ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

FAKULTA STROJNÍ

DIPLOMOVÁ PRÁCE

2022

TOMÁŠ NĚMEC

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STROJNÍ Ústav strojírenské technologie

DIPLOMOVÁ PRÁCE

STANOVENÍ ZÁVISLOSTI EMISIVITY VYSOKOLEGOVANÉ KOROZIVZDORNÉ OCELI NA ÚHLU MĚŘENÍ A TEPLOTĚ POVRCHU

Determination of the dependence of emissivity of high-alloy stainless steel on the measuring angle and surface temperature

AUTOR:	Bc. Tomáš Němec
STUDIJNÍ PROGRAM:	Výrobní inženýrství (VIN)
VEDOUCÍ PRÁCE:	doc. Ing. Ladislav Kolařík, Ph.D., IWE

PRAHA 2022

ZADÁNÍ DIPLOMOVÉ PRÁCE

I. OSOBNÍ A STUDIJNÍ ÚDAJE

Příjmení:	Němec	Jméno: Tomáš	Osobní číslo: 476504		
Fakulta/ústav:	Fakulta strojní				
Zadávající kated	ra/ústav: Ústav strojíren	ské technologie			
Studijní program: Výrobní inženýrství					
Specializace:	Bez specializace		,		

II. ÚDAJE K DIPLOMOVÉ PRÁCI

Název diplomové práce:

Stanovení závislosti emisivity vysokolegované korozivzdorné oceli na úhlu měření a teplotě povrchu

Název diplomové práce anglicky:

Determination of the dependence of emissivity of high-alloy stainless steel on the measuring angle and surface temperature

Pokyny pro vypracování:

1) Popsat současný stav problematiky termografického měření teploty pomocí termokamer

2) Rozbor problematiky stanovení emisivity v závislosti na teplotě

3) Návrh experimentu pro stanovení závislosti emisivity vysokolegovaných korozivzdorných ocelí na úhlu měření a teplotě povrchu

4) Vyhodnocení a diskuze dosažených výsledků

Seznam doporučené literatury:

[1] VOLLMER, Michael a Klaus-Peter MOLLMANN. Infrared thermal imaging: fundamentals, research and applications. Weinheim: Wiley-VCH, 2010. ISBN 978-3-527-40717-0

[2] KADLEC, Karel. Teoretické základy bezdotykového měření teploty: (část 1). AUTOMA. 2014, 12. ISSN 1210-9592.
[3] SOVA, Jan a Karel KADLEC. Termokamery a pyrometry-princip, měření, vlastnosti a využití. All For Power. 2014
[4] NĚMEC, T. Stanovení závislosti emisivity na úhlu měření pro různé teploty povrchu materiálů. Bakalářská práce, ČVUT v Praze, FS, Praha, 2020.

Jméno a pracoviště vedoucí(ho) diplomové práce:

doc. Ing. Ladislav Kolařík, Ph.D. ústav strojírenské technologie FS

Jméno a pracoviště druhé(ho) vedoucí(ho) nebo konzultanta(ky) diplomové práce:

Datum zadání diplomové práce: 21.04.2022

Termín odevzdání diplomové práce: 15.08.2022

Platnost zadání diplomové práce: 31.12.2022

doc. Ing. Ladislav Kolařík, Ph.D. podpis vedouci(ho) práce doc. Ing. Ladislav Kolařík, Ph.D. podpis vedoucí(ho) ústavu/katedry doc. Ing. Miroslav Španiel, CSc. podpis děkana(ky)

III. PŘEVZETÍ ZADÁNÍ

Diplomant bere na vědomí, že je povinen vypracovat diplomovou práci samostatně, bez cizí pomoci, s výjimkou poskytnutých konzultací. Seznam použité literatury, jiných pramenů a jmen konzultantů je třeba uvést v diplomové práci.

Datum převzetí zadání

Podpis studenta

Prohlášení

Prohlašuji, že jsem tuto diplomovou práci "Stanovení závislosti emisivity vysokolegované korozivzdorné oceli na úhlu měření a teplotě povrchu" vypracoval samostatně pod vedením pana doc. Ing. Ladislava Kolaříka, Ph.D., IWE. Diplomovou práci jsem vypracoval s použitím pramenů a zdrojů uvedených v seznamu použité literatury.

V Praze dne:

.....

Podpis

Poděkování

Tímto bych rád poděkoval panu doc. Ing. Ladislavu Kolaříkovi, Ph.D., IWE za poskytnutí odborných rad a cenných připomínek při psaní teoretické části, dále za pomoc při vypracování experimentu a v neposlední řadě za vstřícný přístup a trpělivost projevenou během naší vzájemné spolupráce.

Dále bych chtěl poděkovat paní doc. Ing. Marii Kolaříkové, Ph.D., IWE za pomoc s přípravou měřicího pracoviště.

Nemalé poděkování patří rovněž celému Ústavu strojírenské technologie za zapůjčení přístrojového vybavení a za poskytnutí zázemí pro vypracování experimentální části práce.

Anotace

Diplomová práce pojednává o problematice bezdotykového měření teploty pomocí termokamer. Primárním cílem práce je zmapování závislosti mezi emisivitou a úhlem snímání měřeného povrchu u korozivzdorné oceli X5CrNi18-10 a konstrukční oceli S355N. Navržená metodika měření emisivity reflektuje kontaktní metodu dle ČSN ISO18434-1. Měření je realizováno v teplotním intervalu 50 až 500 °C pomocí ruční kvantitativní termokamery Flir E95 se spektrálním rozsahem 7,5 až 14 µm.

Klíčová slova

Infračervená termografie, termokamera, emisivita, povrchová teplota, korozivzdorná ocel, nedestruktivní kontrola

Jméno autora:	Bc. Tomáš Němec			
Název DP:	Stanovení závislosti emisivity vysokolegované korozivzdorné oceli na úhlu měření a teplotě povrchu			
Akademický rok:	2021/2022			
Vysoká škola:	ČVUT v Praze, Fakulta strojní			
Ústav/Odbor:	Ústav strojírenské technologie			
Vedoucí DP:	doc. Ing. Ladislav Kolařík, Ph.D., IWE			
Bibliografické údaje:	Počet stran:	104		
	Počet obrázků:	78		
	Počet tabulek:	14		
	Počet příloh:	21		

Abstract

The diploma thesis deals with the issue of non-contact temperature measurement using infrared cameras. The primary goal of this work is to find out the dependence between the emissivity and the viewing angle of the measured surface for stainless steel X5CrNi18-10 and structural steel S355N. The proposed methodology for measuring emissivity reflects the contact method according to ČSN ISO 18434-1. The measurement is performed in the temperature range from 50 to 500 °C using hand-held quantitative infrared camera Flir E95 with a spectral range from 7,5 to 14 μ m.

Keywords

Infrared thermography, infrared camera, emissivity, surface temperature, stainless steel, nondestructive testing

Author:	Bc. Tomáš Němec			
Name of master thesis:	Determination of the of high-alloy stainless steel surface temperature	dependence of emissivity of on the measuring angle and		
Academic year:	2021/2022			
University:	CTU in Prague, Faculty of Mechanical Engineering			
Department:	Department of Manufacturing Technology			
Supervisor:	doc. Ing. Ladislav Kolařík,	, Ph.D., IWE		
Extent of thesis: Number of pages:		104		
	Number of pictures:	78		
	Number of tables:	14		
	Number of appendices:	21		

Obsah

Se	znam p	oužitých zkratek	.10
Se	znam p	oužitých veličin	.11
1.	Úvod.		.13
2.	Souča	isný stav problematiky termografického měření teploty pomocí	
	termo	kamer	.14
	2.1. Zá	klady teorie infračervené termografie	.14
	2.1.1.	Emisivita	.17
	2.1.2.	Odrazivost, pohltivost a propustnost	.19
	2.2. Te	rmokamery a jejich využití v praxi	.20
	2.2.1.	Termografické měření	.25
	2.2.2.	Slovník základních parametrů měřicích přístrojů	.27
	2.2.3.	Software pro termografickou analýzu	. 32
	2.2.4.	Použití termokamer v průmyslové praxi	.33
	2.3. Te	chniky stanovení emisivity v praxi	. 35
	2.3.1.	Metoda využívající materiál s referenční emisivitou	. 36
	2.3.2.	Metoda využívající kontaktní měření teploty	. 38
	2.3.3.	Vyvrtání díry do měřeného objektu	. 38
3.	Faktor	ry ovlivňující hodnotu emisivity	. 39
	3.1. Ma	ateriál, struktura a stav povrchu	.39
	3.2. Te	plota	.40
	3.3. Do	ba ohřevu	.41
	3.4. Úh	nel měření a geometrie povrchu	. 42
	3.5. Vlr	nová délka	.42
4.	Exper	imentální část	. 43
	4.1. Úv	od a návrh experimentu	.43
	4.1.1.	Navržený postup měření	43
	4.1.2.	Uspořádání měření	45

Z	l.2.	Měř	icí přístroje, přípravky a další vybavení	46
	4.2	2.1.	Termokamera FLIR E95	46
	4.2	2.2.	Přístroj pro navařování termočlánků BT-2	48
	4.2	2.3.	Datalogger AHLBORN ALMEMO 5690-2	49
	4.2	2.4.	Elektrická laboratorní pec ZC (Zlatarna Celje)	49
	4.2	2.5.	Měřicí tunel pro odstínění záření z okolních zdrojů	50
	4.2	2.6.	Přípravek pro uchycení ohřátých vzorků	51
	4.2	2.7.	Spektrometr Q4 TASMAN	52
	4.2	2.8.	Drsnoměr Mitutoyo Surftest SJ-301	53
۷	I.3.	Příp	prava vzorků	54
	4.3	8.1.	Přesné určení chemického složení vzorků	55
	4.3	8.2.	Měření drsnosti povrchu vzorků a broušení	56
	4.3	8.3.	Navaření kontrolních termočlánků	59
۷	I.4.	Měř	ení odražené zdánlivé teploty	60
۷	l.5.	Kon	trolní měření relativní vlhkosti a okolní teploty	61
Z	I.6.	Kon	trola zvolené vzdálenosti měření	62
2	ŀ.7.	Тер	lotní cykly vzorků	63
2	l.8.	Měř	ení a vyhodnocení emisivity	64
۷	I.9.	Inte	rpretace výsledků	66
2	I.10.	Záv	ěr	74
5.	Ροι	užité	zdroje	75
6.	Sez	znan	n obrázků	79
7.	Sez	znan	n tabulek	83
8.	Pří	lohy		84

Seznam použitých zkratek

Zkratka	Anglický název	Český název
AOV	angle of view	zorný úhel
FIR	far-infrared	vzdálené infračervené záření
FOV	field of view	zorné pole
FPA	focal plane array	detektor s maticí pixelů
HAOV	horizontal angle of view	horizontální zorný úhel
HFOV	horizontal field of view	horizontální zorné pole
IČ	_	infračervený
IFOV	instataneous field of view	okamžité zorné pole
IRT	infrared thermography	infračervená termografie
LWIR	long-wavelength infrared	dlouhovlnné infračervené záření
MWIR	mid-wavelength infrared	středovlnné infračervené záření
NDT	nondestructive testing	nedestruktivní testování
NETD	noise equivalent temperature	rozdíl teploty ekvivalentní
	difference	šumu
NIR	near-infrared	blízké infračervené záření
PC	personal computer	osobní počítač
R&D	research and development	výzkum a vývoj
SD	secure digital	paměťová karta
SW	software	programové vybavení
SWIR	short-wavelength infrared	krátkovlnné infračervené záření
VAOV	vertical angle of view	vertikální zorný úhel
VFOV	vertical field of view	vertikální zorné pole

Seznam použitých veličin

Označení veličiny	Název veličiny	Jednotka		
Α	Plocha povrchu zdroje záření	m^2		
α	Pohltivost	_		
d	Vzdálenost měření	m		
ΔU_S	Signálové napětí generované rozdílem teplot $T_{BB} - T_P$	mV		
ε ε _{Obj.}	Emisivita Emisivita objektu	_		
HAOV	Horizontální zorný úhel	٥		
HFOV	Horizontální rozměr zorného pole	m		
IFOV	Okamžité zorné pole	mrad		
IFOV	Okamžité zorné pole	mm		
λ	Vlnová délka	m		
λ_t	Tepelná vodivost	$W \cdot m^{-1} \cdot K^{-1}$		
М	Intenzita záření	$W \cdot m^{-2}$		
M_R	Intenzita záření reálného tělesa	$W \cdot m^{-2}$		
M_{BB}	Intenzita záření černého tělesa	$W \cdot m^{-2}$		
NETD	Teplotní citlivost	тК		
ρ	Odrazivost	-		
σ	Stefan-Boltzmannova konstanta	$W \cdot m^{-2} \cdot K^{-4}$		
Т	Termodynamická teplota	Κ		
T _{Odr.}	Odražená zdánlivá teplota	°C		
T _{Atm} .	Atmosférická teplota	°C		
T_{BB}	Teplota černého tělesa	тК		

Označení veličiny	Název veličiny	Jednotka
T_P	Teplota pozadí	mK
τ	Propustnost	_
τ _{Atm.}	Propustnost atmosféry	_
Uš	Šumové napětí systému	mV
VAOV	Vertikální zorný úhel	o
VFOV	Vertikální rozměr zorného pole	m
ϕ	Zářivý tok (celkový zářivý tok)	W
ϕ_R	Odražený zářivý tok	W
ϕ_A	Pohlcený zářivý tok	W
ϕ_{TT}	Propuštěný zářivý tok	W
$\phi_{Det.}$	Zářivý tok dopadající na detektor termokamery	W
	Zářivý tok od měřeného objektu	W
Ø _{0dr.}	Odražený zářivý tok z okolních zdrojů	W
Ø _{Atm.}	Zářivý tok atmosféry	W

1. Úvod

Měření teploty v moderním průmyslovém prostředí představuje rozmanitou škálu aplikací, se kterými souvisí celá řada potřeb. Uspokojování těchto potřeb vedlo k vývoji nejrůznějších senzorů a měřících zařízení. Pro řadu strojních inženýrů je teplota kritickou a široce měřenou veličinou, skrze kterou lze monitorovat, řídit a kontrolovat řadu technologických procesů. V průmyslové praxi se stále více rozšiřuje bezkontaktní měření teplotních polí na površích zkoumaných součástí pomocí termokamer. Na bezkontaktní měření teploty má vliv značné množství měřících parametrů, které je třeba definovat přímo v SW termokamery. Nejdůležitějším z těchto parametrů je emisivita, jejíž nesprávně stanovená hodnota může zkreslit výsledky měření až o několik desítek teplotních stupňů. Standardně se doporučuje měřit teplotu termokamerou umístěnou kolmo k měřenému povrchu, nicméně při některých aplikacích (např. měření teploty elektrod při odporovém svařování za účelem zjišťování kvality odporových bodových svarů) nelze toto doporučení dodržet a měřené hodnoty pak neodpovídají skutečnosti. Proto je hlavním důvodem vzniku této diplomové práce zpřesnit správné určení hodnoty emisivity při reálném měření, kdy často nelze nastavit termokameru kolmo k měřenému povrchu.

Hlavní motivací vzniku diplomové práce je podrobné zmapování vlivu úhlu měření na emisivitu v závislosti na povrchové teplotě měřeného vzorku a dalších okolnostech, které mohou měření ovlivnit (tj. zejména druh zvoleného materiálu, drsnost povrchu, spektrální rozsah termokamery). Výstupem experimentální části práce by mělo být porovnání výsledných hodnot emisivity pro vzorky vybraných typů materiálů (např. z vysokolegované korozivzdorné oceli a nelegované konstrukční oceli) a zjištění existence případných závislostí mezi úhlem měření a velikostí emisivity.

Shrnutí hlavních cílů diplomové práce:

- 1. Prohloubit a rozšířit znalosti načerpané během zpracování bakalářské práce, obzvláště pak v problematice stanovení emisivity [1].
- 2. Navrhnout a odladit postup experimentálního měření emisivity.
- Zmapovat vliv úhlu měření na emisivitu při různých povrchových teplotách pro vzorky z vysokolegované korozivzdorné oceli a konstrukční oceli.

2. Současný stav problematiky termografického měření teploty pomocí termokamer

2.1. Základy teorie infračervené termografie

Infračervená termografie je vědní disciplína, která se zabývá detekcí infračerveného záření, analýzou a vizualizací teplotních polí na površích měřených objektů. Infračervená termografie je tedy metoda bezkontaktního měření povrchových teplot a stále více se začíná využívat a uplatňovat i jako metoda nedestruktivní kontroly (**NDT** – nondestructive testing). Celosvětově se pro infračervenou termografii vžilo zkratkové označení **IRT** (infrared thermography). Markantní rozvoj zaznamenala infračervená termografie se strmým vývojem termokamer a s jejich komerční dostupností.

Infračervená termografie vychází ze skutečnosti, že každý předmět, jehož teplota je vyšší než -273,16 °C (tzv. absolutní nula, tj. termodynamická teplota T = 0 K), emituje do okolí tepelné záření, které vzniká v důsledku tepelného pohybu ("vibrací") částic hmoty.

K detekci infračerveného záření a měření povrchové teploty se v dnešní době využívají **pyrometry** (IČ teploměry) a **termokamery** (IČ kamery). Zásadní rozdíl mezi termokamerou a pyrometrem je ten, že pyrometr měří teplotu v jednom konkrétním bodě (výstupem je číslicový údaj – Obr. 1). Termokamera naopak snímá rozložení teploty na celém povrchu měřeného objektu (výstupem je tzv. termogram – Obr. 1 a 2). Zásadní výhodou termogramů je, že s nimi lze zpětně pracovat ve vyhodnocovacím SW a různými metodami, způsoby a funkcemi hodnotit dosažené výsledky měření. [2,3]

Obr. 1 - Bezdotykové měření teploty pyrometrem a termokamerou [4]

Obr. 2 - Termogram (příklad využití termokamer v diagnostice strojů) [3]

Termogram vyobrazuje detekované infračervené záření pomocí barevné škály, kdy jednotlivé barvy reprezentují konkrétní povrchové teploty. I přes fakt, že infračervené záření není lidským okem viditelné, můžeme díky této vizualizaci "vidět" rozložení povrchových teplot (Obr. 2).

Pro bezkontaktní měření teploty se využívá elektromagnetické záření s vlnovými délkami 0,4 až 15 µm. Toto záření spadá z menší části do **viditelné** oblasti, z větší části pak do **infračervené** oblasti spektra. Uvedený rozsah vlnových délek pokrývá měření povrchových teplot v rozsahu od - 60 do + 6000 °C (Obr. 3). Pro vlnové délky větší jak 15 µm (pásmo **FIR**¹) nejsou v současnosti dostupné vhodné detektory pro běžné a komerčně dostupné měřící přístroje. [4]

Obr. 3 - Pásma elektromagnetického záření využívaná pro bezdotykové měření teploty [4]

¹ FIR – vzdálené infračervené záření (rozsah vlnových délek 15 až 1000 μm)

Procesor termokamery a pyrometru počítá povrchovou teplotu na základě naměřené **intenzity záření**. Intenzita záření M je veličina definována vztahem:

$$M = \frac{d\phi}{dA} \left[\boldsymbol{W} \cdot \boldsymbol{m}^{-2} \right] \tag{1}$$

kde ϕ [W] je zářivý tok a A [m^2] je plocha povrchu zdroje záření. Na Obr. 4 lze vidět grafické znázornění a upřesnění rovnice č. 1.

Obr. 4 - Elementární zářivý tok dø na elementu plochy povrchu zdroje záření dA je emitován v hemisféře (polokouli) nad dA [2]

Intenzita záření je závislá na teplotě a odlišuje se svou vlnovou délkou. Vzájemné relace mezi intenzitou záření, teplotou, vlnovou délkou a dalšími veličinami popisují fyzikální zákony infračervené termografie: **Planckův vyzařovací zákon**, **Wiennův zákon posunu**, **Stefanův Boltzmannův zákon**, **Kirchhofův zákon tepelného vyzařování**. Tyto zákony podrobně popisují Michael Vollmer a Klaus-Peter Möllmann [2] nebo Waldemar Milkina a Sebastian Dudzik [5]. V následujícím textu budou použity pouze vybrané vztahy, díky kterým lze lépe pochopit princip vlastního měření teploty.

Fyzikální zákony Infračervené termografie jsou definovány na základě tzv. černého tělesa. Černé těleso je ideální fyzikální model, pro který platí tři základní vlastnosti:

- Černé těleso absorbuje veškeré dopadající záření bez ohledu na vlnovou délku a směr (žádné záření neodráží ani nepropouští). Podrobný popis odrazivosti, propustnosti a pohltivosti se nachází v kapitole 2.1.2.
- Při konkrétní teplotě a vlnové délce nemůže žádný reálný objekt vyzařovat více energie než černé těleso.

 Lze prohlásit, že se černé těleso chová jako Lambertův zářič (tzn. intenzita záření je ve všech směrech konstantní (Obr. 5), tj. zásadní rozdíl oproti reálným tělesům)

Obr. 5 - Lambertův zářič (konstantní hodnota intenzity záření ve všech směrech hemisféry vzhledem k povrchové normále) (upraveno) [2]

Jako perfektní pohlcovače a zářiče slouží černá tělesa jako standardy, které se využívají ke **kalibraci** termokamer a pyrometrů. Prakticky lze černé těleso aproximovat **dutinou** (Obr. 6) nebo **plochou deskou se strukturovaným povrchem** (Obr. 7), přičemž dutina i deska musí být udržovány při stabilní a jednotné teplotě. [5,6,7]

Obr. 6 - Různé typy dutin (modely černých těles) [5]

Obr. 7 - Strukturovaný povrch ploché desky simulující černé těleso [7]

2.1.1. Emisivita

Reálná tělesa vyzařují (i pohlcují) méně tepelného záření než černé těleso a tato skutečnost je korigována faktorem, který se nazývá **emisivita**. Emisivita vyjadřuje poměr mezi vyzářenou energií reálného tělesa a vyzářenou energií černého tělesa při stejné teplotě. Jedná se o bezrozměrnou (poměrovou) veličinu, která se značí řeckým písmenem ε. Emisivita nabývá hodnot od 0 do 1 a obecně závisí na vlnové délce záření a teplotě. Během vlastního procesu měření teploty vystupují do popředí další faktory, které nemalým dílem ovlivňují výslednou hodnotu emisivity (druh materiálu,

úhel odklonu termokamery od povrchové normály, drsnost povrchu, atd. – viz kapitola 3.1). Emisivita je obecně dána vztahem:

$$\varepsilon(\lambda,T) = \frac{M_R}{M_{BB}} \left[-\right] \tag{2}$$

kde: $M_R[W \cdot m^{-2}]$ je intenzita záření reálného tělesa a $M_{BB}[W \cdot m^{-2}]$ je intenzita záření černého tělesa.

Dle emisivity lze tělesa rozdělit na tři druhy: **černá tělesa**, **šedá tělesa** a **selektivní zářiče**. Emisivita černého tělesa je rovna 1. Selektivní zářič a šedé těleso jsou tzv. nedokonalé zářiče, proto i emisivita nemůže nikdy dosáhnout hodnoty 1. Emisivita černého a šedého tělesa je nezávislá na vlnové délce (tzn. je konstantní). Toto je hlavní rozdíl oproti selektivnímu zářiči, jehož emisivita je funkcí vlnové délky (Obr. 8). Všechny objekty, které se vyskytují v reálném prostředí jsou selektivní zářiče. Pro měření je vhodné uvažovat, že zkoumané objekty jsou tzv. "dostatečně šedé" (tzn. považujeme měřené objekty za šedá tělesa) v příslušném rozsahu vlnových délek (např. 8 až 14 µm), aby nedocházelo k příliš velkým chybám.

Obr. 8 - Emisivita jako funkce vlnové délky pro jednotlivé zářiče (upraveno) [2]

Povrchová teplota je termokamerou (či pyrometrem) vyhodnocena podle Stefan-Boltzmannova zákona pro šedé těleso:

$$T = \sqrt[4]{\frac{M_{BB}}{\varepsilon \cdot \sigma}}$$
(3)

kde: *T* [*K*] je termodynamická teplota, M_{BB} [$W \cdot m^{-2}$] je intenzita záření černého tělesa, σ je Stefan-Boltzmannova konstanta [$\sigma = 5,67 \cdot 10^{-8} W \cdot m^{-2} \cdot K^{-4}$] a ε [–] je emisivita. [3]

2.1.2. Odrazivost, pohltivost a propustnost

Pokud tepelné záření dopadne na povrch reálného tělesa o definované tloušťce, nastává interakce, při které je část záření **pohlcena**, část **odražena** a část **propuštěna** (tzn. prochází skrz objekt). Pro dopadající tepelné záření platí rovnice:

$$\phi = \phi_R + \phi_A + \phi_{TT} \tag{4}$$

kde: ϕ [*W*] je celkový zářivý tok, který dopadá na povrch reálného tělesa, $\phi_R[W]$ je odražený zářivý tok, $\phi_A[W]$ je pohlcený zářivý tok tělesem a $\phi_{TT}[W]$ je propuštěný zářivý tok.

Pokud se rovnice č. 4 vydělí celkovým zářivým tokem, vznikne bilance poměrů:

$$1 = \frac{\phi_R}{\phi} + \frac{\phi_A}{\phi} + \frac{\phi_{TT}}{\phi}$$
(5)

Jednotlivé členy pravé strany rovnice představují poměrové veličiny (koeficienty):

$$\frac{\phi_R}{\phi} = \rho \tag{6}$$

$$\frac{\phi_A}{\phi} = \alpha \tag{7}$$

$$\frac{\phi_{TT}}{\phi} = \tau \tag{8}$$

kde: ρ [-] je odrazivost (reflektance), α [-] je pohltivost (absorptance) a τ [-] je propustnost (transmitance). [3,4,5]

Na Obr. 9 lze vidět vizualizaci interakce tepelného záření s reálným tělesem.

Obr. 9 - Interakce tepelného záření s reálným tělesem [5]

Odrazivost ρ popisuje, jaké množství záření bylo objektem odraženo v poměru k množství, které na objekt dopadlo (tj. míra schopnosti tělesa odrážet záření). [6]

Propustnost τ definuje, jak velké množství záření bylo objektem propuštěno v poměru k množství, které na objekt dopadlo (tj. míra schopnosti tělesa propustit záření). [6]

Pohltivost α udává, jak velké množství záření bylo objektem pohlceno v poměru k množství, které na objekt dopadlo (tj. míra schopnosti tělesa pohltit záření). [6]

Pokud je těleso ve stavu tepelné rovnováhy (tzn. není ohříváno, ani ochlazováno), musí platit rovnost mezi energií pohlcovanou a vyzařovanou (mezi emisivitou a pohltivostí):

$$\varepsilon = \alpha$$
 (9)

Rovnice č. 9 je předpisem **Kirchhofova zákona tepelného vyzařování**. Na základě této rovnice lze dosazením do rovnice č. 5 získat vztah mezi emisivitou, odrazivostí a propustností:

$$\varepsilon + \rho + \tau = 1 \tag{10}$$

Pro černé těleso platí:

$$\alpha = \varepsilon = 1 \qquad \qquad \rho = 0 \qquad \qquad \tau = 0 \tag{11}$$

Pro nepropustný materiál ($\tau = 0$) lze definovat:

$$\varepsilon + \rho = 1 \tag{12}$$

Pokud je materiál nepropustný, lze poměrně snadno určit jeho odrazivost výpočtem na základě známé hodnoty emisivity. Z definice rovnice č. 12 vyplývá, že čím větší odrazivost je, tím menší je emisivita a naopak (tzn. **měření teploty bude ovlivněno zářením z okolních zdrojů tím více, čím menší bude hodnota emisivity měřeného povrchu**). [2,4,5]

2.2. Termokamery a jejich využití v praxi

Hlavním cílem termokamery je převedení infračerveného záření na vizuální obraz, ve kterém jsou rozdílné povrchové teploty odlišeny různými barvami dle teplotní stupnice (viz kapitola 2.1). Termokameru lze obecně rozdělit na několik hlavních součástí (Obr. 10): **Optický systém** (optika), **detektor**, **elektronika pro zpracování signálu a obrazu**, **teplotní stabilizace nebo chlazení detektoru** a **uživatelské rozhraní**.

Obr. 10 - Blokové schéma termokamery (upraveno) [2]

Primárním úkolem **optického systému** je promítnutí infračerveného záření na detektor termokamery. Čočky termokamer jsou vyráběny zejména z materiálů s nízkou pohltivostí infračerveného záření např. **Ge** (germanium), **Si** (křemík), **ZnS** (sulfid zinečnatý) nebo **ZnSe** (selenid zinečnatý). Takovéto materiály jsou také označovány jako tzv. "**infračervená skla**". Povrch čoček je navíc opatřen **antireflexní** vrstvou, aby pokud možno veškeré infračervené záření prošlo skrz. Klasické sklo na bázi **SiO**₂ (oxidu křemičitého) je pro infračervené záření zcela nepropustné (Obr. 11).

Obr. 11 - Porovnání propustnosti germania a skla na bázi oxidu křemičitého pro infračervené záření na vlnových délkách 8 až 14 μm (upraveno) [9]

Detektory termokamer lze rozdělit na tepelné a fotonové. Dle uspořádání je dále možné rozlišovat jednobodové, lineární nebo maticové (FPA) detektory. Většina komerčních termokamer je v současnosti osazena tepelnými mikrobolometrickými maticovými detektory. Takovéto termokamery splňují požadavky většiny praktických

aplikací a jsou mnohem levnější oproti přístrojům s fotonovými detektory. Termokamery s fotonovými maticovými detektory se v současnosti používají pouze výhradně pro vědu a výzkum (označení termokamer R&D). Mezi běžně používané materiály kvantových detektorů patří: **InSb** (antimonid india), **PbS** (sulfid olovnatý), **PbSe** (selenid olovnatý), **InGaAs** (arzenid inditogallitý) a **HgCdTe** (telurid rtuťnokademnatý). Porovnání tepelných a kvantových detektorů z hlediska teplotní citlivosti a používaných vlnových délek je popsáno v kapitole 2.2.2.

Tepelné detektory vyžadují **teplotní stabilizaci** pomocí **jednoduchých Peltierových** článků (Obr. 12). Provozní teplota mikrobolemetrického maticového detektoru je většinou udržována při konstantní teplotě přibližně 30 °C. Fotonové detektory musí být naopak **intenzivně ochlazovány**. Provozní teploty bývají např. **200 K** u HgCdTe pro vlnové délky 0,9 až 1,7 µm a **77 K** u lnSb pro vlnové délky 3 až 5 µm. Čím delší je vlnová délka, tím **nižší je provozní teplota fotonového detektoru**. K ochlazování detektorů se dnes hojně využívá **Stirlingův oběh** (Obr. 13) pro nejnižší teploty 70 K nebo 77 K a **vícestupňové Peltierovy články** (Obr. 12) pro teploty do 200 K. Zásadní rozdíl mezi jednoduchým a vícestupňovým Peltierovým článkem je maximální dosahovaný teplotní rozdíl mezi ochlazovanou a teplou částí článku (**jednoduchý:** 50 až 75 °C, **třístupňový:** 120 až 140 °C). [2,5,8,9]

Obr. 12 - Jednoduchý a třístupňový Peltierův článek (upraveno) [2]

Obr. 13 – Příklady chladicích jednotek pracujících na principu Stirlingova oběhu (upraveno) [2]

Historicky lze termokamery rozdělit podle principu zobrazení na dva základní koncepty: **skenovací** (Obr. 14) a **neskenovací** (Obr. 15).

Obr. 14 - Princip zobrazení pomocí skenovací termokamery (upraveno) [5]

Obr. 15 - Princip zobrazení pomocí neskenovací termokamery (upraveno) [5]

Srdce **skenovací termokamery** tvoří dvourozměrný optický skener s jednoprvkovým infračerveným detektorem. Některé složitější systémy využívají také lineární detektor. Nejdůležitější je fakt, že obraz je skenovací termokamerou **vytvářen** (skládán) **postupně** v určitém časovém intervalu (Obr. 14).

V současnosti jsou nejrozšířenější **neskenovací termokamery**, kterým je věnován i zbytek teoretické části práce. Hlavní výhodou neskenovacího systému je absence pohyblivých mechanických částí a skutečnost, že maticový detektor pokrývá celé **zorné pole** najednou (definice zorného pole vysvětlena v kapitole 2.2.2). Termogram proto vzniká v jeden okamžik **simultánním měřením všemi dílčími jednotkami** maticového detektoru (Obr. 15). [2,5,8]

Neskenovací termokamery je možné dále rozdělit na **ruční** (Obr. 16 a 17) a **stacionární** (Obr. 18 a 19). Ruční přístroje jsou kompaktnější a obsahují přímo uživatelské rozhraní v podobě displeje (dotykového displeje) a sady ovládacích tlačítek. Ruční přístroje jsou rovněž dodávány s výměnným nebo integrovaným akumulátorem pro pohodlnější práci v terénu. **Stacionární termokamery** jsou primárně navrženy pro kooperaci s PC, který plní funkci uživatelského rozhraní.

