent sets, and the duration of the diffusion process. We complement
our hardness results with XP algorithms and respective running-time lower bounds based
on famous Exponential-Time Hypothesis.

5.1 Introduction

We have a group of agents A and two social networks (this is formally captured by two
directed graphs with identical vertex set A). We use the liberal starting rule [73], known
from group identification, to model the spread of the two secrets at the beginning to certain
agents (these agents have a self-loop). Each agent knowing (upon learning) a secret will
share it in the appropriate network. Finally, we are given two groups of agents D1 and
D2 and a positive integer k, we want to decide if there is a group of at most k agents X
such that if we remove these agents, the agents in D1 will not learn the first secret and the
agents in D2 will not learn the second secret.

It is apparent that there are many natural points where one can modify the DLDD
problem. One might consider the constructive-destructive variant of the problem where we
want one group of agents to learn the first secret while preventing the other group from
learning the other secret – the DLCD problem.
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Related Work Our work is at the intersection of network dynamics (in particular, secret
spreading) and group identification (as it uses the LSR rule as the spread model). There
is wast work on secret spread in a social network; one of the most discussed models leads
(in the discrete case) to the so-called target set selection introduced by Kempe et al. [74].
Here, we run a certain activation process on a weighted undirected graph; it is worth noting
that our use of LSR leads to a similar process (see Equation (5.1)) in a directed graph.
The Target Set Selection problem (finding a small activation set) is a notoriously
hard problem from the perspective of both classical and parameterized complexity [5, 10,
15, 22, 24, 31, 33, 38, 41, 43, 91, 95]. However, in our work the activation sets are given
and our task is to secure certain targets – a task recently studied by Cordasco et al. [32].
In the group identification [37, 73] line of work the most important for us are the recent
works [13, 47, 109] on manipulation of the outcome. Works of Yang et al. [47, 109] studies
the complexity of destructive or constructive control; it is important to note that both
these goals are solvable in polynomial time for LSR (as well as for the consent starting
rule – CSR [98]). Boehmer et al. [13] then introduced the combination of the two goals
(constructive and destructive) in the same social network (i.e., for the same identification
process) and studied the problems from both classical and parameterized perspective. The
spread of a computer viruses via e-mail networks can be modeled using LSR as a group-
identification process as analyzed by Newman et al. [90].

More secrets In our work, we assume two different social networks on the same set of
agents. It is worth noting that this setting was already proposed in the group identific-
ation [23], however, the problem studied therein is to find a partition of the agents into
disjoint groups of socially qualified agents. Recently, the target set selection problem has
been studied with more secrets [56, 79]. There the task is again to find an initial set of
agents (in a weighted digraph) so that the spread of the two (or more [9]) secrets is equal-
ized, that is, the agents either end up leaning none of the two or both (for more secrets
there are indeed even more complicated settings). One should point out that, similar to
the problems studied in this chapter, the model [9, 56] assumes secret-specific weights. In
our work, however, we do have different goals for different secrets (and include preventing
of learning the secret).

5.1.1 Contribution and Organization

Our Contribution We study a new variant of the group identification problem with
more secrets. In the first part of our chapter, we offer the reader a formal definition of
the problem and its variants. Later we discuss some of the easy settings of the problem.
For such variants, we show that these belong to the complexity class P, i.e., they are
polynomial time solvable with respect to the number of agents. Aside some settings solvable
in polynomial time, for most of the variants, we show the hardness of such settings in terms
of both classical computational complexity and parameterized complexity. Among other
things, we prove that all assumed both DLDD and DLCD variants of the studied problems
are NP-complete. We parameterize these variants using (different combinations of) the
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most natural parameters and we show that for some settings, such as DLCD where the
only parameter is number k of agents we are allowed to affect, the problem is W[1]-hard,
and we provide XP algorithms for these settings. For all of them we prove that under some
reasonable theoretical assumptions, our algorithms are optimal.

Organization This chapter is organized as follows. In Section 5.2, we define the Group
Identification Problem and its variants. Next, in Section 5.3 we introduce a notation
which will help us define various hardness constructions. Finally, in Section 5.4 we go
over several variants of the Group Identification Problem and show upper and lower
bounds in regards to several parameters.

5.2 Preliminaries

In a Group Identification Problem (GIP for short) we are given a social network
N = (A, φ), where A is a set of agents and φ : A × A → {0, 1} is a qualification profile.
A qualification graph GA,φ is an oriented graph with loops and without multiedges where
V (GA,φ) = A and E(GA,φ) = {(a, b) | φ(a, b) = 1}. If A and/or φ are clear from the
context, we shorten GA,φ to Gφ, or simply G.

We study the problem according to a qualification rule ϱ : N → P(A) which formalize
the way how the set S0 ⊆ A of starting agents is found. We say that agent a ∈ A
qualifies agent b ∈ A if and only if φ(a, b) = 1. Let Q+

φ (a) = {b ∈ A | φ(a, b) = 1}
and Q−

φ (a) = {b ∈ A | φ(a, b) = 0}. Then the dynamic qualification process continues as
follows

S0 = ϱ(A, φ)

Si = Si−1 ∪ {a ∈ A | ∃b ∈ Si−1 : φ(b, a) = 1} . (5.1)

When the above process stabilizes, i.e., when Si = Si+1, we terminate and set Qfin = Si

to be the set of socially qualified agents. All agents which are not socially qualified are
socially disqualified. We denote the number of steps (or rounds) before the process stabilizes
as T .

If there are more qualification profiles φ1 and φ2, then we denote Qfin
φ1

the set of socially
qualified agents for profile φ1 (and Qfin

φ2
for φ2). We stress here that the two processes do

not interact (besides sharing the agents), and consensus-start-respecting rule ϱCSR chooses
S = {a ∈ A | (∀b ∈ A)φ(b, a) = 1}.

It is easy to evaluate whether the group identification target is satisfied. We are in-
terested in controlling the outcome, that is, the task is to decide whether one can use a
limited number of changes to the instance so that a desired target is met. Some of the
possible targets are: Constructive where we are given a subset of agents C ⊆ A and we
want them all to be socially qualified (C ⊆ Qfin), and similarly, Destructive where the set
D ⊆ A should be socially disqualified (D ∩ Qfin = ∅). It is worth noting that construct-
ive/destructive in the context of control (e.g., in control of electorates) usually refers to
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the action related to agents (voters); here we reserve these for the target as was done by
Boehmer et al. [13]. We try to reach the target by changing the instance by controlling
at most k agents. Main way to change the instance is via controlling the latent agents –
these agents are in the set but do not participate in spreading the secret. There are several
different control operations we can use to accomplish our target:

◦ Agent addition: some agents of the instance are labelled as latent and we can persuade
them to participate in the process by controlling them.

◦ Agent deletion: controlling an agent makes him latent.

We are interested in the case where the control is searched for in two or more group
identification instances over the same set of agents. In this model, every agent has some
preferences for both GIPs but these instances cannot be solved separately because the
control affects both instances at the same time (their common agent set).

Let ⊙ be a control operation, f and g two qualification target deciding functions, and
ϱ a qualification rule. We formally define the studied problem as follows.

Input: A set of agents A, two qualification profiles φ1 and φ2, a positive in-
teger k, and two subsets of agents A1, A2 ⊆ A.

Question: Is there a set X ⊆ A with |X| ≤ k such that qualification process
started with S1

0 = ϱ(A ⊙ X,φ1), S2
0 = ϱ(A ⊙ X,φ2) terminates with

f(Qfin
A⊙X,φ1

, A1) = 1 and g(Qfin
A⊙X,φ2

, A2) = 1?

(⊙, f, g, ϱ)-Group Identification Problem

To exemplify our definition we note that the DLDD problem is in fact (⊙, f, g, ϱ)-
Group Identification Problem, where ⊙ is agent deletion operation, both f and
g check whether agents from A1 and A2 are socially disqualified, and ϱ is liberal-start-
respecting rule.

Throughout this chapter we denote by ⊕ the agent addition operation, by ⊖ we denote
the agent deletion operation. We abbreviate constructive and destructive target checking
functions as κ and δ, respectively.

5.2.1 Computational Complexity

For our NP-hardness results we use polynomial reductions from the famous 3-SAT problem
which is known to be NP-complete [30].

Definition 5.2.1. In the 3-SAT problem we are given a formula F in CNF such that
there are at most three literals in each clause. The goal is to find a satisfying assignment
π : var(F) → {0, 1}, where var(F) denotes the set of variables of F .
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We denote the i-th clause of F as Ci and the j-th literal of this clause as Ci,j. Let
xj ∈ var(F) be a variable. Then ℓj and ¬ℓj denotes a set of positive and negative literals
of the variable xj, respectively.

