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Introduction

There are numerous di�erent approaches to the many-electron problem. The most
commonly applied approach is the Density-functional theory (DFT). In DFT, charge
density is used to express the energy of non-interacting pseudoelectrons (Kohn-Sham
equations), and calculation of wavefunctions of these pseudoelectrons is required [1].
However, this approach is sustainable only for a periodic system or for a smaller
number of electrons in the system. If we want to model a nanoparticle with a larger
number of electrons, in the order of 103 or higher, DFT becomes computationally
demanding.

In this thesis, we are going to model electron dynamics in a golden nanoparticle
with radius of 1 nm and we are going to apply a di�erent approach, which models
the electron density in a �uid-like fashion. In this approach, we do not investigate
wavefunctions of electrons, rather the electron density. This approach is called Quan-
tum hydrodynamics (QHD) and has found di�erent applications over the past years,
for example in warm dense matter, electrons in metals and electron-hole plasmas in
semiconductors. [2]

The jumping-o� point in our theoretical description of a golden nanoparticle are
the QHD equations, which consist of the motion equation, continuity equation and
Poisson equation [3]. The Lagrangian density can be derived from these equations
and contains the same information - the Lagrangian density and QHD equations are
equivalent. We are going to solve the equations using an expected solution (ansatz)
for the charge density of electrons.

This thesis is dedicated to a detailed derivation and subsequent solution of equa-
tions describing electron dynamics in a golden nanoparticle. In the �nal part of the
thesis, we are going to focus on placing the nanoparticle in an alternating external
electric �eld and investigating the oscillations of two dynamic variables: spillout of
the electrons at the surface of nanoparticle σ(t) and displacement of center of mass
of the electrons relative to �xed ion background d(t). Lastly, we are going to visualize
the distribution of the electronic current density in the nanoparticle.
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Chapter 1

Quantum Hydrodynamic Equations

1.1 Derivation of terms in the Lagrangian density

We are going to study electron dynamics in a spherical golden nanoparticle with
radius R, containing N free electrons. The jellium approximation will be used, where
the positively charged ions form a uniform charge background with a density of ni

inside the particle and zero outside. In this thesis, atomic units are used (namely:
h̄ = 1, e = 1 (elementary charge), ao = 1 (Bohr radius), me = 1 (electron mass)).
Thus, the constant 1

4πϵ0
is also equal to 1. The conversion between nanometers

and atomic units of length is 1 nm ≈ 18.897AU of length, the conversion between
electronvolts and atomic units of energy is 1 eV ≈ 0.03675AU of energy.

In order to derive the QHD (quantum hydrodynamic) equations [3, 4], the La-
grangian density must be determined �rst. The Lagrangian density is a function of
3 scalar �elds: electron density n(r, t), the Hartree potential Vh(r, t) and the phase
function S(r, t), related to mean velocity of electrons u(r, t) = ∇S.

We are going to de�ne the Lagrangian density in the following way [3, 4]:

L = n

(
∂S

∂t
+

(∇S)2

2

)
+

3

10

(
3π2
)2/3

n5/3

− 3

4π

(
3π2
)1/3

n4/3 − (∇Vh)
2

8π
+ (ni − n)Vh.

(1.1)

The �rst term in the Lagrangian density represents kinetic energy of the center
of mass of electrons (movement of electrons as a continuum):

n

(
∂S

∂t
+

(∇S)2

2

)
. (1.2)

The physical meaning of this term will become clear in section 1.2 where we derive
the QHD equations, as the corresponding term in the equation of motion derived
from the Lagrangian density will be (atomic units)

∂u

∂t
+ u · ∇u,
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a term that describes time derivative of momentum of electrons as a continuum.

The second term in the Lagrangian density accounts for internal kinetic energy
of electrons, commonly referred to as Fermi pressure [3, 4], and can be derived in
the following way:

T = 2
∑

k,|k|≤kF

h̄2k2

2m
= 2

V

8π3

∫
|k|≤kF

h̄2k2

2m
dk = 2

V

8π3
4π

∫ kF

0

h̄2k2

2m
k2dk

=
V

π2

h̄2

2m

1

5
kF

5 =
V

π2

h̄2

10m
(3π2n)5/3.

Kinetic energy is multiplied by a factor of 2, because each k-state allows for two
electron states with opposite spin. This derivation of internal kinetic energy holds
for electron gas in a box. Our assumption is that the equation also holds locally,
for electron density as a function of position and time n(r, t). Kinetic energy T is
then divided by volume V , as the term in the Lagrangian density must correspond
to energy density:

T

V
=

3

10
(3π2)2/3

h̄2

m
n5/3.

Thus, the second term in the Lagrangian density is (in atomic units)

T

V
=

3

10
(3π2)2/3n5/3. (1.3)

The third term represents exchange energy, using local density approximation
(LDA). The full derivation can be found in [1]:

EX

V
= − 3

4π

(
3π2
)1/3

n4/3. (1.4)

The fourth term in the Lagrangian density corresponds to the Hartree potential,
the electrostatic potential from electron charge density. In our case, the ion-ion inter-
actions are included in the uniform charge background (jellium approximation). In
an in�nite solid matter, the electron-electron interactions and electron-ion interac-
tions cancel each other out, therefore we obtain Vh = 0. However, in a �nite particle,
due to the spillout e�ect of electrons, the Hartree potential is nonzero. The Hartree
potential satis�es the following Poisson equation (ni denotes the ion density) [3]:

∆Vh = 4π(n− ni).

The corresponding term in the Lagrangian density is

−(∇Vh)
2

8π
+ (ni − n)Vh. (1.5)

Finally, by combining all of the aforementioned terms, we obtain the Lagrangian
density:
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L = n

(
∂S

∂t
+

(∇S)2

2

)
+

3

10

(
3π2
)2/3

n5/3

− 3

4π

(
3π2
)1/3

n4/3 − (∇Vh)
2

8π
+ (ni − n)Vh.

(1.6)

1.2 Derivation of QHD equations

We are now able to derive the Euler-Lagrange equations from the Lagrangian
density in the following form

3∑
ν=0

∂

∂xν

(
∂L

∂qa,ν

)
− ∂L

∂qa
= 0,

L = L (qa, qa,ν , x
ν) ,

where xν is a space-time four-vector, qa are functions which represent scalar �elds (in
our case, the �elds are n(r, t), S(r, t), Vh(r, t)) and qa,ν denotes a partial derivative
∂qa
∂xν [5]. Thus, we yield three equations:

∂L

∂n
=

3∑
i=1

∂

∂xi

(
∂L

∂ ∂n
∂xi

)
+

∂

∂t

(
∂L

∂ ∂n
∂t

)
∂L

∂S
=

3∑
i=1

∂

∂xi

(
∂L

∂ ∂S
∂xi

)
+

∂

∂t

(
∂L

∂ ∂S
∂t

)
∂L

∂Vh

=
3∑

i=1

∂

∂xi

(
∂L

∂ ∂Vh

∂xi

)
+

∂

∂t

(
∂L

∂ ∂Vh

∂t

)
.