Obr. 16 - Ruční termokamera Fluke Ti480 PRO [10]

Obr. 17 - Ruční termokamera Fluke PTi120 [10]

Obr. 18 - Stacionární termokamera Workswell WIC Industrial [11]

Obr. 19 - Stacionární termokamera Fluke RSE600 [10]

2.2.1. Termografické měření

Vlastní proces bezdotykového měření teploty funguje na principu detekce směsi zářivých toků měřicím přístrojem. Energetická bilance a vlastní vyhodnocení teploty se řídí dle tzv. **rovnice termografie**:

$$\phi_{Det.} = \tau_{Atm.} \cdot \varepsilon_{Obj.} \cdot \phi_{Obj.}^{BB} + \tau_{Atm.} \cdot (1 - \varepsilon_{Obj.}) \cdot \phi_{Odr.} + (1 - \tau_{Atm.}) \cdot \phi_{Atm.}$$
(13)

kde $\phi_{Det.}$ [*W*] je celkový zářivý tok dopadající na detektor termokamery či pyrometru, $\phi_{Obj.}^{BB}$ [*W*] je zářivý tok od měřeného objektu (objekt ve výpočtu figuruje jako černé těleso), $\phi_{Odr.}$ [*W*] je odražený zářivý tok z okolních zdrojů (též zářivý tok pozadí), $\phi_{Atm.}$ [*W*] je zářivý tok atmosféry, $\varepsilon_{Obj.}$ [–] je emisivita měřeného objektu a $\tau_{Atm.}$ [–] je propustnost atmosféry. Grafické znázornění principu bezkontaktního měření teploty je zachyceno na Obr. 20. [2]

Obr. 20 - Princip bezkontaktního měření povrchové teploty (upraveno) [2]

Pro správné měření povrchové teploty je nezbytné definovat tzv. vstupní měřicí parametry, které jsou v praxi většinou zadávány přímo do měřicího přístroje:

- 1. Emisivita měřeného objektu $\varepsilon_{Obj.}$ [-]
- 2. Odražená zdánlivá teplota Todr. [°C].
- 3. Atmosférická teplota *T_{Atm.}* [°*C*]
- 4. Relativní atmosférická vlhkost [%]
- 5. Vzdálenost měření [m]

Termokamery vždy dovolují přesné nastavení **emisivity** a **odražené zdánlivé teploty**. Dražší a lépe vybavené termokamery umožňují dodefinovat i parametry atmosféry, tj. **atmosférická teplota**, **vzdálenost měření** a **relativní atmosférická vlhkost**. [12]

U obyčejných pyrometrů se povětšinou nastavuje pouze **emisivita** a u lepších přístrojů také **odražená zdánlivá teplota**. Vliv atmosféry je korigován výpočtovým modelem na základě zadané hodnoty emisivity. [12]

Propustnost atmosféry je ovlivněna zejména molekulami vody H₂O a oxidu uhličitého CO₂, které tlumí infračervené záření určitých vlnových délek. Závislost propustnosti atmosféry na vlnové délce a vzdálenosti měření zachycuje Obr. 21. Omezení útlumem atmosféry se projevuje především při větších vzdálenostech měření. Pro krátké vzdálenosti je útlum často zanedbatelný. [2,5,13]

Obr. 21 - Závislost propustnosti atmosféry na vlnové délce λ a vzdálenosti měření d (upraveno) [5]

Odražený zářivý tok $\phi_{odr.}$ je obecně funkcí **odražené zdánlivé teploty** $T_{odr.}$. Pro její měření definuje norma ČSN ISO 18434-1 (*Monitorování stavu a diagnostika strojů – Termografie – Část 1: Všeobecné postupy*) [14] dvě metody: **přímou metodu** a **metodu odrazu**. Metoda odrazu pracuje s IČ reflektorem (odražečem). Ten je normou definován jako "pomačkaná" a zpětně narovnaná hliníková folie (alobal), která je připevněná k rovné desce lesklou stranou nahoru². Přímá metoda naopak využívá znalosti jednoduchého **zákona odrazu** elektromagnetického vlnění³, díky kterému je odražená zdánlivá teplota měřena tzv. "přímým" pohledem do zdroje. Pokud to situace dovolí, je vhodné změřit odraženou zdánlivou teplotu oběma metodami a získané hodnoty porovnat. Hlavní důvod je ten, že norma nedefinuje míru "pomačkání"

² Odražená zdánlivá teplota by měla být vyhodnocována plošně.

³ Zákon odrazu elektromagnetického vlnění říká, že úhel dopadu se rovná úhlu odrazu.

hliníkové fólie IČ reflektoru. Různé míry "pomačkání" mohou znatelně ovlivnit hodnotu odražené zdánlivé teploty (Obr. 22). [14,15]

Obr. 22 - Různé hodnoty odražené zdánlivé teploty v závislosti na míře "pomačkání" hliníkové folie IČ reflektoru (upraveno) [15]

O technikách měření emisivity v praxi pojednává samostatná kapitola 2.3.

2.2.2. Slovník základních parametrů měřicích přístrojů

Při výběru vhodného měřicího přístroje je potřeba rozlišovat několik základních charakteristických parametrů: **spektrální rozsah přístroje**, **teplotní citlivost** (NETD), **rozlišení detektoru**, **zorné pole** (FOV), **okamžité zorné pole** (IFOV), **teplotní rozsah přístroje** a **přesnost měření** (nejistota měření).

Spektrálním rozsahem přístroje se rozumí interval vlnových délek lČ záření, které přístroj dokáže detekovat. Omezení na příslušný interval vlnových délek je dáno konstrukcí **optické části** a **detektoru** přístroje. Z hlediska propustnosti atmosféry (Obr. 12) rozlišujeme dvě pásma s nejlepším přenosem (minimální absorpce) záření (tzv. "atmosférická okna"), která svým rozsahem vlnových délek odpovídají dvěma nejpoužívanějším typům detektorů: **detektory** s rozsahem 2 až 5 µm (pásma **SWIR**⁴ a **MWIR**⁵) a **detektory** s rozsahem 8 až 14 µm (pásmo **LWIR**⁶).

⁴ SWIR – krátkovlnné infračervené záření (rozsah vlnových délek 1,4 až 3 μm)

⁵ MWIR – středovlnné infračervené záření (rozsah vlnových délek 3 až 8 µm)

⁶ LWIR – dlouhovlnné infračervené záření (rozsah vlnových délek 8 až 15 μm)

Obzvláště u pyrometrů se lze setkat také s úzkopásmovými rozsahy např. 0,8 až 1,75 µm (pásma NIR⁷ a SWIR). Některé pyrometry jsou dokonce konstruovány pro měření na jedné vlnové délce např. 1,6 µm. Termokamery se spektrálním rozsahem případů nechlazené 8 až 14 µm obsahují ve většině tepelné detektory (mikrobolometrický maticový detektor). Ostatní přístroje pak obsahují výhradně chlazené kvantové detektory (např. HgCdTe nebo InSb). Kdykoliv se zabýváme látkami, které mají emisivitu závislou na vlnové délce (Obr. 23), musíme nejprve zjistit, zda je emisivita konstantní v používaném spektrálním rozsahu termokamery či pyrometru. V případě, že je její hodnota proměnná, je vhodné použít úzkopásmové filtry nebo přístroj s jiným spektrálním rozsahem. Pokud to není možné, je třeba si uvědomit, že jakákoliv kvantitativní analýza bude mnohem složitější a k vyhodnocení teploty bude potřeba vždy okamžitá hodnota emisivity. Z hlediska negativních okolních vlivů, které vystupují do popředí při bezkontaktním měření teploty, je doporučeno volit takový spektrální rozsah, ve kterém je hodnota emisivity nejvyšší. [2,5,12,16]

Obr. 23 - Závislost normálové emisivity na vlnové délce pro různé materiály (upraveno) [2]

Teplotní citlivost je definována parametrem **NETD** (tzv. šum ekvivalentní rozdílu teplot), který udává takový rozdíl teplot mezi zobrazením černého tělesa a jeho

⁷ NIR – blízké infračervené záření (rozsah vlnových délek 0,76 až 1,4 µm)

pozadím, při kterém je pro daný měřicí přístroj poměr signálu k šumu roven právě jedné. Matematický zápis parametru NETD má tvar:

$$NETD = \frac{T_{BB} - T_P}{\frac{\Delta U_S}{U_{\xi}}} [mK]$$
(14)

a zároveň platí, že:

$$\frac{\Delta U_S}{U_{\rm S}} = 1 \tag{15}$$

kde: $T_{BB}[mK]$ je teplota černého tělesa, $T_P[mK]$ je teplota pozadí, $\Delta U_S[mV]$ je signálové napětí generované rozdílem teplot $T_{BB} - T_P$ a $U_{\tilde{S}}[mV]$ je šumové napětí systému.

Platí, že čím nižší je hodnota parametru NETD, tím **kvalitnější termogramy** je termokamera schopna pořídit (Obr. 24). V současné chvíli se teplotní citlivost u termokamer pohybuje v intervalu **15 až 150 mK**. Nejcitlivější jsou přístroje s chlazenými **kvantovými detektory**. [6,12,16,17]

Obr. 24 - Ovlivnění kvality termogramu parametrem NETD (upraveno) [17]

Rozlišení detektoru vyjadřuje rozměry detektoru (počet pixelů) v horizontálním a vertikálním směru (H x V). Zatímco donedávna bylo rozlišení 320 x 240 pixelů považováno za velmi dobré, dnes se lze běžně setkat s rozlišením 640 x 480 pixelů u termokamer střední třídy a 1024 x 768 pixelů u špičkových kvantitativních termokamer. [18]

Zorné pole (FOV) představuje největší plochu, kterou je termokamera schopna zobrazit na definovanou vzdálenost daným objektivem. Zorné pole je ve většině případů obdélníkové vymezené **horizontálním** (HAOV) a **vertikálním** (VAOV) zorným

úhlem (HAOV x VAOV), např. 24° x 18°. Ze **zorných úhlů** a **vzdálenosti měření** lze na základě známých vztahů dopočítat charakteristické rozměry zorného pole:

$$HFOV = d \cdot \sin(HAOV) [m] \tag{16}$$

$$VFOV = d \cdot \sin(VAOV) [m] \tag{17}$$

kde: *HFOV* [*m*] je horizontální rozměr zorného pole, *VFOV* [*m*] je vertikální rozměr zorného pole, *d* [*m*] je vzdálenost měření, *HAOV* [°] je horizontální zorný úhel a *VAOV* [°] je vertikální zorný úhel (Obr. 25). [2,5,18]

Zorný úhel zůstává pro daný detektor a objektiv konstantní a velikost zorného pole se mění podle vzdálenosti měření (Tab. 1).

Tab. 1 – Závislost velikosti FOV na vzdálenosti měření pro standardní objektiv 24° x 18° [5]

d [m]	0,5	1	2	5	10	30	100
HFOV [m]	0,2	0,41	0,81	2	4,1	12	41
VFOV [m]	0,15	0,31	0,62	1,5	3,1	9,3	31

Obr. 25 - Vysvětlení pojmů zorné pole a zorný úhel (upraveno) [2]

Obr. 26 - Vliv použití různých objektivů: 12 ° teleobjektiv, 24 ° standard, 45 ° širokoúhlý objektiv (pozn.: označení objektivu odpovídá horizontálnímu zornému úhlu) (upraveno) [2]

Obr. 26 zachycuje změnu velikosti zorného pole v závislosti na použití různých objektivů při jednotné vzdálenosti měření.

Pokud je v praxi zvoleno příliš **velké zorné pole** u termokamery s **nízkým rozlišením** detektoru, může dojít k chybnému vyhodnocení povrchové teploty (Obr. 27). [19]

Obr. 27 - Vliv rozlišení detektoru na vyhodnocení povrchové teploty (upraveno) [19]

Okamžité zorné pole (IFOV) představuje část zorného pole, která připadá na jeden dílčí senzor (pixel) maticového detektoru termokamery (Obr. 28). Velikost okamžitého zorného pole bývá vymezena v jednotkách rovinného úhlu, tj. např. 1,09 mrad. Znalost okamžitého zorného pole je velmi důležitá při ověření správnosti navržené vzdálenosti měření malých objektů z větších vzdáleností. Podrobný výpočet parametru IFOV a popis problematiky ověření vzdálenosti měření se nachází v kapitole 4.6. [8,12]

Obr. 28 - Znázornění okamžitého zorného pole IFOV (upraveno) [8]

Teplotní rozsah reprezentuje teplotní interval, na kterém je měřicí přístroj schopen měřit teplotu. Teplotní rozsah přístroje je navíc rozdělen na několik **měřicích rozsahů**. Například termokamera Flir E96 měří teplotu v rozmezí -20 až 1500 °C ve třech měřicích rozsazích: -20 až 120 °C, 0 až 650 °C a 300 až 1500 °C. [12,20]

Přesnost měření je u současných měřicích přístrojů standardně $\pm 2 \,^{\circ}C$ nebo $\pm 2 \,^{\circ}N$ z naměřené hodnoty, přičemž platí větší z obou hodnot. Pro teplotu 15 °C je výsledkem měření 15 °*C* $\pm 2 \,^{\circ}C$, zatímco při naměřené teplotě 300 °C je pak výsledkem údaj 300 °*C* $\pm 6 \,^{\circ}C$. Nejlepší (nejdražší) přístroje dosahují i přesnosti $\pm 1 \,^{\circ}C$ nebo $\pm 1 \,^{\circ}N$ z naměřené hodnoty. [12]

2.2.3. Software pro termografickou analýzu

Pořízené termogramy lze na PC pohodlně zkoumat, analyzovat, editovat a hodnotit řadou funkcí v prostředí **softwaru pro termografickou analýzu**. Na trhu existuje značné množství nejrůznějších výrobců termokamer, kteří ke svým produktům dodávají také příslušné analyzační softwary. V následující části této kapitoly se nachází přehled a popis softwarů od společnosti FLIR. Výběr softwarového portfolia společnosti FLIR koresponduje s použitou termokamerou v experimentální části diplomové práce (viz kapitola 4.2).

Do října roku 2020 byl k termokamerám dodáván bezplatně software **FLIR Tools**. Jakožto základní software pro termografickou analýzu umožňuje FLIR Tools editaci termogramů z termokamery, tvorbu elementárních protokolů z měření ve formátu PDF, aktualizaci vnitřního softwaru (tzv. firmware) termokamery a export snímků z termokamery na disk počítače. Placená rozšiřující nadstavba **FLIR Tools +** dále umožňuje záznam a editaci radiometrického videa a tvorbu uživatelsky definovaných protokolů v prostředí MS Word. Prostředí softwaru FLIR Tools je viditelné na Obr. 68 v kapitole 4.8.

S nástupem nové generace termokamer série Txx a Exx v říjnu roku 2020 přišel na trh zcela nový software **FLIR Thermal Studio Suite**. Tento software se dále rozděluje na tři verze v závislosti na uvolněných funkcích dle předplatného: **Thermal Studio Starter**, **Thermal Studio Standard** a **Thermal Studio Pro**. **Starter** je bezplatná verze, která nabízí obdobné funkce jako starší FLIR Tools. **Standard** je placená verze, jejíž licence pro jednoho uživatele stojí přibližně 200 USD na 12 měsíců. Stejně jako u verze Starter nelze nahrávat ani editovat radiometrická videa. Standard verze nabízí

základní úpravu více termogramů najednou. V tomto režimu je možné hromadně použít měřicí funkci bod a sjednotit nastavení emisivity nebo vzdálenosti měření na vybrané skupině termogramů. Dále lze vytvořit až pět vlastních šablon pro reporty z měření. **Pro** je plně profesionální placená verze. Licence pro jednoho uživatele stojí přibližně 400 USD na 12 měsíců. Pro uživatele je rozhodující, že tato verze umožňuje nahrávání a editaci radiometrického videa. [20,21]

2.2.4. Použití termokamer v průmyslové praxi

Pro správné a komplexní pochopení použití infračervené termografie v praxi je nutné definovat několik základních metod měření a zkoušení. Infračervenou termografii lze rozdělit podle normy ČSN ISO 18434-1 [14] na **kvalitativní** a **kvantitativní**.

Kvalitativní termografie ze své podstaty nevyžaduje přesné měření povrchových teplot. V rámci této metody se hovoří o tzv. **zdánlivé povrchové teplotě**⁸. Slouží zejména k lokalizaci míst s odlišnou povrchovou teplotou (tzv. anomálií). Takováto místa jsou následně vystavena dalšímu zkoumání.

Kvantitativní termografie se primárně zaměřuje na přesné měření povrchových teplot. Při této metodě se pracuje již s tzv. **skutečnou povrchovou teplotou** a je velmi důležité **správné určení všech měřicích parametrů** (viz kapitola 2.2.1). V reportu (protokolu) z měření je nutné uvádět všechny hodnoty měřicích parametrů, které posloužily k výpočtu teploty.

Obě výše zmíněné metody mohou být dále použity ve smyslu **pasivní** nebo **aktivní** termografie. Pokud není během měření uměle ovlivňována teplota objektu a měří se přirozená teplota nebo přirozeně vzniklé teplotní kontrasty, jedná se o **pasivní termografii**.

Aktivní termografie pracuje s externím zdrojem tepelné energie, která je na zkoušený povrch dodávána striktně popsaným způsobem. Dodané teplo je zkoušeným materiálem rozváděno, odváděno a způsobuje vznik teplotních kontrastů. Teplotní kontrasty mohou být spojeny s materiálovými vadami a nehomogenitami (vždy záleží na konkrétní aplikaci). Podle způsobu dodávání tepelné energie lze aktivní termografii dále rozdělit např. na **pulsní termografii**, termografii s postupným

⁸ Zdánlivá povrchová teplota – hodnota povrchové teploty, která není korigována (tzn. nejsou uvažovány optické vlastnosti zkoumaného povrchu, vlivy atmosféry a záření z okolních zdrojů). Emisivita je ve vnitřním SW termokamery obvykle nastavena na hodnotu 1,0 a vzdálenost měření na hodnotu 0 m.

ohřevem, vibrotermografii, synchronizovanou termografii a ultrazvukovou termografii. Na následujících obrázcích č. 29 až 34 jsou vyobrazené vybrané příklady praktického použití termokamer v průmyslové praxi. [6,14,22]

Obr. 29 - Kontrola funkčnosti tepelného výměníku [3]

Obr. 30 - Stav výšky hladiny kapaliny v nádrži [2]

Obr. 31 - Kontrola teploty při pájení hliníku plamenem [11]

Obr. 32 - Monitoring licí pánve [3]

Obr. 33 - Kontrola v procesu výroby pneumatik [23]

Obr. 34 - Kontrola vyhřívání sedadel automobilu [23]

2.3. Techniky stanovení emisivity v praxi

Nejjednodušším, nejrychlejším a nejlevnějším způsobem, jak určit emisivitu příslušného povrchu, je použití **tabelované hodnoty**. Rozličné tabulky emisivit pro **různé materiály**, **teploty** a **vlnové délky** lze dohledat v odborné literatuře [4,24], případně také na internetových stránkách (Tab. 2) nebo v produktových listech měřicích přístrojů. Tabulkové hodnoty však v praxi nemusí přesně reflektovat konkrétní podmínky měření, tj. například **měřené teploty**, **úhel snímání povrchu**, **povrchovou drsnost** (Ra a Rz) nebo **míru povrchové degradace**. Z tohoto důvodu se v praxi využívají nejčastěji tři jednoduché **nevýpočtové** metody pro "přesnější" určení tzv. **efektivní emisivity⁹**:

- 1. **Metoda využívající materiál s referenční emisivitou** (samolepicí folie, barva pro termografické aplikace)
- 2. Metoda využívající kontaktní měření teploty
- 3. Vyvrtání díry do měřeného objektu

Materiál	T [°C]	٤ [-]
Bronz (leštěný)	50	0,1
Bronz (leštěný)	200	0,3
Bronz (oxidovaný)	100	0,61
Hliník (leštěný)	100	0,05
Měď (leštěná)	100	0,03
Měď (oxidovaná)	50	0,6 až 0,7
Niklový drát	200 až 1200	0,1 až 0,2
Olovo (lesklé)	250	0,08
Železo (oxidované)	38	0,63
Železo (oxidované)	538	0,76

Tab. 2 - Informativní hodnoty emisivity vybraných kovových povrchů ($\lambda = 8$ až 14 μ m) [24]

Na základě těchto metod je doporučeno (pokud to situace dovolí) sestavit **vlastní tabulku efektivních emisivit** pro aktuálně zkoumané povrchy při jasně definovaných podmínkách měření. [2,5,27]

⁹ Efektivní emisivita – prakticky určená hodnota emisivity povrchu nebo části povrchu objektu při daných podmínkách měření (používá se pro korekci obecných tabelovaných hodnot a k přesnějšímu měření povrchové teploty) [6]

2.3.1. Metoda využívající materiál s referenční emisivitou

Podrobný popis této metody je zakotven v normě ČSN ISO 18434-1 [14]. Princip metody spočívá v nanesení materiálu se známou hodnotou emisivity na část měřeného povrchu. V praxi se používá **barva pro termografické aplikace ve spreji** (Obr. 35) nebo **samolepicí fólie** (Obr. 36).

Obr. 35 - Barva pro termografické aplikace (LabIR Paint 1000 °C) [25]

Obr. 36 - Samolepicí fólie ThermaSpot [26]

Spreje a samolepicí fólie jsou obvykle dostupné v **bílé** a **černé** barvě. Barva ve spreji může být **trvalá** nebo **smývatelná**. Dále lze spreje rozdělit podle **teplotní odolnosti** (např. pro pokojové teploty, do 100 °C, do 500 °C, do 800 °C, nebo do 1000 °C). Sofistikovanější referenční materiály jsou dodávány včetně dokumentace, která obsahuje **grafické závislosti emisivity** na **teplotě**, **úhlu měření povrchu** (Obr. 37) a **vlnové délce** (Obr. 38). [14,25,26]

Obr. 37 - Závislost emisivity na úhlu měření povrchu pro různé teploty (LabIR Paint 1000 °C) [25]

Obr. 38 - Závislost normálové emisivity na vlnové délce pro různé teploty (LabIR Paint 1000 °C) [25]

Vždy je potřeba mít na paměti, že grafické a tabulkové hodnoty z dokumentace odpovídají **předepsanému postupu předúpravy povrchu** a **podmínkám aplikace referenčního materiálu**.

Po aplikaci referenčního nástřiku nebo samolepicí fólie na část zkoumaného povrchu následuje vlastní měření efektivní emisivity, které je možné rozdělit na tři fáze. V **první fázi** je termokamera ustavena do požadované vzdálenosti před měřený objekt. Následně je pomocí vhodné metody změřena odražená zdánlivá teplota (viz kapitola 2.2.1). Teplota měřeného povrchu se lokálně zvýší nebo sníží alespoň o 20 °C oproti odražené zdánlivé teplotě. Ve **druhé fázi** se do interního softwaru termokamery zadá známá referenční hodnota emisivity. Termokamera se poté zaostří na měřený povrch a pořídí se termogram. Následně se ve vyhodnocovacím softwaru vykompenzují zbývající měřicí parametry a pomocí měřicí funkce bod se odečte teplota na referenčním materiálu. Ve **třetí fázi** následuje určení efektivní emisivity původního povrchu v bezprostřední blízkosti referenčního materiálu. Hodnota emisivity se postupně mění, dokud se vyhodnocovaná teplota neshoduje s teplotou zjištěnou na referenčním materiálu (Obr. 39). [2,5,14,25,26,27]

Obr. 39 - metoda využívající materiál s referenční emisivitou [27]

2.3.2. Metoda využívající kontaktní měření teploty

Metoda využívající kontaktní měření teploty je v podstatě velmi podobná metodě, při které se používá materiál s referenční emisivitou (viz kapitola 2.3.1). Postup je až na použití nástřiku nebo samolepicí fólie shodný. Správné označení je **kontaktní metoda** a vychází opět z normy ČSN ISO 18434-1 [14]. Kontaktně je teplota běžně měřena pomocí **termočlánků** (Obr. 40). Tepelná kapacita termočlánku by měla být vždy **mnohem menší než tepelná kapacita měřeného objektu**, aby nedocházelo k ovlivnění povrchové teploty.

Další důležitou podmínkou, která platí pro všechny metody měření emisivity, je eliminace odrazů infračerveného záření, aby nedocházelo k chybám v měření povrchové teploty nesprávně určenou emisivitou. [2,5,14,27]

Obr. 40 – Metoda využívající kontaktní měření teploty [27]

2.3.3. Vyvrtání díry do měřeného objektu

Další metoda využívá záření **uměle vytvořené dutiny** v měřeném povrchu. Takováto dutina simuluje **černé těleso** ($\varepsilon \approx 1$) a lze ji vytvořit několika způsoby. Nejjednodušším způsobem je vyvrtání díry, jejíž hloubka je alespoň **šestkrát větší než její průměr**. U této metody však nelze předpokládat, že měření teploty bude na kvantitativní úrovni. Tato metoda se používá převážně ve stavebnictví a pro většinu aplikací ve strojírenství je spíše nevhodná. Schematický nákres příslušného vývrtu je vyobrazen na Obr. 6 v kapitole 2.1. [2,5]

3. Faktory ovlivňující hodnotu emisivity

Správná hodnota **emisivity** je jedním z nezbytných vstupů pro přesné radiometrické měření teploty pomocí termokamer. Pro kvantitativní měření teploty je nejdůležitější porozumění faktorům, které **hodnotu emisivity ovlivňují**, tj. **materiál**, **struktura a stav povrchu**, **teplota**, **doba ohřevu**, **úhel měření**, **vlnová délka** a **geometrie měřeného povrchu**. V následujících několika kapitolách je popsán vliv jednotlivých faktorů s orientací převážně na **korozivzdorné oceli**. [2,28,29]

3.1. Materiál, struktura a stav povrchu

Hlavním parametrem, který ovlivňuje emisivitu, je **obecně druh materiálu** a **jeho chemické složení**. Drobné rozdíly v hodnotách emisivity v závislosti na druhu korozivzdorné oceli znázorňuje Obr. 41.

Obr. 41 - Vliv chemického složení vybraných korozivzdorných ocelí na hodnotu emisivity (λ=1,5 μm) (upraveno) [28]

U kovových materiálů je hodnota emisivity obecně silně závislá na **drsnosti povrchu**. Nejnižší hodnoty emisivity dosahují **leštěné kovové povrchy** (hodnoty emisivity běžně i pod 0,2). S narůstající **drsností** se naopak emisivita zvyšuje. Při měření v terénu je také potřeba uvažovat další vlivy, tj. např. **usazeniny na povrchu** (oleje, mastnoty, prach a nečistoty) a **neznámé tloušťky vrstvy oxidů**. [2,28,29] **Oleje, mastnoty, prach** a **nečistoty** mohou mít významný vliv zejména na hladkých kovových površích s nízkou emisivitou. U takovýchto povrchů nánosy většinou hodnotu emisivity **navyšují**. Problém je, že nánosy jsou pouze zřídka distribuovány rovnoměrně, takže nárůst emisivity není předvídatelný.

U mnoha kovových materiálů včetně korozivzdorných ocelí dochází na vzduchu k **povrchové oxidaci**. Povrchová oxidace může ovlivnit emisi infračerveného záření čtyřmi způsoby:

- 1. Oxidy mají typicky jinou emisivitu než původní materiál.
- 2. Oxidy mohou ovlivnit drsnost povrchu materiálu.
- 3. Vrstva oxidů se nemusí tvořit rovnoměrně stejnou rychlostí po celé ploše.
- Tloušťka oxidové vrstvy se může v průběhu času měnit v závislosti na okolním prostředí.

Některé vrstvy oxidů jsou snadno pozorovatelné lidským okem, zatímco jiné jsou průhledné a nedetekovatelné. [29]

3.2. Teplota

Téměř všechny materiály mění hodnotu emisivity s teplotou. Pro praktické měření je dobré znát rozsah měřených teplot a proměnlivost emisivity na tomto rozsahu. Obr. 42 znázorňuje závislost normálové emisivity na teplotě pro vybrané materiály. Závislost emisivity na teplotě pro vybrané korozivzdorné oceli shrnuje Tab. 3. [2,28,29]

Obr. 42 - Závislost normálové emisivity na teplotě pro vybrané materiály (upraveno) [2]

Tab. 3 - Závislost	emisivity na	teplotě pro	vybrané	korozivzdorné	oceli (λ =	= 8 až 1	14 µm)	[29]
--------------------	--------------	-------------	---------	---------------	------------	----------	--------	------

X5CrNiMo17-12-2		X10Cr	Ni18-8
T [°C]	ε [-]	T [°C]	ε [-]
24	0,27	24	0,27
232	0,56	232	0,57
949	0,66	949	0,55

3.3. Doba ohřevu

Pokud je potřeba měřit emisivitu korozivzdorných ocelí při vysokých teplotách, je důležité vzít v úvahu také **ovlivnění hodnoty emisivity dobou ohřevu**. Experimentální měření u vybraných korozivzdorných ocelí prováděli např. *Y. F. Liu, Z. L. Hu, D. H. Shi* a *K. Yu* [28] nebo D. Shi, F. Zou, Z. Zhu a J. Sun [30]. Z výsledků je patrné, že **emisivita nejprve s časem narůstá**, **dokud se její hodnota neustálí** (Obr. 43). Tento jev souvisí s probíhající oxidací na měřeném povrchu. Od určité chvíle, kdy je povrch zcela pokrytý ("nasycený") vrstvou oxidů, již nedochází k ovlivnění hodnoty emisivity. [28]

Obr. 43 - Závislost emisivity vybraných korozivzdorných ocelí na době ohřevu (upraveno) [28]

3.4. Úhel měření a geometrie povrchu

Většina laboratorních měření emisivity se provádí na **plochých površích v normálovém směru** (tedy kolmo k povrchu). V terénu lze jen zřídka měřit povrchové teploty v normálovém směru. Skutečné předměty mohou být např. **zakřivené**, mají **ostré rohy**, **šikmé úhly** nebo **různá vybrání**. Všechny tyto faktory mohou ovlivnit emisi infračerveného záření, které je potřebné pro výpočet povrchové teploty. [29]

P. D. Jones a E. Nisipeanu [31] zkoumali vliv úhlu měření a vlnové délky na hodnotu emisivity u korozivzdorné oceli X6CrNiMo17-12-2. Autoři došli k závěru, že **emisivita klesá s narůstající vlnovou délkou**. Hodnota emisivity je v závislosti na úhlu měření a vlnové délce značně proměnná. Obr. 44 zachycuje emisivitu jako funkci úhlu měření a vlnové délky při teplotě 500 °C s plně oxidovaným povrchem (vysvětleno v kapitole 3.3).

Obr. 44 - Závislost emisivity korozivzdorné oceli X6CrNiMo17-12-2 na úhlu měření a vlnové délce při teplotě 500 °C (upraveno) [31]

3.5. Vlnová délka

Ovlivnění emisivity vlnovou délkou je podrobně popsáno a diskutováno v kapitole 2.2.2. Důležité je zdůraznit, že naměřenou hodnotu emisivity na konkrétním povrchu nelze použít u dvou měřicích přístrojů s **rozdílným spektrálním rozsahem**. Pokud se měří teplota **více termokamerami o stejném spektrálním rozsahu**, je rovněž doporučeno, aby se emisivita jednoho měřeného povrchu **určila pro každý měřicí přístroj zvlášť**. [29]

4. Experimentální část

4.1. Úvod a návrh experimentu

Cílem praktické části diplomové práce je realizace experimentu, při kterém by měl být zmapován vliv úhlu měření na hodnotu **emisivity** při různých povrchových teplotách vzorků z ocelí X5CrNi18-10 a S355N. Experimentální měření je navázáno na předchozí bakalářskou práci autora z roku 2020 [1]. Modifikovaná metodika měření a způsob přípravy vzorků by měly eliminovat další ovlivňující proměnné, které do vlastního měření vstupují, a tím zpřesnit určované hodnoty emisivity při reálném měření.

Podstatou experimentu je měření emisivity povrchu chladnoucích ocelových vzorků **kontaktní metodou** dle normy ČSN ISO 18434-1 [14]. Měření je realizováno pomocí termokamery se spektrálním rozsahem 7,5 – 14 µm (nechlazený mikrobolometrický detektor). Souběžně s pořizováním termogramů je měřena povrchová teplota vzorků pomocí dvou přivařených termočlánků k **měřenému povrchu**. Princip vyhodnocení spočívá v postupných změnách (iteracích) emisivity ve vyhodnocovacím SW, dokud se teplota měřená termokamerou neshoduje s teplotou zjištěnou kontaktně kalibrovanými termočlánky.

Emisivita je měřena v teplotním rozsahu **50 až 500** °C. Vzorky jsou ohřívány v elektrické žíhací peci. Spodní hranice 50 °C je zvolena na základě doporučení normy ČSN ISO 18434-1 [14]. Teplota měřeného povrchu musí být rozdílná (větší nebo menší) alespoň o 20 °C oproti odražené zdánlivé teplotě. Horní hranice 500 °C byla stanovena na základě ohřevu prvního zkušebního vzorku. Ocelové vzorky byly ohřívány na 700 °C. Po vyjmutí z pece však nastává prodleva před samotným zahájením měření (během které dochází k upnutí do přípravku, ustavení do měřící sestavy a spuštění termokamery).

4.1.1. Navržený postup měření

Měření by mělo probíhat chronologicky dle jednotlivých bodů:

- 1. Připravit vzorky pro měření (viz kapitola 4.3).
- 2. Postavit měřící sestavu a připravit experimentální pracoviště (viz kapitola 4.1.2).