5.2.2 Parameterized Complexity

In parameterized algorithmics the input of the problem is given along with a numeric
value (the parameter) which expresses certain properties of the instance, e.g., the size
of the sought solution. Positive results focus on finding either fixed-parameter-tractable
(FPT for short) algorithms (those admitting running times of the form f(k) · poly(n)) or
XP algorithms (nf(k)), where n is the size of the input, k is the parameter value, and f is
a computable function.

We investigate many settings where certain parts of the input may appear either as
parameters, constants, or unrestricted. Let us denote those cases as follows.

◦ const – X is a fixed constant which is independent of the input instance,

◦ param – X is given as a parameter of the problem,

◦ input – X is not constrained, i.e., it may depend on the input.

It is trivial to see that a problem where a parameter is const is not harder than when the
parameter is param. The same relation is also true for param and input. This connection
allows us to infer complexity for many settings which are not explicitly stated: hardness
results apply to all settings which are not easier and positive results apply to all settings
which are not harder. Also, whenever a setting is XP, then we infer that by changing all
parameters from param to const we get a setting which is in P. This comes directly from
the definition of XP as complexity class with nO(f(k)) where k is a parameter. Similarly,
for setting which are not easier than some W[1]-hardness setting with changing of param
to input becomes NP-hard.

Among the negative results, the goal is to characterize computational problems in terms
of W-hierarchy. It holds that W[0] = FPT. Similarly to classical complexity theory, it is
widely believed that there are no FPT algorithms for problems that are W[1]-hard [35,
Chapter 13].

Analogously to polynomial reduction one can show that a problem belongs to a class
of W-hierarchy by reduction from another problem out of this complexity class.

Definition 5.2.2 (Parameterized reduction [35]). Let A,B be two parameterized prob-
lems. A parameterized reduction from problem A to problem B is an algorithm A that,
given an instance (x, k) of A, outputs modified instance (x′, k′) of the problem B such that

1. (x, k) ∈ A ⇐⇒ (x′, k′) ∈ B,

2. k′ ≤ g(k), and

3. A works in time f(k) · |x|O(1),
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where f, g : N → N are some computable functions.

To show W[1]-hardness of GIP variants, we use a parameterized reduction from the
k-Multicolored Independent Set, Partitioned Subgraph Isomorphism, Grid
Tiling, or the Grid Tiling with ≤ problem defined below, which are well-known
W[1]-hard problems [35, 94].

Definition 5.2.3. In the k-Multicolored Independent Set problem we are given a
graph G′ and a mapping c : V (G′) → {1, . . . , k}. The goal is to decide whether there exists
an independent set I of size k such that no two distinct vertices u, v ∈ I have the same
color, i.e., c(u) ̸= c(v).

Definition 5.2.4. In the Partitioned Subgraph Isomorphism problem (PSI) we are
given two graphs G′ and H ′ and a mapping c : V (G′) → V (H ′). The task is to decide
whether there exists a mapping d : V (H ′) → V (G′) such that c ◦ d is the identity mapping
(on vertices of H ′).

Definition 5.2.5. In the Grid Tiling problem we are given an integer k, an integer n,
and a collection S of k2 nonempty sets Si,j ⊆ [n]× [n] (1 ≤ i, j ≤ k). The task is to find,
for each 1 ≤ i, j ≤ k, a pair si,j ∈ Si,j such that

◦ if si,j = (a, b) and si+1,j = (a′, b′), then a = a′,

◦ if si,j = (a, b) and si,j+1 = (a′, b′), then b = b′.

Definition 5.2.6. In the Grid Tiling with ≤ problem have the same input as to Grid
Tiling, but the task is to find, for each 1 ≤ i, j ≤ k, a pair si,j ∈ Si,j such that

◦ if si,j = (a, b) and si+1,j = (a′, b′), then a ≤ a′,

◦ if si,j = (a, b) and si,j+1 = (a′, b′), then b ≤ b′.

We refer the interested reader to standard textbooks in this area, e.g., [35, 40].

5.3 Node and Composition Notation

We define a node notation which we use to construct graph gadgets from the ground up
without excess description of their vertices and edges.

Let a node of a graph G be a triplet N = (B, S, T ) where B is an induced subgraph of
G, i.e., V (B) ⊆ V (G) and E(B) = E(G) ∩

(
V (B)

2

)
, and S, T ⊆ V (B) are source and sink

vertices, respectively. Let Ni, Nj be two nodes. A directed edge (Ni, Nj) corresponds to a
directed complete bipartite subgraph from vertices Ti to vertices Sj, see Figure 5.1.

Definition 5.3.1. Let the parallel node composition of nodes Ni = (Bi, Si, Ti) and Nj =
(Bj, Sj, Tj) be a new node Ni ⊎ Nj (disjoint union) defined as (Bi ⊎ Bj, Si ⊎ Sj, Ti ⊎ Tj).

92



5.4. Liberal Starting Rule

Let the serial node composition of Ni = (Bi, Si, Ti) and Nj = (Bj, Sj, Tj) be a new node
Ni ∪̇Nj defined as

Ni ∪̇Nj =
((

V (Bi) ⊎ V (Bj), E(Bi) ⊎ E(Bj) ⊎ {(t, s) | t ∈ Ti, s ∈ Sj}
)
, Si, Tj

)
.

By using the parallel composition on several nodes we mean disjoint union of all of
them, and by the serial composition we mean building a directed path over all of them
in the given order. Any vertex or vertex set S may also be used as an elementary node
(({S}, ∅), S, S). An example of serial node composition is shown in Figure 5.1. We use
the composition notation to describe edge-structure and to show properties of induced
subgraphs of G.

Ni Nj

Ni Nj
≈

Figure 5.1: Serial composition of nodes Ni and Nj adds an (Ni, Nj) edge which represents
a directed complete bipartite graph from sinks of Ni to sources of Nj.

Definition 5.3.2. The cut-weight of a node N = (B, S, T ), denoted by w(N), is the size
of minimum vertex separator between sources set S and sinks set T in the subgraph B.

We proceed with several observations which serve as building blocks for our future
argumentation.

Observation 5.3.3. A path can be built as a serial node composition of elementary nodes
consisting of its vertices.

Observation 5.3.4. A node consisting of a directed path P on n vertices with source on
the first vertex and sink on the last one has cut-weight equal to 1.

Observation 5.3.5. For Nk = Ni⊎Nj we have w(Nk) = w(Ni)+w(Nj). For Nk = Ni ∪̇Nj

it holds w(Nk) = min{w(Ni), w(Nj)}.

Proof. We prove the observation by the contradiction. Assuming that we hit less than
min{w(Ni), w(Nj)} vertices leaves at least one path in each component, and by concaten-
ating them we get a path from the source to the sink of Nk, a contradiction.

5.4 Liberal Starting Rule

In the liberal-start-respecting rule, denoted ϱLSR, we construct the set of starting agents
as S0 = {a ∈ A | φ(a, a) = 1} and then we proceed with standard qualification process
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Problem Result type Obtained by Shown by
general XP try all solutions Observation 5.4.1

DLCD

|D| = 1 – Observation 5.4.3
NP-complete red. 3-SAT Theorem 5.4.4

XP cut paths & flow Lemma 5.4.6
W[1]-hard red. Ind. Set Lemma 5.4.8
W[1]-hard red. Grid Tiling≤ Lemma 5.4.9
W[1]-hard red. Grid Tiling Lemma 5.4.10

FPT cut paths & check Lemma 5.4.7

ALCD

|D| = 1 – Observation 5.4.12
NP-complete Theorem 5.4.4 Theorem 5.4.13

XP add paths & check Lemma 5.4.14
W[1]-hard Lemma 5.4.10 Lemma 5.4.15

DLDD

k < |D1|+ |D2| otherwise trivial Observation 5.4.17
NP-complete red. 3-SAT Theorem 5.4.19
W[1]-hard red. PSI Lemma 5.4.20

FPT cut paths Lemma 5.4.21

ALCC
W[1]-hard red. PSI Lemma 5.4.24
W[1]-hard red. PSI Lemma 5.4.25

XP add paths & solve Lemma 5.4.26

Table 5.1: Results summary for Group Identification Problem.

as prescribed by Equation (5.1). We give an overview of the results and used methods in
Table 5.1.

A detailed list of the results along with their settings are presented in tables in each
section separately. The lists of results are accompanied with Hasse diagrams of the settings
that give an overall complexity picture for the respective problem.

5.4.1 Easy variants

There are several variants of GIP we do not dedicate the whole section to, as they are
very simple to solve. All the single qualification profile variants with Add/Delete agent
operation and Constructive/Destructive target were showed by Erdélyi et al. [47] to be
solvable in polynomial time. Only some of the results translate to multiple qualification
profile variant as it may be easy to decide that a setting is either solved or impossible
straight away.

◦ Delete agent operation & two constructive targets: Either both targets are met at
the start or it is impossible.

