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1. Abstract 
 

This bachelor’s thesis deals with analysis of applications of probabilistic statistical and neural 

network models on spatial data for predictions of time in which the aircraft reaches the 

specified significant points in its trajectory and proposes an alternative method of prediction 

for temporal data.  

 

Theoretical part of the thesis at hand is comprised of qualitative analysis of the existing 

methods applied to aircraft trajectory prediction on spatial data, definition of the key 

parameters, evaluation of the performance of the models.  Theoretical definition of alternative 

method for temporal data obtained from flight planning, data extraction method, outline of its 

structure and its processing will be described in this part as well. 

 

The practical part of the thesis describes the implementation of LSTM network on the 

temporal data and performs fine-tuning experiments for testing the possible usage and 

influence of a non-numerical parameter on the model performance. 

 

Although, from the results obtained from the analysis, significance of geographical data for 

the approach time prediction was demonstrated, a time-series prediction made by an LSTM 

model exclusively using temporal parameters proved to produce viable results. 

 

1. Abstrakt 

 
Tato bakalářská práce se zabývá analýzou aplikací pravděpodobnostního statistického 
modelu a modelu neuronových sítí na prostorová data pro predikce času, ve kterém letadlo 

dosáhne zadaných významných bodů na své trajektorii, a navrhuje alternativní způsob 
predikce pro časová data. 
 

Teoretická část práce se skládá z kvalitativní analýzy stávajících metod  aplikovaných na 
predikci trajektorie letadla na prostorových datech, definice klíčových parametrů a 

vyhodnocení výkonnosti modelů. V této části bude také popsána teoretická definice 
alternativní metody pro časová data, metoda extrakce dat, nástin jejích struktury a jejích 
zpracování. 

 
Praktická část práce popisuje implementaci LSTM sítě na časových datech a provádí fine-

tuning experimenty pro testování možného použití a vlivu nenumerického parametru na 
výkon modelu. 
 

Ačkoli z výsledků získaných analýzou byla prokázána významnost geografických dat pro 
predikci doby přiblížení, predikce časové řady provedená modelem LSTM výhradně s 

použitím časových parametrů prokázala proveditelné výsledky. 
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2. Introduction 
 

Increasing air-traffic demand creates a strain on efficient operations of air-traffic control 

hence creating a growing interest and requirement for accurate prediction of approach times 

of individual aircrafts.  

Accurate prediction of approach times enables the airports to prevent flight delays to a certain 

extent by mitigating high congestion levels at Terminal Maneuvering Area (TMA), to 

manage the air-traffic controllers’ workload and to efficiently allocate ground resources for a 

consistent flow of operations.  

 

There are several existing techniques of estimation and prediction of flight trajectories of 

specific aircrafts, such as statistical methods or prediction models based on artificial 

intelligence models. All the existing models are limited in their use due to the uncertainties 

caused by an array of factors surrounding the aircraft operations and environmental factors 

and require geographical and physical parameters as inputs to produce reliable results. 

 

Trajectory prediction performed using location data obtained from radar entries can provide 

approach time estimates based on statistical or probabilistic neural network models 

implemented by extrapolating the predicted location from parameters such as the trajectory, 

geolocation, speed, altitude, and types of the aircraft.  

 

The purpose of this work is to examine existing methods of prediction and describe an 

alternative method, in this case a time-series prediction model applied on temporal data, 

predicting actual times of arrival at a chosen significant point in aircraft trajectories. An 

application of an alternative method of prediction using time-series estimation is tested, in 

particular, to analyze the behavior of temporal data and evaluation of whether this use-case 

would be viable for such implementation through series of experiments examining the 

performance of a RNN model solely on temporal data and  possibly tuning on other non-

numerical parameters.  

 

Outline of work. Section 4 is comprised of the theoretical part where two types of methods 

of prediction applied on spatial data obtained from flight radars are chosen and their 

performance and limitations are qualitatively assessed. Furthermore, a recurrent neural 

network – Long Short-Term Memory method is described along with the other component 

used in the practical implementation of the model. Section 5 outlines the practical part of the 

thesis and explains the principle of extraction of input data, their structure, and the 

description of their processing for implementation of the proposed LSTM model. 

Furthermore, this section includes the explanation of the practical implementation of LSTM 

model applied on temporal data along with a qualitative analysis to verify its performance 

and limitations through a series of experiments. An outline of a set of fine-tuning experiments 

is also included in this section. Section 6 provides the conclusion of the findings obtained 

from the analysis and experiments performed in the thesis.  
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3. Goals of the bachelor’s thesis 
 

1) Analysis of prediction model applications on spatial and temporal data 

2) Establishing and explaining a data extraction and processing method  

3) Implementation and analysis of an LSTM model on a time-series data  
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4. Theoretical part 
 

 

4.1 Air Traffic Control  

 

European Organization for the Safety of Air Navigation (EUROCONTROL) is an 

international organization operating to achieve safe and seamless air traffic management 

practices across Europe. Their main operations include development and operations of air 

traffic management in various countries in Europe.[1] 

 The purpose of air traffic control is to ensure operational safety of air traffic and efficient 

utilization of ground resources. To attain these goals the agency utilizes predict ion of aircraft 

approach times and prediction of trajectories.  

 

Prediction of approach times of aircrafts to significant points is commonly done on location 

data and implemented using regressors such as geographical coordinates, altitude, speed of 

the aircraft, type, and request time. In this section we will be analyzing the principles of their 

implementation and evaluation of their results and describing a possible application of a Long 

Short-Term Memory Recurrent Neural Network model on the temporal data of aircraft arrival 

times and will include a description and analysis of it.  

 

4.2 Probabilistic prediction analysis 

 

In this section we will be analyzing the implementation and performance along with input 

data parameters from a bachelor’s thesis by M.Kittler 2012 [2]. 

 

4.2.1 Probabilistic prediction model 

 

Statistical models base their outputs on analysis of the correlation between specific variables 

to predict the outcomes that can occur in the future based on historical data. These types of 

models require a definitive understanding of parameters used as regressors, and the factors 

affecting them. Furthermore, these types of models require an extensive set of data for 

extrapolation of predictions. Due to these characteristics probabilistic models require a high 

computational performance and complexity in data pre-processing and analysis.  