- 3. Zapnout elektrickou žíhací pec, nastavit potřebnou teplotu (700 °C) a nechat dostatečně vyhřát pracovní prostor pece (diodová signalizace).
- Zapnout termokameru a zvolit vhodný rozsah měření (0 až 650 °C).¹⁰ Nastavit emisivitu na hodnotu 1,0.
- Sjednotit datum a čas v nastavení termokamery a dataloggeru pro měření teploty, aby bylo možné provést zpětně synchronizaci teplot z termočlánků se získanými termografickými daty.
- 6. Do měřící sestavy umístit IČ reflektor a pořídit pět snímků pro vyhodnocení odražené zdánlivé teploty. Ve vyhodnocovacím SW vyhodnotit odraženou zdánlivou teplotu a její hodnotu vložit do vnitřního SW termokamery (viz kapitola 4.4).
- Ve vnitřním SW termokamery nastavit další okrajové podmínky měření aktuální hodnoty atmosférické teploty, relativní vlhkosti a vzdálenosti měření (viz kapitola 4.5).
- 8. Na termokameře nastavit funkci časosběrné snímání v intervalech 10 s.
- 9. Spojit termočlánky s kompenzačním vedením k dataloggeru a zapnout datové nahrávání.
- 10. Vložit vzorek do pracovního prostoru pece a ohřát (na teplotu 700 °C, prohřát po dobu10 minut).
- 11. Nastavit příslušný úhel měření na upínacím přípravku pro ohřáté vzorky.
- 12. Vyjmout vzorek z pece a upnout do připraveného přípravku.
- 13. Vložit přípravek se vzorkem do měřící sestavy a zapnout časosběrné snímání na termokameře.¹¹
- 14. Vyhodnocení naměřených dat:
 - Přiřadit konkrétní povrchové teploty z termočlánků jednotlivým termogramům podle času, ve kterém byly termogramy pořízeny.
 - Ve vyhodnocovacím SW měnit hodnotu emisivity postupnými iteracemi, dokud se vyhodnocená teplota z termokamery neshoduje s teplotou z termočlánku. Z naměřených hodnot sestavit graf závislosti emisivity na teplotě (při konkrétním měřicím úhlu).
- 15. Postup měření opakovat pro všechny zvolené úhly odklonu termokamery od povrchové normály. V průběhu nezapomenout aktualizovat parametry měření (odražená zdánlivá teplota, relativní vlhkost, atmosférická teplota).

¹⁰ Velmi důležité je nastavit správný teplotní rozsah. U pořízených termogramů nelze zpětně měnit.

¹¹ Kroky č. 12 a 13 je třeba provést velmi rychle po sobě, aby teplota vzorku neklesla pod 500 °C.

4.1.2. Uspořádání měření

Při přípravě měřícího pracoviště je z hlediska uspořádání a eliminace rušivých vlivů potřeba dodržet několik pravidel:

- Dodržet co nejkratší vzdálenost od pece k měřící sestavě, s ohledem ke komfortní manipulaci s horkými vzorky, které dosahují teploty až 700 °C (dáno délkou kompenzačního vedení k termočlánkům). Krátká vzdálenost dále pomáhá k co nejrychlejšímu upnutí vzorků, aby teplota neklesla příliš rychle pod hranici 500 °C.
- Měření v blízkosti pece sebou nese naproti tomu jisté negativum v podobě tzv. "parazitního" záření, které může nemalým dílem ovlivnit naměřené hodnoty emisivity. Pro eliminaci tohoto záření bylo třeba sestrojit speciální měřicí tunel (viz kapitola 4.2.5).
- Zajistit, aby stativ s termokamerou nebyl na frekventovaném místě a nedošlo tak k nechtěnému přemístění a odklonění od snímaného směru během měření.
- Navařování termočlánků na měřený vzorek realizovat v mezidobí, kdy termokamera neměří, aby nedocházelo k ovlivnění měření emisivity.

Změna směru snímání je realizována pomocí otočného upínacího přípravku pro měřený vzorek. Termokamera je pevně upnuta ve stativu. Na Obr. 45 lze vidět schéma uspořádání měřicí sestavy. Obr. 46 zachycuje již připravené pracoviště pro měření emisivity. Konkrétní měřící přístroje, přípravky a další vybavení je popsáno v následující kapitole 4.2.

Obr. 45 - Blokové schéma uspořádání měření

Obr. 46 - Připravené pracoviště v laboratoři odporového svařování Ústavu strojírenské technologie

4.2. Měřicí přístroje, přípravky a další vybavení

4.2.1. Termokamera FLIR E95

Pro měření byla využita termokamera FLIR E95 patřící k přístrojovému vybavení Ústavu strojírenské technologie. Pro uchycení a vyrovnání termokamery byl použit stativ značky Vanguard. Obr. 47 zachycuje termokameru během vlastního měření. Orientační značky na podlaze slouží ke kontrole správné polohy stativu a termokamery (při opakovaném měření). Technické parametry měřicího přístroje shrnuje Tab. 4.

Obr. 47 - Termokamera FLIR E95

Tah	4 -	Technické	narametrv	termokamerv	FLIR E95	[32]
i av.	4 -	I ECHINICKE	parametry	lennokannery	1 LIN L95	[32]

Rozlišení senzoru	464 x 348 pixelů	Rozlišení displeje	640 x 480 pixelů
Teplotní rozsah [°C]	-20 až +1500	Digitální kamera	Ano, 5 Mpx
Teplotní citlivost [mK]	30	Radiometrické video	Ano
Zorné pole (FOV)	1. 24° x 18° 2. 42° x 32° 3. 14° x 10°	Funkce MSX	Ano
Okamžité zorné pole (IFOV)	1. 0,90 mrad 2. 1,58 mrad 3. 0,53 mrad	Funkce obraz v obraze	Ano
Frekvence obrazu [Hz]	30	Funkce UltraMax	Ano
Typ senzoru (FPA) / spektrální rozsah	Nechlazený mikrobolometr / 7,5 – 14 µm	Bluetooth/WiFi	Ano
Software	Flir Tools, Flir Tools +, Workswell CorePlayer	Obrazové poznámky	Ano
Rozlišení teploty [°C]	0,03	Ostření	Manuální i automatické
Přesnost	±2 °C nebo ± 2 % z naměřené hodnoty	Váha [kg]	1
Stupeň krytí	IP 54	Rozměry D x Š x V [mm]	278 x 116 x 113
Akumulátor	Li-Ion (2,5 h provoz při plném nabití)	Rozsah provozních teplot [°C]	-15 až +50

4.2.2. Přístroj pro navařování termočlánků BT-2

Zařízení BT-2 (Obr. 48) pracuje na principu kondenzátorového výboje. V laboratorních podmínkách se hojně využívá k navařování termočlánků pro měření teploty. Velikou výhodou tohoto typu je vestavěný akumulátor, který předurčuje použití přístroje i v místech bez přívodu síťového napětí. Pro přípravu termočlánků byla použita grafitová elektroda (Obr. 49). Technická data svařovacího zdroje shrnuje Tab. 5.

Obr. 48 - Kondenzátorový svařovací zdroj BT-2

Obr. 49 - Grafitová elektroda

Přibližný počet disponibilních výbojů při plném nabití	800
Nabíjecí proud [mA]	150
Maximální průměr navařovaného drátu nebo termočlánku [mm]	1,4
Napájecí napětí – AC [V]	220
Doba plného nabití akumulátoru [hod]	cca 5
Váha [kg]	2,5
Krytí	IP 23
Rozměry V x Š x H [mm]	130 x 140 x 175

Tab. 5 - Technická specifikace kondenzátorového svařovacího zdroje BT-2 [33]

4.2.3. Datalogger AHLBORN ALMEMO 5690-2

Měřicí ústředna ALMEMO 5690-2 (Obr. 50) je představitelem modulárního systému, který lze nakonfigurovat dle přání uživatele. Datalogger je vybaven podsvíceným grafickým displejem s rozlišením 128 x 128 bodů. Výhodou této stanice je rozmanitá interpretace měřených hodnot. Měřené hodnoty lze zobrazit jednotlivě, po skupinkách, nebo formou sloupcových a liniových diagramů. Datalogger dosahuje rychlosti 2,5 až 100 měřených hodnot za sekundu. Naměřená data lze nahrávat přímo do paměti přístroje nebo externě na SD kartu. SD karta slouží rovněž pro přenos naměřených dat do PC.

Pro měření povrchových teplot byly využity termočlánky typu K s rozsahem měřitelných teplot -20 °C až 1250 °C.

Obr. 50 - Datalogger AHLBORN ALMEMO 5690-2

4.2.4. Elektrická laboratorní pec ZC (Zlatarna Celje)

Elektrická žíhací pec ZC (Zlatarna Celje) je menší průmyslová pec jugoslávské výroby. Rozměry pracovního prostoru pece jsou 200 x 100 x 250 mm. Vnitřní rozměry šamotové vyzdívky tak plně dostačují pro použité ocelové vzorky (viz kapitola 4.3). Pec může dosáhnout maximálního výkonu až 2500 W. Dle stupnice lze dosáhnout maximální teploty až 1200 °C.

Obr. 51 - Elektrická laboratorní pec

4.2.5. Měřicí tunel pro odstínění záření z okolních zdrojů

Pro měření byl využit speciální přípravek (Obr. 52) sestrojený pro potřeby bakalářské práce [1]. Jedná se o měřicí tunel, jehož primárním úkolem je odstínění tepelného záření z okolních zdrojů, které by mohlo znehodnotit prováděná měření. Hlavním zdrojem takového tzv. "parazitního záření" je bez pochyby elektrická pec. Měřicí tunel je vyroben z polyuretanové desky, která je potažena hliníkovou folií. Vzhledem k vysoké odrazivosti lesklé hliníkové folie bylo při výrobě třeba modifikovat vnitřní stěny tunelu pomocí barvy s vysokou referenční emisivitou. Platí, že čím vyšší emisivita nepropustného materiálu je, tím nižší je odrazivost a naopak. Pro výrobu byla použita barva pro termografické aplikace ThermaSpray 500 od firmy TMV SS spol. s r. o., která je odolná do 500 °C. Barva má referenční emisivitu $\varepsilon = 0,97$.

Obr. 52 - Měřicí tunel pro odstínění záření z okolních zdrojů

4.2.6. Přípravek pro uchycení ohřátých vzorků

Pro upínání ocelových vzorků slouží stavitelný magnetický stojánek NOGA, který se nejčastěji používá v kombinaci s číselníkovým úchylkoměrem (Obr. 53). K nastavení příslušného úhlu měření byl použit digitální tesařský úhloměr PARKSIDE (Obr. 54).

Obr. 53 - Magnetický stavitelný stojánek

Obr. 54 - Digitální úhloměr

4.2.7. Spektrometr Q4 TASMAN

Q4 TASMAN je stolní jiskrový optický emisní spektrometr, který lze použít pro chemickou analýzu prakticky všech kovových materiálů (Obr. 55). Přístroj vyrábí společnost Bruker AXS GmbH (Karlsruhe, Německo). Pro český a slovenský trh zajišťuje dodávky výhradně firma BAS Rudice spol. s r. o.. Technická data přístroje Q4 TASMAN shrnuje Tab. 6.

Obr. 55 - Spektrometr Q4 TASMAN [34]

Optic	ký systém	Plazmový g	enerátor (zdroj jiskření)
Princip	Paschen Runge s vysokým rozlišením	Buzení	Buzení s indukativním zážehem (bezúdržbové)
Rozsah vlnových délek [nm]	130 až 670	Doba trvání jiskry	10 µs až 2 ms
Detektory	Vícenásobné CCD	Proud jiskry [A]	Max. 200
Optický systém	Proplachovaný argonem	Frekvence jiskření [Hz]	Až 1000
Rozměry a h	motnost přístroje	Elekt	trické parametry
Rozměry V x Š x H [mm]	650 x 550 x 800	Napětí [V]	230
Hmotnost [kg]	cca 70	Příkon [W]	600 (měření) 50 (pohotovostní režim)

4.2.8. Drsnoměr Mitutoyo Surftest SJ-301

Mitutoyo Surftest SJ-301 je malý přenosný drsnoměr s integrovanou tiskárnou (Obr. 56 a 57). Měřené hodnoty jsou spolu s grafickým znázorněním profilu drsnosti zobrazovány na LCD displeji. Rozsah měření přístroje je $350 \,\mu\text{m} (-200 \,\mu\text{m} \,\text{az} + 150 \,\mu\text{m})$. Na měřicí hrot s rádiusem $2 \,\mu\text{m}$ působí kontaktní síla 0,75 mN. Měření odpovídá mezinárodním standardům ISO, DIN, ANSI a JIS. V přístroji je integrovaná baterie, díky čemuž lze pracovat i na místech bez přívodu elektrického proudu. Přístroj dokáže vyhodnotit velké množství parametrů drsnosti. Pro popis stavu povrchu vzorků byly měřeny parametry *Ra* (střední hodnota drsnosti) a *Rz* (hloubka drsnosti). [35]

Obr. 56 - Mitutoyo Surftest SJ-301

Obr. 57 - Měřicí detektor

4.3. Příprava vzorků

Pro měření emisivity byly zvoleny vzorky ve formě ocelových válečků o průměru **40 mm** a délce **10 mm**. Takto navržené rozměry vzorků vycházejí z provedených měření v rámci předchozí bakalářské práce autora [1]. Původní průměr zůstal zachován, naproti tomu délka byla zmenšena z 25 mm na 10 mm. Předpokladem je snížení měřicích časů přibližně o polovinu, aby bylo možné proměřit více zvolených konfigurací.

Pro měření bylo vyhotoveno celkem **dvacet vzorků** (deset vzorků z oceli **X5CrNi18-10** a deset vzorků z oceli **S355N**). Vzorky byly děleny na soustruhu pomocí upichovacího nože z normalizovaných kruhových tyčí o průměru 40 mm. Jednotlivé vzorky bylo potřeba nejprve všechny označit (očíslovat) pro lepší orientaci (Obr. 58).

Ocel **X5CrNi18-10** je vysokolegovaná austenitická korozivzdorná ocel. Označení oceli vychází z evropského značení dle normy **ČSN EN 10027-1** [36]. Písmeno **X** značí, že střední obsah nejméně jednoho legujícího prvku je ≥ 5 %. Číslo **5** představuje stonásobek střední hodnoty rozsahu předepsaného pro obsah uhlíku (tedy 0,05 % C). **Cr** a **Ni** jsou značky charakteristických legujících prvků (chrom, nikl), které doplňují čísla oddělená spojovací čárkou (v tomto případě **18-10**). Ta odpovídají střednímu obsahu příslušného prvku zaokrouhlenému na nejbližší vyšší číslo (tedy 18 % Cr a **10** % Ni).

Ocel **S355N** patří mezi konstrukční oceli. Označení oceli vychází rovněž z evropského značení dle normy ČSN EN 10027-1. Písmeno **S** symbolizuje, že se jedná o konstrukční ocel. Následující **trojčíslí** značí minimální stanovenou mez kluzu $R_e [MPa = N \cdot mm^{-2}]$ pro nejmenší rozsah tloušťky výrobku (zde 355 MPa). Písmeno **N** patří do skupiny přídavných symbolů a značí normalizačně vyžíhanou nebo normalizačně válcovanou ocel.

Obr. 58 - Označení jednotlivých vzorků

4.3.1. Přesné určení chemického složení vzorků

Pro přesnou analýzu chemického složení vzorků byl využit jiskrový optický emisní spektrometr Q4 TASMAN (viz kapitola 4.2.7). Posoudit správné chemické složení zvolených ocelí je možné s pomocí norem, které přípustné chemické složení definují.

Norma ČSN EN 10088-2 [37] předepisuje přípustné chemické složení oceli X5CrNi18-10. Chemické složení, které definuje ocel S355N vychází z normy ČSN EN 10025-3 [38].

Z naměřených hodnot pro ocel X5CrNi18-10 (Tab. 7) je patrné, že není dodržen přípustný obsah **niklu** a **fosforu**. Obsah fosforu je překročen pouze nepatrně o 0,002 hm. %. Norma připouští nejnižší možný obsah niklu 8 hm. %, nicméně naměřená hodnota je téměř o 1 hm. % nižší. Obsah **síry** v oceli nelze zkontrolovat, protože přístroj nezměří nižší hodnoty než 0,15 hm. % (přípustný obsah je max. 0,015 hm. %).

X5CrNi18-10		Obsahy jednotlivých prvků [hm. %]						
Prvek	С	Si	Mn	Ni	Р	S	Cr	N
ČON EN 40000 2	Max.	Max.	Max.	8,00 -	Max.	Max.	17,50 -	Max.
C3N EN 10000-2	0,07	1,00	2,00	10,50	0,045	0,015	19,50	0,10
Q4 TASMAN	0,029	0,490	1,506	7,092	0,047	<0,15	18,55	0,093

Tab. 7 – Chemické složení oceli X5CrNi18-10

Konstrukční ocel S355N (Tab. 8) vykazuje pouze nepatrně vyšší obsah **dusíku** o 0,007 hm. %, než připouští norma. Z naměřených dat nelze ověřit dodržení maximálního množství **síry** v oceli (stejné jako u oceli X5CrNi18-10).

Tab. 8 - Chemické složení oceli S355

S355N	Obsahy jednotlivých prvků [hm. %]						
Prvek	С	Si	Mn	Ni	Р	S	Cr
ČSN EN 10025-3	Max.	Max.	0,90 -	Max.	Max.	Max.	Max.
00N EN 10023-3	0,20	0,50	1,65	0,50	0,030	0,025	0,30
Q4 TASMAN	0,172	0,218	1,328	0,036	<0,005	<0,15	0,045
Prvek	Мо	V	N	Nb	Ti	AI	Си
ČEN EN 10025 2	Max.	Max.	Max.	Max.	Max.	Min.	Max.
CON EN 10023-3	0,10	0,12	0,015	0,05	0,05	0,02	0,55
Q4 TASMAN	0,013	<0,005	0,022	0,025	<0,001	0,025	0,078

Celkové naměřené hodnoty chemického složení jsou shrnuty v **příloze 1** pro ocel X5CrNi18-10 a v **příloze 2** pro ocel S355N. Pro chemickou analýzu byly vyčleněny dva připravené vzorky.

4.3.2. Měření drsnosti povrchu vzorků a broušení

Aby bylo možné porovnat naměřené hodnoty emisivity mezi sebou, je třeba, aby povrchy měřených vzorků vykazovaly stejnou nebo velmi podobnou drsnost, která je jedním z faktorů, který může ovlivnit výslednou hodnotu emisivity. Z tohoto důvodu bylo nutné provést první kontrolní měření drsnosti na jednotlivých vzorcích (Obr. 13 viz kapitola 4.2.8). Měření drsnosti bylo realizováno s použitím **drsnoměru Mitutoyo Surftest SJ-301** (viz kapitola 4.2.8). Navržené dráhy strategie snímání pro první měření reflektují zvolený způsob dělení materiálu (Obr. 59). Po prvním měření (Tab. 9) lze vidět, že variabilita parametrů Ra a Rz je u zkoumaných vzorků poměrně vysoká.

Korozivzdorná	Korozivzdorná ocel X5CrNi18-10			Konstrukční ocel S355N		
Č. vzorku	Ra [μm]	<i>R</i> <i>z</i> [μm]	Č. vzorku	Ra [μm]	<i>R</i> <i>z</i> [μm]	
1	2,93	14,04	1	3,56	18,31	
2	1,76	9,17	2	5,27	24,86	
3	1,59	7,72	3	4,53	19,48	
4	2,00	10,85	4	3,25	17,94	
5	2,12	9,48	5	6,58	32,79	
6	1,78	9,49	6	3,92	21,75	
7	0,81	5,13	7	1,96	11,31	
8	1,73	8,19	8	3,46	18,69	
9	1,87	9,49	9	4,30	20,85	
Průměr	1,84	9,28	Průměr	4,09	20,66	
Max. hodnota	2,93	14,04	Max. hodnota	6,58	32,79	
Min. hodnota	0,81	5,13	Min. hodnota	1,96	11,31	
Variační rozpětí	2,12	8,91	Variační rozpětí	4,62	21,48	
Směrodatná	0.521	2.263	Směrodatná	1.237	5.494	
odchylka	-,	_,	odchylka	- ,—	-,	
Rozptyl	0,271	5,123	Rozptyl	1,531	30,180	

Tab. 9 - Kontrolní měření drsnosti po dělení materiálu

Obr. 59 - Metodika měření drsnosti po dělení materiálu na soustruhu (pozn.: dráhy snímače vyznačeny červeně)

Obr. 60 - Metodika měření drsnosti po broušení (pozn.: dráhy snímače vyznačeny červeně)

Aby se snížil rozptyl hodnot drsnosti povrchu u použitých vzorků, byl jejich povrch přebroušen. Pro broušení vzorků byla použita **metalografická bruska** a brusné šedočerné papíry SiC (karbid křemíku) o zrnitostech 120, 180 a 500. Vlastní broušení bylo prováděno za mokra (tedy za přítomnosti vody). Prvotní zarovnávací úběry byly u korozivzdorné oceli aplikovány 3 až 5x po 90 sekundách. Některé drsnější vzorky musely být broušeny vícekrát (dle vizuální kontroly). Parametry broušení shrnuje Tab. 10.

Tab. 1	0 - P	arametry	broušení	vzorků
--------	-------	----------	----------	--------

Krok č.	X5CrNi18-10	S355N
1	3 – 5x SiC 120	1x SiC 180
2	1x SiC 500	1x SiC 500
Frekvence otáčení	300 ot/min	300 ot/min
Čas jednoho broušení	90 s	90 s

U druhého kontrolního měření (Tab. 11) drsnosti došlo k modifikaci strategie snímání profilu povrchu dle Obr. 60. Variační rozpětí naměřených parametrů Ra a Rz nepřesahuje 1 µm, což lze oproti výchozímu stavu považovat za dostatečné. Rozdíly v naměřených hodnotách se podařilo téměř o řád snížit. Za povšimnutí stojí minimální naměřené parametry Ra a Rz, které jsou u obou druhů ocelí identické. Maximální

hodnoty se liší pouze nepatrně. Pro vlastní měření emisivity lze obě sady vzorků prohlásit za dostatečně "podobné".

Korozivzdorná ocel X5CrNi18-10		Konstrukční ocel S355N			
Č. vzorku	Ra [μm]	Rz [μm]	Č. vzorku	Ra [μm]	Rz [μm]
1	0,16	1,12	1	0,09	0,68
2	0,08	0,59	2	0,08	0,59
3	0,09	0,66	3	0,10	0,78
4	0,14	1,28	4	0,13	0,87
5	0,08	0,64	5	0,10	0,73
6	0,15	1,10	6	0,10	0,75
7	0,17	1,25	7	0,16	1,02
8	0,15	1,16	8	0,14	0,94
9	0,18	1,23	9	0,12	0,9
Průměr	0,13	1,00	Průměr	0,11	0,81
Max. hodnota	0,18	1,28	Max. hodnota	0,16	1,02
Min. hodnota	0,08	0,59	Min. hodnota	0,08	0,59
Variační rozpětí	0,10	0,69	Variační rozpětí	0,08	0,43
Směrodatná	0.037	0.270	Směrodatná	0.024	0.129
odchylka	0,037 0,27	0,210	odchylka	3,021	0,120
Rozptyl	0,001	0,69	Rozptyl	0,001	0,43

Záznamové archy naměřených hodnot drsnosti jsou součástí práce a jedná se o **přílohy 3**, **4**, **5** a **6**.

4.3.3. Navaření kontrolních termočlánků

Posledním krokem v přípravě vzorků je navaření termočlánků k povrchu s modifikovanou drsností (Obr. 61). K aktuálnímu měřenému vzorku byly pomocí kondenzátorového zdroje BT-2 postupně navařeny dva termočlánky typu K (viz kapitoly 4.2.2 a 4.2.3). Umístění termočlánků na měřený povrch předurčuje vyhodnocení emisivity pomocí **měřicí funkce bod**. Pokud by byla použita funkce oblast, která by zachycovala celý měřený povrch, došlo by k znehodnocení měření vlastními termočlánky. Kabeláž termočlánků zachycená v termogramu má nižší teploty než měřený povrch. Vyhodnocovaná průměrná povrchová teplota by tak byla řádově nižší o několik desítek stupňů (Obr. 63). Přesné umístění termočlánku lze na termogramu poměrně snadno lokalizovat, což zajistí, že měřicí bod bude umístěn v jeho bezprostřední blízkosti. Aby všechna měření proběhla za stejných podmínek, byly jednotlivé termočlánky umístěny vždy na stejně definovaná místa (Obr. 62).

Obr. 61 - Vzorek z oceli X5CrNi18-10 s navařenými termočlánky

Obr. 62 - Schéma navaření termočlánků

Obr. 63 - Rozdíl ve vyhodnocení teploty při použití měřicích funkcí bod a oblast

4.4. Měření odražené zdánlivé teploty

Měření odražené zdánlivé teploty $T_{odr.}$ reflektuje **odrazovou metodu** dle ČSN ISO 18434-1 [14]. Jako IČ reflektor posloužil přípravek vlastní výroby z kartonu a hliníkové folie (alobalu) (Obr. 64). Přípravek je navržen tak, aby se nechal komfortně ustavit do místa před ocelový vzorek v měřicím tunelu. Vyhodnocení odražené zdánlivé teploty probíhalo na počátku každého měřicího dne v konfiguraci normálového směru snímání (Obr. 65). **Příloha 7** shrnuje všechny naměřené hodnoty odražené zdánlivé teploty. Pro vyhodnocení emisivity byly použity průměrné hodnoty z Tab. 12. Chybná hodnota odražené zdánlivé teploty dokáže znehodnotit měření teploty zejména při nízké emisivitě povrchu, kdy je vysoká odrazivost.

Obr. 64 - IČ Reflektor z kartonu a hliníkové folie

Obr. 65 - Plošné měření odražené zdánlivé teploty

	1 5
Datum měření	Ø T _{odr.} [° C]
30.11.2021	23,1
2.12.2021	24,0
3.12.2021	25,0
7.12.2021	25,6
9.12.2021	24,5

Tab. 12 - Naměřené hodnoty odražené zdánlivé teploty

Při měření odražené zdánlivé teploty bylo možné pozorovat, že pouhá přítomnost lidského těla za termokamerou způsobuje fluktuaci teploty na displeji termokamery v rozmezí \pm 1 °C. Vhodné je spustit **časosběrné snímání**, odstoupit od měřicí sestavy a tím alespoň částečně eliminovat vliv lidského těla, které se "odráží" od měřeného objektu.

4.5. Kontrolní měření relativní vlhkosti a okolní teploty

Dalšími parametry, které je třeba kompenzovat během měření termokamerou, jsou **relativní vlhkost** a **atmosférická teplota**. K monitorování stavu relativní vlhkosti a teploty byl použit modul z bezdrátové domácí meteostanice (Obr. 66). Teplota okolí byla kontrolována pro porovnání i na termostatu vytápění laboratoře. Naměřené hodnoty pro jednotlivé dny jsou uvedeny v Tab. 13.

Obr. 66 - Modul pro měření relativní vlhkosti a teploty okolí

Datum měření	Atmosférická teplota [°C]	Relativní vlhkost [%]
30.11.2021	23	35
2.12.2021	23	35
3.12.2021	23	33
7.12.2021	23	35
9.12.2021	23	34

Tab. 13 - Naměřené hodnoty relativní vlhkosti a atmosférické teploty

Z naměřených hodnot je patrné, že atmosférická teplota v laboratoři byla díky nepřetržité termostatické regulaci **konstantní**. Naměřené hodnoty relativní vlhkosti lze považovat rovněž za **stálé**. Maximální rozdíl 2 % byl naměřen dne 3.12.2021. Důležitý je fakt, že měřená relativní vlhkost nevykazuje odchylky v řádu desítek %. Zmíněná 2 % mají zanedbatelný vliv při vyhodnocení povrchové teploty.

4.6. Kontrola zvolené vzdálenosti měření

Sestava **detektor** a **objektiv** společně definují okamžité zorné pole (IFOV), které je výchozím údajem pro navržení vhodné velikosti měřeného objektu při známé vzdálenosti měření objekt – objektiv (nebo naopak). Pro výpočet je užito postupu od společnosti FLIR Systems, inc., který byl otištěn v odborném časopise DPS Elektronika od A do Z [39].

Použitá termokamera FLIR E95 má rozlišení detektoru **464 x 348 pixelů** a příslušný objektiv má zorné pole charakterizované zornými úhly (HAOV x VAOV) **24° x 18°**. Navržená vzdálenost měření je **1 m**.

Výpočet okamžitého zorného pole:

 $IFOV [mrad] = \frac{HAOV}{počet pixelů detektoru v horizontálním směru} \cdot \frac{\pi}{180} \cdot 1000$ (18) $IFOV [mrad] = \frac{24}{464} \cdot \frac{\pi}{180} \cdot 1000$ $IFOV \doteq 0,90 mrad$

V tomto kroku lze ověřit správnost výpočtu podle technické specifikace termokamery dle Tab. 1. Dále je potřeba vyjádřit okamžité zorné pole v milimetrech:

$$IFOV \ [mm] = \frac{IFOV \ [mrad]}{1000} \cdot l \tag{19}$$

kde: *l* [*mm*] je navržená vzdálenost měření.

IFOV
$$[mm] = \frac{0.90}{1000} \cdot 1000$$

IFOV = **0**.9 mm

Hodnota 0,9 mm představuje reálné pokrytí jednoho pixelu (tedy čtverec o hraně 0,9 mm) na vzdálenost měření 1 m. U termokamery s mikrobolometrickým FPA senzorem prakticky není možné z řady důvodů přesně určit povrchovou teplotu jedním pixelem. Povrchová teplota je termokamerou počítána jako průměrná hodnota z matice pixelů 3 x 3 až 5 x 5. Reálná velikost hrany nejmenšího měřitelného čtverce na vzdálenost 1 m je vypočtena jako trojnásobek parametru IFOV [mm] (tedy 2,7 mm). **Velikost měřené plochy vzorku je pro navrženou vzdálenost měření 1 m dostatečná** (viz kapitola 4.3). Takovéto výpočty nacházejí uplatnění zejména v praxi, kdy je potřeba měřit malé objekty z větších vzdáleností.

4.7. Teplotní cykly vzorků

Hodnoty emisivity byly měřeny v závislosti na změně teploty při ochlazování z vyšší teploty vzorku. Nastavené teplotní cykly (ohřevu a následného ochlazení) použitých ocelových vzorků vykazují drobné nuance (Obr. 67). Průměrná rychlost ohřevu obou ocelí je **1**, **13** °*C* · *s*⁻¹ (ohřev na teplotu 700 °C + doba prohřátí na teplotě 10 minut). Ačkoli je průměrná rychlost ohřevu stejná, vykazuje křivka pro ocel S355N větší teplotní spád v rozsahu teplot 200 až 600 °C. Průměrná rychlost ochlazování pro ocel X5CrNi18-10 je **0**, **28** °*C* · *s*⁻¹ a pro ocel S355N **0**, **33** °*C* · *s*⁻¹. Fakt, že vzorky z konstrukční oceli chladnou rychleji dokládá i počet zaznamenaných termogramů během chladnutí v rozsahu teplot 500 až 50 °C (přibližně 200 u konstrukční oceli a 230 u korozivzdorné oceli). Rozdíly tvaru křivek jsou způsobeny různou tepelnou vodivostí λ_t zvolených ocelí (**15** *W* · *m*⁻¹ · *K*⁻¹ pro X5CrNi18-10 a **53** *W* · *m*⁻¹ · *K*⁻¹ pro S355N). **Korozivzdorná ocel je horším vodičem tepla**. Na jednotlivých křivkách teplotních cyklů lze vidět nepatrný zlom na ochlazovací části. Zlom na křivce odpovídá okamžiku upnutí vzorku do přípravku, který má pokojovou teplotu (intenzivnější odvod tepla). Za tímto bodem lze pozorovat nepatrně větší strmost křivek (větší teplotní spád).

Obr. 67 - Srovnání teplotních cyklů vzorků

4.8. Měření a vyhodnocení emisivity

Vlastní měření emisivity začíná ustavením upínacího přípravku s ohřátým vzorkem do měřicího tunelu a spuštěním **časosběrného snímání** (interval snímání 10 s) na termokameře. Jak již bylo zmíněno v úvodu experimentální části, emisivita je měřena **kontaktní metodou** dle normy ČSN ISO18434-1 [14]. Aby bylo možné zjistit emisivitu měřeného povrchu, je třeba pracovat s porovnávací referencí v podobě kontaktního měření povrchové teploty. Kontaktně je teplota měřena souběžně s pořizováním termogramů pomocí měřicí ústředny **Ahlborn Almemo 5690-2** a dvou termočlánků typu K navařených k měřenému povrchu vzorku (viz kapitoly 4.2.3 a 4.3.3).

Před zahájením měření je velmi důležité **sjednocení času ve vnitřním** SW termokamery s časem v měřicí ústředně, aby bylo možné zpětně přiřadit konkrétní teploty jednotlivým termogramům. Ve vnitřním SW termokamery je dále důležité nastavit emisivitu na hodnotu 1,0 (dle normativního postupu).

Vyhodnocení výsledků proběhlo za pomoci SW **Flir Tools** a **MS Excel.** Flir Tools umožňuje libovolně pracovat s pořízenými termogramy. Po přiřazení teploty konkrétnímu termogramu lze přistoupit k umístění **měřicího bodu** do bezprostřední blízkosti příslušného termočlánku (Obr. 68). Následně je potřeba vyhledat **nejbližší vyšší** a **nižší teplotu** na základě postupných změn hodnoty emisivity (tzv. iterací). Tím, že se určí dva nejblíže ležící body, lze pomocí metody **lineární interpolace** dopočítat hledanou hodnotu emisivity.