◦ Add agent operation & two destructive targets: Either both targets are met at the
start or it is impossible.
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5.4. Liberal Starting Rule

We show that all the remaining variants are NP-hard. The first algorithm we propose
is captured in the following observation which is directly applicable to all the studied cases
parameterized by the solution size.

Observation 5.4.1. All the DLCD, DLDD, ALCC, and ALCD problems parameterized
by the solution size k are in complexity class XP as we can check all the possible solutions
in nO(k) time.

5.4.2 Agent deletion: Constructive-Destructive

Notation 5.4.2. By DLCD we denote (⊖, κ, δ, ϱLSR)-Group Identification Problem.
For the rest of this section, we set aliases A1 as C, and A2 as D.

Note that any agent in C ∩D must not be deleted which allows us to do the following
simplification.

Observation 5.4.3. In every instance of DLCD one can reduce the size of D to 1 while
increasing |C| by one.

Proof. Create a new auxiliary sink vertex t′ and create edges {(d, t′) | d ∈ D} in φ2, set
D′ = {t′}, and add t′ as φ1’s starting vertex ((t′, t′) ∈ φ1) and also as its target (t′ ∈ C).
Agent t′ cannot be deleted as it would make the satisfaction of the first selection rule
impossible.

The remainder of this section is filled with results that stemmed from investigating
influence of |C|, k, and T secondary input measures on the complexity of Delete Agent
LSR Constructive-Destructive GIP. These are summarized in Table 5.2 and the
complete complexity picture can be seen on Figure 5.2.

|C| k T Class Shown by
const input input NP-complete Theorem 5.4.4
input input const NP-complete Corollary 5.4.5
param input param XP Lemma 5.4.6
input param input XP Observation 5.4.1
input param param FPT Lemma 5.4.7
input param input W[1]-hard Lemma 5.4.8
const param input W[1]-hard Lemma 5.4.9
const input param W[1]-hard Lemma 5.4.10
param input const W[1]-hard Lemma 5.4.10

Table 5.2: Results summary for the Delete Agent LSR Constructive-Destructive
GIP.

First, we establish hardness of the problem.
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k | CT

kT | C − | CT Ck | T

k | C T | C CkT | − C | T k | T

− | C Ck | − CT | − kT | − − | T

C | − k | − T | −

− | −

5.4.4 5.4.5

5.4.6

5.4.1

5.4.7
5.4.8

5.4.9 5.4.10 5.4.10

Figure 5.2: Hasse diagram for results in the Delete Agent LSR Constructive-
Destructive GIP for cases where k is not a constant. Legend: each box represents
a setting, and contains two lists of secondary measures; first list contains the (combined)
parameters and second list contains constants; boxes are connected if their complexities
are comparable, arrows along the connections signify inference of results; very thick border
means NP-hardness, thick border is for W[1]-hardness; colors represent tractability class
– from light to dark we have P (light green), FPT (yellow), XP (orange), and NP (gray);
stripped fill and jagged border signify our results in tractability (XP, FPT) and hardness
(W[1]-hard), respectively; We write C instead of |C| for clarity of the diagram. Tractability
and hardness results are written above and below the setting box, respectively.

Theorem 5.4.4. DLCD is NP-complete even if the size of the constructive set |C| and the
size of the destructive set |D| is a fixed constant. Unless ETH fails, there is no algorithm
solving DLCD in f(|C|+|D|)o(n+m)·(n+m)f(|C|+|D|) time, where n and m are cardinalities of
the vertex and edge sets of the input graph, respectively, and f is any computable function.

Proof. We show the NP-hardness via reduction from the 3-SAT problem.
Each literal occurrence in F is represented by a vertex in the qualification graph G.

Our construction ensures that the agent v ∈ V (G) can be controlled only if the respective
literal evaluates to true.

Our construction uses two gadgets. The first gadget over the edges of φ1 ensures that
we cannot control both (agents corresponding to) positive literals ℓj and negative literals
¬ℓj of a variable xj at the same time. The second gadget over the edges of φ2 ensures that
each clause Ci is satisfied. We set the budget k to the number of clauses so that every
clause is satisfied by at least one literal occurrence.

The first gadget Nxj
consists of a parallel composition of two directed paths. The

first path goes over vertices ℓj and the second goes over vertices ¬ℓj (in any order). By
Observations 5.3.4 and 5.3.5 the first gadget has cut-weight equal to 2. The second gadget
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φ1

s . . .
Nxj

t

N1

ℓj

¬ℓj
(a)

φ2

s1 t1

...

NCi

Ci,1 Ci,2 Ci,1

N2

(b)

Figure 5.3: Node compositions representing construction of edges of Gφ1 in 5.3a and Gφ2

in 5.3b illustrating NP-hardness reduction for DLCD.

NCj
consists of a path over vertices {Ci,1, Ci,2, Ci,3}, i.e., all vertices representing literals of

clause Ci. By Observation 5.3.4 the second gadget has cut-weight equal to 1.
Now, we construct the graph G using the above gadgets. The set of vertices V (G)

contains a vertex for every literal occurrence in F and two auxiliary vertices – one global
source s and one global sink t.

Gφ1 contains a first gadget node Nxj
over vertices of ℓj and ¬ℓj for every variable

xj. Let N1 be the serial composition of (Nxj
| xj ∈ F) (in any order). We add node-

edges (s,N1) and (N1, t), see Figure 5.3a. We add (s, s) to φ1 and set C = {t}, hence at
least one path from s to t must remain uncut, in particular, we cannot remove s nor t.
This means that every node Nxj

must have at least one uncut path. The cut path is the
chosen valuation, so an uncut path over ℓj or ¬ℓj represents that xj has either false or true
valuation, respectively.

Gφ2 contains a second gadget node NCi
for every clause Ci. The NCi

nodes are combined
using parallel node composition to create a node N2, see Figure 5.3b. We also add node-
edges (s,N2) and (N2, t). We add (s, s) to φ2 and set D = {t}. This forces a cut of at least
one vertex in every clause, representing the literal occurrence which satisfies the clause.

By choosing the budget to be equal to the number of clauses of F , φ2 forces the
controller to choose exactly one vertex from each clause. φ1 makes it impossible to choose
opposite literals of xj. Hence, the controlled vertices which satisfy the group selection
correspond to a satisfying assignment for the original 3-SAT formula F , which concludes
the NP-hardness of DLCD. As checking if the solution solves the instance is easy, we have
DLCD ∈ NP.

The output of the reduction is DLCD instance with |G| ∈ O(m), |C| = 1, and |D| = 1.
Therefore, algorithm solving DLCD in f(|C| + |D|)o(n+m) · (n +m)f(|C|+|D|) time implies
algorithm for 3-SAT running in 2o(m) time, which contradicts ETH.

The proof can also be slightly changed to obtain NP-completeness for a different setting.
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Corollary 5.4.5. The DLCD problem is NP-complete even if the number of rounds T is
a fixed constant. Moreover, DLCD does not admit an algorithm running in f(T )o(n+m) ·
(n+m)f(T ) time for any computable function f .

Proof. We follow the same argument as in the proof of Theorem 5.4.4, however, there are
two main differences. First, we reduce from (3, 4)-SAT (at most 3 literals in each clause and
at most 4 variable occurrences for each variable), which is known to be NP-complete [105].
This ensures that the paths used in the first gadget are constant-length. Second, we split
the vertex t into k vertices t1, . . . , tk so that every first gadget can have its own sink. Now,
we have the depth over φ1 at most 6, and the depth over φ2 still remains 5, hence T = 6.

We recall that any 3-SAT formula with m clauses can be transformed into an equivalent
(3, 4)-SAT instance with O(m) clauses [105]. The presented reduction produces instance
with |G| ∈ O(m) and T = 6. Hence, algorithm for DLCD running in time f(T )o(n+m) ·
(n + m)f(T ) for some computable function f implies existence of a 2O(m)-time algorithm
for 3-SAT, which contradicts ETH.

If both parameters are constants, by the following lemma we obtain a poly-time al-
gorithm.

Lemma 5.4.6. The DLCD problem parameterized by the combined parameter |C| and
the number of rounds T can be solved in nO(T ·|C|) time.

Proof. The algorithm guesses the paths leading from sources to vertices of C in φ1. It fixes
that these paths will be reachable by the opinion in φ1 and that their vertices cannot be
removed. Then it checks how many vertices we need to remove so that no vertex in D is
reached. This can be done by the standard max-flow/min-cut algorithm with a alteration
to remove vertices (done by splitting each vertex in twine, one preserving in-edges and one
preserving out-edges; a single edge between them represents the vertex). In the min-cut
algorithm we can simulate that a vertex cannot be removed by setting respective edge-
weight to k+1. There are at most nT paths of length T in G, and we choose |C| of them
which makes (nT )

|C| possible combinations in total. Max-flow/min-cut algorithm together
with the graph preprocessing is polynomial, so we have total nO(T ·|C|) running time.