 

For the implementation of a probabilistic prediction model, a deeper understanding and 

interpretation of data is required. The analyzed model uses the parameters listed below for the 

estimation of prediction: 
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4.2.2 Probabilistic model implementation steps 

 

The first step in implementation of the model is the initial understanding of flight operations 

and the factors affecting the data distribution. The outcome of the prediction depends on an 

array of physical factors that determine the trends in the development of the predicted value.  

Parametric probability density estimation is done by taking a large number of time intervals 

during which the planes get from one point to another, and it can be used to create a 

histogram where the interval with the highest frequency is then subtracted as the most 

probable estimate, which is taken as the final prediction result.  

 

For the implementation of the analyzed model, input data consisting of radar records 

consisting of about 361 entries for each flight were obtained and restructured into a variables 

structure called “tracker”. The structures and parameters used for further processing are 

defined in a script which is called in every function to localize these variables in every 

function. The data is then filtered and grouped by separating radar entries for each flight and 

each entry is enriched with values such as time and remaining distance to and the altitude at 

the destination point. For improvement of accuracy the data is then cleared of mistakes in 

entries such as merging of identification information of separate flights due to use of same 

aircrafts with same identification variables for regular flights. These errors in entries are 

filtered with a specific script created for this purpose.  

 

After the filtration of the input data, the prediction is made using the compulsory inputs 

below: 

- Radar records 

- Selected point for which the approach time is predicted 

 

The prediction principle in based on creating a group of radar records which are similar to the 

one for which the prediction is made, and the most probable estimate is computed from the 

probability distribution of known approach times. The algorithm takes the input parameters 

for which it will be calculating a prediction and puts together similar historical records, and 

based on their distribution, chooses the most probable value, which is taken as the prediction 

result.  

 

To calculate the prediction, in the analyzed work, the external factors potentially affecting the 

development of approach times have been grouped and studied for the determination of 

usable parameters for the next steps of the implementation. 

 

 

4.2.3 Probabilistic model performance evaluation 

 

In the evaluated experiment, the prediction is made based on probability distribution model of 

radar entries which were collected in the span of 14 days between the period of September 

and October of 2010, and the testing is performed on radar data obtained from one day in 

February 2011.  
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In the experimental scenario, when the prediction is made using the whole set of data without 

classification based on parameters evolving in time, the probable times of arrivals are 

constant on any set of input data, thus it would mean that the probabilistic model does not 

have a merit in such case. Therefore, there is a need for distinguishing specific parameters 

which change in time, such as: 

 

- position of the aircraft 

- close vicinity of the aircraft 

- distance of the aircraft to the selected destination 

- flight direction 

- flight level 

- flight speed 

- place of departure (ADEP) 

- place of landing (ADES) 

- type of aircraft 

- type of engine 

- location of the target area 

- required flight level in the target area 

 

These input data parameters choose similar historical entries and put them into a set and 

create a probability distribution model. The prediction is based on evaluating the distribution 

of the set and choosing the most probable value which in turn comprises the result. It can 

happen that when the parameters will put together an empty array, in which case the 

probability model fails or produces a random result. Once such occurrence happens, it is 

possible to limit the input parameters and do the probability prediction again. Different 

parameters affect the probability distribution in various ways, therefore merging the 

evaluation parameters can improve the performance of the model.  

 

In the examined work, individual parameters influence the prediction of time in different 

ways. The best results in prediction of the arrival times to the significant points was attained 

for the parameter proximity. Next, the combination of parameters produces accurate 

prediction results.  

The tests performed in the examined work show that the time prediction for individual 

classes, using the narrowed set of parameters, is more accurate compared to the overall 

prediction from the basic set using the mixture of random variables. 

 

In the evaluation of obtained results from the array of different tests, the author concludes 

that it is noticeable that for overflights and mainly direct flights, the probabilistic prediction 

without parameters does not achieve better result than the current method used by 

Eurocontrol based on the calculation of time from the distance and speed of the aircraft.  

In the comparison of results obtained from tests using different parameters such as proximity, 

speed, altitude and direction, we observe an improvement in the forecast compared to the 

current method. This fact is related to the necessity of aircraft vectoring to the direction of the 
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runway used for landing or to the direction of the track after take-off in the opposite 

direction.  

 

In conclusion, probabilistic method of prediction requires a comprehensive understanding of 

parameters in input data and statistical tests evaluating the importance of each of them needs 

to be performed in order to filter out the non-significant parameters and base the prediction 

on the relevant ones. Generic models of prediction based on whole set of data can produce 

static prediction and perform poorly due to it taking the probability distribution of the whole 

set of data for prediction.  

 

The probabilistic method of prediction can perform well if the environment factors are stable. 

 

4.3 Probabilistic Neural Network analysis 

 

In this section we will be looking at a Probabilistic Neural Network implementation by 

P.Hroššo 2012 [3]. 

 

4.3.1 Probabilistic Neural Network 

 

Another method worth analyzing can be PNN (Probabilistic Neural Network) based on 

Parzen estimates [3]. 

 

Parzen Window density estimation function is a non-parametric density estimation technique, 

used to compute the value of likelihoods on a new training sample x from the derived density 

function f(x) and returning the density estimate of the given data sample. 

 

PNN is a feed-forward neural network in which connection between nodes don’t form a 

cycle. It calculates the probability density function of set of data and is used for classification 

and pattern recognition tasks. PNN is designed to solve classification problems by applying 

the idea of conventional probability theory to construct a neural network for classification.  

 

The PNN topology consists of 4 layers: 

 

- Input layer: p neurons represent the input layer and distribute it to the subsequent one. 

where p - number of input features. 

- Pattern layer: layer which represents each training vector by a hidden neuron that 

records the features of this vector. During inference, each neuron calculates the 

Euclidean distance between the input test vector and the training sample, then applies 

the radial basis kernel function. In this way, it encodes the PDF centered on each 

training sample or pattern. 

- Summation Layer: computational layer which calculates the output of the pattern 

units for each class. This layer contains one neuron for each class which is then 

connected to all neurons in the pattern layer of that class.  
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- Output Layer: this layer finds the maximum value from the previous layer and 

determines the associated class label. 