Obr. 68 - Prostředí SW FLIR Tools a měřicí funkce bod v blízkosti termočlánku

Obr. 69 - Určení emisivity pomocí lineární interpolace

Dle Obr. 69 je odvozen výpočtový vztah pro výpočet emisivity ε na základě známých bodů A, B a teploty T. Pro výpočet je užito **podobnosti trojúhelníků** ABC a EBD. Tangens úhlu beta musí být totožný pro oba zmíněné trojúhelníky:

$$\tan\beta = \frac{\varepsilon_2 - \varepsilon_1}{T_1 - T_2} = \frac{\varepsilon - \varepsilon_1}{T_1 - T}$$
(20)

kde: ε [–] je hledaná hodnota emisivity pro kontaktně měřenou teplotu *T* [°*C*] pomocí termočlánku, *T*₁ [°*C*] je nejbližší vyšší teplota pro hodnotu emisivity ε_1 [–] a *T*₂ [°*C*] je nejbližší nižší teplota pro hodnotu emisivity ε_2 [–]

Předpis rovnice pro výpočet hledané hodnoty emisivity lze pak zapsat ve tvaru:

$$\varepsilon = \varepsilon_1 + \frac{\varepsilon_2 - \varepsilon_1}{T_1 - T_2} \cdot (T_1 - T)$$
(21)

Celkem experiment zahrnuje **čtrnáct měření** při definovaných směrech snímání povrchů vzorků (Obr. 45 viz kapitola 4.1.2). Přehled příloh s naměřenými a vyhodnocenými daty zachycuje Tab. 14. Z celkového počtu dvaceti vzorků byly dva použity k vyhodnocení chemického složení ocelí a zbylé vyhrazeny pro vlastní měření emisivity. Během měření vyvstaly určité komplikace, díky kterým musely být některé úhly (konfigurace) měřeny dvakrát.

Tab. 14 - Přehled provedených měření

Konstrukční ocel S355N					
Měření č.	Konfigurace snímání povrchu	Naměřená a vyhodnocená data	Č. vzorku		
1	0° normálový směr	Příloha 8	2		
2	15° směrem dolů	Příloha 9	3		
3	30° směrem dolů	Příloha 10	4		
4	45° směrem dolů	Příloha 11	5		
5	15° směrem nahoru	Příloha 12	6		
6	30° směrem nahoru	Příloha 13	7		
7	45° směrem nahoru	Příloha 14	8		
Korozivzdorná ocel X5CrNi18-10					
	KUIUZIVZUUIIIa	0Cel X5C/NI18-10			
Měření č.	Korozivzdoma Konfigurace snímání povrchu	Naměřená a vyhodnocená data	Č. vzorku		
Měření č. 1	Korozivzdoma Konfigurace snímání povrchu 0° normálový směr	Naměřená a vyhodnocená data Příloha 15	Č. vzorku		
Měření č. 1 2	Korozivzdoma Konfigurace snímání povrchu 0° normálový směr 15° směrem dolů	Naměřená a vyhodnocená data Příloha 15 Příloha 16	Č. vzorku 1 2		
Měření č. 1 2 3	Korozivzdoma Konfigurace snímání povrchu 0° normálový směr 15° směrem dolů 30° směrem dolů	Naměřená a vyhodnocená data Příloha 15 Příloha 16 Příloha 17	Č. vzorku 1 2 3		
Měření č. 1 2 3 4	Korozívzdomá (Konfigurace snímání povrchu 0° normálový směr 15° směrem dolů 30° směrem dolů 45° směrem dolů	Naměřená a vyhodnocená data Příloha 15 Příloha 16 Příloha 17 Příloha 18	Č. vzorku 1 2 3 4		
Měření č. 1 2 3 4 5	Korozívzdomá (Konfigurace snímání povrchu 0° normálový směr 15° směrem dolů 30° směrem dolů 45° směrem dolů 15° směrem nahoru	Naměřená a vyhodnocená data Příloha 15 Příloha 16 Příloha 17 Příloha 18 Příloha 19	Č. vzorku 1 2 3 4 5		
Měření č. 1 2 3 4 5 6	Korozívzdomá (Konfigurace snímání povrchu 0° normálový směr 15° směrem dolů 30° směrem dolů 45° směrem dolů 15° směrem nahoru 30° směrem nahoru	Naměřená a vyhodnocená data Příloha 15 Příloha 16 Příloha 17 Příloha 18 Příloha 19 Příloha 20	Č. vzorku 1 2 3 4 5 7		

4.9. Interpretace výsledků

Aby byly naměřené hodnoty lépe interpretovatelné a bylo možné popsat jednotlivé rozdíly v provedených měřeních, jsou sestrojeny dva diagramy. Diagram na Obr. 70 reprezentuje uskutečněná měření na vzorcích z korozivzdorné oceli **X5CrNi18-10**. Různé konfigurace měření provedené na vzorcích z konstrukční oceli **S355N** naproti tomu zachycuje diagram na Obr. 71. Důležité je zejména zdůraznit, že výsledné diagramy zachycují **emisivitu jako funkci povrchové teploty vzorku při konkrétním definovaném úhlu snímání**. Jednotlivé úhly natočení jsou od sebe odlišeny různými barvami, aby nedošlo k vzájemné záměně a chybě při vlastním popisu naměřených dat. Každý pořízený termogram je v diagramu reprezentován jedním bodem. Série bodů z konkrétní úhlové konfigurace snímání je následně proložena polynomem šestého stupně.

Ačkoliv uskutečněná měření začínala i při teplotách vyšších než 500 °C, jsou výsledné hodnoty sjednoceny a omezeny na teplotní interval **50 až 500 °C**.

Obr. 70 - Grafické znázornění výsledků měření pro korozivzdornou ocel X5CrNi18-10

Obr. 71 - Grafické znázornění výsledků měření pro konstrukční ocel S355N

68

Korozivzdorná ocel X5CrNi18-10

Z Obr. 70 je viditelné, že všechny úhlové konfigurace snímání povrchu vykazují obdobné chování v rozsahu teplot 50 až 100 °C. V tomto intervalu lze pozorovat nárůst emisivity s rostoucí teplotou. Normálový směr snímání povrchu vzorku má v intervalu 100 až 500 °C mírně rostoucí trend. Předpokladem před zahájením měření bylo, že dvojice shodných úhlů (např. 15° směrem dolů a 15° směrem nahoru) budou mít stejné nebo velmi podobné průběhy emisivity v závislosti na teplotě. Tento předpoklad lze na základě naměřených dat vyvrátit. Křivky pro **úhly 15°, 30° a 45° směrem nahoru** májí v intervalu 100 až 500 °C **klesající trend** (Obr. 72). Zároveň lze prohlásit, že **hodnota emisivity s rostoucí teplotou klesá tím více, čím větší je úhel natočení vzorku směrem nahoru**.

Obr. 72 - Naměřené hodnoty pro úhly 15°, 30° a 45° směrem nahoru

Emisivita při úhlech snímání **15° a 45° směrem dolů** má naproti tomu obdobně jako normálový směr spíše rostoucí trend. V intervalu 100 až 500 °C lze pozorovat téměř **ekvidistantní průběhy křivek pro normálový směr a úhly 15° a 45° směrem dolů** (Obr. 73). Křivka pro **úhel 30° směrem dolů** je vyobrazena na Obr. 75. Naměřené hodnoty emisivity pro všechny zvolené úhlové konfigurace v rozsahu teplot 50 až 500 °C leží v intervalu **0,079 až 0,256** (tedy 7,9 % až 25,6 %). Variační rozpětí emisivity všech měřených konfigurací je 0,177.

Obr. 73 - Naměřené hodnoty pro normálový směr a úhly 15° a 45° směrem dolů

Obr. 74 graficky znázorňuje naměřené hodnoty v souřadnicích **Emisivita – Úhel snímání povrchu**. Tento diagram vhodně znázorňuje rozdíly mezi jednotlivými polorovinami, ve kterých leží příslušné úhlové konfigurace měření.

KOROZIVZDORNÁ OCEL X5CrNi18-10

Obr. 74 - Závislost emisivity na úhlu snímání povrchu pro ocel X5CrNi18-10

Na Obr. 74 jsou viditelné dvě úhlové konfigurace, při kterých se emisivita v teplotním intervalu 100 až 500 °C blíží **konstantnímu průběhu**. Jednou z těchto konfigurací je směr blízký úhlu **30° směrem dolů**, který se shodou okolností podařilo změřit (Obr. 75). Druhý úhel, který leží mimo měřené konfigurace, je blízký hodnotě 10° směrem nahoru. Pokud by se měřila povrchová teplota termokamerou v těchto dvou zmíněných směrech, bylo by měření přesnější v širším teplotním intervalu bez potřeby časté aktualizace hodnoty emisivity.

Obr. 75 - Naměřené hodnoty pro úhel 30° směrem dolů

Konstrukční ocel S355N

Naměřené hodnoty emisivity pro ocel S355N shrnuje grafické vyobrazení na Obr. 71. Vesměs lze říct, že emisivita u jednotlivých vzorků narůstá více či méně s rostoucí teplotou. Některé měřené konfigurace vykazují stagnaci až mírný pokles hodnoty emisivity (Obr. 76) zejména při vyšších teplotách 400 až 500 °C (0°, 15° směrem nahoru i dolů a 30° směrem dolů). Normálová konfigurace snímání je zajímavá z hlediska nejnižšího variačního rozpětí hodnot emisivity ze všech měřených úhlů (Obr. 77). Křivky úhlů 45° směrem dolů a 45° směrem nahoru rostou nejstrměji ze všech měřených konfigurací na celém měřeném teplotním rozsahu (Obr. 78).

Naměřené hodnoty emisivity pro všechny zvolené úhlové konfigurace v rozsahu teplot 50 až 500 °C leží v intervalu **0,697 až 0,915** (tedy 69,7 % až 91,5 %). Variační rozpětí

emisivity všech měřených konfigurací je 0,218. Hodnoty emisivity jsou stejně jako u korozivzdorné oceli asymetricky rozložené vzhledem k povrchové normále (úhel 0°).

Obr. 76 - Naměřené hodnoty pro normálový směr a úhly 15° směrem dolů i nahoru a 30 °směrem dolů

Obr. 77 - Závislost emisivity na úhlu snímání povrchu pro ocel S355N

Obr. 78 - Naměřené hodnoty pro úhly 45° směrem dolů a nahoru

Porovnání obou druhů ocelí

Při porovnání Obr. 74 a 77 je na první pohled patrné, že nejvyšší hodnoty emisivity jsou u obou druhů ocelí naměřeny při natočení **vzorku směrem nahoru**. Zajímavé je, že nejvyšší hodnota byla u konstrukční oceli naměřena při vysoké teplotě 500 °C a u korozivzdorné oceli naopak při teplotě přibližně 80 °C. Nejnižší hodnoty emisivity lze pak u obou použitých ocelí pozorovat při natočení **vzorku směrem dolů** za teploty 50 °C.

V závěrečném porovnání je potřeba zmínit, že měření emisivity je u korozivzdorné oceli více zatíženo vlivem odražené zdánlivé teploty (u nepropustných materiálů platí, že čím nižší emisivita je, tím vyšší je odrazivost a naopak). Odraženou zdánlivou teplotu je proto potřeba vždy přesně změřit a korigovat. Konstrukční ocel během ohřevu a chladnutí reaguje s okolní atmosférou za vzniku okují (oxidové vrstvy). Okuje obecně zvyšují hodnotu emisivity, která je u provedených měření přibližně 3 až 11 -krát vyšší než u korozivzdorné oceli (při "stejné" počáteční drsnosti povrchu). Variační rozpětí celkového souboru naměřených hodnot emisivity v intervalu 50 až 500 °C je u konstrukční oceli o 0,041 vyšší.

4.10. Závěr

Předložená diplomová práce navazuje na bakalářskou práci **Stanovení závislosti** emisivity na úhlu měření pro různé teploty povrchu materiálů z roku 2020 [1].

Primárním cílem diplomové práce bylo **zmapovat vliv úhlu měření na emisivitu při různých povrchových teplotách** u vysokolegované korozivzdorné oceli X5CrNi18-10 a konstrukční oceli S355N. Pro měření emisivity byl navržen a odzkoušen experiment založený na principu **kontaktní metody** dle normy ČSN ISO 18434-1 [14]. Emisivita byla měřena ruční kvantitativní termokamerou **Flir E95** se spektrálním rozsahem **7,5 až 14 µm** u chladnoucích vzorků v teplotním intervalu **50 až 500 °C**. Celkem bylo proměřeno **sedm vzorků z korozivzdorné oceli** a **sedm z konstrukční oceli**. Každý vzorek reprezentoval jednu zvolenou úhlovou konfiguraci (viz kapitola 4.1.2). **Podrobná interpretace výsledků experimentálního měření se nachází v kapitole 4.9**.

Při vypracování literární rešerše se nezdařilo vyhledat zdroje, které by řešily problematiku ovlivnění emisivity úhlem měření u ocelí X5CrNi18-10 a S355N. Z tohoto důvodu nelze realizovat konfrontaci s naměřenými výsledky a provést srovnání. Po prostudování dostupných zdrojů je možné konstatovat, že emisivita může být obecně ovlivněna mnohými faktory (viz kapitola 3). Z tohoto důvodu by jakékoliv srovnání s jinými prováděnými experimenty bylo jen velmi obtížné. Stačí změnit jeden z ovlivňujících faktorů a měřené výsledky mohou být znatelně odlišné.

V návaznosti na provedený experiment by bylo vhodné proměřit úhlovou konfiguraci **10° směrem nahoru** u korozivzdorné oceli X5CrNi18-10 a ověřit tak, zda se emisivita v závislosti na povrchové teplotě blíží konstantnímu průběhu na teplotním rozsahu 50 až 500 °C. Důležitou podmínkou je však dodržení obdobných parametrů měření.

Veškerá data (**pořízené termogramy**, **datové soubory s kontaktně naměřenými** teplotami, vyhodnocení emisivity pro jednotlivé úhlové konfigurace a fotodokumentace měření) jsou zaznamenána na přiloženém CD disku.

5. Použité zdroje

- [1] NĚMEC, T. Stanovení závislosti emisivity na úhlu měření pro různé teploty povrchu materiálů. Bakalářská práce, ČVUT v Praze, FS, Praha, 2020.
- [2] VOLLMER, Michael a Klaus-Peter MÖLLMANN. Infrared thermal imaging: fundamentals, research and applications. Weinheim: Wiley-VCH, 2010. ISBN 978-3-527-40717-0
- [3] SOVA, Jan a Karel KADLEC. Termokamery a pyrometry-princip, měření, vlastnosti a využití. *All For Power* [online]. 2014, (1), 11 [cit. 2021-10-17]. ISSN 1802-8535. Dostupné z: http://old.allforpower.cz/UserFiles/file/termokamery_1.pdf
- [4] KADLEC, Karel. Teoretické základy bezdotykového měření teploty: (část 1).
 AUTOMA [online]. 2014, 12(2), 3 [cit. 2021-10-17]. ISSN 1210-9592. Dostupné
 z: <u>https://www.automa.cz/Aton/FileRepository/pdf_articles/52890.pdf</u>
- [5] MILKINA, Waldemar a Sebastian DUDZIK. Infrared thermography: errors and uncertainties. UK: John Wiley, 2009, 222 s. ISBN 978-0-470-74718-6.
- [6] ČSN ISO 10878: Nedestruktivní zkoušení Infračervená termografie Slovník.
 Praha: ÚNMZ, 2017.
- [7] Black Body Target (BBT). SLTMicrowave [online]. Gandhinagar (Gujarat), India: Antenna Test & Measurement Society, 2017 [cit. 2022-03-29]. Dostupné z: <u>https://www.sltmicrowave.com/publication.html</u>
- [8] VAVILOV, Vladimir a Douglas BURLEIGH. Infrared Thermography and Thermal Nondestructive Testing [online]. Cham: Springer International Publishing, 2020
 [cit. 2022-04-09]. ISBN 978-3-030-48001-1. Dostupné z: doi:10.1007/978-3-030-48002-8
- [9] What Are IR Camera Lenses Made Of?. *Teledyne Flir* [online]. April 30, 2021 [cit. 2022-05-01]. Dostupné z: <u>https://www.flir.com/discover/rd-science/what-are-ir-camera-lenses-made-of/</u>
- [10] Fluke [online]. [cit. 2022-05-01]. Dostupné z: https://www.fluke.com/cs-cz
- [11] Workswell: Infrared cameras and systems [online]. [cit. 2022-05-01]. Dostupné
 z: <u>https://workswell.cz/</u>

- [12] SOVA, Jan a Jan KOVÁŘ. Termokamery a pyrometry. AUTOMA [online]. 2014,
 (2), 7 [cit. 2022-04-03]. ISSN 1210-9592. Dostupné z: <u>https://www.automa.cz/Aton/FileRepository/pdf_articles/52891.pdf</u>
- [13] Infrared Thermography Physical Basics. InfraTec [online]. [cit. 2022-04-03]. Dostupné z: <u>https://www.infratec.eu/thermography/service-support/glossary/theory/</u>
- [14] ČSN ISO 18434-1: Monitorování stavu a diagnostika strojů Termografie Část
 1: Všeobecné postupy. Praha: ÚNMZ, 2009.
- [15] LANGHAMMER a TŮMOVÁ. Vlivy dílčích nejistot měření na celkovou nejistotu měření v infračervené termografii. *ElectroScope* [online]. 2013, 7(3), 4 [cit. 2022-04-03]. ISSN 1802-4564. Dostupné z: <u>http://ek702p10-</u> ket.fel.zcu.cz/images/PDF/Rocnik2013/Cislo3_2013/r7c3c8.pdf
- [16] GADE, Rikke a Thomas B. MOESLUND. Thermal cameras and applications: a survey. *Machine Vision and Applications* [online]. 2014, **25**(1), 245-262 [cit. 2022-04-07]. ISSN 0932-8092. Dostupné z: doi:10.1007/s00138-013-0570-5
- [17] What is NETD in a Thermal Camera?. Movitherm: Advanced thermography solutions [online]. Irvine, California, 2018 [cit. 2022-04-07]. Dostupné z: <u>https://movitherm.com/knowledgebase/netd-thermal-camera/</u>
- [18] STRAKA, Václav a Pavel PETRÁŇ. Způsoby a prostředky navýšení technických parametrů termografických radiometrických kamer s mikrobolometrickými detektory. *Řízení & údržba průmyslového podniku*. Český Těšín: Trade Media International, 2019, **12**(2), 7. ISSN 1803-4535.
- [19] Parametry termokamery. *Termokamera.cz* [online]. [cit. 2022-04-09]. Dostupné z: <u>http://www.termokamera.cz/princip-a-funkce/parametry-termokamery/</u>
- [20] Advanced Thermal Imaging Camera FLIR E96. *Teledyne FLIR* [online]. [cit. 2022-04-10]. Dostupné z: <u>https://www.flir.eu/products/e96/</u>
- [21] *Termokamery FLIR* [online]. [cit. 2022-05-10]. Dostupné z: https://www.termokamery-flir.cz/
- [22] JANDURA, Václav a Tomáš ZAVADIL. Nedestruktivní zkoušení základní kurz: podklady pro školení BASIC dle ISO 9712, SNT-TC-1A, pro školení IWI-IM dle IAB-41/ EWF-450/SV-01. Praha, 2020.

- [23] InfraTec: Thermography [online]. [cit. 2022-05-10]. Dostupné z: https://www.infratec.eu/thermography/
- [24] Tabulka emisivit. *Termokamera.cz* [online]. [cit. 2022-05-16]. Dostupné z: http://www.termokamera.cz/tabulka-emisivit/
- [25] Termovizní barva pro vysokoteplotní aplikace. LabIR: Důvěryhodný partner pro termovizní měření [online]. [cit. 2022-05-16]. Dostupné z: <u>https://paints.labir.cz/homepage/vysokoteplotni-barva</u>
- [26] ThermaSpot. TMV SS Termovize [online]. [cit. 2022-05-16]. Dostupné z: https://www.tmvss.cz/vyrobci/tmv-ss/thermaspot
- [27] How to Find the Correct Emissivity Setting for an Infrared Temperature Sensor. Calex Electronics Limited [online]. March 20, 2020 [cit. 2022-05-16]. Dostupné z: <u>https://www.calex.co.uk/find-correct-emissivity-setting-infrared-temperature-sensor/</u>
- [28] LIU, Y. F., Z. L. HU, D. H. SHI a K. YU. Experimental Investigation of Emissivity of Steel. Springer [online]. 16 April 2013, 11 [cit. 2022-05-16]. Dostupné z: doi:10.1007/s10765-013-1421-3
- [29] MACINTOSH, Gregory a Roy HUFF. Emissivity considerations for thermographic fieldwork: why table values don't work. SPIE [online]. 14 May 2018, 16 [cit. 2022-05-16]. Dostupné z: doi:10.1117/12.2304893
- [30] SHI, Deheng, Fenghui ZOU, Zunlue ZHU a Jinfeng SUN. Modeling the effect of surface oxidation on the normal spectral emissivity of steel 316L at 1.5µm over the temperatures ranging from 800 to 1100 K in air. *Infrared Physics & Technology* [online]. 2015, **71**, 370-377 [cit. 2022-05-16]. ISSN 13504495. Dostupné z: doi:10.1016/j.infrared.2015.05.012
- [31] JONES, P. D. a E. NISIPEANU. Spectral-directional emittance of thermally oxidized 316 stainless steel. *International Journal of Thermophysics* [online]. 1996, **17**(4), 967-978 [cit. 2022-05-17]. ISSN 0195-928X. Dostupné z: doi:10.1007/BF01439199
- [32] Termokamera FLIR E95. W-Technika Group s.r.o. [online]. [cit. 2022-03-06]. Dostupné z: <u>https://www.termokamery-flir.cz/termovizni-kamery-flir-e75-e85-e95/</u>

- [33] Zařízení pro navařování termočlánků BT 2. Svarservis Group [online]. [cit.
 2022-03-06]. Dostupné z: <u>https://www.svarservis.cz/produkty/prislusenstvi/</u>
- [34] Jiskrový spektrometr Q4 TASMAN. BAS Rudice s.r.o. [online]. Blansko [cit.
 2022-03-08]. Dostupné z: <u>https://www.bas.cz/bruker-quantron/q4_tasman.php</u>
- [35] Surftest SJ-301: Portable surface roughness tester. Berg Engineering & Sales, Company, Inc. [online]. Rolling Meadows, Illinois [cit. 2022-03-19]. Dostupné z: <u>https://www.bergeng.com/mm5/downloads/mti/sj301.pdf</u>
- [36] ČSN EN 10027-1: Systémy označování ocelí Část 1: Stavba značek oceli.
 Praha: ÚNMZ, 2017.
- [37] ČSN EN 10088-2: Korozivzdorné oceli Část 2: Technické dodací podmínky pro plechy a pásy z ocelí odolných proti korozi pro obecné použití. Praha: ÚNMZ, 2015.
- [38] ČSN EN 10025-3: Výrobky válcované za tepla z konstrukčních ocelí Část 3: Technické dodací podmínky pro normalizačně žíhané /normalizačně válcované svařitelné jemnozrnné konstrukční oceli. Praha: ÚNMZ, 2020.
- [39] Na jakou vzdálenost můžete měřit? Klíčem k odpovědi je optický poměr velikosti bodu. DPS Elektronika od A do Z [online]. Liberec: CADware, 2018, 9(6), 2 [cit. 2022-03-14]. ISSN 1805-5044. Dostupné z: <u>https://www.dps-az.cz/mereni/id:57601/na-jakou-vzdalenost-muzete-merit-klicem-k-odpovedi-je-opticky-pomer-velikosti-bodu</u>

6. Seznam obrázků

Obr. 1 -	Bezdotykové měření teploty pyrometrem a termokamerou [4]14
Obr. 2 -	Termogram (příklad využití termokamer v diagnostice strojů) [3]15
Obr. 3 -	Pásma elektromagnetického záření využívaná pro bezdotykové měření teploty [4]15
Obr. 4 -	Elementární zářivý tok $d\phi$ na elementu plochy povrchu zdroje záření dA je emitován v hemisféře (polokouli) nad dA [2] 16
Obr. 5 -	Lambertův zářič (konstantní hodnota intenzity záření ve všech směrech hemisféry vzhledem k povrchové normále) [2]17
Obr. 6 -	Různé typy dutin (modely černých těles) [5]17
Obr. 7 -	Strukturovaný povrch ploché desky simulující černé těleso [7]17
Obr. 8 -	Emisivita jako funkce vlnové délky pro jednotlivé zářiče [2]18
Obr. 9 -	Interakce tepelného záření s reálným tělesem [5]19
Obr. 10 ·	Blokové schéma termokamery [2]21
Obr. 11 ·	 Porovnání propustnosti germania a skla na bázi oxidu křemičitého pro infračervené záření na vlnových délkách 8 až 14 µm [9]
Obr. 12 ·	 Jednoduchý a třístupňový Peltierův článek [2]
Obr. 13 ·	 Příklady chladicích jednotek pracujících na principu Stirlingova oběhu [2]
Obr. 14	 Princip zobrazení pomocí skenovací termokamery [5]23
Obr. 15	 Princip zobrazení pomocí neskenovací termokamery [5]23
Obr. 16 ·	- Ruční termokamera Fluke Ti480 PRO [10] 24
Obr. 17 ·	• Ruční termokamera Fluke PTi120 [10] 24
Obr. 18 ·	Stacionární termokamera Workswell WIC Industrial [11]24
Obr. 19	Stacionární termokamera Fluke RSE600 [10] 24
Obr. 20 ·	 Princip bezkontaktního měření povrchové teploty [2] 25

Obr. 21 -	Závislost propustnosti atmosféry na vlnové délce λ a vzdálenosti měření d [5]
Obr. 22 -	Různé hodnoty odražené zdánlivé teploty v závislosti na míře "pomačkání" hliníkové folie IČ reflektoru [15] 27
Obr. 23 -	Závislost normálové emisivity na vlnové délce pro různé materiály [2] 28
Obr. 24 -	Ovlivnění kvality termogramu parametrem NETD [17] 29
Obr. 25 -	Vysvětlení pojmů zorné pole a zorný úhel [2] 30
Obr. 26 -	Vliv použití různých objektivů: 12° teleobjektiv, 24° standard, 45° širokoúhlý objektiv [2]
Obr. 27 -	Vliv rozlišení detektoru na vyhodnocení povrchové teploty [19] 31
Obr. 28 -	Znázornění okamžitého zorného pole IFOV [8]31
Obr. 29 -	Kontrola funkčnosti tepelného výměníku [3] 34
Obr. 30 -	Stav výšky hladiny kapaliny v nádrži [2] 34
Obr. 31 -	Kontrola teploty při pájení hliníku plamenem [12] 34
Obr. 32 -	Monitoring licí pánve [3]34
Obr. 33 -	Kontrola v procesu výroby pneumatik [23] 34
Obr. 34 -	Kontrola vyhřívání sedadel automobilu [23]34
Obr. 35 -	Barva pro termografické aplikace (LabIR Paint 1000 °C) [25]36
Obr. 36 -	Samolepicí fólie ThermaSpot [25] 36
Obr. 37 -	Závislost emisivity na úhlu měření povrchu pro různé teploty (LabIR Paint 1000 °C) [25] 36
Obr. 38 -	Závislost normálové emisivity na vlnové délce pro různé teploty (LabIR Paint 1000 °C) [25]
Obr. 39 -	Metoda využívající materiál s referenční emisivitou [27] 37
Obr. 40 -	Metoda využívající kontaktní měření teploty [27] 38
Obr. 41 -	Vliv chemického složení vybraných korozivzdorných ocelí na hodnotu emisivity (λ =1,5 µm) [28] 39

Obr. 42 -	Závislost normálové emisivity na teplotě pro vybrané materiály [2]40							
Obr. 43 -	Závislost emisivity vybraných korozivzdorných ocelí na době ohřevu [28] 41							
Obr. 44 -	Závislost emisivity korozivzdorné oceli X6CrNiMo17-12-2 na úhlu měřen vlnové délce při teplotě 500 °C [31]	ıí a 42						
Obr. 45 -	Blokové schéma uspořádání měření	45						
Obr. 46 -	Připravené pracoviště v laboratoři odporového svařování Ústa strojírenské technologie	avu 46						
Obr. 47 -	Termokamera Flir E95	47						
Obr. 48 -	Kondenzátorový svařovací zdroj BT-2	48						
Obr. 49 -	Grafitová elektroda	48						
Obr. 50 -	Datalogger AHLBORN ALMEMO 5690-2	49						
Obr. 51 -	Elektrická laboratorní pec	50						
Obr. 52 -	Měřicí tunel pro odstínění záření z okolních zdrojů	51						
Obr. 53 -	Magnetický stavitelný stojánek	51						
Obr. 54 -	Digitální úhloměr	51						
Obr. 55 -	Spektrometr Q4 TASMAN [34]	52						
Obr. 56 -	Mitutoyo Surftest SJ-301	53						
Obr. 57 -	Měřicí detektor	53						
Obr. 58 -	Označení jednotlivých vzorků	54						
Obr. 59 -	Metodika měření drsnosti po dělení materiálu na soustruhu	57						
Obr. 60 -	Metodika měření drsnosti po broušení	57						
Obr. 61 -	Vzorek z oceli X5CrNi18-10 s navařenými termočlánky	59						
Obr. 62 -	Schéma navařených termočlánků	59						
Obr. 63 -	Rozdíl ve vyhodnocení teploty při použití funkcí bod a oblast	59						
Obr. 64 -	IČ reflektor z kartonu a hliníkové folie	60						
Obr. 65 -	Bodové měření odražené zdánlivé teploty	60 81						

Obr. 66 -	Modul pro měření relativní vlhkosti a teploty okolí61							
Obr. 67 -	Srovnání teplotních cyklů vzorků63							
Obr. 68 -	Prostředí SW FLIR Tools a měřicí funkce bod v blízkosti termočlánku …64							
Obr. 69 -	Určení emisivity pomocí lineární interpolace							
Obr. 70 -	Grafické znázornění výsledků měření pro korozivzdornou ocel X5CrNi18-10							
Obr. 71 -	Grafické znázornění výsledků měření pro konstrukční ocel S355N 68							
Obr. 72 -	Naměřené hodnoty pro úhly 15°, 30° a 45° směrem nahoru							
Obr. 73 -	Naměřené hodnoty pro normálový směr a úhly 15° a 45° směrem dolů 70							
Obr. 74 -	Závislost emisivity na úhlu snímání povrchu pro ocel X5CrNi18-1070							
Obr. 75 -	Naměřené hodnoty pro úhel 30° směrem dolů 71							
Obr. 76 -	Naměřené hodnoty pro normálový směr a úhly 15° směrem dolů i nahoru a 30° směrem dolů							
Obr. 77 -	Závislost emisivity na úhlu snímání povrchu pro ocel S355N72							
Obr. 78 -	Naměřené hodnoty pro úhly 45° směrem dolů i nahoru							

7. Seznam tabulek

Tab. 1 -	Závislost velikosti FOV na vzdálenosti měření pro standardní objektiv 24°x18° [5] 30	/)
Tab. 2 -	Informativní hodnoty emisivity vybraných kovových povrchů (λ = 8 až 14 μm [24]) 5
Tab. 3 -	Závislost emisivity na teplotě pro vybrané korozivzdorné ocel (λ = 8 až 14 μm) [29]41	i 1
Tab. 4 -	Technické parametry termokamery Flir E95 [32]47	7
Tab. 5 -	Technická specifikace kondenzátorového svařovacího zdroje BT-2 [33]48	3
Tab. 6 -	Technická data stolního spektrometru Q4 TASMAN [34] 52	2
Tab. 7 -	Chemické složení oceli X5CrNi18-105	5
Tab. 8 -	Chemické složení oceli S355N5	5
Tab. 9 -	Kontrolní měření drsnosti po dělení materiálu 56	ĵ
Tab. 10	- Parametry broušení vzorků 57	7
Tab. 11	- Kontrolní měření drsnosti po broušení 58	3
Tab. 12	 Naměřené hodnoty odražené zdánlivé teploty60)
Tab. 13	 Naměřené hodnoty relativní vlhkosti a atmosférické teploty61 	1
Tab. 14	- Přehled provedených měření 66	3