Lemma 5.4.7. The DLCD problem is fixed-parameter tractable parameterized by the
combined parameter k and T .

Proof. We will have a branching procedure as follows. Let us run the Breadth First Search
(BFS) algorithm on φ2 to find some path P = (p1, . . . , pm) from source to target in O(n)
time, where n is the total size of the graph. If no path P exists, then we check whether the
graph on edges φ1 can reach all vertices in C. If yes, then we return that this branch is a
solution, otherwise continue the procedure as follows. If the budget is zero then return that
the current branch does not contain a solution. The path P has length at most T and at
least one of its vertices must be chosen to the solution, otherwise the target pm would learn
the secret from source p1. Let us choose a vertex u ∈ P (we branch here for every choice of
u) to be included in the solution. Now, run this procedure again for DLCD on the graph
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where u is removed (marked not to be traversed by the BFS) and budget is reduced by 1.
If the procedure finds a solution then add u to it and return the new solution.

The above procedure branches on at most T vertices of P . The biggest recursion
depth is k as the budget gets decreased by one with each sub-procedure, and for k = 0
the procedure does not call any sub-procedure. The number of procedure calls is at most∑k

i=0 T i = T k+1

T −1
and each procedure calls BFS and several constant-time operations. The

total time is O(T k+1n) which is FPT in combined parameter k and T .

Since the preceding results illustrate that the DLCD problem is expected to be intract-
able, we focus on its parameterized analysis.

Lemma 5.4.8. The DLCD problem is W[1]-hard when parameterized by the solution size
k. Assuming ETH, there is no f(k) · no(k)-time algorithm for the DLCD problem for any
computable function f .

Proof. We reduce from k′-Multicolored Independent Set on a graph G′. The con-
trolled agents in G are in 1-to-1 correspondence with the independent set in G′. The φ1

ensures that no two incident vertices can be chosen, and φ2 ensures that at most one vertex
is chosen in each color class.

Let the vertices of G contain a vertex-vertices u for every u ∈ V (G′) and an edge-vertices
e for every e ∈ E(G′), and two auxiliary vertices s and t. Let C be all the edge-vertices
and t, and let t be the destructive target D, i.e.,

V (G) = V (G′) ∪ E(G′) ∪ {s, t}, C = E(G′) ∪ {t}, D = {t}.

Note that the vertices E(G′), s, and t cannot be controlled, as that would make satisfying
φ1 impossible. φ1 shall have only one starting vertex s, and lead edges from s to vertices
V (G′), and then to the respective incident edges in G′, i.e.,

E(Gφ1) = {(s, s), (s, t)} ∪ {(s, v) | v ∈ V (G′)} ∪ {(v, e) | v ∈ e ∧ e ∈ E(G′)},

see Figure 5.4. Two vertices which are incident in G′ cannot be chosen to be controlled as
that would make the respective edge in E(G′) an unsatisfiable vertex in C.

E(Gφ2) contains (s, s) and a directed path from s to t going through all same-colored
vertices of G′ (in any order) for every color in G′. As s nor t cannot be controlled, the
solution is forced to control at least one vertex from each of these paths.

Setting the budget k = k′ together with φ2 ensures that exactly one vertex in each
color class is controlled, and φ1 ensures it is an independent set.

Let f be any computable function. It is known, assuming ETH, that there is no
f(k) ·no(k)-time algorithm algorithm for the k′-Multicolored Independent Set prob-
lem [35]. As we set k = k′ in the construction, it follows that algorithm solving DLCD in
time f(k) · no(k) leads to the algorithm solving k′-Multicolored Independent Set in
the same time complexity, which is contradiction.
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c b

a

e

d

G′

−→
a b

d

c

e

s

t

G

Figure 5.4: An illustration of W[1]-hardness reduction from k-Multicolored Independ-
ent Set to DLCD group selection. Colors over vertices {a, b, c, d, e} are represented with
colors and shapes; thick-bordered vertices in G are in C; the vertex t marked with a cross
belongs also to D; full-red edges belong to φ1 and dashed-blue edges to φ2.

The previous result gives reasonably tight lower bound assuming ETH compared to the
naive XP algorithm. What follows are W[1]-hardness bounds that complete the complexity
picture for DLCD.

Lemma 5.4.9. DLCD parametrized by the parameter k is W[1]-hard, even if |C| is a fixed
constant.

Proof. We shall reduce from Grid Tiling with ≤, recall notation from Definition 5.2.6.
Let us create a graph G where for each si,j ∈ Si,j we have an entry gadget. Each entry
gadget consists of four vertices which we denote as: input vertical vin, output vertical vout,
input horizontal hin, and output horizontal hout. For an entry (a, b) we say that both
vertical vertices represent a and both horizontal vertices represent b. There will be one
global starting vertex s with self-loop in φ1 and φ2. For each tile Si,j we have a set of 5
vertices di,j which belong to the destructive target D. Also, for each tile Si,j we have two
vertices – a vertices vertical sink vi,j and a horizontal sink hi,j.

For each tile Si,j let (e1, . . . , em) be an arbitrary linear order over its entry gadgets. Let
φ2 contain a serial composition (s, e1, . . . , em, di,j). We set the budget to 4k4 which forces
us to remove all vertices of exactly one entry gadget in each tile, otherwise there would be
a path from s to D in φ2.

Now, let us describe how to ensure the inequality conditions of the chosen entry gadgets
with some intuition. We shall build an inequality gadget for each pair of adjacent tiles. We
then concatenate them in a way that there is one long path – first it passes every vertically
adjacent tiles, then every horizontally adjacent tiles, and it ends up in the only vertex in
C. As there is only one source and one target for φ1 we must have an open path through
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every gadget present for every pair of adjacent tiles. The gadget ensures inequality of the
chosen (removed) entries as dictated by the conditions in Grid Tiling with ≤.

9
6
3
3
2

5

4

2

1

Si,j Si+1,j

Figure 5.5: Example of the inequality gadget for the Grid Tiling with ≤ reduction.

The inequality gadget consists of two oriented paths one from each tile (e.g. tiles Si,j and
Si+1,j. The paths go through respective vertices in order which represents non-increasing
numbers in the entries. As the global path connects to the first vertex of the first path,
continues through the gadget, and leaves through the ending vertex of the second path.
To be able to pass, the removed entries of Si,j and Si+1,j must not constitute a cut in
the gadget. For each vertex of the first path we connect its predecessor to a vertex which
represents a strictly smaller number in the second path. By this, we can pass through
if and only if the second chosen entry is at least the value of the first chosen entry. See
Figure 5.5 for an example of the inequality gadget.

Formally, the construction goes like this. For each pair of adjacent tiles let us focus
on output vertical vertices of entry gadgets of Si,j and on input vertical vertices of entry
gadgets of Si+1,j. (Similarly, for the horizontal case we focus on output and input horizontal
vertices of entry gadgets for Si,j and Si,j+1, respectively.) Let us label the respective output
vertices of Si,j by O and input vertices of Si+1,j by Y . Let O↑ and Y ↑ label an ordering of
O and Y such that the values represented by respective vertices are non-decreasing. For
each pair adjacent tiles let φ1 contain the following edges.

◦ (oℓ+1, oℓ) for oℓ ∈ O↑,

◦ (yℓ+1, yℓ) for yℓ ∈ Y ↑,

◦ (oℓ−1, y<oℓ) for each oℓ ∈ O↑,

◦ (vi,j, om) and (y0, vi+1,j) (for horizontal case add (hi,j, om) and (y0, hi,j+1) instead),

where om is the last element of O↑, and y<oi is the maximal element of Y ↑ which is smaller
than oi. Moreover, we add edges (s, v1,1), (vk,k, h1,1) and edges (vi,k, vi+1,1) for i ∈ {1, . . . , k}
and (vk,j, v1,j+1) for j ∈ {1, . . . , k}. We set C = {hk,k}.

We showed how to ensure that exactly one entry is chosen for each tile and that they
comply to the inequalities of Grid Tiling with ≤. The chosen entries constitute a
solution to Grid Tiling with ≤.

Lemma 5.4.10. DLCD parametrized by the parameter |C| is W[1]-hard, even if T is a
fixed constant. Also, DLCD parametrized by the parameter T is W[1]-hard, even if |C|
is a fixed constant.
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Proof. We shall reduce from Grid Tiling. Construction is similar to Lemma 5.4.9. Let
us create a graph G where for each si,j ∈ Si,j we have an entry gadget. There will be one
global starting vertex s with a self-loop in φ1 and φ2. For each Si,j we have a special vertex
ci,j which belongs to both the constructive target C and the destructive target D. Each
entry gadget consists of four vertices which we denote as: input vertical vin, output vertical
vout, input horizontal hin, and output horizontal hout. Each entry gadget is connected in φ1

with a path (s, vin, vout, hin, hout, ci,j) and is connected in φ2 by (s, vout), (s, hout), (vin, ci,j),
and (hin, ci,j).