 

PNN can be a reliable classifier, however, it requires a smoothing parameter in case of a 

limited dataset for a better performance.  

 

4.3.2 Probabilistic Neural Network implementation steps 

 

The data used in the analyzed work is obtained from Air Traffic Management authority which 

included radar data entries along with added entries from flight plans. It consists of flight 

entries with recorded parameters below: 

 

- Flight ID 

- Call sign 

- Type of aircraft 

- Aircraft description (number of motors etc.) 

- Aerodrome of departure 

- Aerodrome of destination 

- Radar entry recording time 

- Location of the aircraft 

- Altitude 

- Speed 

 

The data contained flights both from and to Prague and was additionally filtered out to 

contain only radar data entries which is then filtered again based on parameters since only 

some are used for training of the PNN. Lastly, it is important to ensure that the data entries 

have the same dimensions, and the temporal parameters are discreet for the PNN to be able to 

classify. 

 

The training process consists of splitting the dataset into training and testing sets and feeding 

the training data directly to a PNN weight matrix.  

The process of classifying the radar records is as follows: the author calculates the matrix of 

activations of all neurons as a matrix product of all the weights of our PNN and the radar 

input vector. For faster classification of a larger number of inputs the vectors were merged 

into one matrix of all inputs, which speeds up calculations. 

 

For these activations, the value of the activation function was calculated. Then the author 

goes through all distinguished classes and sums the contributions of individual neurons. As a 

result, the classification is the class with their highest sum. 

 

4.3.3 Probabilistic Neural Network performance evaluation 

 

In the examined work, the author performed tests in which they verified the effects of training 

on the success rate of prediction. A satisfactory classification success rate was observed with 
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the ratio of training and testing data set splitting with a ratio of one to one, where the success 

rate was approximately 85%. The success rate continued to improve with the increase of the 

training set up to 95%. 

 

Next, the investigation of the effect of the number of distinct classes on classification success 

was done and resulted in a conclusion that the ideal number of classes for this use-case, is 

150. In such a case, the prediction of time is made with of approximately 30 second accuracy, 

yields in high classification success rate (~94%) and the standard deviation is in seconds. The 

time performance of the prediction was analyzed and concluded that this figure depends on 

the technique used and an observation that the classification time increases linearly with the 

number of training data and classified sets was noted. 

 

The model at hand was also compared with a naive linear estimator. For flights similar to 

flights in the training set, the predicted time was almost indistinguishable from the real time. 

With more complicated testing conditions, the model predicted a flight time that was 

significantly different from the flights in the training set. 

 

Overall performance of the predictor was good, with the largest prediction error around 100 

seconds. With regards to the influence of individual parameters of input data, highest weight 

in the prediction model is the position of the aircraft, followed by a group of inputs: flight 

level, speed, and type of aircraft. Inputs with lower weight are time of day and 

(takeoff/landing) runway. However, their influence cannot be neglected because they 

improve the prediction success by about 8% [3]. 

 

4.4 Recurrent Neural Network 

 

In the practical part of this bachelor’s thesis we will implement an LSTM model on our data. 

In this section, we will be looking at the theoretical description of models of this type and 

their general architecture. 

 

4.4.1 Recurrent Neural Network on temporal data 

 

Time series prediction models are a difficult type of predictive modelling due to the addition 

of complexity of sequence dependence in input variables. Such sequence dependencies are 

handled with a specific type of neural networks called recurrent neural networks.  

 

Recurrent neural network (RNN) is a type of artificial neural network which uses sequential, 

time series data and similarly to feedforward convolutional neural networks, utilizes learning 

on training data. RNN is commonly used for problems such as language translation, natural 

language processing, speech recognition and image captioning. The distinguishing aspect of 

recurrent neural networks is the internal memory which maintains the dependence of outputs 

on prior elements within the sequence, compared to assumption of input and output 

independence in traditional deep neural networks. Recurrent neural networks need to account 

for the attributes and sequence of previous elements to produce a prediction output. Another 
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distinguishing characteristic of the RNNs is that they possess an ability to propagate 

parameters across the layers of the network, meaning that the network shares the same weight 

parameter within each layer of network, which are then adjusted through the processes of 

backpropagation and gradient descent to facilitate reinforcement learning. [4] 

 

RNN leverages backpropagation through time algorithm (BPTT) for determination of the 

gradients which is an approach specific for sequence data. BPTT sums errors at each time 

step to adjust the model parameters to fit appropriately. Due to this characteristic, RNN 

models tend to encounter two distinct problems: exploding and vanishing gradients. These 

issues are defined by the size of the gradient, which is the slope of the loss function along the 

error curve. When the gradient is small it continuously decreases, updating the weight 

parameter to approaching 0. In this situation the learning of the algorithm is stalled or is 

stopped. On the contrary, exploding gradients occur when the weights of the layers inflate 

and become unrepresentable. 

 

4.4.2 LSTM on temporal data 

 

Long Short-Term Memory model has been introduced in 1997 by Sepp Hochreiter and 

Juergen Schmidhuber as a solution to mitigate the occurrence of vanishing gradients.  

The model achieves this by utilizing memory cells and gate units in its architecture that 

allows constant error flow through self-connected linear units – constant error carrousel 

(CEC). [4] 

 

The model is based on an architecture built on memory cells (topology pictured in figure 1), 

which is a more complex unit, compared to neurons in traditional neural networks, built 

around a CEC and has three distinct gates – an input gate, an output gate, and a forget gate. A 

multiplicative input gate unit protects the memory contents of the memory cell from 

perturbation from irrelevant inputs and a multiplicative output gate unit is used to mitigate the 

perturbation produced by irrelevant memory of the current cell on other units. 

 

The topology of the network consists of one input layer, one hidden layer and one output 

layer. The fully self-connected hidden layer contains memory cells with corresponding gate 

units. All units apart from the gate layer units have directed connections to all units in the 

layer above or higher, which serve as an input. Layers are comprised of S memory cells 

sharing the same input and output gates and are referred to as “memory cell block of size S”, 

which facilitate information storage.  