8. Přílohy

	С	Si	Mn	Р	S	Cr	Mo	Ni	Cu	Al
	%	%	%	%	%	%	%	%	%	%
1.	0.029	0.490	1.502	0.046	<0.150	18.52	0.391	7.110	0.371	0.0083
2.	0.030	0.492	1.503	0.048	<0.150	18.54	0.389	7.104	0.373	0.0088
3. ↑	0.029	0.487	1.514	0.047	<0.150	18.60	0.388	7.061	0.365	0.0088
Ø ↓	0.029	0.490	1.506	0.047	<0.150	18.55	0.389	7.092	0.370	0.0086
σ	0.00071	0.0025	0.0067	0.0010		0.042	0.0016	0.027	0.0042	0.00029
υ	2.448	0.510	0.445	2.128		0.226	0.411	0.381	1.135	3.372
	As	В	Bi	Ce	Со	Mg	Ν	Nb	Pb	Sb
	%	%	%	%	%	%	%	%	%	%
1.	0.010	< 0.0010	0.056	0.010	0.177	0.025	0.092	0.027	0.027	<0.010
2.	0.010	<0.0010	0.059	0.0094	0.177	0.026	0.093	0.028	0.027	<0.010
3. ↑	0.010	<0.0010	0.060	0.011	0.176	0.028	0.093	0.027	0.027	<0.010
Ø ↓	0.010	<0.0010	0.058	0.010	0.177	0.026	0.093	0.027	0.027	<0.010
σ			0.0021	0.00082	0.00071	0.0016	0.00071	0.00071		
υ			3.621	8.200	0.401	6.154	0.763	2.630		
	Sn	Та	La	Ti	V	W	Zn	Zr	Se	Fe
	%	%	%	%	%	%	%	%	%	%
1.	0.010	0.288	0.0072	0.0045	0.094	0.025	0.027	0.0090	0.033	70.45
2.	0.011	0.298	0.0074	0.0048	0.094	0.026	0.027	0.0094	0.032	70.42
3. ↑	0.011	0.283	0.0072	0.0046	0.094	0.022	0.027	0.0091	0.034	70.42
Ø ↓	0.011	0.290	0.0073	0.0046	0.094	0.024	0.027	0.0092	0.033	70.43
σ	0.00071	0.0076	0.00012	0.00016		0.0021		0.00021	0.0010	0.017
υ	6.455	2.621	1.644	3.478		8.750		2.283	3.030	0.024

Příloha 1 – Analýza chemického složení korozivzdorné oceli **X5CrNi18-10** (měřeno dne 7.11.2021 přístrojem Q4 TASMAN)

Příloha 2 – Analýza Chemického složení konstrukční oceli **S355N** (měřeno dne 7.11.2021 přístrojem Q4 TASMAN)

	С	Si	Mn	Р	S	Cr	Mo	Ni	Cu	Al
	%	%	%	%	%	%	%	%	%	%
1.	0.173	0.226	1.324	< 0.0050	< 0.150	0.045	0.013	0.037	0.078	0.025
2.	0.169	0.213	1.330	< 0.0050	<0.150	0.045	0.013	0.035	0.078	0.025
3. ↑	0.173	0.214	1.331	<0.0050	<0.150	0.044	0.013	0.037	0.078	0.025
Ø ↓	0.172	0.218	1.328	<0.0050	<0.150	0.045	0.013	0.036	0.078	0.025
σ	0.0023	0.0072	0.0038			0.00071		0.0012		
υ	1.337	3.303	0.286			1.578		3.333		
	As	В	Bi	Ce	Со	Mg	Ν	Nb	Pb	Sb
	%	%	%	%	%	%	%	%	%	%
1.	0.014	<0.0010	<0.010	< 0.0050	< 0.0050	0.0069	0.022	0.025	0.011	<0.010
2.	0.014	<0.0010	<0.010	< 0.0050	< 0.0050	0.0070	0.022	0.025	0.010	<0.010
3. 1Ì	0.014	<0.0010	<0.010	<0.0050	<0.0050	0.0064	0.023	0.024	<0.010	<0.010
Ø ↓	0.014	<0.0010	<0.010	<0.0050	<0.0050	0.0068	0.022	0.025	<0.010	<0.010
σ						0.00032	0.00071	0.00071	0.00071	
υ						4.706	3.227	2.840	7.100	
	Sn	Та	La	Ti	V	W	Zn	Zr	Se	Fe
	%	%	%	%	%	%	%	%	%	%
1.	< 0.0050	< 0.030	< 0.0020	<0.0010	< 0.0050	<0.010	0.0023	<0.0020	< 0.0050	97.75
2.	< 0.0050	< 0.030	< 0.0020	<0.0010	< 0.0050	<0.010	0.0020	<0.0020	< 0.0050	97.77
3. ↑	<0.0050	<0.030	<0.0020	<0.0010	<0.0050	<0.010	0.0025	<0.0020	<0.0050	97.76
Ø ↓	<0.0050	<0.030	<0.0020	<0.0010	<0.0050	<0.010	0.0023	<0.0020	<0.0050	97.76
σ							0.00025			0.0100
υ							10.87			0.010

Příloha 3 – Kontrolní měření drsnosti č. 1 u vzorků z oceli **X5CrNi18-10** (měřeno dne 5.11.2021 drsnoměrem Mitutoyo Surftest SJ-301)

Vzo	Vzorky z vysokolegované korozivzdorné oceli X5CrNi18-10									
Č měření	Vzore	k č. 1	Vzore	ek č. 2	Vzorek č. 3					
C. merem	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]				
1	3,23	16,26	1,72	9,58	1,58	8,07				
2	3,01	14,42	1,79	9,46	1,56	7,33				
3	2,81	13,32	1,77	9,01	1,69	8,16				
4	2,86	13,34	1,76	8,98	1,61	7,88				
5	2,90	14,11	1,75	8,98	1,56	7,03				
6	2,75	12,80	1,79	9,03	1,55	7,85				
Aritmetický průměr <u>Ra, Rz</u>	2,93	14,04	1,76	9,17	1,59	7,72				
Č měření	Vzore	k č. 4	Vzore	ek č. 5	Vzorek č. 6					
C. merem	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]				
1	2,00	10,88	2,13	9,39	1,76	9,62				
2	2,01	10,90	2,17	9,58	1,66	8,59				
3	2,01	10,59	2,09	9,68	1,66	8,87				
4	1,99	11,7	2,09	8,98	1,71	9,78				
5	2,03	10,62	2,09	9,54	1,84	9,52				
6	1,94	10,39	2,13	9,70	2,03	10,56				
Aritmetický průměr <u>Ra, Rz</u>	2,00	10,85	2,12	9,48	1,78	9,49				
Č měření	Vzore	k č. 7	Vzore	k č. 8	Vzorek č. 9					
C. merem	Ra [µm]	Rz [µm]	Ra [µm]	Rz [µm]	Ra [µm]	Rz [µm]				
1	0,81	5,06	1,79	8,18	1,89	8,89				
2	0,82	5,08	1,78	8,34	1,81	8,77				
3	0,85	5,69	1,72	7,92	1,83	9,16				
4	0,74	4,81	1,76	8,03	2,01	10,77				
5	0,84	5,06	1,71	8,30	1,84	9,89				
6	0,80	5,07	1,64	8,36	1,85	9,48				
Aritmetický průměr Ra, Rz	0,81	5,13	1,73	8,19	1,87	9,49				

Příloha 4 – Kontrolní měření drsnosti č. 1 u vzorků z oceli **S355N** (měřeno dne 5.11.2021 drsnoměrem Mitutoyo Surftest SJ-301)

Vzorky z konstrukční oceli S355N									
Č měžoní	Vzore	ek č. 1	Vzore	ek č. 2	Vzorek č. 3				
C. mereni	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]			
1	3,88	18,27	5,22	24,49	4,99	19,65			
2	3,55	19,62	5,10	22,99	4,55	24,34			
3	3,05	15,40	5,24	21,33	4,27	17,03			
4	3,25	16,87	5,08	25,98	4,83	20,32			
5	4,21	20,31	5,67	28,51	4,21	19,53			
6	3,51	19,38	5,31	25,86	4,32	16,03			
Aritmetický průměr <u>Ra, Rz</u>	3,56	18,31	5,27	24,86	4,53	19,48			
Č měření	Vzore	ek č. 4	Vzore	ek č. 5	Vzorek č. 6				
C. merem	<i>Ra</i> [µm]	Rz [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]			
1	3,51	19,17	6,74	33,12	4,48	25,85			
2	3,51	19,74	6,84	32,03	4,32	23,81			
3	2,86	15,42	6,72	30,55	4,15	21,81			
4	3,01	15,48	6,74	32,85	3,01	18,28			
5	3,38	19,48	6,29	36,81	3,70	19,09			
6	3,25	18,34	6,13	31,39	3,87	21,66			
Aritmetický průměr <u>Ra, Rz</u>	3,25	17,94	6,58	32,79	3,92	21,75			
Č měření	Vzore	k č. 7	Vzore	k č. 8	Vzorek č. 9				
C. merem	Ra [µm]	Rz [µm]	Ra [µm]	Rz [µm]	<i>Ra</i> [µm]	Rz [µm]			
1	1,97	11,84	3,08	16,35	4,42	21,80			
2	2,14	12,77	3,71	20,35	4,50	21,45			
3	2,02	11,82	4,15	23,24	4,50	21,36			
4	1,95	10,27	3,11	18,17	4,17	20,00			
5	1,83	10,61	3,30	16,80	4,18	20,15			
6	1,87	10,54	3,41	17,20	4,01	20,36			
Aritmetický průměr Ra, Rz	1,96	11,31	3,46	18,69	4,30	20,85			

Příloha 5 – Kontrolní měření drsnosti č. 2 u vzorků z oceli **X5CrNi18-10** (měřeno dne 16.11.2021 drsnoměrem Mitutoyo Surftest SJ-301)

Vzorky z vysokolegované korozivzdorné oceli X5CrNi18-10								
Č měžoní	Vzore	ek č. 1	Vzore	ek č. 2	Vzorek č. 3			
C. mereni	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]		
1	0,12	0,94	0,05	0,43	0,07	0,52		
2	0,11	0,82	0,08	0,57	0,10	0,72		
3	0,14	1,02	0,06	0,45	0,07	0,51		
		Ot	očeno o 90	0				
4	0,22	1,53	0,08	0,59	0,10	0,74		
5	0,20	1,32	0,14	0,93	0,12	0,85		
6	0,15	1,10	0,06	0,56	0,07	0,59		
Aritmetický průměr Ra. Rz	0,16	1,12	0,08	0,59	0,09	0,66		
Y	Vzore	k č. 4	Vzore	ek č. 5	Vzore	ek č. 6		
C. měření								
1	0.10	1.06	0.10	0.75	0.13	1.10		
2	0.13	1.23	0.05	0.43	0.11	0.98		
3	0.11	1.07	0.06	0.50	0.37	2.06		
4	0,14	1,31	0,08	0,54	0,10	0,84		
5	0,22	1,97	0,06	0,59	0,10	0,74		
6	0,12	1,03	0,14	1,04	0,11	0,90		
Aritmetický průměr Ra, Rz	0,14	1,28	0,08	0,64	0,15	1,10		
Č měření	Vzore	k č. 7	Vzore	ek č. 8	Vzorek č. 9			
O. merem	Ra [µm]	<i>Rz</i> [µm]	Ra [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]		
1	0,18	1,30	0,16	1,18	0,14	1,16		
2	0,22	1,60	0,12	0,94	0,14	1,00		
3	0,15	1,26	0,13	0,98	0,19	1,388		
Otočeno o 90°								
4	0,16	1,16	0,23	1,56	0,17	1,12		
5	0,15	1,09	0,12	0,97	0,24	1,54		
6	0,17	1,07	0,15	1,31	0,17	1,17		
Aritmetický průměr Ra, Rz	0,17	1,25	0,15	1,16	0,18	1,23		

Příloha 6 – Kontrolní měření drsnosti č. 2 u vzorků z oceli **S355N** (měřeno dne 8.11.2021 drsnoměrem Mitutoyo Surftest SJ-301)

Vzorky z konstrukční oceli S355N									
Č měřaní	Vzore	ek č. 1	Vzore	ek č. 2	Vzorek č. 3				
C. merem	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]			
1	0,08	0,67	0,09	0,70	0,10	0,81			
2	0,08	0,59	0,07	0,59	0,09	0,77			
3	0,08	0,63	0,09	0,54	0,09	0,77			
Otočeno o 90°									
4	0,11	0,74	0,08	0,56	0,10	0,77			
5	0,11	0,72	0,07	0,55	0,10	0,76			
6	0,10	0,71	0,08	0,62	0,12	0,80			
Aritmetický									
průměr	0,09	0,68	0,08	0,59	0,10	0,78			
Ra, Rz									
Č. měření	Vzore	ek č. 4	Vzore	ek č. 5	Vzorek č. 6				
	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]			
1	0,26	1,60	0,08	0,61	0,11	0,77			
2	0,12	0,88	0,09	0,69	0,12	0,94			
3	0,08	0,70	0,11	0,91	0,09	0,72			
	Otočeno o 90°								
4	0,11	0,72	0,10	0,69	0,09	0,75			
5	0,08	0,54	0,09	0,71	0,09	0,67			
6	0,10	0,80	0,10	0,75	0,10	0,67			
Aritmetický průměr <u>Ra</u> , <u>Rz</u>	0,13	0,87	0,10	0,73	0,10	0,75			
Č měření	Vzore	ek č. 7	Vzore	ek č. 8	Vzorek č. 9				
0. merem	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]	<i>Ra</i> [µm]	<i>Rz</i> [µm]			
1	0,08	0,62	0,15	1,11	0,22	1,38			
2	0,19	1,22	0,13	0,89	0,08	0,66			
3	0,23	1,39	0,12	1,01	0,11	1,03			
	Otočeno o 90°								
4	0,12	0,81	0,14	0,81	0,11	0,91			
5	0,13	0,84	0,15	0,96	0,10	0,69			
6	0,18	1,21	0,13	0,86	0,10	0,73			
Aritmetický průměr Ra, Rz	0,16	1,02	0,14	0,94	0,12	0,9			

Měření 30.11.2021									
Termogram č.	T _{odr. 1} [° <i>C</i>]	T _{odr. 2} [°C]	T _{odr. 3} [°C]	T _{odr. 4} [°C]	T _{odr. 5} [°C]				
1	24,2	23,2	22,4	22,5	22,6				
2	22,8	23,8	22,8	22,4	23,2				
3	26,1	23,3	22,8	22,9	22,5				
4	23,8	24,7	22,8	22,4	22,9				
5	23,8	23	22,6	22,1	22,7				
Průměrná hodnota odražené zdánlivé teploty Ø T _{odr.} [°C]									

Příloha 7 – Naměřené hodnoty odražené zdánlivé teploty pro jednotlivé dny

Měření 2.12.2021									
Termogram č.	T_{odr. 1} [°C]	T _{odr. 2} [° <i>C</i>]	T_{odr. 3} [°C]	T_{odr. 4} [°C]	T _{odr. 5} [° <i>C</i>]				
1	23,2	24,7	24,1	23,1	23,3				
2	23,4	25	24,3	23,5	23,3				
3	23,7	25,2	24,4	23,8	23,5				
4	25,3	23,4	25,4	23,8	23,4				
5	23,5	24,8	25,3	23,3	23,1				
Průměrná hodnota odražené zdánlivé teploty Ø T _{odr.} [°C] 24,0									

Měření 3.12.2021									
Termogram č.	T _{odr. 1} [° <i>C</i>]	$T_{odr. 2} [°C]$	T_{odr. 3} [° <i>C</i>]	T _{odr. 4} [°C]	T _{odr. 5} [° <i>C</i>]				
1	25,1	25,2	25,1	24,7	24,8				
2	25,1	25,2	25,1	25	25,2				
3	25,2	25	25	24,8	24,8				
4	25,2	25,3	24,9	24,8	24,9				
5	25,1	25,3	25,3	24,2	25,1				
Průměrná h	25,0								

Měření 7.12.2021									
Termogram č.	T _{odr. 1} [° <i>C</i>]	T _{odr. 2} [°C]	T_{odr. 3} [°C]	T _{odr. 4} [°C]	T _{odr. 5} [° <i>C</i>]				
1	26,1	25,9	26,3	25,5	24,4				
2	26,8	26 26,9		26	25,9				
3	25,5	25,2 24,9		26,6	24,8				
4	25,4	25,9	25,6	24,8	24,7				
5	25,7	24,9	26,5	25	25,2				
Průměrná hodnota odražené zdánlivé teploty Ø T _{odr.} [°C]									

Měření 9.12.2021									
Termogram č.	T _{odr. 1} [° <i>C</i>]	$T_{odr. 2} [°C]$	T_{odr. 3} [°C]	T _{odr. 4} [°C]	T _{odr. 5} [° <i>C</i>]				
1	25,3	24,1	25,6	23,8	24,4				
2	2 25,1		24	24,1	23,8				
3	25,4	25	23,9	24,1	23,7				
4	24,6	25,3	23,7	23,6	24,1				
5	23,9	25,7	24,4	24,2	25,7				
Průměrná hodnota odražené zdánlivé teploty $\emptyset T_{odr.} [^{\circ}C]$ 24,5									

Dr	uh oceli			S3551	N	Počet t	ermogran	l ů 201			
Čís	o vzorku			2	•	Teplo	otní rozsal	1	0 až 650	О° (
Úhe	el měření		0	normálov	v směr	Vzdále	nost měře	ení	1 m		
Čísl	o měření			1	j	Tep	lota okolí		23 °C	;	
Čas oh	řevu vzor	ku		10 mi	n	Relati	vní vlhkos	st	35 %)	
Čas	s měření		11	:27:53 – 1	2:01:15	Odraž	ená teplot	a	23,1 °	С	
Teplota	max. ohře	evu		700 °(C	Název souboi	/ datového ru ALMEN	o IO	DP TN (002	
Datu	m měření			30.11.20)21	Term	nokamera	_	FLIR E95		
T [°C]	ε [-]	°] T	C]	ε [-]	T [°C]	ε[-]	T [°C]	ε [-]	T [°C]	ε [-]	
551,7	0,784	215	5,6	0,805	126,4	0,818	84,4	0,808	61,7	0,79	
527,3	0,829	212	2,4	0,804	124,8	0,822	83,6	0,805	61,4	0,795	
507,3	0,828	20	9	0,804	123,5	0,818	83	0,802	61	0,798	
489,3	0,828	20	6	0,806	122,2	0,811	82,2	0,807	60,5	0,79	
473	0,828	202	2,8	0,807	120,9	0,819	81,6	0,802	60,2	0,798	
458	0,828	199),9	0,805	119,7	0,813	80,9	0,804	59,8	0,793	
443	0,829	196	5,9	0,808	118,3	0,811	80,2	0,797	59,4	0,798	
431,6	0,826	194	,1	0,807	117,1	0,813	79,4	0,805	59	0,79	
418,2	0,826	191	,2	0,807	115,9	0,813	78,9	0,797	58,7	0,803	
408,2	0,822	188	,2 3,2	0,809	114,4	0,817	78,2	0,798	58,3	0,808	
397,4	0,82	185	,7 5,7	0,809	113,4	0,813	77,6	0,805	57,9	0,808	
387,2	0,818	183	,3 ,3	0,809	112,3	0,811	76,9	0,813	57,6	0,795	
377,2	0,819	180	,),8	0,807	111,1	0,81	76,4	0,803	57,2	0,79	
367	0.821	178	, 3.3	0.807	109.9	0.809	75.7	0.807	56.9	0.805	
358	0,821	175	,9 5,9	0,812	108,8	0,808	75,1	0,806	56,5	0,807	
350,4	0,82	173	, 5,5	0,81	107,7	0,804	74,6	0,788	56,2	0,797	
342.5	0.82	17	1	0.812	106.7	0.808	74	0.79	55.8	0.785	
334,9	0,817	16	9	0,812	105,6	0,809	73,4	0,794	55,5	0,787	
327,3	0,817	166	5,8	0,809	104,3	0,814	, 72,8	0,79	55,2	0,775	
319,9	0,817	164	,6	0,815	103,4	0,805	, 72,3	0,794	54,8	0,793	
312,6	0,816	162	2,5	0,811	102,5	0,808	71,7	0,79	54,5	0,79	
306,9	0,815	160),4	0,811	101,4	0,806	71,1	0,796	54,2	0,8	
300,1	0,814	158	,3 3,3	0,811	100,3	0,807	70,7	0,786	53,9	0,785	
294,9	0,813	156	5,4	0,812	99,4	0,809	70,1	0,802	53,6	0,783	
289,1	0,811	154	l,2	0,81	98,5	0,806	69,6	0,794	53,2	0,793	
283,8	0,809	152	2,5	0,811	97,5	0,81	69,1	0,792	53	0,79	
277,8	0,81	150),6	0,811	96,6	0,805	68,6	0,786	52,6	0,8	
273,3	0,807	148	3,7	0,809	95,7	0,806	68,1	0,798	52,4	0,8	
268,1	0,807	146	5,9	0,81	94,7	0,8	67,6	0,792	52,1	0,79	
263,4	0,805	145	i,2	0,81	94	0,81	67,1	0,79	51,8	0,803	
258,3	0,804	143	3,4	0,81	93,1	0,819	66,7	0,794	51,5	0,807	
254,3	0,802	141	,8	0,812	92,3	0,807	66,2	0,793	51,2	0,797	
250	0,801	140),1	0,813	91,3	0,809	65,6	0,793	50,9	0,793	
245,8	0,801	138	3,4	0,814	90,6	0,809	65,2	0,798	50,6	0,793	
241,6	0,803	13	7	0,813	89,8	0,804	64,8	0,8	50,4	0,793	
237,6	0,803	135	i,1	0,813	89	0,8	64,3	0,788	50,1	0,813	
233,7	0,804	133	8,8	0,813	88,1	0,806	63,9	0,79	49,8	0,803	
230	0,803	132	2,2	0,814	87,3	0,799	63,5	0,79	1		
226,2	0,804	130),7	0,819	86,5	0,805	63	0,79	1		
222,5	0,806	129),2	0,823	85,9	0,808	62,6	0,803			
219,1	0,804	127	<i>'</i> ,6	0,823	85,2	0,812	62,2	0,79	1		

Příloha 8 – Naměřená a vyhodnocená data pro ocel S355N (0° normálový směr)

Dr	uh oceli		S3551	N	Počet t	ermogran	nů	200		
Čís	o vzorku		3		Teplo	otní rozsal	1	0 až 650)°C	
Úhe	el měření		15° směrer	n dolů	Vzdále	nost měře	ení	1 m		
Čís	o měření		2		Тер	lota okolí		23 °C	<u>;</u>	
Čas oh	řevu vzor	ku	10 mi	n	Relati	vní vlhkos	st	35 %		
Ča	s měření	12	2:34:17 – 1	3:07:28	Odraž	ená teplot	ta	23,1 °	С	
Teplota	max. ohře	evu	700 °(С	Název	/ datovéh	0	DP TN (003	
Datu	m měření		30 11 2021			nokamera				
	e [_]	TIOCI	e [_]		e [_]		c [_]		55 c [_]	
	° [-]	210	• [-]		° [-]		0 761		• [-]	
525,5	0,802	219	0,810	129,5	0,795	00,0 95.0	0,761	62	0,745	
555,0	0,012	215,0	0,010	127,0	0,791	05,9 05 0	0,700	62.6	0,745	
515,0 407.1	0,819	212,3	0,810	120,3	0,794	85,2 84.2	0,757	62,0	0,754	
497,1	0,817	208,8	0,810	125	0,792	84,3 92.6	0,76	61.7	0,743	
4/9,/	0,021	205,9	0,010	123,7	0,765	05,0	0,70	61,7	0,740	
403,5	0,822	203	0,814	122,3	0,780	82,9	0,758	61,4	0,74	
445,3	0,826	199,6	0,816	121,1	0,782	82,2	0,764	61	0,736	
432,9	0,826	196,9	0,815	119,7	0,787	81,5	0,758	60,5	0,75	
421	0,825	194	0,815	118,4	0,782	80,9	0,755	60,2	0,733	
407,5	0,825	191,3	0,813	117,1	0,784	80,2	0,753	59,7	0,735	
397	0,822	188,6	0,814	115,9	0,784	79,6	0,757	59,4	0,743	
384,8	0,824	186,1	0,811	114,6	0,779	/8,8	0,753	59	0,74	
375,6	0,823	182,9	0,812	113,5	0,778	78,2	0,758	58,7	0,74	
366	0,826	180,9	0,812	112,2	0,777	77,6	0,752	58,3	0,738	
356,1	0,827	178,3	0,811	111,1	0,773	77	0,757	57,9	0,733	
348,6	0,826	175,9	0,811	110	0,773	76,3	0,756	57,6	0,745	
340,8	0,824	173,5	0,811	108,9	0,776	75,6	0,763	57,2	0,745	
333,2	0,825	171	0,812	107,6	0,784	75,1	0,753	56,8	0,748	
326	0,824	169,1	0,809	106,7	0,776	74,6	0,754	56,5	0,733	
318,8	0,824	166,7	0,808	105,6	0,776	74	0,755	56,2	0,735	
312,7	0,824	164,6	0,808	104,5	0,775	73,5	0,757	55,8	0,74	
305,9	0,823	162,5	0,81	103,5	0,774	72,8	0,762	55,4	0,74	
300,4	0,822	160,4	0,807	102,5	0,771	72,3	0,75	55,1	0,738	
294,5	0,822	158,2	0,807	101,4	0,773	71,7	0,755	54,8	0,743	
288,3	0,822	156,5	0,803	100,5	0,771	71,2	0,756	54,5	0,75	
283,4	0,823	154,2	0,807	99,5	0,768	70,7	0,756	54,1	0,745	
278	0,821	152,6	0,803	98,6	0,774	70,1	0,754	53,7	0,738	
273	0,82	150,5	0,805	97,6	0,769	69,6	0,752	53,5	0,747	
268,1	0,819	148,8	0,805	96,6	0,764	69,2	0,756	53,2	0,743	
262,6	0,82	147,1	0,804	95,8	0,766	68,6	0,758	53	0,727	
258,2	0,819	145,2	0,803	94,9	0,769	68,1	0,752	52,6	0,745	
254,4	0,817	143,6	0,803	93,9	0,774	67,6	0,766	52,3	0,737	
249,8	0,817	141,7	0,803	93,2	0,771	67,1	0,766	52	0,743	
245,2	0,818	140,2	0,8	92,2	0,769	66,6	0,766	51,7	0,743	
241,4	0,817	138,8	0,797	91,5	0,763	66,2	0,762	51,4	0,743	
237,4	0,817	137	0,796	90,6	0,766	65,7	0,746	51,1	0,745	
233,1	0,818	135,4	0,803	89,8	0,769	65,2	0,738	50,9	0,738	
229,7	0,816	133,9	0,796	88,9	0,764	64,8	0,738	50,6	0,733	
226,1	0,816	132,3	0,795	88,2	0,761	64,3	0,735	50,3	0,737	
222.5	0.815	130.8	0.794	87.4	0.763	63.8	0.74	50	0.757	

Příloha 9 – Naměřená a vyhodnocená data pro ocel S355N (15° směrem dolů)

Dr	uh oceli		S355I	N	Počet t	ermogran	nů	1 99		
Čís	o vzorku		4		Teplo	tní rozsal	1	0 až 65	0 °C	
Úhe	el měření		30° směrer	n dolů	Vzdále	nost měře	ní	1 m	<u> </u>	
Čís	o měření		3		Tep	lota okolí		23 °	C	
Čas oh	řevu vzor	ku	10 mi	n	Relati	vní vlhkos	st	35 %	6	
Ča	s měření	1:	3:34:27 – 1	4:07:27	Odraž	ená teplot	a	23,1	°C	
Teplota	max, ohře	yu 700 °C		0	Název	v datového	о	DP TN	004	
Detu			20 11 20	201	souboru ALMEMO				-05	
	m mereni	TROI	30.11.20		Term				95	
	[-] 3		[-] 3		[-] 3		[-] 3		[-] 3	
539,4	0,739	213,1	0,786	126,7	0,776	85,3	0,772	2 62,8	0,748	
517,1	0,796	210,1	0,782	125,2	0,775	84,6	0,772	2 62,3	0,752	
491,7	0,794	206,9	0,785	123,9	0,778	83,8	0,77	1 62	0,742	
4/6	0,793	203,9	0,784	122,5	0,777	83,1	0,772	2 61,6	0,752	
458,1	0,798	200,7	0,784	121,3	0,///	82,4	0,76	/ 61,1	0,745	
442,4	0,799	197,7	0,783	119,9	0,77	81,7	0,772	2 60,7	0,746	
428,7	0,798	194,7	0,782	118,6	0,/81	81	0,773	3 60,4	0,75	
416	0,796	191,7	0,783	117,2	0,/81	80,3	0,778	8 60	0,745	
404,3	0,793	189,4	0,782	116,2	0,78	79,7	0,773	3 59,5	0,745	
393,1	0,795	186,8	0,779	114,8	0,787	79	0,778	8 59,1	0,738	
381,3	0,796	184,2	0,779	113,7	0,782	78,3	0,778	8 58,8	0,74	
372,4	0,797	181,5	0,784	112,3	0,78	77,6	0,763	3 58,4	0,748	
362,9	0,797	179	0,784	111,2	0,779	77,1	0,762	2 58	0,755	
353,4	0,797	176,6	0,784	110,1	0,784	76,5	0,762	2 57,7	0,743	
345,9	0,795	174,3	0,784	109,1	0,78	76	0,762	2 57,3	0,753	
337,9	0,796	171,9	0,782	108	0,783	75,3	0,758	8 57	0,745	
330,4	0,795	169,7	0,783	106,9	0,778	74,8	0,753	3 56,7	0,738	
323,1	0,796	167,4	0,785	105,8	0,78	74,2	0,758	8 56,3	0,735	
316,2	0,794	165,2	0,785	104,8	0,777	73,6	0,758	8 56	0,733	
309,7	0,794	163,2	0,779	103,6	0,783	73	0,758	8 55,6	0,748	
303,3	0,794	160,7	0,78	102,7	0,779	72,5	0,76	55,3	0,74	
297,3	0,793	159	0,78	101,7	0,781	71,9	0,76	55	0,735	
291	0,791	156,7	0,782	100,7	0,779	71,4	0,762	2 54,6	0,743	
285,8	0,792	155	0,78	99,6	0,779	70,8	0,755	5 54,3	0,738	
280,2	0,79	152,7	0,781	98,7	0,781	70,3	0,763	3 54	0,743	
274,9	0,79	150,9	0,782	97,8	0,783	69,8	0,744	4 53,7	0,733	
269,2	0,792	149,3	0,778	96,8	0,783	69,3	0,75	53,4	0,728	
265	0,789	147,3	0,78	95,9	0,783	68,8	0,75	53,1	0,737	
259,7	0,789	145,7	0,775	94,9	0,776	68,2	0,762	2 52,9	0,73	
255,7	0,789	144,1	0,777	94,1	0,786	67,7	0,756	52,5	0,748	
251,2	0,788	142,3	0,773	93,2	0,77	67,3	0,75	52,2	0,735	
246,5	0,788	140,6	0,778	92,5	0,77	66,8	0,75	51,9	0,735	
243	0,785	139,1	0,777	91,5	0,771	66,4	0,746	5 51,6	0,737	
238,9	0,784	137,2	0,778	90,7	0,776	65,8	0,75	51,3	0,728	
235	0,784	135,8	0,778	90	0,776	65,4	0,75	51	0,733	
231	0,788	134,2	0,773	89,1	0,773	64,9	0,748	8 50,8	0,72	
227	0,786	132,6	0,775	88,3	0,773	64,6	0,744	4 50,5	0,737	
223,2	0,785	131,1	0,778	87,6	0,775	64,1	0,74	50,3	0,725	
220,2	0,784	129,6	0,777	86,8	0,775	63,6	0,746	6 50	0,73	
216.7	0.784	128	0.779	86.1	0.774	63.2	0.755	5	1	

Příloha 10 – Naměřená a vyhodnocená data pro ocel S355N (30° směrem dolů)

Dr	uh oceli		S3551	N	Počet t	ermogran	nů	1 90		
Čísl	o vzorku		5		Teplo	otní rozsal	า	0 až 650 °C		
Úhe	el měření	4	45° směrer	n dolů	Vzdále	nost měře	ení	1 m		
Čísl	o měření		4		Тер	lota okolí		23 °C	;	
Čas oh	řevu vzor	ku	10 mi	n	Relati	vní vlhkos	st	35 %)	
Čas	s měření	8	3:23:30 – 8	:54:57	Odraž	ená teplot	ta	24 °C	;	
Teplota	max. ohře	evu	700 °C Název datového					DP TN (005	
Datu	ım měření		2.12.20	21	Termokamera			FLIR E95		
	ε [-] 3	10°1 T	ε [-] 3		ε [-]		[-] 3	T I°C1	ε [-] 3	
537	0.86	207.3	0.797	124.1	0.769	84.4	0.735	63	0.717	
510.2	0.852	204.4	0.792	122.7	0.772	83.8	0.736	62.6	0.716	
487,1	0,851	200,7	0,795	121,3	0,768	83	0,73	62,2	0,715	
465,1	0,851	197,8	0,791	119,9	0,77	82,3	0,726	61,7	0,714	
449,2	0,849	194,7	0,792	118,6	0,77	81,5	0,729	61,4	0,715	
433,4	0,847	191,8	0,788	117,3	0,769	80,9	0,728	61	0,714	
419,5	0,845	188,8	0,794	116	0,768	80,2	0,723	60,5	0,713	
406,7	0,843	186,1	0,789	114,8	0,767	79,6	0,726	60	0,713	
394,9	0,839	183,3	0,791	113,4	0,768	78,8	0,733	59,6	0,71	
383,6	0,838	180,6	0,794	112,3	0,773	78,2	0,733	59,2	0,704	
372,9	0,835	178,1	0,79	111	0,768	77,6	0,733	58,9	0,71	
362,6	0,832	175,4	0,794	109,9	0,766	76,8	0,738	58,6	0,703	
352,9	0,826	172,9	0,788	108,6	0,761	76,2	0,735	58,1	0,705	
343,7	0,826	170,4	0,79	107,5	0,766	75,6	0,732	57,7	0,712	
335,4	0,82	168,2	0,786	106,4	0,765	75	0,732	57,4	0,708	
326,1	0,819	165,9	0,786	105,4	0,76	74,4	0,732	57	0,703	
319,2	0,815	163,6	0,787	104,2	0,763	73,8	0,725	56,7	0,71	
311,3	0,811	161,4	0,786	103,2	0,76	73,1	0,728	56,3	0,708	
304,2	0,81	159,2	0,788	102,1	0,754	72,7	0,725	55,9	0,705	
298,3	0,808	157,2	0,783	101,1	0,754	72,3	0,724	55,7	0,708	
291,7	0,809	155,1	0,783	100,2	0,753	71,7	0,723	55,3	0,71	
285,6	0,806	152,9	0,785	99,1	0,751	71,1	0,722	55	0,7	
278,3	0,807	151	0,783	98	0,749	70,7	0,722	54,7	0,71	
273,5	0,807	149	0,786	97,2	0,748	70,1	0,72	54,3	0,71	
268,2	0,805	147,2	0,782	96,2	0,74	69,6	0,72	54	0,705	
262,7	0,802	145,4	0,783	95,3	0,746	69,1	0,719	53,7	0,698	
257,1	0,804	143,6	0,781	94,2	0,748	68,6	0,72	53,3	0,708	
252,5	0,804	141,7	0,781	93,5	0,747	68,1	0,719	53,1	0,703	
247,7	0,803	139,8	0,779	92,6	0,746	6/,6	0,718	52,8	0,705	
243,1	0,803	138,3	0,78	91,8	0,74	67,1	0,718	52,4	0,7	
238,9	0,798	124 7	0,774	90,9	0,741	00,/ 66.2	0,717	52,2	0,7	
204,4	0,0	122.1	0,775	90,1	0,741	65.6	0,710	51,8	0,703	
250,5	0,798	121 0	0,774	03,3 90 F	0,741	05,0 65 0	0,718	51,0	0,098	
220,2	0,797	120 1	0,774	00,5 97.6	0,755	6/ 0	0,717	51,5	0,097	
221,7	0,790	178 2	0,775	86.2	0,74	6/ 2	0,710	50.7	0,705	
210,2	0.796	120,5	0 773	86.1	0,730	62.9	0,715	50,7	0,703	
211.2	0.794	125.5	0.772	85.3	0.733	63.5	0.716	50	0.697	