By substituting L with the expression (1.6), we obtain motion equation, conti-
nuity equation and Poisson equation, respectively:

∂u

∂t
+ u · ∇u = ∇Vh −∇Vx −∇Vt (1.7)

∂n

∂t
+∇ · (nu) = 0 (1.8)

∆Vh = 4π(n− ni). (1.9)

The factor 4π in the equation (1.9) is due to the fact that we are using atomic
units, where 1

4πϵ0
= 1. The equation (1.7) resembles Newton's second law dp

dt
= F, the

expression on the left side corresponds to time derivative of momentum of electrons
as a continuum, and the expression on the right side contains gradients of potentials,
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which are equivalent to forces acting on the electrons. Vt and Vx signify potentials
of kinetic energy and exchange interaction:

Vt =
1

2
(3π2)2/3n2/3,

Vx = − 1

π
(3π2)1/3n1/3.

The potentials Vx, Vt are related to terms in the Lagrangian density in the fol-
lowing way (these expressions emerge upon applying the Euler-Lagrange method):

Vt =
∂

∂n

(
T

V

)
, Vx =

∂

∂n

(
Ex

V

)
.

The Lagrangian density and QHD equations derived in this chapter are equiv-
alent, as we can convert back and forth between the two. The QHD equations are
nonlinear di�erential equations with three scalar �elds n(r, t), S(r, t), Vh(r, t). In or-
der to solve these equations, one could apply the �nite element method [6]. However,
we are going to take the approach of using an expected solution (ansatz) for electron
density, which will allow us to gain a better insight into our system.
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Chapter 2

Calculating the Lagrangian

2.1 Ansatz of the electron density

Our goal is to derive a set of di�erential equations dependent on two dynamic
variables. To achieve this, we �rst need to determine an ansatz for the electron
density and then determine the Lagrangian by integrating the Lagrangian density
over space.

The chosen ansatz for the electron density [3, 4] is

n(r, t) =
A

1 + exp

((
s(r,t)
σ(t)

)3
−
(

R
σ0

)3) , (2.1)

where σ(t) is the radial spillout of the electrons at the surface of the nanoparticle, σ0

represents the spillout of the ground state and s is the displaced radial coordinate,

s(r, t) =
√

x2 + y2 + (z − d(t))2, where r = (x, y, z)T and d(t) is the displacement
of center of mass of the electrons relative to �xed ion background, along the z-axis.
By using this ansatz, we have parametrized the scalar �eld n(r, t) with two time-
dependent functions σ(t) and d(t), which are going to be our dynamic variables.

The normalization constant A is determined from the condition of integrating
electron density over space

∫
ndr = N :

A =
3N

4πσ3

1

ln
(
1 + 1

a

) , (2.2)

where a is a dimensionless quantity:

a = exp

(
−R3

σ0
3

)
. (2.3)

The power of 3 was chosen in the ansatz (2.1), so that the normalization condition∫
ndr = N can be calculated analytically. It is reasonable to use an ansatz in this

form, because the density pro�le of the ansatz corresponds to the expected density
pro�le - inside the nanoparticle (r ≤ R), the density is equal to a constant, then
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it smoothly decreases near the surface (r = R). The �gure 2.1 shows the density
pro�le given by ansatz at the ground state σ = σ0 for three di�erent values of σ0

R
.

0 0.5 1 1.5 2

r/R

0

0.2

0.4

0.6

0.8

1

1.2

n
/n

0
0
/R = 0.4

0
/R = 0.5

0
/R = 0.6

Figure 2.1: Electron density pro�le for three di�erent values of σ0

R

2.2 Expressing scalar �elds as functions of dynamic

variables

To begin with, we are going to express the two scalar �elds Vh(r, t) and S(r, t) as
functions of dynamic variables σ(t) and d(t) [3, 4]. Let's start with the �eld S(r, t).
After inserting our ansatz (2.1) into the continuity equation (1.8), we obtain the
velocity vector u(r, t) = ∇S (where r = (x, y, z)T ):

u =

(
σ̇

σ
x,

σ̇

σ
y,

σ̇

σ
(z − d) + ḋ

)T

, (2.4)

where dot signi�es di�erentiation with respect to time, and subsequently

S =
σ̇

2σ
s2 + ḋ(z − d). (2.5)

For the evaluation of Hartree potential Vh(r, t), we are going to modify the terms
that correspond to the Hartee potential in the Lagrangian density (1.6), as this will
prove to be useful during integration:
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−(∇Vh)
2

8π
+ (ni − n)Vh = −(∇Vh)

2

8π
− Vh∆Vh

4π
=

(∇Vh)
2

8π
− ∇ · (Vh∇Vh)

4π
. (2.6)

After the �rst equal sign, we used the Poisson equation (1.9) and after the second
one, identity ∇.(Vh∇Vh) = (∇Vh)

2 + Vh∆Vh was used. Next, we express the Hartee
potential as separated contributions from electrons and ions: Vh = Ve + Vi . The
individual potentials satisfy Poisson equations:

∆Ve = 4πn, ∆Vi = −4πni.

The ion potential Vi has spherical symmetry, therefore only radial part of the
gradient of potential does not vanish. We integrate once over space in the radial
coordinate and obtain

∂Vi(r)

∂r
=


−N

R3
r , r ≤ R

−N

r2
, r > R.

(2.7)

The term ∂Vi

∂r
represents a force acting on one electron as a result of all the ions.

In �gure 2.2, this term is plotted as a function of r, for R = 1nm:

0 1 2 3 4 5

r [nm]

-1

-0.8

-0.6

-0.4

-0.2

0

0.2

 V
i /

 
 r

 [
a

to
m

ic
 u

n
it
s
]

Figure 2.2: Plot of ∂Vi

∂r
as a function of r, for R = 1nm.

For the electron potential, we make use of an identity ∆ = 1
r2

∂
∂r

(
r2 ∂

∂r

)
, as we

have spherical symmetry. By combining this identity with the Poisson equation for
electrons and integrating in the radial coordinate, we obtain the following expression:

s2
∂Ve(s, t)

∂s
=

N

ln(1 + 1
a
)

(
s3

σ3
− ln

(
1 + a exp

[
s3

σ3

])
+ ln(1 + a)

)
. (2.8)
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We can also rewrite this as a simpler expression (which, later on, we also found
to be more numerically stable):

s2
∂Ve(s, t)

∂s
=

N

ln(1 + 1
a
)
ln

(
1 + a

a+ exp
[
− s3

σ3

]) .