Let us have si,j ∈ Si,j and si+1,j ∈ Si+1,j with respective entry gadgets consisting of
vin, vout, hin, hout and v′in, v

′
out, h

′
in, h

′
out, respectively. Let (a, b) = si,j and (a′, b′) = si+1,j if

a ̸= a′ then we connect vertices (vout, v
′
in) in φ2. Similarly, for pair of tiles Si,j and Si,j+1,

however, in this case if b ̸= b′ we connect (hout, h
′
in) in φ2.

We set the budget to be |V (G)| (it does not restrict the solution in any way). Note
that in each tile Si,j in at least one entry gadget no vertex is deleted because ci,j must
be reachable in φ1 – the untouched entry gadgets represent the chosen entries in Grid
Tiling. Moreover, if we choose entry gadgets of neighboring tiles Si,j and Si+1,j that
represent entries which cannot form a solution of Grid Tiling (as a ̸= a′) then (and
only then) we did not remove vertices on a path (s, vout, v

′
in, ci+1,j) in φ2, so a vertex in D

learned the secret; hence this may not be a solution of the instance (and similarly for Si,j

and Si,j+1). All paths in φ1 contain at most 5 edges and paths in φ2 contain at most 3 edges,
so T is bounded by a constant. Number of vertices in D is reduced via Observation 5.4.12.

This gave us W[1]-hardness for parameter |C| even if T is a constant. To reach para-
meter T with a constant |C| we simply remove all vertices ci,j from C and add one global
sink t to C. We concatenate vertices ci,j so that as each tile is passed by the signal in φ1

it then goes from ci,j to the gadgets of Si+1,j, and so on. More precisely, the four vertices
of entries are connected in φ2 by (ci′,j′ , vout), (ci′,j′ , hout), (vin, ci,j), and (hin, ci,j), where
ci′,j′ signifies the special vertex of the previously processed tile. Once all the tiles in both
directions are passed by the signal, the last ci,j connects to t in φ1. As t must be reached
there must be at least one non-cut path through all the gadgets, which gives us exactly
the same solution as the construction above. This traded off size of the constructive set
|C| = 1 for maximum length of the process T = 5k2.

5.4.3 Agent addition: Constructive-Destructive

Notation 5.4.11. By ALCD we denote (⊕, κ, δ, ϱLSR)-Group Identification Problem.
For the rest of this section, we set aliases A1 as C, and A2 as D.

The ALCD problem is in some sense “dual” to the DLCD problem. The main difference
is that majority of the agents are latent at the beginning and that in the construction we
swap parallel and serial composition. See the list of results for ALCD in Table 5.3 and its
complexity picture in Figure 5.6.

First, we mirror the Observation 5.4.3 about the bounded size of the set D.

Observation 5.4.12. In every instance of ALCD one can reduce the size of D to 1.
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C k T Result Shown by
const input input NP-complete Theorem 5.4.13
input input const NP-complete Theorem 5.4.13
param input param XP Lemma 5.4.14
input param input XP Observation 5.4.1
param param const W[1]-hard Lemma 5.4.15
const param param W[1]-hard Lemma 5.4.15

Table 5.3: Results for Add Agent LSR Constructive-Destructive GIP

k | CT

kT | C − | CT Ck | T

k | C T | C CkT | − C | T k | T

− | C Ck | − CT | − kT | − − | T

C | − k | − T | −

− | −

5.4.13 5.4.13

5.4.14

5.4.1

5.4.155.4.15

Figure 5.6: Hasse diagram for results in the Add Agent LSR Constructive-
Destructive GIP for cases where k is not a constant. Notation is the same as in
Figure 5.2.

Proof. Create a new auxiliary non-latent sink vertex t′ and create edges {(d, t′) | d ∈ D}
in φ2, set D′ = {t′}. There is no way to get rid if the t′ vertex. The solution reaches any
vertex in D in the old instance if and only if it reaches D′ in the new instance.

Again, we start by establishing that the problem is NP-complete.

Theorem 5.4.13. The ALCD problem is NP-complete even if the size of the constructive
set |C|, or the number of rounds T is a fixed constant.

Proof. To prove NP-completeness alone, the construction used in the proof of Theorem 5.4.4
can be used as well. It consists of serial and parallel node compositions, and it can be easily
changed to a construction which works for ALCD in the following way.

◦ Put all vertices except source and sink to the latent set,

◦ swap each use of serial node composition for parallel one, and vice-versa,
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5. Group Identification

◦ swap C with D.

On the one hand, this way each clause becomes a triplet of parallel vertices. All clauses
are put in serial composition in φ1, and a solution must control at least one agent in each
clause to form a path from s to t. On the other hand, the literals form a (s, ℓi,¬ℓi, t) serial
composition, meaning that choosing a positive and negative valuation of the same variable
would create a path from s to t in φ2, which is forbidden.

We see that the construction uses C = D = {t} so when these sets are of constant
size the problem is still NP-hard. Similarly to the proof of Theorem 5.4.4, we can change
the construction by creating a separate sink in C for every clause which implies that for a
constant T the problem is NP-hard.

And finally, minor change of the proof of Lemma 5.4.6 gives us the following XP al-
gorithm.

Lemma 5.4.14. The ALCD problem parameterized by the combined parameter |C| and
number of rounds T can be solved in nO(T ·|C|) time.

Proof. This approach is somewhat similar to the proof of Lemma 5.4.6. The algorithm
guesses the paths leading from sources to vertices of C in φ1. Now it chooses to control
all latent agents that lie on the chosen paths and checks that there are at most k of them.
Then it checks that no vertex in D is reached by the standard BFS algorithm. There are at
most nT paths of length T in G, and we choose |C| of them which makes (nT )

|C| possible
combinations in total. BFS algorithm is polynomial, so we have total nO(T ·|C|) running
time.

Lemma 5.4.15. ALCD parameterized by the combined parameter k and |C| is W[1]-hard,
even if T is a fixed constant. And ALCD parameterized by the combined parameter k
and T is W[1]-hard, even if |C| is a fixed constant.

Proof. This construction is very similar to Lemma 5.4.10, however, we need to change the
budget to accommodate the change of settings. Let us give the argument in full so we do
not omit any necessary detail. We reduce from Grid Tiling. Let us create a graph G
where for each si,j ∈ Si,j we have an entry gadget. There will be one global starting vertex
s with a self-loop in φ1 and φ2. For each Si,j we have a special vertex ci,j which belongs to
both the constructive target C and the destructive target D. Each entry gadget consists
of four latent vertices which we denote as: input vertical vin, output vertical vout, input
horizontal hin, and output horizontal hout. Each entry gadget is connected in φ1 with a
path (s, vin, vout, hin, hout, ci,j) and is connected in φ2 by (s, vout), (s, hout), (vin, ci,j), and
(hin, ci,j).

Let us have si,j ∈ Si,j and si+1,j ∈ Si+1,j with respective entry gadgets consisting of
vin, vout, hin, hout and v′in, v

′
out, h

′
in, h

′
out, respectively. Let (a, b) = si,j and (a′, b′) = si+1,j if

a ̸= a′ then we connect vertices (vout, v
′
in) in φ2. Similarly, for pair of tiles Si,j and Si,j+1,

however, in this case if b ̸= b′ we connect (hout, h
′
in) in φ2.
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5.4. Liberal Starting Rule

We set the budget to be 4k2. Note that in each tile Si,j at least one entry gadget needs
to be activated because ci,j must be reachable in φ1 – the activated entry gadgets represent
the chosen entries in Grid Tiling. The budget is tight so we may activate only one entry
gadget in each tile. Moreover, if we choose entry gadgets of neighboring tiles Si,j and Si+1,j

that represent entries which cannot form a solution of Grid Tiling (as a ̸= a′) then (and
only then) we activated vertices on a path (s, vout, v

′
in, ci+1,j) in φ2, so a vertex in D learned

the secret; hence this may not be a solution of the instance (and similarly for Si,j and
Si,j+1). All paths in φ1 contain at most 5 edges and paths in φ2 contain at most 3 edges, so
T is bounded by a constant. Number of vertices in D is reduced via Observation 5.4.12.

This gave us W[1]-hardness for combined parameter k and |C| even if T is a constant.
To reach parameter T with a constant |C| we simply remove all vertices ci,j from C

and add one global sink t to C. We concatenate vertices ci,j so that as each tile is passed
by the signal in φ1 it then goes from ci,j to the gadgets of Si+1,j, and so on. More precisely,
the four vertices of entries are connected in φ2 by (ci′,j′ , vout), (ci′,j′ , hout), (vin, ci,j), and
(hin, ci,j), where ci′,j′ signifies the special vertex of the previously processed tile. Once all
the tiles in both directions are passed by the signal, the last ci,j connects to t in φ1. As t
must be reached there must be at least one non-cut path through all the gadgets, which
gives us exactly the same solution as the construction above. This traded off size of the
constructive set |C| = 1 for maximum length of the process T = 5k2.