Příloha 11 – Naměřená a vyhodnocená data pro ocel S355N (45° směrem dolů)

Dr	uh oceli		S355I	N	Počet t	ermogran	nů	198		
Čís	o vzorku		6		Teplo	tní rozsal	1 I	0 až 650) °C	
Úhe	el měření	1:	5° směrem	nahoru	Vzdále	nost měře	ení	1 m	-	
Čís	o měření		5		Tep	lota okolí		23 °C	;	
Čas oh	řevu vzor	ku	10 mi	n	Relati	vní vlhkos	st	35 %)	
Ča	s měření	9	9:19:53 – 9	:52:43	Odraž	ená teplot	ta	24 °C	;	
Teplota	max. ohře	evu	700 °(С	Název	datovéh	0	DP TN (006	
Datu	ım měření		2.12.20)21	Term	nokamera		FLIR E95		
	٤ [-]	10°1 T	[-] 3		۲ <u>ا</u> ا	T I°C1	[-] ع	T I°C1	<u>د</u> [-] ع	
523.3	0.832	208.3	0 793	125.2	0 767	84.4	0 751	62.4	0 738	
499 7	0.825	200,5	0 796	123,2	0,766	83.9	0.75	61.9	0 743	
478 3	0.826	202 3	0 794	123,0	0 763	83	0 751	61.5	0,735	
458 5	0.828	199.1	0 794	121 1	0 772	82.4	0.75	61 1	0 743	
440 7	0.827	196 5	0.789	119.8	0.768	81.8	0.749	60.7	0.74	
425.2	0.829	193.1	0.796	118.3	0.771	81	0.751	60.3	0.738	
410.7	0.829	191.1	0.788	117.1	0.769	80.2	0.739	60	0.74	
397 7	0.831	188.2	0.787	115.8	0.771	79.6	0.738	59.6	0.74	
385.2	0.833	185.8	0.79	114 5	0.77	79.1	0.74	59.3	0 744	
374.6	0.831	183.3	0.79	113.6	0 764	78.4	0 738	58.8	0.75	
364 3	0.83	180 5	0 791	112.4	0 769	77.8	0 742	58.5	0.74	
354 3	0.833	178.1	0 791	111 4	0 761	77.2	0.74	58.1	0 745	
345.9	0.829	175.8	0 786	110	0 764	76.5	0 742	57.8	0 748	
338.1	0.825	173.2	0 788	108.9	0 762	76	0 743	57.4	0 748	
331	0.819	171.1	0.785	107.9	0.76	75.3	0.742	57	0.735	
323.4	0.818	169	0.786	106.5	0.763	74.7	0.742	56.7	0.738	
317.2	0.812	166.6	0.785	105.5	0.762	74	0.75	56.4	0.75	
310.6	0.811	164.8	0.781	104.5	0.761	73.6	0.737	56	0.735	
304,2	0,809	162,6	0,78	103,5	0,761	73	0,745	55,7	0,733	
299	0,803	160,8	0,782	102,3	0,764	72,5	0,742	55,3	0,735	
291,7	0,808	158,3	0,783	101,5	0,753	, 71,7	0,752	55	0,735	
286,7	0,803	156,6	0,778	100,4	0,755	, 71,2	0,75	54,7	0,737	
281,4	0,803	154,1	0,78	, 99,5	0,754	70,8	0,742	54,4	0,737	
275,8	0,802	152,8	0,78	98,5	0,754	70,2	0,742	54,1	0,728	
270,9	0,8	150,7	0,781	97,7	0,754	69,7	0,744	53,7	0,73	
265,7	0,802	148,6	0,781	96,6	0,761	69,1	0,75	53,5	0,725	
260,4	0,802	147,1	0,776	95,7	0,757	68,7	0,748	53,1	0,723	
256,6	0,801	145,2	0,777	94,9	0,756	68,1	0,752	52,8	0,728	
252,4	0,8	143,7	0,781	94,1	0,756	67,7	0,738	52,5	0,725	
247,7	0,799	141,5	0,785	93,2	0,75	67,2	0,73	52,3	0,72	
244,5	0,795	139,9	0,784	92,2	0,755	66,8	0,736	52	0,72	
240,3	0,796	138,7	0,778	91,4	0,751	66,2	0,736	51,8	0,713	
236,3	0,793	136,9	0,775	90,6	0,751	65,7	0,734	51,4	0,72	
231,9	0,797	135,6	0,772	89,9	0,753	65,3	0,732	51,1	0,713	
228,9	0,793	133,7	0,777	89,1	0,753	64,9	0,738	50,9	0,713	
225,3	0,797	132,2	0,774	88,4	0,756	64,5	0,735	50,6	0,717	
221,5	0,796	130,8	0,772	87,4	0,753	63,9	0,742	50,3	0,71	
217,8	0,798	129,7	0,765	86,7	0,75	63,5	0,738	50	0,71	
214,6	0,798	127,9	0,769	86	0,753	63,1	0,738			
211.6	0.795	126.5	0.769	85.2	0.749	62.7	0.738			

Příloha 12 – Naměřená a vyhodnocená data pro ocel S355N (15° směrem nahoru)

Dr	uh oceli		S3551	N	Počet t	ermogran	nů	188		
Čísl	o vzorku		7		Teplo	tní rozsal	1	0 až 650) °C	
Úhe	el měření	30)° směrem	nahoru	Vzdále	nost měře	ní	1 m	_	
Čísl	o měření		6		Тер	lota okolí		23 °C	;	
Čas oh	řevu vzor	ku	10 mi	n	Relati	vní vlhkos	st	35 %)	
Čas	s měření	10):17:35 – 1	0:48:49	Odraž	ená teplot	a	24 °C	;	
Teplota	max. ohře	evu	700 °C	C	Název soubo	v datového ru ALMEN	o IO	DP TN (007	
Datu	m měření		2.12.2021		Termokamera			FLIR E95		
T [°C]	ε [-]	T [°C]	ε [-]	T [°C]	ε [-]	T [°C]	ε[-]	T [°C]	[-] ع	
500,2	0,915	203,9	0,872	123,2	0,853	83,8	0,825	62,2	0,809	
475,5	0,914	201,2	0,869	121,9	0,858	83,3	0,822	61,5	0,808	
451,4	0,908	198	0,869	120,5	0,854	82,4	0,827	61	0,815	
438,2	0,903	195,1	0,868	119,1	0,856	81,8	0,828	60,6	0,81	
421,1	0,884	192,3	0,868	117,8	0,853	81	0,824	60,2	0,808	
407,9	0,886	189,6	0,867	116,3	0,854	80,3	0,828	59,8	0,81	
392,9	0,883	186,6	0,868	115,3	0,85	79,5	0,822	59,4	0,81	
382,4	0,885	183,8	0,869	113,6	0,853	78,9	0,832	59	0,81	
372,5	0,883	181,1	0,868	112,6	0,851	78,3	0,83	58,6	0,807	
362	0,886	178,8	0,865	111,3	0,846	77,6	0,83	58,3	0,813	
352	0,882	176	0,865	110,2	0,848	76,8	0,835	57,9	0,81	
343,2	0,883	173,5	0,865	108,9	0,846	76,3	0,83	57,6	0,813	
335,1	0,882	171,1	0,864	108,1	0,846	75,8	0,832	57,1	0,813	
325,5	0,885	168,9	0,863	107	0,848	75	0,834	56,8	0,82	
318,5	0,883	166,7	0,865	105,7	0,848	74,5	0,828	56,5	0,817	
312,1	0,885	164,1	0,868	104,8	0,844	73,7	0,83	56,1	0,817	
305,6	0,883	161,9	0,865	103,6	0,847	73,2	0,83	55,6	0,813	
298,2	0,883	160	0,864	102,7	0,843	72,6	0,828	55,4	0,813	
292,7	0,881	157,7	0 <i>,</i> 865	101,4	0,846	72,1	0,83	55,1	0,813	
286,8	0,881	155,7	0,863	100,5	0,84	71,5	0,834	54,7	0,815	
281	0,881	153,5	0,864	99,4	0,847	70,9	0,81	54,4	0,81	
275,2	0,879	151,6	0,864	98,5	0,847	70,3	0,816	54	0,817	
270,4	0,878	149,7	0,858	97,5	0,843	69,8	0,818	53,7	0,81	
264	0,882	147,5	0,864	96,6	0,837	69,3	0,814	53,5	0,81	
260,3	0,876	146,2	0,86	95,8	0,84	68,8	0,815	53,1	0,807	
255,1	0,879	143,9	0,864	94,6	0,843	68,3	0,816	52,8	0,805	
250	0,879	142	0,858	93,8	0,841	67,7	0,818	52,5	0,81	
245,7	0,878	140,6	0,859	92,7	0,834	67,3	0,812	52,2	0,807	
241,6	0,875	138,5	0,861	92	0,831	66,7	0,81	51,9	0,8	
236,6	0,877	137,2	0,858	91	0,835	66,2	0,812	51,5	0,807	
233,5	0,874	135,6	0,856	90,3	0,83	65,6	0,812	51,3	0,808	
229,2	0,872	133,9	0,856	89,5	0,828	65,2	0,809	51,1	0,807	
225,5	0,872	132,3	0,854	88,6	0,833	64,8	0,81	50,7	0,807	
221,8	0,873	130,6	0,852	8/,/	0,83	64,3	0,811	50,5	0,803	
218	0,871	129,1	0,854	8/	0,83	63,9	0,812	50,2	0,803	
214,4	0,874	127,5	0,853	80,2 85.0	0,828	03,5 62	0,81	50	0,805	
210,7	0,873	120,1	0,85	0,00	0,827	62.6	0,81	_		
207,0	0,0/1	124,0	0,001	04,/	0,027	02,0	0,009	11	1	

Příloha 13 – Naměřená a vyhodnocená data pro ocel S355N (30° směrem nahoru)

Dr	uh oceli		S3551	N	Počet t	ermogran	jramů 193				
Čís	o vzorku		8		Teplo	otní rozsal	1	0 až 650 °C			
Úhe	el měření	45	5° směrem	nahoru	Vzdále	nost měře	ení		1 m		
Čísl	o měření		7		Тер	lota okolí			23 °C	;	
Čas oh	řevu vzor	ku	10 mi	n	Relati	vní vlhkos	st		35 %)	
Čas	s měření	11	:03:38 – 1	1:35:38	Odraž	ená teplot	ta		24 °C	;	
Tenlota	max ohře	2011	700 °(Název datového					108	
Dete			0.40.00	04	soubo	ru ALMEN	10				
			2.12.20		Tern	nokamera		-		95	
	[-] 3		[-] 3		[-] 3		-]3	-l		[-] 3	
541,3	0,916	212,4	0,802	124,8	0,798	84,1	0,77	'5 7	62,2	0,765	
516,2	0,905	209	0,799	123,6	0,794	83,5	0,7	/	61,7	0,758	
497,6	0,891	205,6	0,801	121,9	0,796	82,6	0,77	// /2	61,4	0,753	
478,4	0,881	202,4	0,796	120,7	0,794	81,9 01 2	0,77	2 72	60 5	0,754	
400,9	0,070	105.0	0,798	117.0	0,790	01,3 20 7	0,77	3 12	60.2	0,750	
444 122 7	0,07	192,9	0,797	1160	0,794	70 0	0,77	2 12	50.2	0,755	
420,7 <u>111 1</u>	0,800	100 2	0,797	115 /	0,700	79,9 70 0		3	59,0	0,759	
401 Q	0.858	186.2	0,002	11/	0,795	79,2	0,77	3	59,4	0.755	
389.9	0,850	184.4	0,795	112.9	0,750	77.9	0,70	57	58.7	0,758	
378.4	0.856	181 3	0,755	111.8	0,791	77 3	0.76	,, 58	58.2	0,755	
368.4	0.848	179.3	0 794	110.5	0 791	76.6	0.7	7	57.8	0 753	
359.8	0.844	176.3	0.802	109.3	0 793	76	0.76	, 54	57.5	0 748	
350.4	0.843	173.9	0 798	108.2	0.79	75.4	0.76	57	57.1	0 748	
342	0.842	171.5	0.798	107.1	0.788	74.8	0.76	58 58	56.8	0.75	
334.4	0.838	169	0.798	106	0.786	74.2	0.76	6 6	56.5	0.748	
328	0.834	166.6	0.801	105	0.784	73.5	0.76	55	56.1	0.745	
320,9	0,829	164,3	0,798	103,8	0,785	73,1	0,76	53	55,8	0,745	
313,7	0,828	162,5	0,795	102,7	0,785	, 72,5	0,76	58	55,4	0,748	
307,5	0,823	160,2	0,795	101,5	0,786	72	0,76	53	55,1	0,749	
300,5	0,821	157,9	0,8	100,7	0,784	71,3	0,76	54	54,7	0,75	
294,4	0,818	156	0,807	99,6	0,785	70,7	0,76	58	54,4	0,753	
288,2	0,818	153,9	0,796	98,8	0,779	70,2	0,7	6	54,1	0,75	
283,2	0,811	151,6	0,798	97,8	0,776	69,6	0,76	54	53,8	0,745	
277,5	0,809	149,9	0,798	96,8	0,779	69,2	0,76	52	53,5	0,747	
272,5	0,806	147,7	0,804	95,9	0,777	68,6	0,76	52	53,1	0,763	
267	0,804	145,9	0,798	94,9	0,776	68,2	0,76	66	52,8	0,765	
262,1	0,803	144,2	0,803	93,9	0,777	67,6	0,76	54	52,6	0,753	
256,7	0,805	142,5	0,801	93	0,773	67,1	0,7	7	52,3	0,75	
252,4	0,801	140,6	0,792	92,2	0,783	66,7	0,76	53	52	0,75	
248	0,8	138,7	0,799	91,4	0,779	66,2	0,76	53	51,7	0,763	
243,5	0,799	137,3	0,79	90,6	0,777	65,7	0,7	7	51,4	0,76	
239,2	0,798	135,7	0,793	89,7	0,78	65,2	0,76	6	51,2	0,757	
234,8	0,802	134	0,797	88,9	0,778	64,8	0,76	54	50,8	0,757	
231,3	0,796	132,3	0,803	88,1	0,775	64,4	0,75	8	50,5	0,75	
227,4	0,796	130,8	0,794	87,2	0,777	63,9	0,76	64	50,3	0,75	
222,8	0,802	129,5	0,792	86,5	0,775	63,5	0,76	6	50	0,753	
219,5	0,803	127,7	0,794	85,7	0,775	63	0,76	52			
215.8	0.801	126.4	0.8	84.9	0.77	62.6	0.75	55			

Příloha 14 – Naměřená a vyhodnocená data pro ocel S355N (45° směrem nahoru)

Dru	h oceli X5CrNi18-10		8-10	Počet t	ermogran	nů	233		
Čísl	o vzorku		1		Teplo	tní rozsal	1 I	0 až 650) °C
Úhe	el měření	0	° normálov	vý směr	Vzdále	nost měře	ní	1 m	
Čísl	o měření		1		Tep	lota okolí		23 °C)
Čas oh	řevu vzor	ku	10 mi	n	Relati	vní vlhkos	st	33 %)
Čas	s měření	12	:53:46 – 1	3:31:33	Odraž	ená teplot	ta	25 °C)
Teplota	max. ohře	evu	700 °(C	Název datového souboru ALMEMO			DP TN (009
Datu	m měření		3.12.20	21	Term	nokamera		FLIR E	95
T [°C]	ε [-]	T [°C]	ε [-]	T [°C]	ε [-]	T [°C]	ε [-]	T [°C]	ε [-]
504,6	0,182	202,9	0,16	125,1	0,156	84,8	0,149	62,4	0,149
481,6	0,179	200,4	0,16	123,8	0,156	84,2	0,149	62,2	0,147
463,4	0,176	198	0,159	122,6	0,156	83,7	0,154	61,8	0,15
446,9	0,174	196,1	0,159	121,7	0,154	83	0,156	61,5	0,151
431,9	0,172	194	0,159	120,5	0,159	82,4	0,153	61,1	0,147
418,5	0,171	192,8	0,16	119,4	0,159	81,9	0,152	60,8	0,14
406,3	0,169	190,9	0,159	118,5	0,159	81,3	0,152	60,4	0,15
395,5	0,168	188,5	0,158	117,3	0,159	80,7	0,15	60,1	0,151
385,7	0,166	186,5	0,159	116,4	0,158	80,1	0,149	59 <i>,</i> 8	0,14
375,6	0,165	184,5	0,159	115,4	0,158	79,6	0,15	59,5	0,139
367,7	0,165	182,2	0,159	114,2	0,159	79	0,147	59,2	0,14
359,5	0,165	180,3	0,158	113,3	0,156	78,4	0,145	58,8	0,147
352	0,165	178,4	0,157	112,3	0,16	77,8	0,145	58,5	0,144
344,6	0,164	176,4	0,157	111,3	0,158	77,4	0,158	58,2	0,136
337,8	0,165	174	0,158	110,3	0,158	76,8	0,155	57,8	0,14
331,2	0,165	172,6	0,158	109,3	0,158	76,4	0,155	57,6	0,138
325,1	0,165	170,5	0,159	108,4	0,157	75,8	0,155	57,2	0,141
319,2	0,165	168,9	0,159	107,5	0,157	75,3	0,153	57	0,138
313,1	0,165	167	0,158	106,6	0,155	74,8	0,157	56,7	0,142
303,1	0,165	165,3	0,157	105,6	0,157	74,3	0,158	56,4	0,14
298,2	0,164	163,5	0,157	104,9	0,156	/3,9	0,154	56,1	0,143
293,4	0,163	161,7	0,157	104	0,155	/3,3	0,155	55,8	0,136
288,6	0,165	160	0,157	103,1	0,154	72,8	0,153	55,5	0,135
284,3	0,164	158,2	0,157	102,1	0,159	72,4	0,153	55,2	0,143
280	0,164	150,5	0,158	101,5	0,157	71,9	0,153	54,9	0,144
275,7	0,104	153	0,158	100,5	0,157	71,5	0,157	54,0	0,152
271,0	0,102	155,5	0,157	99,7	0,150	70.5	0,155	54,4	0,149
263.9	0,104	150.3	0,157	99	0,157	70,5	0,155	53.9	0,144
260.2	0.163	148.9	0.157	97.4	0.155	69.6	0 153	53.6	0.142
256.5	0.162	147.2	0.158	96.7	0.153	69.2	0.16	53 3	0.15
252.8	0.162	145.9	0.158	95.7	0.154	68.8	0.154	53	0.145
249.5	0.162	144.5	0.156	95	0.153	68.4	0.153	52.8	0.141
246.1	0.162	143	0.157	94.4	0.154	68	0.154	52.6	0.147
242,7	0,161	141,6	0,158	93,6	0,153	67,5	0,15	52.3	0,136
239,4	0,161	140,3	0,157	92,8	0,151	67,1	0,154	52,1	0,14
236,5	0,16	139	0,157	92,1	0,152	66,7	0,156	51,9	0,134
233,3	0,159	137,7	0,157	91,4	0,158	66,3	0,154	51,6	0,137
230,1	0,159	136,3	0,157	90,7	0,154	66	0,154	51,4	0,131
227,4	0,158	135,1	0,157	90	0,156	65,5	0,156	51,2	0,132
224,5	0,159	133,7	0,157	89,4	0,155	65	0,15	50,9	0,137
221,6	0,159	132,3	0,156	88,8	0,155	64,7	0,153	50,6	0,142
218,7	0,159	131	0,156	88	0,153	64,3	0,15	50,5	0,138
215,2	0,159	129,9	0,156	87,4	0,155	64	0,158	50,2	0,13
213	0,158	128,6	0,157	86,7	0,154	63,7	0,152	50	0,131
208,8	0,159	127,4	0,157	86,1	0,151	63,2	0,156		
205.1	0.16	126.3	0.155	85.4	0.151	62.8	0.147		

Příloha	15 –	Naměřená	а	vyhodnocená	data	pro	ocel	X5CrNi18-10	(0°	normálový
směr)										

Dri	uh oceli		X5CrNi1	8-10	Počet t	termogran	กมํ	233			
Čísl			2	5 10	Tenic	tní rozsal	na 1	0 až 650)°C		
Úlhe	l měření	-	– 15° směrer	n dolů	Vzdálo	nost měře	ní	1 m	, 0		
Čísl	o měření		2		Ten	lota okolí	FI II	23 °C	2		
Čas oh	řevu vzor	ku		n	Relati	vní vlhkos	st	33 %	, ,		
Čas	s měření	13	3.49.31 - 1	4.28.11	Odraž	ená tenlot	a	25 °C	2		
-				0	Název	v datovéh	0		, , , , ,		
Teplota	max. ohre	evu	700 °C	3	soubo	ru ALMEN	10	DP IN (010		
Datu	m měření		3.12.20	21	Tern	nokamera		FLIR E	95		
T [°C]	[-] ع	T [°C]	ε [-]	T [°C]	ε [-]	T [°C]	[-] ع	T [°C]	[-] ع		
528,3	0,147	208,3	0,129	125,3	0,121	84,9	0,117	62,5	0,104		
506,7	0,144	205,8	0,128	124,2	0,118	84,3	0,113	62,1	0,109		
488,8	0,141	203,6	0,128	123,2	0,116	83,7	0,116	61,8	0,106		
470,2	0,139	201,1	0,128	121,9	0,115	83,1	0,116	61,5	0,109		
453,2	0,137	198,4	0,128	120,8	0,117	82,3	0,116	61,1	0,105		
437,8	0,136	196,2	0,127	119,8	0,116	81,8	0,116	60,8	0,101		
423,8	0,135	193,8	0,128	118,6	0,119	81,3	0,115	60,5	0,111		
411	0,134	191,4	0,120	117,5	0,12	80,7	0,110	50,Z	0,103		
288 E	0,133	187 1	0,129	115 /	0,112	00,1 70 5	0,115	59,7	0,107		
279 /	0,133	107,1	0,129	110,4	0,113	79,5	0,117	50.1	0,105		
378,4	0,132	182.7	0,128	114,5	0,118	78 5	0,113	58.8	0,103		
360.7	0,132	180.6	0,120	112.5	0,123	78,5	0,113	58.5	0,103		
353	0.132	178.2	0.127	111 5	0 1 2 2	77.4	0 116	58.2	0 106		
345.7	0.132	175.9	0.126	110.4	0.12	76.7	0 115	57.9	0 101		
338.9	0.131	174.2	0.128	109.5	0.121	76.3	0.113	57.6	0.105		
332.4	0.131	172	0.126	108.5	0.118	75.8	0.111	57.3	0.093		
326	0.131	170.3	0.127	107.6	0.123	75.2	0.113	57	0.098		
320	0,13	168,5	0,127	106,8	0,123	74,8	0,114	56,7	0,104		
314,3	0,13	166,4	0,127	105,9	0,119	74,3	0,116	56,4	0,099		
308,7	0,13	164,8	0,127	105	0,122	73,8	0,113	56,1	0,102		
303,3	0,13	163	0,127	104,1	0,12	73,3	0,113	55,8	0,105		
298,2	0,13	161,3	0,126	103,2	0,122	72,8	0,11	55,5	0,101		
293,2	0,13	159,6	0,125	102,4	0,124	72,3	0,111	55,2	0,11		
288,4	0,131	157,9	0,125	101,5	0,121	71,9	0,112	55	0,1		
283,5	0,13	156,2	0,124	100,6	0,12	71,5	0,109	54,7	0,112		
279,4	0,13	154,2	0,126	99,9	0,119	70,9	0,108	54,4	0,106		
274,6	0,13	152,9	0,124	99	0,125	70,5	0,108	54,1	0,107		
270,9	0,13	151,2	0,124	98,1	0,123	70,1	0,108	53,9	0,101		
266,8	0,13	149,5	0,126	97,4	0,117	69,5	0,108	53,6	0,101		
263	0,13	147,9	0,125	96,5	0,116	69,1	0,111	53,4	0,095		
259	0,129	146,6	0,124	95,9	0,118	68,7	0,113	53	0,095		
255,4	0,129	145	0,125	95,2	0,116	08,3 رح م	0,113	52,8	0,1		
251,8 240 1	0,129	143,8	0,122	94,4 02 r	0,110	07,9 675	0,113	52,6	0,091		
240,1	0,129	142,4	0,125	5,5 7 7	0,114	67 1	0,11	52,5	0,009		
244,5	0,129	120.5	0,120	02.1	0,119	66.6	0,100	51.0	0,090		
241,5	0,129	137.9	0,124	91 4	0,110	66.3	0,115	51.6	0,000		
230	0.13	136.8	0 123	90.8	0 117	65.9	0 105	51.4	0.086		
231.5	0.13	135.4	0.123	90,1	0.114	65.5	0.11	51.2	0.093		
228.6	0.131	133.9	0.12	89.4	0.117	65.1	0.108	50.9	0.096		
225,5	0,131	132,7	0,121	88,7	0,115	64,7	0,115	50,7	0,088		
222,5	0,129	131,5	0,122	88,1	0,115	64,3	0,112	50,5	0,085		
219,5	0,13	130,2	0,123	87,4	0,113	64	0,118	50,3	0,088		
216,8	0,13	128,9	0,119	86,8	0,116	63,6	0,112	50	0,079		
213,8	0,131	127,6	0,122	86,1	0,114	63,2	0,106				
211,1	0,129	126,5	0,122	85,4	0,119	62,9	0,102				

Dri	uh oceli		X5CrNi1	8-10	Počet t	ermogran	nů	236			
Čísl	o vzorku		3		Teplo	tní rozsal	1	0 až 650) °C		
Úhe	el měření	3	- 30° směrer	n dolů	Vzdále	nost měře	ní	1 m	-		
Čísl	o měření		3		Tep	lota okolí		23 °C	;		
Čas oh	řevu vzor	ku	10 mi	n	Relati	vní vlhkos	st	33 %)		
Čas	s měření	14	:46:30 – 1	5:25:40	Odraž	ená teplot	a	25 °C	;		
Teplota	max. ohře	evu	700 °(C	Název	/ datovéh		DP TN 011			
Datu	m měření		3.12.20	21	Tern	nokamera		FLIR E	95		
T [°C]	ε [-]	T [°C]	ε [-]	T [°C]	ε [-]	T [°C]	٤ [-]	T [°C]	ε [-]		
535,9	0,14	204,9	0,135	123,9	0,139	83,7	0,144	61,8	0,14		
507,7	0,141	202,3	0,137	122,8	0,137	83,2	0,144	61,4	0,146		
483,2	0,141	199,9	0,134	121,7	0,137	82,6	0,141	61,1	0,139		
460,3	0,142	197,6	0,138	120,6	0,137	82	0,141	60,7	0,143		
444,2	0,142	195,2	0,141	119,6	0,137	81,3	0,14	60,4	0,144		
428,4	0,141	193	0,137	118,5	0,136	80,8	0,14	60,1	0,139		
414,5	0,142	190,6	0,141	117,5	0,14	80,3	0,135	59,8	0,137		
401,9	0,141	188,6	0,136	116,4	0,141	79,6	0,135	59,4	0,134		
390,4	0,142	186,4	0,138	115,3	0,14	79,1	0,139	59,1	0,138		
379,8	0,141	184,3	0,138	114,3	0,136	78,6	0,137	58,8	0,134		
370,4	0,141	182,2	0,138	113,3	0,137	78,1	0,141	58,5	0,138		
361,6	0,142	1/9,9	0,139	112,4	0,136	//,5	0,138	58,2	0,145		
352,6	0,142	1/8,1	0,139	111,3	0,136	//	0,139	57,9	0,138		
345,8	0,142	176,2	0,138	110,4 100 F	0,135	76,5	0,137	57,6	0,131		
339	0,141	174,2	0,137	109,5	0,137	70	0,139	57,3	0,133		
226.2	0,142	172,5	0,130	108,5	0,130	75,5 75	0,130	57	0,130		
210.2	0,141	168.7	0,138	107,0	0,139	75	0,139	56.4	0,135		
314.6	0,135	166.8	0,137	105,7	0,130	74,5	0,135	56.2	0.13		
309.2	0.139	165.1	0.138	104.9	0.136	73.5	0.135	55.8	0.132		
304.2	0.139	163.3	0.138	104.1	0.142	73	0.142	55.6	0.134		
299,2	0,139	161,6	0,138	103,2	0,14	72,6	0,139	55,3	0,134		
294,2	0,138	159,9	0,137	102,2	0,143	72,2	0,138	55,1	0,145		
289,5	0,138	158,3	0,139	101,4	0,138	71,7	0,143	54,8	0,139		
285,1	0,137	156,7	0,139	100,6	0,139	71,2	0,137	54,6	0,136		
280,6	0,137	155,1	0,137	99,8	0,138	70,7	0,14	54,2	0,136		
276,4	0,138	153,4	0,138	99	0,141	70,3	0,136	54	0,137		
272,1	0,138	151,8	0,139	98,2	0,141	69,9	0,14	53,7	0,132		
267,9	0,137	150,3	0,138	97,4	0,143	69,5	0,135	53 <i>,</i> 5	0,129		
264,1	0,137	148,8	0,139	96,7	0,139	69	0,134	53,2	0,132		
260,1	0,137	147,3	0,136	95,9	0,138	68,6	0,139	53	0,131		
256,4	0,137	145,8	0,14	95,1	0,143	68,2	0,137	52,7	0,129		
252,8	0,137	144,5	0,137	94,4	0,141	67,7	0,138	52,4	0,133		
249,3	0,137	142,9	0,138	93,6	0,138	67,3	0,135	52,2	0,138		
245,9	0,136	141,/	0,14	92,9	0,14	66,9 66 5	0,133	51,9	0,14		
242,3	0,130	120.0	0,138	92,2	0,141	00,5 66.1	0,135	51,/ E1 F	0,137		
239,2	0,130	127 4	0,138	00 0 AT'2	0,14	65.7	0,135	51,5 51.2	0,129		
233,9	0,135	136.3	0,141	90,8 90.1	0,14	65 /	0,130	51 1	0,120		
232,5	0.135	130,3	0,139	20,1 80 5	0,14	65	0,140	50.8	0,130		
225,7	0 135	133.7	0 14	88.8	0 14	64.7	0 138	50,8	0 132		
223.7	0.134	132.3	0.141	88.2	0.14	64.3	0.137	50,0	0.144		
221	0.135	131	0.139	87.4	0.138	63.9	0.14	50,4	0.142		
218	0.136	129.8	0.14	86.8	0.14	63.5	0.139	49.9	0.15		
215,3	0,136	128,5	0,138	86,2	0,138	63,1	0,145	,.	-,		
212,7	0,135	127,4	0,138	, 85,5	0,144	62,8	0,143				
210	0,136	126,3	0,137	85	0,138	62,5	0,147				
207,3	0,134	125,1	0,137	84,4	0,141	62	0,141				