The term ∂Ve

∂s
represents the force acting on one electron as a result of all the

other electrons. In �gure 2.3, this term is plotted as a function of s, for R = 1 nm,
for di�erent values of σ = σ0:

0 1 2 3 4 5

s [nm]

0

0.1

0.2

0.3
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0.5

0.6

0.7

 V
e
 /

 
 s

 [
a

to
m

ic
 u

n
it
s
]

=0.2 nm

=0.6 nm

=1.0 nm

Figure 2.3: Plot of ∂Ve

∂s
as a function of s, for R = 1nm, for di�erent values of σ = σ0.

Note that the ion potential is a function of the radial coordinate r, while the elec-
tron potential is a function of the displaced radial coordinate s(t). This corresponds
to the notion that the ions are �xed, while the center of mass of the electrons is free
to move in such a way, that some electrons may get past the particle borders.

As we can see from the graphs, when the value of σ approaches zero, the plot of
∂Ve

∂s
smoothly turns to ∂Vi

∂r
. This corresponds to the spillout e�ect getting smaller.

For σ = 0 and d = 0, both the ions and electrons form a homogenous sphere of
charge with its centre placed in the origin.

We have derived equations (2.1), (2.5), (2.7) and (2.8) for n, S, ∇Vh and thus
expressed them as functions of our chosen dynamic variables. What's left to do
is to determine ∂S

∂t
, (∇S)2, (∇n)2 as functions of the dynamic variables, as these

expressions appear in the Lagrangian density, too. This task is straightforward and
results directly from (2.1) and (2.5):
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∂S

∂t
=

σ̈σ − σ̇2

2σ2
s2 − σ̇

σ
ḋ (z − d) + d̈ (z − d)− ḋ2, (2.9)

(∇S)2 =

(
σ̇

σ

)2

s2 + 2
σ̇

σ
(z − d) ḋ+ ḋ2, (2.10)

(∇n)2 =
9a2s4

A2σ6
exp

(
2s3

σ3

)
n4. (2.11)

2.3 Integrating the Lagrangian density over space

Now we are able to integrate the Lagrangian density over space and thereby
obtain the Lagrangian L = L(d, σ, ḋ, σ̇) [3, 4]:

L =

∫
L dr

=

∫
n
∂S

∂t
dr︸ ︷︷ ︸

A

+
1

2

∫
n (∇S)2 dr︸ ︷︷ ︸

B

+
3

10

(
3π2
)2/3 ∫

n5/3dr︸ ︷︷ ︸
C

− 3

4π

(
3π2
)1/3 ∫

n4/3dr︸ ︷︷ ︸
D

+
1

8π

∫
(∇VH)

2dr︸ ︷︷ ︸
E

− 1

4π

∫
∇ · (VH∇VH)dr︸ ︷︷ ︸

F

. (2.12)

The term F is equal to zero, because it can be rewritten as a surface term using
Gauss' divergence theorem, and we assume that the Hartree potential vanishes at
in�nity: ∫

V

∇ · a dV =

∫
∂V

a · dS, a = Vh∇Vh.

We are going to determine each remaining term individually:

� Term A:

∫
n
∂S

∂t
dr =

(
σ̈

2σ
− σ̇2

2σ2

)∫
ns2dr+

(
d̈− σ̇

σ
ḋ

)∫
n (z − d) dr− ḋ2

∫
ndr

The second integral is equal to zero, because the function in the integral is
odd. The third integral is easy to evalute too, as the integral corresponds to
normalization condition and is equal to N. The �rst integral is more tricky:
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∫
ns2dr = A

∫
s2

1 + a exp
(
s3

σ3

)ds = 4πA

∫ ∞

0

s4

1 + a exp
(
s3

σ3

)ds = Nσ2M(a),

where

M(a) = −
Γ(5

3
)Li5/3(− 1

a
)

ln(1 + 1
a
)

,

and Li is a polylogarithm function [3] (substitution X = s
σ
was used)

Lip(−
1

a
) = − 1

Γ(p)

∫ ∞

0

Xp−1

1 + a exp (X)
dX,

where Re(p) > 0, Im(a) = 0, and 1
a
> −1.

Therefore:

∫
n
∂S

∂t
dr =

N

2
M(a)

(
σ̈σ − σ̇2

)
−Nḋ2

=
N

2
M(a)

(
d

dt
(σσ̇)− 2σ̇2

)
−Nḋ2

= −NM(a)σ̇2 −Nḋ2, (2.13)

where we used the fact that the total time derivative d
dt
(σσ̇) doesn't modify

equations of motion and therefore can be crossed o�.

� Term B:

1

2

∫
n (∇S)2 dr =

1

2

(
σ̇

σ

)2 ∫
ns2dr+

σ̇

σ
ḋ

∫
(z − d)ndr+

ḋ2

2

∫
ndr

=
N

2
M(a)σ̇2 +

N

2
ḋ2 (2.14)

Integrals in term B can be computed analogically to integrals in term A.

� Term C:

3

10

(
3π2
)2/3 ∫

n5/3dr =
N5/3

σ2
fF (a), (2.15)

where fF (a) is (substitution X = s
σ
was used)

19



fF (a) =
6

5
(3π)2/3

(
3

4 ln(1 + 1
a
)

)5/3 ∫ ∞

0

X2

(1 + a exp (X3))5/3
dX.

The integral appearing in the expression of fF cannot be solved analytically
and therefore cannot be further simpli�ed. However, it can be computed nu-
merically once we choose a speci�c value of a, which will be dealt with in the
next chapter.

� Term D:

3

4π

(
3π2
)1/3 ∫

n4/3dr =
N4/3

σ
fX(a), (2.16)

where fX is (substitution X = s
σ
was used)

fX(a) =

(
9

4
√
π ln(1 + 1

a
)

)4/3 ∫ ∞

0

X2

(1 + a exp (X3))4/3
dX.

� Term E:

The last term corresponding to the Hartree potential is the most complicated
to evaluate. Firstly, we separate Vh into its constituent parts as we did before,
Vh = Ve + Vi:

1

8π

∫
(∇Vh)

2dr =
1

8π

(∫
(∇Vi)

2dr+

∫
(∇Ve)

2dr+ 2

∫
∇Vi · ∇Vedr

)
.