 

The mathematical model of the LSTM RNN can be represented as below [5]: 

 

 

  [5] 

where 
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and  

      
The learning of the network uses a variant of Real Time Recurrent Learning, which is 

adapted considering the multiplicative nature of dynamics of input and output gates, hence 

mitigating the occurrence of the vanishing gradient problem. This is achieved by ensuring 

non-decaying error backpropagation through the internal states of memory cells, where the 

errors arriving at memory cell inputs do not get propagated further back but serve for 

adjustment of the incoming weights. In other words, once the error signal arrives at a memory 

cell output it gets scaled by output gate activation and differential of hidden state function h.  

 

 
Fig.1 Architecture of a memory cell of a  LSTM model [4] 

Architecture of memory cel l cj (the box) and its gate units inj ; outj . The self-recurrent 

connection (with weight 1.0) indicates feedback with a delay of 1 time step. The gate units open and close access to CEC. 

 

LSTM is an efficient model in regards of computational difficulty, as only the derivatives 

should be stored and updated. The model can have drifts in internal state in case of input 

values being mostly positive or mostly negative, which in turn, can cause the gradients to 

vanish. This is mitigated by biasing the input gate toward zero. 

 

4.5 Other components used in the implementation of proposed LSTM model 

 

Successful implementation of machine learning models involves choosing appropriate 

algorithms for data interpretation and optimization. For our model, we will be performing 

statistical and autocorrelation testing for data interpretation, as well as Adam optimizer 

algorithm for the LSTM model.  
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4.5.1 Autocorrelation in time-series data 

 

Autocorrelation refers to the degree of similarity between given time series and its lagged 

version over a specific timeframe. One-step lag autocorrelation would be demonstrating 

whether the present time-series have any correlation with its lagged values. Autocorrelation 

can detect correlation pattern or trends in data and is used as a step in data analysis prior to 

choosing a suitable model for prediction. It plots the current values with lagged ones on a 

graph and calculates the degree of similarity between those. There can be as many degrees of 

lags as possible, depending on the number of entries in the input data, however the reliability 

of autocorrelation model decreases dramatically with each added step, as there are less entries 

available for each of the added lag [6]. 

It is important to test the data for autocorrelation as in some instances, the presence of 

autocorrelation would signal to RNN models to be not suitable for that set of data.  

 

4.5.2 Optimizer Adam 

 

Optimization algorithm is a procedure which is executed iteratively comparing different 

possible outputs to find the optimal or the satisfactory solution. Many field s of science and 

engineering require maximization or minimization of parametrized objective functions with 

respect to its parameters. For many objective stochastic functions derived from sum of 

subfunctions which are evaluated on different subsets of data, the optimization can be more 

efficiently made using stochastic gradient descent or ascent. For functions with more noisy 

objectives, a method with high-dimensional parameter space is more suitable.  

Adam is an efficient algorithm for stochastic optimization which requires first-order gradients 

and does not need a big memory. The name is derived from “adaptive moment estimation” 

and is it built to combine advantages of AdaGrad (Duchi et al. 2011), for problems with 

sparse gradients, and RMSProp (Tieleman & Hinton, 2012) which is suitable for on-line and 

non-stationary settings. [7] 

Instead of adapting the parameter learning rates based on the average first moment (the mean) 

as in RMSProp, Adam also makes use of the average of the second moments of the gradients 

(the uncentered variance). 

The algorithm calculates an exponential moving average of the gradient and the squared 

gradient, and the parameters beta1 and beta2 control the decay rates of these moving 

averages. 

The initial value of the moving averages and beta1 and beta2 values close to 1.0 result in a 

bias of moment estimates towards zero. This bias is overcome by first calculating the biased 

estimates before then calculating bias-corrected estimates. 

Adam utilizes the configuration parameters below [7]: 

 

• alpha. Also referred to as the learning rate or step size. The proportion that weights 

are updated (e.g. 0.001). Larger values (e.g. 0.3) results in faster initial learning before 

the rate is updated. Smaller values (e.g. 1.0E-5) slow learning right down during 

training 

• beta1. The exponential decay rate for the first moment estimates (e.g. 0.9). 
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• beta2. The exponential decay rate for the second-moment estimates (e.g. 0.999). This 

value should be set close to 1.0 on problems with a sparse gradient (e.g. NLP and 

computer vision problems). 

• epsilon. Is a very small number to prevent any division by zero in the implementation 

(e.g. 10E-8). 

 

Adam is the recommended optimizer for deep learning algorithms. 
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5. Practical part 

 
5.1 Dataset obtained from EUROCONTROL 

 

The data used in the implementation of the proposed LSTM model is acquired from 

Eurocontrol B2B database which is accessed through the B2BD – CS SOFT Gateway 

interface ensuring certified access. B2BD mediates B2B data to other clients through Redis 

database.  

 

5.1.1 Dataset structure 

 

We are using a dataset containing a collection of entries of registered flights arriving to 

Vaclav Havel Airport (ICAO code: LKPR) over the span of three days, collected in intervals 

of 5 minutes. Each request obtains a result in the defined format which is then extracted by a 

script into a CSV file. The data consists of 347 different flights originating from 121 

aerodromes and records below values for each registered flight: 

 

- sendTime  - timestamp of the request time 

- requestID – ID of the data request 

- effectiveTrafficWindow_wef – timestamp of the data snapshot 

- effectiveTrafficWindow_unt – timestamp of the data snapshot 

- flightId – ID of the individual flights 

- aircraftId – ID of the aircraft 

- aircraftType – model of the aircraft 

- aerodromeOfDeparture – ICAO code of the departure aerodrome where the flight 

originated from 

- estimatedOffBlockTime – estimated time when the aircraft vacates the parking slot 

- estimatedTimeofArrival – time of arrival in the flight plan 

- actualTimeOfArrival – time of arrival predicted in real time by EUROCONTROL 

- flightState – state of the flight 

 

 

5.1.2 Principle of data extraction 

 

CSS-B2BD created by CS-Soft a.s. is a server daemon that, on one hand, ensures certified 

communication with Eurocontrol B2B and, on the other hand, mediates this communication 

to clients via a Redis database API. Python scripts access Eurocontrol B2B exclusively via 

CSS-B2BD, i.e exclusively via Redis API. 