5.4.4 Agent deletion: Destructive-Destructive

Notation 5.4.16. By DLDD we denote (⊖, δ, δ, ϱLSR)-Group Identification Problem.
For the rest of this section, we set aliases A1 as D1, and A2 as D2.

Observation 5.4.17. Let I be an instance of the DLDD problem. If k ≥ |D1| + |D2|,
then I is a yes-instance.

Proof. If k ≥ |D1|+ |D2|, then we can directly delete all agents from D1 ∪D2 which solves
the instance.

This directly gives an XP algorithm for the DLDD problem parameterized by |D1| and
|D2|.

Corollary 5.4.18. The DLDD problem is in XP parameterized by the combined para-
meter |D1| and |D2|.

Proof. By Observation 5.4.17 the problem is trivial if k ≥ |D1| + |D2|. Assuming k ≤
|D1| + |D2|, the solution size is bounded the combined parameter and we can run the
algorithm from Observation 5.4.1.

Observe that the complexity results do not change when we swap the roles of D1 and
D2, however, as they might be mutually incomparable we prove only one variant but we
present both variants in the results overview of Table 5.4. Also, see Figure 5.7 for the
complexity picture.
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5. Group Identification

D1 D2 k T Result Shown by
const input input const NP-complete Theorem 5.4.19
input const input const NP-complete (Theorem 5.4.19)
param param input input XP Corollary 5.4.18
input input param input XP Observation 5.4.1
const param param input W[1]-hard Lemma 5.4.20
param const param input W[1]-hard (Lemma 5.4.20)
input input param param FPT Lemma 5.4.21
param param input param FPT Corollary 5.4.22

Table 5.4: Results summary for the Delete Agent LSR Destructive-Destructive
GIP.

k | D1D2T

kT | D1D2 − | D1D2T D1k | D2T

k | D1D2 T | D1D2 D1kT | D2 D1 | D2T D1D2k | T k | D2T

− | D1D2 D1k | D2 D1T | D2 D1D2kT | − D1D2 | T kT | D2 − | D2T D2k | T

D1 | D2 D1D2k | − D1D2T | − k | D2 T | D2 D2kT | − D2 | T k | T

D1D2 | − − | D2 D2k | − D2T | − kT | − − | T

D2 | − k | − T | −

− | −

5.4.19

5.4.18

5.4.1

5.4.20

5.4.21

5.4.22

Figure 5.7: Hasse diagram for results in the Delete Agent LSR Destructive-
Destructive GIP for cases where k is not a constant, and with D1D2 symmetries shown
only once. Notation is the same as in Figure 5.2.

Theorem 5.4.19. DLDD is NP-complete even if both |D2| and the number of rounds T
are fixed constants. Unless ETH fails, there is no algorithm solving DLDD in f(|D2| +
T )o(n+m) · (n+m)f(|D2|+T ) time for any computable function f .

Proof. We present reduction from 3-SAT to DLDD which shows its NP-hardness. Each
literal occurrence in F is represented by a vertex in the qualification graph G. Our con-
struction ensures that whenever a literal evaluates to true the respective agent v ∈ V (G)
is controlled, and vice-versa.

We construct two gadgets. First ensures that either all positive literals ℓj or all negative
literals ¬ℓj are chosen for every variable xj. Second ensures that at least one literal is chosen
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5.4. Liberal Starting Rule

φ1

...

Nxj

N1

s1, . . . , sk+1 t1, . . . , tk+1

ℓj ¬ℓj

← auxiliary

(a)

φ2

s1 t1

...

NCi

Ci,1 Ci,2 Ci,1

N2

(b)

Figure 5.8: Node compositions representing construction of Gφ1 edges in 5.8a and Gφ2

edges in 5.8b, illustrating NP-hardness reduction for DLDD group selection.

in every clause.
First, let Lj = ℓj and ¬Lj = ¬ℓj. Add

∣∣|ℓj|−|¬ℓj|
∣∣ new auxiliary vertices to the smaller

set out of Lj and ¬Lj to equalize their size. The first gadget is a serial composition Nxj
=

Lj ∪̇ ¬Lj. By Observation 5.3.5 the first gadget has cut-weight equal to the minimum cut-
weight of individual components, which is max{ℓj,¬ℓj}. The second gadget NCi

consists
of a directed path over literal vertices of a clause, formally:

NCi
=
((

{Ci,1, Ci,2, Ci,3}, {(Ci,1, Ci,2

)
, (Ci,2, Ci,3)}), {Ci,1}, {Ci,3}

)
.

We construct the graph G using the gadgets. V (G) has a vertex for every literal
occurrence in F and several auxiliary source and sink vertices. As the solution may simply
remove all sources or sinks we need the sets to be of size at least k + 1 (bigger than the
budget whose value is determined later), so set the global sources S = {s1, . . . , sk+1} and
global sinks T = {t1, . . . , tk+1}. See Figure 5.8 for the construction.

Gφ1 contains the first gadget node Nxj
for every variable xj. Let N1 be parallel com-

position of Nxj
for all variables xj. We add node-edges (S,N1) and (N1, T ). Add loops to

all vertices of S so that they are sources for φ1 and set D1 = T , see Figure 5.8a.
Gφ2 contains the second gadget node NCi

for every clause Ci. Let N2 be a parallel
composition of all NCi

nodes and add node-edges (S,N2) and (N2, T ). Add loop to all
sources S in φ2 and set D2 = {t1}, see Figure 5.8b.

We set the budget k =
∑

j max{|ℓj|, |¬ℓj|}, so that in every first gadget the solution
have to control either the whole Lj or ¬Lj and has no spare budget. Each second gadget
must be cut to ensure satisfaction of φ2 meaning that in each clause node NCi

there is one
cut vertex representing the literal which satisfied it. Note that here we can set D2 = {t1}
as a sink as the first gadget forbids the solution from choosing vertices other than ℓj or
¬ℓj.
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5. Group Identification

As checking whether D1 or D2 is reachable from respective start vertices for a given
solution is trivial, it follows that DLDD is NP-complete.

The output of the presented reduction is an instance with |G| ∈ O(m), |D2| = 1, and
T = 4. Hence, algorithm for DLDD running in time f(|D2|+T )o(n+m) · (n+m)f(|D2|+T )

for some computable function f implies existence of a 2O(m)-time algorithm for 3-SAT,
which contradicts ETH.

Lemma 5.4.20. The DLDD problem is W[1]-hard when parameterized by the combined
parameter |D2| and solution size k, even if |D1| is a fixed constant. Assuming ETH, there
is no f(k + |D2|) · no((k+|D2|)/ log(k+|D2|))-time algorithm for DLDD.

Proof. We present a reduction from PSI over G′ colored by vertices of H ′, see Defini-
tion 5.2.4 for notation. First, we preprocess G′ by removing all vertices u which do not
have neighbors of colors that occur as vertices in H ′ in the neighborhood of c(u) (such
vertices cannot be in a solution). Let us have two vertices in the qualification graph G for
both orientations of every edge in G′, i.e., put {(u, v), (v, u) | {u, v} ∈ E(G′)} into V (G).
The controlled agents correspond to the edges of the PSI solution. We need to ensure the
following two conditions.

1. If we control (u, v) in G, then we must control (v, u) as well, and

2. if we control (u, v), then u is the only vertex of color c(u) among the vertices inside
the chosen edges.

For both these conditions we introduce a gadget securing it. Let us have (u, v) and (v, u)
as a node N{u,v}. We create the first gadget Nc1,c2 by a serial composition of all nodes
N{u,v} such that {u, v} ∈ E(G′) and c(u) = c1 and c(v) = c2. Note that the first gadget
has cut-weight 2 by Observation 5.3.5. We use this gadget to ensure the first condition
later.

Now, we build the second gadget gradually from the smallest components. Let us have
a node Nu,c1 which contains an oriented path over all vertices representing edges from u
in G′ ending in vertices with color c1 (in any order), i.e., a path over {(u, v) | {u, v} ∈
E(G′) ∧ c(v) = c1}. Let the Nu,Q be a node which creates a parallel composition of nodes
{Nu,c1 | c1 ∈ Q} where Q is a set of colors. Note that the vertex cut of Nu,Q must pick one
vertex from each Nu,c1 , and by Observation 5.3.5 has cut-weight |Q|. The second gadget
Nc1,Q is made by making a serial composition of Nu,Q nodes for all u where c(u) = c1. The
second gadget still has cut-weight |Q| as the cut-weight of all components is the same.