The �rst integral doesn't depend on dynamic variables, therefore won't modify
equations of motions and can be crossed o�. Let us evaluate the second integral,
using the expression (2.8) and substitution X = s

σ
:

∫
(∇Ve)

2dr =

∫ (
∂Ve

∂s

)2

dr

=

∫
N2

(ln(1 + 1
a
))2

1

s4

(
s3

σ3
− ln

(
1 + a exp

[
s3

σ3

])
+ ln(1 + a)

)2

ds

=
4πN2

(ln(1 + 1
a
))2

∫ ∞

0

1

s2

(
s3

σ3
− ln

(
1 + a exp

[
s3

σ3

])
+ ln(1 + a)

)2

ds

=
8πN2

σ
fee(a), (2.17)

where fee(a) is
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fee(a) =
1

2
(
ln(1 + 1

a
)
)2 ∫ ∞

0

1

X2

(
X3 + ln(1 + a)− ln

[
1 + a exp(X3)

])2

dX.

Now, let us evaluate the third integral:

I ≡
∫

∇Ve · ∇Vi =

∫
∂Vi

∂r

∂Ve

∂s

1

sr
(r2 − zd)dr

=
2πN

ln(1 + 1
a
)

∫
∂Vi

∂r

r2 sin θ

s3
(r − d cos θ)

×
(
s3

σ3
− ln

(
1 + a exp

[
s3

σ3

])
+ ln(1 + a)

)
drdθ.

Here we used a substitution z = rcosθ. This integral, however, does not have
spherical symmetry, which is why we need to use a di�erent approach. To
proceed, we develop the displaced radial coordinate s =

√
x2 + y2 + (z − d)2

as a power series of d [4]:

s = r − d cos θ + d2
sin2 θ

2r
+ d3

cosθ − cos3θ

2r2
− d4

1− 6cos2θ + 5cos4θ

8r3
+O(d5).

After we substitute s in the integral, we obtain the following expression:

I = −4πN2

R
fei(σ) + 2πNΩ2

d(σ)d
2 − 4πNK(σ)d4 + · · · . (2.18)

As we can see, the odd power doesn't appear in the �nal expression, because
of the symmetry in the (x, y) plane, as d and −d are equivalent. fei(σ), Ω2

d(σ)
and K(σ) are de�ned as

fei(σ) =
1

ln(1 + 1
a
)

(
σ2

R2

∫ R/σ

0

X
[
X3 + ln(1 + a)

− ln
(
1 + a exp

(
X3
)) ]

dX +
R

σ

∫ ∞

R/σ

dX

X2

[
X3

+ ln(1 + a)− ln
(
1 + a exp

(
X3
)) ])

,

Ω2
d(σ) =

N

R3 ln(1 + 1
a
)

(
R3

σ3
+ ln

(
1 +

1

a

)
− ln

[
1 + a exp

(
R3

σ3

)])
,

K(σ) =
9NRa

40 ln(1 + 1
a
)σ6

exp
(

R3

σ3

)
(
1 + a exp

(
R3

σ3

))2 .
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2.4 Evaluating the Lagrangian

In order to obtain the �nal form of the Lagrangian, we are going to combine
expressions (2.13), (2.14), (2.15), (2.16), (2.17) and (2.18):

L = −1

2
NM(a)σ̇2 − 1

2
Nḋ2 +

NΩd
2(σ)d2

2
−NK(σ)d4

+
N5/3

σ2
fF (a)−

N4/3

σ
fx(a) +

N2

σ
fee(a)−

N2

R2
fei(σ).

For convenience purposes, we are going to multiply the obtained Lagrangian with
a factor of − 1

N
and introduce a pseudopotential U(σ) [4]:

L =
1

2
M(a)σ̇2 +

1

2
ḋ2 − Ωd

2(σ)d2

2
+K(σ)d4 − U(σ), (2.19)

U(σ) =
N2/3

σ2
fF (a)−

N1/3

σ
fx(a) +

N

σ
fee(a)−

N

R
fei(σ). (2.20)

Note that the �rst two terms in the Lagrangian correspond to kinetic energy,
whereM(a) is an e�ective mass of the breathing mode. The third and fourth term in
the Lagrangian represent second and fourth order of electron-ion interacting energy.
The last term pseudopotential U(σ) determines the ground state, as will be discussed
in the next chapter.

2.5 Deriving equations of motion

Now that we have obtained the Lagrangian, we can use the Euler-Lagrange
method [5] and derive equations of motion dependent on two dynamic variables
σ and d:

d̈ = −Ωd
2(σ)d+ 4K(σ)d3, (2.21)

σ̈ =
1

M(a)

[
− dU(σ)

dσ
− Ωd(σ)

dΩd(σ)

dσ
d2 +

dK(σ)

dσ
d4

]
. (2.22)

The second equation can be expressed analytically in the following way:

σ̈ =
1

M(a)

[
− dU(σ)

dσ
+

3Nd2

2σ4 ln(1 + 1
a
)

1

1 + a exp(R
3

σ3 )

−
27NRa exp(R

3

σ3 )d
4

40 ln(1 + 1
a
)σ10

(
1− a exp(R

3

σ3 )
)
R3 + 2

(
1 + a exp(R

3

σ3 )
)
σ3(

1 + a exp(R
3

σ3 )
)3

]
. (2.23)
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This is a crucial result, as we have transformed the complicated problem of elec-
tron dynamics into a set of two coupled di�erential equations. In the next chapter,
we are going to determine the ground state and analyze the terms in the obtained
Lagrangian.
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Chapter 3

The ground state

3.1 Determining the ground state

In this chapter, we will determine the ground state, for which σ = σ0 and d = 0.
We can obtain the condition for ground state by setting time derivatives of σ and d
in (2.21) and (2.22) equal to zero. The �rst equation will be satis�ed automatically
and the second equation gives us the condition for the ground state:

dU(σ)

dσ
= 0.

Thus, we want to �nd the value σ = σ0, for which the pseudopotential U(σ = σ0)
is minimal. The pseudopotential was derived in the previous chapter:

U(σ) =
N2/3

σ2
fF (a)−

N1/3

σ
fx(a) +

N

σ
fee(a)−

N

R
fei(σ). (3.1)

We will �nd the ground state by substituting N , R and σ in the pseudopo-
tential with speci�c values. Firstly, we need to determine the number of electrons
N depending on the radius R of the particle. We are going to investigate values
R = 1, 1.5, 2 nm. Below 1 
nm, quantum e�ects become very signi�cant, and above
2 nm, the ansatz may no longer hold [3]. The number of electrons N is given by

N =
4
3
πR3

Vatom

Ne−/atom.

The nanoparticle is golden with FCC structure, therefore, the lattice constant is
a = 4.08 Å= 0.408nm [7], and so the volume of one atom can be expressed as

Vatom =
a3

number of atoms in basis
=

0.4083

4
.