 

The Redis API is built on pairs of Redis communication channels through which requests and 

responses are transmitted. The query is sent through the Request channel when the request 

script performs the “Publish” operation. The response will then come through the Response 

channel once the script waits with the “Subscribe” operation.  
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The API uses the naming of communication channels according to the following format: 

‘css:b2b:req|rep:<ident>:<num>’. 

 

Query and Response are data structures that contain requested parameters and structured 

response data. CSS-B2BD supports two formats representing a different level of Eurocontrol 

B2B data processing: 

 

- RAW-XML: queries and response data are in XML format, which directly 

corresponds to the Eurocontrol B2B specification. CSS-B2BD only mediates 

communication with Eurocontrol B2B. 

- JSON: CSS-B2BD simplifies common queries and responses into JSON structures to 

save and simplify repetitive work for operational applications. The structure of both 

the request and the response are more understandable in this format. 

 

For this work, the RAW-XML format was used because it is generic and valid even in the 

absence of CSS-B2BD, as it has all the available features provided by Eurocontrol B2B. For 

operational systems, JSON may be more advantageous, where CSS-B2BD can be prepared to 

provide applications with only necessary data entries and parameters. The request can be 

structured to ask for any of the available parameters for each flight and in our case, the 

request asks for the parameters listed in section 5.1.1. The difference between the individual 

formats can be seen in request and response examples in Appendix 2. 

 

 

5.2 Data interpretation and pre-processing 

 

To ensure the functionality of prediction model the input data should be interpreted and pre-

processed. The proposed LSTM model is concerned with prediction based on temporal data, 

therefore a suitable re-formatting and filtering is required to enable the application of time-

series. The LSTM model itself can recognize and capture patterns in temporal parameters and 

train on them. However, apart from numerical values, the data entries also possess non-

numerical parameters, such as aerodrome of departure and type of aircraft, which can hold 

significance in the training. Therefore, a further analysis of these parameters is required to 

establish their significance in the training model.  

 

To use the raw input data in subsequent steps, we have merged the individually extracted 

CSV files into one dataset and have filtered out empty and duplicate values using pandas and 

numpy packages in Python, implementations of statistical tests are provided by scipy. (The 

script for formatting data: dataset.py) 

 

5.2.1 Evaluation of parameter aerodrome of departure for subsequent fine-tuning 

 

One of the parameters of interest is the aerodrome of departure, particularly, the direction of 

the originating aerodrome in relation to LKPR for which we are making the prediction of the 
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delay in times of arrival. We will be testing a hypothesis that this parameter holds 

significance in estimating the delay of the aircraft. If the hypothesis holds true, using this 

parameter for fine-tuning the LSTM neural network would produce a better fitted model of 

prediction, or on the contrary, the rejection of this hypothesis would indicate that the generic 

model and fine-tuned models would not have a significant difference in accuracy. 

 

At the start of this processing, the aerodromes occurring in our dataset were grouped into 4 

groups based on their relative direction to the LKPR: North, South, West, and East.  

Next, for each direction, the median time difference between estimated time of arrival and 

actual time of arrival among all entries was extracted. The obtained results are displayed in 

figure 2.  

 

 
Fig2. Mean time difference between estimated time of arrival and actual time of arrival grouped by direction  of 

Aerodrome of departure relative to LKPR 

 

 

To determine significance of the flight direction as a training parameter, we need to perform 

statistical tests.  

 

For this purpose, one-way ANOVA test was initially chosen, and it requires the below 

preconditions to be met [8]: 

 

1. Data sets in each group must be independent 

2. Each sample must be from a normally distributed population 

3. The population standard deviations of the groups are all equal 

For the first precondition of independence, we can conclude that the samples are independent, 

as each flight can originate from exactly one aerodrome at a time.  
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For the precondition of normality, we will perform Shapiro test on each of the sample groups 

with the given null hypothesis [9]: 

 

𝐻0: “The sample data was drawn from a normally distributed population.” 

 

We obtain the following values displayed in table 1 for the significance level of 𝛼 = 0.05 : 

 

 Statistic p-value 

South 0.935 5.48418e-06 

West 0.403 2.65746e-18 

North 0.946 0.22966 

East 0.866 2.33677e-06 

Table 1. Results of ANOVA test performed on datasets grouped by direction of Aerodrome of departure relative 

to LKPR 

 

𝑝 < 𝛼 holds in three out of the four cases, thus, we reject the null hypothesis. 

 

As the precondition of normality was not met in this case, likely due to the small size of 

sample data, we cannot reliably use ANOVA test to determine the significance of this 

parameter. 

 

Therefore, as a second option, we will perform Kruskal-Wallis test, which does not require 

the samples to be normally distributed. [10] 

We propose the following null and alternative hypotheses for Kruskal-Wallis test: 

 

𝐻0: “The directions of departure aerodromes cause the same delay. The samples have been 

drawn from the same or identical population.” 

𝐻𝐴: “At least one direction of departure aerodromes causes a different delay. At least one 

group is drawn from a different population.” 

 

Applying the test on our data produced the following results: 

 

𝑇 = 7.0851  

𝑝 = 0.0692  

 

Given that 𝑝 > 𝛼, the null hypothesis is not rejected. However, the values of 𝑝 and 𝛼 are 

relatively close. These findings can be caused by the limited size of the sample data and the 

proximity of values between 𝛼 = 0.05 and 𝑝 can be signaling to existence of other 

requirements for better utilization of this parameter. Empirical experiment can be used to 

further elaborate this finding. The results of the Kruskal-Wallis test does not reject the 

hypothesis that the medians of the samples in the same. However, the samples may possess 

other parameters which can have a differing behavior, which can be picked up by the LSTM 

network. 
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5.2.2 Time series analysis 

 

In this section, we take a closer look at the development of the difference between the 

estimated and the actual time of arrival of the aircrafts for individual flights. An example of 

such development can be seen in the figure 3, which has a visualization of the development 

of the difference between parameters estimatedTimeOfArrival and actualTimeOfArrival 

(Time delta) for specific flights. The data is filtered through the individual flight IDs and time 

series are created using the request times. Figure 3 demonstrates the development of “time 

delta” in time-series for 10 separate flights over the span of one hour. 