The edges of G are constructed as follows. Set the global sources S = {s1, . . . , sk+1}
and global sinks K = {t1, . . . , tk+1} (the value of the budget k is determined later). Gφ1

contains a node N1 which is a parallel composition of the first gadgets for every pair of
colors {c1, c2} ∈ E(H ′) and there are additional node-edges (S,N1) and (N1, K). Gφ2

contains a node N2 which is a parallel composition of the second gadgets Nc1,N(c1) for every
c1 ∈ V (H ′) and N(c1) being neighborhood of c1 in H ′ (not to be confused with nodes),
and also contains node-edges (S,N2) and (N2, K). See Figure 5.9 for an illustration of the
reduction.
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5.4. Liberal Starting Rule

φ1
s1, . . . , sk+1 t1, . . . , tk+1

...

Nc1,c2

Nch,ch−1

(a)

φ2

s1 t1

Nu,N(c1) Nv,N(c1)

· · ·

Nw,N(c1)

Nc1,N(c1)

Nu,c5 Nv,c5 Nw,c5
...

Nu,N(ch) Nv,N(ch)

· · ·

Nw,N(ch)

Nch,N(ch)

(b)

Figure 5.9: Node compositions representing construction of edges of Gφ1 in 5.9a and Gφ2

in 5.9b used in W[1]-hardness proof for DLDD; h = |V (H ′)|.

The first gadget must be cut by at least 2 vertices using a pair of vertices which
represent edges in the opposite direction. The first gadgets are put in parallel so that the
solution must cut each of them. The budget k = 2 · |E(H ′)|, i.e., twice the number of
edges in H ′, which is the minimal number of vertices needed to cut the first gadgets by
Observation 5.3.5. The second gadgets represent choice of a vertex of a given color. As the
second gadgets are all put in parallel, and each has fixed cut-weight no matter where it is
cut, the total cut-weight over the construction is

∑
c1∈H′ |N(c1)| which equals 2 · |E(H ′)|

(by hand-shake lemma) so it is tight with the budget, and other vertices cannot be cut.
The sets D1 and D2 need to cover t1, . . . , tk+1 so at least one of these must be parameter-

sized, however, one may be of constant size. The budget k is dependent on the size of the
parameter |H ′|, and the number of stabilization steps T is bounded only by the input size.

It is known that algorithm for PSI running in time f(|H ′|) · n(|H′|/ log |H′|) contradicts
ETH [88]. In the proposed parameterized reduction, we have k = 2|H ′| and |D2| = k.
Hence, algorithm for DLDD running in f(k+ |D2|) · no((k+|D2|)/ log(k+|D2|)) time contradicts
ETH.

Lemma 5.4.21. The DLDD problem is fixed-parameter tractable parameterized by the
combined parameter k and T .

Proof. Let the procedure be as follows. Let us run the Breadth First Search (BFS) al-
gorithm on φ1 and φ2 to find some path P = (p1, . . . , pm) from source to target in O(n)
time, where n is the total size of the graph. If no path P exists then the procedure returns
∅ as a solution. If the budget is zero then return that the solution does not exist. The path
P has length at most T and at least one of its vertices must be chosen to the solution,
otherwise the target pm would learn the secret from source p1. Let us choose a vertex
u ∈ P (we branch here for every choice of u) to be included in the solution. Now, run this
procedure again for DLDD where u is removed (marked not to be traversed by the BFS)
and budget is reduced by 1. If the procedure finds a solution then add u to it and return
it.
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5. Group Identification

The above procedure branches on at most T vertices of P . The biggest recursion
depth is k as the budget gets decreased by one with each sub-procedure, and for k = 0
the procedure does not call any sub-procedure. The number of procedure calls is at most∑k

i=0 T i = T k+1

T −1
and each procedure calls BFS twice and several constant-time operations.

The total time is O(T k+1n) which is FPT in combined parameter k and T .

By combining Observation 5.4.17 and Lemma 5.4.21, we obtain the following algorithm
for slightly different setting.

Corollary 5.4.22. The DLDD problem is fixed-parameter tractable parameterized by the
combined parameter |D1|, |D2|, and number of rounds T .

Proof. By Observation 5.4.17 we have k ≤ |D1|+ |D2|. Thus, the solution size is bounded
and we can run algorithm from Lemma 5.4.21 which completes the proof.

5.4.5 Agent addition: Constructive-Constructive

Notation 5.4.23. By ALCC we denote (⊕, κ, κ, ϱLSR)-Group Identification Problem.
For the rest of this section, we set aliases A1 as C1, and A2 as C2.

Similarly to DLDD, C1 and C2 can be swapped and the result stays the same. For the
list of results see Table 5.5, and for a complexity diagram see Figure 5.10

C1 C2 k T Result Shown by
param input input param XP Lemma 5.4.26
input param input param XP Lemma 5.4.26
input input param input XP Observation 5.4.1
param param param const W[1]-hard Lemma 5.4.25
const const param param W[1]-hard Lemma 5.4.24

Table 5.5: Results for Add Agent LSR Constructive-Constructive GIP

NP-hardness of ALCC variant follows from similar reduction to the one presented in
the proof of Theorem 5.4.19. We do not present it explicitly because, similarly to the
ALCD, we show W[1]-hardness that implies NP-hardness of ALCC.

Lemma 5.4.24. ALCC parameterized by the combined parameter the solution size k and
the number of rounds T is W[1]-hard even if |C1| and |C2| are fixed constants. Moreover,
if ALCC can be solved in time f(k + T ) · no((k+T )/ log(k+T )), where f is an arbitrary
computable function, then ETH fails.

Proof. The proof is very similar to the proof of Lemma 5.4.20. We shall not present the
proof in its entirety and we rather mention the main differences from that proof instead.
We do the same preprocessing step for the given PSI instance and even create the same set
of vertices. However, we need only one vertex s and one t instead of the used sets, which
are also the only non-latent agents. The edges are added to the graph in a similar way but
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k | C1C2T

kT | C1C2 − | C1C2T C1k | C2T

k | C1C2 T | C1C2 C1kT | C2 C1 | C2T C1C2k | T k | C2T

− | C1C2 C1k | C2 C1T | C2 C1C2kT | − C1C2 | T kT | C2 − | C2T C2k | T

C1 | C2 C1C2k | − C1C2T | − k | C2 T | C2 C2kT | − C2 | T k | T

C1C2 | − − | C2 C2k | − C2T | − kT | − − | T

C2 | − k | − T | −

− | −

5.4.26

5.4.1

5.4.25

5.4.24

Figure 5.10: Hasse diagram for results in the Add Agent LSR Constructive-
Constructive GIP for cases where k is not a constant, and with C1C2 symmetries
shown only once. Notation is the same as in Figure 5.2.

the main difference is the following: when parallel composition was used in Lemma 5.4.20,
we apply the serial composition and vice-versa. Instead of creating a cut, we are building
a path over the controlled (in this case added) agents. The rest of the proof is the same
and budget remains also the same. C1 = C2 = {t} so their sizes are both bounded by a
constant. The length of a longest oriented path is bounded by the number of active agents
which is at most 2 + k.

We conclude this section with W[1]-hardness result and another XP algorithm, which
illustrates well the computational hardness of the ALCC problem.

Lemma 5.4.25. ALCC parameterized by the combined parameter |C1|, |C2|, and solution
size k is W[1]-hard, even if number of rounds T is a fixed constant. Moreover, if ALCC can
be solved in time f(|C1|+ |C2|+ k) · no((|C1|+|C2|+k)/ log(|C1|+|C2|+k)), where f is an arbitrary
computable function, then ETH fails.

Proof. We do the reduction from PSI on a graph G′ when searching for H ′. The construc-
tion is similar to a reduction of PSI to Strongly Connected Steiner Subgraph [35,
Theorem 13.33]. First, preprocess G′ and H ′ by removing isolated vertices of H ′ and so
removing all vertices of respective colors in G′.

V (G) shall contain four main types of vertices:

◦ edge-vertices {u, v} ∈ V (G) for every {u, v} ∈ E(G′),

◦ diedge-vertices (u, v), (v, u) ∈ V (G) for every {u, v} ∈ E(G′)},
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5. Group Identification

◦ vertex-vertices u ∈ V (G) for every u ∈ V (G′), and

◦ color-pair-vertices (ci, cj) ∈ V (G) for every ci, cj ∈ V (H ′) such that ci ̸= cj.

Also add s which is the source vertex for φ1 and φ2 to V (G). We set C1 = C2 = all the
color-pair-vertices. The vertices which are not participating in the selection, but can be
controlled to participate, are all the vertex-vertices and edge-vertices.

We add several edges to φ1:

◦ (s, u) for each vertex-vertex u ∈ V (G′),

◦ (u, (u, v)) from a vertex-vertex u to each diedge-vertex from u, and

◦ ((u, v), (ci, cj)) for every diedge-vertex u, v such that c(u) = ci and c(v) = cj (only if
(ci, cj) color-pair-vertex exists).