We will investigate two possible alternatives:

1) Ne−/atom = 1, thus, we get N = 246, 832, 1971 for R = 1, 1.5, 2 nm, respec-
tively.
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2) Ne−/atom = 11, in which case we will get N = 246 ∗ 11, 832 ∗ 11, 1971 ∗ 11 for
R = 1, 1.5, 2 nm.

Both of these options are reasonable to use. The number 1 corresponds to 6s1

electron, which is the only electron forming the Fermi level. Number 11 consists of
additional 5d10 valence electrons. It is unclear which option is better, therefore, we
will use both and compare the obtained results.

The ground state σ = σ0 can be determined in the following way: we graph
the dependance of pseudopotential U on σ = σ0 and the minimum of the function
determines the spillout σ0 of the ground state.

The following �gures 3.1, 3.2, 3.3 show U(σ = σ0):
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Figure 3.1: U(σ = σ0) for R = 1nm
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Figure 3.2: U(σ = σ0) for R = 1.5 nm

25



0.5 0.55 0.6 0.65 0.7 0.75 0.8

=
0
 [nm]

-31.3213

-31.32125

-31.3212

-31.32115

-31.3211

-31.32105

-31.321

-31.32095

-31.3209

-31.32085

-31.3208
U

[a
to

m
ic

 u
n

it
s
 o

f 
e

n
e

rg
y
]

(a) Ne−/atom = 1

0.5 0.55 0.6 0.65 0.7 0.75 0.8

=
0
 [nm]

-343.938

-343.9375

-343.937

-343.9365

-343.936

-343.9355

-343.935

-343.9345

-343.934

-343.9335

U
[a

to
m

ic
 u

n
it
s
 o

f 
e

n
e

rg
y
]

(b) Ne−/atom = 11

Figure 3.3: U(σ = σ0) for R = 2nm

From these graphs, we can deduce the value of ground state σ0 for each case. The
results are summarized in the following table (note that the actual values used later
on in this thesis are more precise, the results in the table are rounded to 2 decimal
places):

R [nm] σ0 [nm] (1 e−) σ0 [nm] (11 e−)

1 0.43 0.44
1.5 0.56 0.57
2 0.68 0.70

Table 3.1: The values of spillout σ0 at ground state depending on particle radius

As we can see, the choice of number of electrons per atom didn't impact the value
of σ0 much. We will use Ne−/atom = 1 from now, which is also in agreement with
publications [3, 4].

Now that we have obtained the value of the ground state σ0, we are able to plot
the pseudopotential U(σ, σ0) (note that σ and σ0 are no longer identical, now we
have inserted the obtained value of σ0 into the pseudopotential - σ0 appears in the
pseudopotential in the constant a = exp(−R3/σ0

3) - and we are plotting U as a
function of σ):
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Figure 3.4: Pseudopotential U as a function of σ, with inserted obtained value of σ0

(red) vs U(σ = σ0) which was used to determine the value of σ0 (blue), for R = 1nm,
N = 246

3.2 Analyzing terms in the pseudopotential U(σ =

σ0)

In the �gure 3.6 and 3.5, we can see individual terms in the pseudopotential
U(σ = σ0) and how they change depending on σ = σ0. The Fermi pressure and
exchange interaction don't change much relative to electron-electron interactions
and electron-ion interactions. After summing up electron-electron interaction and
electron-ion interaction into one collective Coulombic interaction term, we can see,
that the contributions of individual terms in pseudopotential U(σ = σ0) become
more intricate.
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Figure 3.5: Dependance of terms in the pseudopotential U(σ = σ0) for R = 1nm, in
the second graph, values were moved along y-axis for better clarity
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Figure 3.6: Dependance of terms in the pseudopotential U(σ = σ0), for R = 1nm, in
the �rst graph, values were moved along y-axis for better clarity, the second graph
depicts all the terms of U(σ = σ0) summed up

3.3 Analyzing electron-ion interacting energy

Next, we are going to investigate the second and fourth order terms of electron-
ion interacting energy in the Lagrangian (2.19) (note that we have already inserted
the determined value σ0 into these expressions and are studying dependance on σ):

Eei(d) =
Ωd

2(σ)d2

2
−K(σ)d4 (3.2)
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Figure 3.7: Ωd(σ) and K(σ) for R = 1nm, the value of Ωd(σ) was moved along the
y-axis for better clarity
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Figure 3.8: Ωd(σ) and K(σ) for R = 1nm

As we can see from �gures 3.7 and 3.8, K(σ) changes only slightly relative to
Ωd(σ) as a function of σ. Ωd(σ) remains constant up until the value σ0 = 0.43nm,
then it gradually decreases. K(σ) reaches its maximum at σ0 = 0.43nm.
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Chapter 4

Determining eigenfrequencies of

oscillations of d(t) and σ(t)

4.1 Solving the equations of motion using the Runge-

Kutta method

So far, we have been dealing with determining the ground state of our system.
Now, we are going to determine the eigenfrequencies of oscillations of d(t) and σ(t)
(no external electric �eld yet, zero damping) by solving the derived equations of
motion:

d̈ = −Ωd
2(σ)d+ 4K(σ)d3, (4.1)

σ̈ =
1

M(a)

[
− dU(σ)

dσ
− Ωd(σ)

dΩd(σ)

dσ
d2 +

dK(σ)

dσ
d4

]
. (4.2)

In our system, we can observe two modes: oscillations of σ(t) and oscillations
of d(t). These can also be referred to as the breathing mode and the dipole mode,
respectively [3]. The oscillation of d(t) represents electron density oscillations with
respect to the �xed ion background along the z-axis. The oscillation of σ(t) represents
the radial �ow of charge density of electrons outward from the center of nanoparticle
(when the change of σ is positive) and inward (when the change of σ is negative).

Because d(t) and σ(t) appear in both equations, the two equations of motion are
coupled. We will solve them numerically using Runge-Kutta method of order 4 [8].
In order to use this method, we are going to rewrite the equations (4.1), (4.2) as a
system of �rst-order di�erential equations in the following way:

ẏ1 = y2 (4.3)

ẏ2 = −Ωd
2(y3)y1 + 4K(y3)y1

3 (4.4)
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ẏ3 = y4 (4.5)

ẏ4 =
1

M(a)

(
−dU(y3)

dy3
− Ωd(y3)

dΩd(y3)

dy3
y1

2 +
dK(y3)

dy3
y1

4

)
(4.6)

In the equations, y1(t), y2(t), y3(t), y4(t) represent d(t), ḋ(t), σ(t), σ̇(t), respectively.
Additionally, we have to determine the initial conditions for our system of di�erential
equations:

y1(0) ≡ d(0) = 0

y2(0) ≡ ḋ(0)

y3(0) ≡ σ(0) = σ0

y4(0) ≡ σ̇(0).