 

 
Fig. 3 Time-series plot of 10 flights with the greatest number of entries by the flight ID, collected in the span on 

1 hour with 5 minute intervals. x-axis: time points in minutes, y-axis: subtracted difference between 

estimatedTimeOfArrival and actualTimeOfArrival 

 

 

From the above visualization, the recognition of patterns is inconclusive as some flights have 

a more stable actualTimeOfArrival development in time and some have a higher degree of 

variation.  

 

To better understand the data and to rule out the possibility of using mathematical 

extrapolation for the prediction on the input data, we have performed an autocorrelation test 

with one-step time lag.  

 

Autocorrelation with a step of size 1 (in intervals of 5 minutes) of the time deltas for 10 

randomly selected flights are presented in table 2 below: 

 



23 
 

Flight 
AT035

29245 

AT035

32189 

AT035

47534 

AT035

44292 

AT035

21281 

AT035

41903 

AT035

44386 

AT035

42476 

AT035

30863 

AT035

45829 

𝜌 0.614 0.833 0.004 0.722 0.544 0.468 -0.094 0.333 0.224 0.122 

 

Table 2. Results obtained from autocorrelation test with 1 step lag . 𝝆 – autocorrelation, ranges between the 

values [-1,1] 

 

 

From the results obtained from autocorrelation, we can conclude that the predictions cannot 

be based on mathematical extrapolation, as the corresponding values with one-step time lag 

are producing a varying range of results for each flight and therefore can be deemed 

inconclusive. The flights with positive extrapolation suggest that there can be a specific 

pattern, however, the inconsistency suggests that a more sophisticated model of prediction is 

required for this estimation. To capture any trends and patterns in this time series and to 

predict the next value in them, we propose a LSTM neural network. [11] 

 

5.3 LSTM  

 

LSTM model performs well on time-series data, therefore we wanted to evaluate the 
performance of this model on our data for approach time prediction, in a scenario where 
geographical data is not taken into account. 

 

5.3.1 LSTM Implementation 

 

In the following experiments, we are considering a LSTM model with 4 input neurons, for the 

implementation of which, each flight needs to consist of at least 4 entries to be considered 

relevant. Thus, any flights with less than 4 entries are filtered out. 

However, there is also a possibility of tuning this parameter out in the network configuration. 

 

For the prediction of differences in estimated times of arrival and actual times of arrival, we 

are using a LSTM model consisting of two hidden layers with 64 neurons, or more precisely, 

memory cells. This configuration was chosen after considering similar implementations, and 

then tuning for our use-case, as the implementation of these models is commonly based on 

experimental approach. [12] 

 

For our experiment, we are using a time series of four entries as the input for the network. For 

different set of data this parameter can be easily configured, as the model can be trained on 

inputs of different lengths.  

 

The model uses ADAM optimizer and mean-squared-error as the loss function. 

For the training process and subsequent testing we have split out dataset into training and 

testing batches, with a ratio of 9:1 (90% of the data from data set is used for training and 

remaining 10% for testing) 
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The implementation of the model is done in python, utilizing the packages listed below: 

 

- Tensorflow  

- Keras 

- Sklearn 

- Numpy 

- Pandas 

 

The full script can be found in the appended file ‘lstm.py’. 

 

The lstm.py script creates a dataset matrix and restructures the data to fit the LSTM model. 

The model itself is taken as a pre-defined algorithm, in our case a function which takes the 

training data as an input and based on the patterns recurring in the set, tunes the internal 

weights of memory cells, semantic representation of which is taken as a “black-box”, to fit 

the data.  

 

The training process of our model uses 90% of the dataset and the data is split for this 

purpose randomly. The ratio of 90 to 10 is chosen for the purpose of increasing the volume of 

training data.  

 
Fig. 4 Development of training vs. validation loss of the LSTM model  over training epochs 

 

From Figure 4, we can observe that the loss function converges at around 16 epochs of 

training. The development of loss function over the training epochs demonstrates the change 

in errors after consecutive training epoch. By the end of the training, there is a slight increase 
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in the validation loss, which usually occurs when the model starts getting over-fitted. In our 

case the increase is minimal, ensuring that the model training balance is still attained. 

 

The loss function values differ from the RMSE, due to the normalization of data for the 

network input. 

 

5.3.2 LSTM generic model performance 

 

Figure 5 demonstrates the prediction results on training data set.  

The ground-truth values (blue) of the training set were sorted in an ascending order and are 

plotted together with the predictions (orange).  

 

 
Fig.5 Plot of predicted and real values on training data  

 

Once the training is completed, we can test the performance of the model on the testing set of 

data. The predicted values are displayed in figure 6. The prediction on testing data has a mean 

squared error of 2.46 minutes.  
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Fig. 6 Plot of predicted and real values on testing set of data  

 

 

 

5.4 Fine-tuning experiment 

 

In chapter 5.2.1 we did not reject the hypothesis, that entries grouped by the direction of the 

aerodrome belong to the same population. However, to elaborate further on this matter, we 

can propose the following experiment.  

We will be fine-tuning the trained model specifically on data extracted from flights incoming 

from each specific direction for 4 epochs. After that, we will be testing the error of this newly 

trained model against the input data. 

 

The following set of tables contains values observed during 8 different trainings. 

 

South 1 2 3 4 5 6 7 8 

Generic 2.49 2.70 2.95 2.30 2.54 2.50 2.63 2.81 

Fine-tuned 2.46 2.68 2.95 2.27 2.53 2.49 2.71 2.92 

Table 3. RMSE values of generic vs. South fine-tuned models from 8 consecutive experiments 

 

East 1 2 3 4 5 6 7 8 

Generic 1.63 2.03 2.24 1.67 1.95 2.10 1.53 2.04 

Fine-tuned 1.60 2.02 2.14 1.57 1.97 2.04 1.43 2.06 

Table 4. RMSE values of generic vs. East fine-tuned models from 8 consecutive experiments 
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North 1 2 3 4 5 6 7 8 

Generic 2.05 1.87 2.14 2.52 2.52 3.58 2.00 2.09 

Fine-tuned 2.04 1.85 2.22 2.56 2.51 3.35 2.00 2.10 

Table 5. RMSE values of generic vs. North fine-tuned models from 8 consecutive experiments 

 

West 1 2 3 4 5 6 7 8 

Generic 2.96 1.40 2.74 3.12 2.83 2.98 2.83 2.63 

Fine-tuned 2.90 1.42 2.68 3.06 2.78 2.98 2.82 2.74 

Table 6. RMSE values of generic vs. West fine-tuned models from 8 consecutive experiments 

 

Following figures visualize the different performance of the fine-tuned and generic models. 