_							0				
Dr	uh oceli		X5CrNi18	8-10	Pocet t	ermogran	าน	225			
Cís	o vzorku		4		Teplo	otní rozsal	1	0 až 650) °C		
Uhe	el měření	4	15° směrer	n dolů	Vzdále	nost měře	ní	1 m			
Císl	o měření		4		Тер	lota okolí		23 °C	, ,		
Cas oh	řevu vzor	ku	10 mii	n	Relati	vní vlhkos	st	35 %)		
Cas	s měření	11	:10:21 – 1	1:46:01	Odraž	ená teplot	a	25,6 °	С		
Teplota	max. ohře	evu	700 °C	C	Název soubo	v datového ru ALMEN	o IO	DP TN 012			
Datu	m měření		7.12.20	21	Tern	nokamera		FLIR E	95		
T [°C]	ε [-]	T [°C]	ε [-]	T [°C]	ε [-]	T [°C]	ε [-]	T [°C]	ε [-]		
552	0,195	208,2	0,177	125,3	0,172	85	0,164	62,8	0,164		
523,4	0,199	205,2	0,176	124,2	0,173	84,4	0,164	62,4	0,163		
502,4	0,199	202,8	0,176	122,8	0,172	83,7	0,165	62	0,157		
480	0,199	199,7	0,175	121,5	0,172	83	0,164	61,7	0,163		
463,9	0,198	197,3	0,174	120,4	0,172	82,4	0,168	61,4	0,161		
446	0,199	194,7	0,172	119	0,171	81,7	0,163	61	0,155		
432,3	0,185	191,8	0,173	118	0,17	81,1	0,166	60,6	0,161		
417,2	0,185	189,6	0,171	116,8	0,171	80,4	0,163	60,2	0,158		
403,7	0,186	187,1	0,172	115,8	0,17	79,9	0,164	59,8	0,153		
394,3	0,185	184,8	0,172	114,6	0,17	79,3	0,166	59,5	0,153		
382	0.185	182.2	0.174	113.4	0.171	, 78.8	0.165	59.1	0.157		
371.9	0.184	179.9	0.175	112.6	0.169	78.1	0.167	58.8	0.154		
363.3	0.183	177.9	0.174	111.3	0.169	77.5	0.167	58.5	0.159		
353.4	0.184	175.4	0.172	110.2	0.171	76.9	0.167	58.1	0.152		
345.8	0.182	173.4	0.174	109.3	0.167	76.4	0.175	57.8	0.148		
337	0.183	171.2	0.174	108.4	0.169	75.8	0.169	57.5	0.144		
330	0.183	169.4	0.172	107.2	0.169	75.3	0.165	57.2	0.153		
323.3	0.181	167.1	0.173	106.3	0.172	74.7	0.162	56.9	0.155		
316	0.182	165.2	0.17	105.4	0.167	, 74.2	0.166	56.6	0.148		
309.6	0.182	163.4	0.172	104.3	0.171	, 73.7	0.17	56.2	0.155		
303.3	0.183	161.3	0.172	103.4	0.175	73.1	0.168	55.9	0.145		
298.4	0.181	159.6	0.172	102.5	0.174	72.7	0.168	55.6	0.151		
292.6	0.18	157.6	0.172	101.7	0.171	72.2	0.168	55.4	0.151		
287.1	0.18	155.7	0.172	100.6	0.173	71.7	0.164	55	0.153		
281.8	0.18	153.8	0.172	99.8	0.172	71.1	0.163	54.7	0.147		
276.1	0.182	152.3	0.173	98.9	0.171	70.7	0.167	54.4	0.146		
271.9	0.181	150.6	0.173	98	0.17	70,1	0.164	54.1	0.153		
267	0.18	148.9	0.171	97.2	0.171	69.6	0.162	53.9	0.15		
262.6	0.18	147	0.173	96.3	0.169	69.2	0.159	53.6	0.148		
257.6	0.18	145.4	0.173	95.4	0.169	68.7	0.167	53.3	0.139		
253.9	0.18	143.9	0.171	94.6	0.168	68.3	0.157	53	0.148		
249.8	0.18	142.3	0.169	93.9	0.165	67.9	0.151	52.8	0.144		
245.4	0 1 7 9	141	0 171	93.1	0 164	67.4	0 162	52,5	0 143		
241.4	0.18	139.4	0.169	923	0.167	66.9	0.153	52.2	0.148		
237.8	0.178	137.7	0 173	91.5	0 164	66 5	0 156	51.9	0.138		
234.4	0 177	136.2	0.17	90.7	0 172	66.2	0 157	51.6	0 133		
230.6	0 177	134.9	0 171	90	0 172	65.6	0 157	51.4	0 141		
227 5	0 176	133.7	0 173	89.3	0 172	65.2	0 159	51 1	0 146		
274.2	0 176	133,2	0 17	88.6	0 173	64.8	0.16	50.9	0 1 3 9		
227,2	0 176	130 5	0 172	87 7	0 172	64.4	0 157	50,5	0 136		
217 3	0 176	129 3	0 171	87.1	0.17	64	0 154	50,0	0 137		
214 3	0.176	127.8	0.17	86.5	0.169	63.6	0.163	50.2	0.135		
211.4	0.175	126.6	0.17	85.8	0.163	63.2	0 16	49.9	0.133		
,	0,2,0	0,0	<i>2,1,1</i>		0,200		0,20		0,200		

	Dri	uh oceli		X5CrNi18	3-10	Počet t	ermogran	านํ	223			
Union factoria 15° směrem nahoru Vzdálanost měření 1 m Číslo měření 5 Teplota okolí 23°C Čás ohřevu vzorku 10 min Relativní vilkost 35 %. Vadalanost měření 12:04:04 – 12:41:07 Odražená teplota 25,6 °C Nařev datvého souboru ALMEMO DP TN 013 Datum měření 7.12:2021 Termokamera FUR E9 TPC) E [-] T [C] E [-] 1.60:01 305:5 0.138 206.3 0.146 123,2 0.156 84,1 0.16 61,9 0.148 448,5 0.138 200,3 0.147 120,7 0.154 82,2 0.161 60,9 0.147 448,5 0.139 195,5 0.147 119,5 0.154 83,4 0.156 60,4 0.148 4421 0.144 119,1 0.155 80,8 0.149 0.148 0.148	Čísl	o vzorku		5	5 10	Tenlo	tní rozsał	1	0 až 650 °C			
Cisio měřeni 10 Simistri Halloli Taplota okolí 11 Čas ohřevu vzorku 10 min Relatívní vilhkost 35 % Čas měřeni 12:04:04 – 12:41:07 Odražená teplota 25,6 °C Teplota max. ohřevu 700 °C Název datového souboru ALMEMO DP TN 013 Datum měření 7.12:2021 Termokamera FLIR <ey< td=""> T (°C) E [-] T (°C) E [-] T (°C) E [-] T (°C) 50:2 0.137 209 0.146 122,4 0.156 84,7 0.161 60,2 0.148 484.4 0.138 200,3 0.146 122,2 0.155 82.8 0.16 61,3 0.144 485.5 0.139 195,7 0.147 120,7 0.154 81,5 0.161 60,5 0.148 436.2 0.131 1918,5 0.144 113,3 0.157 79,7 0.158 58,8 0.146 376,7 0.144 184,0 0.148 113,3 0.157 <t< td=""><td>Úlhe</td><td>o vzorku ol měření</td><td>15</td><td>° směrem</td><td>nahoru</td><td>Vzdálo</td><td>nost měře</td><td>ní</td><td>1 m</td><td>, 0</td></t<></ey<>	Úlhe	o vzorku ol měření	15	° směrem	nahoru	Vzdálo	nost měře	ní	1 m	, 0		
Cas offièreu vzorku 10 min Relativni vihkost 33 % Cas méření 12:04:04 – 12:41:07 Odrázená teplota 25:6 °C Datum měření 7:00 °C Název datovéňo souboru ALMEMO DP TN 013 Datum měření 7:12:2021 Termokamera FLIR Eys Tř°C) E [] T (°C) E []	Čísl	o měření		5	nanoru	Ton	ota okolí		23 °C	<u>,</u>		
Cas měření 12:04:04 - 12:41:07 Odražená teplota 25.6 °C Teplota max. ohřevu 700 °C Název datového souboru ALMEMO DP TN 013 Datum měření T.12:021 Termokamera Filk E9 T [°C] c.[-] T [°C] c.[-	Čas oh	řevu vzor	ku	 10 mi	n	Relativ		st .	35 %	,		
Toplota max. ohřevu T0° °C Název datového souboru ALMEMO DP TN 0 ⁺³ Datum měření 7.12.2021 Terrokamera FLIR E95 T[°C] €.[-]	Čas	s měření	12	:04:04 – 1	2:41:07	Odraž	ená teplot	a	25.6 °	c		
Datum měření 7.12.2021 Termokamera FLIR E⊍ 530,2 0,137 209 0,146 125,4 0,156 84,7 0,161 61,2 0,148 530,2 0,138 206,3 0,146 124,2 0,156 84,1 0,161 61,2 0,148 444,4 0,138 203,3 0,146 124,2 0,155 83,4 0,159 61,6 0,14 466,8 0,139 198,5 0,147 120,7 0,154 82,2 0,161 60,9 0,147 448,5 0,139 198,5 0,147 119,5 0,154 82,2 0,161 60,9 0,147 448,5 0,139 198,5 0,147 119,5 0,154 80,3 0,157 59,8 0,148 4211 0,144 181,3 0,156 79,7 0,158 59,2 0,146 386,4 0,144 114,1 0,156 78,5 0,155 58,5 0,142 360,4	Teplota	max. ohře	evu	700 °(C	Název			DP TN 013			
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	Datu	m měření		7.12.20	21	Term	nokamera		FLIR E	95		
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	T [°C]	[-] ع	T [°C]	[-] ع	T [°C]	[-] ع	T [°C]	[-] ع	T [°C]	ε [-]		
505.5 0.138 206.3 0.146 124.2 0.156 84.1 0.16 61.9 0.148 4484.4 0.138 200.3 0.147 121.9 0.155 83.4 0.159 61.6 0.13 466.8 0.138 198.5 0.147 120.7 0.154 82.2 0.161 60.9 0.147 436.2 0.139 195.7 0.147 119.5 0.154 81.5 0.161 60.9 0.142 436.2 0.143 193.1 0.148 116.3 0.155 80.8 0.155 60.2 0.15 409.8 0.142 188.6 0.148 116.3 0.157 79.7 0.158 59.5 0.146 386.4 0.143 186.1 0.149 113.0 0.157 79.7 0.158 58.5 0.142 366.4 0.143 179.6 0.149 111.9 0.157 77.4 0.158 58.1 0.144 315.0 0.144 173	530,2	0,137	209	0,146	125,4	0,156	84,7	0,161	62,2	0,148		
484,4 0,138 203,3 0,146 123,2 0,155 83,4 0,159 61,6 0,15 466,8 0,138 200,7 0,147 121,9 0,155 82,8 0,161 60,9 0,144 435,2 0,139 195,7 0,147 119,5 0,154 81,5 0,161 60,5 0,148 421 0,14 193,1 0,148 113,3 0,155 80,8 0,159 60,2 0,15 409,8 0,141 191 0,148 117,3 0,156 79,7 0,158 59,5 0,144 386,4 0,143 186,1 0,149 115,2 0,156 79,1 0,157 59,2 0,146 376,7 0,144 184,4 0,148 114,1 0,157 77,4 0,158 58,1 0,142 360,4 0,143 179,6 0,149 111,9 0,157 77,4 0,158 58,1 0,144 351,5 0,145 175,7 <td>505,5</td> <td>0,138</td> <td>206,3</td> <td>0,146</td> <td>124,2</td> <td>0,156</td> <td>84,1</td> <td>0,16</td> <td>61,9</td> <td>0,148</td>	505,5	0,138	206,3	0,146	124,2	0,156	84,1	0,16	61,9	0,148		
466.8 0,138 200,7 0,147 121,9 0,155 82,8 0,16 61,3 0,144 448,5 0,139 198,5 0,147 119,5 0,154 82,2 0,161 60,9 0,147 436,2 0,139 195,7 0,147 119,5 0,154 81,5 0,161 60,9 0,144 421 0,14 193,1 0,148 118,3 0,155 80,8 0,159 60,2 0,15 409,8 0,142 188,6 0,148 116,3 0,157 79,7 0,157 59,2 0,146 376,7 0,144 184,4 0,148 111,9 0,157 77,4 0,158 58,1 0,144 351,5 0,142 177,3 0,15 109,9 0,155 76,2 0,156 57,5 0,133 343,9 0,146 173,2 0,149 108,9 0,154 75,7 0,155 57,2 0,144 313,2 0,144 170,9 </td <td>484,4</td> <td>0,138</td> <td>203,3</td> <td>0,146</td> <td>123,2</td> <td>0,155</td> <td>83,4</td> <td>0,159</td> <td>61,6</td> <td>0,15</td>	484,4	0,138	203,3	0,146	123,2	0,155	83,4	0,159	61,6	0,15		
448,5 0,139 198,5 0,147 120,7 0,154 82,2 0,161 60,9 0,147 445,2 0,139 195,7 0,147 119,5 0,154 81,5 0,161 60,9 0,143 4211 0,14 1931 0,148 118,3 0,155 80,8 0,157 59,8 0,148 398 0,142 188,6 0,148 116,3 0,157 79,7 0,158 59,5 0,146 386,4 0,143 186,1 0,149 113,2 0,157 79,7 0,158 58,8 0,144 360,4 0,146 181,5 0,149 111,9 0,157 77,9 0,158 58,1 0,144 351,5 0,146 175,5 0,15 109,9 0,155 76,2 0,156 57,5 0,136 337,3 0,146 175,5 0,15 109,9 0,158 76,6 0,151 56,6 0,153 319,2 0,145 169,3 <td>466,8</td> <td>0,138</td> <td>200,7</td> <td>0,147</td> <td>121,9</td> <td>0,155</td> <td>82,8</td> <td>0,16</td> <td>61,3</td> <td>0,146</td>	466,8	0,138	200,7	0,147	121,9	0,155	82,8	0,16	61,3	0,146		
436.2 0.139 195.7 0.147 119.5 0.154 81.5 0.161 60.5 0.148 421 0.14 193.1 0.148 118.3 0.155 80.8 0.155 60.2 0.15 398 0.142 188.6 0.148 116.3 0.157 79.7 0.158 59.5 0.145 386.4 0.143 186.1 0.149 115.2 0.156 79.7 0.158 59.2 0.146 376.7 0.146 181.5 0.149 113 0.157 77.9 0.158 58.5 0.142 360.4 0.143 177.5 0.15 111.9 0.155 76.2 0.156 57.8 0.142 361.4 0.144 170.9 0.15 108.9 0.153 75.7 0.155 57.2 0.141 312.2 0.144 170.9 0.15 108.9 0.153 75.1 0.154 56.6 0.157 312.0 0.144 163.5	448,5	0,139	198,5	0,147	120,7	0,154	82,2	0,161	60,9	0,147		
421 0,14 193.1 0,148 118,3 0,155 80,8 0,159 60,2 0,154 409,8 0,142 138,6 0,148 117,3 0,154 80,3 0,157 55,8 0,145 386,4 0,143 188,6 0,148 116,1 0,157 79,7 0,158 59,2 0,146 376,7 0,144 184,4 0,148 111,1 0,157 77,9 0,159 58,5 0,142 360,4 0,143 177,6 0,149 111,9 0,157 77,4 0,158 58,1 0,142 360,4 0,143 177,3 0,15 110,1 0,155 76,2 0,156 57,5 0,142 343,9 0,144 170,9 0,15 108,9 0,154 75,7 0,155 57,2 0,144 313,1 0,144 170,9 0,15 106,9 0,157 73,1 0,154 56,9 0,137 319,2 0,145 166,3 </td <td>436,2</td> <td>0,139</td> <td>195,7</td> <td>0,147</td> <td>119,5</td> <td>0,154</td> <td>81,5</td> <td>0,161</td> <td>60,5</td> <td>0,148</td>	436,2	0,139	195,7	0,147	119,5	0,154	81,5	0,161	60,5	0,148		
409.8 0.14 191 0.148 117,3 0.154 80,3 0.157 59,8 0.148 398 0.142 188,6 0.148 116,3 0.157 79,7 0.158 55,5 0.145 386,4 0.144 188,1 0.149 111,2 0.156 79,1 0.158 58,8 0.146 376,7 0.144 184,4 0.149 111,9 0.157 77,9 0.158 58,1 0.144 360,4 0.143 177,3 0.15 111,1 0.155 76,2 0.158 57,8 0.142 331,2 0.144 173,2 0.151 108,9 0.153 75,7 0.155 57,2 0.14 312,2 0.144 169,3 0.15 106,9 0.153 75,1 0.154 56,0 0.151 313,1 0.143 165,6 0.151 106 0.157 73,1 0.154 56 0.148 303,1 0.144 163,5	421	0,14	193,1	0,148	118,3	0,155	80,8	0,159	60,2	0,15		
398 0,142 188,6 0,148 116,3 0,157 79,7 0,158 59,5 0,145 386,4 0,143 186,1 0,149 115,2 0,156 79,1 0,157 59,2 0,146 376,7 0,144 184,4 0,148 114,1 0,156 78,5 0,158 58,8 0,142 367,6 0,144 181,5 0,149 111,9 0,157 77,4 0,158 58,8 0,142 360,4 0,145 177,3 0,15 111,1 0,155 76,8 0,159 57,8 0,142 343,9 0,146 173,2 0,149 108,9 0,154 75,7 0,155 57,2 0,141 312,2 0,144 170,9 0,15 106,9 0,158 74,6 0,154 56,6 0,151 313,2 0,145 167,5 0,151 106,1 0,157 73,1 0,154 56,6 0,148 313,1 0,144 163,5	409,8	0,14	191	0,148	117,3	0,154	80,3	0,157	59 <u>,</u> 8	0,148		
386,4 0,143 186,1 0,149 115,2 0,156 79,1 0,157 59,2 0,146 376,7 0,144 184,4 0,148 114,1 0,156 78,5 0,156 58,8 0,142 360,4 0,143 179,6 0,149 111,9 0,157 77,4 0,158 58,1 0,144 351,5 0,145 177,3 0,15 111,1 0,155 76,2 0,156 57,5 0,142 337,3 0,144 170,9 0,15 108,9 0,154 75,7 0,155 57,2 0,144 312,2 0,144 170,9 0,15 108,9 0,153 75,1 0,154 56,9 0,137 325,1 0,145 167,5 0,151 106,9 0,157 73,6 0,154 56,0 0,148 303,1 0,141 163,5 0,151 106,1 0,157 73,6 0,154 56,0 0,148 303,1 0,141 165,	398	0,142	188,6	0,148	116,3	0,157	79,7	0,158	59 <u>,</u> 5	0,145		
376,7 0,144 184,4 0,148 114,1 0,156 78,5 0,156 58,8 0,146 360,4 0,143 179,6 0,149 1113 0,157 77,4 0,158 58,1 0,142 360,4 0,143 177,5 0,15 111,1 0,155 76,8 0,159 57,8 0,142 343,9 0,146 177,5 0,15 109,9 0,155 76,2 0,156 57,5 0,137 331,2 0,144 170,9 0,15 106,9 0,158 74,6 0,151 56,6 0,151 31,2 0,144 167,5 0,151 106,1 0,157 74,1 0,154 56,3 0,148 303,1 0,141 163,5 0,151 106,1 0,157 73,6 0,154 56,3 0,148 303,1 0,141 163,5 0,151 103,2 0,157 73,6 0,159 55,4 0,151 288,6 0,145 158,0<	386,4	0,143	186,1	0,149	115,2	0,156	79,1	0,157	59,2	0,146		
367,6 0,146 181,5 0,149 113 0,157 77,9 0,159 58,5 0,142 360,4 0,143 177,6 0,149 111,9 0,157 77,4 0,158 58,1 0,144 351,5 0,146 177,3 0,15 111,1 0,155 76,8 0,159 57,8 0,142 343,9 0,146 173,2 0,149 108,9 0,154 75,7 0,155 57,2 0,143 31,1 0,144 170,9 0,15 106,9 0,158 74,6 0,151 56,6 0,151 319,2 0,144 167,5 0,151 106,1 0,157 73,6 0,154 56,3 0,148 313,1 0,143 165,6 0,151 102,2 0,157 73,1 0,159 55,8 0,147 298,2 0,144 156,7 0,151 102,2 0,157 71,7 0,158 54,9 0,149 284,6 0,145 158,9<	376,7	0,144	184,4	0,148	114,1	0,156	78,5	0,156	58,8	0,146		
360.4 0,143 179,6 0,149 111,9 0,157 77,4 0,158 58,1 0,144 351,5 0,146 177,3 0,15 111,1 0,155 76,8 0,159 57,8 0,142 343,9 0,146 173,2 0,145 108,9 0,155 76,2 0,155 57,2 0,143 331,2 0,144 170,9 0,15 108,9 0,153 75,1 0,154 56,6 0,151 319,2 0,145 167,5 0,151 106,1 0,157 73,6 0,154 56,6 0,148 303,1 0,141 163,5 0,15 104 0,157 73,6 0,154 56 0,144 303,1 0,144 161,8 0,151 103,2 0,155 72,6 0,154 56,0 0,151 298,2 0,144 161,8 0,151 100,2 0,157 73,1 0,156 5,49 0,146 288,6 0,145 158,0 <td>367,6</td> <td>0,146</td> <td>181,5</td> <td>0,149</td> <td>113</td> <td>0,157</td> <td>77,9</td> <td>0,159</td> <td>58,5</td> <td>0,142</td>	367,6	0,146	181,5	0,149	113	0,157	77,9	0,159	58,5	0,142		
351,5 0,145 177,3 0,15 111,1 0,155 76,8 0,159 57,8 0,142 333,3 0,146 175,5 0,15 109,9 0,155 76,2 0,156 57,5 0,136 337,3 0,144 170,9 0,15 108,9 0,153 75,1 0,154 56,9 0,137 325,1 0,145 169,3 0,15 106,9 0,158 74,6 0,151 56,6 0,153 313,2 0,143 165,6 0,151 106,1 0,157 73,1 0,159 55,8 0,147 298,2 0,144 161,8 0,151 104 0,157 73,1 0,159 55,4 0,151 293,4 0,145 159,7 0,15 102,2 0,157 71,1 0,158 54,9 0,149 284,3 0,146 158,5 0,151 100,5 0,157 71,1 0,158 54,52 0,144 284,3 0,146 154,2 </td <td>360,4</td> <td>0,143</td> <td>179,6</td> <td>0,149</td> <td>111,9</td> <td>0,157</td> <td>77,4</td> <td>0,158</td> <td>58,1</td> <td>0,144</td>	360,4	0,143	179,6	0,149	111,9	0,157	77,4	0,158	58,1	0,144		
343.9 0,146 175,5 0,15 109,9 0,155 76,2 0,156 57,5 0,136 337,3 0,144 170,9 0,159 108,9 0,154 75,7 0,155 57,2 0,147 331,2 0,144 170,9 0,15 106,9 0,158 74,6 0,151 56,6 0,151 319,2 0,145 167,5 0,151 106,1 0,157 74,1 0,154 56,9 0,148 313,1 0,143 165,6 0,15 105 0,157 73,6 0,154 55,8 0,147 298,2 0,144 161,8 0,151 100,2 0,157 71,7 0,154 55,1 0,146 288,6 0,145 158 0,151 100,5 0,157 71,1 0,158 54,5 0,151 284,3 0,146 154,2 0,152 99,6 0,157 70,1 0,158 54,2 0,144 275,7 0,143 152,8 <td>351,5</td> <td>0,145</td> <td>177,3</td> <td>0,15</td> <td>111,1</td> <td>0,155</td> <td>76,8</td> <td>0,159</td> <td>57,8</td> <td>0,142</td>	351,5	0,145	177,3	0,15	111,1	0,155	76,8	0,159	57,8	0,142		
337,3 0,146 173,2 0,149 108,9 0,154 75,7 0,155 57,2 0,143 331,2 0,144 170,9 0,15 108 0,153 75,1 0,154 56,9 0,137 325,1 0,145 169,3 0,151 106,9 0,158 74,6 0,154 56,6 0,148 313,1 0,143 165,6 0,151 105 0,157 73,1 0,159 55,8 0,147 298,2 0,144 161,8 0,151 102,2 0,156 72,6 0,154 55,1 0,146 288,6 0,145 158,7 0,151 102,2 0,157 71,7 0,158 54,5 0,151 284,3 0,146 156,5 0,151 100,5 0,157 71,1 0,158 54,5 0,151 280 0,145 154,2 0,152 99,6 0,157 70,6 0,157 54,2 0,144 267,8 0,146 151,3 <td>343,9</td> <td>0,146</td> <td>175,5</td> <td>0,15</td> <td>109,9</td> <td>0,155</td> <td>76,2</td> <td>0,156</td> <td>57,5</td> <td>0,136</td>	343,9	0,146	175,5	0,15	109,9	0,155	76,2	0,156	57,5	0,136		
331,2 0,144 170,9 0,15 108 0,153 75,1 0,154 56,9 0,137 325,1 0,145 169,3 0,15 106,9 0,158 74,6 0,151 56,6 0,151 319,2 0,145 165,6 0,151 106,1 0,157 74,1 0,154 56,6 0,143 303,1 0,141 163,5 0,15 104 0,157 73,6 0,154 55,8 0,147 298,2 0,144 161,8 0,151 103,2 0,157 72,2 0,154 55,1 0,146 284,3 0,145 159,7 0,151 100,2 0,157 71,1 0,158 54,5 0,151 280 0,145 154,2 0,152 99,6 0,157 70,6 0,157 54,2 0,148 275,7 0,143 152,8 0,153 98,7 0,159 70,2 0,156 54,4 0,141 271,8 0,144 149,7	337,3	0,146	173,2	0,149	108,9	0,154	75,7	0,155	57,2	0,14		
325,1 0,145 169,3 0,15 106,9 0,158 74,6 0,151 56,6 0,151 319,2 0,145 167,5 0,151 106,1 0,157 74,1 0,154 56,3 0,148 313,1 0,143 165,6 0,15 105 0,157 73,6 0,154 56,8 0,148 303,1 0,141 163,5 0,151 103,2 0,156 72,6 0,159 55,4 0,151 298,2 0,144 161,8 0,151 102,2 0,157 72,2 0,154 55,1 0,146 288,6 0,145 158, 0,151 100,5 0,157 71,1 0,158 54,5 0,151 284,3 0,146 156,5 0,151 100,5 0,157 71,1 0,158 54,5 0,141 284,3 0,146 154,2 0,152 99,6 0,157 70,6 0,157 54,2 0,144 271,8 0,146 151,3 </td <td>331,2</td> <td>0,144</td> <td>170,9</td> <td>0,15</td> <td>108</td> <td>0,153</td> <td>75,1</td> <td>0,154</td> <td>56,9</td> <td>0,137</td>	331,2	0,144	170,9	0,15	108	0,153	75,1	0,154	56,9	0,137		
319.2 0,145 167,5 0,151 106,1 0,157 74,1 0,154 56,3 0,148 313,1 0,143 165,6 0,15 105 0,157 73,6 0,154 56,8 0,148 303,1 0,141 163,5 0,15 104 0,157 73,6 0,159 55,8 0,147 298,2 0,144 161,8 0,151 103,2 0,156 72,2 0,154 55,1 0,146 288,6 0,145 158 0,151 100,5 0,157 71,1 0,158 54,5 0,151 284,3 0,146 156,5 0,151 100,5 0,157 71,1 0,158 54,5 0,151 280 0,143 152,8 0,152 99,6 0,157 70,6 0,157 54,2 0,148 275,7 0,143 152,8 0,154 97,9 0,16 69,4 0,155 53,4 0,145 263,1 0,142 147,8	325,1	0,145	169,3	0,15	106,9	0,158	74,6	0,151	56,6	0,15		
313,1 0,143 165,6 0,15 105 0,157 73,6 0,154 56 0,148 303,1 0,141 163,5 0,15 104 0,157 73,1 0,159 55,8 0,147 298,2 0,144 161,8 0,151 103,2 0,156 72,6 0,159 55,4 0,151 293,4 0,145 159,7 0,151 100,5 0,157 71,7 0,156 54,9 0,149 284,3 0,146 156,5 0,151 100,5 0,157 71,1 0,158 54,2 0,148 284,3 0,146 154,2 0,152 99,6 0,157 70,6 0,157 54,2 0,148 275,7 0,143 152,8 0,153 98,7 0,159 70,2 0,156 54 0,147 271,8 0,146 149,7 0,151 97,1 0,157 69,4 0,155 53,4 0,145 255,4 0,141 146,5	319,2	0,145	167,5	0,151	106,1	0,157	74,1	0,154	56,3	0,148		
303,1 0,141 163,5 0,15 104 0,157 73,1 0,159 55,8 0,147 298,2 0,144 161,8 0,151 103,2 0,156 72,6 0,159 55,4 0,151 298,4 0,145 159,7 0,15 102,2 0,157 72,2 0,154 55,1 0,146 288,6 0,145 158 0,151 100,5 0,157 71,1 0,158 54,5 0,151 280 0,145 154,2 0,152 99,6 0,157 70,6 0,157 54,2 0,148 275,7 0,143 152,8 0,153 98,7 0,159 70,2 0,156 54 0,147 271,8 0,146 149,7 0,151 97,1 0,157 69,4 0,155 53,4 0,144 267,8 0,141 146,5 0,152 95,4 0,156 68,4 0,153 52,9 0,144 255,3 0,141 145,5	313,1	0,143	165,6	0,15	105	0,157	73,6	0,154	56	0,148		
298,20,144161,80,151103,20,15672,60,15955,40,151293,40,145159,70,15102,20,15772,20,15455,10,146288,60,1451580,151101,40,15971,70,15654,90,149284,30,146156,50,151100,50,15771,10,15854,50,1512800,145154,20,15299,60,15770,60,15754,20,148275,70,143152,80,15398,70,15970,20,156540,144267,80,146151,30,15497,90,1669,80,15553,40,145263,10,142147,80,15296,20,15868,80,15653,20,144255,30,141146,50,15295,40,15668,40,15352,90,146255,30,141145,20,15493,80,15967,50,15452,40,139247,60,142143,20,15493,80,15967,50,15452,40,1432440,144140,40,15392,30,16166,70,15551,90,142230,70,142134,60,15589,50,16165,80,15651,40,144233,60,143135,70,15488,50,16165,30,15350,90,141	303,1	0,141	163,5	0,15	104	0,157	73,1	0,159	55,8	0,147		
293,4 0,145 159,7 0,15 102,2 0,157 72,2 0,154 55,1 0,146 288,6 0,145 158 0,151 101,4 0,159 71,7 0,156 54,9 0,149 284,3 0,146 156,5 0,151 100,5 0,157 71,1 0,158 54,5 0,151 280 0,145 154,2 0,152 99,6 0,157 70,6 0,157 54,2 0,148 275,7 0,143 152,8 0,153 98,7 0,159 70,2 0,156 54 0,147 271,8 0,146 149,7 0,151 97,1 0,157 69,4 0,155 53,4 0,144 263,1 0,142 147,8 0,152 96,2 0,158 68,8 0,156 52,6 0,141 251,5 0,141 146,5 0,153 94,7 0,157 67,9 0,156 52,6 0,141 251,5 0,141 144,5	298,2	0,144	161,8	0,151	103,2	0,156	72,6	0,159	55,4	0,151		
288,6 0,145 158 0,151 101,4 0,159 71,7 0,156 54,9 0,149 284,3 0,146 156,5 0,151 100,5 0,157 71,1 0,158 54,5 0,151 280 0,145 154,2 0,152 99,6 0,157 70,6 0,157 54,2 0,148 275,7 0,143 152,8 0,153 98,7 0,159 70,2 0,156 54 0,147 271,8 0,146 151,3 0,154 97,9 0,16 69,8 0,155 53,4 0,144 267,8 0,142 147,8 0,152 96,2 0,158 68,8 0,156 53,2 0,145 259,4 0,141 146,5 0,152 95,4 0,157 67,9 0,156 52,6 0,141 251,5 0,142 143,2 0,153 93,8 0,159 67,1 0,157 52,1 0,143 244 0,144 140,4	293,4	0,145	159,7	0,15	102,2	0,157	72,2	0,154	55,1	0,146		
284,3 0,146 156,5 0,151 100,5 0,157 71,1 0,158 54,5 0,151 280 0,145 154,2 0,152 99,6 0,157 70,6 0,157 54,2 0,148 275,7 0,143 152,8 0,153 98,7 0,159 70,2 0,156 54 0,147 271,8 0,146 151,3 0,154 97,9 0,16 69,8 0,154 53,7 0,144 267,8 0,146 149,7 0,151 97,1 0,157 69,4 0,155 53,4 0,145 263,1 0,142 147,8 0,152 96,2 0,158 68,8 0,156 53,2 0,146 259,4 0,141 146,5 0,152 95,4 0,157 67,9 0,156 52,6 0,141 251,5 0,142 143,2 0,153 93,8 0,159 67,1 0,157 52,1 0,143 244,6 0,144 140,4	288,6	0,145	158	0,151	101,4	0,159	71,7	0,156	54,9	0,149		
280 0,145 154,2 0,152 99,6 0,157 70,6 0,157 54,2 0,148 275,7 0,143 152,8 0,153 98,7 0,159 70,2 0,156 54 0,147 271,8 0,146 151,3 0,154 97,9 0,16 69,8 0,154 53,7 0,144 267,8 0,146 149,7 0,151 97,1 0,157 69,4 0,155 53,4 0,145 263,1 0,142 147,8 0,152 96,2 0,158 68,8 0,156 53,2 0,145 259,4 0,141 146,5 0,152 95,4 0,157 67,9 0,156 52,6 0,141 251,5 0,142 143,2 0,154 93,8 0,159 67,5 0,154 52,4 0,139 247,6 0,142 141,8 0,153 92,3 0,16 66,7 0,155 51,9 0,142 240,7 0,143 138,8	284,3	0,146	156,5	0,151	100,5	0,157	71,1	0,158	54,5	0,151		
275,70,143152,80,15398,70,15970,20,156540,147271,80,146151,30,15497,90,1669,80,15453,70,144267,80,146149,70,15197,10,15769,40,15553,40,145263,10,142147,80,15296,20,15868,80,15653,20,145259,40,141146,50,15295,40,15668,40,15352,90,146255,30,1411450,15394,70,15767,90,15652,60,141251,50,142143,20,15493,80,15967,50,15452,40,139247,60,142141,80,15392,30,1666,70,15551,90,142240,70,143138,80,15291,60,16366,20,15651,60,144237,30,142137,50,15590,20,16165,30,15350,90,143230,70,142134,60,15589,50,161650,15350,90,144220,70,144133,20,15588,80,16364,60,15450,60,144220,70,145130,80,15587,40,15963,80,15450,10,141210,60,145129,40,15586,70,16663,50,152500,138 <trr< td=""><td>280</td><td>0,145</td><td>154,2</td><td>0,152</td><td>99,6</td><td>0,157</td><td>70,6</td><td>0,157</td><td>54,2</td><td>0,148</td></trr<>	280	0,145	154,2	0,152	99,6	0,157	70,6	0,157	54,2	0,148		
271,8 $0,146$ $151,3$ $0,154$ $97,9$ $0,16$ $69,8$ $0,154$ $53,7$ $0,144$ $267,8$ $0,146$ $149,7$ $0,151$ $97,1$ $0,157$ $69,4$ $0,155$ $53,4$ $0,145$ $263,1$ $0,142$ $147,8$ $0,152$ $96,2$ $0,158$ $68,8$ $0,156$ $53,2$ $0,145$ $259,4$ $0,141$ $146,5$ $0,152$ $95,4$ $0,156$ $68,4$ $0,153$ $52,9$ $0,146$ $255,3$ $0,141$ 145 $0,153$ $94,7$ $0,157$ $67,9$ $0,156$ $52,6$ $0,141$ $251,5$ $0,142$ $143,2$ $0,154$ $93,8$ $0,159$ $67,5$ $0,154$ $52,4$ $0,139$ $247,6$ $0,142$ $141,8$ $0,153$ 93 $0,159$ $67,1$ $0,157$ $51,9$ $0,142$ 244 $0,144$ $140,4$ $0,153$ $92,3$ $0,166$ $66,7$ $0,155$ $51,6$ $0,144$ $240,7$ $0,143$ $138,8$ $0,152$ $91,6$ $0,163$ $66,2$ $0,156$ $51,4$ $0,142$ $233,6$ $0,143$ $135,7$ $0,155$ $89,5$ $0,161$ $65,3$ $0,153$ $50,9$ $0,143$ 227 $0,144$ $133,2$ $0,155$ $88,8$ $0,161$ $64,6$ $0,154$ $50,6$ $0,144$ $220,7$ $0,145$ $130,8$ $0,155$ $87,4$ $0,159$ $63,8$ $0,154$ $50,1$ $0,141$ $220,7$ $0,145$ $120,4$ <t< td=""><td>275,7</td><td>0,143</td><td>152,8</td><td>0,153</td><td>98,7</td><td>0,159</td><td>70,2</td><td>0,156</td><td>54</td><td>0,147</td></t<>	275,7	0,143	152,8	0,153	98,7	0,159	70,2	0,156	54	0,147		
26/,8 0,146 149,7 0,151 97,1 0,157 69,4 0,155 53,4 0,145 263,1 0,142 147,8 0,152 96,2 0,158 68,8 0,156 53,2 0,145 259,4 0,141 146,5 0,152 95,4 0,156 68,4 0,153 52,9 0,146 255,3 0,141 145 0,153 94,7 0,157 67,9 0,156 52,6 0,141 251,5 0,142 143,2 0,154 93,8 0,159 67,5 0,154 52,4 0,139 247,6 0,142 141,8 0,153 93 0,159 67,1 0,157 52,1 0,142 240,7 0,143 138,8 0,152 91,6 0,163 66,2 0,156 51,6 0,142 233,6 0,143 135,7 0,155 89,5 0,161 65,3 0,153 50,9 0,143 220,7 0,144 133,2	271,8	0,146	151,3	0,154	97,9	0,16	69,8	0,154	53,7	0,144		
263,10,142147,80,15296,20,15868,80,15653,20,145259,40,141146,50,15295,40,15668,40,15352,90,146255,30,1411450,15394,70,15767,90,15652,60,141251,50,142143,20,15493,80,15967,50,15452,40,139247,60,142141,80,153930,15967,10,15752,10,1432440,144140,40,15392,30,1666,70,15551,90,142240,70,143138,80,15291,60,16366,20,15651,60,144237,30,142137,50,15390,90,16165,80,15651,40,142233,60,143135,70,15589,50,161650,15350,90,1432270,144133,20,15588,80,16364,60,15450,60,144220,70,145130,80,15587,40,15963,80,15450,10,141217,60,145129,40,15586,70,1663,50,152500,138215,10,144128,10,156860,1663,10,15111211,90,146126,80,15485,40,15963,70,152500,138	267,8	0,146	149,7	0,151	97,1	0,157	69,4	0,155	53,4	0,145		
259,40,141146,50,15295,40,15668,40,15352,90,146255,30,1411450,15394,70,15767,90,15652,60,141251,50,142143,20,15493,80,15967,50,15452,40,139247,60,142141,80,153930,15967,10,15752,10,1432440,144140,40,15392,30,1666,70,15551,90,142240,70,143138,80,15291,60,16366,20,15651,60,144237,30,142137,50,15390,90,16165,80,15651,40,142233,60,143135,70,15589,50,16165,30,15350,90,143230,70,142134,60,15589,50,16165,50,15350,90,1432270,144133,20,15588,80,16364,60,15450,60,1442240,143132,10,154880,16164,20,15350,30,141220,70,145130,80,15587,40,15963,80,15450,10,141217,60,145129,40,15586,70,1663,50,152500,138215,10,144128,10,156860,1663,10,15110114217,9 <td>263,1</td> <td>0,142</td> <td>14/,8</td> <td>0,152</td> <td>96,2</td> <td>0,158</td> <td>68,8</td> <td>0,156</td> <td>53,2</td> <td>0,145</td>	263,1	0,142	14/,8	0,152	96,2	0,158	68,8	0,156	53,2	0,145		
255,30,1411450,15394,70,15767,90,15652,60,141251,50,142143,20,15493,80,15967,50,15452,40,139247,60,142141,80,153930,15967,10,15752,10,1432440,144140,40,15392,30,1666,70,15551,90,142240,70,143138,80,15291,60,16366,20,15651,60,144237,30,142137,50,15390,90,1665,80,15651,40,142233,60,143135,70,15589,50,16165,30,15350,90,143230,70,142134,60,15589,50,161650,15350,90,144220,70,144133,20,15588,80,16364,60,15450,60,144220,70,145130,80,15587,40,15963,80,15450,10,141217,60,145129,40,15586,70,1663,50,152500,138215,10,144128,10,156860,1663,10,15111211.90,146126.80,15485.40,15963.70,15211	259,4	0,141	146,5	0,152	95,4	0,156	68,4	0,153	52,9	0,146		
251,50,142143,20,15493,80,15967,50,15452,40,139247,60,142141,80,153930,15967,10,15752,10,1432440,144140,40,15392,30,1666,70,15551,90,142240,70,143138,80,15291,60,16366,20,15651,60,144237,30,142137,50,15390,90,1665,80,15651,40,142233,60,143135,70,15590,20,16165,30,15351,10,149230,70,142134,60,15589,50,161650,15350,90,1432270,144133,20,15588,80,16364,60,15450,60,144220,70,145130,80,15587,40,15963,80,15450,10,141217,60,145129,40,15586,70,1663,50,152500,138215,10,144128,10,156860,1663,10,15111211.90.146126.80.15485.40.15962.70.15211	255,3	0,141	145	0,153	94,/	0,157	ь/,9 c7 г	0,156	52,6	0,141		
247,b0,142141,80,153930,1596/,10,15752,10,1432440,144140,40,15392,30,1666,70,15551,90,142240,70,143138,80,15291,60,16366,20,15651,60,144237,30,142137,50,15390,90,1665,80,15651,40,142233,60,143135,70,15590,20,16165,30,15351,10,149230,70,142134,60,15589,50,161650,15350,90,1432270,144133,20,15588,80,16364,60,15450,60,144224,0,143132,10,154880,16164,20,15350,30,141220,70,145130,80,15587,40,15963,80,15450,10,141217,60,145129,40,15586,70,1663,50,152500,138215,10,144128,10,156860,1663,10,15111211,90,146126,80,15485,40,15962,70,15211	251,5	0,142	143,2	0,154	93,8	0,159	6/,5	0,154	52,4	0,139		
244 0,144 140,4 0,153 92,3 0,16 66,7 0,155 51,9 0,142 240,7 0,143 138,8 0,152 91,6 0,163 66,2 0,156 51,6 0,144 237,3 0,142 137,5 0,153 90,9 0,16 65,8 0,156 51,4 0,142 233,6 0,143 135,7 0,155 90,2 0,161 65,3 0,153 51,1 0,149 230,7 0,142 134,6 0,155 89,5 0,161 65 0,153 50,9 0,143 227 0,144 133,2 0,155 88,8 0,163 64,6 0,154 50,6 0,144 224 0,143 132,1 0,154 88 0,161 64,2 0,153 50,3 0,141 220,7 0,145 130,8 0,155 87,4 0,159 63,8 0,154 50,1 0,141 217,6 0,145 129,4 <t< td=""><td>247,6</td><td>0,142</td><td>141,8</td><td>0,153</td><td>93</td><td>0,159</td><td>6/,1</td><td>0,157</td><td>52,1</td><td>0,143</td></t<>	247,6	0,142	141,8	0,153	93	0,159	6/,1	0,157	52,1	0,143		
240,7 0,143 138,8 0,152 91,6 0,163 66,2 0,156 51,6 0,144 237,3 0,142 137,5 0,153 90,9 0,16 65,8 0,156 51,4 0,142 233,6 0,143 135,7 0,155 90,2 0,161 65,3 0,153 51,1 0,149 230,7 0,142 134,6 0,155 89,5 0,161 65 0,153 50,9 0,143 227 0,144 133,2 0,155 88,8 0,163 64,6 0,154 50,6 0,144 224 0,143 132,1 0,154 88 0,161 64,2 0,153 50,3 0,141 220,7 0,145 130,8 0,155 87,4 0,159 63,8 0,154 50,1 0,141 217,6 0,145 129,4 0,155 86,7 0,16 63,5 0,152 50 0,138 215,1 0,144 128,1 <t< td=""><td>244</td><td>0,144</td><td>120.0</td><td>0,153</td><td>92,3</td><td>0,16</td><td>66,/</td><td>0,155</td><td>51,9</td><td>0,142</td></t<>	244	0,144	120.0	0,153	92,3	0,16	66,/	0,155	51,9	0,142		
257,5 0,142 137,5 0,153 90,9 0,16 65,8 0,156 51,4 0,142 233,6 0,143 135,7 0,155 90,2 0,161 65,3 0,153 51,1 0,149 230,7 0,142 134,6 0,155 89,5 0,161 65 0,153 50,9 0,143 227 0,144 133,2 0,155 88,8 0,163 64,6 0,154 50,6 0,144 224 0,143 132,1 0,154 88 0,161 64,2 0,153 50,3 0,141 220,7 0,145 130,8 0,155 87,4 0,159 63,8 0,154 50,1 0,141 217,6 0,145 129,4 0,155 86,7 0,16 63,5 0,152 50 0,138 215,1 0,144 128,1 0,156 86 0,16 63,1 0,151	240,7	0,143	122 2	0,152	91,6	0.103	00,2	0,156	51,6	0,144		
253,0 0,143 135,7 0,155 90,2 0,161 65,3 0,153 51,1 0,149 230,7 0,142 134,6 0,155 89,5 0,161 65 0,153 50,9 0,143 227 0,144 133,2 0,155 88,8 0,163 64,6 0,154 50,6 0,144 224 0,143 132,1 0,154 88 0,161 64,2 0,153 50,3 0,141 220,7 0,145 130,8 0,155 87,4 0,159 63,8 0,154 50,1 0,141 217,6 0,145 129,4 0,155 86,7 0,16 63,5 0,152 50 0,138 215,1 0,144 128,1 0,156 86 0,16 63,1 0,151	23/,3	0,142	1257,5	0,155	90,9	0,10	٥,٤٥ ٢ ٢ ٢	0,150	51,4	0,142		
230,7 0,142 134,0 0,153 89,5 0,161 05 0,153 50,9 0,143 227 0,144 133,2 0,155 88,8 0,163 64,6 0,154 50,6 0,144 224 0,143 132,1 0,154 88 0,161 64,2 0,153 50,3 0,141 220,7 0,145 130,8 0,155 87,4 0,159 63,8 0,154 50,1 0,141 217,6 0,145 129,4 0,155 86,7 0,16 63,5 0,152 50 0,138 215,1 0,144 128,1 0,156 86 0,16 63,1 0,151	233,0	0,143	12/ 6	0,155	90,2 90 F	0,101	5,50 2	0.153	51,1	0,149		
227 0,144 135,2 0,155 86,8 0,165 64,6 0,154 50,6 0,144 224 0,143 132,1 0,154 88 0,161 64,2 0,153 50,3 0,141 220,7 0,145 130,8 0,155 87,4 0,159 63,8 0,154 50,1 0,141 217,6 0,145 129,4 0,155 86,7 0,16 63,5 0,152 50 0,138 215,1 0,144 128,1 0,156 86 0,16 63,1 0,151 1 211.9 0.146 126.8 0.154 85.4 0.159 62.7 0.152 1	230,7	0,142	122.2	0,155	03,5 000	0,162	61 E	0.153	50,9	0,143		
224 0,145 132,1 0,154 66 0,161 64,2 0,153 50,3 0,141 220,7 0,145 130,8 0,155 87,4 0,159 63,8 0,154 50,1 0,141 217,6 0,145 129,4 0,155 86,7 0,16 63,5 0,152 50 0,138 215,1 0,144 128,1 0,156 86 0,16 63,1 0,151 1 211.9 0.146 126.8 0.154 85.4 0.159 62.7 0.152 1	227	0,144	122.1	0,155	00,0 00	0,103	04,0 64.0	0.154	50,6	0,144		
220,7 0,143 150,8 0,155 87,4 0,159 63,8 0,154 50,1 0,141 217,6 0,145 129,4 0,155 86,7 0,16 63,5 0,152 50 0,138 215,1 0,144 128,1 0,156 86 0,16 63,1 0,151 0 211.9 0.146 126.8 0.154 85.4 0.159 62.7 0.152 0	224	0,145	120.0	0,154	00	0,101	62 P	0,153	50,3	0,141		
217,0 0,143 125,4 0,153 80,7 0,16 65,5 0,152 50 0,138 215,1 0,144 128,1 0,156 86 0,16 63,1 0,151 0 211.9 0.146 126.8 0.154 85.4 0.159 62.7 0.152 0 0,138	220,7	0,145	120,8	0,155	07,4 867	0,159	03,8 62 E	0,154	50,1	0,141		
211.9 0.146 126.8 0.154 85.4 0.159 62.7 0.152	21/,0	0,145	129,4	0,155	00,7 86	0,10	63 1	0,152	30	0,130		
	213,1 211 Q	0.144	126,1	0 15/	85 <u>/</u>	0,10	62.7	0,151				