The initial condition d(0) = 0 represents the initial displacement of the center of
mass of electrons with respect to the center of the nanoparticle. The initial condi-
tion σ(0) = σ0 represents the fact that our system is initially in the ground state.
Our system will be excited by either ḋ(0) or σ̇(0). These values will be varied and
investigated later on.

Now, we can implement the Runge Kutta method for our system of �rst-order
di�erential equations:

ẏi = fi(t, y)

yi(0) = y0i,

where i = 1, 2, 3, 4 and y = (y1, y2, y3, y4). In the method of Runge Kutta, we
start with our initial condition y0i and consecutively calculate yi(t

k) = yki , where
tk = t0 + kh = kh and h is the step size:

yk+1
i = yki + h/6

(
K1

i + 2K2
i + 2K3

i +K4
i

)
K1

i = fi(t
k, yk)

K2
i = fi(t

k + h/2, yk + hK1/2)

K3
i = fi(t

k + h/2, yk + hK2/2)

K4
i = fi(t

k + h, yk + hK3).

We can implement this method by using a loop cycle and calculate yki for any
time tk, for i = 1, 2, 3, 4.

We implemented this method in Matlab with the following parameters:
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R = 1 nm ≈ 18.897 AU

N = 246

σ0 = 0.4290 nm ≈ 8.107 AU

h = 0.1AU

tmax = 48.38 fs ≈ 2000 AU

The value of σ0 was calculated in the previous chapter. The maximum time was
chosen in such a way as to depict su�cient number of oscillations (in the order of
101) .

In order to solve the equations, the derivative of pseudopotential dU
dσ

is needed.
To remind ourselves, we expressed the pseudopotential in the following way:

U(σ) =
N2/3

σ2
fF (a)−

N1/3

σ
fx(a) +

N

σ
fee(a)−

N

R
fei(σ).

Because the values R and σ0 are �xed for our case, the terms M(a), fF (a),
fx(a), fee(a) in pseudopotential U(σ) are all constants, as a only depends on R and
σ0, and therefore is a constant, too. Thus, the �rst three terms of the pseudopotential
are very easy to derivate and express analytically.

The fourth term is less straightforward, as the dependance on σ is quite com-
plicated and the derivative cannot be expressed analytically. The �rst approach we
tried was to derivate the expression fei(σ) numerically, then �t the derivative with a
polynomial and insert the polynomial expression into our equations of motion in the
Runge Kutta method implementation. However, a method we found worked better
and was numerically more stable, was to de�ne the derivative of pseudopotential as
a function of σ directly in the Runge Kutta implementation in the following way:

dU

dσ
(σ) =

U(σ +∆σ)− U(σ −∆σ)

2∆σ
,

where we chose ∆σ = 0.01. We took the same approach with dΩd

dσ
and dK

dσ
:

dΩd

dσ
(σ) =

Ωd(σ +∆σ)− Ωd(σ −∆σ)

2∆σ
,

dK

dσ
(σ) =

K(σ +∆σ)−K(σ −∆σ)

2∆σ
.

After executing the Matlab code with various di�erent values of initial derivatives
σ̇(0) and ḋ(0), we observed the following results:

� If both the initial derivatives are chosen to be σ̇(0) = 0 and ḋ(0) = 0 (trivial
case), then there are no oscillations of σ(t) and d(t) and their values are given
by initial conditions d(t) = 0, σ(t) = σ0

� If σ̇(0) = 0 and ḋ(0) is chosen to be nonzero, both σ(t) and d(t) oscillate
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� If ḋ(0) = 0 and σ̇(0) is chosen to be nonzero, σ(t) oscillates, however, d(t)
does not start to oscillate, even if we choose a large value σ̇(0). The coupling
between the dynamical variables d(t) and σ(t) is such that oscillations of d(t)
are able to excite oscillations of σ(t), but not the other way around.

� If we choose the initial derivatives to be too large, σ(t) diverges (not shown).
This could be interpreted as removing the electrons from the atom completely,
which goes beyond applicability of our model.

4.2 Oscillations of d(t) and σ(t) for di�erent initial

conditions

1. Let us �rst have a look at the case of σ̇(0) = 0 and ḋ(0) ̸= 0:

In the �gures 4.1 and 4.2, we can see the oscillations of d(t), for di�erent
values ḋ(0) = 0.001, 0.005, 0.01, 0.05, 0.1, 0.5. For increasing value of ḋ(0),
the amplitude of oscillations increases, while the frequency remains the same.

Figure 4.1: Amplitude of oscillations of d(t) in atomic units for di�erent values of
ḋ(0)
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Figure 4.2: Amplitude of oscillations of d(t) in atomic units for di�erent values of
ḋ(0), zoomed in for better clarity

In the �gures 4.3 and 4.4, we can see the oscillations of σ(t), for di�erent values
ḋ(0) = 0.001, 0.005, 0.01, 0.05, 0.1, 0.5.

We can observe, that for smaller values ḋ(0), the oscillations of σ(t) are nearly
identical. We can also notice, that the equilibrium value, around which σ(t)
oscillates, isn't σ0, rather a slightly higher value. We will observe this exact
same phenomenon in the next chapter as well. It is most likely due to the shape
of the pseudopotential U(σ, σ0), visualized in �gure 3.4 in red. The curvature of
U(σ, σ0) is steeper on the left, causing the equilibrium value of the oscillations
to steer towards higher values.

Furthermore, for values ḋ(0) above 0.1, the behaviour of oscillations starts to
become nonlinear. As it has already been mentioned, for values that are too
large, (values in the order of 100) σ(t) will diverge.
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Figure 4.3: Amplitude of oscillations of σ(t) in atomic units for di�erent values of
ḋ(0)

Figure 4.4: Amplitude of oscillations of σ(t) in atomic units for di�erent values of
ḋ(0), zoomed in for better clarity

Using the fast Fourier transform, we were able to visualize frequencies of os-
cillations of d(t) and σ(t) for di�erent initial values of ḋ(0), in �gure 4.5. Color
denotes amplitude of oscillations of d(t) or σ(t). It is worth noting that the
only relevant output is the speci�c oscillation frequency, which is distinctly
visible, the background and discontinuities in color for some speci�c initial
values have no physical meaning. They are purely numerical artifacts, as they
depend strongly on the size of the time step and/or the maximum time.
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Figure 4.5: Frequency of oscillations of d(t) (dipole mode) and σ(t) (breathing mode)
depending on di�erent values of ḋ(0)

In the graph depicting frequency of dipole mode, there is a very strong resonant
frequency, which corresponds to our model: Ωd(σ0) = 0.2663AU (corresponds
to 7.246 eV). There are other frequencies appearing at larger values of initial
conditions, but these are very faint compared to the resonant frequency and
could just be numerical artifacts.