 

5.4.1 Fine-tuning by direction South 

 

In case of the flights coming from the South to LKPR we can see a slightly better 

performance, with mean squared error in five out of eight experiments being 0.01 minutes 

less than the generic model. Generally, the difference of RMSEs of generic model and fine-

tuned model on flights from the South do not produce a significant improvement. The below 

figure visually represents the results by plotting the observed values in comparison with 

predicted values of the generic model and fine-tuned model for direction South. 

 

 
 

Fig. 7 Plot of Predicted vs Real values for the generic model and fine-tuned model for the departure aerodrome 

direction South, relative to LKPR 
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5.4.2 Fine-tuning by direction East 

 

The performance of the fine-tuned model for direction East on overall produces similar 

results as for the South. In this case the RMSE is a bit less, therefore, we can conclude that 

the model fine-tuned on the flights from the East generally performed slightly better than the 

generic model on seven out of 8 experiments made for this direction. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8 Plot of Predicted vs Real values for the generic model and fine-tuned model for the departure aerodrome 

direction East, relative to LKPR 
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5.4.3 Fine-tuning by direction North 

 

The model which was fine-tuned on the group of flight entries approaching LKPR from the 

geographical North, has performed in a similar manner as the previous models with five out 

of 8 experiments producing slightly better RMSE results. However, the difference is still very 

small to be considered significant. 

 
Fig. 9 Plot of Predicted vs Real values for the generic model and fine-tuned model for the departure aerodrome 

direction North, relative to LKPR 

 

5.4.4 Fine-tuning experiment by direction West 

 

The results obtained from the series of experiments on the entries of flights from 

geographical West produce a similar result to the rest of the directions with the performance 

being on average slightly better than the generic model on five out of eight instances.  

The difference in values is still insignificant for the model to be considered as performing 

better than the generic one. 
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Fig. 10  Plot of Predicted vs Real values for the generic model and fine-tuned model for the departure 

aerodrome direction West, relative to LKPR 

 

 

5.4.5 Fine-tuned model performance 

 

From the results obtained from the comparison of the performance of the generic model 

against fine-tuned one we can see that for the use-case at hand, tuning does not produce a 

significant improvement for the LSTM model. This can be due to the grouping of the dataset 

into relative directions of aerodromes of departure to LKPR being too generic and a more 

detailed grouping of data entries could be producing a better parameter for fine-tuning. One 

of parameters for possible future experiments could be the distance of the aerodrome of 

departure from LKPR instead of the relative geographical direction of the aerodrome of 

departure.  

 

 

 

 

 

 

 

 

 

 



31 
 

6. Conclusion 
 

In this bachelor’s thesis we have analyzed the principles of implementation and performances 

of three different prediction models such as Probability distribution, Probabilistic Neural 

Networks and LSTM network.  

 

The data used for each of these models were different in nature. The datasets used for 

implementation of Probability distribution model and the PNN included geographical and 

physical parameters, such as latitude, longitude, altitude, and speed. The LSTM model was 

implemented using a dataset without any geographical parameters and was based on the 

temporal ones. Fine-tuning experiments were done for the purpose of further examination of 

a non-numerical parameter – Aerodrome of departure, to test the hypothesis that this 

parameter can be significant for training and aid the performance of our model.  

 

The prediction models using geographical data generally demonstrated a better performance 

with the error being about twice smaller than the LSTM method. The best performing model 

out of three analyzed was the PNN using the location and distance data.  

 

The performance of the LSTM was not significantly improved in fine-tuning experiments 

possibly due to the non-numerical parameter – direction of the Aerodrome of departure - 

being grouped generically by geographical bearings was not specific enough. From the 

conclusions of the other two analyzed models, we can deduce that the direction or the origin 

aerodrome by itself might not hold much regressive value, but other underlying correlation 

caused by implicated sub-parameters must be present. One of the most significant parameters 

is the distance of the flight, which could be the reason why in some fine-tuned experiments 

there was a slight improvement in performance, as there can be a correlation between the 

parameters aerodrome of departure and flight distance.  

 

From this we can conclude that the LSTM model does not perform better than alternative 

models in use, based on geographical radar data, however, merging functionalities of these 

models could bring a potential improvement in terms of performance and aid in flight 

planning and ground resource allocation activities.  
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Appendix 1 

 
1. Python scripts made in the practical part: 

 

lstm.py – the LSTM network script. Includes fine-tuning 

aerodromes_data_viz.py – script for visualization of time-series development and 

statistical tests on the data grouped by aerodromes 

autocorrelate.py – autocorrelation test script 

dataset.py – script for filtration of the raw data and creation of a dataset 

 

2. Raw data files in CSV format. 

Each request extracts a separate CSV file. Requests were sent every 5 minutes. 