We add the following edges to φ2:

◦ (s, {u, v}) for each edge-vertex {u, v} ∈ V (G′),

◦ ({u, v}, (u, v)) and ({u, v}, (v, u)) from each edge-vertex to respective diedge-vertices,

◦ and same as for φ1, ((u, v), (ci, cj)) for every diedge-vertex u, v such that c(u) = ci
and c(v) = cj (only if (ci, cj) color-pair-vertex exists).

See the vertices and edges depicted on the Figure 5.11.

vertex-v.: edge-v.:

diedge-vertices:

color-pair-vertices:

G : φ1 φ2
s

· · ·
v

cj

· · ·
u

ci

· · · · · ·
{u, v}

· · ·

· · · (u, v) (v, u)· · · · · ·

· · · (
c(u), c(v)

)· · ·(
c(v), c(u)

)· · ·

Figure 5.11: Illustration of Strongly Connected Steiner Subgraph-like
W[1]-hardness reduction for ALCC from Partitioned Subgraph Isomorphism prob-
lem.
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Set the budget to k = |V (H ′)|+3 · |E(H ′)| and we show that the solution must choose
such vertices that those represent the subgraph of G′ which is isomorphic to H ′. First,
note that diedge-vertices have out-degree exactly 1 for both φ1 and φ2, meaning that we
have to pick at least |C1| (= |C2|) of them to satisfy the requirements; more precisely,
for each tuple of colors (c1, c2) one diedge-vertex (u, v) where c(u) = c1 and c(v) = c2
must be chosen. By definition |C1| = 2 · |E(H ′)|, hence the remaining budget to choose
vertex-vertices and edge-vertices is at most |V (H ′)|+ |E(H ′)|.

We see that to satisfy φ1 we need to select at least one vertex of each color among
vertex-vertices so that respective outgoing edges are reached (note their degree in H ′ is
at least 1 because of the preprocessing step). Similarly, for φ2 we need to select at least
|E(H ′)| vertices of edge-vertices as their out-degree is 2 and we need to reach at least
2 · |E(H ′)| diedge-vertices. We see that the budget is tight so in each group of vertices we
must select exactly the prescribed number of vertices. It follows, that the set of diedge-
vertices corresponds to both orientations of the selected edge-vertices, and set of vertex-
vertices correspond to starting vertices of the diedge-vertices. Such selection of vertices in G
describes a subgraph in G′ isomorphic to H ′ as each satisfied color-pair-vertex corresponds
to an edge-vertex and vertex-vertices which satisfied it.

Lemma 5.4.26. The ALCC problem is in XP parameterized by the combined parameter
|C1| and number of rounds T .

Proof. There are at most nT different paths of length T . We can search through all
combinations of |C1| paths of length at most T in time O(nT ·|C1|). For every combination
we activate latent agents on these paths and know that all vertices in C1 are reached in φ1.
The remaining budget shall be used to resolve vertices in C2 using the known polynomial-
time algorithm for single constructive goal.

The solution must lie inside these combinations because every vertex in C1 and C2 must
be satisfied by at least one path of length at most T . Thus, we have algorithm running
in nO(T ·|C1|) time.

5.5 Future work

We have proposed the study of the combination of controlling two simultaneous group
identification processes with constructive and destructive targets. It should be noted that
even though our XP algorithms are rather simple for most of them our W[1]-hardness
results suggest that one should not expected better running times as this would contradict
the ETH [69]; see also [88]. It is worth mentioning that the group identification is close to
committee elections, however, here the set of voters coincides with the set of alternatives
and, most importantly, the size of the committee (i.e., the socially qualified agents) is not
fixed in advance. In the presented work we solely use the liberal starting rule; a natural
question arises since there are more rules commonly used for group identification. The
most promising direction should be study of the consent starting rule, as Erdélyi et al. [47]
shown that with one secret constructive/destructive targets are polynomial-time solvable.
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5. Group Identification

It is not hard to see that some of our NP-hardness results should be easily transformed for
this case as well. Notably this should remain the case as long as the rules used for spread
of the two secrets remain the same. Thus, one should ask what if different rules are used
for different secrets?

The key ingredient of our study is that the LSR rule starts a certain activation process
from an initial set of agents (note that this is the case for CSR as well). We usually wait
until the activation process stabilizes, however, for many processes it might be natural to
limit the duration of the activation process; thus, yielding a new parameter to be studied.
Last but not least, we believe a more complicated processes should be investigated in future
work – namely, what if there is a certain interaction between the two secrets (e.g., each
agent can only learn one secret)?
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Chapter 6
Conclusions

6.1 Contributions of the Dissertation Thesis

Contributions. In this dissertation thesis, we achieved several advances in combinator-
ial and algorithmic games on graphs. We managed to solve the m-Eternal domination
on cactus graphs while providing several tools for achieving lower and upper bounds. We
showed that Hat chromatic number on chordal graphs is tractable by introducing
Fractional hat chromatic number and by obtaining a connection to the independ-
ence polynomial of a graph. We introduced a stricter variant of the Online Ramsey
Number where the results must appear induced and we resolved it in an asymptotically
optimal fashion for a few graph classes while giving solutions also for the original problem.
We showed how secondary measures of the input influence tractability of a generalized
Group Identification Problem with two secrets and constructive/destructive target
sets by providing a complete parameterized complexity analysis.

Attributions. The author acknowledges that this work is based on published and un-
published papers where the contribution is split between him and his coauthors. In all the
works, the author played a major role in obtaining the concepts and methods. Though it
is not easy to attribute contributions in collaborative work, we attempt to give an overall
picture.

The investigation of m-Eternal Domination was initiated by J. M. Křišťan and it
was later collaboratively developed with the author and under the supervision of T. Valla
to gain methods and results that were presented in [A.1]. There we showed how to solve
the problem for the class of Christmas cactus graphs. Further continuation of this work
led to developing more refined tools which serve to show bounds and were used to solve
any cactus graph. We presented these results in Chapter 2.

The work on the Hat chromatic number was published in [A.2]. These invest-
igations started on KAMAK 2019 together with Miloš Chromý, Michał Dębski, Sophie
Rehberg, Pavel Valtr, Michal Opler, and Pavel Dvořák. The attempt was to solve things
shown Section 3.4 and several other open problems but at a later date we found a preprint
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of Kokhas et al. [81] which addressed many of these issues. We continued to work on
the problem with M. Opler and P. Dvořák and developed the notion of fractional variant
and its connection to the independence polynomial. This led us also to generalizations of
known theorems, all of which are shown in Chapter 3.

The online Ramsey theory work, which we published in [A.3], stems from the
original work of the author. There was a significant attempts to solve other open problems
together with P. Dvořák and T. Valla, however, it led only to minor advancements which
are not presented in this work. Chapter 4 shows the published results in a more polished
form.

Last, Chapter 5 presents results in Group identification and is collaborative work
with D. Knop and Š. Schierreich. The problem statement, context, and direction comes
from D. Knop, the results come mainly from the author and Š. Schierreich. The author
analysed which settings were open during our investigation and played a crucial role in
obtaining reductions and algorithms to solve them. This led to a complete picture of the
parameterized complexity structure of the problem. These results were presented in the
form of an extended abstract [A.4].

6.2 Future Work

We mentioned possible future directions in respective chapters, however, let us provide a
brief overview of the possible future directions within the investigated problems.

Eternal Domination. Future investigation can aim at a natural question: Does m-
Eternal domination lie in PSPACE? Another target is to extend the graph class where
the problem can be solved efficiently. That is, is there a polynomial algorithm to solve the
problem on series-parallel graphs, or at least outer-planar graphs? Intractability of this
problem should also be investigated, showing hardness for the most specific graph classes
possible. We also attempted to solve the problem parameterized by tree-width, however,
there seems to be no clear way how to do it. Parameterization via other graph parameters
should be investigated, e.g., tree-depth. Another question we find quite natural is: If
attacks are announced k turns in advance, how much does this influence the number of
necessary guards?

Hat Chromatic Number. We got several results by the connection to the independ-
ence polynomial, however, we would be interested whether other results can be achieved by
exploiting this connection. We also think that Fractional hat chromatic number
can be used to get further results which seemed previously unreachable.

Online Ramsey Number. The first direction which could be developed in this area
is general lower bounds. We are aware of only one [1]. Also, we think further investigations
should see if “big” structures may be built asymptotically faster when some “small” helping
substructure is already present.
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Group Identification. There are several research directions. One, we find natural
to study, is to investigate consent starting rule which was shown tractable for a single
secret setting by Erdélyi et al. [47]. Our NP-hardness reductions shall be very similar for
that setting, but, we wonder what will the complete complexity picture look like. One can
introduce more involved process and study how it influences the complexity – usually, the
more real-life the process is, the harder it becomes; this includes interaction between the
secrets.
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