In the graph depicting frequency of the breathing mode, there is one main
frequency at 8.3 eV and another one appearing for larger values of initial con-
ditions, which corresponds to 2Ωd(σ0), as we are using ḋ(0) to excite our sys-
tem. Numerous other frequencies appear for largest values of initial conditions
ḋ(0). These could be atributed to the coupling between d(t) and σ(t) and
nonlinearity of the system.

2. Now we are going to investigate the case when the initial conditions are:
σ̇(0) ̸= 0 and ḋ(0) = 0.

In this case, there are no oscillations of d(t). Let us have a look at the oscilla-
tions of σ(t), for the di�erent values of σ̇(0) = 0.001, 0.005, 0.01, 0.05, 0.1, 0.5,
in �gures 4.6 and 4.7.
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Figure 4.6: Amplitude of oscillations of σ(t) in atomic units for di�erent values of
σ̇(0)

Figure 4.7: Amplitude of oscillations of σ(t) in atomic units for di�erent values of
σ̇(0), zoomed in for better clarity

As we can see, not only does the amplitude of oscillations increase for larger val-
ues of initial conditions, there is also a change in frequency of oscillations. For
increasing values of initial conditions, the frequency of oscillations decreases,
as can be seen using the fast Fourier transform in �gure 4.8.
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Figure 4.8: Frequency of oscillations of σ(t) (breathing mode) depending on di�erent
values of σ̇(0)

This shows that the oscillator is indeed anharmonic, which is caused by the
non-parabolic shape of the pseudopotential U(σ). Therefore, the frequency is
a function of amplitude. In the �gure 4.8, we can also see higher harmonics
appearing for larger values of initial conditions.
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Chapter 5

Applying alternating external

electric �eld

So far, we have been investigating cases, when we are able to excite a speci�c
initial value of either ḋ(0) or σ̇(0). Now, we are going to excite our system using an
alternating external electric �eld along the z-axis, with amplitude E0 and frequency
ω. The initial values will be ḋ(0) = σ̇(0) = 0. We are also going to introduce a phe-
nomenological damping and investigate how this a�ects our system. The equations
of motion will therefore be modi�ed:

d̈ = −Ωd
2(σ)d+ 4K(σ)d3 + E0 sin(ωt)− γdḋ, (5.1)

σ̈ =
1

M(a)

[
− dU(σ)

dσ
− Ωd(σ)

dΩd(σ)

dσ
d2 +

dK(σ)

dσ
d4

]
− γσσ̇. (5.2)

The value of phenomenological damping was chosen to be γd = γσ = γ = 0.01375
[3, 9�11]. We are going to investigate two di�erent instances: ω = 0.03675AU (cor-
responds to 1
eV in the electromagnetic spectrum), which was chosen as an arbitrary
frequency in the visible region of the electromagnetic spectrum, and ω = Ωd(σ0) =
0.2663AU (corresponds to 7.246 eV in the electromagnetic spectrum), which is the
resonant frequency of the oscillation of d(t). We are going to vary the value of E0.

5.1 Frequency of external electric �eld in the visible

region of the electromagnetic spectrum

Firstly, we are going to investigate the case when the frequency of the external
electric �eld corresponds to 1 eV.

� oscillations of d(t)

1. no damping
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If the damping γ = 0, there are two oscillation frequencies present for the
oscillation of d(t) - the oscillation frequency of the external electric �eld
and the resonant frequency of d(t), as can be seen in �gures 5.1 and 5.2.
The oscillation frequency of the external electric �eld is dominant, as we
are using the initial condition ḋ(0) = 0.

Figure 5.1: Amplitude of oscillations of d(t) in atomic units depending on di�erent
values of E0, no damping

10
-4

10
-3

10
-2

values of E
0
 [atomic units]

0

5

10

15

20

25

30

35

40

fr
e
q
u
e
n
c
y
 o

f 
d
ip

o
le

 m
o
d
e
 [
e
V

]

10
0

10
1

10
2

10
3

Figure 5.2: Frequency of oscillations of d(t) depending on di�erent values of E0, no
damping

2. damping applied

When damping is applied, the e�ect of the resonant frequency of d(t)
is only present at the very beginning and is then extinguished by the
damping (�gure 5.3). In �gure 5.4, we can see a very faint line at the
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resonant frequency of d(t), which would not even be present if we only
investigated the oscillations after the initial transient phase.

Figure 5.3: Amplitude of oscillations of d(t) in atomic units depending on di�erent
values of E0, damping applied
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Figure 5.4: Frequency of oscillations of d(t) depending on di�erent values of E0,
damping applied

� oscillation of σ(t):

1. no damping

Unlike for the oscillation of d(t), there is mainly the resonant frequency
of σ(t) present for the oscillation of σ(t). The frequency of the external
electric �eld starts to have a very faint e�ect only for the largest values of
E0 (�gure 5.7). Therefore, we can conclude, that for smaller values of E0,
the external electric �eld doesn't a�ect the oscillation of the breathing
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mode. For large values of E0, we can notice a faint line at frequency 2ω,
which is due to the nonlinearity of our equations.
Furthermore, we can notice the same e�ect as in chapter 4 when in-
vestigating eigenoscillations of σ(t): the amplitude of the oscillations is
constant for di�erent values of E0 and there is an overall shift of the
equilibrium value of oscillations towards a value which is slightly larger
that σ0.

Figure 5.5: Amplitude of oscillations of σ(t) in atomic units depending on di�erent
values of E0, no damping

Figure 5.6: Amplitude of oscillations of σ(t) in atomic units depending on di�erent
values of E0, no damping, zoomed in for better clarity
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Figure 5.7: Frequency of oscillations of σ(t) depending on di�erent values of E0, no
damping

2. damping applied

After applying damping, we can observe a continuous decrease in ampli-
tude of oscillations of σ(t) (�gures 5.8, 5.9). Similarly to the case of no
damping, the dominant oscillation frequency is the resonant frequency of
σ(t). For larger values of E0, we can see the e�ect of the external elec-
tric �eld, at frequency 2ω (�gure 5.10). Note that no oscillations can be
observed at the excitation frequency ω.

Figure 5.8: Amplitude of oscillations of σ(t) in atomic units depending on di�erent
values of E0, damping applied
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Figure 5.9: Amplitude of oscillations of σ(t) in atomic units depending on di�erent
values of E0, damping applied, zoomed in for better clarity
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Figure 5.10: Frequency of oscillations of σ(t) depending on di�erent values of E0,
damping applied

From now on, we will investigate only the cases when the damping is applied.