 

Arrivals_LKPR.zip 
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Appendix 2 
 

- Example of a JSON request (requesting flight entries within the defined time 
window containing defined parameters): 

 

# Setup time window 

unow = datetime.datetime.utcnow()  # UTC now 

ONE_HOUR = datetime.timedelta(hours=1)  # One hour constant  

ufrom = (unow - 0*ONE_HOUR).strftime('%Y-%m-%d %H:%M')  # 'From' time in 

UTC 

uto = (unow + 1*ONE_HOUR).strftime('%Y-%m-%d %H:%M')   # 'To' time in UTC 

 

# Python dictionary used because of easy way to convert it to  

# JSON string useing 'json.dumps' method 

request = { 

    "b2b": { 

        "flight_data_req": { 

            "airspace": "LK", 

            "from": ufrom,  

            "to": uto,  

            "payload": { 

                "item": [ 

                    "flightState", 

                    "aircraftType", 

                    "estimatedTimeOfArrival", 

                    "actualTimeOfArrival",  

                    "calculatedTimeOfArrival" 

                ] 

            } 

        } 

    } 

} 

# Convert dict to JSON string 

request_string = json.dumps(request) 

 

 
 

 
 

- Example of a JSON result (result contains the entries of individual flights with their 

attributes which were defined in the request): 
 
JSON Result: 

{ 

    "b2b": { 

        "flight_data": { 

            "head": { 

                "reqTime": "2022-06-22T07:40:30Z", 

                "repTime": "2022-06-22T07:40:30Z", 

                "status": "OK" 

            }, 

            "data": { 

                "flights": [ 

                    { 

                        "flight": { 

                            "flightId": { 

                                "id": "AT02466421", 

                                "keys": { 
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                                    "aircraftId": "OKALT", 

                                    "aerodromeOfDeparture": "LKTB", 

                                    "nonICAOAerodromeOfDeparture": false, 

                                    "airFiled": false, 

                                    "aerodromeOfDestination": "LGSA", 

                                    "nonICAOAerodromeOfDestination": false, 

                                    "estimatedOffBlockTime": "2022-06-22 

07:35" 

                                } 

                            }, 

                            "aircraftType": "P46T", 

                            "estimatedTimeOfArrival": "2022-06-22 10:54", 

                            "calculatedTimeOfArrival": "2022-06-22 11:13", 

                            "flightState": "FILED_SLOT_ISSUED" 

                        } 

                    } 

 
 
 
 
 
 

 
- Example of a XML request (requesting flight entries within the defined time window 

containing defined parameters): 
 
request = f"""<?xml version="1.0"?> 

    <!-- 'FlightListByAerodromeRequest' type of request --> 

    <flight:FlightListByAerodromeRequest 

xmlns:flight="eurocontrol/cfmu/b2b/FlightServices"> 

    <endUserId>tcm</endUserId> 

    <sendTime>{unow.strftime('%Y-%m-%d %H:%M:%S')}</sendTime> 

    <dataset> 

        <type>OPERATIONAL</type> 

    </dataset> 

    <includeProposalFlights>false</includeProposalFlights> 

    <includeForecastFlights>false</includeForecastFlights> 

    <trafficType>DEMAND</trafficType> 

    <trafficWindow> 

        <wef>{ufrom}</wef> 

        <unt>{uto}</unt> 

    </trafficWindow> 

    <!-- list fileds we are interest in --> 

    <requestedFlightFields>flightState</requestedFlightFields> 

    <requestedFlightFields>aircraftType</requestedFlightFields> 

    <requestedFlightFields>estimatedTimeOfArrival</requestedFlightFields> 

    <requestedFlightFields>actualTimeOfArrival</requestedFlightFields> 

    <requestedFlightFields>calculatedTimeOfArrival</requestedFlightFields> 

    <countsInterval> 

        <duration>0001</duration> 

        <step>0001</step> 

    </countsInterval> 

    <!-- Arrival to LKPR airport --> 

    <aerodrome>LKPR</aerodrome> 

    <aerodromeRole>ARRIVAL</aerodromeRole> 

</flight:FlightListByAerodromeRequest> 

""" 
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- Example of a XML result (result contains the entries of individual flights with their 

attributes which were defined in the request): 
 
<?xml version="1.0" ?> 

<fl:FlightListByAerodromeReply 

xmlns:ns18="http://www.eurocontrol.int/nm/fixm/app/ffice/1.0" 

xmlns:ns17="http://www.eurocontrol.int/nm/fixm/ext/1.4" 

xmlns:ns16="http://www.eurocontrol.int/nm/fixm/ext/1.3" 

xmlns:ns15="http://www.fixm.aero/flight/4.2" 

xmlns:ns14="http://www.fixm.aero/base/4.2" 

xmlns:ns13="http://www.w3.org/1999/xlink" 

xmlns:ns12="http://www.fixm.aero/messaging/4.1" 

xmlns:ns11="http://www.fixm.aero/nm/1.1" 

xmlns:ns10="http://www.fixm.aero/nm/1.0" 

xmlns:ns9="http://www.fixm.aero/nm/1.2" 

xmlns:ns8="http://www.fixm.aero/flight/4.1" 

xmlns:ns7="http://www.fixm.aero/base/4.1" 

xmlns:cm="eurocontrol/cfmu/b2b/CommonServices" 

xmlns:as="eurocontrol/cfmu/b2b/AirspaceServices" 

xmlns:fw="eurocontrol/cfmu/b2b/FlowServices" 

xmlns:fl="eurocontrol/cfmu/b2b/FlightServices" 

xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"> 

    <requestReceptionTime>2022-04-20 13:09:07</requestReceptionTime> 

    <requestId>B2B_CUR:12154058</requestId> 

    <sendTime>2022-04-20 13:09:07</sendTime> 

    <status>OK</status> 

    <data> 

        <flights> 

            <flight> 

                <flightId> 

                    <id>AT00632032</id> 

                    <keys> 

                        <aircraftId>WZZ2752</aircraftId> 

                        <aerodromeOfDeparture>LIRN</aerodromeOfDeparture> 

                        

<nonICAOAerodromeOfDeparture>false</nonICAOAerodromeOfDeparture> 

                        <airFiled>false</airFiled> 

                        

<aerodromeOfDestination>LKPR</aerodromeOfDestination> 

                        

<nonICAOAerodromeOfDestination>false</nonICAOAerodromeOfDestination> 

                        <estimatedOffBlockTime>2022-04-20 

11:25</estimatedOffBlockTime> 

                    </keys> 

                </flightId> 

                <aircraftType>A21N</aircraftType> 

                <estimatedTimeOfArrival>2022-04-20 

13:14</estimatedTimeOfArrival> 

                <actualTimeOfArrival>2022-04-20 13:15</actualTimeOfArrival> 

                <flightState>ATC_ACTIVATED</flightState> 

            </flight> 

        </flights> 

 