Příloha	19 –	Naměřená	а	vyhodnocená	data	pro	ocel	X5CrNi18-10	(15°	směrem
nahoru)										

Číslo vzorku 7 Teplotní rozsah 0 až 650 °C Úhel měření 30° směrem nahoru Vzdálenost měření 1 m Číslo měření 6 Teplota okolí 23 °C Čas ohřevu vzorku 10 min Relativní vlhkost 34 % Čas měření 8:40:37 – 9:18:37 Odražená teplota 24,5 °C Teplota max. ohřevu 700 °C Název datového souboru ALMEMO DP TN 015 Datum měření 9.12.2021 Termokamera FLIR E95 T [°C] ε [-]	-] 03 09 03 04
Úhel měření 30° směrem nahoru Vzdálenost měření 1 m Číslo měření 6 Teplota okolí 23 °C Čas ohřevu vzorku 10 min Relativní vlhkost 34 % Čas měření 8:40:37 – 9:18:37 Odražená teplota 24,5 °C Teplota max. ohřevu 700 °C Název datového souboru ALMEMO DP TN 015 Datum měření 9.12.2021 Termokamera FLIR E95 T [°C] ε [-] T [°C] ε	-] 03 09 03 03 04
Onei mereni 30° smerem nanoru Vzdalenost mereni 1 m Číslo měření 6 Teplota okolí 23° °C Čas ohřevu vzorku 10 min Relativní vlhkost 34 % Čas měření 8:40:37 – 9:18:37 Odražená teplota 24,5 °C Teplota max. ohřevu 700 °C Název datového souboru ALMEMO DP TN 015 Datum měření 9.12.2021 Termokamera FLIR E95 T [°C] ε [-] T [°C]	-] 03 09 03 03 04
Čisio mereni 6 Teplota okoli 2.3 °C Čas ohřevu vzorku 10 min Relativní vlhkost 34 % Čas měření 8:40:37 – 9:18:37 Odražená teplota 24,5 °C Teplota max. ohřevu 700 °C Název datového souboru ALMEMO DP TN 015 Datum měření 9.12.2021 Termokamera FLIR E95 T [°C] ε [-] T [°C] <t< td=""><td>-] 03 09 03 03 04</td></t<>	-] 03 09 03 03 04
Cas onrevu v2orku 10 mm Relativity vitikost 34 % Čas měření 8:40:37 – 9:18:37 Odražená teplota 24,5 °C Teplota max. ohřevu 700 °C Název datového souboru ALMEMO DP TN 015 Datum měření 9.12.2021 Termokamera FLIR E95 T [°C] ε [-] T [-] 03 09 03 03 04
Cas mereni 8:40:37 - 9:18:37 Odrazena tepiota 24,5 °C Teplota max. ohřevu 700 °C Název datového souboru ALMEMO DP TN 015 Datum měření 9.12.2021 Termokamera FLIR E95 T [°C] ε [-] T [°C] ε [-] <t< td=""><td>-] 03 09 03 03 04</td></t<>	-] 03 09 03 03 04
Teplota max. ohřevu 700 °C Nazev datoveno souboru ALMEMO DP TN 015 Datum měření 9.12.2021 Termokamera FLIR E95 T [°C] ε [-] T [°C] ε [-] <t< td=""><td>-] 03 09 03 03 04</td></t<>	-] 03 09 03 03 04
Datum mereni9.12.2021IermokameraFLIR E95T [°C]ε [-]T [°C]ε [-]T [°C]ε [-]T [°C]ε [-]T [°C]ε605,80,162223,10,1951300,20786,80,20863,50,2570,90,167220,10,198128,70,20586,20,20863,10,2546,20,169217,20,194127,40,20785,50,20862,70,2525,80,17214,20,195126,20,20784,90,20862,30,2507,80,17211,30,1951250,20684,20,20861,90,2491,50,171208,60,196123,70,20883,60,20961,20,2461,20,1742030,196121,40,20882,20,20760,80,2448,40,175200,30,198120,30,20681,80,20760,50,2	-] 03 09 03 03 04
T [°C] ϵ [-]T [°C] ϵ 605,80,162223,10,1951300,20786,80,20863,50,2570,90,167220,10,198128,70,20586,20,20863,10,2546,20,169217,20,194127,40,20785,50,20862,70,2525,80,17214,20,195126,20,20784,90,20862,30,2507,80,17211,30,1951250,20684,20,20861,90,2491,50,171208,60,196123,70,20883,60,20561,60,2476,50,172205,80,195122,60,208830,20961,20,2461,20,1742030,196121,40,20882,20,20760,80,2448,40,175200,30,198120,30,20681,80,20760,50,2	-] 03 09 03 03 04
605,80,162223,10,1951300,20786,80,20863,50,2570,90,167220,10,198128,70,20586,20,20863,10,2546,20,169217,20,194127,40,20785,50,20862,70,2525,80,17214,20,195126,20,20784,90,20862,30,2507,80,17211,30,1951250,20684,20,20861,90,2491,50,171208,60,196123,70,20883,60,20561,60,2476,50,172205,80,195122,60,208830,20961,20,2461,20,1742030,196121,40,20882,20,20760,80,2448,40,175200,30,198120,30,20681,80,20760,50,2	03 09 03 03 04
570,90,167220,10,198128,70,20586,20,20863,10,2546,20,169217,20,194127,40,20785,50,20862,70,2525,80,17214,20,195126,20,20784,90,20862,30,2507,80,17211,30,1951250,20684,20,20861,90,2491,50,171208,60,196123,70,20883,60,20561,60,2476,50,172205,80,195122,60,208830,20961,20,2461,20,1742030,196121,40,20882,20,20760,80,2448,40,175200,30,198120,30,20681,80,20760,50,2	09 03 03 04
546,2 0,169 217,2 0,194 127,4 0,207 85,5 0,208 62,7 0,2 525,8 0,17 214,2 0,195 126,2 0,207 84,9 0,208 62,3 0,2 507,8 0,17 211,3 0,195 125 0,206 84,2 0,208 61,9 0,2 491,5 0,171 208,6 0,196 123,7 0,208 83,6 0,205 61,6 0,2 476,5 0,172 205,8 0,195 122,6 0,208 83 0,209 61,2 0,1 461,2 0,174 203 0,196 121,4 0,208 82,2 0,207 60,8 0,2 448,4 0,175 200,3 0,198 120,3 0,206 81,8 0,207 60,5 0,2	03 03 04
525,8 0,17 214,2 0,195 126,2 0,207 84,9 0,208 62,3 0,2 507,8 0,17 211,3 0,195 125 0,206 84,2 0,208 61,9 0,2 491,5 0,171 208,6 0,196 123,7 0,208 83,6 0,205 61,6 0,2 476,5 0,172 205,8 0,195 122,6 0,208 83 0,209 61,2 0,1 461,2 0,174 203 0,196 121,4 0,208 82,2 0,207 60,8 0,2 448,4 0,175 200,3 0,198 120,3 0,206 81,8 0,207 60,5 0,2	03 04
507,8 0,17 211,3 0,195 125 0,206 84,2 0,208 61,9 0,2 491,5 0,171 208,6 0,196 123,7 0,208 83,6 0,205 61,6 0,2 476,5 0,172 205,8 0,195 122,6 0,208 83 0,209 61,2 0,7 461,2 0,174 203 0,196 121,4 0,208 82,2 0,207 60,8 0,2 448,4 0,175 200,3 0,198 120,3 0,206 81,8 0,207 60,5 0,2	04
491,5 0,171 208,6 0,196 123,7 0,208 83,6 0,205 61,6 0,2 476,5 0,172 205,8 0,195 122,6 0,208 83 0,209 61,2 0,2 461,2 0,174 203 0,196 121,4 0,208 82,2 0,207 60,8 0,2 448,4 0,175 200,3 0,198 120,3 0,206 81,8 0,207 60,5 0,2	~~
476,5 0,172 205,8 0,195 122,6 0,208 83 0,209 61,2 0,1 461,2 0,174 203 0,196 121,4 0,208 82,2 0,207 60,8 0,2 448,4 0,175 200,3 0,198 120,3 0,206 81,8 0,207 60,5 0,2	03
461,2 0,174 203 0,196 121,4 0,208 82,2 0,207 60,8 0,2 448,4 0,175 200,3 0,198 120,3 0,206 81,8 0,207 60,5 0,2	<u>1</u>
440,4 0,173 200,3 0,130 120,3 0,200 81,8 0,207 60,5 0,2	07
	02
437,5 0,175 197,8 0,198 119,1 0,206 81,1 0,207 60,1 0,2	02
420,2 0,175 195,2 0,199 116 0,208 80,6 0,209 59,6 0,2	04
415,0 0,176 192,7 0,199 110,8 0,205 80 0,208 59,5 0,2 405.6 0,176 100.2 0,100 115.8 0,207 70.5 0,205 50.1 0,2	01
403,0 0,176 190,2 0,199 113,8 0,207 79,3 0,203 39,1 0,2 206.1 0.176 187.9 0.100 114.6 0.208 78.9 0.205 58.8 0.2	01
390,1 0,170 187,5 0,195 114,0 0,208 76,5 0,205 38,8 0,2 386.8 0,177 185.4 0.2 113.6 0,207 78.3 0,211 58.4 0,2	04
<u>378 2 0 178 183 4 0 2 112 6 0 206 77 7 0 211 58 1 0 1</u>	95
378,2 0,178 183,4 0,2 112,0 0,200 77,7 0,211 38,1 0,1 369.9 0.181 180.9 0.199 111.6 0.21 77.2 0.215 57.8 0.2	03
362 0 181 178 9 0 199 110 6 0 21 76 7 0 209 57 5 0 1	92
<u>353 9 0 181 176 6 0 2 109 7 0 209 76 1 0 21 57 2 0</u>	<u>)</u> 2
<u>347.6 0.182 174.6 0.2 108.7 0.208 75.6 0.206 56.9 0.2</u>	02
<u>340.8</u> 0.182 172.7 0.2 107.7 0.211 75 0.208 56.5 0.1	<u>97</u>
<u>334.2 0.182 170.5 0.2 106.8 0.208 74.5 0.212 56.2 0.1</u>	95
327.9 0.184 168.5 0.2 105.7 0.212 74 0.209 55.9 0.1	92
321,8 0,185 166,6 0,2 104,9 0,211 73,5 0,213 55,6 0,1	88
315,4 0,185 164,7 0,201 103,9 0,209 73 0,21 55,3 0,1	87
310,3 0,186 162,9 0,199 103 0,209 72,6 0,209 55 0,1	94
304,3 0,186 161,1 0,2 102,3 0,209 72,1 0,209 54,7 0,1	95
299,2 0,187 159,2 0,203 101,4 0,208 71,6 0,212 54,4 0,1	94
294,8 0,187 157,4 0,204 100,4 0,21 71,1 0,211 54,1 0,2	03
289,1 0,186 155,6 0,203 99,7 0,21 70,6 0,204 53,9 0,2	01
284,7 0,19 154 0,205 98,8 0,209 70,2 0,208 53,6 0,1	95
280,1 0,19 152,3 0,204 98 0,209 69,7 0,205 53,3 0,1	98
275,5 0,189 150,6 0,204 97 0,211 69,3 0,211 53 0,1	99
271 0,189 148,9 0,204 96,4 0,209 68,8 0,212 52,8 0,1	93
266,9 0,191 147,1 0,204 95,6 0,21 68,4 0,207 52,5 0,1	88
262,7 0,19 145,7 0,203 94,7 0,213 67,9 0,211 52,2 0,	.9
258,5 0,191 144,2 0,204 94 0,21 67,5 0,207 52 0,1	88
<u>254,4</u> 0,189 142,8 0,204 93,3 0,213 67,1 0,208 51,7 0,1	98
<u>250,7 0,192 141,3 0,203 92,5 0,213 66,7 0,209 51,4 0,1</u>	89
<u>247,1 0,191 139,6 0,202 91,8 0,211 66,2 0,203 51,1 0,1</u>	88
<u>245,2 0,192 138,3 0,203 91,1 0,208 65,9 0,208 50,9 0,1</u>	00 07
<u>239,7 0,193 136,8 0,202 90,3 0,208 65,5 0,203 50,7 0,1</u>	8/ 07
230,5 U,134 135,4 U,2U5 89,0 U,2U9 65 U,2U4 50,4 U,1	02
233 0,134 134,1 0,203 00,7 0,207 04,0 0,209 50,2 0, 220 7 0 105 132 8 0 205 88 2 0 206 64 2 0 204 50 0	-0
226.5 0.195 131.3 0.205 87.6 0.206 63.9 0.199	8

Příloha 20 – Naměřená a vyhodnocená data pro ocel X5CrNi18-10 (30° směrem nahoru)

Dru	uh oceli		X5CrNi18	8-10	Počet t	ermogran	านํ	228		
Čísl			8	5 10	Tenlo	tní rozsak		0 až 650 °C		
Úlhe	l měření	45	° směrem	nahoru	Vzdálo	nost měře	ní	<u>1 m</u>	0	
Čísl	o měření		7	nanora	Ten	lota okolí		23 °C		
Čas oh	řevu vzor	ku	, 10 mi	n	Relativ	vní vlhkos	st	34 %	,	
Čas	s měření	9:	47:18 – 10):25:18	Odraž	ená teplot	a	24.5 °	С	
Teplota	max. ohře	evu	700 °(C	Název	/ datového		DP TN 016		
Datu	m měření		9.12.2021			nokamera		FLIR E	95	
T [°C]	ε [-]	T [°C]	ε [-]	T [°C]	٤ [-]	T [°C]	ε [-]	T [°C]	ε [-]	
610,2	0,149	225,8	0,224	130	0,238	86,1	0,25	62,9	0,245	
579,2	0,155	219,6	0,223	128,4	0,239	85,6	0,251	62,5	0,246	
553,7	0,157	217	0,223	127,2	0,237	84,8	0,248	62,1	0,245	
532,4	0,162	213,9	0,224	126	0,237	84,1	0,249	61,7	0,248	
515	0,168	210,6	0,227	124,8	0,238	83,5	0,25	61,4	0,248	
495,8	0,174	207,9	0,226	123,5	0,238	82,9	0,249	61	0,251	
481,6	0,177	205,2	0,226	122,3	0,239	82,2	0,251	60,6	0,245	
465,4	0,182	202,8	0,227	121,2	0,242	81,7	0,254	60,3	0,252	
451,8	0,186	200,1	0,228	120	0,239	81,1	0,249	60	0,252	
439,2	0,188	197,7	0,227	118,9	0,238	80,4	0,251	59,6	0,248	
427,7	0,191	194,9	0,229	117,8	0,24	79,8	0,25	59 <i>,</i> 3	0,249	
417,7	0,193	192,6	0,227	116,6	0,24	79,3	0,252	59	0,252	
406,3	0,196	190,2	0,228	115,5	0,24	78,9	0,246	58,6	0,253	
397,7	0,197	188	0,23	114,4	0,246	78	0,148	58,3	0,252	
387,6	0,2	185,5	0,23	113,4	0,245	77,6	0,251	57,9	0,254	
379	0,202	183,2	0,228	112,3	0,246	77	0,248	57,7	0,254	
370,7	0,203	181,2	0,231	111,4	0,242	76,5	0,245	57,3	0,249	
362,9	0,205	178,8	0,23	110,2	0,245	75,9	0,245	57	0,248	
355,4	0,207	1/6,8	0,229	109,2	0,247	/5,3	0,246	56,7	0,251	
348,4	0,207	1/4,/	0,232	108,2	0,246	/5	0,245	56,4	0,25	
341,6	0,208	172,5	0,229	107,3	0,247	74,3	0,249	56,1	0,249	
335	0,209	1/0,6	0,231	106,3	0,245	/3,8	0,248	55,8	0,253	
328,8	0,21	168,6	0,229	105,3	0,248	/3,3	0,255	55,5	0,246	
322,9	0,212	164.7	0,23	104,3	0,249	72,8	0,251	55,2	0,243	
211 5	0,212	162.7	0,251	103,4	0,247	72,5	0,255	54,9	0,245	
206	0,214	161.1	0,23	102,0	0,244	71,0	0,254	54,0	0,249	
300	0,213	159.3	0,231	101,0	0,247	70.8	0,250	54,5	0,242	
295.9	0,212	157.3	0,231	99.9	0,247	70,0	0,251	53.9	0,237	
291.8	0.214	155.6	0.232	99.1	0.246	69.9	0.247	53.5	0.248	
286	0.217	153.8	0.233	98.3	0.247	69.5	0.255	53.3	0.239	
281,5	0,216	152,2	0,23	97,5	0,248	69	0,249	52,9	0,237	
277,1	0,217	150,5	0,232	96,6	0,244	68,6	0,243	52,7	0,245	
273	0,218	148,8	0,235	, 95,6	0,246	, 68,2	0,247	, 52,5	0,234	
268,7	0,219	147,1	0,233	94,8	0,253	67,7	0,249	52,2	0,239	
264,5	0,218	145,6	0,235	94,2	0,251	67,2	0,247	52	0,238	
260,5	0,218	144,1	0,235	93,4	0,25	66,8	0,247	51,7	0,232	
256 <u>,</u> 5	0,219	142,6	0,234	92,6	0,252	66,4	0,248	51,4	0,235	
253	0,219	141	0,238	91,9	0,252	65,9	0,249	51,2	0,235	
249,2	0,219	139,5	0,236	91,1	0,247	65,5	0,251	51	0,239	
245,7	0,22	138,1	0,237	90,4	0,248	65,1	0,249	50,7	0,242	
242,1	0,219	137	0,237	89,6	0,248	64,8	0,253	50,5	0,236	
238,9	0,22	135,3	0,238	88,9	0,251	64,3	0,244	50,2	0,236	
235,3	0,221	133,9	0,238	88,2	0,249	63,9	0,242	50	0,233	
232	0,222	132,5	0,237	87,5	0,247	63,5	0,242			
228,9	0,222	131,1	0,235	86,8	0,25	63,1	0,245		l	

Příloha 21 – Naměřená a vyhodnocená data pro ocel X5CrNi18-10 (45° směrem nahoru)