5.2 Frequency of external electric �eld = resonant

frequency of d(t)

� oscillation of d(t)

When we excite the system at the resonant frequency of d(t), the only fre-
quency present for oscillations of d(t) is said frequency (�gure 5.12). In terms
of the amplitude of oscillations, we observe two regimes (�gure 5.11), which
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are often referred to as the transient regime, in which the amplitude con-
tinuously grows and the stationary regime, in which the amplitude remains
constant [3].

Figure 5.11: Amplitude of oscillations of d(t) in atomic units depending on di�erent
values of E0, damping applied
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Figure 5.12: Frequency of oscillations of d(t) depending on di�erent values of E0,
damping applied

� oscillation of σ(t)

For the oscillation of σ(t), there are also two regimes present - the transient
regime, when the amplitude of oscillations varies, and the stationary regime,
when the amplitude remains constant (�gure 5.13).

We can notice the same e�ect which has already been mentioned a few times -
the equilibrium value of oscillations is larger than σ0. Furthermore, this value
increases for larger values of E0.
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In �gure 5.14, we can see two distinct frequencies of oscillations - the resonant
frequency of σ(t) and 2ω.

Figure 5.13: Amplitude of oscillations of σ(t) in atomic units depending on di�erent
values of E0, damping applied
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Figure 5.14: Frequency of oscillations of σ(t) depending on di�erent values of E0,
damping applied
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Chapter 6

Electronic current density

Now that we have solved the equations describing our system and determined the
oscillations of d(t) and σ(t), we are able to calculate and plot the spatial distribution
of the electronic current density j = nu [3]:

j(r, t) = n(r, t)u(r, t) = n(r, t)

(
σ̇

σ
xx̂+

σ̇

σ
yŷ +

[
σ̇

σ
(z − d) + ḋ

]
ẑ

)
, (6.1)

where we used the already derived expression for mean electron velocity u (2.4).
The parameters used in this chapter are:

R = 1 nm

E0 = 0.001 AU

ω = 1eV

γ = 0.01375.

We are investigating the case when the frequency of the exciting electric �eld
is in the visible region of the electromagnetic spectrum and damping is applied to
both dipole and breathing mode. First, let us have a look at the oscillations of these
modes and their time derivatives in �gure 6.1:
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Figure 6.1: Oscillations of d(t), σ(t), ḋ(t) and σ̇(t) for nonzero damping γ, E0 =
0.001AU, ω = 1 eV

We investigate four distinct points in time, denoted by black crosses. At t =
641.3AU and t = 726.7AU (�rst and third black cross), d(t) is maximal, therefore
ḋ(t) = 0. We can visualize the breathing mode at these two points in time. At
t = 683.9AU and t = 769.4AU (second and fourth black cross), d(t) = 0, therefore
ḋ(t) is maximal and the dipole mode can be visualized at these two points in time
(breathing mode is also present).

The four following graphs in �gures 6.2 and 6.3 show a cross-section of the vector
�eld j(r, t) in the plane (x,z), where y=0, for the four chosen points in time:
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Figure 6.2: Cross-section of j(r, t) in the (x,z) plane [atomic units of length] for
t = 641.3AU and t = 683.9AU, respectively
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Figure 6.3: Cross-section of j(r, t) in the (x,z) plane [atomic units of length] for
t = 726.7AU and t = 769.4AU, respectively

Note that the scale of current density represented by arrows is di�erent in each
�gure.

Now, corresponding to each of the four graphs for the four chosen points in time,
we can graph the z-component of the current density j depending on the z-component
in space:
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Figure 6.4: jz depending on z-component in space [atomic units], for t = 641.3AU
and t = 683.9AU, respectively
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Figure 6.5: jz depending on z-component in space [atomic units], for t = 726.7AU
and t = 769.4AU, respectively

The graphs on the left in �gures 6.4 and 6.5 correspond to the radial current of
the breathing mode, the graphs on the right correspond to the dipole mode. The
linear slant of the slope of the current density jz inside the nanoparticle is due to
the nonzero radial current. From these graphs, we can determine the width of the
interface region close to the surface of the nanoparticle, in which the current density
gradually transitions to zero. For the dipole mode, this layer was determined to
occupy the interval (R− 0.1nm, R + 0.1nm) (�gure 6.6):
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Figure 6.6: jz depending on z-component in space [atomic units], for t = 769.4AU
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Conclusion

In this thesis, we investigate dynamics of electrons inside a golden nanoparticle.
We start with the Lagrangian density, from which we derive the QHD (Quantum
hydrodynamic) equations. Furthermore, we choose an expected solution (ansatz) for
the electron density, which we insert into the Lagrangian density. The Lagrangian
density is then integrated over space in order to obtain the Lagrangian.

Using the Euler-Lagrange method, we derive equations with two dynamic vari-
ables d(t) (displacement of center of mass of the electrons relative to �xed ion back-
ground) and σ(t) (spillout of the electrons at the surface of nanoparticle). Moreover,
we determine the value of the spillout of the ground state σ0 and �nd out that the
choice of number of electrons per atom has minimal impact on the value of the
ground state σ0.

We numerically solve the equations with dynamic variables d(t) and σ(t) using
the Runge-Kutta method. We investigate di�erent cases of the initial conditions of
the equations. Furthermore, we use an alternating external electric �eld to excite
our system, while also including damping. We investigate two di�erent values of fre-
quency of the external �eld, one in the visible region of the electromagnetic spectrum
and one corresponding to the resonant frequency of the dipole mode.

We visualize the oscillations of d(t) and σ(t) and using the fast Fourier transform,
we determine the frequencies of their oscillations. The resonant frequency of the
dipole mode is determined to correspond to Ωd(σ0) = 7.2 eV, for breathing mode,
it is 8.3 eV. When investigating the breathing mode, we noticed another frequency
present apart from the resonant frequency of σ(t). If we use the initial condition
ḋ(0), frequency 2Ωd(σ0) appears. If we use external electric �eld with oscillation
frequency ω to excite our system, frequency 2ω appears.

Additionally, we notice an interesting phenomenon for the oscillation of σ(t).
The equilibrium value around which σ(t) oscillates, is not equal to the ground state
σ0, rather slightly larger. We also �nd that this equilibrium value depends on the
excitation conditions of our system. For increasing values of the amplitude of the
external �eld E0, the equilibrium value also increases.

Finally, we use the numerical solutions of d(t) and σ(t) to calculate and plot
the electronic current density. We visualize the dipole and the breathing mode and
determine the width of the interface region at the surface of the nanoparticle, in
which the current density gradually transitions to zero.
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